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Computational study of magnetic materials has been crucial for the development
of new technologies in areas such as data storage. Omne challenge with current
computational methods is that the dipolar field calculation dominates the compu-
tation time. In this work we show how the fast multipole method can be applied
to this problem, and other long range force and potential calculations, through
symbolic generation of operator functions in a generic fashion. We study the equi-
librium states found in triangular and square samples of the helimagnetic material
FeGe, in which skyrmions have been observed, by varying the size and applied
field. We show that the equilibrium states of such systems is modified in compar-
ison to previously studied disk systems of this material, with larger sample sizes
required for skyrmions to form the ground state. We show the final states obtained
from relaxation of a uniform magnetisation in order to provide data for experi-
mental comparison. We then study the energy barriers between ferromagnetic and
skyrmion states in Cobalt monolayers when triangular, square and Bezier edge de-
fects are introduced, and show how this varies by size and by whether the dipolar
field is included in the calculation. Finally, we study the equilibrium behaviour
of Bloch points in FeGe disks and nanotracks made up of two layers in which the
Dzyaloshinskii-Moriya interaction has opposing chirality. We then study the dy-
namic behaviour under an in-plane magnetic field, showing that the Bloch point

reaches a velocity linearly proportional to the applied field.
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Chapter 1

Introduction

The properties of magnetic materials are of great interest due to the wide range
of applications in areas as diverse as power generation [1], electric motors [2],
and in consumer electronic devices such as speakers and microphones. Probably
the most ubiquitous use of magnets in everyday consumer technology currently
is in magnetic storage devices. The magnetic hard drive, invented at IBM in
the early 1950s [3], revolutionised data storage in the computer industry. The
density of magnetic storage has increased dramatically since the conception of the
hard drive, driven both by better understanding of the magnetic behaviour of the
materials, and rapid developments in reading technology, a particularly notable
example of which was the discovery of giant magneto-resistance (GMR) by Fert
and Grunberg in the 1980s, for which the Nobel Prize in Physics was awarded

[4, 5]. Today, magnetic recording densities stand at over 1Th/ in”.

Engineering hard drives to increase the storage density further has proved diffi-
cult, however, due to the so-called ‘magnetic recording trilemma’ [6]. In present
hard-drive technology, which is based around perpendicular magnetic recording,
a single bit is written onto a region containing many magnetic grains [7]. As
magnetic grain sizes have become smaller, the amount of energy needed to change
the magnetisation orientation (and hence the bit value) is reduced. For a given
material, then, an increase in bit-density leads to a shorter lifetime for data in-
tegrity. Increasing the anisotropy density correspondingly allows for sufficiently
long data lifetimes, but brings additional problems. With an increased anisotropy,
the magnetic field needed to write a value to a bit also becomes correspondingly
larger, and increasing the write field at small scales is difficult [8]. A combination
of the scaling restrictions, fragility and comparatively slow read/write perform-

ance of magnetic storage has led to NAND-gate based solid state drives (SSDs)
1
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gaining increasing market share and usage, despite limitations on the number of
write-cycles, lack of suitability for archival purposes, and the relative cost of such

drives being higher [9].

Research into increasing the storage density of magnetic storage has been ongo-
ing, and many proposals have been suggested. These can be broadly split into
two categories; those which are based on existing technology with small modific-
ations, and those which are based on very different principles for storing data.
Heat Assisted Magnetic Recording (HAMR) and Microwave Assisted Magnetic
Recording (MAMR) have been the most successful implementations so far, and
rely on reducing the field needed to write to a grain by laser-induced heating and
microwave respectively [10-12]. Materials constraints for these types of devices
have been difficult to fulfil [13], and at the time of writing these technologies are
only just becoming commercially available [14]. Proposals for bit-patterned media
(BPM) take a different approach to increasing the storage density, by patterning
individual magnetic bits onto a substrate with the spatial isolation of the bits leads
to increased stability. However, the actual experimental procedures for producing
such materials either through advanced lithography techniques or self-assembly
are difficult, and it remains to be seen as to whether such devices are commer-
cially viable [15, 16]. Combinations of these approaches have also been proposed

as possibilities for future density advances [17, 18|.

Magnetic storage based around the internal motion of a magnetic material is not
a new concept, but research into such technologies underwent something of a
revival in recent years. Bubble domain memory, in which the bubbles formed data
carriers in tracks, was heavily researched and saw some utilisation as a solid-state
alternative to hard-drives from the mid-1970s until the mid-1980s [19, 20]. It
became superseded in use by transistor based memory such as flash, aside from
in some specialised areas [21], in part because the read time of such devices was
much slower. More recently, proposals of current driven domain-wall based storage
on racetrack systems were intensively studied [22]. Proposals for such devices
discussed the possibility of racetracks which could either be planar, or in a more
complex geometry, with proposed high density storage being based around 3-D
layouts of the track. Current magnetic storage devices are mechanical, and data
is brought to the position of a reading head through the rotation of a spinning
platter which holds the information. The concept of racetrack is in contrast solid
state - the information itself is moved along the track towards reading heads using
short pulses of current. While there has been a large amount of research into

domain wall racetrack storage |23, 24|, in practice there have been found to be
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many engineering challenges, such as pinning of the domain walls and the break
down of domain walls above the Walker threshold [25] and no commercial devices

have ever been produced.

Recent proposed studies have suggested that as an alternative to domains form-
ing data carriers in racetrack memories, a skyrmion could be used instead [26].
Skyrmions, which are particle like configurations of a field, have been shown to be
stable configurations in certain types of ferromagnetic compounds, which lack an
inversion symmetry [27-29|. These states have been shown to be the ground state
configuration in some confined geometries [30-32|. Skyrmions are afforded some
degree of ‘topological protection’, though to what extent this is true is a hotly de-
bated topic, due to the discrete atomic origins of magnetism. Skyrmions were first
observed in the B20 material class, but much of the current experimental work
in this area has focused on multi-layered structures, where one or more magnetic

layers are in contact with a non-magnetic heavy metal such as platinum [33-36].

Much of the work thus far on skyrmion based racetrack storage has been purely
theoretical [37-41]. While the physics of skyrmions is in general fairly well under-
stood from a theoretical standpoint, controlling them reliably seems to be proving
a large issue in experimental research. This is because the skyrmion driven by a
current undergoes a Topological hall effect, resulting in Coriolis-like motion which
acts to move the Skyrmion texture perpendicular to the current direction, due to
electrons picking up a Berry phase when passing through the non-uniform mag-
netisation of the Skyrmion [42, 43]. Recent research has in addition suggested that
pinning will be an important issue [44]. Thus far, techniques for reliable electrical
detection isolated individual skyrmions in racetrack type samples are limited in
temperature range [45, 46]. One of the most fundamental questions that still re-
mains to be answered is what effect the shape and boundaries of physical systems
have on skyrmions. Whether real skyrmion memory devices are feasible is as yet
an unanswered question, but as yet there is little to suggest that the skyrmion as
an information carrier would offer much of an advantage over bubble or domain-
wall technology. However, the skyrmion remains an interesting playground for
fundamental research, as an example of an emergent property, with many open

questions [47].

With the interest in chiral materials driven by the need for improved storage tech-
nologies, the study of other magnetic textures which can emerge in such systems
has undergone a revival. Bloch points, which were widely studied in the 1970s and

1980s in domain walls, have been observed as mediators to skyrmion destruction.



4 Chapter 1 Introduction

Subsequent efforts based around domain walls were then proposed; in the late
1980s vertical Bloch-line technologies, in which a Bloch line propagated along a
domain wall were proposed but never reached commercial viability [48, 49]. Recent
interest in Bloch points has been driven by their presence in reversal mechanisms
and other dynamic processes [50-53|. The study of Bloch points therefore provides

another interesting, and less well studied, avenue of research.

The need to understand magnetic materials has led to the development of theoret-
ical models which can explain their static and dynamic behaviour. Today, the com-
putational study of magnetic systems uses a variety of techniques, which depends
on the length scale of study. At the most fundamental level, density functional
theory (DFT) is used to determine material parameters of systems, such as the
electron density of atoms and the resulting magnetic parameters, though requires
enormous amounts of computational power [54]. Classical models of magnets,
whereby each atom is treated as an isolated magnetic dipole, are the next level
on the hierarchy of modelling materials [55-58|, though even here many problems
of interest for devices require such computational power as to be intractable; the
largest studies up to this point are still only able to treat relatively small system
sizes [59]. Micromagnetism is a continuum field description of these classical mod-
els [60-62], and while this description is not adequate for some problems (such as
the study of antiferromagnetism), it is nonetheless of great utility. In both discrete
models and micromagnetism, the dominant part of any calculation is that of the
non-local magnetostatic field, which limits the scaling of any calculation. In a
narrow subset of problems, where the materials under study are ultra-thin films,
the magnetostatic field can be treated as a weak anisotropy [63], but this is not
applicable in general, and magnetostatic effects greatly change the energetics of
phenomena such as domain walls and skyrmions 32, 64]. As a result, it is of crit-
ical importance to treat the magnetostatic calculations effectively, and a number
of numerical methods for doing so have been used in the past. In particular, the
most commonly used method requires the use of the Fast Fourier Transform (FFT)
[65], but this restricts numerical treatment of micromagnetics and classical spin
models to regular grids. In recent years, the Fast Multipole Method (FMM), with
which the accuracy of calculation can be strictly controlled, has been proposed
as a method for accelerating calculations in both atomistic and micromagnetic
simulations [66, 67|. Despite this, it has not been widely applied to the study of
nanomagnetic systems, and there are not suitable public implementations of the

method which are straightforward to integrate into spin dynamics codes.

The layout of this thesis is as follows. In Chapter 2, a review of the theory behind
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micromagnetism and classical spin models is shown. We discuss the magnetisa-
tion dynamics in ferromagnetic materials, and the energy terms most frequently
used in micromagnetic and spin dynamics calculations. In Chapter 3, we review
the common numerical methods used to solve micromagnetic and spin dynamics
problems computationally. Chapter 4 discusses techniques for accelerating dipole
field calculations and sets out accuracy and performance characteristics of these,
and describes an open-source project fmmgen [68] which resulted from this work.
In Chapter 5, we present a review of the literature on the phenomena of magnetic
skyrmions, including discussion of their origin in the competition between mag-
netic energy terms. We discuss different types of system in which skyrmions have
been observed, and review experimental observations of the behaviour of skyrmi-
ons. We show the results of work done on the energy landscape of skyrmions in
confined polygonal geometries. Here, phase diagrams are produced showing the
ground states for particular sizes of geometry of the material FeGe, and for varying
applied fields. In Chapter 6, we show the result of energy barrier calculations in
atomistic systems, by introducing different types of edge defect into a monolayer.
We calculate quantitatively how the energy barrier to skyrmion destruction is and
creation is affected by such defects. In Chapter 7, we investigate the equilibrium
properties of Bloch Points under applied fields in bi-layered magnetic nanodisks
with opposing chirality. We then study the field-driven motion of Bloch Points
in FeGe nanotracks, and calculate the Bloch Point velocity under such a field. In

Chapter 8, we conclude and summarise the work.






Chapter 2

Magnetic Theory and Background

2.1 Introduction

On a macroscopic level, magnetism has been well understood for a relatively long
time, with work by Maxwell [69] allowing predictive calculations on macroscopic
scales to be made. However, the understanding of spontaneous ferromagnetism on
an atomic scale necessitates the use of quantum theory, and was thus not developed
until much later. Here, some basic exposition of the necessary concepts needed
to understand magnetic modelling is made, detailing the origins of magnetism,
the classical spin models which derive from the quantum origin of magnetism,
and of micromagnetism, a continuum theory of magnetic materials. Within this,
reference is made to the equations of motion governing the magnetisation, and
to the computational techniques used to study magnetic behaviour on a range of

length scales.

2.2 Origins of Magnetism

All atoms have electrons which are in motion around a central nucleus. Stern
and Gerlach measured in 1922 the magnetic dipole moment of silver atoms by
deflecting them through a magnetic field gradient [70]. It was found that the
deflected atoms split into two bands. From quantum predictions, it was expected
that the magnetic dipole moment of an atom g would split into multiple bands

along a measured component, according to the discrete orbital angular momenta



8 Chapter 2 Magnetic Theory and Background

states as [71]:

p =L (2.1)

where:
L=nryvI(l+1) (2.2)
Lz = hml (23)
and where m; = —[, =l +1, ---, [ — 1, [ and where the total moment is given by:
pt = up I+ 1) (2.4)

Phipps and Taylor later showed in 1926 [72] that by scattering hydrogen at a low
temperature such that each atom should sit in the ground state, the atom still
showed an angular moment component, which we call spin, and which transforms
as the orbital angular momenta. For an electron, the spin s = 1/2, and the
ms = —1/2,1/2 so that:

S =hy/s(s+1) (2.5)

S, = hmg (2.6)
and then the dipole moment of an electron in free space is given as:

p = pp(gLl + gsS) (2.7)

where the dimensionless gyromagnetic ratios (or sometimes g-factors) g, and g
are constants which determine the relative contribution of a particle’s angular
momentum and spin to the dipole moment. Dirac showed in 1928, with the intro-
duction of the equation that came to bear his name, that a quantum mechanical
electron must have g; = 2 and that the spin of the electron is 1/2 [73|. Repeatedly,
highly accurate experimental measurements have shown that for the free electron,
g1 = 1 and gs ~ 2, |74] which accords with more modern predictions from quantum

electrodynamics.

As a starting point for many quantum mechanical calculations, the an approxima-
tion developed by Born and Oppenheimer is made, whereby the mass of nucleii is
effectively infinite, and the motion of the nucleus ignored. When electrons are in
motion around the nucleus, in the rest frame of the electron, the charged nucleus is
in motion around the electron [71], which leads to the electron feeling a magnetic

field due to its own angular momentum. The behaviour of the spin coupled with
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this field generating from the electron orbit is known as a spin-orbit coupling. It
was shown by Llewellyn Thomas in 1926 |75, 76| that the magnetic field felt by

an electron due to the nucleus is given as:

1 ldU(r)L

B =
emc?r dr

(2.8)

wher U(r) is the interaction between the nucleus and the electron (the Coulomb
equation for a simple Hydrogen atom), and thus the energy of the spin-orbit in-

teraction is given as:

AE =—p,-B (2.9)

_ _gspp 1dU(r)
2emc?hr dr

L-S (2.10)

For even simple atoms, this leads to complex behaviour, with electron energy
levels splitting due to relative orientations of S and L - a phenomena known as

‘fine structure.’

In addition, further splitting of energy levels can occur upon the application of an
external field; this is known as the Zeeman Effect after Zeeman who observed the
splitting of spectral lines of light from a flame placed in an electromagnet in the
late 1890s [77]. If a field B, is applied such that it is along the measurement axis,

the energy change is given as:
AEjZeeman = fy(gLLz + gSSz)Bz (211>

If the spin-orbit field, applied external field, the total angular momentum for each
electron can be significantly perturbed, and this leads to changes in the magnetic

moment.

We have not yet discussed the influence of electron-electron interactions, and it is
this which is key to understanding how atoms interact to cause ferromagnetism.
In a simple quantum mechanical model, electrons around atoms interact through
Coulombic repulsion, and through the quantum mechanical Pauli Exclusion prin-
ciple cannot be interchanged. The interaction energy of two nearby atoms can be
given in the form:

Ey=Ey+ Jp (2.12)
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where Ej is the ground state energy of an electron in the single atom state and

Jp is the exchange coefficient, and

1

AE - §(EFerromagnetic - EAntiferromagnetic) (213)

whereby if Jp > 0, an anti-ferromagnetic state is favoured, with the dipole mo-
ments of neighbouring atoms preferring to be antiparallel. On the contrary, with
J < 0, the ferromagnetic state is preferred. By transformation, this can be de-

scribed as the well known Heisenberg Exchange term:

which describes the interaction of two atoms.

The solution of the Schrodinger equation for a Hamiltonian describing the inter-
actions between many electrons and nuclei is not solvable analytically. Compu-
tational techniques such as the Hartree-Fock method [78] and the later Density
Functional Theory (DFT) [79, 80| attempt to find approximate solutions which
describe the electronic structure of different types of materials, determining in
the process the magnetic moment for each atomic species, and the strength of
the Exchange interaction between atomic species, among other quantities. These
methods can be highly sensitive to the choice of basis functions chosen to rep-
resent the electron wave function. For many materials of interest in magnetism,
these models can reproduce phenomenological behaviour, but significantly under
or overestimate values of the magnetic moment compared to experimental meas-
urements [81]. In this case, other alternative methods must be used to make
predictive calculations about magnetic materials, often parameterised from exper-
imental measurements of material properties rather than through the quantum

computations.

2.3 Heisenberg Model and Micromagnetics

It is possible to describe the properties and behaviour many magnetic materials by
ignoring the quantum behaviour completely, and by using a completely classical
model, whereby each atomic dipole is a classical vector. Hereafter, the term ‘spin’
is used interchangably to mean ‘atomic dipole moment’, as is common in the
literature in this field. Lenz, starting from the assumption that preferential angles

for magnetic dipoles on a crystal lattice would occur in some cases due to large
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J=1,H=0.01
0.8
A 0.6 \ Tc~2.2691
£
v 0.4
0.2 A
0.0 T T T T oo
0 1 2 3 4 5 6 7 8
kgT
ksT = 0.05 ksT =2.25 ksT=4.0

FIGURE 2.1: Spontaneous magnetism arising in the 2-D square-lattice Ising
model at low temperatures for a 50 x 50 system with J = 1 and a low field of H =
0.001, using the Metropolis-Hastings algorithm and simulated annealing. For
each temperature value, 5 x 10° trial steps are used, and the results are averaged
over 30 runs. With the very weak field used simply to break the symmetry of the
system, good agreement is shown with the transition temperature as calculated

by Onsager, as kg1, = 1n(12j\/§) ~ 2.2691.

potential energies [82], formulated what we now know as the classical ‘Ising Model’,
due to the publication on this work by Ising, his student, who calculated the
partition function for the model in one dimension [55|. In this model, each atomic
dipole was coupled only to it’s nearest neighbour through a classical exchange
interaction, and to an external field H such that the total energy of a system of
spins was given as:

H=—Jy;> 8-S;—HY S (2.15)

i#j i

Where S; has only two possible states - +1 or —1. Ising showed that in one-
dimension lattice (i.e. a spin chain), ferromagnetic order could not be sustained
for finite temperature, though it was later shown by Onsager that ferromagnetic

order could be sustained in the two-dimensional square lattice Ising model [56].
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2.3.1 Heisenberg Exchange

Generalising to three dimensions gives the classical Heisenberg model, where one
considers sets of spin vectors u; = 1;S;. Each spin is again coupled to it’s neigh-
bours through an exchange interaction, under the influence from an external field
h [57]:
H=—> J;Si-S; (2.16)
7]
An external field can be coupled to the spins, known as the Zeeman term, and

now, this is also a vector quantity:

HZeeman = - Z /’L'LSz -H (217>

It is straightforward to consider many atoms grouped into small volumes of space,

such that:
_ Zl Hi

%

We can easily take the continuum limit and derive the Exchange interaction for a

m(r) (2.18)

continuum magnetisation |61, 83]. Consider a one dimensional crystal of identical
spins with an interatomic spacing a, and with the same coupling strength J
between all spins. Assume that one can replace the spin unit vectors with a
unit vector field m(r) = S(r)/S that is identical to the original spin vectors at
their locations. The Hamiltonian can be separated out so that under the sum is

the total contribution to the energy for a given particle:
H=-J> Si1-Si+8; Sin (2.19)

= _JS? Z m(z; —a) -m(x;) + m(z;) - m(x; + a) (2.20)

We now assume that m(x) varies slowly, noting that the assumption of slow vari-
ation required means that only ferromagnetic materials can be considered in the
approximation; both antiferromagnetism and ferrimagnetism must be treated with

the Heisenberg formulation directly. The small deviations from z can be expanded
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out as a Taylor series, and odd powers of a cancel:

om(x;) L8 0’m(z;)

- ox 2 91?2
# () - o2 SO o) 221
= —JS? Zm ) { ;) +a agl—;fi) + O(a‘*)] (2.22)

The constant term can be neglected, as it simply shifts the energy, and the ex-

change can then be approximated by taking dropping the higher order terms:

~ 9"m(z;)
—a?J 52 Zm ) W dz (2.23)

nda:

Along the chain, the number of atoms in a line segment dzx is given as , where

n is the number atoms in a unit cell. Taking the continuum limit, we then get:

32m Z;
H~ —naJSQ/m(:ci) : —8I(2 ) dz (2.24)
Twice dziﬂ:erentiating the expression m(z)-m(z) = 1 gives the expression m- 3;;;1 =
— (%—‘;‘) , and substituting this gives a more commonly used form:

H = Ald/ (%)2 dz (2.25)

with Aq = an.JS?. This expression can be generalised straightforwardly to higher
dimensions by simply considering nearest neighbours in other directions, and re-

placing n with the number of atoms in the unit cell in that dimension; in two

1] () ()
1T

dimensions it is:
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with Ayq = JS?n. For the square lattice, n = 1 and for the triangular lattice

n = 2. In three-dimensions:

() () () o

Ay, / (Vm)? (2.27)

with Ayq = ”{l 5 For a simple cubic unit cell, n = 1, while for a BCC crystal

n = 2 and for FCC n = 4.

2.3.2 Dzyaloshinskii-Moriya Exchange

In many systems, more complex exchange behaviour can be observed, whereby
spins align not parallel but with small twists relative to neighbouring spins. Dzy-
aloshinskii [84, 84| first formulated this type of interaction from symmetry consid-
erations in micromagnetics, and this was later rationalised with quantum mech-
anics by Moriya [85]. Superexchange occurs between magnetic ions separated
by non-magnetic atomic species, and is so called ‘super’ because of the distance
over which it acts, and the behaviour is described by the Hubbard Hamiltonian.
When superexchange and spin-orbit couplings are included in calculations, a non-
negligible term known as Dzyaloshinskii-Moriya (DM) interaction leads to the
observed anisotropic exchange. The resulting behaviour of competition between
the Exchange and DM interaction leads to helices, cones and skyrmions, which
will be discussed in later chapters. In general the form of the DM interaction can
be written as:

Hpum = %Z dij-S; x S; (2.28)

i#]

The form of d;; depends on the type of material under study, In crystals, when
a broken lattice symmetry occurs due to non-centrosymmetric unit cells, the DM

tensor can be written as:

which is known as the Bulk DM.

The continuum description of this behaviour can be derived in a similar way to
the case for the Exchange, except this time the even-ordered derivatives cancel

because of the r vector. In one-dimension:
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3= 90§ (0 T ] 4%+ s x m,
- 2 Z (_X> ’ [ml X mzfl] +x- [ml X m,LJrl]
_ds?, om(z;) ad*m(z;)
_Tx. : —{m(mi)—a o —1—5 e ]
om(z;) ad’m(z;)
+ {m(xz) +a o + 5 5y

. om(x;)
_ 2
= daS"%k - % m(x;) X 5

— daS? Z [my(migimZ(x") ax]

= daSQ/ {my(az)ané;ﬁ —mz(x)ﬁ%ﬁ] <2> dz

om,(z) omy(z)

= Dld/my(x)T —m,(z) . dz (2.30)

where Dy = dS?n. In three-dimensions, like terms can be collected in the com-

ponents of m, and the expression becomes:

om om om om om om n
_ 2 z y z  OMy y . OMg | (T 3
H = daS /[my P +m, By My By + my 5, "W g, 1 <a3> d°r

_dnSz/ . om,  Om, m om,  Om, e om,  Om, &
o a? “\ 0z dy Y\ Ox 0z “\ oy Ox

= ng/m- (V x m)d®r (2.31)

. 2
with Dsq = d‘;".

For other systems, a DM interaction has it’s origin due to spin-orbit coupling
between layers of different atoms |26, 30|. For this type of interaction, the form of
the DM tensor is given as:

d;; =dr;; xz (2.32)

For this interfacial DMI, the micromagnetic interaction can be derived similarly

[30] and results in the form:

o fff ) ()]

It is important to note that between publications, the definition of the constant
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D varies in sign, [86] which leads to the opposite sense of rotation for a given

material to what one may expect.

2.3.3 Anisotropy

In many materials, inherent preferred directions exist within crystals for which the
atomic dipoles align. In the simplest case, there can be a single axis along which
this is felt, and this is known as uniaxial anisotropy. This can be described in the

Heisenberg framework as:
Hinis = Z ku(S; - u)? (2.34)
In other materials, cubic anisotropy [58] is the dominant form of anisotropy:

HSub — Z ke(Sp + Sy + S2) (2.35)

which results in spins aligning preferentially along each of the three coordinate
axes. The Uniaxial and Cubic anisotropies originate again in spin-orbit couplings
between the electrons and the nucleii. Other forms of anisotropy such as pressure
or strain induced anisotropy can be incorporated into models in a similar way, but
result from the distance dependence of the Exchange integrals. The micromagnetic
form is simple here, because the individual forms are not coupled to one another.

In this case then, the continuum form is just given by integrating over a small

HM = K, ///m ud’r (2.36)

2.3.4 Dipolar Interaction

volume:

The magnetic behaviour of large systems of atomic dipoles is incomplete without
the inclusion of a term describing the direct long-range interaction between the

atomic dipoles moments, which are treated as point sources:

7 3(S; - £4)(S; - Ti;) — Si - S;
Honpane = 10 305 gy WS T8 ) =515y (237)

re.
i g ij
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For micromagnetics, it is most straightforward to consider the magnetostatic part
of Maxwell’s equations to come to a form describing the internal dipolar field (nor-
mally known as the demagnetising field) for a volume, and formulate a boundary
value problem rather than approach the problem from the other direction. Starting

from:

VxH=1J (2.38)
V-B=0 (2.39)

If there is no applied current in a system, then H can then be written in terms of

a magnetic scalar potential:
H=-Vo (2.40)

If the material is linear, then B = po(H + M). Substituting into Equation 2.39,
then:
Vo =-V-M (2.41)

The full solution for this equation is given as:

—1 [ V' -M()

T Ar v |r—r|

1 n' - M(r')

d3/+_ e A
" g |r—1/|

O(r) ds (2.42)
from which the gradient can be taken to give the field as in Eq. 2.40. The total

micromagnetic energy is then:

%:/&LH&T (2.43)

2.3.5 Competition between energies, characteristic length

scales and emergent phenomena

The combination of energies and their relative strengths in magnetic materials
depends on their atomic constitution and the resulting electron density within the
material. In magnetic systems, we observe not only ferromagnetism and antiferro-
magnetism, which occur when the exchange interaction is dominant, but a whole

range of other phenomena over different length scales.

Perhaps the most fundamental of these length scales is that of the Exchange length.
This is determined by the relative strengths of the exchange interaction and the
dipolar interaction. This is usually given determined from the micromagnetic

Exchange strength and the magnetostatic anisotropy [87, 88|



18 Chapter 2 Magnetic Theory and Background

A
b= |17 (2.44)
MoV

The exchange length can give an indication of what features we may expect to
observe in a system of a given size for a particular material. Below this size,
the exchange interaction dominates over the magnetostatic field, and so we can
expect systems on this order to be nearly uniformly magnetised. Small particles are
therefore treated with Stoner-Wohlfarth model, assuming no exchange interaction
between particles, and with the assumption that the magnetisation within such
a particle rotates coherently (i.e. as a whole). Classical spin-dynamics can be
used to describe the magnetic evolution of such particles as though they were
individual spins [89]. Above the exchange length, it becomes costly to keep the
entire system magnetised, and we expect that in the absence of applied fields, the
magnetisation of a sample will form into multiple domains, separated by domain
walls. These form one of two types; when the magnetisation varies across the
domain wall in the out-of-plane direction relative to the local magnetisation, then
the wall is classified as a Bloch wall, while if the magnetisation varies across the
wall within the plane, it is a Neél wall, which are commonly observed in thin-film
systems. The presence of a crystalline anisotropy acts to change the energy balance
of such multi-domain structures, and leads to the narrowing of domain walls.
Magnetic vortices are another phenomena which emerge from the combination of
the magnetostatic energy density and exchange energy, and appear like a ‘tornado’
in the magnetisation with the magnetisation of the vortex core pointing along the

core axis, and the magnetisation outside of the core rotating around it.

When the combination of Dzyaloshinskii-Moriya, Exchange and Demagnetising
interactions are present, in both bulk and thin-film systems, lattices of magnetic
skyrmions can form. These form whirls similar to vortices, but in contrast, un-
dergo a full rotation from core to edge. Skyrmion physics is discussed in detail in
Chapters 5 and 6.
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FIGURE 2.2: Figure showing the combined effects of (a) The damping term

of the LLG equation and (b) The precessional term of the LLG equation on a

magnetic vector m under the influence of the effective field Heg. Over time,

the magnetisation in a system tends towards the effective field and lose energy
through the influence of the damping term.

2.3.6 Equation of Motion

A field acting on a magnetic moment acts to induce a a torque on it, and so the

equation of motion for a magnetic moment can be given as:

dp

g KX B=—uxH (2.45)

where 79 = v, and v is the gyromagnetic ratio. The torque acts perpendicular
to the applied field and the moment itself, causing the moment to precess around

the applied field; this is known as Larmor precession. The frequency can be

straightforwardly determined and is given as f;, = % In the continuum limit,
the equation is simply:
dM

From each of the terms in the Heisenberg and micromagnetic energy formulations
it is a useful concept to consider an ‘Effective Field” which acts on each site, defined
as a variational derivative of the energy:

10F

Hey = —— — 2.47
L (2.47)

or in micromagnetics:
1 0F

Hyp= ————
ft ,UOMS om

(2.48)
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The variational derivative can be computed with respect to a component of a field

fz using the Euler-Lagrange formula:

5_E:aE_g< OF )_g( O )_g( aE) (2.49)
0fc  Ofs 0w \0(0:f)) Oy \0(0,f)) 02\0(0.f) '

The torque acting on each moment (or magnetised region) then feels is then a

combination of terms from the local internal fields and external fields.

This is not, however, the full picture. In crystalline materials, the motion of
magnetic moments is damped. Landau and Lifshitz [60] introduced in 1935 an
additional term to describe damping in the micromagnetic formulation, to model
damping due to to spin-orbit coupling (in the original work this is labelled as a
‘relativistic’ contribution). This term acts to cause the magnetisation to relax

towards the field direction over time:

Oom

W = —7vom X Hes — A\ppm X (1’11 X Heff) (250)

This equation is known as the Landau-Lifshitz equation, and Ay, is the phe-
nomenologically determined Landau-Lifshitz damping constant.. Gilbert could
not match experimental data in thin ferromagnetic sheets to the Landau-Lifshitz
damping, and so introduced phenomenologically a Rayleigh Dissipation Function
which damps the motion by way of a term which is proportional to the square of
the rate of change of magnetisation [62, 90|, resulting in the following form:

Oom om

I o Hyg + a2 251
ot Tom X Hett + a5, (2.51)

This equation is known as the Landau-Lifshitz-Gilbert equation. Equivalence
between this and the Landau-Lifshitz equation can be shown through taking the
cross product of both sides of this equation with the magnetisation and simplifying

using the vector triple product identity, giving:

Om Y% o7e!
— = X Heg — xm x H 2.52
ot 1+az LU IR (2.52)

with equivalence satisfied if we assume that:

g0
= 2.53
70 1+ a2 ( )
A= % (2.54)

14+ a2



Chapter 2 Magnetic Theory and Background 21

Many other contributions to the damping term aside from spin-orbit coupling have
been considered, such as magnon decay [91, 92|, but the full microscopic details and
relative contributions of damping mechanisms are not yet well understood, with
theoretical predictions of the damping largely over or underestimating the damping
coefficient ar. Because of this, the constant is generally determined experimentally
for a given material from linewidths in ferromagnetic resonance experiments [93,

04].






Chapter 3

Computational Methods in

Nanomagnetics

3.1 Introduction

Numerical solution of the atomistic and micromagnetic equations is absolutely
essential to the modern study of magnetic materials. While some simple models
can be solved analytically or semi-analytically, this is of little help when consider-
ing the large systems and dynamic behaviour of magnetic materials which are of

interest in the experimental and industrial worlds.

To find the dynamics of spins atomistically, it is usual to consider regular lattices
of spins of some form. In micromagnetics, however, the continuum field theory
must be rediscretised in order to find solutions. There are two main approaches
used to do this - the finite difference and finite element methods. The energetics
in atomistic models are relatively straightforward to implement computationally,
as each term can be directly implemented to act on column vectors representing
each spin. The equations describing the micromagnetic energy equations, which
are written in terms of continuous fields, must be rediscretised before they can
be computed, however, by dividing any magnetic domain under study into small
pieces. This may seem pointless, given that atomistic models are already discrete,
but the beauty is that the length scales over which the continuous fields are dis-
cretised are much larger than individual spins, which allows the study of much
larger systems. In general, the approach taken for all algorithms, both atomistic

and micromagnetic is to find the effective field Heg. From this, the field is updated,

23
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either through direct integration of the LLG equation, or through a standard en-
ergy minimisation algorithm such as the steepest descent or conjugate gradient
methods.

In both micromagnetism and atomistic modelling, the dipolar field is a major
complication, which requires special handling. This is because of both the long
range character, and the length scales over which atomistic and micromagnetic
simulations are carried out; it is not a good approximation to cut off the interaction
beyond a certain distance as is sometimes done in molecular dynamics. The long
range character means that all simulations are limited in scaling by the dipolar
field calculation, because all magnetic regions interact with all other magnetic

regions.

3.2 Atomistic Models

In order to compute the effective field in atomistic models numerically, it is usual
(though not necessary) to consider a regular grid of atoms, placed at equal inter-
vals. In order to store this information, and the information associated with each
lattice site, it is useful to consider a cubic grid and the indexing scheme which
must be used. Generally, it is useful to store the required information as a column
vector. There are many ways to implement this, and here the method used in the

software Fidimag is described.

For atoms on a three-dimensional atomic cubic lattice, we can consider each atom
with a lattice index of (i, 7, k) which acts as a useful proxy as to their position in

real space. In three dimensions, with N = N, N, N, atoms, an index of:
IScalar - kNmNy +]Nx+l (31>

can be used for indexing into arrays of scalar quantities, such as the spin mag-
nitude. This can be applied to two dimensional systems simply by setting k = 0

everywhere.

For a vector quantity of fixed length, such as the magnetisation which has L = 3
components, the [*" component for the can be found in a length N L column vector
at the location:

Il

Vector

= L(kN.N, + jN, +i) +1 (3.2)
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In this way then, a series of blocks of memory can be constructed to represent each
of the scalar and vectors for each atom. How then, are interactions between atoms
evaluated, once the magnetic spin directions? It straightforward to construct a
list of neighbouring spins by considering the +x, —x, +y, —y, +2, —z directions.
For an atom at (7,7,k) on a cubic lattice, there are a maximum of six nearest

neighbours, which can be found at locations:

I, =FkN,N,+jN,+ (i —1)
I, =kN,N,+jN, + (i +1)
Iy =kEN,Ny+ (j —1)N, +i
Iy =kN,Ny+ (j+1)N, +1i
I .= (k—=1)N,N,+jN, +i
I.=(k+1)N,N, +jN, +i

(3.3)

For periodic systems, this can easily be modified to take into account the connectiv-
ity at the system boundaries, and for non-periodic systems, each atom simply has
fewer neighbours. To construct lattices which are non-cubic, it is useful to map
onto a regular cubic grid, leaving vacancies. The neighbours in all cases can either
be calculated heuristically on-the-fly or precomputed and stored in neighbour lists
which determine between which spins the local fields such as the Exchange and
Dzyaloshinskii-Moriya are computed in advance. The procedure for calculating a

particular interaction then, is generally:

Algorithm 1 ComputelnteractionField()
N = number of particles
for Particle i € [0, N — 1) do
Get spin p’
Hi;=0

for all neighbouring particles j of particle ¢ do

Get coefficient of interaction (e.g. J;;, D)
H!;+ = Interaction between particles p; and p;
end for

end for

For interactions in which the next-nearest neighbours are needed, such as higher-
order exchange interactions, the neighbour list for each spin is simply extended to

take this into account.
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The dipolar field is handled somewhat differently. In a naive implementation, the
dipolar field is a O(n?) calculation with the number of particles, because each spin
must interact with all other spins in the system, and so the cost grows enormously
as larger problem sizes are tackled. In many atomistic simulations, the dipolar
field is neglected entirely, despite it’s relevance in many physical systems and this
having been shown to affect even small systems. In others [58|, approximate tech-
niques are utilised in order to decrease the computational power. In some atomistic
simulation software, including Fidimag [95, 96|, the dipolar field calculation is im-
plemented using a convolution. This technique was applied to spin dynamics in
two dimensional systems by Mansuripur and Giles [97], and this was later exten-
ded to three-dimensional systems by Yuan and Bertram [65, 98]. The technique
appears to have been developed independently, but it is in effect similar in form to
a simple version of the Particle-Mesh algorithm, which was already in widespread
use in electrostatic calculations in the 1970s [99], only without an interpolation
step due to particles sitting on exact points on the lattice. The technique is ap-
plicable both to non-periodic and periodic systems where the system is mappable
to a regular grid, and when the system is non-periodic, the technique is exact up
to machine precision. One downside of this approach is that the restriction to
regular grids is not appropriate for all atomistic-like systems, such as in coupling

chemical molecular dynamics with spin dynamics [100].

We start generally, so as to show how the technique can be applied to different
types of system. We denote the position of a source on a lattice of dimensions
ng X n, X n, as r% with the superscript ijk representing the real space position
(iag,jay, ka,), where a,, a,, a, are the lattice spacings. The interaction between

a source and all other sources on the lattice can be written as:

G, 5, k) =Y Y > K((i —i)az, (j — )ay, (k — K)a) S{, 5, K)  (3.4)

i G kAR

Where i—i' € [-n,+1,n,—1], j—j' € [-ny+1,n,—1], and k—k' € [-n.+1,n,—1],
G is a scalar field, K(x,y, z) is a kernel describing the interaction, and S is the
source strength. This is clearly the form of a 3-D discrete convolution. It does
not seem obvious that we have thus far gained anything from this mathematics,
and if we evaluate the relation directly on a computer then would we expect the
same performance as a simple summation technique. However, fast algorithms
such as the Cooley-Tukey algorithm [101] exist for computing the discrete Fourier

transform, and this can be applied to discrete convolution. These fast algorithms
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for computing the discrete Fourier transform are known collectively as Fast Four-
ier Transforms (FFTs), and they scale with the number of array elements N as
O(N log N), though performance is greater when N is a product of low value prime
integers (i.e. 223%5°).

A convolution of two functions f and g is given as:
fro= [ gt -rar (35)
However, the convolution theorem relates that:

frg=F (F())F(9)) (3.6)

This property is strictly true only for data which is continuous. However, it can
be applied to discrete data, using the discrete Fourier Transform so long as one of
the functions in the convolution is a periodic summation of another function, such
that:

k=N
DI (37)
k=—N

These relations generalise straightforwardly to convolutions in two and three di-

mensions.

For a non-periodic function, the data must be ‘zero-padded’ so that aliasing effects
from the FFT do not occur; one does this by padding the size of the array to at
least 2N — 1 elements. One can pad further, usually to a power of two in order to
see the performance benefits from more efficient FFT algorithms, and sometimes

see the computation time decrease despite the increase in the number of elements.

Writing the potential and field for dipoles in such a system is more involved than for
the general case, because the dipole source is a vector, and each dipole component

contributes to the each component of the field. We can write out the calculation
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of the potential and field as a matrix multiplication to show this explicitly:

[ = y z
® rs r rs
I3 32 _ 1 Bay £ Ha
z| |5 73 5 5
r - 3yx 3y 1 3yz Hy (3 8>
Y rd rd r3 7o
I 3wz 3y 322 1| LMz
z i ot 5 5 73
s, S, &.
He
= v .
Nyz Ny Ny, ’
z
N.. N, 2y N..

Notably, some of the matrix elements are redundant; of the matrix components
N which contribute to the field there are only 6 which are independent. The
application of the FFT accelerated technique requires pre-computation of the FFT
of Sz, Sy, Sz, Nz, Nuy, Nuzy Nyy, Ny, and N,.. At each computation step, the
FFT of the padded pi,, 1, and p, arrays can then be computed, and the potential

and field computed in Fourier space as:
® = S, fiy + Syfiy + Syt
Fy = ]\faﬁy/lx + Nyylay + Nyzﬂz

(3.10)

These quantities are then back-transformed into real space using the inverse FFT

algorithm, in order to determine the real-space potential and field.

In a direct computation of the field, if a position in the grid does not hold a spin,
we can simply neglect it from the computation completely. Because of the strict
constraint on one of the functions in the discrete convolution to be a periodic
summation, this is not possible using the FFT. Many different lattice types are
mappable onto a regular grid to satisfy the constraint, but at the cost of large
increases in the memory necessary; the full dipolar tensor must be computed, and
any ‘ghost’ spins on the lattice have are set to zero in the array. The field is
subsequently calculated at the positions on the grid where no particle sits, and
this can be seen as an inefficiency of the method. Consider, as an example, a
BCC cubic lattice. We can construct a cubic unit cell of 3 x 3 x 3 spins which
fits naturally onto a regular grid, setting to zero 18 spins at the centre of each
2

face and edge. In storing a single unit cell of this lattice, z of the storage space
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describes non-existent spins, which requires an increase in memory in storing the
spin arrays of 200% per unit cell when compared to the naive method. Similarly,
a triangular lattice can be imposed on a regular grid, and in this case it requires a
100% increase in memory. While this is a downside for non-cubic lattices, it can
sometimes be useful to compute the potential and field of an ensemble of sources

accurately at some distance by adding ghost sources around the object.

3.3 Micromagnetics

With Micromagnetics being a continuum field theory, the fields must be re-discretised
in order to solve the system of differential equations computationally. There are
two main approaches to doing so; using either a finite-element or a finite difference

approximation.

More care needs to be taken in setting up micromagnetic simulations than in atom-
istic simulations because of the approximations made in discretising the fields.
While in atomistic spin dynamics we can identify each atom as the smallest relev-
ant particle, in micromagnetics each cell contains thousands of atoms, and so the
discretisation needs to be both small enough that the approximations in the deriv-
ation of the Energy functionals are good, and large enough that the computational
cost does not approach that of an atomistic simulation. In general, a good rule of
thumb is that the discretisation length must be smaller than the exchange length,
as otherwise independent domains cannot form in simulation [88, 102|. In order
to settle on an appropriate value, one should perform a convergence study on the
quantity of interest, be that a static property such as the energy or a dynamic

property of the system such as the reversal or depinning field [103].

3.3.1 Finite Difference Method

The finite difference method is by far the simpler of the two methods used to
treat micromagnetics computationally. The magnetisation field of the magnetic
material is discretised onto a structured mesh of cubic cells. In this regard, much
of the infrastructure is the same as for the atomistic case - the same indexing
schemes can be used, and the connectivity between cells defined in the same way

as for neighbouring atoms.
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For the micromagnetic energy formulations, approximate derivatives of the mag-
netisation are straightforwardly calculated in Cartesian coordinates using central

difference approaches, such that for derivatives with respect to x:

Om(r) m(r+h)—m(r—nh)

~ 3.11
ox 2h ( )
9*m(r)  m(r+h)+m(r—nh)—2m(r)
~ 3.12
ox? h? ( )
When a cubic grid is used, with n = (ng, ny,,n,) cells, and cell spacings of

(ay, ay, a,) derivatives of m at a cell (i, j, k) with position in space r; ; x = (iay, jay, ka.)

can be evaluated on the mesh as:

— 3.13

ox 20, ( )
Pm(r; ;) m(rin) +m(ri_1 ) — 2m(r )

8ZL‘27]7 — + sJs a2 3T 3T (3‘14)

From this, one needs to simply iterate over all of the cells on a mesh in order to
compute the derivative of the magnetisation field, and by simple substitution of
the derivatives into the micromagnetic expressions given in the previous chapter,
computational methods for evaluating the energy and/or the effective field are
straightforwardly built up. Higher order finite-difference schemes can be utilised

for increased accuracy, at the expense of computational time [103].

In general, one can construct a matrix formulation for the finite-difference method
in micromagnetics, such that:

Her = AM (3.15)

When most of the relevant energy terms are included, this leads to a sparse matrix,
because the Exchange and Dzyaloshinskii-Moriya interactions are built up from
first and second derivatives and so for a given cell only it and it’s nearest neigh-
bours need to be considered in the finite-difference scheme, and the Anisotropy
and . However, including the non-local demagnetising interaction leads to a dense
matrix, so in practice the problem is not usually formulated in this way. Fidimag
and OOMMEF take the approach of computing the effective field of each interaction
term independently, which is probably the most flexible approach. For perform-
ance reasons, however, it is advantageous to iterate through the magnetisation
array as few times as possible, and the software MuMax3 [104] instead takes this
approach, by combining the Exchange, Zeeman and Dzyaloshinskii-Moriya inter-
actions into a single loop iteration, with the downside that the various energy

fields are not separable.
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In all micromagnetic calculations, the computation of the non-local demagnetising
interaction is, like in atomistic simulations, the dominant part of the calculation
time - a naive calculation of the demagnetising field is an O(n?). Calculation of
the demagnetising interaction is generally implemented using the same convolution
approach as in the atomistic case, leading again to an O(nlogn) scaling. Here,
rather than describing the interaction between dipoles, the matrix components
describe the interactions between discrete cuboids of magnetic material which are
uniformly magnetised. These formulae were derived by considering the relative
interactions between faces on the cuboids by Newell, et. al. [102, 105], with an

explicit form of these interactions given as:

1

Nyo(r) = yr— [2F (z,y,2) — F(x + ay,y,2) — F(z — az,y, 2) | (3.16)
1

Nay(r) = Inauaya, [G(2,y,2) — G(z — az,y,2) — G(z,y + ay, 2) (3.17)

—G(r — ay,y + ay, 2)]

with the auxiliary functions F(z,y, z) and G(z,y, z) defined as:

F(z,y,z) =4f(x,y,2) — 2f(x,y,z — a,) (3.18)
—2f(z,y,2 +a.) = 2f(z,y — ay, 2)
+ flz,y —ay,z —a,) + f(z,y —ay, 2+ a,)
—2f(z,y +ay, 2)+ f(z,y + ay, z — a,)
+ 2,y +ay, 2+ az)

G(z,y,2) =29(z,y,2) — g(x,y,z — a,) (3.19)
—9(x,y,2+a.) —29(z,y — ay, 2)
+g(r,y—ay,z—a,)+g(x,y—ay,z+a,)
= 29(x + az,y,2) + 9( + @z, Y, 2 — az)
+g(x+ az,y, 2+ a.) +29(x + az, ¥y — ay, 2)

— (@ + aay — g% — a)
—g(x+ax,y—ay+y,z+az)
(3.20)
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where
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3

and with the expressions for other tensor components (for e.g. Ny, N,.) computed

through cyclic permutation (e.g. (z + ay,y,2) = (y + ay, 2, x)).

For intermediate to long distances, calculation of the tensor with the exact formu-
lae leads to large loss of precision errors because of catastrophic cancellation. It
is therefore usual to use the asymptotic formulae to compute the demagnetising
tensor [106] at distances greater than around 20 cell lengths. This has increas-
ing relevance with graphical processing units (GPUs) starting to see widespread
adoption in the simulation community, as the consumer-priced GPUs adopted in
many academic clusters offer much lower performance for double-precision compu-
tations (usually around 20% of peak). With this in mind, it has been noted that
it is important to calculate at least the demagnetising tensor in double-precision
[107], and this is indeed the approach taken by the GPU-accelerated micromag-
netic software MuMax3 [104], which otherwise uses a single-precision floating point

representation.
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3.3.2 Finite Element Method

FIGURE 3.1: Figure showing a 2-D example triangular finite element mesh of a
rectangle with N = 7 elements, constructed from 8 nodes.

In the finite element method (FEM), an unstructured mesh is used to discretise
the domain, and elements can be of any shape, though in practice triangles or
quadrilaterals (in 2D) and tetrahedra (in 3D) are often chosen. By subdividing
the solution domain into a finite number N of sub-domains known as ‘elements’
(Figure 3.1), constructed from a set of nodes, the aim of the finite-element method
is to construct a solution over the whole domain by finding values of the solution at
the nodes. The number of ‘free’ nodes which gives the total number of unknowns
in the linear system is fewer than the total number of nodes in the system, because
some are constrained by the choice of boundary conditions - for Dirichlet boundary

conditions all edge nodes on a finite element mesh have specified values.

3.3.2.1 Generalised Weighted Average Method and the Weak Form

To solve differential equations with appropriately specified boundary conditions
using the finite-element method, the equation must be recast into the so called
‘weak’ form [108], which holds across the finite elements that make up the total

domain. Taking as an example the Poisson equation in two dimensions:

/Q V2u(z, y)dV = /Q Fa,y)dV (3.23)
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on the domain Q € R? where ugq = g(z,y). To solve this computationally, we

want to find a solution such that the residual R:
R = / Vu(z,y) — flz,y)dV =0 (3.24)
Q

up to some tolerance, where u = . u;¢;(z,y) is an approximation of u formed of
an expansion in basis functions, which is known as a trial function. The space of
basis functions is known as the trial space, and the most general set of functions
which can be used lie in the Sobolev space, the space of functions which have a
bounded L2 norm over the domain (sometimes known as L2-integrable). Finding
the minima of this equation by varying the coefficients a; of the basis functions
therefore leads to a good approximation of the true solution. One choice to do so
is to minimise R everywhere in space by finding a weighted average of R across

the total domain by weighting with a ‘test’ function v as:

/QdeV:/QU(V2u)dV—/Qvde:O (3.25)

This test function is similarly constructed from a set of basis functions as v =
> viti(x,y), and a constraint is imposed that it vanishes on the boundary. Often,
the set of basis functions for both the trial and test function are chosen to be of the
same form (¢; = 1), and if this is the case then the method known as a Galerkin

method. We follow this convention here.

Simplifying the right hand side of Eq. 3.25 by integrating by parts:

/Q(VQU)UdV: —/QVu‘VUdV—i-/QfUdV—i-/aQ(Vu) -ndS (3.26)

Note that the boundary terms vanish because of the constraint that v = 0 on the

boundary. Then, the weak form is given as:

—/QVu-Vvd\/z/ﬂfvdV (3.27)

Here, the u term only needs to be differentiable once; the requirement of differen-
tiability on u is weakened from the initial form of the differential equation, and so

this is the reason it is called the weak form [109].

Imposing the requirement that the value inside each element is uniquely specified
by the values on the nodes making up that element leads to a globally continuous

solution. For a particular node ¢ with basis function ¢;, the value is 1 on the node,
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and 0 on all other nodes, with the basis function spanning only the elements which
contain that node - the basis function is compact over those elements (Figure 3.2).
The value of the function on the node is therefore u(x;,y;) = widi(z;, v;) = ¢.
Because the basis functions have value only within the elements on which the
nodes they sit on are part of, the inner product on two element basis functions is

only non-zero if they are part of the same element.

Using this knowledge, the integral over the whole domain is broken up - each side
of the equation in the weak form can be transformed into a form which depends
on integrals over the basis functions for each node 7 and the volume they span

which we label e;:

— / Vu-VodV =Y uw; / (Vi) (Vp;)dV (3.28)
Q i e;
= uw; Ay (3.29)

where the matrix A (also alternatively labelled K) is often referred to as the

stiffness matrix. For the right hand side:

/vadV: Zfzvz /ez ¢ dV (3.30)
= Z fivib; (3.31)

where b is sometimes known as the load vector or Because v; appears on both

sides, it can be eliminated, giving a matrix equation:

in which u; are unknown, and the other terms can be directly computed. The
Dirichlet boundary condition is incorporated through modification of the linear
system. The integrals over basis functions in A and b are often computed in the

finite-element method by using approximate quadrature formulae.

In order to solve the constructed linear systems, iterative methods such as the
generalised minimal residual method (GMRES) are normally utilised for systems
with more than a few hundred unknowns; for smaller systems Gaussian elimination

can be used.

For most finite element solver codes, each element is mapped onto a reference

element in a simplified coordinate space. By doing so, the basis functions for a
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FIGURE 3.2: Figure showing the span of the basis function on node 0 (left) and
node 5 (right).

Av A7

\(1,0)
>0 (o) 2> ¢

FIGURE 3.3: Figure showing a choice of mapping of a triangular element onto
a reference element.

particular element type are constructed only once which simplifies the implement-
ation of quadrature functions used to compute the integrals, at the expense of
coordinate transforms. Taking for example linear basis functions on a triangular
mesh, in the reference element shown in Figure 3.3, the form of the basis functions

can be given as:

Po(n,§) =1—n—¢
¢1(n,§) =1 (3.33)
¢2(7]7 g) = g

Derivatives of the a function constructed from basis functions in the ordinary

coordinate space, needed in the linear system, can straightforwardly be found by
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evaluating the Jacobian, which can be precomputed and stored:

0f _ 0t ofvs
Oor Ondx 0 O0x
0F _ofon 0o
dy  Onody  I§Jy

(3.34)

3.3.2.2 Application to Micromagnetics

The finite-element approach to micromagnetics was introduced by Fredkin and
Koehler in the late 1980s [110]. The most common use of the finite element
method in micromagnetics does not so much use the finite element method itself
(i.e. by constructing and solving a linear system subject to boundary conditions),
but makes use of the finite element approximation to compute the effective field
from the magnetisation, represented on a finite element mesh, in a convenient
manner. The effective field is then used either to compute the right hand side of
the Landau-Lifshitz-Gilbert equation on each node, or in one of various energy

minimisation algorithms to find metastable states.

In the original approach by Fredkin and Koehler, the magnetisation was assumed
to be constant throughout each finite element. Most implementations of the fi-
nite element equations for micromagnetism, including Finmag, the software used
by the present author for the work in this thesis, instead follow a formulation
more similar to that of Chen [111] whereby the set of 1st order linear polynomials
were used as the basis set for each component, allowing the magnetisation to vary
within cells. In Finmag, the magnetisation is represented by 1st order Lagrange
basis functions, and coefficients such M, and A are represented by 1st order discon-
tinuous Lagrange basis functions in order that the boundaries between materials

with different parameters can be resolved appropriately.

In order to compute the non-local demagnetising field, several approaches can
be taken. In common to all techniques, the magnetostatic potential is generally
found, and the numerical gradient is then taken. Sticking strictly to finite ele-
ments, however, it is difficult to enforce the boundary condition for the magneto-
static potential, which approaches zero at infinity, and early studies made use of a
large, coarse "air-box" with no magnetic material, surrounding a magnetic region,
though errors from this approach are large unless the air-box region is sufficiently
large, which clearly increases the calculation time. Most publicly available finite-
element software [112-116] have instead therefore followed the method of Fredkin
and Koehler, [117] by coupling the boundary element method (BEM) and finite
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element method. Rather than starting from the explicit solution, the magnetic
scalar potential ¢ can be more simply calculated as the solution of the differential

equation [118]:

V2o(r) = 47V - M(r) reQ (3.35)
0 r¢Q
(3.36)
with boundary conditions on 0f2
[¢(r)] =0 (3.37)
[ZZ(I')] = —4nn - M(r) (3.38)

where n is the unit vector normal to the surface and here, the scalar potential is

split into two components ¢ = ¢; + ¢ where:
V241 (r) = 47V - M(r) r€Q (3.39)

with boundary condition on 9f2

O ()] _ .
[ o ] = 4mn - M(r) (3.40)
and
V2gy(r) =0 rcR? (3.41)
(3.42)

with boundary condition on 0f:

O (r)
—— | =0 3.43
{ on ( )
with the additional constraint that
lim wus(r) =0 (3.44)
|r| =00

Then, ¢, is directly calculated by solving the above Poisson-like equation using

the finite-element method in the interior part of the domain. The boundary values
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of ¢y are then calculated using the boundary element method as:

oor) = = [ 0y 0 !

AT Jaq on(r') |r —r'|

(3.45)

These boundary values are then used as the boundary condition while solving for
@2, again by the finite element method in the interior domain. The numerical
gradient is then computed from the sum of the two computed potentials to find

each component of the field.

Alternative techniques for finding the magnetostatic potential from a magnetisa-
tion distribution are the shell-transformation technique, in which an exterior space
is meshed but the position of the outer shell scaled to match some far-distance
on which the boundary condition can be set [119, 120], and both tree code and
fast-multipole method codes, which have been implemented to solve for the mag-
netostatic potential by several authors [121-123|. The use of these techniques
have in some ways been motivated by the difficulty of using the FEM/BEM ap-
proach on distributed systems due to the dense BEM matrices which require large

communication bandwidth for iterative solution.

3.4 Evolution of the magnetisation

With the energy formulae, one can calculate the energy of a given magnetic state.
However, this is not usually that interesting - one wants to find how this might
evolve in space, or want to find the state which minimises the energy. We describe
several of these techniques here. We show a general procedure one can use to

update the magnetisation in Figure 3.4.

3.4.1 Time Integration

In both atomistic and micromagnetics (finite-element and finite-difference), the
techniques used to solve the Landau-Lifshitz-Gilbert equation of motion are very
similar. The time-dependent LLG equation must be discretised into a finite num-
ber of steps, and so the finite-difference approach can be used in the time domain

to a first approximation:
om(t)

t+dt) = dt
m{t + dt) ot

(3.46)
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FIGURE 3.4: Algorithm procedure for both micromagnetic and atomistic simu-
lations.

To facilitate this kind of updating formulae, the LLG is usually used in the explicit
Landau-Lifshitz form:

*

8_m: 0« o
ot  1+a2 T a2

m X m X Heg (3.47)

The LLG equation is well known for being stiff; that is, very small time steps are
required in order to maintain numerical stability [124, 125|. For this reason, a
simple updating formula like that above is not practical for simulations. Runge-
Kutta methods or implicit solvers such as the are ordinarily used to solve the LLG
equation in the absence of thermal fields. In the presence of thermal fields, it is

usual to use predictor-corrector type Heun’s method [58].

One issue that arises in the numerical solution of the LLG in both atomistic and
micromagnetic modelling is enforcing the constraint that the spin length remains
constant. Some codes [104, 126] use an explicit re-normalisation after each time
step. One issue with this when using an adaptive time stepping methods is that
the spin length may drift within a time step, leading to inaccurate calculations of

the effective field. In Fidimag and Finmag, a drift term is added to the calculation



Chapter 3 Computational Methods in Nanomagnetics 41

of the LLG, which acts only in the direction parallel to the magnetic vectors:

Om Om Om 5
5 " B +c g (1 —m)°m (3.48)

where ¢ is an empirically determined constant.

Alternative geometric integration schemes such as the implicit midpoint method
[127] exist, which preserve the length of the magnetisation as a consequence of
their construction. These have not been widely applied in the field, in part due
to the lack of adaptive time-stepping schemes which make the computational cost
prohibitive to their application. Recently, however, several such adaptations of
the method have been developed [127-129].

In order to find realistic, metastable states, it is often useful to relax a system under
Landau-Lifshitz-Gilbert dynamics, usually with a value of the Gilbert damping
a much greater than realistic values for a given material in order to suppress

precessional dynamics.

3.4.2 Enmergetics

As an alternative to studying the dynamics or using relaxation to find metastable
states, it is sometimes faster to use direct energy minimisation. Two general
families for doing so are the steepest descent method and the conjugate gradient
method. In this thesis we use the steepest descent method popularised by Exl et.
al. [130] in which the evolution of the magnetisation is described by the iterative
scheme:

m™ = m" — T% x Heg(m,) (3.49)

where 7 is a fictitious time step.

It is often interesting to find the minimum energy paths between magnetic states,
in order to determine whether states found through direct energy minimisation are
physically realisable, or if they are likely to be inaccessible - states in which a large
energy barrier for formation exists may be rare in practice. The Nudged Elastic
Band Method (NEBM) is one such technique for doing so. In the NEBM, a set
of images Y;,i € 0, 1, --- , n of a system are created - the so called ‘band’ of the
method. Each image in the band shares identical magnetic properties (for e.g. spin
magnitude or saturation magnetisation magnitude, exchange interaction strength)

with the other images. However, the magnetisation of each band is allowed to vary
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between each image and for a given spin p in band 7 the magnetisation is labelled
mg). The images Y and Y, are fixed, and are set to be the two states for which
a transition is to be determined. These two images must be energy minima down
to a high numerical precision, in order for the algorithm to converge, found either
through LLG dynamics or direct energy minimisation. The other states must be
set such that they interpolate between the two equilibrium states. This can be

performed in several ways, such as:

e Using a linear/quadratic/cubic interpolation of the angle between each spin
of the equilibrium states for each image.
e Creating images which interpolate between the two states in such a way as

to imitate a particular transition.

The NEBM itself is described by a dynamical equation:

oY,
or

~ Y\’
which describes the evolution of the band under a fictitious time 7, with the right
hand term acting to keep the spin/magnetisation length normalised (due to drift

from numerical errors).

The vector G; describes the by-node ‘force’ acting on each image in the band, and

is comprised of two components:
Gi - Heﬁ” + kFl (351)
where F; is defined as:

Fi =Y = Yol = |[Y: = Y| (3.52)

The first component, which we know to be the effective field, simply acts on each
image as to move it towards a local energy minima (remembering that the energy
gradient is exactly the effective field). The right hand term, which acts as though
each image is one of a chain of particles on a chain, keeps the images distributed
along the band, to avoid them from clustering together in the energy landscape
around local energy minima or the equilibrium states. The spring constant k is
a parameter of the algorithm which controls the strength of this force. The total

force G; must be projected onto the tangent plane of the magnetisation; this avoids
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FIGURE 3.5: Example Energy Landscape - Here, the white band is the initial

interpolated band between two states, which traverses a maxima in the land-

scape, while the grey band represents a minimal energy path which the band
has evolved towards.

the force from acting in such a way as to break the constraints of fixed spin length,
and can be carried out as:

G/ =GY — (GY - m,)m, (3.53)
We show the direction of the forces in Figure 3.5. The norm ||Y;1; — Y;|| defines
a ‘distance’ in the phase space of the bands, determining how far apart spins are
in each image, which must be considered carefully. We follow the formulation of

the NEBM method as applied by Bessarab, et.al. [131, 132], and use the geodesic

distance, defined in Cartesian form as:

WG
Hm—nw:EEMw(&;ﬂ—> (3549

; g < |

though we note that other definitions of the distance have been used in previous

works.

Initially, the NEBM needs to be set up with images distributed roughly evenly
along the energy path; this can be achieved in a number of ways but in general,
some sort of interpolation of the spin vectors between the initial and final states is

used [131-135]. The algorithm can be sensitive to the choice of the initial states of



44 Chapter 3 Computational Methods in Nanomagnetics

the band, with convergence strongly affected by the appropriateness of the initial
guess. The NEBM algorithm is considered to have converged once changes of all
of the varying images in the band are below a certain tolerance. Care needs to be
taken that a large enough set of images is created so that the method converges
to a minimum energy path, that is, the path over which the energy barrier is
minimal; with too few images, the path is not minimal. This can be checked by
adding additional images and rerunning the procedure - if sufficiently many images

are used then the barrier should not change as the number of images n increases.

3.5 Approach Choice: Micromagnetics or Atom-

istic?

The type of problem under study necessitates different treatment. The micromag-
netic approach can clearly not describe ferrimagnetism or antiferromagnetism, be-
cause the assumption that the field varies slowly required in the derivation of the
continuum form is broken in these cases. Extensions to micromagnetics in order
to treat these types of systems have seen some success [136], but the techniques
are not widely adopted in the field, in part due to a lack of open source imple-
mentations of these methods in software. In some materials, exchange between
next-nearest neighbours can also be important to the energetics of the system, and
again micromagnetics is not suitable for such materials. Nonetheless, it is worth
pointing out that computational micromagnetics has in general been a major suc-
cess story in the last 30 years, with accurate predictions made for many real-world

systems.

Even within micromagnetic problems, the computational approach needed to solve
certain problems must be carefully considered. The two most commonly used mi-
cromagnetic software packages, OOMMEF and MuMax are both finite difference
based, and it is well known that for curved boundaries, the various energy terms
have large errors [104, 126]. While there are methods to mitigate this, such as
through the use of an immersed boundary techniques [137], these are not widely
implemented or used. For these types of problems, a finite element discretisation is
instead usually chosen. The finite-element approach is, however, much less widely
used than finite differences in general, due in part to the difficulty of implementa-
tion when compared to the finite-difference method. In addition, from a user per-
spective, most of the freely available and formerly popular finite element software

packages for computing magnetisation dynamics are no longer maintained, such
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as Magpar [112] and Nmag [114], with the remaining codes such as Magnum.Fe
[116] and FastMag [138| available through commercial licensing, and the Finmag
package used in this thesis, developed at the University of Southampton and the
European XFEL, only recently made public. Other finite-element micromagnetic
codes such as MERRILL [139] and Micromag [120, 140, 141] are targeted at the
geosciences community, and therefore focus on the energy of and energy barriers

between magnetic states, rather than Landau-Lifshitz-Gilbert dynamics.

The modelling work carried out in Chapters 5 and 6 of this thesis was conduc-
ted using the finite-element micromagnetic software package Finmag [115], which
was developed between 2011 and 2018 Hans Fangohr’s group at the University
of Southampton, and to which the present author contributed mainly meshing
and geometry creation functionality, and Singularity images for running on HPC
clusters. Chapters 4 and 7 of this thesis utilised Fidimag [95, 96], a micromag-
netic and atomistic modelling software which started in 2012 and which is aimed
at being flexible for new development and easy to use, and which is still under
active development. Only Fidimag’s atomistic modelling component was used in
this thesis. The authors main contributions to Fidimag include the refactoring and
porting of the software to the C++ language, improvements to the build system
to allow parallel builds, the fast-multipole method routines described in Chapter
4, and the addition of higher order anisotropy calculations. A small amount of use
was made of the Object Oriented Micromagnetic Framework (OOMMF) developed
by Mike Donahue and Donald Porter at NIST [126], likely the most widely used
and robust software package in micromagnetics and which pioneered many of the
approaches taken by others; this was mostly for verification of the finite-element

results such as in Chapter 6.

It is notable that three of the aforementioned finite-element micromagnetic pack-
ages (Magnum.fe, Finmag and Micromag) were built around the FEniCS software
package [142-146], which allows the user to simply specify the weak form of a
partial differential equation, which is then translated into a computational repres-
entation of the mathematics by the UFL package [147]. In this framework, the
finite element family can be chosen from a wide variety of element types, and the
order of the basis functions used can be adjusted straightforwardly [148, 149]. In
general, very little code needs to be written by the user to solve a propblem with
FEniCS, which makes it straightforward to adopt. Internally, FEniCS makes use
of high performance sparse matrix solvers from the PETSc library [150], which

allows it to scale to many thousands of processors without input from the user,
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with matrix assembly handled by the package UFC [147, 151]. Despite the flexib-
ility and ease of use at a high level, one downside of the FEniCS approach is that
extending the code to work in some cases (such as in implementing the Boundary
Element Method, which is not available in FEniCS, for the demagnetising field)
is difficult and requires the use of low level APIs, which are subject to change
without documentation. With Finmag, for example, most development time over
the last four or so years was in trying to maintain compatability with new FEniCS
versions rather than in improving the algorithms or implementing new features,
and a decision was taken on the grounds of time to fix at an older version of FEn-
iCS to reduce the maintenance burdens. Nonetheless, it was recently argued [152]
that high-level packages like this are serving to make finite-element methods ac-
cessible to a wider audience in computational science, and so it is likely that in the
future the finite-element approach will see further adoption in the micromagnetic
community. In addition future improvements to FEniCs and other packages such
as BemPP [153] which couples to FEniCs for BEM routines are likely to reduce
the amount of work needed to implement a comprehensive micromagnetic solver

using the finite-element method.



Chapter 4

Hierarchical Methods for Atomistic
Long Range Field Calculations

In both micromagnetics and in spin dynamics simulations, the dominant part in
computational time is the calculation of the non-local dipolar (or demagnetising)
field. The broadest interest in accelerating long-range particle-particle interactions
has, in the past, been in two fields; the astrophysical community where simulations
have used the Barnes-Hut method (sometimes known as a ‘treecode’ method)to
simulate interacting gravitational modies, [154|, and in chemical molecular dy-
namics where the Fast Multipole Method method is used to calculate Coulombic
repulsion between charged ions. Both of these algorithms can be applied to cal-
culate fields or potential, and are more general than these two domains, but have
not seen widespread adoption. Both of the techniques rely on approximations in
order to accelerate the calculation, but how justifiable these approximations are

depends on the problem domain.

Implementations of the Fast Multipole Method (FMM) for the Poisson equation
usually utilise a spherical harmonic expansion of the Green’s function, which leads
to an irreducible representation. Doing this in a computationally efficient way
is non-trivial because calculating the spherical harmonic functions necessary for
such an expansion effectively requires making use of recursion relations in order
to avoid numerical issues, due to catastropic cancellation when numbers of dif-
ferent orders of magnitude are summed. Cartesian Taylor expansions also form
a straightforward basis in which to expand the potential, though the multipole
expansions are reducible and so are less computationally efficient than spherical

harmonic expansions for the high accuracy regime. The expansion of the kernel

47
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used in different software packages varies widely across different areas of study; in
astrophysics a Cartesian basis is primarily used, especially in the Barnes-Hut (BH)
method [155], but in chemical molecular dynamics studies it is more usual to make
use of the Spherical Harmonic expansion . Similarly, the method utilised varies
enormously, and application specific performance optimisations can be made for,
which preclude against code-reuse when attempts are made to apply the methods

to other problems.

In the past, an approach based on template metaprogramming in C++ was utilised
by Visscher and Apalkov [67] to provide efficient recursive implementations of
multipolar Cartesian operator functions for micromagnetic cell sources. In this
work, the surface charges through each of the six faces of a micromagnetic cell
were used as point monopoles, from which the dipolar field could be calculated,
allowing the use of standard Cartesian fast multipole operators. In this paper,
however, no comparison of performance with the standard method of computing
the dipolar field was performed. A subsequent paper followed a similar template
metaprogramming approach for applying the FMM to point dipoles [66], and in
this study, a performance increase was shown over the FFT convolution method
in some cases. In addition, some recent studies have began to utilise treecodes
or the FMM to accelerate the demagnetising field computation in finite-element
micromagnetic calculations, and shown either good performance improvements
or worse performance but significant memory reductions over the more typically
used Boundary Element Method [107, 122, 156]. A templating approach was also
used by Wang. et. al. in order to implement Cartesian operators for the FMM
as applied to the Boundary Element Method [156]. This templating approach,
however, is not straightforwardly generalisable to languages which do not support
code generation at compile time, such as C and Fortran, and it makes it difficult
to apply broad optimisations across the templated code. In most FMM and BH
implementations based on the Cartesian expansion, hand-written code is therefore
used to implement the various FMM operators; in Dehnen’s FalcON code this
goes as far as hand implementing vectorisation of the various operators [157].
This is difficult, because beyond several expansion orders it is tedious to ensure
code correctness, and the number of terms in the multipole expansion grows with
n as n(n + 1)/2. Implementing operators by hand in this way also makes it
difficult to enable code reuse; for example, implementing both the multipolar BH
and FMM in the same code base requires a large amount of duplication of code.
Generalising to provide efficient operators for point sources of different orders

(i.e. point monopoles, point dipoles, point quadrupoles) is also important for
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adoption of the method. It is important to note that for many problems which are
computationally intractable, reduced order models of systems can be constructed
using multipoles, by treating objects with complex internal structures as points
with a multipole expansion up to some given order, and these sources can often

have non-negligible quadrupole terms [158|.

Symbolic code generation is a technique which has, in recent years, been applied
to the generation of functions for the computational solution of ordinary and
partial differential equations. The FEniCs Form Compiler (FFC) library [159]
constructs functions for the evaluation of variational forms for assembling finite-
element matrices, and is used as part of both the FEniCs and Firedrake projects
[160, 161]. The OpenSBLI [162-164] project generates finite-difference stencils in
the language of the high-performance OPS library [165] from symbolic representa-
tions of differential equations, while the Devito [166] project achieves similar goals
uses symbolic code generation functionality in the SymPy library to generate ef-
ficient finite-difference kernels written in C. In the context of the fast multipole
method, code generation has previously been utilised by Coles and Masella in order
to provide an implementation of the Cartesian basis Fast Multipole Method in the
closed source PolarisMD code, for the calculation of the electric potential and field
from polarisable atoms in molecular dynamics, [167] with this work then being ex-
tended to support the use of more efficient operators through detracing techniques
introduced by Applequist, which reduce multipole moments in one form to an

irreducible form which cannot be then stored any more efficiently [157, 168-170].

In this work, we describe the implementation and details of an open-source code
generation library, fmmgen, [68] which produces a set of operators for the Cartesian
BH and FMM methods, and provides OpenMP parallelised example implementa-
tions of the methods, for the solution of the dipolar field in atomistic simulations
(i.e. point dipole sources). We draw attention to how optimisations and sim-
plifications can be enabled at different stages in the code generation to improve

performance, and comment on the effectiveness of optimisation strategies.

A preprint of this work was made available on arXiV (2020) [171], and the data
from this study and scripts to reproduce the figures are also available [172]. The
present author and Prof. Hans Fangohr conceived of this study, and the present
author wrote the fmmgen library, performed the simulations and interpreted the

results and wrote the manuscript.
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4.1 Mathematical Basis

We begin by showing the mathematical details necessary to construct the FMM
and Multipolar BH methods to compute the potential and field the Laplace Equa-
tion in a Cartesian basis for source points of arbitrary order (i.e. Monopoles, Di-
poles, Quadrupoles, ..., 2"-poles. We denote the minimum ‘order’ of point sources

in a system source as s, such that a monopole has order s = 0, a dipole s = 1, etc.

We here use the mathematical notation of monomials, which is widely used in the

Fast Multipole literature. Here:

n = (ng,ny,n,)

n+m = (n, +my,ny, + Imy,n, +m,)
n! = n,ln,n,!
I,1‘1 — xnxynyznz

ln| =n, +n,+n,

n\  (ng\ (ny\ (-

k) \k.)\k,/) \k.
Consider the expansion of the Coulomb Potential from two well-separated cells A
and B, with centres z, and z;,, which containing points x, and x; respectively. We

define vectors r, = x, — z4 and r, = x;, — zg. When a charge ¢, is located at x,,

the potential at x;, can be evaluated as:

a

S 4.1
E— (4.1)

¢(r)

Taylor expanding this around the point z, and truncating at order p gives an
approximate function for the evaluation of the potential:
- (_1)n nyn

O(Xp — Xq) X qq Z - (Xq — 24)"V7O(x, — 24) (4.2)

[n|=0

By grouping terms, a multipole term defined around the centre z4 can be written:!

_1)inl
Mau(za) = %qa(xa —2,)" (4.3)

IThis definition varies between fields and authors. Notably, the factor of (—1)/n! is often
absorbed into the local expansion definition. It is also worth nothing that the definition of the
dipole and quadrupole moments can vary; for e.g. in Chemistry the dipole moment vector for
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Because we have translated the particle’s moment into a multipole expansion, this
is known as the ‘Particle-to-Multipole’” or P2M operator. For a given M, term
centred at z,, the shifted multipole expansion at a centre z/, can be derived through
the substitution of (x, — z,) = ((X, — 2,,) + (2, — 2,)), expanding out in powers

and substituting multipole terms where recognised.

p—In| Kk
Ma(z,) = ) @Mnk(za) (4.4)

[k|=0

This is usually referred to in the literature as the ‘Multipole-to-multipole’ or M2M
operator, because it translates the multipole moments from one position to an-
other. Using (4.4), expressions for calculating the multipole expansion of arbitrary
order source particles can be written by considering a ‘source’ multipole S,. For
a Coulomb charge, such that S0y = ¢, and all other terms would be zero. For
a dipole, 81,00y = Htaz, S0,1,00 = My and S0,1) = =, with all other terms zero.
Mixed systems can also be considered. Thus, in an arbitrary system where the

lowest order of source is s, the expansion can be written:
Kk
Z, — Xq
Mo(z) = 3 e Xelg (15)
For the charge only case, we see that we can straightforwardly recover through Eq

4.3 through the knowledge that all terms except S(g,0,0) are zero.

The potential can then be rewritten in terms of these Multipole terms - we can
calculate the potential at a second particle, and so this is known as the ‘Multipole-
to-Particle’ (M2P) operator.

d(xp —X4) & Z <_nl!)nr2/\/an“qZ>(XB —Z4) (4.6)

This and the other preceding expressions forms the mathematical basis of the
multipolar Barnes-Hut method. However, one can go further and take another
expansion, this time around zg, and truncating such that the maximum order of

terms is the same, giving:

p

p—|n|—s n
P(xp —xa) ~ Z Z (_1)' P MV G(xp — 24) (4.7)
m=0 :

n'm
n=s

a two charge system is normally given as directed from positive to negative charge; in Physics
this is reversed. It is important to check then which convention is used in any software package.
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Grouping terms again in Eq. 4.7, a new expansion, ‘local’ to the target particle can
be evaluated centred around zp using what is known as the ‘Multipole-to-Local’
(M2L) operator.

p—|n|—s

Lalzs) = > N M) 972 1) (45)

|m|=0

Then, the potential can be evaluated in terms of the local expansion with the
‘Local-to-Particle’ (L2P) operator.

p

dlxp) ~ Y ﬁ(xb — 2)"Ln(25) (4.9)

In|=s

Derivatives of the potential then be calculated by differentiating this expression

with respect to the component axis:

70 S (a2 L) (4.10)

—— —
or inlt K (n —k)!

If the order of the derivative is greater than p — s, this expression is not sufficient.

In this case, a finite-difference approximation must be used.

4.2 Implementation

4.2.1 Operator Generation

Here, we attempt to give a description of the open source code generation frame-
work, fmmgen, [68] is implemented and how it can be used. The framework is built
in Python, using the symbolic algebra package SymPy [173], and generates source
code output in C and C++, with the reasoning that code generated in these lan-
guages by the framework can be straightforwardly incorporated into other projects

without great difficulty or the requirement of large dependencies.

The code generation of each of the multipole operator equations can be broken
up into different stages, each of which can be used independently. The user must
specify the minimum source order s, the maximum expansion order p, and the
output they desire (potential, field, or both). From these parameters, a mapping

between n values and one-dimensional array indices is created. By default this
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mapping is lexicographic:

0:(0,0,0)

1:(1,0,0)

2:(0,1,0)

(4.11)
3:(0,0,1)

4:(2,0,0)

5:(1,1,0)

such that the total monomial order of a given term is strictly increasing. Non-
etheless, if another ordering is preferred (for e.g. in some fields the quadrupole
moments are ordered differently), it is possible to use change this by simply using
a different array mapping. If it is known in advance that certain terms will al-
ways be zero, terms can be removed from the mapping in order to create simpler
symbolic representations of the multipole and local expansion operators. We also
make use of the source order parameter given by the user to reduce the memory
needed to store the multipole and local expansions; this is possible because it is
not possible to construct a multipole with a net n!’-moment from sources of are

of order s > n.

A set of expansion functions are implemented, which are used to construct symbolic
representations of My, the particle-to-multipole operator, and £, the multipole-
to-local operator, at a given n, as well as the shifting operators for these (the
Multipole-to-Multipole and Local-to-Local operators). These must make reference
to the mapping, in order to return the correct array indices. Generator functions
use the set of expansion functions and iterate through the full list of n values
needed for a particular problem, and an array representation of each operator is
formed. This is repeated for each expansion order, and a least-recetly-used (LRU)
cache is used to store results which come up repeatedly in the generation stage to
reduce the code generation time. We finally generate a symbolic representation of
the operator functions for both the Barnes-Hut and Fast Multipole Method which
can calculate the required quantities from a multipole (M2P) or local expansion
(L2P), or from another source (P2P).

Once the full set of symbolic operators is generated, a code writing class is used
to turn the mathematical representation of the operators into C or C+-+ code.
While the SymPy library can provide some basic code-generation functionality, by
default it generates unoptimised code which leaves much room for improvement in
performance terms. To this end, we implemented a set of optimisations which can

be enabled and disabled at the code generation stage by the user of the library. We



54 Chapter 4 Hierarchical Methods for Atomistic Long Range Field Calculations

leave these as options rather than enabling by default, because it is then easy to
test that the optimisations affect only the performance, and because the optimised

code is often more difficult to read and hence debug.

Coles et. al. previously discussed how in code generation of multipole operators,
[167] they reduce the number of mathematical operations in the code through
an automated process called common sub-expression elimination (CSE), which
analyses the code for repeated calculations across multiple lines, and pulls these out
as factors. We utilise this technique, which is implemented in the SymPy library,
to pull out expressions over the entire computational kernel, which can stretch
to thousands of lines of code, enabling optimisations that would be impossible to
perform by hand. Prior to using CSE, we pre-process the operators to increase the
chance of finding common subexpressions. These preprocessing stages rationalise
powers (for e.g. replacing (2?)? with z*, factor terms, and remove extraneous
multiplications which sometimes appear in the code generation stage (e.g. (1.0)z)
In Figure 4.1, we show the effect that CSE has on the Multipole-to-Local operator.
This has the greatest effect on performance in the calculation of the Multipole-to-
Local operator for the FMM and Multipole-to-Particle operators for the Barnes-
Hut method, which make use of the calculation of the derivatives of 1/r up to a

given order.

In traditional codes, the computations of derivatives of these derivatives up to an
order p are usually performed incrementally, such as by using the O(p®) formula
of Cipriani and Silvi [174] or using an O(p*) recursive formula as described by
Challacombe et. al. [175]. With the code-generation, we were able to implement
straightforwardly an optimisation noted by Dehnen [157| by making use of the har-
monicity of the Poisson Green’s function, which allows us to calculate derivatives

as:

vrt002) g — _ynt200)y  yn+020)4 (4.12)

This reduces the number of mathematical operations for higher order calculations.
We note that while the SymPy library provides some metrics for the number of
mathematical operations in given expressions, these are not an effective way of
deducing the computational cost of generated code. The choice of compiler and
the enablement of compiler optimisations drastically affects the FLOP count, and
some operations take more clock cycles than others. This is especially true for

Reduced Instruction Set Computer (RISC) processor architectures, on which all
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1 void M2L_1(double x, double y, double z, double * M, double * L) {
2 double R = sqrt(x*x + y*y + z*z);
3 double D[4];
4 D[0] = (1 / (R));
5 D[1] = -1.0%x/(R*R*R);
6 D[2] = -1.0%y/(R*R*R);
7 D[3] = -1.0%z/(R*R*R);
8 L[0] += D[0I*M[0] + D[11*M[1] + D[2]*M[2] + D[31*M[3];
9 L[1] += D[1]1*M[0];
10 L[2] += D[2]*M[0];
1 L[3] += D[31*M[0];
12 }
13
(A) M2L Operator without CSE
1 void M2L_1(double x, double y, double z, double * M, double * L) {
2 double Rinv = pow(x*x + yxy + z*z, -0.5);
3 double DI[4];
4 double DtmpO = (Rinv*Rinv*Rinv);
) D[0] = Rinv;
6 D[1] = -DtmpO*x;
7 D[2] = -DtmpOx*y;
8 D[3] = -DtmpO*z;
9 L[0] += D[O1*M[0] + D[1]1*M[1] + D[21*M[2] + D[3]1*M[3];
110 L[1] += D[1]*M[0];
11 L[2] += D[2]1xM[0];
12 L[3] += D[3]1xM[0];
13 }
14

(B) M2L Operator with CSE

FIGURE 4.1: Here, we see the affect of enabling common-subexpression elimin-

ation for the 1st Order Multipole-to-Local operator in the FMM method when

s = 0. Prior to enabling this subexpressions such as 1/R3 are repeated multiple

times across multiple lines of code (a), while with it enabled, these are factored
out into temporary stack variables (b).

complex instructions are built up from simple instructions, rather than having
dedicated complex instruction hardware. This means that for accurate FLOP
counts, only sampling with runtime tools gives an effective approach for measuring

performance improvements through code simplification.

The code also supports the replacement of evaluations of the power function
std: :pow(x, n), where n is a positive or negative integer value, with repeated
multiplications. It is well known that this can be an effective optimisation in
numerical codes, but in practice it can be tedious to implement, and beyond a
certain point round off errors begin to accumulate from intermediate results [176].
In the code generation stage, these operations can be replaced up to some max-
imum 7n,,.y, the optimum which can be determined through profiling for a given

architecture, precision and compiler combination.
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4.3 Methods

We implemented both the Barnes-Hut and Fast Multipole Method in a single code
base using the generated operator functions. We here provide some detail on the

implementations.

4.3.1 Tree Decomposition

The key construct of the BHM and FMM is the choice of an appropriate data
structure for containing information about the positions of particles - typically this
is a tree. In two dimensions, a hierarchical decomposition of some bounded region
of space gives a quadtree and in three dimensions an octree, so named because
on splitting a cell, it divides into four and eight child cells respectively. A tree is
constructed by taking a set of positions, and applying criteria for subdividing space
recursively. This criteria is a limit either on the number of particles in a single
spatial cell, or on the ‘depth’ of the tree, restricting how far cells can subdivide.
Figure 4.2 shows an example of how this can look for a two-dimensional tree.
Alternative types of tree, such as k-dimensional (k-d) trees have been utilised
in multipole codes in the past [177, 178]. Constructing the tree can be done
in many different ways, and the layout of the tree data structure is crucial to
the performance of a fast multipole code, and for taking advantage of parallel

architectures.

We use class based space decomposition, whereby a Cell data structure is used to
hold references to the particles held within itself. Each cell holds a with a reference
to it’s parent (the cell which contains it) and its children (the cells it contains). In
our implementation, the decomposition of space is performed with a class based
method. The code for this is straightforward to implement, because the code to

split a cell can be written as a recursive function.
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(A) Maximum # of particles in a cell = 8 (B) Maximum # of particles in a cell = 16

FIGURE 4.2: This figure shows spatial decomposition in two dimensions at
different levels, for the same set of 500 particles. The decomposition of space
here depends on the criteria for the maximum number of particles in a cell.
When the maximum number of particles in a cell is reached, the cell is split
into four more cells. This process is carried out recursively until the criteria is
reached in every cell. We can see that when the maximum number of particles is
8, a finer discretisation of space is achieved. This type of spatial decomposition
is known as a multi-level quadtree.

Algorithm 2 BuildTree()

n. = Number of particles in cell before splitting
Add root cell to list of cells
for all particles do
while current cell has more particles than n. do
current cell < root cell
Calculate octant of current cell where particle is
if octant cell doesn’t exist then
create octant cell and push to list of cells
end if
current cell <— octant cell
end while
Add particle to current cell
if current cell holds more particles than n,. then
SplitCell(current)
end if

end for
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Algorithm 3 SplitCell(cell)

for particles in cell do

if cell octant does not exist then
create octant cell and push to list of cells
end if
add particle to octant cell
if number of particles in octant > n. then
SplitCell(octant)
end if

end for

Because of the recursive nature of this class based tree splitting, it is difficult to
parallelised the implementation of a class based tree building algorithm. However,
this is only of interest in the case where the tree needs to be rebuilt many times,
and it becomes a significant performance cost. In the case of spin dynamics,
however, spins or micromagnetic cells are usually placed at fixed positions, which
reduces the cost, and thus the whole tree does not need to be reconstructed. This
does not mean that the tree data structure layout can be neglected, however, as
traversing the data structure forms a significant part of the calculation. Alternative
approaches for laying out the tree data include using space filling curves such
as the Morton or Hilbert curves to map the position of each cell in some grid
coordinate space to an index in memory for it’s multipole and local expansion data
[179, 180]. The order of cells in that data structure is defined such that each cell
can find the cell indices of it’s parent and child cells by simple calculation, rather
than needing to store their indices as in a class based tree structure. Ordering
in these ways also reduces how far in memory fetch operations must go, and so
reduce cache invalidation, increaing performance. In order to mitigate this issue in
the class based scheme developed here, multipole and local expansions are stored
sequentially in a single array, with each cell holding a pointer to it’s expansion

data. This memory is allocated only once the tree has been constructed.

4.3.2 Tree Traversal

For the BH method, we evaluate the multipole expansion on cells at the lowest level
of the tree, and then pass this upwards using the multipole-to-multipole (M2M)
operators. Then, for each particle, located at x, the tree is traversed from the

top level downwards. A cell is considered to be near to a particle if it meets the
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Barnes-Hut multipole acceptance criterion:

Teell
|7p — 2|

which relates the cell size to the distance, and an opening angle parameter ¢, which

is a user supplied parameter which controls the accuracy.

If a cell has no child cells, and the cell does not meet the acceptance criterion,
then the cell’s particles are looped through, and the interaction is calculated dir-
ectly using the Particle-to-Particle (P2P) operator. If the criterion is met, then
the interaction between the cell and the particle is instead computed using the
Multipole-to-Particle (M2P) operator. Finally, if the cell has child cells, then the
procedure is repeated on these. For the FMM, we implemented the dual-tree
traversal algorithm which has seen widespread adoption, rather than the classic
FMM introduced by Greengard and Rokhlin in which cell-cell interactions only
occur between neighbouring cells and their children, [181] as this this has much in
common with the Barnes-Hut approach. The initial procedure here is the same as
the Barnes-Hut method; multipoles are computed for cells on the lowest level of
the tree and then shifted upwards. Then, the tree is traversed from top to bottom.

Cells which fulfil the multipole acceptance criterion:

Tey T Tep

0 4.14
R < UFMM ( )

interact via the Multipole-to-Local (M2L) operator, while cells which do not are
recursed into until either their children fulfil the criteria, or a leaf cell is reached,
at which point the cells interact directly. For more straightforward parallelisation,
as opposed to the task-based parallelism favoured by some authors, we traverse
the tree at initiation in our test implementation, and store the sorted interaction

lists which can then be iterated through with loop-based parallelism.

4.4 Testing

We provide a test application with the library which can be configured to allow
the evaluation of the potential and/or field from a set of source particles of ar-
bitrary order, using either the Barnes-Hut or FMM approach, which allows for a
straightforward comparison between the two methods and their performance. We
ran tests with this text executable on a machine with a 4-core 3.4GHz Intel i7 6700

machine. We note that this processor is affected by the Spectre and Meltdown
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FIGURE 4.3: Performance comparison between compilers and with CSE and
Harmonic Derivative evaluation disabled and enabled for a system of 10 charged
particles.
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FIGURE 4.4: Performance between compilers and with CSE and Harmonic De-
rivative evaluation disabled and enabled.

vulnerabilities, and testing was performed with the Linux kernel version 4.15.0-55-
generic, which includes mitigations for this, which have been reported to affect the
performance of some HPC applications [182]. The executables were compiled with
the Intel Compiler v.19.0.3.199.2 Tests were performed with OpenMP enabled,
and with options set to prevent thread migration between cores and idle threads
from sleeping, and with hyperthreading disabled. All of the timing results shown
below are averaged over three runs in order to reduce the effect of system calls

and background processes on the runtime measurement.

Initially, we tested how the performance optimisations described in the previous
section affected the performance of the potential and field calculation via the Fast

Multipole Method, for a system of 10° randomly distributed charged particles

2The executables were compiled with the Intel Compiler v.19.0.3.199 and g+ -+ v.7.4.0. The
compilation flags in both cases were -03 -ffast-math -march=native -fopenmp
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FIGURE 4.5: Here we show a comparison between the FMM and BH methods

for two different values of 8. We can see that the BH method outperforms the

FMM method in both cases, but that the BH expansion order affects the runtime
of that method more substantially than for the FMM.

in [—1079,107%?, with # = 0.3 and ne; = 128. We compiled executables with
generated operators with CSE and the computation of derivatives through the
reuse of results and the harmonicity property enabled and disabled, the results of
which are shown in Figure 4.3 We found that in general, the timing results were
relatively consistent, with the runtime increasing progressively with the expansion

order.

With the GNU compiler, enabling the harmonic derivatives optimisation led to

a decrease in performance at 9" of around 50% while enabling CSE led to a



62 Chapter 4 Hierarchical Methods for Atomistic Long Range Field Calculations

log(t)
= =
o o =
& LR
©
Il
w

102 103 104 10°
Iog(nparticles)

FMM (6 = 0.5)
FMM (6 =0.7)
FMM (6 = 0.9)
FFT

bt

107 103 104 10°
Iog(nparticles)

log(t)
= =
o o =
& LR
o
Il
~

107 103 104 10°
Iog(nparticles)

FIGURE 4.6: Here we show the performance of the FMM against the FFT for

dipolar field calculation, by comparing runtime as the number of spins in a

cube is increased at different expansion orders. We note that between expansion

orders, we see a negligibly small difference in performance with variation in 6
having much more of an impact on runtime.
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75% decrease. For the Intel compiler, the corresponding decreases were around
1% and 2%. At lower expansion orders, we see very little performance increase,
and this is because there are fewer opportunities for eliminating common factors.
The difference between the GNU and Intel compilers was investigated. Analysis
with Intel VTune showed that substantial numbers of the repeated operations
at high optimisation levels were cached in compilation with the Intel Compiler.
In both cases, there was not a significant difference in performance when both
optimisations were enabled. All subsequent tests were run with the Intel compiled

executable with both CSE and Harmonic derivatives enabled.

In Figure 4.4, we show the scaling of the FMM and BH methods with regards to
the number of particles, where the number of particles is chosen so that points are
equidistant in log-space. We can see that for numbers of particles up to 10°, the
BH method outperforms the FMM. In both cases, the exact break even point over
the direct method depends on the expansion order, but is less than 10* charges.
We can see that increasing the expansion order gives a clear delineation of the
runtime of the Barnes-Hut method while in the FMM, there is less of an impact;
this is because the M2P kernel is evaluated many more times in the BH method
than the equivalent M2L kernel is in the FMM method, and it is why the method
scales more poorly (O(nlogn) for BH vs O(n) for the FMM) at large numbers of

particles.

We note that the two multipole acceptance criterion are not directly equivalent,
despite having a similar controlling effect on accuracy, because in the BH it directly
relates the particle-cell distance and the cell size, while in the FMM it is a cell-
cell distance and size parameter. As a result of this, to achieve similar error
characteristics with the two methods, @y should be around twice fgy. This can
be seen in Figure 4.5, where we show the error distributions for the two methods
at different expansion order at § = 0.25,0.5 for a system of 50000 particles with
Nerit = 128.

4.5 Performance comparison with Fast Fourier Trans-

form Approach for Dipolar Field

As a real-world test case for atomistic spin dynamics, we integrated the dipole field
FMM calculation generated by the library into the computational nanomagnetism

software Fidimag [95]. To check the implementation, we compared it against the
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FFT convolution based dipole field solver for a system of atomic dipoles in a cubic
arrangement with n spins on each axis resulting in n3 spins. We compute the field
with the convolution method using the Fast Fourier Transforms computed from
the library FFTW (version 3.3.7) with OpenMP parallelism enabled. In order
that the comparison is fair, we neglected any start up time which is one-off, and
so do not include the pre-computation of the demagnetising tensor for the FFT

technique or the tree construction for the FMM technique.

In all tests, it was found that the FMM method was over an order of magnitude
worse in performance terms compared to the FFT convolution technique. We
also note that for some 6 values (6 > 0.7), in realistic test simulations in which
the Landau-Lifshitz-Gilbert equation was used to relax the system, we found that
simulations either failed to converge using the FMM, or took more integration
steps to do so, as a result of the loss of accuracy in the method. This suggests
that, at least on parallel shared memory architectures, it is difficult to achieve
competitiveness in performance against the Fast Fourier Transform convolution
technique with the Fast Multipole Method.

Our results contradict prior performance studies on the fast multipole method
in atomistic lattice systems, where the method showed speed-ups over the FFT
convolution method for the numbers of particles commonly used in atomistic sim-
ulations. We note that the method shown in one paper promising speed-ups from
the Cartesian FMM used the scalar non-parallelised FFT routine from Numerical
Recipes [183], which was likely to be significantly slower than the FF'T methods in
FFTW (originally released in 1999, and with the much improved version 3 released
in 2003 which added vectorised forms of the FFT) even at the time of publication
[66]. Though we have chosen here to show the results by way of comparison with
the FFT in FFTW due to this being freely available across architectures and op-
erating systems, we note that performance of the FFT through the FFT interface
supplied in Intel’s commercial Math Kernel Library was found to be around 2.5x
that of FFTW on the same hardware used in this study, and so the FMM fares

even worse by comparison.

We did not attempt to introduce a micromagnetic version of the algorithm into
Fidimag. This was because, using the technique of Visscher [67] due to needing to
use the surface charges of each cell, we would expect the performance of the P2M
part of the calculation to be six times worse than in the atomistic case. Given
that the algorithm was not competitive with the FF'T convolution technique even

without this extra cost, and because it is more usual to consider
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Despite this, the inclusion of the FMM method into our code Fidimag is designed
such that it enables the study of systems where particles do not lie on a lattice, en-
abling the computation of the dipolar field in problems where it was not previously
possible other than by direct computation in this software, such as in clusters of
nanoparticles [184]. We note that the atomistic spin dynamics codes Vampire [58]
and Vinamax [185] make use of approximations for computing the dipole field that
appear similar to the Barnes-Hut method with p = 1 and s = 1. From our own
tests, we found that approximation at this level of expansion order is not suffi-
cient to maintain an acceptable level of accuracy in simulations in general, because
it can lead to an error on the dipolar field of over 100% on individual particles.
This may or may not manifest itself in simulations, and is strongly dependent on
other parameters and the relative strength of the dipolar field against other energy

terms.

4.6 Suggestions for Performance Improvements of

Hierarchical Calculations

In order to achieve highly parallel performance, modern processors make great
use of core and vector parallelism to improve performance. With core parallelism,
each CPU has multiple cores which can act independently from one another and
calculate different things, thereby reducing the computation time when all cores are
applied to a given problem. Vector parallelism, on the other hand, allows parallel
operation on data within a core. We show an example of this for multiplication of

two arrays in Fig. 4.7.

Each modern processor architecture has a set of vector instructions can be utilised.
Current flagship Intel processors make use of the AVX2 or AVX512 instruction set,
which allows operations on 256-bit and 512-bit registers respectively. A floating
point number is usually stored in 4 bytes (32 bits) as single precision, or 8 bytes in
double precision, so up to 8 (16) floating point numbers or 4 (8) double precision

numbers can be operated on in parallel once on current architectures.

Exploiting vector registers however, is difficult in practice. Compilers can vectorise
loops to some extent but if branching occurs in a loop then vectorisation will fail.
Processors also have cache memory to improve performance, and fetching from
the cache is done in chunks (of 64 bytes - 8 floats or 4 doubles). The fastest
FMM codes, ExaFMM makes use of explicit vectorisation in the P2P kernels,
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while FalcON uses vector registers in the M2L kernel [157, 181] They do this by
calling vector intrinsic functions [186] made available in language extensions, and

which are available in some compiler families.

Implementing explicit vectorisation into code is not straightforward in general,
however. Different vector instruction sets must be used for each processor archi-
tecture, and in general they are not backwards compatible, or compatible between
processor vendors (though ARM’s implementation of vectorisation, Scalable Vec-
tor Extension, is more general and does not require knowledge of the vector register
size in advance). The calling conventions for vector intrinsic functions can also dif-
fer between compilers, and so in a HPC code which must generally be compilable
by at least GCC and the Intel compilers, and preferably also Clang, Cray and Port-
land Group, it can require a large amount of work to write performance-portable
code. Tools such as the Vector Class Library [187| and xsimd [188| exist which
aim to allow software developers to write portable vectorised code by making use
of their data structures rather than raw arrays. In general, using a library such as

this is the easiest way to implement vectorisation in a cross-platform manner.

At present, no explicit (i.e. hand-implemented) vectorisation is done in the oper-
ator functions generated by fmmgen. This is likely a major source of the difference
between the performance of the convolution approach and the FMM, as in gen-
eral, FF'T libraries are highly optimised. However, it is straightforward to see how
vectorisation can be implemented. Considering the various kernels, if particles are
sorted by their parent cell, precomputed sparse matrices multiplying column vec-
tors holding the updates spin values and operated on in parallel order to compute
the operators. We suggest that to increase performance, this could be incorpor-
ated into the code generation in an explicit manner much more straightforwardly

in code generation than by hand.
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#include <immintrin.h>

void scalar_multiply(double *a, double *b,
for(int i = 0; i < N; i++) {
cli]l = alil * b[il;

}
}
// Byte alignment - hardware specific.
constexpr int align = 32;

double *c, int N) {

// Number of walues each vector intrinsic function can act on:

constexpr int k = align / sizeof (double);

void vector_multiply(double *a, double x*b,

double *c, int N) {

__m256 regl;

__m256 reg2;

for(int i = 0; i < N/k; i++) {
int o = ixk;
regl = _mm256_load_ps (&alol);
reg2 = _mm256_load_ps (&blol);
regl = _mm256_mul_ps(regl, reg2);

_mm256_store_ps (&clo]l, regl);

FIGURE 4.7: Scalar and vector multiplication functions. The vector multiply
function here makes use of Intel AVX2 instructions, and breaks the loop into
chunks which are processed on vector registers.
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4.7 Discussion

In this work, we have implemented and shown the efficacy of code generation
for the multipolar Barnes-Hut and Fast Multipole Methods, and have described
the implementation of this into an publicly available framework. While we have
achieved substantial increases in performance over the direct method, there are
several areas in which further progress can be made. Notably, the use of an
irreducible representation of the operator functions through the use of a detracing
operator can reduce the storage space needed for the Cartesian FMM [168]. We
also note that performance was disappointing compared to the FFT-convolution
method which is commonly used in dipolar atomistic simulation. It is worth
stating, however, that, the code developed still has utility for more general spin
dynamics simulations, whereby atoms are not placed on lattices. The study of
Stoner-Wohlfarth nanoparticles which are not distributed on a lattice has been
of much recent interest due to their applications in medical technology [185]. In
these types of simulations, the methods developed and made public in this work

have considerably better performance for small numbers of particles.

It is important to note that while the algebraic complexity of the spherical har-
monic expansion is lower (at O(p?) for a naive implementation or O(p®) when
rotations are used to reduce the cost of the local expansion translation), at low
orders it has been shown by various authors that the computational cost of us-
ing the Cartesian method is often still lower, despite scaling as O(p®). It has,
however, been shown by the proliferation of consumer-grade GPU hardware in
computational research that in many cases, accuracy of less than 1077 is sufficient
in many numerical applications. It is with this in mind that there is still much to

recommend about the Cartesian approach over the Spherical Harmonics technique.

It is of our opinion that the specialised nature of many libraries towards specific
problems means that hierarchical methods have not been as successfully adopted
as other numerical techniques, and indeed, part of our own motivation for this work
was in the difficulty of applying existing packages to our own problems of interest,
namely nanomagnetic dipoles. We note that, for example, in gravitational systems
where the domain origin is chosen as the centre of mass, the dipole moment will
always vanish [168, 189]. A specific and widely used optimisation for the fast
multipole method in this case, therefore, is to neglect entirely the calculation
of the dipole moments in a system, which precludes the reuse of a hand-written
gravitational FMM code for other applications where the dipole moments are non-

vanishing, without some modification.
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After the course of work was completed, it was brought to the attention of the
author that an updated version of the work by Coles and Bieri [190] had been
published [168], in which the previously closed source code for generating multipole
operators had been released openly as the software package ‘Mosaic’, available

freely on GitHub [191].






Chapter 5

Magnetic Skyrmions

5.1 Introduction

Skyrmions are a type of topological defect first predicted by Tony Skyrme in the
context of field theories in Nuclear Physics [192]. The skyrmion’s nature is defined
by the property that it can not be be continuously deformed from the lowest energy
state (sometimes known as the vacuum state) to the defect state. This concept can
be thought of simply in the case of a Mobius strip; the twist in a continuous piece
of paper cannot be removed without ripping the paper. This affords the skyrmion
a degree of ‘topological protection’” which leads to an increased stability when
compared to other states. In the context of magnetism, the skyrmion is a quasi-
two-dimensional structure which originates from the competition between different
magnetic interactions. The skyrmion in micromagnetic theory is characterised by

the topological charge [193]:

S— i / / dedy - (9ym x d,m) (5.1)

The presence of a skyrmion in an infinite continuous field gives a winding number
of 1. Along the radius of the skyrmion, the magnetisation in the out of plane
direction varies from — M to +M; continuously. The two types of skyrmion which
form, the Néel skyrmion and Bloch skyrmion (shown in Fig. 5.1) differ in how
the magnetisation rotates along this radius, and they are named for the respective

types of domain wall which also rotate in the same way.

The existence of the skyrmion state in magnetism was first predicted by Bogdanov

and Yablonskii [194]. In this work, using the mean-field Ginzburg-Landau (GL)

71
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FIGURE 5.1: This figure shows (a) a Bloch Skyrmion and (b) a Néel Skyrmion.

Bloch Skyrmions are found in materials such as FeGe and MnSi, which have a

bulk Dzyaloshinsky-Moriya interaction, while Néel Skyrmions are found in ma-

terials with interfacial Dzyaloshinsky-Moriya interaction. While the m, compon-

ent of both types of skyrmions are the same, the magnetisation rotates differently
along the skyrmion radius.

theory in an analogous way to the work done by Abrikosov in predicting the vortex
lattice [195], the authors added a term corresponding to the Dzyaloshinskii-Moriya
interaction (DMI) in bulk crystals of various crystallographic classes to the free
energy functional, and showed that it admitted an inhomogeneous mixed ‘vortex’
lattice state which could be formed in a particular range of high applied magnetic
fields, as the free energy of this state was lower than that of the spiral (or helical)
and ferromagnetic states under these conditions. This was later extended in a work
by Bogdanov and Hubert where a phase diagram between the combined effect of
the applied field and anisotropy and the other material parameters was calculated,

and showed a triple point between the ferromagnetic state, the skyrmion lattice
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and the spiral state [28]. The thermal effects were later taken into account, and
the prediction of a spontaneous skyrmion in two dimensional samples in a finite
temperature range was made [29]. The skyrmions predicted by these papers are
general; different crystallographic classes admit energetically favourable skyrmions

of different types.

In materials where symmetry breaking occurs at the boundary, a different type of
DMI occurs, and the strength of this interaction can be significant [196, 197]. A
later paper by Bogdanov and Rofler added a different DMI term phenomenologic-
ally to the GL energy functional to model the effects of this DMI, and showed that
skyrmions could be seen outside of the bulk types of crystals in which they had
previously been predicted [198]. The skyrmions predicted to form in these types
of systems have a specific form of the DMI, and this leads to the Neél skyrmion.

The first experimental study in which skyrmions were indirectly observed was
published by Miihlbauer and collaborators in 2009. In this work, samples of the
bulk B20 material MnSi were subject to an incident neutron beam applied parallel
to a magnetic field after field cooling, and the scattering pattern showed sixfold
symmetry, in an ‘A-Phase’ characteristic of a skyrmion lattice. The skyrmion
lattice was observed in samples cooled to between 25 and 35 Kelvin, and subject
to an applied field of between 0.1 and 0.2T [199]. A subsequent work by the same
group showed that an additional contribution to the Hall resistivity which could
be explained only by the Topological Hall Effect, giving further evidence that the
‘A-Phase’ was indeed caused by Skyrmions [200].

Observations of skyrmions in a broader range of materials has since been carried
out. FeGe has been particularly well studied, and it was in this system which
the first real space images of skyrmions were obtained using Lorentz Transmission
Electron Microscopy (LTEM) [201, 202]. It was determined that the presence
of the skyrmion lattice in FeGe was critically dependent on the thickness of the
sample, with the extent of skyrmion stability in the B — T" phase diagram smaller
in thicker films. Theoretical work has predicted that chiral modulations occur
along the core of a skyrmion when extended through a sample, which significantly
changes the energy landscape of skyrmionic states. In particular, for thicker films,
this is energetically unfavourable, which explains these experimental observations
[203]. Later works extended real-space imaging to other B20 materials, with a
particular achievement being the imaging of the skyrmion lattice in MnSi, with
the much shorter helical period of 19nm [204]. Skyrmions have been observed in
the insulating B20 multiferroic material Cu,0SeO3 [205, 206].
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In addition to the observations of Skyrmions in bulk crystals, much experimental
focus has been on thin-film and ultra-thin film systems [34, 207-209]. The mo-
tivation behind this is because by careful engineering, the Dzyaloshinskii-Moriya
constant can be tuned. The first experimental observation of a skyrmion lattice
in such a structure was made in a hexagonal monoatomic layer of Fe on a sur-
face of Ir(111). In this particular system, the skyrmion lattice was observed to
have twofold symmetry, and was imaged using spin-polarised scanning tunnelling
microscopy (SP-STM) [210]. Since then, the number of experimental studies in
this area has seen enormous growth. By now, the tuning of the material paramet-
ers through the use of multi-layers has been tried by many experimental groups,
with notable achievements the realisation of room temperature skyrmion stability
[211, 212] and skyrmions as small as 10nm [213].

Experimental evidence of skyrmion motion was obtained first in MnSi samples,
where the application of an in-plane current through a sample placed under a
magnetic field or temperature gradient caused rotation of the skyrmion lattice
phase, was seen by rotation of the diffraction pattern [214]. Direct imaging of
skyrmion motion was obtained soon after, with Lorentz TEM imaging of FeGe
under the application of a current showing a low critical current for skyrmion mo-
tion of less than 102 A cm™? [215]. This study showed that the induced skyrmion
motion had both translational and rotational components. Another key exper-
iment which showed the use of spin transfer torques in skyrmion manipulation
demonstrated the creation and destruction of individual skyrmions. In a three
layered Pd/Fe/Ir(111) system, in which the PdFe acts as a single magnetic layer,
the application of a voltage sample allowed selective injecting of a skyrmion into

the magnetisation of the sample [33].

Much has been made of proposed technological applications of Skyrmions, and
research in this direction has been a large focus of interest [36, 38]. In terms
of technical applications, it is rare to find a scientific paper in this area without
promises that skyrmions can revolutionise magnetic storage devices or electronics.
The skyrmion is heralded as a successor to magnetic domain based storage in
many papers due to the aforementioned degree of topological protection. Despite
this, it is well known that any such protection is limited; while it is true that the
destruction of a skyrmion in an infinite magnetic system in a continuum theory
leads to an infinite energy barrier and as such the skyrmion cannot be destroyed,
magnetic materials are not continuum but discrete. It has been shown now by
many authors [132, 134, 216| that the energy barriers to the skyrmion destruction

are not impassable, and this is discussed further in Chapter 6. This is somewhat
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obvious - if the barrier to creating or destroying a skyrmion was infinitely high, we
would never observe skyrmions in materials at all. Nonetheless, the works in which
barriers have been calculated have suggested that the skyrmion energy barrier
is still high enough to provide a level of thermal stability suitable for magnetic
storage. It is perhaps relevant to mention that this increased interest in skyrmions
comes at a time of reduced demand for magnetic storage devices; as of early 2020
sales of magnetic hard disk drives are dropping quarter by quarter because of the
rise in semiconductor based solid state drives. This has left researchers working

towards alternatives which can in the future supplant existing technologies.

Probably the most widely discussed idea for applying Skyrmions towards technolo-
gical applications to has been that of using ‘skyrmion racetracks’ for data storage,
proposed by Fert and collaborators in a commentary piece in 2013 [26]. The dia-
meter of skyrmions in multilayered systems is to some extent tunable through
the layering of different materials, but is generally around an order of magnitude
lower than conventional magnetic domain storage bits, which motivates their use
in storage devices. The proposed mechanism behind racetrack storage is that a
current is applied in-plane, causing the skyrmions to move along a nanowire. This
is a logical extension of previous work which used the idea of domain walls in a
racetrack [22]. In research into domain wall based racetrack storage, it was found
that the current-driven motion of domain walls was inhibited by local defects where
there is either no magnetic material or an increased anisotropy, making the domain
walls difficult to drive reliably, and causing data loss [217]. While several authors
have shown the motion and creation of skyrmions in racetracks both theoretically
[25, 37, 39, 218-220] and have shown skyrmion motion experimentally [212], re-
cent studies have suggested the same problems with pinning and maintaining data
integrity are likely to occur with skyrmions [44, 221]. While the threshold current
for skyrmion motion is lower than that of domain walls, the skyrmion velocity is
comparable to the domain wall velocity above the domain wall critical current,
and any proposed storage device would rely on the current being above this value
[212, 215]. An additional problem is that the skyrmion also moves with a deflec-
tion due to the topological hall effect, driving the motion towards the sample edge

in a racetrack [222].

Detecting skyrmions reliably is still an ongoing issue. While imaging techniques
can be used, for devices this is not sufficient, and the magnetostatic field measured
at a distance from a skyrmion is low. The topological Hall effect component
of the resistivity changes in the presence of a skyrmion, but the skyrmion also

moves in the presence of a current, which influences data integrity, and there have
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been many proposed theoretical electrical detection mechanisms [26, 223, 224|.
The experimental study of such structures is challenging, though several groups
have now fabricated samples in which individual skyrmions have been electrically
detected, though at temperatures much lower than would be feasible for realistic
devices [46, 224, 225|.

The dynamic behaviour of skyrmions in the bulk lattice regime is now relatively
well understood [226, 227]. However, in practice, to fabricate useful devices, the
nanostructure hosting the skyrmion needs to be of a size not much larger than the
magnitude in size as the skyrmion itself, as only by this will it be able to compete
with other avenues of research. To this end, it is important to understand how
skyrmions behave in isolation in confined nanostructures. In 2013 it was shown
that Néel skyrmions could be admitted into cylindrical nanodisks as a lower energy
state than the ferromagnetic state with an interfacial type DMI [31]. In FeGe disk
systems, a comprehensive study similarly showed that the ground state energy
was either a skyrmion or an ‘incomplete skyrmion’; also known as a radial vortex.
This study also investigated hysteric behaviour of these disk systems [32], with
skyrmion state destruction mediated by a bloch point shown. This work was
expanded to investigate the dynamic behaviour of skyrmions in disk systems, by
studying the resonance modes [228]. As previously mentioned, due to the discrete
nature of magnetic systems, there is no ‘true’ topological protection afforded to
the skyrmion in magnetic systems; a finite energy barrier always exists between
the ferromagnetic and skyrmion state. In particular, work has shown skyrmion
creation at the sample edge can be energetically preferable, and strategies for
skyrmion creation here. [132, 221, 229, 230].

Experimental measurements show that isolated skyrmions can exist for long times-
cales well outside of the small pocket of the temperature-field ‘A-phase’ in which
the skyrmion lattice is found in many materials. However, as discussed by sev-
eral authors [32, 231], there has still been relatively little investigation as to the
both the behaviour and stability of isolated skyrmion states, and how the shape
of nanostructures affects this in bulk chiral materials. This is despite it being
well known that boundary shapes play a key role by inducing shape anisotropies
in the energy landscape in ordinary ferromagnets [232]. A particularly surprising
paper showing that the understanding of isolated skyrmions in bulk ferromagnets
was the recent work of Du [233| which showed both in experiment and simulation
that the pairwise interaction between Skyrmions can change from attractive to

repulsive at low temperatures.
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In this chapter, the energy landscape of FeGe nanostructures of triangular and
square shapes of different sizes is investigated, and a ground state phase diagram
for each state is constructed for each type of sample by varying the size and applied
field. It is shown that the energetics are substantially modified in comparison with
similarly sized nanodisks. An experimental procedure for observing skyrmions is
proposed for FeGe nanostructures, and a range given over which one could expect
to find Skyrmion states in such samples. The work shown here was published as
"Skyrmion states in thin confined polygonal nanostructures", R. A. Pepper, et. al.
Journal of Applied Physics 123, 093903 (2018) [234]. The data used in this study
and scripts to generate the figures are available as 'Dataset for "Skyrmion states
in thin confined polygonal nanostructures"’, (Version 1.0.0), Zenodo (2017) [235].
The division of work in this was as follows. The present author, Dr. Marijan Beg
and Prof. Hans Fangohr conceptualised the idea behind the work and interpreted
the results. The present author wrote and executed the simulations, analysed
the data and prepared the manuscript. All authors on the paper worked on the

simulation software Finmag behind the study.

5.2 Skyrmions in Thin Polygonal Nanostructures

5.2.1 Method

Through micromagnetic simulations, film systems of FeGe of thickness 10 nm are
studied using a fully three-dimensional model. This model is chosen as it has
been rigorously shown both theoretically and experimentally that in films of cubic
helimagnets, chiral modulations occur along all three spatial dimensions, which
reduces the skyrmion state energy in 3D systems of thickness lower than the helical
length - the length over which the magnetisation undergoes a full rotation [236—
239]. The dynamics of the magnetisation field m are modelled by the Landau-
Lifshitz-Gilbert (LLG) equation
om Oom

5 Yom X Heg + am x e (5.2)

Here, 75 = 7 (1 + a?) where 7, is the gyromagnetic ratio, and 79 < 0. The
constant « is the Gilbert damping coefficient. The effective magnetic field is
calculated as Heg = — (0w/dm) /(uoMs), where w is the total energy density
given as:

W = WExchange + WpM + WZeeman + WDemag (53)
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FIGURE 5.2: Initial magnetisation configurations from which each geometry is

relaxed, shown here in a 140 nm side length film. The states are (a) incomplete

skyrmion, (b) isolated skyrmion, (c) and (d) over-complete skyrmions (e) target

state (f), (g) and (h) helical states of different helical lengths (i) uniform state,
and (j) random state.

The symmetric exchange energy density is Wgxchange = A (Vm)® where A is the
magnetic exchange constant. The bulk Dzyaloshinskii-Moriya interaction (or anti-
symmetric exchange) in a material of crystallographic class T is given as wpy =
Dm - (V x m) where D is the DMI energy constant. The Zeeman energy is
calculated from the applied field H as wzeeman = —poMsm-H. The demagnetising
field is calculated using the Fredkin-Koehler hybrid FEM/BEM method.[117] For
the simulations of FeGe, we use the parameters [32] A = 8.78 x 1072J m™,
D =158x10"3Jm 2 M, =3.84 x 10°A m~'. The finite-clement discretisation
was set such that the distance between mesh nodes was no greater than 3 nm,

smaller than the relevant micromagnetic length scales for the given material, which

has a helical length of 70 nm and exchange length [, = uf?lﬁ? = 9.67nm

The model chosen does not take into account temperature fluctuations. FeGe
has an ordering temperature of 278.7K [240| In large samples of FeGe studies
showing skyrmion states have been performed within the temperature range of
between 5K and 278 K which show the skyrmion lattice state. In a study by
Zheng et. al. [241], robust target states, where the magnetisation rotates over
two periods over the width of the sample geometry, were observed in nano-pillars
of FeGe with Lorentz TEM measurements taken at 95 K. With this in mind, the
effect of temperature fluctuations is not expected to be substantial, so long as any
corresponding experimental studies are done at temperatures below the ordering
temperature. A ground state phase diagram is computed for two types of confined
FeGe sample; square and triangular films of 10nm thickness, through dynamic

simulations. Dynamic simulations are used in order that all discovered states
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are physically realisable, as direct energy minimisation can in some circumstances
find states which are difficult to reach due to large energy barriers. The energy
landscape of these structures is explored by changing the applied magnetic field,
which is varied between 0 mT and 800 mT, and which is applied in the z direction,
into the plane of the system. In squares samples, films which have a side length
between 40 nm and 180 nm are simulated, while in triangles a larger range of side
lengths between 40 nm and 220 nm so that coverage is given to samples of similar
volume. Initially, the magnetisation of each point in the phase space is set to each
configuration of a set of initial states; the definition of these states is the same as
those used in the study of Beg et al [32]. The set of initial states, which includes
uniform magnetisation, skyrmionic state profiles, helical profiles, and a random
magnetisation state (which is repeated three times) are shown in Figure 5.2. This
systematic exploration is done in order to capture as many equilibrium states as
possible for each simulated system. In order to construct the ground state phase
diagrams, we relax systems from these initial states under the LLG equation, until
the system has settled into a local (or global) minima in the energy landscape.
States are considered to be in equilibrium, and simulations are stopped, when
the value of |0m/0t| is less than a tolerance of 0.01 degrees per nanosecond, at
which point the magnetisation is no longer changing. A damping factor value of
a = 1 in order to achieve convergence to the final states quickly, by suppressing the
precessional dynamics, which does not affect the final state. Once the dynamics
have subsided according to the above criterion, the total energy of these relaxed
states is computed. The lowest energy state that is found is then identified (from
the total set of simulations starting from different initial configurations) as the
ground state for the given geometry and applied field value, which allows the
construction of a d — B phase diagrams of the ground states. High energy relaxed
states are considered to be metastable. To perform the simulations, the finite-
element micromagnetic simulator Finmag, [115] is used. For time integration, a
preconditioned BDF method is used from the SUNDIALS library [242].

5.2.2 Results
5.2.2.1 Equilibrium States
A wide variety of equilibrium states (formed of both the ground and meta-stable

states) are obtained from the simulations in the systems, and in Figure 5.3, the

regions in d — B phase space where each state can form as an equilibrium state
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FIGURE 5.3: Equilibrium regions for states found in different geometries. In
the first and last columns the z-component of the magnetisation for examples of
states (i) to (iv) in the square and triangle systems is shown. The d-B graphs
show dots when a meta-stable state of that type was found for that size and
applied field. Incomplete skyrmion states (top row), are not stable for large
square systems, with a field lower than around 400 mT. However, this is not
seen in triangles. In contrast to squares, target states are not observed as meta-

stable in any region of phase space studied in triangles.

are shown. The equilibrium states can be broadly classified into several groups.

1. Incomplete Skyrmions - These states are named [32] as such due to the pres-

ence of a quasi-uniform magnetisation across the system, and a skyrmion-like

core. Due to the DMI, at the boundaries magnetisation is twisted. These

states are known by many different names in the literature; other authors

give the labels ‘radial vortex’ [243], ‘quasi-ferromagnetic’ [31] and ‘edged-
vortex’ [244] in the literature to identify this type of state. (Figure 5.3 (i))

2. Isolated Skyrmions These states, normally axially symmetric in disks, are
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distorted by the boundary of the confined geometry in both triangular and
square systems. (Figure 5.3 (ii))

3. Helical States A large variety of rotational spin textures form metastable

states in the studied systems. (Figure 5.3 (iii))

4. Target States Target states can be considered as an isolated skyrmion, with
an additional radial half-helical rotation. (Figure 5.3 (iv))

5. Skyrmion Clusters Multiple clusters of skyrmions form metastable states in
the geometries when strong fields are applied to the system, resulting in a
smaller skyrmion radius. These states are found as high-energy metastable

states for larger system sizes and for high applied fields. (Figure 5.4)

d=110 nm d =165 nm d =180 nm d=175 nm
B =800 mT B =550 mT B =800 mT B =800 mT
5 O © - +1.0
0 & l
.
~ .
0.0 M,
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00 l10
o ©

FI1GURE 5.4: Examples of the z-component of the magnetisation for high energy

states containing multiple skyrmions. For square systems, states containing up

to 10 skyrmions were observed and in triangles, a maximum of 6 skyrmions were
observed, in both cases with close packing of the Skyrmions.
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5.2.2.2 Ground States

The ground state phase diagrams (Figs. 5.5 and 5.6) show the lowest energy states
identified for each geometry size for a given applied field. For the square systems,
there is a large region where isolated skyrmions form the lowest energy state for
sample sizes as low as 110nm with an applied field of 350 mT. For larger sizes,
the range of applied fields where skyrmions form the ground state increases, and
at 155 nm, the skyrmion is the ground state with no applied field. For all sample
sizes studied, fields of above 700 mT result in magnetisation saturation. With no
applied field, from 100 nm to 150 nm there are several types of helical states form

the ground state.

In Figure 5.6, the ground state phase diagram for the triangular systems is shown.
In contrast to the square systems, skyrmions are not identified as the ground state
when no applied field is applied for any sized sample investigated, which shows a
strong indication that the shape of the boundary of the system plays a crucial role
in the energetics of magnetic skyrmions in confined geometries. Skyrmion states
do form the ground state for systems of side length d > 185 nm when an applied
field between 50 and 600 mT is present. For systems of side length d > 190 nm,
a number of helical states form the ground state with no field. Between 40 and
50nm, quasi-helical type states are observed, though the lengths in these systems
are below the helical length of FeGe.

These results are qualitatively similar to those seen in disk systems, in that the
same types of state were found and the phase diagram is qualitatively similar.
However in a previous wochiral bobberrk, in nanodisks of FeGe of the same thick-
ness, skyrmions formed the ground state with no applied field for smaller systems
than in squares, with observation at disks of diameter greater than 135nm [32],

and no helices were seen as the ground state.

The incomplete skyrmion states identified in the triangular geometry vary signific-
antly depending on the size of the systems. Notably, tilting of the magnetisation at
the boundary of the sample due to the DM interaction causes the magnetisation to
point most strongly along the axis of the applied applied field, with the strongest
alignment along the axes of symmetry in both the square and triangular states,

which can be seen in the incomplete skyrmion images shown in Figure 5.3 (i).
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FIGURE 5.7: Obtained states from relaxing square systems from uniform mag-
netisation. In (a), there are four regions of different type of states - from left to
right (i) incomplete skyrmions (ii) isolated skyrmions (iii) over-complete skyrmi-
ons, and (iv) helical type states. We predict that these configurations can be
achieved in an experimental study where first a high saturation field is applied
in the out-of-plane direction, and then the field is reduced to the value shown
on the y-axis. In (b), the final state obtained for each of these configurations is
shown, with no applied field.

5.2.2.3 Proposed experimental study

Of particular interest are states obtained from relaxing the systems from the uni-
form state. Experimentally, these states could be realised by initially applying a
very strong applied field, to ensure that the magnetisation of a sample is saturated,
and then rapidly reducing the applied magnetic field. The states obtained from
doing this in the square sample are shown in Figure 5.7. There are four distinct
bands of states, with incomplete skyrmions forming the bulk of the phase diagram.
Skyrmion states are obtained in a narrow band, between 110 and 135 nm, with no
applied field, and at larger sizes of system up to 180 nm with an applied field of
400 mT. For system sizes, from 140 to 160 nm with no applied field, target states

are observed, and at 165 nm and above with no applied field, helical states form.

The corresponding uniform applied field results for triangular systems is shown in
Figure 5.8. Here, similar results are obtained; in the bulk of the phase diagram

incomplete skyrmion states are obtained. For large systems of between 190 and
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FIGURE 5.8: Here, the z-component of the magnetisation for the states obtained

by relaxing triangular systems from uniform magnetisation is shown. In (a),

there are two regions of different type of states - from left to right (i) incomplete

skyrmions (ii) isolated skyrmions. In (b), the finals state obtained for each of
these configurations with no applied field is given.

220 nm, when the field is reduced to a value between 0 and 150 mT, a small band

of skyrmion states is shown.

5.2.3 Conclusion

In this work, it is shown through micromagnetic simulations that in 10 nm thick
confined geometries of FeGe, skyrmions can form the lowest energy state. When
there is no applied field, there exists a lower bound of side length d between 150
and 155 nm, below which skyrmions do not form in square systems, and between
100nm and 150 nm, a variety of helical type states form the ground state. In
triangular systems, the incomplete skyrmion state forms the ground state in most
of the phase space studied, and in large systems skyrmions form the ground state
between fields of 50 and 600 mT.

Over the same range of sizes and fields studied, a wide variety of states are in equi-
librium, and it is shown where these states can be obtained through metastability
diagrams. The states obtained from relaxing uniformly magnetised states from

the saturated state are shown in both the square and triangular systems in order
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to motivate experimental work on FeGe confined geometries, and we predict that
skyrmion states should be experimentally accessible in both square and triangular
systems. In larger systems, we also predict that in large square systems, target

states should be accessible using the same procedure.

To take work on confined FeGe nanosystems further, a potential option is to study
elongated systems of disks and polygonal states, though these are much more
computationally challenging. In one study, similar states to those found here were
shown through hysteresis calculations in FeGe elongated nanocylinder systems up
to around 50 nm via hysteresis. However, no phase diagram showing the ground
states of such a system have been conducted to the authors knowledge. In such
elongated systems, we may expect to see additional states than in this study due
to the larger geoemtrical size, such as the exotic chiral bobber states [245] in large
confined systems, which have recently been observed experimentally in thin film
FeGe systems [246].






Chapter 6

Edge Defects and Energy Barriers in

Skyrmion Monolayers

6.1 Introduction

Several techniques have been applied to investigate the energy barriers for trans-
itioning between states in magnetic systems since the study became feasible in the
late 1980s. The transition between states is most probable to occur over minimum
energy paths - the paths in the energy landscape where the barrier between states
is lowest, and so finding the barrier implicitly involves finding the minimum energy
paths for a given system. The earliest computational technique to study the en-
ergy barriers in nanomagnetic systems was introduced by Enkin and Dunlop, [247]
whereby a simple planar micromagnetic model of magnetite cubes was constrained
at the surface to point in a given direction, with interpolating states minimised,
in order to study single domain reversal mechanisms. Enkin and Williams then
extended this reduced order formulation further to allow variation within a given
plane [248|. Simple Stoner-Wohlfarth type models were later utilised to model the
reversal properties of grains in magnetic recording media during the mid-to-late
1990s [249], while other studies attempted to estimate the upper limits of energy
barriers by recording the energy during transitions when systems were evolved
under Landau-Lifshitz-Gilbert dynamics [250].

The first attempt to directly compute the minimum energy paths, rather than
assuming that the path followed in dynamic studies was minimal, was performed
by Dittrich, et.al., which introduced to micromagnetics the Nudged Elastic Band
Method (NEBM), a technique previously used to study structural transitions in

89
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Chemistry, which can be utilised when the start and end states between a transition
are known [133, 251, 252|. Numerical evaluation of energy barriers via a Lagrange
multiplier method was later used by Paz, et.al. [253]. to study atomistic and
micromagnetic systems, with the restriction that an initial rotation direction must

be specified, favouring some annihalation mechanisms over others.

The study of energy barriers in systems containing skyrmions has been of recent
interest, because of the various proposals for skyrmion based device technologies
mentioned in the previous chapter. Crucial to any skyrmion-based device is the
need for robustness; the skyrmion state should have a lifetime much longer than the
information must be stored for. In general, for commercial storage applications, the
lifetime of data must be at least 5 to 10 years, which is a challenging requirement.
The skyrmion lifetime in a given sample is directly related to the energy barriers of
different routes to destruction. For a particular minimal energy path, the lifetime

can be estimated by an Arrhenius law:

AE

T e (6.1)

where AF is the barrier height of the minimal energy path, T" is the temperat-
ure and f is the attempt frequency. Similarly, the same equation can be used to
determine the spontaneous creation time with knowledge of the activation energy
for the creation mechanism. The first study to consider minimum energy paths
for skyrmion destruction and creation was performed by Bessarab, et.al. [131],
who introduced a modified version of the NEBM on an atomistic system, utilising
geodesic distances, and studied the energy barrier between the ferromagnetic and
skyrmion state via skyrmion collapse due to a large applied field. Further studies
have expanded on this by studying other destruction mechanisms, [51, 134, 254]
namely mediated with a Bloch Point and through the edges of a sample, looking
at the effect of destruction through the boundary [132]. Authors have also con-
sidered the system size, applied field, and confinement of skyrmions, as well as the
destruction mechanisms for anti-skyrmions [255]. Notably, because of the Bloch
Point energy destruction mechanism, it is important that that atomistic rather
than micromagnetic modelling is used such that the energy barrier is computed
accurately. In the above studies, the energy barrier for skyrmion destruction at
the boundary has been found to be substantially lower than the other destruc-
tion mechanisms. Evidence that this is the case in reality is that skyrmions have
been observed to preferentially form at the edges of systems in experiments. With
knowledge of the energy barriers of different destruction and creation routes, one

exciting recent study used the techniques as kinetic Monte Carlo and forward flux
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sampling to estimate the lifetimes of a given state [256].

It is well known that defects aid in the nucleation and destruction of skyrmi-
ons, with simulation studies showing that nucleation and destruction can occur at
notches in confined systems [37, 44|, and in experimental studies the nucleation
of skyrmions at defects has also been observed [257]. Thus far, however, only a
few studies have looked at the effect of defects on the minimum energy path for
skyrmion creation and destruction mediated by defects. In one study, [258] the
energy barrier was computed for in-track destruction on a Pd/Fe/Ir(111) system
at a defect site with either one or three atomic vacancies, and it was found that
the energy barrier was reduced by more than 50% at the site of the three atom
defect. A more comprehensive study looked at the effect of defects which vary
the local Exchange, Dzyaloshinskii-Moriya and Anisotropy strengths across sites
in Co/Pt(111) systems [259].

In realistic systems, we expect that defects are present not only within the sample
but also at the surface edge, as a result of fabrication. In lamellae cut from
crystals, edge defects can result from ion implantation, resulting in magnetically
dead surface regions, while images of nanostructures grown on a substrate also
clearly show rough surfaces. A recent study looked at energy barriers in confined
nano-islands of Pd/Fe and Pd,Fe in which clear edge defects can be seen, but
did not model systematically how the edge defects affect the energy barriers of
skyrmion to ferromagnetic transitions [135]. In another work, the energy barriers
to skyrmion destruction past at semicircular notches along a nanotrack edge are
considered micromagnetically when an applied current is present in the system,

but the effect of defect size was not considered [44].

In this work we consider a simple, atomistic system comprising of a monolayer of
atoms, with edge defects of triangular, square and Bezier curve shape. We aim here
to try and fill the gap in the energy barrier literature by calculating the minimum
energy paths to skyrmion nucleation and destruction via such edge defects, using
the Nudged Elastic Band Method. We additionally study the contribution of the
dipolar field to this barrier, and show that it can significantly reduce the energy
barrier for large defects. The present author conceived of this study, wrote and
performed the simulations and interpreted the results, and discussed the results
with Dr. David Cortés-Ortuno. The data from this study has been made available
[260].
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6.2 System Definition

N b

w

FIGURE 6.1: Definitions of the three types of defect - triangule and rectangular
and bezier.

We study using the atomistic component of Fidimag [95] a confined rectangular

monolayer of 201 x 200 Cobalt atoms using the Heisenberg energy model:

H=—> J;Si 8j+dr;x2—Y ky(Si-u+> mHy-S; (6.2)

i#j i i
where the parameters used are those given in Table 6.1. For each system, we
consider an edge defect cut from the top edge of the system. We introduce two
types of edge defects in these simulations; triangular, rectangular and curved,
(Figure 6.1), each with a maximum depth d and width w. For all defects, magnetic
atoms are removed when they are centred within the region bounded by the defect
region. The curved defects are introduced into the system by a bounded Bezier

curve defined as:
f) =0 —t)*Py+2t(1 —t)P, + t* Py (6.3)

where P are control points bounded such that Py = (LIT’“), L), P = (%,L, -
2d)and Py = (¥ L,) and t = [0, 1).

Atomistic Cobalt Parameters
a 0.25A
1 0.846 meV
Jij 27.026 meV
ky, 0.676 meV
d;j 27.026 meV

TABLE 6.1: The parameter set used for all simulations in this chapter. The
parameter set is the same as that used for a Cobalt monolayer in [132].

We apply the NEBM algorithm as described in section 3.4.2 of this thesis. We
perform interpolation of the spin vectors to find the starting points for each image
in the NEBM band. We create a skyrmion magnetisation texture using the ansatz

of a skyrmion located at the centre of the sample, where within a radius R the
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magnetisation is set to:

m, = —cos (7r/R) (6.4)
mg = sin (7r/R) (6.5)

for a radius R = 10nm, and set this state to be the Y, image. For the Y,, image,
we set the magnetisation to the +z. We then use the steepest descent energy
minimisation algorithm implemented in Fidimag [130] to find local energy minima
for the two initial states, which are then used as the starting points for the NEBM.
In order to construct the other, non-fixed images in the band, we start with the
equilibrium ferromagnetic state, and then select a circular region of radius R (such
that R is greater than the skyrmion radius). The circular region for a given region
is has its origin shifted by some distance i(L, + R)/n where i is the image number
and n is the number of images. Then, within this region, the relaxed skyrmion
state is interpolated onto the equilibrium state. This gives a band of images in
which the Skyrmion is moving towards the edge of the system. We note that none
of these states are relaxed at inialisation of the band (i.e. spins in each system
would feel a torque due to the effective field). This type of interpolation was used
to find the edge nucleation energy path of interest, rather than other potential
paths described in other works [132].

In all systems studied here, the relaxed skyrmion state is of higher energy than the
relaxed ferromagnetic initial state, and hence the skyrmion is only metastable, with
the method considered to have converged to a metastable state once the magnetisa-
tion has stopped changing with respect to the fictitious time 7 as |0 /07| < 107°.
For these systems, we choose in all cases defects small enough that the initial

skyrmion magnetisation is not affected.

The iterative NEBM algorithm is then applied. In all cases, a spring constant
k =10 is used, and a total of 26 images are used (including the two fixed images).
We consider the band to have relaxed when the maximum rate of change for images
in the band reaches a tolerance of [0Y| < 107°. Initial simulations showed that
the result did not show dependence on the spring constant k over the range of

values chosen, and this value was used because it gave a good rate of convergence.
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FIGURE 6.2: We show here the minimum energy path found for the system
when no defect is present, both with and without the dipolar interaction.

From the relaxed band we can compute the skyrmion destruction and creation

activation energy barriers heights as:

AEIDestruction = maX(Ei) - EO (66)
AElCreaution = maX(Ei) - En (67)

where F; is the energy of the image ¢ in the relaxed energy band, and FEj and
E, are therefore the skyrmion state energy and the ferromagnetic state energy

respectively.

6.3 Results

6.3.1 Triangular Defects

In a Cobalt monolayer, atoms sit in a regular triangular lattice. Because of this,
triangular defects are a natural playground for considering the effect of the size of
the defect on the skyrmion destruction energy barrier when the defect is smoothly
cut from the lattice, because when h = v/3/2w no rough edges are present, and
the ‘sharpness’ of the defect is fixed; any effect of the defect on the energy barrier
is therefore only an effect of the defect size and not the shape, which is essentially

fixed. Initially, a reference calculation is performed for a pristine system containing
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no defect, both with and without the dipolar interaction included. For this system
the energy bands are shown in Figure 6.2. We can see that the path followed by the
system with the dipolar interaction is slightly different; the skyrmion is destroyed
in an earlier image in the dipolar system. We find that this is due to the increase in
the skyrmion size, which is consistent with the results of other publications [132];
because of this the skyrmion makes contact with the boundary in an earlier image
in the series. For this system, the energy barrier to destruction of the skyrmion
is found to be 23.57meV with no dipolar interaction, and 24.93 meV, while the
creation activation energies are found to be 505.67meV and 445.12meV. The
activation energy barrier for this destruction mechanism of skyrmions in Cobalt is

therefore substantially lower than that for the corresponding creation mechanism.

In the Cobalt system, the skyrmion state is highly localised, and the total energy
of the state is not significantly affected by the boundary of the sample. Thus, for
sufficiently small defects in the system, the energy barrier is not affected by the
displacement of the skyrmion towards or away from the defect. This was verified
by checking that the energy difference for states in the band was negligibly small

as the Skyrmion moved towards the defect for images in the band.

We now compare this result to systems containing a triangular edge defect. The
defect width w is varied between 0.5 and 7.5nm, and the defect height corres-
pondingly varied as described above. We find that regardless of the presence of
the defect and its size, the skyrmion essentially follows the same annihilation mech-
anism through the boundary as in the pristine system. The energy barrier heights
found for this system are shown in Figure 6.3. We find that the energy barrier to
skyrmion destruction is substantially reduced in both the dipolar and non-dipolar
cases with increasing defect size. While in the pristine case, the energy barrier is
higher with the dipolar interaction, we see a cross over, whereby for large defects
(w > 6.5nm), the barrier is lower in the dipolar case than in the non-dipolar case.
We show in Figure 6.4 the overall skyrmion destruction process for the defect of

width 7.0 nm, for the non-dipolar and dipolar cases.

In order to determine why exactly the energy barrier falls when a defect is intro-
duced, we must consider the changes in the contributions of the individual energy
terms across the band of images. In Figures 6.5 and 6.6 we show the individual
spin orientations close to the boundary, and in Figure 6.7 we consider the energy
changes between the initial skyrmion state, and the ferromagnetic state, in the

presence of the Exchange, Dzyaloshinskii-Moriya and Anisotropy energies only,
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FIGURE 6.3: Energy barrier height for systems containing triangle defects. We

include the no-defect case for reference. We find that the activation energy to

create a Skyrmion is substantially larger than the activation energy for destruc-
tion at a defect.
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FIGURE 6.4: Path to destruction for a triangular defect of width w = 7.0 nm and

height h = /3/2w, without (above) and with (below) the dipolar interaction

present. We can clearly see that the skyrmion is larger in the dipolar system,

but in both cases we see that the destruction/creation mechanism is similar. A
video of this transition is available [261].

and with no defect present in Figure 6.7 (a)). In the skyrmion state at the be-
ginning of the band, clearly, the anisotropy energy is not minimised because there
are spins rotated relative to the z axis, forming the Neél wall which makes up the
Skyrmion boundary. In both the ferromagnetic background and the skyrmion core,
the magnetisation is varying slowly; the Exchange energy is therefore low in these
collinear regions, and the Dzyaloshinskii-Moriya energy high. In the ferromagnetic
state, the both the Exchange and Anisotropy energies are minimised because the
magnetisation is aligned almost uniformly, but the Dzyaloshinskii-Moriya energy
is high for the same reason. The barrier height between the skyrmion and ferro-
magnetic state then, is to a first approximation a result of the competition between
the increase in Dzyaloshinskii-Moriya energy, and the decrease in the Exchange

and Anisotropy energies.
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FI1GURE 6.6: Close-up view of the Skyrmion annihilation at the edge of a system with a w = 7.0 nm triangular defect.

86

SIOAR[OUOJ\] UOIULIANG UI SIOLLIRE ASIoun] pue s300Jo(] 95pi 9 Ioidey)



Chapter 6 Edge Defects and Energy Barriers in Skyrmion Monolayers 99

Consider now then, what must occur for the skyrmion to annihilate. When the
skyrmion magnetisation texture approaches the boundary of the sample, the spins
along the skyrmion path must undergo a full rotation, forcing them from an initial
alignment in the 4z direction (Figure 6.5 (a)) to pointing into the sample (Figure
6.5 (b)), and then into the —z direction (Figure 6.5 (c)). This process happens
again in reverse as what remains of the skyrmion texture moves out of the domain;
first the spins point rotate to point along the y-axis (Figure 6.5 (d)), In terms of the
uniaxial anisotropy, rotating away from preferred axis is costly, and in particular,
rotating through a full circle is the most costly possible evolution. This coherent
rotation of nearby spins observed through the evolution of the system is both
energetically expensive for the Dzyaloshinskii-Moriya interaction and cheap for

the Exchange energy.

What happens then, on the introduction of a defect? We can see the evolution
of the energy bands in Figure 6.7(b), for the triangular system with width 7.0 nm
and it is clear that as the Skyrmion approaches the defect, the sharp triangular de-
fect substantially reduces the energy barrier contribution from the Dzyaloshinskii-
Moriya interaction while affecting little the energy of the Exchange interaction.
We can attribute this to the reduction in part in the number of spins which must
coherently rotate in any given point in the transition, due to the physical size of
the defect. In addition, for all spins along the boundary of the system (both when
a defect is and is not present), there are a reduced number of nearest neighbours,
and the effective field acting on such spins from the Dzyaloshinskii-Moriya and
Exchange interactions is therefore weaker than those located away from the edges
of the system. The magnetisation inherently wants to align along the effective field
so that the energy is reduced, but because the effective field is generally weaker at
the boundary due to each spin having fewer neighbours, each spin moment is less
strongly held in place. For the Exchange and Dzyaloshinskii-Moriya interactions,
which are the strongest contributors to the effective field, the effective fields are a
product only of the local environment of each spin, and so a reduction in the num-
ber of nearest neighbours for a particular spin substantially reduces the effective
field acting on it. Introducing an edge defect then, increases the number of weakly
held atoms which the skyrmion magnetisation texture comes into contact with in
the annihilation process. Because of this, the energy barrier to push the skyrmion

out of the system is reduced.

This still leaves the effect of the dipolar field to explain - why exactly does the
energy barrier increase with no defect, and fall below that of the corresponding

system with no dipolar field for larger defects? We know that the dipolar field
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FIGURE 6.7: Change of each energy term from the initial energy along the

images in the NEBM band. In (a), no defect is present and in (b) a triangular

defect of 7.0nm width is introduced. In (c) and (d), we show the change in

energies for the same systems, but with the addition of the dipolar field. We
show the highest energy point along the band with a vertical line.

is substantially weaker than the Exchange and Dzyaloshinskii-Moriya interactions
over short length scales. When a defect is small, the reduction of the dipolar field
due to the defect is very small indeed in comparison with the other effective field
contributions acting on each spin. We can see from Figure 6.7(c) and (d) that
indeed, the dipolar energy changes little across the band, while the other energies
have indeed changed much more substantially. We can therefore conclude that
the introduction of the dipolar field causes the energy barrier to change due to its
affect on the size of the skyrmion rather than the difference between the dipolar

field energies in the initial and final states. This means that a greater number



Chapter 6 Edge Defects and Energy Barriers in Skyrmion Monolayers 101

of spins are forced to rotate together in the no-defect case, increasing the energy

barrier, and fewer spins are required to in the large defect case, decreasing the

barrier.

6.3.2 Rectangular and Bezier Defects
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FI1GURE 6.8: Path to destruction for a rectangular defect of width w = 5.0nm
and height h = 5.0nm, with (above) and without (below) dipolar interaction.
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FIGURE 6.9: Rectangular defect barrier heights for creation and destruction of
the skyrmion.

We now consider rectangular and Bezier defects, and for these systems both the

width and height of the defect are freely varied, in order to study the combination
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FIGURE 6.10: Bezier defect barrier heights for creation and destruction of the
skyrmion.

of the effect of both the defect shape and size on the energy barrier. The energy
barrier heights from these rectangular and Bezier defect simulations are shown in
Figures 6.9 and 6.10 respectively. These show the activation energy barrier height
for both the dipolar and non-dipolar systems and for the destruction and creation

mechanisms.

In common with the triangular system, we find that the size of the defect affects
the barrier heights, and that for small defects the barriers are not substantially
affected. In the range of defect size studied, we find that the depth affects the
energy barrier height substantially more than width. For the non-dipolar rect-
angular case, it is found that the minimum energy barrier found for destruction
is nearly an order of magnitude smaller than in the pristine case; for a defect of
width w = 4.0nm and height A = 7.0 nm, with an energy of 0.280 meV (1.12% of
the pristine case). For the dipolar case, the smallest energy barrier is found with
a much narrower defect of size w = 1.5nm and A = 7.0 nm. In the Bezier systems,

we see very similar behaviour to the rectangular case, and so we focus on this.

There are several things of note in the results shown here. In the non-dipolar
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rectangular system, for a defect depth of A > 1.5 nm, the destruction barrier height
is found to start to slowly increase with the width w above intermediate sized
defects, the point at which this occurs varying for each depth. We can explain this
behaviour by considering what would happen if we continued increasing w beyond
what we have shown here - it is clear that from the perspective of a skyrmion, a
wide defect appears like a flat surface - i.e. the system is simply equivalent to one
with fewer rows of atoms. Thus, given that we know the limiting behaviour, and
that a defect can reduce the energy barrier as argued above, it is obvious that the
energy barrier height must start to increase beyond a certain width of defect. We
note that this behaviour is much more substantial with no dipolar field present;
the same behaviour here does occur with a dipolar interaction, but only when the
defect is much deeper as h > 4.0nm, and with the inflection point occurring for

much wider defects.

In accordance with the results for the skyrmion destruction mechanism, we find
that the creation energy barrier also drops with the introduction of a defect. In
this case, with increasing depth, we see that the reduction in the barrier is sub-
stantial for larger systems, though the activation energy for creation in this case
is still substantial. We find here that again, with increasing defect width, the
energy barrier to creation inflects, leading to an increase in the barrier height with

increasing defect width.

6.4 Conclusion

In conclusion, we have seen through the systematic study of a cobalt nanolayer
with the nudged elastic band method that edge defects act to catalyse the destruc-
tion of skyrmions. We find that the size and shape of such defects substantially
affects the energy barrier, with larger defects affecting the barrier more than small
defects. We seek to provide an explanation of the mechanism behind such beha-
viour as a combination of the reduction in the Dzyaloshinskii-Moriya interaction
and reduction in the effective field for atoms on the boundary, considering that a
larger defect leads to a greater number of spins on the edge of the system. These
results explain further the behaviour of skyrmion formation and destruction at

system edges in thin-film systems.

The results also have an important implication for simulation studies of thin films
skyrmions when edge defects and notches are present in the system. For the non-

dipolar case, it is found that the minimum energy barrier size for square defects
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when no dipolar interaction is present is nearly an order of magnitude larger than
the dipolar case, and that the barrier heights are substantially affected for any-
thing other than small sizes. This has important implications for the simulations
of skyrmion motion around defects. Many authors make the argument that the di-
polar field is negligible in thin systems, and therefore neglect it from spin dynamics
calculations involving Skyrmions. Our results show that for an accurate picture of
skyrmion motion and destruction in spin dynamics simulations, one must consider
the dipolar contribution in order to correctly model the energy landscape around

defects in such systems.

Though we have not included direct contributions to the magentic energy by the
defects themselves, we can consider how these might affect the results. Generally,
uniaxial anisotropies manifest in a shrinking of the skyrmion, because it is less
energetically favourable to align against this axis. In magnetostrictive materials,
stress can induce additional anisotropy contributions [262]. Around defects, there-
fore, we may expect additional local contributions to the anisotropy energy, which
would have the effect of small shifts in the relative energy contributions, and thus

affect the energy barrier.



Chapter 7

Bloch Points in Chiral Systems

7.1 Background

In micromagnetics, a constant saturation magnetisation M, is assumed everywhere
within a ferromagnetic material, with the magnetisation continuous and differen-
tiable. However, in 1965, Feldtkeller [263, 264| posited that for a cylinder, with
the magnetisation at each end pointing in the direction of the surface normal, only
through the introduction of a point singularity, known as a Bloch point (BP) could
the internal magnetisation structure be described. On a sphere surrounding such
a singularity, the magnetisation vectors cover the surface once, even as the sphere
radius tends to zero. The result of this is that around this point, the magnet-
isation vector is not defined, and the micromagnetic assumption of constant M,

is broken. In the same work, Feldtkeller described how through the introduction

FIGURE 7.1: Feldtkeller’s idea [263] leads to the necessity of a singularity in the

magnetisation. For the cylinder on the left, the external observed magnetisation

can be met with a continuous internal distribution. For the cylinder on the right,

it is only through the introduction of a point singularity that surface state can
exist.
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(a) (b)
OREINC O ®

FIGURE 7.2: Here are shown four types of magnetic state which can be observed
in ferromagnetic materials. A Bloch Wall is shown in (a); these are formed
through competition between the magnetostatic and exchange interactions. In
(b), a Bloch Line is shown, and in (c¢) a Bloch Point within a Bloch Line. These
states can form to reduce the energy of a Bloch Wall when it is sufficiently large.
In (d) is shown a Bobber, a recent state observed in magnetic materials with a
Dzyaloshinskii-Moriya Interaction.

of such point singularities reversal mechanisms which are discontinuous could be
admitted. Subsequent analytic work on Bloch points was carried out by Doring
[265], who calculated energy bounds on the introduction of a Bloch point, and by
Hubert [266], who showed that the introduction of a Bloch point into a Bloch line

could reduce the magnetostatic energy in sufficiently thick films.

Slonczewski made major contributions to the study of Bloch Points, and showed
that the formation of Bloch point pairs in bubble domains was feasible [267],
computing the energy barrier which must be overcome in order to to do so and later
computing the mobility of a Bloch point along a Bloch line [268]. Subsequently,
higher than expected magnetic bubble resonances were explained via contributions
from Bloch line and Bloch point contributions in garnet films [269], and today,
bubbles containing Bloch Lines are widely known as Type-II bubbles. It was
shown by Arrott [270] that by the introduction of two Bloch points at the surface
of a ferromagnetic cylinder aligned along the long axis, the magnetisation can
undergo reversal, and subsequently this idea has been utilised by other authors to

explain reversal mechanisms of other states.

The computational study of Bloch Points started in the late 1980s, with Nakatani

and Hayashi calculating the magnetisation distribution around both a Bloch Line
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and a Bloch Point (Figure 7.2). Little research followed until Thiaville [50] cal-
culated through micromagnetic simulations the dynamics of two reversal mechan-
isms for vortices through either Bloch Point pair creation, or via the transition
of a Bloch Point from one surface to another. The Bloch Point structure was
studied and the energy minima was found to switch between the ‘radial’ hedge-
hog Bloch Point and the ‘twisted” Bloch Point state under fixed when the size of
a nanosphere was varied [271]. More recent work has shown that Bloch Points
can be stabilised in spherical nanoparticles under an applied field gradient [272].
Some studies have made use of novel multiphysics simulations, whereby micro-
magnetic and atomistic modelling are combined, to explore ultra-fast dynamics of
Bloch Points in the reversal mechanisms of nanotubes and nanowires [273-275].
Numerical work on skyrmions states has shown that these, like vortices, can un-
dergo reversal mediated by the introduction of a Bloch point [32, 131]. Other
states, christened ‘bobbers’ due to the their superficial resemblance to a fishing
float (named a bobber in American English), which are bounded inside a material
by a Bloch Point (Figure 7.2 (d)) and which are metastable in chiral systems, were
predicted through micromagnetic simulations [276]. Subsequently, experimental
work identified such states in FeGe lamellae through differential phase contrast in
LTEM imaging [246]. Meanwhile, direct observation of Bloch Points in ordinary

ferromagnetic materials has been shown in many studies [277]

In order to explain the vortex reversal process, Miltat and Thiaville [278] util-
ised an analogy; by taking a copy of a system with a vortex, reversing the core
magnetisation and chirality, and stacking the two structures, the magnetisation
is continuous at all points except for at the core of the sample where the two
vortices meet, at which point there is a Bloch Point. If such a structure were
to be produced, the Bloch point would be unstable and exit the sample, leading
to a final single vortex state. However, in materials which host a Dzyaloshinskii-
Moriya interaction, a fixed sense of rotation is enforced due to the chiral nature
of the interaction. Because of this, it is easy to see that if the top and bottom
structures have Dzyaloshinskii-Moriya constant D of opposite sign, then vortices
with the same chirality but opposite core orientations would be of minimum en-
ergy in the top and bottom layers, keeping a Bloch Point fixed in place. This is
fundamentally a different mechanism of stabilising a vortex than has been previ-
ously considered. In previous work [279], the study of such a system was shown.
In a stacked layer disk structure of the bulk chiral material FeGe, a Bloch Point
state was found to be realisable at the centre of a nanodisk where two oppos-

ite orientation vortex cores meet, and the field driven reversal mechanism from a
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FiGURE 7.3: OOMMEF Simulation of a 150 nm nanodisk, with bottom and top

layer thicknesses of 12nm and 20nm and Dzyaloshinskii-Moriya respectively.

The Bloch Point is located at the centre of the sample, with a circle indicating
the position.

‘head-to-head’ to ‘tail-to-tail’ Bloch point was shown through a hysteresis loop. In
this prior work, the main contribution of the present author was the verification
of finite element simulations through finite difference simulations with OOMMF
[126]. It is worth considering how such a structure can be created. Recent work by
Spencer, et. al. [280] showed that zero crossing of the DMI constant could occur
through changing the concentration of Co in Fe;  Co,Ge. During thin-film depos-
ition, by doing this in a controlled manner, it is conceivable to consider building
up an Fe-rich layer and then a second Co-rich layer, in which each layer then has
a bulk Dzyaloshinskii-Moriya interaction with opposite sign and preferred sense of

rotation.

In this chapter, finite element simulations are performed on nanodisks and nano-
tracks. The equilibrium behaviour of a Bloch Point in a nanodisk under an in-plane
applied field is determined, and the effect of thickness studied, showing that the
Bloch Point state is robust under weak perturbation, and the strength of applied
field needed to expel a Bloch Point is determined. Manipulation of Bloch Points
using an applied field in a long nanotrack is then studied, and it is shown that
while in motion, the vortices comprising the Bloch Point state are distorted but
remains intact under a laterally applied field. These results show that the Bloch
Point shows promise as a candidate for future device technologies in a similar

manner to other topological magnetic states.

The present author and Dr. Marijan Beg conceived of this study. The present
author wrote and performed the simulations and analysis and interpreted the
results, and the results were discussed with Prof. Hans Fangohr and Dr. Marijan
Beg. The data from this study has been made available [281].
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7.2 Field Induced Bloch Point Motion
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FIGURE 7.4: We show here the components of the magnetisation for a vortex

state in a nanodisk of FeGe of diameter 80 nm and with thickness ¢ = 10 nm We

see that under the application of an applied magnetic field, along the y direction,

the vortex core is displaced, with the region of the magnetisation pointing along
the direction of the field growing in size.

7.2.1 Bloch Point in Equilibrium under an Applied Field

It was shown in previous work [279] that in a nanodisk system hosting a bulk
Dzyaloshinskii-Moriya interaction with D > 0 in a top layer and D < 0 in a bot-
tom layer, the magnetisation in the top layer will follow the chirality of the bottom
layer if the top layer is sufficiently thin in comparison. This holds even though it
is energetically unfavourable to do so with respect to that layer’s Dzyaloshinskii-
Moriya interaction. To understand how such a layered system will respond to
an in-plane applied field, a non-layered nanodisk system is first considered. The
nanodisk has a diameter of 80nm and 10nm thickness, and the material para-
meters are set to those of FeGe with a bulk Dzyaloshinskii-Moriya interaction,
as in Chapter 5. The magnetisation is initialised with the magnetisation aligned
along the z axis. The system is relaxed under highly-damped (« = 1) Landau-
Lifshitz-Gilbert dynamics, and the system relaxes to an ‘incomplete skyrmion’ or
radial vortex. With no applied field, there is a symmetry in the system, and the
core of this vortex can point in either direction with degenerate energy. How-
ever, the chirality of the nanodisk is fixed with respect to the core orientation
because of the Dzyaloshinskii-Moriya interaction and is controlled by the sign of

the Dzyaloshinskii-Moriya constant.
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Consider now an applied field incident on this on the sample along the +y direction.
Figure 7.4 shows that the vortex core moves, and this motion acts to maximise the
region of the magnetisation aligned along —+y, and correspondingly minimises the
region of the system which is aligned in the —y direction. Now consider, applying
a magnetic field in the same way as in the above vortex system, in a bilayered
nanodisk. It is expected that in the same way, the region of the magnetisation
aligned with the applied field should grow, while the region aligned anti-parallel
should shrink. This is tested by simulating such a system. The diameter of the
system is again 80nm. This time, a top layer of the nanodisk is kept at a fixed
thickness, as h; = 10nm, and the bottom layer thickness h; is varied from 12nm
to 16 nm. The initial magnetisation is set to point along 42 direction, and then
relax the system under Landau-Lifshitz-Gilbert dynamics with @ = 1 in order
to stabilise a Bloch Point state. A magnetic field is then applied along the +y
direction, and the system relaxed to equilibrium repeatedly, with the field increased
in steps ppdH = 0.01 T until the applied field reaches pgH = 0.1T.

Before analysing the results, it is important to consider how a Bloch Point can be
detected in a simulation. The winding number defined by Feldtkeller [263, 282],

determines the number of times the magnetisation winds over a surface:
1 .
W=— [ m-ndS (7.1)
A s

where A is the surface area of the bounding region. For convenience in the finite-

element simulations, we can recast this using Stokes’ theorem:
1
W:—/V~de (7.2)
Ay

Given that the entire sample geometry encloses a Bloch Point if it is present,
it can thus countably be known the number of Bloch Points inside a sample by
reference to the magnetisation on the surface of the total geometry. It is shown in
Figure 7.6 that the Bloch Point behaves in a similar manner to an ordinary radial
vortex. As the field is increased, the equilibrium position of the Bloch Point shifts,
and beyond a certain field strength, the Bloch Point is expelled from the sample.
In order to calculate programmatically the presence of the Bloch Point and the
expulsion field, the winding number is computed for the system at each stage. It
is found that due to the numerical discretisation and twisting at the sample edges,
this value is not integer quantised when a Bloch Point is present, but is very close
to zero when no Bloch Point is present. In Figure 7.6, the winding number is

shown for each of the nanodisk thicknesses, and one can see that as the thickness
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FIGURE 7.5: Here, the surface magnetisation on the top and bottom of an
FeGe nanocylinder with two layers is shown for different applied fields strengths,
along with a side profile showing magnetisation contours at m, = +0.6. When
H, = 0.9, the Bloch Point state is found to have been expelled from the system.
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FIGURE 7.6: Winding Number W/4r for the disk systems at a given applied
field. When the winding number drops to zero, the Bloch Point has been expelled
from the sample edge.

of the bottom layer is increased, the field required to expel the Bloch Point from

the disk increases.

In order to explain this behaviour, one must consider the relative energies in a
given system. When the Bloch Point is present within the system, the magnetisa-
tion is varying relatively slowly aside from in the vicinity of the Bloch Point itself,
and the magnetostatic surface contribution to the energy is small. When the Bloch
Point is moved closer to the edge of the system by an applied field, the magnetisa-
tion becomes more aligned in a single direction, decreasing the exchange energy,
while increasing the Dzyaloshinskii-Moriya energy. Meanwhile, the magnetostatic
energy increases due to surface charges, and the field acts to push the Bloch Point
back into the sample centre, thus increasing the magnetostatic contribution to the
energy. Kicking the Bloch Point from the sample then, happens when the decrease
in the energy from the Zeeman contribution as the magnetisation aligns with the
applied field is sufficient to overcome the increase in energy contribution from
the other terms. In thicker samples, a higher field is thus required in particular

because the magnetostatic field acting to demagnetise the sample is larger.

7.2.2 Bloch Point Velocity

FeGe nanotrack geometries which are sufficiently long as to observe motion without
interference from the boundary are now considered, in order to try and measure
the velocity of the Bloch Point under an applied field. A system is constructed
in the same manner as before, with a bottom layer with Dzyaloshinskii-Moriya

constant —D, and an upper layer with +D. The thicknesses of the bottom and
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top layers are now kept fixed as h, = 14nm and h; = 10 nm respectively. First,
in order to investigate whether the size of the system has any bearing on the
formation of the Bloch Point state within nanotracks, the width L, and depth
L, of the nanotracks between 20nm to 280nm (note that the helical length of
FeGe is 70nm). Here, only half of the phase diagram is computed, with the other
half mirrored. Initially, the magnetisation is set to point along the +z direction.
Each system is then relaxed under heavily damped (o = 1.0) Landau-Lifshitz-
Gilbert dynamics until [dm/0t| < 107®deg / ns, in order that the system finds
a metastable state. In Figure 7.7, the winding number is shown along with the
average magnetisation in each layer, which proves to be a useful proxy for the
presence of the Bloch Point. It is notable samples up to three times the helical
length in lateral dimensions still relax into the Bloch Points state, suggesting that
the coupling between layers suppresses the formation of helices. For systems in
which the lateral dimensions are < 40 nm, we do not always observe a Bloch Point

state.

With the knowledge that a Bloch Point can be observed in large nanotrack sys-
tems, an intermediate sized sample is chosen such that studying the sustained
motion of the Bloch Point is feasible. A nanotrack of 200 nm in length is studied,
with the width L, varied between 60, 80 and 100 nm. When an-plane magnetic
field is applied to the system in the 4y direction, the Bloch Point in the centre
of the sample is induced to move along the — direction. In order to suppress
oscillatory modes along the edges of the sample which substantially increased the
calculation time due to the adaptive time step integration method, we again choose
a high damping value of a = 1.0, though we note that in tests we found that the

qualitative behaviour was not altered by this.

In Figure 7.8, we show snapshots of the Bloch Point state at different times for the
60 nm width nanotrack at two different fields. For the low field of H, = 0.05T,
the Bloch Point initially moves before reaching an equilibrium position, consistent
with the behaviour found in the nanodisk where the expulsion field was found to
be between 0.09 and 0.10 T at the same layer thicknesses. For the larger field of
H, = 0.20'T, the Bloch Point moves substantially faster, and is ejected from the
side of the sample at t = 0.26 ns. In both cases, on the application of an applied
field, the vortex cores which make up the magnetisation are distorted, with this
distortion strongest in the thicker layer. Notably, when the Bloch Point slows
down through the force from the boundary, the distortion is reduced, and the

bottom and top vortex cores again become near symmetric.
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The equilibrium position of the Bloch Point is calculated for each width of nano-
track. In order to track this, the m, component of the magnetisation is sampled
over a uniform grid on the top and bottom surfaces of the mesh. From this, the
maximum and minimum of the m, component on each are found, which gives a
coordinate for the vortex core position on each surface. Figure 7.9 shows this for

each of the three nanotracks.
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FIGURE 7.7: We see here that in both diagrams a jump in the average mag-

netisation and skyrmion number in each layer. Where this jump occurs, Bloch

Points are found to be the observed state in the larger part of the phase diagram.

We note that we see sudden jumps in winding number indicating the presence of

a Bloch Point at width/height of 40 nm and height/width of 180 nm. We believe

that this may be simply our simulation procedure not finding Bloch Points in
the intermediate range, even though these are energetically possible.
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FIGURE 7.8: Snapshots of the Bloch Point Motion in the L, = 60 nm system.
Here, contours of the magnetisation are taken at m, = —0.6 (blue) and 0.6 (red).
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We show the two vortex core positions for each of the systems in Figure 7.9. The
behaviour observed whereby the vortex cores are distorted can clearly be seen
through the separation of the vortex core maxima and minima, and is stronger
with increased applied field. It can be observed that when the Bloch Point is
located close to the centre of the sample, the motion of the Bloch Point appears
to be linear with regards to the strength of the applied field H, while beyond this
the Bloch Point slows down as it approaches the boundary of the sample. In order
to calculate the equilibrium velocity, the average position of the vortex cores is
taken, and a straight line is fitted with least squares over the linear region of the
velocity. This approach is necessary as due to the numerical discretisation of the
field, the vortex core position appears to make small jumps over time rather than

smoothly varying. We plot the x position with the fitted lines in Figure 7.10a.

We show the magnitudes of the calculated velocities against the applied field in
each of the nanotracks in Figure 7.10b. For the 60 nm track, the velocity increases
at a lower rate in comparison to the other two tracks, suggesting that for smaller
widths, where the vortex cores are close to the boundary, the Bloch Point interacts
with the track boundary which acts to resist the motion. This behaviour of the
system is consistent with that of vortices; potential curves have been previously
calculated for vortices in elliptical nanodisk which show different potentials along
the semi-major and semi-minor axes, [283|, while the oscillatory motion of the vor-
tex core caused by applied currents was found to be damped in thin nanoelements

as the system size decreased due to the edge potential [284].

7.3 Conclusion

In this chapter, we have considered the motion of Bloch Points, showing that the
Bloch Point motion is in many ways similar to that of vortices. We calculate the
displacement of the Bloch Point from the natural position in a nanodisk, and as
a result calculate the required field to expel the Bloch Point from the system for
varying thicknesses. We show that Bloch Points can be hosted in a wide range of
nanotrack samples, and then study the sustained motion of a Bloch Point in such
a nanotrack, showing that in narrow nanotracks, the Bloch Point velocity is linear
with the strength of the applied field, and that when the width is increased, the

motion of the Bloch Point is faster.

This work is important because it shows that the Bloch Point state can be ma-

nipulated in a similar manner to a vortex. With that in mind, there are studies of
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vortices which can inform and help to predict the behaviour of a Bloch Point in a
layered system, but there are many differences and hence open questions remain
as to how such systems will behave. As an example, a topic of interest in vortex
research has been dynamic switching, whereby an applied field pulse induces a
reversal of either the core orientation, or the circulation, reducing the field needed
to do so over a static applied field in this study by the excitation of modes in the
system [285, 286]. In the BP systems discussed in this work, the top and bottom
layers are each in a vortex-like state, but because of the fixed chirality, there are
only two states which are possible, and it is therefore likely that dynamic switching

may occur differently.



Chapter 8

Conclusion

In this thesis, we consider the Barnes-Hut and Fast Multipole Methods as used
in long range calculations. A software framework for generating operator func-
tions for both methods, which can be used in implementations was developed and
released publicly as ‘fmmgen’, and test implementations of both methods were
developed as part of this work. We show that the use of common subexpres-
sion elimination, which removes repeated operations from calculations, significant
performance increases can be seen, and compare this the algebraically more com-
plicated precomputation of derivatives using the harmonic properties of 1/r for
the method. We show that the performance here is strongly dependent on the
compiler chosen; the Intel C++ compiler outperforms the GNU compiler in all
cases studied, but also reduces the impact of the harmonic derivative optimisa-
tion. We note that this type of performance study must be done on the target
hardware, due to inaccurate measures of operation counts in symbolic algebra lib-
raries which have no bearing on the real computational cost. We implement the
dipolar field calculation via the FMM into the simulation package Fidimag. We
find that contrary to the behaviour shown in some publications, the FMM does
not outperform the common FFT convolution method as implemented in most
atomistic simulation software over the numbers of particles as can be currently
modelled.

We then consider several systems comprised of the Dzyaloshinskii-Moriya inter-
action hosting material FeGe through micromagnetic simulations, and investigate
these in different conditions. In Chapter 5, we investigated how size affects the
formation of skyrmions in thin (¢ = 10nm) FeGe samples. We demonstrate that
skyrmions, incomplete skyrmions (radial vortices) and helices can all form the

ground state under different geometric conditions, and that a wide variety of other
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states can be observed. We suggest an experimental procedure for observing both
skyrmion and target skyrmions by applying and removing an applied field, and

show the expected states which would form under such a procedure.

We then study the presence of Bloch Points in FeGe system, taking further the
work in a previous study [279]. The field driven behaviour of Bloch points in
bilayered FeGe nanostructures in which each layer has an opposite sign Dzyaloshinskii-
Moriya are investigated for nanodisks and nanotracks. The mechanism for field
driven motion of a Bloch Point in such systems is considered, and shown to be
identical to that of a vortex due to each layers vortex-like magnetisation texture.
It is found that in nanodisks, the Bloch Point can be expelled through the side of
the sample by the application of a sufficiently strong applied field, but that below
this, the Bloch point can sit in equilibrium with the field. The relative thickness
of the layers in the sample is shown to have an effect on the expulsion field, and

this is explained by considering the relative micromagnetic energy contributions.

The formation of Bloch points in nanotracks is considered, and we show that
the Bloch point state forms from an initially uniformly magnetised sample for a
wide range of side lengths. The motion of the Bloch point in 200 nm nanotrack
systems is then considered, and the Bloch Point position is tracked by calculating
the vortex core positions for each layer. We show that the Bloch point velocity is
linear with the applied field when far enough from the sample edge that no force
is felt from the boundary, and that consistent with the results in the nanodisk,
for sufficiently strong applied fields, the Bloch point is expelled from the system.
These results prove further that Bloch points are an object worthy of study.

Finally, we investigate the energy barriers for Skyrmion destruction and creation
via edge defects in Chapter 6 by means of atomistic simulations and the use of
the Nudged Elastic Band Method. We show that the defect size and shape has an
effect on the energy barrier height, with large, deep, defects generally reducing the
skyrmion annihilation activation energy to nearly zero in Cobalt monolayers. We
show that contrary to what may be expected, increasing the defect width actually
causes the energy barrier height to increase. In these studies, it is shown that
including the dipolar field is crucial for determining the barrier height for large

defects accurately.
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