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Abstract  18 

The distributions of dissolved O2 and CO2 have not previously been systematically compared 19 

across the global surface ocean, despite their significance for life and climate. Here we analyze 20 

carbon dioxide and oxygen concentrations relative to saturation (equilibrium with the atmosphere) 21 

in surface waters, using two large datasets (ship-collected and float-collected data). When applied 22 

to a high-quality global ship-collected dataset, CO2 and O2 concentrations relative to saturation 23 

exhibit large seasonal and geographic variations. However, linear fits of CO2 and O2 deviations 24 

from saturation (ΔCO2 against ΔO2) yield y-intercepts close to zero, which suggests a requirement 25 

for data validity. We utilize this finding to investigate the accuracy of carbonate system data from 26 

biogeochemical-Argo floats. We find significant discrepancies in ΔCO2-ΔO2 y-intercepts 27 

compared to the global reference, implying overestimations of float-based CO2 release in the 28 

Southern Ocean. We conclude that this technique can be applied to data from autonomous 29 

platforms for quality assessment. 30 
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Introduction 31 

The dissolved gases carbon dioxide (CO2) and oxygen (O2) in seawater are of much biogeochemical 32 

interest
1
. Carbon dioxide is important because of its role as a greenhouse gas, with about one quarter of the 33 

anthropogenic CO2 produced by fossil fuel combustion and land use changes being absorbed by the ocean
2
. 34 

The coupling of atmospheric CO2 and O2 is used to derive land/ocean carbon sink partitioning
3
 and serve 35 

as a reference to verify ocean model results used in the global carbon budget
2
. Time-series observations at 36 

some specific locations (mostly in the northern hemisphere
4
), as well as distributed measurements of the 37 

partial pressure of CO2 (pCO2) at the global scale
5,6

 show that surface seawater pCO2 is rising at a similar 38 

rate to the mole fraction of CO2 in the atmosphere, which has increased by more than 40% since 39 

pre-industrial times (from 280 to over 400 ppm or μmol mol
-1

). Global change is also affecting oceanic O2 40 

concentrations; warming decreases oxygen solubility and enhances water column stratification, thereby 41 

reducing ventilation of subsurface waters with atmospheric oxygen and leading to a decline in oxygen in 42 

the global ocean
7-9

. Oxygen is biologically linked to CO2, for instance during photosynthesis which 43 

simultaneously uses CO2 and generates O2. 44 

There have been some attempts to jointly investigate dissolved O2 and CO2 in different ocean basins (e.g., 45 

ref. 
1,10-15

). However, in these studies the two gases were usually treated differently, for instance O2 as a 46 

concentration ([O2]) or percent saturation and CO2 as a partial pressure (pCO2) (ref. 
10,13,16,17

); in addition, 47 

oxygen values are sometimes reported relative to argon (Ar) (e.g., ref. 
18-20

). Analyses in which O2 and CO2 48 

are calculated in different units, or as percentages, cannot take straightforward advantage of the 49 

stoichiometric relationships (i.e., Redfield ratios) between carbon, oxygen, and nutrients
21,22

. An improved 50 

O2-CO2 analysis method was proposed by Torgersen and Branco
23

 and Vachon et al.
24

 to compare 51 

deviations of O2 and CO2 concentrations away from saturation, or in other words disequilibria 52 

(discrepancies compared to equilibrium with atmospheric values). This approach was shown to provide 53 

insights into river and lake ecosystems, and has the potential to be applied more broadly to marine systems. 54 

Investigating co-variations of O2 and CO2 concentrations can help improve understanding of the drivers of 55 

surface ocean carbon dynamics.  56 

In this study we extend the application of the O2-CO2 approach to the global surface ocean and name the 57 



Manuscript submitted to Communications Earth & Environment 

4 

 

approach CORS (Carbon and Oxygen Relative to Saturation). We treat O2 and CO2 identically and 58 

compare dissolved concentrations of O2 and CO2 ([CO2] and [O2]) in surface seawater to saturation values 59 

(values at which the net air-sea gas exchange rate is zero). The saturation values for O2 and CO2 are 60 

strongly temperature-dependent, as was already shown by the first plot of [O2] against temperature over 61 

much of the global surface ocean in the early 1980s using GEOSECS data
25

 (Supplementary Figure 1). The 62 

global database has been greatly expanded in recent decades, providing wider spatial and temporal 63 

coverage, culminating in the Global Ocean Data Analysis Project (GLODAPv2.2020
26-28

; used throughout 64 

this study, for simplicity, it is referred to as GLODAPv2 hereafter), which is by far the largest high-quality 65 

observational dataset of both carbon and oxygen. This expanded dataset has not previously been used to 66 

compare [O2] and [CO2] to each other and to saturating values.  67 

Furthermore, a potential application is to compare patterns in CORS plots from GLODAPv2 with those 68 

from float data from the Southern Ocean Carbon and Climate Observations and Modeling (SOCCOM). 69 

Equipped with biogeochemical sensors (e.g., oxygen, nitrate, pH, and bio-optical sensors), ~200 70 

autonomous biogeochemical Argo floats were deployed by the SOCCOM project
29

 and have enabled a 71 

better understanding of carbon and oxygen cycles in the Southern Ocean
30,31

. They strikingly found that the 72 

high-latitude Southern Ocean (i.e., Antarctic-Southern Zone, ASZ) has released much more CO2 to the 73 

atmosphere than previously estimated
31-33

, which attracted community concerns on the sensor bias and data 74 

quality control (QC) of pH and associated carbonate parameters
34

. Funding has recently been announced 75 

(Global Ocean Biogeochemistry GO-BGC Array project) for the construction and deployment of 500 floats 76 

(as a contribution towards an anticipated eventual fleet of 1000 floats) to provide float coverage similar to 77 

that provided by the SOCCOM project but across the global ocean. A consensus is urgently required on 78 

how to calibrate and validate float carbonate data to ensure the highest accuracy and comparability among 79 

different studies and datasets
34

. Given that the float O2 data is likely to be more accurate than pH and the 80 

calculated carbonate data (ref. 
29,31,35

; see also descriptions in Methods), O2 in the context of CORS plots 81 

could provide a strong constraint for detecting questionable float CO2 data, if compared to GLODAPv2. 82 

To advance knowledge of oceanic oxygen and carbon cycling and address the above concerns, our study 83 

had two main objectives: (1) to construct CORS plots from the GLODAPv2 database, to be used later as a 84 

reference to compare against. These plots show the CORS analysis to be capable of identifying regions and 85 
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periods where processes have driven both O2 and CO2 away from their equilibrium with the atmosphere. (2) 86 

to apply this method to the SOCCOM dataset and compare the resulting plots to the GLODAP reference, 87 

in order to investigate the potential of CORS as a tool for interpreting and validating data collected by 88 

autonomous platforms. 89 

Results 90 

Overall patterns in CORS plots from GLODAPv2 data. 91 

To first order, both [CO2] and [O2] from GLODAPv2 follow the solubility relationship with temperature 92 

(decreasing values with increasing temperature) (Fig. 1), as found previously for [O2] in GEOSECS data 93 

(Supplementary Figure 1). However, deviations occur in certain regions and seasons (Supplementary 94 

Figures 2-6). Deviations of O2 from its equilibrium with the atmosphere are usually of the opposite sign to 95 

the corresponding CO2 deviations (Supplementary Figure 2).  96 

In both hemispheres, the distributions of [CO2] and [O2] show strong seasonal variations: [CO2] and [O2] 97 

deviate furthest from their temperature-dependent saturation values in spring and summer while staying 98 

close to saturation in autumn and winter (Fig. 1). We do not discuss further the Indian Ocean because 99 

deviations of [CO2] and [O2] from saturation are less pronounced there than in other ocean basins. 100 

Individual CORS plots for each basin are presented as supporting information (Supplementary Figures 101 

3-6). 102 

In spring, supersaturation of O2 usually accompanies CO2 undersaturation. Strong supersaturation of CO2 103 

(together with undersaturation of O2) is observed in parts of the northeast and eastern equatorial Pacific for 104 

water temperatures close to 10 and 18°C (Supplementary Figure 2a). However, other Pacific data exhibit 105 

CO2 undersaturation and accompanying O2 supersaturation (Fig. 2a). In the Atlantic Ocean, 73% of all 106 

spring data are undersaturated in CO2 while supersaturated in O2 (Fig. 2a). 107 

In summer, the undersaturation of CO2 is less pronounced in the Atlantic Ocean (Figs. 1c and 2b), whereas 108 

in the Pacific Ocean it is more or less similar to that in spring. In summer, some simultaneous CO2 and O2 109 

undersaturations are observed in the Southern Ocean at latitudes polewards of 60°S where ice melt occurs 110 

at coastal regions (Figs. 1c, d): 20% of the summer Southern Ocean data show undersaturation in both CO2 111 

and O2. 112 
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In autumn and winter, there is less data across the global oceans but it appears that both gases stay closer to 113 

saturation as biological activity weakens and air-sea gas exchange strengthens. There are striking opposite 114 

changes to CO2 and O2 in the Southern Ocean (Figs. 1 and 2), where [CO2] is elevated (on occasion to as 115 

high as 30 µmol kg
-1

) and [O2] is depleted (sometimes to as low as 260 µmol kg
-1

) (Fig. 1). Overall, both 116 

gases deviate more strongly from saturation in winter than in autumn in the Southern Ocean. 117 

Processes causing deviations in CORS plots from GLODAPv2 data. 118 

Figures 1 and 2 show, for the global surface ocean, the coupling of CO2 deviations and O2 deviations from 119 

saturation across geographic and seasonal scales, with four specific features (F1 to F4 in Fig. 2) warranting 120 

further investigation: (F1) CO2 undersaturation in conjunction with O2 supersaturation in the high-latitude 121 

Atlantic and Pacific Oceans in spring; (F2) CO2 supersaturation paired with O2 undersaturation in the 122 

eastern equatorial Pacific and California coast in spring and summer; and (F3-F4) supersaturation of CO2 123 

together with undersaturation of O2 in the Southern Ocean in winter and to a lesser extent in spring and 124 

autumn. Processes known to simultaneously affect ΔCO2 and ΔO2 include warming/cooling, ice melting, 125 

respiration and photosynthesis, and upwelling. The impacts of these processes on ΔCO2 and ΔO2 are shown 126 

in the inset to Fig. 2d (see Methods - Predicted effects of different processes – for explanation of the inset 127 

figure). 128 

With additional plots we explore the possible causes of these features. Figure 3a shows a CORS plot of 129 

Atlantic and Pacific spring data, colored by in-situ nitrate concentration. The data falling in the fourth 130 

quadrant (negative ΔCO2 and positive ΔO2) are associated with depleted nitrate concentrations and are 131 

located primarily in the Irminger Basin in the North Atlantic and the Oyashio region in the western 132 

subarctic Pacific Ocean (Supplementary Figure 2a, b), regions where intense spring blooms are 133 

observed
36-39

. The data patterns are generally consistent with phytoplankton blooms (photosynthesis) as the 134 

driver of the F1 deviations (although the lack of correlation (Supplementary Table 1) between CORS and 135 

NO3 is surprising). Data in quadrant two of Fig. 3a (F2) are mainly from off the northern California coast, 136 

a region where seasonal coastal upwelling is known to bring subsurface waters (depleted in O2 and 137 

enriched in CO2 and nutrients from decomposition of organic matter) to the surface ocean
40

. CORS and 138 

NO3 are strongly correlated in these data (Supplementary Table 1). 139 

Figure 3b shows the relationship between ΔCO2, ΔO2, and the NO3 anomaly in the Southern Ocean in 140 

winter, where the NO3 anomaly is the difference of surface in-situ nitrate concentration from its annual 141 
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mean value in the surface Southern Ocean based on GLODAPv2. The nitrate anomaly is strongly 142 

correlated with ΔCO2 and ΔO2 (Supplementary Table 1). The winter data in the Southern Ocean (Fig. 2d) 143 

imply that respiration or, more likely, upwelling of ‘old’ water into which organic matter has been respired, 144 

is responsible for F3 and F4. The calculation of ΔCO2 (Equation 2) is made relative to atmospheric CO2 at 145 

the time of measurement, even for water that has recently upwelled and never previously had contact with 146 

anthropogenic ΔCO2. For this reason, data from recently upwelled water will tend to plot lower on CORS 147 

plots than it would if its [CO2] value was compared to the [CO2] value in equilibrium with pre-industrial 148 

atmospheric CO2. In addition, decreases in [CO2] because of CaCO3 dissolution
41,42

 (which does not affect 149 

[O2]) are likely to contribute to the lower-than-expected slope. Figure 3c (and Supplementary Figure 7) 150 

shows that Southern Ocean surface waters with the largest deviations (those furthest from the origin of the 151 

CORS plots) in winter are those which have recently upwelled (neutral density > 27.8 kg m
-3

, ref. 
43-46

). We 152 

therefore conclude that the large excursions in the Southern Ocean in autumn and winter are driven by 153 

upwelling of deep waters that have previously been altered by decomposition of sinking organic matter.  154 

Near-zero y-intercepts in CORS plots from GLODAPv2 data. 155 

We investigated CORS plots to look for common features in them, when generated from the high-quality 156 

data in GLODAPv2. For quiescent regions not experiencing intense biogeochemical activity, gas exchange 157 

is the dominant control for both dissolved gases, keeping them close to equilibrium with the atmosphere. In 158 

such regions, we would expect the centroid of the data in the CORS plots to then be close to the origin (i.e. 159 

∆𝑂2
̅̅ ̅̅ ̅ and ∆𝐶𝑂2

̅̅ ̅̅ ̅̅ ̅ ≈ 0 μmol kg
-1

), and this is what is seen when CORS plots are constructed from the HOT 160 

and BATS time-series data (Supplementary Figure 8; ∆O2
̅̅ ̅̅ ̅= 1.9 μmol kg

-1
 and ∆CO2

̅̅ ̅̅ ̅̅ ̅= -0.2 μmol kg
-1

 at 161 

HOT; ∆O2
̅̅ ̅̅ ̅= 3.2 μmol kg

-1
 and ∆CO2

̅̅ ̅̅ ̅̅ ̅= -0.3 μmol kg
-1

 at BATS) from sub-tropical gyres. However, in less 162 

quiescent regions, the centroid can be shifted away from the origin (as seen for instance in the Southern 163 

Ocean in winter – Figure 3b – where upwelling leads to a displaced centroid: ∆𝑂2
̅̅ ̅̅ ̅ = −26.9 μmol kg

-1
 and 164 

∆𝐶𝑂2
̅̅ ̅̅ ̅̅ ̅ =  1.4 μmol kg

-1
). Distance of the centroid from the origin cannot, therefore, be considered a reliable 165 

indicator of data quality. 166 

Several other statistical properties can be calculated (see for instance Vachon et al.
24

), of which we found the 167 

y-intercept value (i.e., value of ΔCO2 when ΔO2 is zero) to be the most useful. The application of CORS to 168 

the GLODAPv2 dataset shows that, when strongly influenced by a dominant biogeochemical process, the 169 

departures of O2 and CO2 from atmospheric equilibrium are coupled and the best-fit lines of ΔO2 and ΔCO2 170 
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still tend to intersect close to the coordinate origin (Fig. 4). Across the global oceans, we found y-intercepts 171 

close to zero (range -1.10 to -0.16 µmol kg
-1

 in different basins (Fig. 4), with value for the global dataset of 172 

-0.18 µmol kg
-1

). Due to the effect of ice melt in the summer Southern Ocean, the Southern Ocean 173 

y-intercept is significantly lowered compared to other ocean basins (Fig. 4e). The relative uniformity of 174 

y-intercept values suggests their usefulness as indicators of data quality. 175 

CORS plots from all float data, regardless of QC flag. 176 

Below we show that CORS plots are capable of distinguishing ‘questionable’ or ‘bad’ float data from 177 

QCed ‘good’ data. As an illustration, we examined data from floats F9096 and F9099 deployed in the 178 

high-latitude Southern Ocean, using which Williams et al.
33

 found significantly higher sea surface pCO2 179 

and air-sea CO2 efflux in wintertime. Unlike Williams et al.
33

 in Figure 5 we have plotted both data flagged 180 

as ‘questionable’ or ‘bad’ and data flagged as ‘good’. The figure shows some abnormally high (up to 20 181 

µmol kg
-1

) and low (down to -20 µmol kg
-1

) ΔCO2 values, neither of which are coupled with equivalent 182 

ΔO2 values. The resulting CORS plots are significantly different from the general CORS pattern across the 183 

global ocean (Fig. 4). All of these abnormal data have been flagged ‘questionable’ or ‘bad’ by SOCCOM’s 184 

QC procedure but CORS plots also reveal the data to be problematic. 185 

CORS plots using only float data flagged as ‘good’. 186 

Below we show that CORS plots are also useful for analyzing and examining ‘good’ float data. In order to 187 

be comparable with the GLODAPv2 database, we first selected 12 biogeochemical Argo floats 188 

(Supplementary Figure 9) around the Drake Passage or south of Tasmania to get as many overlaps as 189 

possible with the shipboard dataset
28

. When CORS plots were produced for the float data, we found (Fig. 6) 190 

a pattern that is overall rather similar to that from GLODAP data in the Southern Ocean (Figs. 3b and 4f), 191 

consistent with upwelling of CO2-rich deep waters. However, a discrepancy was found with regards to the 192 

y-axis intercepts of the best-fit regressions of ΔCO2 and ΔO2: in contrast to the global GLODAP 193 

y-intercepts, which are all similar to each other (range of less than 1.0 between minimum and maximum), 194 

the float-derived y-intercepts are highly variable (range of -3.81 to +0.99 µmol kg
-1

; Figs. 4 and 6, Table 1). 195 

We adopted a subsampling strategy (see Methods) to treat the GLODAP and float datasets identically, with 196 

the result showing that half of the selected floats have y-intercepts greater than the GLODAP-derived 197 

value of -1.10 µmol kg
-1

 (Fig. 6, Table 1). Among these floats, F9096 and F12545 deviate more strongly 198 

from the GLODAP pattern along the positive y-axis direction, whereas some other floats, e.g., F9275 and 199 

F9646 deviate along the opposite direction (Fig. 6). The average difference in y-intercepts (calculated as 200 



Manuscript submitted to Communications Earth & Environment 

9 

 

GLODAPv2 minus float values) is -0.12 µmol kg
-1

, implying that, overall, float y-intercepts are more 201 

positive (or less negative) than GLODAP ones (Table 1). 202 

Applying CORS to the whole SOCCOM dataset south of 55°S (48 floats with QCed O2 and CO2 data, 203 

Supplementary Table 2), we also found that y-intercepts were on average greater than the 204 

GLODAP-derived ones, with an average difference (GLODAPv2 minus float) of -0.36 µmol kg
-1

 205 

(Supplementary Table 2). Given that oxygen sensors are accepted as more established, reliable, and 206 

accurate than pH sensors from which the CO2 values were calculated
29

, the anomalous float y-intercepts 207 

suggest offsets most likely due to pH-related biases, such as the uniform crossover correction assuming a 208 

fixed offset of pH from 1500 m depth to surface
29,33,34

. While unusual y-intercept values are suggestive of 209 

data quality issues, they are not necessarily definitive proof. It is also possible, we believe, that, in some 210 

locations, local processes produce real CORS patterns that differ from those normally seen. For instance, 211 

surface water near to where rivers enter the sea, or in regions of strong mixing with deeper waters, could 212 

potentially exhibit persistent unusual CORS patterns. Data displaying unusual behaviour on CORS plots 213 

should therefore not be immediately discounted but should instead be flagged as requiring further 214 

investigation before it can be accepted as valid. Detailed investigation of this issue is beyond the scope of 215 

this manuscript, but we note that a correction of -0.36 µmol kg
-1

 to [CO2] corresponds to a correction to 216 

pCO2 of -5.8 µatm under typical Southern Ocean conditions. Our finding is in line with some recent 217 

studies
47-49

 based on different approaches (airborne observations of atmospheric CO2 gradients, uncrewed 218 

surface vehicle observations of circumnavigation of Antarctica, and reconstructed estimates of winter 219 

observations and CO2 fluxes) that indicate the possible overestimation of CO2 outgassing from SOCCOM 220 

float data. 221 

Discussion and Conclusions 222 

An improved analysis technique (CORS) for paired O2-CO2 data has been presented here, treating both 223 

gases identically and accounting for the atmospheric pressure effect on both gas saturation concentrations. 224 

The CORS technique was applied to the large, high-quality, global dataset GLODAPv2, as well as to the 225 

SOCCOM float dataset. CORS plots provide a detailed insight into the identity and intensity of processes 226 

impacting CO2 and O2. Although both gas concentrations were seen to be often close to the 227 

temperature-determined equilibrium value in GLODAP2 data, several noteworthy deviations from 228 
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equilibrium with the atmosphere and the possible processes driving them were discussed: in spring, 229 

phytoplankton blooms (most notably in the Irminger Basin of the North Atlantic and in the Oyashio region 230 

of the western subarctic Pacific Ocean) drive undersaturation of CO2 and coincident supersaturation of O2, 231 

whereas upwelling in the California coast and equatorial Pacific drives the opposite; in autumn and winter, 232 

upwelling in the Southern Ocean produces supersaturation of CO2 and undersaturation of O2. CORS plots 233 

can serve as a useful tool for detection of processes (e.g., blooms and upwelling) that simultaneously affect 234 

both oxygen and carbon. 235 

Recent developments in sensors mounted on gliders, floats, and moorings have become increasingly 236 

important because they provide opportunities for sampling in remote regions and in inclement weather 237 

where traditional shipboard measurements are difficult and expensive to obtain
31,32,50-54

. Along with the 238 

basic hydrological parameters (i.e., temperature and salinity), biogeochemical variables such as nutrients, 239 

oxygen, and CO2 (or pH, from which CO2 can be estimated) are now being measured
30-33,55

. ΔCO2 and ΔO2 240 

can therefore be obtained from measurements made autonomously, and CORS plots generated from them. 241 

Even though oxygen returns to gas exchange equilibrium more rapidly than does carbon dioxide
56,57

, ΔCO2 242 

and ΔO2 have been shown here to exhibit coupled (simultaneous and proportional) changes in CORS plots 243 

from GLODAPv2 data. Moreover, oxygen data from sensors is generally more accurate and reliable than 244 

CO2 derived pH measured on Argo floats
29,35

. Because of this it makes sense to exploit the O2 data to 245 

improve the CO2 data. Here we have shown that CORS plots can often identify questionable data (data 246 

shown to be questionable by other QC methods) immediately. In addition, our results suggest that CORS 247 

plots can also reveal issues with supposed ‘good’ data (i.e., quality issues not picked up by other QC 248 

methods). This is because systematic errors in either [CO2] or [O2] tend to stand out in CORS plots, and to 249 

lead to anomalous y-intercept values relative to the GLODAPv2 reference (Table 1). Our approach 250 

provides a more straightforward way to assess and potentially improve CO2 data quality by comparison to 251 

other float measurements. CORS plots allow a check on sensor performance, which is important for 252 

instruments on these unmanned platforms which operate without servicing or recalibration.  253 

As the oceanographic community becomes increasingly reliant on data collected from autonomous 254 

platforms
50,58

, techniques such as CORS will be beneficial for diagnosing data quality, and for immediate 255 

detection of questionable data.  256 
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Methods 257 

The surface ocean is defined
41,59

 as shallower than 30 m at latitudes greater than 30°, and shallower than 20 258 

m at latitudes less than 30°. The Southern Ocean is defined as south of 50°S. Boreal spring is taken as from 259 

April to June, and austral spring from October to December, and so on for the other seasons (following 260 

global scale studies
60

).  261 

Dataset descriptions. 262 

GLODAP dataset: Data for this study were obtained from GLODAPv2.2020
26-28

 (denoted ‘GLODAPv2’ 263 

in this manuscript), which includes data from 946 cruises conducted during the period 1972-2019. Only 264 

open ocean data (seafloor depth > 200 m) were included. We excluded data from the Arctic Ocean (>65°N) 265 

because of data scarcity and strong perturbations from river inputs
61

. The observed CO2 concentration was 266 

calculated using the MATLAB version
62

 of CO2SYS, from in-situ temperature, salinity, DIC, TA, 267 

phosphate, and silicate in the GLODAPv2 database. In this study, the dissociation constants for carbonic 268 

acid and sulfate were taken from Lueker et al.
63

 and Dickson
64

, respectively, and the total borate-salinity 269 

relationship from Lee et al.
65

. We used data only when both O2 and carbonate system measurements are 270 

available and when the quality control of data is flagged as ‘good’. 271 

The accuracies of measured O2, DIC, and TA from GLODAPv2 are stated as 1% (≈ 3 μmol kg
-1

), 4 μmol 272 

kg
-1

, and 4 μmol kg
-1

, respectively
28

. The uncertainty of calculated CO2 concentration is dominated by the 273 

uncertainties from DIC and TA
66

, and is assessed using an add-on to the CO2SYS program that calculates 274 

uncertainty propagation
66

. The propagated uncertainty of CO2, taking into account the uncertainties in the 275 

input variables as well as in the equilibrium constants, is 0.4 µmol kg
-1

. We also evaluated the uncertainty 276 

ourselves using a Monte Carlo analysis (following Wu et al.
67

), which produced a similar uncertainty of 0.5 277 

µmol kg
-1

. 278 

SOCCOM float dataset: The SOCCOM project (https://soccom.princeton.edu/) has deployed ~200 279 

biogeochemical profiling floats in the Southern Ocean since 2014. The floats are mounted with a 280 

combination of biogeochemical sensors including ones for measuring water column pH, oxygen, and 281 

nitrate
29

. Carbonate system parameters including pCO2 and others are first calculated from 282 

sensor-measured temperature, salinity, pH, LIAR algorithm-estimated TA, and silicate and phosphate 283 

concentrations
33,68,69

. The nutrient data are derived from a matched GLODAP database as a function of 284 

potential density (see details in Williams et al.
33

); ignoring silicate and phosphate concentrations has 285 
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anyway only a negligible effect on carbonate system calculation
33

. The CO2 concentration [CO2] is then 286 

calculated from pCO2 and CO2 solubility using Henry’s Law ([CO2] = KH × pCO2). The pH-dependent bias 287 

correction and quality control
29,33

 has been applied to the accessible data from 288 

https://soccompu.princeton.edu/www/index.html. The quality control of pH data is based on the crossover 289 

analysis for deep waters between float and shipboard (including available Southern Ocean dataset and 290 

SOCCOM deployment cruises) measurements (see also ref
33,69

). The empirical algorithm for estimating 291 

in-situ pH as a function of temperature, salinity, pressure, and O2 is determined for shipboard bottle 292 

measurements at 1000-2000 m depth, which is then applied to float-measured temperature, salinity, 293 

pressure, and O2. By comparing the two pH values at 1500 m depth, an offset in pH is applied to the entire 294 

float profile. The measured oxygen and pH have reported uncertainties of 1% and 0.01 respectively, and 295 

the estimated TA and pCO2 have reported uncertainties of 5.6 µmol kg
-1

 and 2.7% respectively
33

. Only data 296 

with a quality-control flag of ‘good’ were used. 297 

The propagated uncertainty of float [CO2] calculated following Orr et al.
66

 is 0.8 µmol kg
-1

, which is twice 298 

the uncertainty of [CO2] from GLODAPv2. The float oxygen sensors have been shown to perform robustly 299 

and with good stability (100% good data return
29

). The oxygen data can be calibrated every time a float 300 

surfaces because it can measure oxygen above the sea surface; this calibration is then used to adjust the 301 

entire profile
29

. From the crossover comparison to GLODAPv2, the float-measured oxygen data was seen 302 

to be closely correlated with GLODAPv2 data and to follow a 1:1 relationship. In contrast, the 303 

float-measured pH data exhibited large offsets from adjacent GLODAPv2 data and there was a significant 304 

departure from a 1:1 relationship (e.g., fitted line deviated from 1:1 line by 0.03 at pH = 8.05; ref. 
29

). 305 

Converting CO2 to pCO2 is obtained by multiplying pCO2 by the Henry’s constant for CO2 (KH), based on 306 

an average sea surface temperature of 1°C in the Southern Ocean (i.e., KH ≈ 0.06). 307 

Calculation of saturation values for O2 and CO2 and their uncertainties. 308 

ΔO2 = [O2,obs] – [O2,sat]           (1) 309 

ΔCO2 = [CO2,obs] – [CO2,sat]          (2) 310 

where the subscript ‘obs’ indicates the observed concentration, and ‘sat’ indicates the saturation 311 

concentration (in equilibrium with the atmosphere).  312 

The saturation concentration for O2 was calculated using the equation introduced by Garcia & Gordon
70,71

 313 
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for the solubility of O2. It is noteworthy that Garcia & Gordon
70,71

 determined the O2 saturation value at an 314 

assumed atmospheric pressure of 1 atm, which means that their approach (Equation 3) needs to be 315 

modified to account for local in-situ sea level pressure (SLP) using a parallel equation (Equation 4): 316 

O2,sat
1atm

 = K × pO2
1atm

 = K × xO2,air × (P1atm - Psw),    (3) 317 

O2,sat
SLP

 = K × pO2
SLP

 = K × xO2,air × (PSLP - Psw),     (4) 318 

where ‘1atm’ and ‘SLP’ denotes two different pressures, K is the solubility of O2, O2,sat
1atm

 is the result of 319 

the calculation based on Garcia & Gordon
70,71

 methodology, Psw is the water vapor pressure calculated 320 

from surface ocean temperature and salinity
72

. 321 

Substituting (3) into (4): 322 

O2,sat
SLP

 = O2,sat
1atm

 × (PSLP – Psw)/(P1atm - Psw)     (5) 323 

where O2,sat
SLP

 is the O2 saturation value corrected for local sea level pressure and Psw. PSLP is from 324 

National Centers for Environmental Prediction/National Center for Atmospheric Research (NCRP/NCAR) 325 

reanalysis data at the time of the measurement 326 

(https://psl.noaa.gov/data/gridded/data.ncep.reanalysis.surface.html). 327 

In order to account for the impacts of bubble injection on O2 saturation in the surface ocean, we applied a 328 

saturation anomaly of 0.75%
56

 to O2 saturation (i.e., the saturation of O2 in the surface ocean is here 329 

calculated as 100.75% of the value from the saturation equations). The bubble injection effect on the more 330 

soluble CO2 is negligible (less than 0.1%, ref. 
73

) and therefore it is not applied to the CO2 calculations. 331 

The saturation concentration for CO2 was calculated using Henry’s Law ([CO2,sat] = KH × pCO2,eq), where 332 

pCO2,eq refers to the partial pressure of CO2 in seawater when it is in equilibrium with atmospheric CO2. 333 

This was calculated as: pCO2,eq = xCO2,air × (PSLP - Psw), where xCO2,air is the mole fraction (ppm) of CO2 334 

in dry air. The values of xCO2,air are subject to spatiotemporal variabilities; we used the monthly mean 335 

atmospheric xCO2 values for each ocean basin for each year from the NOAA/ESRL/Global Monitoring 336 

Division (ftp://aftp.cmdl.noaa.gov/data/trace_gases/co2/flask/). We used data from the following 337 

monitoring sites: BMW (Tudor Hill, Bermuda) and ASC (Ascension Island) in the north and south Atlantic 338 

Ocean, respectively; SEY (Mahe Island) in the Indian Ocean; MLO (Mauna Loa, Hawaii) and SMO 339 

(Tutuila) in the north and south Pacific Ocean, respectively; and PSA (Palmer Station, Antarctica) in the 340 

Southern Ocean (>50°S). PSLP and Psw are described in Equations 3-5. The solubility (KH) of CO2 was 341 

calculated following Weiss
74

. 342 
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Predicted effects of different processes. 343 

ΔCO2 and ΔO2 exhibit some co-variation (Figs. 1 and 2) and so predicted joint effects of different 344 

processes were calculated (inset to Fig. 2d), based on global average sea surface conditions (unless 345 

specified otherwise) calculated from GLODAPv2 data: salinity of 34.6, temperature of 15°C, TA of 2300 346 

µmol kg
-1

, and atmospheric pCO2 of 380 µatm (for the year 2005), which yields saturation concentrations 347 

of CO2 and O2 of 14.3 µmol kg
-1

 and 248.5 µmol kg
-1

 respectively, and DIC of 2072 µmol kg
-1

.  348 

To predict the effects of warming and cooling, we calculated saturation gas concentrations along a 349 

temperature gradient, and then compared the saturation value at 15°C (T0) to that at another temperature 350 

(T1) using Equation 1: 351 

∆𝐺𝑎𝑠 = [𝐺𝑎𝑠𝑠𝑎𝑡]𝑇0 − [𝐺𝑎𝑠𝑠𝑎𝑡]𝑇1        (6) 352 

Instantaneous warming and cooling would have an immediate impact on the CORS values (ΔCO2 and ΔO2) 353 

because changes in temperature alter gas solubility. Warming decreases the gas solubility (equilibrium 354 

value), so warming increases both ΔCO2 and ΔO2, whereas cooling decreases them. The calculated molar 355 

ratio between changes in [CO2,sat] and changes in [O2,sat] for warming is 0.086 and for cooling is 0.091. 356 

To predict the effect of ice melt, we assumed that ice contains so little dissolved CO2 and O2 that melting 357 

adds insignificant amounts
75,76

, so [DIC] and [O2] are subjected to the same degree of dilution during ice 358 

melting. A degree of dilution gradient (e.g., diluted by 5%, 10%, 20%, and 30%) was then assumed for 359 

salinity, TA, DIC, and O2 at a temperature of -1.8°C, which is the average value for regions subject to ice 360 

melt. Each dilution step yielded a new carbonate system, for each of which [CO2] was recalculated using 361 

CO2SYS. By comparing each of [CO2] and [O2] to their original values, the ratio between the changes 362 

induced by ice melt was calculated as 0.125. 363 

To predict the effects of photosynthesis and respiration, DIC changes were made proportional to changes in 364 

O2 of ±25, ±50, ±75, and ±100 µmol kg
-1

. The corresponding DIC changes were calculated by multiplying 365 

the O2 changes by the Redfield ratio
21

 of DIC/O2 = -117/170. So, for instance, DIC changed by -17.2 µmol 366 

kg
-1

 when O2 changed by +25 µmol kg
-1

 due to photosynthesis. Using CO2SYS
62

, [CO2] was then 367 

calculated to change by -1.28 µmol kg
-1

 for this example. The same logic was applied to changes in [CO2] 368 

and [O2] due to respiration. The ratio of [CO2] change to [O2] change is not perfectly linear; the ratio (slope) 369 

of a line fitted to the results is -0.044 for photosynthesis and -0.067 for respiration. Since temperature 370 
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dominates solubility and carbonate system dissociation constants, and because spring blooms at high 371 

latitudes occur in cold water, we also made the same calculation at a temperature of 5°C, resulting in 372 

-0.070 for photosynthesis and -0.116 for respiration (shown by the grey shading in the inset to Fig. 2d). 373 

Although the Redfield ratio refers to changes in DIC and [O2], our choice of plotting [CO2] rather than 374 

DIC versus [O2] has advantages: 1) the y-axis value on the CORS plot relates directly to the tendency for 375 

air-sea CO2 exchange to occur; 2) assessing [CO2] relative to saturation is quite straightforward whereas 376 

assessing [DIC] relative to its saturation value requires an additional step involving alkalinity. 377 

Since there is spatial variation in the parameters (i.e., salinity, temperature, TA, and DIC) used to calculate 378 

the slopes for photosynthesis and respiration in different ocean basins, the theoretical slopes in Fig. 2a and 379 

c were calculated based on the average condition in each specific ocean basin.  380 

The formation and dissolution of CaCO3 affects [CO2] but not [O2] and is therefore only changing the 381 

ΔCO2 axis. It is also noteworthy that in addition to the processes above, upwelling and entrainment of 382 

subsurface waters (characterized by CO2-rich and O2-depleted due to remineralization) also account for the 383 

departures from equilibrium of both gases, where these effects tend to drive CORS towards the second 384 

quadrant. 385 

Subsampling treatment of GLODAP dataset. 386 

Because the GLODAP and SOCCOM float datasets have different amounts of data, we adopted a 387 

subsampling approach in order to treat the two datasets equally. The procedure is described using the 388 

following scenario as an imagined example: 389 

GLODAP Southern Ocean data from all seasons: N = 2500, y-intercept = -1.5; 390 

Float dataset from all seasons: N = 300, y-intercept = -3.0; 391 

To test statistically whether the second y-intercept is significantly lower than the first, we set up a null 392 

hypothesis (H0) that the float-derived y-intercept is less than or equal to the GLODAP-derived y-intercept. 393 

We repeatedly (10,000 times) took random subsamples (size N = 300) from the GLODAP Southern Ocean 394 

data, calculated the y-intercepts of the fitted lines, and then calculated the frequency with which y_float <= 395 

y_GLODAP (subsample). If frequency < 5% then y_float is significantly greater than y_GLODAP. 396 

Furthermore, we calculated the value of a term (y_diff) for the minimum significant difference in 397 

y-intercepts by subtracting y_float from y_GLODAP. 398 
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Data availability 399 

GLODAPv2020 dataset was downloaded from the Ocean Carbon Data System (OCADS, 400 

https://www.nodc.noaa.gov/ocads/oceans/). The time-series data in BATS and HOT stations were 401 

downloaded from 402 

https://www.ncei.noaa.gov/access/ocean-carbon-data-system/oceans/time_series_moorings.html. The 403 

SOCCOM float data (Matlab formatted version, accessed on 10 November 2020) was obtained from 404 

https://soccom.princeton.edu/. The monthly mean atmospheric xCO2 values for each observing site were 405 

obtained from ftp://aftp.cmdl.noaa.gov/data/trace_gases/co2/flask/.  406 

Code availability 407 

Matlab code for the analyses is available upon request to Y. Wu. 408 

 409 
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 596 

Figure 1. Sea surface dissolved CO2 and O2 against sea surface temperature in the global dataset 597 

GLODAPv2. Each row is a different season; [CO2] data are shown in (a, c, e, g) and [O2] data in (b, d, f, 598 

h). The black dashed curves indicate the saturation values of [CO2] or [O2] (i.e., concentrations that would 599 

be in equilibrium with the atmosphere). The saturation curves for [CO2] were calculated with respect to the 600 

atmospheric pCO2 of 380 µatm in year 2005 and fitted. For this figure only, [CO2] values measured in 601 

other years were adjusted to year 2005 following Wu et al.
67

 to be consistent with the saturation values 602 

calculated. Colors indicate different ocean basins: Atlantic (magenta), Pacific (dark yellow), Indian (green) 603 

and Southern Ocean (blue). Dotted ovals with labels F1-F4 highlight major features, discussed in the 604 

Results section. 605 

 606 

Figure 2. CORS plots: Carbon dioxide and oxygen concentrations relative to saturation in the global 607 

surface ocean in four seasons. Note the different axis scales for CO2 and O2. The inset in (d) shows the 608 

predicted effects of different processes (see Methods) on ΔCO2 and ΔO2: warming (W), cooling (C), ice 609 

melt (M), photosynthesis (P) and respiration (R), calcium carbonate precipitation (CP) and dissolution 610 

(CD). Grey shading shows the range of the P and R slopes for temperatures between 5°C and 15°C. The 611 

inset is proportional to the 4 subplots for directly comparing slope of the processes in the inset with those 612 

in the subplots. 613 

 614 

Figure 3. Color-coded CORS plots for specific regions and seasons. (a) data from the Atlantic and 615 

Pacific Oceans in spring, colored by the concentration of in-situ nitrate; (b) data from the Southern Ocean 616 

in winter, colored by the nitrate anomaly (see text); and (c) data from the Southern Ocean in winter, 617 

colored by neutral density. Circles with solid black edges in (c) denote surface waters whereas circles 618 

without edges denote subsurface water (deeper than 30 m). Panel c uniquely contains subsurface as well as 619 

surface data. The black dashed lines in (a) and (b) are the best-fit straight-line regressions of all Pacific 620 

data (all four quadrants) and Southern Ocean data, respectively. The black solid line in (a) is the best-fit 621 

straight-line regression of data from the Atlantic, in the fourth quadrant. r is the associated Pearson 622 

correlation coefficient; n is the number of data points. The red dashed line in (a) is the expected slope due 623 

to respiration in the Pacific, and the red solid line in (a) is the expected slope due to photosynthesis in the 624 
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Atlantic. The red dashed line in (c) is the expected slope due to respiration in the Southern Ocean. The 625 

Subantarctic Mode Water and Antarctic Intermediate Water (SAMW/AAIW) in (c) are defined as water 626 

masses with neutral density ranging from 26.8 to 27.5 kg m
-3

; Circumpolar Deep Water (CDW) is defined 627 

as neutral density ranging from 27.5 to 28.2 kg m
-3

; and Antarctic Bottom Water (AABW) as neutral 628 

density greater than 28.2 kg m
-3

. 629 

 630 

Figure 4. Relationships between ΔCO2 and ΔO2 in the global ocean basins. The black dashed lines are 631 

the least-squares best-fit lines of data; unc denotes the uncertainty in y-intercept with 95% confidence 632 

level; r is the associated Pearson correlation coefficient; n is the number of data points. 633 

 634 

Figure 5. CORS plots from data collected by SOCCOM float F9096 and F9099 in the high-latitude 635 

Southern Ocean. Circle with solid edge denotes ‘good’ flagged data, whereas cross denotes ‘questionable’ 636 

flagged data.  637 

 638 

Figure 6. CORS plots from data collected by 12 floats in the Southern Ocean. The blue lines are the 639 

least-squares best-fit lines of data, green lines are the 95% confidence bounds for the fitted coefficients 640 

(Table 1); unc denotes the uncertainty in y-intercept with 95% confidence level; r is the associated Pearson 641 

correlation coefficient; n is the number of data points. The label on the top right of each subplot denotes 642 

the UW float ID number.643 
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Table 1. Statistical analysis of best-fit lines to the CORS plots produced using data collected by 12 floats in the Southern Ocean. The regions are defined by 644 

ocean fronts (Supplementary Figure 9) following Gray et al
31

: Subantarctic Zone (SAZ), Polar-Frontal Zone (PFZ), and Antarctic-Southern Zone (ASZ). The fifth 645 

column (y_diff) is the difference in y-intercepts between GLODAP and float data. The sixth column converts the offsets in y-intercept (µmol kg
-1

) to differences in 646 

pCO2 (µatm) for an average sea surface temperature of 1°C. 647 

 648 

Float ID number Region 

Fitted line: y = m × x + c 

 (with 95% confidence bounds) y_diff* 
pCO2 difference (µatm) 

corresponding to y_diff 
m c 

F9646 SAZ -0.040 (-0.051, -0.029) -1.99 (-2.09, -1.89) 0.74  12  

F9666 SAZ -0.097 (-0.108, -0.085) -1.73 (-1.80, -1.65) 0.40  6  

F0569 ASZ 0.003 (-0.004, 0.009) -0.77 (-0.85, -0.70) -0.50  -8  

F12545 PFZ -0.127 (-0.134, -0.120) 0.06 (-0.03, 0.14) -1.30  -21  

F9652 PFZ/ASZ -0.144 (-0.152, -0.136) -0.73 (-0.84, -0.61) -0.54  -9  

F9275 ASZ -0.104 (-0.112, -0.095) -3.81 (-4.22, -3.40) 2.47  40  

F9096 ASZ -0.106 (-0.118, -0.095) 0.99 (0.92, 1.07) -2.27  -36  

F9099 ASZ -0.101 (-0.105, -0.097) -1.37 (-1.52, -1.22) 0.12  2  

F12575 SAZ -0.044 (-0.051, -0.037) -1.73 (-1.77, -1.70) 0.51  8  

F9650 SAZ -0.044 (-0.057, -0.032) -0.73 (-0.79, -0.66) -0.56  -9  

F0690 SAZ -0.070 (-0.075, -0.065) -1.32 (-1.35, -1.29) 0.04  1  

F12727 ASZ -0.050 (-0.055, -0.046) -0.73 (-0.85, -0.61) -0.58  -9  

*GLODAP-derived y-intercepts minus float-derived y-intercepts; negative (positive) values mean that the float y-intercept is greater (lower) than the GLODAP 649 

y-intercept.650 
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