The University of Southampton
University of Southampton Institutional Repository

Scalability of self-stratifying microbial fuel cell: Towards height miniaturisation

Scalability of self-stratifying microbial fuel cell: Towards height miniaturisation
Scalability of self-stratifying microbial fuel cell: Towards height miniaturisation
The scalability of bioelectrochemical systems is a key parameter for their practical implementation in the real-world. Up until now, only urine-fed self-stratifying microbial fuel cells (SSM-MFCs) have been shown to be scalable in width and length with limited power density losses. For practical reasons, the present work focuses on the scalability of SSM-MFCs in the one dimension that has not yet been investigated, namely height. Three different height conditions were considered (1 cm, 2 cm and 3 cm tall electrodes). The normalised power density of the 2 cm and 3 cm conditions were similar either during the durability test under a hydraulic retention time of ≈39 h (i.e. 15.74 ± 0.99 μW.cm−3) and during the polarisation experiments (i.e. 27.79 ± 0.92 μW.cm−3). Conversely, the 1 cm condition had lower power densities of 11.23 ± 0.07 μW.cm−3 and 17.73 ± 3.94 μW.cm−3 both during the durability test and the polarisation experiment, respectively. These results confirm that SSM-MFCs can be scaled in all 3 dimensions with minimal power density losses, with a minimum height threshold for the electrode comprised between 1 cm and 2 cm.
Microbial fuel cell, Urine treatment, Scaling, Self-stratification, Power generation
1567-5394
68-75
Walter, Xavier Alexis
67c83b61-76af-4e37-aec8-79ebc723b807
Santoro, Carlo
03549f6d-d57f-4d79-8bae-2d9271aa7371
Greenman, John
eb3d9b82-7cac-4442-9301-f34884ae4a16
Ieropoulos, Ioannis A.
6c580270-3e08-430a-9f49-7fbe869daf13
Walter, Xavier Alexis
67c83b61-76af-4e37-aec8-79ebc723b807
Santoro, Carlo
03549f6d-d57f-4d79-8bae-2d9271aa7371
Greenman, John
eb3d9b82-7cac-4442-9301-f34884ae4a16
Ieropoulos, Ioannis A.
6c580270-3e08-430a-9f49-7fbe869daf13

Walter, Xavier Alexis, Santoro, Carlo, Greenman, John and Ieropoulos, Ioannis A. (2019) Scalability of self-stratifying microbial fuel cell: Towards height miniaturisation. Bioelectrochemistry, 127, 68-75. (doi:10.1016/j.bioelechem.2019.01.004).

Record type: Article

Abstract

The scalability of bioelectrochemical systems is a key parameter for their practical implementation in the real-world. Up until now, only urine-fed self-stratifying microbial fuel cells (SSM-MFCs) have been shown to be scalable in width and length with limited power density losses. For practical reasons, the present work focuses on the scalability of SSM-MFCs in the one dimension that has not yet been investigated, namely height. Three different height conditions were considered (1 cm, 2 cm and 3 cm tall electrodes). The normalised power density of the 2 cm and 3 cm conditions were similar either during the durability test under a hydraulic retention time of ≈39 h (i.e. 15.74 ± 0.99 μW.cm−3) and during the polarisation experiments (i.e. 27.79 ± 0.92 μW.cm−3). Conversely, the 1 cm condition had lower power densities of 11.23 ± 0.07 μW.cm−3 and 17.73 ± 3.94 μW.cm−3 both during the durability test and the polarisation experiment, respectively. These results confirm that SSM-MFCs can be scaled in all 3 dimensions with minimal power density losses, with a minimum height threshold for the electrode comprised between 1 cm and 2 cm.

Text
1-s2.0-S1567539418305474-main - Version of Record
Available under License Creative Commons Attribution.
Download (662kB)

More information

Published date: June 2019
Keywords: Microbial fuel cell, Urine treatment, Scaling, Self-stratification, Power generation

Identifiers

Local EPrints ID: 456225
URI: http://eprints.soton.ac.uk/id/eprint/456225
ISSN: 1567-5394
PURE UUID: 0c362357-03ad-4c8b-8fc8-23ded91ae51f
ORCID for Ioannis A. Ieropoulos: ORCID iD orcid.org/0000-0002-9641-5504

Catalogue record

Date deposited: 26 Apr 2022 19:07
Last modified: 17 Mar 2024 04:10

Export record

Altmetrics

Contributors

Author: Xavier Alexis Walter
Author: Carlo Santoro
Author: John Greenman

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×