UNIVERSITY OF SOUTHAMPTON

FACULTY OF ENGINEERING AND THE ENVIRONMENT
Aerodynamics and Flight Mechanics

Digital-filter and forward-stepwise method-based synthetic inflow
turbulence generation: Applications to horizontal axis turbines

by

Kutalmis Bercin

Thesis for the degree of Doctor of Philosophy

September 2018


mailto:KBercin@soton.ac.uk




UNIVERSITY OF SOUTHAMPTON
ABSTRACT
FACULTY OF ENGINEERING AND THE ENVIRONMENT
Aerodynamics and Flight Mechanics
Doctor of Philosophy
DIGITAL-FILTER AND FORWARD-STEPWISE METHOD-BASED SYNTHETIC
INFLOW TURBULENCE GENERATION: APPLICATIONS TO HORIZONTAL
AXIS TURBINES
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The main aim of this study is to create an easy-to-reproduce knowledge unit wherein
the digital-filter method-based (DFM) and forward-stepwise method-based (FSM) syn-
thetic inflow generator classes are conceptualised, explored, and improved for large eddy
simulation applications (LES). To this end, the following novelties were introduced: [i]
both classes were abstracted and documented into four non-CFD and five CFD model
stages, [it] two new DFM variants were derived, [7i4] with these two, four preexisting
DFM-FSM variants were code implemented, [iv] a new analytic function that can trans-
form the skewness-kurtosis of synthetic inflow to target values without changing exist-
ing statistics was derived and verified, [v] two other skewness-kurtosis transformation
approaches were derived and proved ineffectual, [vi] five easy-to-code computational
speedup techniques for DFM-FSM were introduced and quantified, [vii] two new meth-
ods to enable DFM-FSM to be computed on nonuniformly-discretized arbitrary bound-
ary geometries were developed, [vii7] a preliminary method to ensure the divergence
freeness in DFM-FSM was studied, [¢x] each DFM-FSM model stage was evaluated
by controlled studies of extensive-than-the-literature range of input variables and out-
put statistics within non-CFD and LES environments through decaying homogeneous
isotropic turbulence, homogeneous shear turbulence and smooth-wall plane channel flow,
[«] five LES post-solution verification approaches were reviewed and compared via these
building-block flows. In addition, horizontal axis wind and marine turbine flows were
explored by various means including DFM-FSM: [z4] for these explorations, in-house
codes were written and verified for the blade element momentum theory (BEMT), the
time-accurate Euler-Bernoulli beam theory, a BEMT-CFD coupling through the actua-
tor disk method, and the actuator line method, [x7i] hydrodynamics of a marine turbine
under decaying homogeneous isotropic turbulence with four different turbulence inten-
sities were investigated by wall-modelled & actuator-line modelled LES computations,
and twelve analytical wake models, [xii¢] the arbitrary mesh interface technique under
turbulent inflows was quantitatively assessed, and lastly, [xiv] considerable amount of

for-the-first-time observations and remarks were quantified and reported.
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Chapter 1

Introduction

1.1 Motivation

The primary objective of low carbon/renewable energy technologies on the basis of public
reason is to reduce mainly COs emissions from energy sectors in order to contribute to
meet the Kyoto Protocol obligations [31]. To date, the largest source of CO2 emissions
among energy subsectors is the electricity generation sector [13, p. 2] and this forms
(with heat generation) almost 42% of global CO2 emissions [15, p. 10, Fig. 10]. Moreover,
with the current policies in use, CO9 emissions stemming from the energy sectors were
projected to increase by nearly 84% from 2009 through 2050 [14, p. 7]. It is therefore
argued that the compliance of the Kyoto commitments could not be fulfilled without

low carbon/renewable energy technologies.

As a “good news story”, the last two decades have seen a noticeable development and
proliferation of utility-scale wind energy, which also underlay marine energy technolo-

1" The average levelised cost of (onshore) utility-scale wind power plants reduced

gies.
more than three times from 1980s to the early 2000s [19, p. iv, Fig. ES-1], to that of
conventional/advanced coal and nuclear power plants [32, Table 1-2]. In parallel, the
utility-scale power conversion from wind was increased by a factor of more than 45 at
approximately 22% per year from 1990s to 2010 in the world [12, p. 7], and 2.5% of the
global electricity demand was provided by wind power plants within the year of 2013 [14,
p. 5]. In addition to its increased competitive capacity, the future role of wind energy
within the energy sector gained further importance due to its weak correlation between

electricity costs and fossil fuel price variations, its more secure energy supply, and its

! Dynamics and prospectives of horizontal axis wind and marine turbines are in general deemed to
share similarities. For instance, a technical challenge in one of them may also be observed in the other,
or a numerical methodology being used in analyses for either of them may be utilised for the other.
Therefore, in this section, the motivational line of reasoning and relevant examples were limited to wind
turbines, and their applicability on marine turbines was presumed.
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potential contributions to emission reductions (no direct greenhouse gas/pollutant emis-
sion). As a result, the International Energy Agency [14, p. 5] predicted that 12% the
global electricity supply will be provided by wind energy by 2050, yet five years later,

the rising trend led to a revision in this prediction as 15-18%.

Research and development studies (R&D) has been the primary instrument in tackling
technical challenges in wind turbines to date [12, p. 2]. Also, a further decrement of
25-45% in current costs of wind energy is projected solely based on R&D by 2050 [14,
p. 5]. The estimated period of time for resolving non-technological issues related to
policies, finance and public acceptance is anticipated to be considerably short, and to
be completed by 2020 among many International Energy Agency member countries [14].
However, the estimated time-frame for technical challenges extends to 2030-2050 [14,
12]. It is therefore put forth in this study that wind energy technologies should be
further developed as a matter of priority to reach the aforementioned targets whilst

non-technological challenges are deemed to be of secondary importance.

Inflow through the rotor plane of a turbine is almost always spatiotemporal-variant due
to the atmospheric boundary layer, surrounding terrain, vegetation, wake ingestion from
neighbouring turbines, to name but a few. This poses significant technical challenges
particularly to the development of rotating components of utility-scale wind turbines [5,
p. 1072]. Also, the importance of dealing with these challenges manifests itself in records
of downtime events. For example, [23, p. 1] reported based on analyses of downtime
durations of wind turbines in Germany from 2003 to 2007 that the most frequently failed
first three turbine components respectively were gearbox, generator, and blades, which
are all rotating elements. Additionally, failures of these components are considered the
most unfavourable since they are at the centre of energy conversion processes and system
dynamics. As an example, [23, p. 1] maintained from the above downtime analyses that
the maintenance, and if need be, replacement of gearboxes shared nearly 40% costs of

an entire turbine system.

A positive correlation between the number of malfunctions in wind turbines and turbu-
lent wind conditions was noted by [3, p. 644] through analyses of wind turbine field data
from Germany and Denmark. Furthermore, [24, p. 191] postulated that uneven loads
caused by turbulence may be the primary reason for gearbox failures. Turbulence may
also cause undesired oscillations in mechanical element, load imbalances, exceedances
of the rated power, amplifications of bending moments, hence increments in fatigue
loads [29, p. 14], and swift-substantial power fluctuations considering typical response
rate of mechanical circuits is order of milliseconds [21, p. 2249]. Moreover, turbulence
was quantified as the second most influential parameter to power after mean wind speed
and before wind shear by [6] analysing roughly two thousand computations from a stan-
dard industrial turbine design tool. Even more significantly, [10, p. 255] asserted that
encountering turbulence likely plays a role in the decision processes that the wind tur-

bine industry avoids a number of wind turbine designs, which still has been studied in
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the academia, e.g. variable speed stall/active stall controlled turbines. Consequently,
assuming these deductions reflect the actuality, turbulence may be more costly than

assumed for wind turbines.

According to [12, p. 2-4], there are 46 technical issues which need to be addressed in
priority over the rest of the issues. As far as inflow-blade interactions are concerned, two
of these issues were highlighted as driving forces of future cost reductions: i. concepts of

rotor, i.e. blades and hub, and ii. time-accurate incoming wind assessment [19, p. vii].

Regarding the first driving mechanism, there is a trend towards taller and larger-in-
diameter rotors to increase the amount and rate of wind energy conversion. One of the
largest rotors today is 164[m] in diameter with 80[m]-long rotor blades [36]. Such a
size is approximately more than ten times larger in comparison to turbines from mid-
1980s [7, p. 30]. Although this trend may level off or even reverse itself in the future (e.g.
127[m] with 7.5[MW] rated power turbine [38] was erected, yet larger-yet-less-powerful
turbines could be found such as 154[m]-7.0[MW] turbine [26]), it is argued that a typical
utility-scale turbine’s rotor diameter will remain above 100[m] considering upscaling
rotors up to 250[m]| was found technically feasible [8, p. 12], and examples of relevant
studies/projects such as 141[m]-10[MW] design [9], [30, p. 12] were present. However,
larger rotors result in increments in blade flexibility. In addition to this, the emergent
need for lighter materials/structures to alleviate rotor weight increases due to diameter
enlargements further augments the blade flexibility. As a consequence, blades may

become more prone to adverse effects of incoming flow conditions such as turbulence.

With regard to the second driving mechanism, the research trend is towards develop-
ments for non-intrusive measurement techniques [14, p. 28] and numerical modelling
for the spatiotemporal-varying nature of incoming flow. Nevertheless, spatiotemporal
characterisation of inflow is not possible to high extents with the contemporary wind
measurement devices (e.g. cup anemometers) [22, p. 33|, or the inflow models given in

the IEC Standard 61400-1 [28].

In principle, the direct numerical simulation technique can be utilised to characterise
and evaluate inflow full-scale scenarios. However, to date, no adequate computational
resources exist to explore such high Reynolds number flows involving complex inflow-

turbine interactions.

A trending compromise between fidelity and computational costs to investigate inflow-
turbine interactions has been the large eddy simulation technique, which offered first
principles to industry and academia with low-cost scalability. Advancements, however,
brought new challenges, especially for spatiotemporal-variant inflow boundary condition
modelling of convection-dominant flows. As a consequence of chaotic turbulence dynam-
ics, stochastic and/or statistical characterisation of such boundary conditions was found
to be arduous, yet rewarding. Therefore, various inflow turbulence generation methods

were put forth to date.
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Two important generator classes among diverse inflow turbulence generation methods
are the digital-filter method-based [18] and forward-stepwise method-based [39] synthetic
inflow turbulence generators, on both of which there is a growing body of literature that

recognises their promising capabilities.

Relative to their various alternatives, both methods are easier-to-code, cheaper-to-run,
and able to generate spatiotemporal-variant turbulence-like time-series that contains
first- and second-order statistics. Moreover, unlike many other alternatives, both classes
do not require a computational fluid dynamics (CFD) setup, which make their compu-
tations in non-CFD design tools possible. On top of these, the inner tools constituting
these classes are shared by various disciplines such as turbulence modelling community,
signal processing, statistics and finance, to name a few. Being subject to research studies
for further developments from many angles gives another advantage to the two classes
to make advances through knowledge transfers. Nonetheless, as elaborated throughout

the thesis, there are still many aspects to be explored and improved.

Accordingly, with explorations of inflow-turbine interactions also in mind, this study
has set its aim to create an easy-to-reproduce knowledge unit wherein the digital-filter
method-based and forward-stepwise method-based synthetic inflow generator classes are
conceptualised, explored, and improved for large eddy simulation applications, particu-

larly of involving horizontal axis wind and marine turbines.

1.2 Outline

This thesis is designed as a three-paper thesis, and is composed of seven chapters includ-
ing the Introduction. In the pages that follow, the remaining of the thesis is structured

as follows:

In Chapter 2, the fundamental governing equations of incompressible single-phase fluid

dynamics are briefly derived, and presented.
In Chapter 3, the three paper-structured research studies are summarised.

From Chapter 4 to 6, the three paper-structured research studies are presented. The

titles of these papers respectively are:

e Paper-I: Faploration of digital-filter and forward-stepwise synthetic turbulence gen-

erators and an improvement for their skewness-kurtosis

e Paper-II: Evaluation of digital-filter and forward-stepwise synthetic turbulence gen-
erators with large eddy simulation of three canonical flows, and various model en-

hancements
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e Paper-III: Large eddy simulation and analytical wake model investigations on hy-
drodynamics of a marine turbine under decaying homogeneous isotropic turbulence:

Freestream turbulence intensity effects

In Chapter 7, i.e. Appendix, one peer-reviewed conference paper, and two accepted

conference abstracts are presented. The titles of these papers respectively are:

e (Presented) Efficient method for analysing fluid-structure interaction of horizontal

axis tidal turbine blades

e (Presented) OpenFOAM-Ezploration of digital-filter-based synthetic turbulence gen-

eration methods and an improvement to their non-Gaussian capabilities

o (Presented) An evaluation of digital-filter based synthetic turbulence generation

methods and improvements to their quantified deficiencies






Chapter 2

Governing equations

2.1 Reynolds transport theorem

As noted by [27, p. 98], the original forms of the physical laws relevant to incompressible
fluid mechanics, namely i. the conservation of mass and ii. Newton’s second law of
motion', were formalized for isolated systems through which neither energy nor mass is

allowed to pass.

The Reynolds transport theorem adapts these forms of the physical laws to arbitrarily-
deformable and -moving open systems through which either energy or mass can pass,
so that the laws could be applied to practical problems of fluid mechanics. The reader
is referred to [25] for the theorem’s derivation and its mathematical insight. The final

form of the theorem can be expressed as follows [25]:

T:/;f(xvt)d9+ / f(x,t) (u-n) d(09) (2.1)
Q(t) an(t)
1 2 ‘3’

where Q(t) is the time-variant material volume, 9€2(t) the time-variant boundary of the
material volume, n the boundary-normal unit vector, u the velocity of the boundary
elements, f(x,t) is an arbitrary quantity with an intensive property which could be a
zeroth-, first-, or second-order tensor, and F(¢) the volume integration of f(x,t) such
that F(t) = fﬂ( 0 f(x,t)dS2, an extensive property. The first term expresses the net rate
of change of F(¢) within the material volume, the second term the rate of change of
creation/destruction of F(¢) due to sources/sinks within the volume, and the third term
the rate of inflow/outflow flux of F(¢) through the boundaries.

More precisely, Euler’s second law of motion which extended Newton’s second law of motion to make
it applicable to rigid bodies instead of idealized point masses [17].
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Let G(f(x,t)) be a mathematical operator that performs the entire Reynolds transport
theorem onto the arbitrary quantity f(x,t). The conservation of mass and (linear)
momentum equations can then be obtained by replacing the argument of the operator

G with m and mu, respectively:

conservation of mass if f=m
G(f(x,t)) = (2.2)

conservation of momentum if f=mu

Two further simplifications can be made: First, the third term of Eq. 2.1 can be trans-
formed into a volume integral by means of the divergence theorem. Second, the volume
integration can be entirely removed to obtain a differential form of the theorem by the
Leibniz’s integral rule through assuming time-invariant Q(t) = €2, and collecting all the

terms on the left-hand side with a proper sign convention. Both steps are shown as

follows:
dfzf) = / % flx 1) d2 + / V- (f(x,t)u) dO (2.3)
Q(t) Q(t)
Wé’j”W-(ﬂx,oqu:o (2.4)

where the second term of Eq. 2.1 is assumed to be the net source within the material
volume. This form is called differential or strong form of the equation. Moreover, the
equation is in the conservative form. The non-conservative form can be obtained if the
divergence term is expanded into its components and then the continuity constraint is
applied. Their difference is often significant due to peculiar implications of numerical

implementations since their discrete forms are not the same.

2.2 The equation of the conservation of mass

The conservation of mass equation can be obtained by means of replacing f(x,t) in

Eq. 2.4 with mass m(x,t). Assuming b = 0:

om(x,t)

o TV (mlx ) =0 (2:5)

m(x,t) can be expressed as m(x,t) = p(x,t)0xdydz where p(x,t) is the volumetric mass
density, and §zdydz the dimensions of the time-invariant volume 2. Eq. 2.5 can therefore

be:
‘%g’;’” +V - (p(x,t)u) = 0 (2.6)
1 2
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where the constants dxdydz in both terms are cancelled out. The first term represents
the local rate of change of volumetric mass density p(x,t) = p, and the second term the

convective rate of change of mass flux?, pu.

The second term of Eq. 2.6, the divergence of a scalar-multiplied vector, can be expanded
as in the following;:
V- (pu) = (Vp)-u+p(V-u) (2.7)

Two assumptions are made. First, the Boussinesq approximation for density which
results in the omission of density variations within flow. Therefore, (Vp) - u = 0 since
(Vp), that is variations of the volumetric mass density within the field of interest at an

instant, is null [4].

The second is the assumption of the incompressibility of the flow, which implies 0p/0t =
0. Accordingly, Eq. 2.7 evolves into the following since p # 0:

V-u=0 (2.8)

The applicability of the incompressible flow assumption to wind turbine flows

In wind turbine aerodynamics, the incompressible flow assumption is the norm. One rea-
son is that the blade-tip maximum-Mach number is a priori constrained to 0.3 in nearly
all designs in order to protect blades from the effects of compressibility at the blade-
tip [33]. Further increase in the tip speed will reduce blade solidity as well as increase
the chances that peculiar flow events occur; hence, a blade may become more prone to
various damages. For example, one of the largest wind turbines, V164-8.0MW [35], was
designed with the tip-nominal-Mach number 0.26. Another reason is, as noted by [11],
the low-Mach number flow around the blade-root, i.e. as low as 0.01, which makes solving

the equations of compressible flow arduous in this flow regime.

2.3 The equation of the conservation of (linear) momen-

tum

The conservation of (linear) momentum equation can be obtained by means of re-
placing f(x,t) in Eq. 2.4 with m(x,t)u(x,t), or equivalently for the current scope,
p(x,t)u(x,t) = pu. With b # 0:

d(pu)
ot

2Note that the units of flux and flow rate are m”

flow rate is then kgs™.

+V-(puu)=b (2.9)

2.1

s7!, and s, respectively. e.g. The units of mass
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A number of manipulations is made in order to simplify Eq. 2.9 as follows. First, the

local derivative term is decomposed:

op
p@t + ua +V - (puu)=b (2.10)

Further, the divergence term of the product of the scalar volumetric mass density p, and

the dyadic velocity tensor uu are decomposed:

paﬁt + u% +(Vp) - (uu) 4+ pV - (uu) =b (2.11)

The dot product of the vector Vp and the dyadic tensor (uu), and the divergence of the

dyadic tensor V - (uu), can also be further decomposed:

pat—i-ug? +(Vp-u)u+p(u-Vu)+p(u(V-u))=b (2.12)

Rearranging this equation by the distributive law yields:

{gt-i-u Vu} {gtJer u+p(V- )}Zb (2.13)

The second term on the left-hand side of the above equation reduces to zero due to the

Boussinesq approximation for density and the conservation of mass:

{gt-i-Vp u+p(V- u)} {gt+v (p )}:o (2.14)

Therefore, the final equation of the conservation of (linear) momentum is:

Du

=p=— =b 2.1
pat tou-Vu=p (2.15)
1 2

where the first term represents the rate of change of momentum within the volume, the
second term the net inflow rate of momentum through the boundaries of the volume, b

the momentum source, and D(.)/Dt = 9(.)/0t+u-V/(.) the material derivative operator.

Navier-Stokes equations

Cauchy broke down the right-hand side of Eq. 2.15 into the terms due to 4. surface
forces, and ii. body forces [2]. The difference is that body forces act across a given body
whereas surface forces act solely on the bounding surface of the body. This resulted in

the so-called Cauchy momentum equation:

Du
pﬁ = bsurface + bbody =V.-o+ bbody (216)

where o is the second-order Cauchy stress tensor.
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bgurface can be further compartmentalized with regard to the direction of the surface

forces, and this can be represented within the Cauchy stress tensor:

bsurface = bpressure + bviscous shear T bviscous normal (217)

where pressure forces are normal to the bounding surface in a compressive way, viscous
normal forces normal to the surface in a tensile way, and viscous shear forces parallel to

the bounding surface.

Accordingly, the elements of Cauchy stress tensor can be expressed as:

Tex — P Txy Txz
OC=| Tye Tyy—D Ty (2.18)
Tzx Tzy Tzz — P

A common rearrangement to Cauchy stress tensor is to express the elements of pressure
and viscous terms in two separate tensors, mostly due to their distinctive effects. Addi-
tionally, viscous term vanishes if no velocity gradient exists (fluid at rest) [16]; therefore,

pressure can be examined by itself.

-p 0 0 Tex Tzy Tzz
oc=|0 —p 0|+ |7y Tyy Tyz| =-0pI+T (2.19)
0 0 —p Tzx Tzy Tzz

where I is the unit tensor, and T viscous (deviatoric) stress tensor, which is the difference

between the total (Cauchy) and mean (hydrostatic) stresses [16].

Taking the divergence of Eq. 2.19 in order to substitute it into Eq. 2.16 yields:

Vo=V - (—pI+T)=V-(—pI)+V.-T

=—(Vp) I+ (V-I)p+V-T (2:20)

where — (Vp) - I is equal to —Vp, and V - I = 0. Substituting the simplified expressions

into Eq. 2.16 produces:
Du

"Dt

Cauchy momentum equation is valid for all mediums (e.g. liquid and gas). The differ-

= —Vp +V-T+ bbody (221)

ence stems from the dissimilar constituent relations between “known” u and unknown
T, which are required due to the less number of equations than that of unknowns in
Eq. 2.21. It is stated that [34] the viscous stress terms can be modelled as a function of

corresponding strain rates, hence velocity gradients.

In order to establish such a viscous stress tensor-velocity gradient tensor relationship,
a number of criteria, named Stokes’ azioms, need to be fulfilled [1]: 7. no shear stresses

are generated (i.e. V-T = 0) when the fluid is at a standstill, 4i. viscous stresses and
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corresponding velocity gradients are linearly correlated, thus a Newtonian fluid, and #%3.

T is the same in all orientations (i.e. isotropy).

An explicit expression for this relation can be obtained by analysing the velocity gra-
dient term. While any tensor can be separated into its symmetric and anti-symmetric

components, the velocity gradient term can also be split into its parts:
Vu=S+Q (2.22)

where S is the second-order strain rate tensor (symmetric) and €2 the second-order
rotation rate tensor (anti-symmetric). It is assumed [1] that viscous stresses are produced
solely by the local rate of deformation (i.e. S) and €2 is responsible for only orientation
changes of bodies in question. In detail, S is expressed in terms of the velocity gradient
tensor as follows:

S=—-(Vu+Vu') (2.23)

DO =

The final expressions of the constitutive relations are shown for normal- and viscous

shear stresses in Einstein notation, respectively:

A——
8161‘ + 8xk

Tii = 244

(2.24)

where p = p(T) is the first proportionality coefficient of viscosity, and A = A(T") the
second coefficient of viscosity both of which are functions of temperature 7. The former
relates the linear deformation to the viscous stresses, and the latter relates the volumetric
deformation (i.e. Qug/dxp = V - u) to the viscous stresses [34].

The viscous stress tensor, T, therefore, can be expressed in terms of the strain rate

tensor as follows:

2uSzz + AV - u 21Szy 2155,
T = 2uSy, 2uSyy + AV -u 218y (2.26)
208 208y 2uS,, + AV - u

Eq. 2.26 is the compressible flow, Newtonian fluid Navier-Stokes equations. In order to
impose the incompressible flow assumption, two further assumptions are made: i. The
total volume of the body in question is preserved (i.e. V - u = 0), and éi. temperature
is constant, hence the constant first coefficient of viscosity, . Moreover, the second
coefficient of viscosity A automatically goes to zero since it is inherently related to

volume changes, which are assumed to be null through the first assumption above.

Expansion of V - T in each direction reveals a term of divergence of velocity, which is

null. As an example, the rearrangement of the z-direction component of V - T is shown
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below:

(V). = 5 (QuSer) + 5 (0S2) + 5 (2uszz+

} L) (8] o )

)b B )

U . N 0% n 9*w 49
"“axaz lL@xQ Fayaz T 1oy "az2
0 [ou o oY) Puw  Pw  oPw
Hoz dy 0z Koz H8y2 Koz

= uV3w
(2.27)

As a result, V - T reduces to uV?u =V - (uVu).

Finally, the differential form of incompressible flow, Newtonian fluid, single-phase Navier-

Stokes equations can be expressed as follows:

Du

pﬁ = —Vp+ uViu+ Fiody (2.28)

Space-filtered Navier-Stokes equations

Reynolds decomposition

Let ¢(x,t) is defined in a spatial domain 2 C R* where i = 1,2,3 and in a temporal
domain ¢ € [0,¢ ﬁml]. Reynolds decomposition is a signal decomposition method in which
the original signal ¢ is separated into a term on which a chosen “averaging” operator is
applied, ¢, and the rest, ¢'. Although “time-averaging” is mostly utilised as the operator,
other types of averaging are also eligible for the Reynolds decomposition [37, p. 529]. For
instance, with an arbitrary linear filter U, ¢ can be expressed as a summation of an

over-filter component ¢, and a sub-filter (fluctuation) component ¢’ around this filtering:

d(x,t) = d(x,t) + ¢ (x,1) (2.29)

The properties of Reynolds conditions

Any averaging operator utilised for Reynolds decomposition needs to fulfil a number of

requirements known as “the Reynolds conditions” [20, p. 207] shown in the following:

0P =09 (2.30)



14 Chapter 2 Governing equations

Linearity:
d+o=0+7p (2.31)
cp=cp & ©T=c— c=constant (2.32)
Commutativity: o B
% = g—f s = (z,y,2,t) (2.33)

Furthermore, ¢’ ¢/ # 0. Yet this assertion is true if and only if a correlation exists
between ¢’ and ¢’ [34, p. 64].

The set of space-filtered governing equations

Considering the aforementioned remarks, the application of a linear space filter on

Eq. 2.28 and the expansion of the first term? of Eq. 2.28 result in the following:

p {gltl +V- (uu)} = —Vp+uVia (2.34)

whose further modelling was elaborated in the following papers.

3 In intermediate steps of an actual computation of this term, the continuity constraint remains non-
zero; therefore, V - (uu) was not reduced to (u- V)u by the incompressibility assumption in practice.



Chapter 3

Summary

Paper-I

The performance of four synthetic turbulence generators that represent the majority
of capabilities of i. digital-filter-based (DFM) and ii. forward-stepwise-based (FSM)
generator categories is evaluated prior to transferring generator outputs into computa-
tional fluid dynamics simulations. In addition, a cheap-to-run and easy-to-code piecewise
closed-form function that transforms one-spatial-point skewness-kurtosis of a synthetic
time-series to a target value is derived and presented. The two main purposes of the
study are to support model users in their decision process for choosing the most conve-
nient type and their understanding of the models through a systematic exploration of
model variables and modelling stages, and to extend the Gaussian nature of these models
at a spatial point into non-Gaussianity for the first time. The evaluation test-bed con-
tains three benchmarks, each of which focuses on an isolated aspect of turbulent flows:
1. decaying homogeneous isotropic turbulence, 2. homogeneous shear turbulence and
i4i. plane channel flow with smooth walls. Results obtained reveal that: (i) the original
DFM provides the highest level of reconstruction for input one-spatial-point second-
order correlation tensors and two-spatial/temporal-point correlation functions; (ii) FSM
yields the best trade-off between the computational cost and the level of reconstruc-
tion; (iii) the use of exponential-form correlation functions as a model approximation is
more advisable than that of Gaussian-form, as the former removes the premature, sharp,
flow-type-independent drop in power spectra observed for the latter; (iv) the proposed
non-Gaussian functionality reconstructs the target one-spatial-point skewness-kurtosis
pairs of the test-bed flows virtually without altering their already-embedded statistics;
(v) the Lund transformation changes existing statistics only in statistically inhomoge-
neous lateral directions of a flow when anisotropic Reynolds stresses are present; and
(vi) a spatial variation of correlation functions on turbulence generation plane improves

the overall reconstruction fidelity in terms of correlation functions and power spectra.

15
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Paper-11

Digital-filter-based (DFM) and forward-stepwise-based (FSM) turbulence-like time-series
generator classes were conceptualised into five model stages within computational fluid
dynamics set-ups. In addition, two new methods enabling DFM-FSM to be seam-
lessly computed on nonuniformly-discretized boundaries were proposed alongside a new
mass-flux correction technique, and two new code practices for computational speedup.
Through four DFM-FSM variants representing the majority of capabilities of the classes,
each DFM-FSM model stage was explored by controlled studies of extensive-than-the-
literature range of input variables and output statistics with large eddy simulation (LES)
computations of decaying homogeneous isotropic turbulence, homogeneous shear turbu-
lence and smooth-wall plane channel flow. Moreover, five LES post-solution verification
metrics were reviewed and compared via these building-block flows. Among sixty-two
observations, the prominent findings were that: [¢] The traditional 80% turbulent ki-
netic energy resolution was quantified to be more robust than the modern LES post-
verification metrics considered. [ii] In the first three nodes, input Reynolds stresses
were consistently suppressed, particularly in shear components and lateral directions.
Divergence-freeness enforcement was quantified to be the driving factor. [i7i] Input
autocorrelations were suppressed to a more limited extent. Navier-Stokes equation al-
gorithms was deemed to be the cause. [iv] Streamwise evolution of Reynolds stresses
followed an asymmetric quadratic pattern rather than a monotonic pattern. [v] The
first DFM almost always produced the highest amplitude resemblances and the short-
est adaptation lengths for Reynolds stresses and wall shear stresses. [vi] Amplifying
input shear stresses reduced amplitude distortions downstream, and shortened adapta-
tion lengths. [vii] A parabolic relation was found between input length scale sizes and
amplitude/adaptation lengths of Reynolds stresses/wall shear stresses. [viii] Seamless
nonuniform DFM-FSM and using multiple input length-scale sets did not affect flow to
an important extent. [ix] Mass-influx corrections significantly improved pressure pre-

dictions and reduced computational costs, albeit no impact on velocity-based statistics.
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Paper-I11

A rigid model-scale experimental horizontal-axis marine turbine (so-called the Southamp-
ton turbine) was numerically investigated under decaying homogeneous isotropic tur-
bulence in absence of its tower. Twelve controlled computations were carried out
through wall-modelled and actuator-line-modelled large eddy simulations where the
three-dimensional turbulence intensity, I, was the control variable. The first four
computations excluded the blades, and examined the flow prediction effects of the ar-
bitrary mesh interface technique while ¢. stationary and éi. rotating, and iii. the pres-
ence of the turbine nacelle. The last eight computations explored the ways how three-
dimensional turbulence intensity affects the turbine and its surrounding flow fields. Four
turbulence intensities were tested, I,y _={0,10,20,40}[%]. In addition, twelve analytical
wake models from the wind and marine turbine literature were reviewed and assessed
with respect to the wall-modelled computations under the same range of I, . Among
many, the prominent outcomes were as follows: [i] The arbitrary mesh interface tech-
nique adversely affected amplitude-based statistics while the AMI-region was in rotation
by causing discontinuities on the AMI-region boundaries, and differences between the
inside and outside of the AMI-region. The effects were increased outwards from the AMI-
region centre. [¢4] However, the rotating AMI did not affect time-based statistics. [ii]
The stationary AMI did not affect flow fields. Furthermore, irrespective of freestream
Iy [iv] Longitudinal mean speed fields (U-fields) began to be affected by the pres-
ence of the turbine nearly 4 rotor radii upstream of the turbine; [v] maxima of changes
in U-fields occurred at around 2 rotor radii downstream of the turbine; [vi] U-fields
became virtually indistinguishable commencing around 6 to 10 rotor radii downstream
within the alignment of the turbine; however, were kept turbine signature by remaining
different from U-freestream despite turbulence entrainment; [vii] wake recovery rates as
a function of downstream distance followed a half-Gaussian-form. [viiz] No significant
deviations between the wall-modelled and actuator-line modelled computations occurred
in terms of the statistics quantified. [iz] The coefficient of variation, skewness, kurtosis
and maxima of longitudinal forces/moments were increasing functions of I, _ whilst
the mean and minima were inversely varying with I, . [*] An analytical model that
was derived and calibrated specifically for a similar marine turbine was quantified to be
superior to the other models in terms of wake profile and speed predictions, highlight-
ing the importance of the similarity level between turbine-flow particulars at hand, and

analytical model’s derivation particulars.
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EXPLORATION OF DIGITAL-FILTER AND
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The performance of four synthetic turbulence generators that represent the majority of capabilities of i.
digital-filter-based (DFM) and ii. forward-stepwise-based (FSM) generator categories is evaluated prior to
transferring generator outputs into computational fluid dynamics simulations. In addition, a cheap-to-run
and easy-to-code piecewise closed-form function that transforms one-spatial-point skewness-kurtosis of
a synthetic time-series to a target value is derived and presented. The two main purposes of the study
are to support model users in their decision process for choosing the most convenient type and their
understanding of the models through a systematic exploration of model variables and modeling stages,
and to extend the Gaussian nature of these models at a spatial point into non-Gaussianity for the first
time. The evaluation test-bed contains three benchmarks, each of which focuses on an isolated aspect
of turbulent flows: i. decaying homogeneous isotropic turbulence, ii. homogeneous shear turbulence and
iii. plane channel flow with smooth walls. Results obtained reveal that: (i) the original DFM provides
the highest level of reconstruction for input one-spatial-point second-order correlation tensors and two-
spatial/temporal-point correlation functions; (ii) FSM yields the best trade-off between the computational
cost and the level of reconstruction; (iii) the use of exponential-form correlation functions as a model ap-
proximation is more advisable than that of Gaussian-form, as the former removes the premature, sharp,
flow-type-independent drop in power spectra observed for the latter; (iv) the proposed non-Gaussian
functionality reconstructs the target one-spatial-point skewness-kurtosis pairs of the test-bed flows vir-
tually without altering their already-embedded statistics; (v) the Lund transformation changes exist-
ing statistics only in statistically inhomogeneous lateral directions of a flow when anisotropic Reynolds
stresses are present; and (vi) a spatial variation of correlation functions on turbulence generation plane
improves the overall reconstruction fidelity in terms of correlation functions and power spectra.

© 2018 Elsevier Ltd. All rights reserved.

1. Background to inflow turbulence generation

Turbulent flow regimes are the norm in nature. Hence, it is im-
portant that engineering applications represent turbulent effects
with reasonable fidelity. At many levels of industry and academia,
the contemporary trend in turbulence modeling is away from
semi-/empiricism towards first principles with minimal cost in-
crease. This trend, however, poses substantial ongoing challenges,
particularly for inflow boundary conditions of convective flows.
In theoretical and numerical means, spatiotemporal delineation of
these conditions, stochastically and statistically, is proved to be
challenging mainly due to the chaotic dynamics of turbulence and
various requirements on the fidelity.

For computational fluid dynamics (CFD), most of the inflow tur-
bulence generation approaches aim to satisfy all or a part of the

* Corresponding author.
E-mail address: Z.Xie@soton.ac.uk (Z.-T. Xie).

https://doi.org/10.1016/j.compfluid.2018.03.070
0045-7930/© 2018 Elsevier Ltd. All rights reserved.

prescribed conditions, i.e. up to 2nd order statistics, integral length
scales and Gaussian distribution of turbulent fluctuations. Some of
them are also able to produce reasonable autocorrelation and spec-
trum. Only a very few synthetic turbulence generation approaches
spend efforts on the 3rd order (skewness) and 4th order (kurto-
sis) statistics [1,2]. Lack of high order statistics modeling for turbu-
lence generation may significantly impact the modeling accuracy
for some applications, such as wind loading [3,4]. A rigorous as-
sessment of the abilities of current synthetic turbulence genera-
tion approaches, and a simple and efficient model to generate non-
Gaussian turbulence are of great interest.

Most of the inflow turbulence generation methods were classi-
fied into four main categories by Dhamankar et al. [5]: i. library-
based, ii. recycling-based, iii. transition inducement-based, and iv.
synthetic methods.! The last category may further be divided into
six subcategories on the basis of their methodology: i. linearised

1 [6, p. 553] and [7], however, regarded the first two as a single category.
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Fig. 1. A diagram showing synthetic turbulence generation with DFM/FSM. A
color-blind proof and print-standard-friendly color scheme produced by Cameron
[79] was used in this study.

turbulence model-based [8], ii. Fourier-based [9,10], iii. proper or-
thogonal decomposition-based [11], iv. synthetic-eddy-based [12],
v. digital filter-based [13], and vi. forward stepwise-based [14].
In this study, the scope is limited to the last two subcategories,
namely the digital filter-based methods (hereafter, DFM) and for-
ward stepwise-based methods (hereafter, FSM), whilst the two
arguably demand the simplest code implementation, yet provide
high model fidelity with relatively low computational costs. The
reader is, therefore, referred to [5-7] for the other categories.

Fig. 1 shows that DFM or FSM transforms a given random num-
ber set to a spatiotemporally new set involving a group of target
statistical measures.? A chain of arithmetic operations is performed
for the transformation. Within the chain, the target statistics ar-
range the properties and order of the operations, so that the real-
ized statistics of the new sets could match the target.

Although Borgman [15] earlier elaborated on a method in
which synthetic ocean wave processes are generated through
digital filtering of a group of statistics and white-noise time-
series®, the contemporary DFM was introduced by Klein et al. [13],
based on preliminaries from [16]. The authors developed a three-
consecutive-stage framework: (i.) random number set generation,
(ii.) embedding of arbitrary two-spatial-point autocorrelation func-
tions through digital filters, and (iii.) incorporation of one-spatial-
point second-order correlation tensor by a tensor transforma-
tion [17] (hereafter, the Lund transformation). In addition, the
authors simplified the second-stage by restricting autocorrelation
functions to Gaussian-form, so that filter coefficients can be ex-
plicitly evaluated, whose evaluation requires a root-finding algo-
rithm otherwise. The function-form choice was justified with the
same form observed in the viscous-dissipation stage of homoge-
neous isotropic turbulence.

In this initial DFM, five principal limitations exist, which subse-
quent studies attempted to alleviate: output (i.) contains no phys-
ical information beyond input statistics, (ii.) can only be gener-
ated on Cartesian grids,*(iii.) is not divergence-free, (iv.) is statis-
tically stationary, and (v.) obeys Gaussian probability density func-
tion (PDF) at a spatial point.

For the first limitation, di Mare et al. [18] investigated the
possibility and practical viability of inserting arbitrary-form au-
tocorrelation functions into the second model-stage. They pro-
posed a new algorithm in which standard linear algebra tools are
used to numerically solve a designed ‘bilinear difference equa-
tion’ to obtain digital-filter coefficients corresponding to the given
autocorrelation function. The authors held the view that Klein
et al’s [13, p. 658] simplification is decent for free-shear flows
whereas their more-information-carrying algorithm appears ad-
visable for wall-bounded flows [18, p. 10]. Afterwards, di Mare
and Jones [19, p.687] put forward another algorithm, which was
presented as computationally cheaper, more competent and ro-

2 Measures predominantly consist of i. one-spatial-point second-order correlation
tensor (i.e. Reynolds stress tensor) and ii. two-spatial/temporal-point autocorrela-
tion functions.

3 White-noise refers to a uniform power distribution across a frequency spectrum.
By contrast, herein, the Gaussianity of a time-series will only refer to the probability
distribution of amplitude

4 A Cartesian grid herein refers to a grid wherein cells are unit squares/cubes.

bust in comparison to their previous algorithm. Further, Fathali
et al. [20, p. 96] claimed that the third model-stage distorts
the resultant statistics from the second model-stage for highly
anisotropic flow fields. On this basis, the authors put forth a two-
stage-unified framework, which aimed to remove distortions and
embed two-spatial-point cross-correlations. Subsequently, Xie and
Castro [14] argued that the exponential-form functions are more
appropriate simplification than Klein et al.’s [13] Gaussian-form,
specifically for turbulent shear flows. Furthermore, the authors de-
rived FSM which was quantified equivalent-in-effect to, and yet
cheaper-to-compute than more complex digital filters. Then, the
second model-stage of DFM in the streamwise direction was sub-
stituted with FSM; thus, resulting in a hybrid DFM-FSM.

The second limitation was, on the other hand, not shared by
FSM, with which synthetic time-series generation on non-uniform
grids is possible. For DFM, however, Kempf et al. [21] replaced the
second model-stage with a diffusion process deemed equivalent
to digital filtering, so that synthetic time-series can be seamlessly
generated on non-uniformly spaced grids or on arbitrary boundary
geometries. In addition, Fru et al. [22, p. 328] purported that a hy-
brid of the methods from [13] and [21] was developed, which is
allegedly immune to this limitation. The authors, however, failed
to clearly describe what the new method is. Lastly, Dhamankar
et al. [23] enabled DFM to be used in curvilinear structured grids
without interpolations through generating time-series on a Carte-
sian grid which is inherently a one-to-one-mapped corresponding
curvilinear grid. Although the approach worked round interpola-
tion errors, new drawbacks of their own arose [23, p. 11].

The third limitation reportedly causes erroneous pressure fluc-
tuations [24, p. 1089], which was quantified by Kim et al.
[25, Fig. 11] for incompressible plane channel flows wherein sev-
eral orders of magnitude over-predicted pressure fluctuations per-
sistent across the computational domain were observed. In con-
trast, negligible alterations due to non-divergence were expected
and reported for velocity fluctuations [21, p. 76], [25, Fig. 11]. In
general, therefore, it seems that non-divergence can be anticipated
influential solely on computations where pressure is the princi-
pal field of interest. Considering these implications, divergence-
freeness was first imposed into DFM for homogeneous isotropic
turbulence by Ewert [26, p. 5] through devising solenoidal digital
filters. For non-homogeneous anisotropic turbulence, on the other
hand, [26, p. 7] was contented with a suggestion to use Smirnov et
al.’s [27, p. 3-5] transformation method. Similarly, Klein et al. [13,
p. 659] and Kempf et al. [21, p. 76] suggested a projection method
from [10] in order to divergence-free transition synthetic time-
series. None of the two suggestions were, however, tested to date.
From another viewpoint, Kim et al. [25] rendered the hybrid DFM-
FSM divergence-free by directly embedding synthetic time-series
into the momentum predictor equation in a pressure-velocity cou-
pling algorithm, in which case any non-solenoidal velocity field
could be transformed without additional costs.

Regarding the fifth limitation, which was not studied in the
DFM/FSM literature to date, evidence suggests that the frequency
of occurrence of various turbulence characteristics tends to follow
non-Gaussian distributions at a single spatial point. For instance,
Jiménez [28] reviewed the literature that the one-spatial-point
Pearsonian coefficient of kurtosis is approximately 2.85 (rather
than 3.00) for velocity fluctuations in homogeneous isotropic tur-
bulence. Even more pronouncedly, Moser et al. [29] reported for
Re=395 plane channel flow that the one-spatial-point Pearsonian
coefficient of skewness and kurtosis of velocity fluctuations vary
across from —0.8 to 0.4, and from 2.1 to 38.0, respectively.’

5 Skewness and kurtosis quantify the extent of PDF asymmetry and tail shape de-
viating from the normal distribution, respectively. Qualitatively, the former shows
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Apart from the above, eight more studies offered major changes
in various topics. For instance, Touber and Sandham [30, p. 104-
105] systematically extended the hybrid DFM-FSM to compress-
ible flows by generating thermodynamic fluctuations with syn-
thetic velocity fluctuations via ‘the strong Reynolds analogy’. Fur-
thermore, Breuer and Schmidt [31, p. 677] expanded DFM to be
utilised on interfaces of a hybrid LES-URANS methodology by for-
mulating a modeled kinetic energy equation as a function of syn-
thetic velocity fluctuations. Moreover, Anupindi and Sandberg [32,
p. 703] seamlessly coupled, stricter than the aforementioned, the
hybrid DFM-FSM into another LES-RANS methodology, wherein
flow quantities at RANS-side of an interface are time-accurately
sampled to create synthetic time-series at LES-side. Additionally,
Okaze and Mochida [33, p. 25] modified the Lund transforma-
tion of the hybrid DFM-FSM to include scalar fluctuations and
their complete correlations with flow variables although previ-
ously [34, p. 1313] utilised DFM to prescribe spatiotemporally-
variant scalars by omitting their flow-cross-correlations. The hybrid
DFM-FSM of [14] was extended by Kim et al. [35] with replacing
DFM in all directions; hence, leading to “pure” FSM. Last but not
least, Schmidt and Breuer [36] designated an approach where syn-
thetic time-series are introduced into a computational domain via
source terms in the momentum equation in order to freely deter-
mine the boundary location.

In DFM/FSM theory, arguably, no fundamental development was
followed. Nevertheless, transferable performance improvements
were put forth for the two DFM/FSM steps which are the costliest:
(i.) digital filtering, and (ii.) generation of Gaussian random num-
ber sets. For the former, Veloudis et al. [37, p. 9] advanced filtering
in frequency domain, which may reduce floating-point operations
per time-step (FLOPT) from O(n"){neN; ie{1,2,3)) to O(nlog;n). Addi-
tionally, Veloudis et al. [37, p. 10] assessed the potentiality of time-
step reductions of synthetic time-series generation within a more
restrictive environment (e.g. LES) without deteriorating temporal
accuracy. Alternatively, Kempf et al. [38] propounded filtering via
the separable convolution summation method’ [39, p. 404] where
convolution summations are consecutively performed on number
sets along each coordinate. As a result, a speed-up of FLOPT from
O(nf){j=3} to iO(n)(;-3; may be observed. Furthermore, the authors
devised a parallelization procedure with zero-inter-communication
by seeding pseudo-random number generators with constant pairs
of integers and corresponding grid node indices. For the latter
cost source, Xie and Castro [14] manipulated O (10) uniformly-
distributed random number sets into normal samples through
the central limit theorem. By contrast, Touber and Sandham [30,
p. 104-105] asserted that the Box-Muller’s theorem can reduce the
number of these sets to two.

Besides the known limitations, previous studies failed to fill
knowledge gaps in three main areas. First, although a number of
independent and consecutive model stages form DFM/FSM, no in-
vestigation was made on to which extent each stage performs its
task in isolation and interacts with the others. Second, all the re-
search to date quantified DFM/FSM as a whole with CFD whereas
the both are separate entities, and the latter causes metamorpho-
sis of time-series produced by the former. Therefore, the perfor-
mance of DFM/FSM itself, without the impact of CFD, remains un-
quantified. Third, most existing accounts either did not consider
‘buildding-block’ flows to evaluate DFM/FSM (e.g. no homogeneous
isotropic/shear turbulence study was performed with [14].) or did
not contain the complete set of fundamental assessment measures
(e.g. [13] did not provide any results of power spectral density
function.).

the dominant sign of the deviations from the mean turbulence quantities, and the
latter the frequency of occurrence of extreme events in turbulence.

Two-point One-point
correlation functions correlation tensor
/—/H
Stage 1 Stage 2 > Stage 3 > Stage 4
2 ¥ 2 ¥
Generate: Generate: Perform: Perform:
{r}(n) {b}(2N+1) bEr:{S}(M) a'S:{u}(M)

Fig. 2. A general view of DFM/FSM model stages for a one-dimensional field of
discrete points.

The lack of structured knowledge in the three areas, however,
hinders any attempts for theoretical capability-oriented improve-
ments in DFM/FSM, for conveying their benefits to a wider audi-
ence, as well as for decision-making of the most appropriate vari-
ant to the problem at hand. The aims of this study are there-
fore i. to advance our understanding of the aforementioned knowl-
edge gaps with the help of systematic explorations of model pa-
rameters and stages, and ii. to improve DFM/FSM capability port-
folio through implementing a non-parametric one-spatial-point
skewness-kurtosis transformation functionality.

To this end, a brief description of four synthetic turbulence gen-
erators including DFM and FSM is presented in Section 2, and
the new one-spatial-point non-Gaussian functionality is described
in Section 3. Section 4 presents three benchmark flows for tests
and the statistical measures used. The obtained results including
the assessment of the four synthetic turbulence generators and
the new functionality are illustrated in Section 5. Clear-cut con-
clusions alongside a discussion on remaining challenges are listed
in Section 6.

2. A brief description of four synthetic turbulence generators

2.1. Digital-filter-based and forward-stepwise-based synthetic
turbulence generators

DFM and FSM construct spatiotemporal-variant Reynolds-
decomposed fluctuation velocity (or scalar) fields,
{uix.1) e Q}{ieN:ie[1.3];t>0}' Both generators may be abstracted
into four consecutive and independent model stages as shown in
Fig. 2 for a one-dimensional field of discrete points.

The first stage is the generation of a set of random num-
bers, {r}-r; k jen:1<k+j<r}, Obeying the PDF of zero-mean
RTYR 1=0), (RT YR r2=1), independent
(R YR 1erj=0 for k # j) Gaussian white-noise.

In the second stage, a set of numbers ‘calibrated’ to two-
spatial/temporal-point correlation functions, {b}, is generated. With
DFM, the set is computed by Klein et al.’s [13, p. 657] relation be-
tween {b} and an autocorrelation function, p:

unit-variance

N
e
p~p+q ="
p(q,p) = T N (1)
p“p 2
2 b
j=—N
~——— N ——
known unknown

where (gen: 20 1S the lag number, p the maximum lag number,
{b}{|bj-2n+1:beg) @ set of filter coefficients, and {N}{jey:n=0) the
support of a filter. The diversity in DFM mainly arises from the
different expressions proposed to invert Eq. (1). In contrast, in FSM,
{b} is redefined by a group of integral length-scales weighted with
empirical constants and limits of integration.

In the third stage, {b} is embed into {r} via a mathemati-
cal operation, so that a new set, {s}, is constructed with a new
spatiotemporal stochastic pattern and yet consisting of correlation
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function statistics. While FSM simply uses element-wise multipli-
cation, DFM utilises convolution summation as follows:

N
sc=Fnk) = > byrgj (2)
j=—N

where {s}jsj-m:seq) IS @ set of digital-filtered numbers, and Fy a
linear, non-recursive, discrete filter operator performing a convolu-
tion summation on two finite sequences. In Fy, the two sets must
completely overlap; thus, producing only a subset of the conven-
tional full convolution summation. Accordingly, the size of the sets
is related as: R-(2N+1)+1=M.

In the last stage, the one-spatial-point correlation tensor is in-
corporated into {s} through the Lund transformation [17, p. 255]:
uj (X, t) = a;;(x) si(x, t) where a;j, a spatial-variant amplitude ten-
sor of second-order, is shown below:

(Ri)% 0 0
aj=|Rau/an (R —a3,)%° 0 S s (3)
R3i/an (Rsp —a21031) /a2 (Rsz — a5, —a3,)”

where Rj; is the (known) one-spatial-point correlation tensor in
units of variance. It should be noted that a; is conventionally
spatial-variant and temporal-invariant whereas there is no theo-
retical objection to its temporal variation.

2.1.1. Klein et al.’s method - DFM

Klein et al. [13, p. 657-658] approximated the right-hand side
of Eq. (1) as a Gaussian-form function of integral length-scales, so
that {b} can be explicitly evaluated. The proposition was justified
with the fact that autocorrelation functions of late-stage homoge-
neous turbulence have Gaussian-form. For a computational grid of
cubic cells with {A;};c, 33, constant grid size in a specific direc-
tion, the approximation to Eq. (1) in its discrete-form is shown be-
low:

N T (m,-A,-)z _ g mlz
p ~ exXp <—4 (Tl:A:)Z) = €xp (_4711‘2 (4)

where m is the rectilinear distance of the node in question to the
zero-lag correlation node, and n the length-scale size. Both are in
grid spacing units. Correspondingly, Klein et al. [13, p.658] derived
a closed-form expression for {b}:

05
N 2
—~ ~ ~ T Mm?
by~ /(5] as bli—ex (—2 n;) (5)
j=—N i
The validity of the approximation was shown to have two con-
straints: i. the length-scale size is limited to the range 2 <n; <100,
and ii. the support of the filter must at least be two times the scale

size, N; > 2n;.

2.1.2. A customized method in spirit of di Mare et al.’s method - DFM
The possibility of the direct inversion of Eq. (1) was investigated
by di Mare et al. [18] through an iterative root-finder algorithm of
Newton’s method, so that arbitrary-form of correlation functions
could be used in DFM. The main disadvantage of this method is
arguably deemed to be its difficult code implementation. In this
study, for this reason, a new approach with the spirit of [18] was
invented as follows. First, a given arbitrary-form correlation dataset
is curve fit to a chosen-form of a continuous function. Then, the
direct inversion of Eq. (1) is conducted on this curve-fit function.
Accordingly, for the study’s set of benchmarks, the following ex-
pression was devised as the most proper form of the function:

{b} =2[p] = #[¢{aexp(-bx) + cexp(-dx)}] (6)
where % denotes the chosen root-finder algorithm, ¥ the curve-fit
algorithm, and {a, b, ¢, d}{vcq) are the curve-fit parameters. Herein,

filter supports are sized to the point where correlation functions
drop below few percent of their zero-lag value.

2.1.3. Xie and Castro’s method - hybrid DFM-FSM

In contrast to Klein et al. [13], Xie and Castro [14, p. 454] mod-
eled the right-hand side of Eq. (1) as an exponential-form function,
which was deemed more valid for turbulent shear flows:

0 ~ exp <—C T |mi|) resulting in {Tﬂi ~ exp <_Cn|m,~|>
2 n; n

i

(7)

where c=1 is a constant. Furthermore, to reduce computational
costs, the streamwise convolution summation in DFM was replaced
by a simpler and a quantitatively justified equivalent procedure,
named FSM [14, p. 456]. Therein, streamwise integral length-scales
are input through temporal-correlation of two planes of {si}, which
are generated at successive time-steps:

sV (y.z.t+Ar) = s (y. 2. 1) exp (-CTZ[ ?f)

AN
+ s (y, z, t+At){l—exp (—cn _;)} (8)

where {s'¥} is a temporal slice of {s'} including transverse length-
scales {Lo}q c(y, 23y at time ¢, {s'¥} an auxiliary temporal slice gen-
erated with a new set of random numbers in the same way with
{(s'¥}, T streamwise Lagrangian time-scale computed with Taylor’s
frozen turbulence hypothesis [40].6

In their discussion of the default value of c=1, Kim et al. [25,
p. 57] put forth ¢=0.5 is more apt to use for their plane channel
flow CFD simulations. In view of this statement, herein, three val-
ues of c={1,0.5,0.25} were tested via the three benchmark flows
without CFD (Section 4.1). For the majority of the scenarios, c=0.5
yielded the highest level of similarity to the benchmarks in terms
of correlation functions and power spectra (not reported). There-
fore, Kim et al's. [25] preference was used throughout the study
as the default model constant instead of the original value of c.
It should be stressed that ¢=0.5 is not universal, yet a solution of
model calibration to the flows in question. One may thereby seek
other values of c¢ for other types of flows.

2.14. Kim et al.’s method - FSM

Xie and Castro’s [14] one-direction of FSM was extended to all
directions by Kim et al. [35, p. 135]; hence, leading to the use of
convolution summations of DFM being abolished. FSM is subse-
quently applied to each direction in an arbitrary order to yield {s'}
as follows:

0.5
s, (t, j+1.k) = s, (t. j. k) exp (— %) +r1(t, ], k)[l-exp <— ?)}

y
(9a)

0.5

. . . . C . . 2c.
Sy, (&, J, k+1) =5, (t, j. k) exp (7 n—i) + 5y (t, J, k){l—exp (f n—;)}
(9b)

204 0.5

St (41, j. k) =i, (¢, j. k) exp (— ’%) (A Ic)[l—exp (— YTX)I
(9¢)

where {¢;(X)}{ic(xyz}) IS @ set of constants to scale {n;}, and {r} a
planar set of random numbers.

6 According to the hypothesis: Ly=U, T, where Ly is a streamwise integral length-
scale, Uy, mean flow speed in the same direction, and T streamwise Lagrangian
time-scale.
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3. Development of the one-spatial-point non-Gaussian
functionality

Transformation of skewness-kurtosis pairs of DFM/FSM at
a spatial point was studied by means of three new ap-
proaches: i. non-Gaussian random number set input-based ap-
proach, ii. deterministic deconvolution-based approach, and iii. PDF
transformation-based approach. The tests showed that the first two
proposed approaches were proved to be ineffective, and the third
approach to be promising, which is accordingly introduced in the
following. It is however still deemed to present what the first two
sound methods are for the reader’s examination; thus, presented in
Section SA.1-2.

3.1. PDF transformation-based approach

The approach is based on a transformation function. It is in-
troduced as a new model stage between the 3rd and 4th stages
illustrated in Fig. 2. The function is a piecewise closed-form func-
tion shown in Eq. (11), which was derived by means of two con-
cepts: i. the memoryless nonlinear transformation method (MNT;

) uh(x,t) — v
— ¢ sinh | ——— | -pv g,
oy 1)

o}, ) = 4 exp {ul . 1)}
-1

1 v — ui(x,1)
~— Ritep | —"| b s
opB 6

also known as the zero-memory non-linear transformation) [41,42],
and ii. the Johnson system of PDFs [43].

MNT is the core concept of the current family of non-Gaussian
process generation methodologies. Its main formulation was pro-
posed by Grigoriu [42, p. 611] as:

}OQ(X’ t) = gi{ug(x’ t)} = F}o_il {(bu;{u;(xv t)}} (10)

/
where u] is a process (known input) obeying a source PDF, 10; cor-
responding transformed process (unknown output) obeying a tar-
get PDF, ¢,/ the source cumulative distribution function (CDF), and

1
F-} . . .
0; the target inverse CDF. The condition of the existence of the

. . = 71 .
relation is satisfied if git} FIOZ: {Pu {1} is a monotonic func-
tion. Through the concept, a given u}, obeying a Gaussian CDF ¢,
1

/
could be transformed into a new process, 10, obeying a target non-

Gaussian CDF £/,
The first potential drawback associated with the use of sole
MNT is that Eq. (10) may modify spectral contents of uj to-

wards Ioi [44, p. 19] due to the non-linearity of the function [45,
p. 1196]. Whereas, as a rare counter-argument, Smallwood [46,
p. 3] claimed that no substantial change should be expected in
the spectral content of u}, because this is mostly determined by
zero-crossings, which are not significantly altered by Eq. (10). The
second drawback is the high computational cost of interpolations
to execute Eq. (10) for each spatial-temporal point of random pro-
cesses obeying arbitrary-form PDFs.

For a process, arbitrary-form non-Gaussianity implies infinite
combinations of infinite-order non-standard moments; hence, has
a broad meaning. In the context of turbulence, however, non-
Gaussianity may be restricted to non-standard skewness and kur-
tosis only due to the fading physical interpretation of the ever-
increasing level of abstraction in higher moments and their dimin-
ishing distinguishable impact on the physicality of turbulent flow
developments.

With this constraint, identification of a unique and closely-
approximated non-Gaussian distribution that can be customized
to any valid combination of the first four central moments may
be achieved through the Johnson system of distributions [43]. This
system includes all valid skewness-kurtosis pairs (illustrated in [47,
Fig. 1]) through its three members: i. Sy unbounded, ii. S; log-
normal (a transition line from i to iii) and iii. S bounded fami-
lies [43, p. 156]. The readers are referred to [47] for the basic char-
acteristics of the system.

More importantly, the substitution of the Johnson system into

/
Eq. (10) yields a piecewise closed-form expression for 0;, which is
easy-to-code and cheap-to-execute, as follows (for derivation de-
tails, refer to Section A.3.1):

for Sy - Unbounded
for Sy, - Log-Normal (11)

for Sp - Bounded

where y(B1, B2) and §(B1, B2)(s-0) are the shape parameters
of the Johnson system, wy(y.d8) — oys(y.d) the first two
theoretical normalized moments of the corresponding families,
B95=13/03 and By=j14/0* the Pearson’s moment coefficient of
skewness and kurtosis, 3 and 4 the third and fourth central mo-
ments, and o the standard deviation. The expression leads to two
further questions: for a (81, B,)-pair, i. how to choose the appro-
priate family, and ii. how to compute y-§.

The criteria to choose one of the families rely on the relative
position of the target skewness-kurtosis pair values with respect
to the Cullen and Frey graph’s log-normal curve [47, Fig. 1]. The
curve was obtained by a parametric system of equations in [43,
Eq. (14)]. The set of equations, however, does not lend itself to
a direct relation between skewness and kurtosis; thus, resulting
in difficulties in the selection. Such functional relation, g(8,)~ 81,
was then derived by Tuenter [48], and summarized in Eqs. (A.46)-
(A.50). Accordingly, the following conditionals determine the fam-
ily member: Sy, if g(B2)>p1; St if g(B2)=B1 and Sp, if g(B2)<B;- In
addition, the region wherein pairs cannot exist was defined as:
B>-B1-1<0 [43, Fig. 2].

After finding the family that the pair belongs to, y-6 can be
computed through a moment-matching technique, where the fam-
ily’s theoretical expressions of skewness-kurtosis are solved for
y-8 with the help of root-finding algorithms. Parameterizations
which considerably reduced the complexity of the root-finding
problem were proposed by Tuenter [48, p. 310] for Sy, and [49,
p. 746-748] for Sg. Herein, these set of equations were manipulated
in compliance with the requirements of the study and reported in
Egs. (A.12)-(A.17) for Sy and Egs. (A.18)-(A.45) for Sg.

Table 2 compares the typical number of computational opera-
tions performed by Eqgs. (10) and (11). As shown, the new method
eliminated all algorithms and reduced the number of elementary
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function operations. Moreover, the data preprocessing demand is

less for the new method. For instance, the pairing between y-

6 and B1-B, is a bijection; therefore, for each g;-8, pair, y-6

is computed only once and for all whereas, for the same f;-8,
1

pair, Eq. (10) needs to store an interpolation table of F*OQ values
that also need to be computed by numerical integrations. Spatial-
variation of B1-8, across inflow plane, on the other hand, expo-
nentially amplifies this contrast.

4. Methodology
4.1. Benchmarks and numerical settings

The four methods and the non-Gaussian approach were imple-
mented into OpenFOAMv1612+ [50], and tested through a test-bed
of three benchmark flows. The methods sorted by descending the-
oretical FLOPT are labeled as: i. Custom [18], ii. Klein et al. [13],
iii. Xie-Castro [14], and iv. Kim et al. [35]. The chosen methods
represent the majority of DFM/FSM capabilities and varieties. The
test-bed involves three ‘building-block’ flows: i. decaying homo-
geneous isotropic turbulence (HIT; the case of M=0.0508) [51], ii.
homogeneous shear turbulence (HST; the case of h=0.305) [52],
and iii. plane channel flow with smooth walls (PCF; the case of
Re;=395) [29], each of which focuses on an isolated aspect of tur-
bulent flows. In this study, the finite-volume method and Navier-
Stokes equation models were turned off in order to prevent any
hard-to-measure distortions in output statistics of the methods.
The details of the benchmarks and numerical set-ups are given in
the following.

4.1.1. Common numerical settings

Each benchmark reports measurements for several test sections.
For each benchmark, one of these sections was chosen, and cor-
responding time-variant planar flow field was approximately re-
constructed by the methods. Then, the level of reconstruction was
evaluated through a set of statistical measures shown in Table 1.

The dimensions of the planar physical sections were repli-
cated in the numerical models. A Cartesian coordinate system in
an inertial frame of reference, #=(0O, ex, ey, e;), was defined by
x.¥.2) » = (1,2,3) » wherein x is the longitudinal (mean flow di-
rection), y the vertical, z the transversal axis (statistically homo-
geneous direction for HST and PCF), and O the origin at the left-
bottom corner of the planar numerical domain.

Three grids with the refinement ratio of 2.0 were generated for
each benchmark. The planar domains were uniformly discretized
into squares whose centroids store synthetic turbulence fields. Es-
timations for the upper- and lower-limits of the spatial resolu-
tions were made in accordance with large eddy simulation (LES)
requirements. An upper limit may be deemed as the minimum
spatial resolution required for a conservative direct numerical sim-
ulation: A <2(v3LUZ3)%25 where A is the isotropic grid spacing,
v the kinematic viscosity of flow, L isotropic integral length-scale,
and U, the characteristic flow speed.” A lower limit, as proposed
by Baggett et al. [54, p. 62|, may be set A~0.1L¢, where L¢ is an
integral dissipation scale, and order of L [54, p. 53]. The spatial-
compatible temporal resolution, A, was then computed consider-
ing the constraint of the theoretical pressure-velocity coupling al-
gorithm of PISO [55]: Ar<UZ1A.

In order to make plausible inferences about the statistical popu-
lation of interest, the minimum sample size required at a 98% con-

7 For the smallest resolved structure of size A, the maximum grid spacing could
be 0.5A due to the Nyquist theorem [53, p. 10]. Assuming A ~1, where 1=
(v3/€)%% is the Kolmogorov length-scale and € ~ U2/L, then the maximum spacing
roughly becomes 2(v3LUZ3)02%,

fidence level, n,;,, was estimated as 13, 000 elements via the fol-
lowing expression [56, Section 7.2.2.2.]: nmm=(z1_a/2+z1_ﬂ)2052“/02
where z is the standard score in a normal distribution, «-f8 the
type I-II error rates, o.s=1 the forecasted standard deviation of the
sample, and CI the confidence interval. Moreover, statistical con-
vergence was qualitatively assessed through the time-series of the
first four sample moments whereas no constraint, such an iterative
linear solver requires, exists on the convergence.

4.1.2. Decaying homogeneous isotropic turbulence — HIT

HIT may be considered as the initial step in any turbulence
model benchmarking whilst, in particular, any cross-correlation in
its statistics is ideally zero. Through HIT, therefore, the isolated role
of each model stage on the final output is expected to be revealed
without cross interactions.

As a benchmark, from [51], the stationary-grid experiment
of approximately isotropic decaying turbulent flow was used.
The utilized experimental scenario belongs to the measure-
ments at 42M downstream the turbulence generation grid, where
M=0.0508[m] is the grid mesh size. At 42M, the mean lon-
gitudinal flow speed is Uc=12.7[ms"!], and Reynolds number
based upon Taylor micro-scale, A, is Re;=71.6. For the non-
Gaussianities in HIT, Jiménez et al. [57, p. 71] numerically
and Jiménez [28, p. 146] theoretically demonstrated that S, ~
2.85, which is independent of Re [57, p. 70].% The set of in-
put statistics is comprised of one-spatial-point normal-anisotropic
correlations, and longitudinal and transverse integral length-
scales, which respectively are: {(u};)?}(ic(1 2 3)=0.049284[m?s2],
{W}{i#j}=o.oo, Liong=0.024[m] and Lirans=0.0127 [51, p. 299].

The dimensions of the planar numerical domain were speci-
fied as (y=10M, z=10M ~ 20L;,,) in order to resemble Dietzel et
al.’s [59, p. 119] 10M preference for their HIT tests. The spatial and
temporal resolutions of the domains, respectively, were {64, 128,
256}y node per domain edge, and {(0.1, 0.05, 0.025)[t* ]}y, Where
t*<UM™1A;. The duration of the tests was 10.32[s]~ 20 pass-
through in which each sample contained more than 15, 000 ele-
ments.

4.1.3. Homogeneous shear turbulence - HST

Towards real-world turbulence, HST could be considered as a
transition step wherein large-scale anisotropy is partially incor-
porated into HIT; nonetheless, the statistical uniformity in space
and homogeneity in spanwise direction reduces the sophistication
of the flow. By means of HST, isolated effects of a single one-
spatial-point anisotropic stress and cross-integral length-scale were
sought.

The benchmark was the experiment of virtually transverse
homogeneous and uniform shear turbulent flow from [60]. The
chosen scenario was based on the experimental flow field at a
downstream plane of x;/h=11.0, where h=0.305[m] is the height of
the shear-turbulence generator at the experiment inlet, and x; the
horizontal distance to the generator. At the plane, the mean shear
is dU;/dx,=46.8[s™'] and the mean longitudinal flow speed at the
plane centerline equals to Uc=12.4[s71]. Furthermore, Tavoularis
and Corrsin_[60, p. 321] experimentally found that Bix=-0.222,
,31y=0.162, B1,=0.00, B,,=0.10, B,,=0.20 and B,,=0.30. The random
error ranges were /§1 +0.032 and ,32 +0.05. The input set of
stresses and scales contains: (u)2=0.475[m?s2], (u})?=0.165,

(1})?=0248 and ] uj=-0.126; Ly;1=0.057[m], Ly;=0.01311,

L331=0.01938, Ly; 5=0.01881, Ly;3=0.01425, Ly =L, 3=0.006555

8 For HIT, 31 was assumed zero as a consequence of a lack of thoroughly exam-
ined data (despite some reports such as 8; = 0.051 in [58, p. 310]).
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and L33 5=L333=0.00969° [60, p. 320, 329, 334]. The values of
the last four scales were derived by employing the isotropy
assumption, e.g. 0.5Ly; 1=Ly; .

The dimensions of the domains replicated those of the exper-
iment as (y=h,z=h ~ 7Ly; 7). The spatial resolution of the three
grids were: {64, 128, 256}ysr node per domain edge, and the cor-
responding temporal resolutions: {(15.6248, 7.8124, 3.9062)[t*|}usT.
where fﬁ5T=1000Uch_1 A¢. The test duration was 7.6864][s], and the
samples included at least 40, 000 elements.

4.14. Plane channel flow with smooth walls — PCF

The majority of real-world turbulent flows is bounded by at
least one solid surface. Therefore, a fundamental wall-bounded
flow, PCF, was utilised to evaluate the capability of the methods
in relation to wall effects on flow statistics. In addition, the recon-
struction of spatial-variant integral length-scales across flow plane
was examined with the aid of PCF.

The benchmark was hinged upon [29] direct numericual simu-
lation of statistically stationary, pressure-gradient driven, fully de-
veloped plane channel flow with smooth walls, wherein the fric-
tion velocity, ur, and channel half-width, §, based Reynolds num-
ber is Rer=u;8/v=395 [29, p. 943]. The input set, including 8; and
Bo, is large to show in full herein; for this reason, it can be fetched
from the web page of [61] as text files.

The dimensions of the domains were: (y=28,z=m§). The spa-
tial and temporal resolutions of the grids were in turn: {(64,
100), (128, 201), (256, 402)}pcg and {(8, 4, 2)[t*]}pcr, Where
f§CF=100Uc3_1At with the test duration of 25[s] containing at least
200, 000 elements.

4.2. Statistical measures

The tests were conceptualized into two main branches: i. pre-
cision tests, wherein the model stages were investigated whether
they perform their assigned tasks when they are in isolation, and
when they interact each other; and ii. accuracy tests, wherein the
CFD-free performance of the models in terms of the level of flow
reconstruction fidelity was quantified and compared to the test-
bed. In Section 2.1, the model stages were elaborated. For the fol-
lowing plots, the stages were labeled as follows: the incorpora-
tion of two-spatial/temporal-point correlation functions: 3rd stage,
incorporation of one-spatial-point correlations: 4thstage, and PDF
transformation-based skewness-kurtosis transformation approach:
NG stage.

The flow reconstructions were explored mainly via six statistical
measures: i. statistical weak stationarity, ii. statistical weak ergod-
icity, iii. first four standardized central moments, iv. one-spatial-
point correlation tensor of second-order,'? v. two-spatial/temporal-
point correlation functions, and vi. one-dimensional one-sided
power spectral density functions. The exact expressions of the
measures are summarized in Table 1. In a simulation, each numer-
ical domain node accommodates a time-series of velocity vector.
After computing sample statistical measures for the time-series,
the measure averages were performed in statistically homogeneous
directions. Moreover, whenever suitable, statistics obtained from
the test-bed flows and method outcomes were quantitatively com-
pared each other with the help of discrete Fréchet distance [62-64],
which is a metric that quantifies the level of similarity between
two arbitrary curves. A code from [65-67] was utilised to compute
the metric, which is briefly explained in Section A.4.

9 For Lj 1, ij denote the directions of two velocity components of interest, and k
the measurement direction.

10 The term can also be expressed as Reynolds stress tensor when scaled by the
density.

4.3. Code practices

In terms of computational cost of DFM/FSM, two model units
are the most expensive: i. Gaussian random number generation,
and ii. convolution summation.

The former ideally demands i. high computational speed,
and samples that are ii. statistically independent, and iii. fast-
convergent to the normal distribution. To that end, in litera-
ture, Xie and Castro[14] used the central limit theorem wherein
0(10) of uniformly-distributed random number sets are first gen-
erated, and then manipulated into Gaussian samples. Later, Tou-
ber and Sandham [30, p. 104-105] pointed out that two uniformly-
distributed sets are adequate for this purpose if the Box-Muller’s
theorem is used instead. However, Thomas et al. [68] quantified
that the both approaches (and a number of other Gaussian ran-
dom number generators) could not fulfil the three aforementioned
properties satisfactorily and proportionately. The Ziggurat algo-
rithm [69], on the other hand, came to the forefront in their com-
parisons as the optimum generator [68, p. 5]. Accordingly, in this
study, Eddelbuettel’s [70] C++ implementation of a modified Ziggu-
rat algorithm [71] was utilised to generate Gaussian random num-
ber sets.

The conventional convolution summation requires FLOPT of
O{[(HinﬂRm)(an:]Nm)]{ig(zs)}}.” In order to decrease this cost,
Veloudis et al. [37, p. 9] reminded first that convolution in
the frequency domain is only an element-wise multiplication,
thereby the computational time complexity may be reduced by
O{IIl _ Nm/log{IT _Rm}}. The following was then proposed for
Eq. (2): {s}=ZY{Z#{b}.#{r}} where .Z is a discrete fast Fourier
transform operator and .#~! its inverse. Note that {b} is Fourier-
transformed only once per simulation. Apart from this proposition,
the separable convolution summation method [39, p. 404] was
suggested by Kempf et al. [38] to evaluate Eq. (2):

N, Ng N

{S} = Z Z Z bijk I, n+j, o+k
=-Np j=-Ng i=-N,
N, Ng N

Z Z Z liquk rm+i,n+j,o+k

k=-N, j=-Ng i=-N,

Np Ng N;
Z P Z qd; Z l; Timsi, n+j, o+k (12)

k=-N, =N |i=N,

In virtue of this method, the theoretical speed-up becomes in
the order of O{ITi  Np/i Np}.'? The complexity ratio be-
tween the Fourier and separable convolutions then turns out to be
O{%i _Nm/log{ITi _ Rm}}. Considering R>>N in DFM, the Fourier
convolution is theoretically expected to be O(1)-0O(10) faster than
the separable convolution. Yet the tests in this study have sug-
gested that the two may deliver considerable and comparable per-
formance gains, likely due to the implementation-algorithm depen-
dent effects.

5. Results and discussion

In order to avoid duplications, the computation results from all
test-bed scenarios were grouped in terms of their common and
distinct characteristics. The premises supporting the same argu-
ment were presented through representative evidences from one of

1 For instance, R, denotes the size of random set in the 2nd-direction, and Nj
that of the filter coefficient set in the 3rd-direction.

12 Another method, which has not been utilised in DFM, is the helix trans-
formed [72] convolution, where multi-dimensions are regressed to one-dimension.
In tests, however, its cost reduction was observed to be inconsiderable.
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the benchmarks, and were denoted with a phrase ‘representative-
to-all' to make clear when the concluding remarks are valid for all
scenarios. Furthermore, the spatio-temporally grid independent re-
sults were reported, which belong to the following numerical do-
mains: {64}y, {64}ust and {64, 100}pcr node per domain edge.

5.1. The first four one-spatial-point statistical moments

The 4th model stage requires that the sets of the 3rd stage out-
put, {s} of Eq. (2), has zero-mean and unit-variance [13, p. 656].
The majority of the literature presumes that the requirement is
automatically fulfilled. Veloudis et al. [37, p. 8-9], however, held
an opposite view that the 3rd stage generally alters the zero-mean
unit-variance of the random number sets. Therefore, they proposed
a renormalization of {s} to ensure the requirement is fulfilled.”
The authors nevertheless did not present any quantification to sup-
port this objection.

To assess the view, the sample mean and sample standard devi-
ation of each node-time-series were computed at each stage of the
models. Further, the arithmetic average and variance of all these
sample pairs were calculated. Table 3 presents a representative-to-
all HIT results for this quantification. Data in the table shows that
the order of magnitude of changes in zero-mean and unit-variance
due to the 3rd stage is around 0.001 with a variance of around
0.0001. The effect of the non-Gaussian stage is, on the other hand,
several decades lower than that of the 3rd stage. Moreover, the
observation is consistent across DFM/FSM methods. Contrary to
Veloudis et al.’s [37] argument, the study did not find a signifi-
cant effect of the 3rd (as well as the non-Gaussian) stage on the
zero-mean and unit-variance. In addition, the low variance indi-
cated the level of effect is almost the same across stochastically
and statistically different node-time-series. The renormalization re-
quires operations of an addition, a summation, an exponentiation
and a square-root per grid-node at each time-step. More impor-
tantly, the time-series throughout the duration of a computation
needs to be known a priori, because time averages should be per-
formed for the normalization. This may demand large data stor-
age and complicate on-the-fly computations. It is thus suggested
that the renormalization is redundant in terms of its effects, and
its omission is advisable to avoid extra cost and complications.

Following the first two moments, the skewness-kurtosis pairs
of the benchmarks were reconstructed through the new PDF
transformation-based approach, Eq. (11). Figs. 3 and 4 illustrate
representative-to-all PCF skewness and kurtosis results, respectively.

In the both figures, the 3rd stage’s skewness-kurtosis pairs
closely follow the values of (0-3). This confirms that the pairs
produced by the original DFM/FSM is Gaussian. This also corrob-
orates the presumption that the input set of statistics as it stands
does not automatically develop higher-order moments during the
flow reconstruction. By contrast, as shown in the figures, the new
non-Gaussian stage helped DFM/FSM to closely reconstruct the
skewness-kurtosis pairs of the benchmark in terms of magnitude
and patterns despite their spatial variation across a considerable
range of pair combinations. Additionally, in the non-Gaussian stage,
no appreciable differences were observed among DFM/FSM meth-
ods. This finding implies that the different 3rd stages of the meth-
ods do not affect the subsequent non-Gaussian stage outcomes.

The 4th stage needs a closer look, because [20, p. 96] put for-
ward the idea without quantification that this stage, Eq. (3), alters
the statistics constructed in the previous stages. The reasons and
extent of the alterations were however not examined therein as
well as in the literature. Fig. 3 and 4 may provide some insights
into the argument.

13 As an example, [38, p. 59] used the renormalization.

In fact, the v-component skewness-kurtosis pairs were observed
distorted by the 4th stage. The maximum change due to the 4th
stage in skewness was around 10% and in kurtosis 5%.'* The level
of distortion was gradually increased with the distance to the
Gaussian values; nevertheless, the overall benchmark pattern was
preserved in the numerical results. What's more, the asymmetry
of the distortion for the same v-skewness magnitudes at different
channel heights implied that the magnitude of skewness-kurtosis
pairs and Reynolds stress tensor components determine the distor-
tion level in a nonlinear interrelation.

On the contrary, no 4th stage effect was found on the
skewness-kurtosis of u-,w-components. This discrepancy stems
from Eq. (3). In the 4th stage, the amplitude of {s"}-sets is solely
multiplied element-wise by time-invariant a;; whereas the oper-
ation adopted for {s'}-sets includes a multiplication and an ad-
dition: i.e. v=s"ay;+s”ay. In the former, the sole multiplication
causes the same scaling at two separate points of {s“}-sets in
space and time, thereby the two-point correlation functions as well
as one-point moments of the sets remain unchanged. In the lat-
ter, however, the addition of a stochastic {s%}-set distorts the am-
plitude proportionality between any two-spatial/temporal points
within a {s"}-set; hence, distortion in embedded statistics. This
disruption should also be detected for w-component while its
4th stage consists of three multiplication and two additions: i.e.
w=s¥ a3y +s¥as,+s" az3. The disruption was however absent for PCF
because the additions vanish due to the statistical homogeneity in
the w-direction: az;=as=0.

Furthermore, the same patterns were observed for HST as can
be seen from Table 5 wherein only v-component skewness-kurtosis
differed in nearly (18-2)% compared to the previous stage. Consid-
ering this explanation, the 4th stage should have no effect on the
pre-embedded statistics for HIT, because the absence of any one-
point cross-correlation component should eliminate all the addi-
tion operations. Indeed, Table 4 confirms this expectation as all the
skewness-kurtosis pairs remained the same at the end of the 4th
stage.

These findings suggest that the 4th stage, namely the Lund
transformation, to some extent distorts the pre-existing statistics
only in the statistically inhomogeneous lateral directions. On the
other hand, the same findings indicate that the streamwise and
statistically homogeneous lateral direction statistics are not prone
to such distortion.

5.2. One-spatial-point second-order correlation tensor

The reconstruction of the one-spatial-point second-order corre-
lation tensor of fluctuations (hereafter, the tensor) is fundamen-
tal to the synthetic turbulence generation, because the evolution of
turbulence mostly depends upon energy transfer processes shaped
by the tensor. The gradients of the mean velocity components work
done on the deviatoric part of the tensor. This part then energizes
the isotropic part of the tensor (whose half trace is the turbulent
kinetic energy) which redistributes and dissipates the energy. As
a result, the mean velocity field loses its convective momentum
to the fluctuating velocity field. A realistic turbulence development
therefore demands successful reconstruction of the tensor.

Fig. 5 presents the representative-to-all PCF results for the six
tensor components' reconstructed by the 4th model stage. Due
to the antisymmetry of the deviatoric tensor around the channel
half-height, the results across the entire section were shown. As a
consequence of inadequate spatial resolution adjacent to the walls,

4 Percentage difference=(x,-x,)/x, - 100%, where x, is the magnitude of the rele-
vant parameter for the reference, and x, that for the numerical study.
15 The tensor is symmetric.
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Fig. 3. The Pearson’s moment coefficient of sample skewness results, Bl, from DFM/FSM computations of the plane channel flow with smooth walls (PCF) [29]. From left
to right, the 3rd, non-Gaussian (NG) and 4th model stages and from top to bottom, velocity components, (u, v, w), are depicted. Of a subplot, the vertical axis denotes the
normalized channel half-height, h=h/8 where h and 8 are the half-height of the computational and benchmark domains, respectively. PCF is statistically symmetric along
the channel centerline; hence, only the results belong to the half-height are shown. The horizontal axis stands for skewness, which was computed for each node-time-series
and arithmetic averaged in the statistically homogeneous direction of the flow.
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Fig. 4. The Pearson’s moment coefficient of sample kurtosis results, Ez, from DFM/FSM computations of the smooth-wall plane channel flow (PCF). The figure descriptions
are as in Fig. 3.
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Fig. 5. The results from DFM/FSM computations of the plane channel flow with smooth walls (PCF) [29] for one-spatial-point second-order correlation tensor of discrete
fluctuating velocities, {u/(nA, mA;) u}(nA, mA;) € Qi jnmen: i je[1,3]: n.m,A.~0}- The vertical axis of a subplot stands for the normalized channel full-height, h=h/(26) where h
and § are the full-height of the computational domain and the half-height of the benchmark domain, respectively. The dependencies of the tensor components on space
and time were reduced by arithmetic average in time and the statistically homogeneous direction of the flow; hence, Tuf {7} denotes combined time and spanwise space
average, and {-}*={-}/u? a normalization operator, where u. is the estimated friction velocity. The corresponding expression used in the computations is shown in Table 1.

Table 1
List of statistical measures used in the study.
Measure Tool for quantifications
i Statistical weak stationarity Augmented Dickey-Fuller unit-root test [75].
ii. Statistical weak ergodicity Wald-Wolfowitz test [76].
n
iii.a.  Unbiased estimation of mean A =x=nlYx.
i=1
n
iii.b.  Unbiased estimation of variance M= m—=1)" Y (% — i)
i=1
O S
iii.c. Pearsonian coefficient of sample skewness VB = ﬁ—é = ﬂT
2 2
et
iii.d.  Pearsonian coefficient of sample kurtosis B = % = ':‘#
2 2
z nAe
iv. One-point correlation tensor Ry=z'Y" {T'1 > (= 1)) Wi = ) }
k=1 i=A
. . . . . -~ R - ' (N—a)A¢
v. Unbiased estimation of correlation functions  pxy = ﬁZRX‘ZLZ Ry =(N—a)' 3 X Vijaa,-
x 2y iZA
Vi. One-sided power spectral density function Welch’s method [78], window: Hanning, overlap: 50%.

n denotes the size of a discrete sample x, = the estimation operator, z the number of nodes along the statistically
homogeneous direction, T the sample duration, A; the time-step size, a the lag (time-offset) number, and N the

maximum lag number.

numerical results for a few benchmark points were not available in
the figure.

The results demonstrate that spatial-variant fields of the re-
constructed tensor components were virtually the same with the
benchmark. For instance, the maximum deviation among all sce-
narios was observed 3.8% away from the benchmark, which be-
longs to Kim et al.’s construction of ww near the top wall. In

comparison to the rest of the results, however, this deviation could
be considered an outlier whilst the majority of all deviations was
found to be below 1%. Furthermore, apart from minor differences
because of the stochastic nature of model outcomes, no signif-
icant difference among models, including non-Gaussian counter-
parts, was identified. The most likely reason of this is that each
model used the same Lund transformation for the 4th stage, and
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Table 2

453

Approximate number of calls for the computational operations that are required by Eqs. (10) and (11) during the transformation of a standard
normal skewness-kurtosis pair to a target one. For brevity, operations needed for a single velocity component per time-step are shown.

Operations Sy St

Arithmetic functions Addition - -
Subtraction 3 -
Multiplication - -
Division 3 -

Elementary functions exp(-) 2 1

Non-elementary functions/algorithms - -

. F} A _F}
Sg Eq. (10) with arbitrary ~ ¥: Eq. (10) with Gaussian  ™©;
1 2 1
2 3 2
- 3 5
3 1 1
1 - -

1 erf(-) 1 Search algorithm lerf(:)1erf'()

Table 3

The arithmetic average, (-), and variance, Var(-), of the sample pairs from all nodes. A pair contains the
sample mean, ji;, and sample standard deviation, \/;72 of a node-time-series. S-3, S-NG, and S-4 denote
the 3rd, non-Gaussian, and 4th model stages, respectively. Each cell, (-|-), represents values of ((-)|Var(-))
rounded to two decimal places in the scientific notation.

Custom Klein et al.
S-3 S-NG S-4 S-3 S-NG S-4
a7 (1073]10%)  -1.19/3.88 -1.19|3.88 -0.26/0.18  0.16|3.53 0.16|3.53 0.04/0.161 x 1072
V2 (1]107%) 1.00/0.94 1.00/0.86 0.22|0.04 1.00|1.25 1.00|1.14 0.22|0.06
Xie-Castro Kim et al.
S-3 S-NG S-4 S-3 S-NG S-4
a7 (103]10%)  -0.61|458 -0.62|4.58 -0.14]0.22 0.95|543 0.95|543  0.21/0.26
V2 (1]1074) 1.00[1.14 1.00[1.06 0.22]|0.05 1.00|1.37 1.00[1.28 0.22|0.06
Table 4

The Pearson’s moment coefficient of sample skewness, El, and sample kurtosis, B}.
obtained from Klein et al’s method [13] computations of the decaying homoge-
neous isotropic turbulence (HIT) [51]. The other three methods produced results which
were_entirely in line with the table content. The benchmark skewness-kurtosis is
(B1-P2)=(0.00-2.85) Section 4.1.2. S-3, S-NG, and S-4 denote the 3rd, non-Gaussian, and
4th model stages, respectively. Each cell value was computed as follows: first, sample
skewness-kurtosis of each node-time-series were found, second the median of all values
was calculated and then results were rounded to two decimal places.

s-3 S-NG  S-4 S3  SNNG S4
HIT B (10%) u 016 411 411 B, u 299 285 285
v -140 304 304 v 300 285 285
w 049 485 485 w 300 285 285

Table 5

The Pearson’s moment coefficient of sample skewness, Bl, and sample kurtosis, ,Ez, obtained from Klein
et a.'s method [13] computations of the homogeneous shear turbulence (HST) [52]. The other three meth-
ods produced results which were entirely in line with the table content. The benchmark values can be
found in Section 4.1.3. S-3, S-NG, and S-4 denote the 3rd, non-Gaussian, and 4th model stages, respec-
tively. Each cell value was computed as follows: first, sample skewness-kurtosis of each node-time-series
were found, second the median of all values was calculated and then results were rounded to two deci-

mal places.
S-3 S-NG S-4 S-3 S-NG  S-4
HST l§1 (103)  u -475 -021x10®° -0.21x1073 ,Ez u 298  3.07 3.07
v 1.34 0.16 x 103 0.13 x 103 v 299 319 312
w 077 137 1.37 w 300 329 3.29

this stage was followed by no other model stage. Another implica-
tion of this indifference is that the previous model stages do not
have any appreciable effect on the 4th stage output. Lastly, vw
and vw ' subplots in Fig. 5 illustrate an evidence for the pre-
sumption that the level of reconstruction of DFM/FSM is restricted
by the input statistics while no input was provided for the both
components due to the statistical homogeneity in the spanwise
direction of the flow, and indeed, the both correlations remained
random.

5.3. Two-spatial/temporal-point correlation functions

In this section, representative-to-all results of the variance-
normalized two-spatial/temporal-point sample autocorrelation

functions (hereafter, autocorrelation) are presented with three
figures in order to examine primarily patterns and similarities.
First, Figs. 6 and 7 show the results obtained from HIT and HST
computations. The two includes two longitudinal, pxy and pyy, and
one lateral autocorrelation, pxy, in order to additionally discuss
the DFM/FSM model stage effects on the autocorrelation. Second,
Fig. 8 exemplifies a complete autocorrelation tensor from HST
computations to fill the gap that the majority of studies in the lit-
erature contended with in reporting longitudinal autocorrelations
only, e.g. Oxx OI Dyy.

To begin with, no noticeable alterations due to the non-
Gaussian stage were found. The remark is exemplified in
Figs. 6 and 7 where the non-Gaussian stage outcome bears a
marked resemblance to the previous 3rd stage. This is also valid for
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Fig. 6. The two-spatial/temporal-point sample autocorrelation function results, pm,, from the decaying homogeneous isotropic turbulence computations (HIT) [51]. In Oy,
‘m’ stands for the measurement direction, and ‘n’ for the measured velocity component. pm,s were computed for each node-time-series, and their arithmetic average
was performed in the statistically homogeneous directions. From left to right, the 3rd, non-Gaussian (NG) and 4th model stages are shown. From top to bottom, two
longitudinal, px, and gy, and one lateral, p,,, autocorrelation functions are demonstrated. The horizontal axes denote the spatial lag, ¥, normalized by the characteristic
length M=0.0508 [m]. The horizontal bar chart illustrates the Fréchet distance of each model curve to the benchmark. Each bar is normalized by the most-similar-to-the-
benchmark model curve. The maximum height of a bar is the unity, and ‘h.s.” with the arrow means the direction of higher similarity.

PCF computations wherein the skewness-kurtosis pairs are highly
varying, and is supported by Section 5.2 observations. Secondly, as
can be deduced from Fig. 6, no change due to the 4th stage took
place in HIT whereas Fig. 7 reveals that the Lund transformation
caused a rise nearly 10% of the zero-lag in the most pxy and pyy
of HST. On the other hand, pxy of HST was found to be unaltered.
These results are in agreement with those obtained in Section 5.1,
which further support the aforementioned three remarks: i. in the
absence of anisotropic Reynolds stresses, the 4th stage does not
adversely affect the previous stage statistics, ii. in the presence of
anisotropic Reynolds stresses, the 4th stage remains neutral to the
pre-existing statistics in the streamwise and statistically homoge-
neous lateral directions; however, iii. the 4th stage amplifies those
statistics in the statistically inhomogeneous lateral direction, which
almost certainly leads to an uninvited increase of output turbu-

lence scales in this direction.

On the question of similarities, the following observations were
made. According to the Fréchet distance in the horizontal bar
charts of the figures, the closest and farthest overall proximity
to the reference autocorrelation tensor components were yielded
by the Custom and Klein et al.’s methods, respectively, with no
counter-examples. In addition, Kim et al’s method nearly al-
ways produced the second best approximations, which also closely
followed the Custom’s high fidelity reproductions. Xie-Castro’s
method mostly ranked number three; nevertheless, occasionally
reached Kim et al.’s fidelity. With respect to the patterns in the
output autocorrelations, five patterns were observed. i. One finding

is that Klein et al.'s method produced Gaussian-shaped autocorre-
lations although the rest of the models as well as the benchmarks
yielded exponential forms. This confirms the anticipation that the
filter kernel casts whatever its shape onto the output autocorrela-
tions. Another implication of the finding is that the Gaussian-form
is not an appropriate choice for the benchmark flows considered,
and very probably also, not for the other turbulent flows which
share similarities with these three benchmarks. The remaining four
patterns are maximal generalizations about the performance of the
models, because they were observed consistently across different
flow scenarios: ii. Klein et al’s method overpredicted the refer-
ences by ~20-254+5% up to ~20-25% of the zero-lag, and then
underpredicted them by ~ 10%. iii. By contrast, the Custom method
generally reconstructed the references with less than ~ 1% differ-
ence. Yet its 4th stage resulted in O(1)% increase in autocorrela-
tions of the statistically inhomogeneous lateral direction, e.g. Oxv
of HST. iv. Similarly, Kim et al.’s method reproduced the references
in close resemblance up to ~ 20% of the zero-lag, and then slightly
underpredicted them with few exceptions, e.g. pzu of HST. v. Lastly,
Xie-Castro’s method usually resulted in ~5-10% overpredictions
along the most part of the benchmark autocorrelations. In some
of the cases, however, the method made a higher overprediction
around ~20-25% till ~15-20% of the zero-lag, which was fol-
lowed by an underprediction, as can be seen in Py of HST. Consid-
ering these results, the overprediction tendency could conceivably
be hypothesised that DFM/FSM as is often greatens input scales to
some extent.
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Fig. 7. The two-spatial/temporal-point sample autocorrelation function results from the homogeneous shear turbulence computations (HST) [52]. The figure descriptions are

the same with Fig. 6.

Another subtle finding was about the streamwise autocorrela-
tions of PCF, which do not level off zero, yet a positive constant
value. It was observed that DFM/FSM could not construct such tail
behavior, because their theoretical equations decay certainly and
asymptotically to zero at a certain decorrelation distance.

5.4. Power spectral density functions

This section presents representative-to-all results of the sample
one-dimensional one-sided power spectral density functions as a
function of spatial wavenumbers (hereafter, power spectrum) in or-
der to investigate the model stage effects and performance of the
models within inertial and energy containing ranges of the spec-
trum. Representative evidence of the following remarks are illus-
trated in Figs. 9 and 10, respectively, for HIT and HST.

What stands out in the both figures is a premature and flow-
type-independent drop with a non-linear slope in the power spec-
tra created by Klein et al.’s method towards the outset of inertial
range wavenumbers. Klein et al. [13] did not report any result for
power spectra; however, Dietzel et al. [59, p. 122] identified a sim-
ilar drop for this method in HIT. The most likely cause of the drop
is the method’s Gaussian-form of the filter function. Consider the
Fourier transform of the Gaussian autocorrelation function, Eq. (4),
whose derivation and parametrization are given in A.5.1 [73]:

; T X 2,.2
yx{exp [—4 L2i|}(K)=2L exp[—4nL K ] (13)
which is also another Gaussian function, where .%#y is the Fourier
transform operator on the spatial variable {x}(.q). L[m2m)1]
an integral length-scale, and « [(27r)m™!] the spatial wavenumber.

Eq. (13) in Figs. 9 and 10 illustrates that Klein et al.’s method theo-
retically produces the drop. Herewith the model, towards the iner-
tial range, the power spectrum declines considerably more rapidly
than «~3/3. Consequently the net spectral energy flux in the inertial
range also steeply decreases; thus, leading to a spurious preserva-
tion of the energy in large scales along time.

In contrast, two different observations were noted in Figs. 9
and 10 for all the other methods’ inertial range reconstructions:
first, the aforementioned drop disappeared and the inertial range
slope was more closely followed; and second, an upward transient
spike occurred at the high-wavenumber tail. As regards the power
spike, temporal aliasing can be attributed as the main contribu-
tor to this excess power, which typically results from the sampling
process rather than the models. Therefore, no further explanation
was sought for the second observation.

One of the major differences between Klein et al.’s method
and the rest is that the autocorrelation function of the latter has
an exponential-form. The Gaussian-exponential distinction might be
the key factor in the power drop formation. In order to examine
this postulation, a Fourier analysis likewise above was performed
for the exponential function. In addition, Klein et al’s Gaussian-
form was converted into an exponential one, and several tests were
carried out. The Fourier transform of the exponential autocorrela-
tion function, Eq. (7), can be shown as follows ((A.5.2) [74]):

ﬂ‘x{exp [-% %]}(K): %

which is a Lorentzian function that theoretically possesses a lin-
ear decay slope of k=2 after a corner wavenumber, k. Accordingly,
Eq. (14) was also plotted in Figs. 9 and 10.

(14)
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Fig. 8. The two-spatial/temporal-point sample autocorrelation function results from the homogeneous shear turbulence computations (HST) [52]. Herein, all nine components
of the correlation tensor are demonstrated. The figure descriptions are the same with Fig. 6.
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Fig. 9. The sample one-dimensional power spectral density function results, Exu [m3s2], as a function of spatial wavenumber, ¥ [m™'], from the decaying homogeneous
isotropic turbulence computations (HIT) [51]. In Exu. ‘X’ stands for the measurement direction, and ‘w’ for the measured velocity component in this direction. ‘Exp. Klein
et al.’ denotes Klein et al.’s method using the exponential-form filter function. Exus were computed for time-series of each node, and their arithmetic average was performed
in the statistically homogeneous directions. From left to right, the 3rd, non-Gaussian (NG) and 4th model stages are shown. The horizontal bar chart illustrates the Fréchet
distance of each model curve to the benchmark. Each bar is normalized by the model curve which is the most similar to the benchmark. The maximum height of a bar is

the unity, and ‘h.s.” with the arrow means the direction of higher similarity.

Inspection of the two figures reveals a number of characteris-
tics. First, the Fréchet distances of the 4th stage and qualitative
examination indicate that the Custom, Kim et al. and Xie-Castro’s
methods performed alike in overall spectra estimation unlike both
Klein et al’s methods. Yet the energy-containing range patterns
were adequately estimated by all the methods, both Gaussian- and
exponential-form; thus, no superiority of one form on the other in
this respect. Another observation comparing the 3rd and 4th stages

is that the overall shape of the power spectra is established by the
3rd stage only whilst the 4th stage seems responsible in rescaling
the power level to the target. In addition to this, the non-Gaussian
stages shown in Figs. 9 and 10 assert that the skewness-kurtosis
transformation did not modify the power spectra previously con-
structed in the 3rd stage.

A closer look into the inertial subrange of the both figures’ 3rd
stages discloses that the inertial subrange slopes created by the
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Fig. 10. The sample one-dimensional power spectral density function results, Exu [m3s2], as a function of spatial wavenumber, ¥ [m™'], from the homogeneous shear

turbulence computations (HST) [52]. The figure descriptions are as in Fig. 9.

exponential-form methods (except the exponential Klein et al.’s
method) and the corresponding Lorentzian functions are virtually
the same. The power amplitude of these methods are, however,
generally ~ O(1) order of magnitude higher than that of the
Lorentzian functions.

The implications of these findings are threefold. First of all,
the exponential-form methods seem to yield the inertial subrange
slope of k~2=k~6/3 rather than «~>/3. The former’s slope is still
steeper than that of the latter albeit to a significantly lesser extent
than by Eq. (13). Because of this, the above-mentioned decrease of
the net spectral energy flux generated by the Gaussian-form meth-
ods continues its existence, yet with a significantly reduced dis-
similarity to what x>/3 may produce. Further quantifications may
however be needed whether this level of difference between « =2
and «~/3 is negligible from the perspective of turbulence devel-
opment. Second, the use of Eq. (14) as well as (13), which were
parametrized for DFM/FSM herein for the first time, could be use-
ful in order for predicting power spectra of a prospective simula-
tion before actually completing the entire simulation.

Thirdly, the exponentiality incorporated into Klein et al.’s
method eliminated the Gaussian power drop to a large extent;
however, a slight decline persisted in the order of ~ O(1)-0O(10)
with respect to the other exponential-form methods. Furthermore,
the method’s slope was found considerably flatter than those of
Gaussian-form methods, yet mildly steeper than « 2. This outcome
is somewhat counterintuitive, because the implementation of the
exponential-form was expected to transform Klein et al.’s method
into an exponential-form method in all aspects. Accordingly, the
results imply that the omission of Gaussian-form correlation func-
tion, per se, is the key to avoid the aforementioned spurious power
drop whereas another unnamed mechanism within Klein et al.’s
method also seems to contribute the drop.

It should be highlighted that similar observations were also de-
duced for PCF and different spectra, e.g. Ew. In summary, these de-
ductions support the notion that exponential-form of correlations
is more apt than Gaussian-form for the synthetic turbulence gen-
eration.

5.5. Miscellaneous

5.5.1. Statistical weak stationarity and ergodicity

The initial presumption of the model development for DFM/FSM
is the statistical weak stationarity of time-series generated by each
model stage. The augmented Dickey-Fuller unit-root test [75],
which searches stochastic trends in a time-series, was used to

quantify the stationarity. As a result, all velocity-component time-
series from each stage of each benchmark, including skewness-
kurtosis computations, were found to be statistically weak station-
ary at a 1% statistical significance level.

The second presumption is the statistical weak ergodicity of the
time-series. The Walf-Wolfowitz test [76] was utilised to assess the
ergodicity. The test requires two samples of the same size from the
same method, e.g. containing n x m elements. The first sample is
generated with a single random seed which initializes the pseu-
dorandom number generator. The second sample is then generated
as a combination of n subsamples containing m elements, where
each subsample is created with a new random seed. For a given
moment of order k, the test conducts comparisons for whether the
invariance of the kth moment’s statistics is preserved in spite of
the stochastic differences in the samples. Grazzini [76, p. 7] sug-
gests n=100 and m=1000 for a decent estimation. With this sugges-
tion, the test was performed for all the 36 benchmark/model sce-
narios up to the first four central moments of each velocity compo-
nent. At a 5% statistical significance level, 9 out of 144 cases were
estimated non-ergodic. No clear pattern was observed among the
non-ergodic cases; however, 4 of them belonged to kurtosis. Ow-
ing to the high portion of the ergodic cases, it can be concluded
that DFM/FSM is almost always weakly ergodic up to the fourth
moment. In consequence, a stationary sample from DFM/FSM al-
most certainly includes the true moments of the population.

5.5.2. The use of different correlation functions at inlet spatial zones

In the literature, DFM/FSM has almost always been utilised by
using a single set of integral length- or time-scales as an input for
an entire synthetic turbulence generation plane. Two deficiencies
may arise from this practice. First, in reality, length- and time-
scales may spatiotemporally vary across a typical cross-section of
a flow. Second, the usage of a single set of time-scales inherently
causes a spatial variation in particularly streamwise length-scales
due to the Taylor’s frozen turbulence hypothesis [40] unless cross-
sectional mean flow speed is uniform. For example, two pockets of
fluctuation generated with the same time-scale and at two differ-
ent spatial positions will convect downstream proportional to the
convective mean longitudinal flow speed at these two points. If
these flow speeds differ from those considered in the time-scale
computation, the corresponding length-scales will be different to
each other. Moreover, the literature preference for the single set
usage seems due to the lack of not only available data but also
quantifications regarding the merits and costs of using more-than-
one sets as an input.
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Fig. 11. The two-spatial/temporal-point sample autocorrelation function results, py,, from the smooth-wall plane channel flow computations (PCF) [29] wherein a single set
of correlation tensor, L, was input. y*=u, y/v is the dimensionless wall distance, u, the friction velocity, v the kinematic viscosity of the fluid, x the measurement direction,
u the measured velocity component, and ¥, the spatial lag normalized by the channel half-height, =1.0[m]. The channel cross-section was segmented into 12 sections in
the wall-normal direction, where the center of a section is at the specified y*. The same input correlation tensor was used for all sections. Only the channel half-height from
the top wall is shown due to the statistical symmetry along the half-height. py,s were computed for each node-time-series, and their arithmetic average was performed in

the statistically homogeneous spanwise direction and each section height.

In this part, therefore, effects of the spatial variation in turbu-
lence scales are investigated. To this end, PCF was reconstructed
by using a single and then twelve sets of integral length-scales
(tagged by 1L and 12L in the figures, respectively). Comparisons for
correlations and power spectra were made, and representative-to-all
results were presented. For the 12L case, the synthetic turbulence
generation plane was geometrically divided into twelve zones in
the wall-normal direction. The zonal dimensions and associated
correlation functions were provided by the benchmark. The inte-
gral length-scales were computed through the integration of these
correlation functions, where the upper bound of the integration
was set to 10% of the zero-lag.'® Each input set of each zone
contained nine integral length-scales belonging to each velocity
component-direction pair, (u, v, w) — (x,V,z). For the 1L case, the
length-scales reported for the channel half-height, y*=392, were
input uniformly across the generation plane.

16 The integral length-scale, L, is defined here as follows: L= (p(A)) ~
L§(p(A)), where 2(-) is an operator applying a numerical integration method
over the interval [a, b]. Despite its precise definition, the upper bound of the inte-
gral, i.e. b, is open to debate. Arguably, the main reason of the doubt is the different
interpretations of the tail of the correlation functions on whether their tails mean
something physical or spurious. O’Neill et al. [77, p. 3] implied based upon several
tests that selecting the upper bound when the first zero-crossing happens is the
most convenient option. This was, however, found inappropriate for the PCF while
particularly the streamwise correlations do not level off zero.

Figs. 11 and 12 show the representative-to-all results of the
variance-normalized sample autocorrelation function, pOxu, as a
function of spatial lag for 1L and 12L, in turn. Each figure includes
twelve subplots related to a zone whose center is at a vertical dis-
tance of y* from the wall.

In Fig. 11, the first observation is that the use of 1L produced
a variation in streamwise length-scales across the channel cross-
section, increasing from the wall to the channel centerline. This
is due to the fact that the 1L length-scales was converted to
Lagrangian time-scales based upon the mean flow speed at the
height of y*=392 through the Taylor's hypothesis. In a constant
time-step computation, however, inputting the same Lagrangian
time-scales across the channel cross-section automatically caused
variations of length-scales because of the spatial varying mean
flow speed across the same section. Consequently, this gave rise to
uncontrolled generation of different scales. In addition, the follow-
ing patterns were deduced from Fig. 11. Underpredictions occurred
in all y* zones and for all methods after a certain percentage of
the zero-lag. In y*=10 zone, the common underprediction started at
~ 90% zero-lag. Towards higher y* zones, this starting point then
reduced till ~ 40-70% zero-lag with gradually decreasing slope.
Typically, Klein et al.’s method yielded maximum ~ 20-30% un-
derpredicted correlations whereas this ratio remained around ~
5-15% for the other methods. On the other hand, in y*=392 zone
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Fig. 12. The two-spatial/temporal-point sample autocorrelation function results, py,, from the smooth-wall plane channel flow computations (PCF) [29] wherein twelve

correlation tensors, 12L, were input. The figure descriptions are the same with Fig. 11.

where the input 1L belongs to, the method performance findings
in Section 5.3 were reobserved.

In Fig. 12, the observations similar to in Section 5.3 spread
out the other y* zones by virtue of the spatial variation. On the
whole, as maxima, Klein et al.’s method made ~ 20-40% over-
predictions until ~ 20% zero-lag and afterwards ~ 20% under-
predictions. Xie-Castro’s method overpredicted the benchmark in
the level of ~ 5-20% without exception. Custom and Kim et al.’s
methods followed the benchmark in high proximity except in the
y*=251 zone,'” yet the latter deviated for ~ 5-10% underpredic-
tions after ~ 20% zero-lag.

Figs. 13 and 14 compared the power spectra for the 1L and 12L
cases. As Fig. 13 shows, Klein et al.’s method yielded the aforemen-
tioned power drop except for the y*=10 zone where the model out-
come seems comparable to the benchmark. The rest of the meth-
ods performed in a common trend wherein the level of similar-
ity to the benchmark was improved till y*=61, then stayed roughly
the same until y*=151, and fell off. In detail, these methods had
~ 0(103-10%) higher power with respect to the spectrum tail at
the y*=10 zone. The difference steadily reduced to ~ ©@(102) by the
y*=61 zone and remained almost unchanged until y*=151. Subse-
quently, it rose back to ~ ©(103) towards the channel centerline.

As illustrated in Fig. 14, the performance trend of the models
in Fig. 13 was repeated yet with a reduced degree of differences to
the benchmark overall. Unlike the y*=10 zone resemblance of Klein
et al.’s method in the 1L case, the likeness disappeared in the 12L

7 It should be mentioned that the main reason why the discrepancy from the
Custom method at the y*=251 zone occurred could not be spotted and explained.

case with the refined length-scale input therein. That resemblance
therefore may seem now to be a mere coincidence. The degree of
the power difference, with respect to the spectra tails, overpre-
dicted by the rest of the models was ~ ©(102-103), ~ ©(101-102)
and ~ ©(10%-103) for the sectors between y*=10-61, y*=61-151
and y*=151-392, respectively.

Taken together, the results of this section indicate that the spa-
tial variation of scales often improves the overall statistical fidelity
till the natural boundaries of fidelity that a model provides. In a
single set of scales case, in contrast, somewhat arbitrary and hard-
to-control statistics form in terms of magnitude and patterns for
the majority of regions of a flow.

The spatial variation of scales brings along some theoretical and
practical shortcomings, nevertheless, which are distinct for DFM
and FSM. Klein et al. [13, p. 658] discouraged the use of the spatial
variation of length-scales in DFM. The authors foresaw that such
practice almost surely causes two issues: i. the Gaussian-form of
Eq. (4) is distorted, and ii. an essential building-block assumption
for the derivation of Eq. (1) is violated. Klein et al. [13], however,
saw the spatial variation from another angle. The authors expected
the acquisition of the variation occurs through calibrating filter
coefficients within a single filter in accordance to given spatial-
variant length-scales, namely via a spatially varying filter, and fil-
tering an undivided synthetic turbulence generation plane with this
filter. This, in fact, violates the essential model assumption wherein
the filter coefficients were assumed spatially constant.

In the current DFM approach, however, the generation plane
is separated into zones, and different spatially-invariant filters are
put to use at different zones. Accordingly, each zone independently
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Fig. 13. The sample one-dimensional one-sided power spectral density function results, Exu [m3s2], as a function of spatial wavenumber, « [m™'], from the smooth-wall
plane channel flow computations (PCF) [29] wherein a single set of correlation tensor, L, was input. y*=u; y/v is the dimensionless wall distance, u- the friction velocity, v the
kinematic viscosity of the fluid, x the measurement direction, u the measured velocity component, and ¥, the spatial lag normalized by the channel half-height, §=1.0[m].
The channel cross-section was segmented into 12 sections in the wall-normal direction, where the center of a section is at the specified y*. The same input correlation
tensor was used for all sections. Only the channel half-height from the top wall is shown due to the statistical symmetry along the half-height. py,s were computed for each
node-time-series, and their arithmetic average was performed in the statistically homogeneous spanwise direction and each section height.

possesses associated scales without breaching the two above-
mentioned issues. Although the zone-separation discards these
two theoretical issues, this approach suffers from two new prac-
tical weaknesses. Firstly, statistical discontinuities emerge between
zone boundaries. In particular, the statistics in the zone-separation
direction are more prone to such discontinuities. As an exam-
ple, the size of a zonal scale may far exceed the dimension of
its zone. While non-CFD applications might not be adversely af-
fected as zones remain independent of each other, CFD applica-
tions could be profoundly influenced by unforeseen impacts on
turbulence evolution due to the nonlinear mixing of discontinuities
downstream.

In the limit of infinite grid nodes and zones, prospective discon-
tinuities may disappear. The second weakness, however, arose as a
limiting factor is the extra computational cost. Veloudis et al. [37,
p. 9] stated without an explanation or quantification that a mod-
est increase in the number of zones results in a ‘substantial’ cost
increase for the same number of nodes. The reason why the cost
increases is two-fold: i. new ~ k(x-1)(N-1) random numbers re-

quired to be generated per time-step, where k is the number of
scales input into a zone, x the number of zones, and N the fil-
ter support for a scale (A.6), and ii. these new numbers increase
the size of sets which need to be convolved each time-step. Taking
into these account, the additional computational cost is estimated
by O(1) times the current cost.

The above remarks are pertinent to only DFM. FSM is immune
to such cost impact. The zone-separation is not demanded by FSM,
and the spatial variation is achieved through solely a spatial-variant
arrangement of the input scale set. In this regard, a possible prob-
lem for FSM may be that the derivation of Eq. (8) for the spa-
tial variation of scales was not engaged with by the literature, to
date.

Notwithstanding these concerns, the results obtained in prac-
tice arguably weigh the merits of the spatial variation of scales
more against additional costs. As an outcome, such implementation
is advisable for non-CFD applications, particularly for FSM because
of the fact that it poses considerably less trouble to beneficiaries.
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Fig. 14. The sample one-dimensional one-sided power spectral density function results, Ex“ [m3s2], as a function of spatial wavenumber, « [m~'], from the smooth-wall
plane channel flow computations (PCF) [29] wherein twelve correlation tensors, 12L, were input. The figure descriptions are as in Fig. 13.

6. Conclusions

The main aim of this study was to provide beneficiaries quan-
titative insights regarding the working mechanisms and perfor-
mance of digital-filter-based (DFM) and forward-stepwise-based
(FSM) synthetic turbulence generation methods. Another aim of
the study was to add them a capability wherein one-spatial-point
skewness and kurtosis values can be changed to target values.

To this end, four synthetic turbulence generation methods that
belong to Kim et al. [35] (FSM), Xie and Castro [14] (Hybrid DFM-
FSM), Klein et al. [13] (DFM), and a new method (DFM) were im-
plemented into OpenFOAMv1612+. The novel applications within
the methods were twofold: First, the new method, named Cus-
tom, was developed as a more efficient version of di Mare et al.’s
concept [18]. Second, Kim et al’s method was formalized and
put through its first major tests. In addition to these, a new,
cheap-to-run and easy-to-code piecewise closed-form function that
transforms one-spatial-point Gaussian skewness-kurtosis of a given
time-series to a non-Gaussian pair was derived from a combina-
tion of the memoryless nonlinear transformation method and the
Johnson system of probability distribution functions. All the meth-
ods were abstracted into four modeling stages. Prior to transfer the
model outputs into CFD simulations, the methods were explored in
isolation via a test-bed containing decaying homogeneous isotropic

turbulence, homogeneous shear turbulence and smooth-wall plane
channel flow by means of various statistical measures and aspects.

In conclusion, apart from minor findings stated within the
text, the study provided six primary insights: (i). the new non-
Gaussian functionality successfully embeds target one-spatial-point
skewness-kurtosis pairs into synthetic turbulence time-series, and
does not alter the other types of existing statistics within the se-
ries. (ii). Moreover, the Lund transformation does not alter previ-
ous model stage statistics when anisotropic Reynolds stresses are
absent. However, on the condition that anisotropic stresses are
present, the Lund transformation amplifies the existing statistics
only in statistically inhomogeneous lateral directions. The amplifi-
cation generally manifests itself as a maximum ~ 10% increase in
autocorrelation functions. Statistics in the streamwise and statisti-
cally homogeneous lateral directions are, on the other hand, not
affected by the transformation in contrast to the presumption in
the literature. (iii). The level of reconstruction fidelity in terms of
autocorrelation functions and power spectra was obtained by the
methods of, which are sorted from the highest to the lowest level:
Custom, Kim et al., Xie and Castro and Klein et al.. (iv). Kim et al.’s
method provides the best trade-off between the reconstruction fi-
delity and computational cost. (v). Correlation functions determine
overall shape of their power spectra. In detail, all methods recon-
struct energy-containing region of the spectra in high fidelity. Yet
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Klein et al.’s method theoretically and numerically produces a pre-
mature and flow-type-independent Gaussian drop in power spectra
towards wavenumbers higher than those of energy-containing re-
gion, predominantly due to its Gaussian-form of correlation func-
tions. In contrast, the rest of the methods, which uses exponential-
form correlation functions, yields ~«2-slope drop by theoretical
and numerical means. (vi). The spatial variation of correlation func-
tions at a turbulence generation plane through zones was found to
increase the overall fidelity of autocorrelation functions and power
spectra. Its merits weigh more than its accompanied costs, partic-
ularly for FSM.

Last but not least, further research is required to determine
whether the findings of the study differ within CFD simulations.
For this purpose, the transfer and evolution of DFM/FSM output
inside CFD simulations need to be quantified systematically.
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Appendix A. Appendix
Al. Non-Gaussian random number set input-based approach

The method is a heuristic approach rather than a rigorous
model. Withinside, the probability mass function (pmf) of gener-
ated random number sets is changed from the standard normal
distribution to a prescribed non-Gaussian one. The basic assump-
tion of the approach is that the pmf of the random number sets
proportionately yields a similar pmf for the digital-filtered sets at
the end of the filtering. Thus, such adjustment may suffice to des-
ignate the pmf of the outcome.

A2. Deterministic deconvolution-based approach

In contrast to the first approach, the fundamental presumption
of this approach is that the pmf of the first-stage random num-
ber sets is not similar to that of the last-stage digital-filtered sets;
however, the former with a particular pmf may determine the de-
sired pmf of the latter.

Recall that the basic mathematical operation in DFM is convo-
lution (Eq. (2)), which may be recast into a simplified form as:
s =bxr, where « is the convolution operator. Herein, b and r are
known sets; and, s is unknown.

Let b and s are known, and r is unknown in the same convolu-
tion relation. In principle, » may be reversed in order to obtain r.
This process is called deconvolution, which can be expressed as:

s[*x|b=r"~r (A1)
where is the deconvolution operator, and r =r* + € with € an
element-wise error field.

The second basic assumption is that the particular pmf of r may
be found through the deconvolution: Consider a desired pmf hg,
and let n random sets {s,’ﬂ}{men,n]&s#sa ifmzq) are generated ac-

cording to hy. Then, r}, ~r,y may be computed through the de-
convolution for known and constant b. Denoting each pmf of {rpy}
as h;, a generic pmf for r might be approximated by the arithmetic
average of h;: i.e. n=!' Y | h; = hy when n>» 1. Finally, a new ran-
dom number set r obeying the pmf of hy could be convolved with
b to yield a digital-filtered random set s’ which follows the desired
h

g/«

In practice, arguably, no standard form of deconvolution exists,
and its form depends upon various characteristics of its operands.
Whilst b is always precisely known, the optimal choice for this
study is the deterministic deconvolution [80], which may be de-
fined as an arithmetic division of Fourier transformed operands in
the frequency domain:

r%r*:ﬁq{y{s}}

7(b) (A.2)
where #{.} the discrete fast Fourier transform operation, and
Z~1{.} its inverse.

Two challenges, however, exist in respect to the formulation.
The first is that Eq. (A.2) does not guarantee a definition of a solu-
tion due to the possibility of the presence of zero in the denomina-
tor term. The second challenge is the arithmetic division by a small
number, which may cause spurious spikes in the output Claerbout
et al. [81, p. 86], therefore, proposed the following modification to
Eq. (A.2) in order to alleviate the aforementioned challenges:

o F{s}.7{b})*
r~r —/]{g‘WW}

where .#{b}* is the complex conjugate of .#{b}, and € a small real
number proportional to the arithmetic average of .7 {b}.#{b}* such
€ = M{.Z{b}.Z{b}*}?> with a constant A. For an illustrative exam-
ple, [81, p. 87] set A = 0.03; however, no range of values was par-
ticularly suggested.

(A3)

A3. PDF transformation-based approach

A3.1. Derivations
The standard Gaussian CDF is:

on(x) = % + ;erf(jj> (A4)
The standard Gaussian quantile function is:

O (x) = V2erf'(2x — 1) (A.5)
Sy unbounded family
The quantile function of Johnson Sy family:

F;l(g; a, b) = sinh [(1)‘1(;1))—(1:| (A.6)

The substitution of Eq. (A.5) into Eq. (A.6) yields the follow-
ing:

Fil(g:a,b)
r 1
_ sinh V2erf'(2q-1) - a:|
i b
B 1 1 1 X
' V2erf” [2<§+§erf<ﬁ>>flj|fa
= sinh b qg=¢n(x) =
_«ﬁert'1 [erf(%)] —a
= sinh 5 2 erf ' (erf(x/v2)) =x/vV2 =
. [x—a
= smh[T] (A7)
S; Log-Normal family
The quantile function of Johnson S; family:
Fi' (g o) =exp[od(9)] (A8)
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The substitution of Eq. (A.5) into Eq. (A.8) yields the following:

Fi'(q:0) = exp[ox] (A9)
Sg bounded family
The quantile function of Johnson Sg family:
- 1
Fg (q:a.b) = (A10)

1+ exp [%{%l Q) — a}]

_ The substitution of Eq. (A.5) into Eq. (A.10) yields the follow-
ing:

Eg(g:a.b)

1+exp % {0t (q)—a]

a=¢nx =
fert' (2q71)—a}]

1

o )]
el i e 3) )

c-\_‘

1+exp

[
[
rre|;
[

SRR

- (A1)
ool
A3.2. Sy unbounded family [48]
Pa+3
_ _ 2_
b= (a)+l \/4+2 |:a) w2+2w+3
2
Ba2+3
- 2__ 272
X <w+1+2\/4+2|:a) P03 (A12)
- 2. P2t3
m 2+\/4+2|:a) a)2+2w+3i| (A13)
. w+l (w-1
pu=sign(B?) -1 (A14)
oy=(a-1),| 21 (A15)
vs 2m .
gL (A16)
Vlog(w)
e 2 eimpa-1 w+1 (co—l_ )
sign(B7) sinh < 2% U m 1
y= (A17)
Inw
A3.3. Sg bounded family
2
2u3-3uy+
,312=< M M3M2 H3) (A18)
o
=3ut+6 % o4 3+
o= no+op l;i L3+ (g (A19)
A-B
1= (A.20)

erf ' (erf(x/v2)) = x/vV2 =

1)
M2 = (1 -8y) + =5 (Ay — By — uC,D) (A21)
t3 = i+ 1.58 1y +0.58% 14,2 (A22)
11 , 1
Ma =L+ F(S,uy + 8%, + 68 oy (A23)
1 1s -n? n(1l—28y) n
A=55+5 ’; {exp (262> cosh (282 sech<ﬁ>
(A24)
g -n?\ . n(1-28y) n
Ay=-5 ; {nexp (282> sinh (282 sech(W)
(A25)
1T &, -n? n(1-28y) n
Ay =3 n;: {n exp <252> cosh (282 sech(W)
(A.26)
R -n? n(1—28y)
Ay = 5 ; {n exp (282> sinh <262 sech(T)
(A.27)

B =278 i {exp (—%(Zn _ 1)2n252) sin (21— 1)78y) (A28)

n=1

x cosech((2n — 1)m26%)} (A.28)
> 1
B, = 2(7d)? (2n-1)exp (-= (2n-1)27282
y > (-2 )
x cos ((2n-1)78y) cosech((2n-1)7%8?)} (A29)
B,: = -2(78)° 2 {-@n-1)2exp (—%(2n—1)2n282)
x sin ((2n-1)78y) cosech((2n-1)7%82)} (A.30)
B,: = -2(n5)4§ {—(211—1)3 exp (—%(2n—1)2n282)
x cos ((2n-1)78y) cosech((2n-1)7252)} (A.31)
C=1+2 i {exp (-2n°7%8?) cos (2nmdy)} (A32)
n=1
C, =-47$ i {nexp (-2n’7%8?) sin 2ndy)} (A.33)
n=1
C,2 =-8(1d)? i {n* exp (-2n*728?) cos 2n78y)} (A.34)

n=1
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oo

C,» =16(w8)* Y {n® exp (-2n*m26) sin 2n7dy)} (A35)
n=1
7/2
D = +v2m exp (2> (A.36)
D, =yD (A.37)
D, = (y?+1)D (A38)
D,s = (y>+3y)D (A39)
_A, ADC, ACD, (B, BDC, BCD,
HMv=ep D)z " (cD)2 | cD (D)2 (cD)? (A40)
A, AC, AD,
Me:=0ep~p ~ 2
_ AYG _ —2AC$, _ -AC, Dy _ Acyz
2D 3D C2D2 C2D
_ AyDy _-AGDy, ~2AD; _ADy
CD2 2D2 CD3 CD2
B}’ B)/C)’ BJ/DJ/
“cp" 2D " ocp?
n B, Cy _ZBC)Z/ -BG, D, + ch2
C2D 3D C2D2 2D
B,D,  -BC,D, -2BD)2/ BDyz
Tt Tapr T T (A41)
_ —Xysz —XyzDV E
Hy () =~ >z "D
-2%,(C)?  -x,C,D,  X,2C X,
© ¢3D @ (D2 D D
-x,C,D,  -2x,(Dy)?  (x,)?D  x(Dy)?
T eDpz  (p® (D2 (D?
_ 2%(G)* -%,GDy Xx2C %,Cho
C3D C2D2 2D 2D
_2x,(G)* 2(Gy)*D,  6x(Cy)? -4xG,Cpe
C3D D2C3 C4D C3D
-x,C,D,  2(C,)?D, 2C,(D,)?> -xD,.C,
(D2 CD2 CD3 (2D?
—chsz
T D2
Xycyz —ZXCyCyz —chsz chz
D CGD @ D2 (D
-%,C,D,  -2x,(Dy)? X,2D, XD,
- (pz (p¥ (D (D?
-x,C,D, 2x(D,)?C, -xC,D,. 2x(C,)?D,
- Dz b3 (D2 (D2
—chsz
T D2
_ -2xy(Dy)*  2xC,(Dy)* -4xDyD,.  6x(Dy)*
CD3 C2D3 CD3 CD4
XyDyz -chDyz -ZXDyDyz XDy3
cD2 (D2 (D3} = (D2 (A42)
Hys = ys (A) + Mys (B) (A43)
Mg = [t (A.44)

op =sign(B1)y/ 2 — 2 (A45)

A3.4. Criterion

g(B2) = (w1 — 1) (w2 +2)* ~ (A.46)

co—1 -1++/d+ i—d—3 (A.47)

1=5 Nz .

wy=1/-14+2(-1) (A.48)

d=-1+\3/7+2/32+2«5—\3/2@—7—2ﬁ2 (A.49)
2

p_ G+P)(6B; + 876, +171) (A50)
27

A4. Discrete Fréchet distance metric [63, p. 2]

Let {PAf}{OsAth; 1<t<p; teZ"}={PA1 Sy PAP}’ and similarly
{Qa }={Qays - QAq}, be two the-same-size discrete time-

series, where A; is an arbitrary instant, and t an index of a
set member. Let further consider a set {L} that contains of all
possible member pairs between {P,,} and {Q,} such that
{L}={(Pa1 ) Qb1 )sovs (Pa, Qbm)}{{mgaigAp}; {A1<bj=Aq}: {1<i=m-1}}-
Then, the discrete Fréchet distance, 84, whose value depends on
the values (position) and order of the set members, is defined as
follows:

bar (P, Qa,) = min( max |P, ~ Qy) (A.51)
For identical sets §;-=0 whilst a rise in d4¢ indicates an increase
in dissimilarities. In addition, it should be noted that the discrete
Fréchet distance is an approximation to the Fréchet distance to al-
low easier code implementation and lower computational costs.

A5. Fourier transformation of some filter kernels
A5.1. Gaussian-form autocorrelation function

The Fourier transform of a Gaussian function can be derived as
follows [73]:

%{exp |:—7T Xz} }(/c) =7 |exp[-a*]} (k)  aomcL?

c L2

(A52a)
:/exp [-ax*] exp [-27 ik x]dx (A.52b)
=/exp [-ax] [cos(2m Kk x) — isin(2 kx)]dx (A.52¢)

=/exp [-ax?] cos(2mx) dx —i/exp [-ax?] sin(27 k) dx
) — (A52d)

2,2

=y malexp |:_7TaK i| (A.52e)
=vcLexp[-enl’k?]  a< mc'L? (A.52f)
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where .Zy is the Fourier transform operator on the variable
x, Lm(2m)-1] the integral length-scale, x [(27)m™!] the spatial
wavenumber, and ¢ a model constant, for instance in Eq. (4) c=4.
The first term of Eq. (A.52d) reduces to Eq. (A.52e) [73], and its
second term goes to zero due to the symmetrical integration of
the odd function [73].

A5.2. Exponential-form autocorrelation function
The Fourier transform of an exponential function is derived as
follows [74]:

ﬂ‘x{exp [—% %] } (k) = F{exp[-ax]}(k) a< mc'L (A53a)

00

:/exp[—ax] exp [-2mikx]dx (A.53b)

=00

0 00

=/exp[-2ni/cx] exp[27rax]dx+/exp[—27ti/<x] exp [-2m ax]dx

e s
(A.53c)
0
= /[cos(ZnKx)—isin(chx)] exp [2max]dx
+ /[COS(ZJTKX)—iSiH(ZT[KX)] exp [-2max]dx (A.53d)
0
(-x < u; -dx < du)
= /[cos(chu)+isin(2mcu)] exp [-2mau]du
0
+ /[COS(Z]‘[KU)—iSiH(Z?‘[KU)] exp [-2mau]du (A.53e)
0

= 2/cos(2mcu) exp[-2mauldu — /cos(/cu) exp [-bu]du
0 0

b
e (A.53f)
= ... (A.53g)
2cLr ! 1
= Q0?11 a< mc'L (A.53h)

where %y is the Fourier transform operator on the variable
{X}x-0p LIm(27)7'] the integral length-scale, x [(2)m™] the
spatial wavenumber, and ¢ a model constant, for instance in
Eq. (7) c=2.

A6. Size of extra random numbers due to the spatial variation of
scales

Consider a planar synthetic turbulence generation grid that has
n nodes. Let the grid is divided into x zones which are assumed
having the same number of nodes, n/x. Also assume that a scale
set, which contains k number of scales, is input for each zone. The

following relations then can be presented among the size of ran-
dom number set required for “valid” type of convolution summa-
tions on an undivided grid, My, and on a zone, M,, and the filter
support of the scale Ny:
n= M;—N;+1
My —Nj+1= M1+N1+1
XMy —xN; +x=M; —N; +1
xM; —M; = (x—1)(N; - 1) (A.54)
where xM, — M; is the size of new random sets that needs to be
generated for the whole grid for a single scale per time-step.

for a zone
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Abstract

Digital-filter-based (DFM) and forward-stepwise-based (FSM) synthetic (turbulence-like) time-
series generator classes were conceptualised into five model stages within computational fluid dy-
namics set-ups. In addition, two new methods enabling DFM-FSM to be seamlessly computed
on nonuniformly-discretized boundaries were proposed alongside a new mass-flux correction tech-
nique, and two new code practices for computational speedup. Through four DFM-FSM variants
representing the majority of capabilities of the classes, each DFM-FSM model stage was explored
by controlled studies of extensive-than-the-literature range of input variables and output statistics
with large eddy simulation (LES) computations of decaying homogeneous isotropic turbulence, ho-
mogeneous shear turbulence and smooth-wall plane channel flow. Moreover, five LES post-solution
verification metrics were reviewed and compared via these building-block flows. Among sixty-two
observations, the prominent findings were that: [¢] The traditional 80% turbulent kinetic energy res-
olution was quantified to be more robust than the modern LES post-verification metrics considered.
[7¢] In the first three nodes, input Reynolds stresses were consistently suppressed, particularly in
shear components and lateral directions. Divergence-freeness enforcement was quantified to be the
driving factor. [i7¢] Input autocorrelations were suppressed to a more limited extent. Navier-Stokes
equation algorithms was deemed to be the cause. [iv] Streamwise evolution of Reynolds stresses
followed an asymmetric quadratic pattern rather than a monotonic pattern. [v] The first DFM al-
most always produced the highest amplitude resemblances and the shortest adaptation lengths for
Reynolds stresses and wall shear stresses. [vi] Amplifying input shear stresses reduced amplitude

distortions downstream, and shortened adaptation lengths. [vii] A parabolic relation was found
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between input length scale sizes and amplitude/adaptation lengths of Reynolds stresses/wall shear
stresses. [viii] Seamless nonuniform DFM-FSM and using multiple input length-scale sets did not
improve flow to an important extent. [ix] Mass-influx corrections significantly improved pressure
predictions and reduced computational costs, albeit no impact on velocity-based statistics.

Keywords: inflow turbulence, synthetic turbulence, inlet conditions

1. Introduction

In nature, turbulent flows are ubiquitous; hence, turbulence modelling is essential in industrial
and academic engineering applications. Today, the trend in turbulence modelling is towards higher
fidelity in tandem with low-cost scalability. Advancements, however, brought new challenges, es-
pecially for spatiotemporal-variant inflow boundary condition modelling of convection-dominant
flows. As a consequence of chaotic turbulence dynamics, stochastic and/or statistical characterisa-
tion of such boundary conditions was found to be arduous, yet rewarding. Therefore, various inflow
turbulence generation methods were put forth to date. In this study, the scope is limited from
the outset to two groups of synthetic turbulence generators: digital filter-based [I], and forward-
stepwise-based [2] methods (abbr. DFM and FSM). Thus, the reader is referred to [3| [ [5] for the
categorisation and description of other methods.

shows an input-output diagram of DFM/FSM. Therein, a random number set and a
group of statistics are fused into a new number set by a chain of mathematical operations whose
characteristics are determined by the statistics.

The modern DFM was introduced by [I] although earlier similar ideas/methods can be noted
in [6, [7]. The authors proposed a three-step frame: [i] generating random number sets from the
standard Gaussian probability distribution, [ii] incorporating arbitrary two—pointﬂ autocorrelation
functions by means of digital filters, and [ii7] imbedding one-point second-order correlation tensor
via a tensor transformation [8] (abbr. the Lund transformation). Furthermore, the arbitrary-form
autocorrelations in the [ii]-step were modelled in Gaussian-form to eliminate the requirement of a
root-finding algorithm to obtain filter coeflicients in favour of explicit evaluations.

One of the limitations of DFM is that its output (i.e. synthetic time-series) does not include any

physical information apart from input statistics. Six studies sought to improve the physical content

L In this paper, number-point signifies the number of spatial points utilised in the computation of a statistic.
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Figure 1: An input-output diagram illustrating the working principle of DFM/FSM. Modified from [9} Fig. 1].

of the output therefrom: [I0] studied the viability of arbitrary-form autocorrelation functions in the
[ii]-step. A linear algebra algorithm was put forward to compute digital-filter coefficients from
an autocorrelation function, and the authors [10, p. 10] suggested the algorithm for wall-bounded
flows. In a follow-up study, the algorithm was updated to provide computationally cheaper, more
robust and capable solution processes [11], p. 687]. In addition, [12, p. 96] unified the [ii] and [4ii]
steps to prevent possible distortions of the [ii]-step statistics due to the [iii]-step, and to input
two-point cross-correlations. Later, [2] questioned the use of the Gaussian-form simplification as the
most appropriate option for turbulent shear flows, and replaced it with an exponential-form. Also,
FSM was derived in the same study as a cheaper equivalent of DFM, and was substituted into the
[#i]-step’s longitudinal direction, hence the first hybrid DFM-FSM. Using this hybrid method, [13]
associated [ii]-step with a finite impulse response filter to make function forms possessing an-
alytical inverse and forward Fourier transforms usable in DFM, e.g. two-sided exponential-form.
Lastly, [9] propounded an approach to overcome the impracticability of [10] (e.g. its intricate code
implementation) wherein an arbitrary-form correlation function is first curve fitted to a chosen-form
continuous function (e.g. a sum of two exponential functions), and then digital-filter coefficients are
computed from the curve fit in a similar idea that [10] follows.

Another limitation is that DFM output can only be created on unit-square/cube grids. As
the first attempt to generate synthetic time-series on non-uniformly-discretised grids on arbitrary-
shaped boundaries, [14] modelled the [ii]-step as a digital-filter equivalent diffusion process. Sub-
sequently, a combined method of [I4] and [I] was introduced by [I5 p. 328| claiming the output
generation on non-uniform grids; however, no tangible description of the method was conveyed.
DFM on curvilinear grids was enabled by [I6] through the use of a one-to-one-mapping between
Cartesian and curvilinear grids. Nevertheless, the generation still requires to be performed on
Cartesian grids; therefore, the method could not be qualified as a seamless generator of time-series
on non-uniform grids. For FSM, on the other hand, the time-series generation on non-uniform grids

is possible in theory. To the authors’ knowledge, however, no study was utilised or investigated
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FSM regarding this.

The third limitation is that DFM/FSM is not divergence free, and their mass flux is not
conserved. The consequence of non-solenoidality is reportedly spurious pressure fluctuations [I3]
p. 1089]. For instance, [I7, Fig. 11| observed pressure fluctuations three to six orders of magnitude
higher than the benchmark in an incompressible plane channel flow computation. By contrast,
the impact of non-solenoidality on velocity fluctuations was reported negligible [I4, p. 76], [I7,
Fig. 11]. To remedy this issue, [I8, p. 5] enforced solenoidality upon DFM via a solenoidal dig-
ital filter in case for homogeneous isotropic turbulence time-series. Nonetheless, [I8, p. 7] made
a mere suggestion to utilise [19, p. 3-5]’s transformation method for non-homogeneous anisotropic
turbulence without providing its repeatable application on DFM. Likewise, the possibility of using
a projection method [20] was merely mentioned by [I, p. 659] and [I4] p. 76]. Adopting another
perspective, [I7] devised a work-around applicable to DFM/FSM that the momentum predictor
equation of a pressure-velocity coupling algorithm (i.e. cell nodes) receives time-series instead of
inflow boundary conditions of the system of algebraic equations (i.e. boundary face centres), so that
solenoidality is enforced. Yet this method did not render DFM/FSM divergence-free in themselves.
Regarding mass flux conservation, previous studies did not systematically address its effects. As
a rare counter-example, [I7, p. 61] maintained that the violation of mass flux conservation causes
spurious pressure fluctuations similar to the lack of divergence-freeness, and the authors [I7, p. 57]
advanced a heuristic correction ensuring time-variant mass flux remains constant.

FEight more studies put forth major developments in a variety of topics: Single-direction con-
tribution of FSM within the hybrid DFM-FSM of |2] was extended to the remaining directions
by [21], hence the straight FSM. Compressible flow computations with the hybrid DFM-FSM were
systematically enabled by [22, p. 104-105]. In addition, DFM was expanded by [23] p. 677] to be
used in hybrid LES-URANS interfaces through a new kinetic energy equation accepting synthetic
time-series as its argument. Another hybrid LES-URANS methodology coupled the hybrid DFM-
FSM was proposed by [24] p. 703] where RANS-side instantaneous flow quantities are utilised to
generate synthetic time-series on LES-side. For spatial-temporal-variant scalar fluctuations with-
out flow-cross-correlations, DFM was first-time used by [25] p. 1313]. Flow-scalar cross-correlations
were, however, rendered possible for DEM/FSM by [26, p. 25] who methodically upgraded the [ii]-
step of DFM. Regarding non-Gaussian statistics, [9] presented a functionality that can reconstruct

given one-point spatial-variant skewness-kurtosis pairs into synthetic time-series without changing
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its preexisting statistics whereas the method thus far was not tested in CFD. Last but not least, on
the qualitative grounds that synthetic time-series go through a series of statistical metamorphoses
downstream within a CEFD domain, [27] described a monotonic optimisation method adjusting input
statistics on the fly to carry target statistics to fields of interest downstream.

Arguably, much of the remaining research on DFM/FSM were performance and application
improvements transferable across the above-mentioned fundamental studies. For a short list of
such studies, the reader is referred to [9 p. 445], and on top of this list, two recent studies can be
added: First, [28] designed synthetic time-series as source terms to be able to position DFM/FSM
boundaries inside a domain with an arbitrarily oriented fashion. Second, [ p. 449] offered the
Ziggurat algorithm as the optimum pseudo-random number sampling approach over the Boz-Muller
transform and Marsaglia polar method.

Despite the aforementioned studies, there is a lack of extensive research in five topics that ham-
pers theoretical/practical advancement of DFM/FSM in CFD. First, although stochastic/statistical
metamorphoses are qualitatively expected in input synthetic time-series that enter and convect
through a computational domain, much uncertainty exists as to the extent and causes of these
metamorphoses. One implication of the uncertainty is a state that statistics in the field of inter-
est could be different from input statistics at an unknown level. Very little is currently known in
the literature due to the lack of abstractions of DFM/FSM phases, isolation of model parameters
and quantification of their effects and interactions. Therefore, conceptualisation of DFM/FSM
phases, and thereafter, controlled tests quantifying and clarifying DFM/FSM uncertainties need to
be conducted to build a systematic understanding of how z affects/contributes to y in DFM/FSM.

Second, the existing accounts failed to invent an approach generating synthetic time-series on
arbitrarily-discretized arbitrary boundary geometries. Currently, the conventional practices are to
perform nearest-neighbour projection [2] or linear interpolation using two-dimensional Delaunay
triangulation [I3] from unit-square virtual grids, whereon synthetic time-series are created, onto
corresponding boundaries. Yet information distortion is not decisively prevented via these practices
during the information transfer through non-conformal interfaces. Therein, interpolation errors are
somewhat expected to increase overall modelling uncertainties. Moreover, the same accounts did
not quantify isolated effects of information transfer processes on synthetic time-series although

almost any non-conformity should cause information distortion to a certain extent.
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Third, no studies have been found which compare DFM/FSM variants to each other in CFDP]
whereas eight studies examined single variant of DFM or FSM against variants from other turbulence
generation method categories: [29] [30], 31 B2, B3] 34 [35] 13| 36] whose assertions will be referred
in the following sections accordingly.

In addition, systematic ‘building-block’ flow explorations of DFM/FSM are lacking (e.g. no
DHIT/HST study exists with [2]), which may complicate to identify isolated effects of major tur-
bulence concepts, such as pure shear.

Lastly, research on the subject has been mostly restricted to low-order statistics in their com-
parative evaluations, and has not touched upon higher-order statistics (e.g. enstrophy) in spite
of the fact that theoretical, experimental and computational high-fidelity datasets are adequately
available for benchmark flows.

The absence of structured knowledge in these five subjects hinders attempts for theory/practice-
oriented improvements within DFM/FSM, decision-makings as to the most apt DFM/FSM variant
to the CFD problem in hand, and conveying DFM/FSM benefits to a wider audience. There-
fore, the aims of this study are to minimise the aforementioned knowledge gaps through system-
atic explorations of DFM/FSM via building-block flows with statistics including previously-not-
considered measures, and to expand DFM/FSM functionality portfolio in various aspects, e.g. a
capability wherein synthetic time-series can be seamlessly generated on nonuniformly-spaced struc-
tured boundary grids. To this end, the theory behind DFM/FSM, large eddy simulation, and
proposed new capabilities are briefly explained in §2] the methodology is presented in §3] relevant

results are shown and discussed in §4] and clear-cut conclusions alongside remaining challenges are

given in

2. Theory

2.1. Flow modelling
2.1.1. Physical phenomena
In this study, the scope of physical phenomena is limited to Newtonian single-phase incompress-

ible fluid flows, excluding any thermal, chemical, electromagnetic, and scalar interactions. In this

2 A comparative non-CFD investigation amongst DFM/FSM variants was performed by [9].
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scope, the set of governing equations is the following pointwise conservation equations of mass and

momentum in an inertial frame of reference within an external conservative force field [37]:

V.u=0, in Qx(0,T) (1a)

W+ V- (uu)=-Vp+vVZu, in Qx(0,T) (1b)
where () is a linear operator, u(x, t) a vector field of velocity [ms™'], uu a dyadic field of velocity
[m?s72], v the constant kinematic viscosity of the fluid [m?s™!], p(x,t) a scalar field of modified
pressure [m2s72], Q a finite-size fixed-in-space volume [m?] with bounding surface 9Q [m?], T an
arbitrary instant of time [s], and u;=0u/dt [ms™2]. The external field term, say f, complements
the pressure gradient term when f is conservative (i.e. f=-V f, f a potential function); thus, the
manipulation of (-Vp+f)/p=(-Vp-V [)/p=-Vp was performed, where p is the uniform fluid density
[kgm™3]. In intermediate steps of an actual computation of Eq. the continuity constraint remains
non-zero; therefore, V - (uu) was not reduced to (u- V)u by the incompressibility assumption [3§].
The computations of Eq. |1| were carried out via OpenFOAM®v1712 [39] software, where finite

volume method discretisations are performed on the integral form of Eq. [I In what follows, the

majority of the reported model equations was reverse engineered from the software.

2.1.2. Turbulence modelling

In this study, large eddy simulation (LES) was chosen as the mathematical approach to compute
Eq. [[ in order to trade off computational costs for desired-fidelity flow modelling. In LES, a
time/frequency-domain low-pass filter is applied onto Eq. [I] as a whole in order to derive a filtered
set of equations, so that a quantity larger than the filter cutoff (i.e. over-filter scales) is explicitly
computed, and smaller quantities (i.e. sub-filter scales) are treated in another cheaper-to-run way
(modelling or ignoring). Conventionally, the operator U in Eq. |1 is a linear, homogeneous, time-
invariant, spatial filter, which inherently produces a temporal filtering effect on Eq. [I| due to the
natural associations between temporal and spatial scales [40, p. 13, 261]. This results in spatially-
filtered Eq. [T] wherein uu is unknown.

Furthermore, the implicitly filtered variant of LES was used [41] p. 381] (abbr. IFLES)HIFLES

3 It should be noted that IFLES is not ‘implicit LES’ (ILES) wherein sub-filter scales are not modelled, and their
effects are expected to happen solely due to discretisations. In IFLES, however, a sub-filter scale model is in
use alongside implicit filtering. The use of a model may be questionable. Numerical dissipation due to certain
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aims to prevent computational (e.g. extra filtering) and theoretical complexities (e.g. boundary
commutation issues due to the use of an explicit filter) associated with LES [43] p. 476-477]. To
this end, over-filter and sub-filter scales are not separated by means of an explicit filter, but im-
plicit actions. The rationale of IFLES is justified by two notions: (i) wavenumbers higher than the
grid Nyquist wavenumberﬁ cannot be captured and become indistinguishable from lower wavenum-
bers [44, p. 88|, and (i7) discretisations introduce errors, mainly on resolved high wavenumbers,
similar in size and effect to dissipative actions of sub-filter scale models [40, p. 331]. Both automat-
ically determines the highest resolvable wavenumbers. For this reason, an explicit filter is presumed
to be replaced by this existing elimination mechanism.

Although it is a widely held view in the finite volume method literature that an equivalence
between a volume-average of a variable (i.e. implicit filtering) and a top-hat kernel convolution
of the same variable (i.e. explicit filtering) exists (e.g. [45, p. 1308], [41l, p. 381]), few such as [46]
p. 3849] [47] p. 1] argued that the relation is actually an ill-defined approximation. In contrary, three
layers form an effective filter [40, p. 331]: discretisations of (i) domain, and (i) equations, and (7ii)
a closure model, each of which filters out certain scales. In view of hard-to-measure contributions
from each layer, the effective filter cut-off scale dissociates from the grid size and becomes ambiguous
for a priori identification. In addition, discretisation errors and sub-filter scale modelling uncertainty
become functions of the grid size, and further, interact each other [48] p. 131]. As an implication,
these notions preclude grid-independency in IFLESE hence, the quality quantifications of IFLES
computations need to be carried out a posteriori by other means as shown in §2.2

The closure of Eq. [I] is delivered as follows. First, the unknown uu is re-expressed in a more
modellable form by the Reynolds decomposition, i.e. u=u+u’, and [49]’s triple decomposition, which

ensures no second filtering is required unlike the double decomposition [40, p. 49-50]:

mu=vu+uu+uu+ (Wu—-un)+un  with vu#uw (2)

algorithms was observed that they can shape flow development to a similar level that a sub-filter scale model of
explicit LES can do [42] p. 24]. Therefore, a model’s augmentation of dissipation may be redundant. In this study,
however, no exclusive algorithms were utilised, and it was assumed that the use of a sub-filter scale model could
be acceptable as long as an IFLES computation is thoroughly verified or validated.

For the smallest resolved one-dimensional structure of size A, the maximum grid spacing could be 0.5A due to
the Nyquist theorem [40, p. 10].

5 Several cases were reported where grid refinement even deteriorated computation outcomes [47, p. 1].

4
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where the under-braced terms are tensors of cross-stress, Reynolds decomposed sub-filter scale
stress, and Leonard stress, respectively. The first and third terms are not Galilean-invariant [50}
p. 64], thereby yielding different results for the same terms in different inertial frames [51] p. 61]E|
As a consequence, the two terms are often omitted. The modelling practice is ultimately designated
on: (Wu-uu)~u'u'.

Second, inter-scale interactions between over- and sub-filter scales are deemed to be functional
rather than structural. The former concept purports that inter-scale energy transfer is an adequate
ground to model inter-scale interactions and over-filter scale evolution [40}, p. 104]. For this purpose,
a modelled energy sink is applied to over-filter scales by leaving the dynamic characteristics of sub-
filter undefined. Here, this was achieved by adopting the Boussinesq eddy-viscosity hypothesis:
W%EE 0.6 kgt 1-14S4, where B is a symmetric tensor field [mzs‘z], ksts the modelled sub-filter
scale kinetic energy ﬁeﬁ per unit mass [m?s~?], I an identity tensor field [-], S4={S;-3"! Tr(S;)I}
[s7'] the deviatoric part of the twice strain rate tensor field, i.e. 8;=28=2{0.5(Vu+(Vu)7)} [s7'],
Tr(-)=>"'~, ()i the trace of a tensor, and {14 }(,,>0} the modelled eddy-viscosity scalar field [m?s™!].
In this work, kg and v were modelled by using the Smagorinsky model [53] equipped either with the
van Driest wall-damping function [54] or a Lagrangian-averaging dynamic procedure [55], depending
on the case in question.

The Smagorinsky model evaluates vy and ks as shown below:

v = C, A kYD ksts = { (-b+ (b* + 4ac)®?) (2a)’1}2 (3)
where Cj, is a model constant [-], {A}y A|=N}=m\3/‘7 a scalar field of the domain-layer component

of the effective (first) filter [m], m a heuristic coefficient with a default value of 1[-], {V}{y >0} the
corresponding scalar field of the time-invariant computational cell volume [m?], N the number of
cells in the computational domain [-], a=C, A™! a quadratic coefficient field [-], C, another model
constant [-], b=0.6 Tr(S) a linear coefficient field [-], c=2C;A(dev(8):8) a free term field [-], and
{:} the double inner two-tensor product operator, i.e. {A:B}=3"1, 377} A;; By

The van Driest function was applied onto A in order to limit v; towards walls, so that eddy-

formation-preventing dissipation and solver instability can be avoided [37, p. 78]. The main reason

6 For instance, Hirtel and Kleiser (1997) [52, p. 103] demonstrated that filter-independent sub-filter scale energy
transfer is not possible with Galilean-variance.
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of its usage herein is, however, to ensure consistent comparisons with the literature while a number
of development proposals were available, such as in [56 p. 26]. Its formulation with a minimum

switch that was introduced by [50, p. 124, 260] reads:

A =min (A, KC; [dpw| {(1 4 €) — exp[|dnw| (y*A7)']}) (4a)

Y = v { (Ve + sts,W) |nf : (vuw)f| + es}_0.5 (4b)

where £=0.41 is the von Karmén constant, Cs the Smagorinsky constant, |d,.| the node-wall-

I a scalar field with its boundary

normal distance within y*<500 [m], e the machine epsilon [-], y*=¢
condition defined in Eq. [m], A*=26.0 a model coefficient [-], {-},, wall boundary fields, ng
surface normal vector, and €5 the minimum machine floating point number.

With the Lagrangian-averaging dynamic procedure, the forms of v, and ksss become:

vi = Jum (Jum) 1 A%(Sa:84)"° ksts=(2 Jum Jnn)? €22 A [Saf” (5)

where C,, is a model constant [-], Jr. with Iy scalar fields [m*s™] defining C2 (x, t)=JLmI sy [55)

Eq. 3.5] and being solved from the two transport equations shown below [55, Eq. 3.8-3.9]:

OIm + V- (udim) =T7((

Il

:M) — JLm) (6a)

Qv + V- (udnm) =T (M:M) — Jnim) (6b)

[

where 9;{-} is a partial temporal derivative operator [s7}], T=(0A) " (JumInm ) 0125

a Lagrangian
averaging time scale [s], 6 a heuristic coefficient [m™2] with a suggested value of 1.5 [55, p. 363]
that ensures a time-lag for Lagrangian autocorrelation functions of (L:M) and (M:M) reduc-
ing below e '-lag, L={Q-3"' Tr(Q)I} a symmetric tensor field with Q={F[u?]-(F[u])?*} [m3s~],

M=2A2{F [(EZE)SCA -4 (S5a:Sja)Ssa} another symmetric tensor field [m2s72], Sjq an equivalent of

Sa applied on §[u] instead of u, and §[-] the second (explicit) filter operator whose formulation is:

5161 = (3, or4s) (32, 41) (7)

where f stands for a cell face, ¢ an arbitrary field, ¢ ¢ the corresponding field interpolated from the
cell centre to one of its faces, Ay face area [m?], and §[¢] the top-hat filtered field. It should be

10



highlighted that although the aforestated derivations in the dynamic procedure were hinged upon
the cut-off scale size of 2A in the second filter [55, p. 354], the filter radius of Eq.[7]is smaller than 2A
in the software to some extent. The difference in theory and practice was, however, presumed to be
ineffective on outcomes by the academic community, and the opposite premise was not investigated

to date.

2.1.3. Inflow modelling

2.1.8.1. Digital-filter-based and forward-stepwise-based synthetic time-series genemtonﬂ

DFM and FSM create spatiotemporal-variant fields of Reynolds-decomposed velocity (or scalar)
fluctuations, {u; (x,t) € Q}t; cn. ;e 1,3]; 403+ Which do not directly stem from governing equations
of fluid motion. As illustrated in both methods can be conceptualized four independent
stages.

Two-point One-point
correlation functions correlation tensor

Stage 1 > Stage 2 > Stage 3 > Stage 4
v v v ¥

Generate: Generate: Perform: Perform:
{r}(x) {b}(2N+1) bEr:{S}(M) a. S:{u}(m)

Figure 2: An illustration of DFM/FSM stages in case of a one-dimensional field. Modified from [9, Fig. 2|.

In the first stage, a set of random numbers are generated: {r}{|,|-g; k,jeN:1<k+j<r}, Which
follows the probability density function of zero-mean (R Y1, 1y,=0), unit-variance (R™! Y1 r2=1),
independent (R 21111 ri1=0 for k#j) Gaussian White—noise

The second stage is the generation of a number set, {b}, representing two-point correlation
functions. In DFM, the set is evaluated through the following relation between {b} and an arbitrary

autocorrelation function, p [1 p. 657]:

N
o . EN+ bibj—q
plap) = ot = ®)
PP Z bJQ
j=—N
—_—— —
known unknown

7 This section is an extended paraphrasing of [9] §2].
8 Mersenne Twister pseudo-random number generator [57] and Marsaglia polar method [58] for Gaussian PDF
sampling were used.

11
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where {N}¢njen:ns03 i the support of a filter, {b}{pj-on+1:beq) @ set of the filter coefficients,
Q{qeN:q>0} the lag number, and p the maximum lag number. The different variants of DFM are
largely due to alternative propositions to invert Eq. 8] In FSM, on the other hand, {b} is defined
as a set of integral length-scales adjusted by some empirical constants and integration limits.
Within the third stage, {b} is inserted into {r}. To this purpose, FSM utilises element-wise

multiplication whilst DFM convolution summation as noted below:

N

sk =Fx (k) = Z bjrict; (9)
j=—N

where {s}{51-M:s5cq} is a set of digital-filtered numbers, and Fn a non-recursive, linear, discrete
filter operator carrying out a convolution summation on two finite sequences. For Fy, the two sets
should completely overlap; thus, yielding a subset of the conventional full convolution summation.

The size of the sets can be linked as: R-(2N+1)+1=M.
In the fourth stage, a given one-point correlation tensor is embed into {s} by the Lund trans-

formation [8, p. 255|, u} (x,t) = a;;(x) s'(x,t) where a;; is a second-order amplitude tensor:

(Rll)o'5 0 0
aij = | Ra1 /a1 (Rag — a3;)%5 0 (10)

Rsi/a11  (Rs2 — asias1)/aze  (Rss — a3, — a3y)’®

where R;; is a known one-point correlation tensor in units of variance. It should be noted that a;;
is conventionally spatial-variant and temporal-invariant whereas there is no theoretical objection to
its temporal variation. Moreover, the members of a;; need to be constrained in three ways to avoid
domain errors: (i) Rq1>0, (ii) RyyRoa-R3,>0, and (iii) Raz-R3 Rii-(Raa-Ro1Rai{R11(Ri1Rao
-R3,)})?=0.

Klein et al.’s method - DFM

In this variant, the right-hand side of Eq. [§]is presumed to be a Gaussian-form function of integral

length-scales [Il p. 657-658]. For a computational grid of cubic cells with constant grid size in all

12
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directions, {A;}(;eq1,3)3, the approximation to Eq. [§ can be written in its discrete-form as follows:

T (mi Ai)Q - i mf
p =~ exp (-4 W) = exp (-4n2 (11)

7

where m is the rectilinear distance of a node to the zero-lag correlation node, and n the length-scale
size, which of both are in grid spacing units. Correspondingly, a closed-form expression for {b} was

derived by [II, p. 658]:

-0.5
2

SRSy ) I (o A (-5%) (12)

j=-N ‘

Two constraints to the approximation validity were stated: (i) the range of length-scales is limited

to 2<n;<100, and (i7) the minimum size of a filter support is two times a given scale size, N; > 2n;.

Custom method - DFM

Within this variant [9], firstly, a given arbitrary-form correlation function is curve fitted to a more
generic yet similar continuous function. In subsequent, Eq. [§]is numerically inverted based upon the
obtained curve-fit function. For the set of benchmark flows in this study, the following expression

was put forth as the most suitable function form:
{b} = % [p] = % [% {aexp(-ba) + cexp(-da)}] (13)

where Z denotes a root-finding algorithm, 4" a curve-fit algorithm, and {a, b, ¢, d} jveqy are curve-fit
parameters. In this study, filter supports were sized to the point where correlation functions drop

below few percent of their zero-lag value.

Xie and Castro’s method - Hybrid DFM-FSM
For DFM part of this variant, the right-hand side of Eq. is an exponential-form function [2, p. 454]:

p /= exp <—c72r ZZZ|> leading to ﬁ;}i A exp <—c7r|::> (14)
where ¢ is a constant which is tuned to 0.5 for the current benchmark flows [9, p. 446]. For

FSM part |2, p. 456], streamwise integral length-scales are embedded, as shown below, through a

13
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temporal-correlation of two planes of {s'}, which are created at subsequent time-steps:

b iv LAY i Ay 00
(y, z,t+Ay) = "% (y, z,t) exp 5T + 5" (y, z,t+A4)  1-exp e (15)

where {s''} is a temporal slice of {s'} comprising of transverse length-scales {Lqa}{ac{y,-}} at
an instant ¢, {s'} an auxiliary temporal slice created by a new set of random numbers in the
same manner to {s'¥}, T streamwise Lagrangian time-scale evaluated by means of Taylor’s frozen

turbulence hypothesis [59] P

Kim et al.’s method - FSM
In this method, the use of convolution summations from DFM are entirely discarded [2I p. 135].

Accordingly, the following set of equations, which can be computed in any order, depicts the method:

s (1, G+1, k) = s (¢, 4, k) exp( Cy) +r(t,j,k) {1 exp( 289)}0'5 (16a)

Ty Ny

0.5
, 2c,
e o) = s (0B exp (- ) s i) {1-om (- 22) 1 o

z

0.5
: , Ca ; . 2¢4
Sysz (t+1,4,k) = Syaa (t Js k) exp (— M) + 852 (t,7,k) {1— exp <— ) } (16¢)
where {r} is a random number set at time ¢, and {c;(X)}{ic{z,y,-}} @ constant set to weigh {n;}.

2.1.8.2. DFM on non-uniform grids

For DFM, the generation of synthetic time-series on non-uniform grids was attempted with the
help of two concepts: (i) the Fourier transform of the discrete convolution and (i7) non-equispaced
discrete Fourier transform (abbr. N-DFT), which is an arbitrary-node generalisation of DFT [60]
p. 1]. In the proposed method, the frequency domain information obtained by the first concept on
a uniform grid is converted into a spatial domain information on a non-uniform grid via the second

concept. First, the convolution summation of Eq. |§| is expressed in the frequency domain [61, p. 39]:

{s}=ZZ[b] o Z1]] (17)

9 Taylor’s frozen turbulence hypothesis assumes that: Ly=U, T}, where T; is a streamwise Lagrangian time-scale,
Uz mean flow speed in the same direction, and L, the corresponding streamwise integral length-scale.

14



245

255

265

where .7 [-] is a DFT operator, .% ~1[-] its inverse, and o the Hadamard operator for complex number
pairs (i.e. element-wise multiplication). Both Eq. |§| and [17| are, however, by definition delimited to
uniform grids; thus, the output sets can only contain equally-spaced samples.

Second, .Z1[-] is switched to an N-DFT operator, ¢4[-], so that Eq. [L7| becomes [62, p. 5]:

{s} = 9[F[b]o Z]]  with Y{x})[1= D [« exp(-2mir{x};) (18)

re{In}

where {5} (|51-Mm: seq) 1S a set digitally filtered on arbitrarily-positioned nodes, {x} (xcrd : de[1,3);-0.5<w4<0.5}

the normalised-shifted positions of the nodeﬂ in the d*™-direction [-], {j}{jent . 0<j,<|{x}a(} a0 in-
dex set, {IN}{HGZL; . -0.5N.<ra<0.5N,} & set of spatial frequencies &, and Ny, con) the (always even)
filter support sizes in each direction.

Further, the computational complexity of N-DFT is reduced through [60]’s non-equispaced fast
Fourier transform (abbr. N-FFT) algorithm implemented into an open-software library, NFFT
3.0 [62]. N-FFT is the conventional FFT algorithm [63] wrapped with a window-function-based
approximation scheme involving truncations in the spatial and frequency domains and oversampling.
The approximation leads to a systematic error that can be controlled through three parameters:
an oversampling factor, o(,cq:s>1.0}, @ Window function truncation parameter, mg,,cny, and the
window function type which should be well localised both in the spatial and frequency domains. For
fixed settings, the approximation error exponentially decays with m [60, p. 19], and can be reduced
down to the order of machine precision [60, p. 3]. The complexity of FFT is, however, increased
from O(MNlog(M)) to O(n+log(n)+mM), where N=IIL,N; is the total FFT length, N;qy,cony the
FFT length in the i*"-direction, n=I1¢ n; the total N-FFT length, n;=oN; {n;e2ny the oversampled
FFT length in the same direction, and Myyeny the number of arbitrarily-positioned nodes.

For the usage of N-FFT, four points may need to be highlighted: (i) the forward N-FFT def-
inition is the opposite of that of the forward FFT wherein transformations are from the spatial
to frequency domain, (i7) the zero-frequency component of N-FFT output is centred in spectra,
(#71) N-FF'T output is not normalised; therefore, it should be scaled by the number of nodes, and
(iv) the imaginary part of complex-valued N-FFT output is ultimately dropped while the phase
information is random. Apart from the above, N-FFT is thoroughly explained in [60, p. 15-20]

10 fog} ={ra}¥; L. - 0.5 where {24} is a set of normalised-shifted node positions in the d*-direction [-], {rq} a set of
absolute node positions in the same direction [m], and ¥max the maximum absolute position within all directions.
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and [62, p. 6-10].

2.1.3.3. FSM on non-uniform grids

Although the published FSM formulations, i.e. [2] p. 456] and [21, p. 135], have not been described
in consideration of non-uniform grids, FSM is inherently not limited to uniform grids. Therefore,
no major change was necessary for its generalisation.

The new approach merely involves a modification within the arguments of the two exponential
functions in Eq. [I6] Therein, the parameters non-dimensionalised with a constant grid size were
re-dimensionalised. As a result, the arguments became exp(-cql;q L;ll) and exp(-2c¢qliq L(‘il)7 re-
spectively, where caq.,cqy is a weighting constant in the d*®-direction [-], lidag1,,eqy the absolute
distance between the i*" and (i-1)*" nodes (or the one-dimensional grid-size belongs to the i*" node)
in the same direction [m], and Laqz ,ecq) the corresponding integral length scale [m].

The verifications of Eq. which were given in [2] Eq. 15], were repeated with the new arguments

as follows:

0.5
o0, =T, {\Ilk_l exp (—clLk) +g 1 {1— exp (—c%)} } (19a)

l \1%°
=\ exp (—C Lk> +W0g ’(/Jk_1 [1—6Xp (—CL’C):| (19b)
o I
=WoW,_1exp | -c T as Wq_1=0 (19¢)
=Wy ¢ Upoexp| -c li-1 +) 1-ex —clk_1 " exp ( -c e (19d)
0 k-2 €XP I k-2 p 7 P 7
= ... (19e)
k k
_ © 1 o
=Wq V¥, exp <-c Zl?) =exp (—c Zzo ) as Uy W¥y=1 (191)

where Uy denotes information at a point of an arbitrarily-spaced one-dimensional grid, ¥y informa-
tion at the k*'-point which is some A}, distance away in the positive direction from the 0*'-point,

and ﬁ a time-averaging operator. In the light of Ax= Zi’io l; and Wy ¥p=exp(-cArL™1), Eq.
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verifies the new approach with which non-uniformly spaced structured grid and varying time-step

computations become possible[M]

2.2. Solution post-verification approaches

Various LES-quality post-verification metrics that do not require experimental or direct numer-
ical simulation (abbr. DNS) data were proposed in the literature. In order to circumvent conse-
quences implied by the lack of grid-independency in IFLES, six metrics deemed optimum were used

herein, and presented below in terms of the number of computations they required.

2.2.1. Single-grid metrics

The first metric, {I'pope(X)}{ocr<1}, is a criterion from [64, p. 560]. It asserts that an ‘ac-
ceptable quality’ LES resolves at least 80% of the total turbulent kinetic energy of a flow field.
The metric formula reads: pope(x)=[kofs] . [kae]>0.8 where [z],=T"! Z?:AA’; x; is an unbiased time-
mean estimator, n the size of a discrete sample x, T the sample duration, A; the time-step size,
ots(x,t)=0.5 Zilm the over-filter scale, kiot(xX,t)=(kogs*ksts) the total, and kggs(x,t) the mod-
elled sub-filter scale turbulent kinetic energy fields per unit mass [m?s~2]. Outcomes of the metric
need to be interpreted with caution due to three primary reasons: First, the derivation arguments
are arguably heuristic rather than systematic, which do not fully explain why the metric variable
is k and its threshold is 80%. Second, the true kg is always approximated; thus, increasing I'pope’s
uncertainty and demanding its own assessment. Lastly, as demonstrated by [65, p. 957] and [48]
p. 135] with k. comparisons between an LES and a corresponding filtered DNS, I'pope>1 is able
to occur despite its non-physicality.

The second metric is an index, {I'geik-1(X)}{o<r<1}, that was derived by [65, Eq. 8a]: I'celik.1=
{1+a, ([Vert] ul'alm)n}_l = {1+, (I',)"}" where Y is the kinematic viscosity of the fluid [m2s1],
', an underlying metric, Veg(X)=Vnum*+Vsts+V1am the effective viscosity, vyum (x)~ Cy h(Crh? A2 [k w)”
the estimated numerical viscosity with recommended values [66] p. 3, 5, Eq. 28]: 0.05<C,<0.3,
Cn~1, h~A, n=0.53, and a,=0.05. For 80% turbulent kinetic energy resolution, I"ce)jk.1 = 0.8 and

T, =[Vest] #Vl_alm ~ 20 are expected, whose decreasing value indicates an increase in quality.

11 Unstructured/arbitrarily-discretized grids and local grid refinements were not considered.
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2.2.2. Several-grid estimators

Another metric containing a pair of measures was put forward by [65, Eq. 15-16]: T'ine(x)={1+(1-
(Kofs, 1] [Kofs o)) (@P=1)"1 3171 and Tcoarse (%) ={ 1+ ([Kofs,2)u [Fofs,1]5' -1)a? (aP-1)""} 1 where the sub-
scripts 1 and 2 respectively indicate coarse and fine grids, I'coarse=I"celik-11 the coarse-grid index,
I'Fine=I"celik-111 the fine-grid index, p=2 the estimated order of numerical scheme accuracy in terms
of Taylor series truncation error [66, p. 3|, {a(x)}{as>13=Aret,1 A;elw the grid refinement parame-
ter [65, p. 952, and A,e(x) the local characteristic grid size. In some cases, higher kinetic en-
ergy can be observed in a coarser grid in comparison to finer grids or benchmarks [65, p. 952],
thereby non-physically causing I'celik-11>1 celik-111 @and even I'celjk.r1>1. For such cases, the authors
put forth a modified expression [65, Eq. 18] (simplified herein): Tceik111(x)=1- [|ag || (ar+[kots 2],.) "
with ag(x)=([kots 2]~ [kots,1],.) (@P-1)1. Interpretation of I'celikrr and Teerernr is the same with
I'Gelik.1 wherein I'~0.8 implies 80% turbulent kinetic energy resolution.

The last metric is the Lyapunov exponent [67], which quantifies the level of resolution of time-
accurate flow structures unlike the five statistical metrics above. Its evaluation is carried out
for a statistically converged computation possessing u(x) at an instant ¢, in five steps: Firstly,
a new flow field u*(x) is computed by perturbing u according to u*=u+eljul|, [67, Eq. 7| where
Il = {Va‘n1 ZZI()QVZ'}Oﬁ, Van the volume of the numerical domain containing n cells, V; the it
cell volume, and e=10"8. Secondly, the computations of u* and u are advanced from ¢, to t,, and
lou(t)]], =|u*(t)-u(t)|, is evaluated for a reasonable amount of time-steps [67, Eq. 8|]. The same
pseudo-random number sets need to be fed into both computations for each time-step, and this is
attainable by using the same seed for the pseudo-random number generator. Thirdly, the set of
log;o(l6u(t)]|,) is plotted as a function of time and linearly regressed. An expected-to-be-observed
linear slope of the growth gives the Lyapunov exponent, A, via Xt=In(|du(t)]], ||(5u(t0)||;) [67,
p. 5]. Finally, exponents are computed for each grid available, and inspected as a function of the
characteristic grid size. The start of a level-off in plots indicates that almost all degrees of freedom

shaping global chaotic dynamics are resolved [67, p. 11].
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3. Methodology

8.1. Benchmarks € numerical settings

Four methods were implemented into OpenFOAM®v1712 [59] (4) Kim et al. [21], (9) Xie-
Castro [2], (4i¢) Klein et al. [1], and (iv) Custom [9]. The majority of DFM/FSM capabilities and
varieties are represented by these methods. These methods were tested through a test-bed of three
benchmark flows: (i) decaying homogeneous isotropic turbulence (DHIT; the case of M=0.0508) [68],
(4i) homogeneous shear turbulence (HST; the case of h=0.305) [69], and (i4i) plane channel flow
with smooth walls (PCF; the case of Re,=395) [70], each of which concerns an isolated aspect of

turbulent flows. The benchmarks and numerical set-ups were presented in the following.

8.1.1. Common numerical settings

3.1.1.1. Domain modelling

Numerical domain modelling involves: the determinations of (i) the domain shape, and (i7) the
distance of the field of interest to domain boundaries. Although the domain shape may be influential
to certain flow computations, e.g. [T1, p. 11], unless dictated by the benchmark, rectangular prisms
were deemed appropriate in this study. The distance to boundaries is then chiefly determined by
(i) integral length scales, (i) the level of boundary condition error propagation to the field of
interest, (#i4) cost, and (iv) blockage ratio (not applicable herein).

A domain side several times larger than corresponding integral length scales is advisable while
a suppression on or a clip to a scale likely alter energy transfer mechanisms, hence an unrealistic
flow development. Based upon systematic homogeneous isotropic turbulence computations, [72]
p. 3] suggested that a domain side should at least be six-length-scale in size similar to [64, p. 346]’s
eight-length-scale presumption, which was previously stated three-length-scale [73l p. 507].

Exact spatiotemporal dynamics of boundary conditions (abbr. BCs) are nearly always unknown,
yet BCs must present to ensure a well-posed problem. As a result, BCs are approximated at a
distance to the field of interest which can allow the flow developing to BCs’ characteristics, so that
BCs could not unrealistically force the surrounding flow to conform its specifications. Accordingly,

parts of the computations deemed affected by nearby BCs were omitted in the reported results.

12 The methods are ascending sorted in terms of their theoretical floating point operations per second.
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For the domains, a Cartesian coordinate system in an inertial frame of reference, .#=(0, e;, ey, €.),
whose origin, @, is at the left-bottom corner of the inlet boundary, was designated with (x,y, z) »=(1, 2,

3).s, i.e. the positive x is the longitudinal, y the vertical, z the right transversal directions.

8.1.1.2. Spatial domain discretisation

The spatial resolutions were estimated (and post-assessed for free-shear and wall-bounded
flow regions. The physical domains were then discretised into unstructured rectangular cuboid
finite volumes without local grid refinement by the grid generator blockMesh of OpenFOAM® [74].

Arguably, no generic estimation is possible for free-shear regions [75], p. 8], [76] p. 262]. Nonethe-
less, |77, p. 4] stated that overall Naox Re, where Na is total number of nodes. Locally, minimal
recommendations from the literature project a view of approximately ten nodes per integral length
scale, L. For example, in case of high-Reynolds-number homogeneous isotropic turbulence, [64]
p. 577-578] analysed that 387 1A~ L and 547 1A, ~L are needed to resolve 80%-kors when util-
ising sharp spectral and Gaussian filters, respectively. Furthermore, [40, p. 102] reported that
keeping Taylor and cut-off scales in the same order is an advisable criterion, i.e. O(A)~O(A,),
thereby 15°%%(ARer,)?5A,~ L, where A~ O(1) [78, p. 67]. Moreover, |79, p. 62| advised 10A,~ L,
to render sub-filter scale model ineffective for the bulk region of a channel flow, where the integral
dissipation scale L¢~L [79, p. 53]. Besides, from a heuristic perspective, [80, p. 40] recommended
~215-20 nodes per shear layer thickness whilst [65, p. 951] and [81, p. 1024] advised 8A, ~ L.

Within wall-bounded regions, more concrete estimates were proposed. For medium Rer, flows
(i.e. Rer, <106 relevant to this study), |82, p. 1305] postulated Naox Re’/?, AT =100, AT=20, y*~1
and n,~10, of which last is the number of nodes stretched within the viscous wall region where
momentum-transfer-dominant scales are order of viscous length scaleleI A broader range of values
from the literature was provided by [83] p. 3] as A7~ 50-130, AT~ 15-30 and n,~ 10-30.

In general, flow scales differ in each direction. The above estimations should therefore yield
anisotropic cells. The influence of anisotropy on LES was, however, claimed not to be fully compre-
hended [84] p. 2401], and correspondingly [75] p. 8] suggested isotropic cells depended upon physical
and numerical justifications. For these reasons, isotropic cells were preferred wherever possible in

this study. For wall-bounded regions, on the other hand, grid stretching was deployed in compliance

13 ()*=()urv!, where u;, is the friction velocity.
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with the literature suggestions for maximum expansion ratioﬁ overall 1.3 [85], p. 7], and 1.25 |86
p. 379] [87, p. 10] along the wall-normal log-layer.

The grids were verified by the default mesh quality metrics defined in [88]. Notably, the max-
imum face non-orthogonality, face skewness, and cell aspect ratio for DHIT and HST grids were

(0,0,1), and for PCF (0,0, 13-22), where the ideal values are (0,0, 1).

8.1.1.3. Equation discretisation

OpenFOAM® computes Eq. [1] on a co-located grid arrangement, wherein cell centroids store flow
quantities. Practical-level pressure-velocity decoupling due to the co-located arrangement is re-
moved by a slightly modified [89, p. 71-75] Rhie-Chow momentum interpolation method [90]. The
volume integrals of the terms in Eq. [T]involving spatial derivatives are transformed into the surface-
of-the-volume integrals by means of the Gauss-Ostrogradsky theorem, and discretized. The terms
without spatial derivatives are, on the other hand, discretized through presuming constant spatial
quantities throughout the given volume. Therein, face-information required by surface integrals
is interpolated from adjoining cell nodes to a single point on a face. Across a face, interpolated
information is assumed constant and uniform; therefore, OpenFOAM® is spatially limited to the
second-order accuracy in terms of Taylor series truncation error. In this study, numerical inte-
gration of all spatial derivatives-variables, and node-to-face interpolations were held by the central

difference scheme.

8.1.1.4. Temporal domain discretisation

Temporal resolution, A;, requires to consider three factors. The first is the numerical stability
of the solution process. Settings ensuring stable solutions is generally quantified by the Courant-
Friedrichs-Lewy number [91] defined for a single cell in OpenFOAM® as: Co=AA, where A=0.5V"!
> taces [@il is a cell-flow frequency scale [s7!], and ¢ the volumetric face-flux vector [m3s™!]. The
second is the derivation assumption imposed by the preferred theoretical-level pressure-velocity
coupling algorithm, PISO [92]. It presumes that the linear velocity-pressure coupling dominates
over the non-linear velocity-velocity coupling while A; goes to zero [93, p. 52|, hence viable pres-
sure corrections within the same A;. The third is the second-order backward difference temporal

scheme which produces false diffusion in proportion to A; because of its disregard for temporal

14 The term ‘expansion ratio’ is defined as the width ratio between the expanded and initial cells in one direction.
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Table 1: The boundary conditions employed for pressure, velocity and turbulent kinematic
viscosity at each geometric boundary. The hyphenated sequences stand for DHIT-HST—
PCF, and the single word the common boundary condition. N denotes zero-gradient Neu-
mann, D fixed-zero Dirichlet, C cyclic, S symmetric, ND stepwise combined Neumann-
Dirichlet, A convective and L calculated boundary conditions.

Boundaries | Fields — p u V4 JLM, IMM
Inlet Neumann Synthetic D-D-I. Neumann
Outlet Dirichlet ND-ND-A N-N-L Neumann
Laterals Cc-S-C Cc-S-C cS-C C-S
Top-Bottom C-S—N C-S-D CS-N C-S

2 A boundary is a topological element of a computational domain.
b A boundary condition is a set of mathematical operations computed at the boundary.

variations in ‘face fluxes and derivatives’ [50, p. 115]. All necessitate adequately small A, typi-
cally Copax~O(-1). As an example, for free-shear and wall-bounded flow ILES, [94, p. 86] found
Comax=0.5 satisfactory whereas advised Cop,,x<0.2. Moreover, in this study, constant time-stepping
was adopted, and second-order backward difference scheme was used for numerical integration of

temporal derivatives-variables.

3.1.1.5. Boundary condition types

The boundary conditions adopted for each field on geometric boundaries were illustrated in Table
Among them, a convective BC [95] was opted for to ensure resolved structures outflowing without
affecting upstream significantly owing to the fact that [96], p. 31] quantified and [97, Fig. 8] visualised

upstream-fluctuation-suppressing imprint of the conventional Neumann BC.

8.1.1.6. Solution algorithms and solvers

Term discretisations are followed by the construction of the linear equation system. At this point,
however, the bandwidth of the coefficient matrix may be high. This means that values of the
global indices for neighbouring nodes are far apart, whence lower performance of solver algo-
rithms [98, p. 30]. Therefore, the bandwidth was narrowed by [99]’s scheme (i.e. renumberMesh
in OpenFOAM®). Eq. |1| was recast into pressure and momentum equations to be solved sequen-
tially by the theoretical-level pressure-velocity coupling algorithm PISO [92] with 4 momentum
correctors. Finally, numerical solution of linearised explicit Eq. [1] was performed through linear
solvers: Geometric agglomerated algebraic multigrid solver with the Gauss-Seidel smoother for pres-

sure (tolerance=107%, relative tolerance=0-10"3), and an iterative solver using the same smoother for
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velocity and other fields (tolerance=10"8, relative tolerance =0). In case some field computations re-
quire more stability, the stable biconjugate gradient method preconditioned with the diagonal-based
incomplete LU preconditioner was put into use (tolerance=107°, relative tolerance =0). Grids and

fields were decomposed by the scotch partitioning method [I00] for parallel executions.

8.1.1.7. Initialisations and sampling

For each benchmark, the first-upstream-section measurements were used to construct synthetic
time-series. IFLES initialisations were carried out, and their statistical convergence was qualita-
tively assessed via the first four sample moments of probed time-series whereas considerable number
of pass-throughs were simulated to inherently ensure statistical weak stationarityE Subsequent to
computations, the evaluations were conducted according to a set of measures reported in §3.3] The
minimum sample size needed to interpret statistics of the population of interest at a 98% confidence
level was estimated as 1.3x10% elements [I0T} §7.2.2.2.], which was few orders smaller than the size

of samples obtained.

8.1.2. Specific numerical settings

3.1.2.1. Decaying homogeneous isotropic turbulence - DHIT

The DHIT benchmark was a stationary-grid approximately-isotropic decaying turbulent flow ex-
periment from [68]. Synthetic time-series were based upon the experimental measurements at 42M
section, where M=0.0508[m] is the characteristic size. Thereon, the set of input included: the mean
longitudinal flow speed U.=12.7[ms"!], the fluid kinematic viscosity vjam,=1.4941x10"5[m?s™1] (based
on Reym=3.4x10%, and U,=10[ms"!]), one-point normal-anisotropic correlations {(u};)2}{;c(1.2,3))
=4.9284x1072 [mQS‘Q]-{W}{#ij.O, and longitudinal-transverse integral length-scales Liong=2.4x
1072[m]-Liyans=1.27x1072 [68] p. 299]. The rectangular prism computational domain possessed the
dimensions of (7.62,1.524x1071,1.524x107!) » [m]=(300, 6, 6) » [Liong]=(600, 12, 12) 4 [Lirans). The spa-
tial resolution involved cubic cells and 10 nodes per Liong; resulting in (3000, 60,60).» nodes, and
the temporal resolution was A;=5x107°[s]. The sub-filter scales were modelled by the Smagorin-
sky model using the Lagrangian-averaging dynamic procedure (§2.1.2). The computations were

initialised and sampled for 20 mean-flow pass-through, i.e. 24[s] each.

15 Methods quantifying statistical convergence of LES solutions may also be found, e.g. [I3] using passive scalars.
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8.1.2.2. Homogeneous shear turbulence - HST

The HST benchmark was [69]’s experiment of virtually transverse-homogeneous uniform-shear tur-
bulent flow. The chosen scenario belonged to x1/h=7.5 plane measurements, where h=0.305[m] is
the shear-turbulence generator height, and x; the downstream distance to the generator. At the
plane, the mean longitudinal centreline flow speed was U.=12.4[s"!], the mean longitudinal-shear

dU1/dz2=46.8[s7!], one-point correlations (u})2=2.80x 10" [m?s 2], (u})2=1.00x 10!, (u})2=1.56x 1071,

wyuh=-4.50x 1071, {(u];)} {i45.11,j23=0.0, and integral scales Lyy 1=4.4x1072[m], Lyz,1=1.012x 1072,
L33.1=1.496x1072, L1 2=1.452x102, L1 3=1.1x 1072, Las 2=Lg2 3=5.06x 1073 and L33 2=L33 3=7.48x 1073
[69, p. 320, 329, 334], where the last four scales were derived by the isotropy assumption: 0.5L22’1=L22’E
and the fluid kinematic viscosity 1jam=1.49778636445x10"5[m?s™!]. The numerical domain was a
rectangular prism replicating the experimental set-up, i.e. (5.6425,3.05x1071,3.05x107!) »[m]~(128,
6.9,6.9) #[L11,1]~(389,21,21) #[L1; 2]. The spatial domain was discretised into (1332, 72, 72) » cubic
cells with ~10.4 nodes per L;;,1, and the temporal resolution was At=1><10’4[s]. Similar to DHIT,

the sub-filter scales were modelled by the Smagorinsky model with Lagrangian-averaging dynamic
procedure (§2.1.2)). The initialisations and samplings lasted for ~17 and 34 bottom-mean-flow
pass-through, i.e. 18.2[s]-36.4[s], which was equivalent to 40-80 centreline-mean-flow pass-through.

3.1.2.3. Plane channel flow with smooth walls - PCF

The PCF benchmark was the wall-resolved DNS of statistically stationary, pressure-gradient driven,
fully developed plane channel flow with smooth walls from [70], wherein Re,;=u,0/11,,=395 with
u,=1.0[ms"!] the friction velocity, 14,m=0.002531646[m?s!] the fluid kinematic viscosity, and §=1.0[m]
the channel half-width [70, p. 943]. The large-to-present input datasets were fetched from the
web page [IOQ]E The numerical domain duplicating [I7] was created in order to minimise un-
certainties in model comparisons. The domain [I7] had the following particulars: its dimensions
were (60.0,2.0,7r)y[m]%(153.8,5.178.1)y[L11,1;y+=392]|E|, the number of nodes was (600, 64,70) »
with A?~39.5, AT~ 17.7, y*~ 3.8x103, and wall-normal cell-to-cell expansion ratio of 1.0795 (i.e.
OpenFOAM® expansion ratio of 10.7028). Its temporal resolution was A;=2x1073[s]. Follow-

16 Within L;; &, ij signifies the directions of two velocity components in hand, and k measurement direction.

17 Integral length-scales were defined here as: L=%5°(p)~.2(p), where £2(-) is a numerical integration operator
on a sample autocorrelation function, p, over [a,b]. The upper bound of the integral was accepted 10% zero-lag,
similar to [17] p. 61], which was justified by that the streamwise correlations in [102] do not level off zero in general.

18 In [17]’s domain, z=3.5[m]. Nevertheless, [70]’s original value of z=m[m] was followed in this study.
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ing [17], the Smagorinsky model with the van Driest wall-damping function was utilised for the
sub-filter scale modelling ( Its model coefficients were C.=1.048 and C%=0.0265463553 re-
sulting in C,=0.065. The computations were initialised for 20 pass-through based on Uy+-392=20.133
[ms~!], and sampled for 40 pass-through.

3.2. New code practices

On top of [9, p. 449]’s quoted-from-the-literature and proposed recommendations to reduce
theoretical computational costs of DFM/FSM, two new code practices were offered here.

The new DFM practice is the direct generation of Gaussian white-noise in the frequency domain.
For DFM implementations in which FFT is in use, random number sets are typically generated in the
time domain and Fourier-transformed every time-step to perform convolution. This transformation
can be eliminated by generating real-valued Gaussian random samples directly inside a complex-

valued set wherein the following arrangement is preset:

1 =hi +ihganse k€ [0,N/2-1] (20a)
Dk =N k€ [N/2,N-1] (20D)

where {h} {|n|=x; n, ey 18 a real-valued Gaussian white-noise set, {N}neny its size, and {H}{|n|-N; 9,cc}
a complex-valued conjugate-symmetric set.

In FSM, a brute implementation requires 18 summation-subtraction, 45 multiplication-division,
9 square-root and 18 exponential function executions per node per time step for velocity correla-
tions in each direction. By pre-computing the exponential terms in Eq. this can be shrunk into
9 summation and 18 multiplication executions for stationary grid and constant time-step computa-

tions.

3.8. Investigation subjects € measures

DFM/FSM generates synthetic inflow time-series in four non-CFD model stages. This non-CFD
model unit was explored in [9], and illustrated in Fig. With its stages. Therefore, the scope of this
study was limited to the subsequent unexplored CFD model unit.

The CFD unit can be abstracted into two main sub-units through which non-CFD time-series
progress till the field of interest: (i) transfer sub-unit and (i7) development sub-unit whose con-

stituents comprise several options to make. The conceptualisation was displayed in Fig. [3]
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Transfer Phases Development Phases

Phase 1 > Phase 2 > Phase 3 > Phase 4 > Phase 5
¥ ¥ ¥ ¥ ¥

Pre-mapping: Mapping: Post-mapping: Adjustment: Evolvement:
e Scale augmentation e Direct uniform e 1-D Mass correction - First few cells - Downstream
e Energy augmentation @ Interpolation e 3-D Mass correction - Abrupt - Gradual

e Direct nonuniform

Figure 3: A sequential diagram of the phases transforming a DFM/FSM synthetic time-series towards the field
of interest in a CFD domain. Terms of transfer and development stand for the phases wherein the Navier-Stokes
equations are and are not involved, respectively.

The transfer sub-unit denotes a set of final preparation phases before the Navier-Stokes (abbr.
N-S) equations become in effect. Therein, time-series are prepared for a given numerical set-up
in three phases: (i) pre-mapping conditioning, (#¢) mapping, and (ii7) post-mapping condition-
ing. The pre-mapping phase implies the final conditioning operations independent of the CFD
grid, such as skewness-kurtosis transformation [9], heuristic [I7] or optimised [27] kinetic energy
augmentations/diminutions. Secondly, the mapping phase refers to information transfer from the
DFM/FSM virtual grid to the CFD grid, both of which may or may not conform, for example
the nearest-neighbour projection [2|. Lastly, the post-mapping phase indicates any operation on
time-series that is mapped onto the CFD grid, such as mass flux corrections [I7], p. 57].

The successive development sub-unit signifies processes where synthetic time-series become a
part of the system of algebraic equations. The sub-unit can be further abstracted into two phases:
(1) adjustment and (i7) evolvement. The adjustment phase occurs in the first few cells neighbouring
the inlet boundary. There, abrupt and considerable alterations are expected in the statistical and
stochastic characteristics of time-series in view of the fact that DFM/FSM inherently does not use
the N-S equations to produce series. In the evolvement phase along the rest of the domain, on the
other hand, a typical downstream evolution of time-series is anticipated. Therein, in contrast to the
adjustment phase, the signature of DFM/FSM gradually fades away, and other numerical settings
dominate the flow development.

In the light of the above abstractions, the tests were designed in three suites. In the first suite,
all the IFLES cases were assessed by various means including the six LES-quality post-verification
metrics introduced in §2.2] and the metrics themselves were evaluated as well. In the second suite,
DHIT, HST and PCF scenarios were computed with the four DFM/FSM variants (, and
performance of each model along the development sub-unit was monitored with predetermined

(default) transfer sub-unit options. The motivation behind the predetermination is to avoid the
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possibility of numerous option combinations at the outset due to the transfer sub-unit (i.e. tens of
combinations per model per flow), which may cause a loss of focus. Therefore, an option combination
deemed as the most basic and common one was chosen for the transfer sub-unit: no pre-mapping
and post-mapping manipulation and the simplest mapping method of nearest-neighbour projection.

In the third suite, viable options within the transfer sub-unit were investigated in terms of their
effects on the development sub-unit. Therein, only Klein et al.’s (i.e. pure DFM) and Kim et al.’s
(i.e. pure FSM) models alongside PCF were used to investigate the aforementioned options as the
benchmark datasets in increasing fidelity were only available for PCF. For the pre-mapping phase,
three particulars were isolated: the magnitude of shear stresses, the size of integral length scales,
and the number of integral length scale sets. In the first, four scenarios were studied: the magnitude
of shear stresses were zeroed, kept default, doubled, and the no-slip wall boundary condition was
changed to slip condition alongside with default settings. In the second, three scenarios were
studied: the size of integral length scales was halved, kept default and doubled. In the third, the
use of different inlet spatial zones was examined with a single set of integral length scales covering
the entire synthetic turbulence generation plane, and a duo set wherein an extra set of length scales
was input at the 10% wall-normal zone. For the mapping phase, three mapping methods were tested:
nearest-neighbour projection, bilinear interpolation, and seamless projection. Finally, for the post-
mapping phase, three approaches were studied: null, longitudinal, and three-dimensional mass flux
corrections. The effects were quantified through the statistics listed in Table 2, and compared
with the corresponding default case. Due to the vast amount of data produced, the information
as to the statistics that were almost unchanged relative to the half-precision machine epsilon was
qualitatively conveyed. On the other hand, the changes in the statistics deemed significant were

presented and discussed in the relevant sections.
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Table 2: List of statistical metrics used in the study.

Measure Expression
n
1. Unbiased sample arithmetic mean ai=ntYx;
i=1
n
ii. Unbiased sample variance fo=(n-1)"1>"(x;-111)?
=1 n
iii.  Estimator of skewness 1 ={n(n-1)}°5 (n-2)-* {n'l Z(xi—ﬁl):S} hg e
j=1
n
iv. Estimator of kurtosis excess Fo={(n-2)(n-3)}" {(nQ—l) {n‘l Z(xi—ﬁ1)4} ﬁ2‘2—3(n—1)2}
i=1
z nlAy
. Sample one-point correlation tensor Ryy=z"15" T 2 (xki—ﬁlmk )(yki—ﬁlyk)
k=1 =D
. N (N-a)A,
vi. Unbiased sample correlation functions pxy = ﬁQR)j{ iRxy=(N-a)t Y 2 Yisan,
Xy i=A,
vii.  Sample one-sided power Welch’s method [103], window: Hanning, overlap: 50%
spectral density function
viis.  Wall shear stress vector field u.={S; HSfH‘l} . {—l/eff{i -3t Tr(&);}}
ix. Over-filter scale kinetic kLoc + kConv = KTransU + ETransP + kprod + kDiff + EDiss
energy transport equation
T. Over-filter scale velocity derivative 0,71=-(V,1,)? and  9,792=(V,u,)*
skewness and kurtosis fields
Ti. Enstrophy transport equation Cr+Cc=Cp+Cp+CEp+Eg+CE,

xii.  Mean total strain transport equation S =6prods + Sprodk + ODiss

—

n means the size of a discrete sample z, {-} an estimation operator, z the number of nodes along the statistically
homogeneous direction, T a sample duration, A; a time-step size, a the lag (time-offset) number, N the maximum lag
number, {-} the inner product, Sy face area vector field [m2], Veff = Vlam +Vsts the effective viscosity scalar field with v, the
kinematic viscosity of the fluid and vy the modelled eddy-viscosity scalar field [m?s™], S¢=2{0.5(Vu+(Vu)T)} the twice
strain rate tensor field S [s™'], Tr(-)=>_7,(-)i; the trace of a tensor, and I an identity tensor field [-]. For the transport
equation of the over-filter scale kinetic energy, kots: kroc= Otkots is the local derivative of kogs [m2 S‘S}, kconv=Umean *+ VKofs
the convective derivative of kofs, kTransu=-V - (Wkots) the transport of kogs via velocity fluctuations, krransp=-V - (UD)
the transport of kogs via pressure fluctuations, kproa= —{ﬁg}mean:VUmeam the production of kogs, kpig=Viam(V - (W - S¢))

the viscous diffusion of kofs, kDiss= -Viam (&:Vﬁ) the viscous dissipation of kots, ksts the modelled turbulent kinetic ene?gy,
and egrs the modelled dissipation rate. (‘9?)71 and 0,72 are the over-filter scale velocity derivative skewness and kurtosis
respectively [s73]-[s™*]. For the enstrophy transport equation, € [s72]: ¢;=0.50;(@ - @) the scalar field of the increase rate
of & [s7], €c=0.5{Umean - V(@ - @)} the convection of &, €p=-{(w W) : Vwmean} the production of &, E&r=-0.5V -
(A(@ - @)) the diffusion of € by velocity fluctuations, €p=-0.5vsV?(@ - @) the diffusion of & by viscosity, €s= (@ :
S)+@?:8 )+ ((@-8) -Wmean) the production of vorticity fluctuations via vortex stretching, .= -{vy(Vw : Vw)} the

—mean

dissipation of €. @=V XU the over-filter scale vorticity [s™'], €p=w - {S - w} the production of ¢ due to vortex stretching,
€p=vsts(w- VZw) the dissipation of . For the transport equation of mean total strain, & [s72]: Gr=0.50;(S : S) the scalar
field of the increase rate of & [s7?], Gproas=-(S-8) : S the production of & by self-amplifications, Gproar= —6.2&?{ (ww): S}
the production of & by enstrophy effects, and Gpjse= Vsts{GDiss : (V2Gpiss)} the viscous dissipation of &. B

Within the suits, investigations were conducted in respect to input and formed statistical mea-
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sureﬂ The input statistics included: (¢) mean velocity profiles, (ii) one-point second-order cor-
relation tensor@ (i41) two-point correlation functions, and (iv) one-dimensional one-sided power
spectral density functions. The formed statistics comprised: (i) over-filter scale kinetic energy
transport equation terms, (ii) over-filter scale enstrophy transport equation terms, (ii7) mean flow
total strain transport equation terms, (iv) one-point third and fourth statistical central moments
and probability density functions, and (v) wall-shear stresses. The discrete expressions used to
compute these measures were shown in Table 2.

Test suite results were obtained through numerical domain nodes and probes@ For spatially-
variant flow field statistics, cumulative moving averaging was performed on time-accurate node
values along time. For statistics that require the entire temporal dataset at once (e.g. power
spectra), probe time-series were used in their computations. All the sample statistics were then
spatially-arithmetic averaged in statistically homogeneous directions. In the results section, only
the crucial premises were presented with essential evidence strictly representative to all cases and
tagged as representative-to-all. Also, all these data manipulations were abbreviated by the tag
conditioned.

Moreover, statistics from the benchmarks/methods and their relative changes were quantified
through the centineper (i.e. the log percentage: 10010g, (Zdata/Thenchmark) [¢Np] [106] p. 45]) which
is additive and symmetric unlike the conventional percentage formula (hence less misleading) as
well as the discrete Fréchet distance [107@ when necessary. For brevity, the denotations bench-diff
and default-diff were used below to indicate amplitude differences between the quantity of interest
and corresponding benchmark/default computational case in units of the quantity. Furthermore,
the term adaptation length is used to loosely describe a supposed distance at which a given statistic
reaches its statistically stationary ergodic state within a turbulent flow.

In addition, to prevent other redundant word repetitions across the results sections, two more
abbreviations were made: First, the Big O notation was redefined as an indicator of the digit

place of the first significant figure in a given range of magnitudes (e.g. for a range between 0.14 and

19 The terms input and formed were coined to distinguish the statistical information required by DFM/FSM, and
generated by CFD, respectively.

20 Tn case of scaling by fluid density, the term can be written as Reynolds stress tensor.

21 Probe data were obtained by an inverse-distance-weighting linear interpolation of node information to the arbitrary
location of the probe within the node’s cell.

22 A metric that quantifies the level of similarity between two arbitrary discrete datasets. A code from [I08] was
used to calculate the metric, which was shortly explained in [9] p. 464].

29



595

600

610

0.52 = O(-1); between 25.1 and 88.3 — O(2) etc.) in contrast to its actual meaning for a function’s
limiting behaviour. Second, the model names were shortened to the first author, e.g. Klein model
instead of Klein et al.’s model.

Finally, for each results section, the following line of questions were addressed in the order
given: why was the statistic studied; what/how was the study carried out; what was observed in
the adjustment and evolvement phases as a result; what did the results mean in theory and practice;
what were the key benefits for the audience and what did remain unsolved [109, p. 134]. Having

defined what the test framework is, the next chapter presents the conditioned results and remarks.

4. Results & Discussion

4.1. Confidence assessments

Prior to analyses, confidence assessments of each computation were carried out in four subjects:
(i) spatial/temporal resolutions, (i7) numerical stability, (ii7) statistical convergence of computa-
tional fields, and (iv) of probe samples. These assessments did not measure the accuracy of the
computations; thus, they did not address validation. In contrast, verifications of the target compu-
tational settings were sought herein. Therefore, any qualification here only implies confirmation of
the intended settings rather than the validity of the modelling.

(i) The spatiotemporal resolutions of the computations were post-assessed through five statis-
tical metrics and one stochastic metric ( In addition, the capabilities of these metrics were
compared, and their viability was discussed. For the statistical metrics, the first four one-point
sample moments (i.e. fi1 and fiz; and to reveal more local trends, 7; and 72), minima, medians and
maxima of the metric ﬁeldﬂ were exhibited in a supplementary document, i.e. Suppl. Doc.-1. The
sample means of the metric fields with their corresponding coefficients of variation were summarised
in Table [3

To start with, the analyses of the stochastic-metric Lyapunov exponent demonstrated that the
exponent levelled off with resolution refinements in DHIT, HST and PCF (not reported). As a
result of this, the majority of the degrees of freedom in contribution to the global dynamics of the

computations were deemed to be resolved in compliance with the interpretations from [67), p. 11].

23 Each metric produces a scalar per cell node.
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Table 3: The sample means (i.e. fi1) and their corresponding coefficient of variation (i.e. {®}y,) of time-averaged

spatial-variant fields of five IFLES-quality post-verification metrics (i.e. Tpope, I'v, T'celik-1, I'Celik-11; and I'celik-111

in §2.2). The fields were obtained from the computations of decaying homogeneous isotropic turbulence (DHIT),

homogeneous shear turbulence (HST), and plane channel flow with smooth walls (PCF) (§3.1) using the four synthetic

time-series generators (i.e. Custom, Klein et al., Xie-Castro, and Kim et al. in §2.1.3). The biased estimator of the

coefficient of variation was defined as the ratio between the sample standard deviation and sample mean: (ﬁg)'0'5/ﬁ1.
Method | ft1sy = I'Pope r, I elik-1 I Gelik-11 I Celik-111

Custom 0.9770.41 1.76418_07 O~9370.46 0.9372_21 0.9362_12

Klein et al. 0.9800,44 1.82216_59 0.9360,36 0.9391_45 0.9391,31

DHIT Xie-Castro 0.985()‘30 1~73036‘99 0.9370.30 0.9321.43 0.9321‘22
Kim et al. 0-9750.48 1-77226.89 0.9370,50 0-9332.83 0-9322.63
Custom 0.9470,77 7.30637_04 0.8751,52 1.08951_96 0.8786375

HST Klein et al. 0.953()'71 8.00346,91 0.8701,60 1.05024,39 0-90426.82
Xie-Castro 0~9530A66 7.83722'04 0.8711.57 1-01421‘98 0.92422.72
Kim et al. 0-9470.87 7.579111‘34 0.8731,40 1-07089.28 0.906105,22
Custom 0'9298.67 1.23010_70 0.9470,29 - -

PCF Klein et al. 0.930546 1.23110.87 0947909 - -

Xie-Castro 0-9308.69 1-23010.81 0.9470.29 - -
Kim et al. 0~9288.76 1-22910.65 0.9470.29 - -

With regard to the first statistical-metric I'pope, [1[I'pope(x)] of all cases ranged from 0.928
to 0.985 ({TPope fadvice=0.800) as illustrated in The influence of the inflow generators on
L1 [Cpope] Was, however, found to be indistinguishable up to two-decimal places. Similar to fi1, the
coefficients of variation in I'pope fields remained virtually the same within ~©@(-1) as can be seen
from the subscripts of Also, the coefficients were observed to be an order of magnitude
lower for DHIT/HST than those in PCF. This observation implies spatially-invariant I'pop. fields
for DHIT/HST whereas spatial variations for PCF.

By contrast to the relatively global iy -fi2, effects of the DFM/FSM variants began to appear
with more local 41 -72: Klein et al./Xie-Castro models yielded positive 41 [['pope, and Custom/Kim
et al. models negative 71 [I'pope] With a degree of O(1) in DHIT and O(-1) in HST. Nevertheless,
Y1 [Tpope] was negative O(1) for all models in PCF cases (Suppl. Doc.-1, Table 2). The negativity
indicated an asymmetry in the metric fields within which less-than-median outliers of T'pgpe (i.e.
lower quality according to the metric) occurred more frequently in PCF, and vice versa.

Furthermore, all cases were quantified to be leptokurtic (i.e. positive Fa2[I'pope]) (Suppl. Doc.-1,
Table 2). This positiveness signified that the source of local I'pope variations was scattered to an
extent directly proportional to 7s; thus, transitions across different quality regions were mostly
not smooth for relatively high 7,. For example, qualitative inspections of the PCF-I'pgpe field

histograms revealed that multiple and separate aggregations existed. These groupings were layered
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in a cascade of waning strength towards the walls with a quadratic trend as the lowest I'pope Was
observed three layers away from the walls (not reported).

It was deduced that the above interpretations can also be applied to the results of the remaining
statistical metrics. For this reason, the following presentation was confined to generic and specific
remarks that encountered no counterexamples instead of re-expressing similar result-meaning pairs
for each metric.

First, according to the metric guidelines in all the mean values of the metrics shown
in qualified all the corresponding IFLES cases as statistically adequate. Nevertheless,
the mean qualification is global; hence, spatiotemporally-accurate local structures may still not be
resolved within a computation ascertained ‘decent’ by the grid metrics. Second, the metrics did
not provide results completely consistent to each other. For instance, fi1[I'pope] led a ranking from
the highest to lowest ‘quality’ as DHIT-HST-PCF whereas [i1[I',] and its derivative fi1[Icelik.1]
resulted in a ranking of PCF-DHIT-HST. Consequently, the level of spatiotemporal resolution of
a computation could be quantified notably different by the grid metrics. Third, the influence of
DFM/FSM on the fidelity level of an IFLES computation seems to be limited to free-shear flows.
This was exemplified by PCF in what all the metric results of the moments were observed to be
almost the same up to two-three decimal places for any inflow generator, and this observation was
absent for the free-shear flow cases. It might therefore be speculated that wall effects blur the
imprints of the inflow models on the computational fidelity. The final general remark is that no
inflow method was found to be superior or inferior to any other in regard to the estimated fidelity.
An example of this was that Kim/Klein/Xie models in the same DHIT cases were predicted the
lowest ‘quality’ model by different grid metrics.

In addition to the general deductions, distinct remarks pertain to each metric can be drawn: In T,
(Suppl. Doc.-1, Table 3), no mechanism was identified which constrains the upper magnitude limit
of I, albeit its lower limit of zero. In consequence, unrealistic positive deviations of I', larger than
the level of fi1[I",] could occur for maxima and higher moments. As an example of such deviations,
the followings were measured from the DHIT cases: 41[[,]~O(3)-0O(4), 72[[,]~O(6)-O(7), and
max[I',]~0O(3)-0(4). It was ascertained that these high-amplitude occurrences stem from vgg
fields. However, the underlying reason can be further attributed to the dynamic sub-filter scale
model which is anticipated to generate relatively large spatiotemporal variations in vgg fields [55]

p. 355]. This premise was further supported by the implication [66] p. 3] that ", was developed for
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constant-coefficient eddy-viscosity sub-filter scale models, and by the PCF resultﬁ in which the
high-amplitude variations disappeared from all the moments. Taken together, it has been identified
that T, is very likely unable to cope with assessments of dynamic-procedure IFLES.

In the case of I'celik1 (Suppl. Doc.-1, Table 4), more robust predictions were observed as opposed
to I'y. Therein, maxima, higher-order moments, and coefficients of variation of I',, were overall
reduced by several orders of magnitude alongside few exceptions. Although I'ceik.1 is also a function
of vt like I'), and the root cause of the exceptions were again traced to vgg, the overall amelioration
of Dgeik.1 arose from the fact that vg, was wrapped by five elementary functions [65, Eq. 8a] in
I'Gelik-1’s formulation, which softened the effects of vgg outliers.

With respect to Lcelik.1r (Suppl. Doc.-1, Table 5), two abnormalities were noted: Tcelik.11 was
globally or locally able to exceed unity (e.g. the DHIT maxima), and be able to become negative
(e.g. the HST minima). Celik et al. [65], p. 952] also observed such exceedances, and attributed them
to a state when coarse-grid ko 1 locally exceeds fine-grid kofs.2. In fact, any local ko 1>koss 2 breaks
down the metric locally with either of an exceedance or negativity even when kogs 1 <kogs,2 globally.
This susceptibility can be tracked down to the denominator of the formula [65, Eq. 15] wherein
the exceedance occurs when kofs,1 kjf, 5>1, and the negativity when kogs 1 kg, o> ( Celik et
al. [65, p. 953] argued that some failures of I'celik.11 are because of realistic oddities in physical or
numerical processes (e.g. backscatter). On contrary, here, the attribution of failures was made to
a generic incapability of the metric formulation on the grounds that ko 1 k;tl»s72>1 can still locally
happen even for monotonically convergent computations. For instance, a resolution increase may
result in a spatial translation of a dynamic structure in a computation. Thus, at a certain point
and its neighbourhood, a substantial redistribution of fine kg fields may transpire. The metric fails
to detect such incidents or rule out their effects, which may then propagate neighbouring points or
dominate the metric globally.

As regards Tceik.ir (Suppl. Doc.-1, Table 6), the two aforementioned deficiencies of I'celik.11
were observed to persist locally in spite of the statement that T'celk.11 was a remedy [65, p. 952]
to Tcelik11’s deficiencies. The reason of the persistence is the denominator of the new formula [65],
Eq. 18] which remains as a function of (kofs2-kofs,1). Thereby I'cerik-rrr could still exceed the unity
or be negative.

I'pope, on the other hand, provided relatively robust outcomes which nearly always did not cross

24 The constant-coefficient Smagorinsky sub-filter scale model was in use (§2.1.2).
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any viable metric limits. As an example, neither negative I'pop nor abrupt changes were observed
in the moments. Besides, I'pope Was identified not to be prone to any metric calibration owing to
the fact that all independent variables of I'pope arise from the computation itself. Unlike I'pgpe,
however, Celik et al.’s metrics require several constants to tune, and moreover, they cannot be
precisely tuned according to the settings available. This heuristic further complicates assessments
to some degree. Taking all the aforementioned premises, the use of I', and I'celik1, 11, 11 in the
IFLES framework seems questionable, and despite the counterarguments mentioned in I'pope
is arguably preferable among all metrics considered as far as its results are interpreted cautiously.

(i1) The numerical stability and the fulfilment of PISO building-block assumption were eval-
uated through Copean and Copax which were measured approximately 0.25-0.28, 0.30-0.50, and
0.40-1.00 for the DHIT, HST and PCF cases, respectively. The values roughly obeyed the recom-
mendations discussed in Therefore, the computations were deemed ‘adequate’ in temporal
aspect as well. (4i7) Prior to the statistical convergence assessments, the computations were pos-
tulated to be statistically weak stationary and ergodic based upon the affirmative tests conducted
for the same models and benchmarks within a non-CFD environment by [9, p. 457]. In the light
of qualitative assessments, velocity and pressure’s first four sample moment time-series were found
to steadily approach a limit (not reported). Accordingly, the statistical convergence of the compu-
tational fields was assumed occurred. (iv) Lastly, the probe sample sizes were kept several times
more than the threshold calculated in (i.e. 13,000) to ensure the sample statistics reflect the
statistical population of interest. The probe sample sizes for DHIT, HST and PCF were: 480,000,
364,000, and 60,000 elements, respectively. Thereupon, the statistical convergence of the probe

samples was assumed.

4.2. DFM/FSM with default settings

4.2.1. Mean velocity

Mean velocity field is essential to the initiation, distribution and maintenance of turbulence.
According to the energy cascade theorem [110], all the kinetic energy of turbulence is initially
channelled out from the mean velocity field with an amount of mechanical work done by the mean
velocity spatial gradient ﬁeldﬁ on the Reynolds stress tensor field. In detail, the strain gradients

of mean velocity (i.e. 9;U;) stretch parallel and anti-parallel vortex structures (i.e. vortex stretching

25 From now on, the term gradient refers to the spatial gradient.
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Figure 4: The mean velocity components from the decaying homogeneous isotropic turbulence computations
(DHIT) [68]. The vertical axis of a subplot stands for the log percentage change of a component, i.e.
L=1001og, (Zdata/Thench)[cNP], with respect to the input longitudinal mean speed, U,=12.7[ms™!]. Of each compo-
nent, u(x, t)=(u, v, w)(x,t), the sample time-series were first time-averaged at each node, and then spatial-averaged
in the statistically homogeneous lateral and vertical directions, hence U(z)=(U,V,W)(z). The left- and right-block
horizontal axes represent the adjustment and evolvement regions of the longitudinal distance of the computational
domain, x, non-dimensionalised by the grid size, A, and the characteristic length M=0.0508[m], respectively. The
V- and W -components were translated by U, owing to the fact that the input V,, and W, were zero.

minus vortez squeezing), whose diameters shrink to preserve their mass. Due to the conservation of
angular momentum, the rotational speed of vortices increases with the reduced radius of rotation;
thus, (de-)energising the surrounding velocity/vorticity field occurs at various scales. Moreover,
the cross gradients of mean velocity (i.e. 9;U;) bend and reorient the principal axes of right-angled
vortices (i.e. vortex tilting), with which a portion of energy is transferred to the orthogonal vorticity
fields. In view of these, any unintended alteration in the mean velocity gradient will eventually be
reflected in the driving mechanisms of turbulence to a certain extent, e.g. mean velocity profiles in
DFM were found to greatly affect LES results of planar turbulent jets by [II, p. 663][10, p. 10]. For
this reason, the mean velocity information needs to be correctly conveyed into a computation.

In this section, representative-to-all remarks for the conditioned mean velocity component fields
were presented with In (DHIT), the centineper bench-diffs of each mean velocity
component were shown as a function of the downstream distance. In and [6] (PCF), the
vertical profiles of the velocity components were shown across the adjustment and evolvement

phases, respectively.
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Figure 5: The along-channel-height profiles of the mean velocity components along the longitudinal adjustment phase
(Adj.), i.e. the eight initial nodes from the inlet (left to right), from the computations of the smooth-wall plane channel
flow (PCF) |70]. The vertical axes show the channel height, y, non-dimensionalised by the half channel height, §. The
horizontal axes illustrate the speed magnitudes in [ms™!]. The time-averaged U(x) fields were arithmetic averaged
in the statistically homogeneous direction, z, at the indexed longitudinal positions of the cell nodes, A,/s, thus
U(z,y)=(U,V,W)(z,y). It should be noted that the linear interpolation was turned off in the first-node results to
avoid some code implementation issues, hence the stepwise appearance.

=3

o

[A.7] As illustrated in the figures, at the first node next to the inlet, the maximum bench-diffs
of all components were observed to be roughly O(-2)/O(-3)[cNp]| for DHIT, HST and the bulk
of PCF cross sections. Exceptions were identified in the vicinity of the PCF walls where the local
bench-diffs were increased up to O(2)[cNp]. [A.i2] Along the rest of the adjustment phase, the DHIT
and HST bench-diffs of U initially declined by an amplitude of ~0.004 & =20.01[cNp| until roughly
their fourth node, and then recovered back to the input levels. [A.iiz] In addition, in PCF, the
bench-diffs of V nearby the walls were halved in the second node and then continued to gradually
decrease. All the other bench-diffs, however, stayed roughly the same with the first node values
along the adjustment phase. [A.iv] Throughout the evolvement phase, on the other hand, all the
bench-diffs remained virtually at their input levels except HST-V which rose linearly in the negative
direction, and PCF-W which contracted to an almost zero profile.

These findings have two implications: First, for each benchmark and component, the four model
results were observed to follow look-alike trends and amplitude levels within few orders of magnitude
smaller than the associated input. Therefore, it was ascertained that the different model mechanisms
are ineffective on mean velocity field developments. Second, the models were found to be able to

reconstruct input mean velocity profiles that can preserve themselves within a CFD domain or can
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appropriately develop downstream. The evidence was that the level of deviations was overall within
0O(-3)/0(2)[cNp| with respect to U magnitudes. Also, the deviations were similar irrespective of
the presence of significant flow notions, such as shear stresses or walls. This postulation is in-line
with [27) p. 45] who observed that the input length scales and Reynolds stress tensor do not affect the
hybrid DFM-FSM’s mean velocity profile developments. Nevertheless, these larger-than-machine-
accuracy deviations were also expected due to the domain and equation discretisations, thus making
assertion difficult whether the inflow models are the main contributors to these deviations.

These results suggest that no improvement is required for mean velocity capabilities of DFM/FSM
in the level of traditional engineering accuracy requirements. This argument is in agreement with
the DFM/FSM literature on various types of flows, [10, Fig. 3][2, Fig. 6, 11][I7, Fig. 3] to name

but a few.

4.2.2. One-spatial-point second-order correlation tensor

Within a flow, the one-point second-order symmetric correlation tensor of fluctuations (abbr.
the tensor) shapes the energy transfer processes which are important determinants of mean and
turbulent flow development. In simplified terms, as also mentioned in the work done by
the symmetric part of the mean velocity spatial gradient on the anisotropic part of the tensor [64]
p. 126] channels out the energy of the mean velocity field into the fluctuating velocity field to be

redistributed and dissipated. Therefore, the construction of the tensor is essential to the model
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Table 4: The log percentage change, i.e. 10010g, (Zdata/Tbench)[cNp], of the Reynolds stress tensor components with
respect to the corresponding benchmark data at four different stations, (il éiiliv). Within a table cell, the first two
stations were in the adjustment phase: The station (7) is at the first node longitudinal-away from the inlet, and the (i)
is at the node approximately one length scale away from the inlet downstream, i.e. tenth, eleventh and fourth nodes
for DHIT, HST, and PCF, respectively. The remaining two stations were in the evolvement phase: For DHIT, HST
and PCF, the station (7i7) is at 56 M, 2h and 56, and the station (iv) is at 129M, 3.5h and 154, respectively, which
corresponds to the benchmark data stations as shown in and [I0] In PCF results, the log percentage changes
were computed by arithmetic averaging the absolute amplitude profiles to prevent any cancellation of negative and
positive values. The reported results were rounded to one decimal places.

Case | c¢Np — Custom Klein et al. Xie-Castro Kim et al.
u'u -4.912.912.712.3 -0.119.0124.419.9 -2.414.1122.7114.8 -2.813.71-0.71-3.9
DHIT v/ -7.41-18.21-6.41-0.2 -3.21-7.3120.7114.5 -4.61-11.4115.9116.7 -7.21-15.61-8.41-4.1
w'w’ -7.41-18.11-6.31-0.0 -3.01-7.2120.7114.6 -4.71-11.4116.1116.8 -7.91-16.91-7.61-3.6
u'u/ -4.11-2.81-12.31-16.4 0.316.010.61-5.2 -2.110.71-4.91-9.0 -2.51-1.81-16.61-22.9
HST '’ -13.81-21.11-28.41-25.7 -13.41-14.1|-5.7]-3.2 -14.11-17.41-18.11-14.6  -15.5]-21.31-29.71-30.0
w'w’ -14.21-28.41-33.51-28.9  -14.51-22.8]-15.5|-10.8 -15.01-26.11-25.11-19.4 -16.11-29.61-37.81-34.9
u'v’ -18.91-69.11-38.41-36.7 -10.31-51.6/-4.8]-5.6 -14.11-61.81-21.01-18.9  -16.71-63.71-44.1-46.8
u'u 4.416.2115.219.2 1.512.417.214.9 4.814.319.716.8 6.219.3121.7114.1
PCF v’ 19.6126.6142.9126.0 17.4116.1121.3112.3 16.9123.7133.6115.4 20.9131.8154.1133.9
w'w’ 12.3119.1137.5123.4 8.9111.6119.0111.2 10.1115.2126.7112.8 12.0122.0147.1130.2
u'v’ 39.01131.5154.6112.2 27.01136.6120.8113.8 38.61147.3142.7112.7 40.91116.6171.3121.0

system of a turbulent flow, hence the synthetic time-series generation.

In this part, the conditioned results of the tensor were illustrated by [Figs. 7HI0| and [Table 4] and
representative-to-all remarks were discussed. In (DHIT & HST), the longitudinal profiles
of the tensor components were shown with a close-up of the adjustment phase. In and
(PCF), the channel-height profiles of the components were demonstrated at a number of succes-
sive observation planes of the adjustment and evolvement phases. The corresponding centineper
bench-diffs were given in In the following, the tensor was more closely monitored and dis-
cussed in detail at four stations: two adjustment phase stations, i.e. the first node and the node at
one-longitudinal integral scale distance downstream, and two evolvement phase stations for which
benchmark measurements were available. The tensor components of w/w’ and v'w’ were left out
from the presentation because of their pseudo-random dispositions at levels of O(-5)/O(-8)[m?s2].

At the first adjustment-phase node, the flow is dominated by effects of the inlet boundary con-
dition (hence, DFM/FSM) owing to the considerably lower boundary area of the lateral boundary
conditions therein. With this in mind, five generalised observations were made there. [B.i] First,
the amplitude of all the input tensor components was reduced for all the benchmarks and models
except Klein model in HST-u/w/. As can be deduced from [Table 4| and [Figs. 7| and @ the extent of
amplitude reductions in terms of bench-diffs was between O(-1)/0(2)[cNp| within the DHIT-HST-

PCF scenarios. [B.ii] Second, in terms of patterns across the tensor components, u'u’ bench-diffs
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Figure 7: The longitudinal profiles of the one-point second-order symmetric correlation tensor of fluctuating velocity
components from the decaying homogeneous isotropic turbulence (DHIT, the left subplot) [68] and homogeneous shear
turbulence (HST, the right subplot) [69] computations. The sample fluctuating velocity field, u’=(v’,v’, w’)(x, t), was
first cross-producted with itself at each spatial node, i.e. (u’xu’)(x,t), and then cumulative moving time-averaged,
thus (u’xu’)(x). The resulting fields were then arithmetic spatial-averaged in the statistically homogeneous lateral
and vertical directions, hence (u’xu’)(z). Herein, w/w’ and v'w’ were excluded owing to their pseudo-random
patterns. The vertical axes of the subplots represent the tensor components normalised by the input longitudinal mean
speeds, UoﬂDH1T=12.7[mS'1] & U, nsr=12.4, and multiplied by 100. The horizontal axes illustrate the longitudinal
distance from the inlet, z, normalised by the uniform cell size, A, for the adjustment phase (the left sub-subplots)
and the characteristic lengths Mpp1r=0.0508[m] and hsT=0.305 for the evolvement phase (the right sub-subplots).

were found to be consistently lower than its orthogonal and shear neighbours in all scenarios. For

instance, the DHIT bench-diffs of v/v/ and w’w’ were roughly twice those of u/u’. [B.ii¢] Moreover,

the level of bench-diffs of the spatial-variant shear component u/v’ in PCF was observed to be

several times higher than those of its normal components in contrast to HST wherein the order of

spatial-invariant w/v’ was similar to its lateral components. [B.iv] Looking for patterns across the
models revealed two particulars: With the default settings of the models, Klein model produced
the least bench-diffs throughout almost all the scenarios. Even in case of the exceptions, Klein
model remained the closest to the least bench-diff models. For example, Klein model’s bench-diff
in HST-w'w’ was -14.5[cNp| whilst the least bench-diff from Xie model was -14.2[cNp|. In oppo-
sition to Klein model, Custom and Kim models almost always yielded the highest bench-diffs for
the same scenarios. [B.v] Lastly, the aforementioned remarks were unaffected by the progression of
flow fidelity, i.e. the addition of shear stresses (from DHIT to HST), or of wall boundary conditions
(from HST to PCF).

The direct causal role of DFM/FSM in the deviations observed above was ruled out by the
evidence shown in [J, Fig. 5] which illustrated that the models in the same yet non-CFD setups
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Figure 8: The inlet-height profiles of the diagonal components of the one-point second-order correlation tensor,
ie. (u’'xu’)(y), obtained from a non-CFD decaying homogeneous isotropic turbulence (DHIT) computation on
which divergence-freeness, i.e. V - ux0, was subsequently imposed. The same data reduction in was ap-
plied onto u’(x,t) to obtain (u’xu’)(y) except that the arithmetic spatial-average was performed in the longitu-
dinal z-, and lateral z-directions. The vertical axes show the domain inlet height, y, non-dimensionalised by ten
times the characteristic length M=0.0508[m], and the horizontal axes the log percentage change of a component,
i.e. L=1001log, (zdata/Tbench)[cNp], with respect to the corresponding tensor results of the non-corrected non-CFD
u(x,t) fields. In the legend, the affixes ‘-C’ and ‘-CW’ denote the divergence correction scheme [I11] and the weighted
divergence scheme using generalized cross validation optimisation [112], respectively, which were designed to zeroize
the velocity field divergence of a volumetric particle image velocimetry dataset with aiming minimum alteration of

the velocity field.

are able to reconstruct an input tensor almost exactly. It is postulated that three contributors
are associated with the five remarks: (¢) the first-time execution of the N-S equation algorithms
on synthetic time-series, (ii) the first-time enforcement of the velocity solenoidality due to the
incompressibility condition, and (iii) the transfer phases illustrated in [Fig. 3] A pre-assessment
indicated that only the post-mapping phase among the other transfer phases can be influential on
the deviations (discussed in since effects of the first two transfer phase were naturally absent in
the DHIT-HST computations. On the other hand, the divergence-freeness enforcement on synthetic
time-series entirely acts within the first node. However, a presumption that the solenoidal condition
is the dominant contributor may still be speculative. Therefore, the divergence-freeness enforcement
was isolated from the other N-S equation procedures, and investigated as follows.

Non-CFD DHIT computations using the current models and settings were performed, and the di-
vergence of the resultant velocity fields was attempted to be locally removed with minimum stochas-

tic and statistical distortion via two experimental tools: the divergence correction scheme from [I11]
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Figure 9: The along-channel-height profiles of the one-point second-order symmetric correlation tensor components
along the longitudinal adjustment phase (Adj.), i.e. the eight initial nodes from the inlet (left to right), obtained
from the smooth-wall plane channel flow (PCF) computations [70]. The vertical axes signify the channel height, y,
normalised by the half channel height, §, and the horizontal axes the magnitude of the tensor components row-wise.

and the weighted divergence scheme using generalized cross validation optimisation from ME
Also, the level of divergence-freeness of synthetic time-series was quantified by Zhang et al.’s metric,
4, [113], Eq. 25|, where §,=1.0 means a complete non-solenoidal field, and §,=0.0 an exact solenoidal-
ity [I13 p. 12]. The quantifications for each scenario showed that 6,~1.00 and 6,~0.17 before and
after the corrections, respectively. Accordingly, the divergence-freeness of the corrected fields was
assumed. The tensor was then computed for an inspection in

From the observation [B.7] and the isolated divergence-freeness enforcement appeared
to be closely related since the amplitude of all the temsor components belonging to the corrected
fields was also downscaled therein. Concerning the reason of the observation [B.ii], the evidence

from suggested a link to the divergence-freeness enforcement as well while the bench-diffs of

26 In actuality, the two tools are in order for volumetric particle image velocimetry measurement corrections.
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the new u/u/ were also observed the lowest as against the lateral components. With this potential
link, the mean flow speed in each direction was identified as the prominent difference amongst
the tensor components: U was at least two orders of magnitude greater than V' and W in the
benchmarks. Based on this remark, the directional mean speeds were extracted from the non-CFD
time-series on hand, and consecutively, the corrections were conducted in the same way. The results
disclosed that when the mean speeds were removed, the tensor component amplitudes were equally
reduced with the divergence-freeness enforcement (not reported). This disclosure highlighted the
amplitude differences among mean speeds as a principal determining factor of the observation [B.ii].
For the greater-valued mean speed direction, the level of amplitude alterations due to divergence-
freeness enforcement reduces in comparison to the other directions. On the question of the reason
behind the observation [B.iv], the same ranking in terms of the resemblance level to the benchmark

was found in As an example, the bench-diffs of u'u’ there were around -5[cNp] for Klein and

-18[cNp] for Custom methods. However, the mainspring of Klein model’s superiority in this regard
could not be identified. Therefore, it was confined that an unidentified mechanism exists within
Klein method which facilitates the divergence-freeness imposition, thus leading to less distortion in
the input Reynolds stress tensor relative to the other methods. Nevertheless, it can also be pointed
out that being DFM should not be the reason, because Custom yielded the highest bench-diffs.
The overall contribution of other boundary conditions to the flow development monotonically
increases downstream. Therefore, DFM/FSM information effects gradually fade away. With that
in mind, at the cross sections of one-longitudinal integral scale downstream, four observations were
made. [C.i] Firstly, the bench-diffs were mostly increased at a level from less than one times (e.g.
HST-v"v') to five times (e.g. PCF-u/v’) in comparison with the first-node state. As demonstrated in
the increment occurred in 38 scenarios out of 44, wherein all models showed an increase in 7

component-wise cases, and at least three models produced an increment in all cases. [C.i7] Secondly,

the observations [B.i] and [B.ii] persisted for the lateral components; however, v/u’ mainly switched
to an overprediction with no particular pattern in its bench-diff changes. Furthermore, the level
of bench-diffs in u'u/ departed from the observation [B.iii] levels several times. [C.75i] Thirdly,
likewise to [B.iv], Klein and Custom/Kim models retained the lowest and highest bench-diffs in
most cases, i.e. in 8 and 9 out of 11 component-wise cases, respectively. Sporadic counterexamples
were also observed like in DHIT-u/v’ where the ranking became the opposite way round. [C.iv]

Finally, closer inspection of and [0 qualitatively showed that the rate of changes in the
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Figure 10: The along-channel-height profiles of the one-point second-order symmetric correlation tensor components
along the longitudinal evolvement phase (Evo.), i.e. 11 equidistant stations from 54 to 556 away from the inlet in 56-
distance steps, obtained from the smooth-wall plane channel flow (PCF) computations [T0]. The results represent the
log percentage changes with respect to the benchmark, i.e. L=1001log, () centineper [cNp|. The absolute amplitudes

were given in The remaining figure particulars and axes limits are the same with

tensor became virtually constant for DHIT, HST and PCF after the 4-6", 24 and 3-8*" nodes,
respectively. This, however, does not imply fully developed turbulence, yet a starting point for its
gradual evolvement, which may help downstream predictions for the tensor.

Further downstream, at two selected planes of the evolvement phase, three generic observations
were noted. [D.7] To begin with, the underprediction trends previously noted in [B.i] and [C.7] con-
tinued to present in the evolvement phase at the level of O(1)/O(2)[cNp], albeit less frequently. In
28 scenarios of DHIT-HST combined, for instance, 20 of them retained the underprediction relative
to the first-plane benchmark, and in the second plane, the number increased to 21. Some counterev-
idence to this premise, nonetheless, emerged from ©(2)-level [cNp]| overpredictions made by Klein

and Xie methods in DHIT for each component. [D.ii] Also, the relative levels between the bench-
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diffs of the tensor components remained the same as in the observations [B.ii] and [C.ii]. [D.7i]
In parallel to [B.iv] and [C.iii], the model ranking in terms of the bench-diffs also remained nearly
unchanged along the evolvement phase. Klein and Kim models yielded the lowest and highest bench-
diffs in turn in 8 out of 11 component-wise cases, and the exceptions arouse out of DHIT where this
ranking was reversed. [D.iv] The adaptation lengths of the tensor were observed in different trends
for free-shear and wall-bounded flows. On the assumption that the adaptation length criterion for
free-shear flows is approximately reaching a linear rate of change in amplitude of the components
as a function of the longitudinal distance, it was inferred from that the adaptation length
was reached within the adjustment phase irrespective of the models and components. For wall-
bounded flows, another criterion deemed more appropriate was assumed: the first-time reduction
of the maximum and absolute bench-diff below 15[cNp| across the tensor profile during a declining
trend. On this basis, bench-diff analyses of and [[0]revealed that the adaptation lengths were
exclusively reached within the evolvement phase for all models and components: The approximate
adaptation lengths of {u'u’, v'v'; w'w’, w'v' }-components in Klein, Xie, Custom and Kim models were
{10-15,20-25, 25-30,5-10}[4],{10-15, 20-25, 25-30, 10-15}[4], {15-20, 30-35, 35-40, 15-20}[4], and
{20-25,30-35, 35-40,25-30}[0]. If the criterion is, however, relaxed for the close vicinity of the
centreline of the channel, these adaptation lengths reduce to a considerable extent. Such relaxation
may be viable since the overpredictions of the tensor components were also observed in various
similar-resolution studies, e.g. [I7, Fig. 3, p. 61].

In summary, four concluding remarks can be drawn from the tensor investigations: This study
has identified a general tendency of ©O(1)/O(2)-level [¢cNp] amplitude reduction in the input tensor
components within adjustment-phase and successive evolvement-phase nodes ([B.z] [C.i] [D.i]). The
tendency is virtually independent of benchmarks, models and tensor components. The same ten-
dency was also reported by [I3] p. 1112] for the lateral components; however, the authors conceded
that they could not offer an adequate explanation for the reduction. On the other hand, the quantifi-
cations of this study indicate that the divergence-freeness enforcement is the dominant factor in the
adjustment-phase reductions, which observed shaping evolvement-phase trends as well, particularly
for free-shear flows. The second major finding is that the longitudinal v/’ component nearly always
deviates from the input less than the lateral and shear components irrespective of benchmarks and
models ([B.i4] [C.4¢] [D.i7]). The findings suggested that the underlying determinant may be the

higher mean speed U, and its interactions with divergence-freeness enforcement. The research has
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also shown that Klein model in general provided the lowest bench-diffs and shortest adaptation
lengths for the tensor whereas Custom/Kim methods the opposite ([B.iv] [C.i¢] [D.iii]). Although
DFM/FSM used the same Lund transformation for the tensor reconstruction and [9, p. 450] demon-
strated the same models yielded no tensor component differences in non-CFD setups, the models
differently behaved in CFD. This rather inconsistent result is attributed to an unidentified factor
within DFM/FSM stages prior to the Lund transformation that interacts with CFD in different
ways, hence dissimilar tensor results among the models.  Finally, as regards the longitudinal
changes of bench-diffs, |27, p. 38| asserted that the tensor monotonically changes. However, the
findings of this study disconfirm this overgeneralization, and suggest that the bench-diffs follow a
pattern similar to an asymmetric quadratic function (i.e. initially increasing then decreasing) rather
than a monotonic function. This quadratic pattern also implies that the tensor as an adaptation
length indicator always needs to be interpreted with caution in contrast to the conventional practice
in the literature. Nonetheless, the changes could be deemed monotonic if the adjustment phase is

completely omitted.

4.2.8. Two-spatial/temporal-point correlation functions

Amplitude-based tools (e.g. Reynolds stress tensor) do not convey any information regarding the
spatial-temporal structure of turbulence (e.g. white noises and triangular waves are indistinguish-
able through the amplitude-based tools although both possess disparate temporal structures [114}
p. 2-5]). This deficit is covered by the two-spatial/temporal-point correlation function tensor (here,
the tensor input was limited to its normal components, hence autocorrelations). The size and shape
of tensor components affect turbulence development: Elementarily, the size determines the degree
of influence of one-location/time fluctuations’ amplitude on other location/time fluctuating quan-
tities’ amplitude. Also, through the size, the viscous energy dissipation rate is determined. The
shape, on the other hand, characterizes the energy composition in the frequency domain.

In view of its importance, the development phase of the input two—poin@ autocorrelation

functions (abbr. acorr) was investigated in this section. The conditioned results were displayed

in [Figs. 11H{15] [Fig. 11] (DHIT) compared the longitudinal acorrs from the first adjustment-phase

node and corresponding non-CFD cases to find out the adjustment phase effects on input acorrs.

27 Two-point meant spatial points in the lateral directions, and temporal points in the longitudinal direction via
Taylor’s frozen turbulence hypothesis [59].
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Figure 11: The two-temporal-point longitudinal sample autocorrelation function, pmn[-], (the top subplots) and

one-dimensional sample power spectral density function, Emn [m3s72], (the bottom subplots) results obtained from
the first block of nodes (B1) of the decaying homogeneous isotropic turbulence computations (DHIT) [68]. Along
the vertical axis, the statistic magnitudes are given. ‘mn’ stands for the measurement direction ‘m’ and measured
velocity component ‘n’, respectively. The horizontal axes of the top subplots represent the spatial lag, x, normalised
by the characteristic length M=0.0508[m], and those of the bottom subplots the spatial wavenumber, £[m~!]. For each
node time-series, the statistics were computed and then arithmetic spatial-averaged in the statistically homogeneous
directions, i.e. (y, z). The inner horizontal bar charts show the Fréchet distance of the model curves to the benchmark.
Each bar height was normalised by the most similar model’s distance magnitude, thus the maximum height of a bar
is the unity. ‘h.s.” with the arrow denotes the direction of higher similarity.

In (DHIT), the metamorphosis of the same set of acorrs was tracked along the evolve-
ment phase. Furthermore, through (PCF), the level of bench-diffs formed within the
evolvement phase was exemplified from a broader perspective by two acorrs and a two-point cross-
correlation function (abbr. ccorr).

At the first adjustment-phase node, five premises were identified: [E.;] Throughout the bench-
marks, models and acorr components, a maximum of @(1)[cNp| decrement was detected in acorr
levels in a form of gradual decrease after 0.2-0.4 characteristic length by contrast to their non-CFD
counterparts. [E.z¢] Further to this, with regard to patterns amongst acorr components, all predic-
tions either went to negative or briefly fluctuated around zero after a certain lag onwards (at least a
characteristic length or more), particularly for the u-component acorr. [E.iii] Notwithstanding this

transfiguration, the shape of input acorrs was conserved, i.e. Klein model produced a Gaussian-
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Figure 12: The two-temporal-point longitudinal sample autocorrelation function results from the decaying homoge-
neous isotropic turbulence computations (DHIT) [68| at three observation stations: the first block of nodes, i.e. Bl
(~0M), 56 M, and 129M longitudinally away from the inlet boundary, which correspond to 42M, 98M and 171M
benchmark stations in [68] p. 292]. The figure descriptors are the same with

form, and the others an exponential-form. [E.iv] Additionally, observing model patterns across
the same scope revealed that Klein model brought forth the highest bench-diffs in unit of Fréchet
distance without any counterexample unlike its superiority in the Reynolds stress tensor predic-
tions. By contrast, Xie, Custom and Kim models resulted in the lowest bench-diffs for 6, 2, and 1
cases within 9 component-wise cases, respectively, by closely following each other. The Gaussian-
exponential form differentiation was in accord with the non-CFD observations [9 p. 453]. [E.v]
On top of these, the correlation functions of the second and third nodes were also monitored (not
shown), and compared to those of the preceding node to spot prospective patterns. However, al-
most no difference smaller than the half-precision machine epsilon was observed in amplitudes and
shapes of the functions.

The causes of the observations [E.i] and [E.ii] have been a subject of further investigation.
The acorr reduction represented that the first-order successive difference of fluctuation amplitudes

at consecutive points is generally in increase along a direction, hence more ‘jigsaw’ appearance in

47



950

960

PCF-pyxy Custom == Klein et al. ==+ Xie-Castro === Kimetal. 4+ Benchmark
1.00 4 y*=5 1 y*~10 ' ~20 |1 y* ~30

o1 2 3
Xx/6 x/6 x/6 x/6

o 1 2 30 1 2 30 1 2

w

Figure 13: The two-point sample autocorrelation functions of pxy obtained from the smooth-wall plane channel flow
computations (PCF) [70]. The subplots illustrate the results at twelve wall-normal stations, y*=u, yv~!, where y*
is the dimensionless distance from the bottom wall, ur=1.0[ms™] the friction velocity, ©=0.002531646[m?s!] the
fluid kinematic viscosity that associates with Rer=395. The samples were obtained from the spatial-accurate points
given by [70] along the longitudinal direction, x, starting from zo=40[m], hence Taylor’s frozen turbulence hypothesis
was not used. The horizontal axis is non-dimensionalised by the channel half height, §=1.0[m], and the other figure
descriptors are the same with

time-series. In the same vein, the negativity in acorr tails described an emerging anti temporal
relationship between consecutive fluctuations. Therein, the probability of concurrent occurrence of
opposite-amplitude fluctuations at lag-zero and lag-t was amplified. For this reason, the dominant
sign of fluctuations show more frequent reversals as time progresses. Nonetheless, this reduction
does not imply a homogeneous decrease/increase in amplitudes themselves. Therefore, a factor
which is spatially /temporally less uniform in its effect is expected as dominantly responsible for this
reduction. With this insight, similar to §4.2.2] the non-CFD divergence-freeness enforcement was
carried out to isolate solenoidality effects on acorrs. However, no appreciable effect on acorrs within
the single-precision machine accuracy was observed (not shown). Consequently, it is postulated
that the divergence-freeness enforcement has spatially-uniform impact on synthetic time-series, and
does not play a role in shaping acorrs. Instead, due to the inability for further isolation among
three agents listed in it has only been speculated that the N-S equation algorithms and
domain/equation discretisations gave rise to this acorr reduction at the first adjustment-phase

node.
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Figure 14: The two-point sample autocorrelation functions of p,y obtained from the smooth-wall plane channel flow
computations (PCF) [70]. The figure descriptions are the same with except the following: The samples were
obtained from the spatial-accurate points given by the benchmark along the lateral direction, z, at £o=40 [m] and
indicated y*, hence no Taylor’s frozen turbulence hypothesis.

With regard to the evolvement phase, five patterns were found: [F.i] What stands out in this
phase throughout all benchmarks and models was the convergence of acorrs and ccorrs towards the
same function, which qualitatively resembled with a Gaussian-form most of the time. As exemplified
in[Fig. 12] the model differences virtually disappeared according to the Fréchet distance. [F.ii] What
can also be seen was that the wall-bounded flow led to shape trends closer to the benchmark and
lower bench-diffs than the free-shear flows with the exclusion of longitudinal pressure correlations.
From the data in it can be seen that the model results in DHIT disunited the benchmark
around 0.2 characteristic length up to a bench-diff of O(2)[cNp], which deepened downstream while
the benchmark acorrs were amplified. In spite of that, as illustrated in for all channel
height stations of PCF, the models made overpredictions till 0.4 characteristic length and then
underpredictions in the level of O(1) bench-diff [cNp|. [F.ii4] Furthermore, the converged model
acorrs of the free-shear flow cases remained approximately the same along the evolvement phase
despite the benchmark length scales were reported in increase, especially for u-acorrs [68, Fig. 5] [69)
Fig. 18]. Also, the anti-correlation trend of the adjustment phase after around one characteristic

length arguably persisted in most cases, albeit weaker. [F.iv] As far as the patterns among the
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Figure 15: The two-spatial-point sample cross-correlation functions of p,v measured along the longitudinal direction,
x, of the smooth-wall plane channel flow computations (PCF) [70]. The figure descriptions are the same with [Fig. 13

components are concerned, the lateral acorrs and ccorrs were frequently observed involving lower
bench-diffs than the longitudinal correlations¥] An illustration of this can be seen in

where the maximum bench-diffs of the longitudinal component were approximately twice those of

the lateral components. [F.v] In addition to this, a PCF comparison between [Fig. 13| and [Fig. 14]

qualitatively indicated that the acorrs across all channel height stations in the x-direction had lower
level of resemblance with the benchmark in comparison to the z-direction in terms of amplitudes
and trends. This postulation also seems valid for ccorrs (not shown).

The first of two reasons why the observation [F.i] occurred is claimed to be the domain/equation
discretisations rather than the N-S equations due to the fact that the converged profiles overall did
not resemble the benchmark profiles that are natural outcomes of the N-S equations. The second
is the accumulating dominance of the lateral boundary conditions over the inlet. Because of these,
the possibility of contributions from DFM/FSM in acorr degradations along the evolvement phase
are ruled out. The most likely causes of the observations [F.7i] and [F.i7i] could be sought in the
main differences between the free-shear and wall-bounded flow cases. The first difference is that the

free-shear cases had finer temporal and spatial resolutions, e.g. DHIT, HST, and PCF possessed

28 These remarks are not relevant to HST since no downstream acorr benchmark was available.
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~10, ~10.4 and ~3.9 nodes per their longitudinal-u length scale. Another main difference is the
Smagorinsky sub-filter scale model setup in which the free-shear cases used a dynamic procedure
whereas the wall-bounded case calibrated model coefficients. The last dissimilarity is the turbulent

kinetic energy production mechanism as illustrated in[Figs. A.27|and[A.28 The free-shear cases rely

on internal spatial gradients of mean velocity whilst the wall-bounded case on the same quantity,
yet highly agitated by the no-slip velocity boundary condition. Despite the favouring setup fidelity
for the free-shear cases, the occurrence of high level of bench-diffs relative to the wall-bounded case
eliminated the setup setting effects from possible reasons. This inconsistency may suggest that
more difficulty in sustaining turbulence in a free-shear flow than wall-bounded flows is likely the
main reason of the two observations. Lastly, as far as the observation [F.v] concerned, the causing

reason can be attributed to the lower resolution in the z-direction, i.e. A;=0.1 and A,~0.045[m]|.

4.2.4. One-dimensional one-sided power spectral density functions

Power spectral density functions are Fourier transform pairs with their corresponding autocor-
relation functions for stationary processes (the Wiener-Khinchin theorem). Although this implies
that both essentially possess the same influence on turbulence development, the former is a com-
plementary tool that helps to draw conclusions from the same information inaccessible otherwise,
such as how power and frequency contents are distributed over different spatial structures [78]
p. 248] [114, p. 2-8]. In accordance with this, the conditioned and representative-to-all results for
the development phase of the one-dimensional one-sided power spectral density functions (abbr.
psd) were presented in this section via and [16} in which (DHIT) demonstrated the
adjustment phase effects on the longitudinal psd components, and (HST) the evolvement
phase of the same components.

Two remarks were made for the first adjustment-phase node. [G.i] By comparison to the non-
CFD results, a O(-1)-times reduction was noted at the lowest wavenumber region for all bench-
marks, methods and psd components. Nevertheless, the central and high wavenumber regions of the
psds were qualitatively found almost the same with their non-CFD counterparts. [G.ii] As regards
model patterns, Klein model was observed possessing a premature drop starting from the central
wavenumber range whereas the other models followed benchmark’s and each other’s pattern with-
out any drop. Similarly, the drop was also found by [9, Fig. 9] for the same non-CFD benchmarks,
and by [33] Fig. 6] for a CFD-DHIT study. Despite this, all the models were able to reconstruct the
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Figure 16: The one-dimensional sample power spectral density function results from the homogeneous shear turbu-
lence computations (HST) [69] at three observation stations: the first block of nodes, i.e. B1 (~0h), 2h, and 3.5h
longitudinally away from the inlet boundary, which correspond to 7.5k, 9.5h and 11.0h benchmark stations in [69]

Fig. 14]. The figure descriptors are the same with [Fig. 11

amplitude and trends of the benchmarks within O(-1) bench-diff range [cNp| with the exceptions
of Klein model’s drop, and Custom model’s relatively high fluctuating tail. [G.ii¢] Moreover, the
two remarks above remained unchanged in the second and third adjustment-phase nodes within the
order of half-precision machine epsilon.

The findings suggest that the divergence-freeness enforcement and the N-S equation algorithm
effects on psd are negligible within engineering accuracy. In addition, it can be inferred that the
adjustment phase is limited to the first node. This alleged behaviour may help to optimise psd
input with respect to first-node outcomes. Besides, the models were able to capture the most
energetic wavenumbers in CFD (not necessarily structures themselves), which might be adequate
for various engineering purposes. Nevertheless, the level of discrepancy rose for the least energetic
wavenumbers. Lastly, the reason of the drop was analysed by [9], p. 455-457], and found to be due
to the Gaussian-form acorr simplification of Klein’s method in Eq. [IT]

Along the evolvement phase, two new remarks were made. [H.i] The most significant observation
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to emerge from the model pattern comparison across the benchmarks was that all methods steadily
became indistinguishable along a course leading to Klein model’s Gaussian-form trend as exemplified
in for HST. This behaviour was observed more apparent for transversal components as
the longitudinal psds of Em proceeded with an exponential slope after following a Gaussian-like
curvature for a certain range of wavenumber. [H.7¢] Apart from this, the benchmark power levels
at the low wavenumber region either remained captured or were slightly underpredicted while the
underpredictions were amplified towards the tail for which this tendency was more dominant in the
lateral psds.

The observation [H.7] is in contradiction to that of [33] Fig. 6] who found that Klein method
loses its initial psd drop downstream. Therein, the longitudinal psd development of Klein method
was monitored by three different grid DHIT computations at three downstream stations which
were exactly used in this study. To pinpoint the reasons for the disparity, the numerical settings
were compared. In comparison to the DHIT settings reported in the spatial resolutions
in [33, Table 2] were ~1.5 times coarser for their medium grid, and ~1.2 times finer for their
fine grid. Subsequently, the temporal resolutions in [33, Table 2] were ~~4 and =2 times coarser,
respectively. The other key differences can be compared with through a list of [33]’s set-
tings as follows: a 10M-side cubic computational domain with entirely cyclic boundary conditions,
the constant-coefficient Smagorinsky sub-filter scale model, the first-order Euler temporal scheme,
and the transversal length scales equated to the longitudinal counterparts. Apart from these, the
remaining tools and settings were virtually the same in both studies. Considering the level of nu-
merical fidelity is in favour of the current study, one would expect herein that the drop completely
diminishes like in [33]. However, this study has been unable to reveal the reasons for the disagree-
ment. A further study with more focus on the existence of the drop through isolated parameters is

therefore suggested.

4.2.5. Wall shear stresses

The magnitude of longitudinal wall shear stress (abbr. wss) is a theoretically and practically
important metric for wall-bounded flows by reason of the majority of momentum transfer and
turbulence generation occurring through flow-wall interactions. Also, wss is usually being utilised
as an indicator of the adaptation length in synthetic inflow turbulence studies of wall-bounded flows

whilst its flow shaping effect was presumed to give tangible indications about flow states.
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Figure 17: The longitudinal development of the sample wall shear stress vector’s z-component, 7y, obtained from the
bottom wall of smooth-wall plane channel flow [70] computations. 7, fields were first time-averaged at each boundary
node, and then spatial-averaged in the statistically homogeneous lateral direction. Each subplot represents a test

group: Default—@ Pre—mapping/Shear—@ Pre—mapping/Spatiality—@ Pre—mapping/Size—m Mapping-
@ and Post-mapping- In the legend, the affixes denote: ‘NS’ no-shear, ‘DS’ double-shear, ‘2L’ two length-
scale sets, ‘HL’ halved length scales, ‘DL’ doubled length scales, ‘Bi’ bilinear mapping, ‘Nu’ non-uniform mapping,
‘MC1D’ and ‘MC3D’ one- and three-dimensional mass flux corrections, respectively. In each subplot, a table shows
z/§-distance where 7, reaches the first time its 95% and 99%. Within each table, the shortest distance among the
row-wise values is highlighted.

With DFM/FSM, adaptation lengths from 2-3 [13] p. 1112] to 20 [II5] p. 69] characteristic-length
is expected for wss depending on flow type and settings. Several studies attributed the adaptation
length directly to the lack of phase information among modes of synthetic flow structures, [116]
p. 3] [II7, p. 2] to name a few. Yet these educated opinions seem not to adequately acknowledge
counterexamples: For example, Xie method [2, Fig. 7] yielded ~10 characteristic-length adaptation
length for a plane channel flow in contrast to /18 characteristic-length from Kim method [I7]
Fig. 9a], both of which consisted almost the same spatiotemporally velocity field [I7, Fig. 5]@
Therefore, the causing mechanisms of the adaptation length arguably remain unclear.

Taking its significance into account, the conditioned longitudinal wss profiles of the models were

29 Also, for the two computations, the same pseudo-random number generator was seeded with the same initializer,
thereby resulting in the same random number sets to be used in both computations.
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given and examined in this section via (PCF), where wss results of the bottom wall were
presented.

[J.7] As can be seen from the top-left subfigure in the ranking of the methods that
reached 7,,=0.95 first (the benchmark value is 7,,=1.00) was Klein, Xie, Custom and Kim methods
at longitudinal distances of (7.6, 10.2, 12.5, 17.0)[], respectively, where § is the half-channel height.
When the criterion was increased to 7,=0.99, the ranking was somewhat changed as: Klein, Xie,
Kim and Custom methods at distances of (9.9, 21.4, 36.6, 38.9)[d]. [J.i¢] Similarly, the ranking of
the 7, peaks from the closest to the farthest to the benchmark was Klein, Xie, Custom and Kim
methods. Thereupon, Klein model peaked at ~2¢ with 7,~0.8, Custom and Xie models at ~39
with 7,,4~0.75, and Kim model at around ~4-5 with slightly lesser than 7,=0.75.

Considering this information, it can be deduced that Klein model yielded the shortest adaptation
length for wss. It reached 7, .95 roughly (2.6,4.9,9.4)[4] earlier than Xie, Custom and Kim methods.
For Ty,0.99, the earliness increased to (11.5,29.0,26.7)[6]. Furthermore, Klein model can be seen
possessing the fastest rate of adaptation since 7, reached from 0.95 to 0.99 in ~2.3§ in opposition
to the distances required for Xie, Kim and Custom models: (11.2,19.6,26.4)[0], respectively.

However, Klein model’s superiority in this regard is contrary to the implications deduced from
acorr and psd observations in §4.2.3}§4.2.4] which have suggested that Klein model generally yields
the highest bench-diffs in acorrs and psds along the adjustment phases, and mostly remains as is.
Nonetheless, Klein method was also monitored that it produces the shortest adaptation lengths in
term of the Reynolds stress tensor components, particularly the shear component, and its secondary
associations, i.e. over-filter scale transport equation terms of kinetic energy , enstrophy
, and mean total strain . Also, in these measures, the adaptation lengths had
similar magnitudes. This finding, while preliminary, postulates that the adaptation length in terms
of 7, is predominantly determined by the Reynolds shear stresses rather than phase information or
the level of benchmark resemblance in acorrs/psds. Notwithstanding its dependence, the adaptation
length based on 7, seems also more robust than that based on the Reynolds stress tensor, thus

preferable as an adaptation length indicator.

4.8. Pre-mapping phase effects

As portrayed in §3.3] the pre-mapping phase effects on the adjustment and evolvement phases
(Fig. 3) were explored in this section. To this end, two DFM/FSM stages deemed the most impor-
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tant were regulated, i.e. the third and fourth stages displayed in[Fig. 2] The stage-3 regulations were
relevant to two-point correlation functions. Therein, (i) the size of input integral length scales, and
(it) the spatial variation of them were studied. The stage-4 regulations were related to one-point

correlation tensor with which shear components were tested in isolation.

4.3.1. Effects of the size of integral length scales

In an investigation using the hybrid DFM-FSM into integral length-scale size effects, |2, p. 461-
463] changed lateral scales within a plane channel flow (different from the current PCF) by factors of
(1.3, 1.0, 0.9, 0.8), and probed the statistics of mean velocity and Reynolds stress tensor at x/§=10
downstream, and adaptation length of 7,,. The authors found out that the end-to-end variations
were less than (10, 13, 4)% for Vo' , w/v" and T,,, respectively. Accordingly, it was concluded for
these type of flows that the effects caused by lateral scale variations on these statistics are not
considerable. This inertness was also corroborated by [I0, p. 10][27, p. 43] for mean velocity.

As a continuation and extension of [2] in this particular, the current study carried out further
tests, particularly filling the knowledge gaps concerned longitudinal-scale effects, and statistical de-
velopments at multiple stations. For this purpose, two new scenarios were prepared: The magnitude
of all the nine members of the default length-scale set utilised in was halved and doubled.

Amongst the statistics in Table 2, the mean velocity and all correlation functions measured at
PCF benchmark stations (e.g. within the evolvement phase remained virtually the same in
the level of single-precision machine accuracy (not shown). Also, the correlation functions within
first few nodes behaved in accord with expectations and in patterns similar to the observations
from (not shown).

On the other hand, regarding one-point second order correlation tensor (abbr. the tensor) along
the adjustment phase, three observations were made (not shown). [K.i] First, in each model the
double-scale resulted in positive O(1)-level default-diffs [cNp| for the normal-components of the
tensor, where the default case results were shown in [K.i7] In contrary, the half-scale induced
negative O(1)-level default-diffs. [K.iii] Besides, for the u/v’-component, the doubled length scales in
Klein model prompted negative ©O(2)/O(3)-level default-diffs, and the halved length scales positive
O(1)-level default-diffs. In Kim model, the double-scale case behaved almost the same with Klein
model; however, its half-scale case results remained similar to those of its default case.

According to these data, it can be inferred within the adjustment phase that the scaling factor
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Figure 18: Effects of the length-scale size, and length-scale sets at different inlet zones on the one-point second-order
symmetric correlation tensor components obtained from the smooth-wall plane channel flow (PCF) computations [70].
The results were given at the channel-height profiles along the longitudinal evolvement phase (Evo.), i.e. 11 equidistant
stations from 50 to 550 away from the inlet in 56-distance steps, and represented the log percentage changes with
respect to the benchmark, i.e. L=100log,(e) centineper [cNp]. The absolute amplitudes were given in

The remaining figure particulars and axes limits were provided in andm

of the size of input integral length scales, i.e. C, determines the sign of default-diffs of the tensor
components irrespective of DFM/FSM variants. More precisely, the sign of (C'-1) will likely be the
same with that of normal-component default-diffs, and the opposite with that of shear-component
default-diffs. For example, a scaling factor smaller than unity could produce negative default-diffs in
normal tensor components, hence an overall amplitude reduction. Nonetheless, the proportionality
between the scaling factor and default-diffs seems not linear as the double-scale cases yielded larger
absolute default-diffs than the half-scale cases. These findings were in line with the level and
patterns of amplitudes reported by [2, Fig. 6] for the lateral length scale effects although the
authors monitored x/d=10, which was further downstream than the adjustment phase.

Within the evolvement phase of the tensor as demonstrated in [Fig. 18] four other observations
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were noted. [L.i] To start with at x/6=10, the double-scale cases were all found to yield positive
default-diffs for all tensor components with an absolute amplitude of 10-20[cNp]|, predominantly
around the channel centre. [L.ii] In contrast, the half-scale triggered negative default-diffs for the
same components somewhat larger than the doubled length scales. [L.ii¢] Throughout the evolve-
ment phase, the absolute amplitudes of normal-component default-diffs in the double-scale Klein
cases were initially increased, then decreased downstream while remaining positive. However, the
shear-component default-diffs’ sign fluctuated around plus/minus as their absolute amplitudes also
alternated between increments and decrements downstream. The normal-component default-diffs
of the double-scale Kim cases remained positive as well, yet without a ubiquitous pattern. For
instance, the absolute amplitude of v-component default-diffs monotonically reduced downstream
whereas that of u-component first increased, then decreased. For half-scale cases, all default-diffs
were negative at first and switched to positive irrespective of DFM/FSM variant. Their absolute
amplitudes were preliminarily decreased, and then were followed by increments. [L.iv] Moreover,
both scale manipulations added an extra 10-20[4] to the adaptation lengths of the tensor compo-
nents, particularly around the channel centre, hence delayed adaptation.

Although the results at £/6=10 indicated a direct link between (C-1) and the sign of default-diffs
as observed in the adjustment phase and [2 Fig. 6], with the other observation stations in view,
the counterexamples from the half-scale cases disconfirmed the supposed sign relation. Therefore,
the sign link could only be presumed for the adjustment phase. In addition, no certain relation
was identified between the magnitude of length-scale scaling factor and absolute amplitudes of
default-diffs considering the reported decrement and increments above.

As regards wall shear stresses illustrated in two points were detected. [M.i] The first is
that both double-scale and half-scale nearly always increased 7,,=0.95 and =0.99 adaptation lengths.
As an example, the default Klein 0.95-adaptation length was increased by ~1.4 times, and ~3.5
times; 0.99-adaptation length by ~1.2 times, and ~4.7 times by the double-scale and half-scale,
respectively. [M.7¢] Additionally, the peaks of 7, were raised by 10-20% in general.

Taken together, this study corroborates the literature findings regarding null effects of input
length scales on the mean velocity and downstream correlation functions. However, unlike the
DFM/FSM literature, amplitudes of the Reynolds stress tensor and wall shear stress with respect
to benchmark, and corresponding adaptation lengths with respect to the default cases were found

to be adversely influenced by input length scales to the extent described above. The dependencies
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are hypothesised with the support of [L.i7¢] [M.i] [M.i7] that the isolated changes in the size of input
length scales and adaptation length of a flow statistic are in a parabolic relation, i.e. the adaptation
length reduces in parallel to the proximity of input length scales to optimal range of scales that
other input flow properties/boundary conditions assume. Therefore, it is argued by contrast to
the DFM/FSM literature presumptions that the size of input length scales is important to flow
developments, and isolated changes in scales are discouraged in favour of a holistic changes of all

input flow properties, if necessary.

4.3.2. Effects of the use of different correlation functions at inlet spatial zones

In the DFM/FSM literature, the dominant input convention for integral length/time scales is
to use a single spatially-invariant set for the whole inlet boundary mostly due to the lack of further
data and quantifications for multiple-set usage’s possible costs and merits. Two potential problems
of this convention were highlighted by [9 p. 457]: (4) length/time scales of a flow being modelled
may in reality be spatiotemporally-variant over the inlet boundary, and (i¢) a single time-scale set
input into flows with spatial-variant inlet mean velocity by definition leads to uncontrolled spatial
variation in length scales. To date, two studies provided insights into effects of the spatial variation
in scales. First, [I17, Fig. 6] compared effects on the longitudinal mean speed and three components
of the Reynolds stress tensor caused by three inflow scenarios in a wall-modelled periodic hill flow:
single, six and twelve scale sets, each of which contained three orthogonal scales. Although [117,
p. 19-20, 23] qualitatively concluded that the spatial variation of scales improved the predictions of
the aforementioned statistics, a quantitative analysis made herein for the data figures throughout the
channel [I17, Fig. 8-11] indicated that the improved default-diffs were overall below 5[cNp]|, and the
outliers below ~15[cNp|. In addition, a note of caution is due here for their results since the study’s
relatively coarse and unverified spatiotemporal resolution, and its use of a wall function in a flow
where boundary-layer separation/reattachment occurs added unquantified sources of uncertainties.
Second, [9, p. 457-461]| examined effects of using twenty-four scale sets each of which contained
nine scales through a non-CFD PCF, which used the same settings with the current study. The
authors quantified considerable improvements in correlation and power spectral density functions
whilst no Reynolds stress tensor component was affected within machine accuracy. Yet the authors
also emphasised the need for a CFD study. Therefore, it is claimed that effects of spatial variation

in scales are still inconclusive in the DFM/FSM CFD literature.
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Unlike the aforementioned studies exploring effects of several sets at once, herein only an extra
set of scales was incorporated to ease isolation of important factors, and follow the current duo-set
practice in the DFM/FSM literature for wall-bounded flows, e.g. [2 Fig. 2] and [I7, Fig. 4]. To that
end, two inlet zones of 10% half-channel height from the top and bottom boundaries were allocated
to a new set of benchmark scales belonging to y*=40 (similar to [I7, p. 64]). The remaining inlet
zone (i.e. y=[0.1,1.9][m]) kept its default set the same. Ultimately, the new computations were
evaluated with Table 2 statistics.

[N.7] Inspection of the results revealed that the majority of Table 2 statistics appeared to be
unaffected by the extra set addition up to the half-precision machine epsilon, e.g. the evolvement
phase of the tensor shown in |[Fig. 18] The most apparent alterations occurred in the adjustment
phase of the tensor, and in wall shear stress adaptations as depicted in[Fig. 17} [N.i¢] For the former,
default-diffs were almost zero for all models and component profiles except at three points (not
shown): Vi/u/ and w'v default-diffs were ~10 and O(2)[cNp] at regions close to the walls, and Vv’
default-diffs were few centinepers across the channel height. In these three occasions, the bench-diffs
were reduced, and the affected regions mainly corresponded to the regions where the new zone was
defined. However, no new amplitude or pattern changes in default-diffs were observed, and all these
improvements gradually vanished until the onset of the evolvement phase. [N.iii] Regarding 7, for
Klein and Kim models, 7, 0.95 was changed ~(-0.4,0.7)[0], and 7, 0.99 (0.6, -0.1)[d], respectively,
where the negativity meant an improvement. [N.iv] Additionally, all the 7, peaks were reduced
while the longitudinal location of the peaks was not relocated.

In the light of these observations, it could conceivably be hypothesised for wall-bounded flows
that the effects of the spatial variation in input scales are not significant to engineering applications
(neither improvement nor deterioration) since the effects are relatively small and are not preserved
downstream. Therefore, it is postulated for wall-bounded flows that a single set of scales could be
adequate for the fidelity that one wants to reach with more length scales available, which in practice

difficult to obtain.

4.3.3. Effects of the shear stress and the wall boundary condition
In the default-setting wall-bounded computations (§4.2.2)), the input Reynolds stress tensor com-
ponents, especially u/v’, were discovered deteriorating along the adjustment phase, and recovering

within the evolvement phase. In addition to this, the adaptation lengths of the tensor components
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and wall shear stress were found to be correlated to a certain degree. Nevertheless, this information
did not shed on the main causes/contributors to the three behaviours above. Over and above this,
there have been no controlled studies on this matter.

To close this knowledge gap, the causal roles of factors that were anticipated to be influential
were inspected: (i) the shear component of the tensor, and (i7) no-slip velocity boundary condition.
In line with this purpose, three new control scenarios were prepared: the u/v/-input was zeroed and
doubled, and the no-slip velocity boundary condition was changed to the slip condition. It should
be noted that the doubled-u’v’ alongside the current settings satisfies the domain error constraints
for the Lund transformation stated in 77 2.1.3.1, albeit unphysical@

In consequence of the control scenarios, some of the Table 2 statistics of the default cases
were found to be virtually unaltered along the adjustment and evolvement phases (not shown),
prominently the conditioned results of mean velocity, correlation functions and one-point moments.
At the same time, the Reynolds stress tensor and wall shear stress expectedly showed noticeable
changes which were demonstrated in [19] and [20]

As can be seen from for the adjustment phase of the tensor, four remarks valid for both
DFM and FSM can be listed. [0.7] First, the no-shear and double-shear cases had diametrically
opposite effects on both V' and Vo'v'. In detail for one side, the no-shear caused negative-
O(1)[cNp| default-diffs nearby walls and positive-O(1)[cNp| around the channel centre for vu/u’;
and for Vo'v/ , negative-O(1)[cNp| default-diffs across the channel height. [0.i4] Nonetheless, neither
of shear scenarios led to differences greater than O(-2)[cNp] for Vw'w’, hence negligible in terms
of engineering accuracy. [0.ii7] For u/v/, the double-shear yielded positive-O(2)[cNp| default-diffs
throughout the channel height, thus resulting in the same-order reduction of bench-diffs. Similar to
the default case, an amplitude damping notable with respect to the benchmark occurred within the
first two nodes, and thereafter the rate of damping died away. Furthermore, the no-shear expectedly
yielded a null u/v’ profile. [0.7v] Lastly, the slip-wall did not invoke any changes smaller than the
single-precision machine epsilon for any tensor component.

The observation [0.iv] eliminates ‘boundary condition effects’ as one of the potential rea-
sons why the input tensor components were distorted within the adjustment phase. This fur-
ther strengthens the proposed reason discussed in i.e. the divergence-freeness enforcement.

Another implication that emerges from the observation [0.7i7] is that the double-shear seems to

30 For example, tripled-u/v’ raises the domain error.
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Figure 19: Effects of the shear stress and the wall boundary condition on the adjustment phase of the one-point
second-order symmetric correlation tensor components obtained from the smooth-wall plane channel flow (PCF)
computations [70]. The figure particulars were provided in and except the affix ‘SW’ which denotes
slip-wall.

improve u/v/ predictions within the adjustment phase. Although the rate and level of amplitude
damping remained almost constant among the default and double-shear cases, the additional ampli-
tude via the latter somewhat compensated the damping losses. Therefore, a higher-level resemblance
with the benchmark happened for w/v’ in the adjustment phase with the double-shear case. This
amplitude amplification also seems to indirectly compensate losses in VW and Vo'v' as can be
deduced from the observations [0.74] and [0.¢] where the lack of shear deteriorated these normal
components.

The evolvement phase of the tensor was set out in from which five observations were
carried out. [P.i] In general, the double-shear cases provided somewhat shorter adaptation lengths
for each tensor component profile in comparison to the default cases. An evidence of the premise

can be seen in u/v’ profiles in which the rate of change and bench-diffs of the double-shear Klein
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model became almost zero starting from 256 whilst its default case was O(1)[cNp| away in ongoing

development. [P.i7] Another important finding was that the no-shear cases produced the benchmark

shear profile despite the lack of the u/v’ input. For instance, the no-shear Klein model yielded
profiles with ~10[cNp| default-diffs at 104, and almost zero centineper at 20§. [P.7i:] In addition, a
monotonic behaviour was found out between input and output amplitudes of the tensor: For each
component and each model, the no-shear and double-shear profiles were diagonally opposite about
the default profiles. As an example, negative O(-1)[cNp] default-diffs transpired in the no-shear
Kim model profiles until 25-304, and thereafter gradually became positive whereas the double-shear
counterparts acted in a polar manner. [P.7v] Moreover, the slip-wall cases demonstrated that the
input u/v’ profiles were able to preserve up to 56 without the turbulence maintenance effect of wall
boundary conditions. After 55, commencing from the vicinity of walls, the input tensor profiles
were gradually dissolved. [P.v] Finally, with regard to the model performances, indicated
that the double-shear Klein model nearly always generated the lowest bench-diffs while the no-shear
Kim the highest. For example, the maximum amplitude differences between both at 40§ were found
to be approximately 20, 15, 10-15 and 40[cNp| for the components in a usual order, respectively.

As regards 7, two points can be highlighted from First of all, the double-shear reduced
the adaptation lengths in DFM whereas mixed responses were obtained for FSM: In Klein model,
the adaptation length of T, 95-Tw,99 Was lowered by (-2.4,-3.3)[d] while (-3.0,1.8)[d]-change was
observed in Kim model. Furthermore, the double-shear downscaled the 7,,-peak of both models
by 0.057,,. On the other hand, the no-shear brought about the opposite: the adaptation length of
Tw,95-Tw,99 Was increased by (2.8,17.4)[6] and by (3.4, 0.5)[6] for Klein and Kim models, respectively,
and their 7-peaks raised by 0.057,,.

Three principal implications can be drawn from these observations: First, amplification of input
u’v’ amplitude profiles to a level that the domain error constraints (?? 2.1.3.1) allow reduces bench-
diffs of the Reynolds stress tensor components (except Vu'w' ) within the development phase, and
shortens their adaptation lengths. Second, the formation of the u/v/-benchmark profile within no-
shear cases suggests that particulars of an isolated flow quantity could be inherently dictated by
the other specified flow properties/boundary conditions, which was also observed from another
perspective in Third, within the scope of current settings, the input w/v’-benchmark profile
preserved its main composure up to 5 characteristic lengths without re-energising effects of wall

boundary conditions. Assuming the finding’s extrapolation to similar-setting computations as few

63



1310

1315

———- Klein - Kim - - Klein-NS —--- Kim-NS -~ Klein-DS - - Kim-DS Klein-SW Kim-SW

-50 0 50-50 0 50-50 0 50-50 0 50-50 0 50-50 O 50-50 0 50-50 O 50-50 O 50-50 0 50-50 O 50

56 106 156 206 256 306 356 406 456 506 556
Figure 20: Effects of the shear stress and the wall boundary condition on the evolvement phase of the one-point
second-order symmetric correlation tensor components obtained from the smooth-wall plane channel flow (PCF)

computations [70]. The figure particulars were provided in [Figs. 10} and

characteristic lengths, this observation may help to properly locate the field of interest within

free-shear flow domains, e.g. turbine flows, to ensure its association with input shear.

4.4. Mapping phase effects

As outlined in it was hypothesised that quantifications of the information-transfer prac-
tices from the pre-mapping phase to the post-mapping phase are missing in the DFM/FSM
literature, and techniques that can seamlessly generate synthetic time-series on non-uniform grids
are absent.

To this end, two new seamless mapping techniques were introduced: for DFM, and
§2.1.333] for FSM. On top of this, two conventional mapping techniques were added into the test
scheme: the two-dimensional nearest-neighbour projection (common), and the bilinear interpolation

(occasional). The four techniques were assessed through the adjustment and evolvement phases
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Figure 21: The mapping phase effects on the two-temporal-point longitudinal sample autocorrelation function (the
top subplots) and one-dimensional sample power spectral density function (the bottom subplots) results obtained
from the first block of nodes (B1) of the smooth-wall plane channel flow (PCF) computations [70]. The figure

particulars were provided in and

thereafter.

Evaluations were conducted through Table 2 statistics. [R.i] Contrary to expectations, however,
the studies did not find any significant-to-engineering-accuracy difference between the default and
modified cases in any of the statistics apart from wall shear stresses depicted in The
changes in those statistics, particularly in the tensor, mainly occupied the adjustment phase and
the outset of the evolvement phase, and were mostly in a degree less than O(-1)[cNp| default-
diff, albeit rarely few centinepers nearby walls. The lack of substantial differences was exemplified
by wherein the first adjustment-phase node results for autocorrelation and power spectral
functions were briefly illustrated. [R.i¢] In the case of 7y, it was observed that the bilinear and
non-uniform Klein models postponed 7, 95 and 799 by (1.2,2.0) and (0.8,1.9)[0], respectively,
whereas the bilinear and non-uniform Kim models improved them by (-1.2,-0.7) and (-5.9, -4.8)[d]
in turn. [R.z4:] In addition, all the 7,, peak locations were qualitatively shifted downstream to a
little extent, and their amplitudes virtually stayed the same within a 0.057,, interval.

These observations suggested two implications: First, the mechanisms that underpin the adapta-
tion length of T, appeared to be sensitive to the primary statistics’ alterations that were previously
deemed to be insignificant for engineering purposes. By contrast, this now-falsified proposition
raises the importance of ensuring high-fidelity reconstruction of primary input statistics. Second,

arguably, adequate isolated evidence was found to consider that distortive effects of information
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Figure 22: Effects of mass-influx corrections on the two-point sample crosscorrelation functions of pyp obtained from
the smooth-wall plane channel flow computations (PCF) [70]. All the figure particulars were given in|Figs. 13| and

transfer processes on input statistics are of secondary importance in proportion to the effects of
pre-mapping phase manipulations. Although the seamless mappings were theoretically and practi-
cally obtained and information distortion was naturally prevented, their usage brought either slight
improvement as in FSM or even some statistical degradation as in DFM. Therefore, the mapping

phase manipulations may be neglected for the current scope of flows and similar numerical settings.

4.5. Post-mapping phase effects

As briefly discussed in mass influxes are not conserved in DFM/FSM. To date, the
potential issue has received scant attention in the DFM/FSM literature: it was handled either by
the omission of its presence or by heuristic corrections such as [I7, Eq. 8]. Additionally, there
remains a paucity of quantifications on its effects.

With this motivation, three mass-flux scenarios were investigated along the development phase:
no correction, longitudinal correction, which was proposed in this study, and three-dimensional
correction from [I7, p. 57]. The corrections were formulated as: ®ipitial @;irremunf CmassUnec=Ue
where ®=D Zif=0 uy ||Sy|| is the inlet-boundary total mass flux [kgs'm™], D the constant fluid
density [kgm™], us the longitudinal flow speed at the boundary face f [ms™'|, Sf the f-face area
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Figure 23: Effects of mass-influx corrections on the probability density functions of modified pressure, p, obtained
from the smooth-wall plane channel flow computations (PCF) [T0]. The samples were probed along channel heights
at £0=40[m| and zp~1.57|m|, and the number of bins was 201. All the other figure particulars were given in [Figs. 13]

and E

vector [m?|, u,. the boundary-mapped non-corrected synthetic velocity time-series, u, the corrected
time-series, cimass the corrector scalar field [-], Pipitia) the initial-time ®, and Pcyrrens the current-time
®. The only difference between the corrections was that u,./.=(u, v, w) for the three-dimensional
approach, and u,./.=(u,0,0) for the one-dimensional approach. The latter approach was put forth
to avoid alleged inconsistency in the three-dimensional approach wherein ¢y, .5 is computed based
only on u, yet is applied onto (u,v,w) including irrelevant lateral components.

In the light of explorations via Table 2 statistics, four main observations were noted. [S.i] Firstly,
almost no difference larger than O(-2)[cNp| default-diff was observed for any solely-velocity-based
statistics at any stage of the development phase. This was exemplified by wherein the 7, -
amplitude alterations were at least an order of magnitude lower than the other phase results. Also,
Tw-trajectories qualitatively remained unchanged even though in Tw was found susceptible to
relatively small alterations in input statistics. [S.i4] However, the pressure-based statistics showed
considerable differences between the uncorrected and corrected cases. In general, the no mass-flux
correction resulted in several times/orders of magnitude centineper bench-diffs in pressure-based
statistics, and considerably disparate trajectories with respect to the benchmark patterns. In con-

trast, both corrections reformed these spurious amplitude and pattern predictions towards the
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benchmark. For example, from the data in showing the cross-correlation functions of pyp
in the z-direction across the channel height, the benchmark patterns can be seen to be captured
by both correction cases unlike their default counterparts. Moreover, demonstrating the
channel-height probability density functions of p at =400 is more revealing in terms of amplitude
improvements by the corrections, through which the default case pressure fluctuations were reduced
several orders of magnitude onto the benchmark results. [S.i74] Another interesting outcome was
that the number of pressure iterations overall decreased by 1.25-1.5 times, which typically con-
stitutes computationally the most expensive part of an incompressible CFD computation. [S.iv]
Last but not least, no significant differences were detected between the three- and one-dimensional
approaches.

These observations may support a premise that mass-flux corrections are notably beneficial for
not only pressure predictions but also cost reductions. Furthermore, the one-dimensional correction
is advisable over the literature three-dimensional approach considering the latter’s inconsistent
formulation and involvement of two extra multiplications per node per time-step, which becomes

redundant due to the similar results obtained.

5. Conclusions

The main aim of this study was to conceptualise processes that time-series from digital-filter-
based (DFM) and forward-stepwise-based (FSM) synthetic turbulence generation methods go through
within CFD, and henceforth fill/identify knowledge/solution gaps to facilitate theoretical and prac-
tical advancement of DFM/FSM utilization in CFD applications.

For this purpose, excluding the non-CFD modelling part, DFM/FSM processes towards and
within CFD were conceptualised into five consecutive phases as shown in Thereafter, three
test suites were designed with implicitly-filtered large eddy simulations (IFLES) of three building-
block flows: decaying homogeneous isotropic turbulence [68], homogeneous shear turbulence [69] and
smooth-wall plane channel flow [70]. Four DFM/FSM variants were chosen as representing the ma-
jority of capabilities, and were implemented into OpenFOAM®v1712 [39]: Bercin et al. [9] (DFM),
Klein et al. [I] (DFM), Xie-Castro [2] (Hybrid DFM-FSM), and Kim et al. [2I] (FSM). Finally,
systematic explorations were carried out on the test suites through twelve statistics elaborated in

Table 2.
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Within the first test suite (7 the quality of the computations and samples was evaluated.
Therein, the fidelity of spatial/temporal resolutions was particularly investigated via six metrics
from the literature: Pope’s metric [64] p. 560], Celik et al.’s two single-grid metrics [65, Eq. 8al,
Celik et al.’s two double-grid metrics [65, Eq. 15,16,18], and Lyapunov exponent [67]. Capabilities
of the metrics were also discussed to provide a new understanding of their usage. In the second test
suite (, the performance of the DFM/FSM variants using traditional settings was quantified
and discussed at consecutive observation stations within the computational domains. In the last
suite (, effects of viable DFM/FSM settings/sub-approaches were explored in isolation, and
were compared with the second test-suite’s traditional-setting cases.

Besides settings/sub-approaches available in the literature, three novel sub-approaches were
proposed for aspects where appropriate solutions have been absent, and were added into the third-
suite tests. A new technique for DFM (§2.1.3.2) and another for FSM (§2.1.3.3) were introduced
to seamlessly generate synthetic time-series on non-uniform grids. Further, a one-dimensional
longitudinal mass-flux correction technique was proposed ( Lastly, two new code practices
were put forth ( for computational cost reductions.

In conclusion, sixty-two findings with various level of importance were made and labelled within
the text. Nevertheless, eleven novel insights deemed the most significant were redelivered to the
attention of beneficiaries. (The first test-suite): [:] In contrast to the counterarguments in the
literature, Pope’s LES-quality post-verification metric was quantified to be more robust, hence more
advisable, than Celik et al.’s newer single-grid and double-grid metrics throughout the benchmarks.

(The second test-suite): [i4] Within the first three nodes, consistent occurrences of flow/model/
component-independent downstream-affecting amplitude suppressions were observed for the input
Reynolds stress tensor, particularly for the shear component, at a level of O(1)/O(2) centineper,
and the suppression was almost always lower in the highest-mean-speed direction. The divergence-
freeness enforcement was then quantified to be their driving factor. [iii] Also, streamwise devel-
opment of the Reynolds stress tensor amplitudes were found to follow an asymmetric quadratic
pattern rather than monotonic as reported/presumed in the literature. [iv] Furthermore, Klein
et al.’s model almost always provided the lowest level of amplitude differences with respect to the
benchmarks and the shortest adaptation lengths for the Reynolds stress tensor components and wall
shear stresses whereas Custom/Kim et al.’s models yielded the opposite even though the Lund trans-

formation was identical in each model. [v] For the input autocorrelation and corresponding power
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spectral density functions, a similar-scope amplitude suppression was also detected, yet the suppres-
sion was limited to the first node and vanished onwards. The causal role of the divergence-freeness
enforcement in this suppression was ruled out by controlled tests, and the cause was speculated to
be the first-time execution of the Navier-Stokes equation algorithms on synthetic time-series. [vi]
Therein, in terms of patterns, Klein et al.’s method yielded Gaussian-form of correlation and power
spectral density functions while the remaining methods prompted exponential-form for the corre-
lations and Lorentzian-form for the spectra. [vii] Moreover, the model variations in all correlation
and power spectral density functions faded away downstream, and these model outcomes converged
to a common function, which mostly resembled Klein et al.’s form. The most likely reason of the
convergence was then argued to be the domain/equation discretisations.

(The third test-suite): [viiz] Investigations on length-scale size effects showed that a parabolic
relation exists between amplitudes/adaptation lengths of the Reynolds stress tensor components/wall
shear stresses and length scale sizes, that is for instance the adaptation length increases in parallel
to the level of difference between input length scale sizes and optimal range of scale sizes that other
input flow properties/boundary conditions impose. [iz] On the other hand, the use of multiple
length-scale sets at different inlet zones and seamless non-uniform mapping were quantified to be
relatively ineffective on flow statistics and be not long-lasting downstream. [x] Nonetheless, am-
plitude amplification of the shear component in the input Reynolds stress tensor to a degree that
the domain error constraints permit was observed to downscale the aforementioned amplitude dis-
tortions of flow statistics within CFD, and shorten corresponding adaptation lengths. [zi] Lastly,
mass-influx conservation corrections were revealed in detail to be considerably favourable for pres-
sure predictions and computational cost reductions, albeit no impact on velocity-based statistics.
The proposed one-dimensional mass-flux correction was also quantified to be advisable over the
alternatives due to its consistent formulation and cheaper computational executions.

Taken all results into account, a best practice could be devised for similar flows: Klein et al.’s
model using Xie-Castro model’s exponential function simplification with the nearest-neighbour
projection, the one-dimensional longitudinal mass-influx correction, the appropriately scaled-up
input shear, and the code practices reported in and [9, p. 449].

Arguably, further research could be required in the following areas: (i) additional isolated
parameter-effect scenarios such as on normal components of the input Reynolds stress tensor or

length scales in different directions, (ii) compressible flows, (ii7) higher-Reynolds-number flows,
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(iv) the applicability of fast Gaussian/exponential function convolution algorithms such as [I18],

and (v) modelling of inherent divergence-freeness in DFM/FSM.
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Appendiz A.1. One-spatial-point second-order correlation tensor
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Figure A.24: The along-channel-height profiles of the one-point second-order symmetric correlation tensor compo-
nents along the longitudinal evolvement phase (Evo.), i.e. 11 equidistant stations from 5§ to 556 away from the inlet
in 5é-distance steps, obtained from the smooth-wall plane channel flow (PCF) computations [70]. The remaining
figure particulars and axes limits are the same with
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Appendiz A.2. Over-filter scale kinetic energy transport equation
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Appendiz A.3. Over-filter scale enstrophy transport equation
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Appendiz A.4. Mean total strain transport equation
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Appendiz A.5. One-point skewness and kurtosis
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LARGE EDDY SIMULATION AND ANALYTICAL
WAKE MODEL INVESTIGATIONS ON HYDRODY-
NAMICS OF A MARINE TURBINE UNDER DE-
CAYING HOMOGENEOUS ISOTROPIC TURBU-
LENCE: FREESTREAM TURBULENCE INTEN-
SITY EFFECTS






Large eddy simulation and analytical wake model investigations on
hydrodynamics of a marine turbine under decaying homogeneous
isotropic turbulence: Freestream turbulence intensity effects

Kutalmis M. Bercin*, Zheng-Tong Xie, Stephen R. Turnock
Faculty of Engineering and the Environment, University of Southampton, SO17 1BJ, Southampton, the UK

Abstract

A rigid model-scale experimental horizontal-axis marine turbine (so-called the Southampton turbine)
was numerically investigated under decaying homogeneous isotropic turbulence in absence of its
tower. Twelve controlled computations were carried out through wall-modelled and actuator-line-
modelled large eddy simulations where the three-dimensional turbulence intensity, Iy, _, was the
control variable. The first four computations excluded the blades, and examined the flow prediction
effects of the arbitrary mesh interface technique (AMI) while 4. stationary and #i. rotating, and
1i3. the presence of the turbine nacelle. The last eight computations explored the ways how three-
dimensional turbulence intensity affects the turbine and its surrounding flow fields. Four turbulence
intensities were tested, Iy __={0,10,20,40}[%]. In addition, twelve analytical wake models from the
wind and marine turbine literature were reviewed and assessed with respect to the wall-modelled
computations under the same range of I,; . Among many, the prominent outcomes were as follows:
[i] AMI-in-rotation adversely affected amplitude-based statistics by causing discontinuities on AMI-
region boundaries, and differences between the inside and outside of the AMI-region. The effects
were increased outwards from the AMI-region centre. [i1] However, AMI-in-rotation did not affect
time-based statistics. [ii7] Stationary AMI did not affect flow fields. Furthermore, irrespective
of freestream Iy, : [iv] Longitudinal mean speed fields (U-fields) began to be affected by the
presence of the turbine nearly 4 rotor radii upstream of the turbine; [v] maxima of changes in
U-fields occurred at around 2 rotor radii downstream of the turbine; [vi] U-fields became virtually
indistinguishable commencing around 6 to 10 rotor radii downstream within the alignment of the

turbine; however, were kept turbine signature by remaining different from U-freestream despite
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turbulence entrainment; [vii] wake recovery rates as a function of downstream distance followed
a half-Gaussian-form. [viii] No significant deviations between the wall-modelled and actuator-
line modelled computations occurred in terms of the statistics quantified. [ix] The coefficient of
variation, skewness, kurtosis and maxima of longitudinal forces/moments were increasing functions
of Iy whilst the mean and minima were inversely varying with I, . [x] An analytical model that
was derived and calibrated specifically for a similar marine turbine was quantified to be superior
to the other models in terms of wake profile and speed predictions, highlighting the importance
of the similarity level between turbine-flow particulars at hand, and analytical model’s derivation
particulars.

Keywords: horizontal-axis marine turbine, wall-modelled large eddy simulation, actuator line

model, synthetic turbulence, turbine hydrodynamics, turbulence intensity

1. Introduction

Horizontal-axis marine turbines (hereafter, HAMTs) are desired to provide maximal energy
conversion in a subsea operation environment with as few scheduled maintenance appointments
as possible. Yet the objective arguably appears difficult to accomplish due to knowledge gaps in
understanding and modelling complex nature of flows and its interactions with HAMTs. A further
complication is posed by HAMT plantations with which optimisation of a plant as a whole by
tailoring individual turbine designs at specific locations becomes preferable over a mass design
of turbines since various effects of neighbouring turbines, such as flow inductions and wakes, are
introduced into the complexity. This additionally demands the consideration of interactions between
turbines and turbine-induced flows to achieve the objective.

One of the determinants of such subsea environment deemed significant to HAMTEE is the level
of kinetics of velocity fluctuation fields with respect to their mean fields. This is usually quantified
by means of the longitudinal turbulence intensity (I, ) and three-dimensional turbulence intensity

(Iu;ms)ﬂ which can be defined as the ratio between the root-mean-square of Reynolds—decomposecﬂ

Hereafter, all the literature review is limited to three-bladed HAMTs unless otherwise stated.

In statistical terms, the turbulence intensity is the coefficient of variation of velocity fluctuation fields.
Consider u(x, t){uEQ; u=(u,v,w); >0} 85 the instantaneous velocity field. Herein, the Reynolds decomposi-
tion using the averaging operator of the discrete cumulative moving time average is used on u(x,t):
u(x, t)=u(x)+u’ (x,t)=U+u’ where T=(NA;) ! ZE;& u(x,nA¢) with A; is the time-step size, N the number of
time steps, and NA; the finite sample duration.
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Table 1: Representative values of longitudinal turbulence intensity and maximum flow speed obtained from various
measurement campaigns at fields presumed to be suitable for marine turbine operation. Additional field measurement
campaigns can be found in [T Table 1].

Region Average longitudinal Peak mean Height from
turbulence intensity [-] speed [ms™!] seabed [m]
Sound of Islay, GB-SCT2] 0.12-0.13 2.5 5.0
Puget Sound, US-WA[3] 0.10-0.11 2.0 4.6
Nodule Point, US-WA[] 0.084-0.114 1.8 4.7
Admiralty Head, US-WA[] 0.095-0.118 3.2 8.1
East River, US-NY5] 0.15 2.0 4.25
Strangford Lough, NI[g| 0.17-0.40 2.1 3.4 (below surface)
East River, US-NY[7] 0.25-0.30 2.0 5.0
Falls of Lora, GB-SCT[g] 0.40 2.0 4.7
Kobe Strait, JP[] 0.10-0.20 2.0 4.5-17.5

!/
rms

velocity field, (U, Ue)ﬂ Ly, =up, /U and Iy =u;, /Ue, respectively.

velocity fluctuation field (ul, ., u )E| and the Euclidean norm of the Reynolds-decomposed mean

rms

The majority of prospective energy conversion sites considered by the marine energy commu-
nity belongs to diurnal/semidiurnal tides. Therein, turbulence intensities are generally observed
comparable to those in the atmospheric boundary layer, and in high variation within a site and
across sites in a site specific manner. For instance, exemplified nine field measurement
campaigns where the representative values of the time-averaged longitudinal turbulence intensity
varied from 0.08 to 0.40. In addition to this, turbulence intensity’s exponential-decay relation with
mean speed [, Fig. 6][9, Fig. 9][6], Fig. 13ﬂ and its log-law relation with height above seabed [I1]
p. 3191| increase the variability of turbulence intensity that a turbine may experience within its
cut-in and cut-off speeds.

Various experimental and numerical studies have examined possible effects of freestream turbu-
lence intensity levels on hydrodynamics, structural dynamics and energy conversion performances
of HAMTs. In general, these studies monitored the effects in four aspects as elaborated below.

The first aspect is as regards time-averaged thrust and power coefficients of HAMTs, i.e. Cp
and Cp. It was found out that three types of concluding remarks were reported in the literature:

Negligible-arbitrary changes, losses or gains in the coefficients due to the I, augmentation. To

ul s (x)=4/(u)? and u;ms(x)z\/o.f’) ((u")2+(v")2+(w’)2). It should be highlighted that two different averaging
operations exist within the turbulence intensity, i.e. the cumulative moving time average and the arithmetic
average, unlike the root-mean-square’s actual formula involving only the arithmetic average.

5 U(x)=U and Ue(x)=||U||y =VU2+V2+W2.

For a contradicting observation that found no relation, see the measurements by [10} p. 15].
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begin with, [I2, p. 107] interpreted results from their k-w-SST RANS and wall-resolved Lilly-
Germano dynamic procedured Smagorinsky-model LES computations that time-averaged loadings
were not affected through Iy, _={1,10,20}[%] although [12] Table 4] illustrated general reductions of
2-6|%| and 0.2-0.6]|%| for Ct and Cp. Similarly, [13] p. 104, 115, Fig. 17] reported virtually no effect
on the coefficients due to Iy, ={3,6,9}[%] for a tip-speed-ratio (TSR) range of 1-10 in their k-w-
SST RANS computations. In favour of Cr-Cp-reduction observations, however, [14] p. 5, Fig. 6]
observed from I, ={8,25}[%] flume-tank experiments that both coefficients were reduced by ~9%
within a TSR range of 9-15 while Cp remained almost unchanged and the Cr-reduction persisted,
albeit weaker, for TSR={3,6}. Likewise, [I, p. 739, Fig. 6] (Iy,__={3,15}[%]) and [I5], p. 25, Table 6]

ms

(T, ={6.8-25.2}[%]) identified coefficient reductions up to ~10[%] in the same experimental facility.
By contrast to these observations, [16, p. 128, Fig. 8] (the standard k-e-RANS using an actuator
disk model), [I7, p. 4] (geometry-resolved k-w-RANS; TSR=6; I, ={1,10}[%]), and [I8] p. 7] (the
blade element momentum theory using two synthetic inflow generators; TSR=2.5; I, _={3,5}[%])
stated that increments of I,y _resulted in increments of Cr less than ~2[%]. Together, these studies
indicate that no consensus exists regarding the effects of I, on Cr-Cp in the literature since the
experiments consistently showed an inverse relation and the computations yielded mixed patterns.

The second aspect is in respect of Cp-Cp fluctuations. Unlike the first aspect, the aforemen-
tioned studies herein almost always corroborated each other in an assertion that Iu;ms and Ct-Cp
fluctuations are increasing functions of each other |14 p. 5][12, p. 107|[I, p. 739][I5, Table 6][I8]
p. 7]. For example, [I, p. 739] measured that the standard deviations of Ct-Cp (i.e. ¢y, 0cp)
were increased by ~2.5 times with Iy =3[%] — 15[%]. Nevertheless, it was also reported that
the dispersion level of Cp-Cp fluctuations relative to the mean nearly always remained at least an
order of magnitude lower than the mean values, e.g. in [12, Table 4] the difference was Ct~10%0¢.,
for the highest Iy, .

The third aspect is relevant to the bending moments. Similar to the first aspect, the observations
are somewhat in contradiction, thus making generalisations difficult. As an example, the presence
of a direct proportionality between I, and bending moments was put forth by [19, Fig. 17] in view
of the blade element momentum theory computations for Iy, ={0-12}[%]. This monotonic relation
was also confirmed by [20] p. 3] using the blade element theory with turbulence spectral models
for Iy ={7.5,15}[%]. However, [15, Table 6]’s experiments maintained an inverse proportionality

for the moments whilst retaining the direct relation for their fluctuations. On the other hand, |21
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Table 2] reported almost no change for the mean moments, and a direct proportionality for their
peaks and fluctuation ranges from immersed boundary method WALE-model LES computations
for I, ={0,10,20}[%].

The last aspect is as for wake characteristics. Several lines of evidence suggest that downstream
signatures of a turbine within a flow field dissolve into freestream values in a shorter distance (i.e.
wake recovery in terms of velocities and turbulence intensities) in parallel to augmentations of
upstream Iy [22, p. 218|[1} p. 739|[12, p. 108; Fig.15|[14, p. 6|13, p. 115][23, p. 15]. Nonetheless,
a note of caution was raised by [22] p. 225] that increments in I, may not always expedite wake
recovery, particularly in case of low mean speeds.

Apart from the aforementioned conflicting remarks, the existing accounts are arguably unsatis-
factory in three points. First, the investigations of turbulence intensity effects were not conducted
through a complete isolation of the turbulence intensity from other turbulence characteristics. Yet
realistic inflows were considered at the outset before testing fundamental inflows. For example, a
mean-velocity wall-normal gradient was present in [I5, p. 14]’s experiments, or [20, Table 1] tuned
mean speed magnitude alongside the turbulence intensity in their quantifications; howbeit, such
dual-alteration inherently makes turbulence intensity changes ambiguous since the turbulence in-
tensity is by definition a function of mean speed. Therefore, studies wherein the only control variable
is the turbulence intensity is debatebly needed, so that remarks directly linked to the turbulence
intensity can be deduced without potential interactions with other turbulence notions. Second,
the research to date predominantly focused on a range of turbulence intensities up to ~10-15[%]
by defining their maxima as normal or high levels. However, as can be seen from field
turbulence intensities were revealed to be highly varying within and throughout sites, and reaching
up to ~40[%)] during operable use of HAMTs. For this reason, a broader range of turbulence inten-
sities may need to be examined. Third, there remains a paucity of studies of turbulence intensity
effects on aspects other than time-averaged wake profiles, and performance coefficients. Thereupon,
quantitative analyses may need to be expanded towards various new subjects such as the compo-
nents of turbulent kinetic energy budget, power spectral density functions, or higher moments of
performance coefficients.

The main aim of this paper is therefore set to investigate interactions between the three-
dimensional turbulence intensity in the most fundamental form of turbulence, and a typical model-

scale rotor within a typical experimental-facility-sized channel in order to fill knowledge gaps or to
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corroborate previously reported remarks within the realistic, yet complex, inflow-turbine interaction
studies.

To this end, hydrodynamics of a rigid experimental HAMT (so-called the Southampton tur-
bine [24]) without its tower under decaying homogeneous isotropic turbulence is explored through
controlled studies involving wider range of statistics, and using wall-modelled & actuator-line-
modelled implicitly-filtered large eddy simulations and twelve different analytical wake models,
where the turbulence intensity (I, ={0,10,20,40}[%]) is retained to be the sole control variable.

The paper first introduces the flow and rotor models used, and their specific numerical settings
(. Subsequently, the obtained results are illustrated and discussed (, and finally concluding

remarks are presented to the attention of beneficiaries (§4).

2. Methodology

2.1. Flow modelling

2.1.1. Physical phenomena

The scope of physical phenomena was limited to Newtonian single-phase incompressible fluid
flows, excluding any thermal, chemical, electromagnetic, scalar interactions, and any sea elements
which may interrupt turbine operation (e.g. mould). Typical marine currents were presumed not to
violate these assumptions. The set of governing equations of this scope is the pointwise conservation
equations of volume and momentum shown in the following for an inertial frame of reference and a

conservative external force field per unit mass [25]:

V-u=0 in Qx(0,T) (1a)

W+ V-(uu)=-Vp+rvAu in Qx(0,T) (1b)

where {-} is a linear operator (a spatial filter in the current scope), u(x, t) {ueQ; u=(u1,uz,us); 0}

a velocity vector field [ms™], u, =0u/0t [ms2?|, uu(x,t) a dyadic field [m?s7?], p(x,t) a scalar
_2}

kinematic pressure ﬁeldﬂ [m2s72], v the fluid kinematic viscosity [m?s], Q a finite-size fixed-in-space

volume [m3], and T an arbitrary instant of time [s]. The numerical modelling of Eq. was performed

7 The external conservative field term f is incorporated into the pressure gradient term: -Vp+f=-Vp-V f=-Vpy,
where f is a potential function, and py is conditioned with the uniform fluid density, p, as p=p/p.
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with OpenFOAM®v1712 software [26] which discretizes the integral form of Eq. [1f via the finite

volume method.

2.1.2. Turbulence modelling

Eq. [1] was computed via the implicitly-filtered large eddy simulation [27, p. 381] (hereafter,
IFLES)EIn IFLES, over-filter and sub-filter turbulence scales are split by means of spatiotemporal
resolution and equation discretization schemes. Sub-filter scale effects on over-filter scales are then
modelled.

The closure of Eq. [1]is obtained in five steps: Firstly, the unknown dyadic field T is transformed
into a more manageable form through the Reynolds and the Leonard decompositions [29, p. 44]

in turn. Secondly, the transformed dyadic field is reduced into (Wu-uu)~u’/u’ by omitting the

transformed terms other than w/u’. Thirdly, the unknown u/u’ field is approximated as a function
of known over-filter scales via the Boussinesq eddy-viscosity hypothesis: u’u’ ~ B= (2/3) ksts 1- VsS4,
where B is a symmetric tensor field [m?s 2], kg a modelled sub-filter scale kinetic energy field per
unit mass [m?s72], I an identity tensor field [-], v¢(,,>0) a scalar field of the modelled turbulent-
viscosity of the flow [m?s™], S4={S¢-3"! Tr(S;)I} the deviatoric part of doubled strain rate tensor
field [s7'], i.e. §; =28 =2{0.5(Vu+(Vu)T)} [s7'], and Tr(-) = 7" (-)si the trace of a tensor. Lastly,
ksts and inherently vy=f(ksgs) are modelled.

In this study, sub-grid scale effects were modelled into kg with [30]’s localised dynamic kg
transport-equation model whose derivation can be found in [31], and code implementation is sum-
marised belowﬂ This model circumvents the local equilibrium assumption of algebraic eddy-
viscosity models between sub-filter scale energy production and dissipation. As an implication,
minimum grid requirements wherein this assumption holds can be relaxed, so that high Reynolds
number flow computations could be performed on relatively coarser grids [31, p. 985]. Moreover, its
dynamic procedure is based on the scale similarity hypothesis, which inherently resolves the promi-
nent issues of Germano-type dynamic procedures [33] such as numerical instabilities and theoretical

inconsistencies [31), p. 985-987].

The sub-filter scale model involves computing two coefficient fields from local flow, i.e. Ck (¢, cq; ¢ >0}

8 For the definition of IFLES, the reader is referred to |28, p. 6-10].

The initial sub-filter scale model that has been used was the Smagorinsky model with the Lagrangian-averaging
dynamic procedure [32]. However, this model was found unstable for the wall-modelled computations. Therefore,
it was replaced by [30]’s model.



145

160

0.5.

and Ceyc eq; o, >0}, solving the kg transport equation, and ultimately evaluating v;=Cj A kg

s

_O0SE:W) , ver(DF-[DP) )
k — |—9ﬁ|—2+é_ € (2A —lﬁl.S

Dksfs
Dt

= vz(l/eff ksfs) + Gts — €sts + Sk (3)

where any negative values within Cy, and C. are converted to zero; "~ = (OoperAr) (X Ap)tis
the second (explicit) filter operator with its radius slightly smaller than 2A, e; a field interpolated
from cell centres to cell faces, A; face area [m?], Ay A|=N}=m\3/V characteristic grid-size field
contributing to the effective (first) filter, N the number of nodes, m=1 a heuristic constant [-],
Viv>0y time-invariant computational cell volume field [m?); £, M and D symmetric tensor fields

s

with £=dev[u2-u?] [ms!], M=-2A (max[f, 0] D)°® [m®s 2], and D=dev[S] [s"!], dev[e] the deviatoric

operator of a tensor, max|e, [J] element-wise greater value finder operator, : the double inner product
of two second-order tensors, & the smallest finite value of floating-point number, £=0.5(|u|2-|T|?)
a scalar field with f=max[&, (] [m*s2], ¢ the machine epsilon, Veg =14+ Vjam the scalar field of
effective kinematic viscosity [m?s™!], vjam the constant kinematic viscosity of the fluid; eggs, Gsgs,
and Si=0 the dissipation, production, and source terms of ksgs as €ss=Ce k2 A™! [m?s73], and

Gsis=2 1 (Vu : D)-(2/3) kg (V - U) [m?s3]. The term V -1 in the last expression is not removed

despite the incompressibility assumption, because it remains non-zero in interim calculations.

2.1.3. Inflow modelling

IFLES requires spatiotemporal-variant inflow information that can evolve with designated par-
ticulars within its numerical domain. Such information was provided here by the hybrid digital-
filter/forward-stepwise synthetic turbulence generator of [34] (hereafter, Xie-Castro method). Xie-
Castro method was chosen as it satisfies four conditions deemed important in this study. First,
capability-wise, Xie-Castro method is able to generate pseudo-stochastic and spatiotemporal-variant
time-series containing statistics of two-spatial-point autocorrelations and one-spatial-point cor-
relation tensor. More importantly, it allows the construction of statistics in an isolated and
building-block fashion, e.g. a group of statistics can be turned off for a particular spatial direc-
tion. Confidence-wise, it has been successfully used for various types of flows, such as street-scale

flows [35] and aerofoil flows [36], including flow types considered herein, i.e. canonical flows [28] 37].



Last but not least, Xie-Castro method provides a cheap-to-run and easy-to-code approach with
high-fidelity in comparison to the other methods of the same class [28] [38].

Xie-Castro method creates spatiotemporal-variant Reynolds-decomposed fluctuation velocity
fields in three consecutive steps: Firstly, a set of pseudo-random numbers, {r}{M:R; k,jeN: 1Sk+j§R}|ﬂ
obeying the probability distribution function of zero-mean (R leil 1,=0), unit-variance (R 21111
r?=1), and independent (R Ele rirj=0 for k#j) Gaussian white-noise is generated. Secondly, two-
spatial-point autocorrelation functions are incorporated into {r} through i. convolution summations
for lateral directions (i.e. digital-filter method) and #i. autoregressive operations for streamwise di-
rection (i.e. forward-stepwise method), which are given below for a single velocity component and

dimension, respectively:

-0.5

N N
Sk = Z birks; with b, = b; Z bj2 & b, =exp <WW> (4a)

: n
j=-N j=-N

- A _ A 0.5
QS‘I’ (y, z,t+A¢) = 28\11 (y, 2z, t) exp < C; il Tt> + 25’/’(3/, 2, t+A) {1— exp <62;t) } (4b)

where {s}{|5-M: seqy is a digital-filtered number set, {b}{jb-2n+1:beq) a filter coefficient set, {b} jpj-2n+1: b0}
an intermediate coefficient set, {N} nen+y the filter support, kiienoy the lag number, ¢; a constant
with a suggested value of 1, n input integral length scale [grid-unit], {m}{m,cq} a number set contain-
ing rectilinear distances between arbitrary nodes and zero-lag [grid-unit], {,s¥} a two-dimensional
set belonging to an instant ¢ and including transverse length-scales {La}{aefy,-}}, {o5%} an auxil-
iary two-dimensional set created in the same way of {,s¥}, yet with a new pseudo-random number
set, co another constant with a value of 0.5 calibrated to the inflows of this study [38], p. 446], A, the
constant time-step size of the computation, and T streamwise Lagrangian time-scale calculated via

Taylor’s frozen turbulence hypothesis [39]. Lastly, one-spatial-point correlation tensor is embedded

10 The set notation used is as follows: 1, ={r}[k] where {r} is a set, and k is an index to the k'™ member of the same
set.
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into {s} by [0, p. 255]’s transformation:

(R11)0'5 0 0
u/(X, t) = | Ro1/ A1 (R22_A§1>0.5 0 QS(xvt) (5)
R31/A11 (R3z-As1As1)/Ass  (Ras-A%-A3,)0°

A(x)

where A a second-order spatial-variant amplitude tensoxizl7 and {Ri;}{i je,3y (known) one-spatial-

point correlation tensor members in units of variance (i.e. Reynolds stress tensor).

2.1.4. Analytical wake modelling

In order to identify implications of high-fidelity computations for engineering design applications,
almost all (twelve) non-yawed horizontal-axis-turbine analytical wake models that wind/marine-
energy industry software incorporated were evaluated: i.e. [ATH52]. In view of their lengthiness, the

models and their formulae were summarised in

2.2. Rotor modelling

Two approaches were used to model the rotor: the geometry-fitted wall-modelled approach (here-
after, AMI) and the actuator line model (hereafter, ALM). The two were chosen among the other
conceptﬁ since they were deemed to represent approximately the opposite polars of the model
fidelity spectrum with which time-accurate rotor computations are possible. In the following, the
modelling workflow were elaborated, and the utilised coordinate systems and aerofoil terminology

were presented in and

2.2.1. Turbine benchmark

The benchmark turbine was from the hydrodynamic experiments of [24]. Two reasons con-
tributed to the selection of this benchmark: its design paid regard to the model scaling constraints
advised by the literature [54, p. 86], which presumably ensures sufficiently high Reynolds number
flow over blades [54], p. 86] and minimum blockage correction [24, p. 409|, and its rotor diame-
ter to water depth ratio reportedly reflects full-scale operating prototypes [54, p. 86]. Therein,

an upwind, towing-tank scale, clockwise-rotating, 0.8 [m] rotor-diameter tidal turbine with three

11 A may also be temporal-variant; however, it is invariant in time for this study.
12 The reader is referred to [53] for the other concepts and models.
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Figure 1: (a) Three coordinate systems seen from upwind in an inertial frame of reference:
Ji{i€<n7h’b)}=(ﬁi,em,eyi,ezi) where the positive first direction of each axis is into the paper, and & their
origin. n, h and b stand for the computational domain, hub and blades, respectively. &), is fixed at the intersection
of the inlet boundary and hub centreline at z=0[m|, 0} at that of the twist axis and hub centreline at z=2.4|m]|,
and O at that of the rotating blade-root plane and the twist axis that was assumed passing through 30% of any
chord length (from the leading edge). 1 is the blade azimuth angle which is zero when the twist axis is upwards at
a right-angle to the ground plane. v increases clockwise, which is also the rotor positive rotation direction. (b) A
sketch of the computational domain. The black dot depicts the hub, and the cross-hatched disc the rotor plane.
The axes indicate positive directions without their true origin.

“T6082-T6 aluminium alloy” [55] blades constructed by seventeen NACA 63-8xx aerofoilﬁ was
used [24, p. 409-410]. The experiment scenario [24, p. 418] corresponding to the spatiotemporally-
uniform inflow of 1.5[ms™!], 20° pitch angle, tip speed ratio of 6, and 0.55D deep tip immersion was
selected because the operational particulars resemble to those of full-scale prototypes [64, p. 86]
and a complementary numerical study [12] investigated the same scenario.

Previously, to the authors’ knowledge, eight rotating-blade LES studies utilised this experimen-
tal turbine (e.g. no actuator disc), which were: uniform-inflow actuator line method without hub
and tower [56], uniform-inflow immersed boundary method without tower (including a two-way
loosely coupled fluid-structure interaction implementation) [57) 58], turbulent-inflow wall-modelled
approach without tower [59H61], and turbulent inflow wall-resolved approach [12] 62].

Data-reference pairs of the benchmark scenario can be found as follows: . operational conditions
in Table 1. spanwise distributions of chord length, structural twist angle, and aerofoil profiles |24,
p. 410], iii. polar data (computed via) [63H65], iv. aerofoil coordinates (computed via) [63, 65], and
v. dimensions of the experimental set-up and rig [66, p. 2,9] in Table

13 «xx” indicates the percentage ratio between the thickness and chord length of the blade sections.
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Table 2: Primary operational conditions of the turbine benchmark '[24} p. 418], 2[12} p. 97](computed).

Parameter Value
Tip speed ratio 6.0 []
Time-averaged uniform inflow speed? 1.5 [ms™]
Time-averaged rotational speed? 214.86 [rpm| ~ 22.5 [rad s™!]
Kinematic viscosity of water? 0.000001 [m?2s7!]

2.2.2. Geometry-fitted wall-modelled approach

Herein, the rotor@ modelling was carried out in five subsequent steps: the modellings of solid
geometry, surface grid, surrounding volume mesh, rotation and wall grid. However, the turbine
tower was excluded from consideration in order to isolate rotor effects on wake development from
those of tower’s non-streamlined structure. Another reason of this exclusion was that the channel
asymmetry in the y-direction was intended to be isolated from the tower effects. For instance, [12}
Fig. 103] found out an asymmetry in the downstream mean speed profiles of the same turbine, and
attributed its reason to the tower-flow interactions. Yet another effective independent variable is
the y-direction channel asymmetry which may interfere with the conclusionE

For the solid modelling, initially, the planar coordinates of the seventeen NACA 6-series aero-
foils [24], Table 1] were computed via the NACA456 software [65] that uses an algorithm from [63].
The coordinates were then refined by the QBlade software [67]; were scaled with the local chord
lengths, and extended into the third dimension. As the sole simplification to ease the solid mod-
elling, the sharp trailing edges of the aerofoil profiles were truncated by a maximum of 1.5% local
chord lengths with presuming no effect on wake flow. In addition, there were two gaps within the
experimental setup explanations [66]: i. No geometrical information was provided for the circular
transition between the hub-blade junction at r/R=0.125 and the transition end at r/R=0.2; and ii.
the coordinates of the blade twist axis were not defined. Therefore, the geometry of the circular
transition was heuristically generated, and the blade twist axis was assumed to be passing 30% chord
length away from the presumed leading edge point horizontally. The pitch angle direction is clock-
wise when you look from top of the tip surface to the root. The rest of the experimental setup
particulars elaborated in [66] was conformed. Finally, the solid models were created in Solid Works®

2017 software [68] according to [24] Table 1] through the profiles which were appropriately placed

14 The term rotor refers to the blades and hub whereas the term turbine to the entire rig including the tower.
15 In the following steps of this study, it was found out that corroborated [12, Fig. 103]’s reasoning since the
omission of the tower removed the flow asymmetry in the z-direction thereat.
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in the spanwise direction, and were rotated about the blade twist axes.

The surface grids were generated in stereolithography format (i.e. STL) via the SALOME 8.4.0
software [69] based on the STEP-File format solid models while neither SolidWorks nor QBlade
was found adequate for this purpose. Quadrangle and triangle mesh elements were respectively put
to use on the blade planforms, and the remaining components (i.e. cylinder transition, hub) whilst
the former element type was observed to facilitate iterations within the volume mesh generation
by the preferred mesh generator. Furthermore, the grid was manually partitioned into sub-regions
in order to enable mesh refinement level variation across the same blade. Considering error-free
surface grids, especially in terms of watertightness and face-normal consistency, are central to the
volume mesh generation, the STL quality quantification and if necessary repairs were made with
the OpenFOAM® and MeshLab® software [70]. Subsequently, the blockMesh mesh generator [26]
was used to discretize the computational domain into cubic elementsE On top of this, the snap-
pyHexMesh mesh generator [26], which recursively splits a hexahedron into its octants based on
prescribed refinement levels, was utilised to perform local surface-volume mesh refinements and
morphing onto the surface grid in compliance with specified mesh metrics (e.g. maximum face
skewness).

To model rotation, the computational domain was divided into two regions by dismantling a
cylinder prism that surrounds the rotor longitudinally. The inner prism does constant-speed rigid-
body rotation about the hub centreline and relative to the stationary outer region. Information
across adjacent and non-conformal regions is conveyed via the arbitrary mesh interface method [T1]
of OpenFOAM® (AM. The AMI is a discrete-field interpolation algorithm wherein Galerkin
projection is computed through a set of triangulated supermeshes corresponding to each local
intersection of the regions [71], p. 90-95]. Elementally, the projection of a field from a donor region,
qp, onto a target region, g, begins with an intent to minimise L?-norm of ||gp-q7| [71, Eq. 1].
Defining ¢ in terms of its basis functions {¢}{|gj=n1, 1-€. ¢=D ey ¢'¢?, results in a matrix equation
whose solution yields desired gr, i.e. M1 qr=Mrp qp [71, Eq. 8], where the matrices are Mr=f(¢7)
and Mrp=f(¢7 ¢p) [(1, Eq. 9-10]. Herein, the computationally challenging part is the construction

of Mrp due to its dependence on both regions. This is overcome by constructing a common grid

16 It was observed that using cubic elements improves the subsequent mesh refinements and morphing phases in
comparison to using other hexahedra types.

17 In this study, the same abbreviation was put to use for the geometry-fitted wall-modelled approach computations
that utilise the arbitrary mesh interface method.
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for each intersection, and doing computations therein. In addition, the AMI is well-defined in
discontinuous fields [7I], p. 89], computationally scalable [71, p. 91, 99] in comparison with other
options such as [72], and conditionally [7I, p. 90] conservative since its local integration errors,
ie. [qrdV=[gpdV, are order of double-precision machine epsilon [71, p. 93]. Nonetheless, the
AMI is ‘not necessarily bounded’ [73, p. 5] and not constrained with the incompressibility |71}
p. 99]; thus, spurious fluctuations may occur in projected fields. The literature has, however, not
treated effects of the AMI on flow predictions in much quantitative detail, particularly for turbulent
structures. As a counter example, on the other hand, [74] p. 2] shared a qualitative observation
that the AMI had no influence on flow visualizations from a number of uniform-inflow propeller
computations. Similarly, [75, p. 121] and [60, p. 744] qualitatively analysed a turbulent-inflow
tidal turbine computation, and concluded that the AMI did not alter the appearance of convecting
turbulent structures. In addition to this, [62) p. 267] purported based upon their RANS-turbine
computations that no qualitative changes were observed on velocity fields and gradients due to a
sliding technique similar to the AMI.

The next key aspect was the wall modelling. Within wall-bounded flow regions, momentum-
transfer-dominant scales are known to be order of viscous length scales whose size is inversely
proportional to ReLH As a consequence of [70, p. 3]’s node-number estimation for attached flows,
ie. Nax Rei?’/ 7 the resolution of these scales becomes prohibitively expensive for turbine flows,
wherein Rep,~ ©(106-10°) |77, p. 438]. Therefore, in this study, viscous and majority of the overlap
layers were modelled rather than resolved. This brought three main questions to be addressed: i.
near-wall grid resolution, #i. wall-flow model type, and 7ii. near-wall grid design strategy.

With respect to the near-wall grid resolution, minimum threshold recommendations may be
found for canonical flows, and be projected onto the flows considered herein to avoid computa-
tion repetitions. Assuming the existence of the log-layer at sufficiently high Rer,, the first wall-
normal grid node was placed inside the presumed log-law region, whose lower limit reported in
the literature was reviewed by [(8, p. 377] as 30<y*<100. A number of studies have postulated
for the grid size within characteristic boundary layer thickness, ¢: [79, p. 2| reasoned a grid with
A;~0.086, A,~0.056 and A, linearly varying from 0.025 to 0.056 within the outer layer. Fur-
ther, [80, p. 20] offered Na,~10; Na,~30-40; Na_~20 per 0, and similarly, |76, p. 2| put forward

18 Rer,=U.Lv!, where U, is the characteristic flow speed [ms~!], L the characteristic length scale [m], and v the
kinematic viscosity of the fluid [m2s™']. Na stands for a given node number in a computational grid.
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Na,~10; Na,~25; NAo,~10 in accompany with highlights from the literature that Na, ~5-32;
Na,=16-32; Na_ ~15-32. Overall, [76] p. 2| asserted that Nao Rer, for wall-modelled IFLES.
Menter et al.’s [8I] wall model was adopted here owing to its automatic and gradual polynomial
blending between the standard logarithmic law of the wall (y*>30) and viscous sub-layer equation
(y*<5) as a function of local y*. This treatment alleviates the sensitivity of the wall model to
y*-variations; hence, eases wall-grid design considerations within the same grid. The wall effect was

incorporated through the turbulent kinematic viscosity, v, as follows:

u?
Vy = max {O, m — Vb} (6)

where ny,-(Vu)y is the velocity gradient normal to the boundary [s], £ the double-precision machine
epsilon, v the fluid kinematic viscosity on the boundary, and u, the friction velocity [ms™!] [S1]

Eq. 17-18]:

g & wu —7’“]
e o (By)

1 '
Ur = (U} yis + U7 1og)" with s yis = (7)

<

where u;yis and u,10s are respectively the model contributions from the viscous sub-layer and
logarithmic law equations, n=4 a model coefficient, U the magnitude of the planar first-wall-node
velocity (i.e. its wall-normal component is zero) [ms™], k=0.41 von Karman’s constant [82] p. 77|,

and E=9.8 a wall roughness parameter for smooth walls [82, p. 77]. The algorithm of the model
implementation is shown in

2.2.8. Actuator line model

The actuator line model (ALM) is a reduced-order flow modelling approach for slenderiﬂ bodies
in which the governing equations of fluid dynamics and a force prediction method are two-way cou-
pled (its first derivations: the vorticity-velocity form [83] p. 156-157], and pressure-velocity form [84]
p. 46]). In the ALM, a body is simplified into a characteristic line (not necessarily straight) or a
group of lines. The imaginary lines are then discretized into a set of actuator points in space wherein
each point represents a line segment. The ALM became a well-received model in the wind-marine
turbine discipline primarily due to three reasons: in comparison to a geometry-fitted approach, the

ALM i. loosens spatial and temporal grid resolution constraints to a substantial extent, ii. renders

19 Slender describes a body with its length is at least an order of magnitude longer than its remaining two dimensions.
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quicker grid generation possible with minimised grid-quality issues and user expertise, and despite
the former two, iii. spatiotemporal-accurate flow entities (e.g. root-tip vortices, wake, induction
regions [85] p. 8]) and rotor performance predictions were realised to an experimentally-validated

level. The ALM consists of two main parts: flow and force modelling which are summarised below.
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Figure 2: (a) Terminology for an aerofoil. All characteristic aerofoil centres, including those of structural twist, blade
pitch, aerodynamics and mass, were assumed collinear, and dubbed as ‘twist axis’ along a blade. (b) A stationary
blade-element cross-section illustrating forces acting upon the centre of pressure. L is the lift force, D drag force,
Fx normal-to-chord force, Fr tangential-to-chord force, a angle of attack [rad], and u,e relative velocity. (c¢) The
rotating counter-part of (a). T is the normal-to-rotation-plane force, Q parallel-to-rotation-plane force, ¢p=1)+0+a
flow angle, ¥ global operational blade pitch angle, and 6 local structural twist angle. (d) A velocity triangle for a
rotating aerofoil showing flow induction effects. a and a’ are axial and tangential induction factors [-], respectively,
r spanwise location of the aerofoil, and € rotational speed of the rotor [rads~!].

2.2.8.1. Actuator line model’s flow modelling
For the fluid-part ALM equations, the prevailing pressure-velocity form was used in this study [84]
p. 46] whereby Eq. [1| was re-expressed as follows:

u + V- (uu) =-Vp+rvAu+f (8)
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where Vp was split back to the pressure gradient, Vp, and the external force field term per unit
mass, f [ms™2], which is computed through a force prediction method.

In the context of the finite volume method, the spatial discretization of f for a single finite volume
Q with its centroid P can be performed through [, fdQ~ fpQ where f(x,t)~fp(t). Further, within
the preferred theoretical-level pressure-velocity coupling algorithm, i.e. PISO [86], the discretized

term can be placed into the assembled explicit momentum equation as follows:

n
apup = -Vp+s — Z a;u; + sgn(m)fpQ = -Vp + H(u) (9)
i=1

where the left-hand side contributes to the diagonal part of the system of algebraic equations, and
the right-hand side to the off-diagonal; P denotes the owner cell, n its neighbour cells, ap and
an, known domain and equation discretization coefficients belong to the cells, s an agglomeration
of source terms and boundary conditions, sgn(m) the sign function of my,,cq1,13} with m=-1|1
energy extraction|supplement from|into the flow field, H(u) a function explicitly evaluating the
off-diagonal part with the latest available values of u. This common treatment, however, causes
practical issues affecting flow field predictions in two subjects: 7. how to input information from the
force model, and ii. how to extract information from the flow model to be used in the force model.
For the first subject, the principal issue is that non-negligible spurious pressure-velocity fluc-
tuations arise when sharp variations in f, almost always present in the ALM, exist. Mencinger
and Zun [87, p. 524] attributed its reason to the use of the practical-level pressure-velocity cou-
pling method of the Rhie-Chow interpolation [88] in co-located grid arrangements, because the
Rhie-Chow corrections applied to face velocity fields is by definition independent of f, and do not
ensure strong pressure-velocity coupling. Within the ALM scope, three solution approaches were
proposed: i. the smearing function approach due to [89, p. 396], ii. the body-force modification of
the Rhie-Chow interpolation due to [90, OT], and 7. the potential-flow routine [92]. In this study,

the first was implemented due to its convenience.
The smearing function allows point forces to be fractionally dispersed across neighbouring points.

Herein, the most commonly used form of the three-dimensional Gaussian function was used Y] For

20 1t should be noted that, despite its wider preference, using the three-dimensional form Gaussian function has three
drawbacks: . the effective length of lines exceeds the actual line lengths because such distribution also spreads
forces beyond the blade edges, ii. local forces of a zone are spread out neighbouring zones; thus, non-locality of
forces increases, and #ii. flow gradients are soothed, hence wake structures.
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a single point, such form can be expressed as [84, p. 49]: g(x)=r'50"3 exp (—{HX-XaH 0‘1}2) where
o is the function support [m] that determines the weight of a point force at x, on a node positioned
at x, and d=||x-x,| the straight line distance between the position vectors of an actuator point
and a node [m]. In practise, the weightening becomes negligible after some d. The domain size of
g(x), therefore, can be truncated. To this end, the full width at half mazimum was adopted, i.e.
dmax=0(2Inw)%5. Therein, dy,ay is the maximum d within which force distribution takes place, and
w an independent variable with a default value that makes dy.x~4.80, and accordingly ensures
that the Gaussian function reduces well below its 1%. Ultimately, a distributed force field f; is
approximated through f,=fxg+e, independently for each actuator point, where {*} is the convolution
summation operator, and €, an error term arising from f’s discretization.

The function support o is a free parameter; therefore, it needs to be constrained by an inde-
pendent parameter from the numerical setup. Three support types are present in the literature: 7.
grid-based [84, p. 51], i4. chord-based [93], p. 1183], and éii. equivalent elliptical planform-based [94].
Among them, the first type was chosen owing to its easier implementation and the other types’
not necessarily superior performance. The grid-based support is o=¢,A where {€,}{c,cr} a time-
invariant constant, and A a characteristic grid size within the field of actuator points.

The size of ¢ is an important factor in predictions of rotor performance and flow structures with
the same grid. The main reason is that the predictions for rotor performance/flow structures and
imposed body forces are functions of each other. Body forces are calculated depending on local
flow field whereas the field itself develops in accordance with the imposed body forces; thus, leading
to a complication in parameter-independent computations@ €, in the majority of studies was
preferred within the range of €,=[1,4]. Several studies [100} p. 25][96] p. 15|[97, p. 1059] maintained
that (€;)min=2 is the advisable compromise, and the most common choice. Thus, this figure was
employed in this study.

The second subject is the extraction of flow information for the force model, i.e. flow speed and
angle of attack. Therein, preferences in three points affect the information: i. probe locations, i.
interpolation method to obtain flow speeds, and iii. estimation approach for angles of attack.

Relatively small transpositions of probes can cause non-negligible changes in force predictions

21 In regard to rotor performance, power [95, p. 7] and thrust [85] p. 10] predictions were observed to be significantly
depending upon €4, and both are in direct proportion without a sign of convergence [96] p. 21| [97, p. 1059]. For
flow structures, some dependency on ¢, was also reported: Strength, spatial distribution [93] p. 1184] and phase
differences [96, p. 30| of vortices were found to be influenced by €, whose increase reduces vorticity of flows [98]
p. 205-206]. However, [99] p. 1, 9] demonstrated that €, is virtually ineffectual on mean wake deficit.
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because of high flow gradients around actuator points, and exponential proportionality between flow
speed and forces. Despite its importance, no probe location is present within the blade element
theory (BET). Therefore, a universally-applicable location has been a matter of debate. Ideally, a
probe should be located at the centre of the bound vortex, and the only induction at the probe
location should stem from shed vortices in the wake. Otherwise, the true relative speed and angle
of attack could not be attained. In this study, probes are located at actuator points presuming that
they coincide with bound vortex centre whilst counter-symmetric induction about actuator points
often exists [85] p. 8-9].

Normalised probe coordinate vectors are computed as follows: z=z ||z|| ™", y=(zxh) ||(zxh)| ",

and x=(yxz) ||(yxz)| ™

where h is the hub centreline vector towards downstream, y the vector
along chord pointing from the leading edge to the trailing edge in opposite direction of the blade
rotation, and x the vector along blade thickness pointing from the suction side to the pressure
side towards downwind unless the rotor is pre-coned. Flow speeds are then extracted in three
steps: inverse distance weighting interpolation of node velocities on probes (Uinterp), domain-to-line
coordinate transformation of Ujnerp and reduction of velocities to one-dimensional flow speeds as:
U1=X * Winterp, U2=Y * Uinterps U3=Z - Winterp- Finally, angle of attack « is approximated as depicted
inand a=¢-p-0 where ¢=arctan(u; (ug+wr)™1) is the local flow angle [rad], w rotational

speed of the rotor [rad s™!], 7=(y?+22)%-% spanwise location of the aerofoil, 1 global operational blade
pitch angle, and 6 local structural twist angle.

2.2.8.2. Actuator line model’s force modelling

For the ALM force-part, the blade element theory (abbr. BET) [10I, due to Drzewiecki, p. 169]
was utilised@ It is a closed-form expression that predicts fluid forces on a stationary/rotating
blade, and its derivation starts with the following assumptions and approximations: i. A blade
can be non-uniformly broken down into a set of non-interacting blade elements, assuming the lack
of interaction does not affect force estimations, 7i. spanwise flow can be ignored; thus, resulting
in a two-dimensional flow over a blade element, 7ii. any aerofoil cross-section possesses the same
geometric, structural and fluid-dynamic properties within a blade element, iv. forces on a rotating

blade element are the same with those on a stationary identical element for the same angle of

22 Another method is the blade element momentum theory (abbr. BEMT), which is used to break mutual dependence
between flow solutions and force computations (e.g. [I02] p. 5]). The BEMT, however, brings arguably adverse
issues, particularly for time-invariant inflow, such as the detachment of inflow information from the computational
domain.
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attack [103, p. 59|, and v. an instantaneous equilibrium is present between flow field and forces
although finite times of adjustment are actually needed for both.
For a stationary blade element shown in the magnitude of the resultant force on the

element can be expressed in terms of its normal- and tangential-to-the-chord-line components:
[EN|| = [[L]| cos(a) + [[D][sin(er)  [[Fr[| = [[Lf|sin(a) — [|D[ cos(a) (10)

where Fn=Fn(uel, @, Ma, Re) is the normal-to-chord force [N], Fr the tangential-to-chord force,
a the angle of attack [rad], u the relative velocity, L the lift force, D the drag force, and
lo]| =(e% +...+e2)%5 the Euclidean norm.

For a blade element rotating about a fixed axis, u, and flow angles are reconceptualized due

0.5
to rotation as illustrated in [Figs. 2c[ and [lurelll = ({||u|| (1-a)}2+ {||w|| r(1+a’)}2) where u is

the undisturbed flow velocity normal to the plane of rotation, w the rotational velocity of the blade
element parallel to the plane of rotation, r the normal distance between the rotation axis and a
representative point within the blade element, a the axial induction factor [-], and a’ the tangential
induction factor.

Eq. [10| remains the same; however, the resultant force may be further decomposed with respect

to the plane of rotation:

IT|| = Fnll cos(0) — [[Fr[sin(0) = [[L|| cos(¢) + [ D] sin(¢) 1)
QI = Fx|[sin(8) + [[Fr]| cos(d) = [|L]|sin(¢) — [|DI| cos(¢)

where T is the force normal to the plane of rotation, Q the force parallel to the plane of rotation,
o=p+0+a the flow angle with ¢ the global operational pitch angle, and 6 the local structural twist
angle. Eq.|10and [11| can be computed if a polar diagram, i.e. tuples of force coefﬁcient—a@, of the
blade element is available through ||L|| =¢A,Cy, and ||D|| =¢A,Cp, where ¢=0.5p |[uyel||” the dynamic
pressure [Nm™2], A;, the planar area of the blade element [m?], Cy, the lift coefficient [-], and Cp
the drag coefficient.

Assuming the BET assumptions hold, three factors further contribute to the error-uncertainty,
F, of force predictions: ||F| =||Fggr| +F atF uetF polar, Wherein F, and Fy,, emerge from the

flow part (2.2.3.1)), and F polar=F quality tF compatibility- Lhere, F quality arises from measurement

23 Spatial integrations of aerofoil surface pressure and shear stress distributions as a function of a.
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processes, and [ compatibility from the level of match in conditions of between the flow and measure-
ments/computations. With regard to F guality, the most susceptible elements to f are: drag itself
due to its similar order of magnitude to the level of confidence of data deduction/reduction methods,
and post/deep stall regions because of its high sensitivity to time-variant flow environment.

Typically, the construction of a polar diagram involves: obtaining pre-stall polar dataset under
envisaged operating conditions, and manipulating this dataset to regard the above susceptibles. To
that end, the XFOIL software [104] with the built-in Karman-Tsien compressibility correctior@
was utilised to acquire pre-stall polar datasets. Stall delay corrections on lift coefficients were
then performed with [I06]’s model for 7/R<0.8 and [107]’s model for »/R>0.8, and on drag coeffi-
cients with [I08]’s model@ Moreover, the datasets were extrapolated onto (-180°)-(180°) spectrum
by [109]’s polar extrapolation method. For the requirement of a tip-root correction for the BET-
ALM, however, debates are ongoing. In principle, such correction should not be needed, because its
raison d’étre is expected to disappear with the finite-number blade representation of the ALM. Its
use was, nevertheless, reported to lead to generally improved force predictions [99, p. 9][84, p. 53].
The reason why this happens is arguably that the ALM is in general deficient to model flow around
the tip, and to resolve tip vortices. It is thought, therefore, that the justification of the use of tip
corrections is only shifted from scientific to practical grounds for the ALM, because its effect is still
desirable whereas the conditions of its derivation are violated. In the light of several tests among
the available tip loss corrections in the literature (not reported), [I10]’s and [I0I]’s methods were
chosen to be used in tip and root regions, respectively.

The spatial resolution of the ALM involves: the number of actuator points per grid-size and nodes
per an actuator-line length. Although both seem reciprocal, locally distinct requirements are present
(e.g. for unevenly distributed points) to ensure smooth force distribution along a line, smooth force
projection onto a computational grid, and fine resolution of vortices. As a minimum, [ITT], p. 6, 13]
and [96l p. 46] recommended 0.75 actuator points per cell, and [97, p. 1050] 40 points per blade.
For the second aspect, [I12] p. 62] advised minimum 40 nodes per diameter, and likewise, [94] p.2]|
30 to 60 nodes per line. In respect of temporal resolution, [I00, p. 26] and [96] purported that rotor

performance predictions are not influenced by A;. These observations must be interpreted with

24 Nguyen [105] p. 27| identified that the Karméan-Tsien method provides more accurate predictions than the more
common Prandtl-Glauert compressibility correction.

25 No appreciable change was observed because of the stall delay corrections for the current setup; thus, the non-
corrected datasets were in use for the majority of computations.

21



425

430

435

Table 3: Dimensions of the towing tank set-up *[24} p. 409, 410], 2[66} Fig. 2a] 3[66} p. 22, Fig. 15]. The values are
given in meters [m|, and if necessary, with rotor diameters [D].

Parameter Value [m] - [D]
Tank section height! 1.8 -2.25
Tank section width! 3.7 - 4.625
Tank length! 60.0 - 75.0
Rotor plane distance to the inlet? 2.4 -3.0
Tower centreline distance to the inlet? 2.857
Hub particulars (length, radius, relative positions)? -
Hub centreline height from the floor 0.96 - 1.2
Centred hub centreline distance to a side wall 1.85 - 2.3125
Hub distance to the inlet 2.269
Blade root diameter3 0.0241
AMI inlet to the inlet 2.26
AMI outlet to the inlet 2.505
AMI radius 0.45

caution because the relevant computations were performed with uniform inflow. For this reason,
even a dramatic change in A; will not alter force predictions whilst the inflow will always be the

same.

2.3. The remaining numerical settings

In the pages that follow, the remaining numerical settings were presented to allow easy replica-

tion.

2.8.1. Computational domain models

The dimensions of the experimental facility and numerical domains were summarised in Table [3]
In the domain models, the facility dimensions were imitated except its length, i.e. 75D. Instead,
13D from [12] p. 97] was used to reduce computational costs. This imitation violated four litera-
ture recommendations for a domain design as shown in Table [l It is, however, argued that any
detrimental effect due to the discrepancies is limited to the mapping between the experiments and
modelled reality rather than the experiments and computations while the latter only approximates
the experimental conditions. Therefore, no practical importance of the discrepancies was assumed
for this study. In addition, the tower was left out owing to its influence on downstream flow field

predictions, particularly for the mean velocity and turbulence intensity [113] p. 282].
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Table 4: A comparison between the dimensions of the domain models and literature recommendations: 1[100, p. 25|
2[114], p. 5|[I17, p. 1751] 3[I17, p. 1752|[82, p. 283] #[114, p. 5] S[II8} p. 231] S[I18] p. 231]. R is the characteristic
size of a body, herein the rotor radius. The areal blockage ratio is equal to 7rR2/(hy h:), the lateral blockage ratio
hz/(2R), and the vertical blockage ratio hy/(2R), where hy and h, are the height of width of the computational
domain.

Parameter Recommendation Experiment & Computation
Min lateral distance to walls 145-25R L.1R

Min distance to the outlet 310 - *15R 20R (Computation only)
Max areal blockage ratio 53% 7.5%

Max lateral blockage ratio 517% 21.6%

Max vertical blockage ratio 517% 44.4%

2.8.2. Computational domain discretizations

The numerical domains were constructed in two main layers. First, a background grid was
generated. Therein, the domain was divided into 27 sub-domains. The innermost block surrounded
the rotor region with its size {hg, hy, h,}={10,2.6,2.6}[R], and comprised of only cubic cells. In
compliance with the suggestions reported in page the grid size of the cubes was approximately
D/52, where D=2R is the rotor diameter. From this centre block, the remaining sub-domains’ cells
were stretched away with the maximum cell-to-cell expansion ratio of 1.005 in the x, and of 1.05 in
the {y, z} directions, whereby some of the literature suggestions were fulfilled such as 1.3 [I14, p. 7],
1.25 [II5, p. 379] [I16, p. 10]. Second, the internal boundaries were embedded into the background
grid without explicit local grid refinements as explained in §2.2.2]

The geometry and topology of the grids were checked and qualified through all mesh metrics
available in OpenFOAM®V1712 Prominently, for the grids without the turbine, maximum cell
aspect ratio, maximum face skewness, mean and maximum face non-orthogonality were measured to
be around 15.11, 3.96, 1.73, and 44.99, respectively. For the grids with the turbine, the magnitude of
the four metrics became 15.11, 4.00, 4.97, and 45.00. While high aspect ratio populated the vicinity
of the outlet boundary due to longitudinal grid stretching, high non-orthogonality and skewness
regions mostly occupied AMI-nacelle intersections and blade trailing edges. Besides, the initial
minimum, mean, and maximum of the AMI source-target face weight-sums were approximately
0.993-0.499, 1.237-1.235, 1.000-0.999, wherein the sum of the weights for each face is ideally unity,
otherwise conservation errors raise [I20]. Nevertheless, the weight-sums are time-variant due to

rotor rotation, and null values might be encountered during computations. Accordingly, to avoid

26 Refer to [I19] for the definitions of the OpenFOAM® mesh metrics as they may differ from one software to
another.
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any AMI failure, the model switch that turns on the zero-gradient boundary condition for faces
where the weight-sums below 0.01 was activated [I120]. Ultimately, the spatial resolution in the
geometry-fitted wall-modelled approach cases resulted in 7,004,897 cells whereof 1,171,311 cells
were inside the arbitrary-mesh interface region, and 5,833,586 cells outside of it. On the other
hand, in the actuator-line modelled cases, it yielded 5,767,740 cells. Representative illustrations of

the numerical domains and rotor were given in

(d) (e) ()

Figure 3: Various snapshots: (a) Isometric view of the numerical domain and its grid layout, (b) surface grid of the
rotor, (c) blade tip detail, (d) side view of the partial numerical domain illustrating only the cubic-cell region, (e)
blade root detail, and (f) blade planform detail.

In line with the spatial resolution, the temporal resolution was preset to 5x107°[s]. The durations
of the initialisation and averaging phases were separately set to ~7.02[s|, which approximately

corresponded to 25 full rotor rotations.
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2.8.3. Equation discretizations, boundary conditions, solution algorithms € solvers

The central differencing scheme (CDS, was activated for all terms except the fol-
lowing: the second-order backward difference scheme for the temporal derivatives
and variables, a cell-based multidimensional-limited CDS (i.e. cellMDLimited 0.25) [121], p. 87-88]
for the velocity gradient, a total variation diminishing scheme (i.e. limitedLinear 0.1
for the divergence and convection terms of turbulent kinetic energy, and a normalized vari-
able diagram scheme (i.e. GammaV 0.2 for the velocity convection. In addition,
the integration of surface integrals were held by the Gauss quadrature method, and the linear inter-
polation was used to obtain flow quantities required at cell faces from adjoining cell centroids while
assuming spatial uniformity of the quantity across the common face. Also, the surface normal gradi-
ents and Laplacian terms were explicitly corrected for the mesh non-orthogonality. Nonetheless, to
ensure the initial diagonal dominance within the system of algebraic equations, all the computations
were initiated by using the most diffusive numerical scheme alternatives for a duration of one-half
rotor rotation, and subsequently the above schemes were switched on. In these computations, the

boundary conditions summarised in Table [5] were adopted.

Table 5: The boundary conditions employed for velocity u, kinematic pressure p, turbulent kinematic viscosity
v¢, and turbulent kinetic energy k, at each geometric boundary.

Boundary conditions

Boundaries
u P V k
Inlet Dirichlet Zero Neumann Calculated Dirichlet
Outlet Convective Zero Dirichlet  Calculated Convective
Sides Symmetry  Symmetry Calculated Symmetry
Blades and nacelle No-slip Zero Neumann Menter’s wall function Zero Dirichlet

& A boundary is a topological element of a computational domain whereas a boundary condition is a set of

mathematical operations computed at the boundary.

On top of these settings, the theoretical-level pressure-velocity coupling algorithm PISO [86]
was selected with four momentum correctors. Finally, the numerical solution of the linear system
of algebraic equations was carried out by means of the following linear solvers: Stable biconju-
gate gradient method preconditioned with the diagonal-based incomplete LU preconditioner for the
turbulent kinetic energy (tolerance=107%, relative tolerance=0), an iterative solver using the Gauss-
Seidel smoother for the velocity (tolerance=107%, relative tolerance=0), and geometric agglomer-

ated algebraic multigrid solver with the same smoother for the pressure (tolerance=107%, relative

25



495

505

515

tolerance=0-10"%). For parallel computations, the numerical domain and fields were decomposed

by the scotch partitioning method [122].

3. Results & Discussion

In this study, twelve computations were conducted in total, and were elaborated in the follow-
ing sections. In addition to the spatiotemporally-invariant input set that these computa-
tions commonly used consisted of: The mean longitudinal flow speed U,=1.5[ms™!], longitudinal-
transverse integral length scales Liong=Ltrans=0.2[m|=0.5[R], and one-point normal-anisotropic corre-
lations {\/ﬁ}{ie(m,g)f{(o.omo%, (0.15)10%, (0.30)20%, (0.60) 499 } [ms™]-{ / (uf;)? } (i3 =0.0 for
four different three-dimensional turbulence intensity values studied here, I,y =100(1/3(u/v/+v'v'+

ww'))03 /(U2+V2+W2)0-5={0, 10, 20, 40 }[%).

3.1. Confidence assessments of the numerical solutions

In this section, the quality of all computations was assessed in six aspects: (i) spatiotempo-
ral resolution, (i7) numerical stability, (iii) statistical convergence of numerical fields and probe
samples, (iv) evolvement of input statistics, (v) integrated and local parameters of turbine perfor-
mance, and (vi) near wake flow modelling.

(4) First, the spatiotemporal resolutions were evaluated through two statistical LES-quality
post-verification metrics while grid-independency in IFLES was argued to be theoretically unattain-
able [28, p. 7]: Pope’s metric [123] p. 560], and Celik et al.’s metric [124, Eq. 8a]E] both of which
were quantified to be robust and effective relative to their alternatives [28, p. 29-33]. The first three
statistical moments of the metric fields obtained for each numerical case were set out in [Table Gl
Data from shows that the sample means of all numerical cases were around 10[cNp] higher
than the recommended metric qualifiers (i.e. a metric magnitude of 0.8 and above claims adequate
resolution). Also, the level of variations within the metric fields was quantified to be an order to
two orders of magnitude smaller than the mean levels@ Moreover, the sample skewness of all cases
was found to be negative and around O(1). The negativity here implies that below-mean quality

locations were present more frequently than above-mean quality regions within the computations.

27 The explicit expressions of the metrics can be found in [28, p. 16-17].
28 Variance was wrapped by scalings of the unbiased standard deviation and mean (resulting in the coefficient of
variation) to ease commentations on the extent of variability with respect to the mean.
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Table 6: The quality of the computations according to two statistical LES-quality metrics: Pope’s metric [123], p. 560],
and Celik et al.’s metric [124, Eq. 8a] both of which deem the metric value of 0.8 and above as an indication of adequate
spatiotemporal resolution in LES. Below, the sample mean, coefficient of variation, and skewness of the metric fields,
i.e. fi1, V/fiz/fi1, and A1, that were time-averaged for one longitudinal-mean-speed domain-pass-through (twenty-five
full rotor rotations) were shown. From left to right, the three numerical case groups involved domains without the
turbine, with the geometry-fitted wall-modelled turbine and with the actuator-line modelled turbine. Therein, ‘A’
was completely empty, ‘B’ & ‘C’ consisted of non-rotating and rotating arbitrary mesh interfaces, respectively, and
the percentages indicated the turbulence intensity. The results were rounded to three decimal places.

LES-quality Domains Without Geometry-Modelled Actuator-Line
metrics | Cases — Turbine Turbine Modelled Turbine
A B C 10% 20% 40% 10% 20% 40%
1 0.930 0.934 0.930 0.970  0.941 0.892 0971 0930 0.873
I'pope Via/fin  0.061  0.059  0.064 0.040  0.058 0.073 0.033 0.059 0.075
o -0.851 -0.910 -0.976 -4.190 -1.263 -0.112 -1.885 -0.809 0.136
1 0.952  0.952 0.952 0.952  0.952 0.951 0952 0.952 0.951
I celik Viia/fiy  0.000 0.000 0.001 0.000  0.001 0.001  0.000 0.001  0.000
o -2.331 -4.608 -13.455 -6.391 -13.604 -5.324 -3.275 -8.775 -13.924

These results indicate according to the two metrics that the level of spatiotemporal resolution of all
the numerical cases qualified as adequate. Although the skewness of the fields hinted the existence
of low-quality regions, the variance showed that the resolution was almost completely homogeneous,
which further implies the low-quality regions were considerably localised. Regarding the wall-flow
modelling, y* measurements of all cases and blades revealed that the turbulence intensity does not
notably alter the median and mean of y* fields, which were respectively quantified as around 30-37
and 49-55 alongside the minimum and maximum outliers of 1 and 340. Therefore, the obtained y*
fields mostly fulfilled the requirements of Menter’s wall function being used here.

(i7) The time-marching of the computations was monitored via the time-averaged and maximum
Courant numbers, Copean and Copax. In the computations, the rotor tip Courant number of 0.03
was aimed at the outset, so that the rotating arbitrary mesh interface cells or actuator points
could be restricted to translate a neighbouring cell at most. For the domains without the turbine,
AMI, and ALM cases with the same time-step size, Comean Was found commonly around 0.003-
0.004, and Comax~(0.15-0.16,6.8-7.2,0.018-0.019), respectively. These figures convey three points:
First, except the AMI-Coy,ay, the conventional Courant-number thresholds were sufficiently obeyed.
Second, although the building-block assumption of PISO was locally violated by the AMI-Coy,ax, the
computations remained numerically robust likely due to the use of the blended numerical schemes
and relatively-small & highly-localised grid deficiencies. Third, unanticipatedly, the mere presence

of the arbitrary mesh interfaces increased Coy,x at least an order of magnitude, which may demand

27



540

550

— L(U) - L(m) _— L(\/ﬁ) ----- L( w’w/)

1.75
F1.50
r1.25
F1.00
r0.75

0.50
50

FO
F—50
F—100
F—150
—-200

L(U)

Figure 4: The longitudinal evolvement of the spatiotemporally-invariant streamwise mean speed (the top subplot)
and normal components of the Reynolds stress tensor (the bottom subplot) through an empty domain. The domain
belongs to the inflow scenario of Iu;ms =20[%)]; however, the rotor, hub and AMI were removed. The vertical axes show

the log percentage change of a given variable with respect to its input value, i.e. L=100 In(Znew/Zpench )[centineper].

The inputs were U=1.5[ms™!], and \/WE{\/ w'u/, Vulv', Vw'w'}=0.3[ms™']. The results were obtained by the
cumulative moving average along time at each node followed by spatial averages in the statistically homogeneous
lateral and vertical directions. The horizontal axes represent the domain length, x, normalised by the rotor radius,
R=0.4|m]. The dashed vertical line stands for the rotor-plane location.

for a development either in the Courant number computation through an interface or in the AMI
method itself.

(i17) Regarding the convergence of statistics, the synthetic time-series generator being used
here, the hybrid DFM-FSM [34], was previously quantified to yield statistically weak stationary
and ergodic time-series [38, p. 457|; thus, flow fields were assumed to be stationary and ergodic
in this study. As a potential drawback herein, the number of domain pass-throughs of the com-
putations was considerably lower than a typical IFLES of free-shear flows. The sole reason of this
shortening was the prohibitive additional computational cost appeared due to four factors: the con-
straint of the blade-tip Courant number which is more restrictive than the flow Courant numbers,
the rigid body rotation, arbitrary mesh interface interpolations, and more importantly, increased
number of pressure iterations per time-step (e.g. in comparison to a finer-grid computation of de-
caying homogeneous isotropic turbulence from [38], the number of pressure iterations was more
than doubled). Nevertheless, the statistics investigated herein were mostly limited to the first- and
second-order normal moments which are expected to converge relatively quickly unlike the cross-

components of the Reynolds stress tensor. In addition to this, the number of domain pass-throughs
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Figure 5: The longitudinal evolvement of the Reynolds stress tensor isotropy (the top subplot) and turbulence
intensity (the bottom subplot) through the empty domain. The figure particulars are the same with
except the following. The vertical axes illustrate the non-dimensional variables, and the horizontal dotted
line in the top subplot signify the complete isotropy. The turbulence intensity was defined and inputted as:
T =1/3(u/ v +v" v +w'w'’)) 03 /(U2 +V2+W2)0-5=0.20.

and full-rotations of the current computations was kept higher than the same-turbine computations
from the literature, i.e. 10-12 [I2, p. 100], 4-12 [60, p. 743, 746] full-rotations for initialisations and
averagings/samplings, respectively, in contrast to 25-25 full-rotations of this study. In light of these
two points, the first two sample moments of probed velocity time-series were monitored, and they
were found to be qualitatively converged (not shown). Therefore, the approximate convergence of
the flow fields was postulated in this study.

(iv) The evaluation of the target flow characteristics at the field of interest was carried out
by means of the AMI computation with I, =20[%] (AMI-20), wherein the arbitrary mesh inter-
face, rotor, and hub were removed, and the other settings were kept the same. For support of
the premises below, and [5| presented the longitudinal evolvement of the streamwise mean
flow speed, normal components of the Reynolds stress tensor, turbulence isotropy, and turbulence
intensity, respectively, within the empty domain. As can be seen from the mean speed
was realised ~1.1[cNp| higher than the input at the rotor location, and within a range of 1.5-
0.75[cNp] throughout the domain. Moreover, the normal Reynolds stresses were observed in linear
decay downstream. The reduction occurred at the rotor plane was roughly 20, 30, and 40[cNp] for
Vi , Vo' , Vu'n' , respectively, and the rate of decay qualitatively remained constant between

x/R~3 and z/R~16 engulfing the rotor plane. The deviations from the perfect isotropy shown
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Table 7: Time-averaged thrust coefficient (Ct) and power coefficient (Cp) predictions from the spatiotemporal-
invariant inflow cases. ‘Exp.’ refers to the benchmark experiment [24, Fig. 8], ‘Afgan et al.” another IFLES study
using the same turbine (including the tower as well) [12] Table 4], ‘AMI’ the arbitrary-mesh-interface method,
and ‘ALM’ the actuator-line method. ‘Corrected’ indicates the tunnel blockage correction from [24, p. 424-425]66),
p. 28-29] which was used to correct the experimental results [24] p. 416] and ‘Afgan et al.’ results [12] p. 98].
The coefficients were defined as: Cr=F;/(0.5U2A), and Cp=(M,Q)/(0.5U3A) where F, the longitudinal force
component exerted on blades and hub per unit density [m*s 2], U,=1.5[ms™!] the inflow speed, A~0.503[m?] the
projected rotor area, My the torque component about the hub centreline exerted on blades per unit density [m®s=2],
and Qz22.5[rads’1]. The numerical results were presented as the log percentage change with respect to the ‘Exp.’
(L=100 In(znew/Tbench ) [centineper]) and the coefficient magnitudes were given in the parentheses.

Exp.® Afgan et al.b AMI AMI-Corrected ALM ALM-Corrected
E 0.801 -2.53 (0.781) -2.66 (0.780)  -5.52 (0.758) 3.32 (0.828) -5.52 (0.758)
Cp 0.443 -2.05 (0.434) 4.20 (0.462) -0.23 (0.442) 21.45 (0.549) 8.02 (0.480)

@ WebPlotDigitizer [125] was used to digitise the experimental data from [24], Fig. 8|.
bAfgan et al. |12, Table 4] inadvertently reported the experiment coefficients for the pitch-angle-25° [66, p. 33] cases
instead of the pitch-angle-20°.

in were roughly within -6.5 to 17[cNp| at the rotor plane, and remained nearly similar from
the inlet up to ©/R~15-16. Lastly, the aforementioned linear decay pattern also transpired for the
turbulence intensity which reduced to ~15(%] from 20[%)] till the rotor. The level of these metamor-
phoses of synthetic inﬂow@ up to z/R=16 was arguably acceptable for engineering purposes. Also,
the almost constant rate of changes in these statistics with respect to the longitudinal distance till
x/R=16 suggests that turbulence is statistically developed in the scope of these metrics, and the
effective statistics experienced by the rotor could be somewhat corrected. Accordingly, the input
verifications were assumed with the presumption of these level and pattern of changes applicable
for all scenarios of this study.

(v) Furthermore, the time-averaged thrust coefficients and power coefficients of all cases were
quantified, and compared with the experiment. As an example, the results from the spatiotemporally-
invariant inflow computations were presented in since the experiment was limited to uniform
inflow. The comparison showed that both coefficients from the AMI and ALM cases deviated from
the experiment and [12]’s IFLES within +5.5[cNp| and £8.0[cNp| ranges, respectively, with the
experiment’s tunnel blockage correction. Therefore, the verification of the computations in terms of
the integrated performance parameters was assumed, and speculatively was extrapolated to other
inflow cases. As regards local performance parameters, the chordwise distributions of the time-

averaged pressure coefficients were compared with those of the structured-grid wall-resolved IFLES

29 The metamorphoses are due to natural processes and CFD-synthetic inflow interactions. The readers are referred
to [28] for their systematic quantifications and analyses.
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Figure 6: Chordwise distributions of the time-averaged pressure coefficients, Cp, at four different spanwise stations
of a blade, {r/R}={0.25,0.5,0.75,0.87}. ‘AMI-Uniform inflow’ labels the spatiotemporally-invariant laminar inflow
AMI computation, and ‘Afgan et al.” another IFLES study of the same rotor (additionally including the tower)
with the same inflow settings [IZ, Fig. 4b, TSR=6]. The vertical axes show Cp=-p{0.5(U2-Q3r?)} where p is the
time-averaged kinematic gauge pressure field on the blade boundary [m?s 2], U,=1.5[ms '] the mean streamwise
inflow speed, Q~22.5[rads!] the rotational speed of the rotor, and r the spanwise distance of the station to the
hub centreline [m]. The horizontal axes depict chordwise length of the suction and pressure sides of the aerofoil, z,
normalised by the local chord length, c. WebPlotDigitizer [125] was used to digitise unavailable ‘Afgan et al.” data
from the plots.

from [12 Fig. 4b] in at four spanwise locations. A significant discrepancy was observed at
r/R=0.25 section while observing resemblance adequate for engineering purposes at the remaining
three sections. The exact reason of the discrepancy could not be revealed. However, three model
differences at this particular region were speculated to play a role: the wall boundary conditions, the
near-wall grid arrangements, and the heuristic geometry design for the blade transition and twist
axis due to the lack of geometrical information highlighted in [ p- . The alleviation of the
discrepancy could not be obtained within the current setup; nevertheless, on top of its arguable
ineffectiveness for the global performance parameters, its prospective impact was investigated for
wake predictions. With this objective, time-averaged longitudinal speed profiles at the immediate
aft of the rotor, where the rotor’s signature on flow field is expected to be predominant, were com-
puted and illustrated inthrough a comparison with [I2] Fig. 8]. Therein, the impact of
difference was seen to be limited to y/D=z/D=40.1, and the rest of the profiles was observed resem-
bling each other (except the omitted tower’s wake). Hence, it was assumed that the discrepancies

were ineffective and the computations were verified in terms of €, and near wake predictions.
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Figure 7: Time-averaged profiles of the streamwise flow speed, U, along four different lines orthogonal to the longitudi-
nal direction at x/D=0.4. ‘AMI-Uniform inflow’ and ‘ALM-Uniform inflow’ represent the spatiotemporally-invariant
laminar inflow computations of arbitrary-mesh-interface (AMI) and actuator-line (ALM) methods, and ‘Afgan et al.’
another IFLES study of the same rotor (additionally including the tower) with the same inflow settings [12, Fig. 8,
TSR=6]. The vertical axes demonstrate the flow speed U normalised by Q=22.5[rads™!] the rotor rotational speed,
and R=0.4[m] blade radius. The horizontal axes depict the lateral z and vertical y positions normalised by D=0.8[m]
the rotor diameter. The black vertical rectangles in the left subplots stand for the hub boundary.

8.2. Effects of the arbitrary mesh interface technique and the nacelle boundary on turbine flows

As mentioned earlier in page [I3] surprisingly, probable effects of the arbitrary mesh interface
technique (AMI) on turbulent flows have not been quantified and closely examined. Although any
effect has been plausibly presumed to be inconsiderable in the literature, a line of evidence needs
to be established since the technique’s unquantified impact may corrupt numerical predictions.
Therefore, in this section, AMI effects were explored under I, _=20[%] turbulent inflow by means
of three scenarios all of which were empty channels involving: i. no AMI, #i. non-rotating AMI,
and 4éi. rotating AMI. Furthermore, another scenario containing only the nacelle of the turbine was
introduced for the sake of completeness in investigating non-rotor elements’ effects.

To that end, various statistics were quantified along approximately eight-hundred profiles dis-
tributed evenly in the three directions. Common-to-all results were discussed below, and among
them, three representative-to-all figures were presented by

In an example from the longitudinal profiles was exhibited for the time-averaged velocity
components and normal Reynolds stress tensor components. To start with, the only-nacelle case
was found ineffectual on flow statistics along any of the longitudinal and lateral profiles (Fig. 9)),

except near wall and near wake regions. Its composed effects in comparison to the empty case could
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Figure 8: Effects of the stationary and rotating arbitrary mesh interfaces (AMI), and the nacelle on the longitudinal
profiles of the time-averaged velocity components and normal Reynolds stress tensor components under I wl =20[%)].
{y, z} positions of the profiles are {0.425,0.000}[m], and the AMI cylinder’s radius 0.45[m]. No blade was present
within the computations. No spatial averaging was performed since no statistically homogeneous direction exists;
thus, the fields are spatial-variant. The vertical axis of a subplot is the log percentage change of a component with
respect to its input value, i.e. L=1001log, (Zyesult/Tinput)[centineper]. The two vertical dashed lines stands for the
z/R coordinates of the AMI inlet and outlet. The horizontal axis represents the longitudinal coordinate of the
computational domain, x, non-dimensionalised by the rotor radius, R=0.4[m|. To avoid the logarithmic singularity
in V and W since their input were zero, their values were shifted by U,.

reasonably be deemed inconsiderable and spatially very local to the surroundings of the nacelle.
Likewise, for the non-rotating AMI case, all flow statistics were observed continuous through the

AMI region. Nevertheless, a closer look also revealed relatively tiny excursions across the interface
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Figure 9: Effects of the stationary and rotating arbitrary mesh interfaces (AMI), and the nacelle on the vertical y
and lateral z profiles of the time-averaged three-dimensional turbulence intensity I,,; under I, =20{%]. No blade
was present within the computations, no spatial averaging was performed, and the Sproﬁles péénss through the hub
centreline. The vertical axes show the y and z coordinates normalised by the rotor radius, R=0.4[m]. The horizontal
axes stand for (z-Zrotor )/ R=X/R where Zrotor=2.4[m] is the rotor plane distance to the inlet, and thus X;otor/R=0.0.
The horizontal dashed line illustrates the lateral coordinates of the AMI edges, and the dash-dot line those of the
nacelle. Horizontally, the AMI is present between X/R=[-0.35,0.2625], and the nacelle between X/R=[-0.3275, 1.555].

sides, which could legitimately be attributed to the post-processing interpolation practice.
However, four patterns were observed in the rotating AMI case. First, what stands out in [F'ig. 8|
which represents the maxima among all the computed longitudinal profiles, was the stepwise in-
crements and decrements of the statistics on the interfaces. Quantitatively, the amplitude changes
in {A}Y={U,V, W, Vuv/, Vo', Vww'} at the AMI inlet were {A}~{6, -4,7,6,6,-10}[cNp], and at
the AMI outlet were {A}~{-3,4,-3,-6,-5,10}[cNp]. Consequently, the longitudinal profiles ap-

peared as discontinuous functions with discontinuities reside on the interfaces. Second, the statistics
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Figure 10: Effects of the stationary and rotating arbitrary mesh interfaces (AMI), and the nacelle on the two-temporal-
point longitudinal sample autocorrelation function, pzw[-], (the top subplots) and one-dimensional sample power
spectral density function, By, [m3s72], (the bottom subplots). The time-series were probed at {y, z}={0.0,0.2}[m]
and (z-Zrotor )/ R=X/R positions where Zrotor=2.4[m] is the rotor plane distance to the inlet, and thus X;otor/R=0.0.
The horizontal axes of the top subplots represent the normalised spatial lag, m=(UAym)/R where U=1.5[ms™!] is
the longitudinal mean flow speed, A¢=0.00005[s] the time-step, and R=0.4[m] the rotor radius. Those of the bottom
subplots show the spatial wavenumber x=(27 f)/(UA¢)[m™1].

became more fluctuating per unit distance within the AMI region, albeit no amplitude increase, in
comparison to the rest of the flow field. The third result to emerge from the longitudinal profiles
was that the amplitude of the stepwise changes was generally in increase from the hub centreline to
the AMI circular cross sections (not shown). Last, these observations in the longitudinal direction
were also made for the derived statistics such as the turbulent kinetic energy budget components
(not shown). Nonetheless, none of these observations seem to affect the flow field outside the AMI
region since the observations could not be repeated for the profiles passing by the sides of the AMI
region, and for its upstream/downstream.

Possible effects were also inspected in terms of the time-averaged three-dimensional turbulence

intensity, [y

rms

. In a representative set of results was demonstrated along the vertical and
lateral directions within the AMI neighbourhood. Similar to observations, the only-nacelle
and non-rotating AMI cases were found to be ineffectual on I, . For the rotating AMI case,
however, two remarks which are only valid within the AMI region were made in confirmation
of findings. Firstly, I, -discontinuities were detected on the interfaces, and secondly, the

spatial frequency of Iy, profiles was increased alongside amplitude suppressions.
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In addition to the above amplitude-domain statistics, potential effects were also monitored in
terms of time-frequency characteristics. In the sample autocorrelation functions, pg,, and
power spectral density functions, Ew, were exemplified for the AMI neighbourhood. Inspections
consisting the time-series of approximately five-hundred probes throughout the domain revealed
that almost no significant and structured differences between the cases were evident. The sole
exception occurred within the rotating AMI region as a form of overshoots in Exu As exemplified
in these ‘kicks’ were triggered in the midst of the inertial-subrange spatial frequencies, and
mostly with relatively small amplitude. The frequency of the overshoots nearly corresponded to a
quarter of the rotational speed at the probe location; therefore, these might not be directly linked
to the rotation.

The results imply for a flow field that the AMI rotation is somewhat influential inside an AMI
region and on its boundaries, particularly toward AMI edges, whilst the non-rotating AMI causes
virtually no effect. Also, the influence seems to be limited with the amplitude statistics, and
does not affect time-frequency characteristics. A possible explanation for this might be that the
AMI rotation somehow causes traction on the incoming flow. The existence of such traction was
supported by the consistency between the direction of the amplitude changes in (i.e. the top
part of the AMI, {y,2}={0.425,0.0}[m]), and the rotational direction of the rotor. For instance,
through the AMI inlet, the changes in U and W were positive, and in V were negative with respect
to the coordinate systems shown in Considering the rotor rotates in the clockwise direction
seen from upwind, the rotation may generate a rigid-body-like vortex effect which could actuate
similar effects on approaching flow in the same directions (e.g. an induction of U into the AMI due
to a formed vorticity rotating clockwise). Through the AMI outlet, on the other hand, the directions
of the amplitude changes were reversed. From an observer point of view inside the AMI, however,
the stationary downstream domain rotates in the counterclockwise direction. This condition may
be speculated to be the reason of the direction reversals. Although these remarks were observed
to be valid in the majority of profiles, various counterexamples where the directions of the rotor
and amplitude changes appear inconsistent were also identified. In consequence, despite the AMI
rotation’s effects were quantified in a tangible way, the generalisation of the remarks regarding its

causal role is considered to be premature, and further controlled studies need to be carried out.
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Figure 11: Effects of the three-dimensional turbulence intensity on the time-averaged U field sampled along the
whole-domain vertical y (the top subplot) and lateral z directions (the bottom subplot) at numerous z cross sec-
tions. The U(y) and U(z) profiles pass through the nacelle centreline. The vertical axes show the Euclidean
distance of the U(y) and U(z) profiles at each X/R station with respect to the input flow speed, U,=1.5[ms™!],
ie. {di}{ie{y,z}}=(2?=1(Uj-Uo)2)0‘5 where n=200 is the number of probes uniformly distributed in a single y or z
profile. The levels of Euclidean distances for the z-direction are overall lower than those in the y-direction since the
numerical domain is larger in the z-direction, and therefore the contribution of the freestream inflow speed is higher
there. The horizontal axes demonstrate (x-Zrotor)/ R=X/R where R=0.4[m] is the rotor radius, and Zrotor=2.4[m] the
rotor plane distance to the inlet, hence X;otor/R=0.0. The hatched rectangles indicate the presence of the AMI region
wherein the rotor resides. Note that the parts of the domain within 0.5R from the inlet and outlet were omitted in
the presentation.

3.8. Effects of three-dimensional turbulence intensity

Based on the three knowledge gaps identified in page[§|regarding interactions between inflow tur-
bulence intensitym and HAMTs, analyses were attempted to address these gaps: i. by the isolation
of turbulence intensity as the sole control variable, ¢i. by considering a wider range of turbulence
intensity encompassing the field measurements illustrated in [Table 1] and 4ii. by a scope of statistics
broader than previously considered.

For this purpose, in this section, wall-modelled and actuator-line-modelled IFLES computa-
tions with the settings elaborated in were conducted under decaying homogeneous isotropic
turbulence which involved four different inflow turbulence intensities, i.e. Iy ={0,10,20,40}[%].

Representative results were presented by [Figs. 11HA.22| and [Table §
To start with, in[Fig. 11} the effects of I,; _ on the time-averaged U(x) fields were demonstrated.

30 Henceforth, the term ‘turbulence intensity’ only refers to the three-dimensional turbulence intensity, I“;'r e
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Therein, the Euclidean distanceﬂ of Uy, .y profiles with respect to the input U, were computed
for each x cross section, i.e. dyy .-

From the figure, in upstream of the rotor, two prominent observations were made. Firstly,
the approaching flow field began to sense the presence of the rotor at around 4R upstream as
can be seen most apparently from the uniform inflow cases. The observation somewhat accords
with that of [126] who found the same parameter more than 6R in their model-scale wind turbine
experiments with 3% areal blockage ratio [126] p. 694] (in this study, 7.5%), and 4R in their actuator-
line computations [126] p. 694]. Secondly, in front of the rotor, the Euclidean distances of all cases
developed into a similar range irrespective of their I, content. This development of incoming U
field occurred in a nonlinear fashion towards the rotor. For example, the dy, .)-difference between
the AMI-Uniform and AMI-40 was nearly 5-6 whereas it was reduced to ~1 at the AMI inlet. It may
be, therefore, possible to conceptualise that the rotor acts as a unit that assimilates various incoming
mean flow fields into a kindred field independent of their normal Reynolds stresses characteristics.

In downstream shown in three other observations were noted. The first is a peak in dy, .}
that emerged around 2R in all cases. The rotor signature on the flow field seems to be predominant
over Iy, up to 2R since the rates and amplitudes of changes in U were similar in all cases. The
second is that, after 2R, the downstream development of dy, ., predicted by each case started to
differentiate as a function of the corresponding I, __: the increments in Iy, led to higher wake
recovery rates, which was frequently observed in the literature. The last is that, in the non-zero

Iy cases, the rate of U-recovery gradually declined, and levelled off. As a consequence, even at

19R downstream, the amplitude of dy, .y of all the non-zero I,y _ cases remained above that of the
Iy =40[%] inlet values. The implication of this is that the rotor signature on the longitudinal flow
speed field is able to persist far downstream despite energetic turbulence entrainment.

As regards patterns between AMI and ALM, it was observed in that the levels of dy, .}
were in general higher for ALM at 2R, and were in a faster decay. Both indicates higher level of
axial flow induction and more energetic turbulence entrainment mechanisms generated by ALM for
the same rotor. To allow further inspection of these mechanisms, time-averaged over-filter scale

fields of kinetic energy, kinetic energy production and enstrophy production were visualised on

the z-normal hub centreline plane in Among them, enstrophy is mostly generated by

31 Tt should be highlighted that the Euclidean distance does not show the direction of changes. Instead, it shows the
total absolute difference of a quantity with respect to a given input.
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Figure 12: Contour plots of the time-averaged over-filter scale kinetic energy fields, kog[m2s3], on the z-normal

hub centreline plane. The left subplots belong to the geometry-fitted wall-modelled approach computations (AMI),
and the right subplots the actuator-line modelled computations (ALM). Each row shows the input three-dimensional
turbulence intensity, Ly .- The vertical axes represent the numerical domain height y normalised by the rotor
radius, R=0.4[m], and the horizontal axes the normalised longitudinal distances, z/R. The colorbar of each subplot
is the same.

vortex stretching [I27, p. 348|, and its production may indicate regions where vortex stretching
is dominant. On the other hand, vortex stretching indicates the energy cascade wherein strain
gradients of mean velocity stretch vortex structures in parallel and antiparallel manners, usually
resulting in net vortex stretching. A stretched vortex elongates in length, yet shrinks its diameter
to preserve its mass. The conservation of angular momentum concurrently forces the vortex to spin
faster, thus energising its neighbourhood mostly at smaller scales through traction. Considering this
chain of relations, one could expect higher enstrophy production results in higher levels of mean flow
energy transfer to heat dissipation. As can be seen in|[Fig. 14 for example, the enstrophy production
within the wakes of the ALM cases was qualitatively higher and more chaotic than that of the AMI
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Figure 13: Contour plots of the time-averaged over-filter scale kinetic energy production fields,

kproa=-{(w)2}:VU [m?s-3], on the z-normal hub centreline plane. The remaining figure particulars were summarised

n [Fig. 12

cases. Accordingly, the deeper wake deficits and faster recovery rates observed in the ALM cases
could be linked to the enstrophy production mechanism. Furthermore, it is postulated that the
higher enstrophy production stemmed from ALM’s force exertion in amounts similar to AMI, yet
within a smaller space, likely caused an augmentation in velocity gradients around actuator points.
In view of enstrophy production’s dependency on vorticity (hence velocity) gradients, it could be
thought that ALM manifested its effect through this way.

To reveal the direction of the changes (i.e. increments/decrements) in[Fig. 11} the {y, z} profiles
of U at various = cross sections were set out in for the upstream, immediate aft, and
downstream of the rotor, respectively.

In the upstream stations of the U-profiles of the non-zero Iy _ cases gradually lost
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Figure 14: Contour plots of the time-averaged over-filter scale enstrophy production fields, €pyoq=-{(w’ - u’) :
VQ} [s72] where w/=Vxu’ is the over-filter scale vorticity [s"1], and Q the time-averaged vorticity. The remaining
figure particulars were summarised in

their fluctuation features and virtually converged to a common form towards the rotor by slowing
down (previously observed in . At -0.5R, the common form was in a Gaussian shape with
its maximum velocity deficit was around 15-25[cNp]. Also, its lateral size roughly exceeded the
alignment of the rotor diameter by nearly 1R in the z-direction and by 0.5-0.75R in the y-direction
(likely due to the domain constraint). Nonetheless, the signatures of I,;  remained apparent at
the sides of the U-profiles. Lastly, the AMI-ALM comparison exhibited no considerable/structural
differences except that ALM-Uniform yielded slightly deeper U-reduction at -0.5R (previously
observed in .

Although the predictions for the immediate aft region are likely not of importance to downstream

turbines, some model developments may utilise the findings. With this motivation, six general
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Figure 15: Effects of the three-dimensional turbulence intensity on the time-averaged U-profiles along the vertical
y and lateral z directions, upstream of the rotor. The profiles pass through the hub centreline, and are shown in
the units of the log percentage change of U with respect to U,=1.5[ms™'], i.e. L=100log,(U/U,) centineper. The
horizontal dashed line shows the lateral coordinates of rotor tip, and the dash-dot line those of the nacelle. The
remaining figure particulars are given in

patterns were identified in[Fig. 16} Firstly, a double-Gaussian form with its maxima approximately
at the mid-blade radius was observed in all cases for the speed deficit shape. Secondly, the form
possessed qualitatively-some asymmetry in the ALM cases whereas a higher degree of symmetry
appeared in the AMI cases. Thirdly, on the question of the amplitudes of the speed deficits, the
deficits were found nearly the same for all the AMI cases at 0.5R with a ~-50[cNp| peak. For the
ALM cases at 0.5R, on the other hand, the deficits were ~-10[cNp] deeper, and were somewhat in
variation with I, . Towards 2R, these peaks were deepened by ~-5[cNp] per 0.5R for each case.
When the flow completely left the nacelle at 2R, the peaks were shifted toward the nacelle centreline

and I, manifested its effects in a nonlinear manner thereat. As an example, the centreline deficit
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Figure 16: Effects of the three-dimensional turbulence intensity on the time-averaged U-profiles along the vertical y
and lateral z directions in the immediate aft of the rotor. The hatched rectangles indicate the presence of the nacelle.
The remaining figure particulars are given in

was decreased from ~-20-(-40)[cNp] to -40[cNp] through the addition of I,; =10[%] on the uniform
inflow cases whereas both Iy, =20[%] and I, _=40[%] cases produced -50-(-60)[cNp] despite the
doubling of Iy .

Further downstream, showed the U-{y, z} profiles at between 3R and 13R with intervals
of R. In the non-zero I, _ cases, the double-Gaussian form convected from the immediate wake
was dissolved by 3-4R while this form was preserved in the uniform inflow cases till 11R. At 3R,
the maxima of the U deviations with respect to the input U, were ranged between ~-40-(-90)[cNp]
for the non-zero I, _ cases, and were declined to ~-20-25[cNp] at 13R. Furthermore, the rate
of recovery considerably slackened and subsequently levelled out in the non-zero I, _ cases after

reaching -20[cNp] with respect to the input U,. A curious finding stemmed from these observations
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Figure 17: Effects of the three-dimensional turbulence intensity on the time-averaged U-profiles along the vertical y
and lateral z directions, downstream of the rotor. The remaining figure particulars are given in

was that the wake recovery rate varied with the downstream distance obeying a half-Gaussian
function to a certain extent. This can be exemplified by the AMI-20 and AMI-40 cases. For the
former, the peak speed deficit at the stations of {3,5,7,9,11,13}[R] was approximately negative
{60, 60, 50, 40, 20, 20} [cNp], respectively, and for the latter negative {60, 40, 30, 20, 20, 20}[cNp]. As
can be deduced from a projection of these patterns, the peak deficits remained at a constant level
before they fell quickly, and consecutively levelled off again. It can thus be suggested within the
current scope that the wake recovery rate with respect to the downstream distance approximately
follows a half-Gaussian-form. Last but not least, the ALM cases were detected to be generally
recovering faster than the AMI cases from this perspective as well in addition to the aforementioned

similar observations. For instance, the peak U-deviations at 3R were nearly 90[cNp] and 65[cNp]
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Figure 18: Longitudinal profiles of the normal components of the time-averaged Reynolds stress tensor. The results
were first sampled in the vertical y and lateral z direction within - R<{y, z}<R at various x cross sections, and were
subsequently arithmetic-averaged. The remaining figure particulars were given in

for the ALM-10 and AMI-10 cases in turn. However, the ALM-10’s peak U-deviation reached the
level of the AMI-10 at 5R and continued to yield lower deviations in the remaining downstream.
With regard to velocity fluctuations, compared I effects on the longitudinal profiles
of the time-averaged Reynolds stress tensor’s normal components. Three prominent behaviours
were identified in this figure. First, immediate decreases were observed in the normal components
at the first node, which were more distinct in the lateral components. This behaviour was identified
as an inherent feature of the current version of the inflow model being utilised (, and was
quantitatively elaborated in [28] with its reasons. Second, the rotor was observed to act as a
filter that changes the decay rates of the normal components, and shapes them in a way that the

evolvement of the components unifies downstream. The evidence can be seen in the figure that all
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Figure 19: Effects of the interactions between the turbine and different upstream (three-dimensional) turbulence
intensities on the downstream time-averaged turbulence intensity profiles, Iu;ms (%], along the vertical y and lateral
z directions. The z-limits of the subplots of X/R>9 are zoomed in to ease the parsing of the details therein. The

remaining figure particulars are given in

the normal components in all cases roughly converged into a band between 0.15-0.25[ms™!] until
5R, and the band was further narrowed to a range of 0.05[ms™!] at 10R independently from the
input Iy, . Moreover, as can be seen from the adjacent neighbourhood of the rotor in [ig. 18}
the rotor also reduced the amplitude of the normal components in proportion to their incoming
amplitudes, i.e. higher the initial amplitude, higher the dampening effect within the immediate aft
of the rotor. Lastly, no significant difference in either amplitude or pattern was found between the
AMI and ALM cases of the same I,y _ .

In examination of the above, {y,z} profiles of I, __ along the downstream of the rotor were
illustrated in[Fig. 19} Most of the remarks related to the longitudinal speed deficits shown in [Fig. 11

were found to be valid for Iy, as well. First of all, the profile patterns of I,y _ were monitored
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Table 8: The total force and moment components in and about the axial direction exerted on the blades, i.e.
Fy[m%*s72] and M, [m5s2], obtained from the geometry-fitted wall-modelled approach computations (AMI) with four
different input three-dimensional turbulent intensities, I,,; . fi1 is the sample mean, v/fi2/p11 the sample coefficient
of variation, fiz the biased sample standard deviation, 41 ‘the biased sample skewness, and 42 Fisher’s biased sample
kurtosis. The results were rounded to three decimal places.

Iy . Vite/jiy  Min Max %1 o

0% 0.437 0.000 0.437 0.438 -0.001 0.045
10% 0.442 0.087 0.099 0.601 -0.022 -0.273

e 20%  0.436 0.169  -0.380 0.725 0.062 -0.147
40%  0.430 0.282  -0420 2434 0.193 0.567
0% 0.0174  0.000 0.017 0.018 0.349 4.446
M 10% 0.0180  0.141 0.010 0.026 0.079 -0.613

20%  0.0181 0.271 0.000 0.034 0.278 -0.592
40% 0.0182  0.400 -0.009 0.06 0.733 0.432

to be somewhat corresponding to the speed deficits, albeit possessing smoother trajectories in
general. However, an exception was also observed within these similarities: The I, profiles were
generally asymmetric in the y-direction to some degree due to the lower I, _ levels along the
bottom side of the rotor unlike the speed deficit profiles. This result could be explained by the
fact that the nacelle centreline was located closer to the top boundary, and the blockage ratio of
the upper side is higher than that of the lower side of the domain. Slightly different effects of the
asymmetric positioning of the rotor on U and I __ imply that uneven side blockage ratios may
have more impact upon turbulent fluctuations than the mean flow. In terms of amplitude levels,

Iy of all cases approximately converged onto the same level within the alignment of the rotor

diameter qualitatively at around 7-8R and convected downstream in unison. Nevertheless, outside
of this alignment the I,  profiles stayed different within a range of ~8[cNp]. Additionally, Iy
within the alignment was observed to remain higher with respect to Iy, _ convecting through the
sides. According to this observation, it can be inferred that the rotor signature on turbulence
intensities is also able to preserve itself downstream in addition to the similar observation made
for U in By way of illustration, and [I4] exemplified in the same vein that over-
filter scale kinetic energy and enstrophy production regions generated by the blade tips stretching
downstream distances an order of magnitude farther than the blade radius; implying the underlying
mechanisms why the rotor signature could remain in defiance of high freestream I,,; . Lastly, as far

as the differences between the AMI and ALM cases are concerned, no particular pattern significant

in regard to engineering purposes was detected for Iy, downstream evolvement except that the
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Figure 20: Time-averaged longitudinal U-profile predictions of the geometry-fitted wall-modelled arbitrary-mesh-
interface approach (AMI) and nine analytical wake models (§ along the hub centreline downstream
of the rotor. The vertical axis of each subplot represents U-magnitude belonging to a case with different three-
dimensional turbulence intensity, 1, u;‘ms={107 20, 40}[%]. The horizontal axes demonstrate the rotor-radius-normalised

longitudinal distance z starting from the rotor plane, where R=0.4[m].

ALM-10’s I, _-profile around the centreline was consistently higher than the AMI-10’s I, __-profile
until 8R.

In the case of rotor performance, effects of I, ~ on longitudinal forces and moments of the
rotor were investigated through six descriptive statistics, and the obtained results were summarised
in What can be seen in this table is the consistent relations between I and the
statistical moments. As regards trends between forces/moments and I, excluding the laminar
inflow case, it was found out that the sample coefficient of variation, skewness, kurtosis, and maxima
of total forces/moments were increasing functions of I,y while their sample mearﬂ and minima
were decreasing with increasing Iy, . These relations were, however, somewhat nonlinear with
monotonically decreasing rate of change. For example, from I, =10[%] to Iy =20[%] /fiz/p1
was increased by ~64[cNp] whilst from Iy =20[%] to Iy, _=40[%] the increase was contended

32 Except the sample mean of moments which scantly increased with Iu;'ms.
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Figure 21: Time-averaged lateral-z-direction U profiles at eight x cross-sections from the geometry-fitted wall-
modelled arbitrary-mesh-interface approach (AMI) and nine analytical wake models (§ . The
profiles pass through the hub centreline. Each row demonstrates a three-dimensional turbulence intensity,
Iy ns={10, 20,40}[%]. The horizontal axes show (z-Zrotor)/R=X/R where Zrotor=2.4[m] is the rotor plane distance
to the inlet, and R=0.4[m].

with ~51[cNp]. Closer inspection of the table also showed that although decrements occurred in
fi1 with increasing Iy, the level of decrements could be deemed inconsiderable relative to the
mean itself. As an example, from I, =10[%] to I, _=40[%], the decrement in fi; was ~-2.8[cNp].
This almost constancy in ;7 could be related to the unifying effect of the rotor on longitudinal
mean speed profiles with different I, _, previously observed in [Fig. TT]at immediate upstream and
downstream. The observations for fi1, v/fi2/fi1, minima and maxima are in general in line with
the literature moderately overviewed in Nonetheless, to the authors’ knowledge, no comparable
data was found in the literature for skewness and kurtosis. Assuming the validity of the information

obtained herein for 47 and 79, the positiveness in 4; with an increasing trend indicates that above-
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mean force/moment fluctuations occurred more frequently than the below-mean fluctuations in
parallel to the increments in I,y . An important implication of this is that sudden, brief and strong
excursions such as gusts that a turbine may experience become more likely to happen in higher

Iy inflows. Moreover, the trend in forces/moments from platykurtic to leptokurtic distribution

with increasing Iy, i.e. 42<0 — 42>0, meant that flow excursions began to accumulate at distinct
spatial and temporal locations throughout flow field leaving more space for lulls. In consequence,
however, fluctuation slicings of the rotor became more abrupt with higher I, _, hence potential
adverse effects on rotor structure.

Finally, the time-averaged longitudinal flow speed results from the downstream of the AMI cases
were compared with twelve analytical wake models in order to assess certain aspects of engineering
design tools via high-fidelity research tools under I, _ variation. The analytical models comprised
the majority of the models being reported in the wind and marine turbine literature, and were com-
puted with their default settings although calibration of the models for a certain case is the proper
approach in practical applications. Consequently, preliminary computations revealed at the outset
that the models from [49], [48], and [5I] were found to be incompatible with the current turbine
setup and conditions; therefore, they were left out from the following analyses. The remaining nine
models were computed using Iy, ={10,20,40}[%], and their predictions for the time-averaged lon-
gitudinal U-profiles and lateral-z-direction U-profiles were respectively presented in and [2]]
alongside the corresponding AMI cases.

In seven generic observations were made. First of all, Werle’s model [43] within R
immediately saturated to the freestream speed in all scenarios. Second, till 10R, the models half-an-
half overpredicted and underpredicted the AMI-10 whilst the increments of I,y _ directed them to do
more overpredictions. Third, within 6-10R range, the first three models yielded the closest outcome
to the AMI cases were realised as: {Lam, Jensen, Larsen} Iy =10% {Lam, Ishihara, Jensen} Iy =20%
and {Lam, Ishihara, Tian} L =40%: respectively. After 10R, all the models almost always made
overpredictions, and produced‘ similar rate of change of U. From this downstream location, the list
of the models for the closest prediction became: {Jensen, Bastankhah, Larsen} Ly =10% {Tian, Lam,
Frandsen} Ly =20%; and {Lam, Ishihara, Tian} Iy =10%; respectively. Lastly, Lam et al.’s model [47]
exceeded the freestream speed as can be seen between 22R and 24R far downstream.

The U-profile prediction capabilities of the models in the lateral direction were shown in [Fig. 21

The figure revealed that Lam et al.’s model, Tian et al.’s model and particularly Ishihara-Qian’s
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model yielded considerably high level of resemblance with the AMI profiles in terms of shape and
amplitude levels in each x cross sections for each I, input. In contrast, the remaining models
either could not predict the maximum speed of the deficits or the profile trajectories. As an example,
Frandsen, Larsen and Jensen models generated step profiles rather than a bell-curve.

Overall, these results indicated that Lam et al.’s model [47] performed relatively superior. This
result may be explained by the fact that Lam et al.’s model was derived and calibrated based
on a model-scale HAMT experiment [47, Table 1]. This finding, while preliminary, highlights
the importance of the resemblance between the turbine-flow particulars at hand, and the analytical
model’s derivation particulars. In addition, it can be deduced that Tian et al.’s model [46] performed
relatively well in the I, ={20,40}[%] cases, and Ishihara-Qian’s model [52] for the lateral wake
profile predictions. Considering both models used wind turbines in their derivations, yet performed
decently for the marine turbine herein, it can be inferred that wake deficit behaviour for wind and

marine turbines is likely very similar.

4. Conclusions

The main aim of this study was to explore interactions between a typical model-scale marine
turbine and three-dimensional turbulence intensity in isolation by minimising other aspects of tur-
bulence.

For this purpose, a rigid experimental horizontal axis marine turbine [24] was numerically inves-
tigated under decaying homogeneous isotropic turbulence in absence of its tower. Twelve controlled
computations were carried out via wall-modelled & actuator-line-modelled implicitly-filtered large
eddy simulations wherein the turbulence intensity was the control variable. Initially, with the four
of the computations in which the rotor was excluded, the effects of the arbitrary mesh interface
technique [71] and the presence of a nacelle on flow field predictions were examined (§3.2)). The
remaining eight computations focused on the examination of the way the three-dimensional turbu-
lence intensity, Iy, _, affects the rotor and flow fields (§3.3). Therein, four turbulence intensities
were considered: Iy, ={0,10,20,40}[%]. Lastly, twelve analytical wake models were reviewed and
evaluated in comparison to the wall-modelled computations under the same range of turbulence
intensities (§3.3).

Ultimately, this study has identified the following prominent pockets of knowledge:
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e The arbitrary mesh interface technique (AMI) adversely affected AMI-traversing flow field’s

amplitude-based statistics such as mean velocity, Reynolds stress tensor, and turbulence in-

tensity when the AMI was in rotation.

The rotating AMI caused flow field discontinuities on the AMI boundaries.

The flow field within the AMI region was differed in comparison with its surrounding to
some extent, e.g. fluctuations per distance were increased within the AMI region.

— The adverse effects were increased outwards from the AMI centre.

— The rotating AMI did not adversely affect time-based statistics such as power spectral

density functions.

— The non-rotating AMI did not alter the flow field.
Longitudinal mean speed field, U-field, started to be affected by the presence of the rotor
approximately 4R upstream of the rotor.
Maximum deviation of U-fields with respect to the freestream U, occurred at around 2R
downstream of the rotor irrespective of the freestream Iy, .
Wake recovery rates in terms of wake I, — and wake U-field were increasing functions of
freestream I, .
Wake recovery rates with respect to downstream distance varied in a half-Gaussian-form
irrespective of the freestream Iy, , i.e. a consecutive pattern of gradual-steep-gradual rate of
change.
Incoming U-fields with different I, lost their fluctuation features towards the rotor and
became indistinguishable immediately in front of it.
Incoming U-fields with different I,; also became indistinguishable starting at around 6-10R
downstream and within the alignment of the rotor, yet almost always remained different from
freestream despite turbulence entrainment.
The effects of the rotor on each normal component of the Reynolds stress tensor were in
the same manner. The rotor altered the decay rate of the components, and reduced their
amplitudes in proportion to the freestream I, .
Almost no significant differences were found between the wall-modelled and actuator-line
modelled computations in terms of the statistics quantified in this study. An exception was
that ALM with the settings being used herein usually generated more chaotic wake flow.

The coefficient of variation, skewness, kurtosis and maxima of longitudinal forces/moments
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920 acting on the rotor blades were quantified to be increasing functions of I, whereas the

mean and minima were found to be inversely varying with I, .

e The analytical wake models of Lam et al. [47], Tian et al. [46], and Ishihara-Qian [52] were

quantified to be superior to the other models studied in terms of U-profile shape and amplitude
predictions.

025 Further work needs to be carried out in the following three subjects to establish whether the

concluding remarks drawn in this study are generalizable: isolated effects of i. the longitudinal,

lateral and vertical turbulence intensities, ii. the integral length scales, and #ii. cross components

of the Reynolds stress tensor.
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Appendix A. Appendix
Appendiz A.1. Menter et al.’s wall model algorithm

Input: v, vy, (Vau)p, v, U, Ny
Output: ur fnal
for:=0,...,N, do

ur= () i+ ()i) [(Var)s i)™

if |u.>¢| then

e=GREAT

j=0

while ;<10 and €0.001 do

+_Yi Ur

y= (vp)i

uT,vis=7¥i
- rU;
Ur log= log(E Ly+)

-1
—(n n n
uTvnew_(uT,vis-Fu'r,log)
€= |UT ‘u'r,newl
ur+g

ur=0.5 (u7+u‘r,ncw)

end

end

(ur,ﬁnal)i=u7
end

Algorithm 1: Menter et al.’s [8T] wall model algorithm [26]. u, is the friction velocity [ms™!],
Np number of grid faces on the corresponding boundary, v; turbulent kinematic viscosity on
the boundary [m?s7!], v, fluid kinematic viscosity on the boundary, (V,u), velocity gradient
normal to the boundary [s™!], £ the smallest floating-point value, GREAT inverse of the machine
epsilon, € an error parameter, y wall-normal distance of the first off-the-wall node [m], - vis
and U, 1o respectively the model contributions from the viscous sub-layer and logarithmic law
equations, n=4 a model coefficient, U magnitude of the planar velocity of first off-the-wall node
(i.e. the wall-normal component is converted to zero) [ms™'], k=0.41 von Karmén’s constant,
and E=9.8 a wall roughness parameter for smooth walls.

Appendiz A.2. Analytical wake models
In the pages that follow, twelve non-yawed horizontal-axis-turbine analytical wake models from
1280 the literature were chronologically presented: i.e. [4IH52]. The models were viewed as black boxes;
hence, only their explicit formulae were presented alongside with the fundamental theory and major
building-block assumptions that their derivations are based upon. All the models share the follow-

ing notations and assumptions: x represents the horizontal distance to the rotor plane, r the radial
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distance to the hub centreline, w,, the longitudinal (i.e. no lateral component) wake speed, us the
longitudinal mean freestream speed, Ct the rotor thrust coefficient, D the rotor diameter, D,, the
wake diameter, R the rotor radius, R,, the wake radius, A=rR? the rotor area, and I,=uyms u}l
the ambient turbulence intensity [-] with urmSE(S’l(@+@+@))o'5 the root-mean-square of fluc-
tuations. As common assumptions in the models, the predicted flow dynamics is time-invariant,

and inflow is longitudinally and radially-uniform.

Appendiz A.2.1. Jensen’s model

The basis [41]: Mass conservation [45, p. 117] rather than momentum conservation as stated
in [41] p. 5].

Prominent assumptions: [l Fig. 1], ¢. Constant wake speed in the radial direction, ii. linear
and free wake expansion [41], p. 5, 8|, #ii. no near-wake region [41, p. 5|, and iv. immediate wake
diameter is equal to D [128| p. 408].

Governing equations [41, Eq. 2, Fig. 1]:

2
uw(x)=uf{1—2a (Riz)} and R, (z)=R+0z (A1)

where a is the axial induction factor [-] presumed to be equal to 0.5(1-(1-Ct)%®) [128| p. 408], and
B the wake-decay constant whose value was variously estimated as, for instance, 0.04-0.075 [129]
p. A-3] or 0.40y,,, /unn [I30, Eq. 6], and up,p the hub height instantaneous longitudinal inflow
speed.

Appendiz A.2.2. Frandsen’s model

The basis [42]: Mass and momentum conservation in a cylinder control volume [42] p. 40-41,
Eq. 1].

Prominent assumptions: i. Axisymmetric, self-similar, and immediately expanding wake [42]
p. 41, 42].

Governing equations [42] Eq. 11, 13]:

Uy () =up {0.5+0.5(1-24 A;)C1)*®}  and D, (z)=D(B*?+azD™")"* (A.2)
where A, (7)=0.257D? is the wake cross-section area, 3 a parameter governing the initial wake
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expansion rate as 3=0.5(1+(1-Ct)°%)(1-C1)™°5 [42] Eq. 10], k a factor for the wake expansion
order - by default k=2 [42] p. 43|, and « a constant to be evaluated experimentally [42] p. 43], yet
can be estimated as a=8%2[(1+2a,2D1)¥-1]Dz"! with a,~0.05 [42, Eq. 15].

Appendiz A.2.3. Werle’s model

The basis [43]: Biot-Savart law, Prandtl’s turbulent shear layer model, and Prandtl-Swain’s
axisymmetric wake analysis for near-, intermediate-, and far-wake regions, which are interlinked,
respectively.

Prominent assumptions: i. Axisymmetric wake [43] p. 6], and . distinct assumptions-
derivations valid for near-, intermediate- and far-wake regions.

Governing equations [43] Eq. 11a, 11b, 12a, 12b]:

1+0.5(1-u0o ) {1422 (1+42%)705 if z<z,,
U= { J a3 (A.3)
1-(T-um) {(z-2n) (2-2u,, ) PCP0+1} if z>x,,

D {0.5(1+uoo)u;)1}0'5 if x<ap,
D= (A.4)
Dy, {Cr(w-20) (DD N3+ i 250,
where {-},, is a subscript that denotes the downstream location, x,,, where the near-wake sub-
model is coupled with the far-wake sub-model, xm=xi+kmDoo(1+uoo)D‘1(1-uoo)‘1 the location of
the coupling [43, Eq. 10], x; the outset location of the intermediate wake region assumed to be
2.0 [43}, p. 6], ky, a model variable [43], p. 6] with a possible value 0.1, Dy=D {0.5(1+uoo)u;}0'5
the wake diameter at the downstream infinity [43, Eq. 2b], uao=(1-C1)%® the non-dimensional flow
speed at the downstream infinity [43, Eq. 4a], wn,=1+0.5(1-us ) { 1422y, (1+422,)"0%} the centreline
flow speed at the location m [A3, Eq. 11c], and D,,=D (0.5(1+uqo)uzt) ™ @3, Eq. 12¢].

m

Appendiz A.2.4. Larsen’s model

The basis [44]: Incompressible, homogeneous, thin shear layer approximated Navier-Stokes
equations [44], p. 7-8].

Prominent assumptions: i. Axisymmetric [44, p. 7] and self-similar [44], p. 8] wake, ii. empir-
ical boundary conditions [44], p. 8-9], i%i. the model is a summation of a first-order and second-order

approximations; however, the latter contribution is neglected with a justification that it is not of
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importance for power farm computations.

Governing equations [44, Eq. 11, 3]:

(2, 7) = -y 97 { Cp A(aa,) 2} ° [#-5 (363CrA(a+a,)} 7 -(35(2m)1)310(3¢2) 02 * (A5)

R, ()= {105¢2(2m) 1} {Cr A(z+a,)} /3 (A.6)

where z, is a parameter defined as 2,=9.6D{(2Rg ¢(kD) 1)3-1}-! |44, Eq. 5], ¢c; another parameter as
e1=(0.5kD)25{105(2) 1 )03 (C Ay)-/6 [, Eq. 6], k=(0.5(m+1))5 [} Eq. 7], m=(1-Cr)-05 [,

Eq. 8], and Rg g the 9.6D downstream wake radius which was empirically approximated as:
Rg.6=a1 exp(agC%+a3CT+a4)(b1]a+1)D (A?)

with a1=0.435449861, a2=0.797853685, a3=-0.124807893, a4=0.136821858, and b;=15.6298 [44, Eq. 10].

Appendiz A.2.5. Bastankhah-Porté-Agel’s model

The basis [45]: Mass and momentum conservation [45, p. 118].

Prominent assumptions: i. Gaussian-form wake in the radial direction [45], p. 118], ii. linear
wake expansion [45, p. 118], and 4ii. axisymmetric, self-similar wake [45, p. 118].

Governing equations [45] Eq. 23]:

U (2, Y, 2) =us-us (1- {1-0.125Cy (k*xD‘1+0.260'5)'2}0‘5>
(A.8)
exp (-0.5(k*zD™'+0.23%°)7 { (2-2;,)°D*+y*D*})

where k* signifies the wake growth rate for which a relation was given by [I31], Eq. 15] as k*=0.3837 I,
+0.003678 for 0.065<1,<0.15, 3=0.5 {1+(1-Cr1)%5} (1-Cr)™%° [45] Eq. 6], and 2, the hub height [45]
p. 118].

Appendiz A.2.6. Tian et al.’s model
The basis [46]: Jensen’s model [46], p. 91].
Prominent assumptions: i. Cosine-form wake in the radial direction [46, p. 91|, and 4i. a

heuristic relation between the wake turbulence intensity and z, Cr, I, [46, p. 92].
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Governing equations [46, Eq. 10]:
Wy (z,7) = (uy-uy) cos[m r Ry +7]+u; (A.9)

where uy and le are respectively the wake deficit speed and diameter from the original Jensen’s
model computed by a new expression for its 5 as Bpew=(kn Ct D2~ 2+1,)B85I; [46, Eq. 14, 15], and
k, a constant k,<0.4 [132] p. 7].

Appendiz A.2.7. Lam et al.’s model
1345 The basis [47]: Ship propeller jet theory and axial momentum theory [47, p. 512].
Prominent assumptions: i. Gaussian-form wake in the radial direction [47, p. 515|, and .
the final form of the model heavily rely on measurements from a particular turbine.

Governing equations [47, Table 4]:

1.(0.0106:D+1.0351) if 2D"'<4 and 1,=3%

1¢(0.15052D71+0.8597)  if 2D"'<4 and I,=15%

uw,min(m)= (A].O)

u.(0.11232D1+0.5826)  if 2D '>4 and 1,=3%
(0.03722D 7 +1.4085)

Ue if £D"'>4 and I,=15%

where ue=uys(1-C1)%5 [47, Table 4] is the efflur speed, which is the minimum speed of lee flow
adjacent to the rotor [47, p. 513]. The radial distribution of the wake deficit, u,,(x,r), is defined as

U= f - (U [~ Uy, min) exp(A) with A(z, r):

~0.5 { (r-Runo) (0.5Runo+0.065(z-R))™}*  if 1.2D<z<3.0D and 1,=3%
0.5 {r (0.5R0+0.095(2-R))™ }> if 1.2D<z<3.0D and I,=15%
Az, )= ) (A.11)
-0.5{r (0.065(z-R))™"} if 2>3.0D and 1,=3%
-0.5 {r (0.095(z-R))™'}* if 2>3.0D and I,=15%

where Ry,,=0.067(R-Ry,) the radial location of the efflux speed [47, Table 4], and Ry, the hub radius.

Appendiz A.2.8. Lo Brutto et al.’s model
1350 The basis [50]: Jensen’s model [50, p. 347].
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Prominent assumptions: i. Exponential-form wake expansion [50] p. 356], 4i. Gaussian-form
wake in the radial direction [50, p. 357]

Governing equations [50, Eq. 9]:
R, (z)=Rc{5.58(1- exp[-0.0512 D1])+1.2} (A.12)

with ¢(I,) = -15.54212+21.3611,+0.2184 |50, Eq. 11].

Appendiz A.2.9. Xiaoxia et al.’s model
1355 The basis [49]: Jensen’s and Tian et al.’s models.
Prominent assumptions: i. Gaussian-form wake in the radial direction [49, p. 193].

Governing equations [49] Eq. 12]:
Uy (7, 7) =up-5.16 (us-uy) (27) " exp[-0.572 (R, /2.58) 7] (A.13)

where the notations stated for Tian et al.’s model can be directly used except
Buew=(kn Cr (D 1) 0P+10-5)2 5, 1.1

Appendiz A.2.10. Keane et al.’s model
1360 The basis [48]: Mass and momentum conservation with respect to the actuator disk theory,
Jensen’s and Bastankhah-Porté-Agel’s models [48] p. 1].
Prominent assumptions: i. Double-Gaussian-form wake in the radial direction [48] p. 1].

Governing equations [48 Eq. 22, 15, 5, 13]:

Uy (z,7)=us {1-cF(z) f(r,o(z))} (A.14a)
F(z)=X+(\?-0.50CrD?)%5 (2¢)7! (A.14b)
f(r,o(x))=0.5{exp(E:)+exp(F.)} (A.14c)
=202 exp(-0.57%)+(2m)% 5 ac {erfc (27°5)-1} (A.14d)

Y =0%exp(-12)+0.57%%ac {erfc (x)-1} (A.14e)

where 7=R,0~! [48 Eq. 13| with R,=0.75R [48, p. 7|, o=k*z'/3+¢ [48, Eq. 16|, E+=-0.50"2(r+R)? [48,
Eq. 5], and ¢, a, k* and e constants that can be estimated by using [48, Tab. 1] according to the
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13¢5 specific operational-environmental conditions.

Appendiz A.2.11. Pyakurel et al.’s model
The basis [51]: Jensen’s and Ainslie’s models [51), p. 122].
Prominent assumptions: i. Gaussian-form wake in the radial direction [51], p. 115].

Governing equations |51, Eq. 5, 6, §]:

u(w, ) =up-usul, exp{-3.56(0.50rR~'p7")?} (A.15a)

b={0.445Cru’, " (1-0.5u% ) 1105 (A.15Db)

where u is u, () of Jensen’s model

1370 Appendix A.2.12. Ishihara-Qian model
The basis [52]: Mass and momentum conservation [52], p. 289-291].
Prominent assumptions: i. Gaussian-form wake in the radial direction [52, p. 283], and ii.
axisymmetric, self-similar wake [52] p. 282].

Governing equations [52] Tab. 2]:
Uy (2,Y, 2) =up-us {a+ba:D‘1+c(1+xD‘1)'2}_2 exp (-0.5r%07%) (A.16)

where a, b, and c are placeholders for the sub-expressions [52, Tab. 2]: a=0.93C7%-75 19-17_ $=0.42C%: 102,
175 and ¢=0.15C1%-25 I:97; o(z)=k*z+e,D the representative wake width, k*=0.11CL%97 1920 the wake

a

growth rate, and €,,=0.23C7%-2° 1917 a model parameter.
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Appendiz A.3. Actuator line model pseudo-algorithm

Input: Polar data, rotor operational data, blade geometric data and computation settings.
Initialise u, p and cell-search sub-regions;
Initialize actuator points and find surrounding cells;

while Run time < Computation end time do
Obtain u and p at actuator points;

Compute forces by the BET;

Rotate actuator points, and find new surrounding cells;
Project force fields onto the flow field;

PISO;

Output desired information;

Advance in time;
end

Algorithm 2: The implemented actuator line model pseudo-algorithm.

Appendiz A.4. Tip-root correction methods

The tip and root corrections are applied by multiplying their factors with lift and drag forces.

1380 Appendiz A.4.1. Goldstein-Wellicome’s tip loss correction

Goldstein-Wellicome’s tip loss correction can be read in [I33] p. 346]:

1.0 if tan(¢) < 0.001 or ¢ > 85.0

Ftip = 2 S—l {COSh(TR_lg) (A].?)

if t > 0.001 d < 85.
cosh(g) } if tan(¢) > 0.001 and ¢ <85.0

where Fijp, is the tip loss correction factor, ¢ the flow angle, r the section radius, R the blade radius,

g=N,R(2r tan(¢))1-0.5 a parameter, and Nj, the number of blades.

Appendiz A.4.2. Prandtl-Glauert’s root loss correction

Prandtl-Glauert’s tip loss correction was fetched from [I134, Eq. 1], and modified for root sections:

Fiup = %cos‘l {exp (-Nb(r_Rh”b)>} (A.18)

27 sin ¢

where Flup is the hub loss correction factor, and Ry, the hub radius.
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Appendiz A.5. Numerical schemes
Appendiz A.5.1. Central differencing scheme

The central differencing scheme (abbr. the CDS) is spatially second-order accurate in terms of
Taylor series truncation error under certain conditions. A broad assessment of the scheme can be
found in [82 p. 145]. For unstructured grids, the CDS is [135 p. 275-276]: ¢=dp ¢pp+(1-dp) dn
where dp is a geometric weighting factor: dp=|/rx-ry| (|rn-rp||)™*, r the position vector of the
centroid of an owner (i.e. ep) or neighbour cell (i.e. ox), or of a face (i.e. of).

The CDS was chosen primarily in view of its highest spatial accuracy possible. Two issues,
however, appeared to be considered: i. the CDS is second-order accurate if and only if the line
connecting centroids of adjoining cells intersects the common face centre [I35 p. 276], and ii.
truncation errors due to the second-order schemes (i.e. negative numerical diffusion) may happen
to be order of sub-filter scale terms [136, p. 201-202]. Mesh-orthogonality and -skewness issues
cause the former. For the latter low level production of numerical diffusion due to the CDS can

alleviate impacts of high diffusion due to sub-filter scale models.

Appendiz A.5.2. Backward difference scheme

DeBonis and Scott [I37, p. 1777] showed that low-order temporal discretizations in IFLES
reduce merits of high-level spatial resolutions and schemes. Therefore, the second-order backward
difference scheme was identified “ideal” for OpenFOAM®-IFLES [I38, p. 33]. For u, it is defined
as [26, p. 41]:

/ Dy d ~ 2P Y =4 (e Q)7+ (up ) (A.19)
27,
Q

where n, 0, and oo denote current, previous and previous-to-the-last time-step, respectively. More-

over, temporal discretizations of spatial elements are done by [26] p. 44]:

t+At

3u? — 4u? + u?°
dt ~ a a 9 A.20
[ ua s (A.20)

t

where ugq is the spatial solution.

Appendiz A.5.3. Total variation diminishing scheme
The CDS can be blended with the upwind differencing scheme (abbr. UDS), to trade off the
spatial accuracy for numerical stability as follows: ¢;={1-1(r)}(¢s)ups+¥(r)(¢s)cps where ¢y
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is the convective volumetric face flux, ¥ (e) the limiter function, r the ratio of consecutive flux
gradients [I39, Eq. 3.7], i.e. between the upwind-side gradient to the downwind-side [140}, Eq. 3.67].
The limitedLinear is an upwind-biased total variation diminishing scheme (abbr. Tvqfl) with:

¥(r) = max {o, min <max2[mr 1) } (A.21)

where {£}.e[0,1]} is @ model parameter with x=0 the CDS is recovered, and { the machine epsilon.
Although it is a widely held presumption that Eq. is the Sweby function, e.g. [75, p. 45|, the
coded form is different from the original [I39, Eq. 3.17], i.e. ¥(r)=max(0, min(ar, 1), min(a,r))
with {a}{aepi2y-

Appendiz A.5.4. Normalized variable diagram scheme

The GammaV scheme is based on the “normalized variable diagram” (hereafter, NVD) approach
that prohibits unphysical oscillations by bounding flux of each node between that of their neigh-
bouring nodes [140, p. 101]. Its expression reads: y= min{max(g{ﬁﬂ,}}, 0),1} where the TVD-limiter
¥(r) is redefined as a “blending factor” v [140)], p. 108], q~5 the “normalized variable” expressed in [140)
p. 109, { B } {8, c]0.1,0.53=max (0.5, £) a constant, £ the machine epsilon, and {I'}{r¢jo.2,1.09)y an in-

put parameter wherein numerical stability increases towards 1.0. Justifications for the requirement

of the scheme and reasoning behind its derivation can be found in [I40] p. 98-111].

33 Refer to [82] p. 165-176] for more detailed information.
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Figure A.22: Along z-direction Pearson correlation coefficients between the total out-of-plane blade bending moment,
M (t), (no blockage correction) and the longitudinal mean flow speed, U(t) (top subplot)/the longitudinal flow speed
fluctuations, (u’(t))? (bottom subplot) obtained from the three-dimensional turbulence intensity computations of the
geometry-fitted wall-modelled arbitrary-mesh-interface approach (AMI), Iy, ={10,20,40}[%]. Thirty-four probes
were evenly placed along the z-direction at {y, 2}={0.0,0.1}[m] to obtain the time-series. The vertical axes show the
Pearson correlation coefficient, and the horizontal axis the z-distance normalised by the rotor radius, R=0.4[m].
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Abstract—An open-source computational framework for the
fluid-structure interaction of tidal turbine blades has been
developed to be used in the preliminary design cycle. The
main purpose of the framework is to assess the maxima of
blade deflections under dynamic extreme inflow conditions. The
framework is composed of a computational fluid dynamics library
coupled with blade element momentum theory and time-accurate
Euler-Bernoulli beam theory. The paper explores: (i) effect of
computational grid density on wake development predictions, (ii)
effect of buoyancy force on blade deflections, (iii) quasi-steady
inflow and (iv) a stepwise tidal-gust effects on the deflection level
of different types of blades. It is revealed that (i) tuned flexibility
of a blade may contribute performance increase, (ii) buoyancy
force makes edgewise loading of a rotating blade less severe (iii)
the level of static and dynamic flapwise deflection of tip of a blade
is likely the highest as the dynamic edgewise oscillation frequency
is higher than those of others and (iv) blade deformation changes
wake structures.

Index Terms—TFluid-structure interaction, blade element mo-
mentum theory, Euler-Bernoulli beam theory, horizontal axis
tidal turbine blade, tidal-gust

I. INTRODUCTION

Horizontal axis marine current turbines (i.e. HAMCT) are
required to provide reliable electrical energy production in a
subsea operation environment with as few scheduled main-
tenance appointments as possible. Failures related to turbine
blades will have a significant impact on their overall cost-
effectiveness. The use of composite blades for such machines
offers mass and cost savings [1], [2]. However, the turbulent
nature of the tidal flow will result in a dynamic interaction
of the hydrodynamic blade loading and its structural response
with implications for the assessment of through life fatigue
loading. There is an economic drive to increase blade diameter
to either extract energy from lower current sites or to reduce
the number of components in an array. The coupling of a
stochastic flow regime with significant flapwise and twist
deformations of the blade also requires rapid time domain
solutions to deal with the inherent non-linearities.

The HAMCT blade modelling methods are essentially made
of three components: hydrodynamics of the flow regime
around and through the machine; structural dynamics of the
blades and the interaction of these two mechanisms. The
modelling approaches to treat these can be categorized into
a number of main classes. The study of hydrodynamics of the
flow regime can be carried out with four primary methods:

E Fluid loading ;i Structural response 3
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Fig. 1.

Schematic of the fluid-structure interaction method

blade element momentum theory (i.e. BEMT) [3], lifting line
[4], surface panel (i.e. boundary element) [5] and finite volume
methods [6]. Apart from hydrodynamics modelling, the solid
mechanics can be modelled with three approaches: modal
decomposition, multi-body system and finite element methods
[2], respectively.

In this study, BEMT and a modal decomposition method
are combined with a finite volume method as shown with the
computational tools used in Fig. 1. These concepts are briefly
presented in the section II. In the following methodology sec-
tion, the description of the coupling techniques between these
methods is introduced. In the section IV, the verification and
validation studies of the implementations are demonstrated. In
the section V, a group of case studies, in which a 20m-rotor-
diameter tidal turbine considered with three different blades in
terms of their flexibility, are carried out for: (i) BEMT-structure
model coupling, (ii) BEMT-finite volume method coupling and
(iii) BEMT-finite volume method-structure model coupling.
Section VI shows results and discussions. Finally, some con-
clusions are drawn in the section VIL

II. THEORY
A. Blade Element Momentum Theory

BEMT is used to estimate the forces exerted on a specified
blade geometry. The theory combines momentum theory (i.e.
the actuator disk theory) and blade element analysis. The
former represents the blade swept area as an infinitely thin
disc which alters the axial and tangential momentum of fluid
particles passing through. The latter divides the blade into
a number of non-interacting sections and estimates forces
generated by using its aerodynamic force coefficients for its
relative velocity inflow. Normal and tangential force equations
are obtained for each theory and these equations are equated
in an iterative manner with respect to the axial and tangential
induction factors, which are non-dimensional representations
of the local induced normal and tangential velocities at the disk
region. Ultimately, local non-dimensional power coefficient



............................................

Operational
conditions
e.g. sectional
wind velocity

Geometrical
properties
e.g. rotor

diameter

Previous time |1
step results e.g.
previous time
step sectional
wind velocity

Pre-process
the input

— T
3-dimensional
aerodynamic '
coefficient
correction

Structural model code

Total structure
output e.g.
total flapwise

deflection

Skip the
dynamic

Dynamic
model

structure model
execution

Iteration loop
| of a and a

—

! Update \ﬂf’*aﬁﬂ <ec&

! aanda |[no| |a; —a; 4| <e

| o — aia] <

| Estructure

‘ Performance :

' eriormance : 1-dimensional Euler-

! output e.g. Ber i bes del

' BEMT code e ernoulli beam model
ey P

Fig. 2. The algorithm of Cwind C++, which is composed of BEMT and

structural model codes. a and a/ are axial and tangential induction factors,
respectively; « is the effective angle of attack; e is the convergence criteria
and U is the instantaneous sectional wind speed.

(i.e. Cp) and thrust coefficient (i.e. C}), which depict the
performance of an isolated rotor, are acquired as follows:

6C, = 6P/0.5pU3 A (1)
5Cy = 6T /0.5pU2 A (2)

where JP is the sectional power [W], T is the sectional
thrust [N], p is the reference fluid density [kgm ™3], A is the

projected area of the relevant blade element [m?] and U, is the
sectional undisturbed velocity magnitude normal to the rotor
disc [ms™1].

Such methods have been used by [7] to investigate the pos-
sible differences between the loading prediction capabilities
of a sectional BEMT model and a finite element model that
maps pressure distribution over an identical wind turbine blade
showing negligible difference with respect to the deflection
results.

1) The BEMT Code: The modified BEMT code was Cwind,
developed by [8]. It was integrated into the tidal turbine appli-
cations and compared with a surface panel method resulting in
good agreement [9] and was validated against experiments [3].
In the original code, the loading is computed by the sectional
blade element consideration using tabulated 2-dimensional
aerofoil data. A Glauert correction for the turbulent wake
state and Goldstein momentum averaging factor for tip loss,
as is asserted by [10] supplies more realistic approach than
that of Prandtl tip loss correction, are included. Cwind was
re-written in C++ with a few additional functionalities such
as: Lanzafame and Messina’s tangential induction factor [11],
Snel et al’s 3-dimensional tabulated data correction [12],
Lindenburg’s 3-dimensional tabulated data correction near the
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Fig. 3. Sketch of aerodynamic parameters on a typical rotating turbine blade
segment

tip [13], Snel and Schepers’ yaw misalignment correction
[14], active-passive blade part functionality and quadratic
interpolation for the tabulated data. The resulting algorithm
is shown in Fig. 2.

B. Structural Modelling

It is Baumgart’s [15] assertion that slender solid body
modelling, such as for a tidal turbine blade, with a beam
model captures the essential features in comparison to a more
complex solid or shell - finite element model. In addition, as
is claimed in [16], as far as the mechanical features of a three-
dimensional blade can be extracted, a one-dimensional beam
model can cope with the most structural examinations in a
prompt way. Thus, a beam model is likely to be convenient
whilst a slender beam can be adequately modelled in a
computationally effective way. On account of these claims
and for sake of isolation of the each parameter investigated
herein, the structure of the blade was modelled as a homo-
geneous, isotropic material, uniform cantilever box beam. As
is purported in [17] that a reasonable presentation of slender
bodies can be achieved with using such simplification at the
early design stages.

BEMT provides aerodynamic loading at discrete locations
along the blade span that are located at the centre of each
segment. A linear structure is considered for simplicity; there-
fore, each load’s deformative effect is computed separately
and then summed using superposition. In addition, the model
accommodates the time varying sectional flapwise (i.e. out-
of-plane), edgewise (i.e. in-plane) and torsional deflection
approximations by using a dynamic structure model whose
results are mapped onto the results of a static structure model.

1) Static Structure Modelling: Euler-Bernoulli beam theory
assumptions are adopted whilst there is no distinguishable
difference in results appears compared to the Timoshenko
beam theory [18] for slender beams. The time scale of inflow
to the rotor disc is assumed an order of magnitude higher than
that of rotor rotation ensuring that the static deflections occur
in a quasi-steady manner.

Flapwise and edgewise static deformations are computed
with:

v(z) = —Fx?(3s — x)/6ET
v(r) = —Fs?(3x — s)/6EI

0<z<s 3
5 <& < Ty 4



where x is the location where the deflection is monitored on
the beam neutral axis [m], s is the location where point loads
is applied [m], v(z) is the amount of deflection in the same
plane and direction with those of the applied load [m], as is
shown in Fig. 3, F' is the normal force to the blade element
section centre parallel to the oncoming flow velocity for a
flapwise deflection case and is tangential to the same centre in
parallel to the angular velocity of the rotating blade element
for edgewise deflection case [N], E is Young’s modulus of
the blade element material [Nm~2], I is the area moment
of inertia of the blade element’s cross section whose value
depends on the axis about where bending occurs [m?].
Torsional deflections are computed:

y(z) = Mz/GJ
V(@) =(s)

where y(x) is the angle of twist relative to the undeformed
configuration [rad], M is the twisting moment [Nm], G is
the shear modulus of the material [Nm 2] and J is the polar
moment of inertia of the relevant section [m?].

2) Dynamic Structure Modelling: The modal decomposi-
tion method is used in order to reduce the computational cost.
With this method, as its stages of the application is given
in [19], [20], the infinite number of natural frequencies and
vibration modes of the continuous media of the structure is
minimized. The orthogonality condition of the method ensures
that the mode shapes are uncoupled and independent [20]. A
number of vibration modes will dominate for low frequency
responses in terms of their contribution to the deformation;
therefore, linear summation of those prominent modes would
give a reasonable picture of the actual dynamic deflection. Ac-
cording to [21], there is no precise rule for the determination
of the number of modes. In this study, the first 10 modes are
considered.

Dynamic Euler-Bernoulli beam equation is:

dw(x,t 2w(x,t

Efa 8;4’ ) 9 85&2, ) = q(z,t) @)

where w(z,t) is the in-plane deflection at any location on the
beam at any time [m] and ¢(z, t) is the corresponding arbitrary
in-plane loading [Nm~1]. The in-plane deflection [19], [20] :

0<zr<s 5)
s < < Typ (6)

+ pA

o0 N
w(z,t) = Z () ai(t) ~ Z ¢ () a;(t) (8)

where ¢;(x) is the mode shape [-], a;(t) is the generalized
coordinate which is a function of time [m], IV is the number of
modes considered and i is the rank of the mode. The reduced
form of the modal equation for a cantilever beam with Euler-
Bernoulli beam assumptions:

Fi(t)
M;
where w; is the natural frequency of the beam corresponding
to the mode shape [rads~ '], {; is the damping ratio [-] as
Ci = A\i/2M,w;, A; is the generalized damping [kgs™11, M;
is the generalized stiffness [kg] and F; is the generalized force

[N]. The reason why the modal equation is reduced into that
form is the fact that the damping ratio slowly varies according
to the mode [19]. Accordingly, general estimation of damping
ratio can be used for a specific system (e.g. heavily damped
system).

Moreover, rotation of blades causes a tensile load exerted
axially outward from the hub centreline. Such augmentation
contributes to increasing natural frequencies of the modelled
beam [22]. The modification of the natural frequencies due to
tensile load can be presumed with the following approximate
equation for a uniform cantilever beam:

Filpzo _ (1 P, (m)?)“
filp=o |Py| (kiL)?

where |Py|= 72 E1/4L? is the buckling load for a cantilever
beam [N], P, is the axial load [N], f;|p=o is the natural
frequency without the axial load [Hz] and f;|po is with the
axial load [Hz]. Note that k1 L and k; L are determined without
the axial load.

Finally, the time history of the dynamic response of the
structure can be obtained by using convolution integral which
sums the successive unit impulse responses.

(10)

N L
w(z,t) :Z@-(x)/ Fi(nhi(t —)dr (1)

i=1 0
where 7 is the instance when the corresponding force is

exerted on the structure [s] and h;(t) is the response function
of the beam to a unit impulse [skg~'rad—'].

C. Finite Volume Method

Incompressible Reynolds averaged Navier-Stokes (RANS)
equations were implemented in order to estimate the relevant
single-phased and Newtonian flow field’s time averaged mean
flow parameters. The RANS equations were computed with
the open-source code OpenFOAM 2.1 [23]. Unsteady RANS
equations are:

ouU;
9oy =0 (12)
ot 8xj - _;8% B Bx]- (13)
+i {V <6U,- n an)} L
afL'j ij &rl ¢

where U, and u; are the mean and the fluctuating velocity
components [ms~!], P is the mean pressure [Nm~2], v is
the kinematic viscosity [m2s~1], f; is the momentum source
term [ms 2] and 4, j are the index variables.

III. METHODOLOGY
A. BEMT - Structure Model Coupling

As is shown in Fig. 3, the BEMT code provides two
forces, namely thrust and tangential force exerted on the
centre of pressure of the relevant aerofoil, and one moment,
namely twisting moment, about the centre of twist due to
the twisting effect of thrust and tangential force. There are
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Fig. 4. A sketch of the computational domain. The solid black dot shows
the hub, the dark green cross-hatch circle represents the rotor disc, red and
blue vectors in the z-direction depict the velocity profile at the relevant plane.
Note that the profiles just in front of the domain present an arbitrary gust
occurrence.

several assumptions which facilitate the process that should
be noted. Firstly, the centre of pressure is assumed to be at
a fixed location, which is the quarter-chord point behind the
leading edge, for small angles of attack and it remains at this
fixed point whereas the angle of attack changes. Secondly,
the location of the centre of twist of the aerofoil section
is assumed to be identical to the location of the centre
of gravity of the same section. Although it is true for a
symmetric and homogeneous aerofoil, this fact may turn into
an assumption for a cambered aerofoil, which is considered
herein. Thirdly, tangential force contribution to the twisting
moment is neglected as it is an order of lower in magnitude
compared to thrust. In addition, twisting moment is the product
of thrust and the moment arm that is the right distance between
the centre of pressure and the centre of gravity. Further, the
orientation of area moments of inertia are assumed constant
even though this alters instantaneously when angle of attack
changes. Additionally, the change of the angle of attack, thus
the loading regime on the blade depends solely on the torsional
deflection. The flapwise and edgewise deflections are assumed
not to affect the angle of attack.

Thrust induces the flapwise deflection of the beam. In
addition, tangential force with the additional time-dependent
force components tangent to the rotation of the centre of
gravity induce the edgewise deflection of the beam. These
additional forces are due to the blade section’s self-weight
and the buoyancy force. Lastly, twisting moment induces
the torsional deflection of the beam cross-section. Flapwise,
edgewise and torsional deflections are obtained independently
from each other; consequently, it is presumed that there is no
coupling among these deflections.

For the dynamic deflection analysis, on the other hand, a
simple criteria is set in the BEMT code. Any inflow change
whose time scale is smaller than that of rotor rotation and
magnitude of velocity is 50% less or higher than that of quasi-
steady inflow anywhere on the rotor disc, e.g. a pocket of gust,
triggers the dynamic structure modelling code. The differences
occur in thrust, tangential force and twisting moment in
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Fig. 5. A side and front view of the computational domain from left to right.
The green region represents the hub. The dark green region shows the volume
where the momentum sources are applied. The narrow space between both
regions is for the passive part of the blade through which fluid can pass with
a drag penalty depends on the drag coefficient for a prescribed geometry.
comparison to those of quasi-steady inflow are multiplied by
the duration of the change. The continuous duration is divided
into very small short durations. With evaluating the obtained
continuous loading as successive unit impulses with very
short durations, the dynamic model produces time-dependent
deflection future histories of flapwise, edgewise and torsional
vibration depending on the specified damping ratio.

B. BEMT - Finite Volume Method Coupling

Similar to [24] and [25], as can be seen in Fig. 4 and 5, a part
of RANS computational domain which has identical circular
area of the actual rotor area is selected as an inner domain
by flagging the cell centres with a single cell thickness in
the stream-wise direction. The identified inner domain is sub-
divided radially into a number of annuli that has the same
number of blade elements in the BEMT code. The BEMT
code estimates the forces. Then the forces are transferred to
the RANS simulation via the momentum source terms, f;,
localized to the cell centres of the inner domain. Hence, the
inner domain becomes a time-varying source of momentum
depending on the blade forces. The estimated forces vary
radially; however, are uniform circumferentially. Note that
although actuator disk has zero thickness in the BEMT, this
identified zone has thickness due to the finite volume of the
selected cells contain the flagged cell centres. Estimated thrust
for each blade element is connected with the axial momentum
source term of the counterpart annulus, f;, [ms~2]:

6T 1/2pU2ASC,

=— = 14
pV pAL (14

f i
where V' is the relevant annulus volume of the inner domain
[m3] and L is the thickness of the annulus volume in the
stream-wise direction [m]. Estimated tangential force for each
blade element is connected with the tangential source term of
the counterpart annulus, fig [ms~2]:

L 6Q  1/2pU2 ASC,
CprVo prQAL

fio (15)
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where 0() is the estimated torque acts on the relevant annulus
[Nm], r is the distance from the hub centreline to the relevant
annulus’s cell centre on the rotor plane [m] and {2 is the
constant angular velocity of the rotor [rads™!].

On the other hand, the undisturbed velocity magnitudes
required by the BEMT code are determined from the inlet sec-
tion of the inner domain annuli instantaneously. The oncoming
stream-wise speed at the virtual disc is extracted for each
cell centres, where the momentum sources are implemented,
at each time step of the RANS simulation. Afterwards, the
extracted velocity magnitudes are circumferentially averaged
for each annulus. The obtained single velocity magnitude is
the disturbed velocity magnitude due to the fact that the
implemented momentum sources change instantaneously the
upstream velocity field. Therefore, an empirical correction is
demanded in order to transform the disturbed velocity mag-
nitude into an undisturbed velocity magnitude. The disturbed
velocity magnitudes for each annulus are corrected by the axial
induction factor from the previous time step.

IV. VALIDATION & VERIFICATION
A. The BEMT Code Verification & Validation

The new C++ version of Cwind was verified against the
original code. Fig. 6 and 7 show the variation in C),, and C}
predictions for the following set of data: the experiment [26],
BEMT [27], boundary element method [28], [29], vortex lat-
tice method [30] and finite volume method [31]. Two dataset of
C)p and C in zero yaw condition are considered: 20° hub pitch
angle - 1.73 ms—! & 25° hub pitch angle - 1.54 ms~! uniform
inflow speed. The geometrical and operational features of [26]
are input. The horizontal axis of both figures presents the tip
speed ratio (i.e. TSR), which equals to 0.502D/Upyp. As is
depicted in Fig. 6, the C}, estimations are in good agreement
for TSR between 4 - 7.5; however, TSR > 7.5 the code
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Fig. 7. Thrust coefficient estimations on a typical range of tip speed ratios

overpredicts the experimental results. As is shown in Fig. 7, the
C} predictions have reasonable agreement with the experiment
for 20° hub pitch; nevertheless, the code underestimates the
experimental results of 25° hub pitch in almost all of the TSR
range.

B. The Structure Model Code Validation

Static and dynamic structural codes were compared against
the commercial finite element code, ANSYS Mechanical
APDL version 13.0. The BEAM4 3-dimensional elastic beam
element was used in the validation process of all types of
deflections. Identical results are obtained, except a discrepancy
occurs in the torsional vibration validation where the modal
decomposition method deals with high frequency responses
less adequately in comparison to the low frequency responses
due to the fact that the domination of the number of initial
modes no longer exists [32].

V. THE CASE STUDY
A. The HAMCT Geometrical and Operational Properties

The geometrical properties of HAMCT of [26] given in [27]
are scaled by a factor of 25 to give a turbine diameter of 20m.
The material of the blade is taken to be T6082-T6 aluminum
alloy as used in the experiment [33]. Plus, seawater properties
are considered [34]. It is [26]’s interpretation that the 20° hub
pitch angle setting with TSR between 5-7 provides the most
efficient performance for the relevant rotor. Therefore, the
operational setting of 20° hub pitch and TSR of 5.63, which
ensures constant 1.73 ms~! inflow velocity of the experiment,
was studied.

B. The Modelled Blade Structure

In order to examine the effects of flexibility of a blade
on the structure deflection, three cantilever box beams are
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modelled. Those beams are labelled as ’stiff’, ’base’ and
’flexible’. Differences in flexibility is ensured by virtue of
changing the geometrical properties of the modelled beam.
Initially, the experimental blade’s root section (i.e. NACA63-
824) is uniformly extended to obtain the ’stiff” beam whilst
the actual geometrical characteristics of the blade root are
determined from XFOIL 6.97 [35]. Also, thickness of the
beam is adjusted to 0.05m. Further, the area moment of
inertia parameters of the ’stiff’ beam are all scaled down to
70% for the ’base’ (i.e. corresponds to approximately 18%
sectional area reduction) and 60% for the ’flexible’ beam (i.e.
corresponds to approximately 24% sectional area reduction).
The other properties are kept the same.

Damping estimations of the system due to fluid and structure
damping effects are lumped into a single parameter: damping
ratio, ¢ and three typical values are prescribed in order to
identify its relative impact. For a lightly, typically and heavily
damped system, ( is designated as 0.001, 0.01 and 0.1,
respectively [19].

C. The Modelled Gust

Steady-state inflow through the rotor disc is projected as
constant, uniform and equal to 1.73ms™! of the relevant
experiment. Dynamic flow, however, is designated as a pocket
of stream-wise disturbance encompassing the whole rotor
disc. This gust is assumed to be uniform radially and is
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Fig. 9. Thrust coefficient results of the case studies

superimposed on the steady flow. The characteristic length
scale of the gust is assumed to be equal to the rotor radius
in the stream-wise direction and its velocity scale is 150%
of that of the steady flow (i.e. 2.595m/s) in parallel to
the indications of the tidal field measurements [36], for the
extreme tidal flow circumstances. Approximately 3.85 s of
time scale of the gust, therefore, is ascertained from the above
estimations. Hence, such a period does not give a chance
to the turbine blades to adjust themselves; thus, resulting in
resisting this temporary hydrodynamic loading increase with
an unchanged configuration. All case studies below consider a
single identical step-wise gust occurrence for a finite duration.
A representation of a typical gust occurrence is shown in Fig.
4.

D. The Finite Volume Numerical Setting

1) Computational Domain Description: A succinct set of
dimensions of the Cartesian computational domain is given in
Fig. 5. The flow is towards the positive z-direction.

2) Discretization: A combination of structured and unstruc-
tured mesh is generated. Unstructured tetrahedral and hexahe-
dral elements are used for a cylinder with the radius of passive
blade along the domain in the stream-wise direction. The
rest of the domain is constructed with hexahedral elements.
The finite volume method with SIMPLE algorithm is used to
solve partial differential equations for the incompressible and
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Fig. 10. Flapwise deflection of the blades at the tip point at TSR 5.63

turbulent flow.

3) Boundary Conditions: Constant uniform velocity inlet
condition is applied upstream of the rotor disc plane with
1.73ms = in order to repeat the constant flow velocity condi-
tion of the experiment. Zero gradient pressure outlet condition
is deployed at the downstream. A slip wall condition is applied
to the lateral domain faces as well as the hub region in order
to block flow through whilst avoiding the wall boundary layer
resolution. Submersion depth effect is neglected because as is
claimed by [37] it has marginal effect on turbine wake.

4) Turbulence Model and Turbulence Properties: K - w
SST turbulence model is used in order to model the flow
around the rotor disk as [37] claims that the model performs
better compared to the other eddy-viscosity models for similar
studies. The ambient turbulence intensity is set down to 1%.
Turbulence length scale is estimated to be 5% of the size of
the computational domain inlet in the stream-wise direction.

VI. RESULTS - DISCUSSION
A. BEMT - Structure Model Coupling

1) Steady-state Case: With the help of the steady-state
structure model, the effects of two factors on the performance
parameters are attempted to be investigated briefly: the relative
flexibility of blades and constant rpm operation.

Fig. 8 and 9 plot the resulting C, and C; as a function
of TSRs from 4 to 8, respectively. The relevant isolated
BEMT code results are also arranged as a reference point in
the same figures. Additionally, at the top of each plot, the
relative change of the parameter in question as compared to
the reference result is depicted in units of percentage. The plots
demonstrate that the performance at each TSR has changed.

Firstly, taking the relative flexibility of blades into account,
as shown in Fig. 8, the C), remained at the reference level
with a minimal increase inversely proportional to the flexibility
until TSR of 5.3 for the three modelled cases. In contrast,
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Fig. 11. Edgewise deflection of the blades at the tip point at TSR 5.63

TSR 5.3 to 8, there is a gradual decline in C}, comparison
to the reference and is directly proportional to the flexibility
of the blade. Fig. 8, however, depicts a steady increase in C;
for the entire TSR range for all modelled blades whilst the
increase levels off and in general it changes in proportion to
the resilience of the blade up to TSR 7.5.

With this configuration, the blockage effect of blades in-
creases with flexibility due to the decline in twist angle.
Although lift-drag ratio is increased accordingly owing to
the increase in effective angle of attack, C), is decreased for
TSR>5.3. The reasoning behind it is that the twisting angle
is higher than the change of angle of attack; thus, resulting in
smaller induced velocity angle. In turn, lift contribution to the
rotation falls off whilst thrust goes up.

Secondly, the default operational setting, which is variable
rotor rotation speed with constant inflow speed, is changed
to another setting, which is fixed rotor rotation speed with
variable inflow speed, by keeping TSR identical. As can be
seen from Fig. 8 and 9, the trends of C, and C; remain the
same with the first case study with regard to the reference.
Nevertheless, the level of C), is lower than that of the first
case up to around TSR 6.10 where the inflow speeds of both
cases get equal each other. After this point, C}, becomes higher
compared to that of the first case for the rest of the TSR range.
In a similar fashion, the degree of C is higher than that of the
first case until TSR 6.10 whereas it is lower for the remaining
range of TSR.

This difference signifies the importance of the inflow speed.
For instance, from TSR 6.10 to higher TSRs, thrust, which
is accounted for the torsional deflection, is decreasing due
to the descending inflow speed. Torsional deflection decline,
therefore, is triggered and this leads to higher induced flow
angles.

2) Tidal-gust Effect on the Structure Response: By means
of the dynamic structure model, the effects of two factors on
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Fig. 12. Torsional deflection of the blades at the tip point at TSR 5.63

the level of deformation of the modelled blades are tried to
be studied in brief: the relative flexibility of blades and the
damping ratio.

Fig. 10, 11 and 12 present the estimated time-dependent
flapwise, edgewise and torsional deflections of the tip point
of the blade according to time from when step-wise tidal-gust
response starts at 0 s and ends at 3.85 s, in turn. The response
is monitored for 5 s. Between 3.85 s and 5 s, the blade freely
vibrates with damping according to the blade properties and
the position of the blade tip at the end of tidal-gust occurrence.
Each figure has six stacked sub-figures. From top to bottom
inside any of the figures, first three sub-figures illustrate the
modelled flexible blade response and the last three sub-figures
show the modelled stiffer blade response. Within any pile of
three sub-figures, from top to bottom, the specified damping
ratios are 0.001, 0.01 and 0.1, which increase ten-fold at each
case. The horizontal axis represents the time that the deflection
monitored in units of second and the vertical axes of the figures
of flapwise and edgewise deflections represent deflection in
units of meters and of the figure of torsional deflection presents
deflection in units of degrees as against the unstrained blade
configuration. Note that the horizontal axis of the figures is
composed of six identical ranged sub horizontal axes. Lastly,
in all figures, the red dashed line displays the static deflection
and the black line indicates the total deflection that is the
instantaneous summation of the dynamic and static deflections.

First, on account of the relative flexibility of blades, Fig.
10, 11 and 12 show that increase in flexibility contributes to
higher maxima of the deflections by comparison with those of
stiffer blade at any instant. Furthermore, the figures illustrate
that the amplitudes of the dynamic response are higher to some
extent for the cases corresponding to the flexible blades. Also
note that the oscillation frequency of edgewise deflection is
noticeably higher than that of flapwise deflection. Besides, the
response frequency of stiffer blade is minimally higher.

The reason why the difference in response frequency is

0.01

Stiff —<—

0.008

[m

0.006 | 1

Edgewise deflection

0.004 -

0.002 L L L L L
0 10 20 30 40 50 60

Time [s]

Fig. 13. Buoyancy effect on the static edgewise deflection at TSR 5.63

marginal is that the order of magnitude of increase in stiffness
of blade is balanced by the almost same magnitude of decrease
in mass of the flexible blade. On the other side, the higher
maxima likely means for upwind turbines that flexible blades
are more prone to the possibility of accidental strike to the
tower due to a tidal-gust whilst the clearance between the tip
of the blade and the tower is reduced. Moreover, edgewise
oscillation may pose a more serious crack problem to the blade
in parallel to the experience from wind turbines [38].

Second, taking the damping ratio on board, Fig. 10, 11
and 12 demonstrate that the increase in the damping ratio
comparatively results in narrower amplitude range and lesser
maxima of the deflections.

This highlights the significance of damping for a tidal
turbine operating in turbulent tidal conditions as an appropriate
artificial damping may significantly reduce the risks due to the
oscillation for even the flexible tidal turbine blade.

3) Buoyancy Force Effect: Fig. 13 summarizes the buoy-
ancy force effect on the static edgewise deflection of rotating
flexible and stiffer blades at the design TSR 5.63 for a minute.
The horizontal axis presents the monitoring time in units of
seconds and the vertical axis shows the static edgewise deflec-
tion in units of meters. The graph implies that the buoyancy
force due to the surrounding fluid reduces the amplitude range
of oscillation cycles.

B. BEMT - Steady-state Finite Volume Method Coupling

1) Grid Effect: In order to investigate the effect of number
of cells on the numerical results, two computational domains
with different grid density are prepared. The initial domain
contains 1.3M cells in total. The number of grid points are
increased 30% in all directions in order to generate the second
domain which contains 2.6M cells. The number of blade sec-
tions for the BEMT is 9 as is found that the number of sections
do not affect far downstream velocity profile. Fig. 14 shows
the axial wake velocity results obtained from both domains.
The horizontal axis presents the axial flow speed in the stream-
wise direction non-dimensionalized by the axial far upstream
flow speed and the vertical axis represents the distance from
the hub centreline, non-dimensionalized by the rotor radius.
The curves depict the axial wake profiles extracted from far
upstream and downstream locations at 1D, 3D, 5D and 7D
distant from the rotor plane. The mesh dependency effect
appears small except in the local vicinity immediately behind
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the hub. The near wake structure and its eventual transition to
a Gaussian far wake (>3D) is as expected, [39], [40].

2) Verification of BEMT - Finite Volume Method Coupling:
Table 1 summarizes the differences between the isolated
BEMT code (i.e. A) and the BEMT code - steady-state RANS
coupling (i.e. B) in terms of performance parameters. In the
view of results, the empirical correction estimation in order for
obtaining the undisturbed velocity magnitudes has produced
similar inlet velocity magnitudes to that of the isolated BEMT
code.

C. BEMT- Steady-state Finite Volume Method - Static Struc-
ture Model Coupling

Fig. 15 illustrates the axial wake velocity profiles obtained
from the BEMT - steady-state RANS coupling with (i.e. B)
and without (i.e. A) the static structure model. The number
of blade sections for the BEMT is 9. The plot properties are
identical to that of Fig. 14. In the light of the assumption that
either flapwise or edgewise deflection does not affect the blade
loading, one may conclude that the deflected blade structure
remains in the actuator disk plane in order not to violate the
fundamental BEMT assumptions. The graph indicates that the
two peaks in the 1D and the single peak in the 3D are more
prominent with the structure deflection. The single peaks at
the 5D and 7D downstream, however, depict a slight drop in
peak height.

The near wake length is decreased as 1D-B in Fig.15
indicates an earlier joining of two peaks. Besides, the lowered
wake velocity is shown with 3D-B in Fig.15. This reduction is
in-line with the C; rise due to the structure deflection, similar
to [37]’s statement. Finally, the small drop in peak height of
5D-B and 7D-B implies that the wake recovery is faster.

VII. CONCLUSIONS
In conclusion, a numerical fluid-structure interaction ap-
proach is proposed for tidal turbine blade assessment under
severe conditions in the earlier stages of the design. Apart
from its fundamental purpose of modelling the maxima of

TABLE I
VERIFICATION OF BEMT - RANS COUPLING AT TSR 5.63

Parameters A B Difference [%]
Power coefficient 0.449493 0.449491 4.45E-4
Thrust coefficient 0.776121 0.776125 -5.20E-4
Gross power [kW] 374.649 374.647 5.34E-4
Thrust [N] 374804 374806 5.34E-4

blade deflections accurately, it is aimed to obtain a method
which is less demanding of computational resources. To this
end, the developed method implements a flow solution using
OpenFOAM 2.1 coupled via axial and tangential momentum
sources with a C++ BEMT code to rapidly deduce a strip
wise sectional loading for the instantaneous inflow conditions
on each blade. Within the code a time-accurate Euler-Bernoulli
beam theory is used to predict the deformation and twist of
the blades. A group of numerical case studies are carried out
with an experimental tidal turbine that is scaled up to 20m
diameter. It is revealed for this configuration that: (i) the level
of flexibility likely affects the maximum deflection of blades
and performance of rotor depending on the configuration, (ii)
edgewise loading of a rotating blade becomes less violent with
buoyancy forces, (iii) a tidal-gust may considerably increase
especially the flapwise deformation and edgewise oscillations
of blades and (iv) blade deformation contributes to a different
wake development. In the near future, the focus will be on the
(1) investigation of tidal turbine blade response under more
realistic turbulent inflow conditions by using [41] and (ii) to
develop the method into a fully-unsteady manner.
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Introduction

Turbulent flow regimes are the norm in nature; thus, significant to consider in engineering applications. Yet, their
modelling poses substantial ongoing challenges. A physical model concept progressively adopted at many levels of
industry and academia is Large Eddy Simulation (LES). LES approximations are, however, known to be deterministically
and to a lesser extent statistically sensitive to spatiotemporal characteristics of inflow boundary conditions. Theoretical or
practical and stochastic or statistical delineation of these conditions in space and time is, on the other hand, proved to be
challenging mainly due to the complex nature of turbulence; hence, resulting in various methods. One important category
of such methods is the digital-filter-based synthetic turbulence generation methods (hereafter, DFM), originally proposed
by [1].

DFM transforms a random signal into a stochastically and statistically new signal involving a set of farget statistics
(predominantly consisting of 7. first & second-order one-spatial-point correlations and ¢i. two-spatial/temporal-point
autocorrelation functions). The transformation is performed by a train of arithmetic operations, which is often called
a discrete filter operator, or briefly a filter. Attributes and order of the operations in the filter are arranged by the target
statistics, so that the realized statistics of the new signal may match the rarget.

DFM has been preferred across a broad range of LES applications in the literature (more than a-thousand papers to date)
due to, in comparison to the other concepts, the easiness of its code implementation and its relatively low computational
cost for a satisfactory level of fidelity in synthetic turbulence realizations.

Although DFM was frequently utilised and various physical insights were acquired through LES depending upon
DFM, the relevant literature arguably lacks systematic evaluations of fundamental capabilities of DFMs, and clear-cut
conclusions/recommendations regarding inner parameters/mechanisms of DFMs. Instead, most method proposal papers
either used flows more complex than ‘building-block’ flows to assess their methods (e.g. no homogeneous isotropic/shear
turbulence study was carried out for the DFM variant of [2]) or the set of basic validation measures presented in
these papers was not extensive (e.g. [[1] did not provide any results for power spectral density function). The former
complicates the quantitative examination of cause and effect (or input-output) relations between model components and
their outcomes; thus, hampering attempts to theoretical capability-oriented improvements. The latter’s lack of structured
knowledge, on the other hand, obscures comparative decision-making for the most appropriate DFM variant to the problem
at hand. Furthermore, the output of DFM is limited to the Gaussian probability distribution function. By contrast, the
frequency of occurrence of various turbulence characteristics tends to follow non-Gaussian distributions. For instance, [3]]
reviewed the literature that kurtosis (i.e. the fourth standardized central moment) is approximately 2.85 (rather than 3.0)
for velocity fluctuations in homogeneous isotropic turbulence. Even more pronouncedly, [4] reported for Re, = 395 plane
channel flow that skewness (i.e. the third standardized central moment) and kurtosis vary across from -0.8 to 0.4, and from
2.1 to 38.0, respectively.

The aims of this research study are, therefore, . to systematically explore patterns in parameters-mechanisms of DFM
to fill the aforementioned knowledge gaps, and :. to add non-parametric non-Gaussian turbulence realization generation
capability into DFM. To this end, DFM is summarized in Sec. §2, the objectives of the research are elaborated in Sec. §3,
a sample of results is presented in Sec. §4, and concluding remarks alongside incomplete challenges are listed in Sec. §5.
It should be highlighted at this point that the suite of our DFM implementations of the current study is being implemented
into OpenFOAM+ community repository.

Theory

The mathematical essence of virtually all DFMs is three-fold. The first is the construction of {u; (z;,t) € Q"}, . (23} & [ieN:1<i<n}
as follows: u’ a11 a1z a13

| = lazn az ass| [s* s¥ YT 9]
w azip azz2 as3

uj(x4,t) ai; (24) st (w,t)



where u; is spatio-temporal-variant Reynolds-decomposed fluctuation velocity field, a;; spatial-variant amplitude tensor,
which complements one-point correlations into u/, and s® spatio-temporal-variant filter-applied random number field,
which incorporates two-point correlations into u;.
The second stage is the construction of a;; through [3]’s transformation as:

(Rl 1 )0'5 0 0

Qi; = R21/a11 (322 - 61%1)0'5 0 2

Rsi/a11 (Rs2 —aziaszi)/aze  (Rss — a%y — a3y)?s
where R;; is the known one-point correlation tensor.
The last stage is the construction of s?, where filtering is conducted. For a one-dimensional field of discrete points:

N
Sk = FN (I‘k) = Z bjrk+j (3)
j=—N
where {1} jen: 1<k+j<r} is a set of R random numbers obeying the amplitude distribution of zero-mean (R 2521 Ik =
0), unit-variance (R 31, 12 = 1), independent (R™ 31, ryrj = 0 for k # j&k = j + ¢) Gaussian white-noise,
{b}fjen: -n<j<n} a set of (2N + 1) unknown filter coefficients, {5} xen:1<k<my a set of M digital-filtered numbers,
Fn a linear, non-recursive, discrete filter operator performing the convolution summation on two finite sequences,
and N the support of the filter. Herein, the aim of DFM is to compute the set b according to the expected values
{E[fm(5)]} fmen:m>1y of various, known statistical measures f,,(s) (e.g. autocorrelation function of u;), so that
unknown s can be computed with the help of known a;; and r. Based upon this essence, DFMs diversify primarily
due to the different explicit/implicit expressions proposed for the relation between known E[f,,(s)] and unknown
b, and sometimes for a;;. To the author’s knowledge, eight research studies contributed model developments in
DFM: [} 16} 2,7, 18], and [9, 10, [11} [12], in which the former five put forth major changes, and the latter four propounded
adjunct; nevertheless, still important alterations.
For a non-Gaussian velocity field 9/, a generic analytic expression g; was sought which changes the first four standardized
central moments of u} to the desired values while keeping the other incorporated statistics the same such that: 9u}(z;,t) =
u}(x;,t)g;(x;). For this purpose, three approaches were proposed and tested: i. non-Gaussian random number set input-
based approach, i:. deterministic deconvolution-based approach, and 7i¢. probability mass function transformation-based
approach.
Methodology
Four DFM were implemented into OpenFOAM suite and tested through a test-bed. The methods sorted by descending
computational cost are: 7. di Mare et al. [6], ¢¢. Klein et al. [[1], ¢4¢. Xie-Castro [2] and ¢v. Kim et al. [[7]. The chosen
methods represent the majority of DFM capabilities and varieties. The test-bed involves three ‘building-block’ flows:
1. homogeneous isotropic turbulence (the case of M = 0.0508) [13]], <. homogeneous shear turbulence (the case of h
= 0.305) [14]], and éi. plane channel flow (the case of Re,=395) [4], each of which focuses on an isolated aspect of
turbulent flows. OpenFOAMv1612+ was used with the physical model of incompressible implicitly filtered LES (IFLES).
Sub-filter scales were modelled with Smagorinsky model (C, = 1.048, C}, = 0.02107) corrected by van Driest damping
function near the walls. Computational domain models replicated the physical domain of each benchmark scenario, and
domain discretization was made with unstructured rectangular cuboids. Pre-assessment for the spatial resolutions ensured
that maximum Courant number remains below the unity. Due to the inability of separating discretization errors and
IFLES modelling uncertainty errors, grid-independency is not possible for IFLES. Post-assessment of spatial resolution
is therefore performed by one-point and two-point grid estimators. Finite volume method was utilised for equation
discretization. Numerical integration of all spatial derivatives-variables, and node-to-face interpolations were held
through second-order central difference scheme. Backward differencing scheme of second order was used for numerical
integration of temporal derivatives-variables. The system of algebraic governing equations were then solved on a co-
located grid arrangement. Pressure-velocity decoupling at the practical and theoretical level were respectively removed
by a variant of Rhie-Chow momentum interpolation method and PISO algorithm. The inner mechanism of DFM was
divided into four consecutive building-block stages, so that the effects of each stage on statistics are isolated: ¢. random
number generation, ¢¢. incorporation of two-point spatiotemporal correlations through digital filtering, 7. incorporation of
one-point correlations through [5]’s transformation, and 7v. non-Gaussian transformation. To quantify-compare the level
of fidelity of each DFM’s flow reconstruction, the following statistical measures (mostly of the benchmark databases)
were used: profiles of i. standardized central moments, i¢. second-order one-spatial-point correlation tensor, iii. two-
spatial/temporal-point correlation functions, 7v. one-dimensional one-sided power spectral density functions, v. one-
spatial-point probability mass functions (pmf), vi. pmf's of velocity differences across various distances and vii. entrance
length.
Sample Results and Discussion
As an example illustration from the obtained results, one-dimensional one-sided power spectral density functions are
presented in Fig.[Tl What stands out in the figure is a sharp and flow-type-independent drop in the energy spectrum created
by [1] towards higher wavenumbers although the energy across large turbulence length scales match those observed in the
test-bed flows. In contrast, the other methods’ reconstructions are overall in better agreement with those in benchmarks
across the whole range of wavenumbers. The result may be explained by one of the major differences between the methods
that [1]] uses Gaussian-shape form for input correlation functions whereas [2,[7]] use an exponential form, and [6] an exact



form. In order to test this postulation, [[1]]’s form was converted into an exponential one. It was then found that the drop
disappears (not reported). This finding supports and suggests the view that exponential form of correlation functions is
more appropriate choice for turbulence correlations than Gaussian. Considering [[1]] is the most cited member of any DFM,
any insights utilised [1]] must therefore be re-interpreted with caution.

Moreover, non-Gaussianity studies showed that 7. the first two proposed approaches were proved to be ineffective, and :.
the third approach was found to be promising. Although a feasible method was mostly developed, it is still significant to
examine how the first two sound methods did perform.
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Figure 1: Estimated one-dimensional one-sided power spectral density functions obtained from four DFM for the building-

block flows: from left to right, homogeneous isotropic turbulence, homogeneous shear turbulence and plane channel flow.

Synthetic turbulence was generated on a discrete plane domain containing 2'* nodes. For each node, a time series consisting of

4 x 10* temporal points were created. Next, for each time-series, the power spectral density was estimated, and the estimations

were spatially averaged in homogeneous directions. In the estimation, Welch’s method with Hann window using 50% overlap

was used (length of each segment was set 512 temporal points).

Future Work

The following remains incomplete to reach the two aims of the study: ¢. prospective simulations of the test scenarios

need to be completed, and i:. the method-yielding-promising-results for non-Gaussian functionality needs to undergo a

formalization, and more extensive-various tests.
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As emphasized by [4], the governing equations for turbulent flows are extremely sensitive to inlet boundary conditions.
Lorenz [4] showed, for example, that an alteration in the streamwise velocity component initial condition merely at a
level of O (10’6) yields diverse instantaneous realizations in turbulent convection mechanisms. Large eddy simulation
(LES) is also subject to such sensitivity because of the direct computation of the governing equations for time-dependent
large-scale turbulent motions. Inlet boundary conditions for LES, therefore, must be carefully modelled. Yet, theoretical
and practical inlet turbulence generation is proved to be difficult mainly due to the complex nature of turbulence; hence,
resulting in various methods.

One important category of such methods is the digital-filter based synthetic turbulence generation methods, originally
proposed by [3], (hereafter, DFMs) refer to which accept a set of farget statistics and a discrete random signal as input,
and transform them mostly through mathematical techniques into a new deterministically and statistically different signal
representing the fluctuating component of a Reynolds decomposed turbulence parameter, ¢'(x,t). The transformation is
performed by a train of arithmetic operations, which as a whole is often called a discrete filter operator (filter). Attributes
and sequence of operations are arranged by the farget statistics, so that the realized statistics of the new signal may match
the farget. The major advantage of DFMs in comparison to the other methods is the easiness of their code implementations
and their relatively low computational cost for a similar level of fidelity for the generated turbulence realizations.
Despite the use of DFMs across a broad range of LES applications in the literature, the relevant literature arguably lacks
systematic and complete conclusions/recommendations regarding inner parameters/mechanisms of DFMs. For instance,
quantitative examinations for their modelling assumptions, input-output relations, best numerical implementation/usage
practices, and extensive comparative analyses across their variants are, in general, either unavailable or unorganized. Lack
of knowledge on such issues may, however, hamper theoretical and practical improvements for DFMs, and their correct
usage.

The aim of this research study is, thus, to systematically explore patterns in parameters/mechanisms of DFMs to fill these
knowledge gaps, and to propose and evaluate possible improvements. For this purpose, the objective is set to investigate
each building-block assumption of DFMs in a consecutive order, examine outcome realizations to reveal capabilities and
deficiencies of the method, and search for new extensions/inversions to remedy the quantified deficiencies.

Three methods representing general capabilities of DFMs are tested with and without LES: 7. [3], ¢3. [2]’s forward stepwise
method (FSM), and #¢:. [5]’s hybrid FSM-DFM. Their common point is that their applicability to most LES cases is
possible unlike, for example, [1] is limited to homogeneous shear flows in practice. Additionally, the test beds of the
methods involve: i. homogeneous isotropic turbulence, ii. homogeneous shear flow, ¢2¢. channel flow, and iv. backward
facing step flow, each of which helps to focus one isolated aspect of turbulent flows.

Initial quantifications showed two principal deficiencies in outcomes of DFMs: <. they are limited to Gaussian distri-
butions, and 7i. they lose energy near cut-off scales. In addition, initial work suggested that DFMs may provide more
sophistication at a lower computational cost. For the first time, accordingly, a new method was proposed in order to im-
prove DFMs to produce non-parametric non-Gaussian turbulence processes. Furthermore, two new methods for DFMs’
inner computations were developed, one reduced the floating-point operations per time-step (FLOPT) from O{N®}! to
O{N?3(3N)}, and the other reduced the FLOPT from O{N®} to O{N3log3(N)} for a typical LES computation.

In the final work, the characteristics/quantifications of DFMs’ parameters/assumptions/mechanisms, arguably in the
largest scale in the literature to date, and, the methods-yielding-promising-results, which will undergo formalization and
more extensive tests, will be presented.
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Table 1: The sample mean (i.e. fi1) and corresponding coefficient of variation (i.e. {#}/) of time-averaged spatial-
variant fields of five IFLES-quality post-metrics (i.e. I'pope, I'vy I'Celik-1, I'Celik-11, and I'celik-111) obtained from
the decaying homogeneous isotropic turbulence (DHIT), homogeneous shear turbulence (HST), and plane channel
flow with smooth walls (PCF) computations of the four digital-filter-based and forward-stepwise-based synthetic
time-series generators.

Method | fi1cy = D'pope r, Peelikr  T'cetiknr I Celik-111
Custom 0.9770,41 1.76418_07 0~9370.46 0.9372,21 0.9362_12
Klein et al. 0.9800,44 1.82216_59 0.9360,36 0.9391_45 0.9391_31

DHIT Xie-Castro 0.9850,30 1'73036.99 0.9370,30 0.9321_43 0.9321,22
Kim et al. 0-9750.48 1-77226.89 0.9370.50 0-9332.83 0-9322‘63
Custom 0.9470.77 7.30637_04 0.8751.52 1.08951_96 0.87863.75

HST Klein et al. 0.953()'71 8.00346_91 0.8701,60 1.05024,39 0-90426.82
Xie-Castro 0'9530.66 7.83722‘04 0.8711.57 ]-~0]-421‘98 0.92422.72
Kim et al. 0-9470.87 7.579111.34 0.8731,40 1-07089.28 0.906105,22
Custom 0-9298.67 1.23010_70 0.9470,29

PCF Klein et al. 09308.66 1'23]—10.87 0.9470,29

Xie-Castro 0~9308.69 1-23010.81 0.9470.29
Kim et al. 0.928&76 1-22910.65 0.9470,29

Table 2: Seven descriptive statistics of the time-averaged I'pope(x) spatial-variant fields: from the leftmost to the
rightmost column, the estimations of mean, standard deviation, skewness, kurtosis, maximum, median and minimum.

=

Benchmark Method 1 o M 2 Max Med Min
Custom 0.977 0.004 -1.931 16.266 0.987 0.978 0.684
Klein et al. 0.980 0.004 1.802 17.682 0.999 0.979 0.556

DHIT Xie-Castro  0.985 0.003 1.548 17.274 0.997 0.984 0.738
Kimetal. 0975 0.005 -2.782 31.398 0.986 0.977 0.504
Custom 0.947 0.007 -0.355 0.252  0.976 0.947 0.847
HST Klein et al.  0.953 0.007 0.317 1.029  0.980 0.952 0.933
Xie-Castro  0.953 0.006 0.049 0.235 0.978 0.953 0.933
Kim et al.  0.947 0.008 -0.624 0.025 0.971 0.949 0.802
Custom 0.929 0.080 -2.573 6.120 0.980 0.961 0.458
PCF Klein et al. 0.930 0.080 -2.562 6.021 0.988 0.961 0.480

Xie-Castro  0.930 0.081 -2.557 6.024 0.987 0.962 0.475
Kim et al.  0.928 0.081 -2.582 6.231  0.976 0.960 0.445




Table 3: Seven descriptive statistics of the time-averaged TI', (x) spatial-variant fields: from the leftmost to the
rightmost column, the estimations of mean, standard deviation, skewness, kurtosis, maximum, median and minimum.

Benchmark Method 1 e 7 2 Max Med Min
Custom 1.764 0.319 488.543 752365.327 535.32 1.674 1.378
DHIT Klein et al. 1.822 0.302 455.518 424499.612 365.488 1.807 1.291
Xie-Castro 1.730 0.640 1683.659 3370998.906 1469.935  1.717 1.407
Kim et al. 1.772  0.477 1033.414 1717421.129 902.502 1.669 1.363
Custom 7.306 2.706 710.047  1032664.268 4360.736  7.246 3.115
HST Klein et al.  8.003 3.754 853.124  1215278.736 6191.585  8.205 3.281
Xie-Castro  7.837 1.755 1.046 218.996 354.276 7.854  3.352
Kim et al. 7.579 8.438 1700.926 3456797.376 18410.885 7.412 3.89
Custom 1.230 0.132 1.486 2.031 1.844 1.194 1.011
PCF Klein et al.  1.231 0.133 1.516 2.085 1.850 1.195 1.012
Xije-Castro  1.230 0.133  1.487 2.003 1.850 1.194 1.011
Kim et al. 1.229 0.131 1.449 1.943 1.837 1.194 1.011

Table 4: Seven descriptive statistics of the time-averaged I'celik-1(x) spatial-variant fields: from the leftmost to the
rightmost column, the estimations of mean, standard deviation, skewness, kurtosis, maximum, median and minimum.

=

Benchmark Method 1 2 7 Y2 Max Med Min
Custom 0.937 0.004 -1.485 48.807 0.944 0.938 0.417
Klein et al.  0.936 0.003 -2.992 232.38  0.946 0.936 0.467

DHIT Xie-Castro  0.937 0.003 -6.357 884.612 0.943 0.938 0.295
Kim et al. 0937 0.006 -1.765 73.668 0.944 0.938 0.352
Custom 0.875 0.013 -0.125 7.693 0.916 0.875 0.191
HST Klein et al.  0.870 0.014 0.217 10.214 0914 0.868 0.164
Xje-Castro  0.871 0.014 0.324 -0.527 0913 0.870 0.471
Kimet al. 0873 0.012 -0.439 20.659 0.907 0.874 0.099
Custom 0.947 0.003 -1.339 1.664 0.952 0.948 0.935
PCF Klein et al. 0.947 0.003 -1.370 1.711 0.952 0.948 0.935

Xie-Castro  0.947 0.003 -1.341 1.630 0.952 0.948 0.935
Kim et al.  0.947 0.003 -1.30 1.578 0.952 0.948 0.935




Table 5: Seven descriptive statistics of the time-averaged I'celik-11(X) spatial-variant fields: from the leftmost to the
rightmost column, the estimations of mean, standard deviation, skewness, kurtosis, maximum, median and minimum.

=

Benchmark Method 1 e 7 Y2 Max Med  Min
Custom 0.937 0.021 0.673 1.654 1.163 0.932 0.739

DHIT Klein et al.  0.939 0.014 1.704 15.438 1.246 0.938 0.773
Xie-Castro  0.932 0.013 2.989 24.561 1.188 0.93 0.81
Kim et al. 0933 0.026 0.777 1.348 1.167 0.927 0.787
Custom 1.089 0.566 -65.586 350468.792  496.023  1.066 -549.239

HST Klein et al.  1.05  0.256 -1159.041 2224036.659 18.697 1.055 -503.639
Xie-Castro  1.014 0.223 609.624 1425706.669 380.388  1.007 -230.211
Kim et al. 1.07 0.956 -601.424 2498816.151 1363.767 1.057 -1807.874

Table 6: Seven descriptive statistics of the time-averaged I'celik-111(X) spatial-variant fields: from the leftmost to the
rightmost column, the estimations of mean, standard deviation, skewness, kurtosis, maximum, median and minimum.

=

Benchmark Method 1 e 7 2 Max Med Min
Custom 0.936  0.020 0.347 0.240 1.000 0.932 0.739

DHIT Klein et al.  0.939 0.012 0.193 3.855 1.000 0.938 0.754
Xie-Castro  0.932 0.011 0.917 6.626 1.000 0.930 0.810
Kim et al.  0.932 0.025 0.355 -0.126 1.000 0.927 0.787
Custom 0.878 0.560 67.918 365975.095  551.239  0.922 -494.023

HST Klein et al.  0.904 0.243 1363.489 2761521.425 505.639  0.922 -16.697
Xie-Castro  0.924 0.210 -729.373 1812852.472 232.211 0.931 -378.388
Kim et al. 0.906 0.954 605.306 2519999.512 1809.874 0.933 -1361.767
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