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Two ceramic stacks, terracotta (t-stack) and mullite (m-stack), were developed to produce energy when fed with
neat undiluted urine. Each stack consisted of twelve identical microbial fuel cells (MFCs) which were arranged in
cascades and tested under different electrical configurations. Despite voltage reversal, the m-stack produced a
maximum power of 800 UW whereas the t-stack produced a maximum of 520 uW after 62.6 h of operation. More-

over, during the operation, both systems were subject to blockage possibly due to struvite. To the Authors' best

knowledge, this is the first time that such a phenomenon in ceramic MFC membranes is shown to be the direct
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MFC result of sub-optimal performance, which confirms the hypothesis that ceramic membranes can continue oper-
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once the ceramic membrane is blocked, it may prove difficult to recover in-situ.
© 2018 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Microbial fuel cells (MFCs) are systems that convert biomass directly
into electricity through the metabolic activity of microorganisms [1,2].
In recent years, the interest for this technology has rapidly increased,
since MFCs offer the advantage of simultaneous treatment of wastewa-
ter and energy generation in the form of electricity [3,4]. Several MFC
designs have been reported with optimised parameters for power pro-
duction and wastewater treatment, when fed with different types of
feedstock [2,5,6].

In order to better exploit the advantages offered by MFCs, system
configurations must be operationally and economically sustainable. Al-
though several bioreactor designs have been investigated, under differ-
ent operating conditions and both expensive and cheap materials have
been tested with various substrates, the MFC technology has still not
been commercialised [2,5]. The main obstacles that this technology
has to overcome are the low energy generated when compared to
more conventional mature technologies such as chemical fuel cells, bat-
teries, photovoltaics (although the per-unit power output can be com-
parable to single PV cells that collectively make up a PV panel) as well
as the high cost of some of the materials used [7,8].

Stacking MFCs could enhance power production and wastewater
treatment efficiency. However, there may be challenges when
connecting multiple units together as this can be done in a number of
different ways (series, parallel and series/parallel combined). Multiple
MFC connection could result in losses via the conductive fluidic
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connections of interconnected units and it can affect the performance
depending on whether or not feeding is in series from a common tank
or individually fed from the source [9-13]. Moreover, the material selec-
tion for the optimisation of the MFC performance is of utmost impor-
tance. In order for MFCs to be widely deployed, research towards the
effective use of inexpensive and sustainable materials must be carried
out. Recently, researchers have started using ceramics with encouraging
results, suggesting that these inexpensive materials may be the solution
towards MFC implementation. There have even been reports of MFCs
made from paper and other biodegradable materials, which in a way
opens up new opportunities for low-cost, fixed-term MFC deployment
[14,15]. Studies have demonstrated that ceramics can provide stability,
improve power and treatment efficiency, create a better environment
for the electro-active bacteria to achieve resource recovery and even
kill pathogens [6,16-18].

Urine is an abundant waste product and it has already been reported
as an excellent fuel for generating electricity in MFCs [19]. The daily pro-
duction of human urine is estimated to be in the range of 17.4 billion L,
based on a world population of 6.97 billion and considering that an
adult produces an average of 2.5 L in a day [19,20].

The main objective of this study was therefore to investigate the per-
formance of MFCs when operated under adverse conditions in order to
evaluate the limits of the ceramic separators. Two ceramic stacks were
constructed and operated under sub-optimal feed/flow conditions,
whilst efforts to optimise power production were attempted. MFCs
within the stack were fed from a common tank with a dripping mecha-
nism. Neat, urine was used as a feedstock whilst ceramic (terracotta and
mullite) was used as (i) the structural material and (ii) the separator for
ion exchange. To the Authors' best knowledge, this is the first time that
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membrane blockage is shown to be the direct result of MFC under-
performance. It is also shown that once the ceramic membrane is
blocked it may be difficult to recover in-situ.

2. Materials and methods
2.1. MFC design

Each MFC unit consisted of a single cylindrical ceramic chamber,
whose internal volume was used as the anode chamber, and the exter-
nal surface was used as the open-to-air cathode. Two circular 3D printed
lids made from acrylo-nitrile butadiene styrene (ABS) material sealed
the top and the bottom of the chamber. The inlet was at the top, with
the feedstock flowing towards the bottom of the anodic chamber, for
better fluid percolation. The effluent went out from the top of the anodic
chamber, with the use of a constant-level outlet tube. A schematic cross
section and a photo of the unit are shown in Fig. 1a and b.

inlet

Untreated carbon fibre veil material (PRF Composites, Dorset, UK)
with a density of 20 g/cm? and a total surface area of 64.8 cm? was
folded and used as the anode electrode. The cathode electrode
(13.75 cm?) was prepared by coating activated carbon (AC) (G Baldwin
& Co) paste on polytetrafluoroethylene (PTFE) (60 wt% Sigma-Aldrich)
treated carbon cloth and was tightly wrapped around the outside wall
of the ceramic, with the AC side facing the ceramic material. The paste
was prepared by mixing AC powder, PTFE solution and distilled water
(80 g/140 mL), as previously described [21]. Stainless steel wire
(0.5 mm, Scientific Wire Company) was threaded through the elec-
trodes, which were connected with stainless steel crocodile clips acting
as current collectors.

2.2. MFC stacking

Two stacks were fabricated and each one consisted of twelve identi-
cal MFCs as previously described (Fig. 1). The units in the stack were

Fig. 1. (a) Cross section diagram (b) photo of the MFC (c) photo of the cascade stack (d) photo of the anode chamber after 756.1 h of cell operation.
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arranged in cascades such that the effluent from the upstream MFC
flowed as the influent into the downstream MFC. MFCs within the cas-
cades were connected electrically together and a dripping mechanism
(to introduce an air-gap) was used for fluidic isolation and thus electri-
cal insulation between MFCs. Mullite (Anderman Ceramics Ltd,
Hartlebury Trading Estate, Hartlebury, UK) was used for the first stack
(m-stack) and terracotta (Weston Mill Pottery, Sutton on Trend, UK)
for the second stack (t-stack). The height of the terracotta cylinders
was 11 mm with 3 mm wall thickness, whilst mullite cylinders had
11.5 mm height and 5 mm wall thickness. All cylinders had an external
diameter of 40 mm and an open porosity of approximately 27%.

2.3. MFC enrichment and operation

The two stacks were operated under identical conditions in order to
compare the performance of the two ceramic materials. The enrichment
and adaptation of the electrochemically active bacteria in the MFCs
were performed in batch mode, under a fixed external load of 2 kQ for
each cell. During inoculation, 50% of activated sewage sludge supplied
from the Wessex Water Scientific Laboratory (Saltford, UK) and 50% of
fresh urine was used as the feedstock. Urine was collected from healthy
individuals aged between 18 and 70 years old, with no known medical
conditions. Following the enrichment of cells, the operation was shifted
to continuous mode, using only fresh urine as the feed. The first unit
placed at the top of each stack was being fed directly from the inlet res-
ervoir using a peristaltic pump (205 U, Watson Marlow, Falmouth, UK).
The 2 kQ external resistive loads were removed and a 1 kQ load was
connected to each stack. Due to practical limitations such as urine avail-
ability, the MFCs were operated at a sub-optimally slow flow rate
7.51 ml/h (HRT 0.8 h). The anodic liquid volume was 4 ml during
batch operation. This volume gradually decreased to approximately
1 ml, as a result of struvite precipitation, probably due to the slow
flow rate.

In an attempt to improve performance and recover power to at least
the levels produced at the start of the experiment, a series of tests and
parameter changes were performed such as: hydration of the cathode
electrodes with deionized water, changing the electrical configuration,
changing the flow rate, as well as replacing all the cathode electrodes
with new identical ones. Moreover, the cells were disassembled and
the struvite, which had accumulated on the anode electrodes, was re-
moved. The final step was to examine if the ceramic material was
blocked and for this the anode and cathode electrodes were replaced
with new identical ones, but keeping the same ceramic chassis. All ex-
periments were performed at room temperature (22 + 2 °C).

2.4. Data collection

Electrode output for each MFC was individually recorded in volts
(V) versus time using an Agilent data logger (KEYSIGHT, 34972A LXI
data acquisition/Switch) unit. The current and power produced from
the MFCs were calculated using Ohm's law I = V/ R, where Vis the mea-
sured voltage in volts (V) and R is the known value of the external load
resistor in ohms (). Power (P) in watts (W) was calculated by multi-
plying voltage with current; P = I x V. Power densities were calculated
by dividing output with the anodic liquid volume (4 ml for individual
MECs).

2.5. Polarisation experiments

The polarisation experiments were performed using a decade vari-
able resistor box (Centrad Boite A Decades De Resistances DR07). Data
were produced by sweeping resistor values from 1 MQ to 0 Q. The
time interval between resistance changes was 3 min and two different
electrical configurations were assessed. During the first electrical con-
nection, the top four (1-4), the middle four (5-8) and the bottom four
MFCs (9-12), where connected in parallel, and the three parallel groups

were connected in series (3s4p). During the second electrical configura-
tion MFCs 1,2,11,12; 3,4,9,10and 5, 6, 7, 8, were connected in parallel,
and the three respective parallel groups were then connected in series.
MFCs were named based on their position in the cascade i.e. from MFC1
(the first to receive feedstock) up to MFC12 (the last to receive
feedstock).

3. Results and discussion
3.1. MFCs start-up

In order to inoculate the anodic electrodes with electroactive bacte-
ria, the MFC units were initially operated in batch mode. The beginning
of each cycle was marked by the feedstock replacement with 50% of
fresh activated sewage sludge and 50% of fresh urine whilst the end of
a cycle was marked by the MFC voltage dropping to approximately
zero. Following, a relatively reproducible cell performance for the last
cycles, the twelve identical MFCs were arranged in cascades and fed in
continuous mode (7.51 ml/h). During the batch and continuous mode
operations, each MFC unit operated under a fixed external load of 2 k().

Fig. 2a shows the changes in the monitored cell voltage during the
start-up stage for the last two reproducible batch cycles and the cascade
feeding of the m-stack. It can be clearly seen that the peak voltages for
the first cycles were in the range of 270-450 mV (0.14-0.23 mA) whilst
the second cycles were in the range of 260-390 mV (0.13-0.20 mA). Al-
though the peak voltage levels were not fully stabilised between the
two cycles, since there is variance with fresh urine, the acclimation
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Fig. 2. (a) Voltage behaviour of the m-units versus time during the start-up phase (m1:
e, N2 e, M3 , M4 ==, M5 ==, MG: , M7, M8 mm, MO s,
M0 e, M1 ] e, M12: ===) (b) power curves of the m-units for the first
reproducible batch cycle (recorded at t = 5.9 h) (mM1: ===, M2: —m—, M3 ==, M4:
=&, M5: ==, m6: , M7: == m8: , MY: e, M10: ==, m11: 4=, m12: ).
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period was considered completed as no further increase in peak output
levels was recorded.

As can been seen in Fig. 2a, when the cells were arranged in cascades
and fed in continuous mode (t = 28.7 h), the voltage levels depicted a
sharp increase of 17-27.7%. The enhanced performance remained stable
for approximately 22 h whilst the voltage for all MFC units, except m1,
subsequently decreased. This result is attributed to the insufficient car-
bon energy source for cells m2-m12, due to the low flow rate 7.51 ml/h
of urine [22].

The data presented in Fig. 2b show the power curves of the cells for
the first cycle (t = 5.9 h, Fig. 2a). As can been seen from Fig. 2b (points 1
and 2), a double overshoot effect was observed for all units. This result
indicated possible biofilm immaturity on the anode electrodes or sub-
optimal ionic conditions in the anodic environment [23]. Overshoot oc-
curs when power and current decrease simultaneously [24]. A similar
behaviour was observed during the start-up phase of the t-stack (data
not shown).

3.2. Voltage/power behaviour of the stacks under different electrical
configurations

The m-stack operated for ~63 h under the first electrical connection
whilst the t-stack for almost ~91.1 h. Fig. 3 shows the changes in the
monitored voltage V of the quadruples and the stacks and the power
output of the m-stack and t-stack, respectively. The voltage of the bot-
tom four MFCs (m9-12; t9-12) in both stacks reversed in polarity and
the effect was almost immediate. This result is attributed to substrate
imbalance along the MFC cascade. This imbalance caused a dispropor-
tional variation in internal resistance among units, which further caused
the reversal in polarity [9]. Despite these adverse conditions, the m-
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Fig. 3. Voltage behaviour of the quadruplets of (a) the m-stack versus time (V/m1-4; s,

stack produced a maximum power of 800 UW whilst the t-stack pro-
duced a maximum power of 520 W after 62.6 h of operation (Fig. 4).

Without exception, all MFCs showed a power overshoot behaviour,
which is a sign of biofilm immaturity or suboptimal system perfor-
mance; given the length of time this experiment has been running for,
it was evident that there were intrinsic factors negatively affecting the
performance.

In order to overcome this barrier, the electrical configuration was
changed to compensate for the sequential treatment in the cascade
that would inevitably starve the bottom MFCs. Specifically, MFCs 1, 2,
11,12;3,4,9,10and 5, 6, 7, 8, were connected in parallel, respectively.
The external load applied to each stack was 1 k(. The stacks operated
for ~373.9 h under this electrical configuration. Fig. 4 shows the changes
in the monitored voltage V of the quadruples and stacks and the power
output of the m-stack and t-stack, respectively. Under this electrical
configuration the parallel group formed by MFCs 5, 6, 7, 8 reversed in
polarity. The maximum power obtained immediately after the new
electrical configuration (t = 0 h) was 610 uW for both stacks whereas
after 373 h of continuous operation, it decreased to 260 pW and 220
UW for the t-stack and the m-stack, respectively (Fig. 5).

3.3. Effect of different electrical connections on the individual MFC units
within the stacks

In order to determine the effect of different electrical connections on
power output of the individual MFC units, two polarisation experiments
were conducted at the following times: the 1st was 60 h into the first
electrical configuration and the 2nd was again after 60 h under the sec-
ond electrical configuration, for both stacks. The power curves for the
individual MFCs were produced after the cells were electrically discon-
nected within the cascades (Fig. 6). As can be seen from Fig. 6a, b the
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Fig. 4. Voltage behaviour of the quadruplets and stack versus time (a) m-stack (V/
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maturing phase of the stacks.

power curves generated after the operation of the cells under the two
electrical configurations, exhibited a different performance compared
to their individual running during the start-up phase (Fig. 2b). In partic-
ular, when the mullite cells were electrically connected their perfor-
mance enhanced whilst there was less of an overshoot phenomenon.
Specifically, during the first electrical connection, the polarisation
experiments indicated that the top four (1-4) units produced more
power in comparison with the middle four (5-8) and with the bottom
four MFCs (9-12) cells. Specifically, the maximum power produced
was in the range of: 83-107 pW (maximum power density of
20.8-27 W/m?) for the first four cells of the m-stack (m1-m4); 33-66
UW (maximum power density of 8-16.4 W/m?) for the middle four
(m5-m8); and 24.8-29 puW (maximum power density of
5.4-12.1 W/m?®) for the bottom four cells (m9-m12) (Table 1).
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) represent different points in time during the

Furthermore, the bottom four MFCs (m9-m12) exhibited a double
overshoot phenomenon although the overshoot peaks were less exag-
gerated in comparison with those generated during the start-up phase
(Fig. 6a). The declining performance in the downstream MFCs is attrib-
uted to the depletion of organic matter.

Similar behaviour was observed from the individual MFC units of the
t-stack. However, terracotta cells were less powerful compared to the
mullite cells when operated under the same conditions. Moreover, a
double overshoot phenomenon was observed in almost all cells within
the stack (Fig. 6¢). In particular, the maximum power produced from
MFCs t1-t4, was in the range of 53-78 uW (maximum power density
of 13-19.4 W/m?), from the middle four, t5-t8, was in the range of
22-48 uW (maximum power density of 5.5-12 W/m?) and from the
bottom four cells, t9-t12, was in the range of 21-44.5 pW (maximum
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Fig. 6. Power curves produced after the MFC units were electrically disconnected from the first connection; the top four (1-4), the middle four (5-8) and the bottom four MFCs (9-12),
where connected in parallel, and the three parallel groups were connected in series (3s4p) and the second connection; MFCs 1,2,11,12; 3,4,9,10and 5, 6, 7, 8, were connected in parallel,
and the three parallel groups were then connected in series (a) (b) MFCs from m-stack after the 1st connection and the 2nd connection, respectively (c) (d) MFCs from t-stack after the 1st
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Table 1

Maximum power produced from mullite cells (m) under two different electrical configurations (MFCs were named based on their position in the cascade i.e. from m1 (the first to receive

feedstock) up to m12 (the last to receive feedstock)).

MFC unit: ml m2 m3 m4 m5 m6 m7 m8 m9 m10 m11 m12
Pmax (uW)/1st electrical configuration 106.7 99.7 91.2 83.3 65.9 66.7 32.8 48.2 21.8 29.1 21.8 25.8
Pmax (uW)/2nd electrical configuration 923 93.8 53.2 86 64 88 36.5 66 22.7 219 373 284

power density of 5.2-8.2 W/m?) (Table 2) The overshoot phenomenon
is an indication of suboptimal performance and internal resistance var-
iation, and this is in agreement with previous work [23].

Similar behaviour of the power curves was observed during the sec-
ond electrical connection for the individual MFC units of both stacks
(Tables 1 and 2) Although the different electrical configurations had
an effect on the parallel groups, which reversed in polarity in both
stacks, the power curves of the individual MFCs remained on more or
less similar values and pattern for both connections (Fig. 6b, d).

3.4. Identification of the factors that caused the power decrease

After approximately 453.1 h of continuous operation, the voltage
and the power output of both stacks gradually decreased. In order to
identify the factors that caused this decrease and to enhance the perfor-
mance of the stacks, a series of relevant targeted experiments were
conducted.

3.4.1. Effect of cathode dehydration

Initially the cathode electrodes of the t-stack were hydrated with de-
ionized water. Following the first hydration of the cathodes, an increase
of 37.5% in cell voltage of the t-stack (Ve = 330 mV) was observed.
However, this decreased (within 60 h) to its previous values. When
the second hydration occurred, a similar increase of 43.5% of cell voltage
was observed. The cell voltage dropped again to its previous levels after
60 h of continuous operation, despite a third cathode hydration, 18.3 h
after the second hydration. Thus, dehydration of cathodes was possibly
one of the contributing factors to the decreasing performance of stacks.

3.4.2. Effect of electrical configuration

Since the level of voltage was not completely recovered to its initial
value after the hydration of the cathodes, more tests were performed in
order to identify the reasons detrimentally affecting performance. The
electrical configuration was shifted to the optimum electrical connec-
tion of the cells (all in parallel) and 100 € load was applied to each
stack. In order to examine if the activity of the biofilm was negatively af-
fected by the voltage reversal, a second enrichment and adaptation of
electrochemically active bacteria in the cells was performed in batch
mode. During the second inoculation, 50% of anolyte from a separate
stack, running under identical conditions, was added mixed with 50%
fresh urine, used as feedstock, but no performance improvement was
observed.

3.4.3. Effect of catalyst layer coating

The possibility that the activated layer of the cathode electrode coat-
ing was degrading (fouling) over time was also examined. In order to
assess this, the cathode electrodes were replaced with new identical
ones, approximately 2 weeks after the start of the parallel configuration.
Once again, no improvement in performance was observed. The re-
placement of the cathode electrodes was followed by hydration with

Table 2

deionized water, which improved performance by 22%. However, ap-
proximately 16 h after this, the voltage returned to previous levels
achieved before replacing the cathodes.

3.4.4. Effect of struvite deposition

As already mentioned, the greatest challenge was fuel availability,
which resulted in having to run the MFCs at very low - and quite possi-
bly suboptimal - flow rates (7.51 ml/h). This was certainly a contribut-
ing factor both to the detriment of performance, but also to the
deposition of struvite inside the anode chamber (see Fig. 1d). In order
to examine this, and check whether struvite was blocking the biofilm
and preventing fuel from percolating through, the cells were opened
and the struvite, which accumulated on the anode electrodes was re-
moved, after approximately 1 month (756.1 h) from the start of the par-
allel configuration; once again there was no significant improvement
recorded following this step.

3.4.5. Investigation of ceramic material blockage

The final step of the investigation was to examine if the ceramic ma-
terial was gradually blocked during time. In order to examine this pa-
rameter, the anode and cathode electrodes were replaced by fresh
identical ones, whilst keeping the same ceramic materials as the mem-
brane. The cells were inoculated and matured exactly in the same way
as before, i.e. in batch mode, under a fixed external load of 2 kQ for
each cell. During inoculation, 50% of activated sewage sludge and 50%
of fresh urine was used as feed. These attempts proved unsuccessful, in-
dicating the distinct possibility that the ceramic material itself was
blocked by the slow rate of ion transfer and accumulation of struvite.
This was probably due to the sub-optimally low flow rate, which
would have promoted slow growing organisms and - as proven - a sig-
nificant accumulation of struvite. It is also possible that the open poros-
ity might have played a key role to the detriment of performance, since
it was higher than the open porosity known to work better with ceramic
MEFCs. The higher porosity may, on the one hand, have facilitated a freer
movement of ions and macromolecules, but on the other hand, due to
the low rate of electron (and concomitant cation) transfer, the presence
of such macromolecules might have resulted in holding-up slowly mov-
ing ions, and thus blocking the passage. This may not have been the case
if the material porosity was different or the material itself was of a dif-
ferent composition.

Although the performance did not improve, following the various at-
tempts of recovery, it is worth noting that through these experiments
(final step in particular) it was shown that the ceramic material can ac-
tually block, (just like any other filter/porous material). This is usually if
the movement of particles through the material is not continuous or is
occurring at an unfavourable rate of transfer. The MFC operation is
based on charged movement of electrons and ions, which if continuous
and at optimum rates, then the movement across the membrane will
also be continuous with minimum or zero ‘stuck’ molecules. Further
work will investigate more thoroughly this parameter and study how

Maximum power produced from terracotta cells (t) under two different electrical configurations. (MFCs were named based on their position in the cascade i.e. from t1 (the first to receive

feedstock) up to t12 (the last to receive feedstock)).

MEFC unit: t1 t2 t3 t4 t5 t6 t7 t8 t9 t10 t11 t12
Pmax (UW)/1st electrical configuration 61.6 53 77.8 71.8 225 24 47.7 213 44.5 328 20.8 29
Pmax (uW)/2nd electrical configuration 59.9 534 76.1 49.3 24.7 299 44.1 28 32.1 23.1 22 314
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power output can directly affect (or not) the blockage of the ceramic
separator. In addition, the study of factors contributing to the stable per-
formance of the stacks and improving system performance will also be
investigated. In particular, the role of ceramic material properties (po-
rosity, composition, geometry and size) on stack performance, in addi-
tion to different operating conditions (electrical connection, flow rate)
are critical parameters that should be considered for stack improvement
and use in practical applications.

4. Conclusions

A newly designed, ceramic MFC unit was operated as part of two
twelve cell cascade stacks using urine as the feedstock. The best perfor-
mance occurred during the first electrical connection which produced a
maximum power of 0.8 mW after 62.6 h of continuous operation. How-
ever, the voltage and the power output of both the m-stack and t- stack
gradually decreased. In an attempt to improve performance, a series of
targeted tests were performed. These experiments indicated that during
continuous operation, mullite and terracotta were blocked by the
struvite precipitation, which was the result of flow rate and electrode
conformation.
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