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ABSTRACT

FACULTY OF ENGINEERING AND PHYSICAL SCIENCES

Aeronautical and Astronautical Department

Doctor of Philosophy

DESIGN-IN-CONTEXT: EXPLOITING THE INCREASING ACCESSIBILITY OF

GLOBAL FE MODELS TO IMPROVE THE MECHANICAL DESIGN PROCESS

OF ENGINEERING SUBSYSTEMS

by Hau Kit Yong

The established component structural design process is based on evaluations of high

fidelity FE models of the local structure while incorporating estimates of the structural

behaviour of the rest of the engine in the form of free body loads and displacements.

However, these boundary conditions become invalid once a design change is made, and

to update them involves a lengthy validation procedure where a coarse mesh of the

proposed component design is generated and subsequently integrated into a low fidelity

model of the whole engine. In the present work, the existing component design process is

improved through a combination of exploiting new finite element modelling technologies,

a resourceful use of multi-fidelity surrogate modelling methods, and taking concepts

from concurrent design methods, to develop a set of reliable and efficient distributed

design strategies. A novel component design-in-context method is proposed to enable

components to design directly with respect to physical constraints in the residual system

using information from embedded global FE models. The method is found to reduce the

degree of system-level infeasibility for an engine component that is designed in isolation

by up to 2.7%, with only a moderate 11% increase in simulation cost. A novel safe

integration method which is based on a system-level surrogate model augmented with

a confidence level is also developed. The method is able to maintain high system-

level feasibility when multiple component design-in-context workflows are carried out

concurrently, reducing the probability of rework by as much as 5%.
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Chapter 1

Introduction

1.1 The Role of Whole Engine Finite Element Models

Gas turbine engines are complex systems where ever increasing demands to reduce engine

weight and improve fuel consumption has made it necessary for engine components to

be tightly integrated with each other. It is thus necessary to build engine-level models in

order to capture both the physics of inter-component interactions and also any emergent

behaviour that would otherwise be lost if the analysis was done on each component in

isolation. An assortment of such models are built, each characterized by the requirements

of the life-cycle stage of a particular engine programme and its associated activities.

For the purposes of structural analysis using the finite element (FE) method, such engine-

level models are normally referred to in industry as Whole Engine Models (WEM). A

WEM is typically an assembly of coarse FE models of the components in the engine’s

load path, although the selection of which components to include in the WEM, as well

as the individual fidelities of each component FE model, differ based on the type of

analysis that is performed.

One of the most common applications of WEMs is to conduct investigations of dynamic

engine structural failure events. These WEMs necessarily include a 3D shell-and-beam

model of the major components in the engine load path but will often be combined with

analysis-specific features. Studies on engine-airframe interactions, for instance, will re-

quire models of engine integration components such as pylons, nacelles, and the thrust

reverser unit, while fan blade-out simulations will require detailed 3D FE models of

the disk, several fan blades, and other elements of the axial retention system (Heidari

et al. (2008); Sengoz et al. (2015)). Some other applications include tip clearance eval-

uations that involve transient thermomechanical simulations of a WEM consisting of a

2D axisymmetric model of the rotor and stator overlaid with 3D effects such as blade

deformation (Arkhipov et al. (2009); Bordo et al. (2013); Boeller et al. (2018)).

1
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Figure 1.1: The traditional component design workflow. For every analysis of
a component design change, the component designer needs to liaise with the
whole engine analyst to obtain the updated free body loads for its local FE
model. In a realistic engine design programme, however, outdated loads are
often used instead due to time constraints.

Besides modelling system-level behaviour, WEMs are also used to both feed and validate

component design changes. When used in this context, such FE models are also known as

‘global’ FE models to indicate its scope. For example, in the design of static structures,

WEMs are used to understand and select the optimal configuration for the load-bearing

parts. Once this configuration has been frozen and the engine programme proceeds to

detail design, the results from these WEM simulations serve as a database of free-body

loads and displacements from which component designers can take as inputs to conduct

independent local analyses (Dharmasaroja et al. (2017)).

Figure 1.1 depicts the traditional component design workflow and the types of inter-

actions that exist between a component designer and a whole engine analyst. The

established workflow enables higher fidelity FE models of the component to be used

while incorporating estimates of the structural behaviour of the rest of the engine with-

out having to model the geometry explicitly. Once a design change has been made,

the conventional validation approach then is to perform system-level checks by generat-

ing a coarse mesh of the proposed subsystem design and integrating it into the WEM

(Minnicino et al. (2004)).

As good as this localized modelling approach is at accelerating analysis turnaround times

at the component level, the simulation results are susceptible to a number of errors that

the average component designer will find difficult to control (Sracic and Elke (2019)).

WEMs will not be able to represent high stress gradients across component boundaries

faithfully due to their coarseness. The approach makes use of St. Venant’s Principle,

which states that if the forces acting on a small portion of the surface of an elastic

body are replaced by another statically equivalent system of forces acting on the same

portion of the surface, the redistribution of loading produces substantial changes in the

stresses locally, but has a negligible effect on the stresses at distances which are large in

comparison with the linear dimensions of the surface on which the forces are changed.
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In effect, only regions sufficiently far away from the where the interface loads are applied

will produce accurate stress fields. Significant differences in the mesh resolution between

the WEM and local FE models can also introduce considerable interpolation errors.

Perhaps the most serious issue of all from the perspective of a design engineer, however,

is that the simulation results are valid only for the very narrow band of design changes

that do not upset the equilibrium of the WEM simulation. This means that the only

component designs that that can be assessed accurately and in a time frame short

enough to drive design decisions are those that do not have a significantly different

stiffness from the baseline. For design proposals that do not adhere to this restriction,

the true loading seen by the local structure is unknown, and the component FE model

is only able to provide qualitative information such as the trend of the response with

respect to the changes that have been made. Such information is still valuable during the

initial exploratory phases of the design process, but when the final design has to satisfy

explicitly defined requirements, quantitative measures of the accuracy will eventually be

needed to ensure that those constraints are met.

The two-step nature of the modelling process also exposes designers to a ‘validation

debt’ where the time required to check their designs against a WEM prohibits them

from pre-emptively taking the necessary corrective measures in their local iterations.

It is unfortunately not uncommon for an engine programme to arrive at the end of

a major design iteration when a final WEM is built and solved only to find out that

certain components have failed to meet their requirements. The organization is then put

into a firefighting mode where it is forced to decide between reverting the problematic

components to an earlier compatible state and lose months of work, or trying to restore

feasibility through a rework procedure that may involve soliciting compromises from the

remaining compliant components at the risk of breaking them.

1.2 The Case for Using Global FE Models to Drive Com-

ponent Design

If the component-to-WEM integration process can be streamlined, component designers

will be more confident in their knowledge of the structural behaviour of their domain and

will be more confident when making local design changes. One of the most significant

steps that can be taken as part of this streamlining effort is to reduce the two-step process

to a single step, by building a single FE model that meets the modelling priorities at

both the local and global level, and which only needs to be run once to produce the

necessary results. Such a model can be created by inserting the detailed component

model within the global FEM in situ to form what is referred to in the present work as

an ‘embedded’ global FE model. Due to the lower fidelity in the non-local regions of the

embedded model, only the trends of the responses in these regions can be captured, as
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Figure 1.2: The component design-in-context workflow. In the proposed
method, the component designer uses an integration tool to automatically em-
bed a detailed component FE model into a low fidelity FE model of the whole
engine. This approach circumvents the need for frequent communication be-
tween the component designer and the whole engine analyst, thereby reducing
the cost of evaluating local design decisions.

with the interface load approach. However, the key advantage of the current approach is

that the behaviour of the inaccuracies depend solely on the modelling fidelity and thus

can be modelled and controlled.

The method can be regarded as part of the field of integrated global-local modelling

which broadly involves mixing models of different fidelities, either by substituting a

higher-fidelity local model into a simple global model (Klein et al. (2017, 2018)) or by

a reduction of the surrounding region of a model of interest (Kumar et al. (2017)). The

distinction is made between in situ and integrated methods for finite element models

because the high-fidelity local model is placed directly within the overall global model.

In spite of its usefulness, this in situ approach has not been prevalent in the engineering

design community and descriptions of its applications in the literature are exceedingly

rare. The reason for this is, again, the difficulty of the integration process. The step of

reducing the local model has been removed but the activity of incorporating it into the

global model with the appropriate contact formulations still requires the expertise of an

analyst. The method has thus mostly been relegated to doing the same system-level

validation studies of subsystem design changes that a WEM is responsible for, but when

the analyst does not have enough time to coarsen the local model.

It is apparent that if the entire integration process can be completed without the division

of tasks between the designer and the analyst, true simulation-driven design with these

in situ models can be achieved. To this end, Rolls-Royce has developed MANTLE,

a library of finite element pre-processing tools. The MANTLE library provides both

mesh coarsening and integration capabilities in one package. This technology opens the

door to design-in-context approaches where component designers can actively account

for both local and global requirements in the design decisions. Figure 1.2 illustrates such

an approach.
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1.3 The Need for a Reliable Approach for Integrating Com-

ponent Designs

As the scope of information that is available to the component designer increases, there

is a natural inclination for increasing the scope of the design task. In a conventional

concurrent design environment, the maximum attainable performance of a component

is restricted not only by the physical limitations of the component structure but also

by ‘interface requirements’ that act to prevent the component from inadvertently dete-

riorating the performance of its neighbouring structures. The values for these artificial

requirements are typically determined through a systems engineering practice and can

often be poorly prescribed. By making available a tool such as MANTLE that increases

the accessibility of system-level structural information, the astute component designer

may look towards searching for designs that violate the interface requirements but oth-

erwise satisfies the physical requirements in a larger context.

Such endeavours are inherently useful as they tell the component designer how local

decisions affect the behaviour in the residual system, as opposed to the opaqueness of

the interface requirements. However, if the component designer then decides to drive

local design decisions based on this non-local information directly, there is a risk that the

resulting component design will violate those same requirements upon assembly. This

can occur because the global FE model assumes that the residual system is static and

does not model non-local preferences. There is thus a need for a system-level integration

approach that can reliably combine discrete component designs together into a feasible

system, while preserving the design freedom that is afforded to each component designer

by the availability of global FE models.

1.4 Thesis Objectives and Overview

The main goal of this thesis is the development of methods for improving the accessibility

and utility of component-level design optimizations in gas turbine engine development.

This is primarily achieved by the development of a finite element modelling workflow

that enables global FE models to be generated quickly and are able to provide context

to component-level design decisions and in turn, enable them to increase the scope of

their design activities. The proposed strategies should lead to the establishment of a

design environment that is highly flexible and allows novel designs to be explored, yet

provide some assurance that the decisions taken will not lead to infeasibilities in the

residual structure.

In order to begin to develop such methods, it is important to understand the appli-

cation of finite element methods for structural design, what makes the generation of

global FE models challenging, and what the inaccuracies are; these points are addressed
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in turn in Chapter 2. Chapter 3 then discusses the surrogate modelling approach, mo-

tivating the development of a novel multi-fidelity optimization approach mixing solid

and mid-surface meshes, as well as a novel design-in-context approach that uses the

aforementioned embedded global FE models. Chapter 4 presents a method for safely

integrating arbitrary sets of component designs that are generated through concurrent

local optimizations. The effect that different combinations of the component design ap-

proach and the system-level integration approach has on the convergence characteristics

of an overall design process is investigated. Finally Chapter 5 concludes the thesis.



Chapter 2

Accelerated Generation of Global

Finite Element Models

2.1 Whole Engine Modelling

Only through studying the engine’s structural behaviour in its entirety are we able to

distillate the synergistic interactions of its subsystems and components. This has driven

engine manufacturers to establish dedicated groups of engineers whose responsibility

is to build global finite element models of the engine, models that are often referred

to in industry as Whole Engine Models (WEMs). This concentration of expertise is

required to handle the complex process of transforming the engine from a detailed CAD

assembly into a low degree-of-freedom CAE assembly of sufficient accuracy. However, a

large amount of man-hours is still required to build these FE models. Their turnaround

times thus exceed most decision-making timescales at the component level, so they

are often only used to validate component designs. There is therefore a motivation to

streamline the WEM generation process, often through automation or an improvement

in its robustness. A recent survey of automatic geometry simplification methods can be

found in Thakur et al. (2009). Of these methods, dimensional reduction is perhaps the

most widely used for aerospace structures as they are predominantly thin-walled.

2.2 Dimensional Reduction of Solid CAD Geometry

2.2.1 Medial Object-Based Mid-Surface Modelling

Introduced in Blum (1967) for biological shape recognition, the medial axis (MA) can be

defined for a solid as the locus of centres of an inscribed sphere of maximal diameter as it

rolls within the boundaries of the solid. Taking a more computationally implementable

7



8 Chapter 2 Accelerated Generation of Global Finite Element Models

Figure 2.1: The medial axis transform for a HP compressor stage casing. The
figure contains a 2D cross-section of a HP compressor stage casing (blue curves),
its medial axis (red curves), several maximally-inscribed discs (black circles),
and the radius function r(x). Similarly, for 3D geometry, the boundary lines and
medial axis are replaced with boundary faces and medial surfaces, respectively.

perspective, the MA can also be defined as the set of points interior to the solid that

are equidistant from two or more points on the solid’s boundary.

The medial axis transform (MAT) consists of the MA together with a radius function

that maps points on the MA to the radius of its maximally inscribed sphere. Figure

2.1 shows an example MAT for an engine component. The MAT provides a simple

and compact representation of shape that preserves many of the topological and size

characteristics of the original shape. It is a complete shape descriptor, that is, the

transformation is invertible and the shape of the original domain can be reconstructed.

A MAT of a CAD model that is a CAD model itself on which meshes can be generated

is referred to as a medial object (MO). The generation and application of such skeletal

representations of geometric models are fields of active research within the computer

graphics and image-processing communities (Leymarie and Kimia (2008)). Detailed

descriptions of their properties and a survey of the state-of-the-art in skeleton generation

can be found in Tagliasacchi et al. (2016).

The maximally-inscribed disc definition has been largely replaced with concepts that lend

themselves towards easier algorithmic implementation. Gürsoy and Patrikalakis (1991)

described the medial axis in terms of minimum distances. For any closed geometry, a

minimum distance-to-boundary value can be computed for every internal point. The MA

is then defined as the locus of the set of internal points that have non-unique minimum

distance values. The grassfire analogy proposed in Blum (1973) and further developed

in Kimia et al. (1995) is also a popular definition. The boundary of a geometry is “set on

fire” in a controlled fashion such that the flame front at all locations propagate normally

into the geometry at a uniform speed. Flame fronts originating from different parts of

the boundary will eventually meet at the medial axis and die out. Each point on the

medial axis holds information about the flame front ‘arrival’ time, which could then
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Figure 2.2: The medial axis grassfire (adapted from Tagliasacchi et al. (2016)).

be multiplied by the propagation speed to compute its equivalent of a maximal radius.

Figure 2.2 shows the progress of the flame front at several discrete times.

The medial axis is closely related to the closest neighbourhood problems in computa-

tional geometry, especially the well known Voronoi diagram (Berg et al. (2008)). A

Voronoi diagram is a geometric structure that takes a set of ‘sites’ as input and sub-

divides a region such that every point in the region is assigned to the nearest site. For

example, we can take a set of n points defined on a plane, P := {p1, p2, . . . pn}, to be the

set of sites. The resulting Voronoi diagram, Vor(P ), consists of n cells, one for each site,

with the property that a point q lies in the cell corresponding to the site pi if and only

if the Euclidean distance dist(q, pi) < dist(q, pj) for each pj ∈ P with j 6= i. The MA is

a special case of Voronoi diagrams that uses both points and line segments, specifically

the vertices and edges of a polygon, as sites to sub-divide the interior of the polygon

itself. Figure 2.3 compares the MA to the Voronoi diagram for a simple 2D shape. They

are identical to each other except in non-convex regions.

In a CAE context, the medial object can be treated as a mid-surface and thus represents

a useful source of geometry on which shell meshes can be constructed. Shell meshes play

a critical role in reducing the computational cost of running simulations on thin-walled

geometries which are commonly found in gas turbine engines. Shell meshes exploit the

engineers’ theory of bending, which in its basic form asserts that stresses on opposite

faces of thin objects are equal and opposite. Shell meshes can also take advantage of

St. Venant’s principle which asserts that modelling discrepancies between solids and

3D shells in localized regions are insignificant as long as the stress distribution in these

regions are not of interest and only the overall stiffness of the structural model is desired.

The total number of elements in a shell mesh can be significantly lower than an equivalent
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Figure 2.3: The Voronoi diagram, VD, versus the medial axis, MA (adapted
from Gürsoy and Patrikalakis (1991)). Three types of branch points are labelled.
The intermediate branch point, IM, indicates where three or more MA branches
intersect. The initial and final branch points, I and F, indicate the locations of
minimum and maximum thickness over the entire shape, respectively.

solid tetrahedral mesh that has to adhere to a minimum elements-through-thickness

count to maintain mesh quality.

Bearing in mind the computational cost reductions that mid-surface meshes can offer

in simulations, their full potential to accelerate the design process is truly shown when

they are re-used in design optimization studies on models with static topologies. Their

re-usability stems from how mesh regeneration is not necessary if the only modifications

allowed are symmetric thickness changes which are common in late-stage sizing opti-

mizations. Such changes would preserve the symmetric properties of the medial object

and would thus be unchanged for the modified design. For example, if the effect of vary-

ing the thickness of a flange on the stiffness of an engine casing is to be investigated,

the thickness data for each element in that flange can be directly changed by simply

searching for the flange elements in the simulation data file and overwriting them with

the updated values. Figure 2.4 shows a simulation deck before and after a thickness

modification has been performed on a group of elements belonging to a polygon face.

The cost reductions offered by these mid-surface meshes thus become increasingly signif-

icant as the number of optimization iterations increases. Some of the limitations of these

kinds of rapid geometry modifications are also immediately obvious. Symmetric thick-

ness changes to surfaces in the engine that are located in the gas path are not desirable

as the fluid flow would be altered, requiring recalculation of the boundary conditions

from expensive CFD analyses. Decisions that alter the topology of the model, such as

shifting the position of the thrust linkages on an engine casing (Toal et al. (2014)) or

changing the number of stator vanes in a compressor, can also not be realised. These
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Figure 2.4: Overwriting CQUAD4 element thicknesses in a NASTRAN simula-
tion deck. The modified thicknesses are highlighted in red.

changes would require the medial object to be re-computed, so in these scenarios the

amount of time saved would depend on how efficient the MAT algorithms are.

Having looked at the strengths of the method, the weaknesses of mid-surface meshes

need to be addressed. Figure 2.5 shows the junctions in a medial object-based mid-

surface mesh where the shell elements have been extruded by their thicknesses. There is

considerable overlap in the extruded volumes due to the high number of medial points,

each with a different element orientation, that is needed to capture junction details.

This can cause a discrepancy in the mass distribution from the original geometry and

lead to inaccuracies in modal simulation results. The mass of each element is computed

by multiplying its extruded volume with the material density, and the total mass of the

mid-surface mesh is just the sum of all element masses. For uniform geometries like flat

plates and cylinders, the extraneous mass would be negligible as the element alignment

will result in less overlap. For static simulations, the overlapping elements can also lead

to extra thickness at the junctions. This phenomena, however, actually improves the

accuracy of the simulation as they can represent the effects of fillets when compared to

traditional mid-surface models that do not have this modelling capability (Pollard et al.

(2017)).

The medial object will also produce geometric artefacts called ‘flaps’ at the location

of every convex point on the model boundary. A flap is a special case of surfaces in

the medial object that has a thickness which reduces to zero as the convex point is

approached. These surfaces are not what engineers would normally regard as a good

mid-surface as they do not represent the topology of the underlying geometry, and they

would also exacerbate the mass discrepancy problem. Treatment of flaps is typically

done by pruning them from the medial object and then extending the affected surfaces

towards the boundaries of the original geometry. This is less of an issue for this project as

the MANTLE medial object functions are able to bypass the creation of these branches

at the geometry’s end-faces based on the user pre-emptively excluding the end-faces from

the extraction process (Figure 2.6). Some flaps will still exist at locations where there
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Figure 2.5: Extra thickness at junctions in the medial object.

is a change in the local curvature but these flaps can just be pruned without extension.

The quality of the medial object is very sensitive to surface imperfections like free edges

and intersecting surfaces which can be an issue if stringent requirements on CAD model

quality are not enforced.

2.2.2 Medial Object-Based Mixed-Dimensional Modelling

The desire to automatically generate FEMs for a wider variety of geometries that have a

mixture of thick and thin regions has motivated research into mixed-dimensional mod-

elling (Robinson et al. (2011)). The medial object also plays a crucial role in this

approach, although they are used to identify and decompose the geometry into simpler

and more regularly-shaped units, instead of directly meshing them. Dimensional reduc-

tion operators are then applied separately on each region but only on those that satisfy

some geometric requirements that have been shown to cause minimal accuracy loss from

the simplification. The automatic model segmentation capabilities enabled by the MO

have also been exploited for automatic hexahedral-dominant meshing, where they are

Figure 2.6: Flaps at convex locations in the model boundary, and their re-
moval by the exclusion of the end-faces in the medial object extraction process
(adapted from Wang et al. (2014)). The flaps are only present in the left-hand
figure. They are the diagonal lines that split off from the medial axis and meet
a corner of the geometry boundary.
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used to decompose the geometry into sweepable regions (Price et al. (1995); Sun et al.

(2018a,b)).

Mixed-dimensional modelling originated from the development of automatic methods for

coupling finite elements of different dimensions (Monaghan (2000), McCune et al. (2000),

Shim et al. (2002)). Donaghy et al. (2000) used medial axis information to idealize a 2D

FEM into a mixed 1D-2D FEM. An identification process was used to identify uniform

slender regions, which are characterised by their high aspect ratio and low taper ratio.

The aspect ratio was calculated by dividing the shortest bounding edge by the maximum

disc diameter in a particular region, while the taper ratio was defined as the maximum

rate of change of the maximum disc diameter with respect to the medial edge length.

User-defined critical values can be set for these geometric measures depending on the

desired degree of model reduction. A model dominated by 1D elements is thus generated

when the critical aspect ratio is low. Simulation results showed that by keeping the

regions around joints and other discontinuities in their original representations, stress

concentrations can be captured well. However, it can be difficult to determine a priori

suitable critical values for a coveted degree of accuracy. A single critical value for each

geometric measure would also not be optimal, as the sizes of regions with interesting

structural activity would likely be quite different throughout the model.

The mixed-dimensional modelling approach has been further extended to produce 2D-

3D models from asymmetric 3D models. In Chong et al. (2004), the medial object is

used to divide the geometry into ”primitives”, which are simple shapes like cubes and

cylinders. The decision to dimensionally-reduce a primitive to its 2D form is made based

on a thickness tolerance value. Cutting faces for geometry splitting are determined

heuristically using a combination of edge concavity information, island/boss feature

recognition, and medians that were generated by collapsing the nearest edges. Mid-

surfaces are then extracted from the medians. For non-planar geometries like curved

surfaces, bounding shapes are created from the midpoints of the vertices of the surface

on which grid points were subsequently generated. The bounding shape is then deformed

to match the contour of the curved surface and the mapped grid points represent the mid-

surface. For stitching widely-separated patches, edges were generated in the middle of

the gaps. The mid-surfaces are then extended to meet at these edges. Alternative mixed-

dimensional model generation methods, such as those based on feature information, can

be found in Belaziz et al. (2000), Lee (2005) and Cao et al. (2012).

Methods to handle automatic coupling of the 2D and 3D regions were also developed

in Robinson et al. (2011). St. Venant’s principle was used to calculate suitable in-

set distances, which is how far a region of a higher dimension should extend into a

region of a lower dimension, so that the stress variations can be captured properly.

Mixed-dimensional models of an intermediate engine casing were used in free-free modal

analyses and also in static stress analyses with circumferential loads. The number of
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DoFs in the mixed-dimensional model was 8% of an equivalent solid model. Discrepan-

cies of approximately 8% for the maximum modal frequency, and approximately 6% for

the torque response, were reported.

A more recent study on the accuracy of these mixed-dimensional models can also be

found in Nolan et al. (2014) where a mixed-dimensional engine intercasing model was

validated against coarsely-meshed and finely-meshed tetrahedral FEMs in a free-free

modal analysis. The mixed-dimensional model generation time was reported to be sig-

nificantly longer than the tetrahedral FEM generation time, taking 63 minutes compared

to 1 minute for the coarse tetrahedral model. The analysis time, however, was much

shorter, taking 5 minutes for the mixed-dimensional model compared to 14 minutes for

the coarse model. Across 20 mode shapes, the maximum error in the corresponding

natural frequencies for the mixed-dimensional model was 10% while the error for the

coarse mesh was 7%. These results demonstrate the potential for such dimensionally-

reduced models for quickly obtaining FEA results but they also illustrate the difficulty

in efficiently extracting the medial object.

Although mixed-dimensional models are generally more accurate than pure mid-surface

meshes in terms of stress and mass, the design freedom offered by the latter can be

far greater, as changes made to solid-meshed regions in the mixed-dimensional model

cannot be updated without re-meshing and re-coupling with the shell-meshed regions.

2.3 Face Pair-Based Mid-Surface Modelling

Having looked at the methods for dimensional reduction using the medial object, at-

tention has to be directed to the face-pairing approach because of how ubiquitous it is

in commercial CAE software. Some methods are based on identifying geometry pairs

in the solid geometry, such as edge-pairs or face-pairs, while others use volume-based

decomposition methods to split a model into simpler sub-geometries (Woo (2014)).

Mid-surface generation by face-pairing was first proposed in Rezayat (1996). The method

starts by iterating over every face in the geometry and identifying end-faces using an

aspect-ratio based approach. These end-faces were removed from a set of ‘active’ faces,

and the remaining faces in the set were grouped into pairs using a ray-casting algo-

rithm. Adjacency graphs were then automatically created to capture the topology of

the model. Information from these graphs was used to facilitate the generation of the

complete mid-surface through a combination of geometric interpolation and 2D Boolean

operations. The face-pairing step also generates bi-directional associativity data between

the part and the mid-surface, thus boundary conditions for finite element analysis can

be projected to the mid-surface naturally and analysis results from the mid-surface can

similarly be projected back onto the original model.
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Figure 2.7: Comparison of mid-surfaces for a HP compressor stator model (left).
Free edges are highlighted in grey. The face-pairing approach (mid) as imple-
mented in Siemens NX9 Modelling produces patches of mid-surfaces that remain
disconnected even after the automatic stitching operations have been applied.
The medial object approach as implemented in MANTLE produces a fully con-
nected medial object.

The face-pairing approach is popular because of its speed relative to the medial object-

based approaches, although the end products for most geometry of even intermediate

complexity are incomplete mid-surfaces that require a significant amount of manual cor-

rections. The approach is not robust against geometries with junctions where opposite

faces are not clearly defined. Disconnected mid-surface patches are thus produced for

regions away from these junctions and need to be stitched together, often manually, be-

fore the model can be meshed. The current iteration of automatic stitching operations

regularly fail at locations where the gaps between neighbouring patches are too large,

or even in revolved geometries where there are small differences in the mid-surface cur-

vatures (Figure 2.7). The face-pairing approach also produces mid-surfaces that differ

based on the simplification criterion used (Figure Kulkarni et al. (2017)). Some work

has been dedicated to developing methods for quantifying the quality of a mid-surface

model using metrics such as its topological similarity to the original solid model and

Hausdorff distances (Lockett and Guenov (2008)). However, these are geometric com-

parison indices.

2.4 The MANTLE Library

2.4.1 Previous Work

In design optimization studies, simplified models are often used to quickly locate regions

of interest in the design space. Furthermore, when coupled with results from high-

fidelity models, a good balance between accuracy and cost can be established. The goal

of having a dimensional reduction algorithm that is fully-automatic, computationally

inexpensive and robust against geometric complexity, has thus spurred the development

of MANTLE, a library of proprietary Rolls-Royce medial object generation functions

and finite element pre-processing tools that is written in the MATLAB environment.
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Figure 2.8: Representation of the same set of boundary conditions when applied
to a tetrahedral mesh and a mid-surface mesh.

MANTLE was first proposed in Stanley (2010) and at the time of writing consists of

three main functions: MANTLE-2D, MANTLE-3D and MANTLE-Core. MANTLE-

2D and MANTLE-3D are the primary functions for the medial object generation of

axisymmetric and asymmetric geometries, respectively, while MANTLE-Core is used

as a tool for setting up engineering workflows. MANTLE-2D and MANTLE-3D call

sub-functions for medial point cloud generation, duplicate node removal, and medial

surface topology preservation. The capabilities of MANTLE-Core include the setting

up of simulation parameters, such as the definition of boundary conditions on tagged

sections of a geometry and the assembly of meshes for complex geometries and larger

subsystems.

Compared to most medial object generation algorithms which take the geometry bound-

ary as input, MANTLE computes the MO from a triangulation of the geometry’s surfaces

instead. Using a surface mesh as the input provides several advantages. First, this ap-

proach eliminates the problem of flaps at the end-faces since these faces can be left

un-meshed and thus are ignored by the MO generation functions. By providing the user

with control over the set of active faces, parallel computation of the MO is also enabled

by simultaneously processing sub-divisions of the geometry. These MO segments can

then be re-assembled using the MANTLE-Core function to obtain the complete MO.

The second advantage is that by associating nodes on the mid-surface mesh with nodes

on the surface mesh, boundary conditions, which are often applied on the CAD model

surfaces, can be transferred automatically to the mid-surface mesh (Figure 2.8). This is

equivalent to the bi-directional associativity property in mid-surface models.

The MANTLE library has been demonstrated on multiple gas turbine component ge-

ometries. Wang et al. (2014) generated mid-surface meshes of a combustion chamber

outer casing and a compressor intercasing and compared their deformations against

equivalent tetrahedral meshes under simple load cases. Displacement errors of under
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15% were observed while the solution time for a mid-surface mesh was shown to be, on

average, 70% of the solution time of a tetrahedral mesh. The reported cost savings were

noted to be lower than expected as MANTLE was at its infancy and the resolution of

the mid-surface meshes were higher than necessary in large uniform regions. Wang et al.

(2017) used MANTLE to generate mid-surface meshes of a realistic engine model and

demonstrated the mesh assembly workflow for producing a Whole Engine Model. Joins

consisting of rigid spider elements (specifically “RBE3” elements in the NASTRAN FE

solver) were automatically generated between components. The resulting WEM con-

tained 27 components, 26 of which were converted to their mid-surface form. The WEM

was used in a mass-stiffness trade-off study.

2.4.2 A MANTLE Mid-Surfacing Workflow

A FE pre-processing workflow based on the MANTLE library was developed for the

engine component geometries in the present work. Figure 2.9 illustrates the application

of this workflow on a HP compressor casing. Improvements to the MANTLE library

were made, including an element-wise thickness remapping function and a function that

automatically transfer boundary conditions from component meshes to the WEM. These

improvements were written in MATLAB while applications for automating the FE sim-

ulations were written in C# using the Siemens NX9 Open API.

To make the overall MO generation more efficient, the solid model is first decomposed

into segments after a visual interrogation of the model for geometric patterns. At first

glance, the casing appears to be asymmetric, due to the two thrust linkages at the

front, and the presence of stator vanes between the compressor and the combustion

chamber. Passing this model straight into the MANTLE-3D function would cause the

MAT computation time to be extremely high, since it is highly dependent on the number

of complex junctions in the geometry.

On closer inspection, the stator vanes were observed to be evenly-spaced, with a 4-degree

separation between every vane. A reduction of up to 98.9% in the MAT computation

time can thus be achieved from this decomposition. The MANTLE-Core function can

then be used to duplicate this pattern around the casing centre axis to get the complete

MO. The casing segment containing the thrust linkages, on the other hand, was treated

separately as the spacing between the geometric features are different. Figure 2.10 shows

how the casing geometry was split to accelerate the MAT computation.

The next step in the mid-surfacing procedure is geometry tagging. Tagging is used

to prevent the creation of flaps and to enable the setting of boundary conditions that

would normally be defined on the solid CAD model to be automatically transferred to

the mid-surface mesh. To exclude a face from the surface mesh, the current method of

operation is to simply change the colour property of that face to a pre-specified colour.
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Figure 2.9: An overview of the MANTLE mid-surfacing workflow. The symbols
in the figure are colour-coded as follows: Green symbols are computer files such
as geometry and data, purple symbols are processes that require manual input,
and orange symbols are processes that have been automated by the MANTLE
software. The figure highlights the areas in which the MANTLE software has
accelerated the traditional FE pre-processing workflow. A detailed description
of each step in the process is provided in Section 2.4.2.
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Figure 2.10: Splitting a casing geometry into semi-axisymmetric parts to accel-
erate the medial axis transform computation.

To tag an edge or a face for a boundary condition, the user need only give a name to

that face which indicates that it is a feature of interest. At the time of writing, the

MANTLE-3D function is not able to map boundary condition tags from two opposing

polygon faces onto the same point on the mid-surface mesh. A workaround was devised

where the smaller of the two opposing faces is tagged. A single, condensed boundary

condition computed by taking the resultant of all local load vectors is then applied to

this tagged face.

Once tagging is complete, surface meshes of the decomposed solid segments are gener-

ated and passed to the MANTLE-3D function for MAT computation and a subsequent

triangulation of the resulting medial point cloud to create the initial mid-surface. This

mid-surface is unstructured and may contain missing elements and elements with poor

aspect ratios due to the stability of the algorithm in its current implementation. Figure

2.11 shows some defects near a junction in the initial mid-surface. The mesh can be

fixed by filling in the holes with new elements and subsequently fitting polygon faces to

the surface as a temporary geometry for any re-meshing operations.

Once a quad-dominant mesh of sufficient element quality has been generated, thicknesses

can be mapped to the mesh. The previous re-meshing steps would effectively rewrite the

node and element information in the original mid-surface mesh, which would lead to the

loss of any thickness information that had been computed by the MANTLE-3D function.

A thickness remapping function was thus written in MATLAB to overcome this problem.

For each node in a new coarsened mid-surface mesh, the program would search for the

nearest node in the initial mid-surface mesh using a quadtree k-nearest-neighbour search

and subsequently transfer this node’s thickness to the coarsened mid-surface mesh. No

interpolation was done to account for spatial differences between the two nodes, and as
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Figure 2.11: Defects in the initial mid-surface mesh from MANTLE-3D, such
as missing elements and sliver elements.

such the suitability of this method depends on the density of the initial mid-surface mesh.

However, this was not an issue for the models in the present work as the MANTLE-3D

function tends to generate very dense initial mid-surface meshes.

Finally, the MANTLE-Core function is used to duplicate the mid-surface segments and

translate them appropriately. Figure 2.12 shows the sequence of geometries and meshes

created in the MANTLE mid-surfacing workflow.

Figure 2.12: The sequence of geometries and meshes in the MANTLE mid-
surfacing workflow for the stator segment of a HP compressor casing. (1) The
geometry is reduced to a single stator vane segment. The end-faces (shown in
green) and the split faces (shown in pink) have been tagged. (2) A surface mesh
of the solid segment is generated. The tagged faces are observed to have been
excluded. (3) MANTLE-3D takes the surface mesh as input and generates its
mid-surface mesh while preserving the tagging information. (4) MANTLE-Core
uses the tags to identify split-faces and subsequently revolves the mid-surface
mesh of the segment into the complete mid-surface mesh of the full casing.
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2.5 Validation of Mid-Surface Meshes

In this section, the accuracy of the MANTLE-generated mid-surface meshes will be

demonstrated using two studies. The first study is a linear static analysis on a simple

Whole Engine Model, where the deformations in the tetrahedral and shell meshes at

several common coordinates are compared. The second study is a normal modes analysis

on the LP turbine casing from the aforementioned WEM, where natural frequencies and

mode shapes are compared. The choice of running the vibration simulation on just the

LP turbine casing was made due to the large amount of memory and disc space required

to do the post-processing of results.

The metrics used to describe the resources needed for successful runs were obtained

from the performance monitoring .f04 file. The .f04 file contains information such as

listings of memory and disk usage statistics, summaries of physical file I/O activity, as

well as a time-logged summary of the module execution sequence, useful for determining

bottlenecks in the solution process. Indeed, for simulations on realistic engine models,

understanding this information is crucial for making good judgements on the computa-

tional resources needed so that extra resources can be pre-allocated without having to

wait for the solver to return a failed result.

Both of the current studies were performed on a workstation containing a 4-core Intel

Xeon E5-4640 CPU clocked at 2.40GHz and 256GB of installed memory.

2.5.1 Linear Static Analysis

The geometry used in this study is the CRESCENDO engine as used in Toal et al. (2014).

Figure 2.13 is a lengthwise split view of the engine geometry and its 4 components. The

model was constructed such that its longitudinal axis is parallel to the global x-axis,

while its transverse plane is parallel to the global y-z plane.

Tetrahedral and shell Whole Engine Models were generated using the original solid CAD

geometry and its mid-surface, respectively. The load case was obtained from a sample

analysis that was previously performed on the same geometry in an industrial study us-

ing a proprietary thermomechanical tool from Rolls-Royce. The load case corresponds

to the engine at cruise condition. Thrust in the form of uni-directional forces are ap-

plied to every compressor stage, while static pressure loads act on every surface. The

WEMs are constrained in the y- and z- axes at the fan casing and LP turbine casing

mounts, and in the x-axis at the HP compressor casing thrust lugs. The simulations

were executed in NX 9 Nastran within the SOL 101 solver environment. In practice, the

thermal loading is modelled in order to capture the tip clearances accurately. Inputs

to such a thermomechanical model include temperature-dependent material properties

and parameters describing the heat transfer within the engine such as air temperatures,
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heat transfer coefficients, and flow directions. This additional simulation fidelity signif-

icantly affects engine deformation, but is not explored here in order to keep simulation

costs low. The behaviour of mid-surface meshes when subjected to thermal boundary

conditions will need to be explored in future work.

For this study, the displacements at a total of 960 points (64 points evenly distributed

on the circumference of the WEM at 15 discrete x-positions) were extracted. The dis-

placements were post-processed into a maximum local radial displacement value, maxur

for each x-position. These values are used as approximations of the maximum pinch

point metric that is commonly used in tip clearance studies of gas turbine engine cas-

ings. The post-processing first involved fitting least-squares circles to the coordinates

of the interrogated points after deformation for each of the 64-point sets. The radial

displacement at each point is then computed as the radius of the post-deformation dis-

placement points from the y-z plane origin minus the radius of the least squares circle.

This least-squares circle approach was used to account for any rigid-body translations.

Mesh sensitivity studies were performed for each engine component independently. Ta-

ble 2.1 shows the results of the comparison for the converged meshes. All percentage

differences fall under the 15% mark as claimed for the MANTLE tool in Stanley (2010).

The error in the HP and LP turbine casings are markedly higher than the other engine

components. This is because the magnitude of the deformations in those components

under the tested set of boundary conditions is low. Table 2.2 shows the computational

resources that were consumed by both simulations, where the cost benefits of using

mid-surface meshes can be clearly observed.

2.5.1.1 Normal Modes Analysis

Conducting mesh convergence studies using displacement results from static structural

simulations is one of the most common approaches in industry as they are relatively

simple to set up and are computationally affordable. However, when accuracy over a

wider range of scenarios is of paramount importance, modal assurance criterion (MAC)

values from a free-free modal analysis can be a better indicator of model accuracy (Chen

(2001); Allemang (2002); Pastor et al. (2012); Towner and Band (2012)). The MAC is

a statistical indicator that is used to represent the similarity in mode shapes between

two modal data sets, and in addition to FEM-FEM validation it is also most commonly

used to validate simulation results with results from physical experiments.

The MAC value between two mode shape vectors {φr} and {φt} is calculated as follows:

MAC(ri, tj) =
|{φr}Ti {φt}j |2

({φr}Ti {φr}i)({φt}Tj {φt}j)
(2.1)



24 Chapter 2 Accelerated Generation of Global Finite Element Models

Table 2.1: Results from the linear static analysis validation study.

maxur (mm) Solid mesh Mid-surface mesh % Error

FC

FC.CON1 2.2738 2.2583 0.6792

FC.CON2 2.0428 2.0390 0.1879

FC.CON3 1.8941 1.8685 1.3468

HPCC

HPCC.CON1 1.4249 1.3841 2.8631

HPCC.CON2 1.3055 1.2825 1.7605

HPCC.CON3 1.2249 1.1749 4.0779

HPCC.CON4 1.1979 1.1453 4.3988

HPCC.CON5 1.0547 1.0082 4.4050

HPCC.CON6 0.9820 0.9326 5.0314

HPCC.CON7 0.8847 0.8526 3.6289

HPTC

HPTC.CON1 0.2414 0.2692 11.4998

HPTC.CON2 0.1524 0.1300 14.7104

LPTC

LPTC.CON1 0.1170 0.1066 8.8958

LPTC.CON2 0.1936 0.1795 7.3063

LPTC.CON3 0.3205 0.2952 7.8777

This is a normalized scalar product of the two mode shape vectors. The subscripts r and

t denote the reference and test data sets respectively, while i and j are mode numbers.

{φt}j thus refers to the modal vector of the jth mode shape from the test data set. The

superscript T is a conjugate transpose operator. The results from comparing n modal

vectors in the two models can be arranged into an n× n MAC matrix.

The MAC value can range from 0 (no correlation in mode shapes) to 1 (perfect modal

correlation). An accurate model would thus produce a MAC matrix that has values

near 1 in the main diagonal and near-zero values everywhere else, which indicates that

only the mode shapes in the same mode number are well-correlated. Main diagonal

MAC values of > 0.9 are normally used as a benchmark in the industry to account

for numerical noise and spatial-aliasing when not enough unique node pairs have been

identified. The actual pairing of the mode shapes are based on comparisons of the

natural frequencies and is done separately before the MAC calculations.

The geometry used in the current study is the CRESCENDO LPCC. The tetrahedral

and shell meshes were generated using the settings that were determined through the
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Table 2.2: Computational resources expended for the linear static analysis val-
idation study.

Resource Solid mesh Mid-surface mesh

Element count 2.7938E+06 3.5164E+05

Node count 5.5868E+06 3.3746E+05

Solution time (hours) 7.5828 0.6508

Max memory usage (GB) 19.9692 0.7513

Max disk usage (GB) 90.2837 39.8240

Total I/O (GB) 555.9546 189.6931

Figure 2.14: The Modal Assurance Criteria (MAC) matrix for the first 40 modes
of the CRESCENDO LPCC. R and W represent the tetrahedral and shell mesh
modes, respectively.

mesh convergence study in Section 2.5.1. The simulations were run in the NX 9 Nastran

SOL 103 solver environment for the first 40 modes under free-free conditions (no loads

and constraints). Figure 2.14 shows the MAC matrix plotted as a heat map. Table 2.3

shows the MAC values on the main diagonal along with the natural frequency errors of

each mode.
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Table 2.3: Comparison of the natural frequencies for the critical modes from
a free-free modal analysis of a solid and shell mesh of the CRESCENDO LP
turbine casing.

Mode MAC Solid mesh (Hz) Shell mesh (Hz) % Difference

7 0.89 176.60 178.55 1.10

8 0.89 176.68 178.68 1.13

9 1.00 292.08 291.70 0.13

10 1.00 446.05 452.98 1.55

11 1.00 446.56 453.50 1.56

12 1.00 794.33 813.85 2.46

13 1.00 813.87 834.56 2.54

14 1.00 876.62 891.13 1.66

15 1.00 876.98 891.68 1.68

16 1.00 885.95 901.37 1.74

17 1.00 926.73 931.42 0.51

The MAC for the first 6 modes have near-zero values due to the 6 rigid body modes (3

translational and 3 rotational) in unconstrained 3D structures. The natural frequencies

of these six modes are also almost zero, indicating no internal displacements due to

rigid body motion. The number of mode shapes that have to be considered varies

by component but for compressor casings specifically, the range of rotor RPMs during

operation is the determining factor. In this study, a limit of 60000 RPM, or 1000 Hz,

was used. The highest mode number of interest is thus mode 17.

All main diagonal MAC values in this mode number range satisfy the > 0.9 condition

for good model accuracy except for modes 7 and 8 which fall just short. In these

circumstances, the modal correlation may still be regarded as sufficiently high if the

overall MAC matrix shows clear identification of the mode pairs. This can be seen in

Figure 2.14 where all off-diagonal MAC values are approximately zero.



Chapter 3

Component Design-in-Context

with Global Finite Element

Models

3.1 Surrogate Modelling for Optimization

The previous chapter demonstrated that the medial object-based mid-surfacing and fi-

nite element model integration capabilities provided by the MANTLE software package

can be used to generate global FE models rapidly. The objective now is to investi-

gate how component designers can exploit this larger scope of structural information,

especially for generating designs that can meet both local and global requirements. A

Design-in-Context method is thus proposed. The method uses simulation results from

an embedded global FE model to drive surrogate-based optimizations at the component

level. The scope of the optimization case studies in the present work is limited to single-

objective, sizing-type optimization problems with continuous variables. Multi-objective

problems would be a relatively better representation of actual engineering design studies,

but for the purpose of demonstrating the principles of the proposed method, the current

scope should suffice.

Setting up the optimization problem first involves the assembly of design variables,

x1, x2, . . . , xn into a vector x = (x1, x2, . . . , xn)T . For continuous problems, this vector

belongs to the subset X of the n-dimensional real space Rn as defined by the bounds

on each xi. The subset X is commonly referred to as the design space. A measure of

goodness or an objective function can then be quantifiably expressed in terms of the

design variables, that is, f(x). A realistic problem also often involves several constraints

in the form of functional relations between the design variables, such as h(x) = 0 and

g(x) < 0, that shall be satisfied for the design to be acceptable. The values of x that

satisfy all constraints comprise the feasible domain of the problem.

27
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An optimization problem with a single objective can thus be stated as

min
x
f(x),

s.t. h(x) = 0,

g(x) ≤ 0,

(3.1)

where h = (h1, h2, . . . , hp)
T is a set of p equality constraints, and g = (g1, g2, . . . , gq)

T

is a set of q inequality constraints.

The functions f , h and g can be expressed in different forms. They are most often

given as explicit algebraic expressions that are derived either from the fundamental

equations and laws in engineering and science, or from a curve-fitting procedure to

empirical data. Additionally, their evaluation may involve complex calculations within

a numerical simulation that can only be solved using a computer program, such as the

FE models that have been discussed thus far. Concerns with using simulations to drive

optimizations include long running times and the lack of explicit gradient information.

Short design cycles also mean that optimizations are often terminated prematurely, so

an approach that also leaves the design engineer with a greater understanding of the

model to stimulate subsequent work is highly desirable.

Surrogate modelling is one such approach. The idea behind surrogate modelling is to

invest a proportion of one’s computational budget up-front for building fast mathe-

matical approximations to the slow-running simulations. An outline of the procedure

is shown in Figure 3.1. Surrogate models can also be used to bridge between various

levels of accuracy provided by simulation models of varying fidelity, an example being

the mixed-dimensional in-situ models and full-shell Whole Engine Models. An impor-

tant consideration in the approach is the selection of the surrogate model structure. The

Kriging method and its multi-fidelity auto-regressive variant, Co-Kriging, have been cho-

sen for the test cases in the current work for their suitability in approximating smooth

engineering functions and the usefulness of its error estimator in enabling efficient ex-

ploration of a design space.

3.2 The Surrogate Modelling Method

3.2.1 Generating the Initial Data Set

Surrogate models are essentially used to quickly estimate the mapping x→ f(x). Before

the surrogates have the ability to make these fast predictions, they must be trained with

some observational data of the same form, i.e. {x(i) → f(x(i)|i = 1, . . . , n}, where n is
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Figure 3.1: The surrogate modelling method. An initial sampling plan of designs
is generated using a DOE method and is subsequently evaluated for objective
and constraint response data (Section 3.2.1). A surrogate model is then con-
structed for each response of interest (Section 3.2.2). The surrogates can then
be used to provide fast approximations of expensive computer simulations in
an optimization process. A number of infill criteria are used to guide the opti-
mization process, and a set of promising designs are obtained (Section 3.2.3).
These new designs are evaluated and added to the existing dataset, and the
method returns to the surrogate construction step. This loop is repeated until
a termination condition is reached.

the number of points in a sampling plan. As obtaining this training data set involves

running the simulation f(x) several times, thoughtful selection of the sample locations

is needed.

In general, the sample locations should be dispersed uniformly over the design space so

that the surrogate model need not extrapolate over large distances to make its predic-

tions. This process of choosing sample locations is typically carried out using design

of experiment (DOE) methods. One option is to use a space-filling Latin Hypercube

(Keane and Nair (2005)) which produces sampling plans where each sample is the only

one in its containing hyperplane.

Through testing different surrogate model settings on a variety of optimisation prob-

lems, Jones et al. (1998) recommends a training data set of size 10d, though for simpler

responses 4d can be sufficient. The ultimate determining factor, however, is the com-

putational budget that is available. If the surrogate model is to be updated with new

points, a rule of thumb is to allocate a third of the budget for the sampling plan (Sobester

et al. (2004)).
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3.2.2 Constructing the Surrogate Model

Having run the simulations at the sample points, a surrogate model can be constructed.

The surrogate model construction process consists of two stages. First, a modelling

type is chosen. This is normally done with some idea of what the response should look

like. If the governing physical equations are largely linear, simple linear approximations

that are cheap to both construct and use for predictions would suffice. However, if the

function is highly irregular and multi-modal, using an over-simplified surrogate structure

could cause the search to miss promising regions among unattractive zones. Conversely,

using complex surrogate structures that have a large number of parameters could lead

to over-fitting, where the noise that is present in the simulations corrupts the underlying

response.

Surrogate models can be expressed in the generic form f̂(x,w), where x(i), i = 1, ..., n

represents the sample locations and w represents a vector of parameters to be tuned.

The conventional way to do this is to minimise a suitable error or loss function. Let the

training data set be,

{(x(1), f(x)(1)), (x(2), f(x)(2)), ..., (x(n), f(x)(n))}. (3.2)

The outputs from an un-tuned surrogate model would then be

{(x(1), f̂(x,w)(1) ± ε(1)), (x(2), f̂(x,w)(2) ± ε(2)), ..., (x(n), f̂(x,w)(n) ± ε(n))} (3.3)

where ε represents the prediction errors at the sample locations. The tuning process is

then centred around minimizing these errors.

There is no guarantee that matching the surrogate model predictions to the true response

at the n number of discrete locations means that the predictions would be accurate

everywhere else (James et al. (2013)). However, if n is sufficiently large and the sample

points are well-distributed over the design space, one can at least be confident that the

extrapolation distance would not be a main contributor to the surrogate’s inaccuracy.

Here two methods for estimating w will be presented: the maximum likelihood approach,

and the cross-validation approach. The proprietary optimization toolbox OPTIMATv2

(Toal et al. (2008, 2009, 2011)) that was used to solve all the optimization problems in

the present work uses the maximum likelihood approach to build Kriging models, and

the cross-validation approach to build Gaussian radial basis function models.
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Maximum Likelihood Estimation

In statistics, the likelihood can be described as a quantitative measure of the extent to

which a given data set supports a set of parameters in a parametric model. The concept

of likelihoods is normally taken as the inverse of the concept of probabilities, where

probabilities quantify predictions but likelihoods quantify the level of trust in a model.

For example, given a set of values for w, p(f(x)|w) is the probability that we would

obtain f(x) given model parameters w. However, when we are building a surrogate,

w is often unknown, and instead we have a finite number of observations f(x). The

likelihood is thus the probability of obtaining w given f(x). This can be expressed as

P ({f(x)(1), ..., f(x)(n)}|w) =
n∏
i=1

P ({f(x)(i)}|x(i),w). (3.4)

Assuming the errors ε can be represented as a normal distribution with standard devi-

ation σ, the likelihood function becomes

P =
1

(2πσ2)n/2

n∏
i=1

{
exp

[
− 1

2

(
y(i) − f̂(x,w)

σ

)2]
ε

}
. (3.5)

We can convert these products into sums by taking the natural logarithm of Equation

3.5,

n∑
i=1

[
y(i) − f̂(x,w)

]2
2σ2

− n ln ε. (3.6)

The model parameters are then obtained by minimising Equation 3.6.

Cross-Validation

In the cross-validation approach, a subset of the training data set is removed and the

surrogate model is constructed using the remaining observations. The surrogate model

can then be used to predict the outputs at the locations in the removed subset. Since

the true output values are known, the prediction errors can be computed. This process

repeats until all data points have been removed at some point in the procedure.

The sum of the prediction errors from all iterations is used to construct a cross-validation

error function,
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Ecv(w) =
1

n

n∑
i=1

[
y(i) − f̂−ζ(i)(x(i),w)

]2
. (3.7)

The model parameters are then obtained by also minimizing Equation 3.7.

3.2.2.1 Kriging

Kriging (Sacks et al. (1989)) is a popular surrogate modelling approach for facilitating

engineering design studies that are based on deterministic computational responses.

It is particularly useful for predicting responses from numerical simulations as it only

makes assumptions about the smoothness of the response surface but not the degrees of

freedom. The Kriging formulation also lends itself to the derivation of a prediction error

metric which is useful for gauging the quality of the surrogate when high simulation

costs make it difficult to do so otherwise (Keane and Nair (2005); Forrester et al. (2008);

Sóbester et al. (2014)).

Consider a simple surrogate model of the response of interest, f , involving a m-order

polynomial,

f̂(x,m,w) = w0 + w1x+ w2x
2 + ...+ wmx

m =
m∑
i=0

wix
i. (3.8)

This single-variable model can be extended to n variables using a linear combination of

basis functions,

f̂(x) =

n∑
i=1

wiψ
(i), (3.9)

where ψ is defined as the set of terms of order not greater than m and consists of all

possible combinations of variables.

In terms of describing continuous physical responses, radial basis functions are more

suitable. A radial basis function can be expressed as,

f̂(x) = wTψ =

nc∑
i=1

wiψ(‖x− c(i)‖) =

nc∑
i=1

wiψ(r(i)), (3.10)
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where c(i) denote the basis function centres. ψ thus depends on the distance between

a location of interest x and these centres. ψ can take on many forms, such as linear

(ψ(r) = r), cubic(ψ(r) = r3), and Gaussian (ψ(r) = e−r
2/(2σ2)), among others.

The basis function for the Kriging method is expressed as,

ψ(i) = exp

(
−

k∑
j=1

θj |x(i)j − xj |
pj

)
. (3.11)

The Kriging formulation can be considered to be a more general form of the Gaussian

basis function, where the parameter 1/(σ)2 and the exponent or order 2 have been re-

placed with hyperparameters θj and pj . θj and pj control the spread of the basis function

and the degree of smoothness around the basis centres respectively. The fundamental

assumption for using surrogate models is that the response at two locations which are

close together in the design space will have similar values, which is true for most engi-

neering functions. Kriging is one of the few surrogate types that is the least reliant on

this assumption, due to the presence of the hyperparameters.

The similarity in values, or correlation, between points x(i) and x(l) can be expressed as

a basis function,

cor[f(x(i)), f(x(l))] = exp
(
−

k∑
j=1

θj |x(i)j − x
(l)
j |
)
. (3.12)

A correlation matrix, Ψ, can be formed from all possible pairs of points in the training

data set,

Ψ =


cor[f(x(1)), f(x(1))] · · · cor[f(x(1)), f(x(n))]

...
. . .

...

cor[f(x(n)), f(x(1))] · · · cor[f(x(n)), f(x(n))]

 . (3.13)

Let 1µ̂ be the mean of the training data set, where 1 is an n × 1 vector of ones. A

covariance matrix is thus,

cov(f) = σ2Ψ. (3.14)
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A maximum likelihood approach can be used to find the values of θj and pj which best

return f(x). At this point two types of likelihood functions can be derived based on

our assumptions on the nature of f(x). If we take f(x) to have no error (from noise,

modelling inaccuracies, or other sources), we can build a model that interpolates the

training data set.

The maximum likelihood function for this approach can be written as,

1

(2πσ2)n/2|Ψ|1/2
exp

[
− (f − 1µ)TΨ(f − 1µ)

2σ2

]
, (3.15)

or in natural logarithmic form,

−n
2

ln(2π)− n

2
ln(σ2)− 1

2
ln |Ψ| − (f − 1µ)TΨ−1(f − 1µ)

2σ2
. (3.16)

Maximum likelihood estimates of µ and σ2 can then be obtained by setting the partial

derivatives of Equation 3.16 to zero, giving,

µ̂ =
1TΨ−1f

1TΨ−11
, (3.17)

σ̂2 =
(f − 1µ)TΨ−1(f − 1µ)

n
. (3.18)

Substituting Equation 3.16 and Equation 3.18 back into Equation 3.15 gives an expres-

sion known as the concentrated ln-likelihood function,

−n
2

ln(σ̂2)− 1

2
ln |Ψ|. (3.19)

Equation 3.19 is maximised to give the optimum hyperparameter values. As this func-

tion can be evaluated quickly, numerical optimisation techniques that directly search

the hyperparameter space can be employed. In the current work, the OPTIMATv2 op-

timisation package that is used to run the surrogate-based optimisation processes uses

a hybridised Particle Swarm Optimisation algorithm to maximise the hyperparameters.
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3.2.2.2 Co-Kriging

When there are multiple analysis models of varying accuracies and evaluation costs, a

multi-fidelity surrogate modelling approach can be used to make full use of the avail-

able data. In this work, the auto-regressive, multi-fidelity extension of Kriging, called

Co-Kriging, is used (Kennedy and O’Hagan (2000); Forrester et al. (2007)). The auto-

regressive model says that observations of the high-fidelity response are correct and

that any inaccuracies in the Co-Kriging model are caused entirely by the low-fidelity

response. This is equivalent to approximating the high-fidelity response by adding a

scaled Gaussian process of the low-fidelity response to a Gaussian process of the differ-

ence between the two data sets. The reader is referred to Park et al. (2017) for a survey

of multi-fidelity surrogate modelling methods, in which the Co-Kriging approach used

here is classified as a Bayesian discrepancy framework with a non-informative prior.

As with any surrogate modelling process, we first start with a training data set that has

been generated by a design of experiments. The difference for multi-fidelity surrogate

models is that the data set would now have distinct groups of sample locations pertaining

to simulations of different fidelities. Assuming that there are two simulation codes, the

training data set would be

X =

Xc

Xe

 =



x
(1)
c

...

x
(nc)
c

x
(1)
e

...

x
(ne)
e


(3.20)

where the subscripts e and c denote the expensive and cheap evaluations respectively.

Recall that Kriging considers the outputs at each of the sampling locations as realizations

of stochastic processes. Using F to denote a randomly-distributed representation of the

outputs, the evaluated sampling plan can be expressed as,
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F =

Fc(Xc)

Fe(Xe)

 =



Fc(x
(1)
c )

...

Fc(x
(nc)
c )

Fe(x
(1)
e )

...

Fe(x
(ne)
e )


. (3.21)

Consider the scenario where the cheap and expensive sampling plans share a common

point x(i). What would be a suitable way to utilise both of the random fields Fc(x
(i))

and Fe(x
(i)) in our calculations? A rational assumption that addresses this which would

also simplify subsequent derivations is to let cov{Ye(x(i)), Yc(x)|Yc(x)(i)} = 0, ∀x 6= x(i).

This assumption is part of the auto-regressive model from Kennedy and O’Hagan (2000).

Here we treat the expensive evaluation at this point as the ‘truth’ and say that it cannot

learn anything more from the cheap evaluation.

Continuing with the auto-regressive model, an approximation of the expensive analysis

is represented by the product of a Gaussian process of the expensive response, Zc, with

a scaling factor ρ, and a Gaussian process of the difference between the cheap and

expensive data, Zd,

Ze(x) = ρZc(x) + Zd(x). (3.22)

In the same vein as Equation 3.14, the covariance matrix between the cheap and expen-

sive data can be expressed as,

C =

 σ2cΨc(Xc,Xc) ρσ2cΨc(Xc,Xe)

ρσ2cΨc(Xe,Xc) ρ2σ2cΨc(Xe,Xe) + σ2dΨd(vXe,Xe)

 , (3.23)

where Ψc and Ψd are in the same form in Equation 3.12.

With an extra correlation matrix there are now five hyperparameters to estimate: θc,

θd, pc, pd and ρ. As the cheap and expensive data are considered to be independent, the

maximum likelihood estimations of the hyperparameters belonging to the cheap model

can be computed using the same formulation as seen in Equation 3.15 to Equation 3.19.

The concentrated ln-likelihood function that is to be maximised in this process is,
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−nc
2
ln(σ̂2c )−

1

2
ln|Ψc(Xc,Xc)|. (3.24)

To estimate θd, pd and ρ, we first define a difference model,

d = fe − ρfc(Xe). (3.25)

Equations 3.17 and 3.18 can then be re-used to calculate µ̂d and σ̂d by replacing f with

d.

ρ̂d can then be calculated by maximising,

−ne
2
ln(σ̂2d)−

1

2
ln|Ψc(Xc,Xc)|. (3.26)

3.2.2.3 Practical Considerations

One complication from having simulation codes of different fidelities is what the ratio

of cheap to expensive runs should be. This is governed by factors such as the cost

ratio and how well-correlated the cheap data is to the expensive data. Toal (2015)

investigated these factors regarding the appropriate use of Co-Kriging for optimisation.

The results showed that the level of correlation between the cheap and expensive data

sets significantly influences the accuracy of the multi-fidelity surrogate model, and this

is especially true when the number of cheap points are high.

If the correlation is poor, adding more cheap points may decrease the accuracy of the Co-

Kriging model. Adding expensive points could improve the accuracy of the Co-Kriging

model, but a single-fidelity Kriging model of equivalent cost could be more accurate by

comparison. Thus, the construction of Co-Kriging models on badly correlated data sets

is not recommended. Finally, if the cheap and expensive evaluations are of similar cost

(a 2:1 cost ratio was considered similar in this case), the use of cheap evaluations can

only be recommended if the correlation is, again, high.

These observations have lead to the establishment of a set of guidelines for constructing

Co-Kriging models which were considered in the process of designing the experiments

in this report. The guidelines are:

1. The r2 correlation between the cheap and expensive data should be > 0.9.
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2. 0.1 < fr < 0.8, where fr is
Budget for cheap evaluations

Total evaluation budget
.

3. The number of cheap data should always be slightly more than the number of

expensive data. A lower bound for this condition was defined to be fr >
1.75
1+ 1

Cr

,

where Cr is the cost ratio of the cheap to expensive simulation codes.

For example, if the optimisation problem has 8 variables, we can set the budget to 10d,

equal to 80 expensive evaluations. Assuming Cr = 0.2, 1.75
1+ 1

Cr

returns 0.2916. Thus,

guidelines 2 and 3 recommends having a fr value that is approximately 30% to 80% of

the total available budget.

Of course, these are suggestions on what a Co-Kriging model should not be, and it is

not quite obvious what the optimum parameters are as the range of fr is quite large. An

argument can be made that the higher the r2 correlation, the higher the fr should be,

as there would be more evaluations available for surrogate model construction. In this

example, fr = 0.7 would be appropriate if r2 = 0.99. fr = 0.7 of the total budget of 80

expensive simulations would give a budget for the cheap simulations that is equivalent

to 56 expensive simulations. The number of cheap simulations can then be computed

by dividing this with Cr, giving nc = 280, while ne = 24.

Note that the r2 correlations are often not known a priori. Furthermore, there has yet

to be any studies on what budget divisions are most suitable if the training data set is

a mixture of well-correlated and poorly-correlated responses. As such, some divergence

from the presented guidelines is unavoidable but what should be followed most faithfully

is the recommendation on having more cheap data than expensive data.

After establishing the number of cheap and expensive simulations, the next question is

how should one go about choosing the points themselves? Here the exchange algorithm

from Forrester et al. (2008) is used which selects a subset of points from the cheap data

set that minimizes the Φq criterion from Morris and Mitchell (1995) through an iterative

process. The Φq criterion ranks competing sampling plans, where a lower value signifies

better space-filling properties,

Φq(X) =

(
n∑
j=1

Jjd
−q
j

)1/q

, (3.27)

where n is the number of sampling points, {dj , j = 1, ..., n} is the list of unique distances

between all possible pairs of sampling points, {Jj , j = 1, ..., n} is the list of the number

of pairs of sampling points separated by the distances in dj , and q is an exponent which

can be chosen to control the desired amount of ‘space-filling-ness’. The common points
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between the cheap and expensive datasets are then used to construct the difference

model according to Equation 3.25.

3.2.3 Searching the Surrogate

As surrogate models are approximations of the true response, it would be useful to have

a mechanism that can continually improve their accuracy throughout the optimization

process. The most straightforward way to do this is to add more data to the training

data set. The cost of each simulation, however, forces the optimizer to be more selective

when choosing new locations to sample. The error estimation capabilities of the Kriging

and Co-Kriging formulations provide a foundation from which multiple infill criteria can

be rapidly derived to guide this selection. The locations at which these update criteria

are at their extrema represent candidate locations for further simulations. In the current

work, the OPTIMATv2 optimisation package that is used to run the surrogate-based

optimisation processes uses a NSGA-II algorithm to search for these extrema.

3.2.3.1 Predicted-Based Exploitation

For Kriging models, once the correlation matrix Ψ is computed, the surrogate model

now has the capability to make predictions at un-sampled points in the design space. Ψ

has been trained to be consistent with the training data set, but now it also has to be

consistent with the predictions at new points. A new point can be added to the training

data set, giving f̃ = [f , fnew]T .

A vector of correlations between this new point and the rest of the points in the data

set can be written as,

ψ̃ =


cor[f(x(1)), fnew(xnew)]

...

cor[f(x(n)), fnew(xnew)]

 =


ψ(1)

...

ψ(n)

 . (3.28)

The correlation matrix for this augmented data set can be expressed as,

Ψ̃ =

Ψ ψ

ψT 1

 . (3.29)

Substituting Equation 3.29 into Equation 3.19 gives the augmented ln-likelihood func-

tion,
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−n
2

ln(2π)− n

2
ln(σ̂2)− 1

2
ln |Ψ̂| − (f̂ − 1µ̂)T Ψ̂−1(f̂ − 1µ̂)

2σ̂2
. (3.30)

It is only necessary to include the last term in the maximization as it is the only term

that depends on fnew.

To maximise this function, a partitioned inverse method is applied and the resulting

function can then be differentiated with respect to fnew to give,

(
− 1

σ2(1− ψTΨ−1ψ)

)
(fnew − µ) +

(
ψTΨ−1(f − 1µ)

σ(1− ψTΨ−1ψ)

)
= 0. (3.31)

The Kriging predictor for fnew is thus,

f̂(xnew) = µ+ ψTΨ−1(f − 1µ). (3.32)

The Co-Kriging predictor can be similarly derived, and is expressed as,

f̂e(x) = µ̂+ cTC−1(f − 1µ̂), (3.33)

where the correlation terms in the Kriging predictor have been replaced with covariance

terms.

Updating the Kriging model at the predicted optimum would allow the optimizer to

quickly converge to an optimum value. This approach heavily favours exploitation which

is useful if the response is expected to be unimodal. However, the optimiser would have

a difficult time escaping from a basin of attraction which would not be desirable if

better optima are located elsewhere in the design space. Using this metric early on in

the optimisation loop when the surrogate model has the lowest accuracy could result in

wasted evaluations.

3.2.3.2 Error-Based Exploration

A better infill strategy for early optimization iterations is to sample where the level of

uncertainty in the Kriging prediction is high. This is an exploration-based method that,
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over several iterations, increases the overall accuracy of the surrogate over the design

space.

The mean squared error of a Gaussian-based prediction can be expressed as,

s2(xnew) = σ2

[
1− ψTΨ−1ψ +

1− 1TΨ−1ψ

1TΨ−11

]
. (3.34)

Employing this strategy for too long, however, is tantamount to using a larger sampling

plan. There is also no obvious guide to indicate when one should stop exploring and

start exploiting the basins of attraction that have been found.

3.2.3.3 Balanced Exploitation and Exploration

By incorporating the Gaussian-based error from Equation 3.34 into the prediction val-

ues, an approach can be developed which allows the predictions to take multiple values

from a normal distribution that is centred around the maximum likelihood estimation

of f̂ with a variance equal to the error. This provides a means to estimate an expected

improvement value (Jones et al. (1998)) representing the magnitude of the potential

improvement in the objective function at un-sampled locations, i.e. the expected im-

provement.

If we assume that the improvement is I = fmin(x)−f̂(xnew), the probability of achieving

this improvement can be calculated using,

P [I(x)] =
1

s
√

2π

∫ 0

−∞
exp
[
− [I − f̂(xnew)]2

2s2

]
dI, (3.35)

P [I(x)] =
1

2

[
1 + erf

(
fmin − f̂(xnew)

s
√

2

)]
. (3.36)

The expected improvement is then given by,

E[I(x)] = (fmin − f̂(xnew))Φ

(
fmin − f̂(x)

s(x)

)
+ sφ

(
fmin − f̂(x)

s(x)

)
, (3.37)
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E[I(x)] = (fmin − f̂(xnew))

[
1

2
+

1

2
erf

(
fmin − f̂(x)

s
√

2

)]

+s
1√
2π

exp

[
− fmin − f̂(x)

2s2

]
,

(3.38)

where Φ and φ represent the cumulative distribution function and probability density

function respectively, and erf is the error function.

This approach strikes a good balance between exploration and exploitation, but the

location of maximum expected improvement can be difficult to find after several update

iterations as they become very small.

3.2.3.4 Constrained Search

The probability of feasibility criterion, P [F (x)], represents the probability that the pre-

dicted value from the surrogate model of a constraint is greater than its specified upper

bound. It is similar to the probability of improvement criterion, P [I(x)], where instead

of using the current best design as the dividing point in probability space, we use the

constraint limit value gmin,

P [F (x)] =
1

ŝ
√

2π

∫ ∞
0

e−(F−ĝ(x)
2/(2ŝ)2)dG, (3.39)

where g is the constraint function, F is the measure of feasibility G(x) − gmin, G(x) is

a random variable and ŝ is the variance of the Kriging model of the objective.

The probability that a new infill point both improves on the current best point and is

also feasible is then,

P [I(x) ∩ F (x)] = P [I(x)]P [F (x)], (3.40)

since these are independent models.

We can also use the probability that a point will be feasible to formulate a constrained

expected improvement. We simply multiply E[I(x)] by P [F (x) > gmin],

E[I(x) ∩ F (x)] = E[I(x)]P [F (x)]. (3.41)

Note that this search for E[I(x)∩F (x)] is unconstrained since the action of the constraint

has been merged directly into the objective function.
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In effect, the constrained expected improvement falls away at the sample points as in

simple expected improvement. Additionally. the constrained expected improvement

drops as the constraint boundary is approached but allows for infeasible points to be

sampled to improve the overall model quality (for both the objective and the constraint).

As more update points are added the search space is widely sampled and the contours

of the constrained expected improvement becomes more closely aligned with the actual

constraint boundary. This method of computing the expected improvement is used to

solve the constrained optimization problems in the current work.

3.3 Multi-Fidelity Surrogate-Based Optimization with Solid

and Mid-Surface Meshes

In this section, two case studies are presented to demonstrate the multi-fidelity surrogate

modelling approach with solid and mid-surface meshes.

The first case study is an optimization of the CRESCENDO HP compressor casing for

mass reduction under stiffness constraints. This case study is a simple 2D problem that

allows the benefits of the multi-fidelity approach to be fully grasped through inspection

of the resulting response surface plots. The results from this case study also serve as a

useful benchmark for the design-in-context case studies in Section 3.4, where it will be

shown that the optimum casing design obtained here violates the stiffness constraints in

its neighbouring components.

The second case study is an optimization of the CRESCENDO whole engine for mass

reduction under stiffness constraints. This case study is used to assess the effectiveness

of the multi-fidelity approach for higher-dimensional problems that involve complex,

multi-component finite element assemblies.

3.3.1 Case study overview

In the current work, sizing optimization in the manner of modifying the thicknesses of

planar structural members is performed. This is a relatively minor type of geometry

adjustment but has been shown to be effective in reducing weight in thin-walled struc-

tures while preserving much of the stiffness (Taylor (2006)). The design variables in

each case study are thus the thicknesses of select structural members in the geometry

under consideration. Some care is taken to only select structural members not in the

gas path so that the fluid-structure interactions can be neglected.

Although not included as part of the simulation cost, some differences in the time re-

quired to perform the finite element pre-processing steps between the solid and mid-

surface meshes can be observed. For evaluations of the mid-surface mesh, only a single
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discretization is required. Thickness changes can be realized by simply identifying within

the simulation deck the shell elements that belong to the mid-surface of a structural mem-

ber, and rewriting the thickness values of those elements (see Figure 2.4). On the other

hand, to materialize the thickness changes in the solid mesh, the original solid geometry

had to be updated and re-meshed. The direct modelling tool in Siemens NX is used

to apply these thickness changes to the solid CAD model. The subsequent re-meshing

step is then carried out with the assumption that the results from the mesh convergence

studies performed in Section 2.5.1 remains valid within the scope of geometry changes,

so the same mesh settings can be applied. It is thus considerably more expensive to

prepare the high-fidelity model.

Since all of the case studies involve a comparison between strategies that employ low-

fidelity FEMs in some form, it would be helpful to have a preliminary assessment of the

accuracy and cost of these low-fidelity simulations over a design space in order to see how

they affect the final optimization results. This can be regarded as an extension of the

single-point validation study in Section 2.5.1 but to a uniform distribution of designs.

To this end, a large space-filling DOE of low- and high-fidelity simulations is generated

to provide this data for each case study. The size of the space-filling DOE is chosen to

be 20 times the problem dimensionality. The accuracy of the low-fidelity simulations is

then presented in terms of a Pearson’s correlation coefficient, r2, a root mean square

error (RMSE) and a maximum absolute error (MAE). The errors are normalized against

the range of observed values. The costs of the low- and high-fidelity simulations are also

presented as bootstrapped mean values. These mean costs are then used to compute the

cost ratio between the simulation fidelities. It should be noted that the data from these

comparisons are for expository purposes; the typical design engineer does not normally

have the luxury of time or computational resources to perform so many simulations

ahead of his/her optimization study.

3.3.2 Optimization of a High-Pressure Compressor Casing

The first case study involves an optimization of the HP compressor casing (HPCC) from

the CRESCENDO engine. Figure 3.2 shows the HPCC geometry. The objective is to

minimize the HPCC mass, HPCC.OBJ, within a small relaxation of its stiffness. The

design variables are the thicknesses HPCC.VAR1 and HPCC.VAR2. HPCC.VAR1 is

the thickness of the flange-rib substructure, and HPCC.VAR2 is the thickness of the

rib separating the void box from the combustor region. These structural members were

selected as design variables because their thickness modification does not affect the gas

path. The values of the design variables for the baseline design are 3 mm. Lower

and upper bounds for the design variables are set to ±50% of the baseline values. A

total of seven stiffness constraints, HPCC.CON1 to HPCC.CON7, are present in the

current study. The upper bounds of the constraints are set to a 1% increase over the
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Figure 3.2: Section view of the CRESCENDO HPCC geometry.

maximum radial displacement values of the baseline design. This relaxation in the

allowed displacement is used to examine how much weight saving can be achieved if a

small compromise in stiffness is allowed.

The mass objective is obtained by taking the product of the CAD model’s volume and

its material density. Since both the solid and mid-surface simulations use the same

CAD model as their starting geometry, their evaluations of the mass are identical. This

response is thus omitted from the accuracy assessments. The stiffness constraints are

obtained by post-processing the displacement results as described in Section 2.5.1.

The geometry is meshed in both solid and mid-surface form using the converged meshing

parameters established in Section 2.5.1. Since the HPCC is an independent local model,

it needs to be supplied with free body displacements derived from the results of a global

FE model simulation of the whole engine. The results used in this derivation is simply

taken from the validation study in Section 2.5.1. The displacements at the interfaces

between the HPCC and its neighbouring components were exported as a field into a

.csv file. This file is then imported into the solid and mid-surface meshes of the HPCC

in isolation and applied to the same location as an enforced displacement boundary

condition. Siemens NX automatically interpolates the displacements from the imported

field to the nodes on the target face. These boundary conditions are, however, not

updated for every HPCC design change to reflect the new engine equilibrium as it would

be expensive to do so. There is thus an expectation of some consistency error in the

simulation results when compared to whole engine simulations.

A large 40-point space-filling DOE is generated for the preliminary accuracy and cost

assessments of the mid-surface mesh. Table 3.1 shows the results of the accuracy assess-

ment. The results show that the mid-surface mesh is a suitable source of low-fidelity

information according to the Co-Kriging guidelines stated in Section 3.2.2.2. The r2

values for all responses are above the recommended 0.9 threshold, with the constraint

HPCC.CON1 as the least well-correlated response at a r2 of 0.9902.
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Table 3.1: Comparison of maximum radial displacement values between linear
static analyses of solid and shell meshes of the CRESCENDO HPCC.

Output r2 % RMSE % MAE

HPCC.CON1 0.9902 59.92 66.82

HPCC.CON2 0.9910 38.25 47.61

HPCC.CON3 0.9930 63.47 69.71

HPCC.CON4 0.9943 79.45 82.51

HPCC.CON5 0.9944 66.64 71.08

HPCC.CON6 1.0000 63.40 71.31

HPCC.CON7 0.9954 46.52 51.20

The errors are, however, significant enough to discourage solitary use of the mid-surface

mesh in a single-fidelity fashion unless the constraint bounds are set to their mid-surface

equivalents. Recall that the stiffness constraints in the present case study are percentage

increases of responses over the baseline design. The validation study in Section 2.5.1

has shown that the difference between the solid and mid-surface evaluations of these

responses for the baseline is non-negligible. It was discovered from a test run that if

the constraint bounds in a mid-surface only optimization was set to the values in the

solid-only optimization, the entire design space became infeasible.

This requirement seems obvious but is less so when a mixing of bounds is necessary

for the design-in-context case studies. It is also clear that changing the bounds is only

straightforward if they are stated relative to a given baseline design. Constraint bounds

stated in absolute values such as “tip clearance cannot exceed 1 mm” would require a

pointless search for the design whose constraints match those values exactly, in order

for that design to be evaluated using a mid-surface mesh. Finally, even with the proper

bounds, the optimum design that is arrived at with a mid-surface only approach is still

subject to the inaccuracies of the surrogate model and thus is not guaranteed to be

feasible. The optimum designs would need to be validated using an equivalent solid

mesh.

Being a two-variable problem, plots of the response surfaces can be generated for a visual

comparison. Figure 3.3 shows the response surfaces of the Kriging models that have been

constructed from the large space-filling DOE. Differences in the constraint level curves

are noticeable, even with the adjusted constraint bounds. For the solid mesh evalua-

tions, the feasible domain is bounded by the constraints HPCC.CON1, HPCC.CON3,

HPCC.CON5, HPCC.CON7 and HPCC.CON8. For the mid-surface mesh evaluations,

however, the feasible domain is bounded by the constraints HPCC.CON2, HPCC.CON5,

and HPCC.CON7.
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(a) Tetrahedral mesh.
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(b) Mid-surface mesh.

Figure 3.3: Response surface of the CRESCENDO HPCC space-filling DOE.

Table 3.2: Cost comparison between linear static analyses of solid and mid-
surface meshes of the CRESCENDO HPCC. The confidence intervals were cal-
culated through resampling with 50,000 bootstrap samples.

Mesh
Solution time (hr)

µ 95% CI

Solid 2.9124 2.6123 - 3.2517

Mid-surface 0.2695 0.2288 - 0.3001

Table 3.2 shows the results of the cost assessment. The means are used to calculate a cost

ratio for converting high-fidelity simulations into an equivalent number of low-fidelity

simulations. The cost ratio for this case study is thus 10.81.

Optimization strategies were then devised with these considerations in mind. Three

strategies were devised to test the performance of the multi-fidelity approach against

reference single-fidelity approaches. Strategy I is a single-fidelity Kriging-based opti-

mization that uses solid HPCC evaluations as data. The optimization is started with

a 10-point Latin Hypercube DOE, and in each update iteration a maximum EI point

is evaluated. Strategy II is a single-fidelity Kriging-based optimization that uses mid-

surface HPCC evaluations as data. The optimization is started with the same 10-point

Latin Hypercube DOE as in Strategy I, and in each update iteration a maximum EI

point is evaluated. Strategy III is a multi-fidelity Co-Kriging-based optimization that

uses both solid and mid-surface HPCC evaluations as high- and low-fidelity data, respec-

tively. The optimization is started with a 10-point low-fidelity DOE equivalent to the

DOEs in the first two strategies, and a 3-point high-fidelity DOE that is generated by

taking an optimum space-filling subset of the low-fidelity DOE. In each update iteration,
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3 maximum EI points are evaluated using the low-fidelity model, as well as 1 imputed

maximum EI point that is evaluated using the high-fidelity model.

Table 3.3 summarizes these strategies. A maximum EI value of 0.01 kg was used as

the convergence criteria for all optimizations. Each strategy was then repeated with ten

differently seeded Latin Hypercube DOEs of the same sizes to obtain some statistics.

Table 3.4 summarizes the optimization results. The average mass reduction achieved

by the multi-fidelity approach of Strategy III is on par with the reduction achieved by

the expensive solid mesh only approach of Strategy I, but only at 26.64% cost. The

multi-fidelity approach was also able to identify the most active constraints, constraints

HPCC-CON6 and HPCC-CON7, and stay within their bounds. The mid-surface only

approach of Strategy II returns an optimum design with a lower mass, but failed to

identify the most active constraints. The constraint violation was discovered only at the

end of the optimizations when the optimum designs were validated using an equivalent

solid mesh.

Table 3.3: Description of optimization strategies in the CRESCENDO HPCC
case study.

Parameter Strategy I Strategy II Strategy III

HF FE model Solid Mid-surface Solid

LF FE model N/A N/A Mid-surface

Surrogate model Kriging Kriging Co-Kriging

DOE method Latin hypercube Latin hypercube Latin hypercube

# HF DOE points 10 10 3

# LF DOE points N/A N/A 10

Update method Maximum EI Maximum EI Maximum EI

# HF updates 1 1 1

# LF updates N/A N/A 3

Table 3.4: Optimization results for the CRESCENDO HP compressor casing
case study.

Result Strategy I Strategy II Strategy III

Mass reduction (%) 5.58 5.61 5.55

Infeasibility (%) 0 0.03 0

Relative cost (%) 100 9.25 26.64
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Plots of the response surfaces at the end of the optimizations in each strategy can

be generated for a visual comparison. Figure 3.4 shows the response surfaces of the

surrogate models that have been constructed from all evaluations in the optimizations.

The Co-Kriging predictions of the constraint level curves in the multi-fidelity approach

of Strategy III are relatively accurate in the region of the optimum design. The same

cannot be said for the Kriging predictions in the mid-surface only approach of Strategy

II. The surrogate model failed to predict the presence of constraints HPCC-CON1,

HPCC-CON3, and HPCC-CON6.

Figure 3.5 plots the search histories for all three strategies. The search histories are

presented as a function of the equivalent number of low-fidelity simulations and include

the cost of both the initial DOE and any subsequent updates. The cost conversions

are performed using the cost ratios in Table 3.2. This conversion is somewhat more

complicated for the multi-fidelity approach. The method taken here is to plot the pro-

gression of the high-fidelity simulations only but to augment each simulation’s cost with

the average cost over all simulations in both fidelities. For example, a final data set of

20 solid mesh simulations and 40 mid-surface mesh simulations with a relative cost of

20% would give an overall cost of 140 mid-surface mesh simulations. This overall cost

is then spread over the 20 solid mesh simulations, such that each one is treated as 7

mid-surface mesh simulations. The cost savings provided by the Co-Kriging approach

can again be clearly observed.

3.3.3 Optimization of a Full Engine

Having illustrated the benefits of the multi-fidelity approach for optimizing an engine

component, the approach is now applied to a whole engine optimization study to demon-

strate its effectiveness in solving realistic design problems involving a global FEM. The

second case study thus involves an optimization of the full CRESCENDO engine. Fig-

ure 3.6 shows the engine geometry. The objective is to minimize the whole engine mass,
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Figure 3.4: Response surfaces of the CRESCENDO HPCC optimization prob-
lem. These response surfaces correspond to the first repeated run.
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Figure 3.5: Optimization histories for the CRESCENDO HPCC case study.

ENGINE.OBJ, within a small relaxation of its stiffness. There are now eight design vari-

ables spread along the engine. They are the thicknesses FC.VAR1 and FC.VAR2 in the

fan casing, HPCC.VAR1 and HPCC.VAR2 in the HP compressor casing, HPTC.VAR1

and HPTC.VAR2 in the HP turbine casing, and LPTC.VAR1 and LPTC.VAR2 in the

LP turbine casing. The values of the design variables for the baseline design are 3 mm.

Lower and upper bounds for the design variables are set to ±50% of the baseline values.

A total of fifteen stiffness constraints are present in the current study. They are

the maximum radial displacements FC.CON1 to FC.CON3 in the FC, HPCC.CON1

to HPCC.CON7 in the HPCC, HPTC.CON1 and HPTC.CON2 in the HPTC, and

LPTC.CON1 to LPTC.CON3 in the LPTC. The upper bounds of the constraints are set

to a 1% increase over the maximum radial displacement values of the baseline design.

The mass objective is again obtained by taking the product of the CAD model’s vol-

ume and its material density. Its evaluation is again identical between the solid and

mid-surface simulations. The stiffness constraints are obtained by post-processing the

displacement results as described in Section 2.5.1.

The geometry is meshed in both solid and mid-surface form using the converged meshing



Chapter 3 Component Design-in-Context with Global Finite Element Models 51

F
ig

u
re

3.
6:

S
ec

ti
on

v
ie

w
of

th
e

C
R

E
S

C
E

N
D

O
en

gi
n

e
ge

om
et

ry
.



52 Chapter 3 Component Design-in-Context with Global Finite Element Models

Table 3.5: Comparison of maximum radial displacement outputs between linear
static analyses of solid and shell meshes of the CRESCENDO engine

Output r2 RMSE MAE

FC

FC.CON1 0.9653 0.1545 0.2756

FC.CON2 0.9689 0.0605 0.1419

FC.CON3 0.9740 0.2220 0.3623

HPCC

HPCC.CON1 0.9720 0.4978 0.6187

HPCC.CON2 0.9747 0.3371 0.4853

HPCC.CON3 0.9853 0.6022 0.7002

HPCC.CON4 0.9945 0.7816 0.8114

HPCC.CON5 0.9946 0.6504 0.6952

HPCC.CON6 0.9944 0.5589 0.6537

HPCC.CON7 0.9881 0.3837 0.4577

HPTC

HPTC.CON1 0.9714 0.2961 0.4919

HPTC.CON2 0.9775 0.1999 0.2810

LPTC

LPTC.CON1 0.9733 0.1295 0.2276

LPTC.CON2 0.9699 0.1778 0.2846

LPTC.CON3 0.9663 0.4254 0.5522

parameters established in Section 2.5.1. A large 160-point space-filling DOE is gener-

ated for the preliminary accuracy and cost assessments of the mid-surface mesh. Table

3.5 shows the results of the accuracy assessment. The results again show that the mid-

surface mesh is a suitable source of low-fidelity information according to the Co-Kriging

guidelines stated in Section 3.2.2.2. The r2 values for all responses are above the recom-

mended 0.9 threshold, with the constraint FC.CON1 as the least well-correlated response

at a r2 of 0.9653.

Compared to the accuracy results in Table 3.1, it can be observed that the r2 for the

HPCC responses for the current case study is markedly lower. This is due to the larger

range of response values that are possible because of the increased number of design

variables. The errors are again significant enough to discourage solitary use of the mid-

surface mesh in a single-fidelity fashion unless the constraint bounds are set to their

mid-surface equivalents.

Table 3.6 shows the results of the cost assessment. The means are used to calculate a cost

ratio for converting high-fidelity simulations into an equivalent number of low-fidelity
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simulations. The cost ratio for this case study is thus 10.18.

Three strategies were devised to test the performance of the multi-fidelity approach

against reference single-fidelity approaches. Strategy I is a single-fidelity Kriging-based

optimization that uses solid engine evaluations as data. The optimization is started with

a 40-point Latin Hypercube DOE, and in each update iteration a maximum EI point

is evaluated. Strategy II is a single-fidelity Kriging-based optimization that uses mid-

surface engine evaluations as data. The optimization is started with the same 40-point

Latin Hypercube DOE as in Strategy I, and in each update iteration a maximum EI point

is evaluated. Strategy III is a multi-fidelity Co-Kriging-based optimization that uses

both solid and mid-surface engine evaluations as high- and low-fidelity data, respectively.

The optimization is started with a 40-point low-fidelity DOE equivalent to the DOEs

in the first two strategies, and a 20-point high-fidelity DOE that is generated by taking

an optimum space-filling subset of the low-fidelity DOE. In each update iteration, 3

maximum EI points are evaluated used the low-fidelity model, as well as 1 imputed

maximum EI point that is evaluated using the high-fidelity model.

Table 3.7 summarizes these strategies. A maximum EI value of 0.01 kg was used as

the convergence criteria for all optimizations. Each strategy was then repeated with ten

differently seeded Latin Hypercube DOEs of the same sizes to obtain some statistics.

Table 3.8 summarizes the optimization results. The average mass reduction achieved

by the multi-fidelity approach of Strategy III is on par with the reduction achieved by

the expensive solid mesh only approach of Strategy I, but only at 23.86% cost. The

multi-fidelity approach was also able to identify the most active constraints, constraints

FC.CON1, FC.CON2 and FC.CON3, and stay within their bounds. The mid-surface

only approach of Strategy II returns an optimum design with a lower mass, but failed to

identify the most active constraints. The constraint violation was discovered only at the

end of the optimizations when the optimum designs were validated using an equivalent

solid mesh.

Figure 3.7 plots the search histories for all three strategies. The search histories are

presented as a function of the equivalent number of low-fidelity simulations and include

the cost of both the initial DOE and any subsequent updates. The cost conversions are

Table 3.6: Cost comparison between linear static analyses of solid and mid-
surface meshes of the CRESCENDO engine. The confidence intervals were
calculated through resampling with 50,000 bootstrap samples.

FE model
Solution time (hr)

µ 95% CI

Solid 8.3999 7.2801 - 9.0602

Shell 0.8252 0.5867 - 1.1167
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Table 3.7: Description of optimization strategies used in the CRESCENDO
engine case study.

Parameter Strategy I Strategy II Strategy III

HF FE model Solid Mid-surface Solid

LF FE model N/A N/A Mid-surface

Surrogate model Kriging Kriging Co-Kriging

DOE method Latin hypercube Latin hypercube Latin hypercube

# HF DOE points 40 40 20

# LF DOE points N/A N/A 40

Update method Maximum EI Maximum EI Maximum EI

# HF updates 1 1 1

# LF updates N/A N/A 3

performed using the cost ratios in Table 3.6. This conversion follows the method used

in the HP compressor casing case study. The cost savings provided by the Co-Kriging

approach can again be clearly observed.

3.4 Multi-Fidelity Surrogate-Based Optimization with Em-

bedded Global Finite Element Models

The utility of mid-surface meshes within a multi-fidelity surrogate modelling approach

has been demonstrated. The main conclusions are that mid-surface meshes on their

own are moderately accurate with respect to solid meshes and can be used to predict

the general trend of displacement-based responses. If the results from these simulations

are used to train a single-fidelity surrogate model, and the surrogate model is used

to predict design constraint values, small constraint violations can still occur at the

predicted optimum. The accuracy of these constraint predictions and consequently the

Table 3.8: Optimization results for the CRESCENDO engine case study.

Result Strategy I Strategy II Strategy III

Mass reduction (%) 1.84 1.98 1.80

Infeasibility (%) 0 0.23 0

Relative cost (%) 100 9.82 23.86
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Figure 3.7: Optimization histories for the CRESCENDO engine case study.

reliability of these optimizations, however, can be greatly increased with a multi-fidelity

approach employing both solid and mid-surface meshes.

These insights will now be used to devise a design-in-context strategy whereby engine

components are optimized with respect to both local and non-local requirements. This

is achieved by integrating a high fidelity mesh of a component of interest into global

FE models of varying fidelity to create what will be referred to as an embedded global

FE model. The motivation for this is to provide component designers with the ability

to quickly infer the impact of their design decisions on the rest of the engine. The

benefits of democratizing this system-level understanding also transfers to realistic design

environments well.

For example, if it was discovered that design changes in one component significantly

affects the structural behaviour in another, the design teams responsible for the two

components can choose to collaborate more tightly and trade-off with each other in order

to deliver performance improvements that would otherwise be impossible if the design

activities were carried out in silos. In another scenario, requirements that are prescribed

by systems engineers to prevent incompatibilities between concurrent component design
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work early on in the design process are often not optimal. Results from Design-in-

Context studies may then be used as a quantitative leverage by component designers to

negotiate for better requirements.

In this section, two case studies are presented to demonstrate the properties of the design-

in-context approach. The first case study is an optimization of the CRESCENDO HPCC

for mass reduction under stiffness constraints in the whole engine. This case study is

a simple 2D problem that allows the benefits of the design-in-context approach to be

fully grasped through inspection of the resulting response surface plots. The second case

study is a multi-fidelity version of the first case study that uses Co-Kriging models to

improve the prediction of the global constraints.

3.4.1 Optimization of a High-Pressure Compressor Casing with Global

Constraints

The first case study involves an optimization of the CRESCENDO HPCC as used in

Section 3.3.2. The objective is to minimize the HPCC mass, HPCC.OBJ, within a small

relaxation of the stiffness of the whole engine. The design variables are the thicknesses

HPCC.VAR1 and HPCC.VAR2. The values of the design variables for the baseline

design are 3 mm. Lower and upper bounds for the design variables are set to ±50%

of the baseline values. A total of fifteen stiffness constraints are present in the current

study. They are the maximum radial displacements FC.CON1 to FC.CON3 in the

FC, HPCC.CON1 to HPCC.CON7 in the HPCC, HPTC.CON1 and HPTC.CON2 in

the HPTC, and LPTC.CON1 to LPTC.CON3 in the LPTC. The upper bounds of the

constraints are set to a 1% increase over the maximum radial displacement values of the

baseline design.

A global FE model is constructed by inserting a solid HPCC mesh into the whole engine

mid-surface mesh. The embedded global FE model is evaluated over the large 40-point

space-filling DOE that was generated in Section 3.3.2. Table 3.9 shows the results of the

cost assessment. The means are used to calculate a cost ratio for converting high-fidelity

simulations into an equivalent number of low-fidelity simulations. The cost ratio for this

case study is thus 1.37.

Three strategies were devised to test the performance of the design-in-context approach

against reference approaches. Strategy I is a single-fidelity Kriging-based optimization

that uses solid engine evaluations as data. The optimization is started with a 10-point

Latin Hypercube DOE, and in each update iteration a maximum EI point is evaluated.

Strategy II is a single-fidelity Kriging-based optimization that uses solid HPCC evalu-

ations as data. The optimization is started with the same 10-point Latin Hypercube

DOE as in Strategy I, and in each update iteration a maximum EI point is evaluated.

Strategy III is a single-fidelity Kriging-based optimization that uses embedded global



Chapter 3 Component Design-in-Context with Global Finite Element Models 57

Table 3.9: Cost comparisons between linear static analyses of an embedded
global FE model containing a solid HPCC mesh, against a solid HPCC mesh
in isolation. The confidence intervals were calculated through resampling with
50,000 bootstrap samples.

Mesh
Solution time (hr)

µ 95% CI

Embedded engine 3.9855 3.4232 - 4.3789

Solid HPCC 2.9124 2.6123 - 3.2517

Table 3.10: Description of optimization strategies in the CRESCENDO HPCC
design-in-context case study.

Parameter Strategy I Strategy II Strategy III

FE model Solid engine Mid-surface HPCC Embedded engine

Surrogate model Kriging Kriging Kriging

DOE method Latin hypercube Latin hypercube Latin hypercube

# DOE points 10 10 10

Update method Maximum EI Maximum EI Maximum EI

# updates 1 1 1

model evaluations as data, where the solid mesh is of the HPCC in situ. The optimiza-

tion is started with the same 10-point DOE used in the first two strategies, and in each

update iteration a maximum EI point is evaluated.

Table 3.10 summarizes these strategies. A maximum EI value of 0.01 kg was used as

the convergence criteria for all optimizations. Each strategy was then repeated with ten

differently seeded Latin Hypercube DOEs of the same sizes to obtain some statistics.

Table 3.11 summarizes the optimization results. The average mass reduction achieved

by the Design-in-Context approach of Strategy III is on par with the reduction achieved

by the expensive solid mesh only approach of Strategy I, but only at 33.32% cost.

The Design-in-Context approach was also able to identify the most active constraint

HPTC.CON2, a constraint that belongs to the neighbouring HP turbine casing, but

did not manage to stay within its bounds. Slight inaccuracies in the Kriging prediction

lead to a maximum constraint violation of 0.18%. The Design-in-Isolation approach of

Strategy II returns an optimum design with a lower mass, but failed to account for the

global constraints because its FEM does not provide that information. The constraint
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Figure 3.8: Response surfaces of the CRESCENDO HPCC design-in-context
optimization problem. These response surfaces correspond to the first repeated
run.

violation was discovered only at the end of the optimizations when the optimum designs

were validated using a solid mesh of the whole engine.

Plots of the response surfaces at the end of the optimizations in each strategy can

be generated for a visual comparison. Figure 3.8 shows the response surfaces of the

surrogate models that have been constructed from all evaluations in Strategy I and

Strategy III. The response surface for Strategy II can be seen in Figure 3.4a.

Figure 3.9 plots the search histories for all three strategies. The search histories are

presented as a function of the equivalent number of low-fidelity simulations and include

the cost of both the initial DOE and any subsequent updates. The cost conversions are

performed using the cost ratios in Table 3.2 and Table 3.6, where the cost of simulating

the solid HPCC in isolation is taken as the reference low-fidelity simulation cost. This

conversion follows the method used in the HP compressor casing case study. The cost

savings provided by the Design-in-Context approach can be clearly observed.

Table 3.11: Optimization results for the CRESCENDO HPCC design-in-context
case study..

Result Strategy I Strategy II Strategy III

Mass reduction (%) 5.34 5.58 5.35

Infeasibility (%) 0 2.86 0.18

Relative cost (%) 100 22.27 33.32
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Figure 3.9: Optimization histories for the CRESCENDO HP compressor casing
with global constraints case study.

3.4.2 Multi-Fidelity Optimization of a High-Pressure Compressor Cas-

ing with Global Constraints

The embedded global FE models have been shown to be a relatively accurate source

of non-local structural behaviour. They did not completely eliminate violations of non-

local constraints, because the parts of the global mesh used to evaluate these constraints

are still mid-surfaces. However, they were still able to reduce what would be large

non-local constraint violations in component design approaches that are not able to

account for their presence in local design spaces. The case studies in Section 3.3 have

demonstrated that a multi-fidelity approach with solid and mid-surface simulations can

improve the prediction accuracy of these responses. These results will thus be extended

to the component design-in-context approach in order to improve the reliability of the

optimization results.

The second case study attempts to solve the problem as in the single-fidelity case in

Section 3.4.1. Three strategies were devised to test the performance of the multi-fidelity

Design-in-Context approach. Strategy I is a single-fidelity Kriging-based optimization

that uses solid engine evaluations as data. The optimization is started with a 10-point
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Table 3.12: Description of optimization strategies in the multi-fidelity
CRESCENDO HPCC design-in-context case study.

Parameter Strategy I Strategy II Strategy III

HF FE model Solid engine Embedded engine Solid engine

LF FE model N/A Mid-surface engine Embedded engine

Surrogate model Kriging Kriging Co-Kriging

DOE method Latin hypercube Latin hypercube Latin hypercube

# HF DOE points 10 10 3

# LF DOE points N/A N/A 10

Update method Maximum EI Maximum EI Maximum EI

# HF updates 1 1 1

# LF updates N/A N/A 3

Latin Hypercube DOE, and in each update iteration a maximum EI point is evalu-

ated. Strategy II is a multi-fidelity Co-Kriging-based optimization that uses embedded

global model evaluations as high-fidelity data, and mid-surface engine evaluations as

low-fidelity data. The optimization is started with a 10-point low-fidelity DOE equiv-

alent to the DOEs in Strategy I, and a 3-point high-fidelity DOE that is generated by

taking an optimum space-filling subset of the low-fidelity DOE. In each update iteration,

3 maximum EI points are evaluated used the low-fidelity model, as well as 1 imputed

maximum EI point that is evaluated using the high-fidelity model. Strategy III is also a

multi-fidelity Co-Kriging-based optimization but one that uses solid engine evaluations

as high-fidelity data, and embedded global model evaluations as low-fidelity data. The

update method in Strategy III is identical to Strategy II.

Table 3.12 summarizes these strategies. A maximum EI value of 0.01 kg was used as

the convergence criteria for all optimizations. Each strategy was then repeated with ten

differently seeded Latin Hypercube DOEs of the same sizes to obtain some statistics.

Table 3.13 summarizes the optimization results. The average mass reduction achieved by

both multi-fidelity Design-in-Context approaches of Strategy II and Strategy III did not

converge to the same level of mass reduction as in the expensive solid mesh only approach

of Strategy I. The two strategies were still able to achieve a significant mass reduction at

only a third of the computational cost. The multi-fidelity Design-in-Context approach

though still not able to satisfy the most active constraint HPTC.CON2, the magnitude

of the violation has remained low at 0.06%. This could be explained by how the benefits

of the multi-fidelity approach is mostly concentrated within the HP compressor casing,
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Figure 3.10: Response surfaces of the multi-fidelity CRESCENDO HPCC
design-in-context optimization problem. These response surfaces correspond
to the first repeated run.

since the global constraints in both simulation fidelities are still evaluated using the mid-

surface mesh. In contrast, the multi-fidelity Design-in-Context approach of Strategy III

returned a feasible optimum design, albeit one that may be too conservative.

Plots of the response surfaces at the end of the optimizations in each strategy can

be generated for a visual comparison. Figure 3.10 shows the response surfaces of the

surrogate models that have been constructed from all evaluations in Strategy I and

Strategy III. The response surface for Strategy II can be seen in Figure 3.4.

Figure 3.11 plots the search histories for all three strategies. The search histories are

presented as a function of the equivalent number of low-fidelity simulations and include

the cost of both the initial DOE and any subsequent updates. The cost conversions are

performed using the cost ratios in Table 3.2 and Table 3.6, where the cost of simulating

the solid HPCC in isolation is taken as the reference low-fidelity simulation cost. This

conversion follows the method used in the HP compressor casing case study. The cost

savings provided by both multi-fidelity Design-in-Context approaches can be clearly

Table 3.13: Optimization results for the multi-fidelity CRESCENDO HPCC
design-in-context case study.

Result Strategy I Strategy II Strategy III

Mass reduction (%) 5.34 4.80 4.22

Infeasibility (%) 0 0.06 0

Relative cost (%) 100 34.67 47.45
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Figure 3.11: Optimization histories for the multi-fidelity CRESCENDO HP
compressor casing with global constraints case study.

observed. Strategy III is naturally the more expensive Design-in-Context approach

because it uses evaluations of the solid engine as its high-fidelity model. The question

then needs to be asked if what seems like a small increase in reliability is worth the

non-negligible increase in computational cost.



Chapter 4

Safe Integration of Concurrent

Component Design Activities

4.1 Extension of the Component Design-in-Context Ap-

proach to a Concurrent Environment

We have shown in Chapter 3 how embedded global finite element models allow com-

ponent designers to infer the impact of their design choices onto the requirements in

their neighbouring components in a cost-effective manner. By scaling these non-local

requirements to the range of the mid-surface portions of the global FE model used to

predict them, or by using a multi-fidelity approach where these non-local requirements

are occasionally evaluated with solid FE models, component designers can even include

them directly into their driving set of requirements. An important follow-up question is

how should the results from these component design-in-context activities be integrated

into a concurrent design environment. Satisfaction of a constraint by multiple parties

independently does not guarantee that the satisfaction will hold for the assembled solu-

tion.

In this chapter, a safe integration approach is proposed to address this issue by provid-

ing a systems integrator with information about how the component optimum designs

should be adjusted in order to get a feasible assembled solution. This approach is also

extended across multiple design iterations to explore how the combination of the com-

ponent design-in-context approach and the proposed integration approach affects the

performance of the product development lifecycle.

63
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4.2 Approaches for Managing Concurrent Component De-

sign Activities

In this section, the field of multidisciplinary optimization (MDO) is introduced with a

focus on the concurrent subspace optimisation architecture (CSSO). The motivation for

this is that the sub-problem formulation in the architecture shares many similarities with

the design-in-context method, in the sense that constraints from the residual system are

also modelled and included in sub-problem optimisations. There is thus an emphasis

on prioritising the generation of a sequence of system-feasible designs that progressively

improve, rather than investing the full design effort from the start towards searching for

the best design possible with no recourse for early termination or changes in design goals.

This property is unfortunately often overlooked when comparing CSSO against other

MDO architectures in the literature which prioritize low numbers of function evaluations.

4.2.1 Multidisciplinary Design Optimization

Multidisciplinary optimisation (MDO) is concerned with the optimisation of complex,

coupled systems (Martins and Lambe (2013)). Such systems are widely found in the

aerospace industry where the fields of aerodynamics, structures, controls, and many

others have to work in cohesion to produce an optimal system design. In its earliest

days, much of MDO research was focused on developing monolithic architectures, where

a single decision-maker is tasked with controlling all design variables at once. Due to the

coupled nature of the engineering disciplines, there was a need to integrate the various

computer codes into a single entity that automatically cycles through each discipline.

Inputs and outputs are passed from one code to the next, until an equilibrium is reached,

as signalled by a convergence of the residuals to a sufficiently small value. This analysis

loop is called multidisciplinary design analysis (MDA), and the monolithic MDO archi-

tecture that uses it is called the multidisciplinary design feasible (MDF) architecture.

Here f = [f1, f2, . . . , fn] are the objective functions, where the subscript denotes the

discipline number. Similarly, g = [g1, g2, . . . , gn] and h = [h1, h2, . . . , hn] represent the

inequality and equality constraints respectively. The vector x = [x1, x2, . . . , xn] contains

all the design variables in the system.

The MDF approach can be formally expressed as,

min
x
f(y(x,y),x) while satisfying g(y(x,y),x) ≤ 0

h(y(x,y),x) = 0,
(4.1)
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where y = [y1, y2, . . . , yn] are the state variables in the system, and they normally

represent the outputs from an analysis. For example, changing the wing planform (a

design variable, x) will affect the lift distribution on the wing (a state variable, y1(x)),

and this will further affect the wing deflection (y2(y1,x)). Here the assumption is that

there is only one system objective, for example the aircraft weight (f(y2(y1,x), y1(x),x)).

The multidisciplinary feasible architecture has several disadvantages that prevent it from

being applied in design studies of realistic engineering components:

1. The multidisciplinary design analysis process involves many iterations for con-

vergence and its stability can be poor for tightly-coupled codes. It can be very

expensive to solve the MDA for every design that is considered, especially when

the individual discipline/component codes are also expensive to solve in isolation.

2. The complete set of design variables in the system is handled by a single opti-

mizer, leading to high-dimensional problems which can be expensive to solve in

the absence of explicitly defined derivatives or inaccurate estimations of them.

3. Significant time and effort is needed to integrate the different computer codes.

Additional tools have to be written to convert the outputs from one code into a

format that is compatible for another.

4. The role of lower-level design teams is effectively reduced to only conducting anal-

yses and they have no say in the selection of new designs.

The multidisciplinary feasible architecture can be infeasibly expensive for late-stage

design maturation, but it is important to note that its solution would theoretically be

the true system optimum, as the single optimiser has control over every variable, while

inter-component interactions are fully accounted for in the MDA. The question then

becomes: how should this large problem be decomposed into smaller-sized problems

that can be solved independently by multiple parties, while maintaining the coupling

between component behaviour, such that the optimum found is equivalent to the MDF

solution?

4.2.2 Concurrent Subspace Optimization (CSSO)

As research into MDO architectures matured, the need to have multiple decision-makers

working in collaboration akin to realistic engineering design environments lead to the

development of distributed architectures. One of the earliest distributed architectures

is concurrent subspace optimization (CSSO). CSSO is a non-hierarchic MDO architec-

ture which was designed to take advantage of the global sensitivity equations that were

developed in Sobieszczanski-Sobieski (1990). In this architecture, the problem decompo-

sition creates independent sub-problems, each with full control over a unique portion of
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the overall design vector. For example, in a three-component system the decomposition

would be,

x→



x1
...

xm

xm+1

...

xn

xn+1

...

xp



→


x1

x2

x3

 . (4.2)

4.2.2.1 Global Sensitivity Equations

The global sensitivity equations (GSE) are first-order gradients which describe the sensi-

tivity of every state variable with respect to every design variable in a complex, tightly-

coupled system. The GSEs are typically calculated at the system level and, when sent to

the component level, allows the individual design subspaces to approximate any non-local

functional relationships, including objective and constraint functions. Interestingly, it

can be argued that the difficulty of computing the GSEs, along with the limited amount

of information that is encapsulated in the GSEs, has lead to the stagnation of research

into CSSO in recent years.

Two methods for generating the GSEs have been proposed: (1) GSE1 which is based on

residual information, and (2) GSE2 which is based on sub-problem sensitivities. As the

calculation of GSE2 is generally more convenient given the nature of existing engineering

analysis software, the scope of the following discussion will be limited to GSE2.

Consider a system of three components A, B and C that are fully coupled to each other,

meaning the evaluation of each component is dependent upon the outputs from every

other component,

A((x,yB,yC),yA) = 0,

B((x,yA,yC),yB) = 0,

C((x,yA,yB),yC) = 0.

(4.3)



Chapter 4 Safe Integration of Concurrent Component Design Activities 67

The multidisciplinary analysis solution to Equation 4.3 will be denoted as y∗ = [y∗A,y
∗
B,y

∗
C ].

By expressing each component’s state variables as an explicit function of the design vari-

ables and the non-local state variables, first-order approximations of the neighbourhood

of the MDA solution can be constructed using a Taylor series.

As an example, the first-order approximation for component A is,

yA = y∗A +
∂fA
∂x

∆x +
∂fA
∂yB

∆yB +
∂fA
∂yC

∆yC , (4.4)

where f represents a generic component response.

Deriving the same approximation for the remaining components, we arrive at a linearised

version of Equation 4.3,

yA − y∗A −
∂fA
∂x

(x− x0) +
∂fA
∂yB

(yB − y∗B) +
∂fA
∂yC

(yC − y∗C) = 0,

yB − y∗B −
∂fB
∂x

(x− x0) +
∂fB
∂yA

(yA − y∗A) +
∂fB
∂yC

(yC − y∗C) = 0,

yC − y∗C −
∂fC
∂x

(x− x0) +
∂fC
∂yA

(yA − y∗A) +
∂fC
∂yB

(yB − y∗B) = 0,

(4.5)

Making use of the implicit function theorem, the sensitivities of each function f(x,y) =

0; y = f(x) can be expressed as,

[
∂f

∂y

]{
∂y

∂xk

}
= −

{
∂f

∂xk

}
. (4.6)

Equation 4.6 is always simultaneous, linear and algebraic regardless of the nature of the

original governing equations. Its solution vector describes the first-order influence that

each design variable has on every state variable in the system.

The global sensitivity equations for this 3-component system is thus,


I − ∂fA

∂yB
− ∂fA
∂yC

− ∂fB
∂yA

I − ∂fB
∂yC

− ∂fC
∂yA

− ∂fC
∂yB

I



−∂yA
∂xk

−∂yB
∂xk

−∂yC
∂xk

 =


0

− ∂f
∂xk

0

 . (4.7)

When generalised for systems that have multiple couplings between components, the

relevant element in the matrix in Equation 4.7 would be replaced with sub-matrices.

For example, if component A has three outputs and it receives two state variables from

component C, element (1,3) in the matrix would be replaced with the sub-matrix,
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− ∂fA1
∂yC1

− ∂fA1
∂yC2

− ∂fA2
∂yC1

− ∂fA2
∂yC2

− ∂fA3
∂yC1

− ∂fA3
∂yC2

 . (4.8)

4.2.2.2 Component-Level Optimization

With the sensitivity equations derived, each component designer can now quantitatively

measure the impact of changing a local design variable onto a non-local response. The

foundations for an architecture that enables empathetic decisions to be made within

decomposed sub-problems have thus been set.

Continuing from the derivations in Section 4.2.2.1, before component design activities

can begin, an evaluation of the sensitivity equations at an initial system design x∗ =

[x∗A,x
∗
B,x

∗
C ] is required. An optimisation problem for component A can then be stated

as follows,

min
xA

f(xA,x
∗
B,x

∗
C ,yA, ŷB, ŷC , z = {r, t, s}),

subject to ĝA(xA,yA) ≤ max{ĝA(x∗A,y
∗
A)}sAA

(1− rAA
) + (1− sAA

)tAA
,

ĥA(xA,yA) = 0,

ĝBA
(xA,yA) ≤ KB(xA,yA)sBA

(1− rBA
) + (1− sBA

)tAB
,

ĝCA
(xA,yA) ≤ KC(xA,yA)sCA

(1− rCA
) + (1− sCA

)tAC
.

(4.9)

The system objective function f is minimized with respect to the vector of local variables

xA. yA is the vector of outputs from the local computer code, while ŷB and ŷC are

approximations of the outputs from components B and C calculated by using the global

sensitivity equations in a Taylor series,

ŷB = y∗B + (
∂yB
dxA

)(∆xA),

ŷC = y∗C + (
∂yC
dxA

)(∆xA).

(4.10)

z is the vector of coordination parameters that is set by the system-level optimizer.

A discussion of the method for setting the values of these parameters is presented in

Section 4.2.2.3.

In the original CSSO architecture, the vector of equality and inequality constraint func-

tions in each component are aggregated into scalar-valued functions ĥ and ĝ, respectively,
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in order to minimize the number of constraints in both the component optimizations

and the system-level coordination. The overall problem size would thus only increase

when the number of components increases, instead of when the number of constraint

functions in each component increases. A Kreisselmeier-Steinhauser aggregation of the

inequality constraint functions local to component A is,

KA(xA,yA) =
1

ρ

mA∑
j=1

e
ρgAj , (4.11)

where gAj is the jth inequality constraint function in component A and mA is the

constraint count. This leads to ĝA = KA and the same method can be applied to obtain

the aggregated equality constraint function, ĥA as well. It is important to recall here that

these local constraint functions take approximations of the outputs from the non-local

computer codes as input.

On the other hand, the non-local constraint functions are aggregated using a linear

approximation,

ĝBA
(xA,yA) = KB(x∗A,y

∗
A) +

nA∑
j=1

∂KA

∂xj
(x∗A,y

∗
A)
(
xAj − x∗Aj

)
, (4.12)

where nA is the number of design variables in component A. Due to its linearity, this

approximation is only valid in the vicinity of the initial system design x∗A. Move limits

are thus often enforced for xA.

The partial derivatives in Equation 4.12 can be calculated as,

∂KB

∂xj
=
( mB∑
j=1

e
ρgBj

)−1( mB∑
j=1

(
e
ρgBj

∂gBj

∂xj

))
, (4.13)

where mB is the number of inequality constraint functions in component B. The value

for
∂gBj

∂xj
can be obtained from the global sensitivity equations.

4.2.2.3 System-Level Coordination

The prescription of the constraint limit values for each component optimization problem

is done by solving a system-level coordination problem. The main ideas behind the

coordination method is as follows:



70 Chapter 4 Safe Integration of Concurrent Component Design Activities

1. If an aggregated constraint is violated, component designs designs that worsen the

system objective value are allowed if they reduce this violation.

2. Once an aggregated constraint is satisfied, component designs that improve the

system objective value are allowed if they do not cause a violation of this constraint

again.

3. The responsibility to reduce the violation of an aggregated constraint is shared

equally among all components, thus a component designer need only reduce a

portion of the violation of its own aggregated constraint.

The responsibility as mentioned in the third point above is represented quantitatively as

a r coefficient. rBA
is thus the responsibility of reducing the violation of the aggregated

constraint in subspace B by component A. Similarly, rAA
is the responsibility given to

component A for reducing the violation in its own aggregated constraint. r is normalised

such that its sum over all components equals one. This introduces p2 responsibility

coefficients into the overall problem, where p is the number of components.

To increase the flexibility of the coordination method, trade-off or t coefficients are in-

cluded to allow components to reduce its burden of satisfying an aggregated constraint

by making sure that another component is able to compensate. A condition is placed

such that only trade-offs that improves the system objective value are allowed. Normal-

ization of t is done such that its sum for each aggregated constraint across all components

equals zero. This once again introduces p2 coefficients into the overall problem.

Every component optimization problem is started in a ‘violation-reduction’ mode until

its aggregated constraints are satisfied, after which an ‘objective-improvement’ mode is

initialised. A switching coefficient, s, is used to control this transition by moving from

s = 1 to s = 0. For the local aggregated constraints, a factor of max{ĝA(x∗A,y
∗
A)}

is used so that constraints which have already been satisfied are no longer taken into

consideration.

A system-level coordination problem in the form of a linear program is then solved to

yield new values for the set of these parameters, z,

min
r,t

(
f(x,y) +

p∑
i=1

p∑
j=1

∂f

∂rji
∆rji +

p∑
i=1

p∑
j=1

∂f

∂tji
∆tji

)
, (4.14)

where the r and t vectors contain all the r and t coefficients in the system. Note that

the s coefficients are controlled within the components which is where the constraint

violations are assessed, thus Equation 4.14 has no control over them. The dimension of

the coordination problem is never larger than p2 as the mode-switching element makes
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the responsibility and trade-off behaviours independent from each other. New values for

the r and t coefficients are then passed to each component and the process is repeated.

Applications of the original CSSO formulation can be found in Bloebaum et al. (1992),

where Equation 4.14 was solved using a generalised reduced-gradient algorithm.

4.2.2.4 Limitations of the CSSO Architecture

There has been numerous research efforts to improve the competitiveness of the con-

current subspace optimization architecture relative to the other MDO architectures.

Modifications to the formulations of the coordination parameters and the cumulative

form of the responses were proposed to improve its convergence performance (Bloebaum

et al. (1992), Shankar et al. (1993), Renaud and Gabriele (1993), Wujek et al. (1996)).

Some research has also gone into extending CSSO to solve multi-objective problems

(Parashar and Bloebaum (2005), Huang et al. (2007)). However, the significant cost of

calculating the sensitivity equations remained as the primary factor preventing CSSO

from gaining widespread popularity, even with its emphasis on minimizing rework which

is highly-valued in industrial design processes.

New system approximations are required at the start of every iteration, requiring ex-

pensive recalculation of the GSEs involving multidisciplinary analysis cycles. Coupled

with the need to use move limits in the coordination problem due to the linearity of

the approximations, a large number of iterations were required, making the overall cost

infeasibly high. Renaud and Gabriele (1993) addressed the move limit issue by storing

objective and constraint function evaluations after every design iteration in a database

and subsequently using this information to construct second-order approximations for

the coordination problem. However, even with this modification, the GSEs still had to

be recalculated frequently.

4.3 A Safe Approach for Integrating Concurrent Compo-

nent Design Activities

Research into multidisciplinary design optimization architectures like concurrent sub-

space optimization provide insights as to how different problem formulations and treat-

ment of inter-component couplings can affect the progress of a system design process.

However, most of the existing examples on MDO applications are on the use of mono-

lithic architectures early on in the system design lifecycle to establish configurations.

There is a lack of research in trying to tailor the distributed architectures to the detail

design stage where the coordination of independent teams is still a necessity. The dif-

ficulty lies in the fact that engineering design in practice is a complex, human-driven,

and time-sensitive endeavour. There is a lot of value in preserving knowledge bases and
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systems engineering best practices that have been built up over time. Restructuring

organization-wide design goals and methods to fit an MDO architecture can be very

risky.

It is thus the goal of the proposed approach to be effective at guiding the overall struc-

tural design process without demanding significant changes to existing workflows. The

coordination-based approaches that are developed in MDO, where component objectives

are modified akin to mechanism design, are thus foregone for a less-intrusive integration-

based approach in which the responsibility for assembling the component designs into a

feasible whole rests squarely on a systems integrator.

This is achieved by constructing a system-level Kriging surrogate using FE model eval-

uations from the component design process. This surrogate can then be used at end-

of-iteration design reviews to search for a load path configuration that has improved

load-sharing capabilities and can be used as the kick-off point for the component design

processes in the next iteration. Using this approach, component designers can then

direct their full effort and attention towards making value-added decisions based on

actual performance requirements, instead of ‘interface requirements’ that are purely by-

products of the decomposition process. There is evidence suggesting that the removal of

these interface requirements can accelerate the overall design process (Bell et al. (2008)).

These interface requirements are also present in most distributed MDO architectures in

the form of consistency constraints.

Load path configurations represent stable states of an engine’s structural behaviour that

are shared with teams of other disciplines, with external suppliers, and with the airframe

manufacturer throughout the design process. There is thus a requirement that the

configuration that is arrived at at the end of the integration process needs to be feasible.

The cost of validating the configuration is also expensive as it involves the solution of

a high-fidelity global FE model. The search for a new configuration thus needs to be

‘safe’, that is, we seek an immediate improvement in the feasible performance using a

minimal number of evaluations of the global FE model.

The system-level surrogate will be inaccurate as there are only a limited number of data

points for what is a high-dimensional problem. Using a Kriging surrogate, the value

of the constraints at unsampled locations are predicted based on the observations at

sampled points. The Kriging predictions have uncertainty, which is represented using

Gaussian distributions. The proposed integration method classifies unsampled points

into two categories, ‘safe’ and ‘unsafe’. A point is labelled as safe if it satisfies every

constraint almost certainly, that is, the probability of feasibility is greater than a pre-

defined confidence level. Otherwise, it is considered unsafe and should not be sampled.
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Figure 4.1: Response surface of the distributed Bird function.

4.3.1 An Illustrated Example

The proposed integration approach is illustrated here using a simple 2D optimization of

the constrained Bird function. This problem has been reformulated into a distributed op-

timization problem with two components (Section A.1). The first component, COMP1,

controls the design variable COMP1.VAR1 and evaluates its objective COMP1.OBJ

and a constraint COMP1.CON1. The second component, COMP2, controls the de-

sign variable COMP2.VAR1 and evaluates its objective COMP2.OBJ and a constraint

COMP2.CON1. Figure 4.1 shows the true response surface of this problem.

Figure 4.2 illustrates what would happen if the component optimum designs were simply

combined through a ‘direct’ integration approach (as opposed to a safe integration ap-

proach) to form the system solution. Each component designer searches within their slice

of the design space using a design-in-context approach. For example, designs for com-

ponent COMP1 is searched for within the {COMP1.VAR1, COMP2.VAR2 = 2.3438}
slice while satisfying constraints COMP1.CON1 and COMP2.CON1. The component
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Figure 4.2: Example of an infeasible system design resulting from a direct inte-
gration of component optimum designs.

designers thus individually arrive at optimum designs that are feasible. However, be-

cause they have not accounted for the decisions made by the other party, the resulting

combined solution was found to violate the constraint COMP1.CON1.

In the proposed integration approach, a system-level surrogate is constructed using the

component optimum designs. Due to the low number of samples, the resulting surrogate

is not expected to predict the constraints accurately. The constraint responses are thus

replaced with their probability of feasibility responses, and their bounds are replaced

with a single lower bound that corresponds to a confidence level, PFmin, that is prescribed

by the systems integrator pertaining to the level of acceptable risk.

Figure 4.3 compares a feasible region computed by predictions of the constraints against

another that is computed by the probabilities of their satisfaction. The confidence

level for the latter approach is set to 0.90. There are only three samples in this 2D

design space: the starting system design, the optimum COMP1 design, and the optimum

COMP2 design. It can be observed that the prediction-based surrogate was unable

to locate any constraints in the design space. On the other hand, the probability of
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(a) Predicted constraints.
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(b) PFmin = 0.90 constraints.

Figure 4.3: Comparison of the Bird problem’s response surface between the
prediction-based approach and a probability of feasibility-based approach for
modelling the constraints after one system-level iteration.

feasibility approach produces a very conservative estimate of the feasible region that is

concentrated around existing feasible samples. Regions that will violate the constraint

COMP2.CON1 have been completely excluded.

For the constraint COMP1.CON1, a portion of the true infeasible region remains. This

overconfidence can be attributed to its distance from the samples. One can simply

increase the required confidence level to further shrink the feasible region, or leave it

infeasible and proceed to the next system-level iteration if it is acceptable to do so,

especially in the earlier iterations when the configuration has yet to be depended upon

by external parties.

One can also budget more time for the integration process such that two or three update

iterations are allowed as opposed to the default single-iteration implementation. A low

required confidence level could be purposely set to encourage exploration of the design

space, and any resulting samples that are infeasible are used to update the surrogate

for a subsequent search until a feasible solution is found. The strength in the proposed

approach is thus the flexibility that is provided to the systems integrator in performing

the integration task subject to engineering judgement and to the requirements of specific

stages in the overall design process.

Figure 4.4 shows the response surface after a further system-level iteration. In this case,

the infeasible integrated solution has been left as is and is used to fix the locations of the

slices for another cycle of component design searches. The required confidence level for

the probability of feasibility approach has been maintained at a value of 0.90. The under-
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(b) PFmin = 0.90 constraints.

Figure 4.4: Comparison of the Bird problem’s response surface between the
prediction-based approach and a probability of feasibility-based approach for
modelling the constraints after two system-level iterations.

and over-conservative predictions of the feasible region between the two constraint mod-

elling approaches can again be observed. The feasible region concentrates appropriately

around feasible samples, and the resulting predicted optimum at [−1.4092, 2.8951] can

be shown to be feasible.

4.3.2 Application over Multiple Iterations

The proposed safe integration approach is designed to allow a systems integrator to

make decisions based on quantitative data for individual system-level iterations. The

outcome of each of these integration activities is governed by several parameters at both

the component and system level. This section is focused on investigating how varia-

tions in these parameters affect the performance of the proposed approach over multiple

iterations. The goal of this study is to provide some guidance and experimental data

to practitioners for developing their own best practices when using the safe integration

approach.

Benchmark Problems

It will be extremely expensive to run the full set of experiments with actual FE models

so a suite of analytical benchmark problems is used instead. A decision was made to

decompose traditional benchmark problems into sub-problems and impose an artificial

coupling error, instead of using problems from the MDO literature (Hulme and Bloebaum

(2000); Allison et al. (2006); Yi et al. (2008)). The main reason for this is there has yet
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Table 4.1: Description of the analytical benchmark problems used to test the
integration approaches. D is the total number of design variables in each prob-
lem. g is the number of inequality constraints. h is the number of equality
constraints. f(x∗) is the best known feasible objective function value from the
literature. c is the number of components in the distributed version of each
problem.

ID Name D g h f(x∗) c

BIRD Bird function 2 2 0 -106.7645 2

ROSU Rosen-Suzuki function 4 3 0 -44.0000 3

SPDRED Weight minimisation of a speed reducer 7 11 0 2994.4245 5

INDFRIG Optimal design of an industrial refrigera-
tion system

14 15 0 -0.0322 6

to be a comprehensive set of distributed design problems. Most of the existing coupled

problems have been designed for monolithic MDO architectures and are thus presented

in terms of a single large system of coupled equations with little suggestion as to how

they should be decomposed. Scalable formulations like those presented in Tedford and

Martins (2010), Tosserams et al. (2010), and Chauhan et al. (2018) also suffer from a

lack of solution results against which the proposed methods can be compared.

Table 4.1 summarizes the four benchmark problems that have been selected, with a mix

of both classical and engineering optimization problems. The test suite consists of a good

variety of problem complexity in terms of dimensionality and the number of responses

that are included. A complete description of each problem and their decomposed forms

can be found in Appendix A.

To better represent the distributed design environment, the responses in each problem

are augmented with additional error terms. The first type of error is the consistency

error, ec. The consistency error simulates the error in the analysis of an isolated com-

ponent as its design shifts away from the system equilibrium. This is similar to how

the free-body boundary conditions given to a component FE model becomes unreliable

as the component design is changed from the state at which those boundary conditions

were evaluated. This error is modelled such that it increases as the magnitude of the

design change increases, and is given as,

ec = α cos(x) · ‖x− x0‖, (4.15)

where α is the maximum error, x is the current point, and x0 is the equilibrium point.

In the current study, ec is only applied to constraint evaluations in isolated component

design processes.
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The second type of error is the resolution error, er. The resolution error simulates the

analysis error when evaluating models of lower fidelities, such as a mid-surface mesh.

This error is adapted from Wang et al. (2018) and is given as,

er = αθ
d∑
i=1

cos(10πθxi + 0.5πθ + π),

θ = 1− 0.0001φ,

(4.16)

where α is the maximum error, x is the current point, and φ is a parameter that can

be used to tune the fidelity, where a value of 0 corresponds to the lowest fidelity (not

necessarily r2 = 0) and a value of 10000 corresponds to the highest fidelity (r2 = 1

and no errors). er is applied selectively to the set of constraint evaluations that are

associated with a low-fidelity model, a physical example being those originating from

the mid-surface portions of an embedded global FE model.

A set of 25 feasible points are generated for each benchmark problem to serve as starting

system designs for repeating the optimizations.

System-Level Iteration

A system-level iteration is modelled in two parts: a component-level optimization, fol-

lowed by a system-level design search using the surrogate constructed by an integration

method.

An initial system design is determined for the first iteration. Each component is then

optimized using the Kriging-based approach as described in Chapter 3. Each component

optimization is initiated with a Latin hypercube DOE of size 5× d and is updated with

a single maximum EI point per component-level iteration until a maximum EI value

of < 1% the objective of the current best design is reached. Once all component-level

optimizations have converged, their optimum designs are evaluated using a high-fidelity

global FE model and added to the system-level training data set.

A system-level surrogate is then constructed according to the integration method of

choice and subsequently searched for a maximum EI point. This optimization process is

terminated when a feasible integrated solution is found. This solution then serves as the

starting system design for the next system-level iteration. The system-level optimization

consisting of multiple of such iterations is terminated when a maximum EI value of <

1% the objective of the current best design is reached.
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Measures of Performance

Three metrics are established to compare the performance of the integration approaches.

The first metric is the relative accuracy of the solutions, a, calculated with respect to

the best known feasible objective function values in Table 4.1.

The second metric is the cost, C. A conversion between the costs of component-level and

system-level evaluations is required. A theoretical set of cost ratios is selected for the

present study. The cost for evaluating an isolated component design is taken to be 10%

of the cost for evaluating a high-fidelity global FE model, while the cost for evaluating an

embedded global FE model is taken to be 20% of the cost for evaluating a high-fidelity

global FE model. These cost ratios are greater than those found for the CRESCENDO

engine in Chapter 3 and represent a perhaps more realistic engine architecture consisting

of a larger number of components.

The third metric is the percentage of infeasible system designs, v. This percentage is

used as a proxy for the probability that a design rework procedure is triggered. In a

practical design environment, the number of system-level iterations allowed is subject

to the schedule of the design programme and may be terminated at any time. This

percentage is thus an indication of how likely a feasible final design will be obtained

upon the termination of the design process.

4.3.2.1 Impact of the System-Level Iteration Strategy

In this case study, system-level iteration strategies with varying component-level design

and integration approaches are compared. Two options are available for the component

level: a design-in-context approach with an embedded global FE model of fidelity φG =

8000, and a default isolated approach with a local component FE model.

Three strategies were tested. Strategy I represents a collaborative design environment

with minimum interactions, where components are designed in isolation, and the opti-

mum designs are directly assembled to give the integrated solution. This strategy can

be taken as a close approximation of a realistic organization. Strategy II represents an

updated version of the response surface-based implementation of the CSSO architec-

ture as described in Sellar et al. (1996), where components are designed with respect

to non-local requirements but are then also directly assembled. Some elements of the

CSSO implementation have been updated to improve the parity of the current compari-

son. The quadratic surrogates that were built from MDA evaluations for the purpose of

eliminating the need for the global sensitivity equations are replaced here with Kriging

surrogates built from evaluations of the global model. The move limits which were en-

forced to ensure the quality of the quadratic surrogate predictions have thus also been

removed. Strategy III represents the most conservative approach, with design-in-context
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Table 4.2: Description of system-level iteration strategies.

Parameter Strategy I Strategy II Strategy III

Component design method Isolated Design-in-
context

Design-in-
context

Global model fidelity, φG N/A 8000 8000

Integration method Direct Direct Safe

Confidence level, PFmin N/A N/A 0.90

at the component level followed by the safe integration method. In this implementation,

the required confidence level over all system-level iterations is set to 0.90. Table 4.2

summarizes these strategies.

Figure 4.5 shows the results of the study. In terms of the solution accuracy a, all three

strategies managed to arrive at optimum designs that are close to the best reported

solution except for the industrial refrigeration system problem where a significant error

is observed. As all three strategies performed similarly poorly for this problem, the

difficulty in finding the solution could be attributed to either the high dimensionality of

the problem, or a poor decomposition.

With regard to the cost C, a noticeable difference can be observed. The strategies

that use design-in-context at the component level are, in general, cheaper than the

strategy that is based on an isolated component design process. Such an observation

is unexpected, as there is no discernable reason why having more infeasible points in

the system-level surrogate’s training data set will cause the constraint predictions to be

more inaccurate, and leading to more update iterations required for finding a feasible

system design. The safe integration method in Strategy III, however, does causes it to

be cheaper than the direct integration method in Strategy II. This is also reflected in

the differences in the percentage v between Strategy II and Strategy III.

4.3.2.2 Impact of global model fidelity

In this case study, design-in-context-based approaches are tested with varying levels

of the global model fidelity, φG. The validation studies in Section 2.5 and the case

studies in Section 3.3.3 have shown that the mid-surface mesh is accurate with respect

to an equivalent solid mesh. This level of accuracy may not hold for a different set of

geometries, especially geometries that have a smaller proportion of thin-walled regions.

The global model fidelity is expected to influence the reliability of the component optima,

and will thus affect the proportion of feasible points in the data set that is used to
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Figure 4.5: Results for the case study comparing the impact that the system-
level iteration strategy has on the performance of the overall design process.

Table 4.3: Description of strategies with varying global model fidelities, φG.

Parameter Strategy I Strategy II Strategy III

Component design method Design-in-
context

Design-in-
context

Design-in-
context

Global model fidelity, φG 0 4000 8000

Integration method Safe Safe Safe

Confidence level, PFmin 0.90 0.90 0.90

construct the system-level surrogate. A lower-fidelity global model should cause this

proportion to decrease.

The three fidelities tested correspond to different levels of correlation and errors. φG =

8000 corresponds to a r2 range of [0.78, 0.93] and a percentage RMSE range of = [7.31,

9.80]. φG = 4000 corresponds to a r2 range of [0.39, 0.68] and a percentage RMSE range

of = [19.56, 27.23]. φG = 0 corresponds to a r2 range of [0.17, 0.27] and a percentage

RMSE range of = [32.66, 48.04]. Table 4.3 summarizes these strategies.
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Figure 4.6: Results for the case study comparing the impact that the global
model fidelity φG has on the performance of a component design-in-context-
based safe integration process.

Figure 4.6 shows the results of the study. In terms of the solution accuracy a, all three

strategies managed to arrive at optimum designs that are close to the best reported

solution except for the industrial refrigeration system problem, due to reasons that

have been discussed in the previous case study. With regard to the cost C, there is

no noticeable difference between the three strategies. There is thus some evidence for

the hypothesis that the proportion of infeasible points in the system-level surrogate’s

training data does not affect its ability to predict a feasible system design, in opposition

to what was observed in the results of Section 4.3.2.1. The percentage v increases as

φG increases, which is expected since component optimum designs are more likely to be

feasible.

4.3.2.3 Impact of safe integration confidence level

In this case study, safe integration-based approaches are tested with varying levels of

the required confidence level, PFmin. A higher confidence level causes the system-level

surrogate to produce a more conservative estimate of the feasible region. This lowers
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Figure 4.7: Comparison of the Bird problem’s response surface with varying
confidence levels. The component evaluations are also shown to indicate the
component search paths, but they are not used in the construction of the system-
level surrogate.

the magnitude of the design change allowed and causes the overall design process to

progress more slowly through the design space. There is more assurance, however, that

the process can be terminated at any one step and still return a feasible system design.

Figure 4.7 illustrates the relationship between the confidence level and the size of the

feasible region.

The three confidence levels tested are, from least to most conservative, 0.70, 0.80, and

0.90. Table 4.4 summarizes these strategies.

Figure 4.8 shows the results of the study. In terms of the solution accuracy a, all three

strategies managed to arrive at optimum designs that are close to the best reported

solution except for the industrial refrigeration system problem, due to reasons that

have been discussed in the first case study. With regard to the cost C, there is a

noticeable trend showing that the cost decreases as the conservativeness of the safe

integration approach increases. A higher confidence level PFmin causes the integration
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Table 4.4: Description of strategies with varying confidence levels, PFmin.

Parameter Strategy I Strategy II Strategy III

Component design method Design-in-
context

Design-in-
context

Design-in-
context

Global model fidelity, φG 8000 8000 8000

Integration method Safe Safe Safe

Confidence level, PFmin 0.70 0.80 0.90

step to require less iterations to arrive at a feasible system design and hence decreases

the overall cost. This is also reflected in how the percentage v, responds to changes in

PFmin.
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Figure 4.8: Results for the case study comparing the impact that the safe inte-
gration confidence level PFmin has on the performance of a component design-
in-context-based safe integration process.
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4.3.3 Distributed Design of a Full Engine

Having tested a variety of distributed optimization approaches on the analytical bench-

mark problems, a realistic design problem involving FE models is now presented. The

subject of this case study is the CRESCENDO engine (Section 2.5).

In the decomposed formulation, the engine is split naturally along physical component

boundaries into four sub-problems corresponding to the four components: the FC, the

HPCC, the HPTC, and the LPTC. The parameters of each component sub-problem are

identical to the previous case studies involving the CRESCENDO engine and can be seen

in Figure 3.6 and Figure 2.13. The system-level iterations are carried out as described in

Section 4.3.2. The design-in-context option for the component design method has been

upgraded to its multi-fidelity version as described in Section 3.4.2. This multi-fidelity

approach constructs Co-Kriging surrogates using embedded global FE model evaluations

as high-fidelity data, and mid-surface engine evaluations as low-fidelity data.

A new multi-fidelity version for the safe integration method is also investigated. Cur-

rently, only the optimum design from each component design process is validated and

added to the training data set for the system-level surrogate. This restriction exists

because the validation process involves evaluations of the high-fidelity global model.

However, if a multi-fidelity design-in-context approach is used at the component level,

the low fidelity global model evaluations in each sub-problem are of the same fidelity

and can be combined into a separate low fidelity data set for the system-level surrogate.

The proposed multi-fidelity safe integration method thus takes advantage of this new

data set to construct a Co-Kriging model.

The distributed optimization approaches are tested against an all-at-once approach, that

is, the optimization proceeds with all eight variables at once and uses only high-fidelity

global FE model evaluations. Table 4.3 summarizes these strategies.

Table 4.5: Description of system-level iteration strategies for the CRESCENDO
engine distributed optimization problem.

Parameter Strategy I Strategy II Strategy III Strategy IV

Component design method N/A (all-
at-once)

Default
isolated

Design-in-
context
(MF)

Design-in-
context
(MF)

Integration method N/A Safe Safe Safe (MF)

Confidence level, PFmin N/A N/A 0.90 0.90
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Figure 4.9: Results for the CRESCENDO engine distributed optimization prob-
lem.

Figure 4.9 shows the results of the study. In terms of the solution accuracy a, all three

strategies managed to arrive at optimum designs that are close to the best reported

solution in Section 3.3.3.

With regard to the cost C, Strategy II and Strategy III are noticeably more expensive

than the all-at-once approach. This result is expected as the problem decomposition

transforms a search through the original design space into a staggered series of searches

along lower-dimensional slices. However, as the percentage v shows, it is much more

risky to use the all-at-once approach if it does not converge before the optimization has

to be terminated due to any time constraints.

The multi-fidelity safe integration approach in Strategy IV has managed to achieve costs

that are on par with the all-at-once approach. This can be attributed to the larger steps

that it can take in the integration phase without encountering infeasibilities due to the

improved accuracy of the system-level surrogate. Its percentage v values also indicate

that it can compete with the all-at-once approach in terms of cost while maintaining a

low risk of rework.
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Conclusion

The major contributions of this thesis are:

• An extension of the medial object generation workflow originally established by

the MANTLE library to accelerate the generation of Whole Engine Models using

a geometry splitting, thickness remapping, and mesh coarsening approach.

• A comprehensive study of the properties of medial object-based mid-surface meshes

and their accuracy relative to high fidelity tetrahedral meshes over a variety of

design modifications and in novel configurations such as the embedded global FE

model.

• A novel multi-fidelity surrogate modelling method that uses tetrahedral meshes as

high fidelity data and mid-surface meshes as low fidelity data to achieve a high

level of prediction accuracy at a lower cost than traditional single-fidelity methods.

• A novel design-in-context method that uses embedded global FE models to effi-

ciently train surrogate models that can accurately predict the global landscape for

component-level design processes.

• A novel integration method that constructs system-level surrogates from component-

level optimum designs and conservatively estimates the feasible region such that a

feasible system design can be found quickly and reliably.

• A comprehensive study of the effects that different combinations of component-

level design strategies and system-level integration strategies have on the perfor-

mance of the overall design process.

Overall, this thesis represents an effort to improve existing component-level processes in

engineering design. By exploiting new finite element modelling technologies, resourceful

use of multi-fidelity surrogate modelling methods, and taking concepts from concurrent
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design methods, a set of reliable and efficient distributed design strategies have been

developed. While these strategies have yet to be tested on industry-scale projects, the

experimental results in the present work should give some insight into how they can be

tailored to the requirements of a specific problem.

5.1 Component Design-in-Context

The proposed component design-in-context method improves upon the traditional com-

ponent design process by enabling components to design directly with respect to physical

constraints in the residual system using information from embedded global FE models.

In the development of the design-in-context method, the following has been achieved:

• An assessment of the ability of the embedded global FE model to predict global

constraints and subsequently direct component design optimizations to satisfy

them.

• A demonstration of the cost versus feasibility trade-off that can affect the choice of

whether the embedded global FE model should be treated as a low fidelity model

or a high fidelity model.

• The identification of a need to adjust constraint bounds to accommodate the dif-

ferent scale of responses in a mid-surface mesh.

An important limitation of the implementation suggested in the present work is that

it was only tested on a relatively simple engine geometry with only a small number of

components. Therefore a direction for future work is to investigate the performance of

the design-in-context approach on more complex engine geometries or even on cross-

organizational design studies such as an engine-nacelle optimization (Wang (2020)).

Practical considerations about sharing geometry and requirements across organizations

would thus need to be addressed.

5.2 Integration of Component Designs

The proposed safe integration method is designed to favour the preferences of component-

level design processes and is in direct contrast to the rigid coordination-based approaches

in systems engineering and MDO. The safe integration method in combination with com-

ponent design-in-context produces a flexible and reliable design process that is able to

accommodate for dynamic schedules with a low risk of rework. In the development of

the safe integration method, the following has been achieved:
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• An assessment of how the safe integration method reduces the number of infeasible

system designs and hence reduces the overall cost of the design process relative to

a direct integration method.

• An assessment of how an increase in the global model fidelity in the component

design-in-context optimizations reduces the proportion of infeasible system designs

and hence the probability of rework.

• An assessment of how an increase in the confidence level for the safe integration

method reduces the overall cost of the design process because it requires less iter-

ations to terminate at a feasible system design.

• A demonstration of a novel multi-fidelity variant for the safe integration method

that uses constructs a Co-Kriging surrogate by compiling low fidelity global model

evaluations from every component design process.

• A demonstration of how the performance of the safe integration approach is main-

tained as the problem dimensionality increases.

The amount of information reuse in the developed strategies are still relatively low. The

inner-iterations of each component design-in-context process is an untapped resource of

FE model simulations. The main obstacle preventing the combination of all component-

level evaluations is that they are each their own fidelity, and that there is no clear

ordering between them. A mid-surface engine with an embedded solid HPCC cannot be

said to be more accurate than a mid-surface engine with an embedded solid HPTC.

A useful avenue for future work is therefore to investigate how these different embedded

global model evaluations should be treated appropriately in a multi-fidelity approach.

A naive approach that could very well work is to assign all component-level evaluations

to the same fidelity. A more promising method could be to use Gaussian processes to

define links between component evaluations before projecting them to the system-level

space (Bonilla et al. (2007)). The difficulty that Kriging surrogates have when dealing

with high-dimensional problems and with a large data set needs to also be further

investigated to determine the viability of the safe integration approach when applied to

realistic design processes.





Appendix A

Benchmark Problems

A.1 Bird Problem

The formulation for the two-variable Bird problem, as described in Mishra (2006), has

been augmented with constraints g1 and g2. The resulting formulation is,

min
x

f(x) = sin(x1) · exp((1− cos(x2))
2)+

cos(x1) · exp((1− sin(x2))
2) + (x2 − x1)2,

s.t. g1(x) = 25− (x1 + 5)2 − (x2 + 5)2 ≤ 0,

g2(x) = 15− (x1 − 1)2 − (x2 − 6)2 ≤ 0,

where − 6 ≤ x1, x2 ≤ 6.

(A.1)

This formulation is decomposed into the following two sub-problems,

min
x1

f1(x1, x̂) = cos(x1) · exp((1− sin(x̂2))
2),

s.t. g1(x1, x̂) = 25− (x1 + 5)2 − (x̂2 + 5)2 ≤ 0,

where − 6 ≤ x1 ≤ 6.

(A.2)

min
x2

f2(x2, x̂) = sin(x̂1) · exp((1− cos(x2))
2) + (x2 − x̂1)2,

s.t. g2(x2, x̂) = 15− (x̂1 − 1)2 − (x2 − 6)2 ≤ 0,

where − 6 ≤ x2 ≤ 6.

(A.3)
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A.2 Rosen-Suzuki Problem

The formulation for the four-variable Rosen-Suzuki problem, as described in Hock and

Schittkowski (1981), is,

min
x

f(x) = x21 + x22 + 2x23 + x24 − 5x1 − 5x2 − 21x3 + 7x4,

s.t. g1(x) = x21 + x22 + x23 + x24 + x1 − x2 + x3 − x4 − 8 ≤ 0,

g2(x) = x21 + 2x22 + x23 + 2x24 + x1 − x4 − 10 ≤ 0,

g3(x) = 2x21 + x22 + x23 + 2x1 − x2 − x4 − 5 ≤ 0,

where − 3 ≤ x1, x2, x3, x4 ≤ 3.

(A.4)

This formulation is decomposed into the following three sub-problems,

min
x1

f1(x1) = x21 − 5x1,

s.t. g3(x1, x̂) = 2x21 + x̂22 + x̂23 + 2x1 − x̂2 − x̂4 − 5 ≤ 0,

where − 3 ≤ x1 ≤ 3.

(A.5)

min
x2,x4

f(x2, x4) = x22 + x24 − 5x2 + 7x4,

s.t. g2(x2, x4, x̂) = x̂21 + 2x22 + x̂23 + 2x24 + x̂1 − x4 − 10 ≤ 0,

where − 3 ≤ x2, x4 ≤ 3.

(A.6)

min
x3

f1(x3) = 2x23 − 21x3,

s.t. g1(x3, x̂) = x̂21 + x̂22 + x23 + x̂24 + x̂1 − x̂2 + x3 − x̂4 − 8 ≤ 0,

where − 3 ≤ x3 ≤ 3.

(A.7)

A.3 Weight Minimisation of a Speed Reducer

The formulation for the seven-variable speed reducer optimisation problem, as described

in Kumar et al. (2020), is,
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min
x

f(x) = 0.7854x22x1(14.9334x3 − 43.0934 + 3.3333x23)+

0.7854(x5x
2
7 + x4x

2
6)− 1.508x1(x

2
7 + x26) + 7.477(x37 + x36),

s.t. g1(x) = −x1x22x3 + 27 ≤ 0,

g2(x) = −x1x22x23 + 397.5 ≤ 0,

g3(x) = −x2x46x3x−34 + 1.93 ≤ 0,

g4(x) = −x2x47x3x−35 + 1.93 ≤ 0,

g5(x) = 10x−36

√
16.91× 106 + (745x4x

−1
2 x−13 )2 − 1100 ≤ 0,

g6(x) = 10x−37

√
157.5× 106 + (745x5x

−1
2 x−13 )2 − 850 ≤ 0,

g7(x) = x2x3 − 40 ≤ 0,

g8(x) = −x1x−12 + 5 ≤ 0,

g9(x) = x1x
−1
2 − 12 ≤ 0,

g10(x) = 1.5x6 − x4 + 1.9 ≤ 0,

g11(x) = 1.1x7 − x5 + 1.9 ≤ 0,

where 2.6 ≤ x1 ≤ 3.6, 0.7 ≤ x2 ≤ 0.8, 17 ≤ x3 ≤ 28

7.3 ≤ x4, x5 ≤ 8.3, 2.9 ≤ x6 ≤ 3.9, 5.0 ≤ x7 ≤ 5.5.

(A.8)

This formulation is decomposed into the following five sub-problems,

min
x1

f1(x1, x̂) = 0.7854 · 14.9334x̂22x1x̂3,

s.t. g8(x1, x̂) = −x1x̂−12 + 5 ≤ 0,

g9(x1, x̂) = x1x̂
−1
2 − 12 ≤ 0,

where 2.6 ≤ x1 ≤ 3.6.

(A.9)

min
x2

f2(x2, x̂) = −0.7854 · 43.0934x2x̂1,

s.t. g1(x2, x̂) = −x̂1x22x̂3 + 27 ≤ 0,

g2(x2, x̂) = −x̂1x22x̂23 + 397.5 ≤ 0,

where 0.7 ≤ x2 ≤ 0.8.

(A.10)
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min
x3

f3(x3, x̂) = 0.7854 · 3.3333x̂22x̂1x
2
3,

s.t. g7(x3, x̂) = x̂2x3 − 40 ≤ 0,

where 17 ≤ x3 ≤ 28.

(A.11)

min
x4,x5

f4(x4, x5, x̂) = 0.7854x5x̂
2
7 + 0.7854x4x̂

2
6,

s.t. g3(x4, x̂) = −x̂2x̂46x̂3x−34 + 1.93 ≤ 0,

g4(x5, x̂) = −x̂2x̂47x̂3x−35 + 1.93 ≤ 0,

g10(x4, x̂) = 1.5x̂6 − x4 + 1.9 ≤ 0,

g11(x5, x̂) = 1.5x̂7 − x5 + 1.9 ≤ 0,

where 7.3 ≤ x4, x5 ≤ 8.3.

(A.12)

min
x6,x7

f4(x6, x7, x̂) = −1.508x̂1(x
2
7 + x26) + 7.477(x37 + x36),

s.t. g5(x6, x̂) = 10x−36

√
16.91× 106 + (745x̂4x̂

−1
2 x̂−13 )2 − 1100 ≤ 0,

g6(x7, x̂) = 10x−37

√
157.5× 106 + (745x̂5x̂

−1
2 x̂−13 )2 − 850 ≤ 0,

where 2.9 ≤ x6 ≤ 3.9, 5.0 ≤ x7 ≤ 5.5.

(A.13)

A.4 Optimal Design of an Industrial Refrigeration System

The formulation for the fourteen-variable industrial refrigeration system optimisation

problem, as described in Kumar et al. (2020), is,
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min
x

f(x) = 63098.88x2x4x12 + 5441.5x22x12 + 115055.5x1.6642 x6+

6172.27x22x6 + 63098.88x1x3x11 + 5441.5x21x11+

115055.5x1.6641 x5 + 6172.27x21x5 + 140.53x1x11+

281.29x3x11 + 70.26x21 + 281.29x1x3 + 281.29x23+

14437x1.88128 x0.342412 x10x
−1
14 x

2
1x7x

−1
9 + 20470.2x2.8937 x0.31611 x21,

s.t. g1(x) = 1.524x7−1− 1 ≤ 0,

g2(x) = 1.524x8−1− 1 ≤ 0,

g3(x) = 0.07789x1 − 2x−17 x9 − 1 ≤ 0,

g4(x) = 7.0530x−19 x21x10x
−1
8 x−12 x−114 − 1 ≤ 0,

g5(x) = 0.0833x−113 x14 − 1 ≤ 0,

g6(x) = 47.136x0.3332 x10x12 − 1.333x8x
2.1195
13 + 62.08x2.119513 x12

−1x0.28 x−110 ≤ 0,

g7(x) = 0.04771x10x
1.8812
8 x0.342412 − 1 ≤ 0,

g8(x) = 0.0488x9x
1.893
7 x0.31611 − 1 ≤ 0,

g9(x) = 0.0099x1x
−1
3 − 1 ≤ 0,

g10(x) = 0.0193x2x4−1− 1 ≤ 0,

g11(x) = 0.0298x1x
−1
5 − 1 ≤ 0,

g12(x) = 0.056x2x
−1
6 − 1 ≤ 0,

g13(x) = 2x−19 − 1 ≤ 0,

g14(x) = 2x−110 − 1 ≤ 0,

g15(x) = x12x
−1
11 − 1 ≤ 0,

where 0.001 ≤ x1, . . . , x14 ≤ 5.0.

(A.14)

This formulation is decomposed into the following six sub-problems,

min
x1

f1(x1, x̂) = 5441.5x21x̂11 + 115055.5x1.6641 x̂5 + 6172.27x21x̂5 + 70.26x21,

s.t. g3(x1, x̂) = 0.07789x1 − 2x̂−17 x̂9 − 1 ≤ 0,

g4(x1, x̂) = 7.0530x̂−19 x21x̂10x̂
−1
8 x̂−12 x̂−114 − 1 ≤ 0,

where 0.001 ≤ x1 ≤ 5.0.

(A.15)
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min
x2,x13

f2(x2, x̂) = 5441.5x22x̂12 + 115055.5x1.6642 x̂6 + 6172.27x22x̂6,

s.t. g6(x2, x13, x̂) = 47.136x0.3332 x̂10x̂12 − 1.333x̂8x
2.1195
13 + 62.08x2.119513 x̂12

−1x̂0.28 x̂−110 ≤ 0,

where 0.001 ≤ x2, x13 ≤ 5.0.

(A.16)

min
x3,x4,x5,x6

f3(x3, x̂) = 63098.88x̂1x3x̂11 + 281.29x̂1x3 + 281.29x23,

s.t. g9(x3, x̂) = 0.0099x̂1x
−1
3 − 1 ≤ 0,

g10(x4, x̂) = 0.0193x̂2x4−1− 1 ≤ 0,

g11(x5, x̂) = 0.0298x̂1x
−1
5 − 1 ≤ 0,

g12(x6, x̂) = 0.056x̂2x
−1
6 − 1 ≤ 0,

where 0.001 ≤ x3, x4, x5, x6 ≤ 5.0.

(A.17)

min
x7,x8

f4(x7, x̂) = 20470.2x2.8937 x̂0.31611 x̂21,

s.t. g1(x7, x̂) = 1.524x7−1− 1 ≤ 0,

g2(x8, x̂) = 1.524x8−1− 1 ≤ 0,

where 0.001 ≤ x7, x8 ≤ 5.0.

(A.18)

min
x9,x10,x14

f5(x9, x10, x14, x̂) = 14437x̂1.88128 x̂0.342412 x10x
−1
14 x̂

2
1x̂7x

−1
9 ,

s.t. g5(x14, x̂) = 0.0833x̂−113 x14 − 1 ≤ 0,

g13(x9, x̂) = 2x−19 − 1 ≤ 0,

g14(x10, x̂) = 2x−110 − 1 ≤ 0,

where 0.001 ≤ x9, x10, x14 ≤ 5.0.

(A.19)

min
x11,x12

f6(x11, x12, x̂) = 63098.88x̂2x̂4x12 + 140.53x̂1x11 + 281.29x̂3x11,

s.t. g7(x12, x̂) = 0.04771x̂10x̂
1.8812
8 x0.342412 − 1 ≤ 0,

g8(x11, x̂) = 0.0488x̂9x̂
1.893
7 x0.31611 − 1 ≤ 0,

g15(x11, x12, x̂) = x12x
−1
11 − 1 ≤ 0,

where 0.001 ≤ x11, x12 ≤ 5.0.

(A.20)
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Figure C.1: Response surface of the CRESCENDO HPCC space-filling DOE in
Section 3.3.2. This plot is the detailed version of Figure 3.3a. The dominant
constraints have been labelled.
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Figure C.2: Response surface of the CRESCENDO HP compressor casing opti-
mization case study in Section 3.3.2. This plot is the detailed version of Figure
3.3b. The dominant constraints have been labelled.
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Figure C.3: Response surface of the CRESCENDO HPCC optimization problem
in Section 3.3.2. This plot is the detailed version of Figure 3.4a. The dominant
constraints have been labelled.



Appendix C Response Surface Plots 107

Figure C.4: Response surface of the CRESCENDO HPCC optimization problem
in Section 3.3.2. This plot is the detailed version of Figure 3.4b. The dominant
constraints have been labelled.



108 Appendix C Response Surface Plots

1.5 2 2.5 3 3.5 4 4.5

HPCC.VAR1

1.5

2

2.5

3

3.5

4

4.5

H
P

C
C

.V
A

R
2

112

114

116

118

120

122

H
P

C
C

.O
B

J

Feasible domain

Infeasible domain

Dominant constraint

Non-dominant constraint

Expensive sample

Cheap sample

Best point

1.5 2 2.5 3 3.5 4 4.5
1.5

2

2.5

3

3.5

4

4.5

1.5 2 2.5 3 3.5 4 4.5
1.5

2

2.5

3

3.5

4

4.5

HPCC.CON1

HPCC.CON3

HPCC.CON5

HPCC.CON6

HPCC.CON7

Figure C.5: Response surface of the CRESCENDO HPCC optimization problem
in Section 3.3.2. This plot is the detailed version of Figure 3.4c. The dominant
constraints have been labelled.
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Figure C.6: Response surface of the CRESCENDO HPCC design-in-context
optimization problem in Section 3.4.1. This plot is the detailed version of Figure
3.8a. The dominant constraints have been labelled.
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Figure C.7: Response surface of the CRESCENDO HPCC design-in-context
optimization problem in Section 3.4.1. This plot is the detailed version of Figure
3.8b. The dominant constraints have been labelled.
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Figure C.8: Response surface of the multi-fidelity CRESCENDO HPCC design-
in-context optimization problem in Section 3.4.2. This plot is the detailed ver-
sion of Figure 3.10a. The dominant constraints have been labelled.
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Figure C.9: Response surface of the multi-fidelity CRESCENDO HPCC design-
in-context optimization problem in Section 3.4.2. This plot is the detailed ver-
sion of Figure 3.10b. The dominant constraints have been labelled.
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Figure C.10: Response surface of the Bird problem example in Section 4.3.1.
This plot is the detailed version of Figure 4.3a.
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Figure C.11: Response surface of the Bird problem example in Section 4.3.1.
This plot is the detailed version of Figure 4.3b. The dominant constraints have
been labelled.
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Figure C.12: Response surface of the Bird problem example in Section 4.3.1.
This plot is the detailed version of Figure 4.4a. The dominant constraints have
been labelled.
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Figure C.13: Response surface of the Bird problem example in Section 4.3.1.
This plot is the detailed version of Figure 4.4b. The dominant constraints have
been labelled.
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