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MODELLING COUNTER ROTATING OPEN ROTOR INSTALLATION NOISE

SOURCES

by Ravish Karve

Open rotors are an engine technology that could bring a step change in propulsive

e�ciency for the next generation of aircraft. As such, there is a large research e↵ort that

aims to accurately predict the noise radiated by open rotors. This thesis focuses on the

noise radiated by an installed open rotor. In this configuration one of the major noise

sources could be the ingestion of a turbulent boundary layer that has developed on the

fuselage of the aircraft.

This thesis presents an analytical model that predicts this noise source. The analytical

model is based on the simplified rotor noise model of Amiet with blade-to-blade corre-

lation modelled. The model is extended in three ways to include the boundary layer

ingestion noise source. The first extension is to include a numerical switch to model

the partial loading of a rotor ingesting a boundary-layer. The second extension is to

include wall-e↵ects using the method of images. The assumptions that are made in the

method of images are tested by examining the simpler case of a two-dimensional aerofoil

ingesting turbulence in proximity to a hard-wall. This is done by extending Amiet’s two-

dimensional leading-edge noise model and comparing the predictions from this model

to two Computational Aeroacoustic (CAA) simulations. The first CAA simulation uses

the method of images to model the wall and the second uses a physically representative

hard-wall boundary condition to model the wall. By comparing the di↵erences between

the analytical predictions and the CAA simulations, it is shown that the method of im-

ages accurately predicts wall-e↵ects except for a small range of observers that are in the

shadow-zone of the aerofoil. The method of images is then implemented in the rotor noise

model to predict wall-e↵ects for a rotor. Finally, an axisymmetric anisotropic turbulence

model is used to approximate boundary layer turbulence. The extended rotor noise model

is validated by comparing it to experimental measurements and to a time-domain rotor

noise model that does not model boundary layer turbulence.
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Chapter 1

Introduction

Aviation plays a vital role in today’s globalised economy. In 2016, 3.7 billion

passengers were transported by airlines across the world. This represents a 175%

increase in the number of passengers transported since 2006. This growth is forecast to

continue over the coming years driven by a global increase of the gross domestic product

[1].

To keep up with this growth in an economically viable and environmentally sustainable

manner, Europe is making a concerted and cohesive research e↵ort. In 2001 the Advisory

Council for Aeronautics Research in Europe (ACARE) outlined a set of ambitious goals

for aircraft companies to target in the Strategic Research Agenda (SRA) [2]. These goals

have been subsequently updated in 2011. These updated goals are outlined in Flightpath

2050, Europe’s Vision for Aviation [3]. This document targets a 75% reduction in carbon

dioxide emissions per passenger kilometre, a 90% reduction in nitrous oxide emissions

and a 65% reduction in noise by 2050 [3].

This thesis focuses on the noise produced by aircraft engines. A number of evolutionary

engine technologies (for high bypass turbofans) are being investigated in order to meet

the Flightpath 2050 goals. These include increasing the overall pressure ratio, turbine

entry temperature, and increasing the engines bypass ratio.

Along with the evolutionary changes, radical engine architectures that could lead to a

step change in the e�ciency and environmental footprint of aircraft engines are being

investigated. The introduction of Counter Rotating Open Rotors (CRORs) is one such

step change. An open rotor is a gas turbine engine in which the fan is not within the

nacelle. When the fan is not enclosed within the nacelle, there can either be a single

rotor, i.e. a turboprop, or two contra-rotating propellers.
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The CROR is not a new design and has been of interest to aircraft engineers for over 60

years. Early examples of aircraft with counter rotating propellers include the American

Chance Vought F4U, Convair R3Y-1, Northrop XB-35, the British Avro Shackleton and

the Russian TU-114 as shown in Fig. 1.1. However, most of these early designs were not as

e�cient as they were expected to be. One reason is evident from the shape of the blades

which represented more conventional propeller blades. Current generation prop-fans have

a heavily optimised blade shape with high sweep that allows faster more optimal flight

speeds. Another reason for the ine�ciency of the early generation open rotors was that

the gearboxes required for a CROR were considerably more complicated than the ones

prevalent at that time. This resulted in significant increases in weight and complexity.

This coupled with the wide adoption of jet engines during the second world war meant

that CROR technology was not developed further [4; 5; 6]. There was a resurgence in

the interest of CRORs in the 1970s due to a sharp rise in oil prices. However, a fall in oil

prices in the 1980s combined with the introduction of more stringent noise regulations

and the introduction of much quieter high-bypass turbofans lead once again to the loss

of interest in the development of CRORs [7].

Due to recent advancements in the fields of aerodynamics and aeroacoustics, CRORs

have once again become relevant today. Recent turboprop aircraft include the Antonov

An70 and a number of experimental prop-fans from Airbus, Rolls-Royce, Snecma (now

called Safran Aircraft Engines), and General Electric.

CRORs o↵er a significant advantage over a turbofan as they increase the bypass ratio

significantly. This is a consequence of the fans not being enclosed within a nacelle. As

the diameter of the fans is relatively small compared to a conventional turbofan engine,

the rotor imparts significant swirl to the flow. A CROR minimises the performance loss

because the second contra-rotating propeller corrects the swirl that is imparted to the

propeller wake [8]. This implies a larger propulsive e�ciency and also allows for a smaller

diameter fan that can be operated at higher rotational speeds. Additional benefits of

open rotors include optimal matching of turbine and propeller speeds and the fact that

a duct or thrust reverser is not required. Disadvantages of a CROR include additional

weight, increased complexity in the gearbox design and a significant increase in noise.

Due to the mentioned advantages, fuel consumption can be decreased by up to 35% with

the introduction of open rotors [9].

1.1 Aims of the current work

The current project aims to further understand and predict open rotor noise due to the

installation of open rotors. There have been a number of semi-empirical analytical models

proposed to predict various uninstalled CROR noise sources (for example see Blandeau
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(a) Vought F4-U Corsair. (b) Convair R3Y1.

(c) Tupolev 114. (d) Northrop YB-25.

Figure 1.1: Various turbo-props with counter rotating propellers [10; 11; 12; 13].

et al. [14; 15], these are discussed in detail in Chapter 2). Installation noise sources have

not been investigated as thoroughly.

Installation noise sources are an important contributor to the overall noise produced

by an open rotor as the exposed rotor blades can interact with various flow features

from the aircraft fuselage or installation pylons, leading to a significant increase in the

noise [16]. The current work specifically focuses on one source of installation noise; this

source of noise is the noise produced by the leading-edge of the rotor blades due to the

ingestion of a turbulent boundary layer. A typical CROR aircraft configuration has the

open rotor engine mounted at the rear of the fuselage [16]. In this configuration, the

engine is mounted close to the fuselage and can thus ingest large boundary layers that

have formed on the fuselage. This is also true for the more unconventional blended wing-

body configurations. Additionally, in both of these configurations, the acoustic waves

produced by the rotor can reflect o↵ the fuselage and interfere with the acoustic field of

the rotor. This could significantly alter the sound radiation characteristics of the open
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rotor and increase the Sound Pressure Level (SPL) by up to 6 dB due to the constructive

interference of coherent acoustic waves [17].

The goal of this thesis is to develop a semi-empirical rotor noise model that predicts

the noise radiated by a rotor ingesting a turbulent boundary layer in proximity to a

hard-wall. The semi-empirical rotor noise model that will be used for this study is the

simplified rotor noise model of Amiet [18] with blade-to-blade correlation modelled. This

model is fast to run and has been shown to produce representative results when used to

model the noise produced by subsonic rotors ingesting turbulence. This model will be

extended in order to model the turbulent boundary layer ingestion noise source.

The first extension that will be made to the model is the addition of a hard-wall. To

model the e↵ect of acoustic waves reflecting o↵ a hard-wall, the Method of Images (MOI)

will be used. The MOI is an analytical method in which a reflecting surface is modelled

by adding a mirror source. The first aim of this thesis is to test the accuracy of the MOI

when used for a translating aerofoil in proximity to a hard-wall. This will be accomplished

by running two Computational AeroAcoustic (CAA) simulations. Once the e�cacy of the

MOI to simulate a hard-wall has been established, it will be implemented in Amiet’s [18]

rotor noise model to simulate a rotor ingesting turbulence in proximity to a hard-wall.

The second extension that needs to be made is that an anisotropic velocity spectrum

must be used to accurately model the turbulence in the boundary layer. The incoming

turbulent boundary layer will have elongated turbulent structures in the axial direction.

A key characteristic of the noise spectrum of a rotor ingesting a turbulent boundary layer

is the appearance of prominent peaks at the Blade Passing Frequency (BPF) of the rotor.

This is because multiple blades chop the same coherent structures in the boundary layer.

The anisotropy also significantly a↵ects the distribution of energy in the noise spectrum

[19]. This thesis will introduce the modified Liepmann spectrum of Kerschen et al. [20]

in the rotor noise model to characterize the anisotropy. A final extension that needs to

be made is that a numerical switch must be introduced in order to model the partial

loading of the rotor.

The rotor noise model will be validated using two di↵erent datasets. The first is a set

of experimental measurements from a test campaign of a model rotor at the Virginia

Institute of Technology’s stability wind tunnel. The second validation data set will be

from predictions of a time-domain rotor noise model. The time-domain rotor noise model

is very accurate because it takes as input a 4D time and space varying velocity correlation

tensor. Thus, it does not need to model the turbulence in the boundary layer.
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1.2 Original contributions

1. Amiet’s [21] 2-dimensional leading edge noise model is extended using the MOI to

account for a wall using the MOI.

2. The accuracy of the MOI is determined using CAA simulations. This is done by

running two CAA simulations. One that models the wall using the MOI and one

that models the wall using a hard-wall boundary condition. By comparing the

di↵erences between these two simulations and the analytical model, the accuracy

of the MOI for predicting broadband noise is ascertained.

3. Amiet’s [18] simplified rotational model is extended to model a hard-wall using

the MOI. Blade-to-blade correlation is modelled by computing the cross Power

Spectral Density (PSD) and accounting for the time di↵erence between two blades

of the real/image rotor chopping an eddy.

4. Amiet’s [18] simplified rotational model is extended to model anisotropy by intro-

ducing an axisymmetric anisotropic turbulence model. The axisymmetric turbu-

lence model is compared to boundary layer turbulence. Additionally, the e↵ect of

changing the axial and transverse length scale on the resultant noise spectrum is

determined.

A conference paper presenting a re-derivation of Amiet’s [18] rotor noise model and a

parameter study of the integral length scales has been published at the 2016 Applied Aero-

dynamics Conference [22]. Items 1 and 2 have been presented at the 23rd AIAA/CEAS

Aeroacoustics Conference [23] and have also been submitted to International Journal of

Aeroacoustics. Item 3 has been submitted to the Journal of Sound and Vibration and

Item 4 will be presented at the 24th AIAA/CEAS Aeroacoustics Conference.

1.3 Thesis structure

This thesis presents a frequency-domain rotor noise model that models blade-to-blade

correlation, anisotropy and the e↵ect of a hard-wall. The work done in developing this

model is presented in the following manner,

• Chapter 2 presents a review of the literature that exists on leading-edge noise. An

overview of analytical, experimental, and numerical methods is presented.

• Chapter 3 presents a frequency-domain rotor noise model based on Amiet’s [18]

simplified rotational model. The frequency-domain rotor noise model is re-derived

and a numerical switch is introduced to model the partial loading of a rotor ingesting
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a boundary layer. The predictions from this rotor noise model are compared with

experimental measurements and it is shown that there are several discrepancies.

A parameter study of the integral length scale with and without blade-to-blade

correlation is presented to demonstrate how blade-to-blade correlation a↵ects the

distribution of energy in the noise spectra.

• Chapter 4 extends Amiet’s [21] 2D leading-edge noise theory to include the e↵ect of

a wall using the MOI. The accuracy of the MOI is tested using 2 CAA simulations.

The first CAA simulation models the wall using the MOI and the second CAA

simulation models the wall using a hard-wall boundary condition. The accuracy of

the MOI is examined by comparing these two CAA simulations with predictions

from the analytical model.

• Chapter 5 uses the MOI to extend Amiet’s [18] frequency-domain rotor noise model

presented in Chapter 3 to model a hard-wall. Blade-to-blade correlation is also

modelled by computing the appropriate cross PSDs.

• Chapter 6 presents the axisymmetric turbulence model of Kerschen and Gliebe

[24]. This turbulence model is then used to extend the rotor noise model presented

in Chapter 3 to account for anisotropy.

• Chapter 7 presents a comparison of the predictions made using the developed rotor

noise model with experimental measurements and predictions from the time-domain

model of Glegg [25].

• Chapter 8 presents the conclusions.
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Chapter 2

Literature Review

This chapter will provide a literature review of open rotor noise, with a specific focus

on leading-edge noise. The main sources of tonal noise in uninstalled open rotor

engines are the tonal noise produced by each rotor and the tonal noise that is a result

of interactions between the two rotors. These interactions are due to the impingement

of the front rotor wakes on the rear rotor and due to the interaction of the tip vortices

of the front rotor with the rear rotor [26]. These noise sources are well understood and

a number of solutions have been put forward to ameliorate this noise source. These

methods include the clipping of the rear rotor to avoid the tip vortex of the front rotor

hitting the tip of the rear rotor, a mismatched number of blades for the front and rear

rotors to reduce wake impingement, and more recently trailing-edge blowing from the

rear rotor in order to manage the front rotor wakes [27]. The main sources of broadband

noise in uninstalled open rotor engines are [28],

• The interaction of the front rotor wakes with the blade of the rear rotor.

• The scattering of the boundary layer of each of the rotor blades at the trailing

edge.

• Ingestion of atmospheric turbulence by the front rotor.

• Interaction of the tip vortex of the front rotor with the rear rotor.

Installation noise of open rotors is of particular concern as the blades of an open rotor

are not enclosed within a nacelle. Because of this various flow features generated by the

fuselage of the aircraft or the pylons connecting the engine to the fuselage can interact

with the rotor blades. Installed CROR broadband noise can arise due to a variety of

sources as shown in Fig. 2.1. The main sources of installation noise that have been

identified are,
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Fuselage 
boundary layerWing root 

vortex 

Pylon 
wake

Figure 2.1: Potential sources of noise due to the installation of a Counter Rotating
Open Rotor (CROR) on an aircraft fuselage.

• Pylon wake interaction noise: The wake generated by the pylon is ingested by the

open rotor.

• Fuselage vortex ingestion noise: Large vortices that form at the wing root could

potentially be ingested by the rotor.

• Boundary layer ingestion noise: A large boundary layer develops over the fuselage

of an aircraft.

As has been mentioned, the main purpose of this thesis is to study the third source of

installation noise, i.e., the ingestion of a boundary layer by an open rotor. The following

sections will first detail boundary layer turbulence and various turbulence models. Next,

an overview of analytical methods that predict leading-edge noise will be presented.

Finally, experimental measurements and numerical simulations of open rotor noise will

be detailed.

2.1 Boundary layer turbulence

In this section, an overview of boundary layer turbulence is presented. First, the various

regions in the boundary layer are described. Next, a brief description of the various co-

herent structures present in the boundary layer are described. Finally, various turbulence

models are described.

Fully-developed turbulent boundary layers have been extensively studied. Boundary

layers are self similar and the mean statistics collapse when appropriately normalised
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Figure 2.2: Mean velocities normalised by the skin friction velocity (U+ = U/u⌧ )
plotted against the wall-normal distance normalised by the skin friction velocity
and viscosity (y+ = yu⌧/⌫). Data taken from experimental measurements of
Österlund [30].

as shown in Fig. 2.2. However, due to the complexity of the problem involved many

questions regarding the generation of turbulence and its self-similarity at high Reynolds

numbers remain [29]. Recent studies at very high Reynolds numbers have found an

additional peak in the turbulent kinetic energy and questions have been raised regarding

the self similarity of boundary layer turbulence at these Reynolds numbers [29].

Turbulent boundary layers have three distinct regions as shown in Fig. 2.2. The first

region is the inner layer and in this region the viscosity (⌫) is significant. In the inner

layer flow variables can be scaled by the inner variables; the skin friction velocity (u⌧ )

and the viscosity. The region in which the viscosity plays an important role extends up

to y+ = 30 and can be further divided into the viscous sub-layer and the bu↵er layer.

The viscous sub-layer is a region very close to the wall (y+ < 5). In this region very

close to the wall only the viscous stresses are important. Slightly further from the wall,

in the bu↵er layer, both the viscous stresses and the shear stresses are important. The

second region is the outer layer. In the outer layer the viscosity is no longer an important

parameter and the mean velocity determines the physics of the flow. This region is not

universal and changes based on the mean velocity of the experiment. The third region

is where the inner layer and the outer layer overlap. In this region, both the viscosity

and mean flow variables influence the physics of the flow. In the overlap region the mean

velocity normalised by the skin friction velocity (U+) can be determined as a function
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Figure 2.3: The various coherent motions in a boundary layer from Adrian [31].

of the wall normal distance (y) non-dimnesionalised by the wall units (⌫/u⌧ ),

U+ =
1


ln y+ + B, (2.1)

where  and B are universal constants.

The characteristics of turbulence that are most significant for acoustic computations are

the integral length scales and turbulence intensities. In order to gain a better understand-

ing of the integral length scales of the eddies in the boundary layer a brief overview of

the di↵erent structures that are present in a boundary layer will now be presented. The

main coherent motions that are found in a boundary layer are categorized by Robinson

et al. [32] as,

• Low-speed streaks in the viscous sub-layer.

• Ejections of low-speed fluid outward from the wall that include the lifting of the

low-speed streaks.

• Sweeps of high-speed fluid towards the wall.

• Vortical structures such as horse-shoe vortices that are inclined to the wall [33; 34].

• Sloping near-wall shear layers with locations of high spanwise (parallel to the wall

and perpendicular to the flow) vorticity.

• Near wall locations of fluid that are swept away. These regions are referred to as

‘pockets’.

• Large-scale outer motions (LSM).

Some of these coherent motions are shown in Fig. 2.3. Of these coherent motions, the

structures that are important to understand are the structures in the log layer and the

outer layer. This is because the blades of a rotor ingesting a boundary layer are most
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likely to pass through these regions of the boundary layer. One of the first studies of

the structures was by Head and Bandyopadhyay [33]. They performed flow visualization

studies of a zero pressure gradient turbulent boundary layer (using a boundary layer

filled with light-oil vapour and illuminating it by an intense plain of light) to show that

a majority of the boundary layer was filled with hairpin vortices inclined at 40� to 50�

to the wall. A more recent study by Hutchins et al. [34] repeated this experiment using

stereoscopic Particle Image Velocimetry (PIV) at Reynolds numbers based on the skin

friction velocity ranging from 690 to 2800 to visualise the flow. They performed a PIV

study using two image planes at 45� and 135� to the streamwise axis. Both studies

confirm the existence of hairpin vortices inclined at approximately 45� to the streamwise

axis. Hutchins et al. [34] have also shown that the spanwise length scales of the boundary

layer scale with the height of the boundary layer in the log and outer layer.

From the studies presented above, the eddies that are likely to be chopped by a blade of

a rotor ingesting a turbulent boundary layer are hairpin vortices that are inclined to the

wall. In a simplified sense these can be considered to be long cylindrical eddies (whose

axis is aligned with the mean flow direction) that are being chopped by multiple blades

of the rotor. Modelling the inclination of these cylindrical structures is not possible using

a simple turbulence model and this could have consequences if strip theory is used to

determine the noise radiated by the rotor as the strips will no longer be uncorrelated.

The most common turbulence models that are used for acoustic computations are the

isotropic turbulence model of von Kármán and Liepmann. The von Kármán turbulence

spectrum models the energy spectrum as [35],

E(k) =
55

9
p
⇡

�(5/6)

�(1/3)

u2

k5
e

k4

h
1 + k̂2

i
17/6

, (2.2)

where ke =
p
⇡

L

�(5/6)

�(1/3)
and k̂i = ki/ke, � is the Gamma function, u is the turbulence

velocity, L is the integral length scale and k is the wavenumber vector. The Liepmann

spectrum models the energy spectrum as [36],

E(k) =
8

⇡
u2L5

k4

[1 + L2k2]3
. (2.3)

Both these model spectra reproduce the Kolmogrov 5/3 decay [37] in the inertial sub-

range as shown in Fig. 2.4. One of the main di↵erences in the model spectra is that the

Liepmann spectrum produces a faster decay at high wavenumbers.

From this discussion of boundary layer turbulence presented above, it is evident that

boundary layer turbulence can be significantly anisotropic. Therefore, isotropic model

spectra are not suitable to model boundary layer turbulence. A turbulence model that
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Figure 2.4: The von Kármán and Liepmann isotropic model spectra. The model
spectra are computed using an integral length scale (L) of 0.1 m and a turbulence
velocity (u) of 1m s�1.

has been used to model anisotropy for turbulence/leading-edge interactions is the ax-

isymmetric turbulence model of Kerschen and Gliebe [20]. This model is a modified

Liepmann spectrum and the model is based on the works of Chandrashekar [38] and

Batchelor [39] who determined the appropriate form for the axisymmetric velocity tensor.

Further details of this turbulence model are provided in Chapter 6.

2.2 Analytical modelling of leading-edge/turbulence inter-

action noise

In this section, an overview of the various analytical methods that predict the broadband

noise produced due to turbulence leading-edge interactions will be presented. First, an

overview of the noise produced due to the interaction of a turbulent gust with the leading-

edge of a translating aerofoil will be provided. Then, an overview of analytical models

that predict rotor noise due to the ingestion of turbulence will be discussed.

2.2.1 Analytical modelling of leading-edge noise due to translating

aerofoils interacting with turbulence

The problem of determining the flat-plate response function for a flat-plate interacting

with a two-dimensional sinusoidal gust was first investigated by Sears [40; 41]. Sears
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determined the lift force produced by an aerofoil as a result of a sinusoidal gust impacting

the leading-edge of the aerofoil. The lift computed analytically by Sears [41] in this thesis

is referred to as the Sears function and it appears frequently as the basis of other methods

to compute the lift force produced by an aerofoil due to the ingestion of a sinusoidal gust.

It was shown that the total lift acts at the quarter chord point and there appears to be no

critical frequency that produces a significant increase in the lift force. The formulation of

Sears [41] was generalised for the case of finite wings by Liepmann [42]. The formulation

of Sears [41] was then extended analytically by Filotas [43] and numerically by Graham

[44] to account for oblique gusts. Thus the one-wavenumber analysis of Sears [41] was

extended to account for two wavenumbers.

The problem of an aerofoil interacting with a skewed gust is an inherently three-dimensional

one. This makes the analysis of the problem complicated. To simplify this Graham [45]

developed similarity rules for thin aerofoils. These similarity rules showed that if an

incoming oblique gust sweeps the leading-edge of a two-dimensional wing supersonically

then the appropriate flat-plate response function to use is the two-dimensional compress-

ible response function. On the other hand, if the gust sweeps the leading-edge of the

wing sub-sonically then the appropriate response function to use is the three-dimensional

incompressible solution. For aeroacoustic problems, the most e�cient radiators of acous-

tic waves are compressible gusts. It is therefore su�cient to consider only the gusts that

sweep the leading-edge of the aerofoil supersonically.

The lift produced by an aerofoil interacting with a skewed gust was developed for an

incompressible flow. Amiet [46; 47] extended this method to account for a compressible

sinusoidal gust. Amiet’s flat-plate response function for a two-dimensional compressible

gust is widely used in leading-edge noise models.

With regards to the problem of far-field propagation of sound, one of the first theories

that was proposed was the theory of aerodynamic sound of Lighthill [48]. Lighthill

[48] reorganised the Navier-Stokes equations into an inhomogeneous wave equation and

ignored all source terms except the contributions of the velocity fluctuations which

manifest themselves in the sound-field as ‘quadrupole’ sources. This theory was extended

by Curle [49] to account for the presence of solid bodies and subsequently by Ffowcs-

Williams and Hawkings [50] to account for solid bodies in arbitrary motion. The reduced

form of the Ffowcs Williams and Hawkings (FWH) equation is given by,

✓
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◆
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@t

h
⇢0U · n|rf |�(f)

i
� r ·

h
pn|rf |�(f)

i
, (2.4)

where p is the pressure, f = 0 represents the surface of a solid body that is moving at

velocity U , n is the surface normal, � is the Dirac delta function, c0 is the mean speed of

sound and ⇢0 is the mean density. The first term on the right hand side of Eqn. (2.4) is

called the thickness noise and is a result of the solid body displacing fluid. The second
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Table 2.1 Timeline showing the various developments of flat-plate response
functions and noise propagation theories

1941 • Sears [41] determines an analytical formulation for the pressure jump
on a flat-plate due to the impingement of a 2D incompressible
sinusoidal gust

1951 • Lighthill [48] presents his theory of aerodynamic sound

1955 • Curle [49] extends Lighthill’s theory of aerodynamic sound to account
for the presence of solid surfaces

1965 • Lowson [51] determines the sound field of a point force in arbitrary
motion

1968 • Ffowcs-Williams and Hawkings [50] extend Lighthill’s [48] and Curle’s
[49] theory of aerodynamic sound to account for bodies in arbitrary
motion

1969 • Ffowcs-Williams and Hawkings [52] determine the sound for rotating
dipoles

1969 • Filotas [43] determines an analytical formulation for the pressure
jump on a flat-plate due to the impingement of a 2D incompressible
skewed sinusoidal gust

1970 • Graham [44] determines a numerical formulation for the pressure
jump on a flat-plate due to the impingement of a 2D incompressible
skewed sinusoidal gust

1970 • Graham [45] develops similarity rules to link the 3D and 2D pressure
jumps depending on the speed at which the gusts sweep the
leading-edge

1974 • Amiet [46] determines the pressure jump across a flat-plate in the
low-frequency limit for 2D compressible flows

1975 • Amiet [47] determines the pressure jump across a flat-plate in the
high-frequency limit for 2D compressible flows

1989 • Amiet [18] determines an approximate method to account for aerofoil
rotation

term on the right hand side is called the loading noise and is a result of normal surface

stresses due to the pressure distribution. This is the result of the force distribution of

the body. The above form is the reduced form as the quadrupole sources consisting of

Lighthill’s stress tensor and the shear stresses have been neglected as these are usually

negligible on the surface of a body.

Most leading-edge noise models thus combine Amiet’s [46; 47] response functions with

with either Curle’s [49] or Ffowcs-Williams et al. [50] theories for far-field propagations

to determine the noise spectrum.
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2.2.2 Analytical modelling of rotor noise

Analytical models of fan noise can broadly be classified into models that take into account

potential e↵ects between blades (cascade e↵ects) and models that don’t. One of the first

rotor noise models was a harmonic model formulated by Gutin [53] for propellers. This

was a frequency-domain harmonic method that predicted the tonal noise of propellers.

This model was subsequently extended by Hanson to include the e↵ects of thickness,

forward flight, and blade sweep [54; 55; 5]. More recently Carazo et al. [27] have developed

a model to predict CROR tonal noise. They model the rotor blade as a rotating dipole and

use an extended version of Amiet’s [21] theory that accounts for blade sweep and chord

variation with span to determine the unsteady loading of the blade. While they find a

good agreement with experimental measurements, the analytical predictions over-predict

the sound levels for most of the cases considered.

Recent years have seen turbofan engines with ever increasing bypass ratios accompanied

by a reduction in the jet exhaust velocity to maximize e�ciency [56]. This has made fan

wake/stator interaction noise a dominant source of noise in turbofan engines [57]. As a

result of this, a large research undertaking was carried out to understand this noise source.

As stators in a turbofan engine have a high solidity, cascade e↵ects can be important.

Glegg [58] used a Wiener-Hopf technique to determine an analytical expression for the

sound power radiated by a three-dimensional cascade of blades with finite chords when

a three dimensional vortical gust impacts their leading-edge.

Posson et al. [59; 60; 61] extended this model by providing a closed form expression

for the acoustic field in the inter-blade channels as well as the pressure jump on the

blades in subsonic flows. Using their extended model Posson et al. [59; 60; 61] have

shown that cascade e↵ects are of importance only when the blades overlap significantly.

Posson et al. [61] have used their cascade model to study the noise produced by fan-

wakes impinging on the outlet guide vanes of a turbofan engine. They use a strip theory

approach with the three-dimensional cascade formulation to compute the pressure jump

on the cascade blades. This pressure jump is then fed into a acoustic analogy in an

annular duct. They have also investigated the e↵ect of anisotropy in this model and it

is found that anisotropy can have a significant e↵ect on the radiated noise. Hanson et

al. [62] have also modified the cascade solution of Glegg [58] to include the e↵ects of

non-homogeneous inflow and have also modelled the lean and sweep of the cascade blade

by using appropriate coordinate transformations.

One of the first studies of CROR broadband noise due to rotor wake interaction was by

Blandeau et al. [14]. They used a Gaussian self-preserving wake based on the models by

Wygnanski et al. [63] and Jurdic et al. [64] to model the wake shed by the front rotor.
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The turbulent velocity normal to the blade (v) was modelled as,

v (X, t) = fw (X, t) vw (X, t) , (2.5)

where X is the vector of the spatial coordinates, vw is a random function that has the

same statistics as the wake turbulence and fw is the wake profile function given by,

fw (X, t) =
+1X

k=�1
exp

⇢
�

a

b2
w

(y + kd)2
�

, (2.6)

where a is the empirical wake parameter 1, bw is the wake half-width, y is the distance

normal to the blade in the rotating frame and d is the inter-blade spacing. Eqn. (2.6)

therefore represents an infinite train of Gaussian wakes. These wakes are then used in

Amiet’s [46] formulation to determine the pressure jump on the flat-plate. The noise

radiated to the far-field is then computed using the loading term of the Ffowcs-Williams

et al. [50] equation in the frequency domain.

Another formulation of wake interaction noise was by Kingan [65]. Their formulation

predicted uninstalled CROR noise due to rotor/wake interaction and the noise of a

CROR due to the ingestion of the wake emanating from an upstream pylon. They used

the rotor-wake turbulence interaction of Blandeau et al. [15] with the number of blades of

the front rotor set to 1 and its rotational seed set to 0. This pylon-wake interaction noise

model was subsequently studied by Nodé-Langlois et al. [66]. They, however, used Amiet’s

[18] simplified rotational model to determine the noise. They found good agreement with

the predictions of Kingan et al. [65] with the added benefit that Amiet’s [18] simplified

model was considerably faster to run.

Amiet’s [18] simplified rotational model uses Lowson’s [51] theory of rotating dipoles

to determine the noise produced by a rotor ingesting turbulence. The far-field sound

pressure (p) of a rotating dipole is [51],

p =
1

4⇡c0r2 (1 � Mn)2
X ·

 
Ḟ +

FṀn

1 � Mn

!
, (2.7)

where Mn is the component of the Mach number in the direction of the observer, c0 is

the speed of sound, r is the distance to the observer, X is the position vector, F is the

force vector and variables with a dot above them indicate di↵erentiation with respect to

time. Additionally, all terms in Eqn. (2.7) must be evaluated at the retarded time. The

main simplifying assumption that is made in the formulation is that the acceleration of

the dipole is neglected. This implies that in Eqn. (2.7), Ṁn is negligible. This assumption

is based on the fact that for most cases of interest the frequency of the forces generated

by the turbulent fluctuations is much larger than the rotational frequency of the rotor.

1It is given as 0.637 by Wygnanski et al. [63]
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The advantage of making this assumption is that the formulation for the noise spectrum

of a translating aerofoil can be extended to determine the noise spectrum of a rotating

aerofoil by applying an appropriate Doppler correction and averaging the noise spectrum

over the azimuth. Various authors [67; 68] have found that this simplification is valid

except at very low frequencies.

Amiet’s [18] simplified rotational model has been used to study both leading-edge and

trailing-edge noise. Sinayoko et al. [67], Blandeau [68], and Rozenberg et al. [69], have

used this method to study trailing-edge noise. Glegg et al. [70] and Pagano et al. [71]

have used it to study leading-edge and trailing-edge noise of wind turbines and open

propellers respectively. Blandeau [68] also shows that the directivity function of the

simplified rotational model is exactly the same as that of the full rotational model.

Amiet’s [18] rotor noise model has also been used by Kucukcoskun et al. [72; 73] to model

the noise radiated by a rotor in proximity to a hard-wall. Amiet’s [18] rotor noise model

was extended to account for wall reflections using the Method of Images (MOI). They used

the MOI with an extended version of Amiet’s [18] simplified rotor noise model, in which

near-field e↵ects and the e↵ects of lean and sweep were added, to model the noise radiated

by a fan in the presence of a scattering surface. The solutions compared favourably with

results from boundary element simulations and from experimental measurements. While

including near-field e↵ects makes the model more general it also increases the complexity

of the rotor noise model considerably. This, in turn, implies that it is not easy to determine

the physics of the noise source by examining the analytical solution. Additionally, the

e↵ects of blade-to-blade correlation are neglected.

Paterson and Amiet [74] have also used Amiet’s simplified rotor noise model to study

the noise radiated by a scale helicopter (having a diameter of 0.76 m) ingesting grid

generated and atmospheric turbulence. Amiet’s theory was modified to account for

anisotropic turbulence. This was accomplished by multiplying the von Kármán velocity

spectrum by a constant factor. Additionally, the wave-number in the direction of thrust

of the rotor was also multiplied by a constant. This is equivalent to a stretching in the

rotor thrust direction and this is approximately equivalent to having the elliptical eddies

moving at a slower speed through the rotor disk plane. It was found that this modification

is essential to make, as using an isotropic spectrum to predict the radiated noise showed

severe discrepancies. The theoretical model with the anisotropic modification predicted

sound levels to within 5 dB for a majority of the cases. Using an isotropic model produced

discrepancies of up to 25 dB. It should be noted that the turbulence in this experiment

was highly anisotropic with 18 < L(1)

11
/L(1)

22
< 59 (this value should be 2 for isotropic

turbulence) 2.

2The integral length scale is defined as L(k)
ij =

R1
0

hui(r)uj(r+xk)i
hui(r)ui(r)i

dxk
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To determine the e↵ects of the installation of open rotors one also needs to take into

account any scattering geometries that may be present when propagating the pressure

jump on a flat-plate to the far-field. As the scattering of sound fields is typically very

involved due to the complicated scattering geometries involved, it is usually studied

using computational tools such as a boundary element method [72]. However, for simple

scattering geometries, the hard-wall can be modelled by modifying the propagation

terms using the method of images [17] or by using a tailored Green’s function [75]. While

the method of images has not been thoroughly investigated for complex non-compact

broadband sound fields, there exist studies that have investigated the tonal scattering

of fuselage centre bodies. One of the first such studies was by Glegg et al. [76]. Glegg’s

[76] solution was then extended by Kingan et al. [75] to include a distributed rotating

source.

All of the rotational models that have been discussed until now have been semi-empirical

models that require one to model the turbulence using a velocity spectrum. Glegg et al.

[25] have developed a time-domain rotor noise model to determine the noise produced

by a rotor ingesting a turbulent boundary layer that does not require one to model the

turbulence. The model convolves a time-varying velocity correlation tensor obtained from

experiments with Amiet’s [77] time-domain response function to determine the response

of a flat-plate. This is used with a Ffowcs-Williams and Hawkings (FWH) et al. [50]

formulation to determine the far-field noise. This model has the advantage that it does

not need to model the complicated physics of the turbulence in the turbulent boundary

layer and thus is accurate. However, the velocity correlation data that is required for

this model has to be obtained from an experimental study or a time-resolved numerical

simulation that is very expensive. Further details of this model are presented in Appendix

D. Another model that relies on knowing the turbulent field in advance is the model

of Stephens et al. [78]. This model uses the same approach as the time-domain model

of Glegg et al. [25]. However, instead of directly obtaining the velocity correlation data

from an experimental data set, polynomial curve fits to experimental data are used.

Most semi-empirical analytical models require a statistical description of the turbulence

that is interacting with the aerofoil in order to predict the far-field sound. The two

most commonly used model spectra are the turbulence model of von Kármán [37] and

Liepmann et al. [36] for isotropic turbulence.

2.3 Experimental studies of open rotor noise

In this section, an overview of the experimental studies of open rotors will be presented.

This section will explore experimental investigations of leading-edge noise, open rotor

noise, and boundary layer ingestion noise.
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2.3.1 Experimental investigations of leading-edge noise from translat-

ing aerofoils

The first experiments of the noise radiated by an aerofoil due to turbulence interacting

with the leading-edge of an aerofoil were by Patterson and Amiet [79; 80]. The authors

measured the far-field noise radiated by a NACA 0012 aerofoil in an open-jet anechoic

wind tunnel. The tests were conducted at five di↵erent velocities ranging from 40-165

m s�1 and at 0� and 8� angles of attack. The experimental measurements were compared

with the theoretical predictions of Amiet [21]. The experimental measurements showed

that this noise mechanism was approximately an order of magnitude higher than the

noise produced by the aerofoil alone (trailing-edge noise). It was observed that a majority

of the noise is produced from the leading-edge of the aerofoil. While the experimental

measurements compared well to the theoretical predictions, an under-prediction at high

frequencies was observed at most observer angles. This is attributed to the e↵ect of

aerofoil thickness. The under-prediction occurs when the gust wavelength is comparable

to the aerofoil thickness in the vicinity of the aerofoil leading-edge. The authors also

tested the e↵ect of angle of attack on the noise produced and have found it to have a

negligible impact on the radiated noise of the aerofoil.

Recent experimental work on turbulence interaction noise has focused on quantifying the

e↵ects of aerofoil thickness, geometry, and angle of attack on the radiated noise. Moreau

et al. [81] have conducted tests with a 3 % flat-plate, an industrial aerofoil, and a NACA

0012 aerofoil in an anechoic open-jet wind tunnel. The tests were conducted at three

velocities ranging from 20.5 to 40 m s�1 and five angles of attack ranging from 0� to 15�.

They confirmed the findings of Paterson and Amiet [79] and showed that as the aerofoil

thickness is increased a larger reduction in noise is observed at higher frequencies. The

tests conducted by Moreau et al. [81] also showed that the angle of attack had a minor

e↵ect on the noise spectrum. They presented three semi-empirical corrections to Amiet’s

[21] theoretical formulation to account for the e↵ect of angle of attack, thickness and

camber. These semi-empirical corrections are yet to be verified for a larger experimental

data set.

The negligible angle of attack e↵ects reported by Paterson and Amiet [80] and Moreau et

al. [81] should be viewed with caution as the experiments were conducted in an open-jet

wind tunnel. Measuring angle of attack e↵ects in open-jet wind tunnels is di�cult as

large angle of attack corrections are required. Moreau et al. [81] discuss that this in turn

implies a substantial deflection of the jet and distortion of the incoming turbulence thus

making it hard to discern angle of attack e↵ects in open-jet wind tunnels.

Davenport et al. [82] have conducted experimental measurements of three di↵erent aero-

foils of varying camber and thickness. They find that while the radiated noise spectrum

is not a↵ected by a change in angle of attack of the aerofoil, the aerofoil response function
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varies significantly with the angle of attack. These variations are lost when the pressure

perturbations are radiated to the far-field due to the averaging of the response function

with the turbulence velocity spectrum. From this, it is inferred that changing the velocity

spectrum or aerofoil shape could significantly alter the far-field radiated sound. This is

verified using the panel method code of Glegg et al. [83]. Using this code it is demon-

strated that using the anisotropic velocity spectrum of Kerschen and Gliebe [20] a noise

increase of 10 dB is observed when the aerofoils angle of attack is changed from 0� to

12�.

However, work done by Gea-Aguilera [84] shows a negligible e↵ect of angle of attack on

the radiated noise of an aerofoil ingesting anisotropic turbulence. This could be due to

the fact that the method of Gea-Aguilera [84] uses a compressible LEE solver that allows

the resolution of higher frequencies (8160 Hz compared to the panel method of Glegg

et al. which is limited to frequencies below 1000 Hz). The e↵ect of angle of attack was

also measured in a closed test section wind-tunnel by Staubs [85]. Their experiments

confirmed that the angle of attack has a negligible e↵ect on the noise-radiated to the

far-field for isotropic homogeneous turbulence.

PIV flow-field measurements of Chaitanya et al. [86] have investigated the behaviour

of the mean flow in the vicinity of the aerofoil leading-edge in order to understand the

reason for the reduction of noise due to aerofoil thickness. It is found that thin aerofoils

have a sharper distortion of the transverse velocity perturbations, which are the main

contributors of leading-edge noise [21], around the leading-edge when compared to thick

aerofoils. This additional distortion causes a larger suction peak and subsequently a

higher radiated noise level.

There have been very few experimental studies that have investigated the e↵ect of the

noise radiated by a translating aerofoil in proximity to a hard-wall or an anisotropic/inho-

mogeneous turbulent flow field. While the experiments listed above had nearly isotropic

turbulence generated by grids, they did include a small amount of anisotropy. The ex-

periments listed in this section show that the noise produced due to the interaction of

turbulence with an aerofoil is a significant source of noise. While the flat-plate theory

of Amiet [21] predicts the radiated noise for thin aerofoils, it significantly over-predicts

the noise of thick aerofoils, especially at high frequencies. Aerofoil angle of attack and

camber have been shown to have only a minor e↵ect on the radiated noise.

2.3.2 Experimental investigations of open rotor noise

Examples of experimental studies of open rotors focused on determining the noise of

rotors due to steady loading, for examples see Hubbard [87] and Succi et al. [88]. Insight
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into rotor noise was also obtained through experiments that investigated helicopter rotor

noise.

Paterson and Amiet [74] studied the noise radiated by a scale helicopter rotor ingesting

turbulence of varying intensities. The experimental measurements were compared with

theoretical predictions obtained from Amiet’s [18] simplified rotor noise model. The

experiments of Paterson and Amiet [74] highlight the importance of modelling anisotropy

as has already been discussed.

Experiments conducted by Block et al. in the 1980s [89; 90; 91; 92] studied the noise

produced by single rotors and CRORs with unsteady loading. All of the experiments

showed an increase in noise levels for the unsteadily loaded propellers. Block et al. [90]

compared noise directivity patterns of single and CRORs and found a large increase in

noise levels in the axial directions of the CRORs when compared to the single rotor.

They also investigated the e↵ect of a pylon wake on the noise produced by a propeller

[91]. In this study, they investigated the noise penalties due to pusher versus tractor

configurations and have reported a sharp decrease in pusher noise at ninety degrees to

the pylon.

Recent investigations by the National Aeronautics and Space Administration (NASA)

of open rotors by Horv́ath et al. [93; 94] have used beamforming to study open rotor

tonal and broadband noise. In these studies, the dominant tonal and broadband noise

sources are localised. It is found that the location of certain tonal noise sources could be

o↵ the blade. With regards to broadband noise sources, the location and extent of the

leading-edge and trailing-edge noise on the aft rotor is determined for various frequencies.

Experimental campaigns have also recently been carried out by Kingan et al. [26] and

Parry et al. [95] on open rotors designed by Rolls-Royce. Kingan et al. [26] studied the

relative importance of tonal noise versus broadband noise for three engine designs, one

from the 1980s (RIG 140), one from 2008 (RIG 145 build 1) and one design from 2010

(RIG 145 build 2). In all of these engines, it is concluded that broadband noise can

be a significant contributor of noise in open rotor engines. Parry et al. [95] conducted

experiments on the uninstalled configuration of RIG 145 build 1 and RIG 145 build 2.

They showed that the aerodynamically optimized blades of RIG 145 build 2 can provide

a reduction in noise levels.

Further to the earlier studies of Block et al. [91] there have been recent investigations of

the installation noise of open rotors. Ricouard et al. [96] performed an extensive study

of pylon-interaction noise. They tested the pylon at various locations and also tested the

e↵ect of pylon trailing-edge blowing on the radiated noise. They show that the pylon

significantly a↵ects the harmonics of the front rotor but has a negligible e↵ect on the
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interaction noise of the rotors or on the noise of the rear rotor. The pylon trailing-edge

blowing is shown to significantly reduce the noise radiated by the front rotor.

A more holistic study of open rotor installation noise was performed by Czech et al. [16].

They studied the e↵ect of various aircraft configurations on the installation noise of open

rotors. These configurations included the rotors placed in front of the wing, on top of

the wing, behind the wing, in a U-tail, and on top of the wing in a blended wing-body

configuration. They found that when the open rotor is placed on top of the wing (for

both the conventional and blended wing-body configurations) and within a U-tail there

was a significant reduction in noise levels.

2.3.3 Experimental investigations of boundary layer ingestion noise

This section will highlight experimental work that has been done to determine the noise

radiated by a rotor ingesting a boundary layer.

For the case of a rotor ingesting a turbulent boundary layer a recent comprehensive test

campaign at the Virginia Institute of Technology has been undertaken by Alexander et

al. [97; 19] and Wisda et al. [98]. These experiments were run with a 2.25 scale Sevik

rotor placed in close proximity to a wall. The incoming boundary layer was measured

without the presence of the rotor, i.e., without any distortion. From these measurements

a four-dimensional time and space varying velocity correlation matrix was obtained [99].

Alexander et al. [97] showed that the broadband noise spectra from these experiments

show prominent peaks at the Blade Passing Frequencies, as shown in Fig. 2.5, because

multiple rotor blades pass through the same turbulent structures and thus their noise

signatures are highly correlated. These frequency peaks that appear in the broadband

noise spectrum due to blade-to-blade correlation are referred to as haystacks for the

remainder of this literature review. It is also observed that directivity of the rotor is not

a simple dipole but has a more complex shape due to the blade twist and due to the

presence of the hard-wall underneath the rotor.

A subsequent paper by Wisda et al. [98] expanded the previous analysis of Alexander et al.

[97] by investigating a broader range of rotor operating conditions (13 di↵erent advance

ratios). The streamwise length scales in this study were determined directly from the

eddy passage signature by investigating the pressure data received at a single microphone.

The lateral length scales were obtained by integrating under the autocorrelation curve of

the pressure. The normalised streamwise length scale was found to have an approximately

constant value of TU1/� = 2.5 for all operating points. The lateral length scales obtained

by analysing the autocorrelation of the pressure was found to be TUR=95%/� = 0.375.

This value was also found to be constant with varying operating points.
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Figure 2.5: An example measurement of the Power Spectral Density (PSD) of
the noise for a scaled Sevik rotor operating at 2734 RPM in a mean flow of 30
m.s�1 for three di↵erent axial angles. The observer is located at a radius of 3.01
m. The arrows depict the BPFs of the rotor [97].

Alexander et al. [19] studied the turbulence distortion of a rotor in a rotating reference

frame by attaching probes to the blades of the rotor. Four cross-wire probes were attached

at di↵erent spanwise locations of the leading blade and two cross-wire probes were

attached at two di↵erent spanwise locations of the trailing blade. The largest blade-blade

correlations are found between the cross-wire probes at 95 % of the span of the leading

blade and 98.5 % of the span of the trailing-edge blade. This indicates that the eddies

in the boundary layer are inclined slightly as has been previously mentioned. While the

spanwise coherence is also found to be high, it is seen to start decaying near the BPF.

This paper also compares the upwash coherence computed from an undistorted boundary

layer using the rapid distortion theory of Glegg et al. [100] with the ones computed using

the probes on the blade. It is observed that the predictions compare well at low thrust

advance ratios and become worse as the advance ratio is decreased (thrust increased).

2.4 Computational modelling of leading-edge noise

While analytical models have been the tool of choice for modelling leading-edge noise,

the increase in computing power and simulation technology in the recent decades has

seen computational tools become increasingly prevalent. In this section, a brief overview

of leading-edge noise and open rotor noise studies using computational tools will be

provided.
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The main challenge of using computational methods for aero-acoustic problems is the

wide ranges of scales that are involved in the problem. The acoustic spectra are generally

of interest in the far-field whereas the length scale of the sources that generate the

acoustic disturbances are very small. The matter is further complicated due to the fact

that only a very small proportion of the energy in the flow gets converted to acoustic

disturbances [101]. The two main methods that have been used to simulate leading-edge

noise are hybrid methods and Computational AeroAcoustic (CAA) methods that solve

the Linearised Euler Equationss (LEEs). More recently solvers that simulate the Lattice

Boltzman equations have shown promise. In the following sections each of these three

methods will be detailed further.

2.4.1 Simulations of leading-edge noise using hybrid methods

Hybrid methods are the most common methods to predict the noise from large-scale

CROR geometries [102]. Hybrid methods use a Computational Fluid Dynamics (CFD)

solver to determine the acoustics sources. These source perturbations are then propagated

to the far-field using an integral method. The predominant CFD methods that have been

used to study open rotors are Unsteady Reynolds Averaged Navier-Stokes Equations

(URANS) methods. While URANS methods coupled with the advances in computer

technologies can solve large-scale problems they still cannot resolve the smallest scales

that are required to predict broadband noise. The CFD techniques that resolve the smaller

scales such as Detached Eddy Simulations (DES), Large Eddy Simulations (LES) or Direct

Numerical Simulations (DNS) are still too expensive to solve for large-scale problems.

Hybrid methods based on URANS simulations are, therefore, limited to predicting tonal

noise [103].

The increase in computational resources in recent years has seen the uses of ever-increasing

computational domains and resolution as shown in Fig. 2.6. Examples of hybrid methods

include studies by Stuermer et al. [104] (using the TAU CFD code from DLR), Spalart

et al. [105] (using the NTS code [113]), Deconinck et al. [106] (using the FINE code of

NUMECA), and Akkermans et al. [114]. Most of these studies have established e�cient

computational procedures for simulations of large-scale open rotors. These studies have

also performed parameter studies of the open rotor blades that show that clipping the rear

rotor blades [107] and adjusting the blade counts [105] of the open rotors significantly

reduces the tonal noise of the rotors. One study by Akkermans et al. [110] has also

studied the e↵ectiveness of front rotor trailing-edge blowing on the emitted noise. They

used the TAU CFD code of DLR to perform URANS simulation of open rotors. They

show that using front rotor trailing-edge blowing reduces all interaction tones except the

first interaction tone. This first interaction tone was shown to radiate more strongly due

to the front rotor trailing-edge blowing.
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Figure 2.6: The increasing number of cells used in the CFD computations of
CRORs. The vertical axis shows the code that was used to run the numerical
computation along with the year that the computation was carried out in.

2.4.2 CAA simulations of leading-edge noise

While hybrid methods are the tool of choice for large-scale problems, smaller-scale prob-

lems can be solved by computationally solving the LEEs [101]. To accurately solve the

LEEs for the human hearing range (20 Hz to 20 kHz), very high fidelity finite-di↵erence

solvers are required. High order finite-di↵erence schemes with low dissipation and low

dispersion time-stepping are used to ensure that the acoustic perturbations are captured

accurately with minimal loss of acoustic energy. Over the years numerous authors have

provided increasingly accurate spatial schemes that are highly optimised for parallel

computing. Example finite di↵erence schemes that are commonly used in CAA solvers

are schemes by Hixon [115], Ashcroft et al. [116], and Kim [117; 118].

CAA methods that solve the LEEs must also provide careful treatment at the boundaries

of the domain. This is done to ensure that no spurious acoustic reflections from the

boundaries re-enter the domain. Non-reflective boundary conditions can be categorized

as those that use asymptotic far-field solutions, those that use characteristic methods, and

those that use bu↵er zones. Some CAA codes combine more than one of these methods

to provide accurate and e↵ective damping of the acoustic waves [119].

Using the LEEs to model leading-edge noise also requires synthesising turbulence. As no

viscosity is included in the LEEs synthetic turbulence must be injected into the domain

to model the leading-edge interaction noise. There are a variety of methods that can be

used to synthesize turbulence. These methods can be broadly categorised into methods

25



Chapter 2 Literature Review

based on the summation of Fourier modes and methods based on synthetic eddies/digital

filters [120].

Fourier mode summations rely on adding harmonic gusts that have the same energy

as the turbulence that is to be modelled. It has been shown that as the transverse

velocity perturbations are the major contributors to leading-edge noise, Fourier mode

methods can accurately predict leading-edge noise by modelling 1-component of the

velocity perturbations as shown by Gill et al. [121]. Thus the summation of a few Fourier

mode components can provide reasonably accurate results at a low computational cost.

The Fourier mode technique has been used by Clair et al. [122] and Gill et al. [123] to

study leading-edge noise.

One of the first uses of the digital filter method to solve aeroacoustic problems was

by Ewert [124]. The turbulence is synthesized using a random particle mesh (RPM)

method that spatially filters white noise to generate a stream function that models

a Gaussian turbulence spectrum. This results in a divergence free velocity field that

produces no pressure perturbations. The RPM method was used to generate a Gaussian

noise spectrum to study slat and trailing-edge noise. The synthetic turbulence method

of Ewert [124] was extended by Dieste et al. [125] to synthesize turbulence spectra

modelled by the Liepmann and von Kármán isotropic energy spectra. Gea-Aguilera

et al. [126; 84] have used the mathematical background of the RPM method with the

numerical implementation of synthetic eddy methods to develop an e�cient synthetic

turbulence method that is termed the advanced digital filter method. This method does

not require the filtering of random white noise and is therefore computationally e�cient.

The advanced digital filter method is capable of generating isotropic and anisotropic 2-

and 3-dimensional velocity spectra. The advanced digital filter method was compared

to Fourier mode methods by Gea-Aguilera et al. [120] and it was shown that while

1-component Fourier mode methods provide satisfactory results for thin aerofoils, a 2-

component Fourier mode method or the advanced digital filter method is required to

accurately predict the leading-edge noise radiated by thick aerofoils.

As the size of the problem that can be solved using the LEEs is limited, CAA simulations

have been used mostly for canonical studies. These studies mostly focus on validating the

assumptions used in the analytical flat-plate models. These assumptions include the fact

that the aerofoil is treated as a flat-plate, the aerofoil is assumed to be unloaded (zero

angle of attack) and that the mean-flow is assumed to be uniform. Atassi et al. [127], Gill

et al. [123], and Lockhard et al. [128] have studied the e↵ects of aerofoil geometry, aerofoil

angle of attack and non-uniform mean-flow. Gill et al. [123] show that the analytical flat-

plate predictions over-predict the noise produced by a NACA 0012 aerofoil by up to 3 dB.

They also show that a non-uniform mean-flow is required to accurately predict the noise

generated by thick aerofoils. Gea-Aguilera et al. [84] have used their advanced digital
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filter method to simulate aerofoils in open jet wind tunnels, cascades, and anisotropic

turbulence being ingested by wings with wavy leading-edges [129].

2.4.3 Simulations of leading-edge noise using Lattice Boltzman solvers

The Lattice Boltzman (LB) method simulates the macroscopic behaviour of the flow on

a lattice. The flow is simulated by modelling the collision of individual gas molecules

using kinetic theory. The LB equations can be shown to converge to the weakly com-

pressible Navier Stokes equations [130]. Li and Shan [131] state that there are two main

discrepancies in modelling acoustics with the LB method. The first being that the LB

method has an error term that is cubic in the Mach number. Secondly, the inclusion of

energy conservation for the macroscopic flow has been shown to cause stability problems.

Thus the LB method might not be applicable for high Mach number flows. However,

recent studies using PowerFLOW (which is a LB method coupled with an LES model)

are overcoming these issues and delivering good acoustic predictions for various acoustic

sources including turbulence/leading-edge interaction noise [132].

2.5 Conclusions

This chapter has provided an overview of the available literature on leading-edge noise.

The literature review has detailed previous work that has been done in analytical mod-

elling, experimental measurements and computational simulations of leading-edge noise

of isolated aerofoils and open rotors. From the literature review it is apparent that the

full scale numerical simulations of open rotor broadband noise is still not feasible. Aircraft

designers must therefore rely on analytical models or experimental measurements. This

thesis will focus on the development of an analytical model to predict the noise produced

by a rotor ingesting a boundary layer.

The thesis will modify Amiet’s [18] simplified rotor noise model by including wall-e↵ects

using the MOI. This is similar to the work done by Kucukcoskun et al. [72]. However,

this thesis will use the far-field formulation of Amiet [18] and will also model blade-to-

blade correlation. The use of the far-field formulation will enable the investigation of

the physics of the noise source because the resulting formulation is simplified. The MOI

will be systematically tested for the simpler case of a 2D aerofoil ingesting turbulence in

proximity to a hard-wall using CAA simulations. Modelling blade-to-blade correlation is

essential to accurately predict the boundary layer ingestion noise source as more than

one blade can chop the same elongated structures in the boundary layer thus resulting in

prominent peaks at the BPFs. Additionally, the anisotropic turbulence of the boundary
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layer will be modelled using the axisymmetric anisotropic turbulence model of Kerschen

and Gliebe [24].
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Amiet’s rotor noise formulation

This chapter presents a frequency-domain rotor noise model that will be used to

predict the noise radiated from a rotor due to the ingestion of a turbulent boundary

layer. The rotor noise model is based on the simplified rotor noise model of Amiet [18].

The model assumes that the acceleration of the rotor blades is negligible as the rotors

rotational is much smaller than the frequency of the impinging turbulence.

Amiet’s model has been used by several authors to study both the leading and trailing-

edge noise of axial fans [71; 133], helicopters [74; 134], pylon wake interaction noise [66],

and wind turbines [70]. In order to predict turbulent boundary layer interaction noise,

Amiet’s [18] formulation needs to be modified. There are three modifications that need to

be made to Amiet’s simplified rotor model to enable it to predict the noise generated by

a rotor ingesting a boundary layer. The first modification is to account for the presence

of the hard-wall. The second is to introduce a turbulence model that accounts for the

anisotropy of the turbulent boundary layer. The third modification is a numerical switch

to account for the partial loading of the rotor since the rotor is only partially immersed

in the boundary layer.

Amiet’s [18] simplified rotor noise model approximates the rotation of a blade as a series

of translations. The noise radiated as a consequence of each translation is computed using

Amiet’s [21] formulation. The noise radiated is then averaged over all the azimuthal angles

to determine the sound radiated by a rotor. This averaged sound field then needs to

be frequency corrected twice. The reason that the correction factor needs to be applied

twice is that when the Power Spectral Density (PSD) is averaged over the azimuth, there

is no relative motion between the source and the observer. This is because the source

will spend the same amount of time moving away from an observer as it does moving

towards an observer. Thus, there is a Doppler correction factor for the instantaneous

PSD (the PSD of the translating aerofoil) and an additional factor to account for the

azimuthal averaging of the instantaneous spectrum [18; 135].
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This chapter will re-derive Amiet’s [18] simplified rotor noise model and present a nu-

merical switch that accounts for the partial loading of the rotor. Amiet’s rotor noise

formulation will be presented with blade-to-blade correlation modelled.

Using Amiet’s simplified rotor noise model with the isotropic von Kármán spectrum a

preliminary comparison with experimental results will be presented. Using this compari-

son, the additional features that need to be added to Amiet’s [18] simplified rotational

model to accurately predict the boundary layer ingestion noise source will be identified.

Finally, using the von Kármán spectrum a parameter study of the integral length scale

of the turbulence is performed with and without blade-to-blade correlation. The results

from this study will be used to show how modelling blade-to-blade correlation a↵ects

the distribution of energy in the noise spectrum.

3.1 Rotor noise model

In this section, the formulation of the acoustic PSD of a rotor ingesting arbitrary isotropic

turbulence is presented. The formulation was proposed by Amiet [21]. The formulation

procedure involves the computation of the PSD for a translating aerofoil. This PSD is

then corrected by using an appropriate Doppler factor and the result is then averaged

over all azimuthal angles. This procedure does not account for the full rotation of the

rotor and in doing so neglects acceleration e↵ects. This assumption is valid as long as

the rotational frequency of the rotor is much smaller than the frequency of the turbulent

structures impinging on the rotors. This lower frequency bound is flow ' ⌦/10 where

⌦ is the rotational speed of the blades [135]. As there will be correlation peaks at the

Blade Passing Frequency (BPF), this model is applicable for the frequencies of interest

and can be used to predict the typical noise frequencies generated by a rotor ingesting a

turbulent boundary layer.

3.1.1 Coordinate systems

The coordinate systems used in the derivation are shown in Fig. 3.1. Figure 3.1(a) shows

the far-field coordinate system fixed to the engine hub. The mean flow moves in the

positive x-direction and the observer is located in the x � z plane at a distance r0 from

the engine hub. The coordinates of the observer (O) in the engine-fixed frame are then

given by,

O = (r0 cos ✓, 0, r0 sin ✓) . (3.1)
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From Fig. 3.2 one can define the source Mach number with respect to the observer to be,

MSO = (0, �M� cos�, �M� sin�) , (3.2)

and with respect to the fluid to be,

x

y

z

r0

Observer

Ux

⌦

xy

z
� ✓

(a) The engine-fixed coordinate system.

X

Y ỹ

x̃↵

c

UX

Ux

U�

(b) The two on-blade coordinate
systems.

Figure 3.1: The coordinate systems used in the rotor noise model.

MSF = (�Mx, �M� cos�, �M� sin�) . (3.3)

This would be the source position when the sound is emitted at a time t = Te. The

retarded source position can be determined using the fact that c0Te = re as,

S = (reMx, 0, 0) . (3.4)

The retarded distance to the observer is then given by,

re =
q

(r0 cos ✓ � Mxre)
2 + r2

0
sin2 ✓,

re =
r0

⇣p
1 � M2

x sin2 ✓ � Mx cos ✓
⌘

�2
,

(3.5)

where � =
q

1 � M2

X
is the compressibility factor and the retarded observer vector is

found as O
0 = O � S � MSFre,

O
0 = (r0 cos ✓, reM� cos�, r0 sin ✓ + reM� sin�) . (3.6)
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Using (3.4) and (3.1) in polar coordinates one can define a unit vector in the direction

from the retarded source to the observer as,

dSO =
(x � reMx, 0, z)

re
, (3.7)

where the observer is located at (x, 0, z). Figure 3.1(b) shows a section of unrolled blades

at a particular radius from the engine hub. Three coordinate systems have been used,

one engine fixed (x, y, z) and two blade fixed coordinate systems (x̃, ỹ, z̃) and (X, Y, Z).

For a blade at azimuthal angle � = ⌦t and for a blade segment with stagger angle ↵ the

two coordinate systems are related as,

0

B@
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ỹ

z̃

1

CA =

2

64
1 0 0

0 cos� sin�

0 � sin� cos�

3
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CA , (3.8)
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The location of the observer in the blade-fixed coordinate system can then be written as,

X = re (cos ✓ cos↵+ sin ✓ sin� sin↵) ,

Y = re (� cos ✓ sin↵+ sin ✓ sin� cos↵) ,

Z = re sin ✓ cos�. (3.10)

y

z

M
�

M� sin�

M� cos�

z̃
ỹ �

Figure 3.2: Velocity triangle for the source velocity in the engine-fixed frame.

3.1.2 Formulation for the power spectral density for the rotor

The noise produced by an unloaded flat plate encountering a turbulent gust is a well

known solution given by Amiet [21]. A single frequency component of the turbulent gust
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interacting with the leading edge of the aerofoil is given by,

ṽg (XC � UXt, Y, Z) = vR (kX , kY , kZ) e�i[kX(XC�UX t)+kY Y +kZZ], (3.11)

where vg is the gust upwash velocity, vr is the spatial Fourier transform of the gust

velocity, (kX , kY , kZ) define the wavenumber vector and UX is the chord-wise component

of the flow. The pressure jump on the flat plate due to the interaction with this gust is

then given by,

�p(n)(X, Y, Z, t, kX , kZ) = 2⇡⇢0UXvR(kX , kZ)gLE (X, kX , kZ , MX) ei(kXUX t�kY Y�kZZ),

(3.12)

where g is the non-dimensional gust response function for leading edge interactions. It

should be noted that Eqn. (3.12) is di↵erent from Amiet’s [21] regular formulation as an

discrete ‘Y’ distance is introduced to model blade-to-blade correlation. This distance is

the distance normal to the blade and is shown schematically in Fig. 3.3. Eqn. (3.12) is the

pressure jump for one gust. The pressure jump for all gust is determined by integrating

Eqn. (3.12) over all wavenumbers,

�p(n)(X, Y, Z) = 2⇡⇢0UX

ZZ 1

�1
vR(KX , kZ)gLE (X, KX , kZ , MX) e�i(kY Y +kZZ)dkY dkZ ,

(3.13)

where KX = !/UX
1. The loading of the blade due to the interaction with this gust can

be modelled as a point dipole. For a dipole located at the coordinates (XC , ZC) and

aligned with the Y -axis, the loading is given by [18],

p(n)(X, C, Z,!) =
ik0⇢0Y

2�2
ei[!t+µ(MXX��)]

Z
d

�d

Z
b

�b

e
�iµ

✓
MXXC�XXC+�2ZZC

�

◆

⇥

ZZ 1

�1
vR(KX , kY , kZ)g(X,KX , kZ , MX)e�i[kY (nC)+kZZ]dkY dkZdXCdZC , (3.14)

where k0 = !/c0 is the acoustic wave number, µ = MXKX/�2 is the acoustic reduced

frequency, � =
p

X2 + �2 (Y 2 + Z2) is the flow corrected distance to the observer, and d

and b represent the half span and half chord of the rotor blade respectively. Additionally,

in Eqn. (3.14) the discrete distance nC has been introduced to represent the normal

distance between the 0th and nth blades as shown in Fig. 3.3. The above equation can

be developed to obtain the far-field pressure as,

p(n)(X, C, Z,!) =
i⇡k0⇢0Y b

2�2
eiµ(MXX��)

L(KX , KZ ,)

Z 1

�1
vR(KX , kY , KZ)e�ikY nCdkY ,

(3.15)

1In this thesis the convention of using an upper case wavenumber (Ki) is used when this wavenumber
is selected through the sifting property of the Dirac delta function.

33



Chapter 3 Amiet’s rotor noise formulation

where  = (k0 (MX � X/�)) /�2 is the acoustic coupling wavenumber, KZ = µa�2Z/�,

and L is the acoustic lift integral defined as,

L(KX , KZ ,) =
1

b

Z
b

�b

g(XC , KX , KZ , MX)e�iXCdXC . (3.16)

The acoustic lift integral for gusts at normal incidence (kZ = 0) is defined for a low-

frequency regime and a high-frequency regime. The low-frequency limit acoustic lift

integral for µ̃ < ⇡/4 (quantities with a tilde, (̃.), indicate quantities non-dimensionalised

by the semi-chord) is defined as,

Llow (, KX , kZ = 0) =
1

�
S(µ̃h)e

iµ̃hf(MX) [J0 (µ̃MX � b) � iJ1 (µ̃MX � b)] , (3.17)

where µh = µ/MX , S is the Sears function defined as,

S(µ̃h) =
2

⇡µ̃h

1

H2

0
(µ̃h) � iH2

1
(µ̃h)

, (3.18)

and the function f is defined as,

f(MX) = (1 � �)ln(MX) + �ln(1 + �). (3.19)

The acoustic lift integral for the high-frequency regime (µ̃ > ⇡/4) is split into two

functions L1 and L2,

Lhigh (, KX , KZ = 0) = L1 (, KX , KZ = 0) + L2 (, KX , KZ = 0) (3.20)

where the function L1 is defined as,

L1 (, KX , KZ = 0) =

p
2

⇡�
p

µ̃h (1 + MX)⇥1

E⇤(2⇥1)e
i⇥2 , (3.21)

and the function L2 is defined as,

L2 (, KX , KZ = 0) =
ei⇥2

⇡⇥1�
p

2⇡µ̃h (1 + MX)
⇥

"
i
�
1 � e�2i⇥1

�
+ (1 � i)

(
E⇤ �4µ̃�2

�
�

r
2µ̃

⇥3

e�2i⇥1E⇤(2⇥3)

)#
,

(3.22)

where,

⇥1 = µ̃ (1 � MX) + b,

⇥2 = �2µ̃h + b �
⇡

4
,

⇥3 = µ̃ (1 + MX) � b.

(3.23)
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The noise spectrum with blade-to-blade correlation is determined by computing the

cross-correlation of the 0th and nth blade,

S(n)

pp (X, C, Z,�,!) =
⇡UX

R
E
h
p(0) (r0, ✓,�,!)

⇣
p(n) (r0, ✓,�,!)

⌘⇤i
. (3.24)

This gives the cross PSD of the acoustic pressure with blade-to-blade correlation modelled

as,

S(n)

pp (X, C, Z,�,!) = ⇡UXd

✓
k0⇢0Y b

�2

◆
2

|L(KX , KZ ,)|2�̃(n)

vv (KX , KY , KZ). (3.25)

where,

�̃(n)

vv (KX , KY , KZ) =

Z
+1

�1
�vv(KX , kY , KZ)e�ikY nCdkY , (3.26)

and the transverse velocity spectrum �vv(kx, ky, kz) is defined as,

�vv(kX , kY , kZ) =
⇡2

Rd
E [vR (kX , kY , kZ) v⇤R (kX , kY , kZ)] . (3.27)

Eqn. (3.25) and (3.26) represent the cross-correlation of the acoustic pressures of two

blades of a rotor. The above formulation becomes Amiet’s [21] classical PSD when n = 0.

The cross-correlation between the 0th and the nth blade (which is at a distance nC from

the 0th blade) is modelled by the introducing a wavenumber that is perpendicular to the

chord. This correlation wavenumber, KY , is determined from the kinematics of the eddy

chopping process as explained below.

To account for multiple blade passes the cross-correlation function of the acoustic pressure

of the 0th blade and the nth blade can be defined as [18],

Rpp(x, y, ⌧) =
+1X

n=�1
R(n)

pp (x, y, ⌧ � nT ), (3.28)

where nT is the time between eddy chops as heard by the observer. This time is deter-

mined next.

Fig. 3.3 shows a schematic of two consecutive blades in a blade row. The blades are

separated by the inter-blade spacing sb = U�T0 where T0 = 2⇡/B⌦. In the reference

frame fixed to a rotor blade, the eddy is moving parallel to the chord at a speed
q

U2
x + U2

�
.

The time between eddy chops (T1) by two consecutive blades is then given by,

T1 =
sb sin↵q
U2
x + U2

�

=
U2

�
T0

U2
x + U2

�

, (3.29)
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Figure 3.3: An eddy moving through the rotor disk.

where the fact that the blade is unloaded (see Fig. 3.1(b)) is used to determine sin↵ =

U�/
q

U2
x + U2

�
. In Eqn. (3.25) a blade-normal wavenumber KY has been introduced to

model blade-to-blade correlation. The e↵ective wavelength for this wavenumber is then

the perpendicular distance between the consecutive blades given by,

C = sb cos↵ =
UxU�T0q
U2
x + U2

�

. (3.30)

The time between the eddy chops, as heard by the observer, is the time T1 plus the time

di↵erence for the acoustic wave to propagate from the second blade to the observer and

from the first blade to the observer. The time taken for the acoustic wave to travel from

the first blade to the observer is given by the far-field approximation of the phase radius

[136] divided by the wave-speed,

⌧0 =
MXX � �

c0�2
. (3.31)

The time taken for an acoustic wave to travel from the second blade to the observer is

then obtained by replacing Y in Eqn. (3.31) with Y + C. The time between blade chops

as heard by the observer is then given by,

T = T1 �
CY

c0�
. (3.32)

This is the time between eddy chops as heard by the observer from the real rotor.

The next step in determining the PSD for a rotating aerofoil is to apply an appropriate
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Doppler correction and subsequently, average the PSD over all azimuthal angles in order

to determine the noise spectrum of the rotating aerofoil. There are two frequencies to

consider in the problem, ! is the angular frequency at the source with no relative motion

between the blade and the observer and !� which is the Doppler shifted frequency that

takes into account the motion between the source and the observer.

To determine the correct Doppler factor consider a fixed observer feels a pressure p with

perceived frequency ! and an observer moving relative to the source feels a pressure p�

and a perceived frequency !� [135],

p(t) = e�i!t, p�(t) = e�i!�t. (3.33)

The two pressures can then be related as,

p�(t) = e�i(
!�
! !)t = p

⇣!�

!
t
⌘

. (3.34)

In a similar manner the auto-correlation of the fixed pressure signal (Rpp) and moving

observers (R(�)

pp ) can be computed as [135],

R(�)

pp (t) = lim
T!1

1

2T

Z
T

�T

p�(⌧)p�(t � ⌧)d⌧ = lim
T!1

1

2T

Z
T

�T

p
⇣!�

!
⌧
⌘

p
⇣!�

!
(t � ⌧)

⌘
d⌧,

= lim
T!1

1

2T

!

!�

Z
aT

�aT

p(⌧ 0)p
⇣!�

!
t � ⌧ 0

⌘
d⌧ 0 = Rpp

⇣!�

!
t
⌘

.

(3.35)

From this the spectrum can be computed by taking the Fourier transform of the auto-

correlation [135],

S�

pp(!�) =

Z
+1

�1
R�

pp(t)e
i!�tdt =

Z
+1

�1
Rpp

⇣!�

!
t
⌘

ei(
!�
! !)tdt

S�

pp(!�) =
!

!�

Spp(!).
(3.36)

The correction that needs to be applied is then !/!�, where ! is the frequency for the

fixed observer and !� is the frequency as perceived by a moving observer. However, this

correction factor needs to be applied twice [18; 135]. The reason that the correction factor

needs to be applied twice is that when the PSD is averaged over the azimuth, there is

no relative motion between the source and the observer. This is because the source will

spend the same amount of time moving away from an observer as it does moving towards

an observer. Thus, there is a Doppler correction factor for the instantaneous PSD (the

PSD of the translating aerofoil) and an additional factor to account for the azimuthal

averaging of the instantaneous spectrum [18; 135]. The PSD for the rotor is then given
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by,

Spp(!) =
1

2⇡

Z
2⇡

0

✓
!

!�

◆
2

S�

pp(!�,�)d�, (3.37)

where,

!

!�

=

 
1 +

M
O

�
.dSO

1 � MF

�
.dSO

!
, (3.38)

where M
O

�
is the Mach number of the source relative to the observer and M

F

�
is the

Mach number of the source relative to the fluid. From Fig. 3.2 the unit vector of the

source velocity is (0, � cos�, sin�) and the source unit vector is (cos ✓, 0, sin ✓). Thus,

(3.38) can be written as,

!

!�

=1 +
(z/re)M� sin�

1 � M2
x � (xMx + zM� sin�)/re

,

!�

!
=1 + M�

sin ✓ sin�p
1 � M2

x sin2 ✓
,

(3.39)

where M� = R⌦/c0. The full derivation of this Doppler factor is provided in Appendix

A.

The variation of the Doppler factor with azimuthal angle � and axial angle ✓ is shown

in Fig. 3.4. From this figure it can be seen that the Doppler factor is larger than one

when 0� < � < 180� and 180� < ✓ < 360� or when 180� < � < 360� and 0� < ✓ < 180�.

The first case represents the observer in the bottom half of the xz plane and thus the

Doppler factor is greater than one when the blade is moving towards the observer or

when 0� < � < 180� as shown in Fig. 3.5(a). Similarly, the second case represents the

observer in the top of the xz plane and thus the Doppler factor is larger than one when

the blade is moving towards the observer or when 180� < � < 360� as shown in Fig.

3.5(b).

The acoustic spectrum can now be determined for multiple blade passages by taking the

Fourier transform of Eqn. (3.28)[18],

Spp(r0, ✓,�,!) =
1X

n=�1
S(n)

pp (r0, ✓,�,!)ein!T . (3.40)

Therefore, the cross PSD for a rotor with blade-to-blade correlation can be modelled as,

Spp(r0, ✓,�,!) =
lX

j=1

1X

n=�1

2⇡

C

⇡BUX,j�rj
2

(k0⇢0bj)
2

(
(Y |L|)2

�4
�vv (KX , KY,j,n)

)
,

(3.41)

where KY is given by,

KY,n =
!T + 2⇡n

C
. (3.42)
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Figure 3.4: Contours of the Doppler correction factor !/!� that needs to be
applied to account for the rotation of the aerofoil. The Doppler factor is computed
for M� = Mx = 0.1.
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(a) The observer located between 180� < ✓ <
360� (shaded green region) with the blade mov-
ing towards the observer for 0� < � < 180� .
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z

(b) The observer located between 0� < ✓ < 180�

(shaded green region) with the blade moving to-
wards the observer for 180� < � < 360�.

Figure 3.5: Schematic showing the relative positions of the observer and the
rotor blade.

Equation (3.41) and (3.37) give the cross PSD of a rotor ingesting turbulence with blade-

to-blade correlation modelled. In Eqn. (3.41) strip theory has been used to sum the sound

pressure at l span-wise locations with each strip having a width �rj . This strip theory

is valid as long as the width of the span is much larger than the span-wise correlation

length [137]. The e↵ect of the skewed gusts has been neglected. This implies that in the

coordinate system fixed to the blade, the span-wise wavenumber, kZ is set to zero.
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In Eqn. (3.41) any potential interaction between blades is neglected and the response

of each blade is computed assuming that this response is not a↵ected by the adjacent

blades. This assumption would not be valid if the blade-normal acoustic wavelength of

the impinging gust was larger than the inter-blade spacing. This is a valid assumption

to make for open rotors that usually have a low solidity. However, if this model were to

be used for rotors with high solidity this interaction would have to be accounted for. A

cascade model would be more suitable in this case. Additionally, Blandeau et al. [15]

have compared a rotor noise model with and without cascade e↵ects for an open rotor.

Cascade e↵ects are shown to have a minor impact on the resulting acoustic spectra. Next

the PSD of the translating aerofoil developed above will be extended to model rotational

e↵ects.

Using the above formulation, the cross PSD of a rotor fully immersed in a wake can be

computed. However, for the boundary layer ingestion noise source, the rotor will encounter

turbulence for only certain parts of its rotation. To account for this a numerical switch

was developed. This numerical switch is described next.

3.1.3 Numerical switch to account for the presence of the boundary

layer

The formulation presented above details the computation of the cross PSD for a rotor

ingesting turbulence. Amiet’s formulation must be modified to account for the fact that

the blade will encounter the turbulence of the boundary layer only in certain parts of

its rotation. To account for this, a numerical switch is implemented that switches the

turbulence o↵ when a rotor blade is not in the boundary layer. The geometry of the

blade entering the boundary layer is shown in Fig. 3.6. The azimuthal angles between

which the blades will encounter turbulence in the boundary layer are given by,

⇡ � cos�1


dwall � �

R

�
< � < ⇡ + cos�1


dwall � �

R

�
, (3.43)

where dwall is the distance from the hub centre to the wall, � is the height of the boundary

layer and R is the tip radius of the rotor. Additionally, when the blade is in the turbulence

only part of its span will interact with the turbulence. Thus, the sound pressure must be

computed for only a few strips. The span of the blade that is immersed in the boundary

layer is given by,

bI = R �
dwall � �

cos( � �)
, (3.44)

where bI is the length of span immersed in the boundary layer, � is the azimuthal angle

traversed by the blade in the boundary layer and  = cos�1 [(dwall � �)/R].
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Figure 3.6: Schematic showing the region where a rotor blade is partially im-
mersed in a turbulent boundary layer. dwall is the distance from the centre of
the hub to the wall, R is the distance from the hub centre to blade tip and � is
the height of the boundary layer.

3.2 Results

This section presents initial results using Amiet’s [18] rotor noise model with the isotropic

von Kármán spectrum. Using the isotropic von Kármán spectrum the e↵ect of changing

the integral length scale is investigated and it is shown that including blade-to-blade

correlation changes the distribution of energy in the spectrum.

The results are compared to experimental measurements that were provided with the Fun-

damental Case 3 (FC3) of the 2015 American Institute of Aeronautics and Astronautics

(AIAA) Fan Broadband Noise (FBN) workshop [138]. The inputs required to specify the

PSD of the transverse velocity perturbations are taken from a 4D space and time-varying

velocity correlation tensor of the undistorted boundary layer. The rotor geometry and

the turbulence properties extracted from this dataset are detailed in Appendix B.

3.2.1 Comparison with experimental results

In this section initial predictions using the rotor, noise model are compared with ex-

perimental measurements. The initial predictions are computed with the isotropic von-

Kármán spectrum used to model the PSD of the transverse velocity perturbations. For

the predictions with blade-to-blade correlation a blade normal wavenumber is introduced
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and therefore a 3D isotropic von Kármán spectrum is used,

�vv(kX , kY , kZ) =
55

36⇡2

u2L

k2
e

k̂2

X
+ k̂2

Zh
1 + k̂2

X
+ k̂2

Y
+ k̂2

Z

i
17/6

, (3.45)

where ke =
p
⇡

L

�(5/6)

�(1/3)
and k̂i = ki/ke. For the predictions without blade-to-blade correla-

tion the isotropic von Kármán spectrum is integrated over kY to get,

�vv(kX , kZ) =
4

9⇡

u2

k2
e

k̂2

X
+ k̂2

Zh
1 + k̂2

X
+ k̂2

Z

i
7/3

, (3.46)

in both cases the span-wise wavenumber kZ is set to zero. The von Kármán spectrum

requires as input an integral length scale and turbulence intensity. The integral length

scale used for this study is the axial length scale (L(1)

11
) obtained from Eqn. (B.3). The

turbulence velocity is computed as,

u2 =
1

3

⇥
u2

e + v2

e + w2

e

⇤
, (3.47)

where the values of (ue, ve, we) are obtained from Eqn. (B.4). Values for the integral length

scale and turbulence velocity are obtained as a function of wall-normal distance. This is

because boundary layer turbulence is not homogeneous in the wall-normal direction and

thus the properties of the turbulence change with changing wall-normal distance.

Fig. 3.7 shows the frequency-domain method prediction with blade-to-blade correlation

compared to the experimental measurements of Glegg et al. [25] where the Sound Pressure

Level (SPL) is computed as,

SPL = 10 log10

 
4⇡Spp (r0, ✓,!)

p2

ref

!
, (3.48)

where pref = 2 ⇥ 10�5 Pa. A factor of 2⇡ has been added to obtain results in Hz instead

of rad.s�1 and an additional factor of 2 has been added to obtain the one sided spectrum.

The integral length scale and turbulence intensities used for these predictions are com-

puted using Eqn. (B.3). The rotor is operating at the zero thrust condition. This corre-

sponds to a rotor speed of 2734 RPM and a mean flow speed of 30 m s�1. The observer

is located at (r0, ✓)=(3.01 m, 127.3�). This operating condition is chosen as it is the zero

thrust operating condition and therefore the incoming boundary layer is not distorted sig-

nificantly as it is at higher thrust operating conditions. The results are compared at this

particular microphone location because a majority of the published results for the FC3

case are published for this microphone location. The speed of sound and mean density

used in the computations are 350 m s�1 and 1.05 kg m�3 respectively. The computations

for the rotor noise model are computed using 200 azimuthal integration points and 10
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Figure 3.7: Power spectral density of the acoustic pressure compared with exper-
imental results from Glegg et al. [139]. The arrows represent the BPFs of the
rotor. The observer is located at (r0, ✓)=(3.01 m, 127.3�).

span-wise strips. The strips are logarithmically spaced so that the tip of the blade has a

larger density of strips.

It can be seen that the frequency-domain solution predicts the experimental results of

Glegg et al. [25; 139] poorly. One possible explanation for this is that frequency-domain

model does not model a hard-wall. It has been shown that the hard-wall can increase

levels by as much as 6 dB at the lower frequencies and by as much as 3 dB at the higher

frequencies [25]. As the frequency domain solution presented here does not model the

wall, it is expected that the spectrum under-predicts the measured values and that this

under-prediction is larger at low frequencies than at high frequencies. Additionally, the

peak at the second BPF is not as prominent in the frequency-domain solution. This could

potentially be explained due to the fact that a simplified isotropic turbulence spectrum

has been used to model the turbulence while boundary layer turbulence is significantly

anisotropic. Both of these discrepancies will be addressed in Chapters 5 and 6.

Fig 3.8 shows the directivity of the rotor. From this figure, it is observed that the

directivity of the rotor resembles that of a dipole. The cusp of the dipole is at ✓ = 90� and

the maximum sound is observed along the axis of the rotor. Additionally, a prominent peak

is observed at the first BPF because of the blade-to-blade correlation. It is also observed

that the downstream lobe is slightly louder than the upstream lobe as has been previously

observed by various authors due to convective amplification. The discontinuities observed

around the 3rd BPF occur when the frequency-domain model switches between the high

and low frequency acoustic lift formulation.
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Figure 3.8: Contours of the SPL for varying observer angles (0� points down-
stream) and varying frequencies. The dashed lines represent the BPFs of the
rotor.
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Figure 3.9: The decay of the SPL for the rotor at f = 450 Hz.
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Fig 3.9 shows the di↵erence of the of the SPL at a frequency of 450 Hz from the ✓ = 0�

observer angle. The decay of the SPL follows the cos2 ✓ directivity of a dipole, further

showing that the directivity of the rotor is that of a dipole as has been commonly

observed.

3.2.2 Parameter study of the integral length scale using an isotropic

velocity spectrum

The rotor noise model described in section 3.1 requires the geometry of the rotor, the

turbulence velocity and the integral length scale to be given as inputs. Of these, only

the turbulence velocity and integral length scale of the turbulence can be varied because

the geometry of the rotor is fixed. The variable parameters are required to define the

velocity spectrum in Eqn. (3.27). The shape of the spectrum is only a↵ected by the

integral length scale L.

The von Kármán energy spectrum is given by [35],

E(k) =
55

9
p
⇡

�(5/6)

�(1/3)

u2

k5
e

k4

h
1 + k̂2

i
17/6

. (2.2)

Using this definition of the energy spectrum, the normalised energy spectrum for various

length scales can be plotted as shown in Fig. 3.10. Increasing the integral length scale

moves the energy to the lower wave-numbers and reducing the integral length scale shifts

the energy in the spectrum to the higher wave-numbers.

As shown in Fig. 3.10, the choice of the integral length scale is important to achieve the

correct PSD from the rotor noise model presented in section 3.1. In order to understand

the e↵ect of the integral length scale on the rotor noise model, a parameter study of the

integral length scale has been performed. This will determine if changing the integral

length scales shift the frequency spectrum of the noise in a similar manner as it does in

the energy spectrum. This parameter study has been performed considering that there is

no blade-to-blade correlation and then again when assuming that there is blade-to-blade

correlation. Both of these studies used the geometry from the FC3 case and a constant

turbulence velocity u2 = 1.65 m2 s�2.

3.2.2.1 Results without blade-to-blade correlation

The results of varying the integral length scale on the PSD, for a rotor without blade-to-

blade correlation are shown in Fig. 3.11. Changes in the energy spectra with increasing
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Figure 3.10: The energy spectra for di↵erent integral length scales.

length scale are mirrored in the rotor noise spectra, i.e., increasing the integral length

scale shifts the energy in the spectra to lower frequencies.

It is also observed that the trend in the amplitude of the spectra is reversed at approx-

imately 200 Hz. This can be explained by the fact that as the turbulence velocity is

kept constant, the energy in the spectrum is the same across all the length scales. Thus,

as the larger length scales transfer more energy to the lower frequencies, this must be

compensated by having a smaller amount of energy at the higher frequencies as compared

to the spectra with the smaller integral length scales, whose spectra have an equal spread

of energy across the frequency range.

46



Chapter 3 Amiet’s rotor noise formulation

102 103

15

20

25

30

35

40

2.
10

�
5

L =

L =

L =

L =

Figure 3.11: Power spectral density of the acoustic pressure at various integral
length scale. The arrows are at multiples of the BPF.

3.2.2.2 Results with blade-to-blade correlation

The results of varying the integral length scale on the PSD for a rotor with blade-to-

blade correlation are shown in Fig. 3.12. There is a prominent peak at the BPF, at

approximately 450 Hz. The location of this peak does not vary with changes in the length

scale. Additionally, unlike the case without the blade-to-blade correlation, it appears

that changing the length scale for the case with blade-to-blade correlation does not shift

the energy in the spectrum as much as it does in the case that ignores blade-to-blade

correlation. In Fig. 3.11 the main peak for the smallest length scale is at approximately

200 Hz and the peak for the largest length scale is at approximately 50 Hz.

There are two peaks in the spectrum for the case that includes blade-to-blade correlation.

This is in contrast to the case without correlation. The first peak for the smallest integral

length scale is at approximately 80 Hz while the first peak for the largest integral length

scale is absent. It is apparent that the spread in the frequencies at which the first peaks

occur is smaller when compared to the case without blade-to-blade correlation. One

possible explanation for this is that the peak at the BPF a↵ects the way the energy

would normally be distributed in the spectrum, thus minimising the distribution of energy

in the lower frequency range.

However, the trend in amplitude is the same as in the case without blade-to-blade

correlation. Thus to compensate for shifting a large proportion of the energy to the low-

frequency region, the predictions made when using the largest integral length scale have a
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lower amplitude at the BPF. Therefore, above a certain cut o↵ frequency (approximately

100 Hz, due to the correlation peak, it is seen that the main e↵ect of changing the

correlation length scale is to change the amplitude of the spectrum.
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Figure 3.12: Power spectral density of the acoustic pressure at various integral
length scales with the correlation between the blades modelled. The arrows are
at multiples of the BPF.

3.3 Conclusions

This chapter has presented Amiet’s simplified rotor noise model with blade-to-blade

correlation modelled. Amiet’s [18] rotor noise model approximates the rotational e↵ects

of an aerofoil by treating the rotation as a series of small translations. The PSD obtained

for a translating aerofoil is then azimuthally averaged and frequency corrected to obtain

the sound field of the rotor. This approach is valid at frequencies greater than ⌦/10.

Amiet’s [18] rotor noise model is an ideal tool to model the boundary layer ingestion noise

source, which is the main motivation of this thesis. This is because the rotor noise model

is computationally cheap and has a relatively simple formulation. The fact that it is fast

to run ensures that it will be a useful tool for preliminary design studies. The fact that

the formulation is relatively simple ensures that it can be extended to include wall e↵ects

and that it can be extended to include an anisotropic velocity spectrum. Additionally,

the simple formulation will enable the investigation of the physics of the noise source

by considering various parts of the rotor noise model individually. While the model has

many advantages, it does also have some disadvantages. Amiet’s [21] formulation assumes
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that the rotor blade is a flat-plate, that the blade is unloaded and that the incoming

mean-flow is uniform. The main conclusions that are drawn from this chapter are,

• This chapter has re-derived Amiet’s rotor noise model for a coordinate system

that will be used for the rest of this thesis. The Doppler factor that is used to

frequency-correct the azimuthally averaged sound spectrum has been re-derived

and it has been shown that the Doppler correction factor is consistent with the

coordinate system considered. The blade-to-blade correlation wavenumber has also

been re-derived for the present case.

• A simple numerical switch has been presented to account for the partial loading

of the rotor. This is relevant for the boundary layer noise source as the rotor will

only be partially loaded. Thus a switch has been developed that will compute the

noise for only the strips that are immersed in the turbulence.

• Using Amiet’s rotor noise model with blade-to-blade correlation and the numerical

switch an initial prediction is made for a Sevik rotor as specified in the FC3 case

of the 2015 AIAA FBN workshop. Major discrepancies are observed between the

predictions and the measurements. The main discrepancies that are observed are

that the amplitude of the spectrum is under-predicted and that no haystacks are

observed at the second and third BPFs. The first discrepancy can be explained by

the fact that the wall has not been modelled. The second discrepancy is because

an isotropic velocity spectrum has been used. Both of these discrepancies will be

addressed in the following chapters.

• Amiet’s rotor noise model has been used to perform a parameter study of the

integral length scale with, and without, the e↵ects of blade-to-blade correlation.

Without blade-to-blade correlation, it is shown that increasing the integral length

scale transfers energy to the lower frequencies and vice-versa. With the blade-

to-blade correlation modelled, it is observed that a correlation peak appears at

the BPF. This a↵ects the distribution of the energy and thus the net result of

changing the integral length scale is to only change the spectrum amplitude, above

a particular frequency. Therefore, the shape of the spectrum is not significantly

a↵ected by the integral length scale when blade-to-blade correlation is modelled.
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Chapter 4

The noise radiated by a flat plate

ingesting turbulence near a

hard-wall

This chapter presents the development of an analytical method to determine the

noise generated by an aerofoil ingesting turbulence near a hard-wall. The main

aim of this chapter is to investigate the Method of Images (MOI) and to quantify the

assumptions that are made when using the MOI. The MOI is a common analytical

technique to model a reflecting surface. This is done by adding a mirror source and

summing the resultant pressure at a far-field observer location. This chapter extends

Amiet’s [21] 2D translating aerofoil model to include wall-e↵ects using the MOI. Amiet’s

2D translating aerofoil model is used in order to make comparisons with Computational

AeroAcoustic (CAA) simulations possible. While the MOI gives an approximation of

the wall, it does not model all of the e↵ects, such as di↵raction from the edges of the

flat plate and acoustic shielding due to the presence of the flat plate. These e↵ects,

which are ignored in the MOI are quantified using a CAA simulation that models the

wall using a hard-slip-wall boundary condition. The MOI is then used with Amiet’s [18]

simplified rotor noise model in Chapter 5 to include wall-e↵ects for a rotor. This chapter

will therefore illustrate the accuracy of the MOI in modelling the hard-wall.

The hard-wall produces significant interaction in the sound field due to the reflected

acoustic waves interacting with the acoustic waves generated by the aerofoil, which acts

as a non-compact dipole. The frequency of the interference peaks is determined as a

function of observer location and it is shown that the sound power approaches the sound

power of a dipole near a wall at low frequencies.
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The analytical solution is verified using a CAA simulation that also uses the MOI

to simulate a wall. The assumptions that are made in the derivation of the analytical

solution are quantified using a second CAA simulation that uses a hard-slip-wall boundary

condition to simulate a wall. Finally, the e↵ect of changing the height of the aerofoil on

the resulting noise spectrum is investigated.

4.1 Analytical formulation

In this section Amiet’s [21] solution for a flat-plate ingesting turbulence near a hard-wall

is extended using the MOI to account for wall-e↵ects. The model described below follows

the derivation of Blandeau et al. [137] which uses the Kircho↵-Helmholtz formulation to

determine the far-field acoustic pressure radiated from the surface of a flat plate at zero

angle of attack due to a turbulent gust causing a pressure jump �p. The assumptions

made in the development of the model are:

• The flat plate is assumed to be unloaded.

• The impinging turbulence is assumed to be isotropic.

• The shielding of the reflected acoustic waves by the aerofoil is not accounted for.

• The scattering of the reflected acoustic waves around the edges of the flat plate is

not accounted for.

This model is now described with the modifications required to account for a mirror

source due to the presence of a wall.

4.1.1 Coordinate system

The geometry of the problem is shown in Fig. 4.1 with the coordinate system located at

the centre of the flat plate as shown in Fig. 4.2. The observer is located at a position

(r0, ✓) with respect to the flat plate and at a position (r#

0
, ✓#) with respect to the image

source. The two coordinates are related as,

r#

0
=
q

(r0 sin ✓ + 2dwall)
2 + r2

0
cos2 ✓, (4.1)

sin ✓# =
r0 sin ✓ + 2dwall

r#

0

. (4.2)

Note that all symbols with superscript # denote quantities related to the image source.

Additionally, coordinates indicated by capital letters denote quantities on the surface
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c

U

Observer

r0

r#
0

✓

✓#

Wall

r0 sin ✓

dwall

dwall

r0 cos ✓

Figure 4.1: A schematic of an aerofoil (modelled as a flat plate) near a wall and
its image source. The flat plate has a chord c and is at a height dwall from the
wall. The observer is located at (r0, ✓) from the flat plate and at (r#

0
, ✓#) from

the image source.

of the flat plate whereas quantities in lower-case letters are distances measured to the

observer.

Turbulent gust

U

x

y

Figure 4.2: A schematic of an aerofoil (modelled as a flat plate) ingesting turbu-
lence near a hard-wall.

4.1.2 Formulation of the power spectral density

For turbulence that is frozen, the velocity field, v(X, t), is a combination of all the Fourier

components in wavenumber space v̂(kX). The velocity field can then be expressed as a

Fourier pair [21],

v(X, t) =
1

2⇡

Z 1

�1
v̂(kX)e�ikX(X�Ut)dkX , (4.3)

v̂(kX) =

Z 1

�1
v(X)eikXXdX, (4.4)
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where kX is the stream-wise vortical wavenumber and U is the velocity. The pressure

jump caused due to a harmonic gust of the form v0e�ikX(X�Ut) is given by [21],

�p(X, t) = 2⇡⇢0Uv0g(X, kX , M)eikXUt, (4.5)

where g(X, kX , M) is the leading-edge transfer function [21]and M = U/c0 is the Mach

number. The pressure jump in (4.5) only accounts for one gust. To determine the pressure

jump due to all the wavenumber components (4.5) is integrated to get,

�p = ⇢0U

Z 1

�1
v̂(kX)g(X, kX , M)eikXUtdkX . (4.6)

The pressure jump across the aerofoil can then be determined in the frequency-domain

by taking the Fourier transform of (4.6) to obtain,

�p̂ (X,!) =

Z 1

�1
�p(X, t)e�i!tdt = 2⇡⇢0v̂(KX)g(X, KX , M), (4.7)

where the Fourier transform has selected only the stream-wise wave-numbers KX = !/U .

This implies that a given frequency component of the pressure jump is produced by the

gust with wavenumber !/U [21].

The far-field acoustic pressure can then be computed using the Kircho↵-Helmholtz inte-

gral as [140],

p(x, y, t) = �
1

2⇡

Z 1

�1

Z
b

�b

�p̂(X,!)
@G

@y
(x, y,X,!)ei!tdXd!, (4.8)

where the Green’s function with the e↵ects of mean flow is given by,

G(x, y, X,!) = �
eik0M(x�X)/�

2

4�
H(2)

0

✓
k0

�2

q
(x � X)2 + �2y2

◆
, (4.9)

where k0 = !/c0 is the acoustic wavenumber, � =
p

1 � M2 is the compressibility factor

and H(2)

0
is the Hankel function of the second kind and of order zero. The derivative of

(4.9) is then given by,

@G

@y
(x, y, X,!) =

iyeik0M(x�X)/�
2

4�
p

(x � X)2 + �2y2
H(2)

1

✓
k0

�2

q
(x � X)2 + �2y2

◆
. (4.10)

If the observer is assumed to be in the far-field, two simplifications can be made. Firstly,

the Hankel function can be approximated as,

H(2)

1
(⇠) =

r
2

⇡⇠
e�i⇠+i3⇡/4. (4.11)
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Secondly, the flow corrected distance to the observer
p

(x � X)2 + �2y2 can be approxi-

mated using a Taylor series expansion as,

p
(x � X)2 + �2y2 ' � �

Xx

�
,

where � =
p

x2 + �2y2. Using these simplifications (4.10) can be written as,

@G

@y
(x, y, X,!) =

iy

4

r
2k0

⇡�3
e
�i

k0
�2

[��Xx/��M(x�X)]+i
3⇡
4 . (4.12)

To account for the wall (4.8) is modified by adding the image Green’s function term 1,

p(x, y, t) = �
1

2⇡

Z 1

�1

Z
b

�b

�p̂(X,!)


@G

@y
(x, y,X,!) �

@G#

@y
(x#, y#, X,!)

�
ei!tdXd!,

(4.13)

The Power Spectral Density (PSD) of the acoustic pressure can now be computed as the

Fourier transform of the auto-correlation function,

Spp(x, y,!) =

Z 1

�1
E [p⇤(x, y, t)p(x, y, t + ⌧)] e�i!⌧d⌧, (4.14)

where E represents the ensemble average operator and the superscript ⇤ indicates the

complex conjugate of the quantity. Substituting (4.13) into (4.14) gives,

Spp(x, y,!) =
1

2⇡

1ZZ

�1

bZZ

�b

SQQ(X1, X2,!1,!2)�(! � !2)e
i(!1�!2)⇥

2

6664
@G

@y
(x, y, X1,!1)

✓
@G

@y
(x, y, X2,!2)

◆⇤

| {z }
Term 1

�

@G

@y
(x, y, X1,!1)

✓
@G#

@y#
(x#, y#, X2,!2)

◆⇤

| {z }
Term 2

�
@G#

@y#
(x#, y#, X1,!1)

✓
@G

@y
(x, y,X2,!2)

◆⇤

| {z }
Term 3

+

✓
@G#

@y#
(x#, y#, X1,!1)

◆⇤
@G#

@y#
(x#, y#, X2,!2)

| {z }
Term 4

3

7775
dX1dX2d!1d!2

(4.15)

1It should be noted that the Green’s functions and the acoustic lift functions that have a superscript
# are not di↵erent functions but indicate that their arguments should be evaluated for the image source.
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where the cross-spectrum of the acoustic pressure SQQ is given by,

SQQ(X1, X2,!1,!2) = E [�p̂(X1,!1)�p̂⇤(X2,!2)] ,

= (2⇡⇢0)
2 E [v(KX1)v

⇤(KX2)] g (X1, KX1, M) g⇤ (X2, KX2, M) ,

= (2⇡⇢0)
3 �(KX1 � KX2)�vv(KX2)g (X1, KX1, M) g⇤ (X2, KX2, M) .

(4.16)

The first term in (4.15) is the term one would get without the mirror source. This term

results in Amiet’s classic formulation for an aerofoil ingesting turbulence [21],

Spp(r0, ✓,!)|
Term1

=
⇡⇢2

0
b2 sin2 ✓Uk0

2r0A(✓,M)3
�vv(KX)|L(✓,KX)|2. (4.17)

Using (4.12) the second term of (4.15) is developed in radial coordinates to get,

@G

@y
(r0, ✓, X1,!1)

✓
@G#

@y#
(r#

0
, ✓#, X2,!2)

◆⇤
=

"
ir0 sin ✓

4

s
2k0

(r0A)3
e
�i

k0
�2
X

[r0A�X1 cos ✓/A�MX(r0 cos ✓�X1)]+i
3⇡
4

#

⇥

"
�ir#

0
sin ✓#

4

s
2k0

⇡(r#

0
A#)3

e
+i

k0
�2
X

h
r
#
0 A

#�X2 cos ✓
#
/A

#�MX(r
#
0 cos ✓

#�X2)

i
�i

3⇡
4

#
dX1dX2d!1d!2,

=
k0r

#

0
r0 sin ✓ sin ✓#

8⇡

s
1

(r#

0
A#r0A)3

e
�i

k0
�2
X

h
(�r

#
0 A

#
+r0A)

i
+iX1�i

#
X2

,

(4.18)

where A =
q

1 � M2

X
sin2 ✓ and  = cos ✓/A � MX . The PSD can now be evaluated for

only the second term of (4.15) using (4.16) and (4.18) to get,

Spp(r0, r
#

0
, ✓, ✓#,!)

���
Term 2

=

1

2⇡

1ZZ

�1

bZZ

�b

SQQ (X1, X2,!1,!2) �(! � !2)e
i(!1�!2)

⇥
k0r

#

0
r0 sin ✓ sin ✓#

8⇡

s
1

r0r
#

0
(AA#)3

e
�i

k0
�2
X

h
(�r

#
0 A

#
+r0A)

i
+iX1�i

#
X2

dX1dX2d!1d!2,

=
⇡b2⇢0k0 sin ✓ sin ✓#U

2

s
1

r0r
#

0
(AA#)3

e
�i

k0
�2
X

h
r0A�r

#
0 A

#
i

�vv(KX)L(✓,KX)
⇣
L

#(✓#, KX)
⌘⇤

.

(4.19)
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Terms 3 and 4 in Eqn. (4.15) can be obtained similarly. The final PSD can thus be

written as,

Spp (r0, ✓,!) =

⇡b2⇢2

0
k0 sin2 ✓U

2r0A3
|L|

2�vv(KX)�

⇡b2⇢2

0
k0 sin ✓ sin ✓#U

2

s
1

r0r
#

0
(AA#)3

 |L

⇣
L

#

⌘⇤
|�vv(KX)�

⇡b2⇢2

0
k0 sin ✓ sin ✓#U

2

s
1

r0r
#

0
(AA#)3

 ⇤
|L

# (L)⇤ |�vv(KX)+

⇡b2⇢2

0
k0 sin2 ✓#U

2r#

0
A#3

|L
#

|
2�vv(KX),

(4.20)

where  = e
�i

k0
�2
X

h
(�r

#
0 A

#
+r0A)

i

and this is referred to as the interference term. Analysing

Eqn. (4.20) it is seen that the first term is Amiet’s [21] classical solution for an aerofoil

ingesting turbulence. The term  is expected to cause interference peaks in the frequency

spectra. This is because  is imaginary and thus changes the phase of the solution. This

term is therefore responsible for modelling the constructive and destructive interference

of acoustic waves. The fourth term modulates the amplitude producing the expected

doubling of sound power in the absence of the interference terms.

Additionally, it is observed that the second and third terms are complex conjugates and

thus the imaginary parts of these terms cancel. This is shown in Fig. 4.3. The real parts

of the exponential of the second and third terms in Eqn. (4.20) are identical and are

shown in Fig. 4.3(a). The imaginary parts of the two terms on the other hand are exactly

out of phase and thus cancel out as shown in Fig. 4.3(b).
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(a) The real part of the second and third terms of
the PSD in (4.20).
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(b) The imaginary part of the second (-) and third
terms (filled circle) of the PSD in (4.20).

Figure 4.3: The real and imaginary parts of the second and third terms of the
PSD in Equation (4.20). The observer is at 45� and in a free-stream at Mach
number 0.1.
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From this, it can be concluded that the interference peaks that will be caused due to the

aerofoil placed near a wall will be due to the real parts of the second and third terms

of Eqn. (4.20). This term is of the form �2 cos
⇣

k0
�2
X

h
(�r#

0
A# + r0A)

i⌘
. If it is assumed

that,

A ' A#
' �X ' 1,

the wave-numbers at which the amplitudes will be at a maximum can be determined by

computing the minimum (due to the negative sign) of the real parts of terms 2 and 3.

This is given by,

k0,max =
(2n + 1)⇡q

r2

0
+ 4d2

wall
+ 4r0dwall sin ✓ � r0

, 8 n 2 {0, 1, 2, ...}, (4.21)

where n is an integer that denotes the peak number for a particular observer angle. Fig.

4.4 shows an example frequency spectra with the location of the peaks predicted using

Eqn. (4.21).
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Figure 4.4: Example spectrum for a flat plate ingesting turbulence near a hard-
wall. The observer is at 45� and in a free-stream at Mach number 0.1. The red
lines represent the peak locations predicted using Equation (4.21).

Physically an acoustic wave travelling from the real aerofoil to the observer will arrive

at the observer at a time t1 = r0/c0 and the acoustic wave travelling from the image

source to the observer will reach at time t2 = r#

0
/c0. Thus, the acoustic waves from the

two sources arrive at the observer separated by a time �t = t2 � t1. As the frequency of

the reflected acoustic waves is the same as the frequency of the acoustic waves emitted

by the aerofoil, these acoustic waves would interfere constructively if the wavelength
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corresponds to the time delay �t. This implies that reflected waves arrive at intervals

that are an integer multiple of the wavelength when they arrive at the observer.

From Eqn. (4.21) it can be seen that the e↵ective wavelength at which the maximum

interference occurs is, �max =
⇣
r#

0
� r0

⌘
and this corresponds to an acoustic wave that

will arrive at the observer at an integer multiple of the wavelength as discussed above.

The upwash velocity spectrum in Eqn. (4.20) is modelled as the 2D isotropic von Kármán

spectrum which is defined as,

�(2D)

vv (KX) =

Z
+1

�1

E(2D)(k)

⇡k

 
1 �

k2
y

k2

!
dky, (4.22)

where,

E(2D)(k) =
110u2L

27⇡

(k/ke)
4

h
1 + (k/ke)

2

i
17/6

, (4.23)

k =
q

K2

X
+ k2

y, ke =
p
⇡

L

�(5/6)

�(1/3)
, and L is the integral length scale of the turbulence.

It should be noted that the energy spectrum defined in Eqn. (4.22) is for purely 2D

turbulence. This is a mathematical construct to generate a 2D isotropic fluctuating

field without spanwise disturbances. The CAA method that will be used to verify the

analytical formulation uses the same definition of the turbulence spectrum and thus the

comparison between the two is valid.

4.1.3 Formulation for the radiated power of the flat plate

In this section, the expression for the power radiated from a flat plate ingesting turbulence

near a hard-wall is derived. This is done in order to simplify Eqn. (4.20) and from this

simplified expression for the PSD, determine the physical significance of the additional

terms that are added due to the presence of the hard-wall. Examining the sound power of

the flat plate in the low Mach number low frequency limit, makes it easier to understand

the physical meaning of each of the terms. Another advantage of examining the sound

power of the flat plate in this limit, is that it can be compared to the power radiated

by a vertical dipole. As the flat plate in the low Mach number low frequency limit is

expected to behave like a dipole [79], this comparison serves as an initial verification of

the analytical solution.
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In the low frequency and low Mach number limit, the following simplifications can be

made [140],

lim
kXL!0

�vv =
u2L

2⇡
, lim

µa!0

|L|
2 =

1

�2
|S(µh)|

2,

lim
M!0

A =1, lim
M!0

� = 1,
(4.24)

where the low frequency limit of the velocity spectrum is for the Liepmann spectrum,

S is the Sears function, µa = !b/c0�2, and µh = µa/M . Substituting the limits in Eqn.

(4.24) into Eqn. (4.20), the PSD of the acoustic pressure can be written as,

lim
f!0

Mx!0

Spp (r0, ✓,!, dwall) =

⇡b2⇢2

0
k0U

2

u2L

2⇡
|S(µh)|

2

2

4sin2 ✓

r0

� 2
cos
⇣
k0(r

#

0
� r0)

⌘
sin ✓ sin ✓#

q
r0r

#

0

+
sin2 ✓#

r#

0

3

5 .

(4.25)

If it is further assumed that r0 >> dwall, the following simplifications can be made,

r#

0
� r0 '2dwall sin ✓ + O

�
d2

wall

�
,

r#

0

r0

'1 + O

✓
dwall

r0

◆
,

sin ✓#
' sin ✓ + O

✓
dwall

r0

◆
,

(4.26)

and Eqn. (4.25) can be written as,

lim
f!0

Mx!0

Spp (r0, ✓,!, dwall) =
⇡b2⇢2

0
k0U

2r0

u2L

2⇡
|S(µh)|

2
D(⇠, ✓), (4.27)

where,

D(⇠, ✓) = 2 sin2 ✓ � 2 cos (⇠ sin ✓) sin2 ✓, (4.28)

and ⇠ = 2k0dwall. The directivity function for an isolated dipole is sin2 ✓. The addition

of a factor of 2 to the first term on the right hand side of Eqn. (4.28) is caused by a

doubling of sound pressure due to the wall. This increase in amplitude is due to the fourth

term on the right hand side that is added to Amiet’s original formulation in Eqn. (4.20).

The second term in Eqn. (4.28) is the interference term that modifies the directivity

function due to the wall. This term is the low Mach number, low frequency asymptote

of the second and third terms on the right hand side that are added added to Amiet’s

original formulation in Eqn. (4.20). The directivity function in Eqn. (4.28) generates

interference patterns as shown in Fig. 4.5. In the low frequency, low Mach number limit,

the maximum noise is radiated at ✓ = 90� when cos(⇠) is a minimum. Therefore, the

peaks occur at,

⇠ = (2n + 1)⇡, 8 n 2 {0, 1, 2, ...}, (4.29)
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Figure 4.5: The directivity of the PSD of the noise and the power ratio in the
low frequency low Mach number limit.

as shown in Fig. 4.5. Additionally, the SPL is increased by a maximum of 4 times which

is consistent with the 6 dB increase in noise that is expected from classical acoustics

due to the interference of coherent waves. This is due to the doubling of the PSD of the

sound due to the presence of the reflecting plane. Additionally, the acoustic waves can

interfere constructively or destructively. A constructive interference quadruples the PSD

of the sound and a destructive interference leads to a cancellation of the acoustic wave.

In the low Mach number limit, the sound power (P), of the flat plate without mean flow

e↵ects is given by,

P(!) =
r0

2⇢0c0

Z
⇡

0

Spp (r0, ✓,!) d✓. (4.30)

Substituting Eqn. (4.27) into Eqn. (4.30) the power factor, which is the ratio between

the power radiated with the wall present and the power radiated in the free-field (P0),

is then obtained as,
P(!)

P0(!)
= 1 � 2


J1 (⇠)

⇠
� J2 (⇠)

�
. (4.31)

where J⌫ are Bessel functions of the first kind of order ⌫. This is identical to the power

factor of a vertical dipole as shown in Appendix C. This serves as an initial verification

of the analytical solution.

Fig. 4.6 shows the power factor computed using Eqn. (4.31). The power factor goes to

zero as the dipole moves towards the wall and the maximum value is 1.83 for the flat

plate in the low frequency limit. Additionally, as ⇠ ! 1, the terms in the bracket in

Eqn. (4.31) tend to zero and thus the free-field power is recovered.
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Figure 4.6: The power factor computed using Eqn. (4.31).

4.2 Computational method

To verify the analytical method and to determine its accuracy a CAA code was used.

The CAA code used in this study is called SotonCAA. This code solves the Linearised

Euler Equations (LEE) and has been used by various authors to study a number of noise

sources. Gill et al. [141; 142] have used the SotonCAA code to study the e↵ect of aerofoil

geometry on leading-edge noise. They use the SotonCAA code with the spatial schemes

of Hixon [115] and turbulence is synthesized using 1,2 and 3 component Fourier methods.

Gea-Aguilera et al. [126] use the SotonCAA code with the spatial schemes of Kim [118]

and an advanced digital filter method is developed to synthesize turbulence. The advanced

digital filter method synthesizes turbulence by superimposing Gaussian eddies of the

appropriate length scale and turbulence intensity to obtain a target turbulence velocity

spectrum. This method generates divergence free turbulence that is injected at a specified

plane in the computational domain. The injected turbulence is assumed to be frozen and

divergence free (this ensures that the jet is not a source of noise).

This study uses the SotonCAA code with the fourth order compact finite-di↵erence

spatial schemes of Kim [118] with sixth order filtering of Kim [118]. The temporal

scheme used is an explicit low-dissipation and low-dispersion Runge-Kutta fourth order

accurate 4-6 scheme of Hu et al. [143]. In order to minimize reflections at the edges

of the computational domain a non-reflective implicit bu↵er zone boundary condition

developed by Gill et al. [119] is used. The PSD of the acoustic pressure was computed

from the pressure time-history data using the multi-taper method of Thomson [144]. The

details of the numerical simulation are summarised in Tab. 4.1.
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Parameter Value/Description

Spatial scheme Fourth order compact finite-di↵erence scheme of

Kim [117] with sixth order filtering of Kim [118]

Temporal scheme Explicit low-dissipation and low-dispersion

Runge-Kutta fourth order accurate 4-6 scheme

of Hu et al. [143]

Non-dimensional time step �tND = (�tc0)/Lref = 3 ⇥ 10�6

Number of time steps 7.56 ⇥ 106 with data collected every 756 time

steps

CFLmax < 0.5

Spatial resolution 10 Points Per Wavelength (PPW) for the small-

est vortical wavelength

Non-reflective boundary conditions Non-reflective implicit bu↵er zones of Gill et al.

[119]

Table 4.1: Computational parameters used to validate the analytical method.

Turbulence was synthesized using the advanced digital filter method of Gea-Aguilera

et al. [126]. The chosen target spectrum was the 2D von kármán spectrum with an

integral length scale of 0.008 m and a turbulence velocity of 0.015U for a free-stream

Mach number of 0.6. Five Gaussian spectra were summed to achieve the target spectra

with these properties. The integral length scale and turbulence intensities of each of these

spectra are provided in Tab. 4.2. The upwash velocity spectra generated using these

parameters using the advanced digital filter method is compared to the analytical von

Kármán velocity spectrum computed using Eqn. (4.22) in Fig. 4.7. The comparisons

show that the velocity spectra computed using the advanced digital filter method is

within 2 dB of the analytical predictions at a majority of the frequencies.

Integral Length Scale [m] Turbulence Intensity [m2 s�2]

2.524 ⇥ 10�2 1.617 ⇥ 10�1

1.401 ⇥ 10�2 6.708 ⇥ 10�1

7.285 ⇥ 10�3 9.106 ⇥ 10�1

3.559 ⇥ 10�3 5.735 ⇥ 10�1

1.973 ⇥ 10�3 5.735 ⇥ 10�1

Table 4.2: Parameters for the Gaussian superposition used in the advanced
digital filter method.
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Figure 4.7: The upwash velocity spectra computed at a location 0.02c upstream
of the aerofoil compared with the analytical upwash velocity spectra. Lref = 1 m
and Uref = 1ms�1.

The grid that was used for these studies is shown in Fig. 4.8. The grid extended to 9

chords in all the directions except under the aerofoil. This dimension was dictated by

the required distance to the wall for the cases with the hard-wall boundary condition

and for the free-field/MOI cases the grid extended to 3 chord lengths below the aerofoil.

The observer arc was placed at a radius of 8 chords from the aerofoil centre. The grid

metrics such as aspect ratio, grid size and grid skewness were controlled in accordance

with the recommendations of Fattah et al. [145]. As an example of the grid quality, the

mesh and the skewness in the vicinity of the aerofoil leading-edge are shown in Figs.

4.8(b) and 4.8(c). Additionally, the largest mesh cell size �x was chosen so as to fit

at least 10 grid points for the smallest acoustic vortical wave (highest frequency). The

mesh used in this study can propagate waves up to frequencies of 8000 Hz. However, the

highest frequency that can be resolved for this study was constrained by the temporal

requirements. Pressure-time history data was collected every 756 time steps for a total

of 7.56 million time steps. This corresponds to fitting 30 points per wavelength for a

maximum frequency of 5000 Hz.

4.2.1 Investigating the errors introduced due to the grid

The SotonCAA code used in these studies has two distinct sources of error. The first

stems from the grid and the finite di↵erence schemes used. The second source of error

is the recreation of the velocity spectrum using the digital filter method as shown in

Fig. 4.7. This section will isolate the errors introduced because of the grid and the finite
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(a) Grid topology around the aerofoil. (b) ‘C’ shaped grid around the aerofoil.

(c) Mesh skewness.

Figure 4.8: Details of the grid that was used for the CAA simulations.

di↵erence schemes used in SotonCAA by computing the noise radiated by a flat plate in

the free-field using Amiet’s [21] formulation given by the first term in Eqn. (4.20).

Fig. 4.9 shows the PSD of the acoustic pressure determined in three di↵erent ways. The

first two are determined using Amiet’s [21] formulation (the first term of Eqn. (4.20))

with the upwash velocity spectrum computed analytically (shown in black in Fig. 4.9) and

the upwash velocity spectrum computed by interpolating the upwash velocity spectrum

generated by the Advanced Digital Filter method as shown in Fig. 4.7 (shown in red in

Fig. 4.9). Finally, the PSD of the acoustic pressure is computed by computing the PSD

from the time-history of the pressure obtained from the CAA simulation.

Comparing the results, it is observed that predictions using Amiet’s [21] formulation

with the upwash velocity spectrum obtained from the Advanced Digital Filter method

compares well to the predictions using Amiet’s [21] formulation with the upwash velocity

spectrum analytically determined. The largest discrepancies are observed when the PSD

of the acoustic pressure is directly obtained from the CAA simulations. This indicates

that a majority of the errors that will be observed will either be due to the grid or due

to inaccuracies associated with the finite di↵erence schemes used.
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Figure 4.9: The PSD of the acoustic pressure computed using Amiet’s (first term
of Eqn. (4.20)) formulation with the velocity spectrum determined analytically
(black), determined from the Advanced Digital Filter method and the PSD of
the acoustic pressure determined directly from a CAA simulation (green).

4.2.2 Computational setup for verification tests

To verify the analytical results, the computations were run so as to closely match the

assumptions that were made in deriving the analytical formulation. Thus, the flat plate in

Amiet’s theory was approximated using a NACA 0001 aerofoil and a uniform mean-flow

was used when solving the LEE. The parameters used in the simulations are tabulated

in Tab. 4.3.

Additionally, the pressure time-history data was collected on two surfaces placed at the

locations of the actual source and the mirror source as shown in Fig. 4.10. This was

done instead of using a wall boundary condition in order to isolate the e↵ects of acoustic

waves di↵racting around the edges of the aerofoil and the shielding e↵ect of the aerofoil.
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r0
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(a) The position of the data collection surface
with respect to the real aerofoil.

c

S2

r#
0

Wall

(b) The position of the data collection surface
with respect to the image aerofoil.

BUFFER ZONE

r0

Turbulence injection plane

S2
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(c) The schematic of the CAA simulation used
to validate the analytical model.

Figure 4.10: The schematic of the CAA simulation used to validate the analytical
model. S1 and S2 represent the data collection surfaces for the real and image
aerofoils. Using this data collection strategy one can model the analytical solution
without using a hard slip-wall boundary condition.

Parameter Value

Aerofoil NACA 0001

Aerofoil chord 0.15 m

Mach number 0.6

Turbulence integral length scale 0.008 m

Turbulence intensity 0.015U

Distance from the aerofoil chord to the wall 0.3 m

Radius of observer arc 1.2 m

Table 4.3: Computational parameters.

4.2.3 Computational setup for the quantification of the assumptions

made in the analytical solution

To quantify the assumptions that were made in deriving Eqn. (4.20) a hard slip-wall

boundary condition was used in the CAA simulations to model the physical wall. Unlike

the CAA simulations that use the MOI to model the wall, these simulations are physically
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representative. Similar to the CAA simulations that used the MOI , the computations

were run using a NACA 0001 aerofoil and a uniform mean flow. The parameters used

for these simulations are the same as the parameters used in the CAA simulations using

the MOI and are given in Tab. 4.3.

In simulations where the hard slip-wall boundary condition has been used, the pressure

time-history data was collected on one surface (surface ‘S1’ in Fig. 4.11) that represents

the location of the observers with respect to the real aerofoil.

BUFFER ZONE

r0

Turbulence injection plane

Hard slip-wall

S1

Figure 4.11: The schematic of the physically representative CAA simulation used
to test the assumptions made in the analytical model for an aerofoil ingesting
turbulence near a hard slip-wall.

4.3 Results

The results of the CAA simulation with and without the hard-wall boundary condition,

using the computational setup described in Section 4.2.3, are shown in Fig. 4.15. These

simulation results will allow the quantification of the missing di↵raction and shielding

e↵ects in the analytical model. The verification of the analytical solution is made using

the CAA simulation with the MOI as described in Section 4.2.2.

4.3.1 Verification of the analytical method using CAA

In this section, the analytical solution using the MOI is verified by comparing results from

the analytical solution to results from a CAA simulation that uses the MOI to simulate

the wall. Fig. 4.12 shows a comparison of the analytical solution for a flat plate ingesting

turbulence with and without a wall, compared to the corresponding CAA simulation

using the MOI. The CAA and analytical solutions match reasonably well. The levels

and locations of the constructive and destructive interference peaks are well represented.

There are significant destructive troughs seen in the analytical solution using the MOI

in Fig. 4.12(b) and these troughs do not appear in the CAA simulation using the MOI .

These troughs occur when the PSD of the sound tends to zero due to the cancellation

e↵ect of the interference term  in Eqn. (4.20).

68



Chapter 4 The noise radiated by a flat plate ingesting turbulence near a hard-wall

2065110155

✓

0.5

1.0

1.5

2.0

2.5

K
=

f
c/

U

30

48

66

84

102

2.
10

�
5

(a) Analytical solution without a wall.
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(b) Analytical solution with a wall dwall = 2c.
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(c) Results from the CAA simulation without a
wall.
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(d) Results from the CAA simulation with a wall
(simulated using the MOI) at dwall = 2c.

Figure 4.12: Contours of sound pressure level (SPL) as a function of reduced
frequency K = fc/U and observer angle ✓ for analytical (Equation 4.20) (top)
and CAA (bottom) predictions.

Fig. 4.13 shows spectral plots comparing the analytical solution for a flat plate ingesting

turbulence with and without a wall compared to the corresponding results from the

CAA simulations at three observer locations. The figures compare the noise spectrum

for the case with and without a wall. The results for the flat plate without a wall are

presented to establish the e�cacy of the CAA simulations to predict the noise radiated

by an aerofoil in the free-field and to demonstrate the e↵ect of the reflecting surface on

the noise spectrum. From the spectral plots shown in Fig. 4.13 it can be seen that there

is a reasonable agreement at all observer angles. The biggest di↵erences are seen at the

downstream observer angle ✓ = 45�. Due to a frequency shift of the lobes at K = 1.5

and 2, the destructive peaks of the CAA simulation move towards the constructive peaks.

The CAA simulations using the MOI, predicts the e↵ect of a hard-wall by collecting

pressure time-history data on two surfaces (one corresponding to the flat plate and one

corresponding to the flat plates’ mirror image) and subtracts them. From Fig. 4.13(a) it

is observed that the CAA solution without a wall (which corresponds to data collected

from one surface) also deviates at K = 1.5 and K = 2. This could explain the shift in
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the peak locations as the minimum/maximum values of the individual solutions that are

being subtracted are shifted. Additionally, the deviations in the CAA solution without

the wall are within the expected accuracy of the CAA code of ±1.5 dB for most of the

frequency range as reported by Gea-Aguilera et al. [120]. Thus adding the data collected

on two surfaces could compound this error up to 3 dB. The results shown in Fig. 4.13

confirm that the analytical predictions are within 1.5 dB of the CAA simulation for a

majority of the frequencies and observer angles with a maximum error of 3 dB at certain

frequencies and observer angles.

Fig. 4.13(d) shows the sound power computed using Eqn. (4.32) for the analytical solution

and for the CAA simulations. To compute the power radiated by the flat plate, the

following equation for the power that accounts for mean flow e↵ects is used [140],

P(!) =
r0

2⇢0c0

Z
⇡

0

�4A(M, ✓)

(A(M, ✓) � M cos ✓)2
Spp(r0, ✓,!)d✓. (4.32)

The sound PoWer Level (PWL) can then be computed as,

PWL = 10 log10

✓
P (r0,!)

Pref

◆
, (4.33)

where Pref = 10�12 W. The power for the flat plate without a wall is computed by

integrating the sound intensity from ✓ = 0� to ✓ = 180� and then doubling the output

of this result. For the flat plate in the presence of a reflecting surface, the power is

computed by integrating the sound intensity from ✓ = 0� to ✓ = 180�. This value should

match the total power radiated by the flat plate in the absence of a wall as the energy

in the system in conserved. However, it should be noted that this is an approximation

for the power radiated by the flat plate in the presence of a reflecting surface as the

data-collection surface does not extend all the way to the wall. Thus, a small amount of

the energy escapes. The PWLs match to within 1.5 dB for a majority of the frequency

range as shown in Fig. 4.13(d). This demonstrates that the analytical solution and the

CAA simulations are conserving energy and that the total power radiated by the flat

plate with and without the wall is the same.

Fig. 4.14 shows directivity plots comparing the analytical solution for a flat plate ingesting

turbulence with and without a wall compared with the corresponding results from the

CAA simulations at two di↵erent reduced frequencies. From the directivity plots shown

in Fig. 4.14, there is a reasonable agreement between the analytical solution and the CAA

simulations at both reduced frequencies. The destructive peaks in the directivity plots

at K = 1.4 are not as prominent as the analytical solution around ✓ = 90�. Additionally,

a slight shift in the lobes is seen at K = 2.2.

From the results shown, it can be concluded that the analytical solution using the MOI

(given in Eqn. (4.20)) matches the CAA simulations using the MOI to within the accuracy
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Figure 4.13: Spectral plots of Sound Pressure Level (SPL) and PWL. The wall
is located at dwall = 2c and is simulated using the MOI.

of the CAA simulation.
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Figure 4.14: Directivity plots of sound pressure level for analytical and CAA
simulations at two di↵erent reduced frequencies. The wall is located at dwall = 2c
and is simulated using the MOI.

4.3.2 Quantification of the assumptions made in the analytical model

using CAA

In this section the assumptions made in the derivation of the analytical solution are

analysed by running two CAA simulations, one using the MOI and one with a physical

hard-wall, as described in Section 4.2.2. The assumptions are the negation of shielding

and di↵raction e↵ects.

The results of the CAA simulation with and without the hard-wall boundary condition,

using the computational setup described in Section 4.2.3, are shown in Fig. 4.15. These

simulation results will allow the quantification of the missing di↵raction and shielding

e↵ects in the analytical model.

(a) CAA simulation without a wall. (b) CAA simulation with a hard slip-wall.

Figure 4.15: Contours of instantaneous non-dimensional pressure p/(⇢0c2

0
) for

CAA simulations with (right) and without (left) the hard-wall boundary condi-
tion.
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Fig. 4.16 shows the PSD of the acoustic pressure computed with CAA simulations using

the MOI and, using the hard-slip-wall boundary condition. Looking at the di↵erence

between the two CAA simulations in Fig. 4.16(d), the largest di↵erences in the simulations

are for the downstream observer locations. However, these di↵erences appear in the

location of the destructive peaks as can be seen from Fig. 4.16(b). A slight change

in the location or amplitude of the troughs due to numerical errors could cause large

di↵erences between the CAA simulation using the MOI and the CAA simulation using

the hard-slip-wall boundary condition. These errors are therefore not physical and are an

artefact of the numerical implementation. The more substantial di↵erences are located

around the 90� observer angle, particularly at high reduced frequencies. This indicates

that the flat plate is shielding acoustic waves.

Fig. 4.16(f) shows the di↵erence between the CAA simulations with the hard-wall bound-

ary condition and the analytical solution. There are once again di↵erences observed at

the location of the destructive peaks. Additional di↵erences are seen around the ✓ = 90�

observer angle for reduced frequencies larger than 1.8. From the above discussions it

appears that the di↵erence between the two CAA simulations and the analytical solution

are minor. There are however, some larger di↵erences around the ✓ = 90� observer loca-

tion at high reduced frequencies that might indicate the flat-plate is shielding acoustic

waves from interfering. This e↵ect can be further analysed by looking at spectral and

directivity plots.

Fig. 4.17 shows spectral plots comparing the analytical solution for a flat plate ingesting

turbulence with a wall compared with the corresponding results from the CAA simulations

using the MOI and the hard-slip-wall boundary condition at three observer locations.

At ✓ = 45� and 120� the analytical prediction and the CAA simulations using the

MOI match within 1.5 dB of the CAA simulation using the hard-slip-wall boundary

condition for a majority of the frequencies with a maximum error in the peaks of 3 dB

at certain frequencies. At ✓ = 90�, the discrepancy between the MOI and the hard-wall

boundary condition is up to 5 dB at certain frequencies. This indicates that the MOI is

not capturing the e↵ect of the flat plate shielding acoustic waves.

Fig. 4.17(d) shows the sound power levels for the analytical and CAA simulations. It

should be noted that the data collection surface for the hard-wall simulations only

extended from ✓ = 20� to ✓ = 158� due to numerical considerations. Thus the sound

power level is computed by integrating the sound intensity only between these angles.

While, this will not reflect the true sound power level of the flat plate, it will still provide

a valid comparison between the three simulations. From Fig. 4.17(d) it can once again

be seen that the levels match to within 1.5 dB for a majority of the frequency range for

the two CAA simulations and prediction using Eqn. (4.20).
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The results in this section have highlighted the fact that the MOI does not capture all

the e↵ects of noise produced by a flat plate ingesting turbulence near a hard-wall. The

main discrepancies observed occur around the 90� observer angle. This indicates that the

flat plate is shielding acoustic waves. This e↵ect can be further analysed by computing

the PSD of the sound at di↵erent heights from the wall.
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(a) Results from the CAA simulation with a wall
at dwall = 2c.

2065110155

✓

0.5

1.0

1.5

2.0

2.5

K
=

f
c/

U

30

48

66

84

102

2.
10

�
5

(b) Results from the CAA simulation with a wall
(simulated using the MOI) at dwall = 2c.
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(c) Analytical solution with a wall at dwall = 2c.
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(d) The absolute di↵erence in SPL between the
CAA simulations.
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(e) The absolute di↵erence in SPL between the
CAA simulation with the MOI and the analytical
solution.
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(f) The absolute di↵erence in SPL between the
CAA simulation using the hard-wall boundary con-
dition and the analytical solution.

Figure 4.16: Contours of sound pressure level as a function of reduced frequency
K = fc/U and observer angle ✓ for analytical (Equation 4.20) (bottom) and
CAA (top) predictions.
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Figure 4.17: Spectral plots of SPL and PWL. The wall is located at dwall = 2c
and is simulated in the CAA simulation using both the MOI and the hard-wall
boundary condition.
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4.3.3 The e↵ect of changing the distance of the aerofoil to the wall.

In this section the e↵ect of changing the height of the flat plate from the wall is investi-

gated. As the height of the flat plate from the wall is changed, it is expected that the

shadow zone created by the aerofoil will change. Analysing the directivity pattern for

the flat plate at di↵erent heights to the wall will therefore help identify the extent of the

shadow zone and its e↵ect on the PSD of the radiated sound with a wall. In this section

the PSD of the sound is investigated at three di↵erent heights to the wall, viz. 2c, 1c,

and 0.75c.

Fig. 4.18 shows the directivity plots for analytical predictions and CAA solutions of a

flat plate ingesting turbulence at three di↵erent heights from the wall. The green lines

on the plot depict the extent of the geometrical shadow-zone caused by the presence of

the flat plate. This angle is computed as the solution of the following equation,

r0c sin ✓s � 2r0dwall cos ✓s + c dwall = 0, (4.34)

where 2✓s is the extent of the shadow zone. In Fig. 4.18, the CAA simulations using

the hard-wall boundary condition match well with the analytical solution at all observer

angles except within the shadow-zone. It is also observed that outside the shadow zone,

the location of the crests and troughs for all three simulations are in approximately the

same location. However, within the shadow zone, the CAA simulation with the hard-slip-

wall displays crests and troughs that are at a di↵erent location than the MOI predicts.

This implies that as the flat plate is shielding acoustic waves, the interference of the

acoustic waves above the surface of the flat plate is modified.

Additionally, discrepancies are seen in the amplitudes at all observer angles for the high

frequency directivity plots in Figs. 4.18(b), 4.18(d), and 4.18(f). This can be explained

by two e↵ects. Firstly, the smaller wavelength acoustic waves at the higher frequencies

are likely to be more e↵ectively shielded by the flat plate. Secondly, the acoustic waves

at high-frequencies are more susceptible to scattering. For a flat plate the radius of the

nose is small enough for the scattering object to scatter waves according to Rayleigh

scattering. Thus the smallest wavelengths are scattered the most.

Another observation that can be made from examining the directivity plots in Fig. 4.18

is the e↵ect of the distance from the flat plate to the wall. From Figs. 4.18(a), 4.18(c),

and 4.18(e) it can be seen that the closer the flat plate is to the wall, the more significant

the discrepancies are within the shadow zone. This is to be expected as the extent of

the shadow zone increases as the flat plate moves closer to the wall and thus a larger

proportion of the acoustic waves are shielded. These findings imply that the shielding of

acoustic waves by the flat plate is an important factor to consider only if the flat plate

is placed very close the wall.
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Figure 4.18: Directivity plots of sound pressure level for analytical and CAA
simulations at two di↵erent reduced frequencies. The green lines indicate the
extent of the shadow zone.

From the results shown, it can be concluded that while the MOI predicts the noise

spectrum of a flat plate ingesting turbulence in proximity to a wall at most observer

angles, it does not predict the shielding e↵ect of the flat plate. It has been shown that the

MOI does not capture the shadow-zone e↵ect and the predictions using the MOI di↵er

significantly from the CAA simulations using a hard-slip-wall around the 90� observer

angle. This e↵ect has been shown to be more pronounced at higher frequencies than at
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lower frequencies due to the smaller wavelengths being shielded more e↵ectively. The

errors seen at high frequencies might also be caused due to the scattering of acoustic

waves. Finally, the shadow-zone e↵ect diminishes as the distance from the aerofoil to the

wall is increased. This is because the extent of the shadow-zone decreases as the height

from the aerofoil to the wall is increased.

4.4 Conclusions

This chapter has extended Amiet’s [21] 2D translating aerofoil model to include wall-

e↵ects by using the MOI. The main aim of this chapter was to quantify the assumptions

that were made in developing this analytical model. This was done by conducting two

di↵erent types of CAA simulations. One CAA simulation modelled the wall using the

MOI and the other CAA simulation was physically representative and modelled the hard-

wall using a hard-wall boundary condition. The CAA simulation using the MOI was used

to verify the analytical solution. Comparing the MOI with the physically representative

CAA simulation allowed the quantification of assumptions that were made in the MOI.

The main conclusions that are drawn from this chapter are:

• Amiet’s formulation for a 2D translating aerofoil was extended to included the

e↵ects of a hard-wall by using the MOI.

• This extension to Amiet’s formulation adds three terms to Amiet’s original formula-

tion. The physical significance of these terms has been examined by computing the

low frequency, low Mach number limit of the PSD. Examining the formulation in

this limit, it is shown that the first two additional terms cause interference patterns

and the third term modulates the amplitude. It is shown that the ratio of the power

radiated by the flat plate with a hard-wall to the power radiated by the flat plate

in the free-field, in the low Mach number, low frequency limit is the same as that

of a compact dipole. The power ratio in this limit goes to 0 as the distance to wall

is decreased and has a maximum of approximately 1.8.

• The analytical solution using the MOI is verified using a CAA simulation that

also uses the MOI to model a the e↵ect of a wall. This was done by using 2

data collection surfaces that represent the location of the observer from the real

and image sources. The pressure data collected on these two surfaces was then

subtracted to obtain the final result. When the analytical solution is compared

to the CAA simulation using the MOI, it is shown that the analytical solution

matches the results of the CAA simulation to within the accuracy levels permitted

by the CAA simulation.
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• The assumptions that were made in deriving the analytical solution, i.e. the nega-

tion of shielding and di↵raction e↵ects, were quantified by running a physically

representative CAA simulation that models the hard-wall using a hard-slip-wall

boundary condition. By comparing the CAA simulation that uses the MOI and

the CAA simulation that uses the hard-slip-wall boundary condition, it is shown

that the MOI does not capture the shielding e↵ect of the flat plate. This can have

a significant e↵ect on the noise spectrum for observers located above the flat plate.

By comparing the directivity of the sound at three di↵erent heights from the wall

it is shown that the e↵ect of the shadow zone decreases as the height from the

flat plate to the wall is increased. This is because the extent of the shadow zone

becomes narrower as the height from the flat plate to the wall is increased.
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Chapter 5

Modelling wall-e↵ects in Amiet’s

rotor noise model

The aim of this thesis is to predict the noise radiated by a rotor ingesting a turbulent

boundary layer. In Chapter 3 Amiet’s [18] frequency-domain rotor noise model was

presented. This rotor noise model predicts the noise radiated by a rotating aerofoil by

azimuthally averaging and frequency correcting the noise radiated by a translating aero-

foil. This model ignores the acceleration e↵ects of the blades. This is a valid assumption

as long as the frequency of turbulence impinging on the rotor is much smaller than

the frequency of the rotor. Using the isotropic von Kármán spectrum presented in that

chapter it was shown that the resultant noise spectrum had several discrepancies when

predictions obtained using the rotor noise model were compared with the experimental

results of a rotor ingesting a turbulent boundary layer. The biggest discrepancies were the

missing second correlation peak and a significant discrepancy in amplitude. This chapter

extends Amiet’s [18] rotor noise model by including wall-e↵ects using the Method of

Images (MOI). This is expected to improve the amplitude discrepancy that was observed.

In Chapter 4 the assumptions made in using the MOI were quantified using Computa-

tional AeroAcoustic (CAA) simulations. Using these simulations it was found that the

MOI is accurate at predicting wall e↵ects except in the shadow-zone of the aerofoil. While

discrepancies were observed in the shadow-zone above the aerofoil, they were restricted

to a small range of observers and the discrepancies became smaller as the aerofoil was

moved away from the wall. As such the MOI provides satisfactory results and will be used

in Amiet’s [18] rotational model to predict wall-e↵ects for a rotor ingesting turbulence

near a hard-wall.

This chapter will first provide the formulation for the Power Spectral Density (PSD) of

a rotor ingesting turbulence near a hard-wall. This is done by adding a mirror image to
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the Green’s functions terms of Amiet’s formulation for a translating aerofoil as was done

in Chapter 4. The formulation for the PSD of the translating aerofoil is then extended

to account for rotational e↵ects by azimuthally averaging and frequency correcting the

PSD of the translating aerofoil. It is shown that in the low Mach number low frequency

limit, the rotor behaves like a dipole. By changing the azimuthal and stagger angle of

the blade, the solution is verified with analytical solutions for horizontal and vertical

dipoles. The predictions using Amiet’s [18] rotor noise model with wall e↵ects are then

compared against experimental measurements. Finally, the e↵ect of the wall is examined

by computing predictions without and with wall e↵ects modelled. This study is done

without and with blade-to-blade correlation modelled.

5.1 Formulation for the power spectral density of the rotor

In this section the formulation for the PSD of the acoustic pressure of a rotor ingesting

turbulence near a hard-wall is developed. The e↵ects of a hard-wall are included in the

analytical rotor noise model of Amiet [18] by using the MOI. First, the coordinate system

with the mirror rotor is detailed. Next, the MOI is used to add wall-e↵ects to Amiet’s

[18] translating aerofoil noise model. This translating aerofoil model is then azimuthally

averaged and frequency corrected to account for the rotation of the aerofoil. Finally, the

low frequency low Mach number limit of the analytical solution is examined.

5.1.1 Coordinate systems

The coordinate systems used to model the mirror rotor are now described. In the engine

fixed frame as shown in Fig. 5.1, the observer coordinates from the mirror rotor are given

by, ⇣
x#, y#, z#

⌘
= (r0 cos ✓, 0, � (r0 sin ✓ + 2dwall)) ,

where the superscript # indicates distances measured with respect to the mirror source

and the wall is located at a distance dwall from the engine hub. The conversion from the

engine-fixed coordinates to blade-fixed coordinates is given by the coordinate transfor-

mation matrices in Eqns. (3.8) and (3.9).

The addition of a hard-wall only changes the wall-normal coordinate of the observer and

thus the horizontal coordinate of the observer from the real and image source is identical.

This fact is made use of to compute the distance of the observer from the image source
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Figure 5.1: The engine-fixed coordinate system for a rotor and its mirror image.

and the angle of the observer from the axis of the image rotor,

r#

0
=
q

(r0 sin ✓ + 2dwall)
2 + (r0 cos ✓)2,

✓# = tan�1

✓
r0 sin ✓ + 2dwall

r0 cos ✓

◆
.

(5.1)

5.1.2 Formulation for the power spectral density of a rotor near a

hard-wall

In this section, the formulation of the noise produced by a rotor ingesting turbulence that

was presented in Chapter 3, is extended to account for a hard-wall placed in proximity

to the rotor. This is done using the MOI in a similar manner as was done in Chapter 4.
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The formulation for the point dipole given by Eqn. (3.15) is modified by adding its mirror

image to it in phase. This is done to ensure zero normal velocity at the wall [17],

p(n)(X, C, Z,!) =
i⇡k0⇢0Y b

2�2
eiµ(MXX��)

L(KX , KZ ,)

Z 1

�1
vR(KX , kY , KZ)e�ikY nCdkY +

i⇡k0⇢0Y #b

2�2
eiµ(MXX

#��
#

)
L

#(KX , KZ ,#)

Z 1

�1
vR(KX , kY , KZ)e�ikY nCdkY ,

(5.2)

where k0 = !/c0 is the wave number, � =
q

1 � M2

X
is the compressibility factor,

µ = MXkX/�2 is the acoustic reduced frequency and � =
p

X2 + �2 (Y 2 + Z2) is the

flow corrected distance to the observer.

The noise spectrum with blade-to-blade correlation is determined by computing the

cross-correlation of the 0th and nth blade,

S(n)

pp (X, C, Z,�,!) =
⇡UX

R
E
h
p(0) (r0, ✓,�,!)

⇣
p(n) (r0, ✓,�,!)

⌘⇤i
. (5.3)

Using (5.3) and (5.2) the cross-PSD of the acoustic pressure can be developed as,

S(n)

pp (r0, dwall, ✓,�,!) = SNW

pp + SP1

pp + SP2

pp + SI

pp, (5.4)

where each of the terms are defined as,

SNW

pp (X, C, Z,�,!) = ⇡UXd

✓
k0⇢0Y b

�2

◆
2

|L(KX , KZ ,)|2�̃vv(KX , KY , KZ),

SP1

pp (X, C, Z, dwall,�,!) = ⇡UXd(A)(k0⇢0b)
2�̃vv(KX , KY , KZ),

SP2

pp (X, C, Z, dwall,�,!) = ⇡UXd(A)⇤(k0⇢0b)
2�̃vv(KX , KY , KZ),

SI

pp(X, C, Z, dwall,�,!) = ⇡UXd

✓
k0⇢0Y #b

�2

◆2

|L
#(KX , KZ ,)|2�̃vv(KX , KY , KZ),

(5.5)

where quantities with a superscript # indicate values at the mirror source and 1,

A =

✓
Y Y #

��#

◆2

eiµ(MX(X�X
#)+(�#��))

|L

⇣
L

#

⌘⇤
|, (5.6)

where,

�̃vv(KX , KY , KZ) =

Z
+1

�1
�vv(KX , kY , KZ)e�ikY nCdkY . (3.26)

Eqn. (5.4) and Eqn. (5.5) show that the hard-wall has added three additional terms to

Amiet’s original formulation [21] for the cross-PSD of the rotor. SNW
pp represents Amiet’s

1It should be noted that the Green’s functions and the acoustic lift functions that have a superscript
# are not di↵erent functions but indicate that their arguments should be evaluated for the image source.
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original formulation. The cross-terms SP1
pp and SP2

pp represent the interference of the rotor

and image rotor sources. The third additional term SI
pp gives the amplitude contribution

of the image rotor. The interference of the acoustic waves in the cross-terms is due to

the factor e±iµ(MX(X�X
#)+(�#��)). This factor can be imaginary and thus changes the

phase of the solution. This term is a function of the distance to the observer from the

real and image sources and thus represents the phase di↵erence in the acoustic waves

that arrive at the observer from the real and image sources. This phase di↵erence can

result in either constructive or destructive interference. The SI
pp term gives the amplitude

contribution of the image rotor as it would represent the doubling of acoustic pressure

in the absence of the interference terms.

Equation 5.5 represents the formulation for a translating aerofoil near a hard-wall with

blade to blade correlation. As was done in Chapter 3, multiple blade passes are accounted

for by computing the following cross-correlation function [18],

Rpp(x, y, ⌧) =
+1X

n=�1
R(n)

pp (x, y, ⌧ � nT ), (3.28)

where nT is the time between eddy chops as heard by the observer. Each of the four

terms in Eqn. 5.4 will have di↵erent times between blade chops as heard by the observer.

For the first and fourth terms of Eqn. 5.4, T represents the time between the 0th and nth

blade of the real and image rotor chopping an eddy. For the cross-terms, T represents

the time between the 0th blade of the real rotor chopping an eddy and the nth blade of

the image rotor (or vice-versa) chopping the same eddy. The next step is to determine

these time di↵erences.

The time between eddy chops by the real rotor is the same as for the case without the

wall. This was defined in Chapter 3 as,

T = T1 �
CY

c0�
, (3.32)

The time between eddy chops by the image rotor is then determined by replacing the

relevant distances with distances measured from the image rotor,

T# = T1 �
CY #

c0�#
. (5.7)

For the first cross-term, the time between the 0th blade from the real rotor and the nth

blade from the image rotor chopping an eddy is given by,

TP1 = T1 +
MX

�
X#

� X
�

+
�
� � �#

�

c0�2
�

CY #

c0�#
, (5.8)
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and for the second cross-term, the time between the nth blade from the real rotor and

the 0th blade from the image rotor chopping an eddy is given by,

TP2 = T1 +
MX

�
X � X#

�
+
�
�#

� �
�

c0�2
�

CY

c0�
. (5.9)

The cross PSD can now be determined for multiple blade passages by taking the Fourier

transform of Eqn. (3.28)[18],

Spp(r0, dwall, ✓,�,!) =
1X

n=�1
S(n)

pp (r0, ✓,�,!)ein!T . (3.40)

Eqn. (5.5) is the formulation for the cross-PSD of a translating aerofoil. This formulation

can be extended for rotational motion by the application of the appropriate Doppler

factors as is done in Chapter 3. However, for the extension to the case with a rotor

placed near a hard-wall one must account for the Doppler shift and retarded time e↵ects

of both the rotor and its image source. Thus we have two Doppler factors. We denote

the Doppler shifted frequency as heard by the observer from the real rotor as !R

�
and

from the image rotor as !I

�
. These two frequencies can be computed using the following

formulations,

!R

�

!
=1 + M�

sin ✓ sin�p
1 � M2

x sin2 ✓
,

!I

�

!
=1 � M�

(r0 + 2dwall) sin ✓ sin�

r0

p
1 � M2

x sin2 ✓#
.

(5.10)

where it should be noted that the mirror rotor is rotating in the opposite direction of

the real rotor.

However, the SP
pp term in Eqn. (5.4) contains frequencies from both the image and the

real rotor. Acoustic waves that are produced by the real rotor arrive at a frequency !R

while acoustic waves from the image rotor arrive at a frequency !I . From Eqn. (5.10) it

is observed that the Doppler factor will by approximately 1 plus a small factor for the

real rotor and 1 minus a small factor for the image rotor. Thus, the two Doppler factors

should negate each other. For this reason, no Doppler correction is applied to the cross

terms. This approach should be valid for rotors operating at low rotational speed. The

validity of this approach for faster rotational speeds will need to be investigated further.
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The cross-PSD of the translating aerofoil can now be extended for the rotational case

using Eqns. (5.4) and (5.10) with azimuthal averaging,

Spp =
1

2⇡

Z
2⇡

0

2

4
 
!

!R

�

!
2

Spp(!�)
NW + SP1

pp + SP2

pp +

 
!

!I

�

!
2

SI

pp(!�)

3

5 d�.

Therefore, the cross PSD for a rotor with blade-to-blade correlation and with a hard-wall

can be modelled as,

Spp(r0, dwall, ✓,�,!) =
lX

j=1

1X

n=�1

2⇡

C

⇡BUX,j�rj
2

(k0⇢0bj)
2
⇥

(
(Y |L|)2

�4
�vv (KX , KY,j,n) +

�
Y #

|L
#

|
�2

(�#)4
�vv

⇣
KX , K#

Y,j,n

⌘
+

A�vv

�
KX , KP1

Y,j,n

�
+ A⇤�vv

�
KX , KP2

Y,j,n

�
)

,

(5.11)

where quantities with the superscript # correspond to the mirror source quantities and

KY is given by,

KY,n =
!T + 2⇡n

C
. (3.42)

In Eqn. (5.11) strip theory has been used to sum the sound pressure at l span-wise

locations with each strip having a width �rj . This strip theory is valid as long as the

width of the span is much larger than the span-wise correlation length [137]. Additionally,

the e↵ect of the skewed gusts has been neglected. This implies that in the coordinate

system fixed to the blade, the span-wise wavenumber, kZ is set to zero.

The cross PSD of the real and image rotor (the first and second terms in the curly braces

that arise from the SNW
pp and SI

pp terms in Eqn. (5.5)) are in phase and thus are real.

However, the terms that account for the interference between the real and image rotor

(the third and fourth terms in the curly braces that arise from the SP1
pp and SP1

pp terms

in Eqn. (5.5)) are not in phase and thus the individual cross PSD could be imaginary.

Eqn. (5.11) represents the extension to account for the hard-wall. This extension is

important to model the boundary layer ingestion noise source. If the hard-wall was not

accounted for there would be a severe discrepancy in the amplitude of the noise spectrum.

The next step is to determine the noise spectra of the rotating aerofoil using the extended

translating aerofoil model.

This section has determined the PSD for a rotor ingesting turbulence near a hard-wall.

The MOI has been used to include wall-e↵ects in Amiet’s [18] rotor noise model. This is
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similar to the approach that was used in Chapter 4. However, this section adds wall-e↵ects

to a 3D translating aerofoil model. This translating aerofoil model is then extended to

determine the noise radiated by a rotor by azimuthally averaging and frequency correcting

the noise spectrum. The Doppler correction that needs to be applied to the real and

imaginary terms of the formulation has been determined. The cross terms that contain

frequencies from both, the real and image rotor are not frequency corrected. This is

because the real and image rotor are rotating in the opposite directions and thus their

Doppler factor should approximately cancel out for low rotational speeds. In the next

section, the low Mach number low-frequency asymptote for the rotor ingesting turbulence

near a hard-wall will be determined. This will be used as an initial verification of the

rotor noise model and to further analyse the additional terms that are added to the

formulation due to the presence of the hard-wall.

5.1.3 Formulation for the radiated power in the low-frequency low

Mach number limit

In this section the low-frequency low Mach number limit of Eqn. 5.4 is examined. This is

done in order to perform an initial verification of the analytical solution. This is because

in this limit a single blade of the rotor should behave like a compact dipole. By varying

the blade stagger angle ↵ and the blade azimuthal angle �, the inclination of the dipole

axis with respect to the wall can be varied. As analytical solutions for a compact dipole

whose axis is horizontal and perpendicular to the wall have been computed by Ingard

and Lamb [146], the low-frequency low Mach number limit of the rotor can be verified

against these analytical solutions. Additionally, the analytical solution in this limit is

simplified and it is thus easier to determine the e↵ect of each of the individual terms

that are added due to the presence of a hard-wall.

In a similar manner as was done in Sect. 4.1.3 of Chapter 4 the low Mach number low-

frequency limits of the acoustic lift integral and the velocity correlation spectrum are

determined using Eqn. (4.24). The PSD of one rotor blade without azimuthal averaging

and blade-to-blade correlation is given by,

Spp (r0, ✓,!, dwall) =

⇡Uxd (k0⇢0b)
2 u2L

2⇡
|S (µh) |

2

⇢
D

NW + D
P

⇣
eiµ(���

#) + e�iµ(���
#)
⌘

+ D
I

�
,

(5.12)

The next step in simplifying Eqn. (5.12) is to determine each of the directivity functions.

To determine the directivity functions, the on-blade coordinates aligned with the blade

chord for the real and mirror rotor need to be determined. The on-blade coordinates

aligned with the blade chord for the real rotor are determined using Eqns. (3.8) and (3.9)

90



Chapter 5 Modelling wall-e↵ects in Amiet’s rotor noise model

as,

X = x cos↵+ sin↵ [y cos�+ z sin�] ,

Y = �x sin↵+ cos↵ [y cos�+ z sin�] ,

Z = �y sin�+ z cos�,

(5.13)

and for the mirror rotor as,

X# = x cos↵+ sin↵
h
y cos�+ z# sin�

i
,

Y # = �x sin↵+ cos↵
h
y cos�+ z# sin�

i
,

Z# = �y sin�+ z# cos�,

(5.14)

where z# = �(r0 sin ✓+2dwall). In the low Mach number limit the compressibility factor

� is 1 and therefore the flow corrected distances to the observer for the real and mirror

rotor are � =
p

X2 + Y 2 + Z2 = r0 and �# =
p

(X#)2 + (Y #)2 + (Z#)2 = r#

0
. Using a

Taylor series approximation,

r#

0
= r0(X + �x, Y + �y, Z + �z) ' r0 (X, Y, Z) + �x

@�

@X
+ �y

@�

@Y
+ �z

@�

@Z
,

' r0 �
2dwall

r0

⇢
sin� (y cos�+ z sin�) + (�y sin�+ z cos�) cos�

�
+ O

�
d2

wall

�

' r0 � 2dwall sin ✓ + O
�
d2

wall

�
,

(5.15)

where x = r0 cos ✓, y = 0, z = r0 sin ✓, �x = �2dwall sin↵ sin�, �y = �2dwall sin� cos↵

and �z = �2dwall cos�. Additionally, from Eqn. (5.15),

r#

0

r0

= 1 � O

✓
dwall

r0

◆
. (5.16)

The first directivity function, D
NW , is the distance from the real source to the observer,

�4
D

NW = Y 2,

r4

0D
NW = x2 sin2 ↵+ z2 cos2 ↵ sin2 �� xz sin 2↵ sin�.

(5.17)

The second directivity term D
P is given by,

(�2(�#)2)DP =
h
Y Y #eiµ(���

#) + Y Y #e�iµ(���
#)
i
,

r4

0D
P = 2

⇢
x2 sin2 ↵� zz# cos2 ↵ sin2 ��

x sin 2↵ sin�

2

⇣
z � z#

⌘�
cos (⇠ sin ✓) ,

(5.18)
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Figure 5.2: A schematic of one rotor blade at azimuthal angle (�) = 90�. Setting
the stagger angle (↵) to 0� results in a vertical dipole and setting the stagger
angle (↵) to 0� results in a horizontal dipole.

where ⇠ = 2k0dwall. The third directivity function D
I is the distance from the mirror

source to the observer,

(�#)4DI =
⇣
Y #

⌘
2

,

r4

0D
I = x2 sin2 ↵+ (z#)2 cos2 ↵ sin2 �+ x(z#) sin 2↵ sin�.

(5.19)

The total directivity function is D = D
NW + D

P + D
I . From Fig. 5.2 for a blade at an

azimuthal angle (�) of 90�, setting the blade stagger angle (↵) to 0� should result in a

dipole whose axis is perpendicular to the wall,

D

⇣
↵ = 0,� =

⇡

2

⌘
=

1

r4

0

h
z2 + (z#)2 � 2zz# cos(⇠ sin ✓)

i
, (5.20)

which after making the approximation z#
' r0 sin ✓ results in,

D

⇣
↵ = 0,� =

⇡

2

⌘
=

2

r2

0

sin2 ✓ [1 � cos(⇠ sin ✓)] . (5.21)

The ratio of the power radiated with the wall present to the free-field power is given by,

P

P0

=

R
⇡/2

�⇡/2
sin2 ✓ [1 � cos(⇠ sin ✓)] cos ✓d✓

2
R
⇡/2

�⇡/2
sin2 ✓ cos ✓d✓

= 1 �
6 cos ⇠

⇠2
+

6 sin ⇠

⇠3
�

3 sin ⇠

⇠
.

(5.22)

Similarly, for a blade at an azimuthal angle (�) of 90�, setting the blade stagger angle

(↵) to 90� should result in a dipole whose axis is parallel to the wall,

D

⇣
↵ =

⇡

2
,� =

⇡

2

⌘
=

2

r2

0

cos2 ✓ [1 + cos(⇠ sin ✓)] . (5.23)
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and the power ratio is given by,

P

P0

= 1 �
3 cos ⇠

⇠2
+

3 sin ⇠

⇠3
. (5.24)

As was shown in Sect. 4.1.3 of Chapter 4, the directivity without the wall is given by

the D
NW directivity function. This is sin2 ✓ for the vertical dipole and cos2 ✓ for the

horizontal dipole. The amplitude contribution due to the hard-wall is given by the D
I

directivity function. This is responsible for the factor of 2 in Eqns. (5.21) and (5.23).

The interference of the acoustic waves is represented by the cos(⇠ sin ✓) factor in the D
P

directivity function.

The power ratios given by Eqns. (5.22) and (5.24) are identical to the theoretical power

ratios derived by Ingard et al. [146]. The derivation of these expressions is provided in

Pierce [17]. However, it should be noted that coordinate system used in the present work

is rotated by 90� as compared to the one found in Pierce [17]. This serves as initial

validation of the rotor noise model and the coordinate systems used.

Fig. 5.3 shows the low-frequency low Mach number power ratios and directivity functions

for a vertical and a horizontal dipole. Fig. 5.3(a) shows the power ratio for a vertical

dipole. It is observed that as ⇠ goes to 0 the power ratio goes to 0 and the peak power

ratio is 1.6. Fig. 5.3(b) shows the power factor for a horizontal dipole. The peak power

ratio of 2 occurs at a reduced frequency of ⇠ = 2.

Figs. 5.3(c) and 5.3(d) show the directivity functions computed using Eqns. (5.21) and

(5.23). For a vertical dipole the peak noise is radiated along the axis of the rotor at

✓ = 90� whereas, for the horizontal dipole, the peak noise is radiated at ✓ = 0�. Both

figures also show interference fringes due to the presence of the hard-wall. These fringes

are caused by the cos(⇠ sin ✓) term in the D
P directivity function. It is also observed

that the maximum and minimum for both cases is 4 and 0. These are the values that

are expected due to the coherent interference of acoustic waves.

The low-frequency low Mach number analysis presented above is still a function of

the azimuthal angle �. Amiet’s rotor noise model azimuthally averages the sound field

of a translating aerofoil to determine the radiated noise. This procedure is shown to

reproduce the exact directivity function when compared against a rotor-wake interaction

analytical model by Blandeau [28]. Thus azimuthally averaging the above directivity

functions should provide directivity functions and power ratios that are indicative of the

low-frequency low Mach number noise of a rotor. The azimuthally averaged directivity
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(c) Directivity of a vertical dipole.
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(d) Directivity of a horizontal dipole.

Figure 5.3: The low frequency low Mach number power ratio and directivity
functions for a vertical and a horizontal dipole. The observer is at a radius
r0 = 1 m.

is given by,

r4

0

2⇡

Z
2⇡

0

D(⇠, ✓,↵,�)d� = 2x2 sin2 ↵ [1 + cos (⇠ sin ✓)] + z2 cos2 ↵ [1 � cos (⇠ sin ✓)] ,

(5.25)

and the power ratio is,

P

P0

= 1 �
6⇠
�
cos2 ↵+ 2 sin2 ↵

�
cos ⇠ �

�
6 cos2 ↵� 3⇠2 cos2 ↵+ 12 sin2 ↵

�
sin ⇠

⇠3
�
cos2 ↵+ 4 sin2 ↵

� . (5.26)

Fig. 5.4(a) shows the azimuthally averaged directivity function for a blade at a stagger

angle of 45� computed using Eqn. (5.25). It is observed that at a blade stagger angle of

0� the azimuthally averaged directivity function is the same as a vertical dipole and at

a blade stagger angle of 90� the directivity function is the same as that of a horizontal

dipole. Thus having the blade stagger angle at 45� results in a directivity function that
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Figure 5.4: The azimuthally averaged directivity and power ratio.

is in between a vertical and horizontal dipole. Additionally, the maximum directivity due

to constructive interference has now reduced from 4 to 2.

Fig. 5.4(b) shows the power ratio for the azimuthally averaged sound field varying with

blade stagger angle and reduced frequency (⇠ = 2k0dwall). As expected, the power ratio

resembles that of a vertical dipole at ↵ = 0� and that of a horizontal dipole at ↵ = 90�.

Because of this the power ratio increases from 0 to a global maximum of 2 as the stagger

angle is increased from 0� to 90�. These results show that the blade stagger angle is

an important parameter. Changing the blade stagger angle has a large impact on the

resultant noise directivity and a moderate impact on the peak power ratio.

This section has analysed the noise produced by a rotor ingesting turbulence near a

hard-wall in the low Mach number low frequency limit. In this limit the noise produced

by a translating aerofoil reduces to that of a compact dipole. As the solution has been

obtained in 3D space, the dipole axis can be oriented at any angle. An initial verification

of the noise model has been made by comparing the power ratio for vertical and horizontal

dipoles with available analytical solutions. As was done in Chapter 4 the contribution of

each of the additional terms that were added due to the presence of the hard-wall have

been analysed. The noise produced by the rotor in the low Mach number low frequency

limit is estimated by azimuthally averaging the noise spectrum. Analysing the directivity

function and the power ratio for the azimuthally averaged sound spectra shows that

the blade stagger is an important parameter in determining the directivity and power

amplification due to the presence of the reflecting plane.
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5.2 Results

In this section, predictions using Amiet’s [18] rotor noise model with wall-e↵ects in-

cluded will be compared with experimental measurements from the Fundamental Case 3

(FC3) case of the 2015 American Institute of Aeronautics and Astronautics (AIAA) Fan

Broadband Noise (FBN) [138] workshop. Predictions made with and without wall e↵ects

modelled will be compared to determine the e↵ect of the wall on the noise spectrum.

5.2.1 Comparison with experimental results

In this section predictions made using Amiet’s [18] rotor noise model with wall-e↵ects

included are compared with experimental measurements. The predictions are made using

Eqn. (5.11) to obtain the PSD of the acoustic pressure and the von Kármán spectrum,

given by Eqn. (3.45), is used to specify the PSD of the upwash velocity. The geometry

of the rotor and the parameters of the incoming turbulence that are used for these

simulations are given in Appendix B.1. The computations for the rotor noise model are

computed using 200 azimuthal integration points and 10 span-wise strips. The strips are

logarithmically spaced so that the tip of the blade has a larger density of strips.

103

25

30

35

40

45

50

2.
10

�
5

Figure 5.5: Power spectral density of the acoustic pressure,for a rotor in the
free-field and in the presence of a hard-wall (dwall = 0.2486 m), compared with
an experimental results from Glegg et al. [139]. The arrows represent the Blade
Passing Frequencies of the rotor. The observer is located at (r0, ✓)=(3.01 m,
127.3�).
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Fig. 5.5 shows the predictions using the rotor noise model with and without wall-e↵ects

compared with experimental measurements. From this figure, it is observed that including

wall-e↵ects has increased the amplitude by approximately 3 dB at the lower frequencies

and by approximately 1.5 dB at the higher frequencies. The noise spectra still show

several discrepancies when compared with the experimental measurements. While the

amplitude of the spectrum has increased, there is still a severe under-prediction at most

frequencies, and while the high frequency drop o↵ still remains, it has been shifted to

higher frequencies in the predictions that are made with the hard-wall included. The

second peak is still absent in the predictions. These discrepancies will be addressed in

Chapter 6 with the introduction of an anisotropic velocity spectrum.

5.2.2 The e↵ect of the hard-wall

In this section, the e↵ect of the reflecting plane on the radiated noise is investigated.

These investigations will be performed without the switch that was introduced in Sect.

3.1.3 of Chapter 3 to account for the partial loading of the rotor. The e↵ect of the

hard-wall on the noise spectrum will be investigated without and with blade-to-blade

correlation modelled.

The e↵ect of the wall is investigated without blade-to-blade correlation modelled in order

to investigate wall e↵ects without the additional complexity of modelling a separate

velocity correlation tensor for each of the terms in Eqn. (5.11). In doing so, only the

directivity functions (Y, Y #) determine the e↵ect of the wall.

Next, the e↵ect of the wall is investigated with blade-to-blade correlation modelled. The

e↵ect of the wall is investigated for varying rotor RPMs and for varying distances to the

wall. All the results shown below are computed using the von Kármán spectrum with

an integral length scale of 0.1 m and a turbulence velocity of 2m2 s�2

5.2.2.1 Without blade-to-blade correlation

Fig. 5.6 shows the Sound Pressure Level (SPL) for a rotor operating at 2734 RPM in

a mean flow of the 30 m s�1. The noise spectra is computed by replacing the velocity

correlation tensors of all the terms in Eqn. (5.11) with �vv(kX , kZ = 0). This velocity

correlation tensor is modelled using Eqn. (3.46). The predictions with the wall (Fig.

5.6(a)) and without the wall (Fig. 5.6(b)) show a dipole like directivity with a cusp at

✓ = 90�.

Fig. 5.6(c) shows the di↵erence in the noise spectrum computed with and without a

wall. The di↵erence in SPL shows the wall has increased the noise by 3 dB at most
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(a) SPL directivity with the hard-wall.
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(b) SPL directivity without the hard-wall.
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Figure 5.6: SPL directivity computed for a rotor in the presence of a hard-wall
and in the free-field. The rotor is operation at 2734 RPM in a mean flow of
30 m s�1. The wall is at dwall = 0.2486 m and the observer is at r0 = 3.01 m.

observers with some observers showing an increase of between 4 to 5 dB at the low

frequencies. Some upstream observers around ✓ = 0� show an increase of 6 dB at the

higher frequencies. This could be because of the un-physical peak seen in the noise

spectrum when switching from the low-frequency lift function to the high-frequency lift

function. Additionally, interference patterns are seen for the upstream observer angles.

These interference patterns are a result of the term,

1

2⇡

Z
2⇡

0

Y Y #

(��#)2

h
2 cos

⇣
µ
h
MX

⇣
X#

� X
⌘

+ (� � �#)
i⌘i

d�.

However, these interference patterns are obtained for multiple strips at varying stagger

angles and varying blade relative Mach numbers. This is, therefore, the cumulative e↵ect

of a number of dipoles that are inclined at varying angles to the hard-wall.
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Fig. 5.7 shows the sound PoWer Level (PWL) spectra and the OverAll Sound Pressure

Level (OASPL) directivity. The PWL spectra is computed as,

P(r0,!) =
r2

0

⇢0c0

Z
⇡

0

Spp (r0, ✓,!) F (✓, M)d✓. (5.27)

Fig. 5.7 shows the un-physical peak at 1500 Hz where Amiet’s [18] lift function switches

from the low-frequency function to the high-frequency function. From Fig. 5.7(b) it is

observed that the hard-wall increases the sound power by 2.8 dB at the higher frequencies

and by 2 dB at the lower frequencies.

Fig. 5.7(c) shows the OASPL computed as,

OASPL = 10 log10

 
4⇡
R
f=3000Hz

f=300Hz
Spp (r0, ✓,!) df

p2

ref

!
. (5.28)

The OASPL directivities shows that both the predictions, with and without the wall,

show increased sound levels for the downstream observers due to convective amplification.

Fig. 5.7(d) shows that the wall has increased the sound by slightly more than 4 dB. There

is a peak in the OASPL at ✓ = 112.5� of approximately 4.2 dB and a peak of 4.1 dB at

the downstream observer angles.

The OASPL directivities without blade-to-blade correlation are a function of the directiv-

ity functions (Y , Y Y #, and (Y #)2). This, in turn, implies that the directivity of the rotor

is primarily a function of the blade stagger angle. Additionally, as emission coordinates

have been used, the real and image rotor are moving in opposite directions. Thus when

the real rotor is moving towards an observer, the image rotor is moving away from it

or vice-versa. Because of this, the directivity lobes will be amplified for the downstream

observers for the real rotor due to convective amplification and for the upstream lobes

of the image rotor. The peak at ✓ = 112.5� is due to a combination of these two e↵ects.

5.2.2.2 With blade-to-blade correlation

In this section, the e↵ect of the hard-wall on the noise spectrum is examined with blade-to-

blade correlation modelled using Eqn. (5.11). Fig. 5.8 shows the individual components,

i.e., the total contribution (Spp), the contribution without the wall (SNW
pp ), the real and

imaginary parts of the interference terms (SP1
pp , SP2

pp ), and the amplitude contribution

because of the presence of the hard-wall (SI
pp). From Fig. 5.8 it is observed that the

amplitude terms contribute to increasing the amplitude of the spectrum and the peak

is at the first BPF. The amplitude term has lower sound pressure levels than the terms

without the wall as the image rotor is farther away from the observer than the real rotor.
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Figure 5.7: The PWL spectra and OASPL for the rotor with and without a
hard-wall. The rotor is operation at 2734 RPM in a mean flow of 30 m s�1. The
wall is at dwall = 0.2486 m and the observer is at r0 = 3.01 m.

The interference terms resemble Bessel functions as would be expected from Sect. 5.1.3.

It is also interesting to note that the hard-wall is a↵ecting the blade-to-blade correlation.

The hard-wall changes the propagation time of the acoustic waves (and consequently the

wavenumber KY ) to the observer, and this subsequently determines how correlated the

source is as perceived by the observer.

Fig. 5.9 shows the SPL with and without a wall with blade-to-blade correlation modelled

at varying observer locations. Both the predictions with and without the wall show a peak

at the first BPF. The directivities with and without the wall resemble that of a dipole

with a cusp at ✓ = 90�. The di↵erence in SPL shows that a majority of the observers

see an increase in sound of approximately 2 to 3 dB. The observers at approximately

112.5� show an increase of approximately 5 dB. The reasons for this increase have been

discussed in the previous section. The upstream observers show an increase in the SPL

of approximately 5 to 6 dB at all frequencies.
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Figure 5.8: Individual components of Eqn. (5.11) for PSD of the acoustic pressure
with a hard-wall. The observer is at (r0, ✓)=(3.01 m, 45�).

Fig. 5.10 shows the individual terms of Eqn. (5.11) at varying observer angles. It is once

again observed that the amplitude terms contributes to increasing the sound pressure

levels. It is also seen that the amplitude term has narrower peaks around the BPF.

The interference terms have the expected interference fringes that are a result of the

exponential terms, e±iµ((X�X
#)+(�#��)). Additionally, due to blade-to-blade correlation,

the acoustic waves have di↵erent propagation times for the two interference terms. This

implies that the velocity correlation tensor for the cross-terms are not identical and

the imaginary terms do not cancel as they would for the case without blade-to-blade

correlation.

Fig. 5.11 shows the PWL and OASPL computed for a rotor in the presence of a hard-wall

with blade-to-blade correlation modelled. The figures show that the presence of the hard-

wall has increased the PWL spectra by 3 dB around the 1st BPF and by approximately

2.25 dB at the higher frequencies. The OASPL directivities show that the observers

at ✓ = 0� and ✓ = 180� show an increase of OASPL of 5 dB. Additionally, there is

constructive interference at approximately ✓ = 112.5� where the OASPL is increased by

6 dB. The reason for this peak has been discussed in the previous section.

Fig. 5.12 shows the PWL spectra computed at various heights to the wall. From Fig.

5.12(b) it is seen that as the rotor is moved farther away from the wall, the � PWL

spectra goes to 0. This is to be expected as the influence of the hard-wall is minimized

as the rotor moves away from it.
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(a) SPL directivity with the hard-wall.
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(b) SPL directivity without the hard-wall.
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Figure 5.9: SPL directivity computed for a rotor with blade-to-blade correlation
modelled in the presence of a hard-wall and in the free-field. The rotor is opera-
tion at 2734 RPM in a mean flow of 30 m s�1. The wall is at dwall = 0.2486 m
and the observer is at r0 = 3.01 m.
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Figure 5.10: SPL directivity computed for a rotor with blade-to-blade correla-
tion modelled in the presence of a hard-wall and in the free-field. The rotor is
operation at 2734 RPM in a mean flow of 30 m s�1. The wall is at dwall = 0.2486
m and the observer is at r0 = 3.01 m.
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Figure 5.11: The PWL spectra and OASPL for the rotor with blade-to-blade
correlation modelled with and without a hard-wall. The rotor is operation at
2734 RPM in a mean flow of 30 m s�1. The wall is at dwall = 0.2486 m and the
observer is at r0 = 3.01 m.
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(a) PWL spectra for a rotor at varying distances to
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(b) �PWL spectra for a rotor at varying distances
to the hard-wall.

Figure 5.12: PWL spectra for a rotor at varying distances to the hard-wall. The
observer is at r0 = 3.01 m.
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5.3 Conclusions

This chapter has extended Amiet’s [18] simplified rotor noise model to include wall e↵ects.

Wall e↵ects were added in a similar manner as was done in Chapter 4. Additionally, the

e↵ect of blade-to-blade correlation was included in the velocity correlation tensor by

accounting for the various propagation times for the acoustic waves to travel to the

observer. It is shown that adding wall-e↵ects can significantly alter the resulting noise

spectrum. The amplitude of the spectrum is increased, especially at low-frequencies, and

the interference terms can alter the directivity of the rotor. The main conclusions that

are drawn from this chapter are:

• Amiet’s [18] simplified rotor noise model has been extended to include wall-e↵ects

using the MOI. This is done by adding a mirror source to Amiet’s [18] 3D formu-

lation for the pressure. This is subsequently frequency corrected and azimuthally

averaged to determine the noise produced by a rotor.

• The e↵ects of blade-to-blade correlation have been considered by considering the

cross-correlation of the pressure of the 0th and nth blades. Including wall-e↵ects

using the MOI adds three additional terms to Amiet’s [18] original formulation.

These include two interference terms and one amplitude term. To model blade-to-

blade correlation, the various times it takes for an acoustic wave to travel to the

observer have been taken into account.

• An initial verification of the model has been made by examining the low-frequency

low-Mach number limit. In this limit, the solution reduces to that of a point

dipole. By changing the azimuthal angle and blade stagger angle, the orientation

of the dipole can be altered. Using this, it is shown that for appropriate azimuthal

and stagger angles the noise produced by a rotor reduces to that of a vertical

or horizontal dipole. It is shown that for these two cases the ratio of the power

radiated in the presence of reflecting plane to the power radiated in the free-field

matches available analytical expressions for these. It is also shown that the blade

stagger angle can change the noise spectra significantly as it changes the axis of

the dipole.

• Comparing the predictions made using Amiet’s [18] extended rotor noise model to

experimental measurements, it is shown that including the hard-wall has improved

the amplitude of the spectrum. However, the predictions still do not capture the

peak at the 2nd BPF. This will be addressed in the next chapter by including an

anisotropic velocity spectrum.

• The e↵ect of the hard-wall on the noise spectrum has been studied without and with

blade-to-blade correlation modelled. Without blade-to-blade correlation modelled,

only the directivity terms (Y, Y #) and the additional imaginary phase term a↵ect

105



Chapter 5 Modelling wall-e↵ects in Amiet’s rotor noise model

the solution. It is observed that the sound directivity has a peak at approximately

✓ = 112.5�. This is because of the stagger angle of the blades and the fact that the

real and image rotor are rotating in opposite directions.

• With blade-to-blade correlation modelled, the peak that is observed in the predic-

tions without blade-to-blade correlation is still present.

• The e↵ect of the individual terms that are added to Amiet’s [18] original solution

because of the presence of the hard-wall have been examined. Due to the acoustic

waves taking di↵erent times to propagate to the observer, the imaginary parts

of the cross-terms do not cancel. These terms act like sinusoids around zero and

contribute to increasing or decreasing the amplitude of the spectrum depending

on the frequency and the observer location. It is shown that the amplitude terms

contributes to increasing the overall noise levels.

• The PWL spectra and the OASPL directivities with blade-to-blade correlation

modelled show similar trends as the predictions without blade-to-blade correlation

modelled. An increase of 3 dB in the PWL spectra is observed at the 1st BPF and

an increase of 2.2 dB is observed at higher frequencies. As the distance from the

rotor to the wall is increased, the e↵ect of the reflecting surface diminishes and the

radiated power returns to that of the rotor in the free-field.
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Modelling anisotropy

In this chapter Amiet’s [18] rotor noise model, which was described in Chapter 3 is

used with an anisotropic model spectrum in order to account for the anisotropy in

the boundary layer that is being ingested by the rotor. In Chapter 5 Amiet’s [18] rotor

noise model was extended to include wall e↵ects. When predictions using this model

were compared with experimental results, several discrepancies were observed. One of the

main discrepancies that was observed, was the absence of the second correlation peak. In

this chapter this discrepancy is addressed by using the axisymmetric anisotropic velocity

spectrum of Kerschen and Gliebe [147] in Amiet’s [18] rotor noise model.

The turbulence spectrum of Kerschen et al. [147] makes the assumption that the turbulent

structures are homogeneous and axisymmetric. Thus, two integral length scales and the

turbulence intensities in the corresponding directions are required to specify the Power

Spectral Density (PSD) of the turbulent velocity fluctuations. It is assumed that the

integral length scale in the mean flow direction is larger than in the other directions. This

chapter will first investigate anisotropy in Amiet’s [18] translating aerofoil model. Using

the translating aerofoil model, the e↵ect of changing the axial and transverse length scale

is examined. This is done to examine the e↵ect of anisotropy for a simplified case in order

to better isolate the e↵ects of anisotropy. As Amiet’s [18] rotor noise model azimuthally

averages and frequency corrects the translating aerofoil model, the insight gained will be

relevant in understanding how anisotropy a↵ects the noise produced by the rotor.

Next, the anisotropic turbulence model is coupled to Amiet’s [18] rotor noise model to

model the anisotropy in the boundary layer. The suitability of using the anisotropic

spectrum of Kerschen and Gliebe [20] to model boundary layer turbulence is investigated

next. The assumption of axisymmetry that is made by the turbulence model is a good

approximation of the turbulence in a boundary layer as the turbulent structures in the

log-layer are known to be long cylindrical structures [37; 29; 148]. While boundary layer

turbulence is axisymmetric, it is not homogeneous in the wall-normal direction. The
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rotor noise model presented will take into account the varying turbulence parameters

at varying wall-normal locations, thus partially accounting for the inhomogeneity of the

flow. However, the homogeneous axisymmetric turbulence model is an approximation of

the turbulence in the boundary layer and a degree of empiricism is introduced into the

rotor noise model in order to approximate this turbulence. The anisotropic turbulence

spectrum of Kerschen and Gliebe [20] has been used in cascade models by several authors

[58; 61].

Predictions using the anisotropic spectrum coupled with Amiet’s [18] rotor noise model

are compared with experimental measurements. Next, the e↵ect of changing the axial

and transverse length scale on the resultant noise spectrum is investigated. Finally, the

e↵ect of the stagger angle, rotor speed, and eddy speed on the anisotropic spectrum is

examined.

6.1 Formulation of the 3D axisymmetric anisotropic veloc-

ity spectrum

In this section the formulation for the velocity correlations based on the axisymmetric

turbulence model of Kerschen et al. [147] are presented. The Kerschen and Gliebe [24]

model spectrum is a modified Liepmann spectrum. The model is derived based on the

work of Chandrashekar [38] whose work is based on the work of Batchelor [39]. The

axisymmetric velocity correlation tensor derived by Chandrashekhar [38] is given by,

Rij(x) = ✏jlm
@qim
@xl

, (6.1)

where Rij is the velocity correlation tensor, ✏jlm is the alternating tensor, and

qij = Q1✏ijkxk + Q2✏ilm�lxm +
1

r

@Q1

@µ
xj✏ilm�lxm, (6.2)

where � is the preferred direction of turbulence and �.x = µ. Additionally Batchelor [39]

showed that the axisymmetric velocity correlation tensor must have the form,

Rij = C1xixj + C2�ij + C3�i�j + C4 (�ixj + �jxi) , (6.3)

where Ci are constants that are functions of r and x.�. Kerschen and Gliebe [24] used

the Fourier transform of this equation along with the continuity equation to specify

constraints on the model constants. The velocity correlation tensor in spectral space is
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given by,

�ij(k) =
⇥
|k|

2�ij � kikj
⇤
F+

h⇣
|k|

2
� (km�m)2

⌘
�ij � kikj � |k|

2�i�j + km�m (�ikj + ki�j)
i
G,

(6.4)

where k is the wave number vector, F and G are functions that are determined from Q1

and Q2.

Kerschen and Gliebe [24] determined constraints for the constants Q1 and Q2. This was

done by equating the the constants in physical space (Q1 and Q2) with the constants in

spectral space (F and G) after taking the Fourier transform of Eqn. (6.4). With these

constraints in mind and using the fact that most turbulence decays as e�x/L in a direction

x for turbulence with an integral length scale L, they proposed two models. Both the

models use the same function Q1,

Q1 = �
u2
a

2
e�y, (6.5)

where,

y =

 
x2

1

l2a
+

p
x2

2
+ x2

3

l2
t

!
1/2

. (6.6)

They then proposed two models for Q2,

QA

2 =
�
u2

a � u2

t

�
e�y,

QB

2 = �u2

a

"
u2
t

u2
a

� 1 +
1

2y

✓
x1

la

◆
2
✓

2 �
l2t
l2a

�
l2a
l2
t

◆#
e�y,

(6.7)

where la = L(1)

11
is the integral length scale in the axial direction, ua is the axial turbulence

velocity, lt = L(2)

22
= L(3)

33
is the integral length scale in the transverse direction, and ut is

the turbulence velocity in the transverse direction.

Both the models A and B produce the desired 1D correlations, R11(x1) = u2
ae

�|x1|/la

and R22(x2) = u2
ae

�|x1|/lt . For typical fan noise applications the axial length scale is

larger than the transverse length scale (la/lt > 1). Kerschen and Gliebe [24] have shown

that when la/lt >> 1 model A produces incorrect results and in some cases predicts a

negative PSD. Therefore model B is shown to be correct and it is the model used for the

remainder of the thesis.

The constants F and G can be determined by taking the Fourier transform of Q1 and

QB
2

,

F =
2lal4t u

2
a

⇡2z3
, G =


2
u2
t

u2
a

�
l2t
l2a

� 1

�
F , (6.8)
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where,

z = 1 + l2ak
2

x + l2t
�
k2

y + k2

z

�2
, (6.9)

Using the above definitions the velocity correlations in the three principal directions in

the engine-fixed reference are given by,

�11(k) = �uu(k) =
⇥
k2

y + k2

z

⇤
F ,

�22(k) = �vv(k) =
⇥
k2

x + k2

z

⇤
F + k2

zG,

�33(k) = �ww(k) =
⇥
k2

x + k2

y

⇤
F + k2

yG.

(6.10)

These equations describe 3D anisotropic turbulence. In the next section, the anisotropic

turbulence spectra described above is compared against experimental data.

6.2 Investigating the e↵ects of anisotropy in a translating

aerofoil ingesting anisotropic turbulence

In this section the anisotropic velocity spectrum defined in Sect. 6.1 will be used in

the translating aerofoil model of Amiet [21] to determine the noise radiated by a flat-

plate ingesting homogeneous anisotropic turbulence. This noise model is then used to

investigate the e↵ect of changing the length scales on the noise spectra.

6.2.1 The PSD of the sound radiated by a translating aerofoil ingesting

turbulence

The coordinate system that is used is shown in Fig. 6.1. The PSD of the acoustic pressure

is given by [21],

Spp(r0, ✓,!) = ⇡Ud

✓
k0⇢0Y b

�2

◆
2

|L (✓, kx) |
2�vv (kx, kz = 0) , (6.11)

where ⇢0 is the mean density, b is the semi-chord, d is the semi-span, Y = r0 sin ✓, ✓ is the

angle to the observer, U is the mean flow speed, k0 = !/c0 is the acoustic wavenumber,

� = r0A, r0 is the distance to the observer, A =
p

1 � M2 sin2 ✓, and L is the acoustic

lift integral as defined by Amiet [21].

110



Chapter 6 Modelling anisotropy

c

U

Observer

r0

✓

Figure 6.1: A schematic of a flat plate ingesting turbulence.

The velocity spectrum to be used in Eqn. (6.11) is the PSD of the transverse velocity

perturbations integrated over the ky wavenumbers. This is given by,

Z
+1

�1
�vv(kx, ky, kz)dky =

3⇡↵k2
x

8lt
�
1 + l2ak

2
x + l2

t
k2
z

�
5/2

+
3⇡↵⇠k2

z

8lt
�
1 + l2ak

2
x + l2

t
k2
z

�
5/2

, (6.12)

where,

↵ =
2lal4t u

2
a

⇡2
,

⇠ =

✓
2
u2
t

u2
a

�
l2t
l2a

◆
.

(6.13)

6.2.2 The e↵ect of changing the transverse and axial length scales

In this section, the PSD of the acoustic pressure given by Eqn. (6.11) is computed

using the PSD of the transverse velocity perturbations given by Eqn. (6.12). The PSD

is computed for an aerofoil with a chord c = 0.15 m, a semi-span d = 0.225 m in a

stream at Mach number M = 0.6 and mean density ⇢0 = 1.2 kg.m�3. The observer

is at a distance 10d away from the aerofoil. For all the computations listed below the

axial turbulence velocity is u2
a =

p
2/3 m2 s�2 and the transverse turbulence velocity is

u2
t = 2

p
2/3 m2 s�2.

Fig. 6.2 shows the PSD of the transverse velocity perturbations and the sound sound

PoWer Level (PWL) spectra varying with changing axial and transverse length scales.

The sound power (P) is computed as,

P(r0,!) =
r0d

⇢0c0

Z
⇡

0

Spp (r0, ✓,!) F (✓, M)d✓. (6.14)

From Fig. 6.2 it is observed that the PWL spectra match the trends in the velocity

spectra. From Fig. 6.2(a) and Fig. 6.2(c) it is observed that changing the axial integral
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(c) PWL of the acoustic pressure for varying la.
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(d) PWL of the acoustic pressure for varying lt.

Figure 6.2: The PSD of the transverse velocity perturbations for varying axial
and transverse length scales with Lref = 1 m and Uref = 10�6 m s�1 and the
PWL spectra for varying axial and transverse length scales. The white lines on
the contours of the PSD shows the frequency at which the PSD is a maximum.

length scale has two e↵ects. Firstly, the frequency at which the PSD is at a maximum

decreases as the axial integral length (la) scale is increased. Secondly, as la is increased

more energy is shifted to lower frequencies. The first result can be explained by computing

the frequency at which the PSD is at a maximum by taking the derivative of Eqn. (6.12)

with kx and setting this to zero (N.B. kz is already 0). The maximum frequency is then

given by,

fmax =

r
2

3

U

2⇡la
, (6.15)

These maximum frequencies are shown by the white lines in Fig. 6.2(a) and Fig. 6.2(b).

Equation (6.15) implies that the PSD maxima will only change if the axial length scale

is changed.

This is confirmed by observing that the maximum frequency at which the PSD or PWL

occur does not change in Fig. 6.2(b) and Fig. 6.2(d). From Fig. 6.2(d) it is seen that
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Figure 6.3: The maximum power at various axial and transverse length scales.

as lt is made larger (a smaller la/lt for a fixed la) more energy is shifted to the lower

frequencies.

From Fig. 6.2(c) and Fig. 6.2(d) it is also observed that increasing the axial length scale

does not change the maximum power as much as changing the transverse length scale.

The maximum power at each integral length scale is shown in Fig. 6.3. From Fig. 6.3 it

can be seen that the maximum PWL increases by almost 25 dB as the transverse length

scale is increased from 0.005 m to 0.02 m and decreases by approximately 10 dB as the

axial length scale is increased from 0.005 m to 0.03 m. From Fig. 6.3, it is also observed

that the maximum power deviates from 1/la trend for the larger integral length scales.

This is because of the factor , F , in Eqn. (6.14) that is used to account for flow e↵ects.

The reason for the increase in the PWL can be understood by using the Fourier pair rela-

tionship of the transverse velocity spectrum and the velocity correlation tensor. Consider

the relationship between two velocity spectra, one of which has a wavenumber component

multiplied by a factor � [37; 74],

�0
vv(kx, kz) = �vv(�kx, kz). (6.16)

Then,

R0
vv(x, kz) =

Z
+1

�1
�0
vv(kx, kz)e

ikxxdkx,

R0
vv(x, kz) =

Z
+1

�1
�vv(�kx, kz)e

i�kx(x/�)dkx,

R0
vv(x, kz) = Rvv(x/�, kz) = �Rvv(x, kz).

(6.17)
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If an integral length scale is defined as,

L =
1

Rvv(0, kz)

Z
+1

0

Rvv(x, kz)dx, (6.18)

it implies that L0 = �L. From Eqn. (6.12),

Z
+1

�1
�vv(kx, ky, kz = 0)dky =

3l3t u
2
a

4⇡la

l2ak
2
x

(1 + l2ak
2
x)

5/2
. (6.19)

In Eqn. (6.19) lakx can be thought of as a modified wavenumber and therefore la corre-

sponds to the multiplication factor � in Eqn. (6.17). Therefore changing la can be thought

of as elongating the eddies in the streamwise direction in an isotropic spectrum resulting

in a subsequent redistribution of energy. On the other hand, the transverse length scale

is only acting as a multiplicative constant and thus changing it does not contribute to

the redistribution of energy in the spectra but only an increase in its amplitude. This is

a consequence of setting the spanwise wavenumber kz to zero.

This section has implemented an anisotropic velocity spectrum in the analytical leading-

edge noise model of Amiet [21]. Using this model it is shown that changing the axial

length scale significantly redistributes the energy but does not change the amplitude of

the PWL spectra. Changing the transverse length scale does not redistribute energy in

the spectrum but increases the amplitude.

6.3 Investigating the e↵ect of anisotropy in a rotor ingest-

ing anisotropic turbulence

In this section Amiet’s [18] simplified rotor noise model described in Chapter 3 is coupled

with the anisotropic turbulence model of Kerschen and Gliebe [20] to study the e↵ect of

anisotropy on the noise radiated by a rotor. First, the anisotropic turbulence model is

compared to boundary layer turbulence and its suitability in modelling boundary layer

turbulence is assessed. Next the turbulence model is coupled to the rotor noise model.

This rotor noise model is then used to investigate the e↵ect anisotropy has on the noise

radiated by the rotor. Finally, the e↵ect of changing the blade eddy convection speed,

blade stagger angle, and rotor RPM are investigated.

6.3.1 Comparison with experimental measurements

In this section, the anisotropic model spectrum of Kerschen and Gliebe [20] is compared

against experimental data. First, the model spectrum is compared against boundary layer
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Figure 6.4: The Lumley triangle. The dots represent boundary layer turbulence
data obtained from the FC3 dataset at zero spanwise separation and zero time
lag. The larger dots represent values obtained farther from the wall.

turbulence. Finally, the predictions made using the frequency-domain rotor noise model

are compared against experimental measurements obtained from the Fundamental Case

3 (FC3) dataset.

6.3.1.1 Comparison of the axisymmetric model spectrum with boundary

layer turbulence

In this section the anisotropic velocity spectra of Kerschen and Gliebe [147] is compared

against experimental boundary layer data. This is done in order to assess how accurately

boundary layer turbulence can be modelled by the homogeneous axisymmetric turbu-

lence model of Kerschen and Gliebe [147]. The model spectra of Kerschen and Gliebe

[147] makes two key assumptions. Namely, that the turbulence is axisymmetric and

that the turbulence is homogeneous. It is known that boundary layer turbulence is not

homogeneous in the wall-normal direction. The integral length scale and turbulence ve-

locities are di↵erent at varying wall-normal-locations. The turbulence in the free-stream

and cross-stream directions is homogeneous. Thus, when the Kerschen and Gliebe [147]

model is used with the frequency-domain rotor noise model the integral length scale and

turbulence velocities are treated as functions of the wall-normal distance. Doing this

accounts for the inhomogeneity of the boundary layer.

The type of turbulence that is present in the flow can be studied by computing the

anisotropy tensor (bij) given by [37],

bij =
uiuj

ukuk

�
1

3
�ij . (6.20)
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The anisotropy tensor has two invariants (IIb, IIIb) from which two variables can be

defined,

⌘ =

r
�

1

3
IIb, ⇠ =

✓
IIIb
2

◆
1/3

. (6.21)

Choi and Lumley [149] used these two invariants to define various turbulence states.

These are graphically represented by the Lumley triangle as shown in Fig. 6.4. The origin

of the graph represents isotropic turbulence with all three turbulence velocities being

exactly equal. The top right vertex at (1/3,1/3) represents one-component turbulence.

The top left vertex at (-1/6,1/6) represents two-component axisymmetric turbulence

(u = v, w = 0). The line joining the top vertices represents two-component turbulence.

The line joining the origin to (-1/6,1/6) represents axisymmetric turbulence with v =

w = ut and u < ut. This turbulence is referred to as pancake like turbulence. The line

joining the origin to (1/3,1/3) represents axisymmetric turbulence with v = w = ut and

u > ut. This turbulence is referred to as cigar like turbulence.

The boundary layer data obtained from the FC3 dataset in Fig. 6.4 is represented in the

triangle as dots. The data is obtained at various wall-normal positions at zero spanwise

separation and zero time lag. The larger dots represent values farther away from the wall.

It is observed that the turbulence obtained away from the wall is exactly axisymmetric

while turbulence closer to the wall is slightly less axisymmetric. This trend can also be

observed by examining the turbulence intensities.

Fig. 6.5 shows the turbulence intensities in all three directions at varying wall-normal

locations. It is observed that for r/Rtip > 0.8 the cross-stream and wall-normal velocities

are not identical. From Figs. 6.4 and 6.5 it can be concluded that while boundary layer

is almost axisymmetric it is not strictly axisymmetric. Therefore using an axisymmetric

turbulence model is a valid modelling assumption. However, this is still an approximation

as the turbulence is not strictly axisymmetric and it is not homogeneous in the wall-

normal direction. The homogeneity in the wall normal direction can partly be accounted

for as the data is sampled at various strip positions.

Next, the one-dimensional energy spectra is compared against experimental one-dimensional

energy spectra. The theoretical energy spectra are defined as,

E11 (kx) = 2

ZZ
+1

�1
�11dkydkz =

⇡↵

2l4
t
(1 + l2ak

2
x)

, (6.22)

E22 (kx) = 2

ZZ
+1

�1
�22dkydkz =

⇡↵k2
x

2l2
t

1

(1 + l2ak
2
x)

2
+
⇡↵⇠

4l4
t

1

(1 + l2ak
2
x)

. (6.23)

The experimental energy spectra are computed from the velocity correlation tensor (Rij)

as [37],

Eij (kx) =
1

⇡

Z 1

�1
Rij (r1e1) e�ikxr1dr1, (6.24)
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Figure 6.5: RMS velocities.

where r1e1 is the separation in the x direction. This separation is computed for the FC3

data set by using the frozen turbulence assumption.

Fig. 6.6 shows the 1D energy spectra computed from the experimental velocity correlation

tensor compared with the theoretical 1D energy spectra computed using Eqn. (6.23) at

varying wall-normal locations. The integral length scales and turbulence velocities that

are used to compute the theoretical energy spectra are taken from experimental data.

While the axial energy spectra compares favourably with the theoretical predictions,

the cross-stream and wall-normal energy spectra are significantly di↵erent. This shows

that the boundary layer turbulence is not well modelled by the axisymmetric turbulence

model of Kerschen and Gliebe [147]. Fig. 6.6 shows that the cross-stream and wall-normal

energy spectra are over-predicted at the low wavenumbers by the theoretical equations

of Kerschen and Gliebe [147].

The one-dimensional longitudinal (f) and normal (g) normalised correlation functions

can be computed from Eqn. (6.23) as [37],

f(r) =
R11

u2
a

=
1

u2
a

Z
+1

�1
�11 (kx) eikxrdkx = e�r/la , (6.25)

g(r) =
R22

u2
t

=
1

u2
t

Z
+1

�1
�22 (kx) eikxrdkx = e�r/la

⇢
1 �

u2
al

2
t

u2
t
l2a

r

2la

�
. (6.26)

The longitudinal one-dimensional correlation function is the same as that for the isotropic

case. The normal velocity correlation di↵ers from the isotropic case for the Liepmann

[36] spectrum by the factor u2
al

2
t /u2

t l
2
a.
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Figure 6.6: One dimensional energy spectra at varying wall-normal locations.
Experimental data is extracted from the FC3 dataset. The theoretical 1D spectra
are computed using Eqn. (6.23). Lref = 1m and Uref = 1ms�1.

A further check can be made by determining a relationship between three length scales,

the axial (la = L(1)

11
), the transverse (lt = L(2)

22
), and the length scale for which the vertical

turbulence velocities are correlated in the axial direction (L(1)

22
).

The integral length scale can be computed as [37],

L(l)

ij
=
⇡Eij (kl = 0)

2uiuj

, (6.27)

where,

Eij (ki) = 2

ZZ
+1

�1
�ij(ki, kj , kl)dkjdkl. (6.28)

Using Eqns. (6.27) and (6.10) it can be verified that,

la =
⇡

u2

ZZ
+1

�1
�11(kx = 0, ky, kz)dkydkz,

lt =
⇡

v2

ZZ
+1

�1
�22(kx, ky = 0, kz)dkxdkz.

(6.29)
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It can additionally be shown that by using,

L(1)

22
=

⇡

v2

ZZ
+1

�1
�22(kx = 0, ky, kz)dkydkz, (6.30)

the following relationship for the length scales is obtained,

lt =

p
2laut

ua

"
1 �

L(1)

22

la

#1/2

. (6.31)
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Figure 6.7: The integral length scales computed from experimental data by
integrating the normalized correlation curves and using Eqn. (6.31).

Replacing the appropriate values for isotropic turbulence (ua = ut, la = 2L(1)

22
) it can be

shown that Eqn. (6.31) reduces to la = lt. Fig. 6.7 shows the axial and transverse integral

length scales computed from experimental data and using Eqn. (6.31). The integral length

scale computed using Eqn. (6.31) is significantly larger than the transverse integral length

scale determined from experimental measurements. This is a consequence of the model

spectrum over-predicting the energy.

This section has shown that the Kerschen and Gliebe [147] model spectrum has significant

discrepancies when compared to experimental measurements. The main discrepancies are

that the transverse energy is over-predicted and consequently the theoretical transverse

integral length scales are larger than the one determined from experimental measurements.

These are most likely because boundary layer turbulence is not axisymmetric and is not

homogeneous in the wall-normal directions.
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Because of the above mentioned reasons the transverse integral length scale will be chosen

empirically. All other quantities will be extracted from the FC3 dataset. The rotor noise

model that will use this turbulence model will therefore be semi-empirical.

6.3.2 Coupling the Kerschen and Gliebe turbulence model to Amiet’s

simplified rotor noise model

As the axisymmetric model of Kerschen et al. [20] is derived in the engine fixed reference

frame, the above velocity spectra need to be transformed to the blade-fixed coordinate

system using the following transformation,

0

B@
�̃uu

�̃vv

�̃ww

1

CA =

2

64
cos↵ sin↵ cos� sin↵ sin�

� sin↵ cos↵ cos� cos↵ sin�

0 � sin� cos�

3

75

0

B@
�uu

�vv

�ww

1

CA , (6.32)

where (�̃uu, �̃vv, �̃ww) are the velocity correlations in the blade fixed coordinate system.

Thus the PSD of the velocity perturbations perpendicular to the blade chord is given by,

�̃vv (kX , kY , kZ) = ��uu sin↵+ �vv cos↵ cos�+ �ww cos↵ sin�. (6.33)

In Eqn. (6.33), the wavenumbers on the blade can be computed from the wavenumbers

computed in the engine-fixed reference frame using the following transformation,

0

B@
kx

ky

kz

1

CA =

2

64
cos↵ � sin↵ 0

sin↵ cos� cos↵ cos� � sin�

sin↵ sin� cos↵ sin� cos�

3

75

0

B@
kX

kY

kZ

1

CA . (6.34)

Thus using Eqn. (6.33) along with Eqn. (6.34) in Eqn. (3.41) or (5.11) allows one to

compute the noise radiated by a rotor ingesting anisotropic turbulence.

6.3.2.1 Comparison of the PSD of the acoustic pressure with experimental

measurements

In this section predictions made using the rotor noise model coupled with the turbulence

model of Kerschen and Gliebe [20] are compared to experimental measurements from

the FC3 dataset.The predictions are made using the frequency-domain rotor noise model

presented in Chapter 3 (Eqn. (3.41)). First, predictions are made using variables that are

directly extracted from the experimental dataset as described in Appendix B. However,

it is observed that using these values the predictions over-predict the 3rd and 4th Blade

Passing Frequency (BPF). Therefore, predictions are next made using an empirical value
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of the transverse length scale. Finally, predictions are made by artificially slowing the

speed of an eddy as it moves through the rotor disk using an isotropic velocity spectrum.

Fig. 6.8 shows the predicted PSD computed with the anisotropic rotor noise model with

the hard-wall included. All variables that are used as input for the turbulence model

(la, lt, ua and ut) are taken from experimental measurements as described in Appendix

B. It is observed that there is an under-prediction at the first peak and that there are

peaks at the 3rd and 4th BPFs in the predictions that do not appear in the experimental

measurements.
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Figure 6.8: The PSD of the acoustic pressure for a rotor operating at the zero
thrust operating condition. Predictions are made using the transverse integral
length scale obtained from experimental data. The arrows represent the BPFs
of the rotor. The observer is located at r0 = 3.01 m and ✓ = 127.3� (upstream).

The discrepancies that are observed are most likely due to an incorrect value of the

transverse length scale. This is because as shown in Section 6.3.1.1 the turbulence model

does not capture the one-dimensional transverse energy spectra. This is due to boundary

layer turbulence not being strictly axisymmetric and because of the inhomogeneity of the

turbulence in the wall-normal direction. Because of these reasons the transverse integral

length scale must be chosen empirically. The value for the transverse integral length

scale used is 0.03 m. This is close to the value of the transverse length scale at the rotor

hub as shown in Fig. 6.7. The assumptions required to use the anisotropic turbulence

model of Kerschen and Gliebe [147] get better further away from the wall. Additionally,

the transverse length scale does not vary significantly at various wall normal positions.

Thus, the transverse length scale used seems a reasonable choice for this study. All other

parameters are taken directly from the experimental measurements.
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Figure 6.9: The PSD of the acoustic pressure for a rotor operating at the zero
thrust operating condition. The transverse integral length scale is chosen to be
lt = 0.3 m. All other variables are extracted from experimental data. The arrows
represent the BPFs of the rotor. The observer is located at r0 = 3.01 m and
✓ = 127.3� (upstream).

Fig. 6.9 shows the predicted PSD of the acoustic pressure computed with the empirical

length scale (lt = 0.03 m). Also shown is the prediction with the isotropic model spectrum.

It is seen that using the empirical length scale improves the result and a good match

is seen between the predictions with the anisotropic spectrum and the experimental

measurements. There is a moderate over-prediction at the 2nd BPF and a moderate

over-prediction around the 3rd and 4th BPFs. It is additionally observed that using the

anisotropic spectrum results in the characteristic haystacks around the BPFs. Therefore,

while the hard-wall increases the amplitude of the spectra, especially at low frequencies,

the anisotropic spectrum results in the characteristics haystacks. Including these two

features in addition to modelling blade-to-blade correlation is crucial to accurately pre-

dicting boundary layer ingestion noise. A thorough investigation of the predictions at

various microphone locations and operating conditions will be conducted in Chapter 7.

Fig. 6.10 shows the predictions made using the anisotropic velocity spectrum along

with predictions made using the isotropic von Kármán velocity spectrum with the eddy

speed artificially slowed down by 1/3 as it moves through the rotor disk. This simulates

a stretching of the eddy in the streamwise direction. This is the same approach that

Paterson and Amiet [79] used to model anisotropy in a helicopter ingesting turbulence.

The eddy speed was chosen empirically to fit the experimental measurements. The

predictions using the isotropic velocity spectrum match well with predictions made using

the anisotropic velocity spectrum. The main di↵erences that are observed are the presence
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Figure 6.10: The PSD of the acoustic pressure for a rotor operating at the zero
thrust advance ratio. Predictions are computed using the anisotropic velocity
spectrum and the isotropic von Kármán spectrum with the eddy speed artificially
slowed down. The arrows represent the BPFs of the rotor. The observer is located
at r0 = 3.01 m and ✓ = 127.3� (upstream).

of a strong destructive peak between the 2nd and 3rd BPFs and additional correlation

peaks at the 3rd and 4th BPFs. While the predictions made using the isotropic spectrum

match the predictions made using the anisotropic spectrum, the amount that the eddy

had to be slowed down was chosen arbitrarily. While the transverse length scale is also

chosen empirically, the choice of transverse length scale is informed by values extracted

from experimental data, i.e. it is close to the value of the transverse length scale extracted

in Appendix B at the edge of the boundary layer. Additionally, the anisotropic spectra is

also changing the distribution of energy in the spectra in a more representative manner

when the axial and integral length scales are changed. Predictions will therefore be made

using the anisotropic velocity spectrum for the remainder of this thesis.

6.3.3 The e↵ect of anisotropy on the noise radiated by a rotor ingesting

anisotropic turbulence

In this section the anisotropic turbulence model of Kerschen and Gliebe [20] is used to

study the e↵ect of a rotor ingesting anisotropic turbulence. The rotor geometry that is

used for this study is a scaled Sevik rotor that is taken from the data provided with

the FC3 of the Fan Broadband Noise (FBN) workshop. The rotor is operating at the

zero thrust condition (⌦ = 2734 RPM, U = 30 m s�1) and the turbulence intensities are

u2
a = 1 m2 s�2 and u2

t = 4 m2 s�2 respectively. Additionally, the entire rotor is ingesting
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turbulence. Using Amiet’s [18] rotor noise model (without wall e↵ects) the e↵ect of

changing the axial and transverse length scale on the power radiated by the rotor is

investigated.

Fig. 6.11 shows the PWL spectra of the rotor computed using Eqn. (5.27) for varying axial

and transverse length scales. Fig. 6.11(a) shows the PWL spectra of the rotor computed

at varying axial length scales while keeping the transverse length scale constant. From

this figure it is observed that the power in the spectra increases as the axial length scale

increases, the haystacks at the higher BPFs increases as the axial length scale increases,

and the width of the first BPF decreases as the ratio of the axial to transverse length

scale is increased.

Fig. 6.11(b) shows the PWL spectra of the rotor computed at varying transverse length

scales while keeping the axial length scale constant. From this figure it is observed that

there is a slight increase in the power as the transverse length scale is increased. The

number of haystacks at the higher BPFs decreases as the transverse length scale increases

(ratio of length scales increases).
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(a) PWL spectra for la varying.
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(b) PWL spectra for lt varying.

Figure 6.11: The PWL spectra for varying length scales and frequencies. The
dashed lines indicate the BPFs of the rotor.

The maximum power in the spectra at the various length scales is shown in Fig. 6.12.

From Fig. 6.12(a) it is observed that the maximum power increases as the axial length

scale and consequently the ratio of the axial to transverse length scale increases. Fig.

6.12(b) shows that the maximum power increases as the transverse length scale increases

to lt = 0.03 m. It then subsequently begins decreasing.

The behaviour in Fig. 6.11 and Fig. 6.12 can be understood by looking at Eqn. (6.33).

From this it is observed the transverse velocity spectrum in the blade-fixed coordinate

system has contributions from all three fluctuating velocity components in the engine-

fixed coordinate system. This is unlike the case for the translating aerofoil where only

the transverse velocity spectrum contributes to the noise radiated by the blade. In that
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Figure 6.12: The maximum PWL for varying axial and transverse length scales.

case increasing the transverse length scale implies more of the energy in the spectrum

is being distributed to the transverse spectrum and this resulted in an increase in noise.

For the case of the rotor all the velocity components contribute to the transverse velocity

spectrum in the blade-fixed reference frame.

Fig. 6.14 shows the bandwidth of the 1st haystack at 3 dB below the maximum amplitude.

A schematic of the definition of the bandwidth is shown in Fig. 6.13. The bandwidth of

the peaks is known to scale as la/U [20] where U is the speed of the eddy as it moves

through the rotor disk. For the case of varying axial length scales in Fig. 6.14(a) the

bandwidth follows this scaling law closely. For the case of varying transverse length scales

with the axial length scale fixed, the bandwidth should be a constant of 60 Hz for an

axial length scale of 0.5 m and an eddy speed of 30 m s�1. The bandwidth is close to

this value in Fig. 6.14(a) and is relatively constant. It should be noted that transverse

integral length scale should be smaller than the inter-blade spacing as the rotor noise

model that is used does not account for potential e↵ects between blades.

Figure 6.13: A schematic showing the definition of the bandwidth.
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Figure 6.14: The width of the first haystack for varying axial and transverse
length scales. The bandwidth is computed at 3 dB below the peak value of the
1st haystack.
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(b) Directivity for lt varying.

Figure 6.15: The directivity of the rotor for varying axial and transverse length
scales. The directivity plots are obtained at a frequency of 455 Hz.

Fig. 6.15 shows the directivity of the rotor with varying axial and transverse length

scales. It is noticed that the directivity increases by 5 dB at certain observer angles

for the case of the axial length scale varying. Changing the transverse integral length

scale on the other hand has a minimal impact on the directivity at particular observer

angle. Additionally, it is observed that constructive and destructive interference peaks

are observed. These constructive and destructive interference peaks are a result of the

wavenumbers changing as the length scale is changed.

This section has shown that the maximum power in the spectrum is a function primarily

of the ratio of the axial to transverse length scales. Increasing the ratio of the axial

to transverse length scale increases the power at the haystacks and also the number of

haystacks seen at the higher frequencies. It is shown that the width of the haystacks
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scales as the ratio of the axial length to the eddy convection speed as has been previously

reported.

6.3.4 Investigating the parameters that a↵ect the blade-to-blade cor-

relation for a rotor ingesting anisotropic turbulence

In this section the e↵ects of varying the blade stagger angle, rotor RPM, and eddy

convection speed are investigated. This is done by examining the azimuthally averaged

PSD of the velocity spectrum. This is done in order to isolate the other e↵ects in Amiet’s

simplified model and is expected to be representative of the radiated sound as has been

shown in Sect. 6.2. From Eqn. (6.35), the azimuthally averaged velocity spectrum is

given by, Z
2⇡

0

1X

n=�1

2⇡

C
�vv (kX , KY,n, kZ = 0) d�. (6.35)

The velocity correlation with blade-to-blade correlation is modelled for a rotor blade

with only one strip at a radius of 0.1 m. The mean flow speed (which is assumed to be

the same as the eddy convection speed), the rotor speed, and the blade stagger angle

were varied by ensuring that they always satisfy the zero loading assumption,

tan↵ =
R⌦

Ux

. (6.36)

Therefore, when one variable was varied, one variable was kept constant and the other

variable was computed from Eqn. (6.36).

Fig. 6.16(a) shows the velocity spectra varying as the blade stagger angle is varied. The

rotor speed is kept constant at 2734 RPM. From Fig. 6.16(b) it is seen that increasing

the blade stagger angle reduces the eddy convection speed. This implies that more

blades chop the same eddy and haystacks appear at the higher BPFs as is seen in Fig.

6.16(a). From 6.16(a) it is also observed that changing the blade stagger angle shifts the

peaks at which the haystacks appear away from the BPF. From Eqn. (3.32) this shift

is approximately 1/ sin2 ↵ (assuming that c0� >> CY ). This implies that the predicted

BPF will deviate the most for the smaller stagger angles as is shown in Fig. 6.16(b). This

feature has also been found by Martinez [150].

Fig. 6.16(c) shows the velocity spectra varying as the rotor speed is varied. The blade

stagger angle is kept constant at 45�. From Fig. 6.16(d) it is seen that increasing the

rotor speed increases the eddy convection speed. Therefore the lowest RPM will have

the most haystacks as is seen in Fig. 6.16(c). Additionally, the BPFs in Fig. 6.16(c) are

also shifted to higher frequencies as the rotor RPM is increased.

127



Chapter 6 Modelling anisotropy

Fig. 6.16(e) shows the velocity spectra varying as the eddy convection speed is varied.

The rotor speed is kept constant at 2734 RPM. As was observed in the previous cases

a slower eddy speed once again corresponds to more haystacks appearing at the higher

frequencies due to eddies moving more slowly through the plane of rotation.
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Figure 6.16: The PWL spectra for varying length scales and frequencies. The
dashed lines indicate the BPFs of the rotor.
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This section has shown how the blade stagger angle, rotor speed, and eddy convection

speed a↵ect the velocity spectra. It has been shown that the eddy convection speed is an

important parameter and this a↵ects the number of haystacks seen. Additionally, it has

been observed that changing the blade stagger angle can shift the frequencies at which

the haystacks appear away from the BPFs of the rotor.
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6.4 Conclusions

This chapter has introduced an axisymmetric anisotropic velocity spectrum. The velocity

spectrum that is derived by Kerschen and Gliebe [20] is a modified Liepmann spectrum

that is based on the works of Chandrashekhar [38] and Batchelor [39]. This chapter has

first investigated the e↵ects of anisotropy for a translating aerofoil ingesting turbulence.

Then the anisotropic model is compared to experimental boundary layer turbulence.

Finally, the anisotropic turbulence model is coupled to Amiet’s [18] frequency-domain

rotor noise model. The main conclusions that are drawn from this chapter are as follows,

• For the case of a translating aerofoil ingesting turbulence, anisotropy can have a

significant impact on the radiated noise. Increasing the transverse integral length

scale results in a significant increase in noise and increasing the axial length scale

reduces the radiated noise. This is because increasing the transverse integral length

scale distributes more energy to the transverse velocity spectra, and this is the

main generator of noise.

• When the axisymmetric turbulence model is compared to realistic boundary layer

turbulence several discrepancies are found. It is shown that the 1D energy spectra do

not match and consequently the integral length scales computed from the theoretical

autocorrelations di↵er significantly from the integral length scales computed from

the experimental data. These discrepancies are most likely because boundary layer

turbulence does not fit the axisymmetric assumption and because boundary layer

turbulence is not homogeneous in the wall-normal direction.

• Predictions using the anisotropic turbulence coupled with Amiet’s [18] extended

frequency-domain model show a good match to experimental measurements. The

addition of an anisotropic turbulence model results in the a peak at the 2nd BPF.

Due to the limitations of the anisotropic turbulence model in capturing bound-

ary layer turbulence, the transverse length scale from these predictions is chosen

empirically.

• The e↵ect of anisotropy is studied by computing the PWL spectra for varying axial

length scales with the transverse length scale fixed and the for varying transverse

length scales while keeping the axial length scale fixed. It is seen that the power

increase as the axial length scale is increased and as the transverse length scale is

increased up to a certain length scale. The bandwidth of the haystacks is shown

to scale as la/U . The e↵ect of the eddy speed, blade stagger angle, and rotation

speed of the rotor are determined by examining how the velocity correlation tensor

changes when these parameters are varied.
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Validation of the rotor noise

model

The previous chapters have extended Amiet’s [18] rotor noise model to include

wall-e↵ects and to model anisotropy. In this chapter the frequency-domain rotor

noise model that has been developed in the previous chapters will be compared against

the time-domain rotor noise model results of Glegg et al. [25] and against experimental

measurements.

The time-domain method of Glegg et al. [25] uses a time-domain formulation of the Ffowcs

Williams and Hawkingss (FWHs) equations along with Amiet’s [77] two-dimensional time-

domain compressible response function to compute the Power Spectral Density (PSD)

of the noise. The method does not rely on a model of the velocity statistics and instead,

takes as input a four-dimensional time and space varying velocity correlation tensor. This

makes the method very accurate, and the power spectral density computed using this

method is very close to the noise spectra measured in experiments. The inputs required

for the model are the undistorted velocity correlation tensor that was measured in the

absence of the rotor. Thus this methods accuracy reduces as the rotor thrust increases

and correspondingly, the distortion of the boundary layer, is increased. This could be

fixed by using rapid distortion theory to account for the distortion.

Comparing the frequency-domain method and the time-domain method to experimental

measurements will determine the accuracy of the method. Comparisons between Amiet’s

[18] extended frequency-domain method and the time-domain method of Glegg et al. [25]

will also determine how successful the axisymmetric anisotropic turbulence model is at

capturing the statistics of boundary layer turbulence.

The predictions made in this chapter using Amiet’s [18] extended frequency-domain

method are made using a semi-empirical length scale of 0.03 m. This is because boundary
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layer turbulence is not strictly axisymmetric and is not homogeneous in the wall-normal

direction. In order to determine how sensitive the model is to the transverse length scale

a sensitivity study is performed to determine the e↵ect that varying the length scale has

on the PSD of the noise.

7.1 Results

In this section, the results obtained from the developed rotor noise model are compared

against experimental data and predictions from the time-domain model of Glegg et al.

[25]. The details of the time-domain model are presented in Appendix D. The results

for the time-domain predictions are taken from the results presented at the 2017 Amer-

ican Institute of Aeronautics and Astronautics (AIAA) Fan Broadband Noise (FBN)

workshop.

The rotor geometry is based on a scaled Sevik rotor. The Sevik rotor has a tip diameter

of 457.2 mm and a hub diameter of 127 mm. The rotor has 10 blades with a constant

chord of 57.2 mm and the stagger angle of the blades varies from 34.4� at the hub to

68.8� at the tip. Further details of the test case are provided in Appendix B.1.

The FC3 benchmark case tests the rotor at 4 di↵erent advance ratios given in Tab.

7.1. However, at an advance ratio of J = 0.50, a large tip vortex forms between the

blade tip and the wind tunnel wall [151]. This tip vortex subsequently interacts with

the rotor resulting in a large increase in the noise and large tonal peaks at the Blade

Passing Frequencies due to multiple blades passing through the same vortical structure.

As the rotor noise model does not include the noise due to the ingestion of a tip vortex,

predictions at this advance ratio were not performed.

Name Advance Ratio Rotor speed [RPM] Mean flow speed [m s�1]

OpA 1.44 2734 30

OpB 1.05 2500 20

OpC 0.87 4500 30

OpD 0.50 2500 10

Table 7.1: The di↵erent advance ratios of the Fundamental Case 3 (FC3).

The computations for the rotor noise model are computed using 200 azimuthal integration

points and 10 span-wise strips. The strips are logarithmically spaced so that the tip of

the blade has a larger density of strips. The mean density and speed of sound for all

computations are 1.08 kgm�3 and 350 ms�1 respectively. The predictions were compared

to experimental measurements at 3 microphone locations. The microphone locations are

given in Tab. 7.2 and a schematic of their position relative to the rotor are shown in Fig.
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7.1. Microphones 1 and 4 are located in an anechoic chamber that is connected to the

wind-tunnel via a Kevlar lined window. Microphone 5 is placed in the wind tunnel.

Position ✓ [deg] r0 [m]

1 90 3.591

4 127.3 3.036

5 165.6 2.309

Table 7.2: Microphone positions at which experimental measurements were taken.

The turbulence properties that are used to specify the axisymmetric turbulence model

of Kerschen and Gliebe [24] are extracted from the Fundamental Case 3 (FC3) dataset,

the details of which are provided in Appendix B.1. The transverse integral length scale

is chosen empirically to be 0.03 m as explained in Chapter 6 .

Figure 7.1: Schematic of the di↵erent microphone locations.

Fig. 7.2 shows the results for the rotor operating at the zero thrust (Op A) condition.

Both the frequency-domain predictions using Amiet’s [18] extended model and time-

domain predictions show under-predictions at Pos. 1. The frequency-domain predictions

show under-predictions at all frequencies while the time-domain predictions only show

under-predictions at the higher frequencies. Analytical predictions usually show bad
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agreements in the cusp of the dipole (✓ = 90�) because the PSD of the acoustic pressure

becomes very close to 0 at this observer location. Additionally, due to the low sound

pressure radiated by the rotor at this observer location, the experimental measurements

are more susceptible to background noise.

At Pos. 4, the frequency-domain predictions and the time-domain predictions show a

good match with the experimental measurements. The frequency-domain predictions

show additional peaks at the 3rd and 4th BPFs that are absent from the experimental

measurements and there is a steep drop-o↵ at the higher frequencies. The additional

peaks could be due to the rotor a↵ecting the turbulence that it is ingesting. Even though

this is the zero thrust operating condition, it is possible that the rotor is changing the

pressure gradient through which the boundary layer must traverse. The time-domain

rotor noise model on the other hand, does not capture the 2nd BPF accurately and the

haystack is almost absent from the predictions.

At Pos. 5, there is an under-prediction of approximately 5 dB of the amplitude of the

1st BPF by the frequency-domain method. This is most likely because this microphone

is in the wind-tunnel, and therefore there is additional background noise at this mea-

surement location. Alternatively, there might be some refractions through the mean-flow

gradients of the boundary layer that are a↵ecting the noise at this microphone location.

The frequency-domain predictions at Pos. 5 compare favourably with the time-domain

predictions at this observer location with the exception of an approximately 2 dB under-

prediction at the 1st BPF. While the high frequency drop o↵ remains, it is not as

prominent as at Pos. 4.

Table 7.3 shows the OverAll Sound Pressure Level (OASPL) for all three positions. As

confirmed by the qualitative analysis, the predictions at Pos. 4 are the best and the

predictions at Pos. 1 are the worst. The OASPL is mostly determined by how well the

predictions capture the 1st BPF peak. As this is an important level to capture correctly,

this is a valid quantitative comparison at this stage.

Figures 7.3 and 7.4 show the results for the rotor operating at operating condition B

(2500 RPM, 20 m s�1) and C (4500 RPM, 30 m s�1) respectively. The overall trends that

are observed for the rotor operating at operating condition A are once again seen in these

comparisons. There is a severe under-prediction at Pos. 1, a good match at Pos. 4, and

an approximately 5 dB under-prediction in the amplitude of the 1st peak at Pos. 5 when

the frequency-domain predictions are compared to experimental measurements and an

approximately 3 dB under-prediction when the time-domain predictions are compared

to experiential measurements. At operating condition B and at Pos. 4 it is observed that

the location of the 2nd BPF is incorrectly predicted. The location of 2nd peak of the

experimental measurements is not at the 2nd BPF. Wisda et al. [98] have reported that

the cause of this peak not being at the BPF could be because of the vortical structures
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Figure 7.2: Predictions using Amiet’s extended frequency domain rotor noise
model and Glegg’s time-domain model compared to experimental measurements
for the rotor operating at 2734 RPM with a mean-flow speed of 30 m s�1 (OpA).

in the boundary layer being inclined. This in turn implies that the time between blade

chops is altered and this causes the frequency shift that is observed.

Another interesting comparison that can be made is the comparison between the predic-

tions using Amiet’s [18] extended frequency-domain model and the time-domain predic-

tions of Glegg et al. [25]. The predictions using the two di↵erent methods match well.

From Tabs. 7.3 and 7.4 it can be seen that the largest di↵erences between the predictions

are at Pos. 1, where the OASPL is under-predicted by 7 dB by the frequency-domain

method at all microphone locations. At Pos. 4 there is almost no di↵erence between the

predictions and at Pos. 5 there is an approximately 2.5 dB di↵erence at all operating

conditions. The main di↵erence between the frequency-domain and time-domain method

is the method in which the turbulence is modelled. The frequency-domain model uses the

axisymmetric homogeneous model of Kerschen and Gliebe [20] while the time-domain

model computes the velocity correlation tensor directly from experimental measurements.
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Op Cond./Mic OASPL(Exp) [dB] OASPL(FD) [dB] � OASPL [dB]

OpA P1 67.5 52.4 15.1

OpA P4 72.5 68.5 4.0

OpA P5 83.1 74.7 8.1

OpB P1 63.5 46.6 16.6

OpB P4 68.5 62.7 5.8

OpB P5 77.4 69.3 8.1

OpC P1 70.8 60.0 10.8

OpC P4 75.5 76.1 0.6

OpC P5 87.2 82.4 4.8

Table 7.3: The OASPL from the experimental measurements and Amiet’s ex-
tended frequency-domain rotor noise model.

As the predictions using these di↵erent models match reasonably, it can be concluded that

the Kerschen and Gliebe [20] turbulence model can be used to make a good approximation

of boundary layer turbulence. However, this is dependant on determining an accurate

length scale and this can be di�cult. The major advantage of the frequency-domain

model is the fact that it is much cheaper to run.

Op Cond./Mic OASPL(Exp) [dB] OASPL(TD) [dB] � OASPL [dB]

OpA P1 67.5 58.8 8.7

OpA P4 72.5 68.9 3.6

OpA P5 83.1 77.5 5.6

OpB P1 63.5 54.1 9.4

OpB P4 68.5 62.7 5.8

OpB P5 77.4 71.7 5.7

OpC P1 70.8 68.1 2.7

OpC P4 75.5 77.5 -2.0

OpC P5 87.2 84.0 3.2

Table 7.4: The OASPL from the experimental measurements and Glegg’s time-
domain rotor noise model.

Computationally, the frequency domain model takes approximately 5 minutes to run for

predictions at one observer location and one operating condition while the time-domain

model takes 6 hours 1. Additionally, the experimental data required as input for the

time-domain model is a 4D time and space varying velocity correlation tensor. This

1For one operating condition and one microphone location. The simulations are run on a workstation
with 16 GB of RAM and a 4 core Intel(R) Core(TM) i7-3770 CPU @ 3.40GHz with hyper-threading.
The frequency-domain code is written in MATLAB using parallel for loops while the time-domain code
was reproduced written in Fortran90 using the OpenMP library to make it run in parallel.
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Figure 7.3: Predictions using Amiet’s extended frequency domain rotor noise
model and Glegg’s time-domain model compared to experimental measurements
for the rotor operating at 2500 RPM with a mean-flow speed of 20 m s�1 (OpB).

tensor is very time-consuming to measure and prohibitively expensive to make use of in

preliminary design studies.

This section has shown that the frequency-domain and time-domain predictions show a

representative match when compared to experimental data. There are amplitude discrep-

ancies that are observed at certain observer angles. This could be because of additional

noise sources that are not modelled or because of the background noise not being ac-

counted for. The time-domain results of Glegg [25] that are presented in the section

have been corrected for background noise. Comparing the frequency-domain and time-

domain predictions shows that the Kerschen and Gliebe [20] turbulence model can be

used to make a good approximation of boundary layer turbulence. As the extended

frequency-domain model is much cheaper to use, it is the most appropriate tool to use

for preliminary design studies.
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Figure 7.4: Predictions using Amiet’s extended frequency domain rotor noise
model and Glegg’s time-domain model compared to experimental measurements
for the rotor operating at 4500 RPM with a mean-flow speed of 30 m s�1 (OpC).

7.2 Sensitivity study

The results in the previous section were computed by specifying the inputs required for

the Kerschen and Gliebe [24] anisotropic turbulence model. These inputs are the axial

and transverse length scales and turbulent velocities (la, lt, ua, ut). However, due to the

inhomogeneity of the boundary layer in the wall normal direction a transverse length

scale could not be accurately computed from experimental data. Instead, an empirical

transverse integral length scale was used. In this section, the e↵ect of changing the

transverse integral length scale on the computed PSD of noise is quantified.

This is done by running the noise model for a number of transverse integral length scales

that are randomly sampled. This assumes that the transverse length scale is uniformly

distributed. This study has used 100 di↵erent predictions for a transverse length randomly

chosen between 0.01 m < lt < 0.05 m.
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Figure 7.5: The variation of the PSD of the acoustic pressure at one observer
location (r0 = 3.01 m, ✓ = 127.3�).

Fig. 7.5 shows the variation of the PSD of the acoustic pressure compared to the ex-

perimental measurements. Looking at the di↵erence in the predictions made using the

maximum and minimum transverse length scale, it is clear that the choice of transverse

length scale has a significant impact on the noise spectrum. This fact has been observed

by various authors for di↵erent analytical models. Having said that, the mean noise

spectra matches the predictions well and is comparable to the predictions made using

lt = 0.03 m. The 95 % confidence interval (which is computed as ±1.96�, where � is the

standard deviation) has a relatively small spread.

Therefore from the results presented above one can conclude that the transverse length

scale can have a significant impact on the radiated noise. However, in the absence of a

priori information, predictions can be made by determining the likely range of transverse

length scales and computing the mean of the PSD predicted at each of the integral length

scales.

7.3 Conclusions

This section has compared the extended frequency-domain method against experimental

measurements and a time-domain method developed by Glegg et al. [25]. The time-

domain analytical method is very accurate as it does not model the turbulence in the

boundary layer. Instead, it takes as input a 4D time and space varying velocity correlation

tensor. This velocity correlation tensor is then convolved with a response function to
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determine the blade loading. The far-field radiated noise is then determined using the

FWH acoustic analogy, The conclusions that are drawn from this chapter are,

• The frequency-domain method produces a good match when compared to exper-

imental measurements at Pos 4. There is a severe under-prediction at Pos 1 and

moderate under-prediction at Pos 5. The under-prediction at Pos 5 is also ob-

served in the time-domain predictions. The under-predictions could be due to the

background noise. The microphone at Pos 5 is not in the anechoic chamber and

the sound levels are low at Pos 1. This makes the microphones at these positions

particularly susceptible to background noise. At all the measurement positions the

frequency-domain method predicts an extra peak at the 3rd BPF and there is a

sharp-drop o↵ at high frequencies. The additional peak that is observed could be

due to a slightly incorrect transverse length scale. This value had to be chose em-

pirically because boundary layer turbulence is not homogeneous in the wall-normal

direction and not strictly axisymmetric. The sharp drop-o↵ that is observed at

high-frequencies could be because the experiments are measuring noise sources

that are not modelled.

• Comparing Amiet’s [18] extended frequency-domain and time-domain methods

provides insight into how well the axisymmetric anisotropic turbulence spectrum of

Kerschen and Gliebe [20] is capturing boundary layer turbulence. This is because

the time-domain method takes a velocity correlation tensor from experiments as

input. At most of the microphone locations a good match is observed between the

frequency-domain and time-domain methods. This indicates that the turbulence

model is good approximation of boundary layer turbulence. However, this is depen-

dant on choosing the correct transverse length scale and this value is di�cult to

determine a priori.

• Amiet’s [18] extended frequency-domain method is significantly cheaper to run than

the time-domain method. The frequency-domain method is significantly faster

to run computationally. Additionally, the 4D time and space varying velocity

correlation tensor is prohibitively expensive to obtain for preliminary design studies.

• As the transverse length is chosen empirically a sensitivity study is performed on

this parameter. It is observed that the transverse length scale can have a significant

impact on the radiated noise. However, the mean PSD shows a good match to the

experimental measurement and the 95 % confidence interval has a narrow spread.
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Chapter 8

Conclusions and future work

In this chapter the conclusions of the thesis are presented. Counter Rotating Open

Rotors (CRORs) are an engine technology that could present step changes of fuel

e�ciency for future aircraft generations. The literature review has shown that the leading-

edge noise produced by a translating aerofoil is a well understood problem. Analytical

models, experimental measurements, and numerical simulations have been undertaken to

understand this mechanism in detail. This understanding has subsequently been applied

to develop analytical models for uninstalled open rotors ingesting turbulence. However,

there are not as many analytical models for installed open rotor noise. Analytical models

that have been implemented to study installed open rotor noise have focused on studying

broadband pylon-wake interaction noise and tonal scattering by fuselage centre bodies.

This thesis aims to develop a fast to run analytical model that predicts the noise radiated

by a rotor ingesting a turbulent boundary layer.

This thesis has extended the simplified frequency-domain rotor noise model of Amiet [18]

to predict this noise source. The simplified frequency-domain rotor noise model of Amiet

[18] extends Amiet’s [21] translating aerofoil noise model to account for rotation. This is

done by treating the rotation of a blade as a series of small translations. Thus the noise

radiated by a translating aerofoil is azimuthally averaged and frequency corrected to

determine the noise at an observer location. This modelling approach neglects acceleration

e↵ects of the rotor blade. This is a valid simplifying assumption as long as the frequency

of the impinging turbulence is significantly larger than the frequency of the rotor. This

rotor noise model has been re-derived in Chapter 3. Initial predictions using Amiet’s

[18] simplified rotor noise model with blade-to-blade correlation modelled showed several

discrepancies when compared with experimental measurements. Namely, there was a

severe under-prediction in the amplitude of the spectrum and the peak at the 2nd Blade

Passing Frequency (BPF) was missing. The discrepancy in amplitude was the result

of neglecting wall-e↵ects. The absence of the 2nd correlation peak was because the
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turbulence model used was the isotropic von Kármán spectrum. However, boundary

layer turbulence is known to be highly anisotropic consisting of elongated eddies in the

axial direction. The remainder of the thesis focused on addressing these issues. The

e↵ect of the hard-wall was added to the model using the Method of Images (MOI). The

e↵ects of anisotropy were added using the axisymmetric homogeneous anisotropic velocity

spectrum of Kerschen and Gliebe [24].

The MOI was first added to Amiet’s [21] 2D translating aerofoil noise model in Chapter

4. This was done to study how accurate the MOI is and to assess what impact the

assumptions that are used in implementing the MOI have when compared to a physically

representative solution. This was done by comparing the analytical predictions against

results from 2 Computational AeroAcoustic (CAA) simulations. One set of CAA simu-

lations used the MOI to model the hard-wall. This was done by adding pressure data

collected on two surfaces, one that represents the location of the real observer and one

that represents the location of the image observer. The other set of CAA simulations

used a physically representative hard-wall boundary condition to model the hard-wall.

The main conclusions that are drawn from this chapter are,

• It is shown that the MOI adds three additional terms to Amiet’s [18] original

solution. There are two interference terms and one amplitude term.

• Using the analytical solution it is shown that the solution for an aerofoil ingesting

turbulence in proximity to a hard-wall reduces to that of a vertical dipole near a

hard-wall in the low Mach number, low frequency limit.

• When the analytical solution is compared to the CAA simulation using the MOI a

good match is observed at most frequencies and most observer angles.

• When the analytical solution and the CAA simulations using the MOI are compared

to the CAA simulation using the hard-wall boundary condition a good match is

observed at most frequencies at some observer angles. However, discrepancies are

observed in the shadow-zone of the aerofoil.

• These discrepancies indicate that the MOI is not capturing shadow-zone e↵ects.

However, as the shadow-zones extent decreases as the aerofoil is moved away from

the wall, the MOI can still give a good indication of the noise produced by aerofoil

ingesting turbulence in proximity to a wall at most observer angles and frequencies.

The MOI that was implemented in Chapter 4 is then extended to use in Amiet’s [18]

simplified rotor noise model. To include the e↵ects of blade-to-blade correlation in the

cross-spectrum of the acoustic pressure, the time of propagation for an acoustic wave

to travel from the real and image observer had to be taken into account. The main

conclusions that are drawn from this chapter are,
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• In a similar manner as was done for the translating aerofoil case, it is shown that in

the low Mach number low frequency limit the analytical solution reduces to that of

a point dipole. Additionally, by changing the azimuthal angle of the blade and the

blade stagger angle, the axis of the dipole to the wall can be changed arbitrarily.

Using this simplified analytical solution it is shown that the blade stagger angle

can have a significant impact on the radiated noise.

• When predictions using Amiet’s [18] simplified rotor noise model are compared

to experimental measurements, it is observed that the hard-wall increases the

amplitude of the spectrum. However, the peak at the 2nd BPF is still absent.

• When predictions are made using the model without blade-to-blade correlation,

it is observed that there is a peak in the noise directivity that occurs due to the

stagger angle of the blade.

• When predictions are made using the model with blade-to-blade correlation mod-

elled it is observed that the peak in noise directivity is still present. However, the

noise directivity is also a↵ected by the interference terms.

Next, the e↵ects of anisotropy are added in Chapter 6. This is done by replacing the

isotropic von Kármán spectrum with the axisymmetric homogeneous anisotropic tur-

bulence model of Kerschen and Gliebe [24]. First, the anisotropic turbulence model is

used to make predictions for the simplified case of a 2D translating aerofoil ingesting

anisotropic turbulence. Next, the anisotropic turbulence model of Kerschen and Gliebe

[20] is compared to boundary layer turbulence. Finally, the turbulence model is coupled

to Amiet’s [18] simplified rotor noise model. Using this model the e↵ects of anisotropy

on the radiated noise are investigated. The main conclusions that are drawn from this

chapter are,

• For the case of a 2D translating aerofoil it is observed that the changing the axial and

transverse length scale redistributes the energy in the spectrum. It is observed that

increasing the transverse length scale significantly increases the radiated noise. This

is because a majority of leading-edge noise results from the transverse spectrum

and increasing the transverse integral length scale add distributes more energy to

the transverse spectrum.

• When the Kerschen and Gliebe [20] turbulence model is used to boundary layer

turbulence several discrepancies are found. It is observed that the transverse 1D

energy spectra do not match the experimental measurements. Additionally, the

transverse integral length scales determined from the analytical spectra di↵er sig-

nificantly from the transverse integral length scales computed from experimental

measurements. This is most likely because boundary layer turbulence is not strictly
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axisymmetric and it is not homogeneous in the wall-normal direction. Due to these

reasons, the transverse integral length scale is chosen empirically.

• Using the extended rotor noise model with anisotropy modelled the e↵ect of varying

the axial and transverse length scale is examined. It is observed that increasing

the axial or the transverse length scale increases she power radiated by the aerofoil.

It is also observed the bandwidth of peaks at the BPF scale with the axial length

scale and the eddy speed.

• When changing the stagger angle, rotational speed of the rotor, or the eddy speed

the main parameter that e↵ects the radiated noise is the speed at which the eddy

moves through the rotor disk.

Finally, the extended rotor noise model is compared to experimental measurements and

predictions made using the time-domain rotor noise model of Glegg et al. [25] in Chapter

7. the time-domain model of Glegg et al. is accurate as it does not model boundary layer

turbulence. The required velocity statistics are instead determined from a 4D time and

space varying velocity correlation tensor obtained from experimental measurements. The

main conclusions that are drawn from this chapter are,

• The extended frequency domain method produces representative predictions when

compared to experimental measurements. There is a good match between the

predictions and the measurements obtained from the microphone located in the

anechoic chamber. There is a fair match with a slight under-prediction in sound

levels when the predictions are compared to measurements taken at eh microphone

in the wind-tunnel. There is a severe under-prediction at the 90� observer angle.

Additionally, the predictions obtained using the extended frequency-domain method

show an additional peak at the higher BPFs that are absent from the experimental

measurements and there is a sharp drop o↵ at high frequencies. The additional peak

at the BPF could be due to the empirical choice of transverse length scale and the

high-frequency drop o↵ could be due to the blade response function used or because

the experiment is measuring additional noise sources that are not modelled.

• The extended frequency-domain method shows a good match when compared to

the predictions from the time-domain method at most frequencies and observer

angles. The major di↵erence between the two models is the manner in which the tur-

bulence statistics are determined. The extended frequency-domain method models

the statistics while the time-domain method determines them from experimental

measurements. The good match between the two models, therefore, indicates that

the turbulence model is accurately capturing boundary layer turbulence. this is

however dependant on choosing a correct transverse length scale, which can be

di�cult.
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• As the transverse length scale is chosen empirically a sensitivity study is performed

on this parameter. While the transverse length scale can have a significant impact

on the radiated noise, there is a relatively small 90% confidence interval.

8.1 Future work

This thesis has developed an analytical model for a rotor ingesting boundary layer

turbulence. The following extensions could be made to make this model more general,

• The rotor noise model assumes that the observer lies in the y�z plane and that the

rotor blades have no lean or sweep. While this does not detract from the generality

of the model these features can be added to make the model applicable to a wider

variety of cases.

• This thesis has assumed the hard-wall to be an infinite flat-plate. This can be

changed to account for curved surfaces by using an appropriate tailored Green’s

function.

• It would be interesting to experimentally verify that the MOI does not capture

shadow-zone e↵ects.

• It is apparent that the anisotropic turbulence model of Kerschen and Gliebe has

some deficiencies when compared to boundary layer turbulence. This can be im-

proved by determining a new model spectra for boundary layer turbulence.

• A larger experimental dataset is required to test the rotor noise model at various

di↵erent conditions.
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Appendix A

Derivation of the emission

distance and the Doppler factor

used in the rotor noise model

In this Appendix the emission distance and Doppler factor that are used in Chapter

3 are derived.

A.1 Derivation of the emission distance

The retarded distance to the observer is the distance between the source at the present

time and the observer. The emission distance can be calculated using Eqns. (3.1) and

(3.4) as,

r2

e = |SO| = (r0 cos ✓ � reMx)
2 + r2

0 sin2 ✓,

re =
�r0Mx cos ✓ ±

p
r2

0
M2

x(cos2 ✓ � 1) + r2

0

(1 � M2
x)

,

re =r0

�Mx cos ✓ +
p

1 � M2
x sin2 ✓

(1 � M2
x)

.
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rotor noise model

A.2 Derivation of the Doppler factor

The Doppler factor (DF) is required to compute the noise radiated by a rotating aerofoil.

Using Eqns. (3.1), (3.4), (3.2), and (3.3),

dSO =
1

re
(x � reMx, 0, z) ,

DF =
!

!�

=1 +
MO

�
.dSO

1 � MF

�
.dSO

,

DF =1 �
M�z sin�/re

1 � (M2
x + 1/re [�xMx � zM� sin�])

,

DF =
1 � M2

x + xMx/re
1 � M2

x + xMx/re + zM� sin�/re
,

1/DF =
1 � M2

x + xMx/re + zM� sin�/re
1 � M2

x + xMx/re
,

1/DF =1 + M�

sin ✓ sin�p
1 � M2

x sin2 ✓
.

It is important to note that the Doppler factor derived above is 1/DF .
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Description of the benchmark

case

The test case that was used to compare predictions of the extended-frequency domain

method was the Fundamental Case 3 (FC3) of 2015 AIAA Fan Broadband Noise

(FBN) workshop [138]. The setup of the test case is shown in Fig. B.1. The rotor has a

tip diameter of 457.2mm and a hub diameter of 127 mm. The rotor has 10 blades with

a constant chord of 57.2 mm and the stagger angle of the blades varies from 55.6� at the

hub to 21.2� at the tip.

B.1 Extraction of turbulence data from the test case to

input into the rotor noise model

The predictions of the rotor noise model are computed for the Fundamental Case 3 (FC3)

of the 2015 AIAA Fan Broadband Noise (FBN) workshop [138]. The predictions obtained

using the rotor noise model are compared with experimental measurements from Glegg

et al. [25]. The experimental results are obtained from a test-campaign in the stability

wind tunnel at the Virginia Polytechnic Institute [19].

The extended frequency-domain rotor noise model requires as input, the geometry of the

rotor, the rotor advance ratio and information that characterises the turbulence. The

information required to characterise the turbulence are the turbulence intensities and

integral length scales in the axial and transverse directions.

The turbulence data provided with the FC3 dataset, is provided as a four-dimensional

space and time varying velocity correlation tensor: Rij (�⌧,�y, z, z0). Here (i, j) are the
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102mm

457.2mm

127.0 mm

20.3mm

Figure B.1: Configuration of fundamental case three.

velocity component being considered, �⌧ is the time lag, �y is the spanwise separation

at which the velocity correlation is considered and z, z0 are the wall normal coordinates at

which the velocity correlation is considered. It should be noted that this dataset contains

space and time varying velocity correlations for an undistorted boundary layer (without

a rotor)

The turbulence intensities in the longitudinal and transverse directions at each wall

normal location are computed by obtaining the velocity correlation at zero time and zero

spanwise separation, ✓
u0
i
(z)

U

◆
2

= Rii(0, 0, z, z). (B.1)

To obtain the integral length scales in the longitudinal and transverse directions, nor-

malised velocity correlation functions were computed from the experimental data. The

integral length scales were determined by integrating these velocity correlations. The

results obtained were validated by comparing the experimentally determined velocity

correlations with analytical velocity correlations. Two longitudinal velocity correlations

fx and fy can be defined for the Liepmann spectrum as [35; 36],

fx(r) =e�|r|/L(1)
11 ,

fy(r) =e�|r|/L(2)
22 ,

(B.2)
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where r is the separation between the two points at which the correlation is considered,

L(1)

11
is the integral length scale computed from the correlation function of the u velocity

separated in the x direction, and L(2)

22
is the integral length scale computed from the

correlation of the v velocity separated in the y direction. As these velocity correlations

take the integral length scale computed from experimental data as an input, comparing

these velocity correlations with experimental data will indicate the accuracy of the

determined length scales. A similar method cannot be used to extract the integral length

scales in the wall-normal direction as the turbulence is not homogeneous in this direction.

The computed normalised velocity correlations in the streamwise (x) and the cross-stream

(y) directions are shown in Fig. B.2(c) and Fig. B.2(d) respectively. It can be seen that

the velocity correlations extracted from the experimental data compare well against those

computed using Eqn. B.2.

The computed integral length scales are shown in Fig. B.2(a) as a function of the radial

location from the hub centre. The ratio of the integral length scales near the rotor hub is

approximately 6 and approximately 2 near the rotor tip. Fig. B.2(b) shows the variation

of the turbulence intensity as a function of radial location from the rotor hub centre. As

expected, the streamwise turbulence intensities are considerably larger than in the other

directions. Additionally, the turbulence intensities decrease monotonically away from the

wall. To facilitate the use of this data in the rotor noise model, least square fits were

computed for the integral length scales as,

L(1)

11
= � 0.4681z + 0.0947,

L(2)

22
= 0.0958z + 0.0116,

(B.3)

and the turbulence intensities as,

u2 =417.2z2
� 98.83z + 6.070,

w2 =131.7z2
� 40.96z + 3.115,

v2 =16.23z2
� 17.35z + 1.944,

(B.4)

where z is the distance from the wall in meters. In the rotor noise model presented,

L(1)

11
= la, L(2)

22
= lt, u = ua, and

p
(v2 + w2)/2 = ut. Additionally, all the turbulence

data is scaled by the free-stream velocity.
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(a) Integral length scales.
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(b) Turbulence velocities.
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Figure B.2: The integral length scales, RMS velocities, and normalised correlation
functions. The points show the least square fits for each of the variables computed
using Eqns. (B.3) and (B.4). The normalised correlation functions are computed
at r/Rtip = 0.825.
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Appendix C

The power factor of a

two-dimensional vertical dipole

In this appendix, the power factor (the ratio of radiated power with and without a

hard-wall) for a 2D dipole is considered. The derivation that follows is from Pierce [17].

However, it has been modified to determine the power factor in 2D and the coordinate

system has been changed to be consistent with the coordinate system used in this paper.

The pressure in the far field due to a 2D point source can be written as [152],

y

x

I

S

O
r0

rS

dwall

dwall rI

✓

Figure C.1: A schematic of a point source (S), its image (I), and an observer
(O).

p(r0, ✓,!) = h(✓)
e�ik0r0

p
r0

,

where h is a function that depends on the point source being considered. Then, by

superposition the pressure field at the observer O can be written as,

p(r0, ✓,!) =


h(✓)

e�ik0rS

p
rS

+ h(2⇡ � ✓)
e�ik0rI

p
rI

�
, (C.1)
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From Fig. C.1 the distances to the observer, from the real and image source, are given

by,

rS 'r0 � dwall sin ✓,

rI 'r0 + dwall sin ✓.
(C.2)

Using Eqn. (C.2) in Eqn. (C.1) gives the pressure at the observer as,

p(r0, ✓,!) '
e�ik0r0

p
r0

✓
e�ik0dwall sin ✓h(✓) + eik0dwall sin ✓h(2⇡ � ✓)

◆
. (C.3)

The power radiated can then be computed as,

P(r0, ✓,!) =
r0

2⇢0c0

Z
⇡

0

|p(r0, ✓,!)|2d✓. (C.4)

The power radiated by a point source near a hard-wall is then found by using Eqn. (C.3)

in Eqn. (C.4),

P = P0 + Re

⇢
r0

2⇢0c0

Z
2⇡

0

h⇤(✓)h(2⇡ � ✓)e2ik0dwall sin ✓d✓

�
, (C.5)

where Re is the real operator and,

P0 =
r0

2⇢0c0

Z
2⇡

0

|h(✓)|2d✓.

For a 2D dipole point source,

h(✓) = �ik0D̃ sin ✓,

where D̃ is the complex dipole moment. Thus, the power factor of a vertical dipole near

a hard-wall is given by,

P

P0

= 1 �
1

⇡

Z
2⇡

0

cos (2k0dwall sin ✓) sin2 ✓d✓ = 1 � 2


J1 (2k0dwall)

2k0dwall

� J2 (2k0dwall)

�
.

(C.6)

This is identical to the power factor of a flat-plate ingesting turbulence near a hard-wall

in the low Mach number, low frequency limit as given in Eqn. (4.31).
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Appendix D

Glegg’s time-domain formulation

for the noise radiated by a rotor

ingesting a turbulent boundary

layer

In this Appendix a derivation of Glegg’s [25] time-domain formulation for the noise

radiated by a rotor ingesting a turbulent boundary layer is re-derived. Glegg’s [25]

time-domain formulation uses Amiet’s [77] time-domain compressible response function

to compute the loading of a blade. This is used in the Ffowcs Williams and Hawkings

(FWH) equation to determine the noise radiated to the far-field. The coordinate system

used in this derivation is shown in Fig. D.1.

D.1 Formulation of the PSD of the acoustic pressure

The observer coordinates are denoted as (x, t) and the source coordinates as (y, ⌧). The

FWH equation is then used to compute the loading noise due to a surface loading per

unit area of fi(y, ⌧) as,

p(x, t) = �
@

@xi

BX

n=1

Z

⌃n


fi(y, ⌧)

4⇡r|1 � Mr|

�

⌧=⌧⇤
d⌃n(y), (D.1)

where ⌃n represents the surface of blade n, r is the distance from source to observer,

x � y and ⌧⇤ = t � r(⌧)/co is the retarded time.
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x1

x2

x3

V
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ro

x2

x1

β

RΩ

ɸ

Figure D.1: Coordinate system for the rotor.

The power spectrum of the acoustic pressure is defined as,

S(x,!) =
1

2T

Z
T

�T

1

2⇡

Z
T

�T

[p(x, t), p(x, t0)]ei!(t�t
0
)dtdt0, (D.2)

where an average over multiple revolutions has been performed. This is done due to

the fact that the rotor noise is not stationary. The assumption is now made that the

wavelength is much larger than the chord, c >> �. Using this assumption the surface

loading per unit area can be replaced as a force per unit span, fi(y, ⌧) = n(R, ⌧)F (R, ⌧)

that is only dependant on the radial location. Here n is the normal to the blade surface

and R represents the radial location of the force and is given by R =
p

y2

2
+ y2

3
. This

indicates that the surface of the blade can be divided into a number of strips and the

loading at each individual strip can be computed. Equation (D.1) then becomes,

p(x, t) = �

BX

n=1

Z
Rmax

Rmin

"
@

@xi

n
(n)

i
(R, ⌧)F (n)(R, ⌧)

4⇡r(n)(⌧)|1 � Mr|

#

⌧=⌧⇤

dR(y). (D.3)
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The expected value of the acoustic pressure at two slightly di↵erent times is computed

as,

[p(x, t), p(x, t0)] =
BX

n=1

BX

m=1

Z
Rmax

Rmin

Z
Rmax

Rmin

"(
@

@xi

n
(n)

i
(R, ⌧)

4⇡r(n)|1 � Mr|

)(
@

@xj

n
(m)

j
(R0, ⌧)

4⇡r(m)|1 � Mr|

)
⇥
F (n)(R, ⌧)F (m)(R0, ⌧ 0)

⇤
#

⌧=⌧
⇤

⌧
0
=(⌧

⇤
)
0

dRdR0.

(D.4)

To compute the acoustic power spectrum, we change the integral in Eqn. (D.2) so that it

is computed in source time instead of observer time. This can be accomplished by using

the substitution dt = |1 � Mr|d⌧ ,

Spp(x,!) =
1

4⇡T

BX

n=1

BX

m=1

Z
Rmax

Rmin

Z
Rmax

Rmin

Z
T

�T

Z
T

�T

(
@

@xi

n
(n)

i
(R, ⌧)ei!r

(n)
(⌧)/co

4⇡r(n)(⌧)

)(
@

@xj

n
(m)

j
(R0, ⌧)e�i!r

(m)
(⌧)/co

4⇡r(m)(⌧ 0)

)
RFF (R, R0, ⌧, ⌧ 0)d⌧d⌧ 0dRdR0,

(D.5)

where RFF (R, R0, ⌧, ⌧ 0) =
⇥
F (n)(R, ⌧)F (m)(R0, ⌧ 0)

⇤
. The normal to blade chord is given

by,

n
(n)

i
= (cos�, sin� sin(⌦⌧ + �n), � sin� cos(⌦⌧ + �n)) ,

the location of the blade leading edge is,

y
(n)(R, ⌧) = (V ⌧, R cos(⌦⌧ + �n), R sin(⌦⌧ + �n)),

and the location of the observer is,

x = (ro cos ✓o + V t, ro sin ✓o cos�o, ro sin ✓o sin�o) .

D.2 Greens functions terms

The terms that are within the curly braces in Eqn. (D.4) are referred to as the Green’s

functions terms. In this section the analytical derivation of these terms is presented. To

do this the fact that @r/@xi = r̂ is used.
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The derivative can then be evaluated as,

@

@xi

ni(R, ⌧)ei!r(⌧)/co

4⇡r(⌧)
=

ei!r(⌧)/co

4⇡


1

r

@ni

@xi

+
i!

co

ni

r

@ri
@xi

�
ni

r2

@ri
@xi

�
, (D.6)

=
ei!r(⌧)/co

4⇡r


@ni

@⌧

@⌧

@xi

+
i!ni

co

@ri
@xi

�
ni

r

@ri
@xi

�
, (D.7)

=
ei!r(⌧)/co

4⇡r


�

1

co

@ni

@⌧
· r̂i +

✓
i!

co
�

1

r

◆
ni · r̂i

�
. (D.8)

Here it is seen that the second term in Eqn. (D.8) represents a dipole with direction

n.r̂. There is also an additional term which is a function of the source time derivative

of the normal to the blade surface. This indicates the directivity pattern that should be

observed should closely resemble that of a dipole as expected.

D.3 Computation of the unsteady loading

Having determined the Green’s function terms for the acoustic propagation, the unsteady

loading on the blade needs to be computed. The two dimensional loading at each strip

is given by,

F (n)(!o, R) = {⇡⇢cU(R)S(�)} w(n)(R,!o), (D.9)

where c the chord of the blade, ⇢ is the density, U is the speed of the blade, S is Sears

function referenced at the leading edge , w(R,!) is the Fourier transform of the gust

velocity and � is the non-dimensional frequency defined as � = !oc/2U(R). The Sears

function is defined as,

S(�) =
2ei�

⇡�(H(1)

o (�) + iH(1)

1
(�))

,

where H(1)

o and H(2)

o are Hankel functions of the first kind.

The unsteady loading on the blade is given by the convolution integral,

F (n)(R, ⌧) =

Z
⌧

�1
s(⌧ � ⌧o)w

(n)(R, ⌧o)d⌧o, (D.10)

where s is given by,

s(R, ⌧) =
1

2⇡

Z 1

�1
{⇡⇢cU(R)S(�)} e�i!⌧d!. (D.11)

An approximate form of the Sears function is given by,

s(�) ⇠

r
i

1 + 2⇡�
.
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Using this and non-dimensionalisng the time by the half chord as ⌧̄ = 2U⌧/c the asymp-

totic solution for Eqn. (D.11) is obtained as,

s(R, ⌧) = 2⇢U2(R)Re

(Z 1

0

r
i

1 + 2⇡�
e�i�⌧d�

)
⇡

8
<

:

p
2⇢U

2
(R)p

⌧̄
⌧̄ << 1

p
2⇢U

2
(R)

⌧̄
⌧̄ >> 1

, (D.12)

based on these approximate solutions, the approximate form of the Sears solution can

be defined as,

s(R, ⌧) ⇡

p
2⇢U2(R)
p
⌧̄ + ⌧̄2

.

Sears’ solution is not the only solution to the problem of a gust impinging on an aerofoil.

Other time domain response functions exist, such as that of Amiet and Kussener.

The response of a flat plate due to a step gust was given by Kuessener as,

s(R, ⌧) = ⇢U2
@

@⌧̄

✓
2⇡(⌧̄2 + ⌧̄)

⌧̄2 + 2.82⌧̄ + 0.8

◆
.

Both Sears and Kussener’s functions are valid for incompressible flows. A compressible

solution was defined by Amiet for a delta gust of the for (woc/2U)�(�/U � t). Here � is

the parallel distance along the chord. A response function can then be defined as,

s(R, ⌧) = ⇢U2A(2U⌧/c),

where A(2U⌧/c) is defined as:

A(⌧̄) =

8
<

:

2p
M

⌧̄ < ⌧a
4 sin

�1
(

p
⌧a/⌧̄)

⇡
p
M

⌧̄ > ⌧a
, (D.13)

where ⌧a = 2M/(1 + M) and M = U/co. Each of the above defined functions is shown

in Fig. D.2.

It is clear from Fig. D.2 that Amiet’s function is vastly di↵erent from Sears’ or Kussener’s

function. As Amiet’s function is a compressible one it allows for the acoustic wave to

travel at the speed of sound unlike the incompressible ones in which the acoustic waves

travel infinitely fast.

As there are a choice of di↵erent response functions, it must be determined which response

function is best suited for the present problem. Consider Amiet’s solution as defined in

Eqn. (D.12). If a point x is defined on an aerofoil of chord c, referenced from the leading

edge, it’s distance from the trailing edge will be r = x � c. Additionally the time taken

for an acoustic pulse to reach the trailing edge of the aerofoil will be c/co (1 + M). Then
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Figure D.2: The approximate Sears, Kussener, and Amiet response functions at
M = 0.19.

the time since the acoustic wave has reached the trailing edge is t1 = t � c/co (1 + M).

This implies that at t1 = r/co (1 + M) the acoustic wave has reached the trailing edge

and returned to the point x. Amiets theory is exact as long as this time is not exceeded.

If this time is exceeded second order correction terms must be added [77]. Thus Amiets

solution is suitable when lag times are not very large. For a rotor that is subsonic this is

generally the case [25]. Additionally as seen from Fig. D.2 it is seen that Amiet’s response

function is well defined for small lag times and thus can be numerically integrated easily.

As both Sears’ and Kussener’s functions are incompressible solutions they allow for the

acoustic pulse to travel with an infinite velocity. They thus allow for reflections and

scattering at the trailing edge. However, as they are not well defined for small lag times

they require a larger number of points than Amiet’s solution does to be numerically

integrated.

Due to the reasons stated above we will use Amiet’s function for the calculations that

are presented.
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D.4 The blade loading correlation function

The value of RFF (R, R0, ⌧, ⌧ 0) required in Eqn. (D.5) can now be determined. Using Eqn.

(D.10),

RFF (R, R0, ⌧, ⌧ 0) =

Z
⌧

�1

Z
⌧

�1
s(R, ⌧�⌧o)s(R

0, ⌧ 0�⌧ 0o)R
(n,m)

ww (R, R0, ⌧o, ⌧
0
o)d⌧od⌧

0
o, (D.14)

where s is the chosen impulse function and Rww is the velocity correlation function. The

up-wash that the blade sees, w, is the perturbation, vi, in the direction of the normal to

the blade, i.e.,

w(n)(Ro, ⌧o) = n
(n)

i
vi
⇣
y

(n)(⌧o, Ro), ⌧o
⌘

. (D.15)

The velocity correlation function in Eqn. (D.14) can then be defined as,

R(n,m)

ww (R, R0, ⌧o, ⌧
0
o) = n

(n)

i
(R, ⌧o)n

(m)

j
(R0, ⌧ 0o)Rij

⇣
y

(n),y(m), ⌧o � ⌧ 0o

⌘
, (D.16)

where Rij is the velocity correlation tensor that is obtained from experiments [25].

A simplification can be made to the above results by recognizing that when the blades

are in the turbulence, the correlation tensor between the first and the second blade will

be the same as that between the ninth tenth blades. In other words only the di↵erence

of the blade numbers matter and not the blade numbers themselves.

The time arguments can thus be modified in the normal and source location vectors to,

n(n)

i
(R, ⌧) = n(0)

i
(R, ⌧ + �n), y(n)

i
(R, ⌧) = y(0)

i
(R, ⌧ + �n). (D.17)

The final velocity correlation term then becomes [25],

R(n,m)

ww (R, R0, ⌧o, ⌧
0
o) = n

0

i (R, ⌧m)n0

j (R
0, ⌧ 0m � s�⌧)Rij

�
y

0(R, ⌧m),y0(R0, ⌧ 0m � s�⌧)
�
,

(D.18)

where ⌧m = ⌧o + m�⌧ , �⌧ = 2⇡/B⌦ and s = m � n.

This appendix has provided a detailed derivation of Glegg’s [25] time-domain rotor noise

model. As can be seen from the above derivation, the main di↵erence between the time-

domain solution and the extended frequency-domain solution is the manner in which the

turbulence is modelled. Both the time-domain and frequency-domain methods use the

same response function and thus the blade loading predicted by the models should be the

same. Therefore, when the frequency-domain method is compared to the time-domain

method the main di↵erentiator will be the turbulence model used.
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