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INFLOW TURBULENCE GENERATION: APPLICATIONS TO HORIZONTAL

AXIS TURBINES

by Kutalmis Bercin

The main aim of this study is to create an easy-to-reproduce knowledge unit wherein

the digital-filter method-based (DFM) and forward-stepwise method-based (FSM) syn-

thetic inflow generator classes are conceptualised, explored, and improved for large eddy

simulation applications (LES). To this end, the following novelties were introduced: [i]

both classes were abstracted and documented into four non-CFD and five CFD model

stages, [ii] two new DFM variants were derived, [iii] with these two, four preexisting

DFM-FSM variants were code implemented, [iv] a new analytic function that can trans-

form the skewness-kurtosis of synthetic inflow to target values without changing exist-

ing statistics was derived and verified, [v] two other skewness-kurtosis transformation

approaches were derived and proved ineffectual, [vi] five easy-to-code computational

speedup techniques for DFM-FSM were introduced and quantified, [vii] two new meth-

ods to enable DFM-FSM to be computed on nonuniformly-discretized arbitrary bound-

ary geometries were developed, [viii] a preliminary method to ensure the divergence

freeness in DFM-FSM was studied, [ix] each DFM-FSM model stage was evaluated

by controlled studies of extensive-than-the-literature range of input variables and out-

put statistics within non-CFD and LES environments through decaying homogeneous

isotropic turbulence, homogeneous shear turbulence and smooth-wall plane channel flow,

[x] five LES post-solution verification approaches were reviewed and compared via these

building-block flows. In addition, horizontal axis wind and marine turbine flows were

explored by various means including DFM-FSM: [xi] for these explorations, in-house

codes were written and verified for the blade element momentum theory (BEMT), the

time-accurate Euler-Bernoulli beam theory, a BEMT-CFD coupling through the actua-

tor disk method, and the actuator line method, [xii] hydrodynamics of a marine turbine

under decaying homogeneous isotropic turbulence with four different turbulence inten-

sities were investigated by wall-modelled & actuator-line modelled LES computations,

and twelve analytical wake models, [xiii] the arbitrary mesh interface technique under

turbulent inflows was quantitatively assessed, and lastly, [xiv] considerable amount of

for-the-first-time observations and remarks were quantified and reported.
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varsın, Dilişim. I am absolutely indebted to my lovely mother, Ayşe Berçin, for her subjective
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Chapter 1

Introduction

1.1 Motivation

The primary objective of low carbon/renewable energy technologies on the basis of public

reason is to reduce mainly CO2 emissions from energy sectors in order to contribute to

meet the Kyoto Protocol obligations [31]. To date, the largest source of CO2 emissions

among energy subsectors is the electricity generation sector [13, p. 2] and this forms

(with heat generation) almost 42% of global CO2 emissions [15, p. 10, Fig. 10]. Moreover,

with the current policies in use, CO2 emissions stemming from the energy sectors were

projected to increase by nearly 84% from 2009 through 2050 [14, p. 7]. It is therefore

argued that the compliance of the Kyoto commitments could not be fulfilled without

low carbon/renewable energy technologies.

As a “good news story”, the last two decades have seen a noticeable development and

proliferation of utility-scale wind energy, which also underlay marine energy technolo-

gies.1 The average levelised cost of (onshore) utility-scale wind power plants reduced

more than three times from 1980s to the early 2000s [19, p. iv, Fig. ES-1], to that of

conventional/advanced coal and nuclear power plants [32, Table 1-2]. In parallel, the

utility-scale power conversion from wind was increased by a factor of more than 45 at

approximately 22% per year from 1990s to 2010 in the world [12, p. 7], and 2.5% of the

global electricity demand was provided by wind power plants within the year of 2013 [14,

p. 5]. In addition to its increased competitive capacity, the future role of wind energy

within the energy sector gained further importance due to its weak correlation between

electricity costs and fossil fuel price variations, its more secure energy supply, and its

1 Dynamics and prospectives of horizontal axis wind and marine turbines are in general deemed to
share similarities. For instance, a technical challenge in one of them may also be observed in the other,
or a numerical methodology being used in analyses for either of them may be utilised for the other.
Therefore, in this section, the motivational line of reasoning and relevant examples were limited to wind
turbines, and their applicability on marine turbines was presumed.

1



2 Chapter 1 Introduction

potential contributions to emission reductions (no direct greenhouse gas/pollutant emis-

sion). As a result, the International Energy Agency [14, p. 5] predicted that 12% the

global electricity supply will be provided by wind energy by 2050, yet five years later,

the rising trend led to a revision in this prediction as 15-18%.

Research and development studies (R&D) has been the primary instrument in tackling

technical challenges in wind turbines to date [12, p. 2]. Also, a further decrement of

25-45% in current costs of wind energy is projected solely based on R&D by 2050 [14,

p. 5]. The estimated period of time for resolving non-technological issues related to

policies, finance and public acceptance is anticipated to be considerably short, and to

be completed by 2020 among many International Energy Agency member countries [14].

However, the estimated time-frame for technical challenges extends to 2030-2050 [14,

12]. It is therefore put forth in this study that wind energy technologies should be

further developed as a matter of priority to reach the aforementioned targets whilst

non-technological challenges are deemed to be of secondary importance.

Inflow through the rotor plane of a turbine is almost always spatiotemporal-variant due

to the atmospheric boundary layer, surrounding terrain, vegetation, wake ingestion from

neighbouring turbines, to name but a few. This poses significant technical challenges

particularly to the development of rotating components of utility-scale wind turbines [5,

p. 1072]. Also, the importance of dealing with these challenges manifests itself in records

of downtime events. For example, [23, p. 1] reported based on analyses of downtime

durations of wind turbines in Germany from 2003 to 2007 that the most frequently failed

first three turbine components respectively were gearbox, generator, and blades, which

are all rotating elements. Additionally, failures of these components are considered the

most unfavourable since they are at the centre of energy conversion processes and system

dynamics. As an example, [23, p. 1] maintained from the above downtime analyses that

the maintenance, and if need be, replacement of gearboxes shared nearly 40% costs of

an entire turbine system.

A positive correlation between the number of malfunctions in wind turbines and turbu-

lent wind conditions was noted by [3, p. 644] through analyses of wind turbine field data

from Germany and Denmark. Furthermore, [24, p. 191] postulated that uneven loads

caused by turbulence may be the primary reason for gearbox failures. Turbulence may

also cause undesired oscillations in mechanical element, load imbalances, exceedances

of the rated power, amplifications of bending moments, hence increments in fatigue

loads [29, p. 14], and swift-substantial power fluctuations considering typical response

rate of mechanical circuits is order of milliseconds [21, p. 2249]. Moreover, turbulence

was quantified as the second most influential parameter to power after mean wind speed

and before wind shear by [6] analysing roughly two thousand computations from a stan-

dard industrial turbine design tool. Even more significantly, [10, p. 255] asserted that

encountering turbulence likely plays a role in the decision processes that the wind tur-

bine industry avoids a number of wind turbine designs, which still has been studied in
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the academia, e.g. variable speed stall/active stall controlled turbines. Consequently,

assuming these deductions reflect the actuality, turbulence may be more costly than

assumed for wind turbines.

According to [12, p. 2-4], there are 46 technical issues which need to be addressed in

priority over the rest of the issues. As far as inflow-blade interactions are concerned, two

of these issues were highlighted as driving forces of future cost reductions: i. concepts of

rotor, i.e. blades and hub, and ii. time-accurate incoming wind assessment [19, p. vii].

Regarding the first driving mechanism, there is a trend towards taller and larger-in-

diameter rotors to increase the amount and rate of wind energy conversion. One of the

largest rotors today is 164[m] in diameter with 80[m]-long rotor blades [36]. Such a

size is approximately more than ten times larger in comparison to turbines from mid-

1980s [7, p. 30]. Although this trend may level off or even reverse itself in the future (e.g.

127[m] with 7.5[MW] rated power turbine [38] was erected, yet larger-yet-less-powerful

turbines could be found such as 154[m]-7.0[MW] turbine [26]), it is argued that a typical

utility-scale turbine’s rotor diameter will remain above 100[m] considering upscaling

rotors up to 250[m] was found technically feasible [8, p. 12], and examples of relevant

studies/projects such as 141[m]-10[MW] design [9], [30, p. 12] were present. However,

larger rotors result in increments in blade flexibility. In addition to this, the emergent

need for lighter materials/structures to alleviate rotor weight increases due to diameter

enlargements further augments the blade flexibility. As a consequence, blades may

become more prone to adverse effects of incoming flow conditions such as turbulence.

With regard to the second driving mechanism, the research trend is towards develop-

ments for non-intrusive measurement techniques [14, p. 28] and numerical modelling

for the spatiotemporal-varying nature of incoming flow. Nevertheless, spatiotemporal

characterisation of inflow is not possible to high extents with the contemporary wind

measurement devices (e.g. cup anemometers) [22, p. 33], or the inflow models given in

the IEC Standard 61400-1 [28].

In principle, the direct numerical simulation technique can be utilised to characterise

and evaluate inflow full-scale scenarios. However, to date, no adequate computational

resources exist to explore such high Reynolds number flows involving complex inflow-

turbine interactions.

A trending compromise between fidelity and computational costs to investigate inflow-

turbine interactions has been the large eddy simulation technique, which offered first

principles to industry and academia with low-cost scalability. Advancements, however,

brought new challenges, especially for spatiotemporal-variant inflow boundary condition

modelling of convection-dominant flows. As a consequence of chaotic turbulence dynam-

ics, stochastic and/or statistical characterisation of such boundary conditions was found

to be arduous, yet rewarding. Therefore, various inflow turbulence generation methods

were put forth to date.
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Two important generator classes among diverse inflow turbulence generation methods

are the digital-filter method-based [18] and forward-stepwise method-based [39] synthetic

inflow turbulence generators, on both of which there is a growing body of literature that

recognises their promising capabilities.

Relative to their various alternatives, both methods are easier-to-code, cheaper-to-run,

and able to generate spatiotemporal-variant turbulence-like time-series that contains

first- and second-order statistics. Moreover, unlike many other alternatives, both classes

do not require a computational fluid dynamics (CFD) setup, which make their compu-

tations in non-CFD design tools possible. On top of these, the inner tools constituting

these classes are shared by various disciplines such as turbulence modelling community,

signal processing, statistics and finance, to name a few. Being subject to research studies

for further developments from many angles gives another advantage to the two classes

to make advances through knowledge transfers. Nonetheless, as elaborated throughout

the thesis, there are still many aspects to be explored and improved.

Accordingly, with explorations of inflow-turbine interactions also in mind, this study

has set its aim to create an easy-to-reproduce knowledge unit wherein the digital-filter

method-based and forward-stepwise method-based synthetic inflow generator classes are

conceptualised, explored, and improved for large eddy simulation applications, particu-

larly of involving horizontal axis wind and marine turbines.

1.2 Outline

This thesis is designed as a three-paper thesis, and is composed of seven chapters includ-

ing the Introduction. In the pages that follow, the remaining of the thesis is structured

as follows:

In Chapter 2, the fundamental governing equations of incompressible single-phase fluid

dynamics are briefly derived, and presented.

In Chapter 3, the three paper-structured research studies are summarised.

From Chapter 4 to 6, the three paper-structured research studies are presented. The

titles of these papers respectively are:

• Paper-I: Exploration of digital-filter and forward-stepwise synthetic turbulence gen-

erators and an improvement for their skewness-kurtosis

• Paper-II: Evaluation of digital-filter and forward-stepwise synthetic turbulence gen-

erators with large eddy simulation of three canonical flows, and various model en-

hancements
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• Paper-III: Large eddy simulation and analytical wake model investigations on hy-

drodynamics of a marine turbine under decaying homogeneous isotropic turbulence:

Freestream turbulence intensity effects

In Chapter 7, i.e. Appendix, one peer-reviewed conference paper, and two accepted

conference abstracts are presented. The titles of these papers respectively are:

• (Presented) Efficient method for analysing fluid-structure interaction of horizontal

axis tidal turbine blades

• (Presented) OpenFOAM-Exploration of digital-filter-based synthetic turbulence gen-

eration methods and an improvement to their non-Gaussian capabilities

• (Presented) An evaluation of digital-filter based synthetic turbulence generation

methods and improvements to their quantified deficiencies





Chapter 2

Governing equations

2.1 Reynolds transport theorem

As noted by [27, p. 98], the original forms of the physical laws relevant to incompressible

fluid mechanics, namely i. the conservation of mass and ii. Newton’s second law of

motion1, were formalized for isolated systems through which neither energy nor mass is

allowed to pass.

The Reynolds transport theorem adapts these forms of the physical laws to arbitrarily-

deformable and -moving open systems through which either energy or mass can pass,

so that the laws could be applied to practical problems of fluid mechanics. The reader

is referred to [25] for the theorem’s derivation and its mathematical insight. The final

form of the theorem can be expressed as follows [25]:

dF(t)

dt︸ ︷︷ ︸
1

=

∫
Ω(t)

∂

∂t
f(x, t) dΩ

︸ ︷︷ ︸
2

+

∫
∂Ω(t)

f(x, t) (u · n) d (∂Ω)

︸ ︷︷ ︸
3

(2.1)

where Ω(t) is the time-variant material volume, ∂Ω(t) the time-variant boundary of the

material volume, n the boundary-normal unit vector, u the velocity of the boundary

elements, f(x, t) is an arbitrary quantity with an intensive property which could be a

zeroth-, first-, or second-order tensor, and F(t) the volume integration of f(x, t) such

that F(t) =
∫

Ω(t) f(x, t) dΩ, an extensive property. The first term expresses the net rate

of change of F(t) within the material volume, the second term the rate of change of

creation/destruction of F(t) due to sources/sinks within the volume, and the third term

the rate of inflow/outflow flux of F(t) through the boundaries.

1More precisely, Euler’s second law of motion which extended Newton’s second law of motion to make
it applicable to rigid bodies instead of idealized point masses [17].

7



8 Chapter 2 Governing equations

Let G(f(x, t)) be a mathematical operator that performs the entire Reynolds transport

theorem onto the arbitrary quantity f(x, t). The conservation of mass and (linear)

momentum equations can then be obtained by replacing the argument of the operator

G with m and mu, respectively:

G(f(x, t)) =

conservation of mass if f = m

conservation of momentum if f = mu
(2.2)

Two further simplifications can be made: First, the third term of Eq. 2.1 can be trans-

formed into a volume integral by means of the divergence theorem. Second, the volume

integration can be entirely removed to obtain a differential form of the theorem by the

Leibniz’s integral rule through assuming time-invariant Ω(t) = Ω, and collecting all the

terms on the left-hand side with a proper sign convention. Both steps are shown as

follows:
dF(t)

dt
=

∫
Ω(t)

∂

∂t
f(x, t) dΩ +

∫
Ω(t)

∇ · (f(x, t)u) dΩ (2.3)

∂f(x, t)

∂t
+∇ · (f(x, t) u) + b = 0 (2.4)

where the second term of Eq. 2.1 is assumed to be the net source within the material

volume. This form is called differential or strong form of the equation. Moreover, the

equation is in the conservative form. The non-conservative form can be obtained if the

divergence term is expanded into its components and then the continuity constraint is

applied. Their difference is often significant due to peculiar implications of numerical

implementations since their discrete forms are not the same.

2.2 The equation of the conservation of mass

The conservation of mass equation can be obtained by means of replacing f(x, t) in

Eq. 2.4 with mass m(x, t). Assuming b = 0:

∂m(x, t)

∂t
+∇ · (m(x, t)u) = 0 (2.5)

m(x, t) can be expressed as m(x, t) = ρ(x, t)δxδyδz where ρ(x, t) is the volumetric mass

density, and δxδyδz the dimensions of the time-invariant volume Ω. Eq. 2.5 can therefore

be:
∂ρ(x, t)

∂t︸ ︷︷ ︸
1

+∇ · (ρ(x, t)u)︸ ︷︷ ︸
2

= 0 (2.6)
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where the constants δxδyδz in both terms are cancelled out. The first term represents

the local rate of change of volumetric mass density ρ(x, t) = ρ, and the second term the

convective rate of change of mass flux2, ρu.

The second term of Eq. 2.6, the divergence of a scalar-multiplied vector, can be expanded

as in the following:

∇ · (ρu) = (∇ρ) · u + ρ (∇ · u) (2.7)

Two assumptions are made. First, the Boussinesq approximation for density which

results in the omission of density variations within flow. Therefore, (∇ρ) · u = 0 since

(∇ρ), that is variations of the volumetric mass density within the field of interest at an

instant, is null [4].

The second is the assumption of the incompressibility of the flow, which implies ∂ρ/∂t =

0. Accordingly, Eq. 2.7 evolves into the following since ρ 6= 0:

∇ · u = 0 (2.8)

The applicability of the incompressible flow assumption to wind turbine flows

In wind turbine aerodynamics, the incompressible flow assumption is the norm. One rea-

son is that the blade-tip maximum-Mach number is a priori constrained to 0.3 in nearly

all designs in order to protect blades from the effects of compressibility at the blade-

tip [33]. Further increase in the tip speed will reduce blade solidity as well as increase

the chances that peculiar flow events occur; hence, a blade may become more prone to

various damages. For example, one of the largest wind turbines, V164-8.0MW [35], was

designed with the tip-nominal-Mach number 0.26. Another reason is, as noted by [11],

the low-Mach number flow around the blade-root, i.e. as low as 0.01, which makes solving

the equations of compressible flow arduous in this flow regime.

2.3 The equation of the conservation of (linear) momen-

tum

The conservation of (linear) momentum equation can be obtained by means of re-

placing f(x, t) in Eq. 2.4 with m(x, t)u(x, t), or equivalently for the current scope,

ρ(x, t)u(x, t) = ρu. With b 6= 0:

∂(ρu)

∂t
+∇ · (ρuu) = b (2.9)

2Note that the units of flux and flow rate are m-2s-1, and s-1, respectively. e.g. The units of mass
flow rate is then kg s-1.
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A number of manipulations is made in order to simplify Eq. 2.9 as follows. First, the

local derivative term is decomposed:

ρ
∂u

∂t
+ u

∂ρ

∂t
+∇ · (ρuu) = b (2.10)

Further, the divergence term of the product of the scalar volumetric mass density ρ, and

the dyadic velocity tensor uu are decomposed:

ρ
∂u

∂t
+ u

∂ρ

∂t
+ (∇ρ) · (uu) + ρ∇ · (uu) = b (2.11)

The dot product of the vector ∇ρ and the dyadic tensor (uu), and the divergence of the

dyadic tensor ∇ · (uu), can also be further decomposed:

ρ
∂u

∂t
+ u

∂ρ

∂t
+ (∇ρ · u) u + ρ (u · ∇u) + ρ (u (∇ · u)) = b (2.12)

Rearranging this equation by the distributive law yields:

ρ

{
∂u

∂t
+ u · ∇u

}
+ u

{
∂ρ

∂t
+∇ρ · u + ρ (∇ · u)

}
= b (2.13)

The second term on the left-hand side of the above equation reduces to zero due to the

Boussinesq approximation for density and the conservation of mass:

u

{
∂ρ

∂t
+∇ρ · u + ρ (∇ · u)

}
= u

{
∂ρ

∂t
+∇ · (ρu)

}
= 0 (2.14)

Therefore, the final equation of the conservation of (linear) momentum is:

ρ
∂u

∂t︸︷︷︸
1

+ρu · ∇u︸ ︷︷ ︸
2

= ρ
Du

Dt
= b (2.15)

where the first term represents the rate of change of momentum within the volume, the

second term the net inflow rate of momentum through the boundaries of the volume, b

the momentum source, and D(.)/Dt ≡ ∂(.)/∂t+u ·∇(.) the material derivative operator.

Navier-Stokes equations

Cauchy broke down the right-hand side of Eq. 2.15 into the terms due to i. surface

forces, and ii. body forces [2]. The difference is that body forces act across a given body

whereas surface forces act solely on the bounding surface of the body. This resulted in

the so-called Cauchy momentum equation:

ρ
Du

Dt
= bsurface + bbody = ∇ · σ + bbody (2.16)

where σ is the second-order Cauchy stress tensor.
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bsurface can be further compartmentalized with regard to the direction of the surface

forces, and this can be represented within the Cauchy stress tensor:

bsurface = bpressure + bviscous shear + bviscous normal (2.17)

where pressure forces are normal to the bounding surface in a compressive way, viscous

normal forces normal to the surface in a tensile way, and viscous shear forces parallel to

the bounding surface.

Accordingly, the elements of Cauchy stress tensor can be expressed as:

σ =

τxx − p τxy τxz

τyx τyy − p τyz

τzx τzy τzz − p

 (2.18)

A common rearrangement to Cauchy stress tensor is to express the elements of pressure

and viscous terms in two separate tensors, mostly due to their distinctive effects. Addi-

tionally, viscous term vanishes if no velocity gradient exists (fluid at rest) [16]; therefore,

pressure can be examined by itself.

σ =

−p 0 0

0 −p 0

0 0 −p

+

τxx τxy τxz

τyx τyy τyz

τzx τzy τzz

 = −pI + T (2.19)

where I is the unit tensor, and T viscous (deviatoric) stress tensor, which is the difference

between the total (Cauchy) and mean (hydrostatic) stresses [16].

Taking the divergence of Eq. 2.19 in order to substitute it into Eq. 2.16 yields:

∇ · σ = ∇ · (−pI + T) = ∇ · (−pI) +∇ ·T

= − (∇p) · I + (∇ · I) p+∇ ·T
(2.20)

where − (∇p) · I is equal to −∇p, and ∇ · I = 0. Substituting the simplified expressions

into Eq. 2.16 produces:

ρ
Du

Dt
= −∇p+∇ ·T + bbody (2.21)

Cauchy momentum equation is valid for all mediums (e.g. liquid and gas). The differ-

ence stems from the dissimilar constituent relations between “known” u and unknown

τ , which are required due to the less number of equations than that of unknowns in

Eq. 2.21. It is stated that [34] the viscous stress terms can be modelled as a function of

corresponding strain rates, hence velocity gradients.

In order to establish such a viscous stress tensor-velocity gradient tensor relationship,

a number of criteria, named Stokes’ axioms, need to be fulfilled [1]: i. no shear stresses

are generated (i.e. ∇ · T = 0) when the fluid is at a standstill, ii. viscous stresses and
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corresponding velocity gradients are linearly correlated, thus a Newtonian fluid, and iii.

T is the same in all orientations (i.e. isotropy).

An explicit expression for this relation can be obtained by analysing the velocity gra-

dient term. While any tensor can be separated into its symmetric and anti-symmetric

components, the velocity gradient term can also be split into its parts:

∇u = S + Ω (2.22)

where S is the second-order strain rate tensor (symmetric) and Ω the second-order

rotation rate tensor (anti-symmetric). It is assumed [1] that viscous stresses are produced

solely by the local rate of deformation (i.e. S) and Ω is responsible for only orientation

changes of bodies in question. In detail, S is expressed in terms of the velocity gradient

tensor as follows:

S =
1

2
(∇u +∇uᵀ) (2.23)

The final expressions of the constitutive relations are shown for normal- and viscous

shear stresses in Einstein notation, respectively:

τii = 2µ
∂ui
∂xi

+ λ
∂uk
∂xk

(2.24)

where µ = µ(T ) is the first proportionality coefficient of viscosity, and λ = λ(T ) the

second coefficient of viscosity both of which are functions of temperature T . The former

relates the linear deformation to the viscous stresses, and the latter relates the volumetric

deformation (i.e. ∂uk/∂xk = ∇ · u) to the viscous stresses [34].

τij = τji = µ

(
∂ui
∂xj

+
∂uj
∂xi

)
= 2µSij (2.25)

The viscous stress tensor, T, therefore, can be expressed in terms of the strain rate

tensor as follows:

T =

2µSxx + λ∇ · u 2µSxy 2µSxz

2µSyx 2µSyy + λ∇ · u 2µSyz

2µSzx 2µSzy 2µSzz + λ∇ · u

 (2.26)

Eq. 2.26 is the compressible flow, Newtonian fluid Navier-Stokes equations. In order to

impose the incompressible flow assumption, two further assumptions are made: i. The

total volume of the body in question is preserved (i.e. ∇ · u = 0), and ii. temperature

is constant, hence the constant first coefficient of viscosity, µ. Moreover, the second

coefficient of viscosity λ automatically goes to zero since it is inherently related to

volume changes, which are assumed to be null through the first assumption above.

Expansion of ∇ · T in each direction reveals a term of divergence of velocity, which is

null. As an example, the rearrangement of the z-direction component of ∇ ·T is shown
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below:

(∇ · T)z =
∂

∂x
(2µSzx) +

∂

∂y
(2µSzy) +

∂

∂z

(
2µSzz +���

�:0
λ∇ · u

)
=

∂

∂x

{
2µ

1

2

(
∂u

∂z
+
∂w

∂x

)}
+

∂

∂y

{
2µ

1

2

(
∂v

∂z
+
∂w

∂y

)}
+

∂

∂z

{
2µ

1

2

(
∂w

∂z
+
∂w

∂z

)}
=

∂

∂x

{
µ

(
∂u

∂z
+
∂w

∂x

)}
+

∂

∂y

{
µ

(
∂v

∂z
+
∂w

∂y

)}
+

∂

∂z

{
µ

(
2
∂w

∂z

)}
= µ

∂2u

∂x∂z
+ µ

∂2w

∂x2
+ µ

∂2v

∂y∂z
+ µ

∂2w

∂y2
+ 2µ

∂2w

∂z2

= µ
∂

∂z���
���

���
�:0{

∂u

∂x
+
∂v

∂y
+
∂w

∂z

}
+ µ

∂2w

∂x2
+ µ

∂2w

∂y2
+ µ

∂2w

∂z2

= µ∇2w

(2.27)

As a result, ∇ ·T reduces to µ∇2u ≡ ∇ · (µ∇u).

Finally, the differential form of incompressible flow, Newtonian fluid, single-phase Navier-

Stokes equations can be expressed as follows:

ρ
Du

Dt
= −∇p+ µ∇2u + Fbody (2.28)

Space-filtered Navier-Stokes equations

Reynolds decomposition

Let φ(x, t) is defined in a spatial domain Ω ⊆ Ri where i = 1, 2, 3 and in a temporal

domain t ∈ [0, tfinal]. Reynolds decomposition is a signal decomposition method in which

the original signal φ is separated into a term on which a chosen “averaging” operator is

applied, φ, and the rest, φ′. Although “time-averaging” is mostly utilised as the operator,

other types of averaging are also eligible for the Reynolds decomposition [37, p. 529]. For

instance, with an arbitrary linear filter (·), φ can be expressed as a summation of an

over-filter component φ, and a sub-filter (fluctuation) component φ′ around this filtering:

φ(x, t) = φ(x, t) + φ′(x, t) (2.29)

The properties of Reynolds conditions

Any averaging operator utilised for Reynolds decomposition needs to fulfil a number of

requirements known as “the Reynolds conditions” [20, p. 207] shown in the following:

φϕ = φϕ (2.30)
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Linearity:

φ+ ϕ = φ+ ϕ (2.31)

cφ = cφ & c = c→ c = constant (2.32)

Commutativity:
∂φ

∂s
=
∂φ

∂s
s = (x, y, z, t) (2.33)

Furthermore, φ′ ϕ′ 6= 0. Yet this assertion is true if and only if a correlation exists

between φ′ and ϕ′ [34, p. 64].

The set of space-filtered governing equations

Considering the aforementioned remarks, the application of a linear space filter on

Eq. 2.28 and the expansion of the first term3 of Eq. 2.28 result in the following:

ρ

{
∂u

∂t
+∇ · (uu)

}
= −∇p+ µ∇2u (2.34)

whose further modelling was elaborated in the following papers.

3 In intermediate steps of an actual computation of this term, the continuity constraint remains non-
zero; therefore, ∇ · (uu) was not reduced to (u · ∇)u by the incompressibility assumption in practice.



Chapter 3

Summary

Paper-I

The performance of four synthetic turbulence generators that represent the majority

of capabilities of i. digital-filter-based (DFM) and ii. forward-stepwise-based (FSM)

generator categories is evaluated prior to transferring generator outputs into computa-

tional fluid dynamics simulations. In addition, a cheap-to-run and easy-to-code piecewise

closed-form function that transforms one-spatial-point skewness-kurtosis of a synthetic

time-series to a target value is derived and presented. The two main purposes of the

study are to support model users in their decision process for choosing the most conve-

nient type and their understanding of the models through a systematic exploration of

model variables and modelling stages, and to extend the Gaussian nature of these models

at a spatial point into non-Gaussianity for the first time. The evaluation test-bed con-

tains three benchmarks, each of which focuses on an isolated aspect of turbulent flows:

i. decaying homogeneous isotropic turbulence, ii. homogeneous shear turbulence and

iii. plane channel flow with smooth walls. Results obtained reveal that: (i) the original

DFM provides the highest level of reconstruction for input one-spatial-point second-

order correlation tensors and two-spatial/temporal-point correlation functions; (ii) FSM

yields the best trade-off between the computational cost and the level of reconstruc-

tion; (iii) the use of exponential-form correlation functions as a model approximation is

more advisable than that of Gaussian-form, as the former removes the premature, sharp,

flow-type-independent drop in power spectra observed for the latter; (iv) the proposed

non-Gaussian functionality reconstructs the target one-spatial-point skewness-kurtosis

pairs of the test-bed flows virtually without altering their already-embedded statistics;

(v) the Lund transformation changes existing statistics only in statistically inhomoge-

neous lateral directions of a flow when anisotropic Reynolds stresses are present; and

(vi) a spatial variation of correlation functions on turbulence generation plane improves

the overall reconstruction fidelity in terms of correlation functions and power spectra.

15
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Paper-II

Digital-filter-based (DFM) and forward-stepwise-based (FSM) turbulence-like time-series

generator classes were conceptualised into five model stages within computational fluid

dynamics set-ups. In addition, two new methods enabling DFM-FSM to be seam-

lessly computed on nonuniformly-discretized boundaries were proposed alongside a new

mass-flux correction technique, and two new code practices for computational speedup.

Through four DFM-FSM variants representing the majority of capabilities of the classes,

each DFM-FSM model stage was explored by controlled studies of extensive-than-the-

literature range of input variables and output statistics with large eddy simulation (LES)

computations of decaying homogeneous isotropic turbulence, homogeneous shear turbu-

lence and smooth-wall plane channel flow. Moreover, five LES post-solution verification

metrics were reviewed and compared via these building-block flows. Among sixty-two

observations, the prominent findings were that: [i] The traditional 80% turbulent ki-

netic energy resolution was quantified to be more robust than the modern LES post-

verification metrics considered. [ii] In the first three nodes, input Reynolds stresses

were consistently suppressed, particularly in shear components and lateral directions.

Divergence-freeness enforcement was quantified to be the driving factor. [iii] Input

autocorrelations were suppressed to a more limited extent. Navier-Stokes equation al-

gorithms was deemed to be the cause. [iv] Streamwise evolution of Reynolds stresses

followed an asymmetric quadratic pattern rather than a monotonic pattern. [v] The

first DFM almost always produced the highest amplitude resemblances and the short-

est adaptation lengths for Reynolds stresses and wall shear stresses. [vi] Amplifying

input shear stresses reduced amplitude distortions downstream, and shortened adapta-

tion lengths. [vii] A parabolic relation was found between input length scale sizes and

amplitude/adaptation lengths of Reynolds stresses/wall shear stresses. [viii] Seamless

nonuniform DFM-FSM and using multiple input length-scale sets did not affect flow to

an important extent. [ix] Mass-influx corrections significantly improved pressure pre-

dictions and reduced computational costs, albeit no impact on velocity-based statistics.
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Paper-III

A rigid model-scale experimental horizontal-axis marine turbine (so-called the Southamp-

ton turbine) was numerically investigated under decaying homogeneous isotropic tur-

bulence in absence of its tower. Twelve controlled computations were carried out

through wall-modelled and actuator-line-modelled large eddy simulations where the

three-dimensional turbulence intensity, Iu′
rms

, was the control variable. The first four

computations excluded the blades, and examined the flow prediction effects of the ar-

bitrary mesh interface technique while i. stationary and ii. rotating, and iii. the pres-

ence of the turbine nacelle. The last eight computations explored the ways how three-

dimensional turbulence intensity affects the turbine and its surrounding flow fields. Four

turbulence intensities were tested, Iu′
rms

={0, 10, 20, 40}[%]. In addition, twelve analytical

wake models from the wind and marine turbine literature were reviewed and assessed

with respect to the wall-modelled computations under the same range of Iu′
rms

. Among

many, the prominent outcomes were as follows: [i] The arbitrary mesh interface tech-

nique adversely affected amplitude-based statistics while the AMI-region was in rotation

by causing discontinuities on the AMI-region boundaries, and differences between the

inside and outside of the AMI-region. The effects were increased outwards from the AMI-

region centre. [ii] However, the rotating AMI did not affect time-based statistics. [iii]

The stationary AMI did not affect flow fields. Furthermore, irrespective of freestream

Iu′
rms

: [iv] Longitudinal mean speed fields (U -fields) began to be affected by the pres-

ence of the turbine nearly 4 rotor radii upstream of the turbine; [v] maxima of changes

in U -fields occurred at around 2 rotor radii downstream of the turbine; [vi] U -fields

became virtually indistinguishable commencing around 6 to 10 rotor radii downstream

within the alignment of the turbine; however, were kept turbine signature by remaining

different from U -freestream despite turbulence entrainment; [vii] wake recovery rates as

a function of downstream distance followed a half-Gaussian-form. [viii] No significant

deviations between the wall-modelled and actuator-line modelled computations occurred

in terms of the statistics quantified. [ix] The coefficient of variation, skewness, kurtosis

and maxima of longitudinal forces/moments were increasing functions of Iu′
rms

whilst

the mean and minima were inversely varying with Iu′
rms

. [x] An analytical model that

was derived and calibrated specifically for a similar marine turbine was quantified to be

superior to the other models in terms of wake profile and speed predictions, highlight-

ing the importance of the similarity level between turbine-flow particulars at hand, and

analytical model’s derivation particulars.
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a b s t r a c t 

The performance of four synthetic turbulence generators that represent the majority of capabilities of i . 

digital-filter-based (DFM) and ii . forward-stepwise-based (FSM) generator categories is evaluated prior to 

transferring generator outputs into computational fluid dynamics simulations. In addition, a cheap-to-run 

and easy-to-code piecewise closed-form function that transforms one-spatial-point skewness-kurtosis of 

a synthetic time-series to a target value is derived and presented. The two main purposes of the study 

are to support model users in their decision process for choosing the most convenient type and their 

understanding of the models through a systematic exploration of model variables and modeling stages, 

and to extend the Gaussian nature of these models at a spatial point into non-Gaussianity for the first 

time. The evaluation test-bed contains three benchmarks, each of which focuses on an isolated aspect 

of turbulent flows: i . decaying homogeneous isotropic turbulence, ii . homogeneous shear turbulence and 

iii . plane channel flow with smooth walls. Results obtained reveal that: (i) the original DFM provides 

the highest level of reconstruction for input one-spatial-point second-order correlation tensors and two- 

spatial/temporal-point correlation functions; (ii) FSM yields the best trade-off between the computational 

cost and the level of reconstruction; (iii) the use of exponential-form correlation functions as a model ap- 

proximation is more advisable than that of Gaussian-form, as the former removes the premature, sharp, 

flow-type-independent drop in power spectra observed for the latter; (iv) the proposed non-Gaussian 

functionality reconstructs the target one-spatial-point skewness-kurtosis pairs of the test-bed flows vir- 

tually without altering their already-embedded statistics; (v) the Lund transformation changes exist- 

ing statistics only in statistically inhomogeneous lateral directions of a flow when anisotropic Reynolds 

stresses are present; and (vi) a spatial variation of correlation functions on turbulence generation plane 

improves the overall reconstruction fidelity in terms of correlation functions and power spectra. 

© 2018 Elsevier Ltd. All rights reserved. 

1. Background to inflow turbulence generation 

Turbulent flow regimes are the norm in nature. Hence, it is im- 

portant that engineering applications represent turbulent effects 

with reasonable fidelity. At many levels of industry and academia, 

the contemporary trend in turbulence modeling is away from 

semi-/empiricism towards first principles with minimal cost in- 

crease. This trend, however, poses substantial ongoing challenges, 

particularly for inflow boundary conditions of convective flows. 

In theoretical and numerical means, spatiotemporal delineation of 

these conditions, stochastically and statistically, is proved to be 

challenging mainly due to the chaotic dynamics of turbulence and 

various requirements on the fidelity. 

For computational fluid dynamics (CFD), most of the inflow tur- 

bulence generation approaches aim to satisfy all or a part of the 

∗ Corresponding author. 

E-mail address: Z.Xie@soton.ac.uk (Z.-T. Xie). 

prescribed conditions, i.e. up to 2nd order statistics, integral length 

scales and Gaussian distribution of turbulent fluctuations. Some of 

them are also able to produce reasonable autocorrelation and spec- 

trum. Only a very few synthetic turbulence generation approaches 

spend effort s on the 3rd order (skewness) and 4th order (kurto- 

sis) statistics [1,2] . Lack of high order statistics modeling for turbu- 

lence generation may significantly impact the modeling accuracy 

for some applications, such as wind loading [3,4] . A rigorous as- 

sessment of the abilities of current synthetic turbulence genera- 

tion approaches, and a simple and efficient model to generate non- 

Gaussian turbulence are of great interest. 

Most of the inflow turbulence generation methods were classi- 

fied into four main categories by Dhamankar et al. [5] : i . library- 

based, ii . recycling-based, iii . transition inducement-based, and iv . 

synthetic methods. 1 The last category may further be divided into 

six subcategories on the basis of their methodology: i . linearised 

1 [6, p. 553] and [7] , however, regarded the first two as a single category. 
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Fig. 1. A diagram showing synthetic turbulence generation with DFM/FSM. A 

color-blind proof and print-standard-friendly color scheme produced by Cameron 

[79] was used in this study. 

turbulence model-based [8] , ii . Fourier-based [9,10] , iii . proper or- 

thogonal decomposition-based [11] , iv . synthetic-eddy-based [12] , 

v . digital filter-based [13] , and vi . forward stepwise-based [14] . 

In this study, the scope is limited to the last two subcategories, 

namely the digital filter-based methods (hereafter, DFM) and for- 

ward stepwise-based methods (hereafter, FSM), whilst the two 

arguably demand the simplest code implementation, yet provide 

high model fidelity with relatively low computational costs. The 

reader is, therefore, referred to [5–7] for the other categories. 

Fig. 1 shows that DFM or FSM transforms a given random num- 

ber set to a spatiotemporally new set involving a group of target 

statistical measures. 2 A chain of arithmetic operations is performed 

for the transformation. Within the chain, the target statistics ar- 

range the properties and order of the operations, so that the real- 

ized statistics of the new sets could match the target . 

Although Borgman [15] earlier elaborated on a method in 

which synthetic ocean wave processes are generated through 

digital filtering of a group of statistics and white-noise time- 

series 3 , the contemporary DFM was introduced by Klein et al. [13] , 

based on preliminaries from [16] . The authors developed a three- 

consecutive-stage framework: ( i .) random number set generation, 

( ii .) embedding of arbitrary two-spatial-point autocorrelation func- 

tions through digital filters, and ( iii .) incorporation of one-spatial- 

point second-order correlation tensor by a tensor transforma- 

tion [17] (hereafter, the Lund transformation). In addition, the 

authors simplified the second-stage by restricting autocorrelation 

functions to Gaussian-form, so that filter coefficients can be ex- 

plicitly evaluated, whose evaluation requires a root-finding algo- 

rithm otherwise. The function-form choice was justified with the 

same form observed in the viscous-dissipation stage of homoge- 

neous isotropic turbulence. 

In this initial DFM, five principal limitations exist, which subse- 

quent studies attempted to alleviate: output ( i .) contains no phys- 

ical information beyond input statistics, ( ii .) can only be gener- 

ated on Cartesian grids, 4 ( iii .) is not divergence-free, ( iv .) is statis- 

tically stationary, and ( v .) obeys Gaussian probability density func- 

tion (PDF) at a spatial point. 

For the first limitation, di Mare et al. [18] investigated the 

possibility and practical viability of inserting arbitrary-form au- 

tocorrelation functions into the second model-stage. They pro- 

posed a new algorithm in which standard linear algebra tools are 

used to numerically solve a designed ‘bilinear difference equa- 

tion’ to obtain digital-filter coefficients corresponding to the given 

autocorrelation function. The authors held the view that Klein 

et al.’s [13, p. 658] simplification is decent for free-shear flows 

whereas their more-information-carrying algorithm appears ad- 

visable for wall-bounded flows [18, p. 10] . Afterwards, di Mare 

and Jones [19, p.687] put forward another algorithm, which was 

presented as computationally cheaper, more competent and ro- 

2 Measures predominantly consist of i . one-spatial-point second-order correlation 

tensor (i.e. Reynolds stress tensor) and ii . two-spatial/temporal-point autocorrela- 

tion functions. 
3 White-noise refers to a uniform power distribution across a frequency spectrum. 

By contrast, herein, the Gaussianity of a time-series will only refer to the probability 

distribution of amplitude 
4 A Cartesian grid herein refers to a grid wherein cells are unit squares/cubes. 

bust in comparison to their previous algorithm. Further, Fathali 

et al. [20, p. 96] claimed that the third model-stage distorts 

the resultant statistics from the second model-stage for highly 

anisotropic flow fields. On this basis, the authors put forth a two- 

stage-unified framework, which aimed to remove distortions and 

embed two-spatial-point cross-correlations. Subsequently, Xie and 

Castro [14] argued that the exponential-form functions are more 

appropriate simplification than Klein et al.’s [13] Gaussian-form, 

specifically for turbulent shear flows. Furthermore, the authors de- 

rived FSM which was quantified equivalent-in-effect to, and yet 

cheaper-to-compute than more complex digital filters. Then, the 

second model-stage of DFM in the streamwise direction was sub- 

stituted with FSM; thus, resulting in a hybrid DFM-FSM. 

The second limitation was, on the other hand, not shared by 

FSM, with which synthetic time-series generation on non-uniform 

grids is possible. For DFM, however, Kempf et al. [21] replaced the 

second model-stage with a diffusion process deemed equivalent 

to digital filtering, so that synthetic time-series can be seamlessly 

generated on non-uniformly spaced grids or on arbitrary boundary 

geometries. In addition, Fru et al. [22, p. 328] purported that a hy- 

brid of the methods from [13] and [21] was developed, which is 

allegedly immune to this limitation. The authors, however, failed 

to clearly describe what the new method is. Lastly, Dhamankar 

et al. [23] enabled DFM to be used in curvilinear structured grids 

without interpolations through generating time-series on a Carte- 

sian grid which is inherently a one-to-one-mapped corresponding 

curvilinear grid. Although the approach worked round interpola- 

tion errors, new drawbacks of their own arose [23, p. 11] . 

The third limitation reportedly causes erroneous pressure fluc- 

tuations [24, p. 1089] , which was quantified by Kim et al. 

[25, Fig. 11] for incompressible plane channel flows wherein sev- 

eral orders of magnitude over-predicted pressure fluctuations per- 

sistent across the computational domain were observed. In con- 

trast, negligible alterations due to non-divergence were expected 

and reported for velocity fluctuations [21, p. 76] , [25, Fig. 11] . In 

general, therefore, it seems that non-divergence can be anticipated 

influential solely on computations where pressure is the princi- 

pal field of interest. Considering these implications, divergence- 

freeness was first imposed into DFM for homogeneous isotropic 

turbulence by Ewert [26, p. 5] through devising solenoidal digital 

filters. For non-homogeneous anisotropic turbulence, on the other 

hand, [26, p. 7] was contented with a suggestion to use Smirnov et 

al.’s [27, p. 3–5] transformation method. Similarly, Klein et al. [13, 

p. 659] and Kempf et al. [21, p. 76] suggested a projection method 

from [10] in order to divergence-free transition synthetic time- 

series. None of the two suggestions were, however, tested to date. 

From another viewpoint, Kim et al. [25] rendered the hybrid DFM- 

FSM divergence-free by directly embedding synthetic time-series 

into the momentum predictor equation in a pressure-velocity cou- 

pling algorithm, in which case any non-solenoidal velocity field 

could be transformed without additional costs. 

Regarding the fifth limitation, which was not studied in the 

DFM/FSM literature to date, evidence suggests that the frequency 

of occurrence of various turbulence characteristics tends to follow 

non-Gaussian distributions at a single spatial point. For instance, 

Jiménez [28] reviewed the literature that the one-spatial-point 

Pearsonian coefficient of kurtosis is approximately 2.85 (rather 

than 3.00) for velocity fluctuations in homogeneous isotropic tur- 

bulence. Even more pronouncedly, Moser et al. [29] reported for 

Re = 395 plane channel flow that the one-spatial-point Pearsonian 

coefficient of skewness and kurtosis of velocity fluctuations vary 

across from −0.8 to 0.4, and from 2.1 to 38.0, respectively. 5 

5 Skewness and kurtosis quantify the extent of PDF asymmetry and tail shape de- 

viating from the normal distribution, respectively. Qualitatively, the former shows 
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Apart from the above, eight more studies offered major changes 

in various topics. For instance, Touber and Sandham [30, p. 104–

105] systematically extended the hybrid DFM-FSM to compress- 

ible flows by generating thermodynamic fluctuations with syn- 

thetic velocity fluctuations via ‘the strong Reynolds analogy’. Fur- 

thermore, Breuer and Schmidt [31, p. 677] expanded DFM to be 

utilised on interfaces of a hybrid LES-URANS methodology by for- 

mulating a modeled kinetic energy equation as a function of syn- 

thetic velocity fluctuations. Moreover, Anupindi and Sandberg [32, 

p. 703] seamlessly coupled, stricter than the aforementioned, the 

hybrid DFM-FSM into another LES-RANS methodology, wherein 

flow quantities at RANS-side of an interface are time-accurately 

sampled to create synthetic time-series at LES-side. Additionally, 

Okaze and Mochida [33, p. 25] modified the Lund transforma- 

tion of the hybrid DFM-FSM to include scalar fluctuations and 

their complete correlations with flow variables although previ- 

ously [34, p. 1313] utilised DFM to prescribe spatiotemporally- 

variant scalars by omitting their flow-cross-correlations. The hybrid 

DFM-FSM of [14] was extended by Kim et al. [35] with replacing 

DFM in all directions; hence, leading to “pure” FSM. Last but not 

least, Schmidt and Breuer [36] designated an approach where syn- 

thetic time-series are introduced into a computational domain via 

source terms in the momentum equation in order to freely deter- 

mine the boundary location. 

In DFM/FSM theory, arguably, no fundamental development was 

followed. Nevertheless, transferable performance improvements 

were put forth for the two DFM/FSM steps which are the costliest: 

( i .) digital filtering, and ( ii .) generation of Gaussian random num- 

ber sets. For the former, Veloudis et al. [37, p. 9] advanced filtering 

in frequency domain, which may reduce floating-point operations 

per time-step (FLOPT) from O(n i ) { n ∈ N ; i ∈{ 1 , 2 , 3 }} to O(n log i n ) . Addi- 

tionally, Veloudis et al. [37, p. 10] assessed the potentiality of time- 

step reductions of synthetic time-series generation within a more 

restrictive environment (e.g. LES) without deteriorating temporal 

accuracy. Alternatively, Kempf et al. [38] propounded filtering via 

the separable convolution summation method’ [39, p. 404] where 

convolution summations are consecutively performed on number 

sets along each coordinate. As a result, a speed-up of FLOPT from 

O (n i ) { i = 3 } to i O (n ) { i = 3 } may be observed. Furthermore, the authors 

devised a parallelization procedure with zero-inter-communication 

by seeding pseudo-random number generators with constant pairs 

of integers and corresponding grid node indices. For the latter 

cost source, Xie and Castro [14] manipulated O (10) uniformly- 

distributed random number sets into normal samples through 

the central limit theorem. By contrast, Touber and Sandham [30, 

p. 104–105] asserted that the Box–Muller’s theorem can reduce the 

number of these sets to two. 

Besides the known limitations, previous studies failed to fill 

knowledge gaps in three main areas. First, although a number of 

independent and consecutive model stages form DFM/FSM, no in- 

vestigation was made on to which extent each stage performs its 

task in isolation and interacts with the others. Second, all the re- 

search to date quantified DFM/FSM as a whole with CFD whereas 

the both are separate entities, and the latter causes metamorpho- 

sis of time-series produced by the former. Therefore, the perfor- 

mance of DFM/FSM itself , without the impact of CFD, remains un- 

quantified. Third, most existing accounts either did not consider 

‘buildding-block’ flows to evaluate DFM/FSM (e.g. no homogeneous 

isotropic/shear turbulence study was performed with [14] .) or did 

not contain the complete set of fundamental assessment measures 

(e.g. [13] did not provide any results of power spectral density 

function.). 

the dominant sign of the deviations from the mean turbulence quantities, and the 

latter the frequency of occurrence of extreme events in turbulence. 

Fig. 2. A general view of DFM/FSM model stages for a one-dimensional field of 

discrete points. 

The lack of structured knowledge in the three areas, however, 

hinders any attempts for theoretical capability-oriented improve- 

ments in DFM/FSM, for conveying their benefits to a wider audi- 

ence, as well as for decision-making of the most appropriate vari- 

ant to the problem at hand. The aims of this study are there- 

fore i . to advance our understanding of the aforementioned knowl- 

edge gaps with the help of systematic explorations of model pa- 

rameters and stages, and ii . to improve DFM/FSM capability port- 

folio through implementing a non-parametric one-spatial-point 

skewness-kurtosis transformation functionality. 

To this end, a brief description of four synthetic turbulence gen- 

erators including DFM and FSM is presented in Section 2 , and 

the new one-spatial-point non-Gaussian functionality is described 

in Section 3 . Section 4 presents three benchmark flows for tests 

and the statistical measures used. The obtained results including 

the assessment of the four synthetic turbulence generators and 

the new functionality are illustrated in Section 5 . Clear-cut con- 

clusions alongside a discussion on remaining challenges are listed 

in Section 6 . 

2. A brief description of four synthetic turbulence generators 

2.1. Digital-filter-based and forward-stepwise-based synthetic 

turbulence generators 

DFM and FSM construct spatiotemporal-variant Reynolds- 

decomposed fluctuation velocity (or scalar) fields, {
u ′ 

i ( x , t ) ∈ Q 

}
{ i ∈ N : i ∈ [1 , 3] ; t> 0 } . Both generators may be abstracted 

into four consecutive and independent model stages as shown in 

Fig. 2 for a one-dimensional field of discrete points. 

The first stage is the generation of a set of random num- 

bers, { r } {| r | = R ; k , j ∈ N : 1 ≤k+j ≤R } , ob eying the PDF of zero-mean 

(R 

- 1 
∑ R 

k = 1 r k = 0) , unit-variance (R 

- 1 
∑ R 

k = 1 r 
2 
k 
= 1) , independent 

(R 

- 1 
∑ R 

k = 1 r k r j = 0 for k � = j) Gaussian white-noise. 

In the second stage, a set of numbers ‘calibrated’ to two- 

spatial/temporal-point correlation functions, {b}, is generated. With 

DFM, the set is computed by Klein et al.’s [13, p. 657] relation be- 

tween {b} and an autocorrelation function, ρ: 

ρ( q , p ) = 

u 

′ 
p u 

′ 
p+q 

u 

′ 
p u 

′ 
p ︸ ︷︷ ︸ 

known 

= 

N ∑ 

j= −N+q 

b j b j −q 

N ∑ 

j= −N 

b 

2 
j ︸ ︷︷ ︸ 

unknown 

(1) 

where q { q ∈ N : q ≥0 } is the lag number, p the maximum lag number, 

{ b } {| b | = 2N + 1 : b ∈ Q } a set of filter coefficients, and { N } {| N |∈ N : N > 0 } the 

support of a filter. The diversity in DFM mainly arises from the 

different expressions proposed to invert Eq. (1) . In contrast, in FSM, 

{b} is redefined by a group of integral length-scales weighted with 

empirical constants and limits of integration. 

In the third stage, {b} is embed into {r} via a mathemati- 

cal operation, so that a new set, { s }, is constructed with a new 

spatiotemporal stochastic pattern and yet consisting of correlation 
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function statistics. While FSM simply uses element-wise multipli- 

cation, DFM utilises convolution summation as follows: 

s k ≡ F N ( k ) = 

N ∑ 

j= −N 

b j r k+j (2) 

where { s } {| s | = M : s ∈ Q } is a set of digital-filtered numbers, and F N a 

linear, non-recursive, discrete filter operator performing a convolu- 

tion summation on two finite sequences. In F N , the two sets must 

completely overlap; thus, producing only a subset of the conven- 

tional full convolution summation. Accordingly, the size of the sets 

is related as: R - (2N + 1) + 1 = M . 

In the last stage, the one-spatial-point correlation tensor is in- 

corporated into { s } through the Lund transformation [17, p. 255] : 

u ′ 
i ( x , t ) = a i j (x ) s i (x , t) where a ij , a spatial-variant amplitude ten- 

sor of second-order, is shown below: 

a i j = 

[ 

(R 11 ) 
0 . 5 0 0 

R 21 /a 11 (R 22 − a 2 21 ) 
0 . 5 0 

R 31 /a 11 (R 32 − a 21 a 31 ) /a 22 (R 33 − a 2 31 − a 2 32 ) 
0 . 5 

] 

(3) 

where R ij is the (known) one-spatial-point correlation tensor in 

units of variance. It should be noted that a ij is conventionally 

spatial-variant and temporal-invariant whereas there is no theo- 

retical objection to its temporal variation. 

2.1.1. Klein et al.’s method – DFM 

Klein et al. [13, p. 657–658] approximated the right-hand side 

of Eq. (1) as a Gaussian-form function of integral length-scales, so 

that {b} can be explicitly evaluated. The proposition was justified 

with the fact that autocorrelation functions of late-stage homoge- 

neous turbulence have Gaussian-form. For a computational grid of 

cubic cells with { �i } { i ∈ [1, 3]} , constant grid size in a specific direc- 

tion, the approximation to Eq. (1) in its discrete-form is shown be- 

low: 

ρ ≈ exp 

(
−π

4 

(m i �i ) 
2 

(n i �i ) 2 

)
= exp 

(
−π

4 

m 

2 
i 

n 

2 
i 

)
(4) 

where m is the rectilinear distance of the node in question to the 

zero-lag correlation node, and n the length-scale size. Both are in 

grid spacing units. Correspondingly, Klein et al. [13, p.658] derived 

a closed-form expression for {b}: 

{ b } i ≈ ˜ { b } i 
/ 

( 

N ∑ 

j= −N ̃

 b 

2 
j 

) 0 . 5 

as ˜ { b } i = exp 

(
−π

2 

m 

2 
i 

n 

2 
i 

)
(5) 

The validity of the approximation was shown to have two con- 

straints: i . the length-scale size is limited to the range 2 ≤ n i ≤ 100, 

and ii . the support of the filter must at least be two times the scale 

size, N i ≥ 2 n i . 

2.1.2. A customized method in spirit of di Mare et al.’s method – DFM 

The possibility of the direct inversion of Eq. (1) was investigated 

by di Mare et al. [18] through an iterative root-finder algorithm of 

Newton’s method, so that arbitrary-form of correlation functions 

could be used in DFM. The main disadvantage of this method is 

arguably deemed to be its difficult code implementation. In this 

study, for this reason, a new approach with the spirit of [18] was 

invented as follows. First, a given arbitrary-form correlation dataset 

is curve fit to a chosen-form of a continuous function. Then, the 

direct inversion of Eq. (1) is conducted on this curve-fit function. 

Accordingly, for the study’s set of benchmarks, the following ex- 

pression was devised as the most proper form of the function: 

{ b } = R [ ρ] = R [ C { a exp ( - b x ) + c exp ( - d x ) } ] (6) 

where R denotes the chosen root-finder algorithm, C the curve-fit 

algorithm, and { a, b, c, d} {∀∈ Q } are the curve-fit parameters. Herein, 

filter supports are sized to the point where correlation functions 

drop below few percent of their zero-lag value. 

2.1.3. Xie and Castro’s method – hybrid DFM-FSM 

In contrast to Klein et al. [13] , Xie and Castro [14, p. 454] mod- 

eled the right-hand side of Eq. (1) as an exponential-form function, 

which was deemed more valid for turbulent shear flows: 

ρ ≈ exp 

(
−c 

π

2 

| m i | 
n i 

)
resulting in 

˜ { b } i ≈ exp 

(
−c π

| m i | 
n i 

)
(7) 

where c = 1 is a constant. Furthermore, to reduce computational 

costs, the streamwise convolution summation in DFM was replaced 

by a simpler and a quantitatively justified equivalent procedure, 

named FSM [14, p. 456] . Therein, streamwise integral length-scales 

are input through temporal-correlation of two planes of { s i }, which 

are generated at successive time-steps: 

s i � (y, z, t + �t ) = s i � (y, z, t) exp 

(
- c 

π

2 

�t 

T 

)
+ s iψ (y, z, t + �t ) 

{
1 - exp 

(
- c π

�t 

T 

)}0 . 5 

(8) 

where { s i �} is a temporal slice of { s i } including transverse length- 

scales {L α} { α ∈ { y, z }} at time t , { s i ψ } an auxiliary temporal slice gen- 

erated with a new set of random numbers in the same way with 

{ s i �}, T streamwise Lagrangian time-scale computed with Taylor’s 

frozen turbulence hypothesis [40] . 6 

In their discussion of the default value of c = 1 , Kim et al. [25, 

p. 57] put forth c = 0 . 5 is more apt to use for their plane channel 

flow CFD simulations. In view of this statement, herein, three val- 

ues of c = { 1 , 0 . 5 , 0 . 25 } were tested via the three benchmark flows 

without CFD ( Section 4.1 ). For the majority of the scenarios, c = 0 . 5 
yielded the highest level of similarity to the benchmarks in terms 

of correlation functions and power spectra (not reported). There- 

fore, Kim et al’s. [25] preference was used throughout the study 

as the default model constant instead of the original value of c . 

It should be stressed that c = 0 . 5 is not universal, yet a solution of 

model calibration to the flows in question. One may thereby seek 

other values of c for other types of flows. 

2.1.4. Kim et al.’s method – FSM 

Xie and Castro’s [14] one-direction of FSM was extended to all 
directions by Kim et al. [35, p. 135] ; hence, leading to the use of 
convolution summations of DFM being abolished. FSM is subse- 
quently applied to each direction in an arbitrary order to yield { s i } 
as follows: 

s i y (t, j + 1 , k ) = s i y (t, j, k ) exp 

(
- 

c y 

n y 

)
+ r (t, j, k ) 

{
1 - exp 

(
− 2 c y 

n y 

)}0 . 5 

(9a) 

s i yz (t, j, k + 1) = s i yz (t, j, k ) exp 

(
− c z 

n z 

)
+ s i y (t, j, k ) 

{ 
1 - exp 

(
− 2 c z 

n z 

)} 0 . 5 
(9b) 

s i yzx (t + 1 , j, k ) = s i yzx (t, j, k ) exp 

(
− c x 

n x 

)
+ s i yz (t, j, k ) 

{ 
1 - exp 

(
− 2 c x 

n x 

)} 0 . 5 
(9c) 

where { c i ( x ) } { i ∈{ x,y,z}} is a set of constants to scale { n i }, and {r} a 

planar set of random numbers. 

6 According to the hypothesis: L x = U x T , where L x is a streamwise integral length- 

scale, U x , mean flow speed in the same direction, and T streamwise Lagrangian 

time-scale. 
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3. Development of the one-spatial-point non-Gaussian 

functionality 

Transformation of skewness-kurtosis pairs of DFM/FSM at 

a spatial point was studied by means of three new ap- 

proaches: i . non-Gaussian random number set input-based ap- 

proach, ii . deterministic deconvolution-based approach, and iii . PDF 

transformation-based approach. The tests showed that the first two 

proposed approaches were proved to be ineffective, and the third 

approach to be promising, which is accordingly introduced in the 

following. It is however still deemed to present what the first two 

sound methods are for the reader’s examination; thus, presented in 

Section SA.1-2. 

3.1. PDF transformation-based approach 

The approach is based on a transformation function. It is in- 

troduced as a new model stage between the 3rd and 4th stages 

illustrated in Fig. 2 . The function is a piecewise closed-form func- 

tion shown in Eq. (11) , which was derived by means of two con- 

cepts: i . the memoryless nonlinear transformation method (MNT; 

also known as the zero-memory non-linear transformation ) [41,42] , 

and ii . the Johnson system of PDFs [43] . 

MNT is the core concept of the current family of non-Gaussian 

process generation methodologies. Its main formulation was pro- 

posed by Grigoriu [42, p. 611] as: 

(10) 

where u ′ 
i 

is a process (known input) obeying a source PDF, cor- 

responding transformed process (unknown output) obeying a tar- 

get PDF, φu ′ 
i 

the source cumulative distribution function (CDF), and 

the target inverse CDF. The condition of the existence of the 

relation is satisfied if is a monotonic func- 

tion. Through the concept, a given u ′ 
i 
, obeying a Gaussian CDF φu ′ 

i 
, 

could be transformed into a new process, , obeying a target non- 

Gaussian CDF . 

The first potential drawback associated with the use of sole 

MNT is that Eq. (10) may modify spectral contents of u ′ 
i 

to- 

wards [44, p. 19] due to the non-linearity of the function [45, 

p. 1196] . Whereas, as a rare counter-argument, Smallwood [46, 

p. 3] claimed that no substantial change should be expected in 

the spectral content of u ′ 
i 
, because this is mostly determined by 

zero-crossings, which are not significantly altered by Eq. (10) . The 

second drawback is the high computational cost of interpolations 

to execute Eq. (10) for each spatial-temporal point of random pro- 

cesses obeying arbitrary-form PDFs. 

For a process, arbitrary-form non-Gaussianity implies infinite 

combinations of infinite-order non-standard moments; hence, has 

a broad meaning. In the context of turbulence, however, non- 

Gaussianity may be restricted to non-standard skewness and kur- 

tosis only due to the fading physical interpretation of the ever- 

increasing level of abstraction in higher moments and their dimin- 

ishing distinguishable impact on the physicality of turbulent flow 

developments. 

With this constraint, identification of a unique and closely- 

approximated non-Gaussian distribution that can be customized 

to any valid combination of the first four central moments may 

be achieved through the Johnson system of distributions [43] . This 

system includes all valid skewness-kurtosis pairs (illustrated in [47, 

Fig. 1] ) through its three members: i. S U unbounded, ii. S L log–

normal (a transition line from i to iii ) and iii. S B bounded fami- 

lies [43, p. 156] . The readers are referred to [47] for the basic char- 

acteristics of the system. 

More importantly, the substitution of the Johnson system into 

Eq. (10) yields a piecewise closed-form expression for , which is 

easy-to-code and cheap-to-execute, as follows (for derivation de- 

tails, refer to Section A.3.1): 

(11) 

where γ ( β1 , β2 ) and δ(β1 , β2 ) { δ> 0 } are the shape parameters 

of the Johnson system, μU/B (γ , δ) − σU/B (γ , δ) the first two 

theoretical normalized moments of the corresponding families, 

β0 . 5 
1 

= μ3 /σ
3 and β2 = μ4 /σ

4 the Pearson’s moment coefficient of 

skewness and kurtosis, μ3 and μ4 the third and fourth central mo- 

ments, and σ the standard deviation. The expression leads to two 

further questions: for a ( β1 , β2 )-pair, i . how to choose the appro- 

priate family, and ii . how to compute γ - δ. 

The criteria to choose one of the families rely on the relative 

position of the target skewness-kurtosis pair values with respect 

to the Cullen and Frey graph’s log–normal curve [47, Fig. 1] . The 

curve was obtained by a parametric system of equations in [43, 

Eq. (14)] . The set of equations, however, does not lend itself to 

a direct relation between skewness and kurtosis; thus, resulting 

in difficulties in the selection. Such functional relation, g ( β2 ) ∼β1 , 

was then derived by Tuenter [48] , and summarized in Eqs. (A.46) –

(A.50) . Accordingly, the following conditionals determine the fam- 

ily member: S U , if g(β2 ) > β1 ; S L , if g(β2 ) = β1 and S B , if g(β2 ) < β1 . In 

addition, the region wherein pairs cannot exist was defined as: 

β2 - β1 - 1 < 0 [43, Fig. 2] . 

After finding the family that the pair belongs to, γ - δ can be 

computed through a moment-matching technique , where the fam- 

ily’s theoretical expressions of skewness-kurtosis are solved for 

γ - δ with the help of root-finding algorithms. Parameterizations 

which considerably reduced the complexity of the root-finding 

problem were proposed by Tuenter [48, p. 310] for S U , and [49, 

p. 746–748] for S B . Herein, these set of equations were manipulated 

in compliance with the requirements of the study and reported in 

Eqs. (A .12) –(A .17) for S U and Eqs. (A .18) –(A .45) for S B . 

Table 2 compares the typical number of computational opera- 

tions performed by Eqs. (10) and ( 11 ). As shown, the new method 

eliminated all algorithms and reduced the number of elementary 
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function operations. Moreover, the data preprocessing demand is 

less for the new method. For instance, the pairing between γ –

δ and β1 –β2 is a bijection; therefore, for each β1 –β2 pair, γ –δ
is computed only once and for all whereas, for the same β1 –β2 

pair, Eq. (10) needs to store an interpolation table of values 

that also need to be computed by numerical integrations. Spatial- 

variation of β1 –β2 across inflow plane, on the other hand, expo- 

nentially amplifies this contrast. 

4. Methodology 

4.1. Benchmarks and numerical settings 

The four methods and the non-Gaussian approach were imple- 

mented into OpenFOAMv1612+ [50] , and tested through a test-bed 

of three benchmark flows. The methods sorted by descending the- 

oretical FLOPT are labeled as: i . Custom [18] , ii . Klein et al. [13] , 

iii . Xie–Castro [14] , and iv . Kim et al. [35] . The chosen methods 

represent the majority of DFM/FSM capabilities and varieties. The 

test-bed involves three ‘building-block’ flows: i . decaying homo- 

geneous isotropic turbulence (HIT; the case of M = 0 . 0508 ) [51] , ii . 

homogeneous shear turbulence (HST; the case of h = 0 . 305 ) [52] , 

and iii . plane channel flow with smooth walls (PCF; the case of 

Re τ = 395 ) [29] , each of which focuses on an isolated aspect of tur- 

bulent flows. In this study, the finite-volume method and Navier- 

Stokes equation models were turned off in order to prevent any 

hard-to-measure distortions in output statistics of the methods. 

The details of the benchmarks and numerical set-ups are given in 

the following. 

4.1.1. Common numerical settings 

Each benchmark reports measurements for several test sections. 

For each benchmark, one of these sections was chosen, and cor- 

responding time-variant planar flow field was approximately re- 

constructed by the methods. Then, the level of reconstruction was 

evaluated through a set of statistical measures shown in Table 1 . 

The dimensions of the planar physical sections were repli- 

cated in the numerical models. A Cartesian coordinate system in 

an inertial frame of reference, I = (O, e x , e y , e z ) , was defined by 

(x, y, z) I 

≡ (1 , 2 , 3) I 

wherein x is the longitudinal (mean flow di- 

rection), y the vertical, z the transversal axis (statistically homo- 

geneous direction for HST and PCF), and O the origin at the left- 

bottom corner of the planar numerical domain. 

Three grids with the refinement ratio of 2.0 were generated for 

each benchmark. The planar domains were uniformly discretized 

into squares whose centroids store synthetic turbulence fields. Es- 

timations for the upper- and lower-limits of the spatial resolu- 

tions were made in accordance with large eddy simulation (LES) 

requirements. An upper limit may be deemed as the minimum 

spatial resolution required for a conservative direct numerical sim- 

ulation: � � 2(ν3 LU 

- 3 
c ) 

0 . 25 where � is the isotropic grid spacing, 

ν the kinematic viscosity of flow, L isotropic integral length-scale, 

and U c the characteristic flow speed. 7 A lower limit, as proposed 

by Baggett et al. [54, p. 62] , may be set �≈ 0.1L ε , where L ε is an 

integral dissipation scale, and order of L [54, p. 53] . The spatial- 

compatible temporal resolution, �t , was then computed consider- 

ing the constraint of the theoretical pressure-velocity coupling al- 

gorithm of PISO [55] : �t < U 

- 1 
c �. 

In order to make plausible inferences about the statistical popu- 

lation of interest, the minimum sample size required at a 98% con- 

7 For the smallest resolved structure of size �, the maximum grid spacing could 

be 0.5 � due to the Nyquist theorem [ 53 , p. 10]. Assuming �∼η, where η = 

(ν3 /ε) 0 . 25 is the Kolmogorov length-scale and ε ∼ U 3 c / L , then the maximum spacing 

roughly becomes 2(ν3 LU - 3 c ) 
0 . 25 . 

fidence level, n min , was estimated as 13, 0 0 0 elements via the fol- 

lowing expression [56, Section 7.2.2.2.] : n min = (z 1 - α/ 2 + z 1 - β ) 2 σ 2 
est / CI 2 

where z is the standard score in a normal distribution, α- β the 

type I-II error rates, σest = 1 the forecasted standard deviation of the 

sample, and CI the confidence interval. Moreover, statistical con- 

vergence was qualitatively assessed through the time-series of the 

first four sample moments whereas no constraint, such an iterative 

linear solver requires, exists on the convergence. 

4.1.2. Decaying homogeneous isotropic turbulence – HIT 

HIT may be considered as the initial step in any turbulence 

model benchmarking whilst, in particular, any cross-correlation in 

its statistics is ideally zero. Through HIT, therefore, the isolated role 

of each model stage on the final output is expected to be revealed 

without cross interactions. 

As a benchmark, from [51] , the stationary-grid experiment 

of approximately isotropic decaying turbulent flow was used. 

The utilized experimental scenario belongs to the measure- 

ments at 42M downstream the turbulence generation grid, where 

M = 0 . 0508[ m ] is the grid mesh size. At 42M, the mean lon- 

gitudinal flow speed is U c = 12 . 7[ms - 1 ] , and Reynolds number 

based upon Taylor micro-scale, λ, is Re λ= 71 . 6 . For the non- 

Gaussianities in HIT, Jiménez et al. [57, p. 71] numerically 

and Jiménez [28, p. 146] theoretically demonstrated that ̂ β2 ≈
2 . 85 , which is independent of Re [57, p. 70] . 8 The set of in- 

put statistics is comprised of one-spatial-point normal-anisotropic 

correlations, and longitudinal and transverse integral length- 

scales, which respectively are: { (u ′ 
ii 
) 2 } { i ∈ (1 , 2 , 3) } = 0 . 049284[m 

2 s - 2 ] , 

{ (u ′ 
i j 
) 2 } { i � = j} = 0 . 00 , L long = 0 . 024[ m ] and L trans = 0 . 0127 [51, p. 299] . 

The dimensions of the planar numerical domain were speci- 

fied as (y = 10M , z = 10M ≈ 20L long ) in order to resemble Dietzel et 

al.’s [59, p. 119] 10M preference for their HIT tests. The spatial and 

temporal resolutions of the domains, respectively, were {64, 128, 

256} HIT node per domain edge, and {(0.1, 0.05, 0.025)[ t � ]} HIT , where 

t � = U c M 

- 1 �t . The duration of the tests was 10.32[s] ≈ 20 pass- 

through in which each sample contained more than 15, 0 0 0 ele- 

ments. 

4.1.3. Homogeneous shear turbulence – HST 

Towards real-world turbulence, HST could be considered as a 

transition step wherein large-scale anisotropy is partially incor- 

porated into HIT; nonetheless, the statistical uniformity in space 

and homogeneity in spanwise direction reduces the sophistication 

of the flow. By means of HST, isolated effects of a single one- 

spatial-point anisotropic stress and cross-integral length-scale were 

sought. 

The benchmark was the experiment of virtually transverse 

homogeneous and uniform shear turbulent flow from [60] . The 

chosen scenario was based on the experimental flow field at a 

downstream plane of x 1 /h = 11 . 0 , where h = 0 . 305[ m ] is the height of 

the shear-turbulence generator at the experiment inlet, and x 1 the 

horizontal distance to the generator. At the plane, the mean shear 

is dU 1 / d x 2 = 46 . 8[s - 1 ] and the mean longitudinal flow speed at the 

plane centerline equals to U c = 12 . 4[s - 1 ] . Furthermore, Tavoularis 

and Corrsin [60, p. 321] experimentally found that ̂ β1 x = - 0 . 22 2 , ̂ β1 y = 0 . 16 2 , ̂ β1 z = 0 . 00 , ̂ β2 x = 0 . 10 , ̂ β2 y = 0 . 20 and 

̂ β2 z = 0 . 30 . The random 

error ranges were ̂ β1 ± 0 . 03 2 and 

̂ β2 ± 0 . 05 . The input set of 

stresses and scales contains: (u ′ 
1 
) 2 = 0 . 475[m 

2 s - 2 ] , (u ′ 
2 
) 2 = 0 . 165 , 

(u ′ 
3 
) 2 = 0 . 248 and u ′ 

1 
u ′ 

2 
= - 0 . 126 ; L 11 , 1 = 0 . 057[ m ] , L 22 , 1 = 0 . 01311 , 

L 33 , 1 = 0 . 01938 , L 11 , 2 = 0 . 01881 , L 11 , 3 = 0 . 01425 , L 22 , 2 = L 22 , 3 = 0 . 006555 

8 For HIT, ̂ β1 was assumed zero as a consequence of a lack of thoroughly exam- 

ined data (despite some reports such as ̂ β1 = 0 . 051 in [58, p. 310] ). 
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and L 33 , 2 = L 33 , 3 = 0 . 00969 9 [60, p. 320, 329, 334] . The values of 

the last four scales were derived by employing the isotropy 

assumption, e.g. 0 . 5L 22 , 1 = L 22 , 2 . 

The dimensions of the domains replicated those of the exper- 

iment as (y = h, z = h ≈ 7L 11 , 1 ) . The spatial resolution of the three 

grids were: {64, 128, 256} HST node per domain edge, and the cor- 

responding temporal resolutions: {(15.6248, 7.8124, 3.9062)[ t � ]} HST , 

where t � 
HST 

= 10 0 0U c h 
- 1 �t . The test duration was 7.6864[s], and the 

samples included at least 40, 0 0 0 elements. 

4.1.4. Plane channel flow with smooth walls – PCF 

The majority of real-world turbulent flows is bounded by at 

least one solid surface. Therefore, a fundamental wall-bounded 

flow, PCF, was utilised to evaluate the capability of the methods 

in relation to wall effects on flow statistics. In addition, the recon- 

struction of spatial-variant integral length-scales across flow plane 

was examined with the aid of PCF. 

The benchmark was hinged upon [29] direct numericual simu- 

lation of statistically stationary, pressure-gradient driven, fully de- 

veloped plane channel flow with smooth walls, wherein the fric- 

tion velocity, u τ , and channel half-width, δ, based Reynolds num- 

ber is Re τ = u τ δ/ν= 395 [29, p. 943] . The input set, including ̂ β1 and ̂ β2 , is large to show in full herein; for this reason, it can be fetched 

from the web page of [61] as text files. 

The dimensions of the domains were: (y = 2 δ, z = πδ) . The spa- 

tial and temporal resolutions of the grids were in turn: {(64, 

100), (128, 201), (256, 402)} PCF and {(8, 4, 2)[ t � ]} PCF , where 

t � 
PCF 

= 100U c δ- 1 �t with the test duration of 25[s] containing at least 

20 0, 0 0 0 elements. 

4.2. Statistical measures 

The tests were conceptualized into two main branches: i . pre- 

cision tests, wherein the model stages were investigated whether 

they perform their assigned tasks when they are in isolation, and 

when they interact each other; and ii . accuracy tests, wherein the 

CFD-free performance of the models in terms of the level of flow 

reconstruction fidelity was quantified and compared to the test- 

bed. In Section 2.1 , the model stages were elaborated. For the fol- 

lowing plots, the stages were labeled as follows: the incorpora- 

tion of two-spatial/temporal-point correlation functions: 3rd stage , 

incorporation of one-spatial-point correlations: 4th stage , and PDF 

transformation-based skewness-kurtosis transformation approach: 

NG stage . 

The flow reconstructions were explored mainly via six statistical 

measures: i . statistical weak stationarity, ii . statistical weak ergod- 

icity, iii . first four standardized central moments, iv . one-spatial- 

point correlation tensor of second-order, 10 v . two-spatial/temporal- 

point correlation functions, and vi . one-dimensional one-sided 

power spectral density functions. The exact expressions of the 

measures are summarized in Table 1 . In a simulation, each numer- 

ical domain node accommodates a time-series of velocity vector. 

After computing sample statistical measures for the time-series, 

the measure averages were performed in statistically homogeneous 

directions. Moreover, whenever suitable, statistics obtained from 

the test-bed flows and method outcomes were quantitatively com- 

pared each other with the help of discrete Fréchet distance [62–64] , 

which is a metric that quantifies the level of similarity between 

two arbitrary curves. A code from [65–67] was utilised to compute 

the metric, which is briefly explained in Section A.4 . 

9 For L ij, k , ij denote the directions of two velocity components of interest, and k 

the measurement direction. 
10 The term can also be expressed as Reynolds stress tensor when scaled by the 

density. 

4.3. Code practices 

In terms of computational cost of DFM/FSM, two model units 

are the most expensive: i . Gaussian random number generation, 

and ii . convolution summation. 

The former ideally demands i . high computational speed, 

and samples that are ii . statistically independent, and iii . fast- 

convergent to the normal distribution. To that end, in litera- 

ture, Xie and Castro [14] used the central limit theorem wherein 

O(10) of uniformly-distributed random number sets are first gen- 

erated, and then manipulated into Gaussian samples. Later, Tou- 

ber and Sandham [30, p. 104–105] pointed out that two uniformly- 

distributed sets are adequate for this purpose if the Box–Muller’s 

theorem is used instead. However, Thomas et al. [68] quantified 

that the both approaches (and a number of other Gaussian ran- 

dom number generators) could not fulfil the three aforementioned 

properties satisfactorily and proportionately. The Ziggurat algo- 

rithm [69] , on the other hand, came to the forefront in their com- 

parisons as the optimum generator [68, p. 5] . Accordingly, in this 

study, Eddelbuettel’s [70] C + + implementation of a modified Ziggu- 

rat algorithm [71] was utilised to generate Gaussian random num- 

ber sets. 

The conventional convolution summation requires FLOPT of 

O{ [(�i 
m = 1 R m 

)(�i 
m = 1 N m 

) 
]
{ i ∈ (2 , 3) } } . 11 In order to decrease this cost, 

Veloudis et al. [37, p. 9] reminded first that convolution in 

the frequency domain is only an element-wise multiplication, 

thereby the computational time complexity may be reduced by 

O{ �i 
m = 1 N m 

/ log { �i 
m = 1 R m 

}} . The following was then proposed for 

Eq. (2) : { s } = F 

- 1 { F { b } F { r } } where F is a discrete fast Fourier 

transform operator and F 

- 1 its inverse. Note that {b} is Fourier- 

transformed only once per simulation. Apart from this proposition, 

the separable convolution summation method [39, p. 404] was 

suggested by Kempf et al. [38] to evaluate Eq. (2) : 

{ s } = 

N p ∑ 

k = - N p 

N q ∑ 

j = - N q 

N l ∑ 

i = - N l 

b i jk r m + i, n + j, o + k 

= 

N p ∑ 

k = - N p 

N q ∑ 

j = - N q 

N l ∑ 

i = - N l 

l i q j p k r m + i, n + j, o + k 

= 

N p ∑ 

k = - N p 

p k 

{ 

N q ∑ 

j = - N q 

q j 

[ 

N l ∑ 

i = - N l 

l i r m + i, n + j, o + k 

] } 

(12) 

In virtue of this method, the theoretical speed-up becomes in 

the order of O{ �i 
m = 1 N m 

/ �i 
m = 1 N m 

} . 12 The complexity ratio be- 

tween the Fourier and separable convolutions then turns out to be 

O{ �i 
m = 1 N m 

/ log { �i 
m = 1 R m 

}} . Considering R � N in DFM, the Fourier 

convolution is theoretically expected to be O (1) - O (10) faster than 

the separable convolution. Yet the tests in this study have sug- 

gested that the two may deliver considerable and comparable per- 

formance gains, likely due to the implementation-algorithm depen- 

dent effects. 

5. Results and discussion 

In order to avoid duplications, the computation results from all 

test-bed scenarios were grouped in terms of their common and 

distinct characteristics. The premises supporting the same argu- 

ment were presented through representative evidences from one of 

11 For instance, R 2 denotes the size of random set in the 2nd-direction, and N 3 

that of the filter coefficient set in the 3rd-direction. 
12 Another method, which has not been utilised in DFM, is the helix trans- 

formed [72] convolution, where multi-dimensions are regressed to one-dimension. 

In tests, however, its cost reduction was observed to be inconsiderable. 
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the benchmarks, and were denoted with a phrase ‘representative- 

to-all’ to make clear when the concluding remarks are valid for all 

scenarios. Furthermore, the spatio-temporally grid independent re- 

sults were reported, which belong to the following numerical do- 

mains: {64} HIT , {64} HST and {64, 100} PCF node per domain edge. 

5.1. The first four one-spatial-point statistical moments 

The 4th model stage requires that the sets of the 3rd stage out- 

put, { s } of Eq. (2) , has zero-mean and unit-variance [13, p. 656] . 

The majority of the literature presumes that the requirement is 

automatically fulfilled. Veloudis et al. [37, p. 8–9] , however, held 

an opposite view that the 3rd stage generally alters the zero-mean 

unit-variance of the random number sets. Therefore, they proposed 

a renormalization of { s } to ensure the requirement is fulfilled. 13 

The authors nevertheless did not present any quantification to sup- 

port this objection. 

To assess the view, the sample mean and sample standard devi- 

ation of each node-time-series were computed at each stage of the 

models. Further, the arithmetic average and variance of all these 

sample pairs were calculated. Table 3 presents a representative-to- 

all HIT results for this quantification. Data in the table shows that 

the order of magnitude of changes in zero-mean and unit-variance 

due to the 3rd stage is around 0.001 with a variance of around 

0.0 0 01. The effect of the non-Gaussian stage is, on the other hand, 

several decades lower than that of the 3rd stage. Moreover, the 

observation is consistent across DFM/FSM methods. Contrary to 

Veloudis et al.’s [37] argument, the study did not find a signifi- 

cant effect of the 3rd (as well as the non-Gaussian) stage on the 

zero-mean and unit-variance. In addition, the low variance indi- 

cated the level of effect is almost the same across stochastically 

and statistically different node-time-series. The renormalization re- 

quires operations of an addition, a summation, an exponentiation 

and a square-root per grid-node at each time-step. More impor- 

tantly, the time-series throughout the duration of a computation 

needs to be known a priori, because time averages should be per- 

formed for the normalization. This may demand large data stor- 

age and complicate on-the-fly computations. It is thus suggested 

that the renormalization is redundant in terms of its effects, and 

its omission is advisable to avoid extra cost and complications. 

Following the first two moments, the skewness-kurtosis pairs 

of the benchmarks were reconstructed through the new PDF 

transformation-based approach, Eq. (11 ). Figs. 3 and 4 illustrate 

representative-to-all PCF skewness and kurtosis results, respectively. 

In the both figures, the 3rd stage’s skewness-kurtosis pairs 

closely follow the values of (0 - 3) . This confirms that the pairs 

produced by the original DFM/FSM is Gaussian. This also corrob- 

orates the presumption that the input set of statistics as it stands 

does not automatically develop higher-order moments during the 

flow reconstruction. By contrast, as shown in the figures, the new 

non-Gaussian stage helped DFM/FSM to closely reconstruct the 

skewness-kurtosis pairs of the benchmark in terms of magnitude 

and patterns despite their spatial variation across a considerable 

range of pair combinations. Additionally, in the non-Gaussian stage, 

no appreciable differences were observed among DFM/FSM meth- 

ods. This finding implies that the different 3rd stages of the meth- 

ods do not affect the subsequent non-Gaussian stage outcomes. 

The 4th stage needs a closer look, because [20, p. 96] put for- 

ward the idea without quantification that this stage, Eq. (3 ), alters 

the statistics constructed in the previous stages. The reasons and 

extent of the alterations were however not examined therein as 

well as in the literature. Fig. 3 and 4 may provide some insights 

into the argument. 

13 As an example, [38, p. 59] used the renormalization. 

In fact, the v -component skewness-kurtosis pairs were observed 

distorted by the 4th stage. The maximum change due to the 4th 

stage in skewness was around 10% and in kurtosis 5%. 14 The level 

of distortion was gradually increased with the distance to the 

Gaussian values; nevertheless, the overall benchmark pattern was 

preserved in the numerical results. What’s more, the asymmetry 

of the distortion for the same v -skewness magnitudes at different 

channel heights implied that the magnitude of skewness-kurtosis 

pairs and Reynolds stress tensor components determine the distor- 

tion level in a nonlinear interrelation. 

On the contrary, no 4th stage effect was found on the 

skewness-kurtosis of u -, w -components. This discrepancy stems 

from Eq. (3) . In the 4th stage, the amplitude of { s u }-sets is solely 

multiplied element-wise by time-invariant a 11 whereas the oper- 

ation adopted for { s v }-sets includes a multiplication and an ad- 

dition: i.e. v = s u a 21 + s v a 22 . In the former, the sole multiplication 

causes the same scaling at two separate points of { s u }-sets in 

space and time, thereby the two-point correlation functions as well 

as one-point moments of the sets remain unchanged. In the lat- 

ter, however, the addition of a stochastic { s u }-set distorts the am- 

plitude proportionality between any two-spatial/temporal points 

within a { s v }-set; hence, distortion in embedded statistics. This 

disruption should also be detected for w -component while its 

4th stage consists of three multiplication and two additions: i.e. 

w = s u a 31 + s v a 32 + s w a 33 . The disruption was however absent for PCF 

because the additions vanish due to the statistical homogeneity in 

the w -direction: a 31 = a 32 = 0 . 
Furthermore, the same patterns were observed for HST as can 

be seen from Table 5 wherein only v -component skewness-kurtosis 

differed in nearly (18–2)% compared to the previous stage. Consid- 

ering this explanation, the 4th stage should have no effect on the 

pre-embedded statistics for HIT, because the absence of any one- 

point cross-correlation component should eliminate all the addi- 

tion operations. Indeed, Table 4 confirms this expectation as all the 

skewness-kurtosis pairs remained the same at the end of the 4th 

stage. 

These findings suggest that the 4th stage, namely the Lund 

transformation, to some extent distorts the pre-existing statistics 

only in the statistically inhomogeneous lateral directions. On the 

other hand, the same findings indicate that the streamwise and 

statistically homogeneous lateral direction statistics are not prone 

to such distortion. 

5.2. One-spatial-point second-order correlation tensor 

The reconstruction of the one-spatial-point second-order corre- 

lation tensor of fluctuations (hereafter, the tensor) is fundamen- 

tal to the synthetic turbulence generation, because the evolution of 

turbulence mostly depends upon energy transfer processes shaped 

by the tensor. The gradients of the mean velocity components work 

done on the deviatoric part of the tensor. This part then energizes 

the isotropic part of the tensor (whose half trace is the turbulent 

kinetic energy) which redistributes and dissipates the energy. As 

a result, the mean velocity field loses its convective momentum 

to the fluctuating velocity field. A realistic turbulence development 

therefore demands successful reconstruction of the tensor. 

Fig. 5 presents the representative-to-all PCF results for the six 

tensor components 15 reconstructed by the 4th model stage. Due 

to the antisymmetry of the deviatoric tensor around the channel 

half-height, the results across the entire section were shown. As a 

consequence of inadequate spatial resolution adjacent to the walls, 

14 Percentage difference = (x r - x n ) /x r · 100% , where x r is the magnitude of the rele- 

vant parameter for the reference, and x n that for the numerical study. 
15 The tensor is symmetric. 
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Fig. 3. The Pearson’s moment coefficient of sample skewness results, ̂ β1 , from DFM/FSM computations of the plane channel flow with smooth walls (PCF) [29] . From left 

to right, the 3rd, non-Gaussian (NG) and 4th model stages and from top to bottom, velocity components, ( u, v, w ), are depicted. Of a subplot, the vertical axis denotes the 

normalized channel half-height, ˜ h = h /δ where h and δ are the half-height of the computational and benchmark domains, respectively. PCF is statistically symmetric along 

the channel centerline; hence, only the results belong to the half-height are shown. The horizontal axis stands for skewness, which was computed for each node-time-series 

and arithmetic averaged in the statistically homogeneous direction of the flow. 

Fig. 4. The Pearson’s moment coefficient of sample kurtosis results, ̂ β2 , from DFM/FSM computations of the smooth-wall plane channel flow (PCF). The figure descriptions 

are as in Fig. 3 . 
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Fig. 5. The results from DFM/FSM computations of the plane channel flow with smooth walls (PCF) [29] for one-spatial-point second-order correlation tensor of discrete 

fluctuating velocities, { u ′ 
i 
(n �, m �t ) u ′ j (n �, m �t ) ∈ Q } { i, j,n,m ∈ N ; i, j∈ [1 , 3] ; n,m, �t > 0 } . The vertical axis of a subplot stands for the normalized channel full-height, ˜ h = h / (2 δ) where h 

and δ are the full-height of the computational domain and the half-height of the benchmark domain, respectively. The dependencies of the tensor components on space 

and time were reduced by arithmetic average in time and the statistically homogeneous direction of the flow; hence, u ′ 
i 
u ′ 

j 

+ 
. { ·} denotes combined time and spanwise space 

average, and {·} + = {·} /u 2 τ a normalization operator, where u τ is the estimated friction velocity. The corresponding expression used in the computations is shown in Table 1 . 

Table 1 

List of statistical measures used in the study. 

Measure Tool for quantifications 

i . Statistical weak stationarity Augmented Dickey–Fuller unit-root test [75] . 

ii . Statistical weak ergodicity Wald–Wolfowitz test [76] . 

iii.a . Unbiased estimation of mean ̂ μ1 = x = n - 1 
n ∑ 

i =1 

x i . 

iii.b . Unbiased estimation of variance ̂ μ2 = (n − 1) - 1 
n ∑ 

i =1 

(x i − ˆ μ1 ) 
2 . 

iii.c . Pearsonian coefficient of sample skewness 
√ ̂ β1 = 

ˆ μ2 
3 

ˆ μ3 
2 

= 

n - 1 
n ∑ 

i =1 

(x i − ˆ μ1 ) 
3 

ˆ μ3 
2 

. 

iii.d . Pearsonian coefficient of sample kurtosis ̂ β2 = 

ˆ μ4 

ˆ μ2 
2 

= 

n - 1 
n ∑ 

i =1 

(x i − ˆ μ1 ) 
4 

ˆ μ2 
2 

. 

iv . One-point correlation tensor R xy = z - 1 
z ∑ 

k =1 

{
T - 1 

n �t ∑ 

i =�t 

(x ki − ˆ μ1 x k 
)(y ki − ˆ μ1 y k 

) 

}
. 

v . Unbiased estimation of correlation functions ̂ ρXY = 

ˆ R XY 

ˆ μ2 X ̂
 μ2 Y 

;̂ R XY = (N − a ) - 1 
(N −a )�t ∑ 

i =�t 

x i y i + a �t 
. 

vi . One-sided power spectral density function Welch’s method [78] , window: Hanning, overlap: 50%. 

n denotes the size of a discrete sample x , ̂  · the estimation operator, z the number of nodes along the statistically 

homogeneous direction, T the sample duration, �t the time-step size, a the lag (time-offset) number, and N the 

maximum lag number. 

numerical results for a few benchmark points were not available in 

the figure. 

The results demonstrate that spatial-variant fields of the re- 

constructed tensor components were virtually the same with the 

benchmark. For instance, the maximum deviation among all sce- 

narios was observed 3.8% away from the benchmark, which be- 

longs to Kim et al.’s construction of w 

′ w 

′ + near the top wall. In 

comparison to the rest of the results, however, this deviation could 

be considered an outlier whilst the majority of all deviations was 

found to be below 1%. Furthermore, apart from minor differences 

because of the stochastic nature of model outcomes, no signif- 

icant difference among models, including non-Gaussian counter- 

parts, was identified. The most likely reason of this is that each 

model used the same Lund transformation for the 4th stage, and 
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Table 2 

Approximate number of calls for the computational operations that are required by Eqs. (10) and (11) during the transformation of a standard 

normal skewness-kurtosis pair to a target one. For brevity, operations needed for a single velocity component per time-step are shown. 

Operations S U S L S B Eq. (10) with arbitrary Eq. (10 ) with Gaussian 

Arithmetic functions Addition – – 1 2 1 

Subtraction 3 – 2 3 2 

Multiplication – – – 3 5 

Division 3 – 3 1 1 

Elementary functions exp ( · ) 2 1 1 – –

Non-elementary functions/algorithms – – – 1 erf( · ) 1 Search algorithm 1 erf( · ) 1 erf 
- 1 

(·) 

Table 3 

The arithmetic average, (·) , and variance, Var ( · ), of the sample pairs from all nodes. A pair contains the 

sample mean, ̂ μ1 , and sample standard deviation, 
√ ̂ μ2 , of a node-time-series. S-3, S-NG, and S-4 denote 

the 3rd, non-Gaussian, and 4th model stages, respectively. Each cell, ( · | · ), represents values of (( ·) | Var(·)) 
rounded to two decimal places in the scientific notation. 

Custom Klein et al. 

S-3 S-NG S-4 S-3 S-NG S-4 

̂ μ1 (10 - 3 | 10 - 4 ) - 1.19|3.88 - 1.19|3.88 - 0.26|0.18 0.16|3.53 0.16|3.53 0.04|0.16 1 × 10 - 2 √ ̂ μ2 (1 | 10 - 4 ) 1.00|0.94 1.00|0.86 0.22|0.04 1.00|1.25 1.00|1.14 0.22|0.06 

Xie–Castro Kim et al. 

S-3 S-NG S-4 S-3 S-NG S-4 ̂ μ1 (10 - 3 | 10 - 4 ) - 0.61|4.58 - 0.62|4.58 - 0.14|0.22 0.95|5.43 0.95|5.43 0.21|0.26 √ ̂ μ2 (1 | 10 - 4 ) 1.00|1.14 1.00|1.06 0.22|0.05 1.00|1.37 1.00|1.28 0.22|0.06 

Table 4 

The Pearson’s moment coefficient of sample skewness, ̂ β1 , and sample kurtosis, ̂ β2 , 

obtained from Klein et al.’s method [13] computations of the decaying homoge- 

neous isotropic turbulence (HIT) [51] . The other three methods produced results which 

were entirely in line with the table content. The benchmark skewness-kurtosis is 

( ̂  β1 - ̂  β2 ) = (0 . 00 - 2 . 85) Section 4.1.2 . S-3, S-NG, and S-4 denote the 3rd, non-Gaussian, and 

4th model stages, respectively. Each cell value was computed as follows: first, sample 

skewness-kurtosis of each node-time-series were found, second the median of all values 

was calculated and then results were rounded to two decimal places. 

S-3 S-NG S-4 S-3 S-NG S-4 

HIT ̂ β1 (10 - 3 ) u 0.16 4.11 4.11 ̂ β2 u 2.99 2.85 2.85 

v −1.40 3.04 3.04 v 3.00 2.85 2.85 

w 0.49 4.85 4.85 w 3.00 2.85 2.85 

Table 5 

The Pearson’s moment coefficient of sample skewness, ̂ β1 , and sample kurtosis, ̂ β2 , obtained from Klein 

et a.’s method [13] computations of the homogeneous shear turbulence (HST) [52] . The other three meth- 

ods produced results which were entirely in line with the table content. The benchmark values can be 

found in Section 4.1.3 . S-3, S-NG, and S-4 denote the 3rd, non-Gaussian, and 4th model stages, respec- 

tively. Each cell value was computed as follows: first, sample skewness-kurtosis of each node-time-series 

were found, second the median of all values was calculated and then results were rounded to two deci- 

mal places. 

S-3 S-NG S-4 S-3 S-NG S-4 

HST ̂ β1 (10 - 3 ) u −4.75 −0.21 × 10 3 −0.21 ×10 - 3 ̂ β2 u 2.98 3.07 3.07 

v 1.34 0.16 × 10 3 0.13 × 10 3 v 2.99 3.19 3.12 

w 0.77 1.37 1.37 w 3.00 3.29 3.29 

this stage was followed by no other model stage. Another implica- 

tion of this indifference is that the previous model stages do not 

have any appreciable effect on the 4th stage output. Lastly, u ′ w 

′ + 

and v ′ w 

′ + subplots in Fig. 5 illustrate an evidence for the pre- 

sumption that the level of reconstruction of DFM/FSM is restricted 

by the input statistics while no input was provided for the both 

components due to the statistical homogeneity in the spanwise 

direction of the flow, and indeed, the both correlations remained 

random. 

5.3. Two-spatial/temporal-point correlation functions 

In this section, representative-to-all results of the variance- 

normalized two-spatial/temporal-point sample autocorrelation 

functions (hereafter, autocorrelation) are presented with three 

figures in order to examine primarily patterns and similarities. 

First, Figs. 6 and 7 show the results obtained from HIT and HST 

computations. The two includes two longitudinal, ̂ ρxu and 

̂ ρyv , and 

one lateral autocorrelation, ̂ ρxv , in order to additionally discuss 

the DFM/FSM model stage effects on the autocorrelation. Second, 

Fig. 8 exemplifies a complete autocorrelation tensor from HST 

computations to fill the gap that the majority of studies in the lit- 

erature contended with in reporting longitudinal autocorrelations 

only, e.g. ̂ ρxx or ̂ ρyy . 

To begin with, no noticeable alterations due to the non- 

Gaussian stage were found. The remark is exemplified in 

Figs. 6 and 7 where the non-Gaussian stage outcome bears a 

marked resemblance to the previous 3rd stage. This is also valid for 
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Fig. 6. The two-spatial/temporal-point sample autocorrelation function results, ̂ ρmn , from the decaying homogeneous isotropic turbulence computations (HIT) [51] . In ̂ ρmn , 

‘ m ’ stands for the measurement direction, and ‘ n ’ for the measured velocity component. ̂ ρmn s were computed for each node-time-series, and their arithmetic average 

was performed in the statistically homogeneous directions. From left to right, the 3rd, non-Gaussian (NG) and 4th model stages are shown. From top to bottom, two 

longitudinal, ̂ ρxu and ̂ ρy v , and one lateral, ̂ ρx v , autocorrelation functions are demonstrated. The horizontal axes denote the spatial lag, ˜ r , normalized by the characteristic 

length M = 0 . 0508 [m] . The horizontal bar chart illustrates the Fréchet distance of each model curve to the benchmark. Each bar is normalized by the most-similar-to-the- 

benchmark model curve. The maximum height of a bar is the unity, and ‘ h.s. ’ with the arrow means the direction of higher similarity . 

PCF computations wherein the skewness-kurtosis pairs are highly 

varying, and is supported by Section 5.2 observations. Secondly, as 

can be deduced from Fig. 6 , no change due to the 4th stage took 

place in HIT whereas Fig. 7 reveals that the Lund transformation 

caused a rise nearly 10% of the zero-lag in the most ̂ ρxv and 

̂ ρyv 

of HST. On the other hand, ̂ ρxu of HST was found to be unaltered. 

These results are in agreement with those obtained in Section 5.1 , 

which further support the aforementioned three remarks: i . in the 

absence of anisotropic Reynolds stresses, the 4th stage does not 

adversely affect the previous stage statistics, ii . in the presence of 

anisotropic Reynolds stresses, the 4th stage remains neutral to the 

pre-existing statistics in the streamwise and statistically homoge- 

neous lateral directions; however, iii . the 4th stage amplifies those 

statistics in the statistically inhomogeneous lateral direction, which 

almost certainly leads to an uninvited increase of output turbu- 

lence scales in this direction. 

On the question of similarities, the following observations were 

made. According to the Fréchet distance in the horizontal bar 

charts of the figures, the closest and farthest overall proximity 

to the reference autocorrelation tensor components were yielded 

by the Custom and Klein et al.’s methods, respectively, with no 

counter-examples. In addition, Kim et al.’s method nearly al- 

ways produced the second best approximations, which also closely 

followed the Custom’s high fidelity reproductions. Xie–Castro’s 

method mostly ranked number three; nevertheless, occasionally 

reached Kim et al.’s fidelity. With respect to the patterns in the 

output autocorrelations, five patterns were observed. i . One finding 

is that Klein et al.’s method produced Gaussian-shaped autocorre- 

lations although the rest of the models as well as the benchmarks 

yielded exponential forms. This confirms the anticipation that the 

filter kernel casts whatever its shape onto the output autocorrela- 

tions. Another implication of the finding is that the Gaussian-form 

is not an appropriate choice for the benchmark flows considered, 

and very probably also, not for the other turbulent flows which 

share similarities with these three benchmarks. The remaining four 

patterns are maximal generalizations about the performance of the 

models, because they were observed consistently across different 

flow scenarios: ii . Klein et al.’s method overpredicted the refer- 

ences by ∼ 20–25 ± 5% up to ∼ 20–25% of the zero-lag, and then 

underpredicted them by ∼ 10%. iii . By contrast, the Custom method 

generally reconstructed the references with less than ∼ 1% differ- 

ence. Yet its 4th stage resulted in O(1) % increase in autocorrela- 

tions of the statistically inhomogeneous lateral direction, e.g. ̂ ρxv 

of HST. iv . Similarly, Kim et al.’s method reproduced the references 

in close resemblance up to ∼ 20% of the zero-lag, and then slightly 

underpredicted them with few exceptions, e.g. ̂ ρzu of HST. v . Lastly, 

Xie–Castro’s method usually resulted in ∼ 5–10% overpredictions 

along the most part of the benchmark autocorrelations. In some 

of the cases, however, the method made a higher overprediction 

around ∼ 20–25% till ∼ 15–20% of the zero-lag, which was fol- 

lowed by an underprediction, as can be seen in 

̂ ρzw 

of HST. Consid- 

ering these results, the overprediction tendency could conceivably 

be hypothesised that DFM/FSM as is often greatens input scales to 

some extent. 
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Fig. 7. The two-spatial/temporal-point sample autocorrelation function results from the homogeneous shear turbulence computations (HST) [52] . The figure descriptions are 

the same with Fig. 6 . 

Another subtle finding was about the streamwise autocorrela- 

tions of PCF, which do not level off zero, yet a positive constant 

value. It was observed that DFM/FSM could not construct such tail 

behavior, because their theoretical equations decay certainly and 

asymptotically to zero at a certain decorrelation distance. 

5.4. Power spectral density functions 

This section presents representative-to-all results of the sample 

one-dimensional one-sided power spectral density functions as a 

function of spatial wavenumbers (hereafter, power spectrum) in or- 

der to investigate the model stage effects and performance of the 

models within inertial and energy containing ranges of the spec- 

trum. Representative evidence of the following remarks are illus- 

trated in Figs. 9 and 10 , respectively, for HIT and HST. 

What stands out in the both figures is a premature and flow- 

type-independent drop with a non-linear slope in the power spec- 

tra created by Klein et al.’s method towards the outset of inertial 

range wavenumbers. Klein et al. [13] did not report any result for 

power spectra; however, Dietzel et al. [59, p. 122] identified a sim- 

ilar drop for this method in HIT. The most likely cause of the drop 

is the method’s Gaussian-form of the filter function. Consider the 

Fourier transform of the Gaussian autocorrelation function, Eq. (4) , 

whose derivation and parametrization are given in A.5.1 [73] : 

F x 

{
exp 

[
- 
π

4 

x 2 

L 2 

]}
(κ) = 2 L exp 

[
- 4 πL 2 κ2 

]
(13) 

which is also another Gaussian function, where F x is the Fourier 

transform operator on the spatial variable { x } { x > 0 } , L [m(2 π) - 1 ] 

an integral length-scale, and κ [(2 π)m 

- 1 ] the spatial wavenumber. 

Eq. (13) in Figs. 9 and 10 illustrates that Klein et al.’s method theo- 

retically produces the drop. Herewith the model, towards the iner- 

tial range, the power spectrum declines considerably more rapidly 

than κ- 5 / 3 . Consequently the net spectral energy flux in the inertial 

range also steeply decreases; thus, leading to a spurious preserva- 

tion of the energy in large scales along time. 

In contrast, two different observations were noted in Figs. 9 

and 10 for all the other methods’ inertial range reconstructions: 

first, the aforementioned drop disappeared and the inertial range 

slope was more closely followed; and second, an upward transient 

spike occurred at the high-wavenumber tail. As regards the power 

spike, temporal aliasing can be attributed as the main contribu- 

tor to this excess power, which typically results from the sampling 

process rather than the models. Therefore, no further explanation 

was sought for the second observation. 

One of the major differences between Klein et al.’s method 

and the rest is that the autocorrelation function of the latter has 

an exponential-form. The Gaussian-exponential distinction might be 

the key factor in the power drop formation. In order to examine 

this postulation, a Fourier analysis likewise above was performed 

for the exponential function. In addition, Klein et al.’s Gaussian- 

form was converted into an exponential one, and several tests were 

carried out. The Fourier transform of the exponential autocorrela- 

tion function, Eq. (7) , can be shown as follows ( (A.5.2) [74] ): 

F x 

{ 
exp 

[ 
- 
π

4 

x 

L 

] } 
(κ) = 

8L π - 1 

(8L κ) 2 + 1 

(14) 

which is a Lorentzian function that theoretically possesses a lin- 

ear decay slope of κ- 2 after a corner wavenumber, κc . Accordingly, 

Eq. (14) was also plotted in Figs. 9 and 10 . 
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Fig. 8. The two-spatial/temporal-point sample autocorrelation function results from the homogeneous shear turbulence computations (HST) [52] . Herein, all nine components 

of the correlation tensor are demonstrated. The figure descriptions are the same with Fig. 6 . 

Fig. 9. The sample one-dimensional power spectral density function results, ̂  E xu [m 

3 s - 2 ] , as a function of spatial wavenumber, κ [m 

- 1 ] , from the decaying homogeneous 

isotropic turbulence computations (HIT) [51] . In ̂  E xu , ‘ x ’ stands for the measurement direction, and ‘ u ’ for the measured velocity component in this direction. ‘Exp. Klein 

et al.’ denotes Klein et al.’s method using the exponential-form filter function. ̂  E xu s were computed for time-series of each node, and their arithmetic average was performed 

in the statistically homogeneous directions. From left to right, the 3rd, non-Gaussian (NG) and 4th model stages are shown. The horizontal bar chart illustrates the Fréchet 

distance of each model curve to the benchmark. Each bar is normalized by the model curve which is the most similar to the benchmark. The maximum height of a bar is 

the unity, and ‘ h.s. ’ with the arrow means the direction of higher similarity . 

Inspection of the two figures reveals a number of characteris- 

tics. First, the Fréchet distances of the 4th stage and qualitative 

examination indicate that the Custom, Kim et al. and Xie–Castro’s 

methods performed alike in overall spectra estimation unlike both 

Klein et al.’s methods. Yet the energy-containing range patterns 

were adequately estimated by all the methods, both Gaussian- and 

exponential-form; thus, no superiority of one form on the other in 

this respect. Another observation comparing the 3rd and 4th stages 

is that the overall shape of the power spectra is established by the 

3rd stage only whilst the 4th stage seems responsible in rescaling 

the power level to the target. In addition to this, the non-Gaussian 

stages shown in Figs. 9 and 10 assert that the skewness-kurtosis 

transformation did not modify the power spectra previously con- 

structed in the 3rd stage. 

A closer look into the inertial subrange of the both figures’ 3rd 

stages discloses that the inertial subrange slopes created by the 
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Fig. 10. The sample one-dimensional power spectral density function results, ̂  E xu [m 

3 s - 2 ] , as a function of spatial wavenumber, κ [m 

- 1 ] , from the homogeneous shear 

turbulence computations (HST) [52] . The figure descriptions are as in Fig. 9 . 

exponential-form methods (except the exponential Klein et al.’s 

method) and the corresponding Lorentzian functions are virtually 

the same. The power amplitude of these methods are, however, 

generally ∼ O(1) order of magnitude higher than that of the 

Lorentzian functions. 

The implications of these findings are threefold. First of all, 

the exponential-form methods seem to yield the inertial subrange 

slope of κ- 2 = κ- 6 / 3 rather than κ- 5 / 3 . The former’s slope is still 

steeper than that of the latter albeit to a significantly lesser extent 

than by Eq. (13) . Because of this, the above-mentioned decrease of 

the net spectral energy flux generated by the Gaussian-form meth- 

ods continues its existence, yet with a significantly reduced dis- 

similarity to what κ- 5 / 3 may produce. Further quantifications may 

however be needed whether this level of difference between κ- 2 

and κ- 5 / 3 is negligible from the perspective of turbulence devel- 

opment. Second, the use of Eq. (14 ) as well as (13) , which were 

parametrized for DFM/FSM herein for the first time, could be use- 

ful in order for predicting power spectra of a prospective simula- 

tion before actually completing the entire simulation. 

Thirdly, the exponentiality incorporated into Klein et al.’s 

method eliminated the Gaussian power drop to a large extent ; 

however, a slight decline persisted in the order of ∼ O (1) - O (10) 

with respect to the other exponential-form methods. Furthermore, 

the method’s slope was found considerably flatter than those of 

Gaussian-form methods, yet mildly steeper than κ- 2 . This outcome 

is somewhat counterintuitive, because the implementation of the 

exponential-form was expected to transform Klein et al.’s method 

into an exponential-form method in all aspects. Accordingly, the 

results imply that the omission of Gaussian-form correlation func- 

tion, per se, is the key to avoid the aforementioned spurious power 

drop whereas another unnamed mechanism within Klein et al.’s 

method also seems to contribute the drop. 

It should be highlighted that similar observations were also de- 

duced for PCF and different spectra, e.g. ̂  E vv . In summary, these de- 

ductions support the notion that exponential-form of correlations 

is more apt than Gaussian-form for the synthetic turbulence gen- 

eration. 

5.5. Miscellaneous 

5.5.1. Statistical weak stationarity and ergodicity 

The initial presumption of the model development for DFM/FSM 

is the statistical weak stationarity of time-series generated by each 

model stage. The augmented Dickey-Fuller unit-root test [75] , 

which searches stochastic trends in a time-series, was used to 

quantify the stationarity. As a result, all velocity-component time- 

series from each stage of each benchmark, including skewness- 

kurtosis computations, were found to be statistically weak station- 

ary at a 1% statistical significance level. 

The second presumption is the statistical weak ergodicity of the 

time-series. The Walf–Wolfowitz test [76] was utilised to assess the 

ergodicity. The test requires two samples of the same size from the 

same method, e.g. containing n × m elements. The first sample is 

generated with a single random seed which initializes the pseu- 

dorandom number generator. The second sample is then generated 

as a combination of n subsamples containing m elements, where 

each subsample is created with a new random seed. For a given 

moment of order k , the test conducts comparisons for whether the 

invariance of the k th moment’s statistics is preserved in spite of 

the stochastic differences in the samples. Grazzini [76, p. 7] sug- 

gests n = 100 and m = 10 0 0 for a decent estimation. With this sugges- 

tion, the test was performed for all the 36 benchmark/model sce- 

narios up to the first four central moments of each velocity compo- 

nent. At a 5% statistical significance level, 9 out of 144 cases were 

estimated non-ergodic. No clear pattern was observed among the 

non-ergodic cases; however, 4 of them belonged to kurtosis. Ow- 

ing to the high portion of the ergodic cases, it can be concluded 

that DFM/FSM is almost always weakly ergodic up to the fourth 

moment. In consequence, a stationary sample from DFM/FSM al- 

most certainly includes the true moments of the population. 

5.5.2. The use of different correlation functions at inlet spatial zones 

In the literature, DFM/FSM has almost always been utilised by 

using a single set of integral length- or time-scales as an input for 

an entire synthetic turbulence generation plane. Two deficiencies 

may arise from this practice. First, in reality, length- and time- 

scales may spatiotemporally vary across a typical cross-section of 

a flow. Second, the usage of a single set of time-scales inherently 

causes a spatial variation in particularly streamwise length-scales 

due to the Taylor’s frozen turbulence hypothesis [40] unless cross- 

sectional mean flow speed is uniform. For example, two pockets of 

fluctuation generated with the same time-scale and at two differ- 

ent spatial positions will convect downstream proportional to the 

convective mean longitudinal flow speed at these two points. If 

these flow speeds differ from those considered in the time-scale 

computation, the corresponding length-scales will be different to 

each other. Moreover, the literature preference for the single set 

usage seems due to the lack of not only available data but also 

quantifications regarding the merits and costs of using more-than- 

one sets as an input. 
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Fig. 11. The two-spatial/temporal-point sample autocorrelation function results, ̂ ρxu , from the smooth-wall plane channel flow computations (PCF) [29] wherein a single set 

of correlation tensor, L , was input. y + = u τ y/ν is the dimensionless wall distance, u τ the friction velocity, ν the kinematic viscosity of the fluid, x the measurement direction, 

u the measured velocity component, and ˜ r , the spatial lag normalized by the channel half-height, δ= 1 . 0 [m] . The channel cross-section was segmented into 12 sections in 

the wall-normal direction, where the center of a section is at the specified y + . The same input correlation tensor was used for all sections. Only the channel half-height from 

the top wall is shown due to the statistical symmetry along the half-height. ̂ ρxu s were computed for each node-time-series, and their arithmetic average was performed in 

the statistically homogeneous spanwise direction and each section height. 

In this part, therefore, effects of the spatial variation in turbu- 

lence scales are investigated. To this end, PCF was reconstructed 

by using a single and then twelve sets of integral length-scales 

(tagged by 1L and 12L in the figures, respectively). Comparisons for 

correlations and power spectra were made, and representative-to-all 

results were presented. For the 12L case, the synthetic turbulence 

generation plane was geometrically divided into twelve zones in 

the wall-normal direction. The zonal dimensions and associated 

correlation functions were provided by the benchmark. The inte- 

gral length-scales were computed through the integration of these 

correlation functions, where the upper bound of the integration 

was set to 10% of the zero-lag. 16 Each input set of each zone 

contained nine integral length-scales belonging to each velocity 

component–direction pair, (u, v , w ) − (x, y, z) . For the 1L case, the 

length-scales reported for the channel half-height, y + = 392 , were 

input uniformly across the generation plane. 

16 The integral length-scale, L, is defined here as follows: L = L 

∞ 
0 ( ̂  ρ(�)) ≈

L 

a 
0 ( ̂  ρ(�)) , where L 

a 
b 
(·) is an operator applying a numerical integration method 

over the interval [ a, b ]. Despite its precise definition, the upper bound of the inte- 

gral, i.e. b , is open to debate. Arguably, the main reason of the doubt is the different 

interpretations of the tail of the correlation functions on whether their tails mean 

something physical or spurious. O’Neill et al. [77, p. 3] implied based upon several 

tests that selecting the upper bound when the first zero-crossing happens is the 

most convenient option. This was, however, found inappropriate for the PCF while 

particularly the streamwise correlations do not level off zero. 

Figs. 11 and 12 show the representative-to-all results of the 

variance-normalized sample autocorrelation function, ̂ ρxu , as a 

function of spatial lag for 1L and 12L , in turn. Each figure includes 

twelve subplots related to a zone whose center is at a vertical dis- 

tance of y + from the wall. 

In Fig. 11 , the first observation is that the use of 1L produced 

a variation in streamwise length-scales across the channel cross- 

section, increasing from the wall to the channel centerline. This 

is due to the fact that the 1L length-scales was converted to 

Lagrangian time-scales based upon the mean flow speed at the 

height of y + = 392 through the Taylor’s hypothesis. In a constant 

time-step computation, however, inputting the same Lagrangian 

time-scales across the channel cross-section automatically caused 

variations of length-scales because of the spatial varying mean 

flow speed across the same section. Consequently, this gave rise to 

uncontrolled generation of different scales. In addition, the follow- 

ing patterns were deduced from Fig. 11 . Underpredictions occurred 

in all y + zones and for all methods after a certain percentage of 

the zero-lag. In y + = 10 zone, the common underprediction started at 

∼ 90% zero-lag. Towards higher y + zones, this starting point then 

reduced till ∼ 40 - 70% zero-lag with gradually decreasing slope. 

Typically, Klein et al.’s method yielded maximum ∼ 20–30% un- 

derpredicted correlations whereas this ratio remained around ∼
5–15% for the other methods. On the other hand, in y + = 392 zone 
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Fig. 12. The two-spatial/temporal-point sample autocorrelation function results, ̂ ρxu , from the smooth-wall plane channel flow computations (PCF) [29] wherein twelve 

correlation tensors, 12L , were input. The figure descriptions are the same with Fig. 11 . 

where the input 1L belongs to, the method performance findings 

in Section 5.3 were reobserved. 

In Fig. 12 , the observations similar to in Section 5.3 spread 

out the other y + zones by virtue of the spatial variation. On the 

whole, as maxima, Klein et al.’s method made ∼ 20 - 40% over- 

predictions until ∼ 20% zero-lag and afterwards ∼ 20% under- 

predictions. Xie–Castro’s method overpredicted the benchmark in 

the level of ∼ 5 - 20% without exception. Custom and Kim et al.’s 

methods followed the benchmark in high proximity except in the 

y + = 251 zone, 17 yet the latter deviated for ∼ 5 - 10% underpredic- 

tions after ∼ 20% zero-lag. 

Figs. 13 and 14 compared the power spectra for the 1L and 12L 

cases. As Fig. 13 shows, Klein et al.’s method yielded the aforemen- 

tioned power drop except for the y + = 10 zone where the model out- 

come seems comparable to the benchmark. The rest of the meth- 

ods performed in a common trend wherein the level of similar- 

ity to the benchmark was improved till y + = 61 , then stayed roughly 

the same until y + = 151 , and fell off. In detail, these methods had 

∼ O(10 3 - 10 4 ) higher power with respect to the spectrum tail at 

the y + = 10 zone. The difference steadily reduced to ∼ O(10 2 ) by the 

y + = 61 zone and remained almost unchanged until y + = 151 . Subse- 

quently, it rose back to ∼ O(10 3 ) towards the channel centerline. 

As illustrated in Fig. 14 , the performance trend of the models 

in Fig. 13 was repeated yet with a reduced degree of differences to 

the benchmark overall. Unlike the y + = 10 zone resemblance of Klein 

et al.’s method in the 1L case, the likeness disappeared in the 12L 

17 It should be mentioned that the main reason why the discrepancy from the 

Custom method at the y + = 251 zone occurred could not be spotted and explained. 

case with the refined length-scale input therein. That resemblance 

therefore may seem now to be a mere coincidence. The degree of 

the power difference, with respect to the spectra tails, overpre- 

dicted by the rest of the models was ∼ O(10 2 - 10 3 ) , ∼ O(10 1 - 10 2 ) 

and ∼ O(10 2 - 10 3 ) for the sectors between y + = 10 - 61 , y + = 61 - 151 

and y + = 151 - 392 , respectively. 

Taken together, the results of this section indicate that the spa- 

tial variation of scales often improves the overall statistical fidelity 

till the natural boundaries of fidelity that a model provides. In a 

single set of scales case, in contrast, somewhat arbitrary and hard- 

to-control statistics form in terms of magnitude and patterns for 

the majority of regions of a flow. 

The spatial variation of scales brings along some theoretical and 

practical shortcomings, nevertheless, which are distinct for DFM 

and FSM. Klein et al. [13, p. 658] discouraged the use of the spatial 

variation of length-scales in DFM. The authors foresaw that such 

practice almost surely causes two issues: i . the Gaussian-form of 

Eq. (4) is distorted, and ii . an essential building-block assumption 

for the derivation of Eq. (1) is violated. Klein et al. [13] , however, 

saw the spatial variation from another angle. The authors expected 

the acquisition of the variation occurs through calibrating filter 

coefficients within a single filter in accordance to given spatial- 

variant length-scales, namely via a spatially varying filter , and fil- 

tering an undivided synthetic turbulence generation plane with this 

filter. This, in fact, violates the essential model assumption wherein 

the filter coefficients were assumed spatially constant. 

In the current DFM approach, however, the generation plane 

is separated into zones, and different spatially-invariant filters are 

put to use at different zones. Accordingly, each zone independently 
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Fig. 13. The sample one-dimensional one-sided power spectral density function results, ̂  E xu [m 

3 s - 2 ] , as a function of spatial wavenumber, κ [m 

- 1 ] , from the smooth-wall 

plane channel flow computations (PCF) [29] wherein a single set of correlation tensor, L , was input. y + = u τ y/ν is the dimensionless wall distance, u τ the friction velocity, ν the 

kinematic viscosity of the fluid, x the measurement direction, u the measured velocity component, and ˜ r , the spatial lag normalized by the channel half-height, δ= 1 . 0 [m] . 

The channel cross-section was segmented into 12 sections in the wall-normal direction, where the center of a section is at the specified y + . The same input correlation 

tensor was used for all sections. Only the channel half-height from the top wall is shown due to the statistical symmetry along the half-height. ̂  ρxu s were computed for each 

node-time-series, and their arithmetic average was performed in the statistically homogeneous spanwise direction and each section height. 

possesses associated scales without breaching the two above- 

mentioned issues. Although the zone-separation discards these 

two theoretical issues, this approach suffers from two new prac- 

tical weaknesses. Firstly, statistical discontinuities emerge between 

zone boundaries. In particular, the statistics in the zone-separation 

direction are more prone to such discontinuities. As an exam- 

ple, the size of a zonal scale may far exceed the dimension of 

its zone. While non-CFD applications might not be adversely af- 

fected as zones remain independent of each other, CFD applica- 

tions could be profoundly influenced by unforeseen impacts on 

turbulence evolution due to the nonlinear mixing of discontinuities 

downstream. 

In the limit of infinite grid nodes and zones, prospective discon- 

tinuities may disappear. The second weakness, however, arose as a 

limiting factor is the extra computational cost. Veloudis et al. [37, 

p. 9] stated without an explanation or quantification that a mod- 

est increase in the number of zones results in a ‘substantial’ cost 

increase for the same number of nodes. The reason why the cost 

increases is two-fold: i . new ∼ k (x - 1)( N - 1) random numbers re- 

quired to be generated per time-step, where k is the number of 

scales input into a zone, x the number of zones, and N the fil- 

ter support for a scale (A.6) , and ii . these new numbers increase 

the size of sets which need to be convolved each time-step. Taking 

into these account, the additional computational cost is estimated 

by O(1) times the current cost. 

The above remarks are pertinent to only DFM. FSM is immune 

to such cost impact. The zone-separation is not demanded by FSM, 

and the spatial variation is achieved through solely a spatial-variant 

arrangement of the input scale set. In this regard, a possible prob- 

lem for FSM may be that the derivation of Eq. (8) for the spa- 

tial variation of scales was not engaged with by the literature, to 

date. 

Notwithstanding these concerns, the results obtained in prac- 

tice arguably weigh the merits of the spatial variation of scales 

more against additional costs. As an outcome, such implementation 

is advisable for non-CFD applications, particularly for FSM because 

of the fact that it poses considerably less trouble to beneficiaries. 
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Fig. 14. The sample one-dimensional one-sided power spectral density function results, ̂  E xu [m 

3 s - 2 ] , as a function of spatial wavenumber, κ [m 

- 1 ] , from the smooth-wall 

plane channel flow computations (PCF) [29] wherein twelve correlation tensors, 12L , were input. The figure descriptions are as in Fig. 13 . 

6. Conclusions 

The main aim of this study was to provide beneficiaries quan- 

titative insights regarding the working mechanisms and perfor- 

mance of digital-filter-based (DFM) and forward-stepwise-based 

(FSM) synthetic turbulence generation methods. Another aim of 

the study was to add them a capability wherein one-spatial-point 

skewness and kurtosis values can be changed to target values. 

To this end, four synthetic turbulence generation methods that 

belong to Kim et al. [35] (FSM), Xie and Castro [14] (Hybrid DFM- 

FSM), Klein et al. [13] (DFM), and a new method (DFM) were im- 

plemented into OpenFOAMv1612 + . The novel applications within 

the methods were twofold: First, the new method, named Cus- 

tom , was developed as a more efficient version of di Mare et al.’s 

concept [18] . Second, Kim et al.’s method was formalized and 

put through its first major tests. In addition to these, a new, 

cheap-to-run and easy-to-code piecewise closed-form function that 

transforms one-spatial-point Gaussian skewness-kurtosis of a given 

time-series to a non-Gaussian pair was derived from a combina- 

tion of the memoryless nonlinear transformation method and the 

Johnson system of probability distribution functions. All the meth- 

ods were abstracted into four modeling stages. Prior to transfer the 

model outputs into CFD simulations, the methods were explored in 

isolation via a test-bed containing decaying homogeneous isotropic 

turbulence, homogeneous shear turbulence and smooth-wall plane 

channel flow by means of various statistical measures and aspects. 

In conclusion, apart from minor findings stated within the 

text, the study provided six primary insights: ( i ). the new non- 

Gaussian functionality successfully embeds target one-spatial-point 

skewness-kurtosis pairs into synthetic turbulence time-series, and 

does not alter the other types of existing statistics within the se- 

ries. ( ii ). Moreover, the Lund transformation does not alter previ- 

ous model stage statistics when anisotropic Reynolds stresses are 

absent. However, on the condition that anisotropic stresses are 

present, the Lund transformation amplifies the existing statistics 

only in statistically inhomogeneous lateral directions. The amplifi- 

cation generally manifests itself as a maximum ∼ 10% increase in 

autocorrelation functions. Statistics in the streamwise and statisti- 

cally homogeneous lateral directions are, on the other hand, not 

affected by the transformation in contrast to the presumption in 

the literature. ( iii ). The level of reconstruction fidelity in terms of 

autocorrelation functions and power spectra was obtained by the 

methods of, which are sorted from the highest to the lowest level: 

Custom, Kim et al., Xie and Castro and Klein et al.. ( iv ). Kim et al.’s 

method provides the best trade-off between the reconstruction fi- 

delity and computational cost. ( v ). Correlation functions determine 

overall shape of their power spectra. In detail, all methods recon- 

struct energy-containing region of the spectra in high fidelity. Yet 
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Klein et al.’s method theoretically and numerically produces a pre- 

mature and flow-type-independent Gaussian drop in power spectra 

towards wavenumbers higher than those of energy-containing re- 

gion, predominantly due to its Gaussian-form of correlation func- 

tions. In contrast, the rest of the methods, which uses exponential- 

form correlation functions, yields ∼κ- 2 -slope drop by theoretical 

and numerical means. ( vi ). The spatial variation of correlation func- 

tions at a turbulence generation plane through zones was found to 

increase the overall fidelity of autocorrelation functions and power 

spectra. Its merits weigh more than its accompanied costs, partic- 

ularly for FSM. 

Last but not least, further research is required to determine 

whether the findings of the study differ within CFD simulations. 

For this purpose, the transfer and evolution of DFM/FSM output 

inside CFD simulations need to be quantified systematically. 

Acknowledgement 

The authors acknowledge the use of the IRIDIS High Perfor- 

mance Computing Facility, associated support services at the Uni- 

versity of Southampton, in the completion of this work. Bercin 

also acknowledges the Overseas Rayleigh Studentship from the 

Faculty of Engineering and the Environment at the University of 

Southampton. 

Appendix A. Appendix 

A1. Non-Gaussian random number set input-based approach 

The method is a heuristic approach rather than a rigorous 

model. Withinside, the probability mass function ( pmf ) of gener- 

ated random number sets is changed from the standard normal 

distribution to a prescribed non-Gaussian one. The basic assump- 

tion of the approach is that the pmf of the random number sets 

proportionately yields a similar pmf for the digital-filtered sets at 

the end of the filtering. Thus, such adjustment may suffice to des- 

ignate the pmf of the outcome. 

A2. Deterministic deconvolution-based approach 

In contrast to the first approach, the fundamental presumption 

of this approach is that the pmf of the first-stage random num- 

ber sets is not similar to that of the last-stage digital-filtered sets; 

however, the former with a particular pmf may determine the de- 

sired pmf of the latter. 

Recall that the basic mathematical operation in DFM is convo- 

lution ( Eq. (2) ), which may be recast into a simplified form as: 

s = b � r , where � is the convolution operator. Herein, b and r are 

known sets; and, s is unknown. 

Let b and s are known, and r is unknown in the same convolu- 

tion relation. In principle, � may be reversed in order to obtain r . 

This process is called deconvolution , which can be expressed as: 

s ∗ b = r ∗ ≈ r (A.1) 

where ∗ is the deconvolution operator, and r = r ∗ + ε with ε an 

element-wise error field. 

The second basic assumption is that the particular pmf of r may 

be found through the deconvolution: Consider a desired pmf h s ′ , 
and let n random sets { s ′ m 

} { m ∈ [1 ,n ] & s ′ m � = s ′ q if m � = q } are generated ac- 

cording to h s ′ . Then, r ∗m 

≈ r m 

may be computed through the de- 

convolution for known and constant b . Denoting each pmf of { r m 

} 

as h i , a generic pmf for r might be approximated by the arithmetic 

average of h i : i.e. n −1 
∑ n 

i =1 h i = h r when n � 1. Finally, a new ran- 

dom number set r obeying the pmf of h r could be convolved with 

b to yield a digital-filtered random set s ′ which follows the desired 

h s ′ . 

In practice, arguably, no standard form of deconvolution exists, 

and its form depends upon various characteristics of its operands. 

Whilst b is always precisely known, the optimal choice for this 

study is the deterministic deconvolution [80] , which may be de- 

fined as an arithmetic division of Fourier transformed operands in 

the frequency domain: 

r ≈ r ∗ = F 

- 1 

{
F { s } 
F { b } 

}
(A.2) 

where F {·} the discrete fast Fourier transform operation, and 

F 

−1 {·} its inverse. 

Two challenges, however, exist in respect to the formulation. 

The first is that Eq. (A.2) does not guarantee a definition of a solu- 

tion due to the possibility of the presence of zero in the denomina- 

tor term. The second challenge is the arithmetic division by a small 

number, which may cause spurious spikes in the output Claerbout 

et al. [81, p. 86] , therefore, proposed the following modification to 

Eq. (A.2) in order to alleviate the aforementioned challenges: 

r ≈ r ∗ = F 

- 1 

{
F { s } F { b } ∗

F { b } F { b } ∗ + ε2 

}
(A.3) 

where F { b } ∗ is the complex conjugate of F { b } , and ε a small real 

number proportional to the arithmetic average of F { b } F { b } ∗ such 

ε = λ{ F { b } F { b } ∗} 2 with a constant λ. For an illustrative exam- 

ple, [81, p. 87] set λ = 0 . 03 ; however, no range of values was par- 

ticularly suggested. 

A3. PDF transformation-based approach 

A3.1. Derivations 

The standard Gaussian CDF is: 

φN (x ) = 

1 

2 

+ 

1 

2 

erf 

(
x √ 

2 

)
(A.4) 

The standard Gaussian quantile function is: 

φ- 1 
N (x ) = 

√ 

2 erf 
- 1 

(2 x − 1) (A.5) 

S U unbounded family 

The quantile function of Johnson S U family: 

F - 1 SU (q ; a, b) = sinh 

[
φ- 1 (q ) − a 

b 

]
(A.6) 

The substitution of Eq. (A.5) into Eq. (A.6) yields the follow- 
ing: 

F - 1 SU (q ; a, b) 

= sinh 

[√ 

2 erf 
- 1 

(2 q − 1) − a 

b 

]

= sinh 

⎡ ⎢ ⎢ ⎣ 

√ 

2 erf 
- 1 

[
2 

(
1 

2 
+ 

1 

2 
erf 

(
x √ 

2 

))
− 1 

]
− a 

b 

⎤ ⎥ ⎥ ⎦ 

q = φN (x ) ⇒ 

= sinh 

⎡ ⎢ ⎢ ⎣ 

√ 

2 erf 
- 1 

[
erf 

(
x √ 

2 

)]
− a 

b 

⎤ ⎥ ⎥ ⎦ 

erf 
- 1 

( erf (x/ 
√ 

2 )) = x/ 
√ 

2 ⇒ 

= sinh 

[ 
x − a 

b 

] 
(A.7) 

S L Log–Normal family 

The quantile function of Johnson S L family: 

F - 1 SL (q ;σ ) = exp 

[
σφ- 1 (q ) 

]
(A.8) 
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The substitution of Eq. (A.5) into Eq. (A.8) yields the following: 

F - 1 SL (q ;σ ) = exp [ σ x ] (A.9) 

S B bounded family 

The quantile function of Johnson S B family: 

F - 1 SB (q ; a, b) = 

1 

1 + exp 

[ - 1 

b 

{
φ- 1 

N 
(q ) − a 

}] (A.10) 

The substitution of Eq. (A.5) into Eq. (A.10) yields the follow- 
ing: 

F - 1 SB (q ; a, b) 

= 

1 

1 + exp 

[ - 1 
b 

{
φ- 1 

N 
(q ) − a 

}] 
= 

1 

1 + exp 

[ - 1 
b 

{√ 

2 erf 
- 1 

(2 q − 1) − a 
}] q = φN (x ) ⇒ 

= 

1 

1 + exp 

[
- 1 
b 

{√ 

2 erf 
- 1 

(
2 

[
1 

2 
+ 

1 

2 
erf 

(
x √ 

2 

)]
− 1 

)
− a 

}]
= 

1 

1 + exp 

[
- 1 
b 

{√ 

2 erf 
- 1 

(
erf 

(
x √ 

2 

))
− a 

}] erf 
- 1 

( erf (x/ 
√ 

2 )) = x / 
√ 

2 ⇒ 

= 

1 

1 + exp 

[ 
a − x 

b 

] (A.11) 

A3.2. S U unbounded family [48] 

β1 = 

( 

ω + 1 - 

√ 

4 + 2 

[
ω 

2 - 
β2 + 3 

ω 

2 + 2 ω + 3 

]) 

×
( 

ω + 1 + 
1 

2 

√ 

4 + 2 

[
ω 

2 - 
β2 + 3 

ω 

2 + 2 ω + 3 

]) 2 

(A.12) 

m = - 2 + 

√ 

4 + 2 

[
ω 

2 - 
β2 + 3 

ω 

2 + 2 ω + 3 

]
(A.13) 

μU = sign (β2 
1 ) 

√ 

ω + 1 

2 

(
ω - 1 

m 

- 1 

)
(A.14) 

σU = ( ω - 1 ) 

√ 

ω + 1 

2 m 

(A.15) 

δ= 
1 √ 

log (ω) 
(A.16) 

γ = 

- sign (β2 
1 ) sinh 

- 1 

( √ 

ω + 1 

2 ω 

(
ω - 1 

m 

- 1 

)) 

√ 

ln ω 

(A.17) 

A3.3. S B bounded family 

β2 
1 = 

(
2 μ3 - 3 μμ2 + μ3 

σ 3 

)2 

(A.18) 

β2 = 
- 3 μ4 + 6 μ2 μ2 - 4 μμ3 + μ4 

σ 4 
(A.19) 

μ= 
A - B 

CD 

(A.20) 

μ2 = μ(1 − δγ ) + 

δ

CD 

(
A γ − B γ − μC γ D 

)
(A.21) 

μ3 = μ + 1 . 5 δμγ + 0 . 5 δ2 μγ 2 (A.22) 

μ4 = μ + 

11 

6 

δμγ + δ2 μγ 2 + 

1 

6 

δ3 μγ 3 (A.23) 

A = 

1 

2 δ
+ 

1 

δ

∞ ∑ 

n = 1 

{
exp 

(
- n 

2 

2 δ2 

)
cosh 

(
n (1 − 2 δγ ) 

2 δ2 

)
sech 

(
n 

2 δ2 

)}
(A.24) 

A γ = - 
1 

δ2 

∞ ∑ 

n = 1 

{
n exp 

(
- n 

2 

2 δ2 

)
sinh 

(
n (1 − 2 δγ ) 

2 δ2 

)
sech 

(
n 

2 δ2 

)}
(A.25) 

A γ 2 = 

1 

δ3 

∞ ∑ 

n = 1 

{
n 

2 exp 

(
- n 

2 

2 δ2 

)
cosh 

(
n (1 − 2 δγ ) 

2 δ2 

)
sech 

(
n 

2 δ2 

)}
(A.26) 

A γ 3 = - 
1 

δ4 

∞ ∑ 

n = 1 

{
n 

3 exp 

(
- n 

2 

2 δ2 

)
sinh 

(
n (1 − 2 δγ ) 

2 δ2 

)
sech 

(
n 

2 δ2 

)}
(A.27) 

B = 2 πδ
∞ ∑ 

n = 1 

{ 
exp 

(
- 

1 

2 

(2 n − 1) 2 π2 δ2 
)

sin ( (2 n − 1) πδγ ) (A.28) 

× cosech 

(
(2 n − 1) π2 δ2 

)}
(A.28) 

B γ = 2(πδ) 2 
∞ ∑ 

n = 1 

{ 
(2 n - 1) exp 

(
- 

1 

2 

(2 n - 1) 2 π2 δ2 
)

× cos ( (2 n - 1) πδγ ) cosech 

(
(2 n - 1) π2 δ2 

)}
(A.29) 

B γ 2 = - 2(πδ) 3 
∞ ∑ 

n = 1 

{ 
- (2 n - 1) 2 exp 

(
- 

1 

2 

(2 n - 1) 2 π2 δ2 
)

× sin ( (2 n - 1) πδγ ) cosech 

(
(2 n - 1) π2 δ2 

)}
(A.30) 

B γ 3 = - 2(πδ) 4 
∞ ∑ 

n = 1 

{ 
- (2 n - 1) 3 exp 

(
- 

1 

2 

(2 n - 1) 2 π2 δ2 
)

× cos ( (2 n - 1) πδγ ) cosech 

(
(2 n - 1) π2 δ2 

)}
(A.31) 

C = 1 + 2 

∞ ∑ 

n = 1 

{
exp 

(
- 2 n 

2 π2 δ2 
)

cos ( 2 nπδγ ) 
}

(A.32) 

C γ = - 4 πδ
∞ ∑ 

n = 1 

{
n exp 

(
- 2 n 

2 π2 δ2 
)

sin ( 2 nπδγ ) 
}

(A.33) 

C γ 2 = - 8(πδ) 2 
∞ ∑ 

n = 1 

{
n 

2 exp 

(
- 2 n 

2 π2 δ2 
)

cos ( 2 nπδγ ) 
}

(A.34) 
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C γ 3 = 16(πδ) 3 
∞ ∑ 

n = 1 

{
n 

3 exp 

(
- 2 n 

2 π2 δ2 
)

sin ( 2 nπδγ ) 
}

(A.35) 

D = 

√ 

2 π exp 

(
γ 2 

2 

)
(A.36) 

D γ = γ D (A.37) 

D γ 2 = (γ 2 + 1)D (A.38) 

D γ 3 = (γ 3 + 3 γ )D (A.39) 

μγ = 
A γ

CD 

- 
ADC γ

(CD) 2 
- 

ACD γ

(CD) 2 
- 

(
B γ

CD 

- 
BDC γ

(CD) 2 
- 

BCD γ

(CD) 2 

)
(A.40) 

μγ 2 = 

A γ

CD 

− A γ C γ

C 

2 D 

− A γ D γ

CD 

2 

− A γ C γ

C 

2 D 

− - 2AC 

2 
γ

C 

3 D 

− - AC γ D γ

C 

2 D 

2 
− AC γ 2 

C 

2 D 

− A γ D γ

CD 

2 
− - AC γ D γ

C 

2 D 

2 
− - 2AD 

2 
γ

CD 

3 
− AD γ 2 

CD 

2 

− B γ

CD 

+ 

B γ C γ

C 

2 D 

+ 

B γ D γ

CD 

2 

+ 

B γ C γ

C 

2 D 

+ 

- 2BC 

2 
γ

C 

3 D 

+ 

- BC γ D γ

C 

2 D 

2 
+ 

BC γ 2 

C 

2 D 

+ 

B γ D γ

CD 

2 
+ 

- BC γ D γ

C 

2 D 

2 
+ 

- 2BD 

2 
γ

CD 

3 
+ 
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μγ 3 = μγ 3 (A) + μγ 3 (B) (A.43) 

μB = μ (A.44) 

σB = sign (β1 ) 
√ 

μ2 − μ2 (A.45) 

A3.4. Criterion 

g(β2 ) = (ω 1 − 1)(ω 2 + 2) 2 ∼ β1 (A.46) 

ω 1 = 

1 

2 

(
- 1 + 

√ 

d + 

√ 

4 √ 

d 
− d − 3 

)
(A.47) 

ω 2 = 

√ 

- 1 + 

√ 

2(β2 − 1) (A.48) 

d = - 1 + 

3 

√ 

7 + 2 β2 + 2 

√ 

D − 3 

√ 

2 

√ 

D − 7 − 2 β2 (A.49) 

D = 

(3 + β2 )(16 β2 
2 + 87 β2 + 171) 

27 

(A.50) 

A4. Discrete Fréchet distance metric [63, p. 2] 

Let { P �t 
} { 0 ≤�t ≤T ; 1 ≤t≤p; t∈ Z + } = { P �1 

, . . . , P �p 
} , and similarly 

{ Q �t 
} = { Q �1 

, . . . , Q �q 
} , be two the-same-size discrete time- 

series, where �t is an arbitrary instant, and t an index of a 

set member. Let further consider a set { L } that contains of all 

possible member pairs between { P �t 
} and { Q �t 

} such that 

{ L } = { (P a 1 , Q b 1 
) , . . . , (P a m , Q b m ) } {{ �1 ≤a i ≤�p }; { �1 ≤b i ≤�q }; { 1 ≤i ≤m - 1 }} . 

Then, the discrete Fréchet distance, δdF , whose value depends on 

the values (position) and order of the set members, is defined as 

follows: 

δdF (P �t 
, Q �t 

) = min 

L 

(
max 

i = 1 , ... ,m 

| P a i − Q b i 
| 
)

(A.51) 

For identical sets δdF = 0 whilst a rise in δdF indicates an increase 

in dissimilarities. In addition, it should be noted that the discrete 

Fréchet distance is an approximation to the Fréchet distance to al- 

low easier code implementation and lower computational costs. 

A5. Fourier transformation of some filter kernels 

A5.1. Gaussian-form autocorrelation function 

The Fourier transform of a Gaussian function can be derived as 

follows [73] : 

F x 

{
exp 

[
- 
π

c 

x 2 

L 2 

]}
(κ) = F x 

{
exp 

[
- ax 2 

]}
(κ) a ↔ πc - 1 L - 2 

(A.52a) 

= 

∞ ∫ 
- ∞ 

exp 

[
- ax 2 

]
exp [ - 2 π iκx ] dx (A.52b) 

= 

∞ ∫ 
- ∞ 

exp 

[
- ax 2 

]
[ cos (2 πκx ) − i sin (2 πκx ) ] dx (A.52c) 

= 

∞ ∫ 
- ∞ 

exp 

[
- ax 2 

]
cos (2 πκx ) dx − i 

∞ ∫ 
- ∞ 

exp 

[
- ax 2 

]
sin (2 πκx ) dx 

(A.52d) 

= 

√ 

π a - 1 exp 

[
- 
π2 κ2 

a 

]
(A.52e) 

= 

√ 

c L exp 

[
- cπL 2 κ2 

]
a ↔ πc - 1 L - 2 (A.52f) 
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where F x is the Fourier transform operator on the variable 

x , L [ m (2 π) - 1 ] the integral length-scale, κ [(2 π) m 

- 1 ] the spatial 

wavenumber, and c a model constant, for instance in Eq. (4) c = 4 . 
The first term of Eq. (A.52d) reduces to Eq. (A.52e) [73] , and its 

second term goes to zero due to the symmetrical integration of 

the odd function [73] . 

A5.2. Exponential-form autocorrelation function 

The Fourier transform of an exponential function is derived as 

follows [74] : 

F x 

{ 
exp 

[ 
- 
π

c 

x 

L 

] } 
(κ) = F x { exp [ - ax ] } (κ) a ↔ πc - 1 L (A.53a) 

= 

∞ ∫ 
- ∞ 

exp [ - ax ] exp [ - 2 π iκx ] dx (A.53b) 

= 

0 ∫ 
- ∞ 

exp [ - 2 π iκx ] exp [ 2 πax ] dx + 

∞ ∫ 
0 

exp [ - 2 π iκx ] exp [ - 2 πax ] dx 

(A.53c) 

= 

0 ∫ 
- ∞ 

[ cos (2 πκx ) - i sin (2 πκx ) ] exp [ 2 πax ] dx 

+ 

∞ ∫ 
0 

[ cos (2 πκx ) - i sin (2 πκx ) ] exp [ - 2 πax ] dx (A.53d) 

( - x ↔ u ; - dx ↔ du ) 

= 

∞ ∫ 
0 

[ cos (2 πκu ) + i sin (2 πκu ) ] exp [ - 2 πau ] du 

+ 

∞ ∫ 
0 

[ cos (2 πκu ) - i sin (2 πκu ) ] exp [ - 2 πau ] du (A.53e) 

= 2 

∞ ∫ 
0 

cos (2 πκu ) exp [ - 2 πau ] d u → 

∞ ∫ 
0 

cos (κu ) exp [ - bu ] d u 

= 

b 

b 2 + κ2 
(A.53f) 

= · · · (A.53g) 

= 

2 cL π - 1 

(2 cL κ) 2 + 1 

a ↔ πc - 1 L (A.53h) 

where F x is the Fourier transform operator on the variable 

{ x } { x > 0} , L [ m (2 π) - 1 ] the integral length-scale, κ [(2 π) m 

- 1 ] the 

spatial wavenumber, and c a model constant, for instance in 

Eq. (7) c = 2 . 

A6. Size of extra random numbers due to the spatial variation of 

scales 

Consider a planar synthetic turbulence generation grid that has 

n nodes. Let the grid is divided into x zones which are assumed 

having the same number of nodes, n / x . Also assume that a scale 

set, which contains k number of scales, is input for each zone. The 

following relations then can be presented among the size of ran- 

dom number set required for “valid ” type of convolution summa- 

tions on an undivided grid, M 1 , and on a zone, M 2 , and the filter 

support of the scale N 1 : 

n = M 1 − N 1 + 1 

M 2 − N 1 + 1 = 

M 1 − N 1 + 1 

x 
for a zone 

x M 2 − x N 1 + x = M 1 − N 1 + 1 

x M 2 − M 1 = (x − 1)(N 1 − 1) (A.54) 

where x M 2 − M 1 is the size of new random sets that needs to be 

generated for the whole grid for a single scale per time-step. 
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Abstract

Digital-filter-based (DFM) and forward-stepwise-based (FSM) synthetic (turbulence-like) time-

series generator classes were conceptualised into five model stages within computational fluid dy-

namics set-ups. In addition, two new methods enabling DFM-FSM to be seamlessly computed

on nonuniformly-discretized boundaries were proposed alongside a new mass-flux correction tech-

nique, and two new code practices for computational speedup. Through four DFM-FSM variants

representing the majority of capabilities of the classes, each DFM-FSM model stage was explored

by controlled studies of extensive-than-the-literature range of input variables and output statistics

with large eddy simulation (LES) computations of decaying homogeneous isotropic turbulence, ho-

mogeneous shear turbulence and smooth-wall plane channel flow. Moreover, five LES post-solution

verification metrics were reviewed and compared via these building-block flows. Among sixty-two

observations, the prominent findings were that: [i] The traditional 80% turbulent kinetic energy res-

olution was quantified to be more robust than the modern LES post-verification metrics considered.

[ii] In the first three nodes, input Reynolds stresses were consistently suppressed, particularly in

shear components and lateral directions. Divergence-freeness enforcement was quantified to be the

driving factor. [iii] Input autocorrelations were suppressed to a more limited extent. Navier-Stokes

equation algorithms was deemed to be the cause. [iv] Streamwise evolution of Reynolds stresses

followed an asymmetric quadratic pattern rather than a monotonic pattern. [v] The first DFM al-

most always produced the highest amplitude resemblances and the shortest adaptation lengths for

Reynolds stresses and wall shear stresses. [vi] Amplifying input shear stresses reduced amplitude

distortions downstream, and shortened adaptation lengths. [vii] A parabolic relation was found
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between input length scale sizes and amplitude/adaptation lengths of Reynolds stresses/wall shear

stresses. [viii] Seamless nonuniform DFM-FSM and using multiple input length-scale sets did not

improve flow to an important extent. [ix] Mass-influx corrections significantly improved pressure

predictions and reduced computational costs, albeit no impact on velocity-based statistics.

Keywords: inflow turbulence, synthetic turbulence, inlet conditions

1. Introduction

In nature, turbulent flows are ubiquitous; hence, turbulence modelling is essential in industrial

and academic engineering applications. Today, the trend in turbulence modelling is towards higher

fidelity in tandem with low-cost scalability. Advancements, however, brought new challenges, es-

pecially for spatiotemporal-variant inflow boundary condition modelling of convection-dominant5

flows. As a consequence of chaotic turbulence dynamics, stochastic and/or statistical characterisa-

tion of such boundary conditions was found to be arduous, yet rewarding. Therefore, various inflow

turbulence generation methods were put forth to date. In this study, the scope is limited from

the outset to two groups of synthetic turbulence generators: digital filter-based [1], and forward-

stepwise-based [2] methods (abbr. DFM and FSM). Thus, the reader is referred to [3, 4, 5] for the10

categorisation and description of other methods.

Fig. 1 shows an input-output diagram of DFM/FSM. Therein, a random number set and a

group of statistics are fused into a new number set by a chain of mathematical operations whose

characteristics are determined by the statistics.

The modern DFM was introduced by [1] although earlier similar ideas/methods can be noted15

in [6, 7]. The authors proposed a three-step frame: [i] generating random number sets from the

standard Gaussian probability distribution, [ii] incorporating arbitrary two-point1 autocorrelation

functions by means of digital filters, and [iii] imbedding one-point second-order correlation tensor

via a tensor transformation [8] (abbr. the Lund transformation). Furthermore, the arbitrary-form

autocorrelations in the [ii]-step were modelled in Gaussian-form to eliminate the requirement of a20

root-finding algorithm to obtain filter coefficients in favour of explicit evaluations.

One of the limitations of DFM is that its output (i.e. synthetic time-series) does not include any

physical information apart from input statistics. Six studies sought to improve the physical content

1 In this paper, number -point signifies the number of spatial points utilised in the computation of a statistic.
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Random Number Set

Turbulence Statistics

New Set With
Turbulence Statistics

Figure 1: An input-output diagram illustrating the working principle of DFM/FSM. Modified from [9, Fig. 1].

of the output therefrom: [10] studied the viability of arbitrary-form autocorrelation functions in the

[ii]-step. A linear algebra algorithm was put forward to compute digital-filter coefficients from25

an autocorrelation function, and the authors [10, p. 10] suggested the algorithm for wall-bounded

flows. In a follow-up study, the algorithm was updated to provide computationally cheaper, more

robust and capable solution processes [11, p. 687]. In addition, [12, p. 96] unified the [ii] and [iii]

steps to prevent possible distortions of the [ii]-step statistics due to the [iii]-step, and to input

two-point cross-correlations. Later, [2] questioned the use of the Gaussian-form simplification as the30

most appropriate option for turbulent shear flows, and replaced it with an exponential-form. Also,

FSM was derived in the same study as a cheaper equivalent of DFM, and was substituted into the

[ii]-step’s longitudinal direction, hence the first hybrid DFM-FSM. Using this hybrid method, [13]

associated [ii]-step with a finite impulse response filter to make function forms possessing an-

alytical inverse and forward Fourier transforms usable in DFM, e.g. two-sided exponential-form.35

Lastly, [9] propounded an approach to overcome the impracticability of [10] (e.g. its intricate code

implementation) wherein an arbitrary-form correlation function is first curve fitted to a chosen-form

continuous function (e.g. a sum of two exponential functions), and then digital-filter coefficients are

computed from the curve fit in a similar idea that [10] follows.

Another limitation is that DFM output can only be created on unit-square/cube grids. As40

the first attempt to generate synthetic time-series on non-uniformly-discretised grids on arbitrary-

shaped boundaries, [14] modelled the [ii]-step as a digital-filter equivalent diffusion process. Sub-

sequently, a combined method of [14] and [1] was introduced by [15, p. 328] claiming the output

generation on non-uniform grids; however, no tangible description of the method was conveyed.

DFM on curvilinear grids was enabled by [16] through the use of a one-to-one-mapping between45

Cartesian and curvilinear grids. Nevertheless, the generation still requires to be performed on

Cartesian grids; therefore, the method could not be qualified as a seamless generator of time-series

on non-uniform grids. For FSM, on the other hand, the time-series generation on non-uniform grids

is possible in theory. To the authors’ knowledge, however, no study was utilised or investigated
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FSM regarding this.50

The third limitation is that DFM/FSM is not divergence free, and their mass flux is not

conserved. The consequence of non-solenoidality is reportedly spurious pressure fluctuations [13,

p. 1089]. For instance, [17, Fig. 11] observed pressure fluctuations three to six orders of magnitude

higher than the benchmark in an incompressible plane channel flow computation. By contrast,

the impact of non-solenoidality on velocity fluctuations was reported negligible [14, p. 76], [17,55

Fig. 11]. To remedy this issue, [18, p. 5] enforced solenoidality upon DFM via a solenoidal dig-

ital filter in case for homogeneous isotropic turbulence time-series. Nonetheless, [18, p. 7] made

a mere suggestion to utilise [19, p. 3-5]’s transformation method for non-homogeneous anisotropic

turbulence without providing its repeatable application on DFM. Likewise, the possibility of using

a projection method [20] was merely mentioned by [1, p. 659] and [14, p. 76]. Adopting another60

perspective, [17] devised a work-around applicable to DFM/FSM that the momentum predictor

equation of a pressure-velocity coupling algorithm (i.e. cell nodes) receives time-series instead of

inflow boundary conditions of the system of algebraic equations (i.e. boundary face centres), so that

solenoidality is enforced. Yet this method did not render DFM/FSM divergence-free in themselves.

Regarding mass flux conservation, previous studies did not systematically address its effects. As65

a rare counter-example, [17, p. 61] maintained that the violation of mass flux conservation causes

spurious pressure fluctuations similar to the lack of divergence-freeness, and the authors [17, p. 57]

advanced a heuristic correction ensuring time-variant mass flux remains constant.

Eight more studies put forth major developments in a variety of topics: Single-direction con-

tribution of FSM within the hybrid DFM-FSM of [2] was extended to the remaining directions70

by [21], hence the straight FSM. Compressible flow computations with the hybrid DFM-FSM were

systematically enabled by [22, p. 104-105]. In addition, DFM was expanded by [23, p. 677] to be

used in hybrid LES-URANS interfaces through a new kinetic energy equation accepting synthetic

time-series as its argument. Another hybrid LES-URANS methodology coupled the hybrid DFM-

FSM was proposed by [24, p. 703] where RANS-side instantaneous flow quantities are utilised to75

generate synthetic time-series on LES-side. For spatial-temporal-variant scalar fluctuations with-

out flow-cross-correlations, DFM was first-time used by [25, p. 1313]. Flow-scalar cross-correlations

were, however, rendered possible for DFM/FSM by [26, p. 25] who methodically upgraded the [iii]-

step of DFM. Regarding non-Gaussian statistics, [9] presented a functionality that can reconstruct

given one-point spatial-variant skewness-kurtosis pairs into synthetic time-series without changing80
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its preexisting statistics whereas the method thus far was not tested in CFD. Last but not least, on

the qualitative grounds that synthetic time-series go through a series of statistical metamorphoses

downstream within a CFD domain, [27] described a monotonic optimisation method adjusting input

statistics on the fly to carry target statistics to fields of interest downstream.

Arguably, much of the remaining research on DFM/FSM were performance and application85

improvements transferable across the above-mentioned fundamental studies. For a short list of

such studies, the reader is referred to [9, p. 445], and on top of this list, two recent studies can be

added: First, [28] designed synthetic time-series as source terms to be able to position DFM/FSM

boundaries inside a domain with an arbitrarily oriented fashion. Second, [9, p. 449] offered the

Ziggurat algorithm as the optimum pseudo-random number sampling approach over the Box-Muller90

transform and Marsaglia polar method.

Despite the aforementioned studies, there is a lack of extensive research in five topics that ham-

pers theoretical/practical advancement of DFM/FSM in CFD. First, although stochastic/statistical

metamorphoses are qualitatively expected in input synthetic time-series that enter and convect

through a computational domain, much uncertainty exists as to the extent and causes of these95

metamorphoses. One implication of the uncertainty is a state that statistics in the field of inter-

est could be different from input statistics at an unknown level. Very little is currently known in

the literature due to the lack of abstractions of DFM/FSM phases, isolation of model parameters

and quantification of their effects and interactions. Therefore, conceptualisation of DFM/FSM

phases, and thereafter, controlled tests quantifying and clarifying DFM/FSM uncertainties need to100

be conducted to build a systematic understanding of how x affects/contributes to y in DFM/FSM.

Second, the existing accounts failed to invent an approach generating synthetic time-series on

arbitrarily-discretized arbitrary boundary geometries. Currently, the conventional practices are to

perform nearest-neighbour projection [2] or linear interpolation using two-dimensional Delaunay

triangulation [13] from unit-square virtual grids, whereon synthetic time-series are created, onto105

corresponding boundaries. Yet information distortion is not decisively prevented via these practices

during the information transfer through non-conformal interfaces. Therein, interpolation errors are

somewhat expected to increase overall modelling uncertainties. Moreover, the same accounts did

not quantify isolated effects of information transfer processes on synthetic time-series although

almost any non-conformity should cause information distortion to a certain extent.110
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Third, no studies have been found which compare DFM/FSM variants to each other in CFD2

whereas eight studies examined single variant of DFM or FSM against variants from other turbulence

generation method categories: [29, 30, 31, 32, 33, 34, 35, 13, 36] whose assertions will be referred

in the following sections accordingly.

In addition, systematic ‘building-block’ flow explorations of DFM/FSM are lacking (e.g. no115

DHIT/HST study exists with [2]), which may complicate to identify isolated effects of major tur-

bulence concepts, such as pure shear.

Lastly, research on the subject has been mostly restricted to low-order statistics in their com-

parative evaluations, and has not touched upon higher-order statistics (e.g. enstrophy) in spite

of the fact that theoretical, experimental and computational high-fidelity datasets are adequately120

available for benchmark flows.

The absence of structured knowledge in these five subjects hinders attempts for theory/practice-

oriented improvements within DFM/FSM, decision-makings as to the most apt DFM/FSM variant

to the CFD problem in hand, and conveying DFM/FSM benefits to a wider audience. There-

fore, the aims of this study are to minimise the aforementioned knowledge gaps through system-125

atic explorations of DFM/FSM via building-block flows with statistics including previously-not-

considered measures, and to expand DFM/FSM functionality portfolio in various aspects, e.g. a

capability wherein synthetic time-series can be seamlessly generated on nonuniformly-spaced struc-

tured boundary grids. To this end, the theory behind DFM/FSM, large eddy simulation, and

proposed new capabilities are briefly explained in §2, the methodology is presented in §3, relevant130

results are shown and discussed in §4, and clear-cut conclusions alongside remaining challenges are

given in §5.

2. Theory

2.1. Flow modelling

2.1.1. Physical phenomena135

In this study, the scope of physical phenomena is limited to Newtonian single-phase incompress-

ible fluid flows, excluding any thermal, chemical, electromagnetic, and scalar interactions. In this

2 A comparative non-CFD investigation amongst DFM/FSM variants was performed by [9].
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scope, the set of governing equations is the following pointwise conservation equations of mass and

momentum in an inertial frame of reference within an external conservative force field [37]:

∇ · u = 0, in Ω× (0,T) (1a)

ut +∇ · (uu) = -∇p̃+ ν∇2u, in Ω× (0,T) (1b)

where (.) is a linear operator, u(x, t) a vector field of velocity [ms-1], uu a dyadic field of velocity

[m2s-2], ν the constant kinematic viscosity of the fluid [m2s-1], p̃(x, t) a scalar field of modified

pressure [m2s-2], Ω a finite-size fixed-in-space volume [m3] with bounding surface ∂Ω [m2], T an

arbitrary instant of time [s], and ut≡∂u/∂t [ms-2]. The external field term, say f , complements

the pressure gradient term when f is conservative (i.e. f=-∇f , f a potential function); thus, the140

manipulation of (-∇p+f)/ρ = (-∇p-∇f)/ρ = -∇p̃ was performed, where ρ is the uniform fluid density

[kgm-3]. In intermediate steps of an actual computation of Eq. 1b, the continuity constraint remains

non-zero; therefore, ∇ · (uu) was not reduced to (u · ∇)u by the incompressibility assumption [38].

The computations of Eq. 1 were carried out via OpenFOAM®v1712 [39] software, where finite

volume method discretisations are performed on the integral form of Eq. 1. In what follows, the145

majority of the reported model equations was reverse engineered from the software.

2.1.2. Turbulence modelling

In this study, large eddy simulation (LES) was chosen as the mathematical approach to compute

Eq. 1 in order to trade off computational costs for desired-fidelity flow modelling. In LES, a

time/frequency-domain low-pass filter is applied onto Eq. 1 as a whole in order to derive a filtered150

set of equations, so that a quantity larger than the filter cutoff (i.e. over-filter scales) is explicitly

computed, and smaller quantities (i.e. sub-filter scales) are treated in another cheaper-to-run way

(modelling or ignoring). Conventionally, the operator (.) in Eq. 1 is a linear, homogeneous, time-

invariant, spatial filter, which inherently produces a temporal filtering effect on Eq. 1 due to the

natural associations between temporal and spatial scales [40, p. 13, 261]. This results in spatially-155

filtered Eq. 1 wherein uu is unknown.

Furthermore, the implicitly filtered variant of LES was used [41, p. 381] (abbr. IFLES).3 IFLES

3 It should be noted that IFLES is not ‘implicit LES’ (ILES) wherein sub-filter scales are not modelled, and their
effects are expected to happen solely due to discretisations. In IFLES, however, a sub-filter scale model is in
use alongside implicit filtering. The use of a model may be questionable. Numerical dissipation due to certain
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aims to prevent computational (e.g. extra filtering) and theoretical complexities (e.g. boundary

commutation issues due to the use of an explicit filter) associated with LES [43, p. 476-477]. To

this end, over-filter and sub-filter scales are not separated by means of an explicit filter, but im-160

plicit actions. The rationale of IFLES is justified by two notions: (i) wavenumbers higher than the

grid Nyquist wavenumber4 cannot be captured and become indistinguishable from lower wavenum-

bers [44, p. 88], and (ii) discretisations introduce errors, mainly on resolved high wavenumbers,

similar in size and effect to dissipative actions of sub-filter scale models [40, p. 331]. Both automat-

ically determines the highest resolvable wavenumbers. For this reason, an explicit filter is presumed165

to be replaced by this existing elimination mechanism.

Although it is a widely held view in the finite volume method literature that an equivalence

between a volume-average of a variable (i.e. implicit filtering) and a top-hat kernel convolution

of the same variable (i.e. explicit filtering) exists (e.g. [45, p. 1308], [41, p. 381]), few such as [46,

p. 3849] [47, p. 1] argued that the relation is actually an ill-defined approximation. In contrary, three170

layers form an effective filter [40, p. 331]: discretisations of (i) domain, and (ii) equations, and (iii)

a closure model, each of which filters out certain scales. In view of hard-to-measure contributions

from each layer, the effective filter cut-off scale dissociates from the grid size and becomes ambiguous

for a priori identification. In addition, discretisation errors and sub-filter scale modelling uncertainty

become functions of the grid size, and further, interact each other [48, p. 131]. As an implication,175

these notions preclude grid-independency in IFLES5; hence, the quality quantifications of IFLES

computations need to be carried out a posteriori by other means as shown in §2.2.
The closure of Eq. 1 is delivered as follows. First, the unknown uu is re-expressed in a more

modellable form by the Reynolds decomposition, i.e. u≡u+u′, and [49]’s triple decomposition, which

ensures no second filtering is required unlike the double decomposition [40, p. 49-50]:

uu = u′ u + uu′︸ ︷︷ ︸
1

+u′u′︸︷︷︸
2

+
(
uu− uu

)︸ ︷︷ ︸
3

+uu with u′ u 6= uu′ (2)

algorithms was observed that they can shape flow development to a similar level that a sub-filter scale model of
explicit LES can do [42, p. 24]. Therefore, a model’s augmentation of dissipation may be redundant. In this study,
however, no exclusive algorithms were utilised, and it was assumed that the use of a sub-filter scale model could
be acceptable as long as an IFLES computation is thoroughly verified or validated.

4 For the smallest resolved one-dimensional structure of size ∆, the maximum grid spacing could be 0.5∆ due to
the Nyquist theorem [40, p. 10].

5 Several cases were reported where grid refinement even deteriorated computation outcomes [47, p. 1].
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where the under-braced terms are tensors of cross-stress, Reynolds decomposed sub-filter scale

stress, and Leonard stress, respectively. The first and third terms are not Galilean-invariant [50,

p. 64], thereby yielding different results for the same terms in different inertial frames [51, p. 61].6180

As a consequence, the two terms are often omitted. The modelling practice is ultimately designated

on: (uu-uu)≈u′u′.
Second, inter-scale interactions between over- and sub-filter scales are deemed to be functional

rather than structural. The former concept purports that inter-scale energy transfer is an adequate

ground to model inter-scale interactions and over-filter scale evolution [40, p. 104]. For this purpose,185

a modelled energy sink is applied to over-filter scales by leaving the dynamic characteristics of sub-

filter undefined. Here, this was achieved by adopting the Boussinesq eddy-viscosity hypothesis:

u′u′≈B≡ 0.6̇ ksfs I-νtSd, where B is a symmetric tensor field [m2s-2], ksfs the modelled sub-filter

scale kinetic energy field per unit mass [m2s-2], I an identity tensor field [-], Sd={St-3-1 Tr(St)I}
[s-1] the deviatoric part of the twice strain rate tensor field, i.e. St=2S=2{0.5(∇u+(∇u)ᵀ)} [s-1],190

Tr(·)≡∑n
i=1(·)ii the trace of a tensor, and {νt}{νt≥0} the modelled eddy-viscosity scalar field [m2s-1].

In this work, ksfs and νt were modelled by using the Smagorinsky model [53] equipped either with the

van Driest wall-damping function [54] or a Lagrangian-averaging dynamic procedure [55], depending

on the case in question.

The Smagorinsky model evaluates νt and ksfs as shown below:

νt = Ck ∆ k0.5
sfs ksfs =

{(
-b+ (b2 + 4ac)0.5

)
(2a)-1

}2 (3)

where Ck is a model constant [-], {∆}{|∆|=N}=m 3
√
V a scalar field of the domain-layer component195

of the effective (first) filter [m], m a heuristic coefficient with a default value of 1 [-], {V }{V≥0} the

corresponding scalar field of the time-invariant computational cell volume [m3], N the number of

cells in the computational domain [-], a≡Ce ∆-1 a quadratic coefficient field [-], Ce another model

constant [-], b≡ 0.6̇ Tr(S) a linear coefficient field [-], c≡ 2Ck∆(dev(S):S) a free term field [-], and

{:} the double inner two-tensor product operator, i.e. {A:B}≡∑n
i=1
∑m
j=1AijBij .200

The van Driest function was applied onto ∆ in order to limit νt towards walls, so that eddy-

formation-preventing dissipation and solver instability can be avoided [37, p. 78]. The main reason

6 For instance, Härtel and Kleiser (1997) [52, p. 103] demonstrated that filter-independent sub-filter scale energy
transfer is not possible with Galilean-variance.
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of its usage herein is, however, to ensure consistent comparisons with the literature while a number

of development proposals were available, such as in [56, p. 26]. Its formulation with a minimum

switch that was introduced by [50, p. 124, 260] reads:

∆ = min
(
∆, κC-1

s |dnw|
{

(1 + ε)− exp[ |dnw| (y∗A+)-1]
})

(4a)

y∗ = νw {(νw + νsfs,w) |nf · (∇uw)f |+ εs}-0.5 (4b)

where κ=0.41 is the von Kármán constant, Cs the Smagorinsky constant, |dnw| the node-wall-

normal distance within y+<500 [m], ε the machine epsilon [-], y∗=ε-1 a scalar field with its boundary

condition defined in Eq. 4b [m], A+=26.0 a model coefficient [-], {·}w wall boundary fields, nf

surface normal vector, and εs the minimum machine floating point number.

With the Lagrangian-averaging dynamic procedure, the forms of νt and ksfs become:

νt = JLM(JMM)-1∆2(Sd:Sd)
0.5 ksfs=(2 JLM J-1MM)2/3 C-2/3

a ∆2 |Sd|2 (5)

where Ca is a model constant [-], JLM with JMM scalar fields [m4s-4] defining C2
s (x, t)=JLMJ-1MM [55,

Eq. 3.5] and being solved from the two transport equations shown below [55, Eq. 3.8-3.9]:

∂tJLM +∇ · (u JLM) = T-1((L:M)− JLM) (6a)

∂tJMM +∇ · (u JMM) = T-1((M:M)− JMM) (6b)

where ∂t{·} is a partial temporal derivative operator [s-1], T=(θ∆)-1(JLMJMM)-0.125 a Lagrangian

averaging time scale [s], θ a heuristic coefficient [m-2] with a suggested value of 1.5 [55, p. 363]

that ensures a time-lag for Lagrangian autocorrelation functions of (L:M) and (M:M) reduc-

ing below e-1-lag, L={Q-3-1 Tr(Q)I} a symmetric tensor field with Q={F[u2]-(F[u])2} [m2s-2],

M = 2 ∆2 {F[(Sd:Sd)Sd]-4 (Sfd:Sfd)Sfd} another symmetric tensor field [m2s-2], Sfd an equivalent of

Sd applied on F[u] instead of u, and F[·] the second (explicit) filter operator whose formulation is:

F[φ] =
(∑

f
φfAf

) (∑
f
Af

)-1
(7)

where f stands for a cell face, φ an arbitrary field, φf the corresponding field interpolated from the205

cell centre to one of its faces, Af face area [m2], and F[φ] the top-hat filtered field. It should be
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highlighted that although the aforestated derivations in the dynamic procedure were hinged upon

the cut-off scale size of 2∆ in the second filter [55, p. 354], the filter radius of Eq. 7 is smaller than 2∆

in the software to some extent. The difference in theory and practice was, however, presumed to be

ineffective on outcomes by the academic community, and the opposite premise was not investigated210

to date.

2.1.3. Inflow modelling

2.1.3.1. Digital-filter-based and forward-stepwise-based synthetic time-series generators7

DFM and FSM create spatiotemporal-variant fields of Reynolds-decomposed velocity (or scalar)

fluctuations, {u′i (x, t) ∈ Q}{i∈N : i∈ [1,3]; t>0}, which do not directly stem from governing equations215

of fluid motion. As illustrated in Fig. 2, both methods can be conceptualized four independent

stages.
Two-point

correlation functions
One-point

correlation tensor

Stage 1 Stage 2 Stage 3 Stage 4

Generate:
{r}

(R)

Generate:
{b}

(2N+1)

Perform:
b Ξ r {s}

(M)

Perform:
a . s {u}

(M)

1

Figure 2: An illustration of DFM/FSM stages in case of a one-dimensional field. Modified from [9, Fig. 2].

In the first stage, a set of random numbers are generated: {r}{|r|=R; k, j∈N : 1≤k+j≤R}, which

follows the probability density function of zero-mean (R-1∑R
k=1 rk=0), unit-variance (R-1∑R

k=1 r2
k=1),

independent (R-1∑R
k=1 rkrj=0 for k6=j) Gaussian white-noise.8220

The second stage is the generation of a number set, {b}, representing two-point correlation

functions. In DFM, the set is evaluated through the following relation between {b} and an arbitrary

autocorrelation function, ρ [1, p. 657]:

ρ (q,p) =
u′pu

′
p+q

u′pu
′
p

︸ ︷︷ ︸
known

=

N∑
j=−N+q

bjbj−q

N∑
j=−N

b2
j︸ ︷︷ ︸

unknown

(8)

7 This section is an extended paraphrasing of [9, §2].
8 Mersenne Twister pseudo-random number generator [57] and Marsaglia polar method [58] for Gaussian PDF

sampling were used.
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where {N}{|N|∈N : N>0} is the support of a filter, {b}{|b|=2N+1 : b∈Q} a set of the filter coefficients,

q{q∈N : q≥0} the lag number, and p the maximum lag number. The different variants of DFM are

largely due to alternative propositions to invert Eq. 8. In FSM, on the other hand, {b} is defined
as a set of integral length-scales adjusted by some empirical constants and integration limits.

Within the third stage, {b} is inserted into {r}. To this purpose, FSM utilises element-wise

multiplication whilst DFM convolution summation as noted below:

sk ≡ FN (k) =

N∑
j=−N

bjrk+j (9)

where {s}{|s|=M : s∈Q} is a set of digital-filtered numbers, and FN a non-recursive, linear, discrete225

filter operator carrying out a convolution summation on two finite sequences. For FN, the two sets

should completely overlap; thus, yielding a subset of the conventional full convolution summation.

The size of the sets can be linked as: R-(2N+1)+1=M.

In the fourth stage, a given one-point correlation tensor is embed into {s} by the Lund trans-

formation [8, p. 255], u′i (x, t) = aij(x) si(x, t) where aij is a second-order amplitude tensor:

aij =


(R11)0.5 0 0

R21/a11 (R22 − a2
21)0.5 0

R31/a11 (R32 − a21a31)/a22 (R33 − a2
31 − a2

32)0.5

 (10)

where Rij is a known one-point correlation tensor in units of variance. It should be noted that aij

is conventionally spatial-variant and temporal-invariant whereas there is no theoretical objection to230

its temporal variation. Moreover, the members of aij need to be constrained in three ways to avoid

domain errors: (i) R11>0, (ii) R11R22-R2
21>0, and (iii) R33-R2

31R
-1
11-(R32-R21R31{R11(R11R22

-R2
21)}-1)2≥0.

Klein et al.’s method - DFM

In this variant, the right-hand side of Eq. 8 is presumed to be a Gaussian-form function of integral

length-scales [1, p. 657-658]. For a computational grid of cubic cells with constant grid size in all
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directions, {∆i}{i∈[1,3]}, the approximation to Eq. 8 can be written in its discrete-form as follows:

ρ ≈ exp

(
-
π

4

(mi ∆i)
2

(ni ∆i)2

)
= exp

(
-
π

4

m2
i

n2
i

)
(11)

where m is the rectilinear distance of a node to the zero-lag correlation node, and n the length-scale

size, which of both are in grid spacing units. Correspondingly, a closed-form expression for {b} was
derived by [1, p. 658]:

{b}i ≈ {̃b}i

 N∑
j = -N

b̃2
j

-0.5 as {̃b}i = exp

(
-
π

2

m2
i

n2
i

)
(12)

Two constraints to the approximation validity were stated: (i) the range of length-scales is limited

to 2≤ni≤100, and (ii) the minimum size of a filter support is two times a given scale size, Ni ≥ 2ni.235

Custom method - DFM

Within this variant [9], firstly, a given arbitrary-form correlation function is curve fitted to a more

generic yet similar continuous function. In subsequent, Eq. 8 is numerically inverted based upon the

obtained curve-fit function. For the set of benchmark flows in this study, the following expression

was put forth as the most suitable function form:

{b} = R [ρ] = R [C {a exp(-b x) + c exp(-d x)}] (13)

where R denotes a root-finding algorithm, C a curve-fit algorithm, and {a, b, c, d}{∀∈Q} are curve-fit
parameters. In this study, filter supports were sized to the point where correlation functions drop

below few percent of their zero-lag value.

Xie and Castro’s method - Hybrid DFM-FSM

For DFM part of this variant, the right-hand side of Eq. 8 is an exponential-form function [2, p. 454]:

ρ ≈ exp

(
-c
π

2

|mi|
ni

)
leading to {̃b}i ≈ exp

(
-c π
|mi|
ni

)
(14)

where c is a constant which is tuned to 0.5 for the current benchmark flows [9, p. 446]. For

FSM part [2, p. 456], streamwise integral length-scales are embedded, as shown below, through a
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temporal-correlation of two planes of {si}, which are created at subsequent time-steps:

siΨ (y, z, t+∆t) = siΨ (y, z, t) exp

(
-c
π

2

∆t

T

)
+ siψ(y, z, t+∆t)

{
1- exp

(
-c π

∆t

T

)}0.5

(15)

where {siΨ} is a temporal slice of {si} comprising of transverse length-scales {Lα}{α∈{y,z}} at

an instant t, {siψ} an auxiliary temporal slice created by a new set of random numbers in the240

same manner to {siΨ}, T streamwise Lagrangian time-scale evaluated by means of Taylor’s frozen

turbulence hypothesis [59].9

Kim et al.’s method - FSM

In this method, the use of convolution summations from DFM are entirely discarded [21, p. 135].

Accordingly, the following set of equations, which can be computed in any order, depicts the method:

siy (t, j+1, k) = siy (t, j, k) exp

(
-
cy
ny

)
+ r (t, j, k)

{
1- exp

(
-

2cy
ny

)}0.5

(16a)

siyz (t, j, k+1) = siyz (t, j, k) exp

(
-
cz
nz

)
+ siy (t, j, k)

{
1- exp

(
-

2cz
nz

)}0.5

(16b)

siyzx (t+1, j, k) = siyzx (t, j, k) exp

(
-
cx
nx

)
+ siyz (t, j, k)

{
1- exp

(
-

2cx
nx

)}0.5

(16c)

where {r} is a random number set at time t, and {ci(x)}{i∈{x,y,z}} a constant set to weigh {ni}.

2.1.3.2. DFM on non-uniform grids

For DFM, the generation of synthetic time-series on non-uniform grids was attempted with the

help of two concepts: (i) the Fourier transform of the discrete convolution and (ii) non-equispaced

discrete Fourier transform (abbr. N-DFT), which is an arbitrary-node generalisation of DFT [60,

p. 1]. In the proposed method, the frequency domain information obtained by the first concept on

a uniform grid is converted into a spatial domain information on a non-uniform grid via the second

concept. First, the convolution summation of Eq. 9 is expressed in the frequency domain [61, p. 39]:

{s}≡F -1JF JbK ◦F JrKK (17)

9 Taylor’s frozen turbulence hypothesis assumes that: Lx=Ux Tl, where Tl is a streamwise Lagrangian time-scale,
Ux mean flow speed in the same direction, and Lx the corresponding streamwise integral length-scale.
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where F J·K is a DFT operator, F -1J·K its inverse, and ◦ the Hadamard operator for complex number245

pairs (i.e. element-wise multiplication). Both Eq. 9 and 17 are, however, by definition delimited to

uniform grids; thus, the output sets can only contain equally-spaced samples.

Second, F -1J·K is switched to an N-DFT operator, G J·K, so that Eq. 17 becomes [62, p. 5]:

{s} ≡ G JF JbK ◦F JrKK with G ({x}j)J·K ≡
∑

κ∈{IN}

J·Kκ exp (-2πiκ{x}j) (18)

where {s}{|s|=M : s∈Q} is a set digitally filtered on arbitrarily-positioned nodes, {x}{x∈Rd : d∈[1,3];-0.5≤xd<0.5}

the normalised-shifted positions of the nodes10 in the dth-direction [-], {j}{j∈Nd : 0≤jd<|{x}d|} an in-

dex set, {IN}{κ∈Zd : -0.5Nd≤κd≤0.5Nd} a set of spatial frequencies κ, and N {Nd∈2N} the (always even)250

filter support sizes in each direction.

Further, the computational complexity of N-DFT is reduced through [60]’s non-equispaced fast

Fourier transform (abbr. N-FFT) algorithm implemented into an open-software library, NFFT

3.0 [62]. N-FFT is the conventional FFT algorithm [63] wrapped with a window-function-based

approximation scheme involving truncations in the spatial and frequency domains and oversampling.255

The approximation leads to a systematic error that can be controlled through three parameters:

an oversampling factor, σ{σ∈Q :σ>1.0}, a window function truncation parameter, m{m∈N}, and the

window function type which should be well localised both in the spatial and frequency domains. For

fixed settings, the approximation error exponentially decays with m [60, p. 19], and can be reduced

down to the order of machine precision [60, p. 3]. The complexity of FFT is, however, increased260

from (N log(N)) to (n+ log(n)+mdM), where N=Πd
i=1Ni is the total FFT length, Ni{Ni∈2N} the

FFT length in the ith-direction, n=Πd
i=1ni the total N-FFT length, ni=σNi{ni∈2N} the oversampled

FFT length in the same direction, and M{M∈N} the number of arbitrarily-positioned nodes.

For the usage of N-FFT, four points may need to be highlighted: (i) the forward N-FFT def-

inition is the opposite of that of the forward FFT wherein transformations are from the spatial265

to frequency domain, (ii) the zero-frequency component of N-FFT output is centred in spectra,

(iii) N-FFT output is not normalised; therefore, it should be scaled by the number of nodes, and

(iv) the imaginary part of complex-valued N-FFT output is ultimately dropped while the phase

information is random. Apart from the above, N-FFT is thoroughly explained in [60, p. 15-20]

10 {xd} = {xd}X-1
max - 0.5 where {xd} is a set of normalised-shifted node positions in the dth-direction [-], {xd} a set of

absolute node positions in the same direction [m], and Xmax the maximum absolute position within all directions.
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and [62, p. 6-10].270

2.1.3.3. FSM on non-uniform grids

Although the published FSM formulations, i.e. [2, p. 456] and [21, p. 135], have not been described

in consideration of non-uniform grids, FSM is inherently not limited to uniform grids. Therefore,

no major change was necessary for its generalisation.

The new approach merely involves a modification within the arguments of the two exponential275

functions in Eq. 16. Therein, the parameters non-dimensionalised with a constant grid size were

re-dimensionalised. As a result, the arguments became exp(-cd lid L-1
d ) and exp(-2 cd lid L

-1
d ), re-

spectively, where cd{cd∈Q} is a weighting constant in the dth-direction [-], lid{lid∈Q} the absolute

distance between the ith and (i-1)th nodes (or the one-dimensional grid-size belongs to the ith node)

in the same direction [m], and Ld{Ld∈Q} the corresponding integral length scale [m].280

The verifications of Eq. 16, which were given in [2, Eq. 15], were repeated with the new arguments

as follows:

Ψ0 Ψk = Ψ0

{
Ψk-1 exp

(
-c
lk
L

)
+ψk-1

[
1- exp

(
-c
lk
L

)]0.5
}

(19a)

= Ψ0 Ψk-1 exp

(
-c
lk
L

)
+Ψ0 ψk-1

[
1- exp

(
-c
lk
L

)]0.5

(19b)

= Ψ0 Ψk-1 exp

(
-c
lk
L

)
as Ψ0 ψk-1=0 (19c)

= Ψ0

{
Ψk-2 exp

(
-c
lk-1
L

)
+ψk-2

[
1- exp

(
-c
lk-1
L

)]0.5
}

exp

(
-c
lk
L

)
(19d)

= · · · (19e)

= Ψ0 Ψ0 exp

(
-c
∑k
i=0 li
L

)
= exp

(
-c
∑k
i=0 li
L

)
as Ψ0 Ψ0=1 (19f)

where Ψ0 denotes information at a point of an arbitrarily-spaced one-dimensional grid, Ψk informa-

tion at the kth-point which is some ∆k distance away in the positive direction from the 0th-point,

and {·} a time-averaging operator. In the light of ∆k=
∑k
i=0 li and Ψ0 Ψk= exp(-c∆kL

-1), Eq. 19
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verifies the new approach with which non-uniformly spaced structured grid and varying time-step

computations become possible.11285

2.2. Solution post-verification approaches

Various LES-quality post-verification metrics that do not require experimental or direct numer-

ical simulation (abbr. DNS) data were proposed in the literature. In order to circumvent conse-

quences implied by the lack of grid-independency in IFLES, six metrics deemed optimum were used

herein, and presented below in terms of the number of computations they required.290

2.2.1. Single-grid metrics

The first metric, {ΓPope(x)}{0<Γ<1}, is a criterion from [64, p. 560]. It asserts that an ‘ac-

ceptable quality’ LES resolves at least 80% of the total turbulent kinetic energy of a flow field.

The metric formula reads: ΓPope(x)=[kofs]µ [k-1tot]µ>0.8 where [x]µ=T-1∑n∆t

i=∆t
xi is an unbiased time-

mean estimator, n the size of a discrete sample x, T the sample duration, ∆t the time-step size,295

kofs(x, t)=0.5
∑3
i=1 u

′
iu
′
i the over-filter scale, ktot(x, t)=(kofs+ksfs) the total, and ksfs(x, t) the mod-

elled sub-filter scale turbulent kinetic energy fields per unit mass [m2s-2]. Outcomes of the metric

need to be interpreted with caution due to three primary reasons: First, the derivation arguments

are arguably heuristic rather than systematic, which do not fully explain why the metric variable

is k and its threshold is 80%. Second, the true ksfs is always approximated; thus, increasing ΓPope’s300

uncertainty and demanding its own assessment. Lastly, as demonstrated by [65, p. 957] and [48,

p. 135] with kofs comparisons between an LES and a corresponding filtered DNS, ΓPope>1 is able

to occur despite its non-physicality.

The second metric is an index, {ΓCelik-I(x)}{0<Γ<1}, that was derived by [65, Eq. 8a]: ΓCelik-I={
1+αν

(
[νeff]µ ν

-1
lam
)n}-1

= {1+αν (Γν)
n}-1 where νlam is the kinematic viscosity of the fluid [m2s-1],305

Γν an underlying metric, νeff(x)=νnum+νsfs+νlam the effective viscosity, νnum(x)≈Cνh(Cnh
2∆-2[ksfs]µ)0.5

the estimated numerical viscosity with recommended values [66, p. 3, 5, Eq. 28]: 0.05<Cν<0.3,

Cn≈1, h≈∆, n≈ 0.53, and αν= 0.05. For 80% turbulent kinetic energy resolution, ΓCelik-I≈ 0.8 and

Γν=[νeff]µν
-1
lam≈ 20 are expected, whose decreasing value indicates an increase in quality.

11 Unstructured/arbitrarily-discretized grids and local grid refinements were not considered.
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2.2.2. Several-grid estimators310

Another metric containing a pair of measures was put forward by [65, Eq. 15-16]: ΓFine(x)={1+(1-

[kofs,1]µ [k-1ofs,2]µ)(αp-1)-1}-1 and ΓCoarse(x)={1+([kofs,2]µ [kofs,1]-1µ -1)αp(αp-1)-1}-1 where the sub-

scripts 1 and 2 respectively indicate coarse and fine grids, ΓCoarse≡ΓCelik-II the coarse-grid index,

ΓFine≡ΓCelik-III the fine-grid index, p=2 the estimated order of numerical scheme accuracy in terms

of Taylor series truncation error [66, p. 3], {α(x)}{α>1}=∆ref,1 ∆-1
ref,2 the grid refinement parame-315

ter [65, p. 952], and ∆ref(x) the local characteristic grid size. In some cases, higher kinetic en-

ergy can be observed in a coarser grid in comparison to finer grids or benchmarks [65, p. 952],

thereby non-physically causing ΓCelik-II>ΓCelik-III and even ΓCelik-II>1. For such cases, the authors

put forth a modified expression [65, Eq. 18] (simplified herein): ΓCelik-III(x)=1- ‖ak‖ (ak+[kofs,2]µ)-1

with ak(x)=([kofs,2]µ-[kofs,1]µ)(αp-1)-1. Interpretation of ΓCelik-II and ΓCelik-III is the same with320

ΓCelik-I wherein Γ≈0.8 implies 80% turbulent kinetic energy resolution.

The last metric is the Lyapunov exponent [67], which quantifies the level of resolution of time-

accurate flow structures unlike the five statistical metrics above. Its evaluation is carried out

for a statistically converged computation possessing u(x) at an instant to in five steps: Firstly,

a new flow field u∗(x) is computed by perturbing u according to u∗=u+ε‖u‖2 [67, Eq. 7] where325

‖·‖2≡
{
V -1
all
∑n
i=1(·)2Vi

}0.5, Vall the volume of the numerical domain containing n cells, Vi the ith

cell volume, and ε=10-8. Secondly, the computations of u∗ and u are advanced from to to tn, and

‖δu(t)‖2 = ‖u∗(t)-u(t)‖2 is evaluated for a reasonable amount of time-steps [67, Eq. 8]. The same

pseudo-random number sets need to be fed into both computations for each time-step, and this is

attainable by using the same seed for the pseudo-random number generator. Thirdly, the set of330

log10(‖δu(t)‖2) is plotted as a function of time and linearly regressed. An expected-to-be-observed

linear slope of the growth gives the Lyapunov exponent, λ, via λt= ln(‖δu(t)‖2 ‖δu(t0)‖-12 ) [67,

p. 5]. Finally, exponents are computed for each grid available, and inspected as a function of the

characteristic grid size. The start of a level-off in plots indicates that almost all degrees of freedom

shaping global chaotic dynamics are resolved [67, p. 11].335
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3. Methodology

3.1. Benchmarks & numerical settings

Four methods were implemented into OpenFOAM®v1712 [39]:12 (i) Kim et al. [21], (ii) Xie-

Castro [2], (iii) Klein et al. [1], and (iv) Custom [9]. The majority of DFM/FSM capabilities and

varieties are represented by these methods. These methods were tested through a test-bed of three340

benchmark flows: (i) decaying homogeneous isotropic turbulence (DHIT; the case of M=0.0508) [68],

(ii) homogeneous shear turbulence (HST; the case of h=0.305) [69], and (iii) plane channel flow

with smooth walls (PCF; the case of Reτ=395) [70], each of which concerns an isolated aspect of

turbulent flows. The benchmarks and numerical set-ups were presented in the following.

3.1.1. Common numerical settings345

3.1.1.1. Domain modelling

Numerical domain modelling involves: the determinations of (i) the domain shape, and (ii) the

distance of the field of interest to domain boundaries. Although the domain shape may be influential

to certain flow computations, e.g. [71, p. 11], unless dictated by the benchmark, rectangular prisms

were deemed appropriate in this study. The distance to boundaries is then chiefly determined by350

(i) integral length scales, (ii) the level of boundary condition error propagation to the field of

interest, (iii) cost, and (iv) blockage ratio (not applicable herein).

A domain side several times larger than corresponding integral length scales is advisable while

a suppression on or a clip to a scale likely alter energy transfer mechanisms, hence an unrealistic

flow development. Based upon systematic homogeneous isotropic turbulence computations, [72,355

p. 3] suggested that a domain side should at least be six-length-scale in size similar to [64, p. 346]’s

eight-length-scale presumption, which was previously stated three-length-scale [73, p. 507].

Exact spatiotemporal dynamics of boundary conditions (abbr. BCs) are nearly always unknown,

yet BCs must present to ensure a well-posed problem. As a result, BCs are approximated at a

distance to the field of interest which can allow the flow developing to BCs’ characteristics, so that360

BCs could not unrealistically force the surrounding flow to conform its specifications. Accordingly,

parts of the computations deemed affected by nearby BCs were omitted in the reported results.

12 The methods are ascending sorted in terms of their theoretical floating point operations per second.
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For the domains, a Cartesian coordinate system in an inertial frame of reference, I =(O, ex, ey, ez),

whose origin, O, is at the left-bottom corner of the inlet boundary, was designated with (x, y, z)I≡(1, 2,

3)I , i.e. the positive x is the longitudinal, y the vertical, z the right transversal directions.365

3.1.1.2. Spatial domain discretisation

The spatial resolutions were estimated (and post-assessed §2.2) for free-shear and wall-bounded

flow regions. The physical domains were then discretised into unstructured rectangular cuboid

finite volumes without local grid refinement by the grid generator blockMesh of OpenFOAM® [74].

Arguably, no generic estimation is possible for free-shear regions [75, p. 8], [76, p. 262]. Nonethe-370

less, [77, p. 4] stated that overall N∆∝Re, where N∆ is total number of nodes. Locally, minimal

recommendations from the literature project a view of approximately ten nodes per integral length

scale, L. For example, in case of high-Reynolds-number homogeneous isotropic turbulence, [64,

p. 577-578] analysed that 38π-1∆x≈L and 54π-1∆x≈L are needed to resolve 80%-kofs when util-

ising sharp spectral and Gaussian filters, respectively. Furthermore, [40, p. 102] reported that375

keeping Taylor and cut-off scales in the same order is an advisable criterion, i.e. (λ)∼(∆x),

thereby 15-0.5(AReL)0.5∆x≈L, where A∼(1) [78, p. 67]. Moreover, [79, p. 62] advised 10∆x≈Lε

to render sub-filter scale model ineffective for the bulk region of a channel flow, where the integral

dissipation scale Lε∼L [79, p. 53]. Besides, from a heuristic perspective, [80, p. 40] recommended

≈15-20 nodes per shear layer thickness whilst [65, p. 951] and [81, p. 1024] advised 8∆x≈L.380

Within wall-bounded regions, more concrete estimates were proposed. For medium ReL flows

(i.e. ReL<106 relevant to this study), [82, p. 1305] postulated N∆∝Re9/5, ∆+
x≈100, ∆+

z≈20, y+∼1

and ny≈10, of which last is the number of nodes stretched within the viscous wall region where

momentum-transfer-dominant scales are order of viscous length scales.13 A broader range of values

from the literature was provided by [83, p. 3] as ∆+
x≈ 50-130, ∆+

z≈ 15-30 and ny≈ 10-30.385

In general, flow scales differ in each direction. The above estimations should therefore yield

anisotropic cells. The influence of anisotropy on LES was, however, claimed not to be fully compre-

hended [84, p. 2401], and correspondingly [75, p. 8] suggested isotropic cells depended upon physical

and numerical justifications. For these reasons, isotropic cells were preferred wherever possible in

this study. For wall-bounded regions, on the other hand, grid stretching was deployed in compliance390

13 (.)+≡(.)uτν-1, where uτ is the friction velocity.
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with the literature suggestions for maximum expansion ratios14: overall 1.3 [85, p. 7], and 1.25 [86,

p. 379] [87, p. 10] along the wall-normal log-layer.

The grids were verified by the default mesh quality metrics defined in [88]. Notably, the max-

imum face non-orthogonality, face skewness, and cell aspect ratio for DHIT and HST grids were

(0, 0, 1), and for PCF (0, 0, 13-22), where the ideal values are (0, 0, 1).395

3.1.1.3. Equation discretisation

OpenFOAM® computes Eq. 1 on a co-located grid arrangement, wherein cell centroids store flow

quantities. Practical-level pressure-velocity decoupling due to the co-located arrangement is re-

moved by a slightly modified [89, p. 71-75] Rhie-Chow momentum interpolation method [90]. The

volume integrals of the terms in Eq. 1 involving spatial derivatives are transformed into the surface-400

of-the-volume integrals by means of the Gauss-Ostrogradsky theorem, and discretized. The terms

without spatial derivatives are, on the other hand, discretized through presuming constant spatial

quantities throughout the given volume. Therein, face-information required by surface integrals

is interpolated from adjoining cell nodes to a single point on a face. Across a face, interpolated

information is assumed constant and uniform; therefore, OpenFOAM® is spatially limited to the405

second-order accuracy in terms of Taylor series truncation error. In this study, numerical inte-

gration of all spatial derivatives-variables, and node-to-face interpolations were held by the central

difference scheme.

3.1.1.4. Temporal domain discretisation

Temporal resolution, ∆t, requires to consider three factors. The first is the numerical stability410

of the solution process. Settings ensuring stable solutions is generally quantified by the Courant-

Friedrichs-Lewy number [91] defined for a single cell in OpenFOAM® as: Co=∆tΛ, where Λ=0.5V -1∑
faces |φi| is a cell-flow frequency scale [s-1], and φ the volumetric face-flux vector [m3s-1]. The

second is the derivation assumption imposed by the preferred theoretical-level pressure-velocity

coupling algorithm, PISO [92]. It presumes that the linear velocity-pressure coupling dominates415

over the non-linear velocity-velocity coupling while ∆t goes to zero [93, p. 52], hence viable pres-

sure corrections within the same ∆t. The third is the second-order backward difference temporal

scheme which produces false diffusion in proportion to ∆t because of its disregard for temporal

14 The term ‘expansion ratio’ is defined as the width ratio between the expanded and initial cells in one direction.
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Table 1: The boundary conditions employed for pressure, velocity and turbulent kinematic
viscosity at each geometric boundary. The hyphenated sequences stand for DHIT–HST–
PCF, and the single word the common boundary condition. N denotes zero-gradient Neu-
mann, D fixed-zero Dirichlet, C cyclic, S symmetric, ND stepwise combined Neumann-
Dirichlet, A convective and L calculated boundary conditions.
Boundaries ↓ Fields → p u νt JLM, JMM

Inlet Neumann Synthetic D–D–L Neumann
Outlet Dirichlet ND–ND–A N–N–L Neumann
Laterals C–S–C C–S–C C–S–C C–S
Top-Bottom C–S–N C–S–D C–S–N C–S

a A boundary is a topological element of a computational domain.
b A boundary condition is a set of mathematical operations computed at the boundary.

variations in ‘face fluxes and derivatives’ [50, p. 115]. All necessitate adequately small ∆t, typi-

cally Comax∼(-1). As an example, for free-shear and wall-bounded flow ILES, [94, p. 86] found420

Comax=0.5 satisfactory whereas advised Comax≤0.2. Moreover, in this study, constant time-stepping

was adopted, and second-order backward difference scheme was used for numerical integration of

temporal derivatives-variables.

3.1.1.5. Boundary condition types

The boundary conditions adopted for each field on geometric boundaries were illustrated in Table 1.425

Among them, a convective BC [95] was opted for to ensure resolved structures outflowing without

affecting upstream significantly owing to the fact that [96, p. 31] quantified and [97, Fig. 8] visualised

upstream-fluctuation-suppressing imprint of the conventional Neumann BC.

3.1.1.6. Solution algorithms and solvers

Term discretisations are followed by the construction of the linear equation system. At this point,430

however, the bandwidth of the coefficient matrix may be high. This means that values of the

global indices for neighbouring nodes are far apart, whence lower performance of solver algo-

rithms [98, p. 30]. Therefore, the bandwidth was narrowed by [99]’s scheme (i.e. renumberMesh

in OpenFOAM®). Eq. 1 was recast into pressure and momentum equations to be solved sequen-

tially by the theoretical-level pressure-velocity coupling algorithm PISO [92] with 4 momentum435

correctors. Finally, numerical solution of linearised explicit Eq. 1 was performed through linear

solvers: Geometric agglomerated algebraic multigrid solver with the Gauss-Seidel smoother for pres-

sure (tolerance=10-6, relative tolerance=0-10-3), and an iterative solver using the same smoother for
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velocity and other fields (tolerance=10-8, relative tolerance =0). In case some field computations re-

quire more stability, the stable biconjugate gradient method preconditioned with the diagonal-based440

incomplete LU preconditioner was put into use (tolerance=10-5, relative tolerance =0). Grids and

fields were decomposed by the scotch partitioning method [100] for parallel executions.

3.1.1.7. Initialisations and sampling

For each benchmark, the first-upstream-section measurements were used to construct synthetic

time-series. IFLES initialisations were carried out, and their statistical convergence was qualita-445

tively assessed via the first four sample moments of probed time-series whereas considerable number

of pass-throughs were simulated to inherently ensure statistical weak stationarity.15 Subsequent to

computations, the evaluations were conducted according to a set of measures reported in §3.3. The
minimum sample size needed to interpret statistics of the population of interest at a 98% confidence

level was estimated as 1.3×104 elements [101, §7.2.2.2.], which was few orders smaller than the size450

of samples obtained.

3.1.2. Specific numerical settings

3.1.2.1. Decaying homogeneous isotropic turbulence - DHIT

The DHIT benchmark was a stationary-grid approximately-isotropic decaying turbulent flow ex-

periment from [68]. Synthetic time-series were based upon the experimental measurements at 42M455

section, where M=0.0508[m] is the characteristic size. Thereon, the set of input included: the mean

longitudinal flow speed Uc=12.7[ms-1], the fluid kinematic viscosity νlam=1.4941×10-5[m2s-1] (based

on ReM=3.4×104, and Uo=10[ms-1]), one-point normal-anisotropic correlations {(u′ii)2}{i∈(1,2,3)}

=4.9284×10-2[m2s-2]-{(u′ij)2}{i 6=j}=0.0, and longitudinal-transverse integral length-scales Llong=2.4×
10-2[m]-Ltrans=1.27×10-2 [68, p. 299]. The rectangular prism computational domain possessed the460

dimensions of (7.62, 1.524×10-1, 1.524×10-1)I [m]=(300, 6, 6)I [Llong]=(600, 12, 12)I [Ltrans]. The spa-

tial resolution involved cubic cells and 10 nodes per Llong; resulting in (3000, 60, 60)I nodes, and

the temporal resolution was ∆t=5×10-5[s]. The sub-filter scales were modelled by the Smagorin-

sky model using the Lagrangian-averaging dynamic procedure (§2.1.2). The computations were

initialised and sampled for 20 mean-flow pass-through, i.e. 24[s] each.465

15 Methods quantifying statistical convergence of LES solutions may also be found, e.g. [13] using passive scalars.

23



3.1.2.2. Homogeneous shear turbulence - HST

The HST benchmark was [69]’s experiment of virtually transverse-homogeneous uniform-shear tur-

bulent flow. The chosen scenario belonged to x1/h=7.5 plane measurements, where h=0.305[m] is

the shear-turbulence generator height, and x1 the downstream distance to the generator. At the

plane, the mean longitudinal centreline flow speed was Uc=12.4[s-1], the mean longitudinal-shear470

dU1/dx2=46.8[s-1], one-point correlations (u′1)2=2.80×10-1[m2s-2], (u′2)2=1.00×10-1, (u′3)2=1.56×10-1,

u′1u
′
2=-4.50×10-1, {(u′ij)2}{i 6=j,i 6=1,j 6=2}=0.0, and integral scales L11,1=4.4×10-2[m], L22,1=1.012×10-2,

L33,1=1.496×10-2, L11,2=1.452×10-2, L11,3=1.1×10-2, L22,2=L22,3=5.06×10-3 and L33,2=L33,3=7.48×10-3

[69, p. 320, 329, 334], where the last four scales were derived by the isotropy assumption: 0.5L22,1=L22,2
16,

and the fluid kinematic viscosity νlam=1.49778636445×10-5[m2s-1]. The numerical domain was a475

rectangular prism replicating the experimental set-up, i.e. (5.6425, 3.05×10-1, 3.05×10-1)I [m]≈(128,

6.9, 6.9)I [L11,1]≈(389, 21, 21)I [L11,2]. The spatial domain was discretised into (1332, 72, 72)I cubic

cells with ∼10.4 nodes per L11,1, and the temporal resolution was ∆t=1×10-4[s]. Similar to DHIT,

the sub-filter scales were modelled by the Smagorinsky model with Lagrangian-averaging dynamic

procedure (§2.1.2). The initialisations and samplings lasted for ≈17 and 34 bottom-mean-flow480

pass-through, i.e. 18.2[s]-36.4[s], which was equivalent to 40-80 centreline-mean-flow pass-through.

3.1.2.3. Plane channel flow with smooth walls - PCF

The PCF benchmark was the wall-resolved DNS of statistically stationary, pressure-gradient driven,

fully developed plane channel flow with smooth walls from [70], wherein Reτ=uτδ/νlam=395 with

uτ=1.0[ms-1] the friction velocity, νlam=0.002531646[m2s-1] the fluid kinematic viscosity, and δ=1.0[m]485

the channel half-width [70, p. 943]. The large-to-present input datasets were fetched from the

web page [102]17. The numerical domain duplicating [17] was created in order to minimise un-

certainties in model comparisons. The domain [17] had the following particulars: its dimensions

were (60.0, 2.0, π)I [m]≈(153.8, 5.1, 8.1)I [L11,1;y+=392]18, the number of nodes was (600, 64, 70)I

with ∆+
x≈ 39.5, ∆+

z≈ 17.7, y+≈ 3.8×10-3, and wall-normal cell-to-cell expansion ratio of 1.0795 (i.e.490

OpenFOAM® expansion ratio of 10.7028). Its temporal resolution was ∆t=2×10-3[s]. Follow-

16 Within Lij,k, ij signifies the directions of two velocity components in hand, and k measurement direction.
17 Integral length-scales were defined here as: L=L∞0 (ρ̂)≈L a

0 (ρ̂), where L a
b (·) is a numerical integration operator

on a sample autocorrelation function, ρ̂, over [a, b]. The upper bound of the integral was accepted 10% zero-lag,
similar to [17, p. 61], which was justified by that the streamwise correlations in [102] do not level off zero in general.

18 In [17]’s domain, z=3.5[m]. Nevertheless, [70]’s original value of z=π[m] was followed in this study.
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ing [17], the Smagorinsky model with the van Driest wall-damping function was utilised for the

sub-filter scale modelling (§2.1.2). Its model coefficients were Cε=1.048 and Ck=0.0265463553 re-

sulting in Cs=0.065. The computations were initialised for 20 pass-through based on Uy+=392=20.133

[ms-1], and sampled for 40 pass-through.495

3.2. New code practices

On top of [9, p. 449]’s quoted-from-the-literature and proposed recommendations to reduce

theoretical computational costs of DFM/FSM, two new code practices were offered here.

The new DFM practice is the direct generation of Gaussian white-noise in the frequency domain.

For DFM implementations in which FFT is in use, random number sets are typically generated in the

time domain and Fourier-transformed every time-step to perform convolution. This transformation

can be eliminated by generating real-valued Gaussian random samples directly inside a complex-

valued set wherein the following arrangement is preset:

Hk =hk + ihk+N/2 k ∈ [0,N/2-1] (20a)

Hk =H∗N-k k ∈ [N/2,N-1] (20b)

where {h}{|h|=N;hk∈Q} is a real-valued Gaussian white-noise set, {N}{N∈N} its size, and {H}{|H|=N;Hk∈C}

a complex-valued conjugate-symmetric set.500

In FSM, a brute implementation requires 18 summation-subtraction, 45 multiplication-division,

9 square-root and 18 exponential function executions per node per time step for velocity correla-

tions in each direction. By pre-computing the exponential terms in Eq. 15, this can be shrunk into

9 summation and 18 multiplication executions for stationary grid and constant time-step computa-

tions.505

3.3. Investigation subjects & measures

DFM/FSM generates synthetic inflow time-series in four non-CFD model stages. This non-CFD

model unit was explored in [9], and illustrated in Fig. 2 with its stages. Therefore, the scope of this

study was limited to the subsequent unexplored CFD model unit.

The CFD unit can be abstracted into two main sub-units through which non-CFD time-series510

progress till the field of interest: (i) transfer sub-unit and (ii) development sub-unit whose con-

stituents comprise several options to make. The conceptualisation was displayed in Fig. 3.
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Transfer Phases Development Phases

Phase 1 Phase 2 Phase 3 Phase 4 Phase 5

Pre-mapping:
• Scale augmentation
• Energy augmentation

Mapping:
• Direct uniform
• Interpolation
• Direct nonuniform

Post-mapping:
• 1-D Mass correction
• 3-D Mass correction

Adjustment:
- First few cells
- Abrupt

Evolvement:
- Downstream
- Gradual

Figure 3: A sequential diagram of the phases transforming a DFM/FSM synthetic time-series towards the field
of interest in a CFD domain. Terms of transfer and development stand for the phases wherein the Navier-Stokes
equations are and are not involved, respectively.

The transfer sub-unit denotes a set of final preparation phases before the Navier-Stokes (abbr.

N-S) equations become in effect. Therein, time-series are prepared for a given numerical set-up

in three phases: (i) pre-mapping conditioning, (ii) mapping, and (iii) post-mapping condition-515

ing. The pre-mapping phase implies the final conditioning operations independent of the CFD

grid, such as skewness-kurtosis transformation [9], heuristic [17] or optimised [27] kinetic energy

augmentations/diminutions. Secondly, the mapping phase refers to information transfer from the

DFM/FSM virtual grid to the CFD grid, both of which may or may not conform, for example

the nearest-neighbour projection [2]. Lastly, the post-mapping phase indicates any operation on520

time-series that is mapped onto the CFD grid, such as mass flux corrections [17, p. 57].

The successive development sub-unit signifies processes where synthetic time-series become a

part of the system of algebraic equations. The sub-unit can be further abstracted into two phases:

(i) adjustment and (ii) evolvement. The adjustment phase occurs in the first few cells neighbouring

the inlet boundary. There, abrupt and considerable alterations are expected in the statistical and525

stochastic characteristics of time-series in view of the fact that DFM/FSM inherently does not use

the N-S equations to produce series. In the evolvement phase along the rest of the domain, on the

other hand, a typical downstream evolution of time-series is anticipated. Therein, in contrast to the

adjustment phase, the signature of DFM/FSM gradually fades away, and other numerical settings

dominate the flow development.530

In the light of the above abstractions, the tests were designed in three suites. In the first suite,

all the IFLES cases were assessed by various means including the six LES-quality post-verification

metrics introduced in §2.2, and the metrics themselves were evaluated as well. In the second suite,

DHIT, HST and PCF scenarios were computed with the four DFM/FSM variants (§2.1.3), and
performance of each model along the development sub-unit was monitored with predetermined535

(default) transfer sub-unit options. The motivation behind the predetermination is to avoid the
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possibility of numerous option combinations at the outset due to the transfer sub-unit (i.e. tens of

combinations per model per flow), which may cause a loss of focus. Therefore, an option combination

deemed as the most basic and common one was chosen for the transfer sub-unit : no pre-mapping

and post-mapping manipulation and the simplest mapping method of nearest-neighbour projection.540

In the third suite, viable options within the transfer sub-unit were investigated in terms of their

effects on the development sub-unit. Therein, only Klein et al.’s (i.e. pure DFM) and Kim et al.’s

(i.e. pure FSM) models alongside PCF were used to investigate the aforementioned options as the

benchmark datasets in increasing fidelity were only available for PCF. For the pre-mapping phase,

three particulars were isolated: the magnitude of shear stresses, the size of integral length scales,545

and the number of integral length scale sets. In the first, four scenarios were studied: the magnitude

of shear stresses were zeroed, kept default, doubled, and the no-slip wall boundary condition was

changed to slip condition alongside with default settings. In the second, three scenarios were

studied: the size of integral length scales was halved, kept default and doubled. In the third, the

use of different inlet spatial zones was examined with a single set of integral length scales covering550

the entire synthetic turbulence generation plane, and a duo set wherein an extra set of length scales

was input at the 10% wall-normal zone. For the mapping phase, three mapping methods were tested:

nearest-neighbour projection, bilinear interpolation, and seamless projection. Finally, for the post-

mapping phase, three approaches were studied: null, longitudinal, and three-dimensional mass flux

corrections. The effects were quantified through the statistics listed in Table 2, and compared555

with the corresponding default case. Due to the vast amount of data produced, the information

as to the statistics that were almost unchanged relative to the half-precision machine epsilon was

qualitatively conveyed. On the other hand, the changes in the statistics deemed significant were

presented and discussed in the relevant sections.
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Table 2: List of statistical metrics used in the study.

Measure Expression

i. Unbiased sample arithmetic mean µ̂1 =n-1
n∑
i=1
xi

ii. Unbiased sample variance µ̂2 = (n-1)-1
n∑
i=1

(xi-µ̂1)2

iii. Estimator of skewness γ̂1 = {n(n-1)}0.5 (n-2)-1
{
n-1

n∑
i=1

(xi-µ̂1)3

}
µ̂ -1.5

2

iv. Estimator of kurtosis excess γ̂2 = {(n-2)(n-3)}-1
{

(n2-1)

{
n-1

n∑
i=1

(xi-µ̂1)4

}
µ̂ -2

2 -3(n-1)2

}
v. Sample one-point correlation tensor Rxy=z-1

z∑
k=1

{
T-1

n∆t∑
i=∆t

(xki-µ̂1xk
)(yki-µ̂1yk

)

}
vi. Unbiased sample correlation functions ρ̂XY = R̂XY

µ̂2X
µ̂2Y

; R̂XY = (N-a)-1
(N-a)∆t∑
i=∆t

xi yi+a∆t

vii. Sample one-sided power
spectral density function

Welch’s method [103], window: Hanning, overlap: 50%

viii. Wall shear stress vector field uτ={Sf ‖Sf‖-1} ·
{
-νeff{St - 3-1 Tr(St)I}

}
ix. Over-filter scale kinetic

energy transport equation
kLoc + kConv = kTransU + kTransP + kProd + kDiff + kDiss

x. Over-filter scale velocity derivative
skewness and kurtosis fields

∂xγ̂1= -(∇xux)3 and ∂xγ̂2= (∇xux)4

xi. Enstrophy transport equation EI +EC =EP +ET +ED +ES +Eε
xii. Mean total strain transport equation SI =SProdS +SProdE +SDiss

n means the size of a discrete sample x, {̂·} an estimation operator, z the number of nodes along the statistically
homogeneous direction, T a sample duration, ∆t a time-step size, a the lag (time-offset) number, N the maximum lag
number, {·} the inner product, Sf face area vector field [m2], νeff = νlam+νsfs the effective viscosity scalar field with νlam the
kinematic viscosity of the fluid and νsfs the modelled eddy-viscosity scalar field [m2s-1], St=2{0.5(∇u+(∇u)ᵀ)} the twice
strain rate tensor field S [s-1], Tr(·)≡∑n

i=1(·)ii the trace of a tensor, and I an identity tensor field [-]. For the transport
equation of the over-filter scale kinetic energy, kofs: kLoc= ∂tkofs is the local derivative of kofs [m2 s-3], kConv=Umean ·∇kofs
the convective derivative of kofs, kTransU= -∇ · (u kofs) the transport of kofs via velocity fluctuations, kTransP= -∇ · (u p)
the transport of kofs via pressure fluctuations, kProd= -{u2}mean:∇Umean the production of kofs, kDiff= νlam(∇ · (u · St))
the viscous diffusion of kofs, kDiss= -νlam(St:∇u) the viscous dissipation of kofs, ksfs the modelled turbulent kinetic energy,
and εsfs the modelled dissipation rate. ∂xγ̂1 and ∂xγ̂2 are the over-filter scale velocity derivative skewness and kurtosis
respectively [s-3]-[s-4]. For the enstrophy transport equation, E [s-2]: EI= 0.5 ∂t(ω ·ω) the scalar field of the increase rate
of E [s-3], EC= 0.5 {Umean · ∇(ω · ω)} the convection of E, EP = -{(ω · u) : ∇ωmean} the production of E, ET = -0.5∇ ·
(u(ω · ω)) the diffusion of E by velocity fluctuations, ED= -0.5νsfs∇2(ω · ω) the diffusion of E by viscosity, ES= (ω2 :
S) + (ω2 : S

mean
) + ((ω ·S) ·ωmean) the production of vorticity fluctuations via vortex stretching, Eε= -{νsfs(∇ω : ∇ω)} the

dissipation of E. ω=∇×u the over-filter scale vorticity [s-1], EP =ω · {S ·ω} the production of E due to vortex stretching,
ED= νsfs(ω ·∇2ω) the dissipation of E. For the transport equation of mean total strain, S [s-2]: SI= 0.5∂t(S : S) the scalar
field of the increase rate ofS [s-3], SProdS= -(S·S) : S the production ofS by self-amplifications, SProdE= -0.25{(ω·ω) : S}
the production of S by enstrophy effects, and SDiss= νsfs{SDiss : (∇2SDiss)} the viscous dissipation of S.

Within the suits, investigations were conducted in respect to input and formed statistical mea-560
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sures19. The input statistics included: (i) mean velocity profiles, (ii) one-point second-order cor-

relation tensor,20 (iii) two-point correlation functions, and (iv) one-dimensional one-sided power

spectral density functions. The formed statistics comprised: (i) over-filter scale kinetic energy

transport equation terms, (ii) over-filter scale enstrophy transport equation terms, (iii) mean flow

total strain transport equation terms, (iv) one-point third and fourth statistical central moments565

and probability density functions, and (v) wall-shear stresses. The discrete expressions used to

compute these measures were shown in Table 2.

Test suite results were obtained through numerical domain nodes and probes.21 For spatially-

variant flow field statistics, cumulative moving averaging was performed on time-accurate node

values along time. For statistics that require the entire temporal dataset at once (e.g. power570

spectra), probe time-series were used in their computations. All the sample statistics were then

spatially-arithmetic averaged in statistically homogeneous directions. In the results section, only

the crucial premises were presented with essential evidence strictly representative to all cases and

tagged as representative-to-all. Also, all these data manipulations were abbreviated by the tag

conditioned.575

Moreover, statistics from the benchmarks/methods and their relative changes were quantified

through the centineper (i.e. the log percentage: 100 loge(xdata/xbenchmark) [cNp] [106, p. 45]) which

is additive and symmetric unlike the conventional percentage formula (hence less misleading) as

well as the discrete Fréchet distance [107]22 when necessary. For brevity, the denotations bench-diff

and default-diff were used below to indicate amplitude differences between the quantity of interest580

and corresponding benchmark/default computational case in units of the quantity. Furthermore,

the term adaptation length is used to loosely describe a supposed distance at which a given statistic

reaches its statistically stationary ergodic state within a turbulent flow.

In addition, to prevent other redundant word repetitions across the results sections, two more

abbreviations were made: First, the Big O notation was redefined as an indicator of the digit585

place of the first significant figure in a given range of magnitudes (e.g. for a range between 0.14 and

19 The terms input and formed were coined to distinguish the statistical information required by DFM/FSM, and
generated by CFD, respectively.

20 In case of scaling by fluid density, the term can be written as Reynolds stress tensor.
21 Probe data were obtained by an inverse-distance-weighting linear interpolation of node information to the arbitrary

location of the probe within the node’s cell.
22 A metric that quantifies the level of similarity between two arbitrary discrete datasets. A code from [108] was

used to calculate the metric, which was shortly explained in [9, p. 464].
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0.52→ (-1); between 25.1 and 88.3→ (2) etc.) in contrast to its actual meaning for a function’s

limiting behaviour. Second, the model names were shortened to the first author, e.g. Klein model

instead of Klein et al.’s model.

Finally, for each results section, the following line of questions were addressed in the order590

given: why was the statistic studied; what/how was the study carried out; what was observed in

the adjustment and evolvement phases as a result; what did the results mean in theory and practice;

what were the key benefits for the audience and what did remain unsolved [109, p. 134]. Having

defined what the test framework is, the next chapter presents the conditioned results and remarks.

4. Results & Discussion595

4.1. Confidence assessments

Prior to analyses, confidence assessments of each computation were carried out in four subjects:

(i) spatial/temporal resolutions, (ii) numerical stability, (iii) statistical convergence of computa-

tional fields, and (iv) of probe samples. These assessments did not measure the accuracy of the

computations; thus, they did not address validation. In contrast, verifications of the target compu-600

tational settings were sought herein. Therefore, any qualification here only implies confirmation of

the intended settings rather than the validity of the modelling.

(i) The spatiotemporal resolutions of the computations were post-assessed through five statis-

tical metrics and one stochastic metric (§2.2). In addition, the capabilities of these metrics were

compared, and their viability was discussed. For the statistical metrics, the first four one-point605

sample moments (i.e. µ̂1 and µ̂2; and to reveal more local trends, γ̂1 and γ̂2), minima, medians and

maxima of the metric fields23 were exhibited in a supplementary document, i.e. Suppl. Doc.-1. The

sample means of the metric fields with their corresponding coefficients of variation were summarised

in Table 3.

To start with, the analyses of the stochastic-metric Lyapunov exponent demonstrated that the610

exponent levelled off with resolution refinements in DHIT, HST and PCF (not reported). As a

result of this, the majority of the degrees of freedom in contribution to the global dynamics of the

computations were deemed to be resolved in compliance with the interpretations from [67, p. 11].

23 Each metric produces a scalar per cell node.
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Table 3: The sample means (i.e. µ̂1) and their corresponding coefficient of variation (i.e. {•}CV) of time-averaged
spatial-variant fields of five IFLES-quality post-verification metrics (i.e. ΓPope, Γν , ΓCelik-I, ΓCelik-II, and ΓCelik-III
in §2.2). The fields were obtained from the computations of decaying homogeneous isotropic turbulence (DHIT),
homogeneous shear turbulence (HST), and plane channel flow with smooth walls (PCF) (§3.1) using the four synthetic
time-series generators (i.e. Custom, Klein et al., Xie-Castro, and Kim et al. in §2.1.3). The biased estimator of the
coefficient of variation was defined as the ratio between the sample standard deviation and sample mean: (µ̂2)-0.5/µ̂1.

Method ↓ µ̂1CV → ΓPope Γν ΓCelik-I ΓCelik-II ΓCelik-III

DHIT

Custom 0.9770.41 1.76418.07 0.9370.46 0.9372.21 0.9362.12

Klein et al. 0.9800.44 1.82216.59 0.9360.36 0.9391.45 0.9391.31

Xie-Castro 0.9850.30 1.73036.99 0.9370.30 0.9321.43 0.9321.22

Kim et al. 0.9750.48 1.77226.89 0.9370.50 0.9332.83 0.9322.63

HST

Custom 0.9470.77 7.30637.04 0.8751.52 1.08951.96 0.87863.75

Klein et al. 0.9530.71 8.00346.91 0.8701.60 1.05024.39 0.90426.82

Xie-Castro 0.9530.66 7.83722.04 0.8711.57 1.01421.98 0.92422.72

Kim et al. 0.9470.87 7.579111.34 0.8731.40 1.07089.28 0.906105.22

PCF

Custom 0.9298.67 1.23010.70 0.9470.29 - -
Klein et al. 0.9308.66 1.23110.87 0.9470.29 - -
Xie-Castro 0.9308.69 1.23010.81 0.9470.29 - -
Kim et al. 0.9288.76 1.22910.65 0.9470.29 - -

With regard to the first statistical-metric ΓPope, µ̂1[ΓPope(x)] of all cases ranged from 0.928

to 0.985 ({ΓPope}advice=0.800) as illustrated in Table 3. The influence of the inflow generators on615

µ̂1[ΓPope] was, however, found to be indistinguishable up to two-decimal places. Similar to µ̂1, the

coefficients of variation in ΓPope fields remained virtually the same within ∼(-1) as can be seen

from the subscripts of Table 3. Also, the coefficients were observed to be an order of magnitude

lower for DHIT/HST than those in PCF. This observation implies spatially-invariant ΓPope fields

for DHIT/HST whereas spatial variations for PCF.620

By contrast to the relatively global µ̂1-µ̂2, effects of the DFM/FSM variants began to appear

with more local γ̂1-γ̂2: Klein et al./Xie-Castro models yielded positive γ̂1[ΓPope], and Custom/Kim

et al. models negative γ̂1[ΓPope] with a degree of (1) in DHIT and (-1) in HST. Nevertheless,

γ̂1[ΓPope] was negative (1) for all models in PCF cases (Suppl. Doc.-1, Table 2). The negativity

indicated an asymmetry in the metric fields within which less-than-median outliers of ΓPope (i.e.625

lower quality according to the metric) occurred more frequently in PCF, and vice versa.

Furthermore, all cases were quantified to be leptokurtic (i.e. positive γ̂2[ΓPope]) (Suppl. Doc.-1,

Table 2). This positiveness signified that the source of local ΓPope variations was scattered to an

extent directly proportional to γ̂2; thus, transitions across different quality regions were mostly

not smooth for relatively high γ̂2. For example, qualitative inspections of the PCF-ΓPope field630

histograms revealed that multiple and separate aggregations existed. These groupings were layered
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in a cascade of waning strength towards the walls with a quadratic trend as the lowest ΓPope was

observed three layers away from the walls (not reported).

It was deduced that the above interpretations can also be applied to the results of the remaining

statistical metrics. For this reason, the following presentation was confined to generic and specific635

remarks that encountered no counterexamples instead of re-expressing similar result-meaning pairs

for each metric.

First, according to the metric guidelines in §2.2, all the mean values of the metrics shown

in Table 3 qualified all the corresponding IFLES cases as statistically adequate. Nevertheless,

the mean qualification is global; hence, spatiotemporally-accurate local structures may still not be640

resolved within a computation ascertained ‘decent’ by the grid metrics. Second, the metrics did

not provide results completely consistent to each other. For instance, µ̂1[ΓPope] led a ranking from

the highest to lowest ‘quality’ as DHIT-HST-PCF whereas µ̂1[Γν ] and its derivative µ̂1[ΓCelik-I]

resulted in a ranking of PCF-DHIT-HST. Consequently, the level of spatiotemporal resolution of

a computation could be quantified notably different by the grid metrics. Third, the influence of645

DFM/FSM on the fidelity level of an IFLES computation seems to be limited to free-shear flows.

This was exemplified by PCF in what all the metric results of the moments were observed to be

almost the same up to two-three decimal places for any inflow generator, and this observation was

absent for the free-shear flow cases. It might therefore be speculated that wall effects blur the

imprints of the inflow models on the computational fidelity. The final general remark is that no650

inflow method was found to be superior or inferior to any other in regard to the estimated fidelity.

An example of this was that Kim/Klein/Xie models in the same DHIT cases were predicted the

lowest ‘quality’ model by different grid metrics.

In addition to the general deductions, distinct remarks pertain to each metric can be drawn: In Γν

(Suppl. Doc.-1, Table 3), no mechanism was identified which constrains the upper magnitude limit655

of Γν , albeit its lower limit of zero. In consequence, unrealistic positive deviations of Γν larger than

the level of µ̂1[Γν ] could occur for maxima and higher moments. As an example of such deviations,

the followings were measured from the DHIT cases: γ̂1[Γν ]∼(3)-(4), γ̂2[Γν ]∼(6)-(7), and

max[Γν ]∼(3)-(4). It was ascertained that these high-amplitude occurrences stem from νsfs

fields. However, the underlying reason can be further attributed to the dynamic sub-filter scale660

model which is anticipated to generate relatively large spatiotemporal variations in νsfs fields [55,

p. 355]. This premise was further supported by the implication [66, p. 3] that Γν was developed for
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constant-coefficient eddy-viscosity sub-filter scale models, and by the PCF results24 in which the

high-amplitude variations disappeared from all the moments. Taken together, it has been identified

that Γν is very likely unable to cope with assessments of dynamic-procedure IFLES.665

In the case of ΓCelik-I (Suppl. Doc.-1, Table 4), more robust predictions were observed as opposed

to Γν . Therein, maxima, higher-order moments, and coefficients of variation of Γν were overall

reduced by several orders of magnitude alongside few exceptions. Although ΓCelik-I is also a function

of νsfs like Γν and the root cause of the exceptions were again traced to νsfs, the overall amelioration

of ΓCelik-I arose from the fact that νsfs was wrapped by five elementary functions [65, Eq. 8a] in670

ΓCelik-I’s formulation, which softened the effects of νsfs outliers.

With respect to ΓCelik-II (Suppl. Doc.-1, Table 5), two abnormalities were noted: ΓCelik-II was

globally or locally able to exceed unity (e.g. the DHIT maxima), and be able to become negative

(e.g. the HST minima). Celik et al. [65, p. 952] also observed such exceedances, and attributed them

to a state when coarse-grid kofs,1 locally exceeds fine-grid kofs,2. In fact, any local kofs,1>kofs,2 breaks675

down the metric locally with either of an exceedance or negativity even when kofs,1<kofs,2 globally.

This susceptibility can be tracked down to the denominator of the formula [65, Eq. 15] wherein

the exceedance occurs when kofs,1 k-1ofs,2>1, and the negativity when kofs,1 k-1ofs,2>α
p (§2.2.2). Celik et

al. [65, p. 953] argued that some failures of ΓCelik-II are because of realistic oddities in physical or

numerical processes (e.g. backscatter). On contrary, here, the attribution of failures was made to680

a generic incapability of the metric formulation on the grounds that kofs,1 k-1ofs,2>1 can still locally

happen even for monotonically convergent computations. For instance, a resolution increase may

result in a spatial translation of a dynamic structure in a computation. Thus, at a certain point

and its neighbourhood, a substantial redistribution of fine kofs fields may transpire. The metric fails

to detect such incidents or rule out their effects, which may then propagate neighbouring points or685

dominate the metric globally.

As regards ΓCelik-III (Suppl. Doc.-1, Table 6), the two aforementioned deficiencies of ΓCelik-II

were observed to persist locally in spite of the statement that ΓCelik-III was a remedy [65, p. 952]

to ΓCelik-II’s deficiencies. The reason of the persistence is the denominator of the new formula [65,

Eq. 18] which remains as a function of (kofs,2-kofs,1). Thereby ΓCelik-III could still exceed the unity690

or be negative.

ΓPope, on the other hand, provided relatively robust outcomes which nearly always did not cross

24 The constant-coefficient Smagorinsky sub-filter scale model was in use (§2.1.2).

33



any viable metric limits. As an example, neither negative ΓPope nor abrupt changes were observed

in the moments. Besides, ΓPope was identified not to be prone to any metric calibration owing to

the fact that all independent variables of ΓPope arise from the computation itself. Unlike ΓPope,695

however, Celik et al.’s metrics require several constants to tune, and moreover, they cannot be

precisely tuned according to the settings available. This heuristic further complicates assessments

to some degree. Taking all the aforementioned premises, the use of Γν and ΓCelik-I, II, III in the

IFLES framework seems questionable, and despite the counterarguments mentioned in §2.2.1, ΓPope

is arguably preferable among all metrics considered as far as its results are interpreted cautiously.700

(ii) The numerical stability and the fulfilment of PISO building-block assumption were eval-

uated through Comean and Comax which were measured approximately 0.25-0.28, 0.30-0.50, and

0.40-1.00 for the DHIT, HST and PCF cases, respectively. The values roughly obeyed the recom-

mendations discussed in §3.1.1.4. Therefore, the computations were deemed ‘adequate’ in temporal

aspect as well. (iii) Prior to the statistical convergence assessments, the computations were pos-705

tulated to be statistically weak stationary and ergodic based upon the affirmative tests conducted

for the same models and benchmarks within a non-CFD environment by [9, p. 457]. In the light

of qualitative assessments, velocity and pressure’s first four sample moment time-series were found

to steadily approach a limit (not reported). Accordingly, the statistical convergence of the compu-

tational fields was assumed occurred. (iv) Lastly, the probe sample sizes were kept several times710

more than the threshold calculated in §3.1.1.7 (i.e. 13,000) to ensure the sample statistics reflect the

statistical population of interest. The probe sample sizes for DHIT, HST and PCF were: 480,000,

364,000, and 60,000 elements, respectively. Thereupon, the statistical convergence of the probe

samples was assumed.

4.2. DFM/FSM with default settings715

4.2.1. Mean velocity

Mean velocity field is essential to the initiation, distribution and maintenance of turbulence.

According to the energy cascade theorem [110], all the kinetic energy of turbulence is initially

channelled out from the mean velocity field with an amount of mechanical work done by the mean

velocity spatial gradient fields25 on the Reynolds stress tensor field. In detail, the strain gradients720

of mean velocity (i.e. ∂iUi) stretch parallel and anti-parallel vortex structures (i.e. vortex stretching

25 From now on, the term gradient refers to the spatial gradient.
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Figure 4: The mean velocity components from the decaying homogeneous isotropic turbulence computations
(DHIT) [68]. The vertical axis of a subplot stands for the log percentage change of a component, i.e.
L≡100 loge(xdata/xbench)[cNp], with respect to the input longitudinal mean speed, Uo=12.7[ms-1]. Of each compo-
nent, u(x, t)≡(u, v, w)(x, t), the sample time-series were first time-averaged at each node, and then spatial-averaged
in the statistically homogeneous lateral and vertical directions, hence U(x)≡(U, V,W )(x). The left- and right-block
horizontal axes represent the adjustment and evolvement regions of the longitudinal distance of the computational
domain, x, non-dimensionalised by the grid size, ∆x, and the characteristic length M=0.0508[m], respectively. The
V - and W-components were translated by Uo owing to the fact that the input Vo and Wo were zero.

minus vortex squeezing), whose diameters shrink to preserve their mass. Due to the conservation of

angular momentum, the rotational speed of vortices increases with the reduced radius of rotation;

thus, (de-)energising the surrounding velocity/vorticity field occurs at various scales. Moreover,

the cross gradients of mean velocity (i.e. ∂jUi) bend and reorient the principal axes of right-angled725

vortices (i.e. vortex tilting), with which a portion of energy is transferred to the orthogonal vorticity

fields. In view of these, any unintended alteration in the mean velocity gradient will eventually be

reflected in the driving mechanisms of turbulence to a certain extent, e.g. mean velocity profiles in

DFM were found to greatly affect LES results of planar turbulent jets by [1, p. 663][10, p. 10]. For

this reason, the mean velocity information needs to be correctly conveyed into a computation.730

In this section, representative-to-all remarks for the conditioned mean velocity component fields

were presented with Figs. 4–6. In Fig. 4 (DHIT), the centineper bench-diffs of each mean velocity

component were shown as a function of the downstream distance. In Figs. 5 and 6 (PCF), the

vertical profiles of the velocity components were shown across the adjustment and evolvement

phases, respectively.735
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Figure 5: The along-channel-height profiles of the mean velocity components along the longitudinal adjustment phase
(Adj.), i.e. the eight initial nodes from the inlet (left to right), from the computations of the smooth-wall plane channel
flow (PCF) [70]. The vertical axes show the channel height, y, non-dimensionalised by the half channel height, δ. The
horizontal axes illustrate the speed magnitudes in [ms-1]. The time-averaged U(x) fields were arithmetic averaged
in the statistically homogeneous direction, z, at the indexed longitudinal positions of the cell nodes, ∆x/2, thus
U(x, y)≡(U, V,W )(x, y). It should be noted that the linear interpolation was turned off in the first-node results to
avoid some code implementation issues, hence the stepwise appearance.

[A.i] As illustrated in the figures, at the first node next to the inlet, the maximum bench-diffs

of all components were observed to be roughly (-2)/(-3)[cNp] for DHIT, HST and the bulk

of PCF cross sections. Exceptions were identified in the vicinity of the PCF walls where the local

bench-diffs were increased up to (2)[cNp]. [A.ii] Along the rest of the adjustment phase, the DHIT

and HST bench-diffs of U initially declined by an amplitude of ≈0.004 & ≈0.01[cNp] until roughly740

their fourth node, and then recovered back to the input levels. [A.iii] In addition, in PCF, the

bench-diffs of V nearby the walls were halved in the second node and then continued to gradually

decrease. All the other bench-diffs, however, stayed roughly the same with the first node values

along the adjustment phase. [A.iv] Throughout the evolvement phase, on the other hand, all the

bench-diffs remained virtually at their input levels except HST-V which rose linearly in the negative745

direction, and PCF-W which contracted to an almost zero profile.

These findings have two implications: First, for each benchmark and component, the four model

results were observed to follow look-alike trends and amplitude levels within few orders of magnitude

smaller than the associated input. Therefore, it was ascertained that the different model mechanisms

are ineffective on mean velocity field developments. Second, the models were found to be able to750

reconstruct input mean velocity profiles that can preserve themselves within a CFD domain or can
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Figure 6: The along-channel-height profiles of the mean velocity components along the longitudinal evolvement phase
(Evo.), i.e. 11 equidistant stations from 5δ to 55δ away the inlet (5δ-distance step), from the computations of the
smooth-wall plane channel flow (PCF) [70]. The remaining figure particulars and axes limits are the same with Fig. 5.

appropriately develop downstream. The evidence was that the level of deviations was overall within

(-3)/(2)[cNp] with respect to U magnitudes. Also, the deviations were similar irrespective of

the presence of significant flow notions, such as shear stresses or walls. This postulation is in-line

with [27, p. 45] who observed that the input length scales and Reynolds stress tensor do not affect the755

hybrid DFM-FSM’s mean velocity profile developments. Nevertheless, these larger-than-machine-

accuracy deviations were also expected due to the domain and equation discretisations, thus making

assertion difficult whether the inflow models are the main contributors to these deviations.

These results suggest that no improvement is required for mean velocity capabilities of DFM/FSM

in the level of traditional engineering accuracy requirements. This argument is in agreement with760

the DFM/FSM literature on various types of flows, [10, Fig. 3][2, Fig. 6, 11][17, Fig. 3] to name

but a few.

4.2.2. One-spatial-point second-order correlation tensor

Within a flow, the one-point second-order symmetric correlation tensor of fluctuations (abbr.

the tensor) shapes the energy transfer processes which are important determinants of mean and765

turbulent flow development. In simplified terms, as also mentioned in §4.2.1, the work done by

the symmetric part of the mean velocity spatial gradient on the anisotropic part of the tensor [64,

p. 126] channels out the energy of the mean velocity field into the fluctuating velocity field to be

redistributed and dissipated. Therefore, the construction of the tensor is essential to the model
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Table 4: The log percentage change, i.e. 100 loge(xdata/xbench)[cNp], of the Reynolds stress tensor components with
respect to the corresponding benchmark data at four different stations, (i|ii|iii|iv). Within a table cell, the first two
stations were in the adjustment phase: The station (i) is at the first node longitudinal-away from the inlet, and the (ii)
is at the node approximately one length scale away from the inlet downstream, i.e. tenth, eleventh and fourth nodes
for DHIT, HST, and PCF, respectively. The remaining two stations were in the evolvement phase: For DHIT, HST
and PCF, the station (iii) is at 56M , 2h and 5δ, and the station (iv) is at 129M , 3.5h and 15δ, respectively, which
corresponds to the benchmark data stations as shown in Figs. 7 and 10. In PCF results, the log percentage changes
were computed by arithmetic averaging the absolute amplitude profiles to prevent any cancellation of negative and
positive values. The reported results were rounded to one decimal places.
Case ↓ cNp → Custom Klein et al. Xie-Castro Kim et al.

DHIT
u′u′ -4.9|2.9|2.7|2.3 -0.1|9.0|24.4|9.9 -2.4|4.1|22.7|14.8 -2.8|3.7|-0.7|-3.9
v′v′ -7.4|-18.2|-6.4|-0.2 -3.2|-7.3|20.7|14.5 -4.6|-11.4|15.9|16.7 -7.2|-15.6|-8.4|-4.1
w′w′ -7.4|-18.1|-6.3|-0.0 -3.0|-7.2|20.7|14.6 -4.7|-11.4|16.1|16.8 -7.9|-16.9|-7.6|-3.6

HST

u′u′ -4.1|-2.8|-12.3|-16.4 0.3|6.0|0.6|-5.2 -2.1|0.7|-4.9|-9.0 -2.5|-1.8|-16.6|-22.9
v′v′ -13.8|-21.1|-28.4|-25.7 -13.4|-14.1|-5.7|-3.2 -14.1|-17.4|-18.1|-14.6 -15.5|-21.3|-29.7|-30.0
w′w′ -14.2|-28.4|-33.5|-28.9 -14.5|-22.8|-15.5|-10.8 -15.0|-26.1|-25.1|-19.4 -16.1|-29.6|-37.8|-34.9
u′v′ -18.9|-69.1|-38.4|-36.7 -10.3|-51.6|-4.8|-5.6 -14.1|-61.8|-21.0|-18.9 -16.7|-63.7|-44.1|-46.8

PCF

u′u′ 4.4|6.2|15.2|9.2 1.5|2.4|7.2|4.9 4.8|4.3|9.7|6.8 6.2|9.3|21.7|14.1
v′v′ 19.6|26.6|42.9|26.0 17.4|16.1|21.3|12.3 16.9|23.7|33.6|15.4 20.9|31.8|54.1|33.9
w′w′ 12.3|19.1|37.5|23.4 8.9|11.6|19.0|11.2 10.1|15.2|26.7|12.8 12.0|22.0|47.1|30.2
u′v′ 39.0|131.5|54.6|12.2 27.0|136.6|20.8|13.8 38.6|147.3|42.7|12.7 40.9|116.6|71.3|21.0

system of a turbulent flow, hence the synthetic time-series generation.770

In this part, the conditioned results of the tensor were illustrated by Figs. 7–10 and Table 4, and

representative-to-all remarks were discussed. In Fig. 7 (DHIT & HST), the longitudinal profiles

of the tensor components were shown with a close-up of the adjustment phase. In Figs. 9 and 10

(PCF), the channel-height profiles of the components were demonstrated at a number of succes-

sive observation planes of the adjustment and evolvement phases. The corresponding centineper775

bench-diffs were given in Table 4. In the following, the tensor was more closely monitored and dis-

cussed in detail at four stations: two adjustment phase stations, i.e. the first node and the node at

one-longitudinal integral scale distance downstream, and two evolvement phase stations for which

benchmark measurements were available. The tensor components of u′w′ and v′w′ were left out

from the presentation because of their pseudo-random dispositions at levels of (-5)/(-8)[m2s-2].780

At the first adjustment-phase node, the flow is dominated by effects of the inlet boundary con-

dition (hence, DFM/FSM) owing to the considerably lower boundary area of the lateral boundary

conditions therein. With this in mind, five generalised observations were made there. [B.i] First,

the amplitude of all the input tensor components was reduced for all the benchmarks and models

except Klein model in HST-u′u′. As can be deduced from Table 4 and Figs. 7 and 9, the extent of785

amplitude reductions in terms of bench-diffs was between (-1)/(2)[cNp] within the DHIT-HST-

PCF scenarios. [B.ii] Second, in terms of patterns across the tensor components, u′u′ bench-diffs
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Figure 7: The longitudinal profiles of the one-point second-order symmetric correlation tensor of fluctuating velocity
components from the decaying homogeneous isotropic turbulence (DHIT, the left subplot) [68] and homogeneous shear
turbulence (HST, the right subplot) [69] computations. The sample fluctuating velocity field, u′≡(u′, v′, w′)(x, t), was
first cross-producted with itself at each spatial node, i.e. (u′×u′)(x, t), and then cumulative moving time-averaged,
thus (u′×u′)(x). The resulting fields were then arithmetic spatial-averaged in the statistically homogeneous lateral
and vertical directions, hence (u′×u′)(x). Herein, u′w′ and v′w′ were excluded owing to their pseudo-random
patterns. The vertical axes of the subplots represent the tensor components normalised by the input longitudinal mean
speeds, Uo,DHIT=12.7[ms-1] &Uo,HST=12.4, and multiplied by 100. The horizontal axes illustrate the longitudinal
distance from the inlet, x, normalised by the uniform cell size, ∆x, for the adjustment phase (the left sub-subplots)
and the characteristic lengths MDHIT=0.0508[m] and hHST=0.305 for the evolvement phase (the right sub-subplots).

were found to be consistently lower than its orthogonal and shear neighbours in all scenarios. For

instance, the DHIT bench-diffs of v′v′ and w′w′ were roughly twice those of u′u′. [B.iii] Moreover,

the level of bench-diffs of the spatial-variant shear component u′v′ in PCF was observed to be790

several times higher than those of its normal components in contrast to HST wherein the order of

spatial-invariant u′v′ was similar to its lateral components. [B.iv] Looking for patterns across the

models revealed two particulars: With the default settings of the models, Klein model produced

the least bench-diffs throughout almost all the scenarios. Even in case of the exceptions, Klein

model remained the closest to the least bench-diff models. For example, Klein model’s bench-diff795

in HST-w′w′ was -14.5[cNp] whilst the least bench-diff from Xie model was -14.2[cNp]. In oppo-

sition to Klein model, Custom and Kim models almost always yielded the highest bench-diffs for

the same scenarios. [B.v] Lastly, the aforementioned remarks were unaffected by the progression of

flow fidelity, i.e. the addition of shear stresses (from DHIT to HST), or of wall boundary conditions

(from HST to PCF).800

The direct causal role of DFM/FSM in the deviations observed above was ruled out by the

evidence shown in [9, Fig. 5] which illustrated that the models in the same yet non-CFD setups
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Figure 8: The inlet-height profiles of the diagonal components of the one-point second-order correlation tensor,
i.e. (u′×u′)(y), obtained from a non-CFD decaying homogeneous isotropic turbulence (DHIT) computation on
which divergence-freeness, i.e. ∇ · u≈ 0, was subsequently imposed. The same data reduction in Fig. 7 was ap-
plied onto u′(x, t) to obtain (u′×u′)(y) except that the arithmetic spatial-average was performed in the longitu-
dinal x-, and lateral z-directions. The vertical axes show the domain inlet height, y, non-dimensionalised by ten
times the characteristic length M=0.0508[m], and the horizontal axes the log percentage change of a component,
i.e. L≡100 loge(xdata/xbench)[cNp], with respect to the corresponding tensor results of the non-corrected non-CFD
u(x, t) fields. In the legend, the affixes ‘-C’ and ‘-CW’ denote the divergence correction scheme [111] and the weighted
divergence scheme using generalized cross validation optimisation [112], respectively, which were designed to zeroize
the velocity field divergence of a volumetric particle image velocimetry dataset with aiming minimum alteration of
the velocity field.

are able to reconstruct an input tensor almost exactly. It is postulated that three contributors

are associated with the five remarks: (i) the first-time execution of the N-S equation algorithms

on synthetic time-series, (ii) the first-time enforcement of the velocity solenoidality due to the805

incompressibility condition, and (iii) the transfer phases illustrated in Fig. 3. A pre-assessment

indicated that only the post-mapping phase among the other transfer phases can be influential on

the deviations (discussed in §4.5) since effects of the first two transfer phase were naturally absent in

the DHIT-HST computations. On the other hand, the divergence-freeness enforcement on synthetic

time-series entirely acts within the first node. However, a presumption that the solenoidal condition810

is the dominant contributor may still be speculative. Therefore, the divergence-freeness enforcement

was isolated from the other N-S equation procedures, and investigated as follows.

Non-CFD DHIT computations using the current models and settings were performed, and the di-

vergence of the resultant velocity fields was attempted to be locally removed with minimum stochas-

tic and statistical distortion via two experimental tools: the divergence correction scheme from [111]815
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Figure 9: The along-channel-height profiles of the one-point second-order symmetric correlation tensor components
along the longitudinal adjustment phase (Adj.), i.e. the eight initial nodes from the inlet (left to right), obtained
from the smooth-wall plane channel flow (PCF) computations [70]. The vertical axes signify the channel height, y,
normalised by the half channel height, δ, and the horizontal axes the magnitude of the tensor components row-wise.

and the weighted divergence scheme using generalized cross validation optimisation from [112].26

Also, the level of divergence-freeness of synthetic time-series was quantified by Zhang et al.’s metric,

δz [113, Eq. 25], where δz=1.0 means a complete non-solenoidal field, and δz=0.0 an exact solenoidal-

ity [113, p. 12]. The quantifications for each scenario showed that δz≈1.00 and δz≈0.17 before and

after the corrections, respectively. Accordingly, the divergence-freeness of the corrected fields was820

assumed. The tensor was then computed for an inspection in Fig. 8.

From Fig. 8, the observation [B.i] and the isolated divergence-freeness enforcement appeared

to be closely related since the amplitude of all the tensor components belonging to the corrected

fields was also downscaled therein. Concerning the reason of the observation [B.ii], the evidence

from Fig. 8 suggested a link to the divergence-freeness enforcement as well while the bench-diffs of825

26 In actuality, the two tools are in order for volumetric particle image velocimetry measurement corrections.
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the new u′u′ were also observed the lowest as against the lateral components. With this potential

link, the mean flow speed in each direction was identified as the prominent difference amongst

the tensor components: U was at least two orders of magnitude greater than V and W in the

benchmarks. Based on this remark, the directional mean speeds were extracted from the non-CFD

time-series on hand, and consecutively, the corrections were conducted in the same way. The results830

disclosed that when the mean speeds were removed, the tensor component amplitudes were equally

reduced with the divergence-freeness enforcement (not reported). This disclosure highlighted the

amplitude differences among mean speeds as a principal determining factor of the observation [B.ii].

For the greater-valued mean speed direction, the level of amplitude alterations due to divergence-

freeness enforcement reduces in comparison to the other directions. On the question of the reason835

behind the observation [B.iv], the same ranking in terms of the resemblance level to the benchmark

was found in Fig. 8. As an example, the bench-diffs of u′u′ there were around -5[cNp] for Klein and

-18[cNp] for Custom methods. However, the mainspring of Klein model’s superiority in this regard

could not be identified. Therefore, it was confined that an unidentified mechanism exists within

Klein method which facilitates the divergence-freeness imposition, thus leading to less distortion in840

the input Reynolds stress tensor relative to the other methods. Nevertheless, it can also be pointed

out that being DFM should not be the reason, because Custom yielded the highest bench-diffs.

The overall contribution of other boundary conditions to the flow development monotonically

increases downstream. Therefore, DFM/FSM information effects gradually fade away. With that

in mind, at the cross sections of one-longitudinal integral scale downstream, four observations were845

made. [C.i] Firstly, the bench-diffs were mostly increased at a level from less than one times (e.g.

HST-v′v′) to five times (e.g. PCF-u′v′) in comparison with the first-node state. As demonstrated in

Table 4, the increment occurred in 38 scenarios out of 44, wherein all models showed an increase in 7

component-wise cases, and at least three models produced an increment in all cases. [C.ii] Secondly,

the observations [B.i] and [B.ii] persisted for the lateral components; however, u′u′ mainly switched850

to an overprediction with no particular pattern in its bench-diff changes. Furthermore, the level

of bench-diffs in u′u′ departed from the observation [B.iii] levels several times. [C.iii] Thirdly,

likewise to [B.iv], Klein and Custom/Kim models retained the lowest and highest bench-diffs in

most cases, i.e. in 8 and 9 out of 11 component-wise cases, respectively. Sporadic counterexamples

were also observed like in DHIT-u′u′ where the ranking became the opposite way round. [C.iv]855

Finally, closer inspection of Figs. 7 and 9 qualitatively showed that the rate of changes in the
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Figure 10: The along-channel-height profiles of the one-point second-order symmetric correlation tensor components
along the longitudinal evolvement phase (Evo.), i.e. 11 equidistant stations from 5δ to 55δ away from the inlet in 5δ-
distance steps, obtained from the smooth-wall plane channel flow (PCF) computations [70]. The results represent the
log percentage changes with respect to the benchmark, i.e. L≡100 loge(•) centineper [cNp]. The absolute amplitudes
were given in Fig. A.24. The remaining figure particulars and axes limits are the same with Fig. 9.

tensor became virtually constant for DHIT, HST and PCF after the 4-6th, 2nd and 3-8th nodes,

respectively. This, however, does not imply fully developed turbulence, yet a starting point for its

gradual evolvement, which may help downstream predictions for the tensor.

Further downstream, at two selected planes of the evolvement phase, three generic observations860

were noted. [D.i] To begin with, the underprediction trends previously noted in [B.i] and [C.i] con-

tinued to present in the evolvement phase at the level of (1)/(2)[cNp], albeit less frequently. In

28 scenarios of DHIT-HST combined, for instance, 20 of them retained the underprediction relative

to the first-plane benchmark, and in the second plane, the number increased to 21. Some counterev-

idence to this premise, nonetheless, emerged from (2)-level [cNp] overpredictions made by Klein865

and Xie methods in DHIT for each component. [D.ii] Also, the relative levels between the bench-
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diffs of the tensor components remained the same as in the observations [B.ii] and [C.ii]. [D.iii]

In parallel to [B.iv] and [C.iii], the model ranking in terms of the bench-diffs also remained nearly

unchanged along the evolvement phase. Klein and Kim models yielded the lowest and highest bench-

diffs in turn in 8 out of 11 component-wise cases, and the exceptions arouse out of DHIT where this870

ranking was reversed. [D.iv] The adaptation lengths of the tensor were observed in different trends

for free-shear and wall-bounded flows. On the assumption that the adaptation length criterion for

free-shear flows is approximately reaching a linear rate of change in amplitude of the components

as a function of the longitudinal distance, it was inferred from Fig. 7 that the adaptation length

was reached within the adjustment phase irrespective of the models and components. For wall-875

bounded flows, another criterion deemed more appropriate was assumed: the first-time reduction

of the maximum and absolute bench-diff below 15[cNp] across the tensor profile during a declining

trend. On this basis, bench-diff analyses of Figs. 9 and 10 revealed that the adaptation lengths were

exclusively reached within the evolvement phase for all models and components: The approximate

adaptation lengths of {u′u′, v′v′, w′w′, u′v′}-components in Klein, Xie, Custom and Kim models were880

{10-15, 20-25, 25-30, 5-10}[δ],{10-15, 20-25, 25-30, 10-15}[δ], {15-20, 30-35, 35-40, 15-20}[δ], and
{20-25, 30-35, 35-40, 25-30}[δ]. If the criterion is, however, relaxed for the close vicinity of the

centreline of the channel, these adaptation lengths reduce to a considerable extent. Such relaxation

may be viable since the overpredictions of the tensor components were also observed in various

similar-resolution studies, e.g. [17, Fig. 3, p. 61].885

In summary, four concluding remarks can be drawn from the tensor investigations: This study

has identified a general tendency of (1)/(2)-level [cNp] amplitude reduction in the input tensor

components within adjustment-phase and successive evolvement-phase nodes ([B.i][C.i][D.i]). The

tendency is virtually independent of benchmarks, models and tensor components. The same ten-

dency was also reported by [13, p. 1112] for the lateral components; however, the authors conceded890

that they could not offer an adequate explanation for the reduction. On the other hand, the quantifi-

cations of this study indicate that the divergence-freeness enforcement is the dominant factor in the

adjustment-phase reductions, which observed shaping evolvement-phase trends as well, particularly

for free-shear flows. The second major finding is that the longitudinal u′u′ component nearly always

deviates from the input less than the lateral and shear components irrespective of benchmarks and895

models ([B.ii][C.ii][D.ii]). The findings suggested that the underlying determinant may be the

higher mean speed U , and its interactions with divergence-freeness enforcement. The research has
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also shown that Klein model in general provided the lowest bench-diffs and shortest adaptation

lengths for the tensor whereas Custom/Kim methods the opposite ([B.iv][C.iii][D.iii]). Although

DFM/FSM used the same Lund transformation for the tensor reconstruction and [9, p. 450] demon-900

strated the same models yielded no tensor component differences in non-CFD setups, the models

differently behaved in CFD. This rather inconsistent result is attributed to an unidentified factor

within DFM/FSM stages prior to the Lund transformation that interacts with CFD in different

ways, hence dissimilar tensor results among the models. Finally, as regards the longitudinal

changes of bench-diffs, [27, p. 38] asserted that the tensor monotonically changes. However, the905

findings of this study disconfirm this overgeneralization, and suggest that the bench-diffs follow a

pattern similar to an asymmetric quadratic function (i.e. initially increasing then decreasing) rather

than a monotonic function. This quadratic pattern also implies that the tensor as an adaptation

length indicator always needs to be interpreted with caution in contrast to the conventional practice

in the literature. Nonetheless, the changes could be deemed monotonic if the adjustment phase is910

completely omitted.

4.2.3. Two-spatial/temporal-point correlation functions

Amplitude-based tools (e.g. Reynolds stress tensor) do not convey any information regarding the

spatial-temporal structure of turbulence (e.g. white noises and triangular waves are indistinguish-

able through the amplitude-based tools although both possess disparate temporal structures [114,915

p. 2-5]). This deficit is covered by the two-spatial/temporal-point correlation function tensor (here,

the tensor input was limited to its normal components, hence autocorrelations). The size and shape

of tensor components affect turbulence development: Elementarily, the size determines the degree

of influence of one-location/time fluctuations’ amplitude on other location/time fluctuating quan-

tities’ amplitude. Also, through the size, the viscous energy dissipation rate is determined. The920

shape, on the other hand, characterizes the energy composition in the frequency domain.

In view of its importance, the development phase of the input two-point27 autocorrelation

functions (abbr. acorr) was investigated in this section. The conditioned results were displayed

in Figs. 11–15. Fig. 11 (DHIT) compared the longitudinal acorrs from the first adjustment-phase

node and corresponding non-CFD cases to find out the adjustment phase effects on input acorrs.925

27 Two-point meant spatial points in the lateral directions, and temporal points in the longitudinal direction via
Taylor’s frozen turbulence hypothesis [59].
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Figure 11: The two-temporal-point longitudinal sample autocorrelation function, ρ̂mn[-], (the top subplots) and
one-dimensional sample power spectral density function, Êmn[m3s-2], (the bottom subplots) results obtained from
the first block of nodes (B1) of the decaying homogeneous isotropic turbulence computations (DHIT) [68]. Along
the vertical axis, the statistic magnitudes are given. ‘mn’ stands for the measurement direction ‘m’ and measured
velocity component ‘n’, respectively. The horizontal axes of the top subplots represent the spatial lag, x, normalised
by the characteristic lengthM=0.0508[m], and those of the bottom subplots the spatial wavenumber, κ[m-1]. For each
node time-series, the statistics were computed and then arithmetic spatial-averaged in the statistically homogeneous
directions, i.e. (y, z). The inner horizontal bar charts show the Fréchet distance of the model curves to the benchmark.
Each bar height was normalised by the most similar model’s distance magnitude, thus the maximum height of a bar
is the unity. ‘h.s.’ with the arrow denotes the direction of higher similarity.

In Fig. 12 (DHIT), the metamorphosis of the same set of acorrs was tracked along the evolve-

ment phase. Furthermore, through Figs. 13–15 (PCF), the level of bench-diffs formed within the

evolvement phase was exemplified from a broader perspective by two acorrs and a two-point cross-

correlation function (abbr. ccorr).

At the first adjustment-phase node, five premises were identified: [E.i] Throughout the bench-930

marks, models and acorr components, a maximum of (1)[cNp] decrement was detected in acorr

levels in a form of gradual decrease after 0.2-0.4 characteristic length by contrast to their non-CFD

counterparts. [E.ii] Further to this, with regard to patterns amongst acorr components, all predic-

tions either went to negative or briefly fluctuated around zero after a certain lag onwards (at least a

characteristic length or more), particularly for the u-component acorr. [E.iii] Notwithstanding this935

transfiguration, the shape of input acorrs was conserved, i.e. Klein model produced a Gaussian-
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Figure 12: The two-temporal-point longitudinal sample autocorrelation function results from the decaying homoge-
neous isotropic turbulence computations (DHIT) [68] at three observation stations: the first block of nodes, i.e. B1
(≈0M), 56M , and 129M longitudinally away from the inlet boundary, which correspond to 42M , 98M and 171M
benchmark stations in [68, p. 292]. The figure descriptors are the same with Fig. 11.

form, and the others an exponential-form. [E.iv] Additionally, observing model patterns across

the same scope revealed that Klein model brought forth the highest bench-diffs in unit of Fréchet

distance without any counterexample unlike its superiority in the Reynolds stress tensor predic-

tions. By contrast, Xie, Custom and Kim models resulted in the lowest bench-diffs for 6, 2, and 1940

cases within 9 component-wise cases, respectively, by closely following each other. The Gaussian-

exponential form differentiation was in accord with the non-CFD observations [9, p. 453]. [E.v]

On top of these, the correlation functions of the second and third nodes were also monitored (not

shown), and compared to those of the preceding node to spot prospective patterns. However, al-

most no difference smaller than the half-precision machine epsilon was observed in amplitudes and945

shapes of the functions.

The causes of the observations [E.i] and [E.ii] have been a subject of further investigation.

The acorr reduction represented that the first-order successive difference of fluctuation amplitudes

at consecutive points is generally in increase along a direction, hence more ‘jigsaw’ appearance in
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Figure 13: The two-point sample autocorrelation functions of ρ̂xv obtained from the smooth-wall plane channel flow
computations (PCF) [70]. The subplots illustrate the results at twelve wall-normal stations, y+=uτ y ν-1, where y+
is the dimensionless distance from the bottom wall, uτ=1.0[ms-1] the friction velocity, ν=0.002531646[m2s-1] the
fluid kinematic viscosity that associates with Reτ=395. The samples were obtained from the spatial-accurate points
given by [70] along the longitudinal direction, x, starting from x0=40[m], hence Taylor’s frozen turbulence hypothesis
was not used. The horizontal axis is non-dimensionalised by the channel half height, δ=1.0[m], and the other figure
descriptors are the same with Fig. 11.

time-series. In the same vein, the negativity in acorr tails described an emerging anti temporal950

relationship between consecutive fluctuations. Therein, the probability of concurrent occurrence of

opposite-amplitude fluctuations at lag-zero and lag-t was amplified. For this reason, the dominant

sign of fluctuations show more frequent reversals as time progresses. Nonetheless, this reduction

does not imply a homogeneous decrease/increase in amplitudes themselves. Therefore, a factor

which is spatially/temporally less uniform in its effect is expected as dominantly responsible for this955

reduction. With this insight, similar to §4.2.2, the non-CFD divergence-freeness enforcement was

carried out to isolate solenoidality effects on acorrs. However, no appreciable effect on acorrs within

the single-precision machine accuracy was observed (not shown). Consequently, it is postulated

that the divergence-freeness enforcement has spatially-uniform impact on synthetic time-series, and

does not play a role in shaping acorrs. Instead, due to the inability for further isolation among960

three agents listed in §4.2.2, it has only been speculated that the N-S equation algorithms and

domain/equation discretisations gave rise to this acorr reduction at the first adjustment-phase

node.
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Figure 14: The two-point sample autocorrelation functions of ρ̂zu obtained from the smooth-wall plane channel flow
computations (PCF) [70]. The figure descriptions are the same with Fig. 13 except the following: The samples were
obtained from the spatial-accurate points given by the benchmark along the lateral direction, z, at x0=40 [m] and
indicated y+, hence no Taylor’s frozen turbulence hypothesis.

With regard to the evolvement phase, five patterns were found: [F.i] What stands out in this

phase throughout all benchmarks and models was the convergence of acorrs and ccorrs towards the965

same function, which qualitatively resembled with a Gaussian-form most of the time. As exemplified

in Fig. 12, the model differences virtually disappeared according to the Fréchet distance. [F.ii]What

can also be seen was that the wall-bounded flow led to shape trends closer to the benchmark and

lower bench-diffs than the free-shear flows with the exclusion of longitudinal pressure correlations.

From the data in Fig. 12, it can be seen that the model results in DHIT disunited the benchmark970

around 0.2 characteristic length up to a bench-diff of (2)[cNp], which deepened downstream while

the benchmark acorrs were amplified. In spite of that, as illustrated in Fig. 13 for all channel

height stations of PCF, the models made overpredictions till 0.4 characteristic length and then

underpredictions in the level of (1) bench-diff [cNp]. [F.iii] Furthermore, the converged model

acorrs of the free-shear flow cases remained approximately the same along the evolvement phase975

despite the benchmark length scales were reported in increase, especially for u-acorrs [68, Fig. 5] [69,

Fig. 18]. Also, the anti-correlation trend of the adjustment phase after around one characteristic

length arguably persisted in most cases, albeit weaker. [F.iv] As far as the patterns among the
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Figure 15: The two-spatial-point sample cross-correlation functions of ρ̂uv measured along the longitudinal direction,
x, of the smooth-wall plane channel flow computations (PCF) [70]. The figure descriptions are the same with Fig. 13.

components are concerned, the lateral acorrs and ccorrs were frequently observed involving lower

bench-diffs than the longitudinal correlations.28 An illustration of this can be seen in Fig. 12980

where the maximum bench-diffs of the longitudinal component were approximately twice those of

the lateral components. [F.v] In addition to this, a PCF comparison between Fig. 13 and Fig. 14

qualitatively indicated that the acorrs across all channel height stations in the x-direction had lower

level of resemblance with the benchmark in comparison to the z-direction in terms of amplitudes

and trends. This postulation also seems valid for ccorrs (not shown).985

The first of two reasons why the observation [F.i] occurred is claimed to be the domain/equation

discretisations rather than the N-S equations due to the fact that the converged profiles overall did

not resemble the benchmark profiles that are natural outcomes of the N-S equations. The second

is the accumulating dominance of the lateral boundary conditions over the inlet. Because of these,

the possibility of contributions from DFM/FSM in acorr degradations along the evolvement phase990

are ruled out. The most likely causes of the observations [F.ii] and [F.iii] could be sought in the

main differences between the free-shear and wall-bounded flow cases. The first difference is that the

free-shear cases had finer temporal and spatial resolutions, e.g. DHIT, HST, and PCF possessed

28 These remarks are not relevant to HST since no downstream acorr benchmark was available.
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≈10, ≈10.4 and ≈3.9 nodes per their longitudinal-u length scale. Another main difference is the

Smagorinsky sub-filter scale model setup in which the free-shear cases used a dynamic procedure995

whereas the wall-bounded case calibrated model coefficients. The last dissimilarity is the turbulent

kinetic energy production mechanism as illustrated in Figs. A.27 and A.28. The free-shear cases rely

on internal spatial gradients of mean velocity whilst the wall-bounded case on the same quantity,

yet highly agitated by the no-slip velocity boundary condition. Despite the favouring setup fidelity

for the free-shear cases, the occurrence of high level of bench-diffs relative to the wall-bounded case1000

eliminated the setup setting effects from possible reasons. This inconsistency may suggest that

more difficulty in sustaining turbulence in a free-shear flow than wall-bounded flows is likely the

main reason of the two observations. Lastly, as far as the observation [F.v] concerned, the causing

reason can be attributed to the lower resolution in the x-direction, i.e. ∆x=0.1 and ∆z≈0.045[m].

4.2.4. One-dimensional one-sided power spectral density functions1005

Power spectral density functions are Fourier transform pairs with their corresponding autocor-

relation functions for stationary processes (the Wiener-Khinchin theorem). Although this implies

that both essentially possess the same influence on turbulence development, the former is a com-

plementary tool that helps to draw conclusions from the same information inaccessible otherwise,

such as how power and frequency contents are distributed over different spatial structures [78,1010

p. 248] [114, p. 2-8]. In accordance with this, the conditioned and representative-to-all results for

the development phase of the one-dimensional one-sided power spectral density functions (abbr.

psd) were presented in this section via Figs. 11 and 16; in which Fig. 11 (DHIT) demonstrated the

adjustment phase effects on the longitudinal psd components, and Fig. 16 (HST) the evolvement

phase of the same components.1015

Two remarks were made for the first adjustment-phase node. [G.i] By comparison to the non-

CFD results, a (-1)-times reduction was noted at the lowest wavenumber region for all bench-

marks, methods and psd components. Nevertheless, the central and high wavenumber regions of the

psds were qualitatively found almost the same with their non-CFD counterparts. [G.ii] As regards

model patterns, Klein model was observed possessing a premature drop starting from the central1020

wavenumber range whereas the other models followed benchmark’s and each other’s pattern with-

out any drop. Similarly, the drop was also found by [9, Fig. 9] for the same non-CFD benchmarks,

and by [33, Fig. 6] for a CFD-DHIT study. Despite this, all the models were able to reconstruct the
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Figure 16: The one-dimensional sample power spectral density function results from the homogeneous shear turbu-
lence computations (HST) [69] at three observation stations: the first block of nodes, i.e. B1 (≈0h), 2h, and 3.5h
longitudinally away from the inlet boundary, which correspond to 7.5h, 9.5h and 11.0h benchmark stations in [69,
Fig. 14]. The figure descriptors are the same with Fig. 11.

amplitude and trends of the benchmarks within (-1) bench-diff range [cNp] with the exceptions

of Klein model’s drop, and Custom model’s relatively high fluctuating tail. [G.iii] Moreover, the1025

two remarks above remained unchanged in the second and third adjustment-phase nodes within the

order of half-precision machine epsilon.

The findings suggest that the divergence-freeness enforcement and the N-S equation algorithm

effects on psd are negligible within engineering accuracy. In addition, it can be inferred that the

adjustment phase is limited to the first node. This alleged behaviour may help to optimise psd1030

input with respect to first-node outcomes. Besides, the models were able to capture the most

energetic wavenumbers in CFD (not necessarily structures themselves), which might be adequate

for various engineering purposes. Nevertheless, the level of discrepancy rose for the least energetic

wavenumbers. Lastly, the reason of the drop was analysed by [9, p. 455-457], and found to be due

to the Gaussian-form acorr simplification of Klein’s method in Eq. 11.1035

Along the evolvement phase, two new remarks were made. [H.i] The most significant observation
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to emerge from the model pattern comparison across the benchmarks was that all methods steadily

became indistinguishable along a course leading to Klein model’s Gaussian-form trend as exemplified

in Fig. 16 for HST. This behaviour was observed more apparent for transversal components as

the longitudinal psds of Êxu proceeded with an exponential slope after following a Gaussian-like1040

curvature for a certain range of wavenumber. [H.ii] Apart from this, the benchmark power levels

at the low wavenumber region either remained captured or were slightly underpredicted while the

underpredictions were amplified towards the tail for which this tendency was more dominant in the

lateral psds.

The observation [H.i] is in contradiction to that of [33, Fig. 6] who found that Klein method1045

loses its initial psd drop downstream. Therein, the longitudinal psd development of Klein method

was monitored by three different grid DHIT computations at three downstream stations which

were exactly used in this study. To pinpoint the reasons for the disparity, the numerical settings

were compared. In comparison to the DHIT settings reported in §3.1.2.1, the spatial resolutions

in [33, Table 2] were ≈1.5 times coarser for their medium grid, and ≈1.2 times finer for their1050

fine grid. Subsequently, the temporal resolutions in [33, Table 2] were ≈4 and ≈2 times coarser,

respectively. The other key differences can be compared with §3.1.2.1 through a list of [33]’s set-

tings as follows: a 10M -side cubic computational domain with entirely cyclic boundary conditions,

the constant-coefficient Smagorinsky sub-filter scale model, the first-order Euler temporal scheme,

and the transversal length scales equated to the longitudinal counterparts. Apart from these, the1055

remaining tools and settings were virtually the same in both studies. Considering the level of nu-

merical fidelity is in favour of the current study, one would expect herein that the drop completely

diminishes like in [33]. However, this study has been unable to reveal the reasons for the disagree-

ment. A further study with more focus on the existence of the drop through isolated parameters is

therefore suggested.1060

4.2.5. Wall shear stresses

The magnitude of longitudinal wall shear stress (abbr. wss) is a theoretically and practically

important metric for wall-bounded flows by reason of the majority of momentum transfer and

turbulence generation occurring through flow-wall interactions. Also, wss is usually being utilised

as an indicator of the adaptation length in synthetic inflow turbulence studies of wall-bounded flows1065

whilst its flow shaping effect was presumed to give tangible indications about flow states.
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Figure 17: The longitudinal development of the sample wall shear stress vector’s x-component, τ̂w, obtained from the
bottom wall of smooth-wall plane channel flow [70] computations. τ̂w fields were first time-averaged at each boundary
node, and then spatial-averaged in the statistically homogeneous lateral direction. Each subplot represents a test
group: Default-§4.2, Pre-mapping/Shear -§4.3.3, Pre-mapping/Spatiality-§4.3.2, Pre-mapping/Size-§4.3.1, Mapping-
§4.4, and Post-mapping-§4.5. In the legend, the affixes denote: ‘NS’ no-shear, ‘DS’ double-shear, ‘2L’ two length-
scale sets, ‘HL’ halved length scales, ‘DL’ doubled length scales, ‘Bi’ bilinear mapping, ‘Nu’ non-uniform mapping,
‘MC1D’ and ‘MC3D’ one- and three-dimensional mass flux corrections, respectively. In each subplot, a table shows
x/δ-distance where τ̂w reaches the first time its 95% and 99%. Within each table, the shortest distance among the
row-wise values is highlighted.

With DFM/FSM, adaptation lengths from 2-3 [13, p. 1112] to 20 [115, p. 69] characteristic-length

is expected for wss depending on flow type and settings. Several studies attributed the adaptation

length directly to the lack of phase information among modes of synthetic flow structures, [116,

p. 3] [117, p. 2] to name a few. Yet these educated opinions seem not to adequately acknowledge1070

counterexamples: For example, Xie method [2, Fig. 7] yielded ≈10 characteristic-length adaptation

length for a plane channel flow in contrast to ≈18 characteristic-length from Kim method [17,

Fig. 9a], both of which consisted almost the same spatiotemporally velocity field [17, Fig. 5].29

Therefore, the causing mechanisms of the adaptation length arguably remain unclear.

Taking its significance into account, the conditioned longitudinal wss profiles of the models were1075

29 Also, for the two computations, the same pseudo-random number generator was seeded with the same initializer,
thereby resulting in the same random number sets to be used in both computations.
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given and examined in this section via Fig. 17 (PCF), where wss results of the bottom wall were

presented.

[J.i] As can be seen from the top-left subfigure in Fig. 17, the ranking of the methods that

reached τ̂w=0.95 first (the benchmark value is τ̂w=1.00) was Klein, Xie, Custom and Kim methods

at longitudinal distances of (7.6, 10.2, 12.5, 17.0)[δ], respectively, where δ is the half-channel height.1080

When the criterion was increased to τ̂w=0.99, the ranking was somewhat changed as: Klein, Xie,

Kim and Custom methods at distances of (9.9, 21.4, 36.6, 38.9)[δ]. [J.ii] Similarly, the ranking of

the τ̂w peaks from the closest to the farthest to the benchmark was Klein, Xie, Custom and Kim

methods. Thereupon, Klein model peaked at ≈2δ with τ̂w≈0.8, Custom and Xie models at ≈3δ

with τ̂w≈0.75, and Kim model at around ≈4-5δ with slightly lesser than τ̂w=0.75.1085

Considering this information, it can be deduced that Klein model yielded the shortest adaptation

length for wss. It reached τ̂w,0.95 roughly (2.6, 4.9, 9.4)[δ] earlier than Xie, Custom and Kim methods.

For τ̂w,0.99, the earliness increased to (11.5, 29.0, 26.7)[δ]. Furthermore, Klein model can be seen

possessing the fastest rate of adaptation since τ̂w reached from 0.95 to 0.99 in ≈2.3δ in opposition

to the distances required for Xie, Kim and Custom models: (11.2, 19.6, 26.4)[δ], respectively.1090

However, Klein model’s superiority in this regard is contrary to the implications deduced from

acorr and psd observations in §4.2.3-§4.2.4 which have suggested that Klein model generally yields

the highest bench-diffs in acorrs and psds along the adjustment phases, and mostly remains as is.

Nonetheless, Klein method was also monitored that it produces the shortest adaptation lengths in

term of the Reynolds stress tensor components, particularly the shear component, and its secondary1095

associations, i.e. over-filter scale transport equation terms of kinetic energy (Fig. A.28), enstrophy

(Fig. A.30), and mean total strain (Fig. A.32). Also, in these measures, the adaptation lengths had

similar magnitudes. This finding, while preliminary, postulates that the adaptation length in terms

of τ̂w is predominantly determined by the Reynolds shear stresses rather than phase information or

the level of benchmark resemblance in acorrs/psds. Notwithstanding its dependence, the adaptation1100

length based on τ̂w seems also more robust than that based on the Reynolds stress tensor, thus

preferable as an adaptation length indicator.

4.3. Pre-mapping phase effects

As portrayed in §3.3, the pre-mapping phase effects on the adjustment and evolvement phases

(Fig. 3) were explored in this section. To this end, two DFM/FSM stages deemed the most impor-1105
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tant were regulated, i.e. the third and fourth stages displayed in Fig. 2. The stage-3 regulations were

relevant to two-point correlation functions. Therein, (i) the size of input integral length scales, and

(ii) the spatial variation of them were studied. The stage-4 regulations were related to one-point

correlation tensor with which shear components were tested in isolation.

4.3.1. Effects of the size of integral length scales1110

In an investigation using the hybrid DFM-FSM into integral length-scale size effects, [2, p. 461-

463] changed lateral scales within a plane channel flow (different from the current PCF) by factors of

(1.3, 1.0, 0.9, 0.8), and probed the statistics of mean velocity and Reynolds stress tensor at x/δ=10

downstream, and adaptation length of τ̂w. The authors found out that the end-to-end variations

were less than (10, 13, 4)% for
√
v′v′, u′v′ and τ̂w, respectively. Accordingly, it was concluded for1115

these type of flows that the effects caused by lateral scale variations on these statistics are not

considerable. This inertness was also corroborated by [10, p. 10][27, p. 43] for mean velocity.

As a continuation and extension of [2] in this particular, the current study carried out further

tests, particularly filling the knowledge gaps concerned longitudinal-scale effects, and statistical de-

velopments at multiple stations. For this purpose, two new scenarios were prepared: The magnitude1120

of all the nine members of the default length-scale set utilised in §4.2 was halved and doubled.

Amongst the statistics in Table 2, the mean velocity and all correlation functions measured at

PCF benchmark stations (e.g. Fig. 13) within the evolvement phase remained virtually the same in

the level of single-precision machine accuracy (not shown). Also, the correlation functions within

first few nodes behaved in accord with expectations and in patterns similar to the observations1125

from §4.2.3 (not shown).

On the other hand, regarding one-point second order correlation tensor (abbr. the tensor) along

the adjustment phase, three observations were made (not shown). [K.i] First, in each model the

double-scale resulted in positive (1)-level default-diffs [cNp] for the normal-components of the

tensor, where the default case results were shown in Fig. 9. [K.ii] In contrary, the half-scale induced1130

negative (1)-level default-diffs. [K.iii] Besides, for the u′v′-component, the doubled length scales in

Klein model prompted negative (2)/(3)-level default-diffs, and the halved length scales positive

(1)-level default-diffs. In Kim model, the double-scale case behaved almost the same with Klein

model; however, its half-scale case results remained similar to those of its default case.

According to these data, it can be inferred within the adjustment phase that the scaling factor1135
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Figure 18: Effects of the length-scale size, and length-scale sets at different inlet zones on the one-point second-order
symmetric correlation tensor components obtained from the smooth-wall plane channel flow (PCF) computations [70].
The results were given at the channel-height profiles along the longitudinal evolvement phase (Evo.), i.e. 11 equidistant
stations from 5δ to 55δ away from the inlet in 5δ-distance steps, and represented the log percentage changes with
respect to the benchmark, i.e. L≡100 loge(•) centineper [cNp]. The absolute amplitudes were given in Fig. A.25.
The remaining figure particulars and axes limits were provided in Figs. 10 and 17.

of the size of input integral length scales, i.e. C, determines the sign of default-diffs of the tensor

components irrespective of DFM/FSM variants. More precisely, the sign of (C-1) will likely be the

same with that of normal-component default-diffs, and the opposite with that of shear-component

default-diffs. For example, a scaling factor smaller than unity could produce negative default-diffs in

normal tensor components, hence an overall amplitude reduction. Nonetheless, the proportionality1140

between the scaling factor and default-diffs seems not linear as the double-scale cases yielded larger

absolute default-diffs than the half-scale cases. These findings were in line with the level and

patterns of amplitudes reported by [2, Fig. 6] for the lateral length scale effects although the

authors monitored x/δ=10, which was further downstream than the adjustment phase.

Within the evolvement phase of the tensor as demonstrated in Fig. 18, four other observations1145
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were noted. [L.i] To start with at x/δ=10, the double-scale cases were all found to yield positive

default-diffs for all tensor components with an absolute amplitude of 10-20[cNp], predominantly

around the channel centre. [L.ii] In contrast, the half-scale triggered negative default-diffs for the

same components somewhat larger than the doubled length scales. [L.iii] Throughout the evolve-

ment phase, the absolute amplitudes of normal-component default-diffs in the double-scale Klein1150

cases were initially increased, then decreased downstream while remaining positive. However, the

shear-component default-diffs’ sign fluctuated around plus/minus as their absolute amplitudes also

alternated between increments and decrements downstream. The normal-component default-diffs

of the double-scale Kim cases remained positive as well, yet without a ubiquitous pattern. For

instance, the absolute amplitude of v-component default-diffs monotonically reduced downstream1155

whereas that of u-component first increased, then decreased. For half-scale cases, all default-diffs

were negative at first and switched to positive irrespective of DFM/FSM variant. Their absolute

amplitudes were preliminarily decreased, and then were followed by increments. [L.iv] Moreover,

both scale manipulations added an extra 10-20[δ] to the adaptation lengths of the tensor compo-

nents, particularly around the channel centre, hence delayed adaptation.1160

Although the results at x/δ=10 indicated a direct link between (C-1) and the sign of default-diffs

as observed in the adjustment phase and [2, Fig. 6], with the other observation stations in view,

the counterexamples from the half-scale cases disconfirmed the supposed sign relation. Therefore,

the sign link could only be presumed for the adjustment phase. In addition, no certain relation

was identified between the magnitude of length-scale scaling factor and absolute amplitudes of1165

default-diffs considering the reported decrement and increments above.

As regards wall shear stresses illustrated in Fig. 17, two points were detected. [M.i] The first is

that both double-scale and half-scale nearly always increased τ̂w=0.95 and =0.99 adaptation lengths.

As an example, the default Klein 0.95-adaptation length was increased by ≈1.4 times, and ≈3.5

times; 0.99-adaptation length by ≈1.2 times, and ≈4.7 times by the double-scale and half-scale,1170

respectively. [M.ii] Additionally, the peaks of τ̂w were raised by 10-20% in general.

Taken together, this study corroborates the literature findings regarding null effects of input

length scales on the mean velocity and downstream correlation functions. However, unlike the

DFM/FSM literature, amplitudes of the Reynolds stress tensor and wall shear stress with respect

to benchmark, and corresponding adaptation lengths with respect to the default cases were found1175

to be adversely influenced by input length scales to the extent described above. The dependencies
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are hypothesised with the support of [L.iii][M.i][M.ii] that the isolated changes in the size of input

length scales and adaptation length of a flow statistic are in a parabolic relation, i.e. the adaptation

length reduces in parallel to the proximity of input length scales to optimal range of scales that

other input flow properties/boundary conditions assume. Therefore, it is argued by contrast to1180

the DFM/FSM literature presumptions that the size of input length scales is important to flow

developments, and isolated changes in scales are discouraged in favour of a holistic changes of all

input flow properties, if necessary.

4.3.2. Effects of the use of different correlation functions at inlet spatial zones

In the DFM/FSM literature, the dominant input convention for integral length/time scales is1185

to use a single spatially-invariant set for the whole inlet boundary mostly due to the lack of further

data and quantifications for multiple-set usage’s possible costs and merits. Two potential problems

of this convention were highlighted by [9, p. 457]: (i) length/time scales of a flow being modelled

may in reality be spatiotemporally-variant over the inlet boundary, and (ii) a single time-scale set

input into flows with spatial-variant inlet mean velocity by definition leads to uncontrolled spatial1190

variation in length scales. To date, two studies provided insights into effects of the spatial variation

in scales. First, [117, Fig. 6] compared effects on the longitudinal mean speed and three components

of the Reynolds stress tensor caused by three inflow scenarios in a wall-modelled periodic hill flow:

single, six and twelve scale sets, each of which contained three orthogonal scales. Although [117,

p. 19-20, 23] qualitatively concluded that the spatial variation of scales improved the predictions of1195

the aforementioned statistics, a quantitative analysis made herein for the data figures throughout the

channel [117, Fig. 8-11] indicated that the improved default-diffs were overall below 5[cNp], and the

outliers below ≈15[cNp]. In addition, a note of caution is due here for their results since the study’s

relatively coarse and unverified spatiotemporal resolution, and its use of a wall function in a flow

where boundary-layer separation/reattachment occurs added unquantified sources of uncertainties.1200

Second, [9, p. 457-461] examined effects of using twenty-four scale sets each of which contained

nine scales through a non-CFD PCF, which used the same settings with the current study. The

authors quantified considerable improvements in correlation and power spectral density functions

whilst no Reynolds stress tensor component was affected within machine accuracy. Yet the authors

also emphasised the need for a CFD study. Therefore, it is claimed that effects of spatial variation1205

in scales are still inconclusive in the DFM/FSM CFD literature.
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Unlike the aforementioned studies exploring effects of several sets at once, herein only an extra

set of scales was incorporated to ease isolation of important factors, and follow the current duo-set

practice in the DFM/FSM literature for wall-bounded flows, e.g. [2, Fig. 2] and [17, Fig. 4]. To that

end, two inlet zones of 10% half-channel height from the top and bottom boundaries were allocated1210

to a new set of benchmark scales belonging to y+=40 (similar to [17, p. 64]). The remaining inlet

zone (i.e. y=[0.1, 1.9][m]) kept its default set the same. Ultimately, the new computations were

evaluated with Table 2 statistics.

[N.i] Inspection of the results revealed that the majority of Table 2 statistics appeared to be

unaffected by the extra set addition up to the half-precision machine epsilon, e.g. the evolvement1215

phase of the tensor shown in Fig. 18. The most apparent alterations occurred in the adjustment

phase of the tensor, and in wall shear stress adaptations as depicted in Fig. 17. [N.ii] For the former,

default-diffs were almost zero for all models and component profiles except at three points (not

shown):
√
u′u′ and u′v′ default-diffs were ≈10 and (2)[cNp] at regions close to the walls, and

√
v′v′

default-diffs were few centinepers across the channel height. In these three occasions, the bench-diffs1220

were reduced, and the affected regions mainly corresponded to the regions where the new zone was

defined. However, no new amplitude or pattern changes in default-diffs were observed, and all these

improvements gradually vanished until the onset of the evolvement phase. [N.iii] Regarding τ̂w, for

Klein and Kim models, τ̂w,0.95 was changed ≈(-0.4, 0.7)[δ], and τ̂w,0.99 ≈(0.6, -0.1)[δ], respectively,

where the negativity meant an improvement. [N.iv] Additionally, all the τ̂w peaks were reduced1225

while the longitudinal location of the peaks was not relocated.

In the light of these observations, it could conceivably be hypothesised for wall-bounded flows

that the effects of the spatial variation in input scales are not significant to engineering applications

(neither improvement nor deterioration) since the effects are relatively small and are not preserved

downstream. Therefore, it is postulated for wall-bounded flows that a single set of scales could be1230

adequate for the fidelity that one wants to reach with more length scales available, which in practice

difficult to obtain.

4.3.3. Effects of the shear stress and the wall boundary condition

In the default-setting wall-bounded computations (§4.2.2), the input Reynolds stress tensor com-

ponents, especially u′v′, were discovered deteriorating along the adjustment phase, and recovering1235

within the evolvement phase. In addition to this, the adaptation lengths of the tensor components
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and wall shear stress were found to be correlated to a certain degree. Nevertheless, this information

did not shed on the main causes/contributors to the three behaviours above. Over and above this,

there have been no controlled studies on this matter.

To close this knowledge gap, the causal roles of factors that were anticipated to be influential1240

were inspected: (i) the shear component of the tensor, and (ii) no-slip velocity boundary condition.

In line with this purpose, three new control scenarios were prepared: the u′v′-input was zeroed and

doubled, and the no-slip velocity boundary condition was changed to the slip condition. It should

be noted that the doubled-u′v′ alongside the current settings satisfies the domain error constraints

for the Lund transformation stated in ?? 2.1.3.1, albeit unphysical.301245

In consequence of the control scenarios, some of the Table 2 statistics of the default cases

were found to be virtually unaltered along the adjustment and evolvement phases (not shown),

prominently the conditioned results of mean velocity, correlation functions and one-point moments.

At the same time, the Reynolds stress tensor and wall shear stress expectedly showed noticeable

changes which were demonstrated in Figs. 17, 19 and 20.1250

As can be seen from Fig. 19 for the adjustment phase of the tensor, four remarks valid for both

DFM and FSM can be listed. [O.i] First, the no-shear and double-shear cases had diametrically

opposite effects on both
√
u′u′ and

√
v′v′. In detail for one side, the no-shear caused negative-

(1)[cNp] default-diffs nearby walls and positive-(1)[cNp] around the channel centre for
√
u′u′;

and for
√
v′v′, negative-(1)[cNp] default-diffs across the channel height. [O.ii] Nonetheless, neither1255

of shear scenarios led to differences greater than (-2)[cNp] for
√
w′w′, hence negligible in terms

of engineering accuracy. [O.iii] For u′v′, the double-shear yielded positive-(2)[cNp] default-diffs

throughout the channel height, thus resulting in the same-order reduction of bench-diffs. Similar to

the default case, an amplitude damping notable with respect to the benchmark occurred within the

first two nodes, and thereafter the rate of damping died away. Furthermore, the no-shear expectedly1260

yielded a null u′v′ profile. [O.iv] Lastly, the slip-wall did not invoke any changes smaller than the

single-precision machine epsilon for any tensor component.

The observation [O.iv] eliminates ‘boundary condition effects’ as one of the potential rea-

sons why the input tensor components were distorted within the adjustment phase. This fur-

ther strengthens the proposed reason discussed in §4.2.2, i.e. the divergence-freeness enforcement.1265

Another implication that emerges from the observation [O.iii] is that the double-shear seems to

30 For example, tripled-u′v′ raises the domain error.
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Figure 19: Effects of the shear stress and the wall boundary condition on the adjustment phase of the one-point
second-order symmetric correlation tensor components obtained from the smooth-wall plane channel flow (PCF)
computations [70]. The figure particulars were provided in Figs. 9 and 17 except the affix ‘SW’ which denotes
slip-wall.

improve u′v′ predictions within the adjustment phase. Although the rate and level of amplitude

damping remained almost constant among the default and double-shear cases, the additional ampli-

tude via the latter somewhat compensated the damping losses. Therefore, a higher-level resemblance

with the benchmark happened for u′v′ in the adjustment phase with the double-shear case. This1270

amplitude amplification also seems to indirectly compensate losses in
√
u′u′ and

√
v′v′ as can be

deduced from the observations [O.ii] and [O.i] where the lack of shear deteriorated these normal

components.

The evolvement phase of the tensor was set out in Fig. 20, from which five observations were

carried out. [P.i] In general, the double-shear cases provided somewhat shorter adaptation lengths1275

for each tensor component profile in comparison to the default cases. An evidence of the premise

can be seen in u′v′ profiles in which the rate of change and bench-diffs of the double-shear Klein
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model became almost zero starting from 25δ whilst its default case was (1)[cNp] away in ongoing

development. [P.ii] Another important finding was that the no-shear cases produced the benchmark

shear profile despite the lack of the u′v′ input. For instance, the no-shear Klein model yielded1280

profiles with ≈10[cNp] default-diffs at 10δ, and almost zero centineper at 20δ. [P.iii] In addition, a

monotonic behaviour was found out between input and output amplitudes of the tensor : For each

component and each model, the no-shear and double-shear profiles were diagonally opposite about

the default profiles. As an example, negative (-1)[cNp] default-diffs transpired in the no-shear

Kim model profiles until 25-30δ, and thereafter gradually became positive whereas the double-shear1285

counterparts acted in a polar manner. [P.iv] Moreover, the slip-wall cases demonstrated that the

input u′v′ profiles were able to preserve up to 5δ without the turbulence maintenance effect of wall

boundary conditions. After 5δ, commencing from the vicinity of walls, the input tensor profiles

were gradually dissolved. [P.v] Finally, with regard to the model performances, Fig. 20 indicated

that the double-shear Klein model nearly always generated the lowest bench-diffs while the no-shear1290

Kim the highest. For example, the maximum amplitude differences between both at 40δ were found

to be approximately 20, 15, 10-15 and 40[cNp] for the components in a usual order, respectively.

As regards τ̂w, two points can be highlighted from Fig. 17. First of all, the double-shear reduced

the adaptation lengths in DFM whereas mixed responses were obtained for FSM: In Klein model,

the adaptation length of τ̂w,95-τ̂w,99 was lowered by (-2.4, -3.3)[δ] while (-3.0, 1.8)[δ]-change was1295

observed in Kim model. Furthermore, the double-shear downscaled the τ̂w-peak of both models

by 0.05τ̂w. On the other hand, the no-shear brought about the opposite: the adaptation length of

τ̂w,95-τ̂w,99 was increased by (2.8, 17.4)[δ] and by (3.4, 0.5)[δ] for Klein and Kim models, respectively,

and their τ̂ -peaks raised by 0.05τ̂w.

Three principal implications can be drawn from these observations: First, amplification of input1300

u′v′ amplitude profiles to a level that the domain error constraints (?? 2.1.3.1) allow reduces bench-

diffs of the Reynolds stress tensor components (except
√
w′w′) within the development phase, and

shortens their adaptation lengths. Second, the formation of the u′v′-benchmark profile within no-

shear cases suggests that particulars of an isolated flow quantity could be inherently dictated by

the other specified flow properties/boundary conditions, which was also observed from another1305

perspective in §4.3.1. Third, within the scope of current settings, the input u′v′-benchmark profile

preserved its main composure up to 5 characteristic lengths without re-energising effects of wall

boundary conditions. Assuming the finding’s extrapolation to similar-setting computations as few
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Figure 20: Effects of the shear stress and the wall boundary condition on the evolvement phase of the one-point
second-order symmetric correlation tensor components obtained from the smooth-wall plane channel flow (PCF)
computations [70]. The figure particulars were provided in Figs. 10, 17 and 18.

characteristic lengths, this observation may help to properly locate the field of interest within

free-shear flow domains, e.g. turbine flows, to ensure its association with input shear.1310

4.4. Mapping phase effects

As outlined in sec. 1, it was hypothesised that quantifications of the information-transfer prac-

tices from the pre-mapping phase to the post-mapping phase (Fig. 3) are missing in the DFM/FSM

literature, and techniques that can seamlessly generate synthetic time-series on non-uniform grids

are absent.1315

To this end, two new seamless mapping techniques were introduced: §2.1.3.2 for DFM, and

§2.1.3.3 for FSM. On top of this, two conventional mapping techniques were added into the test

scheme: the two-dimensional nearest-neighbour projection (common), and the bilinear interpolation

(occasional). The four techniques were assessed through the adjustment and evolvement phases
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Figure 21: The mapping phase effects on the two-temporal-point longitudinal sample autocorrelation function (the
top subplots) and one-dimensional sample power spectral density function (the bottom subplots) results obtained
from the first block of nodes (B1) of the smooth-wall plane channel flow (PCF) computations [70]. The figure
particulars were provided in Figs. 11 and 17.

thereafter.1320

Evaluations were conducted through Table 2 statistics. [R.i] Contrary to expectations, however,

the studies did not find any significant-to-engineering-accuracy difference between the default and

modified cases in any of the statistics apart from wall shear stresses depicted in Fig. 17. The

changes in those statistics, particularly in the tensor, mainly occupied the adjustment phase and

the outset of the evolvement phase, and were mostly in a degree less than (-1)[cNp] default-1325

diff, albeit rarely few centinepers nearby walls. The lack of substantial differences was exemplified

by Fig. 21 wherein the first adjustment-phase node results for autocorrelation and power spectral

functions were briefly illustrated. [R.ii] In the case of τ̂w, it was observed that the bilinear and

non-uniform Klein models postponed τ̂w,95 and τ̂w,99 by (1.2, 2.0) and (0.8, 1.9)[δ], respectively,

whereas the bilinear and non-uniform Kim models improved them by (-1.2, -0.7) and (-5.9, -4.8)[δ]1330

in turn. [R.iii] In addition, all the τ̂w peak locations were qualitatively shifted downstream to a

little extent, and their amplitudes virtually stayed the same within a 0.05τ̂w interval.

These observations suggested two implications: First, the mechanisms that underpin the adapta-

tion length of τ̂w appeared to be sensitive to the primary statistics’ alterations that were previously

deemed to be insignificant for engineering purposes. By contrast, this now-falsified proposition1335

raises the importance of ensuring high-fidelity reconstruction of primary input statistics. Second,

arguably, adequate isolated evidence was found to consider that distortive effects of information
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Figure 22: Effects of mass-influx corrections on the two-point sample crosscorrelation functions of ρ̂vp obtained from
the smooth-wall plane channel flow computations (PCF) [70]. All the figure particulars were given in Figs. 13 and 17.

transfer processes on input statistics are of secondary importance in proportion to the effects of

pre-mapping phase manipulations. Although the seamless mappings were theoretically and practi-

cally obtained and information distortion was naturally prevented, their usage brought either slight1340

improvement as in FSM or even some statistical degradation as in DFM. Therefore, the mapping

phase manipulations may be neglected for the current scope of flows and similar numerical settings.

4.5. Post-mapping phase effects

As briefly discussed in sec. 1, mass influxes are not conserved in DFM/FSM. To date, the

potential issue has received scant attention in the DFM/FSM literature: it was handled either by1345

the omission of its presence or by heuristic corrections such as [17, Eq. 8]. Additionally, there

remains a paucity of quantifications on its effects.

With this motivation, three mass-flux scenarios were investigated along the development phase:

no correction, longitudinal correction, which was proposed in this study, and three-dimensional

correction from [17, p. 57]. The corrections were formulated as: Φinitial Φ
-1
currentunc= cmassunc=uc1350

where Φ=D
∑f
i=0 uf ‖Sf‖ is the inlet-boundary total mass flux [kg s-1m-2], D the constant fluid

density [kgm-3], uf the longitudinal flow speed at the boundary face f [ms-1], Sf the f -face area
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Figure 23: Effects of mass-influx corrections on the probability density functions of modified pressure, p, obtained
from the smooth-wall plane channel flow computations (PCF) [70]. The samples were probed along channel heights
at x0=40[m] and z0≈1.57[m], and the number of bins was 201. All the other figure particulars were given in Figs. 13
and 17.

vector [m2], unc the boundary-mapped non-corrected synthetic velocity time-series, uc the corrected

time-series, cmass the corrector scalar field [-], Φinitial the initial-time Φ, and Φcurrent the current-time

Φ. The only difference between the corrections was that unc/c≡(u, v, w) for the three-dimensional1355

approach, and unc/c≡(u, 0, 0) for the one-dimensional approach. The latter approach was put forth

to avoid alleged inconsistency in the three-dimensional approach wherein cmass is computed based

only on u, yet is applied onto (u, v, w) including irrelevant lateral components.

In the light of explorations via Table 2 statistics, four main observations were noted. [S.i] Firstly,

almost no difference larger than (-2)[cNp] default-diff was observed for any solely-velocity-based1360

statistics at any stage of the development phase. This was exemplified by Fig. 17 wherein the τ̂w-

amplitude alterations were at least an order of magnitude lower than the other phase results. Also,

τ̂w-trajectories qualitatively remained unchanged even though in §4.4 τ̂w was found susceptible to

relatively small alterations in input statistics. [S.ii] However, the pressure-based statistics showed

considerable differences between the uncorrected and corrected cases. In general, the no mass-flux1365

correction resulted in several times/orders of magnitude centineper bench-diffs in pressure-based

statistics, and considerably disparate trajectories with respect to the benchmark patterns. In con-

trast, both corrections reformed these spurious amplitude and pattern predictions towards the

67



benchmark. For example, from the data in Fig. 22 showing the cross-correlation functions of ρ̂vp

in the x-direction across the channel height, the benchmark patterns can be seen to be captured1370

by both correction cases unlike their default counterparts. Moreover, Fig. 23 demonstrating the

channel-height probability density functions of p at x=40δ is more revealing in terms of amplitude

improvements by the corrections, through which the default case pressure fluctuations were reduced

several orders of magnitude onto the benchmark results. [S.iii] Another interesting outcome was

that the number of pressure iterations overall decreased by 1.25-1.5 times, which typically con-1375

stitutes computationally the most expensive part of an incompressible CFD computation. [S.iv]

Last but not least, no significant differences were detected between the three- and one-dimensional

approaches.

These observations may support a premise that mass-flux corrections are notably beneficial for

not only pressure predictions but also cost reductions. Furthermore, the one-dimensional correction1380

is advisable over the literature three-dimensional approach considering the latter’s inconsistent

formulation and involvement of two extra multiplications per node per time-step, which becomes

redundant due to the similar results obtained.

5. Conclusions

The main aim of this study was to conceptualise processes that time-series from digital-filter-1385

based (DFM) and forward-stepwise-based (FSM) synthetic turbulence generation methods go through

within CFD, and henceforth fill/identify knowledge/solution gaps to facilitate theoretical and prac-

tical advancement of DFM/FSM utilization in CFD applications.

For this purpose, excluding the non-CFD modelling part, DFM/FSM processes towards and

within CFD were conceptualised into five consecutive phases as shown in Fig. 3. Thereafter, three1390

test suites were designed with implicitly-filtered large eddy simulations (IFLES) of three building-

block flows: decaying homogeneous isotropic turbulence [68], homogeneous shear turbulence [69] and

smooth-wall plane channel flow [70]. Four DFM/FSM variants were chosen as representing the ma-

jority of capabilities, and were implemented into OpenFOAM®v1712 [39]: Bercin et al. [9] (DFM),

Klein et al. [1] (DFM), Xie-Castro [2] (Hybrid DFM-FSM), and Kim et al. [21] (FSM). Finally,1395

systematic explorations were carried out on the test suites through twelve statistics elaborated in

Table 2.
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Within the first test suite (§4.1), the quality of the computations and samples was evaluated.

Therein, the fidelity of spatial/temporal resolutions was particularly investigated via six metrics

from the literature: Pope’s metric [64, p. 560], Celik et al.’s two single-grid metrics [65, Eq. 8a],1400

Celik et al.’s two double-grid metrics [65, Eq. 15,16,18], and Lyapunov exponent [67]. Capabilities

of the metrics were also discussed to provide a new understanding of their usage. In the second test

suite (§4.2), the performance of the DFM/FSM variants using traditional settings was quantified

and discussed at consecutive observation stations within the computational domains. In the last

suite (§4.3-4.5), effects of viable DFM/FSM settings/sub-approaches were explored in isolation, and1405

were compared with the second test-suite’s traditional-setting cases.

Besides settings/sub-approaches available in the literature, three novel sub-approaches were

proposed for aspects where appropriate solutions have been absent, and were added into the third-

suite tests. A new technique for DFM (§2.1.3.2) and another for FSM (§2.1.3.3) were introduced

to seamlessly generate synthetic time-series on non-uniform grids. Further, a one-dimensional1410

longitudinal mass-flux correction technique was proposed (§4.5). Lastly, two new code practices

were put forth (§3.2) for computational cost reductions.

In conclusion, sixty-two findings with various level of importance were made and labelled within

the text. Nevertheless, eleven novel insights deemed the most significant were redelivered to the

attention of beneficiaries. (The first test-suite): [i] In contrast to the counterarguments in the1415

literature, Pope’s LES-quality post-verification metric was quantified to be more robust, hence more

advisable, than Celik et al.’s newer single-grid and double-grid metrics throughout the benchmarks.

(The second test-suite): [ii] Within the first three nodes, consistent occurrences of flow/model/

component-independent downstream-affecting amplitude suppressions were observed for the input

Reynolds stress tensor, particularly for the shear component, at a level of (1)/(2) centineper,1420

and the suppression was almost always lower in the highest-mean-speed direction. The divergence-

freeness enforcement was then quantified to be their driving factor. [iii] Also, streamwise devel-

opment of the Reynolds stress tensor amplitudes were found to follow an asymmetric quadratic

pattern rather than monotonic as reported/presumed in the literature. [iv] Furthermore, Klein

et al.’s model almost always provided the lowest level of amplitude differences with respect to the1425

benchmarks and the shortest adaptation lengths for the Reynolds stress tensor components and wall

shear stresses whereas Custom/Kim et al.’s models yielded the opposite even though the Lund trans-

formation was identical in each model. [v] For the input autocorrelation and corresponding power
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spectral density functions, a similar-scope amplitude suppression was also detected, yet the suppres-

sion was limited to the first node and vanished onwards. The causal role of the divergence-freeness1430

enforcement in this suppression was ruled out by controlled tests, and the cause was speculated to

be the first-time execution of the Navier-Stokes equation algorithms on synthetic time-series. [vi]

Therein, in terms of patterns, Klein et al.’s method yielded Gaussian-form of correlation and power

spectral density functions while the remaining methods prompted exponential-form for the corre-

lations and Lorentzian-form for the spectra. [vii] Moreover, the model variations in all correlation1435

and power spectral density functions faded away downstream, and these model outcomes converged

to a common function, which mostly resembled Klein et al.’s form. The most likely reason of the

convergence was then argued to be the domain/equation discretisations.

(The third test-suite): [viii] Investigations on length-scale size effects showed that a parabolic

relation exists between amplitudes/adaptation lengths of the Reynolds stress tensor components/wall1440

shear stresses and length scale sizes, that is for instance the adaptation length increases in parallel

to the level of difference between input length scale sizes and optimal range of scale sizes that other

input flow properties/boundary conditions impose. [ix] On the other hand, the use of multiple

length-scale sets at different inlet zones and seamless non-uniform mapping were quantified to be

relatively ineffective on flow statistics and be not long-lasting downstream. [x] Nonetheless, am-1445

plitude amplification of the shear component in the input Reynolds stress tensor to a degree that

the domain error constraints permit was observed to downscale the aforementioned amplitude dis-

tortions of flow statistics within CFD, and shorten corresponding adaptation lengths. [xi] Lastly,

mass-influx conservation corrections were revealed in detail to be considerably favourable for pres-

sure predictions and computational cost reductions, albeit no impact on velocity-based statistics.1450

The proposed one-dimensional mass-flux correction was also quantified to be advisable over the

alternatives due to its consistent formulation and cheaper computational executions.

Taken all results into account, a best practice could be devised for similar flows: Klein et al.’s

model using Xie-Castro model’s exponential function simplification with the nearest-neighbour

projection, the one-dimensional longitudinal mass-influx correction, the appropriately scaled-up1455

input shear, and the code practices reported in §3.2 and [9, p. 449].

Arguably, further research could be required in the following areas: (i) additional isolated

parameter-effect scenarios such as on normal components of the input Reynolds stress tensor or

length scales in different directions, (ii) compressible flows, (iii) higher-Reynolds-number flows,
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(iv) the applicability of fast Gaussian/exponential function convolution algorithms such as [118],1460

and (v) modelling of inherent divergence-freeness in DFM/FSM.
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Appendix A. Appendix

Appendix A.1. One-spatial-point second-order correlation tensor
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Figure A.24: The along-channel-height profiles of the one-point second-order symmetric correlation tensor compo-
nents along the longitudinal evolvement phase (Evo.), i.e. 11 equidistant stations from 5δ to 55δ away from the inlet
in 5δ-distance steps, obtained from the smooth-wall plane channel flow (PCF) computations [70]. The remaining
figure particulars and axes limits are the same with Fig. 9.
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Appendix A.2. Over-filter scale kinetic energy transport equation1740
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Appendix A.3. Over-filter scale enstrophy transport equation
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Appendix A.4. Mean total strain transport equation

2

0

2
I

1e 13

0.5 t(S : S)0.5 t(S : S)0.5 t(S : S)0.5 t(S : S)

DHIT HSTCustom Klein et al. Xie-Castro Kim et al.

1.0
0.5

0.0
0.5
1.01e 12

0
1
2
3

ProdS

1e4

- (S S) : S- (S S) : S- (S S) : S- (S S) : S

2
4
6

1e5

1.00
0.75
0.50
0.25
0.00

ProdE

1e4

-0.25 ( ) : S-0.25 ( ) : S-0.25 ( ) : S-0.25 ( ) : S
2.0
1.5
1.0
0.5

1e5

0 50 100 150
x/M

1.0

0.5Diss

1e4

(S : (S))(S : (S))(S : (S))(S : (S))

0 5 10 15
x/h

4
3
2
1

1e4

Figure A.31: -

88



-5e-13

0e+00

5e-13

PCF Custom Klein et al. Xie-Castro Kim et al.

I

0e+00

2e+05

4e+05

ProdS

-1e+05

-5e+04

0e+00

ProdE

10 2 10 1 100

y+-5

-2e+05

0e+00

10 2 10 1 100

y+-10
10 2 10 1 100

y+-15
10 2 10 1 100

y+-40

Diss

Figure A.32: -

89



Appendix A.5. One-point skewness and kurtosis

1

0

1

1, u

PCF Custom Klein et al. Xie-Castro Kim et al. Benchmark

1

0

1

1, v

10 2 10 1 100

y+-4 x

1

0

1

1, w

10 2 10 1 100

y+-5
10 2 10 1 100

y+-15
10 2 10 1 100

y+-40
Figure A.33: -

0

2

2, u

PCF Custom Klein et al. Xie-Castro Kim et al. Benchmark

0

20
2, v

10 2 10 1 100

y+-4 x

0
2
4

2, w

10 2 10 1 100

y+-5
10 2 10 1 100

y+-15
10 2 10 1 100

y+-40
Figure A.34: -

90



Paper - III
LARGE EDDY SIMULATION AND ANALYTICAL
WAKE MODEL INVESTIGATIONS ON HYDRODY-
NAMICS OF A MARINE TURBINE UNDER DE-
CAYING HOMOGENEOUS ISOTROPIC TURBU-
LENCE: FREESTREAM TURBULENCE INTEN-
SITY EFFECTS





Large eddy simulation and analytical wake model investigations on
hydrodynamics of a marine turbine under decaying homogeneous

isotropic turbulence: Freestream turbulence intensity effects

Kutalmis M. Bercin∗ , Zheng-Tong Xie, Stephen R. Turnock
Faculty of Engineering and the Environment, University of Southampton, SO17 1BJ, Southampton, the UK

Abstract

A rigid model-scale experimental horizontal-axis marine turbine (so-called the Southampton turbine)

was numerically investigated under decaying homogeneous isotropic turbulence in absence of its

tower. Twelve controlled computations were carried out through wall-modelled and actuator-line-

modelled large eddy simulations where the three-dimensional turbulence intensity, Iu′
rms

, was the

control variable. The first four computations excluded the blades, and examined the flow prediction

effects of the arbitrary mesh interface technique (AMI) while i. stationary and ii. rotating, and

iii. the presence of the turbine nacelle. The last eight computations explored the ways how three-

dimensional turbulence intensity affects the turbine and its surrounding flow fields. Four turbulence

intensities were tested, Iu′
rms

={0, 10, 20, 40}[%]. In addition, twelve analytical wake models from the

wind and marine turbine literature were reviewed and assessed with respect to the wall-modelled

computations under the same range of Iu′
rms

. Among many, the prominent outcomes were as follows:

[i]AMI-in-rotation adversely affected amplitude-based statistics by causing discontinuities on AMI-

region boundaries, and differences between the inside and outside of the AMI-region. The effects

were increased outwards from the AMI-region centre. [ii] However, AMI-in-rotation did not affect

time-based statistics. [iii] Stationary AMI did not affect flow fields. Furthermore, irrespective

of freestream Iu′
rms

: [iv] Longitudinal mean speed fields (U -fields) began to be affected by the

presence of the turbine nearly 4 rotor radii upstream of the turbine; [v] maxima of changes in

U -fields occurred at around 2 rotor radii downstream of the turbine; [vi] U -fields became virtually

indistinguishable commencing around 6 to 10 rotor radii downstream within the alignment of the

turbine; however, were kept turbine signature by remaining different from U -freestream despite
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turbulence entrainment; [vii] wake recovery rates as a function of downstream distance followed

a half-Gaussian-form. [viii] No significant deviations between the wall-modelled and actuator-

line modelled computations occurred in terms of the statistics quantified. [ix] The coefficient of

variation, skewness, kurtosis and maxima of longitudinal forces/moments were increasing functions

of Iu′
rms

whilst the mean and minima were inversely varying with Iu′
rms

. [x] An analytical model that

was derived and calibrated specifically for a similar marine turbine was quantified to be superior

to the other models in terms of wake profile and speed predictions, highlighting the importance

of the similarity level between turbine-flow particulars at hand, and analytical model’s derivation

particulars.

Keywords: horizontal-axis marine turbine, wall-modelled large eddy simulation, actuator line

model, synthetic turbulence, turbine hydrodynamics, turbulence intensity

1. Introduction

Horizontal-axis marine turbines (hereafter, HAMTs) are desired to provide maximal energy

conversion in a subsea operation environment with as few scheduled maintenance appointments

as possible. Yet the objective arguably appears difficult to accomplish due to knowledge gaps in

understanding and modelling complex nature of flows and its interactions with HAMTs. A further5

complication is posed by HAMT plantations with which optimisation of a plant as a whole by

tailoring individual turbine designs at specific locations becomes preferable over a mass design

of turbines since various effects of neighbouring turbines, such as flow inductions and wakes, are

introduced into the complexity. This additionally demands the consideration of interactions between

turbines and turbine-induced flows to achieve the objective.10

One of the determinants of such subsea environment deemed significant to HAMTs1 is the level

of kinetics of velocity fluctuation fields with respect to their mean fields. This is usually quantified

by means of the longitudinal turbulence intensity (Iu′
rms

) and three-dimensional turbulence intensity

(Iu′
rms

)2 which can be defined as the ratio between the root-mean-square of Reynolds-decomposed3

1 Hereafter, all the literature review is limited to three-bladed HAMTs unless otherwise stated.
2 In statistical terms, the turbulence intensity is the coefficient of variation of velocity fluctuation fields.
3 Consider u(x, t){u∈Q; u=(u,v,w); t>0} as the instantaneous velocity field. Herein, the Reynolds decomposi-

tion using the averaging operator of the discrete cumulative moving time average is used on u(x, t):
u(x, t)≡u(x)+u′(x, t)≡U+u′ where u≡(N∆t)-1

∑N-1
n=0 u(x, n∆t) with ∆t is the time-step size, N the number of

time steps, and N∆t the finite sample duration.
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Table 1: Representative values of longitudinal turbulence intensity and maximum flow speed obtained from various
measurement campaigns at fields presumed to be suitable for marine turbine operation. Additional field measurement
campaigns can be found in [1, Table 1].

Region Average longitudinal
turbulence intensity [-]

Peak mean
speed [ms-1]

Height from
seabed [m]

Sound of Islay, GB-SCT[2] 0.12-0.13 2.5 5.0
Puget Sound, US-WA[3] 0.10-0.11 2.0 4.6
Nodule Point, US-WA[4] 0.084-0.114 1.8 4.7
Admiralty Head, US-WA[4] 0.095-0.118 3.2 8.1
East River, US-NY[5] 0.15 2.0 4.25
Strangford Lough, NI[6] 0.17-0.40 2.1 3.4 (below surface)
East River, US-NY[7] 0.25-0.30 2.0 5.0
Falls of Lora, GB-SCT[8] 0.40 2.0 4.7
Kobe Strait, JP[9] 0.10-0.20 2.0 4.5-17.5

velocity fluctuation field (u′rms, u′rms),4 and the Euclidean norm of the Reynolds-decomposed mean15

velocity field, (U , Ue)5: Iu′
rms
≡u′rms/U and Iu′

rms
≡u′rms/Ue, respectively.

The majority of prospective energy conversion sites considered by the marine energy commu-

nity belongs to diurnal/semidiurnal tides. Therein, turbulence intensities are generally observed

comparable to those in the atmospheric boundary layer, and in high variation within a site and

across sites in a site specific manner. For instance, Table 1 exemplified nine field measurement20

campaigns where the representative values of the time-averaged longitudinal turbulence intensity

varied from 0.08 to 0.40. In addition to this, turbulence intensity’s exponential-decay relation with

mean speed [4, Fig. 6][9, Fig. 9][6, Fig. 13]6, and its log-law relation with height above seabed [11,

p. 3191] increase the variability of turbulence intensity that a turbine may experience within its

cut-in and cut-off speeds.25

Various experimental and numerical studies have examined possible effects of freestream turbu-

lence intensity levels on hydrodynamics, structural dynamics and energy conversion performances

of HAMTs. In general, these studies monitored the effects in four aspects as elaborated below.

The first aspect is as regards time-averaged thrust and power coefficients of HAMTs, i.e. CT

and CP. It was found out that three types of concluding remarks were reported in the literature:30

Negligible-arbitrary changes, losses or gains in the coefficients due to the Iu′
rms

augmentation. To

4 u′rms(x)≡
√

(u′)2 and u′rms(x)≡
√

0.3̇ ((u′)2+(v′)2+(w′)2). It should be highlighted that two different averaging
operations exist within the turbulence intensity, i.e. the cumulative moving time average and the arithmetic
average, unlike the root-mean-square’s actual formula involving only the arithmetic average.

5 U(x)≡U and Ue(x)≡‖U‖2≡
√
U2+V 2+W 2.

6 For a contradicting observation that found no relation, see the measurements by [10, p. 15].
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begin with, [12, p. 107] interpreted results from their k-ω-SST RANS and wall-resolved Lilly-

Germano dynamic procedured Smagorinsky-model LES computations that time-averaged loadings

were not affected through Iu′
rms

={1, 10, 20}[%] although [12, Table 4] illustrated general reductions of

2-6[%] and 0.2-0.6[%] for CT and CP. Similarly, [13, p. 104, 115, Fig. 17] reported virtually no effect35

on the coefficients due to Iu′
rms

={3, 6, 9}[%] for a tip-speed-ratio (TSR) range of 1-10 in their k-ω-

SST RANS computations. In favour of CT-CP-reduction observations, however, [14, p. 5, Fig. 6]

observed from Iu′
rms

={8, 25}[%] flume-tank experiments that both coefficients were reduced by ∼9%

within a TSR range of 9-15 while CP remained almost unchanged and the CT-reduction persisted,

albeit weaker, for TSR={3, 6}. Likewise, [1, p. 739, Fig. 6] (Iu′
rms

={3, 15}[%]) and [15, p. 25, Table 6]40

(Iu′
rms

={6.8-25.2}[%]) identified coefficient reductions up to∼10[%] in the same experimental facility.

By contrast to these observations, [16, p. 128, Fig. 8] (the standard k-ε-RANS using an actuator

disk model), [17, p. 4] (geometry-resolved k-ω-RANS; TSR=6; Iu′
rms

={1, 10}[%]), and [18, p. 7] (the

blade element momentum theory using two synthetic inflow generators; TSR=2.5; Iu′
rms

={3, 5}[%])

stated that increments of Iu′
rms

resulted in increments of CT less than ∼2[%]. Together, these studies45

indicate that no consensus exists regarding the effects of Iu′
rms

on CT-CP in the literature since the

experiments consistently showed an inverse relation and the computations yielded mixed patterns.

The second aspect is in respect of CT-CP fluctuations. Unlike the first aspect, the aforemen-

tioned studies herein almost always corroborated each other in an assertion that Iu′
rms

and CT-CP

fluctuations are increasing functions of each other [14, p. 5][12, p. 107][1, p. 739][15, Table 6][18,50

p. 7]. For example, [1, p. 739] measured that the standard deviations of CT-CP (i.e. σCT
, σCP

)

were increased by ∼2.5 times with Iu′
rms

=3[%] → 15[%]. Nevertheless, it was also reported that

the dispersion level of CT-CP fluctuations relative to the mean nearly always remained at least an

order of magnitude lower than the mean values, e.g. in [12, Table 4] the difference was CT∼102σCT

for the highest Iu′
rms

.55

The third aspect is relevant to the bending moments. Similar to the first aspect, the observations

are somewhat in contradiction, thus making generalisations difficult. As an example, the presence

of a direct proportionality between Iu′
rms

and bending moments was put forth by [19, Fig. 17] in view

of the blade element momentum theory computations for Iu′
rms

={0-12}[%]. This monotonic relation

was also confirmed by [20, p. 3] using the blade element theory with turbulence spectral models60

for Iu′
rms

={7.5, 15}[%]. However, [15, Table 6]’s experiments maintained an inverse proportionality

for the moments whilst retaining the direct relation for their fluctuations. On the other hand, [21,
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Table 2] reported almost no change for the mean moments, and a direct proportionality for their

peaks and fluctuation ranges from immersed boundary method WALE-model LES computations

for Iu′
rms

={0, 10, 20}[%].65

The last aspect is as for wake characteristics. Several lines of evidence suggest that downstream

signatures of a turbine within a flow field dissolve into freestream values in a shorter distance (i.e.

wake recovery in terms of velocities and turbulence intensities) in parallel to augmentations of

upstream Iu′
rms

[22, p. 218][1, p. 739][12, p. 108; Fig.15][14, p. 6][13, p. 115][23, p. 15]. Nonetheless,

a note of caution was raised by [22, p. 225] that increments in Iu′
rms

may not always expedite wake70

recovery, particularly in case of low mean speeds.

Apart from the aforementioned conflicting remarks, the existing accounts are arguably unsatis-

factory in three points. First, the investigations of turbulence intensity effects were not conducted

through a complete isolation of the turbulence intensity from other turbulence characteristics. Yet

realistic inflows were considered at the outset before testing fundamental inflows. For example, a75

mean-velocity wall-normal gradient was present in [15, p. 14]’s experiments, or [20, Table 1] tuned

mean speed magnitude alongside the turbulence intensity in their quantifications; howbeit, such

dual-alteration inherently makes turbulence intensity changes ambiguous since the turbulence in-

tensity is by definition a function of mean speed. Therefore, studies wherein the only control variable

is the turbulence intensity is debatebly needed, so that remarks directly linked to the turbulence80

intensity can be deduced without potential interactions with other turbulence notions. Second,

the research to date predominantly focused on a range of turbulence intensities up to ∼10-15[%]

by defining their maxima as normal or high levels. However, as can be seen from Table 1, field

turbulence intensities were revealed to be highly varying within and throughout sites, and reaching

up to ∼40[%] during operable use of HAMTs. For this reason, a broader range of turbulence inten-85

sities may need to be examined. Third, there remains a paucity of studies of turbulence intensity

effects on aspects other than time-averaged wake profiles, and performance coefficients. Thereupon,

quantitative analyses may need to be expanded towards various new subjects such as the compo-

nents of turbulent kinetic energy budget, power spectral density functions, or higher moments of

performance coefficients.90

The main aim of this paper is therefore set to investigate interactions between the three-

dimensional turbulence intensity in the most fundamental form of turbulence, and a typical model-

scale rotor within a typical experimental-facility-sized channel in order to fill knowledge gaps or to
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corroborate previously reported remarks within the realistic, yet complex, inflow-turbine interaction

studies.95

To this end, hydrodynamics of a rigid experimental HAMT (so-called the Southampton tur-

bine [24]) without its tower under decaying homogeneous isotropic turbulence is explored through

controlled studies involving wider range of statistics, and using wall-modelled & actuator-line-

modelled implicitly-filtered large eddy simulations and twelve different analytical wake models,

where the turbulence intensity (Iu′
rms

={0, 10, 20, 40}[%]) is retained to be the sole control variable.100

The paper first introduces the flow and rotor models used, and their specific numerical settings

(§2). Subsequently, the obtained results are illustrated and discussed (§3), and finally concluding

remarks are presented to the attention of beneficiaries (§4).

2. Methodology

2.1. Flow modelling105

2.1.1. Physical phenomena

The scope of physical phenomena was limited to Newtonian single-phase incompressible fluid

flows, excluding any thermal, chemical, electromagnetic, scalar interactions, and any sea elements

which may interrupt turbine operation (e.g. mould). Typical marine currents were presumed not to

violate these assumptions. The set of governing equations of this scope is the pointwise conservation

equations of volume and momentum shown in the following for an inertial frame of reference and a

conservative external force field per unit mass [25]:

∇ · u = 0 in Ω× (0,T) (1a)

ut +∇ · (uu) = -∇p̃+ ν∆u in Ω× (0,T) (1b)

where {·} is a linear operator (a spatial filter in the current scope), u(x, t){u∈Q;u=(u1,u2,u3); t>0}

a velocity vector field [ms-1], ut≡ ∂u/∂t [ms-2], uu(x, t) a dyadic field [m2s-2], p̃(x, t) a scalar

kinematic pressure field7 [m2s-2], ν the fluid kinematic viscosity [m2s], Ω a finite-size fixed-in-space

volume [m3], and T an arbitrary instant of time [s]. The numerical modelling of Eq. 1 was performed110

7 The external conservative field term f is incorporated into the pressure gradient term: -∇p+f=-∇p-∇f=-∇pf ,
where f is a potential function, and pf is conditioned with the uniform fluid density, ρ, as p̃=pf/ρ.
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with OpenFOAM®v1712 software [26] which discretizes the integral form of Eq. 1 via the finite

volume method.

2.1.2. Turbulence modelling

Eq. 1 was computed via the implicitly-filtered large eddy simulation [27, p. 381] (hereafter,

IFLES).8 In IFLES, over-filter and sub-filter turbulence scales are split by means of spatiotemporal115

resolution and equation discretization schemes. Sub-filter scale effects on over-filter scales are then

modelled.

The closure of Eq. 1 is obtained in five steps: Firstly, the unknown dyadic field uu is transformed

into a more manageable form through the Reynolds and the Leonard decompositions [29, p. 44]

in turn. Secondly, the transformed dyadic field is reduced into (uu-uu)≈u′u′ by omitting the120

transformed terms other than u′u′. Thirdly, the unknown u′u′ field is approximated as a function

of known over-filter scales via the Boussinesq eddy-viscosity hypothesis: u′u′≈B≡ (2/3) ksfs I-νtSd,

where B is a symmetric tensor field [m2s-2], ksfs a modelled sub-filter scale kinetic energy field per

unit mass [m2s-2], I an identity tensor field [-], νt{νt≥0} a scalar field of the modelled turbulent-

viscosity of the flow [m2s-1], Sd = {St-3-1 Tr(St)I} the deviatoric part of doubled strain rate tensor125

field [s-1], i.e. St = 2S = 2{0.5(∇u+(∇u)ᵀ)} [s-1], and Tr(·)≡
∑n
i=1(·)ii the trace of a tensor. Lastly,

ksfs and inherently νt=f(ksfs) are modelled.

In this study, sub-grid scale effects were modelled into ksfs with [30]’s localised dynamic ksfs

transport-equation model whose derivation can be found in [31], and code implementation is sum-

marised below.9 This model circumvents the local equilibrium assumption of algebraic eddy-130

viscosity models between sub-filter scale energy production and dissipation. As an implication,

minimum grid requirements wherein this assumption holds can be relaxed, so that high Reynolds

number flow computations could be performed on relatively coarser grids [31, p. 985]. Moreover, its

dynamic procedure is based on the scale similarity hypothesis, which inherently resolves the promi-

nent issues of Germano-type dynamic procedures [33] such as numerical instabilities and theoretical135

inconsistencies [31, p. 985-987].

The sub-filter scale model involves computing two coefficient fields from local flow, i.e. Ck{Ck∈Q;Ck≥0}

8 For the definition of IFLES, the reader is referred to [28, p. 6-10].
9 The initial sub-filter scale model that has been used was the Smagorinsky model with the Lagrangian-averaging

dynamic procedure [32]. However, this model was found unstable for the wall-modelled computations. Therefore,
it was replaced by [30]’s model.
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and Cε{Cε∈Q;Cε≥0}, solving the ksfs transport equation, and ultimately evaluating νt=Ck ∆ k0.5
sfs :

Ck =

s

0.5(L : M)
s

|M|2 + ξ
Cε =

s

νeff (|D|2 − |D|2)

(2∆)-1K1.5
(2)

Dksfs
Dt

= ∇2(νeff ksfs) +Gsfs − εsfs + Sk (3)

where any negative values within Ck and Cε are converted to zero; s• = (
∑
f •f Af ) (

∑
f Af )-1 is

the second (explicit) filter operator with its radius slightly smaller than 2∆, •f a field interpolated

from cell centres to cell faces, Af face area [m2], ∆{|∆|=N}=m
3
√
V characteristic grid-size field

contributing to the effective (first) filter, N the number of nodes, m=1 a heuristic constant [-],140

V{V≥0} time-invariant computational cell volume field [m3]; L, M and D symmetric tensor fields

with L=
s

dev[u2-u2] [ms-1], M=
s

-2∆(max[K, 0]D)0.5 [m5s-2], andD=dev[S] [s-1], dev[•] the deviatoric

operator of a tensor, max[•,�] element-wise greater value finder operator, : the double inner product

of two second-order tensors, ξ the smallest finite value of floating-point number, K=0.5(|u|2-|u|2)

a scalar field with K=max[K, ζ] [m4s-2], ζ the machine epsilon, νeff = νt+ νlam the scalar field of145

effective kinematic viscosity [m2s-1], νlam the constant kinematic viscosity of the fluid; εsfs, Gsfs,

and Sk=0 the dissipation, production, and source terms of ksfs as εsfs=Cε k1.5
sfs ∆-1 [m2s-3], and

Gsfs=2 νt(∇u : D)-(2/3) ksfs (∇ · u) [m2s-3]. The term ∇ · u in the last expression is not removed

despite the incompressibility assumption, because it remains non-zero in interim calculations.

2.1.3. Inflow modelling150

IFLES requires spatiotemporal-variant inflow information that can evolve with designated par-

ticulars within its numerical domain. Such information was provided here by the hybrid digital-

filter/forward-stepwise synthetic turbulence generator of [34] (hereafter, Xie-Castro method). Xie-

Castro method was chosen as it satisfies four conditions deemed important in this study. First,

capability-wise, Xie-Castro method is able to generate pseudo-stochastic and spatiotemporal-variant155

time-series containing statistics of two-spatial-point autocorrelations and one-spatial-point cor-

relation tensor. More importantly, it allows the construction of statistics in an isolated and

building-block fashion, e.g. a group of statistics can be turned off for a particular spatial direc-

tion. Confidence-wise, it has been successfully used for various types of flows, such as street-scale

flows [35] and aerofoil flows [36], including flow types considered herein, i.e. canonical flows [28, 37].160
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Last but not least, Xie-Castro method provides a cheap-to-run and easy-to-code approach with

high-fidelity in comparison to the other methods of the same class [28, 38].

Xie-Castro method creates spatiotemporal-variant Reynolds-decomposed fluctuation velocity

fields in three consecutive steps: Firstly, a set of pseudo-random numbers, {r}{|r|=R; k, j∈N : 1≤k+j≤R}
10,

obeying the probability distribution function of zero-mean (R-1∑R
k=1 rk=0), unit-variance (R-1∑R

k=1

r2
k=1), and independent (R-1∑R

k=1 rkrj=0 for k6=j) Gaussian white-noise is generated. Secondly, two-

spatial-point autocorrelation functions are incorporated into {r} through i. convolution summations

for lateral directions (i.e. digital-filter method) and ii. autoregressive operations for streamwise di-

rection (i.e. forward-stepwise method), which are given below for a single velocity component and

dimension, respectively:

sk =

N∑
j=-N

bjrk+j with bi ≈ bi

 N∑
j=-N

b2
j

-0.5

& bi = exp

(
-c1 π |mi|

n

)
(4a)

2s
Ψ (y, z, t+∆t) = 2s

Ψ (y, z, t) exp

(
-c2 π

2

∆t

T

)
+ 2s

ψ(y, z, t+∆t)

{
1- exp

(
-c2 π∆t

T

)}0.5

(4b)

where {s}{|s|=M : s∈Q} is a digital-filtered number set, {b}{|b|=2N+1 : b∈Q} a filter coefficient set, {b}{|b|=2N+1 : b∈Q}

an intermediate coefficient set, {N}{N∈N+} the filter support, k{k∈N0} the lag number, c1 a constant

with a suggested value of 1, n input integral length scale [grid-unit], {m}{m∈Q} a number set contain-

ing rectilinear distances between arbitrary nodes and zero-lag [grid-unit], {2sΨ} a two-dimensional

set belonging to an instant t and including transverse length-scales {Lα}{α∈{y,z}}, {2sψ} an auxil-

iary two-dimensional set created in the same way of {2sΨ}, yet with a new pseudo-random number

set, c2 another constant with a value of 0.5 calibrated to the inflows of this study [38, p. 446], ∆t the

constant time-step size of the computation, and T streamwise Lagrangian time-scale calculated via

Taylor’s frozen turbulence hypothesis [39]. Lastly, one-spatial-point correlation tensor is embedded

10 The set notation used is as follows: rk≡{r}[k] where {r} is a set, and k is an index to the kth member of the same
set.
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into {s} by [40, p. 255]’s transformation:

u′(x, t) =


(R11)0.5 0 0

R21/A11 (R22-A2
21)0.5 0

R31/A11 (R32-A21A31)/A22 (R33-A2
31-A

2
32)0.5


︸ ︷︷ ︸

A(x)

2s(x, t) (5)

where A a second-order spatial-variant amplitude tensor11, and {Rij}{i,j∈[1,3]} (known) one-spatial-

point correlation tensor members in units of variance (i.e. Reynolds stress tensor).

2.1.4. Analytical wake modelling165

In order to identify implications of high-fidelity computations for engineering design applications,

almost all (twelve) non-yawed horizontal-axis-turbine analytical wake models that wind/marine-

energy industry software incorporated were evaluated: i.e. [41–52]. In view of their lengthiness, the

models and their formulae were summarised in Appendix A.2.

2.2. Rotor modelling170

Two approaches were used to model the rotor: the geometry-fitted wall-modelled approach (here-

after, AMI) and the actuator line model (hereafter, ALM). The two were chosen among the other

concepts12 since they were deemed to represent approximately the opposite polars of the model

fidelity spectrum with which time-accurate rotor computations are possible. In the following, the

modelling workflow were elaborated, and the utilised coordinate systems and aerofoil terminology175

were presented in Figs. 1 and 2.

2.2.1. Turbine benchmark

The benchmark turbine was from the hydrodynamic experiments of [24]. Two reasons con-

tributed to the selection of this benchmark: its design paid regard to the model scaling constraints

advised by the literature [54, p. 86], which presumably ensures sufficiently high Reynolds number180

flow over blades [54, p. 86] and minimum blockage correction [24, p. 409], and its rotor diame-

ter to water depth ratio reportedly reflects full-scale operating prototypes [54, p. 86]. Therein,

an upwind, towing-tank scale, clockwise-rotating, 0.8 [m] rotor-diameter tidal turbine with three

11 A may also be temporal-variant; however, it is invariant in time for this study.
12 The reader is referred to [53] for the other concepts and models.
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Figure 1: (a) Three coordinate systems seen from upwind in an inertial frame of reference:
Ii{i∈(n,h,b)}=(Oi, exi, eyi, ezi) where the positive first direction of each axis is into the paper, and O their
origin. n, h and b stand for the computational domain, hub and blades, respectively. On is fixed at the intersection
of the inlet boundary and hub centreline at x=0[m], Oh at that of the twist axis and hub centreline at x=2.4[m],
and Ob at that of the rotating blade-root plane and the twist axis that was assumed passing through 30% of any
chord length (from the leading edge). ψ is the blade azimuth angle which is zero when the twist axis is upwards at
a right-angle to the ground plane. ψ increases clockwise, which is also the rotor positive rotation direction. (b) A
sketch of the computational domain. The black dot depicts the hub, and the cross-hatched disc the rotor plane.
The axes indicate positive directions without their true origin.

“T6082-T6 aluminium alloy” [55] blades constructed by seventeen NACA 63-8xx aerofoils13 was

used [24, p. 409-410]. The experiment scenario [24, p. 418] corresponding to the spatiotemporally-185

uniform inflow of 1.5[ms-1], 20◦ pitch angle, tip speed ratio of 6, and 0.55D deep tip immersion was

selected because the operational particulars resemble to those of full-scale prototypes [54, p. 86]

and a complementary numerical study [12] investigated the same scenario.

Previously, to the authors’ knowledge, eight rotating-blade LES studies utilised this experimen-

tal turbine (e.g. no actuator disc), which were: uniform-inflow actuator line method without hub190

and tower [56], uniform-inflow immersed boundary method without tower (including a two-way

loosely coupled fluid-structure interaction implementation) [57, 58], turbulent-inflow wall-modelled

approach without tower [59–61], and turbulent inflow wall-resolved approach [12, 62].

Data-reference pairs of the benchmark scenario can be found as follows: i. operational conditions

in Table 2, ii. spanwise distributions of chord length, structural twist angle, and aerofoil profiles [24,195

p. 410], iii. polar data (computed via) [63–65], iv. aerofoil coordinates (computed via) [63, 65], and

v. dimensions of the experimental set-up and rig [66, p. 2,9] in Table 3.

13 “xx” indicates the percentage ratio between the thickness and chord length of the blade sections.
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Table 2: Primary operational conditions of the turbine benchmark 1[24, p. 418], 2[12, p. 97](computed).

Parameter Value
Tip speed ratio1 6.0 [-]
Time-averaged uniform inflow speed1 1.5 [ms-1]
Time-averaged rotational speed2 214.86 [rpm] ≈ 22.5 [rad s-1]
Kinematic viscosity of water2 0.000001 [m2s-1]

2.2.2. Geometry-fitted wall-modelled approach

Herein, the rotor14 modelling was carried out in five subsequent steps: the modellings of solid

geometry, surface grid, surrounding volume mesh, rotation and wall grid. However, the turbine200

tower was excluded from consideration in order to isolate rotor effects on wake development from

those of tower’s non-streamlined structure. Another reason of this exclusion was that the channel

asymmetry in the y-direction was intended to be isolated from the tower effects. For instance, [12,

Fig. 103] found out an asymmetry in the downstream mean speed profiles of the same turbine, and

attributed its reason to the tower-flow interactions. Yet another effective independent variable is205

the y-direction channel asymmetry which may interfere with the conclusion.15

For the solid modelling, initially, the planar coordinates of the seventeen NACA 6-series aero-

foils [24, Table 1] were computed via the NACA456 software [65] that uses an algorithm from [63].

The coordinates were then refined by the QBlade software [67]; were scaled with the local chord

lengths, and extended into the third dimension. As the sole simplification to ease the solid mod-210

elling, the sharp trailing edges of the aerofoil profiles were truncated by a maximum of 1.5% local

chord lengths with presuming no effect on wake flow. In addition, there were two gaps within the

experimental setup explanations [66]: i. No geometrical information was provided for the circular

transition between the hub-blade junction at r/R=0.125 and the transition end at r/R=0.2; and ii.

the coordinates of the blade twist axis were not defined. Therefore, the geometry of the circular215

transition was heuristically generated, and the blade twist axis was assumed to be passing 30% chord

length away from the presumed leading edge point horizontally. The pitch angle direction is clock-

wise when you look from top of the tip surface to the root. The rest of the experimental setup

particulars elaborated in [66] was conformed. Finally, the solid models were created in SolidWorks®

2017 software [68] according to [24, Table 1] through the profiles which were appropriately placed220

14 The term rotor refers to the blades and hub whereas the term turbine to the entire rig including the tower.
15 In the following steps of this study, it was found out that Fig. 6 corroborated [12, Fig. 103]’s reasoning since the

omission of the tower removed the flow asymmetry in the z-direction thereat.
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in the spanwise direction, and were rotated about the blade twist axes.

The surface grids were generated in stereolithography format (i.e. STL) via the SALOME 8.4.0

software [69] based on the STEP-File format solid models while neither SolidWorks nor QBlade

was found adequate for this purpose. Quadrangle and triangle mesh elements were respectively put

to use on the blade planforms, and the remaining components (i.e. cylinder transition, hub) whilst225

the former element type was observed to facilitate iterations within the volume mesh generation

by the preferred mesh generator. Furthermore, the grid was manually partitioned into sub-regions

in order to enable mesh refinement level variation across the same blade. Considering error-free

surface grids, especially in terms of watertightness and face-normal consistency, are central to the

volume mesh generation, the STL quality quantification and if necessary repairs were made with230

the OpenFOAM® and MeshLab® software [70]. Subsequently, the blockMesh mesh generator [26]

was used to discretize the computational domain into cubic elements.16 On top of this, the snap-

pyHexMesh mesh generator [26], which recursively splits a hexahedron into its octants based on

prescribed refinement levels, was utilised to perform local surface-volume mesh refinements and

morphing onto the surface grid in compliance with specified mesh metrics (e.g. maximum face235

skewness).

To model rotation, the computational domain was divided into two regions by dismantling a

cylinder prism that surrounds the rotor longitudinally. The inner prism does constant-speed rigid-

body rotation about the hub centreline and relative to the stationary outer region. Information

across adjacent and non-conformal regions is conveyed via the arbitrary mesh interface method [71]240

of OpenFOAM® (AMI17). The AMI is a discrete-field interpolation algorithm wherein Galerkin

projection is computed through a set of triangulated supermeshes corresponding to each local

intersection of the regions [71, p. 90-95]. Elementally, the projection of a field from a donor region,

qD, onto a target region, qT , begins with an intent to minimise L2-norm of ‖qD-qT ‖ [71, Eq. 1].

Defining q in terms of its basis functions {φ}{|φ|=N}, i.e. q=
∑
i∈N q

iφi, results in a matrix equation245

whose solution yields desired qT , i.e.MT qT =MTD qD [71, Eq. 8], where the matrices areMT =f(φT )

andMTD=f(φT φD) [71, Eq. 9-10]. Herein, the computationally challenging part is the construction

of MTD due to its dependence on both regions. This is overcome by constructing a common grid

16 It was observed that using cubic elements improves the subsequent mesh refinements and morphing phases in
comparison to using other hexahedra types.

17 In this study, the same abbreviation was put to use for the geometry-fitted wall-modelled approach computations
that utilise the arbitrary mesh interface method.
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for each intersection, and doing computations therein. In addition, the AMI is well-defined in

discontinuous fields [71, p. 89], computationally scalable [71, p. 91, 99] in comparison with other250

options such as [72], and conditionally [71, p. 90] conservative since its local integration errors,

i.e.
∫
qT dV =

∫
qD dV , are order of double-precision machine epsilon [71, p. 93]. Nonetheless, the

AMI is ‘not necessarily bounded’ [73, p. 5] and not constrained with the incompressibility [71,

p. 99]; thus, spurious fluctuations may occur in projected fields. The literature has, however, not

treated effects of the AMI on flow predictions in much quantitative detail, particularly for turbulent255

structures. As a counter example, on the other hand, [74, p. 2] shared a qualitative observation

that the AMI had no influence on flow visualizations from a number of uniform-inflow propeller

computations. Similarly, [75, p. 121] and [60, p. 744] qualitatively analysed a turbulent-inflow

tidal turbine computation, and concluded that the AMI did not alter the appearance of convecting

turbulent structures. In addition to this, [62, p. 267] purported based upon their RANS-turbine260

computations that no qualitative changes were observed on velocity fields and gradients due to a

sliding technique similar to the AMI.

The next key aspect was the wall modelling. Within wall-bounded flow regions, momentum-

transfer-dominant scales are known to be order of viscous length scales whose size is inversely

proportional to ReL.18 As a consequence of [76, p. 3]’s node-number estimation for attached flows,265

i.e. N∆∝Re13/7
L , the resolution of these scales becomes prohibitively expensive for turbine flows,

wherein ReL≈(106-109) [77, p. 438]. Therefore, in this study, viscous and majority of the overlap

layers were modelled rather than resolved. This brought three main questions to be addressed: i.

near-wall grid resolution, ii. wall-flow model type, and iii. near-wall grid design strategy.

With respect to the near-wall grid resolution, minimum threshold recommendations may be270

found for canonical flows, and be projected onto the flows considered herein to avoid computa-

tion repetitions. Assuming the existence of the log-layer at sufficiently high ReL, the first wall-

normal grid node was placed inside the presumed log-law region, whose lower limit reported in

the literature was reviewed by [78, p. 377] as 30<y+<100. A number of studies have postulated

for the grid size within characteristic boundary layer thickness, δ: [79, p. 2] reasoned a grid with275

∆x≈0.08δ,∆z≈0.05δ and ∆y linearly varying from 0.02δ to 0.05δ within the outer layer. Fur-

ther, [80, p. 20] offered N∆x≈10; N∆y≈30-40; N∆z≈20 per δ, and similarly, [76, p. 2] put forward

18 ReL=Uc L ν-1, where Uc is the characteristic flow speed [ms-1], L the characteristic length scale [m], and ν the
kinematic viscosity of the fluid [m2 s-1]. N∆ stands for a given node number in a computational grid.
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N∆x≈10; N∆y≈25; N∆z≈10 in accompany with highlights from the literature that N∆x≈5-32;

N∆y
≈16-32; N∆z

≈15-32. Overall, [76, p. 2] asserted that N∆∝ReL for wall-modelled IFLES.

Menter et al.’s [81] wall model was adopted here owing to its automatic and gradual polynomial

blending between the standard logarithmic law of the wall (y+>30) and viscous sub-layer equation

(y+<5) as a function of local y+. This treatment alleviates the sensitivity of the wall model to

y+-variations; hence, eases wall-grid design considerations within the same grid. The wall effect was

incorporated through the turbulent kinematic viscosity, νt, as follows:

νt = max

{
0,

u2
τ

nb · (∇u)b + ξ
− νb

}
(6)

where nb·(∇u)b is the velocity gradient normal to the boundary [s-1], ξ the double-precision machine

epsilon, νb the fluid kinematic viscosity on the boundary, and uτ the friction velocity [ms-1] [81,

Eq. 17-18]:

uτ = (unτ,vis + unτ,log)n
-1

with uτ,vis =
U

y+
& uτ,log =

κU

log(E y+)
(7)

where uτ,vis and uτ,log are respectively the model contributions from the viscous sub-layer and280

logarithmic law equations, n=4 a model coefficient, U the magnitude of the planar first-wall-node

velocity (i.e. its wall-normal component is zero) [ms-1], κ=0.41 von Kármán’s constant [82, p. 77],

and E=9.8 a wall roughness parameter for smooth walls [82, p. 77]. The algorithm of the model

implementation is shown in Appendix A.1.

2.2.3. Actuator line model285

The actuator line model (ALM) is a reduced-order flow modelling approach for slender19 bodies

in which the governing equations of fluid dynamics and a force prediction method are two-way cou-

pled (its first derivations: the vorticity-velocity form [83, p. 156-157], and pressure-velocity form [84,

p. 46]). In the ALM, a body is simplified into a characteristic line (not necessarily straight) or a

group of lines. The imaginary lines are then discretized into a set of actuator points in space wherein290

each point represents a line segment. The ALM became a well-received model in the wind-marine

turbine discipline primarily due to three reasons: in comparison to a geometry-fitted approach, the

ALM i. loosens spatial and temporal grid resolution constraints to a substantial extent, ii. renders

19 Slender describes a body with its length is at least an order of magnitude longer than its remaining two dimensions.
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quicker grid generation possible with minimised grid-quality issues and user expertise, and despite

the former two, iii. spatiotemporal-accurate flow entities (e.g. root-tip vortices, wake, induction295

regions [85, p. 8]) and rotor performance predictions were realised to an experimentally-validated

level. The ALM consists of two main parts: flow and force modelling which are summarised below.
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Figure 2: (a) Terminology for an aerofoil. All characteristic aerofoil centres, including those of structural twist, blade
pitch, aerodynamics and mass, were assumed collinear, and dubbed as ‘twist axis’ along a blade. (b) A stationary
blade-element cross-section illustrating forces acting upon the centre of pressure. L is the lift force, D drag force,
FN normal-to-chord force, FT tangential-to-chord force, α angle of attack [rad], and urel relative velocity. (c) The
rotating counter-part of (a). T is the normal-to-rotation-plane force, Q parallel-to-rotation-plane force, φ=ψ+θ+α
flow angle, ψ global operational blade pitch angle, and θ local structural twist angle. (d) A velocity triangle for a
rotating aerofoil showing flow induction effects. a and a′ are axial and tangential induction factors [-], respectively,
r spanwise location of the aerofoil, and Ω rotational speed of the rotor [rad s-1].

2.2.3.1. Actuator line model’s flow modelling

For the fluid-part ALM equations, the prevailing pressure-velocity form was used in this study [84,

p. 46] whereby Eq. 1 was re-expressed as follows:

ut +∇ · (uu) = -∇p+ ν∆u + f (8)
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where ∇p̃ was split back to the pressure gradient, ∇p, and the external force field term per unit

mass, f [ms-2], which is computed through a force prediction method.300

In the context of the finite volume method, the spatial discretization of f for a single finite volume

Ω with its centroid P can be performed through
∫

Ω
fdΩ≈ fPΩ where f(x, t)≈fP(t). Further, within

the preferred theoretical-level pressure-velocity coupling algorithm, i.e. PISO [86], the discretized

term can be placed into the assembled explicit momentum equation as follows:

aPuP = -∇p+ s−
n∑
i=1

aiui + sgn(m)fPΩ = -∇p+ H(u) (9)

where the left-hand side contributes to the diagonal part of the system of algebraic equations, and

the right-hand side to the off-diagonal; P denotes the owner cell, n its neighbour cells, aP and

an known domain and equation discretization coefficients belong to the cells, s an agglomeration

of source terms and boundary conditions, sgn(m) the sign function of m{m∈{-1,1}} with m=-1|1

energy extraction|supplement from|into the flow field, H(u) a function explicitly evaluating the305

off-diagonal part with the latest available values of u. This common treatment, however, causes

practical issues affecting flow field predictions in two subjects: i. how to input information from the

force model, and ii. how to extract information from the flow model to be used in the force model.

For the first subject, the principal issue is that non-negligible spurious pressure-velocity fluc-

tuations arise when sharp variations in f , almost always present in the ALM, exist. Mencinger310

and Z̆un [87, p. 524] attributed its reason to the use of the practical-level pressure-velocity cou-

pling method of the Rhie-Chow interpolation [88] in co-located grid arrangements, because the

Rhie-Chow corrections applied to face velocity fields is by definition independent of f , and do not

ensure strong pressure-velocity coupling. Within the ALM scope, three solution approaches were

proposed: i. the smearing function approach due to [89, p. 396], ii. the body-force modification of315

the Rhie-Chow interpolation due to [90, 91], and iii. the potential-flow routine [92]. In this study,

the first was implemented due to its convenience.

The smearing function allows point forces to be fractionally dispersed across neighbouring points.

Herein, the most commonly used form of the three-dimensional Gaussian function was used.20 For

20 It should be noted that, despite its wider preference, using the three-dimensional form Gaussian function has three
drawbacks: i. the effective length of lines exceeds the actual line lengths because such distribution also spreads
forces beyond the blade edges, ii. local forces of a zone are spread out neighbouring zones; thus, non-locality of
forces increases, and iii. flow gradients are soothed, hence wake structures.

17



a single point, such form can be expressed as [84, p. 49]: g(x)=π1.5σ-3 exp
(
-{‖x-xa‖σ-1}2

)
where320

σ is the function support [m] that determines the weight of a point force at xa on a node positioned

at x, and d= ‖x-xa‖ the straight line distance between the position vectors of an actuator point

and a node [m]. In practise, the weightening becomes negligible after some d. The domain size of

g(x), therefore, can be truncated. To this end, the full width at half maximum was adopted, i.e.

dmax=σ(2 lnw)0.5. Therein, dmax is the maximum d within which force distribution takes place, and325

w an independent variable with a default value that makes dmax≈4.8σ, and accordingly ensures

that the Gaussian function reduces well below its 1%. Ultimately, a distributed force field fg is

approximated through fg=f?g+εg independently for each actuator point, where {?} is the convolution

summation operator, and εg an error term arising from f ’s discretization.

The function support σ is a free parameter; therefore, it needs to be constrained by an inde-330

pendent parameter from the numerical setup. Three support types are present in the literature: i.

grid-based [84, p. 51], ii. chord-based [93, p. 1183], and iii. equivalent elliptical planform-based [94].

Among them, the first type was chosen owing to its easier implementation and the other types’

not necessarily superior performance. The grid-based support is σ=εa∆ where {εa}{εa∈R} a time-

invariant constant, and ∆ a characteristic grid size within the field of actuator points.335

The size of σ is an important factor in predictions of rotor performance and flow structures with

the same grid. The main reason is that the predictions for rotor performance/flow structures and

imposed body forces are functions of each other. Body forces are calculated depending on local

flow field whereas the field itself develops in accordance with the imposed body forces; thus, leading

to a complication in parameter-independent computations.21 εa in the majority of studies was340

preferred within the range of εa=[1, 4]. Several studies [100, p. 25][96, p. 15][97, p. 1059] maintained

that (εa)min=2 is the advisable compromise, and the most common choice. Thus, this figure was

employed in this study.

The second subject is the extraction of flow information for the force model, i.e. flow speed and

angle of attack. Therein, preferences in three points affect the information: i. probe locations, ii.345

interpolation method to obtain flow speeds, and iii. estimation approach for angles of attack.

Relatively small transpositions of probes can cause non-negligible changes in force predictions

21 In regard to rotor performance, power [95, p. 7] and thrust [85, p. 10] predictions were observed to be significantly
depending upon εa, and both are in direct proportion without a sign of convergence [96, p. 21] [97, p. 1059]. For
flow structures, some dependency on εa was also reported: Strength, spatial distribution [93, p. 1184] and phase
differences [96, p. 30] of vortices were found to be influenced by εa whose increase reduces vorticity of flows [98,
p. 205-206]. However, [99, p. 1, 9] demonstrated that εa is virtually ineffectual on mean wake deficit.
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because of high flow gradients around actuator points, and exponential proportionality between flow

speed and forces. Despite its importance, no probe location is present within the blade element

theory (BET). Therefore, a universally-applicable location has been a matter of debate. Ideally, a350

probe should be located at the centre of the bound vortex, and the only induction at the probe

location should stem from shed vortices in the wake. Otherwise, the true relative speed and angle

of attack could not be attained. In this study, probes are located at actuator points presuming that

they coincide with bound vortex centre whilst counter-symmetric induction about actuator points

often exists [85, p. 8-9].355

Normalised probe coordinate vectors are computed as follows: z=z ‖z‖-1, y=(z×h) ‖(z×h)‖-1,

and x=(y×z) ‖(y×z)‖-1 where h is the hub centreline vector towards downstream, y the vector

along chord pointing from the leading edge to the trailing edge in opposite direction of the blade

rotation, and x the vector along blade thickness pointing from the suction side to the pressure

side towards downwind unless the rotor is pre-coned. Flow speeds are then extracted in three360

steps: inverse distance weighting interpolation of node velocities on probes (uinterp), domain-to-line

coordinate transformation of uinterp and reduction of velocities to one-dimensional flow speeds as:

u1=x · uinterp, u2=y · uinterp, u3=z · uinterp. Finally, angle of attack α is approximated as depicted

in Figs. 2c and 2d: α=φ-ϕ-θ where φ= arctan(u1 (u2+ωr)-1) is the local flow angle [rad], ω rotational

speed of the rotor [rad s-1], r=(y2+z2)0.5 spanwise location of the aerofoil, ψ global operational blade365

pitch angle, and θ local structural twist angle.

2.2.3.2. Actuator line model’s force modelling

For the ALM force-part, the blade element theory (abbr. BET) [101, due to Drzewiecki, p. 169]

was utilised.22 It is a closed-form expression that predicts fluid forces on a stationary/rotating

blade, and its derivation starts with the following assumptions and approximations: i. A blade370

can be non-uniformly broken down into a set of non-interacting blade elements, assuming the lack

of interaction does not affect force estimations, ii. spanwise flow can be ignored; thus, resulting

in a two-dimensional flow over a blade element, iii. any aerofoil cross-section possesses the same

geometric, structural and fluid-dynamic properties within a blade element, iv. forces on a rotating

blade element are the same with those on a stationary identical element for the same angle of375

22 Another method is the blade element momentum theory (abbr. BEMT), which is used to break mutual dependence
between flow solutions and force computations (e.g. [102, p. 5]). The BEMT, however, brings arguably adverse
issues, particularly for time-invariant inflow, such as the detachment of inflow information from the computational
domain.
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attack [103, p. 59], and v. an instantaneous equilibrium is present between flow field and forces

although finite times of adjustment are actually needed for both.

For a stationary blade element shown in Fig. 2b, the magnitude of the resultant force on the

element can be expressed in terms of its normal- and tangential-to-the-chord-line components:

‖FN‖ = ‖L‖ cos(α) + ‖D‖ sin(α) ‖FT‖ = ‖L‖ sin(α)− ‖D‖ cos(α) (10)

where FN=FN(urel, α,Ma,Re) is the normal-to-chord force [N], FT the tangential-to-chord force,

α the angle of attack [rad], urel the relative velocity, L the lift force, D the drag force, and

‖•‖ =(•21 + . . . + •2n)0.5 the Euclidean norm.380

For a blade element rotating about a fixed axis, urel and flow angles are reconceptualized due

to rotation as illustrated in Figs. 2c and 2d: ‖urel‖ =
(
{‖u‖ (1-a)}2+ {‖ω‖ r(1+a′)}2

)0.5

where u is

the undisturbed flow velocity normal to the plane of rotation, ω the rotational velocity of the blade

element parallel to the plane of rotation, r the normal distance between the rotation axis and a

representative point within the blade element, a the axial induction factor [-], and a′ the tangential385

induction factor.

Eq. 10 remains the same; however, the resultant force may be further decomposed with respect

to the plane of rotation:

‖T‖ = ‖FN‖ cos(θ)− ‖FT‖ sin(θ) = ‖L‖ cos(φ) + ‖D‖ sin(φ)

‖Q‖ = ‖FN‖ sin(θ) + ‖FT‖ cos(θ) = ‖L‖ sin(φ)− ‖D‖ cos(φ)
(11)

where T is the force normal to the plane of rotation, Q the force parallel to the plane of rotation,

φ=ϕ+θ+α the flow angle with ϕ the global operational pitch angle, and θ the local structural twist

angle. Eq. 10 and 11 can be computed if a polar diagram, i.e. tuples of force coefficient-α23, of the

blade element is available through ‖L‖ =qAbCL and ‖D‖ =qAbCD, where q=0.5ρ ‖urel‖2 the dynamic390

pressure [Nm-2], Ab the planar area of the blade element [m2], CL the lift coefficient [-], and CD

the drag coefficient.

Assuming the BET assumptions hold, three factors further contribute to the error-uncertainty,

z, of force predictions: ‖F‖ = ‖FBET‖ +zα+zurel+zpolar, wherein zα and zurel emerge from the

flow part (2.2.3.1), and zpolar=zquality+zcompatibility. There, zquality arises from measurement395

23 Spatial integrations of aerofoil surface pressure and shear stress distributions as a function of α.
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processes, and zcompatibility from the level of match in conditions of between the flow and measure-

ments/computations. With regard to zquality, the most susceptible elements to z are: drag itself

due to its similar order of magnitude to the level of confidence of data deduction/reduction methods,

and post/deep stall regions because of its high sensitivity to time-variant flow environment.

Typically, the construction of a polar diagram involves: obtaining pre-stall polar dataset under400

envisaged operating conditions, and manipulating this dataset to regard the above susceptibles. To

that end, the XFOIL software [104] with the built-in Kármán-Tsien compressibility correction24

was utilised to acquire pre-stall polar datasets. Stall delay corrections on lift coefficients were

then performed with [106]’s model for r/R≤0.8 and [107]’s model for r/R>0.8, and on drag coeffi-

cients with [108]’s model.25 Moreover, the datasets were extrapolated onto (-180°)-(180°) spectrum405

by [109]’s polar extrapolation method. For the requirement of a tip-root correction for the BET-

ALM, however, debates are ongoing. In principle, such correction should not be needed, because its

raison d’être is expected to disappear with the finite-number blade representation of the ALM. Its

use was, nevertheless, reported to lead to generally improved force predictions [99, p. 9][84, p. 53].

The reason why this happens is arguably that the ALM is in general deficient to model flow around410

the tip, and to resolve tip vortices. It is thought, therefore, that the justification of the use of tip

corrections is only shifted from scientific to practical grounds for the ALM, because its effect is still

desirable whereas the conditions of its derivation are violated. In the light of several tests among

the available tip loss corrections in the literature (not reported), [110]’s and [101]’s methods were

chosen to be used in tip and root regions, respectively.415

The spatial resolution of the ALM involves: the number of actuator points per grid-size and nodes

per an actuator-line length. Although both seem reciprocal, locally distinct requirements are present

(e.g. for unevenly distributed points) to ensure smooth force distribution along a line, smooth force

projection onto a computational grid, and fine resolution of vortices. As a minimum, [111, p. 6, 13]

and [96, p. 46] recommended 0.75 actuator points per cell, and [97, p. 1050] 40 points per blade.420

For the second aspect, [112, p. 62] advised minimum 40 nodes per diameter, and likewise, [94, p.2]

30 to 60 nodes per line. In respect of temporal resolution, [100, p. 26] and [96] purported that rotor

performance predictions are not influenced by ∆t. These observations must be interpreted with

24 Nguyen [105, p. 27] identified that the Kármán-Tsien method provides more accurate predictions than the more
common Prandtl-Glauert compressibility correction.

25 No appreciable change was observed because of the stall delay corrections for the current setup; thus, the non-
corrected datasets were in use for the majority of computations.
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Table 3: Dimensions of the towing tank set-up 1[24, p. 409, 410], 2[66, Fig. 2a] 3[66, p. 22, Fig. 15]. The values are
given in meters [m], and if necessary, with rotor diameters [D].

Parameter Value [m] - [D]
Tank section height1 1.8 - 2.25
Tank section width1 3.7 - 4.625
Tank length1 60.0 - 75.0
Rotor plane distance to the inlet2 2.4 - 3.0
Tower centreline distance to the inlet2 2.857
Hub particulars (length, radius, relative positions)2 -
Hub centreline height from the floor 0.96 - 1.2
Centred hub centreline distance to a side wall 1.85 - 2.3125
Hub distance to the inlet 2.269
Blade root diameter3 0.0241
AMI inlet to the inlet 2.26
AMI outlet to the inlet 2.505
AMI radius 0.45

caution because the relevant computations were performed with uniform inflow. For this reason,

even a dramatic change in ∆t will not alter force predictions whilst the inflow will always be the425

same.

2.3. The remaining numerical settings

In the pages that follow, the remaining numerical settings were presented to allow easy replica-

tion.

2.3.1. Computational domain models430

The dimensions of the experimental facility and numerical domains were summarised in Table 3.

In the domain models, the facility dimensions were imitated except its length, i.e. 75D. Instead,

13D from [12, p. 97] was used to reduce computational costs. This imitation violated four litera-

ture recommendations for a domain design as shown in Table 4. It is, however, argued that any

detrimental effect due to the discrepancies is limited to the mapping between the experiments and435

modelled reality rather than the experiments and computations while the latter only approximates

the experimental conditions. Therefore, no practical importance of the discrepancies was assumed

for this study. In addition, the tower was left out owing to its influence on downstream flow field

predictions, particularly for the mean velocity and turbulence intensity [113, p. 282].
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Table 4: A comparison between the dimensions of the domain models and literature recommendations: 1[100, p. 25]
2[114, p. 5][117, p. 1751] 3[117, p. 1752][82, p. 283] 4[114, p. 5] 5[118, p. 231] 6[118, p. 231]. R is the characteristic
size of a body, herein the rotor radius. The areal blockage ratio is equal to πR2/(hy hz), the lateral blockage ratio
hz/(2R), and the vertical blockage ratio hy/(2R), where hy and hz are the height of width of the computational
domain.

Parameter Recommendation Experiment & Computation
Min lateral distance to walls 14.5 - 25R 1.1R
Min distance to the outlet 310 - 415R 20R (Computation only)
Max areal blockage ratio 53% 7.5%
Max lateral blockage ratio 617% 21.6%
Max vertical blockage ratio 617% 44.4%

2.3.2. Computational domain discretizations440

The numerical domains were constructed in two main layers. First, a background grid was

generated. Therein, the domain was divided into 27 sub-domains. The innermost block surrounded

the rotor region with its size {hx, hy, hz}={10, 2.6, 2.6}[R], and comprised of only cubic cells. In

compliance with the suggestions reported in page 21, the grid size of the cubes was approximately

D/52, where D=2R is the rotor diameter. From this centre block, the remaining sub-domains’ cells445

were stretched away with the maximum cell-to-cell expansion ratio of 1.005 in the x, and of 1.05 in

the {y, z} directions, whereby some of the literature suggestions were fulfilled such as 1.3 [114, p. 7],

1.25 [115, p. 379] [116, p. 10]. Second, the internal boundaries were embedded into the background

grid without explicit local grid refinements as explained in §2.2.2.

The geometry and topology of the grids were checked and qualified through all mesh metrics450

available in OpenFOAM®v1712.26 Prominently, for the grids without the turbine, maximum cell

aspect ratio, maximum face skewness, mean and maximum face non-orthogonality were measured to

be around 15.11, 3.96, 1.73, and 44.99, respectively. For the grids with the turbine, the magnitude of

the four metrics became 15.11, 4.00, 4.97, and 45.00. While high aspect ratio populated the vicinity

of the outlet boundary due to longitudinal grid stretching, high non-orthogonality and skewness455

regions mostly occupied AMI-nacelle intersections and blade trailing edges. Besides, the initial

minimum, mean, and maximum of the AMI source-target face weight-sums were approximately

0.993-0.499, 1.237-1.235, 1.000-0.999, wherein the sum of the weights for each face is ideally unity,

otherwise conservation errors raise [120]. Nevertheless, the weight-sums are time-variant due to

rotor rotation, and null values might be encountered during computations. Accordingly, to avoid460

26 Refer to [119] for the definitions of the OpenFOAM® mesh metrics as they may differ from one software to
another.
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any AMI failure, the model switch that turns on the zero-gradient boundary condition for faces

where the weight-sums below 0.01 was activated [120]. Ultimately, the spatial resolution in the

geometry-fitted wall-modelled approach cases resulted in 7,004,897 cells whereof 1,171,311 cells

were inside the arbitrary-mesh interface region, and 5,833,586 cells outside of it. On the other

hand, in the actuator-line modelled cases, it yielded 5,767,740 cells. Representative illustrations of465

the numerical domains and rotor were given in Fig. 3.

(a) (b) (c)

(d) (e) (f)

Figure 3: Various snapshots: (a) Isometric view of the numerical domain and its grid layout, (b) surface grid of the
rotor, (c) blade tip detail, (d) side view of the partial numerical domain illustrating only the cubic-cell region, (e)
blade root detail, and (f) blade planform detail.

In line with the spatial resolution, the temporal resolution was preset to 5×10-5[s]. The durations

of the initialisation and averaging phases were separately set to ∼7.02[s], which approximately

corresponded to 25 full rotor rotations.
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2.3.3. Equation discretizations, boundary conditions, solution algorithms & solvers470

The central differencing scheme (CDS, Appendix A.5.1) was activated for all terms except the fol-

lowing: the second-order backward difference scheme (Appendix A.5.2) for the temporal derivatives

and variables, a cell-based multidimensional-limited CDS (i.e. cellMDLimited 0.25) [121, p. 87-88]

for the velocity gradient, a total variation diminishing scheme (i.e. limitedLinear 0.1 Appendix

A.5.3) for the divergence and convection terms of turbulent kinetic energy, and a normalized vari-475

able diagram scheme (i.e. GammaV 0.2 Appendix A.5.4) for the velocity convection. In addition,

the integration of surface integrals were held by the Gauss quadrature method, and the linear inter-

polation was used to obtain flow quantities required at cell faces from adjoining cell centroids while

assuming spatial uniformity of the quantity across the common face. Also, the surface normal gradi-

ents and Laplacian terms were explicitly corrected for the mesh non-orthogonality. Nonetheless, to480

ensure the initial diagonal dominance within the system of algebraic equations, all the computations

were initiated by using the most diffusive numerical scheme alternatives for a duration of one-half

rotor rotation, and subsequently the above schemes were switched on. In these computations, the

boundary conditions summarised in Table 5 were adopted.

Table 5: The boundary conditions employed for velocity u, kinematic pressure p̃, turbulent kinematic viscosity
νt, and turbulent kinetic energy k, at each geometric boundary.

Boundaries Boundary conditions
u p νt k

Inlet Dirichlet Zero Neumann Calculated Dirichlet
Outlet Convective Zero Dirichlet Calculated Convective
Sides Symmetry Symmetry Calculated Symmetry
Blades and nacelle No-slip Zero Neumann Menter’s wall function Zero Dirichlet

a A boundary is a topological element of a computational domain whereas a boundary condition is a set of
mathematical operations computed at the boundary.

On top of these settings, the theoretical-level pressure-velocity coupling algorithm PISO [86]485

was selected with four momentum correctors. Finally, the numerical solution of the linear system

of algebraic equations was carried out by means of the following linear solvers: Stable biconju-

gate gradient method preconditioned with the diagonal-based incomplete LU preconditioner for the

turbulent kinetic energy (tolerance=10-6, relative tolerance=0), an iterative solver using the Gauss-

Seidel smoother for the velocity (tolerance=10-8, relative tolerance=0), and geometric agglomer-490

ated algebraic multigrid solver with the same smoother for the pressure (tolerance=10-6, relative
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tolerance=0-10-3). For parallel computations, the numerical domain and fields were decomposed

by the scotch partitioning method [122].

3. Results & Discussion

In this study, twelve computations were conducted in total, and were elaborated in the follow-495

ing sections. In addition to Table 2, the spatiotemporally-invariant input set that these computa-

tions commonly used consisted of: The mean longitudinal flow speed Uo=1.5[ms-1], longitudinal-

transverse integral length scales Llong=Ltrans=0.2[m]=0.5[R], and one-point normal-anisotropic corre-

lations {
√

(u′ii)
2}{i∈(1,2,3)}={(0.00)0%, (0.15)10%, (0.30)20%, (0.60)40%}[ms-1]-{

√
(u′ij)

2}{i 6=j}=0.0 for

four different three-dimensional turbulence intensity values studied here, Iu′
rms
≡100(1/3(u′u′+v′v′+500

w′w′))0.5/(U2+V 2+W 2)0.5={0, 10, 20, 40}[%].

3.1. Confidence assessments of the numerical solutions

In this section, the quality of all computations was assessed in six aspects: (i) spatiotempo-

ral resolution, (ii) numerical stability, (iii) statistical convergence of numerical fields and probe

samples, (iv) evolvement of input statistics, (v) integrated and local parameters of turbine perfor-505

mance, and (vi) near wake flow modelling.

(i) First, the spatiotemporal resolutions were evaluated through two statistical LES-quality

post-verification metrics while grid-independency in IFLES was argued to be theoretically unattain-

able [28, p. 7]: Pope’s metric [123, p. 560], and Celik et al.’s metric [124, Eq. 8a]27 both of which

were quantified to be robust and effective relative to their alternatives [28, p. 29-33]. The first three510

statistical moments of the metric fields obtained for each numerical case were set out in Table 6.

Data from Table 6 shows that the sample means of all numerical cases were around 10[cNp] higher

than the recommended metric qualifiers (i.e. a metric magnitude of 0.8 and above claims adequate

resolution). Also, the level of variations within the metric fields was quantified to be an order to

two orders of magnitude smaller than the mean levels.28 Moreover, the sample skewness of all cases515

was found to be negative and around (1). The negativity here implies that below-mean quality

locations were present more frequently than above-mean quality regions within the computations.

27 The explicit expressions of the metrics can be found in [28, p. 16-17].
28 Variance was wrapped by scalings of the unbiased standard deviation and mean (resulting in the coefficient of

variation) to ease commentations on the extent of variability with respect to the mean.
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Table 6: The quality of the computations according to two statistical LES-quality metrics: Pope’s metric [123, p. 560],
and Celik et al.’s metric [124, Eq. 8a] both of which deem the metric value of 0.8 and above as an indication of adequate
spatiotemporal resolution in LES. Below, the sample mean, coefficient of variation, and skewness of the metric fields,
i.e. µ̂1,

√
µ̂2/µ̂1, and γ̂1, that were time-averaged for one longitudinal-mean-speed domain-pass-through (twenty-five

full rotor rotations) were shown. From left to right, the three numerical case groups involved domains without the
turbine, with the geometry-fitted wall-modelled turbine and with the actuator-line modelled turbine. Therein, ‘A’
was completely empty, ‘B’ & ‘C’ consisted of non-rotating and rotating arbitrary mesh interfaces, respectively, and
the percentages indicated the turbulence intensity. The results were rounded to three decimal places.

LES-quality
metrics ↓ Cases →

Domains Without
Turbine

Geometry-Modelled
Turbine

Actuator-Line
Modelled Turbine

A B C 10% 20% 40% 10% 20% 40%

ΓPope

µ̂1 0.930 0.934 0.930 0.970 0.941 0.892 0.971 0.930 0.873√
µ̂2/µ̂1 0.061 0.059 0.064 0.040 0.058 0.073 0.033 0.059 0.075

γ̂1 -0.851 -0.910 -0.976 -4.190 -1.263 -0.112 -1.885 -0.809 0.136

ΓCelik

µ̂1 0.952 0.952 0.952 0.952 0.952 0.951 0.952 0.952 0.951√
µ̂2/µ̂1 0.000 0.000 0.001 0.000 0.001 0.001 0.000 0.001 0.000

γ̂1 -2.331 -4.608 -13.455 -6.391 -13.604 -5.324 -3.275 -8.775 -13.924

These results indicate according to the two metrics that the level of spatiotemporal resolution of all

the numerical cases qualified as adequate. Although the skewness of the fields hinted the existence

of low-quality regions, the variance showed that the resolution was almost completely homogeneous,520

which further implies the low-quality regions were considerably localised. Regarding the wall-flow

modelling, y+ measurements of all cases and blades revealed that the turbulence intensity does not

notably alter the median and mean of y+ fields, which were respectively quantified as around 30-37

and 49-55 alongside the minimum and maximum outliers of 1 and 340. Therefore, the obtained y+

fields mostly fulfilled the requirements of Menter’s wall function being used here.525

(ii) The time-marching of the computations was monitored via the time-averaged and maximum

Courant numbers, Comean and Comax. In the computations, the rotor tip Courant number of 0.03

was aimed at the outset, so that the rotating arbitrary mesh interface cells or actuator points

could be restricted to translate a neighbouring cell at most. For the domains without the turbine,

AMI, and ALM cases with the same time-step size, Comean was found commonly around 0.003-530

0.004, and Comax≈(0.15-0.16, 6.8-7.2, 0.018-0.019), respectively. These figures convey three points:

First, except the AMI-Comax, the conventional Courant-number thresholds were sufficiently obeyed.

Second, although the building-block assumption of PISO was locally violated by the AMI-Comax, the

computations remained numerically robust likely due to the use of the blended numerical schemes

and relatively-small & highly-localised grid deficiencies. Third, unanticipatedly, the mere presence535

of the arbitrary mesh interfaces increased Comax at least an order of magnitude, which may demand
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Figure 4: The longitudinal evolvement of the spatiotemporally-invariant streamwise mean speed (the top subplot)
and normal components of the Reynolds stress tensor (the bottom subplot) through an empty domain. The domain
belongs to the inflow scenario of Iu′

rms
=20[%]; however, the rotor, hub and AMI were removed. The vertical axes show

the log percentage change of a given variable with respect to its input value, i.e. L≡100 ln(xnew/xbench)[centineper].

The inputs were U=1.5[ms-1], and
√
u′iu
′
i≡{

√
u′u′,

√
v′v′,

√
w′w′}=0.3[ms-1]. The results were obtained by the

cumulative moving average along time at each node followed by spatial averages in the statistically homogeneous
lateral and vertical directions. The horizontal axes represent the domain length, x, normalised by the rotor radius,
R=0.4[m]. The dashed vertical line stands for the rotor-plane location.

for a development either in the Courant number computation through an interface or in the AMI

method itself.

(iii) Regarding the convergence of statistics, the synthetic time-series generator being used

here, the hybrid DFM-FSM [34], was previously quantified to yield statistically weak stationary540

and ergodic time-series [38, p. 457]; thus, flow fields were assumed to be stationary and ergodic

in this study. As a potential drawback herein, the number of domain pass-throughs of the com-

putations was considerably lower than a typical IFLES of free-shear flows. The sole reason of this

shortening was the prohibitive additional computational cost appeared due to four factors: the con-

straint of the blade-tip Courant number which is more restrictive than the flow Courant numbers,545

the rigid body rotation, arbitrary mesh interface interpolations, and more importantly, increased

number of pressure iterations per time-step (e.g. in comparison to a finer-grid computation of de-

caying homogeneous isotropic turbulence from [38], the number of pressure iterations was more

than doubled). Nevertheless, the statistics investigated herein were mostly limited to the first- and

second-order normal moments which are expected to converge relatively quickly unlike the cross-550

components of the Reynolds stress tensor. In addition to this, the number of domain pass-throughs
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Figure 5: The longitudinal evolvement of the Reynolds stress tensor isotropy (the top subplot) and turbulence
intensity (the bottom subplot) through the empty domain. The figure particulars are the same with Fig. 4
except the following. The vertical axes illustrate the non-dimensional variables, and the horizontal dotted
line in the top subplot signify the complete isotropy. The turbulence intensity was defined and inputted as:
Iu′≡(1/3(u′u′+v′v′+w′w′))0.5/(U2+V 2+W 2)0.5=0.20.

and full-rotations of the current computations was kept higher than the same-turbine computations

from the literature, i.e. 10-12 [12, p. 100], 4-12 [60, p. 743, 746] full-rotations for initialisations and

averagings/samplings, respectively, in contrast to 25-25 full-rotations of this study. In light of these

two points, the first two sample moments of probed velocity time-series were monitored, and they555

were found to be qualitatively converged (not shown). Therefore, the approximate convergence of

the flow fields was postulated in this study.

(iv) The evaluation of the target flow characteristics at the field of interest was carried out

by means of the AMI computation with Iu′
rms

=20[%] (AMI-20), wherein the arbitrary mesh inter-

face, rotor, and hub were removed, and the other settings were kept the same. For support of560

the premises below, Figs. 4 and 5 presented the longitudinal evolvement of the streamwise mean

flow speed, normal components of the Reynolds stress tensor, turbulence isotropy, and turbulence

intensity, respectively, within the empty domain. As can be seen from Fig. 5, the mean speed

was realised ∼1.1[cNp] higher than the input at the rotor location, and within a range of 1.5-

0.75[cNp] throughout the domain. Moreover, the normal Reynolds stresses were observed in linear565

decay downstream. The reduction occurred at the rotor plane was roughly 20, 30, and 40[cNp] for
√
u′u′,

√
v′v′,

√
w′w′, respectively, and the rate of decay qualitatively remained constant between

x/R≈3 and x/R≈16 engulfing the rotor plane. The deviations from the perfect isotropy shown

29



Table 7: Time-averaged thrust coefficient (CT) and power coefficient (CP) predictions from the spatiotemporal-
invariant inflow cases. ‘Exp.’ refers to the benchmark experiment [24, Fig. 8], ‘Afgan et al.’ another IFLES study
using the same turbine (including the tower as well) [12, Table 4], ‘AMI’ the arbitrary-mesh-interface method,
and ‘ALM’ the actuator-line method. ‘Corrected’ indicates the tunnel blockage correction from [24, p. 424-425][66,
p. 28-29] which was used to correct the experimental results [24, p. 416] and ‘Afgan et al.’ results [12, p. 98].
The coefficients were defined as: CT=Fx/(0.5U2

oA), and Cp=(MxΩ)/(0.5U3
oA) where Fx the longitudinal force

component exerted on blades and hub per unit density [m4s-2], Uo=1.5[ms-1] the inflow speed, A≈0.503[m2] the
projected rotor area, Mx the torque component about the hub centreline exerted on blades per unit density [m5s-2],
and Ω≈22.5[rads-1]. The numerical results were presented as the log percentage change with respect to the ‘Exp.’
(L≡100 ln(xnew/xbench)[centineper]) and the coefficient magnitudes were given in the parentheses.

Exp.a Afgan et al.b AMI AMI-Corrected ALM ALM-Corrected
CT 0.801 -2.53 (0.781) -2.66 (0.780) -5.52 (0.758) 3.32 (0.828) -5.52 (0.758)
CP 0.443 -2.05 (0.434) 4.20 (0.462) -0.23 (0.442) 21.45 (0.549) 8.02 (0.480)

aWebPlotDigitizer [125] was used to digitise the experimental data from [24, Fig. 8].
bAfgan et al. [12, Table 4] inadvertently reported the experiment coefficients for the pitch-angle-25° [66, p. 33] cases
instead of the pitch-angle-20°.

in Fig. 5 were roughly within -6.5 to 17[cNp] at the rotor plane, and remained nearly similar from

the inlet up to x/R≈15-16. Lastly, the aforementioned linear decay pattern also transpired for the570

turbulence intensity which reduced to ∼15[%] from 20[%] till the rotor. The level of these metamor-

phoses of synthetic inflow29 up to x/R=16 was arguably acceptable for engineering purposes. Also,

the almost constant rate of changes in these statistics with respect to the longitudinal distance till

x/R=16 suggests that turbulence is statistically developed in the scope of these metrics, and the

effective statistics experienced by the rotor could be somewhat corrected. Accordingly, the input575

verifications were assumed with the presumption of these level and pattern of changes applicable

for all scenarios of this study.

(v) Furthermore, the time-averaged thrust coefficients and power coefficients of all cases were

quantified, and compared with the experiment. As an example, the results from the spatiotemporally-

invariant inflow computations were presented in Table 7 since the experiment was limited to uniform580

inflow. The comparison showed that both coefficients from the AMI and ALM cases deviated from

the experiment and [12]’s IFLES within ±5.5[cNp] and ±8.0[cNp] ranges, respectively, with the

experiment’s tunnel blockage correction. Therefore, the verification of the computations in terms of

the integrated performance parameters was assumed, and speculatively was extrapolated to other

inflow cases. As regards local performance parameters, the chordwise distributions of the time-585

averaged pressure coefficients were compared with those of the structured-grid wall-resolved IFLES

29 The metamorphoses are due to natural processes and CFD-synthetic inflow interactions. The readers are referred
to [28] for their systematic quantifications and analyses.
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Figure 6: Chordwise distributions of the time-averaged pressure coefficients, Cp, at four different spanwise stations
of a blade, {r/R}={0.25, 0.5, 0.75, 0.87}. ‘AMI-Uniform inflow’ labels the spatiotemporally-invariant laminar inflow
AMI computation, and ‘Afgan et al.’ another IFLES study of the same rotor (additionally including the tower)
with the same inflow settings [12, Fig. 4b, TSR=6]. The vertical axes show Cp=-p̃{0.5(U2

o -Ω2r2)} where p̃ is the
time-averaged kinematic gauge pressure field on the blade boundary [m2s-2], Uo=1.5[ms-1] the mean streamwise
inflow speed, Ω≈22.5[rads-1] the rotational speed of the rotor, and r the spanwise distance of the station to the
hub centreline [m]. The horizontal axes depict chordwise length of the suction and pressure sides of the aerofoil, x,
normalised by the local chord length, c. WebPlotDigitizer [125] was used to digitise unavailable ‘Afgan et al.’ data
from the plots.

from [12, Fig. 4b] in Fig. 6 at four spanwise locations. A significant discrepancy was observed at

r/R=0.25 section while observing resemblance adequate for engineering purposes at the remaining

three sections. The exact reason of the discrepancy could not be revealed. However, three model

differences at this particular region were speculated to play a role: the wall boundary conditions, the590

near-wall grid arrangements, and the heuristic geometry design for the blade transition and twist

axis due to the lack of geometrical information highlighted in [§2.2.2, p. 12]. The alleviation of the

discrepancy could not be obtained within the current setup; nevertheless, on top of its arguable

ineffectiveness for the global performance parameters, its prospective impact was investigated for

wake predictions. With this objective, time-averaged longitudinal speed profiles at the immediate595

aft of the rotor, where the rotor’s signature on flow field is expected to be predominant, were com-

puted and illustrated in Fig. 7 through a comparison with [12, Fig. 8]. Therein, the impact of Fig. 6

difference was seen to be limited to y/D=z/D=±0.1, and the rest of the profiles was observed resem-

bling each other (except the omitted tower’s wake). Hence, it was assumed that the discrepancies

were ineffective and the computations were verified in terms of Cp and near wake predictions.600
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Figure 7: Time-averaged profiles of the streamwise flow speed, U , along four different lines orthogonal to the longitudi-
nal direction at x/D=0.4. ‘AMI-Uniform inflow’ and ‘ALM-Uniform inflow’ represent the spatiotemporally-invariant
laminar inflow computations of arbitrary-mesh-interface (AMI) and actuator-line (ALM) methods, and ‘Afgan et al.’
another IFLES study of the same rotor (additionally including the tower) with the same inflow settings [12, Fig. 8,
TSR=6]. The vertical axes demonstrate the flow speed U normalised by Ω=22.5[rads-1] the rotor rotational speed,
and R=0.4[m] blade radius. The horizontal axes depict the lateral z and vertical y positions normalised by D=0.8[m]
the rotor diameter. The black vertical rectangles in the left subplots stand for the hub boundary.

3.2. Effects of the arbitrary mesh interface technique and the nacelle boundary on turbine flows

As mentioned earlier in page 13, surprisingly, probable effects of the arbitrary mesh interface

technique (AMI) on turbulent flows have not been quantified and closely examined. Although any

effect has been plausibly presumed to be inconsiderable in the literature, a line of evidence needs

to be established since the technique’s unquantified impact may corrupt numerical predictions.605

Therefore, in this section, AMI effects were explored under Iu′
rms

=20[%] turbulent inflow by means

of three scenarios all of which were empty channels involving: i. no AMI, ii. non-rotating AMI,

and iii. rotating AMI. Furthermore, another scenario containing only the nacelle of the turbine was

introduced for the sake of completeness in investigating non-rotor elements’ effects.

To that end, various statistics were quantified along approximately eight-hundred profiles dis-610

tributed evenly in the three directions. Common-to-all results were discussed below, and among

them, three representative-to-all figures were presented by Figs. 8–10.

In Fig. 8, an example from the longitudinal profiles was exhibited for the time-averaged velocity

components and normal Reynolds stress tensor components. To start with, the only-nacelle case

was found ineffectual on flow statistics along any of the longitudinal and lateral profiles (Fig. 9),615

except near wall and near wake regions. Its composed effects in comparison to the empty case could
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Figure 8: Effects of the stationary and rotating arbitrary mesh interfaces (AMI), and the nacelle on the longitudinal
profiles of the time-averaged velocity components and normal Reynolds stress tensor components under Iu′

rms
=20[%].

{y, z} positions of the profiles are {0.425, 0.000}[m], and the AMI cylinder’s radius 0.45[m]. No blade was present
within the computations. No spatial averaging was performed since no statistically homogeneous direction exists;
thus, the fields are spatial-variant. The vertical axis of a subplot is the log percentage change of a component with
respect to its input value, i.e. L≡100 loge(xresult/xinput)[centineper]. The two vertical dashed lines stands for the
x/R coordinates of the AMI inlet and outlet. The horizontal axis represents the longitudinal coordinate of the
computational domain, x, non-dimensionalised by the rotor radius, R=0.4[m]. To avoid the logarithmic singularity
in V and W since their input were zero, their values were shifted by Uo.

reasonably be deemed inconsiderable and spatially very local to the surroundings of the nacelle.

Likewise, for the non-rotating AMI case, all flow statistics were observed continuous through the

AMI region. Nevertheless, a closer look also revealed relatively tiny excursions across the interface
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Figure 9: Effects of the stationary and rotating arbitrary mesh interfaces (AMI), and the nacelle on the vertical y
and lateral z profiles of the time-averaged three-dimensional turbulence intensity Iu′

rms
under Iu′

rms
=20[%]. No blade

was present within the computations, no spatial averaging was performed, and the profiles pass through the hub
centreline. The vertical axes show the y and z coordinates normalised by the rotor radius, R=0.4[m]. The horizontal
axes stand for (x-xrotor)/R≡X/R where xrotor=2.4[m] is the rotor plane distance to the inlet, and thus Xrotor/R=0.0.
The horizontal dashed line illustrates the lateral coordinates of the AMI edges, and the dash-dot line those of the
nacelle. Horizontally, the AMI is present between X/R=[-0.35, 0.2625], and the nacelle between X/R=[-0.3275, 1.555].

sides, which could legitimately be attributed to the post-processing interpolation practice.620

However, four patterns were observed in the rotating AMI case. First, what stands out in Fig. 8,

which represents the maxima among all the computed longitudinal profiles, was the stepwise in-

crements and decrements of the statistics on the interfaces. Quantitatively, the amplitude changes

in {A}≡{U, V,W,
√
u′u′,

√
v′v′,

√
w′w′} at the AMI inlet were {A}≈{6, -4, 7, 6, 6, -10}[cNp], and at

the AMI outlet were {A}≈{-3, 4, -3, -6, -5, 10}[cNp]. Consequently, the longitudinal profiles ap-625

peared as discontinuous functions with discontinuities reside on the interfaces. Second, the statistics
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Figure 10: Effects of the stationary and rotating arbitrary mesh interfaces (AMI), and the nacelle on the two-temporal-
point longitudinal sample autocorrelation function, ρ̂xu[-], (the top subplots) and one-dimensional sample power
spectral density function, Êxu[m3s-2], (the bottom subplots). The time-series were probed at {y, z}={0.0, 0.2}[m]
and (x-xrotor)/R≡X/R positions where xrotor=2.4[m] is the rotor plane distance to the inlet, and thus Xrotor/R=0.0.
The horizontal axes of the top subplots represent the normalised spatial lag, m̃≡(U∆tm)/R where U=1.5[ms-1] is
the longitudinal mean flow speed, ∆t=0.00005[s] the time-step, and R=0.4[m] the rotor radius. Those of the bottom
subplots show the spatial wavenumber κ≡(2πf)/(U∆t)[m-1].

became more fluctuating per unit distance within the AMI region, albeit no amplitude increase, in

comparison to the rest of the flow field. The third result to emerge from the longitudinal profiles

was that the amplitude of the stepwise changes was generally in increase from the hub centreline to

the AMI circular cross sections (not shown). Last, these observations in the longitudinal direction630

were also made for the derived statistics such as the turbulent kinetic energy budget components

(not shown). Nonetheless, none of these observations seem to affect the flow field outside the AMI

region since the observations could not be repeated for the profiles passing by the sides of the AMI

region, and for its upstream/downstream.

Possible effects were also inspected in terms of the time-averaged three-dimensional turbulence635

intensity, Iu′
rms

. In Fig. 9, a representative set of results was demonstrated along the vertical and

lateral directions within the AMI neighbourhood. Similar to Fig. 8 observations, the only-nacelle

and non-rotating AMI cases were found to be ineffectual on Iu′
rms

. For the rotating AMI case,

however, two remarks which are only valid within the AMI region were made in confirmation

of Fig. 8 findings. Firstly, Iu′
rms

-discontinuities were detected on the interfaces, and secondly, the640

spatial frequency of Iu′
rms

profiles was increased alongside amplitude suppressions.
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In addition to the above amplitude-domain statistics, potential effects were also monitored in

terms of time-frequency characteristics. In Fig. 10, the sample autocorrelation functions, ρ̂xu, and

power spectral density functions, Êxu, were exemplified for the AMI neighbourhood. Inspections

consisting the time-series of approximately five-hundred probes throughout the domain revealed645

that almost no significant and structured differences between the cases were evident. The sole

exception occurred within the rotating AMI region as a form of overshoots in Êxu. As exemplified

in Fig. 10, these ‘kicks’ were triggered in the midst of the inertial-subrange spatial frequencies, and

mostly with relatively small amplitude. The frequency of the overshoots nearly corresponded to a

quarter of the rotational speed at the probe location; therefore, these might not be directly linked650

to the rotation.

The results imply for a flow field that the AMI rotation is somewhat influential inside an AMI

region and on its boundaries, particularly toward AMI edges, whilst the non-rotating AMI causes

virtually no effect. Also, the influence seems to be limited with the amplitude statistics, and

does not affect time-frequency characteristics. A possible explanation for this might be that the655

AMI rotation somehow causes traction on the incoming flow. The existence of such traction was

supported by the consistency between the direction of the amplitude changes in Fig. 8 (i.e. the top

part of the AMI, {y, z}={0.425, 0.0}[m]), and the rotational direction of the rotor. For instance,

through the AMI inlet, the changes in U and W were positive, and in V were negative with respect

to the coordinate systems shown in Fig. 1. Considering the rotor rotates in the clockwise direction660

seen from upwind, the rotation may generate a rigid-body-like vortex effect which could actuate

similar effects on approaching flow in the same directions (e.g. an induction of U into the AMI due

to a formed vorticity rotating clockwise). Through the AMI outlet, on the other hand, the directions

of the amplitude changes were reversed. From an observer point of view inside the AMI, however,

the stationary downstream domain rotates in the counterclockwise direction. This condition may665

be speculated to be the reason of the direction reversals. Although these remarks were observed

to be valid in the majority of profiles, various counterexamples where the directions of the rotor

and amplitude changes appear inconsistent were also identified. In consequence, despite the AMI

rotation’s effects were quantified in a tangible way, the generalisation of the remarks regarding its

causal role is considered to be premature, and further controlled studies need to be carried out.670
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Figure 11: Effects of the three-dimensional turbulence intensity on the time-averaged U field sampled along the
whole-domain vertical y (the top subplot) and lateral z directions (the bottom subplot) at numerous x cross sec-
tions. The U(y) and U(z) profiles pass through the nacelle centreline. The vertical axes show the Euclidean
distance of the U(y) and U(z) profiles at each X/R station with respect to the input flow speed, Uo=1.5[ms-1],
i.e. {di}{i∈{y,z}}=(

∑n
j=1(Uj-Uo)2)0.5 where n=200 is the number of probes uniformly distributed in a single y or z

profile. The levels of Euclidean distances for the z-direction are overall lower than those in the y-direction since the
numerical domain is larger in the z-direction, and therefore the contribution of the freestream inflow speed is higher
there. The horizontal axes demonstrate (x-xrotor)/R≡X/R where R=0.4[m] is the rotor radius, and xrotor=2.4[m] the
rotor plane distance to the inlet, hence Xrotor/R=0.0. The hatched rectangles indicate the presence of the AMI region
wherein the rotor resides. Note that the parts of the domain within 0.5R from the inlet and outlet were omitted in
the presentation.

3.3. Effects of three-dimensional turbulence intensity

Based on the three knowledge gaps identified in page 5 regarding interactions between inflow tur-

bulence intensity30 and HAMTs, analyses were attempted to address these gaps: i. by the isolation

of turbulence intensity as the sole control variable, ii. by considering a wider range of turbulence

intensity encompassing the field measurements illustrated in Table 1, and iii. by a scope of statistics675

broader than previously considered.

For this purpose, in this section, wall-modelled and actuator-line-modelled IFLES computa-

tions with the settings elaborated in §2 were conducted under decaying homogeneous isotropic

turbulence which involved four different inflow turbulence intensities, i.e. Iu′
rms

={0, 10, 20, 40}[%].

Representative results were presented by Figs. 11–A.22 and Table 8.680

To start with, in Fig. 11, the effects of Iu′
rms

on the time-averaged U(x) fields were demonstrated.

30 Henceforth, the term ‘turbulence intensity’ only refers to the three-dimensional turbulence intensity, Iu′
rms

.
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Therein, the Euclidean distances31 of U{y,z} profiles with respect to the input Uo were computed

for each x cross section, i.e. d{y,z}.

From the figure, in upstream of the rotor, two prominent observations were made. Firstly,

the approaching flow field began to sense the presence of the rotor at around 4R upstream as685

can be seen most apparently from the uniform inflow cases. The observation somewhat accords

with that of [126] who found the same parameter more than 6R in their model-scale wind turbine

experiments with 3% areal blockage ratio [126, p. 694] (in this study, 7.5%), and 4R in their actuator-

line computations [126, p. 694]. Secondly, in front of the rotor, the Euclidean distances of all cases

developed into a similar range irrespective of their Iu′
rms

content. This development of incoming U690

field occurred in a nonlinear fashion towards the rotor. For example, the d{y,z}-difference between

the AMI-Uniform and AMI-40 was nearly 5-6 whereas it was reduced to ∼1 at the AMI inlet. It may

be, therefore, possible to conceptualise that the rotor acts as a unit that assimilates various incoming

mean flow fields into a kindred field independent of their normal Reynolds stresses characteristics.

In downstream shown in Fig. 11, three other observations were noted. The first is a peak in d{y,z}695

that emerged around 2R in all cases. The rotor signature on the flow field seems to be predominant

over Iu′
rms

up to 2R since the rates and amplitudes of changes in U were similar in all cases. The

second is that, after 2R, the downstream development of d{y,z} predicted by each case started to

differentiate as a function of the corresponding Iu′
rms

: the increments in Iu′
rms

led to higher wake

recovery rates, which was frequently observed in the literature. The last is that, in the non-zero700

Iu′
rms

cases, the rate of U -recovery gradually declined, and levelled off. As a consequence, even at

19R downstream, the amplitude of d{y,z} of all the non-zero Iu′
rms

cases remained above that of the

Iu′
rms

=40[%] inlet values. The implication of this is that the rotor signature on the longitudinal flow

speed field is able to persist far downstream despite energetic turbulence entrainment.

As regards patterns between AMI and ALM, it was observed in Fig. 11 that the levels of d{y,z}705

were in general higher for ALM at 2R, and were in a faster decay. Both indicates higher level of

axial flow induction and more energetic turbulence entrainment mechanisms generated by ALM for

the same rotor. To allow further inspection of these mechanisms, time-averaged over-filter scale

fields of kinetic energy, kinetic energy production and enstrophy production were visualised on

the z-normal hub centreline plane in Figs. 12–14. Among them, enstrophy is mostly generated by710

31 It should be highlighted that the Euclidean distance does not show the direction of changes. Instead, it shows the
total absolute difference of a quantity with respect to a given input.
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Figure 12: Contour plots of the time-averaged over-filter scale kinetic energy fields, kofs[m2s-3], on the z-normal
hub centreline plane. The left subplots belong to the geometry-fitted wall-modelled approach computations (AMI),
and the right subplots the actuator-line modelled computations (ALM). Each row shows the input three-dimensional
turbulence intensity, Iu′

rms
. The vertical axes represent the numerical domain height y normalised by the rotor

radius, R=0.4[m], and the horizontal axes the normalised longitudinal distances, x/R. The colorbar of each subplot
is the same.

vortex stretching [127, p. 348], and its production may indicate regions where vortex stretching

is dominant. On the other hand, vortex stretching indicates the energy cascade wherein strain

gradients of mean velocity stretch vortex structures in parallel and antiparallel manners, usually

resulting in net vortex stretching. A stretched vortex elongates in length, yet shrinks its diameter

to preserve its mass. The conservation of angular momentum concurrently forces the vortex to spin715

faster, thus energising its neighbourhood mostly at smaller scales through traction. Considering this

chain of relations, one could expect higher enstrophy production results in higher levels of mean flow

energy transfer to heat dissipation. As can be seen in Fig. 14, for example, the enstrophy production

within the wakes of the ALM cases was qualitatively higher and more chaotic than that of the AMI
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Figure 13: Contour plots of the time-averaged over-filter scale kinetic energy production fields,
kProd= -{(u′)2}:∇U [m2s-3], on the z-normal hub centreline plane. The remaining figure particulars were summarised
in Fig. 12.

cases. Accordingly, the deeper wake deficits and faster recovery rates observed in the ALM cases720

could be linked to the enstrophy production mechanism. Furthermore, it is postulated that the

higher enstrophy production stemmed from ALM’s force exertion in amounts similar to AMI, yet

within a smaller space, likely caused an augmentation in velocity gradients around actuator points.

In view of enstrophy production’s dependency on vorticity (hence velocity) gradients, it could be

thought that ALM manifested its effect through this way.725

To reveal the direction of the changes (i.e. increments/decrements) in Fig. 11, the {y, z} profiles

of U at various x cross sections were set out in Figs. 15–17 for the upstream, immediate aft, and

downstream of the rotor, respectively.

In the upstream stations of Fig. 15, the U -profiles of the non-zero Iu′
rms

cases gradually lost
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Figure 14: Contour plots of the time-averaged over-filter scale enstrophy production fields, EProd= -{(ω′ · u′) :
∇Ω} [s-2] where ω′=∇×u′ is the over-filter scale vorticity [s-1], and Ω the time-averaged vorticity. The remaining
figure particulars were summarised in Fig. 12.

their fluctuation features and virtually converged to a common form towards the rotor by slowing730

down (previously observed in Fig. 11). At -0.5R, the common form was in a Gaussian shape with

its maximum velocity deficit was around 15-25[cNp]. Also, its lateral size roughly exceeded the

alignment of the rotor diameter by nearly 1R in the z-direction and by 0.5-0.75R in the y-direction

(likely due to the domain constraint). Nonetheless, the signatures of Iu′
rms

remained apparent at

the sides of the U -profiles. Lastly, the AMI-ALM comparison exhibited no considerable/structural735

differences except that ALM-Uniform yielded slightly deeper U -reduction at -0.5R (previously

observed in Fig. 11).

Although the predictions for the immediate aft region are likely not of importance to downstream

turbines, some model developments may utilise the findings. With this motivation, six general
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Figure 15: Effects of the three-dimensional turbulence intensity on the time-averaged U -profiles along the vertical
y and lateral z directions, upstream of the rotor. The profiles pass through the hub centreline, and are shown in
the units of the log percentage change of U with respect to Uo=1.5[ms-1], i.e. L≡100 loge(U/Uo) centineper. The
horizontal dashed line shows the lateral coordinates of rotor tip, and the dash-dot line those of the nacelle. The
remaining figure particulars are given in Fig. 11.

patterns were identified in Fig. 16: Firstly, a double-Gaussian form with its maxima approximately740

at the mid-blade radius was observed in all cases for the speed deficit shape. Secondly, the form

possessed qualitatively-some asymmetry in the ALM cases whereas a higher degree of symmetry

appeared in the AMI cases. Thirdly, on the question of the amplitudes of the speed deficits, the

deficits were found nearly the same for all the AMI cases at 0.5R with a ∼-50[cNp] peak. For the

ALM cases at 0.5R, on the other hand, the deficits were ∼-10[cNp] deeper, and were somewhat in745

variation with Iu′
rms

. Towards 2R, these peaks were deepened by ∼-5[cNp] per 0.5R for each case.

When the flow completely left the nacelle at 2R, the peaks were shifted toward the nacelle centreline

and Iu′
rms

manifested its effects in a nonlinear manner thereat. As an example, the centreline deficit
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Figure 16: Effects of the three-dimensional turbulence intensity on the time-averaged U -profiles along the vertical y
and lateral z directions in the immediate aft of the rotor. The hatched rectangles indicate the presence of the nacelle.
The remaining figure particulars are given in Fig. 11.

was decreased from∼-20-(-40)[cNp] to -40[cNp] through the addition of Iu′
rms

=10[%] on the uniform

inflow cases whereas both Iu′
rms

=20[%] and Iu′
rms

=40[%] cases produced -50-(-60)[cNp] despite the750

doubling of Iu′
rms

.

Further downstream, Fig. 17 showed the U-{y, z} profiles at between 3R and 13R with intervals

of R. In the non-zero Iu′
rms

cases, the double-Gaussian form convected from the immediate wake

was dissolved by 3-4R while this form was preserved in the uniform inflow cases till 11R. At 3R,

the maxima of the U deviations with respect to the input Uo were ranged between ∼-40-(-90)[cNp]755

for the non-zero Iu′
rms

cases, and were declined to ∼-20-25[cNp] at 13R. Furthermore, the rate

of recovery considerably slackened and subsequently levelled out in the non-zero Iu′
rms

cases after

reaching -20[cNp] with respect to the input Uo. A curious finding stemmed from these observations
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Figure 17: Effects of the three-dimensional turbulence intensity on the time-averaged U -profiles along the vertical y
and lateral z directions, downstream of the rotor. The remaining figure particulars are given in Fig. 11.

was that the wake recovery rate varied with the downstream distance obeying a half-Gaussian

function to a certain extent. This can be exemplified by the AMI-20 and AMI-40 cases. For the760

former, the peak speed deficit at the stations of {3, 5, 7, 9, 11, 13}[R] was approximately negative

{60, 60, 50, 40, 20, 20}[cNp], respectively, and for the latter negative {60, 40, 30, 20, 20, 20}[cNp]. As

can be deduced from a projection of these patterns, the peak deficits remained at a constant level

before they fell quickly, and consecutively levelled off again. It can thus be suggested within the

current scope that the wake recovery rate with respect to the downstream distance approximately765

follows a half-Gaussian-form. Last but not least, the ALM cases were detected to be generally

recovering faster than the AMI cases from this perspective as well in addition to the aforementioned

similar observations. For instance, the peak U -deviations at 3R were nearly 90[cNp] and 65[cNp]
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Figure 18: Longitudinal profiles of the normal components of the time-averaged Reynolds stress tensor. The results
were first sampled in the vertical y and lateral z direction within -R≤{y, z}≤R at various x cross sections, and were
subsequently arithmetic-averaged. The remaining figure particulars were given in Fig. 11.

for the ALM-10 and AMI-10 cases in turn. However, the ALM-10’s peak U -deviation reached the

level of the AMI-10 at 5R and continued to yield lower deviations in the remaining downstream.770

With regard to velocity fluctuations, Fig. 18 compared Iu′
rms

effects on the longitudinal profiles

of the time-averaged Reynolds stress tensor’s normal components. Three prominent behaviours

were identified in this figure. First, immediate decreases were observed in the normal components

at the first node, which were more distinct in the lateral components. This behaviour was identified

as an inherent feature of the current version of the inflow model being utilised (§2.1.3), and was775

quantitatively elaborated in [28] with its reasons. Second, the rotor was observed to act as a

filter that changes the decay rates of the normal components, and shapes them in a way that the

evolvement of the components unifies downstream. The evidence can be seen in the figure that all
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Figure 19: Effects of the interactions between the turbine and different upstream (three-dimensional) turbulence
intensities on the downstream time-averaged turbulence intensity profiles, Iu′

rms
[%], along the vertical y and lateral

z directions. The x-limits of the subplots of X/R≥9 are zoomed in to ease the parsing of the details therein. The
remaining figure particulars are given in Fig. 11.

the normal components in all cases roughly converged into a band between 0.15-0.25[ms-1] until

5R, and the band was further narrowed to a range of 0.05[ms-1] at 10R independently from the780

input Iu′
rms

. Moreover, as can be seen from the adjacent neighbourhood of the rotor in Fig. 18,

the rotor also reduced the amplitude of the normal components in proportion to their incoming

amplitudes, i.e. higher the initial amplitude, higher the dampening effect within the immediate aft

of the rotor. Lastly, no significant difference in either amplitude or pattern was found between the

AMI and ALM cases of the same Iu′
rms

.785

In examination of the above, {y, z} profiles of Iu′
rms

along the downstream of the rotor were

illustrated in Fig. 19. Most of the remarks related to the longitudinal speed deficits shown in Fig. 11

were found to be valid for Iu′
rms

as well. First of all, the profile patterns of Iu′
rms

were monitored
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Table 8: The total force and moment components in and about the axial direction exerted on the blades, i.e.
Fx[m4s-2] and Mx[m5s-2], obtained from the geometry-fitted wall-modelled approach computations (AMI) with four
different input three-dimensional turbulent intensities, Iu′

rms
. µ̂1 is the sample mean,

√
µ̂2/µ1 the sample coefficient

of variation, µ̂2 the biased sample standard deviation, γ̂1 the biased sample skewness, and γ̂2 Fisher’s biased sample
kurtosis. The results were rounded to three decimal places.

Iu′
rms

µ̂1

√
µ̂2/µ̂1 Min Max γ̂1 γ̂2

Fx

0% 0.437 0.000 0.437 0.438 -0.001 0.045
10% 0.442 0.087 0.099 0.601 -0.022 -0.273
20% 0.436 0.169 -0.380 0.725 0.062 -0.147
40% 0.430 0.282 -0.420 2.434 0.193 0.567

Mx

0% 0.0174 0.000 0.017 0.018 0.349 4.446
10% 0.0180 0.141 0.010 0.026 0.079 -0.613
20% 0.0181 0.271 0.000 0.034 0.278 -0.592
40% 0.0182 0.400 -0.009 0.06 0.733 0.432

to be somewhat corresponding to the speed deficits, albeit possessing smoother trajectories in

general. However, an exception was also observed within these similarities: The Iu′
rms

profiles were790

generally asymmetric in the y-direction to some degree due to the lower Iu′
rms

levels along the

bottom side of the rotor unlike the speed deficit profiles. This result could be explained by the

fact that the nacelle centreline was located closer to the top boundary, and the blockage ratio of

the upper side is higher than that of the lower side of the domain. Slightly different effects of the

asymmetric positioning of the rotor on U and Iu′
rms

imply that uneven side blockage ratios may795

have more impact upon turbulent fluctuations than the mean flow. In terms of amplitude levels,

Iu′
rms

of all cases approximately converged onto the same level within the alignment of the rotor

diameter qualitatively at around 7-8R and convected downstream in unison. Nevertheless, outside

of this alignment the Iu′
rms

profiles stayed different within a range of ∼8[cNp]. Additionally, Iu′
rms

within the alignment was observed to remain higher with respect to Iu′
rms

convecting through the800

sides. According to this observation, it can be inferred that the rotor signature on turbulence

intensities is also able to preserve itself downstream in addition to the similar observation made

for U in Fig. 11. By way of illustration, Figs. 13 and 14 exemplified in the same vein that over-

filter scale kinetic energy and enstrophy production regions generated by the blade tips stretching

downstream distances an order of magnitude farther than the blade radius; implying the underlying805

mechanisms why the rotor signature could remain in defiance of high freestream Iu′
rms

. Lastly, as far

as the differences between the AMI and ALM cases are concerned, no particular pattern significant

in regard to engineering purposes was detected for Iu′
rms

downstream evolvement except that the

47



0.0

0.5

1.0

1.5

U
Iu′rms=10%

AMI-10%
AMI-20%

AMI-40%
Jensen

Frandsen
Larsen

Bastankhah
Werle

Tian
Brutto

Ishihara
Lam

0.0

0.5

1.0

1.5

U
Iu′rms=20%

6 8 10 12 14 16 18 20 22 24
x/R

0.0

0.5

1.0

1.5

U
Iu′rms=40%

Figure 20: Time-averaged longitudinal U -profile predictions of the geometry-fitted wall-modelled arbitrary-mesh-
interface approach (AMI) and nine analytical wake models (§ Appendix A.2) along the hub centreline downstream
of the rotor. The vertical axis of each subplot represents U -magnitude belonging to a case with different three-
dimensional turbulence intensity, Iu′

rms
={10, 20, 40}[%]. The horizontal axes demonstrate the rotor-radius-normalised

longitudinal distance x starting from the rotor plane, where R=0.4[m].

ALM-10’s Iu′
rms

-profile around the centreline was consistently higher than the AMI-10’s Iu′
rms

-profile

until 8R.810

In the case of rotor performance, effects of Iu′
rms

on longitudinal forces and moments of the

rotor were investigated through six descriptive statistics, and the obtained results were summarised

in Table 8. What can be seen in this table is the consistent relations between Iu′
rms

and the

statistical moments. As regards trends between forces/moments and Iu′
rms

excluding the laminar

inflow case, it was found out that the sample coefficient of variation, skewness, kurtosis, and maxima815

of total forces/moments were increasing functions of Iu′
rms

while their sample mean32 and minima

were decreasing with increasing Iu′
rms

. These relations were, however, somewhat nonlinear with

monotonically decreasing rate of change. For example, from Iu′
rms

=10[%] to Iu′
rms

=20[%]
√
µ̂2/µ1

was increased by ∼64[cNp] whilst from Iu′
rms

=20[%] to Iu′
rms

=40[%] the increase was contended

32 Except the sample mean of moments which scantly increased with Iu′
rms

.
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Figure 21: Time-averaged lateral-z-direction U profiles at eight x cross-sections from the geometry-fitted wall-
modelled arbitrary-mesh-interface approach (AMI) and nine analytical wake models (§ Appendix A.2). The
profiles pass through the hub centreline. Each row demonstrates a three-dimensional turbulence intensity,
Iu′

rms
={10, 20, 40}[%]. The horizontal axes show (x-xrotor)/R≡X/R where xrotor=2.4[m] is the rotor plane distance

to the inlet, and R=0.4[m].

with ∼51[cNp]. Closer inspection of the table also showed that although decrements occurred in820

µ̂1 with increasing Iu′
rms

, the level of decrements could be deemed inconsiderable relative to the

mean itself. As an example, from Iu′
rms

=10[%] to Iu′
rms

=40[%], the decrement in µ̂1 was ≈-2.8[cNp].

This almost constancy in µ̂1 could be related to the unifying effect of the rotor on longitudinal

mean speed profiles with different Iu′
rms

, previously observed in Fig. 11 at immediate upstream and

downstream. The observations for µ̂1,
√
µ̂2/µ̂1, minima and maxima are in general in line with825

the literature moderately overviewed in §1. Nonetheless, to the authors’ knowledge, no comparable

data was found in the literature for skewness and kurtosis. Assuming the validity of the information

obtained herein for γ̂1 and γ̂2, the positiveness in γ̂1 with an increasing trend indicates that above-
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mean force/moment fluctuations occurred more frequently than the below-mean fluctuations in

parallel to the increments in Iu′
rms

. An important implication of this is that sudden, brief and strong830

excursions such as gusts that a turbine may experience become more likely to happen in higher

Iu′
rms

inflows. Moreover, the trend in forces/moments from platykurtic to leptokurtic distribution

with increasing Iu′
rms

, i.e. γ̂2<0→ γ̂2>0, meant that flow excursions began to accumulate at distinct

spatial and temporal locations throughout flow field leaving more space for lulls. In consequence,

however, fluctuation slicings of the rotor became more abrupt with higher Iu′
rms

, hence potential835

adverse effects on rotor structure.

Finally, the time-averaged longitudinal flow speed results from the downstream of the AMI cases

were compared with twelve analytical wake models in order to assess certain aspects of engineering

design tools via high-fidelity research tools under Iu′
rms

variation. The analytical models comprised

the majority of the models being reported in the wind and marine turbine literature, and were com-840

puted with their default settings although calibration of the models for a certain case is the proper

approach in practical applications. Consequently, preliminary computations revealed at the outset

that the models from [49], [48], and [51] were found to be incompatible with the current turbine

setup and conditions; therefore, they were left out from the following analyses. The remaining nine

models were computed using Iu′
rms

={10, 20, 40}[%], and their predictions for the time-averaged lon-845

gitudinal U -profiles and lateral-z-direction U -profiles were respectively presented in Figs. 20 and 21

alongside the corresponding AMI cases.

In Fig. 20, seven generic observations were made. First of all, Werle’s model [43] within R

immediately saturated to the freestream speed in all scenarios. Second, till 10R, the models half-an-

half overpredicted and underpredicted the AMI-10 whilst the increments of Iu′
rms

directed them to do850

more overpredictions. Third, within 6-10R range, the first three models yielded the closest outcome

to the AMI cases were realised as: {Lam, Jensen,Larsen}Iu′
rms

=10%, {Lam, Ishihara, Jensen}Iu′
rms

=20%,

and {Lam, Ishihara,Tian}Iu′
rms

=40%, respectively. After 10R, all the models almost always made

overpredictions, and produced similar rate of change of U . From this downstream location, the list

of the models for the closest prediction became: {Jensen,Bastankhah,Larsen}Iu′
rms

=10%, {Tian,Lam,855

Frandsen}Iu′
rms

=20%, and {Lam, Ishihara,Tian}Iu′
rms

=40%, respectively. Lastly, Lam et al.’s model [47]

exceeded the freestream speed as can be seen between 22R and 24R far downstream.

The U -profile prediction capabilities of the models in the lateral direction were shown in Fig. 21.

The figure revealed that Lam et al.’s model, Tian et al.’s model and particularly Ishihara-Qian’s
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model yielded considerably high level of resemblance with the AMI profiles in terms of shape and860

amplitude levels in each x cross sections for each Iu′
rms

input. In contrast, the remaining models

either could not predict the maximum speed of the deficits or the profile trajectories. As an example,

Frandsen, Larsen and Jensen models generated step profiles rather than a bell-curve.

Overall, these results indicated that Lam et al.’s model [47] performed relatively superior. This

result may be explained by the fact that Lam et al.’s model was derived and calibrated based865

on a model-scale HAMT experiment [47, Table 1]. This finding, while preliminary, highlights

the importance of the resemblance between the turbine-flow particulars at hand, and the analytical

model’s derivation particulars. In addition, it can be deduced that Tian et al.’s model [46] performed

relatively well in the Iu′
rms

={20, 40}[%] cases, and Ishihara-Qian’s model [52] for the lateral wake

profile predictions. Considering both models used wind turbines in their derivations, yet performed870

decently for the marine turbine herein, it can be inferred that wake deficit behaviour for wind and

marine turbines is likely very similar.

4. Conclusions

The main aim of this study was to explore interactions between a typical model-scale marine

turbine and three-dimensional turbulence intensity in isolation by minimising other aspects of tur-875

bulence.

For this purpose, a rigid experimental horizontal axis marine turbine [24] was numerically inves-

tigated under decaying homogeneous isotropic turbulence in absence of its tower. Twelve controlled

computations were carried out via wall-modelled & actuator-line-modelled implicitly-filtered large

eddy simulations wherein the turbulence intensity was the control variable. Initially, with the four880

of the computations in which the rotor was excluded, the effects of the arbitrary mesh interface

technique [71] and the presence of a nacelle on flow field predictions were examined (§3.2). The

remaining eight computations focused on the examination of the way the three-dimensional turbu-

lence intensity, Iu′
rms

, affects the rotor and flow fields (§3.3). Therein, four turbulence intensities

were considered: Iu′
rms

={0, 10, 20, 40}[%]. Lastly, twelve analytical wake models were reviewed and885

evaluated in comparison to the wall-modelled computations under the same range of turbulence

intensities (§3.3).

Ultimately, this study has identified the following prominent pockets of knowledge:
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• The arbitrary mesh interface technique (AMI) adversely affected AMI-traversing flow field’s

amplitude-based statistics such as mean velocity, Reynolds stress tensor, and turbulence in-890

tensity when the AMI was in rotation.

– The rotating AMI caused flow field discontinuities on the AMI boundaries.

– The flow field within the AMI region was differed in comparison with its surrounding to

some extent, e.g. fluctuations per distance were increased within the AMI region.

– The adverse effects were increased outwards from the AMI centre.895

– The rotating AMI did not adversely affect time-based statistics such as power spectral

density functions.

– The non-rotating AMI did not alter the flow field.

• Longitudinal mean speed field, U -field, started to be affected by the presence of the rotor

approximately 4R upstream of the rotor.900

• Maximum deviation of U -fields with respect to the freestream Uo occurred at around 2R

downstream of the rotor irrespective of the freestream Iu′
rms

.

• Wake recovery rates in terms of wake Iu′
rms

and wake U -field were increasing functions of

freestream Iu′
rms

.

• Wake recovery rates with respect to downstream distance varied in a half-Gaussian-form905

irrespective of the freestream Iu′
rms

, i.e. a consecutive pattern of gradual-steep-gradual rate of

change.

• Incoming U -fields with different Iu′
rms

lost their fluctuation features towards the rotor and

became indistinguishable immediately in front of it.

• Incoming U -fields with different Iu′
rms

also became indistinguishable starting at around 6-10R910

downstream and within the alignment of the rotor, yet almost always remained different from

freestream despite turbulence entrainment.

• The effects of the rotor on each normal component of the Reynolds stress tensor were in

the same manner. The rotor altered the decay rate of the components, and reduced their

amplitudes in proportion to the freestream Iu′
rms

.915

• Almost no significant differences were found between the wall-modelled and actuator-line

modelled computations in terms of the statistics quantified in this study. An exception was

that ALM with the settings being used herein usually generated more chaotic wake flow.

• The coefficient of variation, skewness, kurtosis and maxima of longitudinal forces/moments
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acting on the rotor blades were quantified to be increasing functions of Iu′
rms

whereas the920

mean and minima were found to be inversely varying with Iu′
rms

.

• The analytical wake models of Lam et al. [47], Tian et al. [46], and Ishihara-Qian [52] were

quantified to be superior to the other models studied in terms of U -profile shape and amplitude

predictions.

Further work needs to be carried out in the following three subjects to establish whether the925

concluding remarks drawn in this study are generalizable: isolated effects of i. the longitudinal,

lateral and vertical turbulence intensities, ii. the integral length scales, and iii. cross components

of the Reynolds stress tensor.
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Appendix A. Appendix

Appendix A.1. Menter et al.’s wall model algorithm

Input: νt, νb, (∇nu)b, y, U, Nb
Output: uτ,final
for i = 0, . . . , Nb do

uτ= (((νt)i+(νb)i) |(∇nu)b|i)0.5

if |uτ>ξ| then
ε=GREAT
j=0

while j<10 and ε>0.001 do
y+=yi uτ(νb)i

uτ,vis=Uiy+
uτ,log= κUi

log(E y+)

uτ,new=(unτ,vis+u
n
τ,log)n

-1

ε= |uτ-uτ,new|
uτ+ξ

uτ=0.5 (uτ+uτ,new)

end

end
(uτ,final)i=uτ

end

Algorithm 1: Menter et al.’s [81] wall model algorithm [26]. uτ is the friction velocity [ms-1],
Nb number of grid faces on the corresponding boundary, νt turbulent kinematic viscosity on
the boundary [m2s-1], νb fluid kinematic viscosity on the boundary, (∇nu)b velocity gradient
normal to the boundary [s-1], ξ the smallest floating-point value, GREAT inverse of the machine
epsilon, ε an error parameter, y wall-normal distance of the first off-the-wall node [m], uτ,vis
and uτ,log respectively the model contributions from the viscous sub-layer and logarithmic law
equations, n=4 a model coefficient, U magnitude of the planar velocity of first off-the-wall node
(i.e. the wall-normal component is converted to zero) [ms-1], κ=0.41 von Kármán’s constant,
and E=9.8 a wall roughness parameter for smooth walls.

Appendix A.2. Analytical wake models

In the pages that follow, twelve non-yawed horizontal-axis-turbine analytical wake models from

the literature were chronologically presented: i.e. [41–52]. The models were viewed as black boxes;1280

hence, only their explicit formulae were presented alongside with the fundamental theory and major

building-block assumptions that their derivations are based upon. All the models share the follow-

ing notations and assumptions: x represents the horizontal distance to the rotor plane, r the radial
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distance to the hub centreline, uw the longitudinal (i.e. no lateral component) wake speed, uf the

longitudinal mean freestream speed, CT the rotor thrust coefficient, D the rotor diameter, Dw the1285

wake diameter, R the rotor radius, Rw the wake radius, A≡πR2 the rotor area, and Ia≡urms u
-1
f

the ambient turbulence intensity [-] with urms≡(3-1(u′2x +u′2y +u′2z ))0.5 the root-mean-square of fluc-

tuations. As common assumptions in the models, the predicted flow dynamics is time-invariant,

and inflow is longitudinally and radially-uniform.

Appendix A.2.1. Jensen’s model1290

The basis [41]: Mass conservation [45, p. 117] rather than momentum conservation as stated

in [41, p. 5].

Prominent assumptions: [41, Fig. 1], i. Constant wake speed in the radial direction, ii. linear

and free wake expansion [41, p. 5, 8], iii. no near-wake region [41, p. 5], and iv. immediate wake

diameter is equal to D [128, p. 408].1295

Governing equations [41, Eq. 2, Fig. 1]:

uw(x) =uf

{
1-2a

(
R

R+βx

)2
}

and Rw(x) =R+βx (A.1)

where a is the axial induction factor [-] presumed to be equal to 0.5(1-(1-CT)0.5) [128, p. 408], and

β the wake-decay constant whose value was variously estimated as, for instance, 0.04-0.075 [129,

p. A-3] or 0.4σuhub/uhub [130, Eq. 6], and uhub the hub height instantaneous longitudinal inflow

speed.

Appendix A.2.2. Frandsen’s model1300

The basis [42]: Mass and momentum conservation in a cylinder control volume [42, p. 40-41,

Eq. 1].

Prominent assumptions: i. Axisymmetric, self-similar, and immediately expanding wake [42,

p. 41, 42].

Governing equations [42, Eq. 11, 13]:

uw(x) =uf
{

0.5 + 0.5(1-2AA-1
w CT)0.5

}
and Dw(x) =D(βk/2+αxD-1)1/k (A.2)

where Aw(x)=0.25πD2
w is the wake cross-section area, β a parameter governing the initial wake1305
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expansion rate as β=0.5(1+(1-CT)0.5)(1-CT)-0.5 [42, Eq. 10], k a factor for the wake expansion

order - by default k=2 [42, p. 43], and α a constant to be evaluated experimentally [42, p. 43], yet

can be estimated as α=βk/2[(1+2αnxD-1)k-1]Dx-1 with αn≈0.05 [42, Eq. 15].

Appendix A.2.3. Werle’s model

The basis [43]: Biot-Savart law, Prandtl’s turbulent shear layer model, and Prandtl-Swain’s1310

axisymmetric wake analysis for near-, intermediate-, and far-wake regions, which are interlinked,

respectively.

Prominent assumptions: i. Axisymmetric wake [43, p. 6], and ii. distinct assumptions-

derivations valid for near-, intermediate- and far-wake regions.

Governing equations [43, Eq. 11a, 11b, 12a, 12b]:

uw=

1+0.5(1-u∞)
{

1+2x(1+4x2)-0.5
}

if x<xm

1-(1-um)
{

(x-xm)(2-2um)1.5C-0.5
T +1

}-2/3 if x>xm
(A.3)

Dw=

D
{

0.5(1+u∞)u-1w
}0.5 if x<xm

Dm

{
CT(x-xm)(DmD-1)-3+1

}1/3 if x>xm
(A.4)

where {·}m is a subscript that denotes the downstream location, xm, where the near-wake sub-1315

model is coupled with the far-wake sub-model, xm=xi+kmD∞(1+u∞)D-1(1-u∞)-1 the location of

the coupling [43, Eq. 10], xi the outset location of the intermediate wake region assumed to be

2.0 [43, p. 6], km a model variable [43, p. 6] with a possible value 0.1, D∞=D
{

0.5(1+u∞)u-1∞
}0.5

the wake diameter at the downstream infinity [43, Eq. 2b], u∞=(1-CT)0.5 the non-dimensional flow

speed at the downstream infinity [43, Eq. 4a], um=1+0.5(1-u∞)
{

1+2xm(1+4x2
m)-0.5

}
the centreline1320

flow speed at the location m [43, Eq. 11c], and Dm=D
(
0.5(1+u∞)u-1m

)0.5 [43, Eq. 12c].

Appendix A.2.4. Larsen’s model

The basis [44]: Incompressible, homogeneous, thin shear layer approximated Navier-Stokes

equations [44, p. 7-8].

Prominent assumptions: i. Axisymmetric [44, p. 7] and self-similar [44, p. 8] wake, ii. empir-1325

ical boundary conditions [44, p. 8-9], iii. the model is a summation of a first-order and second-order

approximations; however, the latter contribution is neglected with a justification that it is not of
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importance for power farm computations.

Governing equations [44, Eq. 11, 3]:

uw(x, r) = -uf 9-1
{

CTA(x+xo)-2
}1/3

[
r1.5

{
3c21CTA(x+xo)

}-0.5
-(35(2π)-1)3/10(3c21)-0.2

]2
(A.5)

Rw(x)=
{

105c21(2π)-1
}0.2 {CTA(x+xo)}1/3 (A.6)

where xo is a parameter defined as xo=9.6D{(2R9.6(kD)-1)3-1}-1 [44, Eq. 5], c1 another parameter as

c1=(0.5kD)2.5{105(2π)-1}-0.5(CTAxo)
-5/6 [44, Eq. 6], k=(0.5(m+1))0.5 [44, Eq. 7], m=(1-CT)-0.5 [44,

Eq. 8], and R9.6 the 9.6D downstream wake radius which was empirically approximated as:

R9.6=a1 exp(a2C2
T+a3CT+a4)(b1Ia+1)D (A.7)

with a1=0.435449861, a2=0.797853685, a3=-0.124807893, a4=0.136821858, and b1=15.6298 [44, Eq. 10].

Appendix A.2.5. Bastankhah-Porté-Agel’s model1330

The basis [45]: Mass and momentum conservation [45, p. 118].

Prominent assumptions: i. Gaussian-form wake in the radial direction [45, p. 118], ii. linear

wake expansion [45, p. 118], and iii. axisymmetric, self-similar wake [45, p. 118].

Governing equations [45, Eq. 23]:

uw(x, y, z) =uf-uf
(

1-
{

1-0.125CT(k∗xD-1+0.2β0.5)-2
}0.5

)
exp

(
-0.5(k∗xD-1+0.2β0.5)-2

{
(z-zh)2D-2+y2D-2}) (A.8)

where k∗ signifies the wake growth rate for which a relation was given by [131, Eq. 15] as k∗=0.3837 Ia

+0.003678 for 0.065<Ia<0.15, β=0.5
{

1+(1-CT)0.5
}

(1-CT)-0.5 [45, Eq. 6], and zh the hub height [45,1335

p. 118].

Appendix A.2.6. Tian et al.’s model

The basis [46]: Jensen’s model [46, p. 91].

Prominent assumptions: i. Cosine-form wake in the radial direction [46, p. 91], and ii. a

heuristic relation between the wake turbulence intensity and x, CT, Ia [46, p. 92].1340
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Governing equations [46, Eq. 10]:

uw(x, r) = (uf-uJ) cos[π rR-1
J +π]+uJ (A.9)

where uJ and R-1
J are respectively the wake deficit speed and diameter from the original Jensen’s

model computed by a new expression for its βJ as βnew=(kn CT Dx-1+Ia)βJI
-1
a [46, Eq. 14, 15], and

kn a constant kn≤0.4 [132, p. 7].

Appendix A.2.7. Lam et al.’s model

The basis [47]: Ship propeller jet theory and axial momentum theory [47, p. 512].1345

Prominent assumptions: i. Gaussian-form wake in the radial direction [47, p. 515], and ii.

the final form of the model heavily rely on measurements from a particular turbine.

Governing equations [47, Table 4]:

uw,min(x)=



ue(0.0106xD-1+1.0351) if xD-1≤4 and Ia=3%

ue(0.1505xD-1+0.8597) if xD-1≤4 and Ia=15%

ue(0.1123xD-1+0.5826) if xD-1>4 and Ia=3%

ue(0.0372xD-1+1.4085) if xD-1>4 and Ia=15%

(A.10)

where ue=uf (1-CT)0.5 [47, Table 4] is the efflux speed, which is the minimum speed of lee flow

adjacent to the rotor [47, p. 513]. The radial distribution of the wake deficit, uw(x, r), is defined as

uw=uf-(uf-uw,min) exp(A) with A(x, r):

A(x, r)=



-0.5
{

(r-Rmo) (0.5Rmo+0.065(x-R))-1
}2 if 1.2D<x≤3.0D and Ia=3%

-0.5
{
r (0.5Rmo+0.095(x-R))-1

}2 if 1.2D<x≤3.0D and Ia=15%

-0.5
{
r (0.065(x-R))-1

}2 if x>3.0D and Ia=3%

-0.5
{
r (0.095(x-R))-1

}2 if x>3.0D and Ia=15%

(A.11)

where Rmo=0.067(R-Rh) the radial location of the efflux speed [47, Table 4], and Rh the hub radius.

Appendix A.2.8. Lo Brutto et al.’s model

The basis [50]: Jensen’s model [50, p. 347].1350
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Prominent assumptions: i. Exponential-form wake expansion [50, p. 356], ii. Gaussian-form

wake in the radial direction [50, p. 357]

Governing equations [50, Eq. 9]:

Rw(x) =R c {5.58(1- exp[-0.051xD-1])+1.2} (A.12)

with c(Ia) = -15.542I2
a+21.361Ia+0.2184 [50, Eq. 11].

Appendix A.2.9. Xiaoxia et al.’s model

The basis [49]: Jensen’s and Tian et al.’s models.1355

Prominent assumptions: i. Gaussian-form wake in the radial direction [49, p. 193].

Governing equations [49, Eq. 12]:

uw(x, r) =uf-5.16 (uf-uJ) (2π)-0.5 exp[-0.5 r2 (Rw/2.58)-2] (A.13)

where the notations stated for Tian et al.’s model Appendix A.2.6 can be directly used except

βnew=(kn CT (xD-1)-0.5+I0.5
a )2βJI

-1
a .

Appendix A.2.10. Keane et al.’s model

The basis [48]: Mass and momentum conservation with respect to the actuator disk theory,1360

Jensen’s and Bastankhah-Porté-Agel’s models [48, p. 1].

Prominent assumptions: i. Double-Gaussian-form wake in the radial direction [48, p. 1].

Governing equations [48, Eq. 22, 15, 5, 13]:

uw(x, r) =uf {1-c F (x) f(r, σ(x))} (A.14a)

F (x) =λ+(λ2- 0.5ψCTD2)0.5 (2ψ)-1 (A.14b)

f(r, σ(x)) = 0.5{exp(E+)+ exp(E-)} (A.14c)

λ = 2σ2 exp(-0.5τ2)+(2π)0.5aσ{erfc (τ2-0.5)-1} (A.14d)

ψ =σ2 exp(-τ2)+0.5π0.5aσ{erfc (x)-1} (A.14e)

where τ=Roσ
-1 [48, Eq. 13] with Ro=0.75R [48, p. 7], σ=k∗x1/3+ε [48, Eq. 16], E±=-0.5σ-2(r±R)2 [48,

Eq. 5], and c, a, k∗ and ε constants that can be estimated by using [48, Tab. 1] according to the
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specific operational-environmental conditions.1365

Appendix A.2.11. Pyakurel et al.’s model

The basis [51]: Jensen’s and Ainslie’s models [51, p. 122].

Prominent assumptions: i. Gaussian-form wake in the radial direction [51, p. 115].

Governing equations [51, Eq. 5, 6, 8]:

u(w, r) =uf-ufu∗w exp{-3.56(0.5rR-1b-1)2} (A.15a)

b = {0.445CTu
∗
w
-1(1-0.5u∗w)-1}0.5 (A.15b)

where u∗w is uw(x) of Jensen’s model A.1.

Appendix A.2.12. Ishihara-Qian model1370

The basis [52]: Mass and momentum conservation [52, p. 289-291].

Prominent assumptions: i. Gaussian-form wake in the radial direction [52, p. 283], and ii.

axisymmetric, self-similar wake [52, p. 282].

Governing equations [52, Tab. 2]:

uw(x, y, z) =uf-uf
{
a+bxD-1+c(1+xD-1)-2

}-2
exp

(
-0.5r2σ-2

)
(A.16)

where a, b, and c are placeholders for the sub-expressions [52, Tab. 2]: a=0.93C-0.75
T I0.17

a , b=0.42C0.6
T I0.2

a ,

and c=0.15C-0.25
T I-0.7a ; σ(x)=k∗x+εmD the representative wake width, k∗=0.11C1.07

T I0.20
a the wake1375

growth rate, and εm=0.23C-0.25
T I0.17

a a model parameter.
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Appendix A.3. Actuator line model pseudo-algorithm

Input: Polar data, rotor operational data, blade geometric data and computation settings.
Initialise u, p and cell-search sub-regions;
Initialize actuator points and find surrounding cells;
while Run time < Computation end time do

Obtain u and p at actuator points;
Compute forces by the BET;
Rotate actuator points, and find new surrounding cells;
Project force fields onto the flow field;
PISO;
Output desired information;
Advance in time;

end
Algorithm 2: The implemented actuator line model pseudo-algorithm.

Appendix A.4. Tip-root correction methods

The tip and root corrections are applied by multiplying their factors with lift and drag forces.

Appendix A.4.1. Goldstein-Wellicome’s tip loss correction1380

Goldstein-Wellicome’s tip loss correction can be read in [133, p. 346]:

Ftip =


1.0 if tan(φ) < 0.001 or g > 85.0

2

π
cos-1

{
cosh(rR-1g)

cosh(g)

}
if tan(φ) ≥ 0.001 and g ≤ 85.0

(A.17)

where Ftip is the tip loss correction factor, φ the flow angle, r the section radius, R the blade radius,

g=NbR(2r tan(φ))-1-0.5 a parameter, and Nb the number of blades.

Appendix A.4.2. Prandtl-Glauert’s root loss correction

Prandtl-Glauert’s tip loss correction was fetched from [134, Eq. 1], and modified for root sections:

Fhub =
2

π
cos-1

{
exp

(
-

Nb(r − Rhub)

2r sinφ

)}
(A.18)

where Fhub is the hub loss correction factor, and Rhub the hub radius.
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Appendix A.5. Numerical schemes1385

Appendix A.5.1. Central differencing scheme

The central differencing scheme (abbr. the CDS) is spatially second-order accurate in terms of

Taylor series truncation error under certain conditions. A broad assessment of the scheme can be

found in [82, p. 145]. For unstructured grids, the CDS is [135, p. 275-276]: φf=dP φP+(1-dP)φN

where dP is a geometric weighting factor: dP= ‖rN-rf‖ (‖rN-rP‖)-1, r the position vector of the1390

centroid of an owner (i.e. •P) or neighbour cell (i.e. •N), or of a face (i.e. •f ).

The CDS was chosen primarily in view of its highest spatial accuracy possible. Two issues,

however, appeared to be considered: i. the CDS is second-order accurate if and only if the line

connecting centroids of adjoining cells intersects the common face centre [135, p. 276], and ii.

truncation errors due to the second-order schemes (i.e. negative numerical diffusion) may happen1395

to be order of sub-filter scale terms [136, p. 201-202]. Mesh-orthogonality and -skewness issues

cause the former. For the latter low level production of numerical diffusion due to the CDS can

alleviate impacts of high diffusion due to sub-filter scale models.

Appendix A.5.2. Backward difference scheme

DeBonis and Scott [137, p. 1777] showed that low-order temporal discretizations in IFLES

reduce merits of high-level spatial resolutions and schemes. Therefore, the second-order backward

difference scheme was identified “ideal” for OpenFOAM®-IFLES [138, p. 33]. For u, it is defined

as [26, p. 41]: ∫
Ω

∂ut dΩ ≈ 3 (uP Ω)
n − 4 (uP Ω)

o
+ (uP Ω)

oo

2∆t
(A.19)

where n, o, and oo denote current, previous and previous-to-the-last time-step, respectively. More-

over, temporal discretizations of spatial elements are done by [26, p. 44]:

t+∆t∫
t

uq dt ≈
3unq − 4uoq + uooq

2∆t
(A.20)

where uq is the spatial solution.1400

Appendix A.5.3. Total variation diminishing scheme

The CDS can be blended with the upwind differencing scheme (abbr. UDS), to trade off the

spatial accuracy for numerical stability as follows: φf={1-ψ(r)}(φf )UDS+ψ(r)(φf )CDS where φf
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is the convective volumetric face flux, ψ(•) the limiter function, r the ratio of consecutive flux

gradients [139, Eq. 3.7], i.e. between the upwind-side gradient to the downwind-side [140, Eq. 3.67].1405

The limitedLinear is an upwind-biased total variation diminishing scheme (abbr. TVD33) with:

ψ(r) = max

{
0,min

(
2

max[κ, ξ]
r, 1

)}
(A.21)

where {κ}{κ∈[0,1]} is a model parameter with κ=0 the CDS is recovered, and ξ the machine epsilon.

Although it is a widely held presumption that Eq. A.21 is the Sweby function, e.g. [75, p. 45], the

coded form is different from the original [139, Eq. 3.17], i.e. ψ(r)=max(0, min(αr, 1), min(α, r))

with {α}{α∈[1,2]}.

Appendix A.5.4. Normalized variable diagram scheme1410

The GammaV scheme is based on the “normalized variable diagram” (hereafter, NVD) approach

that prohibits unphysical oscillations by bounding flux of each node between that of their neigh-

bouring nodes [140, p. 101]. Its expression reads: γ=min{max(φ̃β-1m , 0), 1} where the TVD-limiter

ψ(r) is redefined as a “blending factor” γ [140, p. 108], φ̃ the “normalized variable” expressed in [140,

p. 109], {βm}{βm∈[0.1,0.5]}=max(0.5Γ, ξ) a constant, ξ the machine epsilon, and {Γ}{Γ∈[0.2,1.0]} an in-1415

put parameter wherein numerical stability increases towards 1.0. Justifications for the requirement

of the scheme and reasoning behind its derivation can be found in [140, p. 98-111].

33 Refer to [82, p. 165-176] for more detailed information.
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Figure A.22: Along x-direction Pearson correlation coefficients between the total out-of-plane blade bending moment,
Mx(t), (no blockage correction) and the longitudinal mean flow speed, U(t) (top subplot)/the longitudinal flow speed
fluctuations, (u′(t))2 (bottom subplot) obtained from the three-dimensional turbulence intensity computations of the
geometry-fitted wall-modelled arbitrary-mesh-interface approach (AMI), Iu′

rms
={10, 20, 40}[%]. Thirty-four probes

were evenly placed along the x-direction at {y, z}={0.0, 0.1}[m] to obtain the time-series. The vertical axes show the
Pearson correlation coefficient, and the horizontal axis the x-distance normalised by the rotor radius, R=0.4[m].
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Abstract—An open-source computational framework for the
fluid-structure interaction of tidal turbine blades has been
developed to be used in the preliminary design cycle. The
main purpose of the framework is to assess the maxima of
blade deflections under dynamic extreme inflow conditions. The
framework is composed of a computational fluid dynamics library
coupled with blade element momentum theory and time-accurate
Euler-Bernoulli beam theory. The paper explores: (i) effect of
computational grid density on wake development predictions, (ii)
effect of buoyancy force on blade deflections, (iii) quasi-steady
inflow and (iv) a stepwise tidal-gust effects on the deflection level
of different types of blades. It is revealed that (i) tuned flexibility
of a blade may contribute performance increase, (ii) buoyancy
force makes edgewise loading of a rotating blade less severe (iii)
the level of static and dynamic flapwise deflection of tip of a blade
is likely the highest as the dynamic edgewise oscillation frequency
is higher than those of others and (iv) blade deformation changes
wake structures.

Index Terms—Fluid-structure interaction, blade element mo-
mentum theory, Euler-Bernoulli beam theory, horizontal axis
tidal turbine blade, tidal-gust

I. INTRODUCTION

Horizontal axis marine current turbines (i.e. HAMCT) are
required to provide reliable electrical energy production in a
subsea operation environment with as few scheduled main-
tenance appointments as possible. Failures related to turbine
blades will have a significant impact on their overall cost-
effectiveness. The use of composite blades for such machines
offers mass and cost savings [1], [2]. However, the turbulent
nature of the tidal flow will result in a dynamic interaction
of the hydrodynamic blade loading and its structural response
with implications for the assessment of through life fatigue
loading. There is an economic drive to increase blade diameter
to either extract energy from lower current sites or to reduce
the number of components in an array. The coupling of a
stochastic flow regime with significant flapwise and twist
deformations of the blade also requires rapid time domain
solutions to deal with the inherent non-linearities.

The HAMCT blade modelling methods are essentially made
of three components: hydrodynamics of the flow regime
around and through the machine; structural dynamics of the
blades and the interaction of these two mechanisms. The
modelling approaches to treat these can be categorized into
a number of main classes. The study of hydrodynamics of the
flow regime can be carried out with four primary methods:

Finite volume
method OpenFOAM

Blade element
momentum

theory

Euler-Bernoulli
beam theory

Cwind

Environment
Fluid loading Structural response

Fig. 1. Schematic of the fluid-structure interaction method

blade element momentum theory (i.e. BEMT) [3], lifting line
[4], surface panel (i.e. boundary element) [5] and finite volume
methods [6]. Apart from hydrodynamics modelling, the solid
mechanics can be modelled with three approaches: modal
decomposition, multi-body system and finite element methods
[2], respectively.

In this study, BEMT and a modal decomposition method
are combined with a finite volume method as shown with the
computational tools used in Fig. 1. These concepts are briefly
presented in the section II. In the following methodology sec-
tion, the description of the coupling techniques between these
methods is introduced. In the section IV, the verification and
validation studies of the implementations are demonstrated. In
the section V, a group of case studies, in which a 20m-rotor-
diameter tidal turbine considered with three different blades in
terms of their flexibility, are carried out for: (i) BEMT-structure
model coupling, (ii) BEMT-finite volume method coupling and
(iii) BEMT-finite volume method-structure model coupling.
Section VI shows results and discussions. Finally, some con-
clusions are drawn in the section VII.

II. THEORY

A. Blade Element Momentum Theory

BEMT is used to estimate the forces exerted on a specified
blade geometry. The theory combines momentum theory (i.e.
the actuator disk theory) and blade element analysis. The
former represents the blade swept area as an infinitely thin
disc which alters the axial and tangential momentum of fluid
particles passing through. The latter divides the blade into
a number of non-interacting sections and estimates forces
generated by using its aerodynamic force coefficients for its
relative velocity inflow. Normal and tangential force equations
are obtained for each theory and these equations are equated
in an iterative manner with respect to the axial and tangential
induction factors, which are non-dimensional representations
of the local induced normal and tangential velocities at the disk
region. Ultimately, local non-dimensional power coefficient



Input
2-dimensional
aerodynamic
coefficients

Previous time
step results e.g.
previous time
step sectional
wind velocity

Geometrical
properties
e.g. rotor
diameter

Operational
conditions

e.g. sectional
wind velocity

Pre-process
the input

3-dimensional
aerodynamic

coefficient
correction

Iteration loop
of a and a

′

|ai−ai−1| < ε &
|a′

i − a
′
i−1| < ε

Update
a and a

′

Skew
correction

Performance
output e.g.

power

1-dimensional Euler-
Bernoulli beam model

|αi − αi−1| <
εstructure

Update
α

|Uprevious − Ucurrent| < εgust

Dynamic
structure model

execution

Total structure
output e.g.

total flapwise
deflection

Skip the
dynamic
model

no

yes

no

yes

yesno

BEMT code

Structural model code

Fig. 2. The algorithm of Cwind C++, which is composed of BEMT and
structural model codes. a and a

′
are axial and tangential induction factors,

respectively; α is the effective angle of attack; ε is the convergence criteria
and U is the instantaneous sectional wind speed.

(i.e. Cp) and thrust coefficient (i.e. Ct), which depict the
performance of an isolated rotor, are acquired as follows:

δCp = δP/0.5ρU3
oA (1)

δCt = δT/0.5ρU2
oA (2)

where δP is the sectional power [W], δT is the sectional
thrust [N], ρ is the reference fluid density [kgm−3], A is the
projected area of the relevant blade element [m2] and Uo is the
sectional undisturbed velocity magnitude normal to the rotor
disc [ms−1].

Such methods have been used by [7] to investigate the pos-
sible differences between the loading prediction capabilities
of a sectional BEMT model and a finite element model that
maps pressure distribution over an identical wind turbine blade
showing negligible difference with respect to the deflection
results.

1) The BEMT Code: The modified BEMT code was Cwind,
developed by [8]. It was integrated into the tidal turbine appli-
cations and compared with a surface panel method resulting in
good agreement [9] and was validated against experiments [3].
In the original code, the loading is computed by the sectional
blade element consideration using tabulated 2-dimensional
aerofoil data. A Glauert correction for the turbulent wake
state and Goldstein momentum averaging factor for tip loss,
as is asserted by [10] supplies more realistic approach than
that of Prandtl tip loss correction, are included. Cwind was
re-written in C++ with a few additional functionalities such
as: Lanzafame and Messina’s tangential induction factor [11],
Snel et al.’s 3-dimensional tabulated data correction [12],
Lindenburg’s 3-dimensional tabulated data correction near the

Fig. 3. Sketch of aerodynamic parameters on a typical rotating turbine blade
segment

tip [13], Snel and Schepers’ yaw misalignment correction
[14], active-passive blade part functionality and quadratic
interpolation for the tabulated data. The resulting algorithm
is shown in Fig. 2.
B. Structural Modelling

It is Baumgart’s [15] assertion that slender solid body
modelling, such as for a tidal turbine blade, with a beam
model captures the essential features in comparison to a more
complex solid or shell - finite element model. In addition, as
is claimed in [16], as far as the mechanical features of a three-
dimensional blade can be extracted, a one-dimensional beam
model can cope with the most structural examinations in a
prompt way. Thus, a beam model is likely to be convenient
whilst a slender beam can be adequately modelled in a
computationally effective way. On account of these claims
and for sake of isolation of the each parameter investigated
herein, the structure of the blade was modelled as a homo-
geneous, isotropic material, uniform cantilever box beam. As
is purported in [17] that a reasonable presentation of slender
bodies can be achieved with using such simplification at the
early design stages.

BEMT provides aerodynamic loading at discrete locations
along the blade span that are located at the centre of each
segment. A linear structure is considered for simplicity; there-
fore, each load’s deformative effect is computed separately
and then summed using superposition. In addition, the model
accommodates the time varying sectional flapwise (i.e. out-
of-plane), edgewise (i.e. in-plane) and torsional deflection
approximations by using a dynamic structure model whose
results are mapped onto the results of a static structure model.

1) Static Structure Modelling: Euler-Bernoulli beam theory
assumptions are adopted whilst there is no distinguishable
difference in results appears compared to the Timoshenko
beam theory [18] for slender beams. The time scale of inflow
to the rotor disc is assumed an order of magnitude higher than
that of rotor rotation ensuring that the static deflections occur
in a quasi-steady manner.

Flapwise and edgewise static deformations are computed
with:

v(x) = −Fx2(3s− x)/6EI 0 ≤ x ≤ s (3)

v(x) = −Fs2(3x− s)/6EI s < x ≤ xtip (4)



where x is the location where the deflection is monitored on
the beam neutral axis [m], s is the location where point loads
is applied [m], v(x) is the amount of deflection in the same
plane and direction with those of the applied load [m], as is
shown in Fig. 3, F is the normal force to the blade element
section centre parallel to the oncoming flow velocity for a
flapwise deflection case and is tangential to the same centre in
parallel to the angular velocity of the rotating blade element
for edgewise deflection case [N], E is Young’s modulus of
the blade element material [Nm−2], I is the area moment
of inertia of the blade element’s cross section whose value
depends on the axis about where bending occurs [m4].

Torsional deflections are computed:

γ(x) =Mx/GJ 0 ≤ x ≤ s (5)
γ(x) = γ(s) s < x ≤ xtip (6)

where γ(x) is the angle of twist relative to the undeformed
configuration [rad], M is the twisting moment [Nm], G is
the shear modulus of the material [Nm−2] and J is the polar
moment of inertia of the relevant section [m4].

2) Dynamic Structure Modelling: The modal decomposi-
tion method is used in order to reduce the computational cost.
With this method, as its stages of the application is given
in [19], [20], the infinite number of natural frequencies and
vibration modes of the continuous media of the structure is
minimized. The orthogonality condition of the method ensures
that the mode shapes are uncoupled and independent [20]. A
number of vibration modes will dominate for low frequency
responses in terms of their contribution to the deformation;
therefore, linear summation of those prominent modes would
give a reasonable picture of the actual dynamic deflection. Ac-
cording to [21], there is no precise rule for the determination
of the number of modes. In this study, the first 10 modes are
considered.

Dynamic Euler-Bernoulli beam equation is:

EI
∂4w(x, t)

∂x4
+ ρA

∂2w(x, t)

∂t2
= q(x, t) (7)

where w(x, t) is the in-plane deflection at any location on the
beam at any time [m] and q(x, t) is the corresponding arbitrary
in-plane loading [Nm−1]. The in-plane deflection [19], [20] :

w(x, t) =

∞∑
i=1

φi(x)ai(t) ≈
N∑
i=1

φi(x)ai(t) (8)

where φi(x) is the mode shape [-], ai(t) is the generalized
coordinate which is a function of time [m], N is the number of
modes considered and i is the rank of the mode. The reduced
form of the modal equation for a cantilever beam with Euler-
Bernoulli beam assumptions:

äi(t) + 2ζiωiȧi(t) + ω2
i ai(t) =

Fi(t)

Mi
(9)

where ωi is the natural frequency of the beam corresponding
to the mode shape [rads−1], ζi is the damping ratio [-] as
ζi = λi/2Miωi, λi is the generalized damping [kgs−1], Mi

is the generalized stiffness [kg] and Fi is the generalized force

[N]. The reason why the modal equation is reduced into that
form is the fact that the damping ratio slowly varies according
to the mode [19]. Accordingly, general estimation of damping
ratio can be used for a specific system (e.g. heavily damped
system).

Moreover, rotation of blades causes a tensile load exerted
axially outward from the hub centreline. Such augmentation
contributes to increasing natural frequencies of the modelled
beam [22]. The modification of the natural frequencies due to
tensile load can be presumed with the following approximate
equation for a uniform cantilever beam:

fi|P 6=0

fi|P=0
=

(
1 +

Pa
|Pb|

(k1L)
2

(kiL)2

)1/2

(10)

where |Pb|= π2EI/4L2 is the buckling load for a cantilever
beam [N], Pa is the axial load [N], fi|P=0 is the natural
frequency without the axial load [Hz] and fi|P 6=0 is with the
axial load [Hz]. Note that k1L and kiL are determined without
the axial load.

Finally, the time history of the dynamic response of the
structure can be obtained by using convolution integral which
sums the successive unit impulse responses.

w(x, t) =

N∑
i=1

φi(x)

∫ L

0

Fi(τ)hi(t− τ)dτ (11)

where τ is the instance when the corresponding force is
exerted on the structure [s] and hi(t) is the response function
of the beam to a unit impulse [skg−1rad−1].

C. Finite Volume Method

Incompressible Reynolds averaged Navier-Stokes (RANS)
equations were implemented in order to estimate the relevant
single-phased and Newtonian flow field’s time averaged mean
flow parameters. The RANS equations were computed with
the open-source code OpenFOAM 2.1 [23]. Unsteady RANS
equations are:

∂Ui
∂xi

= 0 (12)

∂Ui
∂t

+
∂UiUj
∂xj

= −1

ρ

∂P

∂xi
−
∂u

′
iu

′
j

∂xj

+
∂

∂xj

{
ν

(
∂Ui
∂xj

+
∂Uj
∂xi

)}
+ fi

(13)

where Ui and u
′
i are the mean and the fluctuating velocity

components [ms−1], P is the mean pressure [Nm−2], ν is
the kinematic viscosity [m2s−1], fi is the momentum source
term [ms−2] and i, j are the index variables.

III. METHODOLOGY

A. BEMT - Structure Model Coupling

As is shown in Fig. 3, the BEMT code provides two
forces, namely thrust and tangential force exerted on the
centre of pressure of the relevant aerofoil, and one moment,
namely twisting moment, about the centre of twist due to
the twisting effect of thrust and tangential force. There are
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y z

1

Fig. 4. A sketch of the computational domain. The solid black dot shows
the hub, the dark green cross-hatch circle represents the rotor disc, red and
blue vectors in the z-direction depict the velocity profile at the relevant plane.
Note that the profiles just in front of the domain present an arbitrary gust
occurrence.

several assumptions which facilitate the process that should
be noted. Firstly, the centre of pressure is assumed to be at
a fixed location, which is the quarter-chord point behind the
leading edge, for small angles of attack and it remains at this
fixed point whereas the angle of attack changes. Secondly,
the location of the centre of twist of the aerofoil section
is assumed to be identical to the location of the centre
of gravity of the same section. Although it is true for a
symmetric and homogeneous aerofoil, this fact may turn into
an assumption for a cambered aerofoil, which is considered
herein. Thirdly, tangential force contribution to the twisting
moment is neglected as it is an order of lower in magnitude
compared to thrust. In addition, twisting moment is the product
of thrust and the moment arm that is the right distance between
the centre of pressure and the centre of gravity. Further, the
orientation of area moments of inertia are assumed constant
even though this alters instantaneously when angle of attack
changes. Additionally, the change of the angle of attack, thus
the loading regime on the blade depends solely on the torsional
deflection. The flapwise and edgewise deflections are assumed
not to affect the angle of attack.

Thrust induces the flapwise deflection of the beam. In
addition, tangential force with the additional time-dependent
force components tangent to the rotation of the centre of
gravity induce the edgewise deflection of the beam. These
additional forces are due to the blade section’s self-weight
and the buoyancy force. Lastly, twisting moment induces
the torsional deflection of the beam cross-section. Flapwise,
edgewise and torsional deflections are obtained independently
from each other; consequently, it is presumed that there is no
coupling among these deflections.

For the dynamic deflection analysis, on the other hand, a
simple criteria is set in the BEMT code. Any inflow change
whose time scale is smaller than that of rotor rotation and
magnitude of velocity is 50% less or higher than that of quasi-
steady inflow anywhere on the rotor disc, e.g. a pocket of gust,
triggers the dynamic structure modelling code. The differences
occur in thrust, tangential force and twisting moment in
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Fig. 5. A side and front view of the computational domain from left to right.
The green region represents the hub. The dark green region shows the volume
where the momentum sources are applied. The narrow space between both
regions is for the passive part of the blade through which fluid can pass with
a drag penalty depends on the drag coefficient for a prescribed geometry.

comparison to those of quasi-steady inflow are multiplied by
the duration of the change. The continuous duration is divided
into very small short durations. With evaluating the obtained
continuous loading as successive unit impulses with very
short durations, the dynamic model produces time-dependent
deflection future histories of flapwise, edgewise and torsional
vibration depending on the specified damping ratio.

B. BEMT - Finite Volume Method Coupling

Similar to [24] and [25], as can be seen in Fig. 4 and 5, a part
of RANS computational domain which has identical circular
area of the actual rotor area is selected as an inner domain
by flagging the cell centres with a single cell thickness in
the stream-wise direction. The identified inner domain is sub-
divided radially into a number of annuli that has the same
number of blade elements in the BEMT code. The BEMT
code estimates the forces. Then the forces are transferred to
the RANS simulation via the momentum source terms, fi,
localized to the cell centres of the inner domain. Hence, the
inner domain becomes a time-varying source of momentum
depending on the blade forces. The estimated forces vary
radially; however, are uniform circumferentially. Note that
although actuator disk has zero thickness in the BEMT, this
identified zone has thickness due to the finite volume of the
selected cells contain the flagged cell centres. Estimated thrust
for each blade element is connected with the axial momentum
source term of the counterpart annulus, fix [ms−2]:

fix =
δT

ρ V
=

1/2 ρU2
oAδCt

ρAL
(14)

where V is the relevant annulus volume of the inner domain
[m3] and L is the thickness of the annulus volume in the
stream-wise direction [m]. Estimated tangential force for each
blade element is connected with the tangential source term of
the counterpart annulus, fiθ [ms−2]:

fiθ =
δQ

ρ r V
=

1/2 ρU3
o AδCp

ρ r Ω AL
(15)
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Fig. 6. Power coefficient estimations on a typical range of tip speed ratios

where δQ is the estimated torque acts on the relevant annulus
[Nm], r is the distance from the hub centreline to the relevant
annulus’s cell centre on the rotor plane [m] and Ω is the
constant angular velocity of the rotor [rads−1].

On the other hand, the undisturbed velocity magnitudes
required by the BEMT code are determined from the inlet sec-
tion of the inner domain annuli instantaneously. The oncoming
stream-wise speed at the virtual disc is extracted for each
cell centres, where the momentum sources are implemented,
at each time step of the RANS simulation. Afterwards, the
extracted velocity magnitudes are circumferentially averaged
for each annulus. The obtained single velocity magnitude is
the disturbed velocity magnitude due to the fact that the
implemented momentum sources change instantaneously the
upstream velocity field. Therefore, an empirical correction is
demanded in order to transform the disturbed velocity mag-
nitude into an undisturbed velocity magnitude. The disturbed
velocity magnitudes for each annulus are corrected by the axial
induction factor from the previous time step.

IV. VALIDATION & VERIFICATION

A. The BEMT Code Verification & Validation

The new C++ version of Cwind was verified against the
original code. Fig. 6 and 7 show the variation in Cp and Ct
predictions for the following set of data: the experiment [26],
BEMT [27], boundary element method [28], [29], vortex lat-
tice method [30] and finite volume method [31]. Two dataset of
Cp and Ct in zero yaw condition are considered: 20o hub pitch
angle - 1.73 ms−1 & 25o hub pitch angle - 1.54 ms−1 uniform
inflow speed. The geometrical and operational features of [26]
are input. The horizontal axis of both figures presents the tip
speed ratio (i.e. TSR), which equals to 0.5ΩD/Uhub. As is
depicted in Fig. 6, the Cp estimations are in good agreement
for TSR between 4 - 7.5; however, TSR > 7.5 the code
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Fig. 7. Thrust coefficient estimations on a typical range of tip speed ratios

overpredicts the experimental results. As is shown in Fig. 7, the
Ct predictions have reasonable agreement with the experiment
for 20o hub pitch; nevertheless, the code underestimates the
experimental results of 25o hub pitch in almost all of the TSR
range.

B. The Structure Model Code Validation

Static and dynamic structural codes were compared against
the commercial finite element code, ANSYS Mechanical
APDL version 13.0. The BEAM4 3-dimensional elastic beam
element was used in the validation process of all types of
deflections. Identical results are obtained, except a discrepancy
occurs in the torsional vibration validation where the modal
decomposition method deals with high frequency responses
less adequately in comparison to the low frequency responses
due to the fact that the domination of the number of initial
modes no longer exists [32].

V. THE CASE STUDY

A. The HAMCT Geometrical and Operational Properties

The geometrical properties of HAMCT of [26] given in [27]
are scaled by a factor of 25 to give a turbine diameter of 20m.
The material of the blade is taken to be T6082-T6 aluminum
alloy as used in the experiment [33]. Plus, seawater properties
are considered [34]. It is [26]’s interpretation that the 20o hub
pitch angle setting with TSR between 5-7 provides the most
efficient performance for the relevant rotor. Therefore, the
operational setting of 20o hub pitch and TSR of 5.63, which
ensures constant 1.73 ms−1 inflow velocity of the experiment,
was studied.

B. The Modelled Blade Structure

In order to examine the effects of flexibility of a blade
on the structure deflection, three cantilever box beams are
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Fig. 8. Power coefficient results of the case studies

modelled. Those beams are labelled as ’stiff’, ’base’ and
’flexible’. Differences in flexibility is ensured by virtue of
changing the geometrical properties of the modelled beam.
Initially, the experimental blade’s root section (i.e. NACA63-
824) is uniformly extended to obtain the ’stiff’ beam whilst
the actual geometrical characteristics of the blade root are
determined from XFOIL 6.97 [35]. Also, thickness of the
beam is adjusted to 0.05m. Further, the area moment of
inertia parameters of the ’stiff’ beam are all scaled down to
70% for the ’base’ (i.e. corresponds to approximately 18%
sectional area reduction) and 60% for the ’flexible’ beam (i.e.
corresponds to approximately 24% sectional area reduction).
The other properties are kept the same.

Damping estimations of the system due to fluid and structure
damping effects are lumped into a single parameter: damping
ratio, ζ and three typical values are prescribed in order to
identify its relative impact. For a lightly, typically and heavily
damped system, ζ is designated as 0.001, 0.01 and 0.1,
respectively [19].

C. The Modelled Gust

Steady-state inflow through the rotor disc is projected as
constant, uniform and equal to 1.73ms−1 of the relevant
experiment. Dynamic flow, however, is designated as a pocket
of stream-wise disturbance encompassing the whole rotor
disc. This gust is assumed to be uniform radially and is
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Fig. 9. Thrust coefficient results of the case studies

superimposed on the steady flow. The characteristic length
scale of the gust is assumed to be equal to the rotor radius
in the stream-wise direction and its velocity scale is 150%
of that of the steady flow (i.e. 2.595m/s) in parallel to
the indications of the tidal field measurements [36], for the
extreme tidal flow circumstances. Approximately 3.85 s of
time scale of the gust, therefore, is ascertained from the above
estimations. Hence, such a period does not give a chance
to the turbine blades to adjust themselves; thus, resulting in
resisting this temporary hydrodynamic loading increase with
an unchanged configuration. All case studies below consider a
single identical step-wise gust occurrence for a finite duration.
A representation of a typical gust occurrence is shown in Fig.
4.

D. The Finite Volume Numerical Setting

1) Computational Domain Description: A succinct set of
dimensions of the Cartesian computational domain is given in
Fig. 5. The flow is towards the positive z-direction.

2) Discretization: A combination of structured and unstruc-
tured mesh is generated. Unstructured tetrahedral and hexahe-
dral elements are used for a cylinder with the radius of passive
blade along the domain in the stream-wise direction. The
rest of the domain is constructed with hexahedral elements.
The finite volume method with SIMPLE algorithm is used to
solve partial differential equations for the incompressible and
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Fig. 10. Flapwise deflection of the blades at the tip point at TSR 5.63

turbulent flow.
3) Boundary Conditions: Constant uniform velocity inlet

condition is applied upstream of the rotor disc plane with
1.73ms−1 in order to repeat the constant flow velocity condi-
tion of the experiment. Zero gradient pressure outlet condition
is deployed at the downstream. A slip wall condition is applied
to the lateral domain faces as well as the hub region in order
to block flow through whilst avoiding the wall boundary layer
resolution. Submersion depth effect is neglected because as is
claimed by [37] it has marginal effect on turbine wake.

4) Turbulence Model and Turbulence Properties: k - ω
SST turbulence model is used in order to model the flow
around the rotor disk as [37] claims that the model performs
better compared to the other eddy-viscosity models for similar
studies. The ambient turbulence intensity is set down to 1%.
Turbulence length scale is estimated to be 5% of the size of
the computational domain inlet in the stream-wise direction.

VI. RESULTS - DISCUSSION

A. BEMT - Structure Model Coupling

1) Steady-state Case: With the help of the steady-state
structure model, the effects of two factors on the performance
parameters are attempted to be investigated briefly: the relative
flexibility of blades and constant rpm operation.

Fig. 8 and 9 plot the resulting Cp and Ct as a function
of TSRs from 4 to 8, respectively. The relevant isolated
BEMT code results are also arranged as a reference point in
the same figures. Additionally, at the top of each plot, the
relative change of the parameter in question as compared to
the reference result is depicted in units of percentage. The plots
demonstrate that the performance at each TSR has changed.

Firstly, taking the relative flexibility of blades into account,
as shown in Fig. 8, the Cp remained at the reference level
with a minimal increase inversely proportional to the flexibility
until TSR of 5.3 for the three modelled cases. In contrast,
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Fig. 11. Edgewise deflection of the blades at the tip point at TSR 5.63

TSR 5.3 to 8, there is a gradual decline in Cp comparison
to the reference and is directly proportional to the flexibility
of the blade. Fig. 8, however, depicts a steady increase in Ct
for the entire TSR range for all modelled blades whilst the
increase levels off and in general it changes in proportion to
the resilience of the blade up to TSR 7.5.

With this configuration, the blockage effect of blades in-
creases with flexibility due to the decline in twist angle.
Although lift-drag ratio is increased accordingly owing to
the increase in effective angle of attack, Cp is decreased for
TSR>5.3. The reasoning behind it is that the twisting angle
is higher than the change of angle of attack; thus, resulting in
smaller induced velocity angle. In turn, lift contribution to the
rotation falls off whilst thrust goes up.

Secondly, the default operational setting, which is variable
rotor rotation speed with constant inflow speed, is changed
to another setting, which is fixed rotor rotation speed with
variable inflow speed, by keeping TSR identical. As can be
seen from Fig. 8 and 9, the trends of Cp and Ct remain the
same with the first case study with regard to the reference.
Nevertheless, the level of Cp is lower than that of the first
case up to around TSR 6.10 where the inflow speeds of both
cases get equal each other. After this point, Cp becomes higher
compared to that of the first case for the rest of the TSR range.
In a similar fashion, the degree of Ct is higher than that of the
first case until TSR 6.10 whereas it is lower for the remaining
range of TSR.

This difference signifies the importance of the inflow speed.
For instance, from TSR 6.10 to higher TSRs, thrust, which
is accounted for the torsional deflection, is decreasing due
to the descending inflow speed. Torsional deflection decline,
therefore, is triggered and this leads to higher induced flow
angles.

2) Tidal-gust Effect on the Structure Response: By means
of the dynamic structure model, the effects of two factors on
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Fig. 12. Torsional deflection of the blades at the tip point at TSR 5.63

the level of deformation of the modelled blades are tried to
be studied in brief: the relative flexibility of blades and the
damping ratio.

Fig. 10, 11 and 12 present the estimated time-dependent
flapwise, edgewise and torsional deflections of the tip point
of the blade according to time from when step-wise tidal-gust
response starts at 0 s and ends at 3.85 s, in turn. The response
is monitored for 5 s. Between 3.85 s and 5 s, the blade freely
vibrates with damping according to the blade properties and
the position of the blade tip at the end of tidal-gust occurrence.
Each figure has six stacked sub-figures. From top to bottom
inside any of the figures, first three sub-figures illustrate the
modelled flexible blade response and the last three sub-figures
show the modelled stiffer blade response. Within any pile of
three sub-figures, from top to bottom, the specified damping
ratios are 0.001, 0.01 and 0.1, which increase ten-fold at each
case. The horizontal axis represents the time that the deflection
monitored in units of second and the vertical axes of the figures
of flapwise and edgewise deflections represent deflection in
units of meters and of the figure of torsional deflection presents
deflection in units of degrees as against the unstrained blade
configuration. Note that the horizontal axis of the figures is
composed of six identical ranged sub horizontal axes. Lastly,
in all figures, the red dashed line displays the static deflection
and the black line indicates the total deflection that is the
instantaneous summation of the dynamic and static deflections.

First, on account of the relative flexibility of blades, Fig.
10, 11 and 12 show that increase in flexibility contributes to
higher maxima of the deflections by comparison with those of
stiffer blade at any instant. Furthermore, the figures illustrate
that the amplitudes of the dynamic response are higher to some
extent for the cases corresponding to the flexible blades. Also
note that the oscillation frequency of edgewise deflection is
noticeably higher than that of flapwise deflection. Besides, the
response frequency of stiffer blade is minimally higher.

The reason why the difference in response frequency is
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Fig. 13. Buoyancy effect on the static edgewise deflection at TSR 5.63

marginal is that the order of magnitude of increase in stiffness
of blade is balanced by the almost same magnitude of decrease
in mass of the flexible blade. On the other side, the higher
maxima likely means for upwind turbines that flexible blades
are more prone to the possibility of accidental strike to the
tower due to a tidal-gust whilst the clearance between the tip
of the blade and the tower is reduced. Moreover, edgewise
oscillation may pose a more serious crack problem to the blade
in parallel to the experience from wind turbines [38].

Second, taking the damping ratio on board, Fig. 10, 11
and 12 demonstrate that the increase in the damping ratio
comparatively results in narrower amplitude range and lesser
maxima of the deflections.

This highlights the significance of damping for a tidal
turbine operating in turbulent tidal conditions as an appropriate
artificial damping may significantly reduce the risks due to the
oscillation for even the flexible tidal turbine blade.

3) Buoyancy Force Effect: Fig. 13 summarizes the buoy-
ancy force effect on the static edgewise deflection of rotating
flexible and stiffer blades at the design TSR 5.63 for a minute.
The horizontal axis presents the monitoring time in units of
seconds and the vertical axis shows the static edgewise deflec-
tion in units of meters. The graph implies that the buoyancy
force due to the surrounding fluid reduces the amplitude range
of oscillation cycles.

B. BEMT - Steady-state Finite Volume Method Coupling

1) Grid Effect: In order to investigate the effect of number
of cells on the numerical results, two computational domains
with different grid density are prepared. The initial domain
contains 1.3M cells in total. The number of grid points are
increased 30% in all directions in order to generate the second
domain which contains 2.6M cells. The number of blade sec-
tions for the BEMT is 9 as is found that the number of sections
do not affect far downstream velocity profile. Fig. 14 shows
the axial wake velocity results obtained from both domains.
The horizontal axis presents the axial flow speed in the stream-
wise direction non-dimensionalized by the axial far upstream
flow speed and the vertical axis represents the distance from
the hub centreline, non-dimensionalized by the rotor radius.
The curves depict the axial wake profiles extracted from far
upstream and downstream locations at 1D, 3D, 5D and 7D
distant from the rotor plane. The mesh dependency effect
appears small except in the local vicinity immediately behind
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Fig. 14. Grid density effect on the axial wake velocity profile at TSR 5.63. D
indicates the rotor diameter. A and B depict 1.3 and 2.6 million-cell-domains,
respectively.

the hub. The near wake structure and its eventual transition to
a Gaussian far wake (>3D) is as expected, [39], [40].

2) Verification of BEMT - Finite Volume Method Coupling:
Table I summarizes the differences between the isolated
BEMT code (i.e. A) and the BEMT code - steady-state RANS
coupling (i.e. B) in terms of performance parameters. In the
view of results, the empirical correction estimation in order for
obtaining the undisturbed velocity magnitudes has produced
similar inlet velocity magnitudes to that of the isolated BEMT
code.

C. BEMT- Steady-state Finite Volume Method - Static Struc-
ture Model Coupling

Fig. 15 illustrates the axial wake velocity profiles obtained
from the BEMT - steady-state RANS coupling with (i.e. B)
and without (i.e. A) the static structure model. The number
of blade sections for the BEMT is 9. The plot properties are
identical to that of Fig. 14. In the light of the assumption that
either flapwise or edgewise deflection does not affect the blade
loading, one may conclude that the deflected blade structure
remains in the actuator disk plane in order not to violate the
fundamental BEMT assumptions. The graph indicates that the
two peaks in the 1D and the single peak in the 3D are more
prominent with the structure deflection. The single peaks at
the 5D and 7D downstream, however, depict a slight drop in
peak height.

The near wake length is decreased as 1D-B in Fig.15
indicates an earlier joining of two peaks. Besides, the lowered
wake velocity is shown with 3D-B in Fig.15. This reduction is
in-line with the Ct rise due to the structure deflection, similar
to [37]’s statement. Finally, the small drop in peak height of
5D-B and 7D-B implies that the wake recovery is faster.

VII. CONCLUSIONS
In conclusion, a numerical fluid-structure interaction ap-

proach is proposed for tidal turbine blade assessment under
severe conditions in the earlier stages of the design. Apart
from its fundamental purpose of modelling the maxima of

TABLE I
VERIFICATION OF BEMT - RANS COUPLING AT TSR 5.63

Parameters A B Difference [%]

Power coefficient 0.449493 0.449491 4.45E-4
Thrust coefficient 0.776121 0.776125 -5.20E-4
Gross power [kW] 374.649 374.647 5.34E-4
Thrust [N] 374804 374806 5.34E-4

blade deflections accurately, it is aimed to obtain a method
which is less demanding of computational resources. To this
end, the developed method implements a flow solution using
OpenFOAM 2.1 coupled via axial and tangential momentum
sources with a C++ BEMT code to rapidly deduce a strip
wise sectional loading for the instantaneous inflow conditions
on each blade. Within the code a time-accurate Euler-Bernoulli
beam theory is used to predict the deformation and twist of
the blades. A group of numerical case studies are carried out
with an experimental tidal turbine that is scaled up to 20m
diameter. It is revealed for this configuration that: (i) the level
of flexibility likely affects the maximum deflection of blades
and performance of rotor depending on the configuration, (ii)
edgewise loading of a rotating blade becomes less violent with
buoyancy forces, (iii) a tidal-gust may considerably increase
especially the flapwise deformation and edgewise oscillations
of blades and (iv) blade deformation contributes to a different
wake development. In the near future, the focus will be on the
(i) investigation of tidal turbine blade response under more
realistic turbulent inflow conditions by using [41] and (ii) to
develop the method into a fully-unsteady manner.
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Introduction
Turbulent flow regimes are the norm in nature; thus, significant to consider in engineering applications. Yet, their
modelling poses substantial ongoing challenges. A physical model concept progressively adopted at many levels of
industry and academia is Large Eddy Simulation (LES). LES approximations are, however, known to be deterministically
and to a lesser extent statistically sensitive to spatiotemporal characteristics of inflow boundary conditions. Theoretical or
practical and stochastic or statistical delineation of these conditions in space and time is, on the other hand, proved to be
challenging mainly due to the complex nature of turbulence; hence, resulting in various methods. One important category
of such methods is the digital-filter-based synthetic turbulence generation methods (hereafter, DFM), originally proposed
by [1].
DFM transforms a random signal into a stochastically and statistically new signal involving a set of target statistics
(predominantly consisting of i. first & second-order one-spatial-point correlations and ii. two-spatial/temporal-point
autocorrelation functions). The transformation is performed by a train of arithmetic operations, which is often called
a discrete filter operator, or briefly a filter. Attributes and order of the operations in the filter are arranged by the target
statistics, so that the realized statistics of the new signal may match the target.
DFM has been preferred across a broad range of LES applications in the literature (more than a-thousand papers to date)
due to, in comparison to the other concepts, the easiness of its code implementation and its relatively low computational
cost for a satisfactory level of fidelity in synthetic turbulence realizations.
Although DFM was frequently utilised and various physical insights were acquired through LES depending upon
DFM, the relevant literature arguably lacks systematic evaluations of fundamental capabilities of DFMs, and clear-cut
conclusions/recommendations regarding inner parameters/mechanisms of DFMs. Instead, most method proposal papers
either used flows more complex than ‘building-block’ flows to assess their methods (e.g. no homogeneous isotropic/shear
turbulence study was carried out for the DFM variant of [2]) or the set of basic validation measures presented in
these papers was not extensive (e.g. [1] did not provide any results for power spectral density function). The former
complicates the quantitative examination of cause and effect (or input-output) relations between model components and
their outcomes; thus, hampering attempts to theoretical capability-oriented improvements. The latter’s lack of structured
knowledge, on the other hand, obscures comparative decision-making for the most appropriate DFM variant to the problem
at hand. Furthermore, the output of DFM is limited to the Gaussian probability distribution function. By contrast, the
frequency of occurrence of various turbulence characteristics tends to follow non-Gaussian distributions. For instance, [3]
reviewed the literature that kurtosis (i.e. the fourth standardized central moment) is approximately 2.85 (rather than 3.0)
for velocity fluctuations in homogeneous isotropic turbulence. Even more pronouncedly, [4] reported for Reτ = 395 plane
channel flow that skewness (i.e. the third standardized central moment) and kurtosis vary across from -0.8 to 0.4, and from
2.1 to 38.0, respectively.
The aims of this research study are, therefore, i. to systematically explore patterns in parameters-mechanisms of DFM
to fill the aforementioned knowledge gaps, and ii. to add non-parametric non-Gaussian turbulence realization generation
capability into DFM. To this end, DFM is summarized in Sec. §2, the objectives of the research are elaborated in Sec. §3,
a sample of results is presented in Sec. §4, and concluding remarks alongside incomplete challenges are listed in Sec. §5.
It should be highlighted at this point that the suite of our DFM implementations of the current study is being implemented
into OpenFOAM+ community repository.
Theory
The mathematical essence of virtually all DFMs is three-fold. The first is the construction of {u′i (xi, t) ∈ Qn}n∈{2,3}& {i∈N : 1≤ i≤n}
as follows:
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where u′i is spatio-temporal-variant Reynolds-decomposed fluctuation velocity field, aij spatial-variant amplitude tensor,
which complements one-point correlations into u′i, and si spatio-temporal-variant filter-applied random number field,
which incorporates two-point correlations into u′i.
The second stage is the construction of aij through [5]’s transformation as:

aij =

(R11)
0.5 0 0

R21/a11 (R22 − a221)
0.5 0

R31/a11 (R32 − a21a31)/a22 (R33 − a231 − a232)
0.5

 (2)

where Rij is the known one-point correlation tensor.
The last stage is the construction of si, where filtering is conducted. For a one-dimensional field of discrete points:

sk ≡ FN (rk) =

N∑
j=−N

bjrk+j (3)

where {r}{k,j∈N : 1≤k+j≤R} is a set of R random numbers obeying the amplitude distribution of zero-mean (R-1 ∑R
k=1 rk =

0), unit-variance (R-1 ∑R
k=1 r

2
k = 1), independent (R-1 ∑R

k=1 rkrj = 0 for k 6= j&k = j ± c) Gaussian white-noise,
{b}{j∈N : -N≤j≤N} a set of (2N + 1) unknown filter coefficients, {s}{k∈N : 1≤k≤M} a set of M digital-filtered numbers,
FN a linear, non-recursive, discrete filter operator performing the convolution summation on two finite sequences,
and N the support of the filter. Herein, the aim of DFM is to compute the set b according to the expected values
{E[fm(s)]}{m∈N :m≥1} of various, known statistical measures fm(s) (e.g. autocorrelation function of u′i), so that
unknown s can be computed with the help of known aij and r. Based upon this essence, DFMs diversify primarily
due to the different explicit/implicit expressions proposed for the relation between known E[fm(s)] and unknown
b, and sometimes for aij . To the author’s knowledge, eight research studies contributed model developments in
DFM: [1, 6, 2, 7, 8], and [9, 10, 11, 12], in which the former five put forth major changes, and the latter four propounded
adjunct; nevertheless, still important alterations.
For a non-Gaussian velocity field gu′i, a generic analytic expression gi was sought which changes the first four standardized
central moments of u′i to the desired values while keeping the other incorporated statistics the same such that: gu′i(xi, t) =
u′i(xi, t)gi(xi). For this purpose, three approaches were proposed and tested: i. non-Gaussian random number set input-
based approach, ii. deterministic deconvolution-based approach, and iii. probability mass function transformation-based
approach.
Methodology
Four DFM were implemented into OpenFOAM suite and tested through a test-bed. The methods sorted by descending
computational cost are: i. di Mare et al. [6], ii. Klein et al. [1], iii. Xie-Castro [2] and iv. Kim et al. [7]. The chosen
methods represent the majority of DFM capabilities and varieties. The test-bed involves three ‘building-block’ flows:
i. homogeneous isotropic turbulence (the case of M = 0.0508) [13], ii. homogeneous shear turbulence (the case of h
= 0.305) [14], and iii. plane channel flow (the case of Reτ=395) [4], each of which focuses on an isolated aspect of
turbulent flows. OpenFOAMv1612+ was used with the physical model of incompressible implicitly filtered LES (IFLES).
Sub-filter scales were modelled with Smagorinsky model (Ce = 1.048, Ck = 0.02107) corrected by van Driest damping
function near the walls. Computational domain models replicated the physical domain of each benchmark scenario, and
domain discretization was made with unstructured rectangular cuboids. Pre-assessment for the spatial resolutions ensured
that maximum Courant number remains below the unity. Due to the inability of separating discretization errors and
IFLES modelling uncertainty errors, grid-independency is not possible for IFLES. Post-assessment of spatial resolution
is therefore performed by one-point and two-point grid estimators. Finite volume method was utilised for equation
discretization. Numerical integration of all spatial derivatives-variables, and node-to-face interpolations were held
through second-order central difference scheme. Backward differencing scheme of second order was used for numerical
integration of temporal derivatives-variables. The system of algebraic governing equations were then solved on a co-
located grid arrangement. Pressure-velocity decoupling at the practical and theoretical level were respectively removed
by a variant of Rhie-Chow momentum interpolation method and PISO algorithm. The inner mechanism of DFM was
divided into four consecutive building-block stages, so that the effects of each stage on statistics are isolated: i. random
number generation, ii. incorporation of two-point spatiotemporal correlations through digital filtering, iii. incorporation of
one-point correlations through [5]’s transformation, and iv. non-Gaussian transformation. To quantify-compare the level
of fidelity of each DFM’s flow reconstruction, the following statistical measures (mostly of the benchmark databases)
were used: profiles of i. standardized central moments, ii. second-order one-spatial-point correlation tensor, iii. two-
spatial/temporal-point correlation functions, iv. one-dimensional one-sided power spectral density functions, v. one-
spatial-point probability mass functions (pmf ), vi. pmf s of velocity differences across various distances and vii. entrance
length.
Sample Results and Discussion
As an example illustration from the obtained results, one-dimensional one-sided power spectral density functions are
presented in Fig. 1. What stands out in the figure is a sharp and flow-type-independent drop in the energy spectrum created
by [1] towards higher wavenumbers although the energy across large turbulence length scales match those observed in the
test-bed flows. In contrast, the other methods’ reconstructions are overall in better agreement with those in benchmarks
across the whole range of wavenumbers. The result may be explained by one of the major differences between the methods
that [1] uses Gaussian-shape form for input correlation functions whereas [2, 7] use an exponential form, and [6] an exact



form. In order to test this postulation, [1]’s form was converted into an exponential one. It was then found that the drop
disappears (not reported). This finding supports and suggests the view that exponential form of correlation functions is
more appropriate choice for turbulence correlations than Gaussian. Considering [1] is the most cited member of any DFM,
any insights utilised [1] must therefore be re-interpreted with caution.
Moreover, non-Gaussianity studies showed that i. the first two proposed approaches were proved to be ineffective, and ii.
the third approach was found to be promising. Although a feasible method was mostly developed, it is still significant to
examine how the first two sound methods did perform.
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Figure 1: Estimated one-dimensional one-sided power spectral density functions obtained from four DFM for the building-
block flows: from left to right, homogeneous isotropic turbulence, homogeneous shear turbulence and plane channel flow.
Synthetic turbulence was generated on a discrete plane domain containing 214 nodes. For each node, a time series consisting of
4× 104 temporal points were created. Next, for each time-series, the power spectral density was estimated, and the estimations
were spatially averaged in homogeneous directions. In the estimation, Welch’s method with Hann window using 50% overlap
was used (length of each segment was set 512 temporal points).
Future Work
The following remains incomplete to reach the two aims of the study: i. prospective simulations of the test scenarios
need to be completed, and ii. the method-yielding-promising-results for non-Gaussian functionality needs to undergo a
formalization, and more extensive-various tests.
Acknowledgments
The authors acknowledge the use of the IRIDIS High Performance Computing Facility, associated support services at the
University of Southampton, in the completion of this work, and thank all those involved in the organisation of OFW12
and to all the contributors that will enrich this event. Bercin also acknowledges the international research studentship
from the Faculty of Engineering and the Environment at the University of Southampton.
References

[1] M. Klein, A. Sadiki, and J. Janicka, “A digital filter based generation of inflow data for spatially developing direct numerical or
large eddy simulations,” Journal of Computational Physics, vol. 186, no. 2, pp. 652–665, 2003.

[2] Z. Xie and I. P. Castro, “Efficient generation of inflow conditions for large eddy simulation of street-scale flows,” Flow, Turbulence
and Combustion, vol. 81, no. 3, pp. 449–470, 2008.

[3] J. Jimenez, “Turbulent velocity fluctuations need not be Gaussian,” Journal of Fluid Mechanics, vol. 376, 1998.
[4] R. D. Moser, J. Kim, and N. N. Mansour, “Direct numerical simulation of turbulent channel flow up to Reτ=590,” Physics of

Fluids, vol. 11, no. 4, pp. 943–945, 1999.
[5] T. S. Lund, X. Wu, and K. D. Squires, “On the generation of turbulent inflow conditions for boundary layer simulations,” Journal

of Computational Physics, vol. 140, no. 2, pp. 233–258, 1998.
[6] L. di Mare, M. Klein, W. P. Jones, and J. Janicka, “Synthetic turbulence inflow conditions for large-eddy simulation,” Physics of

Fluids, vol. 18, no. 2, p. 025107, 2006.
[7] Y. Kim, Z. T. Xie, and I. P. Castro, “A Forward Stepwise Method of Inflow Generation for LES,” in Proceedings of the Sixth

International Conference on Fluid Mechanics. American Institute of Physics, 2011, pp. 134–136.
[8] M. Fathali, M. Klein, T. Broeckhoven, C. Lacor, and M. Baelmans, “Generation of turbulent inflow and initial conditions based

on multi-correlated random fields,” International Journal for Numerical Methods in Fluids, vol. 57, no. 1, pp. 93–117, 2008.
[9] I. Veloudis, Z. Yang, J. J. McGuirk, G. J. Page, and A. Spencer, “Novel implementation and assessment of a digital filter based

approach for the generation of les inlet conditions,” Flow, Turbulence and Combustion, vol. 79, no. 1, pp. 1–24, 2007.
[10] A. M. Kempf, S. Wysocki, and M. Pettit, “An efficient, parallel low-storage implementation of Klein’s turbulence generator for

LES and DNS,” Computers and Fluids, vol. 60, pp. 58–60, 2012.
[11] Y. Kim, I. P. Castro, and Z. Xie, “Divergence-free turbulence inflow conditions for large-eddy simulations with incompressible

flow solvers,” Computers and Fluids, vol. 84, pp. 56–68, 2013.
[12] N. S. Dhamankar, C. S. Martha, K. M. Aikens, and G. A. Blaisdell, “Digital Filter-based Turbulent Inflow Generation for Jet

Aeroacoustics on Non-Uniform Structured Grids,” in 52nd Aerospace Sciences Meeting, no. January. Reston, Virginia, USA:
American Institute of Aeronautics and Astronautics, 2014, pp. 1–35.

[13] G. Comte-Bellot and S. Corrsin, “Simple Eulerian time correlation of full-and narrow-band velocity signals in grid-generated,
isotropic’ turbulence,” Journal of Fluid Mechanics, vol. 48, no. 02, p. 273, 1971.

[14] S. Tavoularis and S. Corrsin, “Experiments in nearly homogeneous turbulent shear flow with a uniform mean temperature gradient.
Part 2. The fine structure,” Journal of Fluid Mechanics, vol. 104, pp. 349–367, 1981.



16TH EUROPEAN TURBULENCE CONFERENCE, 21-24 AUGUST, 2017, STOCKHOLM, SWEDEN

AN EVALUATION OF DIGITAL-FILTER BASED SYNTHETIC TURBULENCE GENERATION
METHODS AND IMPROVEMENTS TO THEIR QUANTIFIED DEFICIENCIES

Kutalmis Bercin1, Zheng-Tong Xie1 & Stephen R. Turnock2
1Aerodynamics and Flight Mechanics, University of Southampton, Southampton, UK

2Fluid Structure Interactions, University of Southampton, Southampton, UK

As emphasized by [4], the governing equations for turbulent flows are extremely sensitive to inlet boundary conditions.
Lorenz [4] showed, for example, that an alteration in the streamwise velocity component initial condition merely at a
level of O

(
10−6

)
yields diverse instantaneous realizations in turbulent convection mechanisms. Large eddy simulation

(LES) is also subject to such sensitivity because of the direct computation of the governing equations for time-dependent
large-scale turbulent motions. Inlet boundary conditions for LES, therefore, must be carefully modelled. Yet, theoretical
and practical inlet turbulence generation is proved to be difficult mainly due to the complex nature of turbulence; hence,
resulting in various methods.
One important category of such methods is the digital-filter based synthetic turbulence generation methods, originally
proposed by [3], (hereafter, DFMs) refer to which accept a set of target statistics and a discrete random signal as input,
and transform them mostly through mathematical techniques into a new deterministically and statistically different signal
representing the fluctuating component of a Reynolds decomposed turbulence parameter, φ′(x, t). The transformation is
performed by a train of arithmetic operations, which as a whole is often called a discrete filter operator (filter). Attributes
and sequence of operations are arranged by the target statistics, so that the realized statistics of the new signal may match
the target. The major advantage of DFMs in comparison to the other methods is the easiness of their code implementations
and their relatively low computational cost for a similar level of fidelity for the generated turbulence realizations.
Despite the use of DFMs across a broad range of LES applications in the literature, the relevant literature arguably lacks
systematic and complete conclusions/recommendations regarding inner parameters/mechanisms of DFMs. For instance,
quantitative examinations for their modelling assumptions, input-output relations, best numerical implementation/usage
practices, and extensive comparative analyses across their variants are, in general, either unavailable or unorganized. Lack
of knowledge on such issues may, however, hamper theoretical and practical improvements for DFMs, and their correct
usage.
The aim of this research study is, thus, to systematically explore patterns in parameters/mechanisms of DFMs to fill these
knowledge gaps, and to propose and evaluate possible improvements. For this purpose, the objective is set to investigate
each building-block assumption of DFMs in a consecutive order, examine outcome realizations to reveal capabilities and
deficiencies of the method, and search for new extensions/inversions to remedy the quantified deficiencies.
Three methods representing general capabilities of DFMs are tested with and without LES: i. [3], ii. [2]’s forward stepwise
method (FSM), and iii. [5]’s hybrid FSM-DFM. Their common point is that their applicability to most LES cases is
possible unlike, for example, [1] is limited to homogeneous shear flows in practice. Additionally, the test beds of the
methods involve: i. homogeneous isotropic turbulence, ii. homogeneous shear flow, iii. channel flow, and iv. backward
facing step flow, each of which helps to focus one isolated aspect of turbulent flows.
Initial quantifications showed two principal deficiencies in outcomes of DFMs: i. they are limited to Gaussian distri-
butions, and ii. they lose energy near cut-off scales. In addition, initial work suggested that DFMs may provide more
sophistication at a lower computational cost. For the first time, accordingly, a new method was proposed in order to im-
prove DFMs to produce non-parametric non-Gaussian turbulence processes. Furthermore, two new methods for DFMs’
inner computations were developed, one reduced the floating-point operations per time-step (FLOPT) from O{N6}1 to
O{N3(3N)}, and the other reduced the FLOPT from O{N6} to O{N3log3(N)} for a typical LES computation.
In the final work, the characteristics/quantifications of DFMs’ parameters/assumptions/mechanisms, arguably in the
largest scale in the literature to date, and, the methods-yielding-promising-results, which will undergo formalization and
more extensive tests, will be presented.
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1N is the number of grid points along a coordinate axis.



Paper-II: Supplementary Document - I

List of Tables

1 The sample mean and corresponding coefficient of variation for all the metrics . . . . 2

2 Pope’s criterion - ΓPope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

3 Celik et al.’s viscosity-ratio criterion - Γν . . . . . . . . . . . . . . . . . . . . . . . . 3

4 Celik et al.-I criterion - ΓCelik-I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

5 Celik et al.-II criterion - ΓCelik-II . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

6 Celik et al.-III criterion - ΓCelik-III . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

1



Table 1: The sample mean (i.e. µ̂1) and corresponding coefficient of variation (i.e. {•}CV) of time-averaged spatial-
variant fields of five IFLES-quality post-metrics (i.e. ΓPope, Γν , ΓCelik-I, ΓCelik-II, and ΓCelik-III) obtained from
the decaying homogeneous isotropic turbulence (DHIT), homogeneous shear turbulence (HST), and plane channel
flow with smooth walls (PCF) computations of the four digital-filter-based and forward-stepwise-based synthetic
time-series generators.

Method ↓ µ̂1CV → ΓPope Γν ΓCelik-I ΓCelik-II ΓCelik-III

DHIT

Custom 0.9770.41 1.76418.07 0.9370.46 0.9372.21 0.9362.12
Klein et al. 0.9800.44 1.82216.59 0.9360.36 0.9391.45 0.9391.31
Xie-Castro 0.9850.30 1.73036.99 0.9370.30 0.9321.43 0.9321.22
Kim et al. 0.9750.48 1.77226.89 0.9370.50 0.9332.83 0.9322.63

HST

Custom 0.9470.77 7.30637.04 0.8751.52 1.08951.96 0.87863.75
Klein et al. 0.9530.71 8.00346.91 0.8701.60 1.05024.39 0.90426.82
Xie-Castro 0.9530.66 7.83722.04 0.8711.57 1.01421.98 0.92422.72
Kim et al. 0.9470.87 7.579111.34 0.8731.40 1.07089.28 0.906105.22

PCF

Custom 0.9298.67 1.23010.70 0.9470.29
Klein et al. 0.9308.66 1.23110.87 0.9470.29
Xie-Castro 0.9308.69 1.23010.81 0.9470.29
Kim et al. 0.9288.76 1.22910.65 0.9470.29

Table 2: Seven descriptive statistics of the time-averaged ΓPope(x) spatial-variant fields: from the leftmost to the
rightmost column, the estimations of mean, standard deviation, skewness, kurtosis, maximum, median and minimum.

Benchmark Method µ̂1

√
µ̂2 γ̂1 γ̂2 Max Med Min

DHIT

Custom 0.977 0.004 -1.931 16.266 0.987 0.978 0.684
Klein et al. 0.980 0.004 1.802 17.682 0.999 0.979 0.556
Xie-Castro 0.985 0.003 1.548 17.274 0.997 0.984 0.738
Kim et al. 0.975 0.005 -2.782 31.398 0.986 0.977 0.504

HST

Custom 0.947 0.007 -0.355 0.252 0.976 0.947 0.847
Klein et al. 0.953 0.007 0.317 1.029 0.980 0.952 0.933
Xie-Castro 0.953 0.006 0.049 0.235 0.978 0.953 0.933
Kim et al. 0.947 0.008 -0.624 0.025 0.971 0.949 0.802

PCF

Custom 0.929 0.080 -2.573 6.120 0.980 0.961 0.458
Klein et al. 0.930 0.080 -2.562 6.021 0.988 0.961 0.480
Xie-Castro 0.930 0.081 -2.557 6.024 0.987 0.962 0.475
Kim et al. 0.928 0.081 -2.582 6.231 0.976 0.960 0.445
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Table 3: Seven descriptive statistics of the time-averaged Γν(x) spatial-variant fields: from the leftmost to the
rightmost column, the estimations of mean, standard deviation, skewness, kurtosis, maximum, median and minimum.

Benchmark Method µ̂1

√
µ̂2 γ̂1 γ̂2 Max Med Min

DHIT

Custom 1.764 0.319 488.543 752365.327 535.32 1.674 1.378
Klein et al. 1.822 0.302 455.518 424499.612 365.488 1.807 1.291
Xie-Castro 1.730 0.640 1683.659 3370998.906 1469.935 1.717 1.407
Kim et al. 1.772 0.477 1033.414 1717421.129 902.502 1.669 1.363

HST

Custom 7.306 2.706 710.047 1032664.268 4360.736 7.246 3.115
Klein et al. 8.003 3.754 853.124 1215278.736 6191.585 8.205 3.281
Xie-Castro 7.837 1.755 1.046 218.996 354.276 7.854 3.352
Kim et al. 7.579 8.438 1700.926 3456797.376 18410.885 7.412 3.89

PCF

Custom 1.230 0.132 1.486 2.031 1.844 1.194 1.011
Klein et al. 1.231 0.133 1.516 2.085 1.850 1.195 1.012
Xie-Castro 1.230 0.133 1.487 2.003 1.850 1.194 1.011
Kim et al. 1.229 0.131 1.449 1.943 1.837 1.194 1.011

Table 4: Seven descriptive statistics of the time-averaged ΓCelik-I(x) spatial-variant fields: from the leftmost to the
rightmost column, the estimations of mean, standard deviation, skewness, kurtosis, maximum, median and minimum.

Benchmark Method µ̂1

√
µ̂2 γ̂1 γ̂2 Max Med Min

DHIT

Custom 0.937 0.004 -1.485 48.807 0.944 0.938 0.417
Klein et al. 0.936 0.003 -2.992 232.38 0.946 0.936 0.467
Xie-Castro 0.937 0.003 -6.357 884.612 0.943 0.938 0.295
Kim et al. 0.937 0.005 -1.765 73.668 0.944 0.938 0.352

HST

Custom 0.875 0.013 -0.125 7.693 0.916 0.875 0.191
Klein et al. 0.870 0.014 0.217 10.214 0.914 0.868 0.164
Xie-Castro 0.871 0.014 0.324 -0.527 0.913 0.870 0.471
Kim et al. 0.873 0.012 -0.439 20.659 0.907 0.874 0.099

PCF

Custom 0.947 0.003 -1.339 1.664 0.952 0.948 0.935
Klein et al. 0.947 0.003 -1.370 1.711 0.952 0.948 0.935
Xie-Castro 0.947 0.003 -1.341 1.630 0.952 0.948 0.935
Kim et al. 0.947 0.003 -1.30 1.578 0.952 0.948 0.935
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Table 5: Seven descriptive statistics of the time-averaged ΓCelik-II(x) spatial-variant fields: from the leftmost to the
rightmost column, the estimations of mean, standard deviation, skewness, kurtosis, maximum, median and minimum.

Benchmark Method µ̂1

√
µ̂2 γ̂1 γ̂2 Max Med Min

DHIT

Custom 0.937 0.021 0.673 1.654 1.163 0.932 0.739
Klein et al. 0.939 0.014 1.704 15.438 1.246 0.938 0.773
Xie-Castro 0.932 0.013 2.989 24.561 1.188 0.93 0.81
Kim et al. 0.933 0.026 0.777 1.348 1.167 0.927 0.787

HST

Custom 1.089 0.566 -65.586 350468.792 496.023 1.066 -549.239
Klein et al. 1.05 0.256 -1159.041 2224036.659 18.697 1.055 -503.639
Xie-Castro 1.014 0.223 609.624 1425706.669 380.388 1.007 -230.211
Kim et al. 1.07 0.956 -601.424 2498816.151 1363.767 1.057 -1807.874

Table 6: Seven descriptive statistics of the time-averaged ΓCelik-III(x) spatial-variant fields: from the leftmost to the
rightmost column, the estimations of mean, standard deviation, skewness, kurtosis, maximum, median and minimum.

Benchmark Method µ̂1

√
µ̂2 γ̂1 γ̂2 Max Med Min

DHIT

Custom 0.936 0.020 0.347 0.240 1.000 0.932 0.739
Klein et al. 0.939 0.012 0.193 3.855 1.000 0.938 0.754
Xie-Castro 0.932 0.011 0.917 6.626 1.000 0.930 0.810
Kim et al. 0.932 0.025 0.355 -0.126 1.000 0.927 0.787

HST

Custom 0.878 0.560 67.918 365975.095 551.239 0.922 -494.023
Klein et al. 0.904 0.243 1363.489 2761521.425 505.639 0.922 -16.697
Xie-Castro 0.924 0.210 -729.373 1812852.472 232.211 0.931 -378.388
Kim et al. 0.906 0.954 605.306 2519999.512 1809.874 0.933 -1361.767
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