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Oxides of nitrogen (NOx), as emitted by lean-burn direct injection internal combustion

engines, have been shown to be harmful to human health, which has resulted in a tight-

ening of road vehicle emissions limits for these pollutants. NOx abatement systems, the

most popular of which is selective catalytic reduction (SCR), have been developed and

proven effective in production, but increasingly stringent legislation mandates further

improvement. In particular, SCR suffers from suboptimal NOx conversion at the low

catalyst temperatures occurring in slow moving urban traffic, yet it is precisely these en-

vironments where pollutants cause maximal harm. In this thesis, the problem of control

of aftertreatment catalysts is considered, in the light of the significant body of recent

research into real-time constrained optimal control, otherwise known as model predictive

control (MPC). This paradigm, which has so far seen relatively slow adoption by the

automotive industry, promises numerous advantages over classical techniques, includ-

ing systematic handling of constraints, improved closed loop performance, and ease of

tuning and calibration. However, the computational demand of MPC has traditionally

been considered insurmountable for real-time application to fast systems. The efficacy

of MPC as applied to SCR is examined, focusing particularly on challenging operat-

ing conditions, including multivariable control by the addition of a catalyst heater in

order to cope with urban traffic conditions. It is demonstrated that SCR can exploit

the many benefits offered by MPC. Furthermore, this thesis demonstrates that solving

the associated optimal control problem is possible in real-time on a low power automot-

ive grade embedded hardware platform, thereby indicating its feasibility for production

SCR control and providing a pathway to wider adoption by industry.
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Chapter 1

Introduction

Internal combustion engines have been a staple prime mover in innumerable applications

for more than a century, including transport, power generation and plant equipment.

In a continuing drive towards increased efficiency and power, the combination of direct

injection (DI), in which fuel is delivered directly into the combustion chamber, and

lean-burn combustion, in which the power generated is controlled via the quantity of

fuel injected, rather than via an intake throttle, has proven successful due to inherently

improved fuel economy owing to reduced throttling losses. The majority of this type

of engine are diesel fuelled, which have long been preferred in heavy duty applications,

such as generators and large shipping vehicles, due to their torque delivery compared to

their gasoline counterparts. In recent years, this trend has begun to emerge in passenger

vehicles as well. The number of newly registered cars powered by diesel has risen steadily,

with the total exceeding one million for the first time in 2012, where just over 50%

of registrations were diesel whilst only 48% were gasoline (the remaining cars were

alternative fuel). Almost one third of the cars on UK roads (around 9.4 million) were

diesel, a marked increase from only 7.4% in 1994 [1].

Whilst pollutant emissions from diesel and gasoline engine are significantly different

in general, generation of oxides of nitrogen (NOx, largely comprising NO and NO2)

is largely distinguished by the combustion mode of the engine: lean or stoichiometric,

where the former produces significantly more NOx than the latter. Emissions from stoi-

chiometric gasoline engines have been largely addressed in recent years by use of the

three way catalyst (TWC). These engines emit relatively high levels of carbon monoxide

(CO), unburnt hydrocarbons (HC) and oxides of nitrogen. The introduction of the TWC

has improved these to tolerable levels, and are a legal requirement. The older two-way

catalyst performs oxidation of carbon monoxide to carbon dioxide, and oxidation of hy-

drocarbons to carbon dioxide and water, whilst the later three-way catalytic converter

also adds the reduction of nitrogen oxides to nitrogen and oxygen. In contrast, lean com-

bustion creates significantly increased quantities of NOx and particulate matter (PM).

1



2 Chapter 1 Introduction

Lean combustion implies an excess of oxygen, which is also present in the exhaust. As

a result of this, the TWC is inapplicable to this variety of internal combustion engines.

The effects of NOx on human health have been extensively studied and recommendations

for safe exposure levels have been published and used as guidelines for emissions limits.

It has been shown that both short and long term exposures to oxides of nitrogen can

introduce negative health effects. Short term exposure to high levels of NOx can result

in severe pulmonary damage and in people suffering with asthma can cause short term

responses such as changes in lung function. Long term effects have been associated with

increased respiratory symptoms [2]. A significant proportion of ground level NOx comes

from vehicles – concentrations have been shown to be up to 100% higher within 50m of

roads. NOx reacts with ammonia and moisture in the air to produce minute particles

that penetrate deeply into sensitive parts of the lungs and can cause or worsen respiratory

disease, such as emphysema and bronchitis, and can aggravate existing heart disease,

leading to increased hospital admissions and premature death [3]. In the presence of

sunlight, NOx reacts to form ozone (O3), which has similar respiratory effects.

As a result of the increased awareness of the effects of NOx on human health and the

environment, combined with the ever increasing uptake of diesel engines in passenger

vehicles, the emissions of vehicles sold in EU member states have been regulated since

1993 by the European Emissions Standards (or Euro standards). These standards are

updated every few years and vehicles produced must conform to the latest standards.

Updates are designed to continually reduce pollutants, meaning manufacturers are hav-

ing to continuously find new technology to improve the emissions of their vehicles. Figure

1.1 shows how the emission limits have gradually decreased over time, as a percentage of

their permitted values when the standards were introduced in 1993. It is likely that this

trend will continue, with future standards requiring a reduction in pollutant emission,

fuel consumption, or both.

Particulate matter emissions have been improved drastically by the use of the gasol-

ine and diesel particulate filters (GPF/DPF). These units, which are effectively made

compulsory for diesel by current Euro 5 emissions legislation, are an extremely effect-

ive method for lowering the particulate output by trapping soot particles which are

subsequently removed in a regeneration process. One of the most widely accepted and

deployed techniques for reducing the formation of NOx in internal combustion engines

has been exhaust gas recirculation (EGR). As the name suggests, this technique involves

recycling some of the inert gas from the exhaust manifold back to the intake manifold.

In doing so, several effects which help to reduce NOx production come into play; these

are discussed in more detail in Subsection 2.1.2. One of the downsides of EGR is a re-

duction in brake specific fuel consumption (BSFC) [4], which may limit its use in future

emissions regulations. Even with EGR, NOx emissions are coming into focus again as

Euro 6 emissions standards are on the horizon and fuel consumption targets as well as

emissions targets need to be met. On its own, EGR cannot achieve the required NOx
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Figure 1.1: Emissions requirements for passenger and heavy duty vehicles.
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Figure 1.2: Schematic of a diesel exhaust system, including a diesel oxidation catalyst
(DOC), diesel particulate filter (DPF) and selective catalytic reduction (SCR) reactor,

as well as the aftertreatment control unit (ACU).

emissions that current standards require, due to restrictions upon its use to lower engine

loads for reasons of both engine performance and efficiency (see Subsection 2.1.2 for

further information). Furthermore, it is possible that future emissions standards will

begin to tighten fuel consumption limits as well as emissions levels. In this case, the

combined target of meeting emissions regulations whilst reducing fuel consumption will

place more reliance on the aftertreatment system.
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Two major aftertreatment techniques have emerged with a view to improving the NOx

performance even further: the NOx adsorber or Lean NOx Trap (LNT) and selective

catalytic reduction (SCR). The LNT is a molecular sponge, absorbing NOx from the

exhaust gases and later being regenerated by injection of fuel before the LNT, an opera-

tion principle very similar to that of the DPF. However, the requirement for regeneration

means that overall engine efficiency suffers. Conversely, SCR comprises the reduction of

NOx by ammonia over a catalyst. Storage and transport of ammonia is problematic due

to its toxic nature, instead it is stored in the vehicle as an aqueous urea solution (AUS)

which is injected into the catalyst and hydrolyses to produce ammonia owing to the heat

of the exhaust gas. The requirement to transport and refill AUS is not too onerous, due

to its relatively safe nature and low cost (around £2 per litre at the time of writing).

Figure 1.2 shows a typical schematic for the exhaust system of a diesel engine fitted

with Diesel Oxidation Catalyst (DOC), DPF and SCR. The details of the chemical and

physical mechanisms of SCR are described further in Subsection 2.1.4.

1.1 Motivation

Selective catalytic reduction is an active dynamical system that requires input and thus

its operation is possible to control. The principal input is the quantity of urea (which is

converted to ammonia) to inject upstream of the SCR catalyst periodically, with injec-

tion carried out by an injector unit which is fed by a urea pump from the additive tank

on the vehicle, as shown in Figure 1.2. Historical emissions legislation was less stringent,

meaning that emissions limits could be met by applying industry standard techniques,

such as feedforward map-based controllers. These controllers comprise a lookup table

(or map) which defines the required urea injection quantity for a given engine speed

and load. However, a combination of increased transient operation of SCR (such as

in vehicles in urban environments) and more tightly constrained emissions regulation

means that these approaches no longer suffice. Indeed, in start-stop city traffic, this

transient behaviour is most pronounced, yet it is in these locations that minimisation

of pollutants is of greatest importance for human health. Improving the performance

of SCR can be achieved via three main avenues: improved chemical catalysis, improved

packaging of the catalyst, or improved control of the aftertreatment system. Whilst

new chemical technologies for SCR are appearing, the gains are relatively modest, and

the physical packaging of catalysts in a vehicle is typically highly constrained by other

factors. As such, this thesis focuses on the application of advanced control methods to

improve the performance of SCR whilst reducing calibration expense.

The difficulty in control of SCR is principally due to the combination of transport

delays and nonlinear dynamics. Whilst the control objectives are very clear (minimise

NOx output as well as NH3, typically with some weighting terms), the dynamics of the

system make its control challenging. Whilst a NOx sensor is placed upstream of the SCR
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catalyst, the injected ammonia has to be adsorbed onto the catalyst surface before it

reacts with NOx. The delay between the urea injection, its adsorption onto the catalyst

surface, and its subsequent reaction with exhaust NOx is significantly longer than the

transport time of the gas through the SCR reactor.

In Chapter 3 of this thesis, we collect data from SCR-equipped vehicle during real-world

operation which highlights this difficulty. Even relatively modern vehicles are found to

be in violation of emissions limits under many circumstances. These conditions are typ-

ically met in geographic locations where the minimisation of pollutants is of the most

importance. This is further evidenced by plans to abandon diesel vehicles in urban en-

vironments in the near future [5], and some cities having banned older diesel vehicles

entirely [6]. As these moves will be expensive, this thesis examines a new advanced

control approach to SCR in order to improve its efficiency. Since the timescale of new

control systems for aftertreatment is relatively short, this will have a positive short-term

impact on internal combustion engine road vehicles. In addition, it will permit perman-

ently improved emissions for applications where internal combustion engines cannot so

easily be abandoned.

Model predictive control appears to offer several advantages when considered for an SCR

process. Firstly, its model-based nature means that providing a model can be provided

which includes the transport delay dynamics, the controller should natively cope with

such things. Secondly, constraints on the process are present, including the maximum

unreacted ammonia that may leave the catalyst, and minimum/maximum constraints

of the actuators, with which MPC can natively cope. Thirdly, the natural extension of

MPC to multiple-input, multiple-output systems proves to be useful in adapting SCR

systems to meet stricter emissions targets via thermal management. Lastly, tuning of

an MPC controller amounts to choosing a cost function for the closed loop, which can

be relatively simply designed by consideration of the objectives of the control system.

In the case of SCR, the cost function can be formulated as some function of the tailpipe

emissions, in order that the controller find the optimal operating point with respect to

this cost. The combination of these potential advantages comprises the motivation for

this thesis: to examine whether in practice, MPC for SCR aftertreatment achieves the

performance that might be expected, and how barriers to its adoption by industry might

be overcome.

1.2 Novel Contributions

This thesis makes the following contributions:
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[C1] It has been shown that model predictive control enables constraint-adhering op-

timal control of SCR, enabling constraint certification of the controller and provid-

ing reduced calibration effort. In particular, the novel contribution is in the demon-

stration that model predictive control can obtain this performance across the full

operational temperature range of the catalyst, thereby removing calibration effort

in gain scheduling across temperatures. These claims are supported by publica-

tions [P1] and [P2].

[C2] For the first time, an economic nonlinear MPC formulation for SCR control has

been developed. This improves existing results on storage-based MPC for SCR

found in the literature, both by reduced computational effort by avoiding calcula-

tion of the optimal steady state, and by achieving lower closed-loop costs compared

to tracking MPC. Furthermore, closed-loop stability of this formulation is certified.

This is documented fully in publication [P7].

[C3] Detailed evidence of urea SCR systems performing poorly in real world operation

has been collected, which is collated in publication [P9]. This data relates to urban

environments and public transport vehicles – an area of specific concern regarding

pollution at present. The results have value not only in their exhibition of the

discrepancy between design and real world operation, but also suggest thermal

control as a mitigation measure, since catalyst temperature is a key factor in con-

version efficiency. This work supports and informs the subsequent control design

research.

[C4] It has been demonstrated that combined chemical and thermal control of an SCR

catalyst leads to significant improvements in emissions reduction. Additionally,

it permits the designer the freedom to balance the fundamental trade-off in SCR

control between NOx and CO2 emissions. This is supported by publication [P6].

[C5] Two state estimators have been developed, in order to estimate the ammonia

stored quantity in an SCR catalyst, and to reject the cross-sensitivity between

NOx and ammonia that is typical of commercial NOx sensors. These methods are

based on the Unscented Kalman Filter (UKF) and the particle filter. The UKF

has improved performance over the Extended Kalman Filter found in the literature

whilst being computationally acceptable for online implementation. The particle

filter provides even better estimation at the cost of computational expense, but

may be suitable for real-time operation in the future or on parallel computation

hardware. This claim is supported by publication [P4].

[C6] A novel method for extending the idea of explicit model predictive control into the

nonlinear MPC domain has been established [P3]. If the state spaces and input

spaces are finite, this method works by laying a multidimensional grid over the

union of these spaces and solving the optimal control problem at the vertices. The

online operation of the controller is then reduced to multidimensional interpolation
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over the solution grid, which can be upper bounded in terms of computation

expense.

[C7] Adoption of new technologies by the automotive industry is always a gradual

process. As such, reference governor (RG) theory has been leveraged to add model-

based constraint certification to a industry standard map-based primal controller

[P8]. This is the first application of reference governor theory to the SCR plant.

Acting in a supervisory layer above the normal controller, this method does not

provide the flexibility or performance of MPC, but instead provides a pathway to

adoption of MPC.

Table 1.1: Evidence of novel contributions made by this thesis

Claim Publication

[C1] [P1], [P2]
[C2] [P7]
[C3] [P9]
[C4] [P6]
[C5] [P4]
[C6] [P3]
[C7] [P8]

1.3 List of Publications Associated with this Thesis

Many of the contributions made by this thesis have been published separately, in the

works listed below.

1.3.1 Published Works

[P1] J. Sowman, D. S. Laila, A. J. Cruden, P. Fussey, A. Truscott. A Predictive Control

Approach to Diesel Selective Catalytic Reduction. In: Proc. European Control

Conference, 2015. Linz.

Reduction of oxides of nitrogen (NOx) emitted from diesel exhaust systems is a

current problem due to increased stringency in worldwide emissions legislation.

One of the most successful approaches to reduce tailpipe NOx is to reduce NOx by

ammonia over a catalyst, known as Selective Catalytic Reduction (SCR). Control

of the ammonia injection in such systems is typically a map-based approach, often

augmented by feedback from NOx sensors to account for mechanical variation

and ageing. We show that a predictive control approach to this system yields

several compelling improvements over such industry standard controllers during a

representative test cycle. These include better NOx conversion performance whilst
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simultaneously minimising the quantity of ammonia released to the environment,

along with reduced design effort.

[P2] J. Sowman, D. S. Laila, A. J. Cruden, P. Fussey. Nonlinear Model Predictive Con-

trol for Cold Start Selective Catalytic Reduction. In: Proc. IFAC Conference on

Nonlinear Model Predictive Control, 2015. Seville.

Selective catalytic reduction (SCR) is emerging as a key technology for reducing

emissions of nitrogen oxides (NOx) from diesel vehicles, but the temperature de-

pendence of the governing chemical kinetics are highly nonlinear and industry

standard techniques of limiting ammonia injection until the catalyst reaches op-

erating temperature leave room for improvement of NOx reduction. Cold start

emissions constitute a significant fraction of urban NOx emissions, due to low road

speeds and short journeys precluding the catalyst from reaching operating temper-

ature quickly. We demonstrate that nonlinear model predictive control (NMPC)

provides the desired control performance in adhering to the required constraints

and meeting the complex control objectives regardless of catalyst temperature.

The results include improved overall NOx reduction during a typical test cycle in-

cluding cold start, without design effort specifically for low temperature operation.

We also show that the controller is amenable to real-time implementation for use

in a vehicle.

[P3] J. Sowman, D. S. Laila, S. Longo. Real-Time Approximate Explicit Nonlinear

Model Predictive Control for the Swing-Up of a Reaction Wheel Pendulum. In:

Proc. Conference on Decision and Control, 2015. Osaka.

In this paper, we show that nonlinear model predictive control (NMPC) demon-

strates excellent performance in driving a reaction wheel pendulum to its unstable

equilibrium at which the pendulum is inverted. We show that NMPC is capable of

driving the system to this point from the stable equilibrium (i.e. the non-inverted

position), often known as swing-up. This is as opposed to many common imple-

mentations in which two controllers are used one for swing-up and another for

stabilisation or balancing around the equilibrium. We derive an explicit version

of the controller which provides a close approximation to the required control in-

put, but can do so within the required sampling period. We demonstrate that

this approach generates a real-time controller of a size and speed appropriate for

embedded implementation on a microprocessor.

[P4] J. Sowman, D. S. Laila, A. Truscott, P. Fussey, A. J. Cruden. Real-Time Rejec-

tion of Ammonia Cross Sensitivity in Sensors for Diesel Aftertreatment Systems

by Parallel Particle Filtering. In: Proc. European Control Conference, 2016. Aal-

borg.

Selective catalytic reduction (SCR) continues to be the preferred technology for

abatement of oxides of nitrogen (NOx) from diesel engines, yet challenges remain

to bring SCR efficiency up to the level required by legislation. Such efficiency
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gains are predicated on improved control, which in turn relies in part upon im-

proved state estimation, due to suboptimal plant observability. SCR relies on the

injection of urea solution to convert harmful NOx to nitrogen and water, whilst

avoiding excess ammonia leaving the tailpipe. Ammonia sensors to detect such

events are costly and not yet production ready. Knowledge of the quantity of am-

monia stored in the catalyst is necessary for control, but this cannot be measured

directly. Finally, NOx sensors are cross sensitive to ammonia by an unknown non-

linear function of temperature. We design a high accuracy state estimator in the

form of a particle filter to estimate these quantities. Furthermore, we demonstrate

a fast implementation of this estimator using a graphics processing unit (GPU) to

demonstrate the real time accuracy possible with modern computing platforms.

[P5] M. F. Brejza, J. Hooker, J. Sowman, D. Oakley, R. G. Maunder. Design of Di-

gital Testbeds for Undergraduate Microelectronics Teaching. In: Proc. European

Workshop on Microelectronics Education, Southampton, 2016.

This work is not relevant to the EngD research, but is a result of collaboration with

the authors during the EngD candidature.

In this paper we detail the series of digital microelectronics testbed boards which

have been developed to meet the requirements of the microelectronics undergradu-

ate programmes at the University of Southampton. We discuss how our boards

solve many of the issues with the digital testbeds used previously for the micro-

electronics programmes and those which are available on the market. The digital

testbed solutiondescribed in this paper is modular, and comprises multiple boards

which each perform a specific function. This modular design is compact and easily

expandable, while being cost effective such that they can be given to students to

use at home. The boards are well suited for use with modern digital components,

and fit in well with teaching of microcontrollers, programmable logic, and discrete

logic.

[P6] J. Sowman, D. S. Laila, P. Fussey, A. Truscott, A. J. Cruden. Nonlinear MPC

applied to multivariable thermal and chemical control of SCR aftertreatment. Sym-

posium on Combustion Control, Aachen, 2017.

The ammonia storage capacity of the SCR catalyst has a negative correlation with

its temperature, thus the achievable rate of NOx removal from the exhaust stream

is temperature dependent. At low temperature, reaction rates are temperature

limited, resulting in suboptimal NOx removal, whereas at high temperatures, they

are mass transfer limited. SCR operates optimally in the latter regime, wherein

precise control is mandated by the requirement to simultaneously maximise con-

version of NOx and to avoid unreacted ammonia exiting the tailpipe, known as

ammonia slip. Maintaining a temperature sufficient to allow optimal NOx reduc-

tion whilst retaining safety is a challenge, particularly at cold start, as well as

at any other operating conditions in which exhaust heat is insufficient, such as
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prolonged periods of low load or idling. Several techniques have been investigated

in the literature to address this issue, including exhaust throttling with increased

fuelling, post-injection, physical positioning of the catalyst, and direct electrical

heating. However, the use of effective control strategy has not been explored much.

In this work, we consider nonlinear model predictive control applied to thermal

management in addition to the typical urea control, resulting in the multivariable

control of an electric catalyst heater and urea injection. The controller targets

maximal NOx conversion, focussing on the temperature limited conditions, whilst

respecting constraints and minimising consumption of fuel and reactants. We show

that this achieves highly accurate temperature control of the SCR catalyst which

enables optimal NOx conversion, permitting tuning of the balance between fuel

consumption and NOx emissions across the full range of operating conditions.

1.3.2 Works Under Review and In Progress

[P7] J. Sowman, D. S. Laila, P. Fussey, A. J. Cruden. A Stability Analysis of Economic

MPC for a Selective Catalytic Reduction System. IEEE Transactions on Control

Systems Technology. Submitted 2016.

Model predictive control has shown promise for operation of a selective catalytic

reduction plant, a chemical process for reduction of oxides of nitrogen (NOx) in

diesel engine exhaust systems. Aqueous ammonia is injected into the gas stream

and is adsorbed onto a catalytic surface before reacting with NOx, resulting in

harmless products. Under-injection of ammonia results in suboptimal NOx conver-

sion, whilst over- injection causes ejection of harmful ammonia from the tailpipe.

Previous applications of predictive control to SCR have been of the tracking MPC

variety, in which a target storage of ammonia in the catalyst is determined a-priori;

MPC is used to drive the storage to this target. In this work we replace this hier-

archical scheme with an economic MPC (eMPC) controller which models tailpipe

gas concentrations, bringing the closed loop closer to optimality with respect to cu-

mulative emissions, particularly during transients. We show that this formulation

achieves better closed loop performance than the tracking-MPC scheme. Further-

more, we certify stability of the eMPC closed loop, and comment on feasibility of

the optimisation programme in the presence of constraints.

[P8] J. Sowman, D. S. Laila, A. Truscott, P. Fussey, A. J. Cruden. A Real-Time

Reference Governor for Ammonia Slip Control in Urea SCR Systems. SAE Inter-

national Journal of Engines. Submitted 2017.

Urea selective catalytic reduction (SCR), comprising the injection of urea over a

catalyst in the exhaust system, is a key nascent technology for the reduction of

oxides of nitrogen (NOx) from lean-boost direct injection internal combustion en-

gines. The quantity of ammonia injected is critical to maximise NOx reduction

whilst minimising unreacted ammonia exiting the tailpipe, known as ammonia slip.
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Feedback control is necessitated by the uncertainty in plant parameters, such as

ammonia injector drift, and by response to disturbances, such as upstream NOx

concentration, temperature and flow rate. Classic control methods tuned to re-

spect the ammonia slip constraint lack performance in other parts of the operating

range, and provide no guarantee of constraint satisfaction in transient conditions.

In this work, we employ a reference governor framework to decouple tuning of the

primal controller for performance and enforcing constraint adherence of the closed

loop. This has the advantage that the reference governor can be applied above

the existing feedback control scheme, only affecting the primal controller when

constraint violation is predicted. As well as improved constraint adherence, the

results show improved NOx reduction and natural removal of integrator wind-up.

We also demonstrate the controller developed in this work using a rapid proto-

typing automotive electronic control unit in a hardware-in-the-loop setup, where

it displays execution significantly faster than real time as well as upper-bounded

runtime and fixed memory requirements

[P9] J. Sowman, D. S. Laila, S. Box, P. Fussey, A. J. Cruden. In-Use Emissions Test-

ing of Diesel-Driven Buses in Southampton: is Selective Catalytic Reduction as

Effective as Fleet Operators Think?. Intelligent Transport Systems, IET. Submit-

ted 2017.

Despite the continuously tightening emissions legislation, urban concentrations of

nitrogen oxides (NOx) remain at harmful levels. Road transport is responsible for

a large fraction, wherein diesel engines are the principal culprits. Turbocharged

diesel engines have long been preferred in heavy duty applications, due to their

torque delivery and low fuel consumption. Fleet operators are under pressure to

understand and control the emissions of their vehicles, yet the performance of

emissions abatement technology in real-world driving is largely unquantified. The

most popular NOx abatement technology for heavy duty diesel vehicles is select-

ive catalytic reduction. In this work, we empirically determine the efficiency of a

factory-fitted SCR system in real-world driving by instrumenting passenger buses

with both a portable emissions measurement system (PEMS) and a custom built

telematics unit to record key parameters from the vehicle diagnostics systems. We

find that even in relatively favourable conditions, while there is some improvement

due to the use of SCR, the vehicles operate far from the design emissions tar-

gets. The archival value of this paper is in quantification of real world emissions

versus design levels and the factors responsible for the discrepancy, as well as in

examination of technologies to reduce this difference.

[P10] J. Sowman, D. S. Laila, P. Fussey, A. J. Cruden. Hardware Accelerated Implicit

Integrators for Real-Time Embedded Model Predictive Control.

Real-time solution of constrained optimal control problems requires that the plant

model be evaluated online. In many practical control applications, this model is
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phrased in the form of differential equations. As such, numerical integration is

required to predict the future behaviour of the plant over the prediction horizon.

This can incur significant computational expense, particularly when the system

of differential equations is stiff, and when a long prediction horizon is required to

achieve the desired closed loop performance. Implicit integration methods typic-

ally outperform other methods when faced with stiff systems, and their amenity to

sensitivity generation makes them popular for optimal control applications. Whilst

fast solution of the optimisation problem is possible thanks to recent advances in

structure-exploiting solvers, the numerical integration can impede real-time im-

plementation. One of the most popular numerical methods for optimal control is

direct multiple shooting, in which state trajectories are discretised over the pre-

diction horizon and each segment can be integrated independently. In this work,

we exploit this fact to design a customised pipelined hardware accelerator to solve

the Newton steps which arise in implicit integration methods. We implement the

accelerator on FPGA fabric with a close-coupled microprocessor, wherein acceler-

ation is achieved by using the hardware to remove the computational demand from

the microprocessor and thus rendering it free to begin work on the next multiple

shooting segment. We demonstrate that the speedup achieved by this topology

permits real-time embedded model predictive control of a stiff plant with long

horizons.

1.4 Outline

This thesis aims to reconcile considerable academic progress in predictive control tech-

niques with the increasing stringency in automotive emissions legislation. It aims to

bring the advantages of predictive control to bear on the problems of NOx emissions

from lean-burn internal combustion engines in order to meet emissions legislation in a

manner that is practical from the point of view both of design engineers and vehicle

manufacturers. As such, Chapter 2 introduces both the automotive and control aspects

of the project, including the current industrial and academic standards and the prob-

lems to be overcome in each area. Chapter 3 describes a methodology for examining the

real-world emissions from SCR-equipped vehicles and discusses the reasons for which

design emission levels are not achieved in practice. The key results are summarised in

publication [P9]. Chapter 4 examines dynamic models of SCR systems and constructs

several varieties of models, both to use in lieu of a real SCR for hardware-in-the-loop

testing, and control oriented models to form the basis of model-based control schemes.

Chapter 5 examines the reference governor approach to model based control as an in-

terim step towards model predictive control, and the results are contained in publication

[P8]. Subsequently, in Chapter 6, model predictive control is applied to SCR. A linear

formulation is attempted first, which is published in publication [P1]. A nonlinear MPC
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approach was tried next, which proved it could maintain optimal performance across a

wide temperature range, and these results are published in publication [P2]. Finally,

as a result of the low-temperature issues identified in Chapter 3, Chapter 6 introduces

thermal management of SCR using a catalyst heater; the results of this application are

published in publication [P6]. Chapter 7 examines the observability issues with SCR

plants, and the complications introduced by off-the-shelf sensors. It applies various state

estimation techniques to extract the information required by the predictive controllers

designed in the previous chapter, with results summarised in publication [P4]. Chapter

8 examines a novel approach for nonlinear MPC on cheap multipurpose embedded hard-

ware, that could provide a suitable route to hardware implementation of the controller

for automotive use. Chapter 9 examines embedding of MPC, particularly the computa-

tional issues introduced by particular features of the dynamic models of SCR. A modern

automotive grade system-on-chip device, comprising a microprocessor along with FPGA

fabric, is configured to accelerate execution of the MPC algorithm, thus permitting real-

time execution. The results of this approach are published in publication [P10].

Finally, Chapter 10 summarises the key findings and contributions. It also examines

remaining open questions and discusses possible future directions for research.





Chapter 2

State of the Art

In this chapter, a review of the state of the art in optimal control and automotive

aftertreatment control is presented. The review covers the emissions challenges facing the

automotive industry and the current technologies that exist to manage them, focusing

particularly on aftertreatment. Specifically, management of NOx and the opportunities

for improving abatement technology are the main focus. It then examines the theory of

optimal control and the most recent developments in numerical methods to achieve real-

time predictive control on embedded or resource-limited hardware, and the limitations of

these methods. The chapter concludes by discussing previous applications of predictive

control in the automotive industry, and examines the strengths and limitations of these,

indicating the challenges that will be faced in this project.

2.1 Emissions Control Technologies

Variation and tightening of emissions legislation has led automotive manufacturers to

adopt various technologies over the past two decades in order to control emissions from

vehicles. This section examines those relevant to NOx emissions from lean-burn internal

combustion engines and how they interact with each other. Various control strategies

that are relevant to the particular abatement technology are also discussed.

2.1.1 Engine Out Emissions

Engine operating conditions have a significant impact on its emissions. The temperat-

ure at which lean-burn engines operate dictates a fundamental tradeoff between soot

production and NOx emissions [7]. When older emissions standards were in force, it

was possible to meet the soot and NOx limits by calibration of the engine maps on the

testbed during development. This was standard practice until Euro 6/Euro VI, at which

15
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relying solely on engine calibration to meet legislative limits was no longer sufficient and

aftertreatment abatement technology became necessary. As a result, this review con-

centrates on aftertreatment, with the exception of exhaust gas recirculation (EGR) due

to its direct impact on NOx production.

2.1.2 Exhaust Gas Recirculation

The formation of NOx occurs largely when nitrogen and oxygen are present in a high

temperature region, such as during combustion. Since direct injection engines lack a

physical throttle, the air to fuel ratio (AFR) often rises significantly above stoichiometric.

The air-fuel equivalence ratio (λ) is defined as

λ =
AFR

AFRstoic
, (2.1)

and this can rise to λ > 10 in some circumstances in diesel engines [8]. This is the

reason that NOx emissions are much greater from direct injection engines as compared

to stoichiometric, where there is little or no excess oxygen.

Exhaust gas recirculation (EGR) has several consequences, some of which help to reduce

NOx production. The recirculated gas has a higher specific heat capacity due to the

higher levels of CO2 and H2O than the intake air, which results in lower gas temperatures

during combustion. Furthermore, the inert exhaust gas replaces some of the intake O2.

The combination of these two effects gives the NOx reduction that is associated with

diesel EGR systems. The lower combustion temperature and the lack of excess oxygen

combine to make NOx formation significantly smaller [9]. Whilst these are the main

processes involved in EGR, there are additional ones which are detailed in [9].

One significant downside to EGR is that its applicability is restricted to certain engine

conditions. The excess oxygen in the combustion chamber is load dependent: as engine

load increases, there is less access to oxygen in the chamber and as a result the formation

of soot is more likely to occur. The application of EGR at high loads further reduces

oxygen in the inlet air, and so exacerbates the problem. Additionally, the displacement

of fresh charge air by exhaust gases reduces the quantity of charge air available for

combustion, which limits the engine peak performance. As a result of all of these factors,

EGR is typically employed only at low to mid engine loading [8].

2.1.3 Particulate Filtering

With filtration efficiencies up to around 90% [10], the DPF has become the de-facto

standard in modern diesel engine vehicles for reducing particulate matter. Filtering of

particulate matter by the filter leads to a buildup of particles, which, to retain suitably
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low back pressure in the exhaust system, have to be removed once they begin to restrict

exhaust gas flow. There are two principal methods of this regeneration process; active:

C + αO2 −→ 2(α− 0.5)CO2 + 2(1− α)CO (2.2)

and passive:

C + αNO2 −→ (α− 1)CO2 + (2− α)CO + αNO (2.3)

where α is a measure of the completeness of the reaction, taking values α ∈ [0.55, 0.9]

in (2.2) and α ∈ [1.2, 1.8] in (2.3) [10].

The oxygen (O2) required by the active process is abundant in diesel exhausts due to

their lean burn nature. However, the reaction requires high temperatures in order to

function: i.e., in the range 400− 600◦C, which are not typical of diesel exhaust systems.

As such, the vehicle electronic systems are required to take additional measures to

raise the exhaust gas temperature. These are often varied, but include late injection

(post-injection) of diesel fuel and turning on additional electronic loads such as the rear

windscreen heater. Further, some vehicles include an additive that is mixed with the

fuel in order to reduce the combustion temperature of the trapped soot in the DPF unit.

While passive regeneration is preferable, it requires significant NO2 in the exhaust

stream, which is something to be avoided. However, since the SCR is typically placed

downstream of the DPF (see Figure 1.2), if the SCR control strategy is good enough,

higher engine out NOx can be allowed, for example via reduced EGR activity. This

higher NOx will passively remove soot from the DPF and SCR can be relied upon to

clean up any remaining NOx after the DPF to ensure the vehicle remains within emission

limits.

2.1.4 Selective Catalytic Reduction

Selective catalytic reduction (SCR) is a technology for removal of oxides of nitrogen

(NOx) from a gas stream. The fundamental principle is to react gaseous NOx with

ammonia (NH3). The kinetics of this reaction mean that catalysis is required for the

reaction rate to be acceptable. This is typically achieved in practice by coating a sub-

strate monolith with the catalyst, known as a washcoat. Since NOx comprises both NO

and NO2, there are several possible reactions that can take place. The most important

of these are the standard SCR reaction with 1:1 stoichiometry of NH3 and NO:

4NH∗3 + 4NO +O2 −→ 4N2 + 6H2O (2.4)
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Figure 2.1: Depiction of the SCR processes, showing adsorption of ammonia (1) onto
the catalyst surface and its subsequent reaction with NOx (2) to produce nitrogen and

water.

and fast SCR which consumes equal molar quantities of NO and NO2 [11]:

4NH∗3 + 2NO + 2NO2 −→ 4N2 + 6H2O (2.5)

where the superscript ∗ is used to denote a species on the surface of the catalyst. This

distinction is made since the SCR reactions are governed by the Eley-Rideal mechanism,

in which the reaction takes place between NOx in the free stream and adsorbed ammonia

[12]. As a result, reactions take place on the surface of the catalyst, and the quantity of

ammonia stored on the catalyst is the important quantity rather than the concentration

of ammonia in the free stream.

The fast SCR reaction (2.5) is known to have a reaction rate that is at least one order

of magnitude higher than the standard SCR reaction, but requires the presence of equal

molar quantities of NO and NO2, and dominates at temperatures above 200◦C [13].

These reactions and the Eley-Rideal mechanism are depicted in Figure 2.1, where the

gas flow direction is from left to right. NOx and ammonia enter on the left hand side,

after which ammonia is adsorbed onto available sites on the catalyst surface. This

adsorbed ammonia then reacts with NOx to produce nitrogen and water.

Remark 2.1. Both standard and fast SCR reactions consume equal quantities of stored

ammonia (NH∗3) and NOx in the steady state.

Due to its higher reaction rate, it is desirable to leverage the fast SCR reaction (2.5)

where possible. Since it requires equal molar quantities of NO and NO2, it is necessary

to coerce the NO:NOx ratio to 0.5. However, the typical NO:NOx ratio from a diesel

exhaust is higher than this, which suggests the use of a diesel oxidation catalyst (DOC),

to oxidise NO to NO2.
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It is worth mentioning that there exists the equivalent (2.4) which consumes only NO2,

but it is neglected because engines have a NO:NOx ratio of at least 0.5 under typical

operation conditions, meaning the fast SCR reaction (2.5) is always kinetically favoured.

Furthermore, the SCR reaction that does not consume oxygen:

4NH∗3 + 6NO −→ 5N2 + 6H2O (2.6)

is very slow, and is also therefore often excluded from catalyst models [14].

Due to considerations of safety and ease of transport, gaseous ammonia is not directly

stored within the vehicle. Instead, an aqueous urea solution (AUS) (such as AdBluer)

is stored. The heat in the exhaust stream causes hydrolysis:

CO(NH2)2(aq) −→ CO(NH2)2(l) +H2O (2.7)

which then decomposes, again due to thermal effects, to ammonia and isocyanic acid:

CO(NH2)2(l) −→ NH3(g) +HNCO(g) (2.8)

Isocyanic acid hydrolyses easily with water vapour (from (2.7) and from the combustion

process):

HNCO(g) +H2O(g) −→ NH3(g) + CO2(g) (2.9)

The reactions (2.7)-(2.9) combine to form the overall urea decomposition:

CO(NH2)2 +H2O −→ 2NH3 + CO2 (2.10)

meaning that one mole of urea generates two moles of ammonia [11]. The ammonia is

then adsorbed onto the surface of the catalyst, after which it can take part in the SCR

reactions required for NOx conversion:

NH3 ⇐⇒ NH∗3 (2.11)

where the two way arrow denotes that this reaction can take place in both directions

– i.e. ammonia can desorb from the catalyst surface back into gaseous ammonia if the

diffusion gradient is in this direction. Additionally, oxidation of stored ammonia can

take place. This is particularly the case at high temperatures, due to the abundance of

oxygen in the exhaust stream:
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4NH∗3 + 3O2 −→ 2N2 + 6H2O. (2.12)

An important phenomenon in the control of SCR is so-called ammonia slip. Not all of

the ammonia injected into the reactor will adsorb onto the catalyst surface; part of it

escapes into the environment, and some of the adsorbed ammonia will spontaneously

desorb and leave the catalyst. This is particularly undesirable due to the environmental

toxicity of ammonia. As such, there is a limit placed on the maximum ammonia slip

that is permitted from the system (10 ppm for Euro 6 diesel) and minimising this is a

key objective of the control strategy.

Low Temperature Operation of SCR

Relatively little attention has been paid to operation of the SCR below operating tem-

perature (also known as the light-off temperature), since the NOx conversion is small.

The extension of map-based controllers to lower temperatures is typically not econom-

ically viable. As a result, disabling ammonia injection during this period has become a

typical approach. This eschewing of NOx conversion during cold start is becoming in-

creasingly inadvisable. Firstly, NOx emissions in urban environments are an increasing

health concern. Low road speeds and start-stop conditions make urban driving con-

ducive to low catalyst temperatures. Secondly, journeys are often short within cities,

and will terminate before the SCR reaches operating temperature. Thirdly, continu-

ally increasing engine thermal efficiency reduces exhaust gas temperatures even further,

lengthening the heating time for the catalyst. As a result, optimising NOx reduction

in the cold start region could have significant impact on diesel emissions, particularly

in locations where it is most beneficial. Therefore, cold start SCR optimisation is a

problem that has only recently become worthy of research.

There have been several suggested solutions in the literature for improving this situation.

The first and most obvious is the catalytic material used for the SCR reactor. It is well

known that some materials exhibit better low temperature NOx reduction performance

than others. Several possible catalysts were investigated by [15]. The chemical back-

ground to suboptimal temperature SCR operation is described in [16], which exposes

the different reaction pathways that appear when the catalyst is significantly below its

lightoff temperature (from 100◦C upwards). They note that water adsorption onto the

catalyst surface is responsible for a lot of the temperature effects that are observed in low

temperature operation. Also noted by [11] is the fact that if AUS is injected rather than

pure ammonia, the lack of heat in the exhaust gas hinders the thermal decomposition

into ammonia, which can prevent the SCR control system working as intended.

The physical layout of the exhaust system is important, since moving the SCR catalyst

closer to the engine means that less heat is lost in the transmission of the exhaust mass
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flow from the engine to the SCR. This is studied under a mathematical framework in

[17], which aims to find the optimal packaging for the exhaust system layout to prioritise

operation of the SCR. Another option to bring the catalyst to operating temperature

in a shorter period is explored by [18], which uses an electrical heater to heat the SCR

catalyst. The results are impressive, but the additional electrical load of the heater

implies a fuel penalty.

An interesting area for further research is into the design of a controller that attempts to

optimise performance of the SCR all the way from cold start to operating temperature,

whilst respecting the control objectives and constraints – this topic has, as yet, seen no

significant research.

SCR on Filter

Recently, there has been interest in the possibility of combining the SCR and DPF units

[19, 20, 21], by coating the walls of the DPF with the SCR catalyst; the resulting device

is known as SCR on Filter (SCRF). This arrangement allows the SCRF to be mounted

further upstream (i.e. towards the engine) which results in increased regeneration effi-

ciency and quicker startup of the SCR device from a cold start. There are, of course,

challenges in combining the unit – reactions in the DPF and SCR are not independent

(see passive regeneration in Subsection 2.1.3), and the thermal stresses on the monolith

are greater due to proximity to the engine and active regeneration events. Nevertheless,

more than 90% deNOx average steady state efficiency has been demonstrated over a

large temperature range [11].

2.1.5 Classical Control of SCR

Industry standard approaches for automotive control have typically been the basis of

SCR control, which are typically feedforward map-based controllers whose maps are

calibrated on the testbed over test cycles during engine development. There has been

speculation that closed-loop control will be required in the future to cope with the

combination of stricter emissions requirements, highly transient plant operation, and

variation in sensors and actuators both during production and over the life cycle of the

aftertreatment system [22]. As a result, elements of feedback control have begun to

make their way into industry standard SCR controllers, including PI [23, 24, 25] and

sliding mode [26, 27]. The calibration effort required to tune a map-based controller is

extensive, and constraints cannot be enforced in a systematic manner. The response of

a linear controller (such as PI) means that steady states must typically be placed further

from constraint boundaries to achieve sufficiently low probability of constraint violation.

All of these reasons comprise the motivation for exploring model-based control for SCR.
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More advanced control methods, such as model based approaches, have recently begun

to appear in the literature. This includes the reference governor, which provides a way

to integrate a model-based supervisory layer into existing feedback control laws, as well

as model predictive control, which is introduced and discussed in Section 2.4.

2.2 Modelling of SCR

An accurate dynamic model of the SCR system is important for several reasons. Firstly,

repeated testing on real hardware is expensive and time consuming. An accurate model

can be used in model-based design in lieu of real hardware. This is not only cheaper, but

can be expected to run faster than real time. Secondly, model-based control schemes

require a model of the plant under control. This is typically physically inspired, or

achieved by system identification.

The standard physical architecture of the SCR reactor is a chamber containing several

axial cells in a honeycomb structure, the walls of which are coated with the catalytic

substance [28]. The SCR system is a chemical process [29], the relevant chemical reac-

tions during typical diesel operation and during low temperature operation (e.g. during

cold start sequences) respectively are provided in [30] which constructs the SCR models.

These models are a good starting point for modelling of a generic SCR since they are

founded in physical principles but validated against measured test data from real en-

gines. These works build on earlier research, mostly by the same authors, in modelling

the fundamentals of the SCR process (these are cited in [29] and [30]). It is suggested in

[30] that the developed models could be feasible for automotive application, but points

out that the fidelity of the models during transient operation could cause issues in terms

of computational load; this is something to be examined for the purposes of implementa-

tion in a vehicle environment. It is also mentioned that the dosing strategies may require

knowledge of an optimal ammonia surface coverage, something which is likely therefore

to be a requirement in the calibration of the model-based controller. Whilst no data is

provided in [30], the calibration values of the various parameters in the rate equations

for the SCR are provided in [31]. However, the rate equations are different and this is

a full chemical model which is not designed for real-time simulation. Nevertheless, it

provides a base calibration; having such a starting point available can make calibration

for a different catalyst much faster.

The models developed in [29] and [30] are physically inspired. As such, in an attempt to

apply model-based predictive control to an SCR system, [28] goes into significant detail

about the chemical reactions involved and modelling of the physical system, including

details of each of the relevant reactions and an expression for their simulation. The model

resulting from this approach is actually two linked submodels, one describing the thermal

behaviour of the gases and SCR reactor, the other describing the chemical processes in
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Figure 2.2: Schematic of a CSTR reactor

the conversion of NOx. This is likely to be useful in terms of vehicle implementation

since the models can be executed at different time scales to save computational effort.

Finally, the models developed in [28] are validated against a heavy goods vehicle (HGV)

automotive application.

It is important to define the quantities relevant to the control process, such that time is

not wasted calculating (for example) the concentrations of exhaust gases which are not

relevant to the SCR system, or about which the controller does not care. The models

developed in [28] use the composition of gas at the SCR inlet (in terms of the mole

fraction of several species of interest) as an input to the model, which is determined

from the inlet air to fuel ratio (AFR), a reading from an upstream NOx sensor, plus

the estimated exhaust flow rate and NOx fraction exiting the DPF. Herein lies the

importance of state estimation to optimal performance of the controller.

As discussed at the beginning of Chapter 4, improvements are likely to be conceivable in

the modelling, estimation and control of the entire exhaust and aftertreatment system,

and one fairly complete attempt at doing this is found in [32] which models the SCR

system as a series of continuously stirred tank reactors (CSTR). The CSTR is a variety

of idealised chemical reactor, depicted schematically in Figure 2.2, where the mixture

is assumed to be perfectly mixed such that outlet composition is the same as the com-

position in the reactor. Specifically, the author uses six tanks, which afford the right

compromise of accuracy and computational demand for that particular application. This

may or may not be the case in the model implementation developed for the predictive

controller, depending on the hardware to be used and any computational efficiency gains

that can be found from tailoring of the algorithms. Another CSTR modelling attempt

is made in [33], which provides a full four state nonlinear state space model of the SCR
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system. Along with the subsequent paper [34], it also validates these models against a

testbed engine.

During modelling of the SCR system and other exhaust system components, an offline

parameter estimation is likely to be required if the models are derived from or calibrated

with real data. Many approaches to parameter estimation are available, including the

matlab System Identification toolbox. For nonlinear systems such as the ones that are

present in the exhaust aftertreatment system, a promising set-based approach is given

by [35].

2.3 Exhaust Gas Sensors, Measurement and Estimation

2.3.1 Sensors and Measurement

In order for a feedback based control system to function, some measurement must be

made of the plant outputs to be controlled. As can be seen in Figure 1.2, a typical

architecture for an SCR system is to have an upstream NOx sensor to measure the gas

composition entering the catalyst, coupled with a NOx and ammonia sensor pair at the

tailpipe. The ammonia sensor is often not present in real world systems. Design and

manufacture of these sensors presents a significant challenge for several reasons: they are

required to last many thousands of hours in a harsh and varying temperature exhaust

environment, during which they must sense very small concentrations of gases (typically

on the order of 100s of ppm for NOx and 10s of ppm for ammonia). If the control system

is operating well, at the tailpipe, these concentrations fall very close to zero, especially

in steady state.

There are several types of sensors available for detection of the chemical species relevant

to SCR control. Organic sensors were the first available but have not found success

in automotive systems due to their intolerance of extended high temperature operating

conditions. Yttria Stabilised Zirconia (YSZ) sensors have been more successful in this

respect, and such sensors are typically used in modern SCR systems [36, 37]. These

sensors are equally sensitive to NO and NO2, thus resulting in a so-called total NOx

sensor. Should the control system need to know the NO:NOx ratio in the catalyst inlet

or outlet gas, this needs to be estimated by knowledge of the DOC characteristics (which

are typically very temperature dependent). The principle disadvantage of such sensors

is that they typically exhibit cross sensitivity between NOx and ammonia, necessitating

filtering techniques for estimation of the true NOx and ammonia concentrations [38].

Recently, there has been interest in doping the electrodes with tungsten trioxide (WO3)

in order to improve the sensitivity [39, 40].

A combined NOx and ammonia sensor suite is developed by [41], which uses WO3 films

of different thicknesses is determined that provides the best selectivity of the two sensors
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to their respective gases. It is likely that a combination of choosing sensors with minimal

cross sensitivity and state estimation techniques will be required to achieve the sensor

accuracy that is required for improved control of the SCR process.

In terms of production sensors that are currently used on vehicles, several major man-

ufacturers are now producing NOx sensors, including Continental and NGK. Typically,

these are YSZ sensors which communicate via CAN or a similar interface. Off-the-shelf

units can typically sense up to around 1500ppm NOx and have an accuracy of ±10ppm.

It is therefore clear that if these sensors are to be used in high efficiency SCR systems,

some filtering and estimation will be required in order to improve accuracy at low NOx

concentrations. Other sensors used in current commercial SCR applications are O2 and

temperature sensors, which have been standard equipment on production vehicles for

many years and can therefore be considered a mature technology. Ammonia sensors

are typically not fitted in current industry standard SCR systems. As a result, they

are typically expensive and have not seen as much development. High efficiency SCR

may require the use of such sensors [42], in which case it can be expected that the

price of these units will decrease and availability will increase over the coming years.

One recently released example by Delphi senses NH3 in the range 0-100ppm and avoids

cross-sensitivity to other species, such as NOx [43].

2.3.2 State Estimation

It has been discussed that the SCR reactor, and indeed the exhaust aftertreatment sys-

tem as an entirety, is a complex nonlinear system (see equation (10) in [34]). Knowledge

of certain quantities in the SCR is vital to achieving good control performance. One of

the most important of these is the estimation of ammonia coverage on the SCR catalyst

surface [30], for which there is currently no direct sensor available. The only alternative

is to use the rest of the sensor suite to estimate this parameter. A controller for an

SCR system that incorporates a feedback element will also require measurements from

sensors. As has been previously noted, currently commercially available NOx sensors are

typically equally sensitive to NO and NO2, but additionally cross sensitive to ammonia,

such that the measured NOx concentration is [44]:

CNOx,measured = CNO + CNO2 + kTCNH3 (2.13)

where kT is a temperature dependent cross sensitivity factor, whose characteristic will

typically differ across different sensors. Ammonia sensors are typically not fitted to

production vehicles with SCR, so at present, the goal of the estimator is to estimate the

true NOx and NH3 concentrations from the concentration measured by the NOx sensor.

The lumping of NO and NO2 into a single NOx concentration is typical of current SCR

control practices. However, as has been shown, the NO:NOx ratio will estimate the
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rates of standard- and fast-SCR reactions that take place in the catalyst. As a result,

extension of the observer in order to determine the true NO and NO2 concentrations has

been the subject of recent research, including [45] and [46], the former of which shows

that separation of these species in the control oriented model can lead to performance

improvements. It is also noted in [45] that tracking NO2 can be useful to improve the

estimation of DPF soot loading, since this species is involved in passive regeneration

(2.3).

The most commonly used state estimation framework is the Kalman filter (KF) which

is a recursive state estimator [47]. For a linear system such as:

xk+1 = Axk +Buk + wk

yk = Cxk + vk
(2.14)

where the state and output sequences are subject to additive white Gaussian noise

(AWGN) (wk and vk, known as the process noise and measurement noise respectively),

the Kalman filter provides the optimal estimate of the system state xk. The outputs of

the system as measured by the sensors are given as yk.

The Kalman filter provides an estimate of the system state xk, denoted by x̂k, at each

time step k via use of the system model (2.14) as well as measurements y of the system

output. The filter accomplishes this recursion in a two step process known as predict and

correct, where prediction is carried out using the model information to find the a priori

estimate of the state and covariance matrix, which is then corrected using measurements

to provide the posterior state estimate x̂ and covariance.

Predict: x̂−k = Axk−1 +Buk a priori state estimate (2.15a)

P−k = APk−1A
T +Qk a priori covariance (2.15b)

Correct: rk = yk − Cx̂−k innovation (2.15c)

Sk = CP−k C
T +Rk covariance residual (2.15d)

Kk = P−k C
TS−1

k Kalman gain (2.15e)

x̂+
k = x̂−k +Kkrk a posteriori state estimate (2.15f)

P+
k = (I −KkC)P−k a posteriori covariance (2.15g)

This sequence is shown schematically in Figure 2.3, where x− denotes an a priori estim-

ate and x+ denotes a posterior estimate. With Qk and Rk the (possibly time varying)

process and measurement noise covariances are denoted. The confidence in the state

estimate is tracked in the error covariance matrix P .
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Figure 2.3: The Kalman Filter update and correct recursive process to generate the
optimal linear estimate of the system state x̂

The need for NO:NOx and ammonia coverage estimation has been the subject of recent

research. However, the nonlinearities in the SCR dynamic equations mean that the

linearity assumption of the Kalman Filter is invalid. A naive yet effective answer to this

is to successively linearise the nonlinear system as time progresses. This is known as the

Extended Kalman filter (EKF), which for nonlinear differentiable discrete time system:

xk+1 = f(xk, uk)

yk = h(xk)
(2.16)

the linearisation is obtained using

Ak =
∂f

∂x

∣∣∣∣
x̂k−1,uk

(2.17a)

Ck =
∂h

∂x

∣∣∣∣
x̂k

(2.17b)

to let A and C become time varying due to the relinearisation. Equations (2.15a),

(2.15b) and (2.15c) instead become:

x̂−k = f(x̂+
k−1, uk) a priori state estimate (2.18a)

Pk = AkPk−1A
T
k +Qk a priori covariance (2.18b)

rk = yk − h(x̂−k ) innovation (2.18c)

Applications of the EKF to ammonia storage estimation in SCR can be found both in the

literature and in industrial practice, for instance in [46, 48, 49], the latter two of which

also employ it to distinguish NO and NO2. These works show that the EKF performs

reasonably well, but in the case of highly nonlinear systems, a first order linearisation
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as used in the EKF is likely to have only a small region of validity, meaning some loss

of performance will be encountered. The Jacobians required by the EKF are typically

stored in analytical form and evaluated online. For more complex systems, these can

become large and thus nontrivial to find closed form expressions, though this is often

aided by the use of a computer algebra system (CAS). Nonlinear estimators based on

classical methods (e.g., sliding mode) can also be found in the literature [50, 51], though

model-based approaches tend to be more common. As such, if the EKF is not a viable

solution, other observers such as the Unscented Kalman Filter (UKF) may well be more

so. The total storage capacity of the catalyst has also been the subject of estimation,

as it decreases over time due to ageing and poisoning [48].

It is a generally accepted requirement for vehicle applications that performance of the

aftertreatment system be maintained over time, often over the full useful service life of

the vehicle. As such, estimation of ageing of the catalytic substrate and its effect on

performance is vital. The EKF approach to age-related catalyst degradation appears

to work well in the conditions tested in [48], however the same caveats apply as with

coverage estimation. Further, this work does not consider how the observer performs in

the face of model uncertainty – this requires further examination and testing.

Estimation and correction of NOx sensor cross-sensitivity has seen much recent work due

to the development of the sensors and requirements for accurate NOx control. These

can be model based [52], fuzzy logic based [53], or H2/H∞ based [54]: these works

aim to estimate the cross sensitivity factor directly. A tangential approach is to es-

timate the quantity of interest, usually the catalyst ammonia storage, but include the

cross-sensitivity as an unknown [50]. Some works on SCR control have included cross-

sensitivity rejection to attempt to bring the control problem closer to reality [55].

2.4 Predictive Control

Classical feedback control dates back to the late 19th Century in the design of speed

regulators, called governors, for steam engines. The fundamental concept is comparison

of the output of a plant to a predefined reference, to produce an error signal e(t). The

control action u(t) is formulated as a function of the error signal along with the integral

and derivative of the error signal, such that:

u(t) = kp e(t) + ki

∫ t

0
e(t) dt+ kd

d

dt
e(t) (2.19)

hence the common term for these controllers is proportional-integral-derivative (PID).

The gains kp, ki and kd, known as the proportional, integral and derivative gains re-

spectively, are parameters to be tuned to achieve the control objectives in a reasonable
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manner (typical criteria are stability, a settling time within n seconds and an overshoot of

less than x%). A sizeable portion of classical control theory concerns the determination

of the optimal PID gains for a given application.

Predictive control represents a paradigm shift in the approach to the problem of control,

and it has proved highly successful. It was developed almost simultaneously by two

research institutions. In France, Jacques Richalet developed Model Predictive Heuristic

Control [56], and subsequently founded adersa, which became the first entity to com-

mission an industrial application of the control process. In Texas, Cutler & Ramaker

of Shell Oil Corporation developed Dynamic Matrix Control [57]. It is no surprise

that these initial applications were in the process industry, which operate on relatively

slow timescales, meaning computational requirements are therefore less onerous. Fur-

thermore, they operate on such a scale that marginal improvements in efficiency have

considerable financial impact. These applications were typically a tiered hierarchy in

which predictive control played only a small part. However in recent years, it has begun

to find its way into faster and more fault intolerant applications, such as the aerospace

[58] and automotive sectors [59]. A 2003 survey reported more than 4,500 industrial

applications [60]. Advances in computational power, particularly in the embedded elec-

tronics world with faster microprocessors and a fall in the cost of programmable logic

devices, has led to interest in predictive control in areas where the computation re-

quirement has previously been considered prohibitive. Perhaps unsurprisingly, many

formulations of the technique have evolved over the years, often resulting in confusion

in the literature. The dynamic matrix control formulation of Cutler & Ramaker is still

in common use, as are generalised predictive control (GPC) and predictive functional

control (PFC), amongst others. These formulations typically have something specific

to their algorithmic or mathematical structure in order to distinguish them from other

flavours. The formulation that will be described here is a generic formulation known

as model predictive control (MPC), also known as receding horizon control (RHC), full

details of which are given in [61]. Despite this diversity, all predictive controllers have

certain elements which distinguish them from other techniques. Fundamentally, these

are an internal model for prediction of plant response faster than real time, a receding

horizon approach to generation of optimal inputs, and in particular, an online optimisa-

tion algorithm which determines the next and future control inputs.

Predictive control boasts several powerful and compelling advantages over classical con-

trol approaches, including a natural and intuitive extension to multivariable control

problems, a solution algorithm that is aware of actuator constraints and a nonlinear

controller response near constraints that permits operation very close to such boundar-

ies [62]. This last trait is particularly profound – it is characteristic of many physical

systems, including SCR, that optimal operation of the plant lies on or infinitesimally

close to a constraint boundary. In the specific case of SCR, optimal NOx reduction

occurs at the ammonia slip limit (see Subsection 2.1.4).



30 Chapter 2 State of the Art

2.4.1 Review of MPC

Predictive control has its roots in classical control theory, particularly in optimal control.

The optimal control paradigm deals with the concept of finding a control law which

satisfies a particular optimality condition, known as the cost function. This is a function

of the states and inputs of the plant, or the plant outputs which are a function of the

states, which is chosen in order to drive the plant to a predetermined state. For a

continuous time system:

ẋ(t) = Ax(t) +Bu(t) (2.20)

an infinite horizon cost function is defined as:

J(x, u) =

∫ ∞

t0

xTQx+ uTRu+ 2xTSu dt. (2.21)

Here the matrix properties of positive definiteness or positive semidefiniteness are intro-

duced:

Positive definite: Q � 0 := xTQx > 0 ∀ x 6= 0

Positive semidefinite: Q � 0 := xTQx ≥ 0 ∀ x 6= 0
(2.22)

It is typically ensured that S � 0, Q � 0 and R � 0 in (2.21), resulting in the desirable

and important property that the cost function is quadratic and convex. This means that

the solution to the problem, which will give the optimal control input sequence, is both

unique and global. A state feedback control law is sought, of the form:

u(t) = −Kx(t) (2.23)

where x(t) is the current state of the system and K is the controller gain. In the case

described here with a linear system and a quadratic cost function, the solution is given

by:

K = R−1(BTP + ST ) (2.24)

in which P is the solution to the algebraic Riccati equation (the derivation of this is

outside the scope of this report):

ATP + PA− (PB + S)R−1(BTP + ST ) +Q = 0. (2.25)
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Figure 2.4: Ingredients of model predictive control

The solution laid out here is known as the linear quadratic regulator (LQR) and is by

far the most commonly used technique in optimal control, providing a huge amount of

flexibility. It is important to note that there are no constraints present on the inputs

u(t) and the states x(t), the only tuning is via the weighting matrices S, Q and R in

(2.21). It is this lack of constraints that means the value of the state feedback matrix

K is time invariant and can be found offline. This ceases to be true in the case of MPC.

Predictive control aims to address some of the practical issues in optimal control. Nu-

merical evaluation of the infinite horizon cost functional (2.21) is not feasible; this is

instead approximated by repeated solution of a finite horizon cost function:

J(x, u) =

∫ tf

t0

xTQx+ uTRu+ 2xTSu dt (2.26)

where tf is known as the prediction horizon. Of equal importance is the inclusion

of constraints on the inputs u and the states x. By constraining the solution space,

the closed form analytical expression for the state feedback law K (2.24) is lost. The

canonical formulation of predictive control begins with a linear dynamic discrete time

system:

xk+1 = Axk +Buk (2.27a)

yk = Cxk (2.27b)

where x ∈ X ⊆ Rnx is a state vector and X is the set of admissible states, u ∈ U ⊆ Rnu

is the input vector and U is the set of admissible inputs, and y is the output vector. The
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prediction horizon tf is divided into N steps over which the system is simulated – it is

over this horizon that the cost function is minimised:

V (x, u) :=

N∑

k=0

l(xk, uk) + E(xN ) (2.28a)

l(xk, uk) = xTkQxk + uTkRuk (2.28b)

E(xN ) = xTNPxN (2.28c)

under the constraint that when k = 0, x is equal to the measured value of the state and

xk are the states at time k, with xN being the final state (at the end of the prediction

horizon), whilst uk are the inputs at time k. Notice that the stage cost l(·, ·) and the

terminal cost E(·) are quadratic functions of their arguments. Writing the constraints

in a linear fashion, the optimisation problem is:

minimise
u

V (x, u) (2.29a)

subject to G

[
x

u

]
= g (2.29b)

H

[
x

u

]
≤ h (2.29c)

Note that this is a quadratic programme (QP), since the cost function is convex and

quadratic and the constraints linear. Furthermore, this QP is in uncondensed form,

meaning that it is over-parameterised, the states xi appear as decision variables, yet

each state is uniquely determined by the previous state and input thanks to (2.27a).

This results in very sparse and highly structured problem data, features which can

be exploited for fast solution of the problem. Alternatively, the system (2.29) can be

condensed to produce a much smaller but dense problem. To do so, rewrite (2.28) in

matrix notation (see [61] for the details of this derivation):

V (x, u) = xT0 Qx0 + xT Q̄x+ uT R̄u (2.30)

where x0 is the initial state, and x and u are the vectors of future states and inputs

respectively. Now the states xk can be substituted in (2.28) by recursively substituting

(2.27a) for each time index k. In doing this, the states are eliminated, making V (·) a

function of only the inputs u and the initial condition x0 to create:
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V (x, u) =
1

2
uTΓu+ uTΨx+ xT (Q+ ΦTΩΦ)x (2.31a)

Γ := 2(R̄+BT Q̄B) (2.31b)

Ψ := 2BT Q̄A (2.31c)

with R � 0, P � 0 and Q � 0 guaranteeing convexity of (2.31a). The QP now becomes

the small and dense problem:

minimise
u

f(u) :=
1

2
uTΓu+ uTΨx (2.32a)

subject to Hu ≤ h (2.32b)

Gu = g (2.32c)

where the function to be optimised, f(·), is equivalent to V (x, u) in (2.31) but lacking the

term that does not involve u since this does not affect the optimisation. The constraints

are written the forms of equality and inequality. Note that they are written in the form

of constraints in the inputs u – state constraints can also be included in this format (see

[61] for details). This format is relatively flexible, with algebraic tricks both saturation-

type as well as rate-type constraints can be imposed (i.e., constraints on how quickly

the input or state can change over time).

At each time step, the optimal input set is found using the quadratic programme solution,

and the first lement of the inputs is applied to the plant. The rest of the sequence is

discarded (since at the next time step, new information is available from sensors, and

thus the calculated input is no longer necessarily optimal) and the optimisation runs

again at the next time step (this is shown in Figure 2.5). For this reason, MPC is also

known as receding horizon control (RHC).

2.4.2 Example

As an example to demonstrate this theory, take a continuous time linear system describ-

ing an undamped mass m = 1 kg on a spring of stiffness k = 1 Nm−1. The objective

will be to drive it to a position of our choice using an MPC controller which controls an

actuator that applies a force to that mass, and using a sensor that measures the position

of the mass (but not its velocity), as shown in Figure 2.6.

Assume no disturbances and no model uncertainty in this case, and begin with the

governing ordinary differential equation of motion:
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Figure 2.6: Schematic of the controlled mass-spring system employed in the MPC
example.

ẍ(t) +
k

m
x(t) = u(t) (2.33)

which can be converted into the standard state space form for continuous time systems:

ẋ(t) = Ax(t) +Bu(t) (2.34)

where ẋ denotes the time derivative of x, by defining the state vector:

x(t) =

[
x1(t)

x2(t)

]
(2.35)

where x1 and x2 are the position and velocity of the mass respectively. This provides

the state space form of the mass spring damper:
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ẋ(t) =

[
0 1

− k
m 0

]
x(t) +

[
0

− 1
m

]
u(t) (2.36)

where u(t) is scalar in this case since there exists only one input. Now choose k = m = 1

to produce the continuous time numerical state space model:

ẋ(t) =

[
0 1

−1 0

]
x(t) +

[
0

−1

]
u(t) (2.37)

and use matlab’s c2d tool with the zero order hold (zoh) option and a time step of

Ts = 0.1s to convert this system to a discrete time representation as used for the MPC

controller. This yields the system:

xk+1 = Axk +Buk ⇐⇒ xk+1 =

[
0.1 1

1 −0.1

]
xk +

[
0

0.1

]
uk

yk = Cxk ⇐⇒ yk =
[
1 0

]
xk

(2.38)

To keep the algebra straightforward and clear, take equal prediction and control horizons

of N = 3 in this simple example. The cost function can now be formed from (2.30),

keeping the (scalar) weights P , Q and R symbolic here for clarity:

V (x, u) = xT0 Qx0 +



x1

x2

x3




T 

Q 0 0

0 Q 0

0 0 P






x1

x2

x3


+



u0

u1

u2




T 

R 0 0

0 R 0

0 0 R






u0

u1

u2


 (2.39)

in which the states xi, i = {1, 2, 3} can be replaced using the system model to produce

the MPC cost function (2.31) which is a function only of the future inputs u and the

current state x, as required:
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V (x0, u) =
[
u0 u1 u2

]





R 0 0

0 R 0

0 0 R




+



B 0 0

AB B 0

A2B B B






Q 0 0

0 Q 0

0 0 P






B 0 0

AB B 0

A2B B B









u0

u1

u2




+ 2
[
u0 u1 u2

]


B 0 0

AB B 0

A2B B B






Q 0 0

0 Q 0

0 0 P






A

A2

A3


x0

+ xT0


Q+

[
A A2 A3

]


Q 0 0

0 Q 0

0 0 P






A

A2

A3





x0 (2.40)

By choosing P = Q = 1 and R = 0.01, this results in the cost function for the undamped

mass-spring system as:

V (x0, u) =
[
u0 u1 u2

]



0.0806 −0.0040 0.0202

−0.0040 0.0602 −0.0020

0.0202 −0.0020 0.0400






u0

u1

u2




+
[
u0 u1 u2

]



0.6060 −0.0606

0 0.4060

0.2020 −0.0202


x0 (+ terms not involving u) (2.41)

which is exactly the QP cost function in (2.32) to be solved at each timestep. The

optimiser chooses the inputs u =
[
u0 u1 u2

]
in order to minimise V (u), and then

applies u0 to the plant. Choosing an initial state vector x0 =
[
−0.5 0

]T
(corresponding

to the mass having initial position −0.5 and zero velocity), a target mass position at

0, and with all other variables as described above, the closed loop simulation of the

system is shown in Figure 2.7. Here, it can be seen that the controller chooses an initial

positive force to move the mass upwards followed by a negative force to slow it to rest,

bringing the mass to its target position at 0 in around 10 seconds. The performance

of this controller is relatively poor – this is due to the fact that short prediction and

control horizons and simple gains were chosen to make the algebra simple. In a real

application, the horizons would be longer (typically Hp > Hu) in order to capture a

significant proportion of the system dynamics, and there may be constraints on the

force the actuator can supply.
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Figure 2.7: Closed-loop state and input trajectories for the system in (2.38) from an
initial state of x0 = [−0.5, 0]T .

An interesting and promising concept that has found some success in recent years is that

of explicit MPC. This was introduced in [63] and describes a technique to offline the

optimisation inherent in MPC. This work proves that the feedback law for a convex finite

horizon problem is piecewise linear and continuous, implying that the online controller

action is only to evaluate a piecewise affine function of the state, which is computationally

cheap. The disadvantage of this approach is the significant storage required for the

control laws. An upper bound on the number of regions of state space required is given

by

Nr ≤
2q−1∑

k=0

k!qk (2.42)

where each region is defined by q2q inequalities. Nr is the number of regions in the

controller and q is the number of constraints defining the region. q increases with Nu,

Nc, m and p, which are the input horizon, control horizon, number of inputs (dimension

of u in (2.27a)) and number of outputs (dimension of y in (2.27b)) respectively.

2.4.3 Stability and Feasibility in MPC

In general, the difficulties in stability analysis and guarantees in predictive control are

analogous to those of adaptive control, in that the control law is being continuously

redesigned online. However, there has been, and continues to be, much research in this

area. From [61], an equilibrium of a discrete time system xk+1 = f(xk, uk) is defined as:
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Stability The origin is defined as stable if, for any ε > 0, there exists a δ > 0 such

that if
∥∥∥
[
xT0 , uT0

]∥∥∥ < ε then
∥∥∥
[
xTk , uTk

]∥∥∥ < δ ∀ k.

where xk and uk are the states and inputs at timestep k respectively. The restriction to

the origin is without loss of generality of the definition, since it is possible to engineer

a change of coordinates such that any equilibrium in the state space is shifted to the

origin. Further to this, by requiring that:

∥∥∥∥
[
xTk , uTk

]T∥∥∥∥→ 0 as k →∞, (2.43)

the system is asymptotically stable [61].

The function V : S → R, defined on a region S ⊂ Rn, is said to be a Lyapunov function,

if:

C1. V (0) = 0

C2. V (x) > 0 ∀x 6= 0 ∈ S

C3. V (f(x, u)) − V (x) ≤ 0 ∀ x ∈ S (discrete time) or V̇ (x) ≤ 0 ∀ x ∈ S (continuous

time).

If there exists such a function V meeting these conditions then the origin is an asymp-

totically stable equilibrium whose region of attraction is S. Correspondingly if S = Rn

(i.e. encompasses the entire state space), and V (x)→∞ as ‖x‖ → ∞ then the system

is globally asymptotically stable.

It is possible to rewrite (C3.), recalling that a deterministic feedback control law can be

written as u = K(x). If a linear feedback law u = Kx is assumed, then:

V
(
f(x,Kx)

)
− V (x) < 0 ∀ x 6= 0 ∈ S (2.44)

and all other conditions are satisfied, then V is a Control Lyapunov function. If there

exists such a function, then the origin is an asymptotically stable equilibrium for the

closed loop system x(k + 1) = f(x(k), Kx(k)).

Recalling that Q ≥ 0 and R > 0 in (2.28), the origin is guaranteed to be an asymp-

totically stable equilibrium under predictive control providing that P ≥ 0 is chosen to

satisfy:

(A−BK)TP (A−BK)− P ≤ −Q−KTRK (2.45)
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in which K is any matrix chosen such that ρ(A−BK) < 1, where ρ(M) is known as the

spectral radius of the matrix M and is defined as:

ρ(M) , max{|λ1|, |λ2|, ..., |λn|} (2.46)

where λi are the eigenvalues of M .

In this case, the value function V in (2.28) can be shown to be a Lyapunov function. It

is clear that:

1. V (0) = 0

2. V (x) ≥ xTQx > 0 ∀ x 6= 0

3. V (x)→∞ as ‖x‖ → ∞

and thus the only thing remaining to prove is that:

V ?(x(k + 1))− V ?(x(k)) < 0 ∀ x 6= 0. (2.47)

If a candidate input sequence ũ can be found which satisfies:

V (xk+1, ũ)− V ?(xk) < 0 ∀ x 6= 0, (2.48)

then from the definition of optimality,

V ?(xk+1) ≤ V (xk+1, ũ), (2.49)

and therefore (2.47) is satisfied. The candidate sequence ũ is not used for control, but

its existence provides proof of stability. To show that such a sequence can always be

found, consider a terminal control law

ũN = −KxN (2.50)

where K is as chosen in (2.45) and with the same condition that ρ(A − BK) < 1. In

(2.28), the stage cost is defined as:

l(xk, uk) := xTkQxk + uTkRuk (2.51)
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and the terminal cost:

E(xN ) := xTNPxN (2.52)

The cost at the next time step under the terminal control law is given by:

V ?(xk)− l(xk, u?k,0−VN (xTN (xk)) + l(x?N (xk),Kx∗N (xk)) +VN ((A−BK)x?N (xk)) (2.53)

so that if it can be ensured

− VN (x?N (xk)) + l(x?N (xk),Kx?N (xk)) + VN ((A−BK)x?N (xk)) < 0 (2.54)

then (2.49) will be satisfied. The conditions ensuring this will hold is to choose VN to

be a Control Lyapunov function:

VN (Ax−BKx)− VN (x) ≤ −l(x,Kx) < 0 ∀x 6= 0 (2.55)

which will always hold as long as K is chosen according to (2.45). Therefore V ? is a

Control Lyapunov function and stability is guaranteed. For discrete-time or sampled

data system, in practice it is difficult to achieve global asymptotic stability due to the

effect of sampling. Instead, it is more common to achieve stability in a practical sense.

If there exists δ > 0 such that

VN (Ax−BKx)− VN (x) ≤ −l(x,Kx) + δ < 0 ∀x 6= 0 (2.56)

then VN is said to be a practical Lyapunov function and the system is called practically

asymptotically stable.

Feasibility is an issue that is specific to MPC. This is because it arises from the

desire to ensure that the online optimisation has a solution at each time step. Since

the optimisation is subject to constraints, it may be the case that no feasible solution

exists. In the most general case of predictive control, there exist constraints on inputs

and states:
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xk ∈ X ⊆ Rn ∀ k (2.57)

uk ∈ U ⊆ Rm ∀ k (2.58)

where n and m are the dimensions of the state and input respectively. X and U are the

sets of admissible states and inputs respectively. Using the above framework in which

a stabilising terminal control law ũN = −KxN is applied at the end of the prediction

horizon, consider so-called dual-mode MPC, in which MPC is used to drive the system

into an invariant terminal set Ω, after which the terminal control law takes over. The

idea of recursive feasibility introduces a new terminal constraint

x(k +N |k) ∈ Ω (2.59)

which ensures that the MPC control law will always drive the state x into the terminal

set Ω by the end of the prediction horizon [64]. This implies that

umin ≤ −Kx(k +N |k) ≤ umax (2.60)

xmin ≤ x(k +N |k) ≤ xmax (2.61)

which is to say that the terminal control law is input- and state-admissible within Ω

[65]. One further terminal constraint is required to ensure that the next input also leads

the state into the terminal set Ω at the end of the prediction horizon, i.e. that

x(k +N + 1|k) ∈ Ω. (2.62)

In this case, it remains only to guarantee that Ω is invariant under the terminal control

law. Determination of the terminal set Ω and the guarantee of its invariability is out of

the scope of this discussion, but it is relatively simple. If this is the case, then the MPC

optimisation is guaranteed to be feasible at all future times k > 0 as long as it is feasible

at time k = 0 [65]. A method for detecting initial states for which recursive feasibility

cannot be guaranteed is given in [66].

2.4.4 Nonlinear MPC

The fundamental concepts behind predictive control do not stipulate a linear model.

However, due to historic preference for the retention of a QP, the term MPC has come,
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by popular usage, to mean linear MPC. As a result, modern applications which use

nonlinear models have typically been explicitly termed nonlinear MPC (NMPC). In

this technique, the linearised internal model is replaced with a nonlinear one, which is

especially useful if the plant under control exhibits significant nonlinearities, since in this

case the linearised model could, in some regions of the state space, be wildly inaccurate.

The cost of this change is that the convexity of the problem is then lost. The naive

answer to this is to rely on the optimiser to cope with the solution (although this cannot

utilise a QP solver; a more general optimiser must be used). However, due to the time

required for solution of the optimisation programme, it is typically necessary to exploit

some of the structure in the problem introduced by the MPC formulation. Given a

continuous time dynamic system:

ẋ(t) = f
(
x(t), u(t)

)
(2.63)

where x(t) and u(t) are the state and input vectors respectively, t is time, and x0 is the

initial state. Restrict the state and input to some admissible sets:

x(t) ∈ X ⊆ Rnx ,

u(t) ∈ U ⊆ Rnu .
(2.64)

Define a cost function to be minimised as the sum of the integral of a stage cost l(·, ·)
over the finite time horizon tf and a terminal cost E(·):

J(x, u) =

∫ tf

t0

l(x, u) dt+ E
(
x(tf )

)
. (2.65)

As in linear MPC, the solution of the infinite time optimal control problem (OCP) is

approximated by the successive solution of finite time OCPs:

minimise
u

J(x, u) (2.66a)

subject to ẋ(t) = f
(
x(t), u(t)

)
(2.66b)

u(t) ∈ U ∀ t ∈ [t0, tf ] (2.66c)

x(t) ∈ X ∀ t ∈ [t0, tf ] (2.66d)

x(0) = x0 (2.66e)
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2.4.5 Economic MPC

Traditionally, stage costs have been defined to drive some or all of the states x and

inputs u to some reference values xref and uref

l(x, u) = ‖x− xref‖2Q + ‖u− uref‖2R (2.67)

where Q and R are weighting matrices used to prioritise tracking of certain states or

inputs. This model fits tracking objectives, where the aim is for the controller to move

the plant to a known fixed steady state. However, in many applications, such as pro-

cess and chemical plants, the best operation condition xs is not known a priori and

neither is it fixed. In such applications the best equilibrium is typically chosen to max-

imise economic benefit and/or minimise cost. Traditionally this is implemented under a

framework known as real-time optimisation (RTO), where an upper layer calculates the

best operating point, and an underlying MPC layer drives the plant to that condition.

Recently, there has been interest in letting MPC directly determine the best operating

condition. Initially, this was termed dynamic real-time optimisation (dRTO), but has

come to be labelled as economic MPC (EMPC). MPC is labelled economic when its

cost function relates directly to the cost of operating the plant, rather than targeting

a particular steady state [67]. This was first examined in the context of unreachable

setpoints in [68], wherein it is noted that such an economic stage cost can yield better

performance than traditional tracking MPC in cases where the true cost is of economic

form.

In EMPC therefore, the stage cost is related to the true economic cost. Tracking MPC

typically uses the cost function as a Lyapunov function, as described in Subsection

2.4.3. However, with an economic stage cost, this need no longer needs to be the case.

As such, much of the recent literature around economic MPC has been concerned with

stability. The key assumption that fails in economic MPC in the general case is that

0 = l(xs, us) < l(x, u) where xs is the optimal steady state and us is the corresponding

steady input. An important property that appears in much of the economic MPC

literature is that of dissipativity [69, 70]. If there exists a λ : X → R such that for a

supply rate s : X × U → R,

λ(xk+1)− λ(xk) ≤ s(x, u) (2.68)

then the system is said to be dissipative with respect to s. λ is known as a storage

function. In [71], a rotated stage cost

L(xk, uk) = l(xk, uk) + λ(xk)− λ(xk+1)− l(xs, us) (2.69)
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is introduced, where l(·, ·) is the economic stage cost. Along with assumptions regarding

controllability and strong duality of the steady state problem, a Lyapunov function can

be formed using this rotated stage cost instead of the economic stage cost and, subject to

terminal conditions, stability of the closed loop can be proved. In terms of performance,

[72] shows that on average, performance of EMPC is no worse than performance at the

steady state.

Most works in the EMPC literature make some assumptions about terminal conditions

in their proofs of closed loop stability and performance. An interesting pair of works,

[73] and [74], concern themselves with discarding the terminal conditions and attempting

to recover these proofs. The latter makes some particularly useful advances in terms

of replacing terminal conditions with a turnpike assumption. Optimal trajectories of a

closed loop system are said to exhibit a turnpike if they move towards an equilibrium

and stay there for some time before finally departing again [75]. The name turnpike

derives a road traffic analogy, where a time-optimal vehicle route for a long journey

comprises using a highway (turnpike), only leaving at the end of the journey, using local

roads to reach the destination. The existence of a turnpike can be proven under certain

conditions, most important of which is a dissipativity assumption [69].

2.4.6 Numerical Methods for Optimal Control

The formulation of MPC problems in both the linear and nonlinear cases has been

examined, where the resulting optimisation programmes to be solved are quadratic (QP)

and nonlinear (NLP) respectively. The solution of the programme in these two cases is

now discussed.

Solution of quadratic programmes

In the case of a QP (2.32), due to the constraints imposed on P , Q and R in (2.31), then

Γ � 0 in (2.32). This gives the strict convexity property of the optimisation problem

that is required for the problem to be a quadratic programme. The reader is referred

to [76] for a full treatment of convex optimisation. The effort expended to retain this

property pays off when it comes to solving the optimisation to find the optimal input set

u?. The increasing popularity of MPC in recent years has driven a significant body of

research on efficient solution of the resulting problem. In the main, modern QP solvers

for MPC fall into one of two methods: active set and interior point. Both methods are

described here, whilst a comparison of their use for MPC applications is given in [77].

Active set methods begin with a feasible but suboptimal solution. The active set A0

is the set of constraints which hold with equality at the current solution point. These are
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the inequality constraints (2.29c) which are binding. The equality constraints (2.29b)

always remain in the active set. For a general phrasing of constraints as in (2.29c) a

constraint i is active at x if gi(x) = 0 and inactive if gi(x) > 0. From a starting solution

and active set zk and Ak, the method iterates as shown in Algorithm 2.1.

Algorithm 2.1 Active set methods

1: Solve the equality constrained QP for Ak and zk resulting in a new solution z′k and
new set of Lagrange multipliers µ′k

2: if solution is feasible then
3: if µ′k ≥ 0 ∀ k then
4: Terminate
5: else
6: remove the constraint with the most negative Lagrange multiplier µ′k from
Ak to generate Ak+1 and let and go to 1. Otherwise, if all µ′k ≥ 0, terminate

7: zk ← z′k
8: Go to Step 1.
9: end if

10: else
11: perform a line search to move as close as possible to the solution without violating

constraints by solving maxαH(zk + αz′k) ≤ h
12: let zk+1 ← zk + αz′k
13: Add the new constraint to the active set. Go to Step 1.
14: end if

Active set methods have seen significant development, particularly in the direction of

tailoring to the programme structures that appear in predictive control applications.

Some examples are the primal-dual version [78], and others, including [79] and [80].

Examples of its use for predictive control are numerous, including [81] and [82] for linear

MPC.

One particularly successful recent variant of this algorithm was developed and implemen-

ted in the qpOASES software [83], known as online active set. The underlying concept

is to improve performance by calculation of the mp-QP for the current state x, which

produces the optimal solution u?(x) such that under the assumption of no changes in

active set, the solution to subsequent MPC problems is trivially computed. When an

active set change does occur, the mp-QP solution is recalculated and used until the next

active set change. This has proved extremely effective in practice, yielding performance

improvements of an order of magnitude or better in real-world applications.

Interior point methods are a class of barrier methods. By this it is implied that for

cost and inequality constraint functions

minimise
x

f(x)

subject to hi(x) ≤ 0 ∀i,
(2.70)
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the barrier function is formulated as

J(x, τ) = f(x)− τ
m∑

i=1

log
(
hi(x)

)
, (2.71)

where τ is a parameter. Initially, τ is set to a very large number which means the initial

solution is the geometric mean of the constraints, and gradually add in the cost function

by letting τ → 0, as shown in Figure 2.8. The path traced out in these iterations is

known as the central path. Each step in the path (the search direction) is determined

by solution of a linear system of equations. A possible termination criterion for IP

algorithms is that the cost function is increasing in all feasible directions (i.e., those

that would not violate constraints). The use of a logarithmic barrier is ubiquitous in

applications of interior point algorithms.

Interior point methods have seen marginally fewer applications in MPC, but are still

popular for large problems (many constraints), since they can be faster under these

circumstances. Primal-dual methods are again popular, for instance in [84] [85], with

some work on parallel implementations of the optimiser [86], including an FPGA im-

plementation [87]. Applications of MPC employing interior point solvers can be seen in

[88, 89].

Whilst it is true that these two methods represent the vast majority of optimisers used

in MPC applications, there has been interest in other methods, driven in principle by

evolving computation platforms. Nesterov’s fast gradient method (FGM) was overlooked

for MPC for a long time since it is superficially less efficient than either active set

or interior point methods. However, its amenability to parallelisation has therefore

provoked some interest in recent years, thanks to the falling costs of FPGA and GPU

platforms for computation. Examples are given in [90, 91, 92], where the former two

works display implementation in configurable hardware.

Solution of nonlinear MPC problems

Solution of the optimisation programme resulting from the nonlinear MPC formulation

has seen much attention in the field of optimal control, and techniques are roughly

divided into two fields: direct transcription methods discretise the problem simply by

solving the ordinary differential equations (ODEs) over the prediction horizon, comput-

ing the state and input trajectory in this manner for each input sequence. Conversely,

indirect transcription methods solve the problem by solving the necessarily optimality

conditions. These two methodologies are colloquially known as discretise then optimise

and optimise then discretise respectively. Direct transcription methods have been fa-

voured for optimal control applications, due to the difficulty in deriving the necessary
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z?

z?u

z0

Figure 2.8: Interior point methods trace out the central path from the starting guess z0
at the geometric mean of the constraints (hatched) towards the unconstrained optimum
z?u (blue cross) of the cost function (dashed), but is constrained to the best feasible

solution z? (red cross).

conditions for indirect methods [93], so the current discussion is limited to direct meth-

ods. A continuous time plant model is assumed, since this is the case for most physically

derived models.

Construction of the optimisation programme

Casting the optimal control problem (2.66) into a nonlinear programme (NLP) can

be achieved by several methods; those most popular in the MPC field are described

here. For a complete description of numerical methods for optimal control, the reader

is referred to [93].

Direct single shooting methods begin by discretising the prediction horizon into a

mesh of N intervals, and a set of basis functions for the input signal u(t), which are

most often chosen to be constant, i.e. u(t) = qk for t ∈ [k, k + 1), as shown in Figure

2.10. The resulting optimisation variable is

z =
[
q0, q1, . . . , qN .

]
(2.72)

The system equations (2.63) are then integrated from the measured current plant state

x0 over the prediction horizon from t0 to tf , applying the relevant qi in each interval i,

after which the cost function is evaluated and a new set of qi are chosen to improve the

cost. Accordingly, this method belongs to the sequential class.
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Figure 2.9: Direct single shooting integrates the states s0 = x0 to sN under the
piecewise constant controls qk.

Direct multiple shooting is in fact preferable to single shooting in most practical

applications. The key difference in this case is that the state trajectories are also dis-

cretised over the prediction horizon, resulting in a decision variable

z =
[
q0, s1, q1, . . . , sN ,

]
(2.73)

wherein N new constraints are added to the problem to ensure consistency of the state

trajectories, i.e. si+1 =
∫ ti+1

ti
f(si, qi) dt. These are typically known as defect constraints.

Since the algorithm solves for consistency of state trajectories and optimality of inputs

at the same time, this is a simultaneous method. The main advantage of direct multiple

shooting is that, despite the increased problem size in terms of decision variables and

constraints, the integrators run over single intervals of the mesh grid only, meaning that

stiff and unstable solution trajectories are numerically better conditioned. Intuitively,

this can be viewed as distributing the the nonlinearity equally over the nodes [94]. An

additional advantage is the potential for parallelisation of integration in these intervals.

Direct collocation methods are another simultaneous method, but instead of integ-

ration of the system equations (2.63), an approximation is made by use of a polynomial

function which satisfies the solution of a two-point boundary value problem (TP-BVP)

defined by the state trajectories between two points in time (collocation points) and

their derivatives at those points (if these points coincide with the grid mesh points the

method is termed a Lobatto method). An example is the trapezoidal method in which

the state at the end of the interval is described by the following TP-BVP:

xk+1 = xk +
h

2

[
f(xk, uk) + f(xk+1, uk)

]
(2.74)
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Figure 2.10: Direct multiple shooting integrates the states sk to sk+1 under the
piecewise constant controls qk. Constraints enforce s0 = x0 and the defects ζk = 0 to

ensure consistency of state trajectories.

where h is the integration step size and is defined, assuming the initial and final times

are fixed, as h = ∆τ = τi − τi−1. uk appears in both f terms due to the assumption

that the input is fixed during the interval. The defect constraints exist to ensure the

consistency of the state trajectories between points on the mesh grid, as shown in Figure

2.10. From (2.74), the defects are:

ζk = xk+1 − xk −
h

2

[
f(xk, uk) + f(xk+1, uk)

]
(2.75)

and the constraints ζk = 0, ∀k are added as equality constraints to the NLP. Trapezoidal

collocation methods, a first order scheme, appear often in the literature, as do higher or-

der polynomial schemes. The repeated solution of the transcribed OCP is now required:

minimise
z

J(z) :=
N−1∑

k=0

l(sk, qk) + E(sN ) (2.76a)

subject to s0 = x0 (initial condition) (2.76b)

ζk = sk+1 − F (sk, qk) = 0 (defect constraints) (2.76c)

g(z) = 0 (equality conditions) (2.76d)

h(z) ≤ 0 (inequality conditions) (2.76e)

where F is the solution to the initial value problem (IVP) associated with the system of

ODEs (2.63) at the following time step k + 1 :
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F (xk, uk) = xk+1 =

∫ t0+H

t0

f(x(t), u(t)) dt, (2.77a)

x(t0) = xk. (2.77b)

The optimal input is given by:

u?0 =
[
Inu , 0, 0, . . . , 0

]
z? (2.78)

where In represents an n×n identity matrix. Note that equality constraints can be added

to the NLP with the given formulation. It is important to note that the transcription

process guarantees only pointwise-in-time constraint satisfaction, i.e. at the mesh nodes,

rather than the continuous constraint satisfaction that the original continuous time OCP

(2.66) demands.

Solution of nonlinear programmes

A (highly structured, in the case of NMPC) NLP of the following form is to be solved:

minimise
z

f(z) (2.79a)

subject to gi(z) = 0 ∀i (2.79b)

hj(z) ≤ 0 ∀j (2.79c)

Any solution of this optimisation programme must satisfy the Karush-Kuhn-Tucker

(KKT) conditions. Defining the Lagrangian of the problem (2.79) as

L(z, λ, µ) := f(z)− λT g(z)− µTh(z) (2.80)

there exist Lagrange multiplier vectors λ? and µ? (with ? denoting values at the op-

timum) such that the KKT conditions hold [94]:

∇zL(z?, λ?, µ?) = 0 (stationarity) (2.81a)

gi(z
?) = 0 ∀i (primal feasibility) (2.81b)

µ?j ≥ 0 ∀j (dual feasibility) (2.81c)

hj(z
?)µ?j = 0 ∀j (complementary slackness) (2.81d)
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All Newton-type optimisation algorithms attempt to find solutions satisfying these KKT

conditions. The major difference is due to the treatment of the complementary slackness

condition (2.81d) [94], which comes from the inequality constraints1. In particular,

interior point algorithms treat this condition by replacing (2.81d) with hj(z
?)µ?j = τ ∀j

and let τ → 0.

Sequential quadratic programming (SQP) is one of the most often used methods

in the NMPC literature for solving the nonlinear programme (2.79). This is perhaps

because of the significant body of research that has gone into fast solution of a QP for

MPC purposes. The method works by repeatedly linearising all equations in (2.81) and

noting that the result is the KKT conditions for a QP, where its solution is a search

direction in x. QPs are solved successively until convergence to the optimum is obtained.

The SQP method iterates according to

zk+1 = zk + βk∆zk (2.82)

where ∆zk is the solution to the quadratic programme

minimise
∆zk∈Zk

∇F (zk)∆zk +
1

2
∆zTk Bk∆zk (2.83a)

subject to G(zk) +∇G(zk)
T∆zk = 0 (2.83b)

H(zk) +∇H(zk)
T∆zk ≤ 0 (2.83c)

where ∇F , ∇G and ∇H are the Jacobians of the cost, equality and inequality con-

straint functions respectively. Bk is the Hessian of the Lagrangian (2.80), where Bk :=

∇2
zL(z, λ, µ). The Hessian Bk is usually not evaluated exactly (though this is possible

for some systems where an analytical Hessian can be stored and evaluated online). More

often, the famous Broyden-Fletcher-Goldfarb-Shanno (BFGS) update rule is used. In

the special case of a sum-of-squares cost function, the Gauss-Newton Hessian approx-

imation can be used instead. See [94] for descriptions of these two methods. Where the

Hessian is not computed exactly, the method is termed a quasi-Newton method.

Generation of the Jacobians can be implemented in one of several ways:

• Analytical: For small differentiable systems it is possible to store the analytical

solutions to the Jacobian and evaluate them as necessary.

1This condition is known as complementary slackness in the literature surrounding the theory of
optimisation, particularly that regarding duality. Intuitively, it can be seen as a requirement that if an
inequality constraint is binding, then its Lagrange multiplier must be positive. A non-binding (inactive)
equality constraint must have a Lagrange multiplier equal to zero.
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• Numerical: The Jacobians can be computed by a finite difference computation.

Relies on some continuity assumptions of the cost and constraint functions.

• Sensitivity integration: In general, the solutions of ODEs can depend on paramet-

ers and initial conditions. Some modern schemes generate the numerical Jacobi-

ans by integration of the so-called sensitivity equations alongside integration of

the system equations themselves. There is typically some redundancy that can be

exploited to make this process faster than the separate evaluation of the two sets

of equations [95].

One approximate NMPC approach based on SQP is real-time iterations (RTI) [96],

in which a single SQP step is performed at each plant sample time (the controls are

therefore suboptimal but approach optimality during runtime). Optimisation of the

controls occurs alongside the run time of the plant. Of particular note in this algorithm is

the division of the SQP step into preparation and feedback phases, with the preparation

step being significantly longer but performed in the period between plant sampling

instants. The feedback phase is relatively fast and thus allows minimal time between

plant state measurement and controls being applied.

Numerical integration of ODEs is typically required in the implementation of NMPC

methods. In the direct single and multiple shooting frameworks, integrators are required

to evaluate the state consistency conditions (2.76d), since this involves solution of the

system equations (2.63). There has recently been interest in implicit integration meth-

ods, since they are known to have a larger region of stability than explicit methods and

and thus better suited to stiff and unstable systems [97]. In particular for NMPC applic-

ations, there have been recent advances in integrators with inbuilt sensitivity generation;

[98] is one example based on implicit Runge-Kutta (IRK) methods.

In terms of existing software packages for solution of MPC problems, there are several

tailored towards QPs with structures that appear in MPC problems (2.32). Two very

recent active set methods are online active set, implemented in the qpOASES package

[83], and dual Newton strategy implemented by the qpDUNES package [99]. The former

of these exploits ideas from explicit MPC where the QP is solved multiparametrically,

generating solutions almost instantaneously when the active set does not change from

one time step to the next. The dual Newton strategy attempts to combine the structure

exploitation of interior point methods with the warm-starting capabilities of active set

methods. One of the most widely used interior point based solvers is FORCES [100],

which is based on a primal-dual interior point algorithm2. For NLPs, IPOPT [101] is

one of the most well known, using a primal-dual interior point algorithm to directly

2Primal-dual refers to the algorithm simultaneously searching for solutions to both the primal and
dual problems, in order to improve convergence speed. This formulation also allows to use the value of
the duality gap as an indication of convergence or as a termination condition.
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solve the NLP. The solvers mentioned are supplied with both c and matlab interfaces,

permitting direct used for simulation on a desktop computer as well as compilation for

other platforms. Whilst not directly deployable to an FPGA, the code structure could be

ported to these devices to ease the work of designing an FPGA QP solver from scratch.

The ACADO [102] and ICLOCS [103] packages represent the forefront of frameworks for

solution of NMPC problems. They both permit the expression of (possibly nonlinear)

system dynamics in continuous time as well as general objective cost and constraint

functions. They carry out the transcription process described in Subsection 2.4.6, with

ICLOCS recommending IPOPT for solution of the resulting NLP, whilst ACADO uses

an SQP strategy and is bundled with qpOASES for solution of the underlying QPs. It

is worth mentioning that both support direct multiple shooting, with ICLOCS relying

on the sundials toolbox (specifically, cvodes) to achieve the numerical integration

with forward sensitivity generation, whilst ACADO does this internally via an implicit

Runge-Kutta (IRK) scheme [98].

2.4.7 Hardware platforms for MPC

The solution of the finite horizon OCP (2.76) is computationally complex and is the

fundamental obstacle to implementation of MPC controllers on real-time platforms.

Two parts of the algorithm are typically responsible for the computational complexity.

Firstly, the optimisation at the heart of MPC is an operation which is inherently complex,

but also has no guaranteed runtime before the solution is found. This causes issues in

online applications since there is typically limited computational resource available to

solve the problem in a timeframe which is already uncertain. Secondly, if integration of

the system dynamics is required, this is also computationally expensive (particularly if

sensitivity equations are also to be solved).

With respect to the hardware on which the controller will be based, there are again two

competing options. The traditional embedded microprocessor has seen enormous leaps

in performance and decreases in cost in recent years. The microprocessors typically

found in vehicle aftertreatment control systems are not comparable to the central pro-

cessing units (CPUs) found in desktop hardware. They typically have significantly lower

clock rates and, perhaps more importantly, far less fast random access memory (RAM).

Desktop CPU architectures include several mechanisms for speeding up computation

(e.g. caches), knowledge of which can be exploited to maximise the amount of compu-

tation time available on the CPU. However, typical microprocessor systems do not have

such features. One the most promising devices in this area is the arm cortex M4F unit,

a development board for which is shown in Figure 2.11b. This unit contains a digital

signal processing (DSP) core which supports highly vectorised computation. However,

there are currently very few examples of MPC running natively on a microprocessor.

One of the few is shown in [104], which uses an ARM Cortex-M microcontroller, albeit a
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(a) Xilinx Kintex KC705. (b) ARM Cortex M4.

Figure 2.11: FPGA and microprocessor development boards.

fairly simple plant model. It should be noted however, that the clock speed of this unit

is significantly lower than can be attained nowadays, and also lacks the aforementioned

DSP core. Explicit MPC, thanks to its lack of online optimisation, is well suited to

microprocessor implementation – this is discussed in [105], with one example given by

[106].

The alternative platform is the field programmable gate array (FPGA), an example

of a development board for which is shown in Figure 2.11a. These devices consist of

configurable blocks, which can implement functions from memory to complex combinat-

orial logic, providing rapid prototyping functionality for application specific integrated

circuits (ASICs). One of the principal attractions of FPGAs is that they offer the po-

tential for parallelisation of an algorithm (if the structure of the algorithm permits it).

An example of exploiting this to develop a QP solver for a constrained linear MPC

control application using the interior point method is given in [107]. It makes direct

use of a technique known as multiplexed MPC (MMPC), in which the MPC problem

is solved for several subsystems independently and sequentially [108]. For a complex

system, exploitation of opportunities for parallelism in the MPC algorithm, and their

implementation on a parallel computation platform, may provide the key to satisfactory

performance of the controller. It is noted in [109] that the opportunity for parallelisa-

tion is entirely dependent on the algorithm, since data dependencies can preclude it,

implying that the formulation of the problem must be completed with parallelism in

mind. Examples of MPC on FPGAs are rather more numerous [90, 58, 110], but it is

noteworthy that it is typically the optimiser which is the subject of the authors’ effort to

speed up the algorithm. A recent development promising to ease the rapid prototyping

of MPC on FPGA hardware is given in [111], which solves a condensed QP using a fast

gradient method. A stochastic approach using particle swarm optimisation, which is

highly amenable to parallelisation, is examined in [112].
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2.5 Automotive Applications of Predictive Control

Examples of the application of model predictive control in automotive environments

have become more and more frequent in the past few years. Whilst mostly in an aca-

demic setting, the focus of making these controllers suitable for industrial and consumer

applications has begun to increase. Naturally, the areas in which effort has thus far

been expended have been those systems whose characteristics are known to suit a pre-

dictive control framework, coupled with those in which classical control systems cannot

attain the desired performance. One particular example of this is in active suspension

control: the ability of MPC to respect actuator constraints in addition to incorporat-

ing feedforward information from sensors (in this case, road preview information) has

been an important factor [59, 113], through these works involve simulation only rather

than real-time application. Additionally, the active suspension has only one actuator,

sampling times are relatively forgiving, and the system is not safety critical.

2.5.1 Powertrain Controls

As computational power continues to increase, research is moving into using predictive

control to regulate operation of the internal combustion engine itself. These typically re-

quire faster sampling times, and more importantly, are more safety critical. Positioning

of an EGR valve has been proven with MPC in [114], which uses a 3-state, 1-input model

of the DC actuator motor, and demonstrates improved valve positioning accuracy. More

advanced applications in this area involve management of the engine air path in general,

in which MPC appears to demonstrate improved control over PID due to its natural ex-

pansion to multiple-input multiple-output (MIMO) systems. Applications have included

control of an inlet throttle and EGR [115], EGR and variable geometry turbocharger

(VGT) [116, 117] (the former of which applies the C/GMRES MPC scheme), and dual-

loop EGR, VGT and exhaust throttle (ET) [118]. For spark-ignition engines, 6.5% fuel

savings in simulation have been demonstrated by the application of MPC to indicated

mean effective pressure (IMEP) tracking whilst minimising fuel consumption [119]. A

two stage turbocharged gasoline air path control application has been demonstrated to

be real-time capable by using the SQP NMPC approach [120].

There has been consideration of directly optimising for emissions, which has been termed

integrated emissions management (IEM); a paradigm shift in the design of automotive

control systems. The idea is to govern the engine, powertrain and aftertreatment with

one overarching supervisory controller, which determines operating points in order to

optimise a particular cost function. Underneath this trajectory-planning controller are

low level controllers which are designed to regulate actuators, and estimators or filters to

deal with sensors. The design of the cost function is the key parameter in the construc-

tion of IEM control systems. In fact, the cost function is typically varied online such
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that power delivery and emissions are acceptable on average. A simulation approach

showing the benefits of IEM is presented in [121], which demonstrates a 2% fuel saving

over the baseline strategy. This is complemented by a second paper [122] which applies

the derived controller to a real HDD engine and shows that the fuel efficiency gains can

be realised in practice.

More recently, control of hybrid electric vehicles (HEVs) has been a promising area for

the application of MPC. The application of predictive control to the power split in a

HEV has been investigated and proved to work well [123, 124]. Conversely, several

works examine state-of-charge and battery lifetime optimisation of an electric vehicle

[125, 126, 127]. Economic MPC approaches have also been considered in this vein, and

those which consider other hybrid power sources, such a fuel cells and supercapacitors

[128]. Supervisory MPC has also been explored for drive cycle optimisation, with [129]

demonstrating a given state of charge at the end of a journey, and [130] examining how

MPC can be added to control retrofitted HEV equipment in a supervisory role. The

latter makes useful comparisons to rule-based industry standard approaches. However,

all of these works are simulation only and do not attempt to solve the MPC problems

in real time.

2.5.2 Aftertreatment Controls

The competence of predictive control in the management of complex chemical processes

has been well documented, not least due to the fact that the development of the technique

began in this field. Nevertheless, there have been relatively few attempts in published

literature to apply predictive control to the SCR process. One such approach was made

by [131], in which the authors initially build a full chemical and thermal model of

the SCR system, and then derive a reduced order parameterised linear model for use

in the predictive controller optimisation. The parameters are calculated online as the

system moves through various states, and are used to construct the linearised model

for the current timestep. The authors compare this technique to the simple successive

linearisation technique discussed in Section 2.4, concluding that the parameterised model

technique is computationally less expensive and is therefore preferred. The timestep

used in this work is 1000ms, of which the controller requires 31ms on a desktop (and

estimated 115ms on an embedded microprocessor system). An interesting notation is

introduced in that they use the NOx conversion inefficiency rather than the efficiency

as the controlled output and the primary performance metric – it is stated that this is

more appropriate since emissions regulations are stated in terms of the amount of NOx

released to the environment rather than the amount converted by the aftertreatment

system. Finally, it is noted that the combination of their derived predictive controller

along with the inclusion of a feedforward controller (as is often currently used in vehicles)
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could improve performance still further. This is something to be examined in the course

of this research project.

A linearised SCR model is also used by [132], again derived from a nonlinear model,

and is given in (10) in this paper. The engine-out NOx model used is a lookup table

with a lag to account for thermal effects. The implementation of the controller is trivial

since a canonical linear model of the system with no further augmentation is available.

However, the results prove worthwhile, with average NOx conversion efficiency above

93% and ammonia slip lower than 10ppm. This work does not compare the designed

controller against the original nonlinear SCR model, so the performance sacrifice due

to the use of the linear model is unknown. There is also no data on the computational

effort required for this implementation, although it could be estimated by benchmarking

a QP solver with a similar cost function, number of constraints and states.

Conversely, more recent attempts have used a nonlinear plant model, perhaps under

the assumption that computational power and advances in numerical optimal control

are bringing real-time NMPC closer to reality [132, 133, 134]. The results appear to

demonstrate very high conversion efficiencies: up to 96.6% in one case, though it should

be noted that these are simulation results only. However, these works typically do not

consider the real-time implementation of the NMPC scheme, but instead focus on model-

in-the-loop implementation, and no details of the computational demand or solution time

are given. The details of the solution of the NMPC problem and the route to practical

implementation in a vehicle are left to future researchers.

A quite complete work on the model-based optimisation of an entire diesel engine is

given in [32], which includes the EGR rate as well as the urea dosing rate in the control

problem. This work makes no attempt to simplify the SCR model, using a physically

inspired nonlinear model. As a result, each optimiser run takes 20-60 seconds with a 1

second timestep, which precludes online implementation. Some investigation as to why

this is the case is required; it is likely to be a combination of the nonlinear problem

formulation and the optimiser in use. With careful tailoring of the algorithm and imple-

mentation on fast enough hardware, it may be possible to run the full nonlinear model

developed in this paper fast enough for online operation. However, the required speed

increase of nearly two orders of magnitude is likely to require that some compromises

be made. It is noted in this paper that the use of the predictive controller in combin-

ation with lookahead information, such as road speed and junction located (e.g. from

a satellite navigation system) could lead to further performance improvements. The

author notes that optimisation of cold start emissions is not examined, and this should

be included in future work for vehicle applications, since incorrect control of the SCR in

these conditions could cause unwanted ammonia slip.

Adaptive MPC schemes have also appeared in the literature with application to SCR,

particularly because urea doser calibration is one of the major causes of plant-model
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mismatch in model-based control schemes for SCR [28]. This is implemented by includ-

ing a term in one of the linearised model parameters which is updated with a gradient

based parameter estimation law. The results indicate that the inclusion of this adapted

parameter is a significant improvement over the baseline MPC controller. Subsequently,

this has been attempted using NMPC, also including the doser calibration as an adap-

tion parameter [135]. The adaptive element is included to counteract ageing effects in

both the catalyst and the urea doser unit, and it is shown that such online adaptation

can improve the performance of the control system significantly, due to the profound

effects that such mismatch can have on the closed loop performance.

Thermal management of the exhaust and aftertreatment system has begun to appear in

the literature, sometimes coupled with SCR control [136]. There have been approaches

to air path control that are optimised for catalyst heating [137]. This has also been

investigated with regards to HEVs with aftertreatment with the aim of optimising for

minimum catalyst warm up period [138].



Chapter 3

Emissions Data Collection

This chapter details a project that was undertaken with the Department for Transport

(DfT) and Southampton City Council, in which the council has been given funding by

the DfT to report on NOx emissions in the city, which are presumed to be at intolerably

high levels. Transport for London (TfL) has undertaken research to understand the

causes of urban NOx pollution, and has found that buses are responsible for a signi-

ficant fraction [139]. Whilst Euro VI buses are significantly better in this regard [140],

the age and composition of bus fleets typically mean that replacing the entire fleet is

infeasible [141]. Southampton exceeded the annual NO2 limit in 2013 and is predicted

to remain non-compliant until 2020 under the current strategy [142]. The work reported

here is in collaboration with First Group. Euro V buses underwent emissions testing

under real world driving conditions, in order to quantify the efficiency of the factory-

fitted SCR system, and to explore the potential of improving this via the retrofitting

of additional technology. A portable emissions measurement system (PEMS) unit as

shown in Figure 3.2a was used to sample the tailpipe emissions whilst the vehicles were

loaded with ballast and driven over typical routes through the city at peak times. The

PEMS equipment measured tailpipe NOx, CO, CO2 and O2 as well as exhaust flow rate

and temperature, via a tailpipe extension as shown in Figure 3.2b. Separate sensors

were added to the vehicle to measure tailpipe ammonia (since the PEMS unit cannot

measure this). Additionally, a custom telematics unit was constructed to measure key

parameters from the engine diagnostics bus. Constraints on the packaging of the meas-

urement systems meant that measurement of upstream NOx, i.e., before the SCR, was

not possible; however, it is shown that this can be adequately estimated by combining

information from the PEMS and telematics units.

The data collected in this chapter provides information on important aspects of model-

ling an SCR catalyst. In particular, it demonstrates the requirement for thermal man-

agement in order to have SCR catalysts operate optimally. It also indicates a desire to

bring control of thermal management systems under the umbrella of the aftertreatment

controller, in the vein of the IEM approaches discussed in Section 2.5. Allowing the

59
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(a) Wrightbus Streetlite DF (b) Engine bay, catalyst bottom left

Figure 3.1: The vehicles whose real-world emissions were measured in this project.

aftertreatment system to manage the thermal management strategy will allow a com-

bined control objective of emissions reduction, rather than unsynchronised controllers

with differing, and often conflicting, priorities.

3.1 Instrumentation

Instrumentation of the vehicles was considered in view of the dual aims of examining

off-cycle emissions, and understanding the conditions which lead to suboptimal per-

formance and thus potential mitigation routes. The final configuration comprised two

principal elements: direct recording of exhaust emission concentrations of key species,

and monitoring of engine control system and vehicle diagnostic parameters. WrightBus

StreetLite Door Forward (DF) vehicles employ SCR in order to meet their Euro V NOx

emissions limits (shown in Figure 3.1a), so two of these were selected for testing. This

system is factory-fitted. The compact engine bay layout and ease of access, as shown in

Figure 3.1b, permitted simple installation and inspection of the testing equipment.

3.1.1 Exhaust Emissions Measurement

The vehicles were fitted with the Horiba OBS-2200 portable emissions measurement

system (PEMS). The PEMS unit samples tailpipe gas immediately before its release to

the environment, and is capable of recording key emissions including CO, CO2, H2O and

NOx at a sample rate of 10 Hz. Notably, the vehicles were not fitted with NOx sensors

before the SCR, implying that pre-SCR NOx levels were estimated by the aftertreatment

control system based on other measured parameters. This was a key factor in the decision

to additionally monitor engine parameters, as discussed below.

The in-cabin equipment, comprising the OBS-2200, batteries and gas bottles, was fitted

in place of the rearmost pair of passenger seats. A custom baseplate was used, as shown
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(a) OBS-2200, batteries and gas bottles (b) Tailpipe attachment

Figure 3.2: Installation of the Horiba OBS-2200 PEMS equipment on the vehicles to
be tested.

in Figure 3.2a, to retain the PEMS equipment, gas bottles and batteries. The OBS-

2200 collects samples of the exhaust gas via a tailpipe attachment shown in Figure 3.2b.

Additionally, this attachment carries a pair of pitot tubes for flow rate measurement,

and a thermocouple to monitor exhaust gas temperature. These data are all fed into

the main OBS-2200 unit, which is in turn connected to a laptop computer via Ethernet

for setup, calibration and data logging.

The PEMS uses a heated chemiluminescent detector (HCLD) to measure NOx, as well

as having a heated sample pipe to bring a sample of the exhaust gases to the main unit

(around 5 metres) in order to reduce the likelihood of condensation of water vapour in

the exhaust sample, which could damage the analysers. Consequently, the OBS-2200

requires a 24V power supply capable of up to 40 Amperes. It was considered impractical

to draw power from electrical systems on the bus, since the significant electrical load

would lead to increased fuel consumption and therefore impact emissions. Correcting

for this influence would be extremely difficult and would thus lead to error in the data.

Instead, pairs of 12 Volt 120 Ah sealed lead acid (SLA) batteries were used, with each

pair permitting around three hours of run time. These can be seen in the bottom right

of Figure 3.2a. In the rear of this image are three gas canisters and regulators that the

OBS-2200 requires: a calibration gas (span gas) with known proportions of detectable

substances, synthetic air and hydrogen (H2).

The exhaust sample pipe, twin pitot tubes and exhaust thermocouple were routed from

the exhaust tailpipe attachment into the cabin. This was achieved by removing an access
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panel in the cabin floor which is usually used for engine maintenance. To prevent ingress

of engine and road noise, as well as exhaust fumes from the engine bay, a custom panel

was manufactured, as shown in Figure 3.3.

Figure 3.3: The in-cabin engine access panel was replaced with a custom panel allow-
ing connections to the tailpipe attachment to be routed into the cabin whilst preventing

engine noise and exhaust fumes from entering.

3.1.2 Engine Telematics

Engine operating conditions are used in the onboard engine-out NOx estimator and the

SCR control system. As such, a telematics unit was built to request and record relevant

parameters over the OBD-II diagnostics port in the vehicle. These data are listed in

Table 3.1. Two desirable parameters for characterising the catalyst would be engine

output NOx (estimated, in the case of these vehicles) and urea injected before the SCR

Raspberry PiGPS ELM327

WiFi Dongle

Datalogger

OBD-II Port

Figure 3.4: Schematic of the OBD-II datalogger unit.
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catalyst by the aftertreatment control system. Unfortunately, due to the closed-source

nature of the system, it was not possible to retrieve these parameters over the diagnostics

bus.

The unit was based around a Raspberry Pi single-board computer, as shown schemat-

ically in Figure 3.4 along with the complete unit shown in Figure 3.5. The vehicles use

the SAE J1939 standard for on-board diagnostics, which is one of the modes supported

by the ELM Electronics 327 CAN/OBD device, which are cheaply available with USB-

Serial connectivity, such that commands can be sent and responses easily parsed by the

Raspberry Pi software. A global positioning system (GPS) receiver was also included

in the setup, both for real-time clock (RTC) purposes and to record vehicle latitude,

longitude and altitude on the route. These positional data were necessary in order to

map emissions to key points on the route, such as inclines and bus stops. A wireless

adapter was included such that the datalogger was able to upload the stored data when

connectivity was available, specifically at the bus depot where the vehicle was deposited

overnight.

Figure 3.5: Telematics unit internal view, showing the Raspberry Pi (internal, top),
ELM327 (internal, bottom right), power supply (internal, bottom left) and GPS (ex-

ternal, right).

The software written for the telematics unit simply requested a pre-defined list of para-

meters, as shown in Table 3.1, from the vehicle on a regular basis after ensuring the

engine was running. Data were compressed and stored locally until such time as inter-

net connectivity was available, whereafter a separate process managed transmission of

the data to a server. The server parsed and inserted the data into the relevant table

of a MySQL database, along with metadata such as the Vehicle Identification Number

(VIN) which uniquely identifies each vehicle.
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Table 3.1: Parameters logged by the telematics unit and their units.

Parameter Units

Accelerator pedal position %
Engine torque %
Maximum available torque %
SCR inlet temperature ◦C
SCR outlet temperature ◦C
Brake switch Integer
Clutch switch Integer
Coolant temperature ◦C
Demand torque %
Fuel flow rate l/h
Intake mass air flow rate kg/h
Intake manifold temperature ◦C
Engine load %
Engine speed rpm
Turbocharger intake pressure kPa
Brake power kW
Transmission gear current value Integer

3.2 Test Procedure

Since the aim was to measure real-world emissions, each test comprised the vehicle

running its usual route during the normal times of day. The vehicle was loaded with

700kg of sacks of sand, which along with the test team and measurement equipment,

simulated a bus partially loaded with passengers. Each test comprised two hours of

running the normal route, as driven by a PSV-licensed operator appointed driver, and

stopping at all usual bus stops. Risk and safety assessments were conducted prior to

the start of the experiments, and before the equipment was set up on board the bus (at

the depot) and at the beginning of each trial, a safety briefing was given to all those

involved in the tests.

Each of the two vehicles underwent a total of four tests, split over two days. On each

day, the vehicle left the bus depot at 6.30am and ran for two hours, which encompasses

the city rush hour. The two hour duration was chosen since it allowed at least two

complete circuits of the route. The vehicle then returned to the depot for half an hour,

to allow a change of driver and exchange of PEMS batteries, before setting out for the

second two hour test at 9am. Vehicle 1 was tested in February, resulting in a mean

ambient temperature over the test of 8.7◦C, whereas Vehicle 2 was tested in May, with

a mean ambient temperature of 16.1◦C. The weather conditions were otherwise similar,

with little or no rain and negligible wind.
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Figure 3.6: Cumulative NOx output during each of the 8 tests, where Test x.y refers
to Vehicle x, Test Number y in Table 3.2.

3.3 Results and Analysis

Table 3.2 shows the NOx emissions from each vehicle for each test as well as the mean

exhaust temperature, while Figure 3.6 displays the cumulative NOx output over each

test. Since the ambient temperature was lower for Vehicle 1 tests, the average exhaust

temperature is lower. The effect of ambient temperature on NOx output is shown in

Table 3.2. It should be noted that the second test on each day (Tests 1.2, 1.4, 2.2 and

2.4) have higher average temperatures than the first test on each day (Tests 1.1, 1.3, 2.1

and 2.3) since some heat is retained in the engine and exhaust system during the pause

in testing. This results in these second tests producing less NOx. It should be noted

that even in the most favourable conditions (second test of the day in warmer weather

– i.e., tests 2.2 and 2.4), the vehicles emit NOx in excess of three times the Euro V

heavy-duty limit determined in steady state and transient testing (at 2.0 g/kWh).

Table 3.2: NOx emissions from the two vehicles on each of the four tests.

Vehicle Test Number Mean Exhaust NOx

Temperature (◦C) (g/kWh)

1 1 137 13.5
1 2 151 7.9
1 3 148 13.2
1 4 169 7.4
2 1 212 8.4
2 2 224 6.6
2 3 214 9.0
2 4 220 6.4
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A GPS trace of the route during a particular run is shown in Figure 3.7. The trace

is colourised by the NOx emissions per kilometre over the route, with the lowest in

green, denoting 0 g/km, and the highest in red, denoting 1.7 g/km. It is clear that

the city centre is prone to significant NOx emissions, due to low vehicle speed thanks

to congestion and junctions, and frequent bus stops. This causes the SCR to cool

significantly, leading to higher NOx emissions. By contrast, the residential areas see less

NOx emissions. Stops are fewer in this portion of the route, which helps to keep the

catalyst at operating temperature (see Figure 3.8).

Figure 3.7: The vehicle position trace recorded by the telematics unit on Test 2.2.
The trace colour denotes NOx from 0 g/km (green) to 1.7 g/km (red). Labelled are the
bus depot (A), the main pedestrian thoroughfare in the city centre (B) and the hilly

residential area (C). Map data c©OpenStreetMap contributors [143].

3.3.1 Low Speed Operation

Short stops, such as those made at bus stops, traffic lights or junctions, are typically of a

duration of between ten and sixty seconds. During testing, these occur most frequently

in the city centre, denoted (B) in Figure 3.7. For instance, Figure 3.9a is a segment of

Test 2.1 which shows the vehicle stopping for around sixty seconds at a bus stop, then

moving off again without coming to rest again within more than three minutes. The

temperature of the catalyst falls significantly during the stationary period, as seen in

Figure 3.9a. It is interesting to note that whilst the vehicle is stopped and idling, the

exhaust gas has a very low flow rate and temperature. As such, when the vehicle moves

off at around 2, 420 seconds, this cooler gas is pushed through the catalyst, resulting in

yet further cooling. Even with three minutes of sustained engine load, the temperature

does not recover. The end result of this is that when the vehicle moves off again, NOx

conversion is significantly worse, as seen in Figure 3.9b: the SCR achieves only 14%

NOx reduction during the period shown.
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Figure 3.8: The vehicle position trace recorded by the telematics unit on Test 2.2.
The trace colour denotes catalyst gas outlet temperature from 140◦C (green) to 320◦C

(red). Map data c©OpenStreetMap contributors [143].

3.3.2 Nominal Temperature Operation

Figure 3.9c shows the catalyst outlet temperature during a period of the journey in which

30 metres of elevation is gained during the first 200 seconds, resulting in maximum torque

demand for multiple durations. This is evident in the increasing exhaust temperature,

reaching nearly 280◦C, meaning the SCR was well within normal operating temperature.

Further evidence of this is seen in the scatter plot shown in Figure 3.10, which plots

the mean SCR outlet temperature versus the mass of NOx emitted in each kilometre

of the route for one particular test. The inverse correlation of NOx emitted with gas

temperature is clear.

Remark 3.1. During a particular test, a period of just over ten minutes occurred during

which an SCR fault was present and the catalyst was non-operational. As such, the

tailpipe NOx data recorded during this period is equivalent to the catalyst inlet NOx.

A neural network with 20 input delay taps and 20 feedback delay taps, and 3 hidden

layers was trained using this data and four parameters recorded from the CAN bus:

engine fuelling rate, engine speed, engine intake mass air flow and SCR catalyst inlet

gas temperature. The results are shown in Figure 3.11.

3.4 Conclusions

Despite a focus on urban NOx concentrations and a resulting uptake in aftertreatment

technology such as SCR in recent years, city centre environments continue to experience
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(c) Engine load and catalyst temperature in a high load period
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Figure 3.9: Examples of the relationship between vehicle speed/load, SCR outlet
temperature, and tailpipe NOx. Figures 3.9a and 3.9b show a low speed/load period,

whilst Figures 3.9c and 3.9d show a high one.
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Figure 3.11: Training a neutral network to predict engine-out NOx, with an R-value
of 0.864.
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concentrations above safe exposure levels. In terms of abatement technology, SCR has

proven extremely effective, and thus popular, for the control of NOx from heavy duty

vehicles. In this chapter the results of real-world emissions testing of Euro V buses

factory fitted with SCR were presented. It was found that the NOx emissions were

well above their design levels. The temperature of the catalytic surface was identified

as having a profound effect on the performance of the catalyst. Whilst the catalyst

remains in the operating condition where reaction rates are temperature limited, NOx

conversion is necessarily suboptimal. Urban environments are currently of key concern

for NOx levels, yet it is precisely these circumstances which require frequent stopping

and starting of vehicles, which have a deleterious effect on catalyst temperature and

therefore emissions. This is particularly true of public transport vehicles like buses,

which are mandated to regularly stop even without congestion and junctions, meaning

they may be incapable of meeting the emissions limits for which they were intended.

The issue of vehicles exceeding their NOx emissions limits reported in this chapter does

not imply that diesel engines should no longer be considered for this application. Indeed,

these problems can be addressed, at least to some extent, by improved control and

estimation schemes. The control frameworks proposed in this thesis are designed with

the aim of improving efficiency of SCR, providing a pathway to ensuring that vehicles

meet their emissions limits not only at design time but throughout their operational life.



Chapter 4

Modelling of SCR

This chapter deals with the structure and calibration of models of the SCR catalyst and

surrounding aftertreatment systems. It examines both high fidelity models, which, once

calibrated, are used in lieu of a real catalyst for rapid prototyping of controllers, and

lower fidelity models which are optimised for execution speed. These fast models are

typically employed as the basis of model based controllers, estimators and diagnostics.

4.1 High Fidelity Models

High fidelity models are required for model-based control development. In developing

these, a model of the real plant is created which incorporates as many real world effects

as possible and thus makes the fewest assumptions about the physical and chemical

interactions occurring. Speed is not a concern in this case, instead prioritising fidelity.

The models are one dimensional, composed of a series of zero dimensional models, where

the degree of axial discretisation is determined by the user. The output of the final

element is the output of the complete SCR model. The overall structure is shown

schematically in Figure 4.1, where it can be seen that the SCR model consists of three

coupled submodels – catalyst (chemical), thermal and pressure drop. This is common

to both the SCR and DPF models; the SCR model was generated by taking the relevant

elements from the other models. The model is vectorised with the axial elements, and

also with a vector of flow rates of each of the chemical species, which includes NOx:

[
NO, NO2, O2, NH3, CO, CO2, . . .

]
(4.1)

The catalyst model implements the equations given in [144] for mass transfer by diffusion

between the solid and the gas phases for each of the species (4.1) in each of the elements:

71
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Figure 4.1: Top level schematic of SCR model, showing structure, inputs and outputs

ε
∂Cg
∂t

+ νg
∂Cg
∂z

= −kmGa(Cg − Cs)

(1− ε)∂Cs
∂t

= kmGa(Cg − Cs)−Nr
(4.2)

where Cg and Cs are the gas and surface phase concentrations respectively, and r is

the reaction rate for each species, N is the number of moles of the species, ε is the void

fraction of the monolith, νg is the exhaust gas velocity, km is the mass transfer coefficient

and Ga is the surface area of the reactor per unit volume. Via some approximations

(namely neglecting the term in
∂Cg

∂t ), both equations in (4.2) can be rearranged to

ordinary differential equations and implemented in the model. The reaction enthalpies

of the reactions implemented by this model are derived from published literature, and the

catalyst submodel outputs the total heat of reaction for inclusion in the thermal model.

It also contains functionality to adjust the storage capacity of the SCR catalyst as a

function of temperature; an example model of this is given in [33, Equation 27]. Since

the model includes a urea injector, the catalyst submodel also includes functionality

implementing the urea decomposition into ammonia as described in Subsection 2.1.4.

The actual reactions implemented in the SCR model are a subset of those given in

Subsection 2.1.3 and Subsection 2.1.4. The rates of reactions R in (4.2) are mostly taken

from literature, and typically adhere to Eley-Rideal kinetics which are appropriate when

one species adsorbs onto a catalyst surface and the other reacts with it directly from the

gas phase, as in the case of NH3 and NOx respectively. The rate is given by:

r = kCSCB
K1CA

K1CA + 1
(4.3)

where CA is the concentration of the species that adsorbs, CB is that of the one that

does not, and CS is the concentration of active sites on the catalyst. K1 and k are

Arrhenius temperature dependencies, given by:
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k = AeEa/RT (4.4)

where A is known as the pre-exponential factor and Ea is the activation energy of the

reaction. One notable exception to the Arrhenius type rate is the ammonia adsorption

and desorption, since these are physical rather than chemical reactions and therefore

depend on the coverage of ammonia on the surface of the catalyst.

The constants A and Ea in (4.4) need to be determined for each reaction in the model

using the test data, which has constituted the bulk of the modelling work. Gas stand

test data were provided for a small SCR sample, which has a much smaller volume than

the real unit. Data was adjusted to have the same space velocity (defined as volumetric

flow rate divided by volume of the catalyst). The simulink parameter estimation tool

spetool was used to carry out the calibration; given the input and outlet catalyst

data, the optimiser will adjust parameters via a gradient descent based method (such

as interior point) to minimise the RMS error between the inlet and outlet. One of the

biggest problems encountered was isolating a particular equation for calibration – this

was made somewhat easier by some gas stand runs containing (for example) no NOx,

such that the ammonia storage equation (2.11) is isolated.

The thermal model predicts heat transfer through the monolith due to convection and

conduction, which are caused by heat input from incoming exhaust gas and the reactions

occurring in the catalyst. The dynamic model is based on that given in [145], which can

be summarised as:

T̄g = T̄s + (Tg,0 − T̄s)εs
T̄s = T̄g + (Ts,0 − T̄s)εt

(4.5)

where T̄g and T̄s are the average gas and surface temperatures in an element respectively,

which are then used to calculate the rate of heat transfer to and from the surface. A

term in conduction is included according to Fick’s second law of diffusion:

∂T

∂t
= α

∂2T

∂z2
(4.6)

as well as the heat generated by the reactions, which is provided at each timestep by

the catalyst submodel.

The pressure drop model is given by [146], which derives an expression for the pressure

drop across a DPF. The DPF is a wall flow filter whereas the SCR catalyst has open

ended channels, so the terms in the pressure drop expression for wall flow are neglected

for use in the SCR model.
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Figure 4.2: Multisegment CSTR catalyst model with N segments.

The dynamics of (4.2) are very stiff – a small change in the Cg − Cs term has a large

effect on the left hand side of the equation due to the kmGa factor being very large. This

causes performance problems since it often takes a long time for the solver to converge

to a solution, especially during transient events. Originally, the model operated with a

fixed step solver, such as simulink’s ode5, whose step size had to be on the order of the

time constant of the fastest dynamics in the model (around 10 ms). A fairly significant

amount of work has been undertaken in this area to identify parts of the model that rely

on a fixed step solver and reimplement them in a manner amenable to a variable step

solver. This has resulted in roughly an order of magnitude speedup, since the solver can

now take large steps during periods of steady state operation.

4.2 Calibration and Validation

Calibration of the SCR model is primarily divided into two main areas. Firstly, the

geometric and material properties of the catalyst need to be known. Physical dimen-

sions are usually easy to acquire, and material properties such as specific heat capacity,

ammonia storage capacity per unit volume, are typically known from the manufacturer

of the substrate and its datasheets. Secondly and more problematic are the constants

A and Ea in (4.4). These are typically found experimentally [31].

4.3 Control Oriented Modelling

It is clear that the simpler the model the better for online execution in a model based

control environment. Since the calculation of each control step requires the solution of

the model potentially very many times, refining the model to the minimum elements

and fidelity required for acceptable control is of key importance to the performance

of the resulting controller. The catalyst is modelled as a Continuously (Ideal) Stirred

Tank Reactor (CSTR), which is an ideal reactor model often used to represent chemical

processes in which the composition of the reactor output is assumed to be equivalent

to the composition inside the reactor (i.e., the reactor is ideally mixed). To account for

axial variation in temperatures and concentrations, it is possible to create a multisegment

model, as shown in Figure 4.2, in which each segment is modelled as a CSTR. The CSTR
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implementation used to model the SCR catalyst in this work is a modification of the

CSTR approach in [34].

Each differential equation in the CSTR model accounts for the rate of change of one

species of interest. The rate of change of species i is:

dNi

dt
= Fin − Fout + V νiri (4.7)

where Ni is the number of moles of species i, Fin and Fout are the molar flow rates into

and out of the reactor respectively, V is the volume of the reactor, νi is the stoichiometric

coefficient, and ri is the reaction rate of species i.

Assumption 4.3.1. By inspection of (4.7), the following conditions are imposed on ri,j ,

where j denotes a particular reaction, for a well conditioned CSTR model:

1. ri,j = 0 when Ci = 0 for all j where νi,j < 0,

2. Where νi,j > 0 for some j, ri,j → 0 when Ci → 0 for all Ci on the left hand side

(reactants) of reaction j.

In reality, this assumption is very mild, since it simply restricts the model to physically

feasible operating conditions. Specifically, providing bounded inlet concentration Ci,in,

these conditions assure that concentrations are non-negative and are upper bounded by

the sum of Ci,in and the production of species i by chemical processes in the reactor.

The second condition bounds production of species i by availability of reactants. The

reaction rate expressions r1 for standard SCR (2.4) and r2 for fast SCR (2.5) are given

by [33] as:

r1 = k1CNO CO2 θΦV 2 (4.8)

r2 = k2CNO CNO2 θΦV 2. (4.9)

From [33], the rate for NO oxidation is:

r3 = k3

(
CNO

√
CO2 −

CNO2

Keq

)
(4.10)

and ammonia storage (2.11) is:
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rads = kadsCNH3 (1− θ) (4.11)

rdes = kdes exp

(
−Edes
RT

(1− γθ)
)
θ. (4.12)

In these rates, concentrations (Ci) are in moles per cubic metre, θ is the ammonia

coverage ratio (i.e., proportion of the catalyst filled with ammonia), Φ is the storage

capacity in moles, V is the catalyst volume, CNH3 is the concentration of ammonia

in the reactor, R and T are the universal gas constant and temperature respectively,

Keq is an equilibrium constant that is given for various NO:NOx ratios, and the set

{kads, kdes, Edes, γ} are constant parameters to be calibrated. For reactions (4.8)-(4.10),

the ki (i = {1, 2, 3}) terms are assumed to be Arrhenius type expressions as in (4.4).

Using the CSTR model (4.7), the set of differential equations that govern the evolution

of the species of interest in the SCR can be constructed. Following the process detailed

in [34], the species NO, NO2 and NH3 are of interest, so these will comprise the state

vector. The coverage ratio θ appears in all of the rate expressions and cannot be directly

measured, so this is appended to the state vector, giving x =
[
CNO CNO2 CNH3 θ

]T
.

In contrast to [33], it will be assumed the quantity of ammonia injected (CNH3,in) can be

directly controlled since the urea decomposition model is quite separate from the SCR

process. The resulting nonlinear state space model is:




ĊNO

ĊNO2

ĊNH3

θ̇




=




−r1 − 1
2r2 − r3 + S(CNO,in − CNO)

−1
2r2 + r3 + S(CNO2,in − CNO2)

rdes + rads + S(CNH3,in − CNH3)
V
Φ (rads − rdes)− r1 − r2




(4.13)

where CNO,in and CNO2,in are the incoming NO and NO2 concentrations which are

regarded as external disturbances. CNH3,in is regarded as the control input. With F as

the exhaust volumetric flow rate, S = F
V is known as the space velocity.

The rate equations taken from [31] have published parameters, which are used directly

in the model. The standard and fast SCR reactions remained to be calibrated, and this

was completed using NEDC emissions cycle data from ricardo. The overall model

was verified against this data using one of the simplest possible controllers for an SCR

system. This is a purely feedforward controller based on the principle that, as can

be seen from (2.4) and (2.5), there is always a 1 : 1 stoichiometry between NOx and

ammonia. As such, the ideal quantity of ammonia to inject is the same as that of NOx.

This is known as a fixed Ammonia-to-NOx Ratio (ANR) controller. Whilst the ideal

theoretical ANR is 1, the actual optimal value can vary from this due to the fact that

not all ammonia reacts with NOx, and the ammonia slip limit must be respected.
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Figure 4.3: Ammonia-to-NOx ratio sweep targets during the catalyst characterisation.
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Figure 4.4: Model versus measured tailpipe NOx and NH3 during ANR sweep char-
acterisation.

A CSTR model of an SCR comprising sixteen segments was calibrated using testbed

data. The testbed data comprises exhaust NOx and temperature being held constant,

whilst the catalyst inlet ammonia was swept over a range of ammonia-to-NOx (ANR)

values, as shown in Figure 4.3. The model parameters were then adjusted using a para-

meter optimisation routine to minimise the discrepancy between predicted and measured

outlet NOx and ammonia, with the optimal calibration shown in Figure 4.4. The res-

ulting ammonia storage fraction in each segment is shown in Figure 4.5.
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Figure 4.6: Schematic of an SCR catalyst fitted with an electric catalyst heater
(EHC).

4.4 Electric Catalyst Heater

Modelling of the EHC is relatively simple and is just a first order gas flow model:

∆T =
Pehc
ṁcp

(4.14)

where Pehc is the power supplied to the heater in Watts, ṁ is the mass flow rate, cp

is the specific heat capacity of the exhaust gas at constant pressure and ∆T is the

temperature rise from heater inlet to outlet. This relatively simple model is easy to

include in embedded control applications. This model assumes 100% efficient conversion

of electrical power into heat, and assumes that all of the generated heat is transferred

to the gas stream.
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4.5 Concluding Remarks

This chapter examined the modelling frameworks that have been used in the literature

for SCR, both high fidelity offline models and approximate models that have been used

for model-based control. The CSTR framework has been examined and a model has

been developed and calibrated using data acquired from a real SCR on a testbed. It is

phrased in such a manner so as to be applicable to most SCR chemistries, just requiring

calibration either from an engine test bed or from gas stand catalyst samples.

In the next chapter, these models will be used to build model-based control schemes, both

for the internal controller model and as plant models when benchmarking performance.

It will be demonstrated how the CSTR framework permits significant flexibility in the

model, both in terms of the computational complexity versus fidelity, and including and

excluding reactions as appropriate.





Chapter 5

Reference Governors for SCR

Current industrial strategies for automotive SCR are typically based on driving the am-

monia storage in the SCR to a particular value, which is typically a function of catalyst

temperature and gas flow rate through the SCR. This is typically stored in a map which

is calibrated at engine design time using a testbed. Since the constrained quantities,

i.e., pollutant emissions and actuator inputs, are not included in the controller, the

map is typically highly conservative, and provides no runtime guarantee of constraint

satisfaction.

Typically, the controller is implemented to drive the ammonia storage to its target value

of the PID type. One concept which has proved highly popular in the automotive field

for adding constraint handling and thus permitting plants to operate closer to optimal

setpoints is the reference governor. One of its principal advantages is that it can be

added in a supervisory capacity to an existing PID controller, only intervening where

constraint violation is predicted, or where a modified setpoint would allow closer-to-

optimal operation.

In this chapter, the reference governor concept is introduced and how it can be added

to existing SCR controllers is discussed. Its advantages over standard controller topo-

logies are demonstrated by simulation. Finally, the reference governor is implemented

in hardware-in-the-loop using an automotive rapid prototyping platform, showing that

this scheme is feasible for online implementation on typical automotive grade hardware.

5.1 Review of the Reference Governor

One of the principal disadvantages of classical control strategies is their lack of constraint

handling, since many systems across the control field are subject to constraints on their

inputs, process variables and outputs. One option for handling pointwise-in-time con-

straints which has seen success in many fields including automotive is the reference

81
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governor. Under this framework, a conventional control scheme is augmented with a

supervisory layer which may adapt the closed loop reference such that constraints are

met. Typically, the implementation is such that the reference governor will act only

to modify the closed loop behaviour if constraint violation is foreseen; otherwise the

reference should be allowed to be as close as possible to the conventional controller de-

mand [147]. In this chapter, a model-based reference governor for an SCR application

is designed and benchmarked. The decoupling of tuning of the primal controller sim-

ultaneously for constraint satisfaction and performance is shown to lead to a simpler

calibration process. Furthermore, reference governor is implemented on a rapid proto-

typing platform for vehicle ECUs and demonstrate that it is capable of running in real

time.

Consider a nonlinear continuous time dynamic system

ẋ(t) = f(x(t), u(t)) (5.1)

y(t) = h(x(t), u(t)) (5.2)

where x ∈ X ⊆ Rn is the state, u ∈ U ⊆ Rm is the input and y ∈ Y ⊆ Rp is the output.

It is assumed that f and h are smooth and continuous across the state and input spaces.

A conventional PID controller is used to bring this system under closed loop control

and bring the output y(t) to the reference r(t). Define the set of constant references for

which the output y is constraint admissible throughout the prediction horizon Hp

Wy = {r : y ∈ Y}, (5.3)

and similarly for the control input u

Wu = {r : u ∈ U}, (5.4)

which are aggregated to find the set of references that respect all constraints

W =Wu ∩Wy (5.5)

If r(t) /∈ W, the reference governor will define a modified reference w(t) for the conven-

tional controller

w(t) := arg min
w∈W

‖r(t)− w‖ (5.6)
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Figure 5.1: Reference governor schematic

Examples of automotive application of reference governors include that of managing

boost pressure in a diesel engine with a gradient descent algorithm [148] and control of

aftertreatment temperature [149].

5.2 Ammonia Slip Catalyst

Unreacted ammonia exiting the tailpipe is damaging to both living organisms and the

environment. As such, constraining the so-called ammonia slip is one of the key targets

of SCR control. To permit higher concentrations of ammonia in the catalyst in order

to promote adsorption (and hence NOx reduction), an ammonia slip catalyst is often

placed downstream of the SCR in the exhaust system. This device is tailored to exhibit

high selectivity towards (2.12). A representative example of the temperature dependent

ammonia conversion efficiency is shown in Figure 5.2.

5.3 Conventional Controllers

Industry standard practice for the control of SCR involves controlling of the ammonia

stored in the catalyst. During vehicle calibration, a lookup table is created that defines

the storage target φref for each monolith temperature and space velocity. An observer

is used to estimate the current storage of ammonia φ in the catalyst, and ammonia

injection is scheduled to bring that to the target, i.e. to minimise ‖φ − φref‖. For this

investigation, a proportional-integral (PI) controller was configured with the controller

gains kp = 7× 10−5 and ki = 1× 10−8.

5.4 Reference Governor Design

Since reaction rates are functions of the monolith temperature Tmon whereas only the

upstream exhaust temperature Texh,in is measured, a simple first order thermal model is

utilised. A parameter kM models the convectional heat transfer from the exhaust gases

to the monolith, whilst a second parameter kA models heat loss from the monolith to

the environment
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Figure 5.2: Ammonia slip catalyst conversion efficiency

Ṫmon = kM (Texh,in − Tmon)− kA(Tmon − Tamb) (5.7)

Define the vector of state variables

x =
[
CNOx φ CNH3 Tmon

]T
(5.8)

along with the control input vector

u =
[
NH3,inj

]
(5.9)

and the disturbance input vector

d =
[
NOx,in Texh,in

]T
. (5.10)

Using the equations and reaction rates above, it is possible to model the SCR reactor

using a continuously stirred tank reactor (CSTR) framework. This is an idealised reactor

model in which the contents are assumed to be mixed perfectly and instantaneously,

hence the output concentrations are equal to the reactor concentrations. The CSTR

equation is

dNi

dt
= Fin(t)− Fout(t) + V νiri(t) (5.11)
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where Fin and Fout are the molar flow rates of the species in and out of the reactor

respectively, V is the reactor volume, νi and ri are the stoichiometric coefficient and

reaction rate of species i respectively. The SCR reactor model can now be phrased as




ĊNOx

φ̇

ĊNH3

Ṫmon




=




φRoxi − CNOx(φRred + F )

RadsCNH3Φ− φ(RadsCNH3 +Rdes +RredCNOx +Roxi)

φRdes − CNH3(Rads(Φ− φ) + F )

−kMTmon − kA(Tmon − Tamb)




+




0

0
1
V

0



u(t) +




1
V 0

0 0

0 0

0 kM



d(t) (5.12)

The model (5.12) is very stiff, since examination of the reaction rates demonstrates that

the CNOx and CNH3 states are around 3 orders of magnitude faster than the ammonia

storage state φ. To increase the execution speed of the predictive model in the reference

governor, neglect the dynamics of the two species, i.e. assume they are constant during

each time step of the model:

ĊNOx(t) = ĊNH3(t) = 0 (5.13)

resulting in a 2-state model which can be executed with a longer sampling period.

Instead, compute the predicted ammonia slip at the time instants at which constraints

are to be enforced

CNH3(t) =
u(t)
V + φ(t)Rdes(t)

Rads(t)
(

Φ(T )− φ(t)
)

+ F (t)
(5.14)

Transferring of the computational burden from the state equation (5.1) to the output

equation (5.2) in this manner is of great utility if, as is the case in this work, constraints

are to be enforced less frequently than the sample period of the model (5.12), since

(5.14) needs to be evaluated only at the constraint enforcement points.

5.4.1 Cost Function

Following the cost function study in [149], the cost function is designed to include a

weighed sum of the constraint violations over the prediction horizon:
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Figure 5.3: The three components of the cost functions

J(r, w) = ‖r − w‖2 + ρx

[
N∑

i=0

max
(
ĉ(k + i|k)− c̄, 0

)]2

+ ρu

[
N∑

i=0

max
(
û(k + i|k)− umax, 0

)]2

(5.15)

where ρx and ρu are the penalties applied to state and input constraint violations re-

spectively.

The square of the total constraint violation is weighted (rather than just the violation)

for two reasons. Firstly, very small violations of ammonia slip and injection quantity

limits are tolerable. Secondly, this is one method of guaranteeing strict convexity of

the cost function, thereby generating an optimisation programme that has well behaved

properties. As in typical reference governor design, a term is added to penalise the

deviation of the adjusted reference w(t) from the existing reference r(t). This is visualised

in Figure 5.3 where the deviation cost, the ammonia slip cost and the input violation

cost are plotted for t = 0 in the simulation results in Section 5.5.

5.4.2 Optimiser

Important considerations in selection of the solver were the computational expense and

dimensionality of the cost function (5.15). Since evaluation of the predictive model

is the most expensive step, a bisection method [150] was adopted where evaluation
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points were chosen according to the golden section method. This has the benefit of a

guaranteed interval reduction at each iteration, reducing the possibility of ill conditioning

of the algorithm, and providing a deterministic upper bound on the runtime for a given

termination tolerance. The golden section rule implies that since triples of search points

maintain the same interval spacing, only one evaluation of the objective function is

made during each iteration. A further advantage of this type of search is that only one

preceding interval is maintained, meaning the memory requirements do not scale with

the quantity of iterations. This means the memory requirements are quantifiable and

fixed, making selection of implementation hardware and safety guarantees possible.

The initial search bracket is defined as

[wa, wb] = [−0.5, 1.5] (5.16)

since although θ ∈ [0, 1] due to physical constraints, the reference governor may wish to

place the reference outside this range in transient operation. The algorithm searches for

a minimum w? of the function f(w) as described in Algorithm 5.2.

Algorithm 5.2 Golden section search

1: Φ = −1+
√

5
2

2: wc = wb + Φ(wa − wb)
3: wd = wa + Φ(wb − wa)
4: while |f(wa)− f(wb)| > ε do
5: if f(wc) < f(wd) then
6: wb ← wd
7: wd ← wc
8: wc = wb + Φ(wa − wb)
9: else

10: wa ← wc
11: wc ← wd
12: wd = wa + Φ(wb − wa)
13: end if
14: end while
15: w? = wa+wb

2

5.5 Results

Defining the space velocity

SV :=
F

V
, (5.17)
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a storage target map θref (Tmon, SV ) was generated in order to maintain a tailpipe

ammonia slip of around 5 ppm in steady state, as displayed in Figure 5.4. In order to

present a challenging scenario for the controller, a simulated empty catalyst at 350◦C

was to be brought to an ammonia storage target of 55%, followed 100 seconds into the

simulation by a fall in exhaust temperature of 50◦C, as shown in Figure 5.5, at which

φref was 70%. Constraints are to be enforced at a tailpipe ammonia slip of 10ppm and

ammonia injection of 5mmol/s.
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Figure 5.6: Results of the reference governor to the step change in exhaust gas tem-
perature.

The original and modified references are shown in Figure 5.6a (blue and yellow respect-

ively). The ungoverned controller violates both the ammonia slip limit, as seen in Figure

5.6b, and the input limit, as seen in Figure 5.6c. Conversely, the ammonia injection is

limited within the 0 − 20 seconds period by the injection limit, and elsewhere in the

simulation by the ammonia slip limit, both of which can be seen to be respected.

A detuned PI controller was also designed (kp = 8 × 10−6 and ki = 5 × 10−9) to

demonstrate the loss of performance with a conventional controller tuned to respect the

specific constraints. Note that whilst constraints are respected in this example, they
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Figure 5.7: The Ricardo rCube2 rapid prototyping electronic control unit.

were not systematically handled and thus no guarantees of constraint satisfactions can

be made for the closed loop system. This loss of performance is evident in Figure 5.6a

in the poor tracking of the ammonia storage target.

5.6 Embedded Application

Applicability of the reference governor designed in this work highly depends on its com-

putational requirement compared to that available on commercial electronic control units

used in aftertreatment control. To demonstrate that the reference governor is suitable, it

is implemented in hardware-in-the-loop (HiL) on the Ricardo rCube2 rapid prototyping

electronic control unit, shown in Figure 5.7. This platform comprises a pair of Infineon

Tricore TC1797 microprocessors each running at 150MHz. The reference governor HiL

demonstration uses one processor for the controller, and runs the plant model on the

other, with the master processor also responsible for communication and calibration via

the universal measurement and calibration protocol (XCP), which is defined by ASAM

(Association for Standardisation of Automation and Measuring Systems). This is imple-

mented over an Ethernet connection to the device, as shown in Figure 5.8. The hardware

implementation of model based controllers is explored further in Chapters 8 and 9.

The time required by the reference governor for computation of the adjusted reference

w(t) is shown in Figure 5.6d. With a maximum and mean time of 5.4 ms and 3.4

ms respectively, this is well below the control timestep of 100 ms, meaning the refer-

ence governor is feasible for real-time application. As expected, periods where imposed

constraints are active (e.g. the ammonia slip constraint in Figure 5.6b and the input

constraint in Figure 5.6c) correspond to longer computation times.
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Figure 5.8: HiL setup comprising the rCube2 rapid prototyping platform with two
Tricore microprocessors (TC1 and TC2) and calibration/datalogging machine

As explained earlier, the implementation of reference governor outlined in this work does

not require variable amounts of runtime memory: a constant 408 bytes despite varying

computation times and number of active constraints.

5.7 Test Cycle Verification

To demonstrate the performance of the reference governor, testbed data was acquired

for a heavy duty engine over the non-road test cycle (NRTC). This included NOx flow

rate, exhaust mass flow rate, and SCR inlet temperature. The reference governor primal

PI controller was tuned as in Section 5.3, using the space velocity and temperature map

in Figure 5.4 to determine the storage reference. The catalyst was simulated as initially

empty (θ = 0). The static map reference, modified reference, and true storage are shown

in Figure 5.9.

Keeping the ammonia slip limit at 10 ppm, Figure 5.10 shows that the reference governor

has to regularly intervene to respect this limit. It is apparent that the NOx conversion is

poor during the first 200 seconds, due to the controller attempting to build up ammonia

storage in the catalyst without violating the input constraint, as shown in Figure 5.11.

5.8 Conclusions

Management of ammonia slip whilst maintaining conversion efficiency in the face of

disturbances is one of the key challenges in improving the working efficiency of urea

SCR systems. The model based reference governor presented in this chapter provides a
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Figure 5.10: The reference governor keeps the tailpipe ammonia slip within the 10
ppm limit.

method for adding constraint handling into the controller in a systematic way, providing

simple integration into existing control strategies. It thus permits more aggressive tuning

of the low level controller, resulting in improved catalyst efficiency and reduced tailpipe

emissions. It also decouples tuning the controller for performance and for constraint

adherence, leading to simpler calibration.

This chapter has demonstrated that such a model based reference governor is suitable
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Figure 5.11: The reference governor respects the input limit of ammonia injection
demand no greater than 5 mmol/s, and thereby avoids wind up of the integrator in the

primal controller.

for real-time implementation on automotive electronic control units. Such a route to

production is vital for such controllers to become accepted and integrated into industrial

practice. The quantifiable upper bound on execution time and memory requirements

aid hardware selection and controller certification.





Chapter 6

Predictive Control of SCR

Model predictive control (MPC) holds several advantages compared to the reference

governor. Not only does it remove the requirement to design and tune a primal control-

ler, but it allows natural extension to multiple-input, multiple-output (MIMO) control

systems. Reference governors for MIMO systems suffer the same problems as interacting

PID loops, wherein tuning is difficult due to loop interactions. Instead, MPC directly

optimises a cost function to calculate the optimal inputs to the plant.

In this chapter, an economic cost function for SCR is formulated in order to minimise

pollutant emissions from the catalyst. Implementation is carried out with both a linear

and nonlinear model, and their performance is benchmarked using test cycles. The use

of the nonlinear model is shown to be necessary in order to operate the plant over the re-

quired temperature range. The economic cost function presents two distinct advantages

over the storage tracking MPC for SCR that exists in the literature: namely improved

closed loop performance and avoidance of calculating the steady state conditions. Fur-

thermore, two key properties of the nonlinear economic MPC formulation are examined:

stability and feasibility. Finally, a catalyst heater is added to the MPC formulation

and it is demonstrated that this improves NOx conversion significantly when exhaust

temperatures are low.

6.1 Linear Predictive Control of SCR

An SCR controller determines the quantity and frequency of urea injection over a cata-

lyst, with the objective of minimising the NOx emitted from the catalyst. This is done

against the constraints of actuators, as well as the constraint of a maximum ammonia

tailpipe concentration which is given by legislation.

Recall that a model of the SCR controller was developed in Chapter 4, and this will be

used as the basis of the MPC schemes designed in this chapter. The thermal model is also

95
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employed at the end of this chapter, where the thermal management of the catalyst is

considered in order to mitigate the problems that were identified with operating efficiency

in Chapter 3.

The matlab Model Predictive Control toolbox is used to construct a linear MPC con-

troller. Typically, an SCR plant has two NOx sensors, one before the catalyst and one

at the tailpipe, sometimes alongside a tailpipe ammonia sensor, as in Figure 1.2. In this

chapter all states are available from measurements, although this is not the case in real-

ity. In practice, state estimation is necessary to acquire this information, as discussed

in Chapter 7.

6.1.1 Linearised Model

A linear MPC controller requires a linearised model of the plant, which it uses to predict

the state of the plant over the prediction horizon. However, recalling the model from

Chapter 4, it is obvious that the model (4.13) is nonlinear due to products of states

in (4.8)-(4.12). For instance in (4.9), the rate is a function of the product of two state

variables, CNO and CNO2. As such, to obtain a linear model, an operating point is

chosen at which the plant is linearised. Since operating point should be representative

of typical operating conditions of the SCR, it is chosen based on the mean NEDC cycle

data, resulting in 50 parts per million (ppm) inlet of each of NO and NO2, an exhaust

gas volumetric flow rate of 1.5m3min−1 and an exhaust oxygen concentration of 12%.

The linearisation is carried out using the matlab linmod tool, with verification of the

linearised model demonstrated by plotting of step responses to each control and dis-

turbance input. Since the linearised plant directly affects the choice of control input, it

is important in predictive controller design to ensure that the linearised model accur-

ately reflects the characteristics of the plant, otherwise poor controller performance and

damage to the plant may occur. The resulting linear state space model is:

A =




2.1× 10−5 9.9× 10−5 6.0× 10−5 5.0× 10−4

2.0× 10−5 −6.5× 10−5 1.0× 10−4 −4.7× 10−4

3.0× 10−4 −2.9× 10−4 −2.7× 10−4 7.1× 10−3

0.043 −0.041 −0.038 0.99




(6.1a)

B =
[
−7.7× 10−9 −7.3× 10−9 2.3× 10−7 1.6× 10−5

]T
(6.1b)

C =




2.3× 104 0 0 0

0 2.3× 104 0 0

0 0 2.3× 104 0


 (6.1c)

D =
[
0 0 0

]T
(6.1d)
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The inlet NOx concentrations, CNO,in and CNO2,in are regarded as external disturbances.

6.1.2 Controller Design and Tuning

As discussed in Subsection 2.4.1, linear MPC is the term applied when the cost function

is quadratic, and the constraints and model are linear. Accordingly, the optimisation

programme is a quadratic programme, solution of which is discussed in Subsection 2.4.6.

As such, a quadratic cost as given by (2.28) is required. It therefore remains to choose

the weighting matrices Q and R in the stage cost, and the terminal cost. The Euro 6

NOx limit for passenger vehicles is 0.08 g/km and it can be determined that around

60% NOx reduction is required over the NEDC cycle data, which amounts to an average

tailpipe NOx concentration of 20ppm, to meet this limit. It can be seen that by letting

xref = uref = 0 in (2.67), the reference becomes unreachable except in the trivial case

where CNO, in = CNO2,in = 0. This implies that the MPC scheme can now be termed

economic, as introduced in Subsection 2.4.5. Since we also neglect the input weighting

R (as we prioritise controller performance here), the stage cost can be written as:

l(x, u) = xTQx (6.2)

with Q as:

Q =




Q1 0 0 0

0 Q2 0 0

0 0 Q3 0

0 0 0 0



, (6.3)

where the final row and column are both zero since no weight is put on the ammonia

storage θ. It will be shown later that the model and the cost Q uniquely imply an

optimal storage θ? which is a function of the states, inputs and disturbances.

A prediction horizon of tf = 10 seconds and a sampling time of ts = 0.5 seconds are

chosen in order to capture those parts of the plant dynamics which have longer time

constants. Constraints are applied to the state and input values in ppm:

x ∈ X ⇒
[
−∞ −∞ −∞ −∞

]
≤ x ≤

[
∞ ∞ 10 ∞

]
(6.4a)

u ∈ U , U := [0, 1000]. (6.4b)

The terminal cost E(·) in (2.28c) is typically used as a stability guarantee. By constrain-

ing the state to be in a suitable terminal set by the end of the prediction horizon, it
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Table 6.1: NOx conversion performance and ammonia slip for the fixed-ANR, PI and
MPC controllers

Controller Mean NOx Mean Ammonia AUS Used
Reduction (%) Slip (ppm) (ml)

Fixed ANR (0.8) 61.0 0.2 3.25
Fixed ANR (1.0) 68.0 0.7 4.00
Fixed ANR (1.2) 71.4 1.9 4.71
PI 84.4 9.5 5.09
MPC 77.0 0.8 3.77

is clear that feasibility of the resulting optimisation programme implies stability. How-

ever, terminal cost is neglected in this application since the terminal state is nontrivial

in general due to the unreachable setpoint. As avoiding calculation of this terminal state

is a priority, the associated cost is neglected.

6.1.3 Controller Performance

In order to compare the MPC controller to commonly used controllers, two other con-

trollers were tested with the model (4.13). The first is a fixed ANR controller, with ANR

values of 0.8, 1.0 and 1.2. The second controller is a classical controller of PI type with

the back-calculation anti-windup method enabled. This was hand tuned to provide a

representative example of feedback control for SCR. The resulting gains were kp = 100

and ki = 10.

The controllers are benchmarked over a portion of the NEDC cycle data, comprising

part city and part highway driving conditions. This is chosen to be the latter part of

the cycle, since the catalyst is at operating temperature by this point and a comparison

of the warm start performance of the controllers is the subject of this section. The

available NEDC test data do not include the NO:NOx ratio at the SCR inlet, so for the

purposes of benchmarking this is set to be 0.5, which emulates the ideal conditions at

the SCR inlet when a DOC is used to balance the NO and NO2 concentrations. The

temperature data for the monolith were generated by estimating the heat capacity of

the monolith using the pre- and post-SCR gas temperatures in the test cycle data. For

this testing, a warm-start sequence was chosen with an initial monolith temperature of

200◦C. The cycle emissions and temperature data are shown in Figure 6.1.

The results of all three controllers, including three different ANR target values, are

summarised in Table 6.1, for a catalyst initially containing no adsorbed ammonia and a

maximum ammonia injection quantity of 250ppm. As expected, the best NOx reductions

typically accompany the highest ammonia slip. The fixed-ANR controllers achieve very

low ammonia slip, due to their filling up the catalyst very slowly, but as a consequence do

not achieve optimal NOx reduction. The PI controller, as expected, has a mean ammonia
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Figure 6.1: Portion of NEDC cycle used for controller benchmarking

slip very close to its target of 10ppm, indicating correct controller tuning. The MPC

controller finds an excellent compromise, with only 0.1ppm greater ammonia slip than

the best fixed-ANR controller, but achieving 9% better NOx reduction. The optimisation

and tuning of weights has shown that trying to improve NOx emissions even further

would result in significant additional ammonia slip. Herein lies the benefit of a predictive

controller to SCR – in periods where the chemical reactions are limited by temperature

or by availability of NOx rather than the amount of ammonia available, the predictive

controller foresees ammonia slip and can react to minimise or eliminate it altogether.

The MPC controller also achieves the additional objective of minimising consumption of

AUS, beaten only by the lowest ANR controller whose NOx conversion performance is

significantly worse. Therefore, the predictive controller achieves a satisfactory balance

between NOx conversion and ammonia slip whilst additionally minimising ammonia

usage, instead of trying to improve NOx conversion performance by one or two percent

at the expense of higher ammonia emissions.

The NOx concentrations at the catalyst inlet and outlet during the operation of the MPC

controller and the corresponding NOx conversion efficiency are shown in Figures 6.2a

and 6.2b respectively. The initial conversion efficiency is low since it is only adsorbed

ammonia that takes part in the NOx reactions, yet the catalyst is initially empty. The

efficiency increases once the controller has injected enough ammonia to coat the catalyst.

It is noteworthy that during the steady state periods of engine operation, NOx reduction

is around 80−90%, while the worst NOx conversion efficiency occurs when the inlet NOx

suddenly varies and there is too much or too little ammonia on the catalyst surface. The

fixed-ANR and PI controllers produce similar NOx reduction results, as can be seen from

Table 6.1; it is much more instructive to examine the ammonia slip and injected ammonia
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Figure 6.2: Comparison of fixed-ANR, PI and MPC controllers over the test cycle.

(which acts as the control input), as shown in Figures 6.2c and 6.2d respectively. In

these plots, the fixed-ANR controller has a target ANR of 1.2 which was found to give

the best performance over the portion of the NEDC cycle, as shown in Table 6.1. This

is due to the fact that the catalyst was initially empty of stored ammonia (θ0 = 0),

such that the excess ammonia is used in building up stored ammonia on the catalyst

substrate.

At the start of the simulation, the ammonia slip is low since none has yet been injected

and there is none stored in the catalyst. This causes the PI controller to inject the

maximum ammonia during the first 150 seconds, which contributes to its high resulting

ammonia slip in the rest of the cycle. The fixed-ANR controller does not model the
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storage of ammonia in the catalyst, so does not act any differently at the beginning of

the cycle even though the catalyst is empty and it could safely inject more ammonia.

Towards the end of the cycle, it violates the ammonia slip limit quite considerably and

may continue to do so on a longer test cycle. The predictive controller, on the other hand,

captures the SCR trait that an atypically high injection is required at the beginning of

the cycle such that the ammonia coverage ratio θ rises enough above 0 for the SCR

reactions to take place. It therefore injects much more ammonia than the fixed-ANR

controller, but not so much as the PI controller (which causes undesirable ammonia slip).

These results are comparable to those in [32], but a linear predictive controller, whose

internal model is very cheap to execute and is therefore more amenable to embedded

implementation in a vehicle environment, has been employed here.

6.1.4 Concluding Remarks

In this section a linear economic MPC controller was developed to control the ammonia

injection of an SCR catalyst for NOx reduction of internal combustion engine exhausts.

The linear model was derived from a calibrated nonlinear model around an operating

point typical of the NEDC cycle data on which it was benchmarked. The model performs

well in this region of state space, providing excellent SCR performance on the cycle data.

The benefits of predictive control to SCR are clear. The economic formulation allows

the controller to succinctly capture the essence of the SCR control problem in finding

the balance between maximising NOx reduction while minimising ammonia slip and

ammonia consumption – an objective which is difficult to formulate in a classical control

framework. Indeed, the feedback PI controller has difficulty dealing with such a plant,

due to the inherent transport delays and lags in the system. The SCR plant is affected

by disturbances, including exhaust gas volumetric flow rate, temperature, and NOx

concentrations, some of which can be measured and utilised by the predictive controller

for feedforward compensation. Again, this is difficult to achieve under the framework of

classical control. The ANR map controllers currently used in industry require all these

variables to be accounted for in the feedforward ANR controller if its performance is to

be acceptable. The maps therefore require storage space and time-consuming extensive

offline calibration. In contrast, the predictive controller requires tuning that is both less

time consuming and more intuitive.

6.2 Nonlinear Predictive Control of SCR

Although it has been demonstrated in Section 6.1 that linear MPC performs well when

applied to SCR, the nonlinearities in the model (4.13), particularly those of the Arrhenius

temperature relations, are not well captured by the linear MPC controller due to the

restriction of a linear internal model. The case in which this deficiency becomes most
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Figure 6.3: Inlet NOx and SCR temperature during the cold start portion of the
NEDC cycle

noticeable is in low temperature regions, which, as demonstrated in Chapter 3, is of great

importance in SCR control. A nonlinear MPC (NMPC) controller was designed in order

to compare the two approaches. The iclocs software was to used to build the controller

[103], which implements the direct transcription method described in Subsection 2.4.4.

The resulting NLP (2.76) is solved using the ipopt utility [101].

The NMPC controller was designed with the same cost function and weights as the linear

MPC controller, with the stage cost l(·, ·) in (2.65) of the form given in the linear MPC

design (6.2) and Q is as given in (6.3). Again, the terminal cost E(·) was discarded

since calculation of a nontrivial terminal set is computationally expensive. The input

and state constraints were as described in (6.4). The prediction horizon was chosen to

be tf = 10 seconds such that the fast storage dynamics (4.11)-(4.12) are captured, and

a sufficient period of the slower dynamics are also captured. A sampling time of ts = 0.5

seconds was found to be the maximum before controller performance began to degrade

significantly. This fixes N = 20 in (2.73).

The nonlinear MPC controller developed in this section is tested against the linear MPC

controller from Section 6.1 over two portions of the NEDC test cycle. The first is the

hot start cycle used in Section 6.1, whilst the second is an earlier part of the same

data: specifically, the first 250 seconds, since the catalyst is significantly below typical

operating temperature during this period. The NOx inlet to the SCR and the monolith

temperature are shown in Figure 6.3.

The results for both controllers on both cycle segments are displayed in Table 6.2. The

hot cycle data in the first two rows shows that the NMPC and linear MPC performance
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is comparable when the catalyst is at operating temperature, since the linearised model

is obtained around the operating temperature for linear MPC. The NMPC controller

achieves marginally better NOx reduction at the expense of slightly higher ammonia slip;

this can be attributed to the higher fidelity of the nonlinear model permitting operation

slightly closer to the ammonia slip constraint. However, the differences between the

controllers at this temperature are minimal.

Table 6.2: Controller comparison over hot and cold start sequences

Cycle Controller NOx Reduction (%) NH3 slip (ppm)

Hot Linear 83.18 1.79
Hot Nonlinear 86.45 3.13
Cold Linear 8.74 13.28
Cold Nonlinear 7.14 0.91

Conversely, the performance of the two controllers differs significantly when tested using

the cold start cycle data depicted in Figure 6.3. The results are shown in the last two rows

of Table 6.2. The injected ammonia and resulting ammonia slip for the two controllers

are shown in Figure 6.4 and Figure 6.5 respectively. As expected, the NOx conversion is

relatively low, since the low catalyst temperature permits very little reduction to take

place. Figure 6.6 corroborates this by showing almost identical tailpipe NOx despite the

profoundly different ammonia injection profiles in Figure 6.4. This demonstrates that

the reactions are temperature limited in this cold start region. Even so, it is noteworthy

that some conversion is possible even in these conditions.
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Figure 6.4: Cold start control inputs from the linear and nonlinear MPC controllers
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Figure 6.6: Cold start tailpipe NOx when controlled by the linear and nonlinear MPC
controllers (note: these are almost indistinguishable)

It is clear that the linear MPC controller is incapable of respecting the ammonia slip

limit, with an average of over 13ppm and a maximum around 46ppm. Conversely, the

NMPC controller achieves the required balance between NOx conversion and ammonia

slip, even in the face of adverse temperature conditions. During cold start, the limiting

factor to NOx conversion is the catalyst temperature. Since the linear MPC controller
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model is linearised around operating temperature, the model over-predicts conversion of

NOx, leading to the high ammonia slip. Thus, the nonlinear temperature dependence

of the reaction rates on temperature (4.4) is crucial to the model used by the controller,

but is only captured well in the locality of the temperature at which the linear MPC

model is linearised.

6.2.1 Computational Feasibility

Over the test cycle data in Figure 6.3, the maximum and average time to solve the

NLP to a tolerance of 10−8 were 0.598 and 0.340 seconds respectively. These figures are

generated on an intel Core i7 desktop computer.

The average time to solution is below the sampling time of 0.5 seconds, implying that

real time implementation is feasible for this plant. However, the worst case exceeds

the available time, so some work is required to remedy this. iclocs does not prioritise

speed, so some improvement would be possible by carrying out the transcription process

in a compiled language and using the relevant ipopt interface. Additionally, different

methods for solving the NLP may produce faster solutions. The benefits brought about

via use of NMPC instead of linear MPC are principally due to the former accounting for

the highly nonlinear temperature dependence of the reactions, which has a significant

effect on the controller action. A simpler model of the SCR that still takes into account

this temperature dependence is possible to decrease the computation effort. For example,

a LPV model parameterised over temperature may provide performance acceptably close

to the NMPC case whilst allowing solution using a linear MPC framework.

Desktop computers are not representative of vehicle hardware. To achieve these sampling

times in a vehicle, other techniques will need to be exploited. One of the most promising

is the opportunity for parallelisation of the solution algorithm, for example, solution of

the NLP by direct multiple shooting in an RTI framework. For a vehicle platform, a

multicore microprocessor or FPGA would permit such facilities to be made available.

6.2.2 Feasibility and Stability

It was noted at the beginning of this chapter that the terminal cost E(·) in the cost

function (2.28) is typically included to give a guarantee of stability. However, in the

case of the economic MPC formulation designed in Section 6.2, this is not feasible,

since to guarantee stability, xN must be constrained to be the optimal steady state xs.

However, calculation of xs is nontrivial and would add to the computational demand of

the controller.
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Instead, some recent results are leveraged in order to show practical asymptotic stability

of the closed loop in the absence of terminal conditions. Begin by collecting the vector

of disturbances:

d =
[
d1 d2 d3 d4

]T
=
[
CNO,in CNO2,in S Tmon

]T
(6.5)

Definition 6.1 (States, inputs and disturbances of the model). The model (4.13) has

finite dimensional state, input and disturbance spaces, defined as:

x ∈ X ⊆ Rnx
≥0 (6.6)

u ∈ U ⊆ Rnu
≥0 (6.7)

d ∈ D ⊆ Rnd
≥0 (6.8)

where nx, nu and nd are the numbers of states, inputs and disturbances respectively.

The rates rl are (in some cases) products of state variables, and the Arrhenius factor

(4.4) is an exponential function of temperature. As such, it is clear that the SCR plant

model dynamics are highly nonlinear. This model (4.13) is the same as that used in

[151], which in turn is a modification of that constructed in [33] using ideal reactor

principles.

Remark 6.2. For any d ∈ D, if u(t) = 0, then xs =
[
d1 d2 0 0

]T
is the only equilib-

rium of the system with region of attraction X .

The model conforms to a continuous time nonlinear description:

ẋ = f
(
x, u, d

)
, x(0) = x0

x ∈ X̌ ⊆ X ⊆ Rnx

u ∈ Ǔ ⊆ U ⊆ Rnu

d ∈ D ⊆ Rnd

(6.9)

where f : X × U × D → X . Further, x is the state vector, x0 is the initial state, u is a

vector of controlled inputs and d is a vector of disturbances. With X̌ and Ǔ are denoted

the sets of feasible states and inputs.

The terminal cost E(·) was neglected from (6.2) since computation of the terminal state

xs for a particular d ∈ D is nontrivial. Whilst allowing the constraint be that xN resides

in some terminal set XN ≡ X̌ is possible, this would not adequately address stability

concerns, which are therefore discussed in the sequel. Note that θ (x4) is not weighted

in (6.2) as there is no preferred ammonia storage fraction, only the concentrations of

pollutants emitted by the reactor.
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The optimisation process to find u? is repeated at each sampling time in a receding

horizon setting. This raises important questions about the resulting optimisation pro-

gramme, including its feasibility and uniqueness of its solutions. Furthermore, a guar-

antee of asymptotic stability of the closed loop is required.

Feasibility

Assumption 6.2.1. The model (4.13) incorporates some disturbances d ∈ D. The system

is analysed for a constant value of d since it is held constant during the prediction horizon

of the MPC scheme. Hence, define a new system ẋ = fd(x, u).

Definition 6.3 (Equilibrium set). The equilibrium set is the set of equilibrium pairs

Z := {(x, u) : 0 = fd(x, u)}. The projection of Z onto X is denoted XZ .

From the stage cost (6.2) it is clear that the controller will try and force the plant

towards ‖x‖i = 0, i = {1, 2, 3}. However, this setpoint is unreachable except in the

trivial case d1 = d2 = 0. In the general case therefore, min(x,u)∈Z l(x, u) 6= 0. Using

Remark 6.2, a property of the plant (4.13) on which the following analysis will be based

can be demonstrated.

Lemma 6.4. For the system (4.13), for all u ∈ U , ∃xs : 0 = fd(xs, u).

This implies that any u ∈ U will stabilise the plant at some corresponding steady state

xs ∈ X , which may not be constraint admissible (i.e. not necessarily in X̌ ). In other

words, the plant has an infinite number of feasible equilibria and it is the function of the

controller to repeatedly target that which minimises the cost whilst obeying constraints.

It is assumed henceforth that fd(·, ·) and l(·, ·) are Lipschitz on x and u. Whilst it is

not in general necessary to compute Z, an illustration of the possible equilibria and

their associated costs is given for one particular value of d in Figure 6.7. Given that

the optimal value of the cost function (2.65) depends on the disturbances d, make the

following assumption:

Assumption 6.2.2. For every d ∈ D there exists a non-empty set

Z? ⊆ Z := {(x?, u?) : l(x?, u?) ≤ l(x, u) ∀(x, u) ∈ Z}, (6.10)

The implication of Assumption 6.2.2 is that any set of disturbances yields at least one

cost-optimal equilibrium pair, but that this pair is not necessarily unique. The non-

uniqueness can be proven by examination of the stage cost (6.2); an increase in one

variable can be countered by a decrease in another, resulting in the same cost for a

different state.
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Remark 6.5. The dynamics of the SCR system (4.13) guarantee that the map us → θs

is one-to-one, as demonstrated by Figure 6.8 monotonically increasing. As such, there

cannot exist two pairs of (xs, us) ∈ Z with identical costs. Therefore, Z? is a single

point in Z-space for this system.

Remark 6.6. For the system (4.13), ensuring that us ∈ Ǔ can be achieved by ensuring

that supu Ǔ ≥ |d1|+ |d2|. This is evidenced by Remark 2.1.

Definition 6.7 (Controlled invariant subset). Define the set of initial states for which

there is at least one input trajectory that keeps x(t) ∈ X̌ ⊆ X for all t:

X̃ :=
{
x ∈ X̌ : ∃u(t) ∈ U : xu(t) ∈ X̌ ∀ t ∈ [0,∞)

}
(6.11)
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Feasibility of the closed loop trajectories requires that x(t) ∈ X̌ ∀t. However, due to

input constraints, it is not guaranteed that X̌ is a controlled invariant set. To see this,

consider the dynamics of CNH3 in (4.13) under u(t) = minu ∈ Ǔ = 0 when θ = 1, i.e.

the catalyst ammonia storage is maximum:

ĊNH3 = rdes − SCNH3

= V kdes exp

(−Edes
RT

(1− γ)

)
− SCNH3

(6.12)

Letting C̄NH3 = maxx∈X̌ CNH3 ,

0 < ĊNH3

< V kdes exp

(−Edes
RT

(1− γ)

)
− SC̄NH3

(6.13)

which, whilst dependent on parameters and C̄NH3 , is typically true at high temperatures.

ĊNH3 > 0 will cause the state x(t) to immediately leave X̌ .

The following relationship therefore holds:

Lemma 6.8. Recalling the definition of XZ , it is clear that

XZ ⊆ X̃ (6.14)

This can be proved by considering the definition of Z, since for any x0 in XZ , a feasible

input is u(t) = us ∀ t ∈ [0,∞). The implication is thus that Z 6≡ ∅ ⇒ XZ 6≡ ∅ ⇒ X̃ 6≡ ∅.
As a result, safely make the following assumption:

Assumption 6.2.3. Our analysis is restricted to cases where x0 ∈ X̃ .

By implication, existence of a feasible trajectory u(t) implies existence of a feasible u?0 as

the first step of this trajectory. It has so far been proven that a feasible input trajectory

u(t) exists providing x0 ∈ X̃ . It is desirable to comment on the objective function of the

optimisation programme (2.66). To do this, assure the following two lemmata:

Lemma 6.9. For the system (4.13), the map u(t) → xu(t) is unique. There exists no

other u(t) which will result in the same state trajectory.

Proof of this lemma derives from Lipschitz assumptions on fd(·, ·) and l(·, ·) and by con-

sidering remark 6.5. By implication, then, the sequence of stage costs over a trajectory

and thus the value function (2.65) are unique for a given x0 and u(t). The main result

of this section can therefore be stated:

Theorem 6.10. For an initial state x0 ∈ X̃ , the minimiser u?0 = µN (x0) = arg minu VN (x0)

exists, is constraint admissible and is unique.
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Lemma 6.8 proves existence of at least one feasible input at time t0, whilst lemma 6.9

proves that there exists an input trajectory whose cost is strictly better than all other

input trajectories.

Stability

Receding horizon optimal control often employs a terminal cost E(·), as in (2.65), to

certify closed-loop stability. However, determining E(·) will require the knowledge of

xs which is not always possible. As mentioned earlier in eMPC, stabilizing the exact

equilibrium xs is not always the target. Whilst we could let the constraint be that

xN resides in some terminal set XN ≡ X̌ , this would not guarantee convergence to xs.

Therefore, we will discard terminal conditions and costs in this application. Instead, we

will show that for a given disturbance d, in addition to existence of a feasible u, x(t) will

converge asymptotically to a small set around xs, thereby proving practical closed-loop

asymptotic stability [75]. In order to achieve this, the terminal conditions are replaced

by an approximate turnpike property [74, 75].

Definition 6.11 (Approximate turnpike property). The solutions of the OCP exhibit

an approximate turnpike property with respect to some steady state xs ∈ X̌ if there

exists some function ν ∈ K∞ : (0,∞) → [0,∞) such that for all x0 ∈ X̌ and all T > 0

we have:

µ[Θε,T ] < ν(ε) ∀ε > 0, (6.15)

where µ[·] is the Lebesgue measure on the real line and

Θε,T = {t ∈ [0, T ] : ‖xu?N − xs‖ > ε}. (6.16)

In this SCR control problem, the continuity of f(·) and l(·, ·) is given by the dynamics

of the system (4.13) and the choice of l, respectively. The two functions are also locally

Lipschitz around xs and us. In this problem which can be seen as a case of tracking

MPC, following the approach used in [74], we use the optimal value function

VN (x) = inf
uN∈UN

N−1∑

k=0

l(xkuN , u
k
N ) (6.17)

as a Lyapunov function, with uN ∈ UN , and closed-loop stability can thereby be proven.

However, in our case, recalling that we have defined Q as given in (6.3, the stage cost

(6.2) is positive semidefinite, and thus VN (x) is also positive semidefinite, and therefore

cannot be used to infer asymptotic stability of the closed loop. Instead, we will formulate

an alternative value function that is ensured to be positive definite, thus ensuring closed-

loop asymptotic stability of the system.



Chapter 6 Predictive Control of SCR 111

Definition 6.12 (Strict dissipativity). [152] A system is strictly dissipative with respect

to some supply rate s(x, u) if for some α ∈ K∞,

λ(x0) := sup
N,µ(x0)

N−1∑

k=0

−
(
s(xk, uk)− α(‖xk − xs‖)

)
<∞, (6.18)

for all x0.

Taking a supply rate s(x, u) = l(x, u)− l(xs, us), we require

sup
N,u∈Ǔ

N−1∑

k=0

(
α(‖xk − xs‖) + l(xs, us)− l(xk, uk)

)
<∞ (6.19)

for all x0. From the model (4.13) and the restrictions on the reaction rates ri,j in Remark

4.3.1, we have xuN ∈ XN and uN ∈ UN . The stage cost (6.2) is bounded on X and U .

The value of α in (6.19) is bounded on X by definition. As a result, we conclude that

(6.19) is satisfied.

As shown in [69], strict dissipativity with respect to some steady-state xs is sufficient to

prove existence of an approximate turnpike in the solution trajectories at xs under an

additional reachability assumption.

The continuity of f(·) and l(·, ·) implies continuity of VN (·), such that the turnpike

property is sufficient to demonstrate convergence of the closed-loop system to a neigh-

bourhood of the optimal equilibrium xs in the absence of terminal conditions.

We have seen that VN (x) as in (6.17) may be a Lyapunov function. Instead, we proceed

by taking λ(x) as a storage function, and defining a rotated stage cost [71]

L(xk, uk) := l(xk, uk) + λ(xk)− λ(xk+1)− l(xs, us) (6.20)

and its associated optimisation programme:

ṼN (x0) = inf
uN∈UN

N−1∑

k=0

L(xkuN , u
k
N ). (6.21)

Remark 6.13. By inspection, L(xs, us) = 0 and min
x,u

L(x, u) = min
x,u∈Z

l(x, u). By corollary,

the optimisation programme (6.21) admits the same solution as (2.76). As a result, the

optimisation programme (6.21) is subject to the same constraints as (2.76).

Using the rotated stage cost, the strict dissipativity property can be phrased as

L(x, u) ≥ α(‖x− xs‖). (6.22)
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We now proceed in a Lyapunov-type direction and examine the behaviour of the rotated

value function ṼN from one sampling time to the next. The following lemmata are the

consequences of (6.22) and the turnpike property.

Lemma 6.14. By (6.22) and the existence of a turnpike, then

ṼN (x1) ≤ ṼN (x0) + δ(N). (6.23)

Proof. Due to the turnpike property, we have (6.15). Moreover, (6.20) and the local

Lipschitzity of f and l, and hence λ, around xs and us, there exists a sufficiently small

δ > 0 such that the rotated stage cost at the terminal state is bounded by

L(xN , uN ) ≤ δ(N) ≤ δ (6.24)

Furthermore, using (6.22), we have

ṼN (x1) = ṼN (x0) + L(xN , uN )− L(x, u)

≤ ṼN (x0)− α(‖x− xs‖) + δ(N)

≤ ṼN (x0) + δ(N)

≤ ṼN (x0) + δ

(6.25)

which completes the proof of the lemma.

Lemma 6.14 shows that due to turnpike property, ṼN is a practical Lyapunov function

for the closed-loop system with the nonlinear eMPC controller.

Lemma 6.15. ṼN (x) is positive definite with respect to xs.

Proof.

ṼN (x0) =

N−1∑

k=0

L(xk, uk)

=
N−1∑

k=0

[
l(xk, uk) + λ(xk)− λ(xk+1)

]

=

N−1∑

k=0

l(xk, uk) + λ(x0)− λ(xN )

≈ VN (x0) + λ(x0)

(6.26)

which ensures that ṼN (x) is positive definite with respect to xs by ensuring λ(x) > 0 as

in (6.18). We now state the main result of this section.
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Theorem 6.16. The rotated value function ṼN (·) is strictly decreasing along nontrivial

system trajectories and is positive definite with respect to xs, with the offset δ(N), as

proved by Lemmata 6.14 and 6.15 respectively. Therefore, ṼN (·) is a practical Lyapunov

function for the economic MPC closed loop. Its existence implies that xs is a practically

asymptotically stable equilibrium of the closed-loop with region of attraction X .

The level sets of the rotated value function ṼN (x0) are shown for a particular value of d

in Figure 6.9.
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Figure 6.9: Level sets of the rotated value function ṼN (x0) with normalised cost for
various x0 using a particular value of d. The optimal equilibrium (marked with a red

cross) has CNO = 3.65ppm and CNO2 = 4.01ppm.

Numerical Validation

The MPC formulation developed is applied to a calibrated SCR model as used in Sec-

tion 6.2. We first show that the closed-loop system exhibits the properties described

previously, including the turnpike property. We compare the performance of the eMPC

controller to a tracking-MPC controller, demonstrating that the economic formulation

yields improved closed-loop performance as measured by the closed-loop cost. The test

scenario is a stabilisation of the reactor at the optimal steady-state with inlet NO and

NO2 each at 50ppm:

d =
[
2.2× 10−3, 2.2× 10−3

]T
, (6.27)

and the initial state x0 = 0. The optimal steady-state for this case is

x?s =
[
1.6× 10−4, 1.7× 10−4, 1.5× 10−4, 0.21

]T
. (6.28)
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The stage cost l(·, ·) in (2.65) was chosen in an economic least-squares form as in (6.2)

in order to minimise the total quantity of tailpipe emissions.

Typically, a prediction horizon of around tf = 30 seconds is required such that the

fast storage dynamics (4.11)-(4.12) are captured, and a sufficient period of the slower

dynamics (θ) are also captured. A sampling time of ∆t = 0.5 seconds was found to

be the maximum tolerable for adequate rejection of fast disturbances. This fixes N =

60 in (2.73). It was determined that the weights Qw = 1, w = {1, 2, 3} provided

good controller performance. A constraint of 10 ppm was added for outlet ammonia

concentration, and an actuator constraint of 0 ≤ u ≤ 1000 ppm was chosen for the

ammonia dosage.

The economic stage cost (6.2) was compared with a tracking-MPC stage cost

lt(x, u) = ‖x− x?s‖2Q, (6.29)

where xs is the optimal equilibrium (6.28) for the value of d as defined by (6.27), as

demonstrated in Figure 6.9, and Q is as defined in (6.3). It is demonstrated by Figure

6.10b that the economic stage cost (6.2) achieves consistently better closed-loop perform-

ance than tracking MPC for all prediction horizons N . Additionally, it does not require

the computation of x?s at each time step, which is a nontrivial function of d. Using an

economic stage cost, the turnpike property is visualised for various N in Figure 6.10a.

Here, it can be seen that the closed-loop trajectories remain close to x?s in the period

after the effects of initial conditions have passed, until one or two time steps before the

end of the horizon, when the trajectories leave the turnpike towards a locally lower-cost

solution.

The convergence of NOx and ammonia to their respective equilibria under MPC closed-

loop is shown for both economic and tracking MPC formulations in Figure 6.10c. The

results are summarised in Table 6.3. An intuitive indication of the cause of the better

performance of economic MPC can be found by examination of the ammonia storage

θ during transient operation. As shown in Figure 6.10d, economic MPC allows storage

to rise above the steady-state value x?s,4 in the transient, leading to improved NOx

conversion in this period, which results in lower stage costs and thus a lower value

function as shown in Figure 6.10b. Despite achieving better NOx performance and higher

ammonia storage, the eMPC controller uses less urea solution. The outlet ammonia is

necessarily higher in the case of eMPC, yet the constraint is respected.

6.2.3 Concluding Remarks

A nonlinear economic MPC controller has been formulated to deal directly with the

constraints of operation of an SCR catalyst used in a diesel engine. It has been proven

possible, unlike previous formulations of this problem, to avoid the calculation of an
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Table 6.3: Comparison of eMPC and tracking MPC.

Statistic Improvement vs. tracking MPC (%)

NOx emissions 2.5
NH3 emissions −13.1
Urea consumption 1.6
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ammonia storage reference directly, but instead model the complete catalyst and thus

constrain and weight the tailpipe gas concentrations. Such a formulation is feasible and

stable, such that implementations of this controller are suitable for use in an automotive

environment. The improvements are particularly profound in cold start operation, which

accounts for a significant proportion of NOx emissions, especially in urban environments.

The control objectives for SCR are relatively complex: rather than a regulation problem,

the controller must continually make a tradeoff between ammonia slip and NOx reduc-

tion. The NMPC controller can meet these objectives, as well as obeying constraints,

during the cold start period as well as during normal operating conditions. This is in

contrast to industry standard techniques of disabling the controller or limiting ammo-

nia injection, resulting in suboptimal emissions reduction and ad-hoc switching between

control laws. The NMPC controller makes the optimal tradeoff between NOx reduction

and ammonia slip and can do so for all operating conditions.

The possibilities of NMPC implementation for SCR in a vehicle environment are prom-

ising. The relatively long sampling period tolerable for SCR control provides adequate

opportunity to improve NOx reduction via such control schemes. The disadvantage is

a more computationally expensive controller, however, it has been estimated that the

controller is feasible given such sampling periods.

6.3 Thermal Management of SCR

Due to minimal interaction with the engine fuelling control loop, electric catalyst heaters

are an excellent candidate for retrofitting to existing diesel vehicles fitted with SCR

whose NOx conversion performance is lower than ideal. A catalyst heater is modelled

as a gas heater attached to the front face of the catalyst monolith, as shown in Figure

4.6. It is modelled as being close-coupled with the catalyst in order to maximise the

heat transfer between the heater elements and the catalyst monolith. The monolith is

not heated directly as this leads to localised hot spots which can damage the catalyst –

instead, the exhaust gas is heated before it enters the SCR brick.

6.3.1 Adding Thermal Dynamics to SCR Model

A pair of thermocouples in the SCR catalyst enclosure monitor the gas temperatures

before and after the monolith. Monitoring the SCR monolith temperature directly is

difficult due to sensor embedding, so this is inferred via the gas temperature sensors.

Since reaction rates are functions of the monolith temperature Tmon, a simple first order

thermal model of the relationship between the upstream gas temperature Texh,in and

the monolith temperature is utilised. The heat release from the chemical kinetics is

neglected in this model. A parameter kM models the convectional heat transfer from
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the exhaust gases to the monolith, whilst a second parameter kA models heat loss from

the monolith to the environment at temperature Tamb, which is

Ṫmon = kM (Texh,in + ∆Theater − Tmon)− kA(Tmon − Tamb). (6.30)

where ∆Theater is given in (4.14). This new state is added to the existing CSTR-based

model, and lump NO and NO2 into a single NOx parameter. Thus, the reactor model

can be written as




ĊNOx

φ̇

ĊNH3

Ṫmon




=




0 0

0 0
1
V 0

0 kM
cpṁ



u(t) +




1
V 0

0 0

0 0

0 kM



d(t)

+




φRoxi − CNOx(φRred + F )

RadsCNH3Φ− φ(RadsCNH3 +Rdes +RredCNOx +Roxi)

φRdes − CNH3(Rads(Φ− φ) + F )

−kMTmon − kA(Tmon − Tamb)



. (6.31)

where u is a vector of control inputs:

u =
[
NH3,inj , Pheater

]T
, (6.32)

and d is a disturbance vector:

d =
[
NOx,in, Texh,in

]T
. (6.33)

6.3.2 Combined Chemical and Thermal Control

The MPC controller was configured with a 20 second prediction horizon with a timestep

of 0.5 seconds. The upper limit for ammonia injection was 1 × 10−5 kmol/s and the

upper limit for the catalyst heater was 3.6 kilowatts, which are both representative of

real hardware. The lower limit was set to 1×10−12 for both inputs for numerical stability

reasons. The weighting matrices Q and R in (2.65) were configured to ensure a tailpipe

ammonia slip of less than 10 ppm. No weight was put on the ammonia storage φ.

The calibrated catalyst model developed in Section 4.3 was used as the plant model,

and the predictive controller was benchmarked over the first 250 seconds of a cold-

start NRTC test cycle, where the SCR catalyst is soaked at 50◦C before commencing.
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Enabling the catalyst heater in the MPC controller raises the temperature of the catalyst

monolith significantly faster than relying solely on heat in the exhaust gas stream. Since

a cold start is occurring, the controller opts to enable the heater at maximum power (3.6

kW) for the first part of the cycle, as shown in Figure 6.11a. The result of this is raising

of the SCR monolith temperature significantly faster than when the catalyst heater is

not used, as shown in Figure 6.11b.

Higher catalyst temperatures increase rates of reaction in SCR, which limit NOx con-

version in this temperature region. The result is that, as shown in Figure 6.11c, the

quantity of NOx emitted from the tailpipe is significantly reduced. In fact, over this

portion of the cold-start test cycle, the cumulative NOx emitted is reduced by 39%. In

addition, the ammonia slip is reduced when the catalyst heater is enabled, due to the

higher monolith temperatures allowing more ammonia to take part in SCR reactions.

This is demonstrated in Figure 6.11d, wherein it is shown that over this period, the

cumulative ammonia slip is reduced by 10.7%.

It is clear that increased conversion of NOx implies increased ammonia consumption:

this is true in this case, with the catalyst heater enabled the system consumes 56.8%

more ammonia.

6.4 Conclusions

Both linear and nonlinear MPC have proven promising for the control of an SCR catalyst.

Linear MPC performs very well when the state is near the linearisation point of the

model. However, further away from this, it is shown that the linear controller cannot

respect constraints. The main factor that causes this discrepancy was determined to be

temperature, since reaction rates increase exponentially with temperature. Furthermore,

it is precisely the temperature effects that are causing deviation of SCR from its optimal

operation, as discovered via the PEMS equipment in Chapter 3. As such, nonlinear

MPC was introduced to overcome this difficultly. A cold-start test cycle was used to

demonstrate that nonlinear MPC can maintain constraint satisfaction and optimal SCR

operation throughout the temperature range.

Lastly, in this chapter, it was shown that the thermal issues of SCR as found in Chapter

3 can be overcome to some extent by adding an actuator that allows the controller to

force heating of the catalyst where required. The additional degree of freedom granted

by doing this allows the control designer to fine-tune the fundamental tradeoff between

NOx and CO2 emissions.

The principal disadvantage of nonlinear MPC is the increased computational cost. It is

possible that linear parameter varying (LPV) models or a gain-scheduled linear controller

could be satisfactory approximations to achieve the wide operational region of nonlinear
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MPC whilst retaining the lower computation cost of the linear variant. Computational

costs will be examined further in Chapter 9, including methods to overcome these in

order to permit real-time implementation of the nonlinear MPC controller for SCR.



Chapter 7

State Estimation for SCR

In Chapters 5 and 6 it was assumed that full state measurement of the plant was avail-

able, whereas in reality the quantity of ammonia stored in the catalyst cannot be meas-

ured, but must instead be estimated online. In order to design a controller for a real

implementation, this chapter explores various methods of state estimation that can be

applied to the SCR system. The problem mentioned in Section 2.3 of cross-sensitivity of

NOx sensors to ammonia in a manner that is both temperature dependent and nonlinear

is also addressed.

7.1 Parallelised Particle Filtering

In Chapter 2, the existing literature on state estimation for SCR was examined. This

fundamentally comprises the estimation of three key parameters. Firstly, the level of

ammonia stored in the catalyst, otherwise known as the ammonia coverage ratio is re-

quired for any practical SCR controller. For the model based controllers developed in

this thesis, the online knowledge of this parameter is essential, because it appears as a

state in the control oriented models developed in Chapter 4. Secondly, tailpipe ammo-

nia concentration is typically estimated, since, as discussed in Chapter 2, commercial

ammonia sensors of sufficient accuracy and precision for SCR control are not yet widely

available. Thirdly, the cross-sensitivity of NOx sensors to ammonia is to be estimated in

order that reliable NOx measurements can be made. It was noted that this factor varies

nonlinearly with temperature and across production batches, so design-time calibration

is infeasible in this case. It was argued that the approaches used in the literature mainly

fall into the classical observer category. The model based observers were based on the

Kalman Filter and Extended Kalman Filter (EKF).

In this chapter, two new methods for state estimation for SCR are presented. These

are the Unscented Kalman Filter and the Particle Filter. Both of these should provide
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better estimation performance than the KF and EKF since the model is highly nonlinear,

and these methods do not rely on local linearisation of the model. Their computational

demands are also investigated in order to determine the feasibility of these estimators

for online applications.

The particle filter can be viewed as a generalisation of the UKF. The UKF chooses a

minimal set of points (2L, where L is the state dimension) deterministically around the

current state, and passes them through the nonlinear system dynamics before recon-

structing the statistics, assuming a Gaussian distribution. Conversely, the particle filter

is a sequential Monte Carlo (SMC) technique which does not assume any knowledge

of the noise distributions. It chooses many (often 1000 or more) points stochastically,

thereby further increasing estimation accuracy by better approximation of the posterior

distribution [153], [154]. Ns particles are drawn from the initial state distribution p(x0),

and are equally weighted with weights qi such that

Ns−1∑

i=0

qi = 1. (7.1)

Each particle is then propagated through the state equation using the known probability

density function (pdf) of the state noise such that the prior particles are generated as

x−k,i = f(x+
k−1,i, uk−1, wk) ∀i ∈ 1 . . . Ns. (7.2)

The weight of each particle is then updated based upon the likelihood that such a particle

would generate the known measurement, q̃i = p(yk|x−k,i) and then q̃i, i ∈ [1, Ns] is scaled

such that (7.1) holds:

qi =
q̃i∑Ns
j=1 q̃j

. (7.3)

The particles are now resampled based on the weights qi in order to produce the a

posteriori particle set x+
k,i which is an approximation of the desired posterior distribution

p(xk|yk). The resampling step is typically implemented by drawing a random sample

from the uniform distribution r ∼ U [0, 1] for each particle, then choosing the M ’th

particle where M satisfies [154]

M−1∑

j=0

qj < r ≤
M∑

j=0

qj , (7.4)
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Figure 7.1: Parallelisation of the particle filter

where q0 = 0 and M ≤ Ns. The resampled particles along with their weights describe

the posterior distribution, so any metric can be chosen for the state estimate. In the case

of a unimodal distribution, it is common to take the mean of the posterior distribution:

x̂+
k =

1

Ns

N∑

l=1

x+
k,l. (7.5)

where x̂k is the estimate of xk.

7.2 Parallelisation

Operation of the filter in real time is desirable for use in a control strategy. For an SCR

control system that has a sample time of 10ms, a solution within 10% of this (1ms) is a

suitable target, in order that enough time remains within the sampling period for sensor

acquisition and control step calculation. With this in mind, one of the key benefits of

the particle filter is its amenability to parallelisation. This benefit comes from the fact

that each particle x
(i)
k is independent, as shown in Figure 7.1.

Of the parallel architectures commonly available in a desktop computing environment,

the graphics processing unit (GPU) seems particularly well suited to the particle filtering

task, since it is capable of high degrees of parallelisation. GPU-based particle filtering
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methods have been examined before with great success [155]. The compute unified device

architecture (CUDA) by NVIDIA permits the writing of software for GPU applications.

In this model, kernels are executed in parallel by threads, which in turn are grouped

into blocks. The scheduler assigns blocks to the execution engines, which on the GPU

are known as streaming multiprocessors (SMs). The SMs divide the blocks into warps

which are executed in parallel according to a single instruction, multiple data (SIMD)

model. The SMs do not execute code as quickly as a typical desktop processor; instead

the speed increase comes from large-scale parallelism.

This is particularly well suited to the particle filter, since execution can be deeply par-

allelised, since each particle qi can be treated individually (with one exception, the res-

ampling stage, as discussed next). Firstly, the existing particles are propagated through

the model equation f . Then, the measurement function h is applied to calculate their

likelihoods p(yk|x−k ), which are subsequently normalised. Finally, the resampling step

creates a new set of particles for the next time step. This is shown schematically in

Figure 7.1. With Ns = 1000 particles, the degree of parallelism that GPUs offer can be

exploited to a great extent in this application.

Resampling

The qj in the sums (7.4) require data from all particles, which is the source of signi-

ficant speed decrease in a parallel implementation. Two novel options for countering

this dependency were introduced by [156], known as parallel resampling : effecting the

resampling process without computing the cumulative sum of weights. The threads

shown in Figure 7.1 then become truly independent with the exception of accesses to

single elements qj . The resulting penalty is not as onerous, since the CUDA architecture

provides areas of shared memory which can be exploited in this scenario since access is

limited to read-only.

The algorithm chosen for this implementation is Metropolis sampling, which is foun-

ded upon Metropolis-Hastings algorithms for drawing samples from a distribution P (x)

which does not have an analytical form [154]. Metropolis-Hastings algorithms are a

Markov chain Monte Carlo (MCMC) method which iterate a Markov chain which has

the desired distribution P (x) as its stationary distribution π(x), meaning that as samples

are drawn repeatedly, the distribution of those samples will tend towards the desired

P (x). The algorithm commences by assignment of an ancestor, denoted a, to each

particle ai = i, such that:

a =
[
a1, a2, . . . , as

]
=
[
1, 2, . . . , Ns

]
. (7.6)
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A vector u of Ns random numbers are drawn from the uniform distribution U [0, 1]. A

vector ã of Ns random integers in the range [1, Ns] denotes candidate ancestral particles.

If

ui ≤
qãi
qai

, (7.7)

then the ancestor of particle i becomes the jth particle, ai = ãj . This procedure should

be repeated until convergence is reached:

‖PB(i, ·)− π(·)‖ ≤ ε, (7.8)

where π(·) is the true stationary distribution, PB(i, ·) is the Bth iterate of the Metropolis

resampling algorithm in [156], and ε > 0 is chosen to be a small positive number. An

upper bound on B is given by

B > B? ,
log ε

log(1− β)
, (7.9)

where β is defined as in [156] by

β , min
i∈{1,...,Ns}

(
1
N

∑Ns
j=1 qj

qi

)
≥ 1

N
> 0. (7.10)

7.3 Estimator Design

To generate the state estimator model, the following key assumptions are made:

Assumption 7.3.1. NO and NO2 are lumped into a single NOx state, since this is rep-

resentative of the sensor characteristics.

Assumption 7.3.2. The only modelled reactions are (2.4) and (2.11).

Assumption 7.3.3. Mass transfer is assumed to be infinitely fast, such that reactions are

either temperature or species limited.

The reaction rate applied to the single lumped reduction equation is given as

Rred = rredCNOxθ (7.11)

where rred is of the form (4.4). Using the CSTR model (4.7), the reactions are phrased

as follows
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ĊNOx =
NOx,in
V

+ ΦRred −
F

V
CNOx

ĊNH3 =
NH3,in

V
+ Φ(Rdes −Rads)−

F

V
CNH3

θ̇ = Rads −Rdes −Rred

(7.12)

where NH3,in and NOx,in are the inlet molar flow rates in kmol/s of ammonia and

NOx respectively. As the dynamic of the ammonia concentration inside the reactor

occurs much faster than the NOx reduction and the ammonia storage reactions, make a

quasi-steady state approximation

ĊNH3 = 0 =⇒ CNH3 =
rdes θΦ +

CNH3,in

V

rads Φ (1− θ) +
F

V

, (7.13)

which allows calculation of the value of CNH3 as required in (7.12). Excluding the

dynamic equation for ammonia concentration, and augmenting a zero dynamic state to

track ksens (since no information on its dynamics exists), the model becomes



ĊNOx

θ̇

k̇sens


=




CNOx

(
rred θΦ +

F

V

)

radsCNH3−θ(radsCNH3 +rdes+rredCNOx)

0


 (7.14)

on which the estimation procedure is based. Asymptotic observability of the system is

assumed (4.13) as defined in [157].

Forward Euler integration was used to discretise the model with a sample time of 10ms.

As shown in Figure 7.2, the values of θ and ksens are required by the ACU for control

calculation. However, the sensor measurements are a function of states:

yk = CNOx,k + ksens,k CNH3 + vk, (7.15)

where vk is an independent zero-mean white Gaussian noise sequence with variance 10−18

kmol/m3, which was determined from benchmarking of a production sensor. Computa-

tion of CNOx follows from the sensor output and k̂sens.
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x̂k
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Figure 7.2: Closed loop SCR schematic with state estimator for the state estimate x̂
required by the controller.

7.4 Results

The particle filter was simulated and compared to an EKF and UKF using data from a

diesel engine on an NEDC cycle. The Q matrix, as given in (2.15), were configured for

the EKF and UKF as:

Q =




10−4 0 0

0 10−12 0

0 0 10−6


 (7.16)

and with R = 10−4. The inlet NOx concentration was fixed at 117.6ppm, and the inlet

ammonia concentration was varied as shown in Figure 7.3. The thermal mass of the

sensor was assumed to be small, thus temperature dynamics of the sensor were neglected.

This causes worst-case transients in ksens; the inclusion of temperature dynamics in

reality will have the effect of low-pass filtering the true value. The EKF and UKF were

initialised with all states being 0. The particle filter was configured with Ns = 1000

particles and the initial distribution p(x0) as uniform over the 3 states:

x
(1)
0,i ∼ U [0, 5× 10−7]

x
(2)
0,i ∼ U [0, 2× 10−3]

x
(3)
0,i ∼ U [0, 1]

(7.17)
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in order to represent the lack of information as to the initial state but confine the

particles to the feasible ranges of the state variables. It was found that B = 3 in

(7.9) was the typical upper limit with ε = 10−3 in practice, and was thus fixed instead of

calculating B? at each iteration. The resulting convergence to the true ammonia storage

and cross sensitivity factors are shown in Figures 7.4 and 7.5 respectively. The tracking

performance of the filters is shown for the post-convergence period in Figure 7.6.
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The particle filter demonstrates two distinct advantages. Firstly, the distribution of

the initial particles according to (7.17) results in the best initial estimates during con-

vergence, as shown in Figure 7.5. Secondly, the particle filter demonstrates the best

tracking of the cross sensitivity factor during fast temperature transients, as in Figure

7.6. The UKF cannot make use of an initial distribution p(x0), thus state estimates

are relatively poor until convergence. However, during the tracking period, the UKF

provides performance significantly better than the EKF and approaching the particle

filter. The divergence of ksens in all filters in the region around 100s can be explained by

the sensor output equation (7.15), since an overestimate of NOx concentration can be

countered by an underestimate in ammonia concentration, resulting in identical sensor

output. Table 7.1 shows the mean solution times for each filter on an Intel Core i7 CPU,

confirming that the EKF is computationally the cheapest, whilst the particle filter is

the most expensive. The UKF provides an excellent middle ground, with computational

time well within the sampling period.

Table 7.1: Average CPU solution time for the EKF, UKF and two particle filters

Filter Solution time (ms)

EKF 0.17
UKF 0.33
PF (Ns = 100) 0.76
PF (Ns = 1000) 1.09

Comparative results for the particle filter on the CPU and GPU (NVIDIA Quadro 4000)

are shown in Table 7.2. The root mean square (RMS) tracking error for ksens for the

period after convergence (200 second onwards, see Figure 7.5) is also shown as a function

of the number of particles. The CPU implementation scales poorly with particle number,

quickly exceeding the available 1ms, whilst GPU implementation exhibits more desirable

scaling characteristics.

Table 7.2: Average particle filter execution times on the CPU and GPU

Ns CPU (ms) GPU (ms) ksens RMS Error

100 0.76 0.71 0.081
500 0.95 0.73 0.052
1000 1.09 0.77 0.036
10000 4.84 0.90 0.022
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7.5 Conclusions

This chapter examined state estimation for SCR, both in order to estimate quantities

required for control that cannot be directly measured, and to address the issues seen

in commercially available NOx sensors. Accurate estimation is key to optimal control

of SCR to meet strict emissions limits for internal combustion engines. Due to the

additive nature of the ammonia cross-sensitivity of NOx sensors, it is difficult to solve

to sufficient accuracy. This is compounded by the nonlinear temperature dependence of

the cross-sensitivity factor, which has too high a variance to be feasibly characterised,

either online or offline. A particle filtering approach has been shown to converge faster

than existing Kalman filter methods, and tracks the cross sensitivity accurately during

temperature transients, even without a tailpipe ammonia sensor.

Furthermore, a parallel application of this particle filter using a graphics processing

unit has been demonstrated, which has computational ability particularly well suited

to the particle filtering problem. Whilst not currently applicable to vehicles, this im-

plementation is well suited to testbed SCR development where high fidelity is required.

Furthermore, future embedded platforms may see an increase in parallel execution cap-

ability, for example field programmable gate arrays (FPGAs). A parallel resampling

technique was exploited to reduce the data dependency of the canonical filter formu-

lation. The parallelisation allowed simulation of an order of magnitude more particles

within the allotted timeframe, which improved filter tracking.





Chapter 8

Investigation of Embedded MPC

Implementation

So far, this thesis has examined the use of model-based control schemes for SCR. In

particular, it was found that nonlinear MPC performs particularly well in maintaining

constraint-admissible optimal operation of the catalyst across the entire operating range.

This includes the addition of a catalyst heater to improve NOx removal at low temper-

ature, which are typical in the environments where maximum NOx conversion is critical.

Thus far, the implementation of MPC has not been discussed. This is typically a major

hurdle to be overcome for applications of predictive control, since the computational

requirements are significant, as discussed in Subsection 2.4.6.

In this chapter, the implementation of nonlinear MPC is examined on low power, re-

source constrained hardware. Particularly, the idea of explicit MPC, as introduced in

Chapter 2, is extended into the nonlinear domain. To demonstrate the controller a

benchmark system (an inverted pendulum) was used in place of the SCR, since it has a

published dynamic model, and other investigations have been carried out regarding its

control. This supplies some benchmarks and comparisons against which the controller

developed in this chapter can be tested.

8.1 Approximate Grid Explicit MPC

To demonstrate control of a fast nonlinear system, an interesting variant of the inverted

pendulum is employed, namely the reaction wheel pendulum [158]. The inverted pen-

dulum has been a popular demonstration platform for nonlinear control for at least fifty

years [159]. The transition of the pendulum from a stable (downwards) equilibrium to

an unstable (upright) one, known as swing up, has been the subject of much research.

The most common strategy is an energy based swing up law [160]. It is typical to use

133
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one control law to swing up the pendulum and then another to balance it around the

upright position – for example, [161] uses the energy based swing up method followed

by a linear parameter varying (LPV) MPC approach to stabilise. Further, [162] uses

energy based approaches for both regimes. One successful attempt at a global control

law, (i.e., swing up and stabilisation) is made by [163], which uses NMPC for the control

of a linear inverted pendulum. The control problem is challenging due to the system

being underactuated, with torque applied to a reaction wheel attached to the end of the

pendulum, but not to the pendulum itself. A dual-controller approach to swing up and

balance the reaction wheel pendulum is introduced by [158]. Subsequent works, includ-

ing [164] and [165], demonstrate classical nonlinear global controllers. Here, NMPC for

global stabilisation of this pendulum is motivated. The nonlinearities in the dynamics

mean the control actions to swing up the pendulum cannot be determined by a linear

MPC controller, since there exists no single linearisation for which the plant dynamics

are adequately captured over any possible state trajectory.

The concept of explicit MPC has found success in the control of fast systems in which

the sampling period has typically been too small to allow for online optimisation in the

required time frame [63]. The canonical formulation of explicit MPC uses a linear MPC

scheme such that the optimisation problems to be solved are quadratic programmes. In

this formulation, polytopes in the state space are uniquely defined by the constraints

that are active in that region of the state space (the active set). For a given polytope,

the optimal control law becomes piecewise affine (PWA) in the state x, giving u?(x) =

Fix+ gi for the polytope i [166]. The QPs are solved multiparametrically (mp-QP), so

that the solution U?(x) can be found. As such, the coefficients of the PWA law can be

stored offline, and the online search for the optimal solution u? reduces to locating the

relevant polytope and evaluating the PWA control law found there. This can be done

very quickly using approaches such as the binary search tree [167].

Unfortunately, in the case of a nonlinear model, the convexity is lost and the solution

is no longer a quadratic programme, resulting in the usual explicit MPC strategy being

inapplicable. There has been some work regarding overcoming this problem, including

[166], in which approaches such as approximation of the cost function by multiple QPs

is discussed. In this chapter, several characteristics of the system are exploited to allow

a uniform grid to be placed over the state space, and the full NLP (2.76) is solved at

each vertex.

Define a generalised coordinate to index the grid:

x′ =
[
x′1, x′2, . . . , x′n

]T
∈ Nn (8.1)

where n is the number of states of the system (2.63). Let P = {1, 2, . . . , n}. Additionally,

define the error at a vertex x′ in dimension p as:
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δp(x
′) = u?0(x′)− u?0(x̃′(p)) (8.2)

where x̃′ is the adjacent preceeding vertex to x′ in dimension p, i.e.,

x̃′(p) =
[
x′1, . . . , x

′
p − 1, . . . , xn

]T
(8.3)

Let Np be the number of grid vertices in dimension p. Define the current error in

dimension p as:

εp = max
x′

δp(x
′) ∀x′ ∈ X ′ (8.4)

where X ′ ⊆ X is the set of vertices x′ for which the solution will be validated. The grid

is iteratively refined until εp is below a certain tolerance ε̄ in all dimensions.

Algorithm 8.3 Generation of an approximate explicit NMPC solution grid

1: for each dimension p ∈ P do
2: Truncate to known bounds and Np ← 3.
3: end for
4: for each vertex x′ do
5: Solve the NLP (2.76) and choose the first element u?0 as the solution for the

current vertex, u?0(x′). Store this solution against this vertex.
6: end for
7: for each dimension p ∈ P do
8: evaluate εp as in (8.4).
9: if εp < ε̄ then

10: terminate this dimension and return to step 3 for the next dimension
11: end if
12: end for
13: if all dimensions are complete then
14: Terminate.
15: else
16: Let Np := 2Np − 1 and return to step 3.
17: end if

8.2 Algorithms

Once Algorithm 8.3 has completed, the result will be a grid of values of u?0 for each

vertex x′. For real time implementation, this grid is stored alongside the truncation and

Np for each dimension p. The online controller requires the current state x0, which in

general is either measured or provided by an observer.
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Algorithm 8.4 Online algorithm to find approximated optimal solution in the solution
grid

1: Find the current state x0 either by measurement or state observer
2: if x0 /∈ X then
3: x̃0 ← arg min

x̃0∈X
‖x0 − x̃0‖

4: x0 ← x̃0

5: end if
6: Perform n-dimensional linear interpolation in the solution grid at x0, the interpolant

is the approximated control input û?0.
7: Apply the control input û?0 to the plant for the sampling period, then return to Step

1.

In this work, the n-dimensional linear interpolation is performed using the interpn

function in matlab. Note that Step 2 of Algorithm 8.4 should not be required if the

truncations were chosen properly, but is included to prevent failure of the algorithm if

the state deviates from the solution grid.

8.3 Application to the Reaction Wheel Pendulum

The explicit NMPC controller will be applied to solve the global stabilisation, i.e., the

swing-up and the subsequent balancing problem, of a reaction wheel pendulum using

a single controller. The solution technique described in Subsection 2.4.4 will be used

to transcribe the continuous-time finite horizon optimal control problem and apply the

designed controller to a continous-time dynamic model of the pendulum.

8.3.1 Reaction Wheel Pendulum Model

The model of the Quanser reaction wheel pendulum module will be used as shown,

together with the simplified free body diagram of its mechanical part, in Figure 8.1

[158]. This system consists of a pendulum which is free to rotate in the vertical plane,

along with a reaction wheel at the free end of the pendulum. Torque is applied to this

reaction wheel via a motor attached to the pendulum. As such, the system has two

degrees of freedom (DOF), since only the wheel is actuated.

The continuous-time equations of motion of the reaction wheel pendulum are as follows

[168]:

[
Ip + Iw Iw

Iw Iw

][
θ̈p

θ̈w

]
+

[
−mpgLp sin(θp)

0

]
=

[
0

1

]
u (8.5)
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Figure 8.1: The Reaction Wheel Pendulum

where mp and Lp are the mass and length of the pendulum respectively, Ip is the moment

of inertia of the pendulum about its pivot and Iw is that of the wheel. g is acceleration

due to gravity. The coordinates θp and θw are the angular positions of the pendulum and

wheel respectively. u is the input torque from the DC motor. The physical parameters

of the system are listed in Table 8.1. Introducing the following change of coordinates as

in [168]:

q1 = θp (8.6)

q2 = θp + θw (8.7)

leads to the simplified equations of motion:

[
Ip 0

0 Iw

][
q̈1

q̈2

]
+

[
−mpgLp sin(q1)

0

]
=

[
−1

1

]
u (8.8)

The state vector is chosen to read x =
[
q1, q2, q̇1, q̇2

]T
.

Table 8.1: Specifications of the reaction wheel pendulum

Symbol Description Value Unit

mp Mass of pendulum 0.2164 kg
Lp Total length of pendulum 0.2346 m
Jp Pendulum Moment of inertia 2.233× 10−4 kgm2

mw Mass of reaction wheel 0.085 kg
Jw Wheel Moment of inertia 2.495× 10−5 kgm2

umax Maximum torque ±1 Nm
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Figure 8.2: Swing-up of the reaction wheel pendulum using the NMPC controller

8.3.2 Control Design for the Inertia Wheel Pendulum

The NMPC controller was configured for these simulations with a prediction horizon

Hp = 0.3 seconds with a shooting mesh grid of N = 61 points during which N = 10

control moves are equispaced. This results in a sampling time of 30ms for the controller.

These values were chosen to provide the smallest NLP, in order that the solution of the

NLP (2.76) is as fast as possible such that a fair comparison is possible. Crucially, the

balancing performance became significantly worse at larger sampling periods. The stage

cost in (2.65) was tuned to be of the following form:

l(x, u) = ‖x1‖Q1 + ‖x2‖Q2 (8.9)

where Q1 = 1000 and Q2 = 5, to reflect the primary objective of inverting and balancing

the pendulum, followed by the secondary objective of holding the reaction wheel static

at its origin. The terminal cost E(·) in (2.65) is often required as a guarantee of closed-

loop stability. Since no such proof is attempted here, this term was discarded from the

cost function. The maximum control torque that can be applied to the reaction wheel is

umax = ±1Nm. The OCP (2.66) was transcribed using ICLOCS [103], with IPOPT being

used to solve the resulting NLP (2.76) [101]. The resulting pendulum arm position and

control input during the swing-up are shown in Figure 8.2.

Transcription and solution of the OCP requires a worst case time of 0.465s with an

average time of 0.120s on an intel Core i7 desktop computer. This is above the sampling

period of 30ms and renders the controller infeasible for real time control.
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Figure 8.3: Comparison of the pendulum arm during swing-up between standard
NMPC and the approximate explicit algorithm

8.4 Results and Analysis

8.4.1 Simulations

Applying the approximate grid explicit NMPC Algorithm 8.3 to the reaction wheel

pendulum system, the truncations q1 ∈ [−π, π], q2 ∈ [−10, 70], q̇1 ∈ [−100, 100] and

q̇2 ∈ [−1500, 1500] were chosen as a result of swing-up simulation results from the full

NMPC controller. The set X ′ is selected as the central 50% in each dimension p, such

that the balancing control region is guaranteed to be of sufficient fidelity. The swing up

region towards the edges of the state space (in q1 and q̇1) can tolerate less accuracy, as

will be demonstrated later. ε̄ was chosen to be 0.1. The algorithm ceases with 20 points

in the x1 dimension, 50 points in the x3 dimension, and only 5 points in each of the

x2 and x4 dimensions. This correlates with our expectation that the angular velocity

of the pendulum has the most significant impact on the control action, followed by the

position of the arm. The position and velocity of the reaction wheel are significantly less

important to achieve the required control action. The position of the pendulum during

swing-up is compared in Figure 8.3 between the NMPC and approximate grid explicit

NMPC, and the control input comparison is shown in Figure 8.4.

The control action as a function of the position and speed of the pendulum arm are

shown in Figure 8.5 (for one set of values of x2 and x4). It is clear that there are large

regions of the state space where the torque limit is in effect and therefore governs the

control action. Between these, there is a region where the control action changes in a

smooth manner between one saturation and the other. The visibility of this gradually

changing value justifies our approximation of linear interpolation between grid vertices.
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Figure 8.4: Comparison of the control input during swing-up between standard
NMPC and the approximate explicit algorithm

The bottom-left and top-right corners of the image are regions in which the control law

falls sharply back to approximately zero. These mark regions in which the maximum

input torque does not permit an immediate return to the upright position. Instead,

the controller relaxes the control input to around zero until the pendulum returns to

the controllable region. On these boundaries the linear approximation is significantly

less accurate; this becomes the main source of error in the algorithm, as seen in Figure

8.3. However, it is tolerable in practice, particularly since the system is returning to the

higher fidelity interpolation region, from where more precise control will occur.

8.4.2 Computational Effort

Given that state measurements are available, the online part of the controller amounts

to a 4 dimensional linear interpolation in the solution grid. Solution of the NLP online,

even on a relatively powerful desktop computer, is around two orders of magnitude too

slow for real time implementation. On the same desktop computer, the approximate grid

NMPC algorithm requires worst case and average times of 1.8ms and 1.1ms respectively.

These are more than one order of magnitude below the sampling time of the reaction

wheel pendulum plant and the controller is therefore applicable in real time.

The resultant solution grid has 25, 000 vertices, to each of which is attached a control in-

put in double precision floating point (8 bytes). Thus, storage of the grid requires around

200kB of memory. This memory requirement, and the required online interpolation in

the solution grid, are expected to be achievable on a microprocessor platform, making

this solution highly applicable to real-time controllers. For example, the STM32F407
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Figure 8.5: Control action as a function of pendulum angle and velocity, with reaction
wheel angular position and velocity zero (x2 = x4 = 0).

device from ST Microelectronics has a core clock of 168MHz and 1MB of flash program

memory [169], and is available for around GBP 7. In contrast to a PWA solution that

requires n + 1 numbers to store per polytope (where n is the number of states), this

solution requires only 1. To improve the storage situation still further, adjacent vertices

whose values of u?0 are the same can be merged such that the grid becomes non-uniform

(such as the large single colour areas in Figure 8.5). This reduction of the solution grid

is likely to decrease the storage requirements considerably for systems like the reaction

wheel pendulum wherein inputs are at the constraints ±umax for large portions of the

state space.

8.5 Conclusions

It was demonstrated that despite being able to achieve the desirable optimal perform-

ance without the switching logic requirements, NMPC is not applicable online to some

systems. The reaction wheel pendulum was employed as an example of a fast nonlinear

control problem. The difficultly in online application comes from the time required for

solution of the NLP. To overcome this problem, an explicit NMPC algorithm was derived
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for the determination of a solution grid. Insensitivity of the control input to a subset of

the states was exploited to reduce the size of the solution space. The tradeoff between

approximation error, and the requirements for storage and computation time can be

simply tuned by adjustment of the error tolerance ε̄. This approximate solution grid

provided will allow real-time implementation of the controller with performance close to

the full NMPC controller, even with a modest error tolerance.

It is possible that such a scheme could be employed for the control of SCR. The error

tolerances and the storage required for the offline grid would be determined by deriving

an approximate explicit grid controller for the SCR system. It is required that the state

space be truncated in this algorithm, so research will be required as to the operating

ranges in which the SCR controller would be expected to operate. However, if these

issues can be addressed, the offline approximate grid nonlinear MPC algorithm may

provide a useful route to real-time application of the MPC controllers for SCR that were

developed in Chapter 6.



Chapter 9

Hardware Accelerated MPC

In this chapter, methods of embedding the MPC controllers designed in Chapter 6 are

explored. In order to achieve this, the frameworks for numerical solution of optimal

control problems as introduced in Chapter 2 are employed, and are implemented on

embedded hardware. Whilst real time solution of the whole MPC problem in the current

setup is possible using a desktop computer, it is found to be infeasible on embedded

hardware that is highly resource constrained. Consequently, each part of the algorithm

is profiled to quantify its execution speed and understand which portions consume the

most time. To permit real time embedded solution, a system-on-chip (SoC) recently

introduced to the market is leveraged: the Xilinx Zynq 7000, which is available in

automotive grade.

The real-time iterations (RTI) approach is a particular arrangement of the SQP al-

gorithm as introduced in Subsection 2.4.6. The fundamental concept is that the SQP

algorithm becomes restricted to the solution of only one QP at each time step. The RTI

algorithm is split into two phases: the preparation phase in which numerical integration

of the model is computed, and the feedback phase after the state measurement has been

found the associated QP can be constructed and solved. Multiparametric solution of

the QPs (with qpOASES, for example) results in an extremely fast feedback phase. The

requirement for robust integrators with sensitivity generation in the preparation phase,

however, means this is often quite slow in practice. If the system of the ODEs to be

solved demonstrates highly stiff properties, this numerical integration can be too slow

to be solved within the sampling time of the plant. Implicit Runge-Kutta (IRK) integ-

rators have proven popular in recent nonlinear MPC literature: they cope well with stiff

ODEs and it is relatively simple to add the required sensitivity generation [98].

The models developed in Chapter 4 are typically highly stiff, due to the combination

of thermal and chemical differential equations. Furthermore, in the MPC controllers

developed in Chapter 6, a long prediction horizon is used in order to capture the storage

143
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and thermal dynamics of the catalyst. This combination leads to the numerical integ-

ration part of the RTI algorithm becoming exceptionally computationally difficult. To

counter this, the Zynq-7000 SoC is employed, which combines ARM Cortex A9 micro-

processors with close-coupled FPGA fabric. As discussed in Chapter 2, FPGAs have

previously been leveraged for MPC. However, typically the full MPC algorithm is im-

plemented in the FPGA. Conversely, hardware accelerated MPC, where a portion of

the algorithm runs on the FPGA and the rest on a microprocessor, has traditionally

been limited by the bandwidth between the two. The close-coupled nature of the Zynq

platform is used to overcome this to a large extent in this chapter, by using the FPGA

to accelerate the numerical integration whilst the rest of the RTI algorithm runs on the

microprocessor.

9.1 Review of Implicit Integration Methods

Recall, as introduced in Subsection 2.4.6, that we are interested in numerical integration

of the general system of nonlinear differential equations describing a continuous time

dynamic model, as introduced in Subsection 2.4.4, that we can write as

ẋ(t) = f(x(t), u(t)), (9.1)

where the ODE f depends on time t only through the system states x and inputs u.

The problem is in general the finding of the solution to the IVP over the time interval

∆t from some initial state xk to some new state xk+1 given some control input u defined

over the time interval

F (xk, uk) = xk+1 =

∫ t0+∆t

t0

f(x(t), u(t)) dt, (9.2a)

x(t0) = xk. (9.2b)

Solution of (9.2) requires numerical integration of the plant. Since stiff systems of ODEs

are the focus of this work, implicit integration methods are examined, since they exhibit

larger regions of stability compared to explicit methods. An implicit method finds the

solution to

Y (xn, xn+1) = 0 (9.3)

where xn is the current state and xn+1 is the desired state at some time in the future.

In particular, implicit Runge-Kutta (IRK) methods are A-stable, meaning that if the

solution of the ODE tends to some finite value, so does the numerical integrator output
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[170]. If this property holds regardless of step size, the method is said to be A-stable.

Furthermore, IRK methods are amenable to sensitivity generation which is typically

required in gradient-based optimisation.

9.1.1 Implicit Runge-Kutta Methods

The s-stage Runge-Kutta (RK) method computes the solution of the differential equation

at a time future point in time as

xn+1 = xn + h
s∑

i=1

biki (9.4)

where h is the integration time step and the coefficients ki are found as

ki = f


xn + h

s∑

j=1

aijkj , un


 ∀i ∈ 1, . . . , s (9.5)

where it assumed that un is a known constant for each n. A particular Runge-Kutta

method is uniquely defined by its Butcher tableau [171]:

c1 a11 a12 · · · a1s

c2 a21 a22 · · · a2s

...
...

...
. . .

...

cs as1 as2 · · · ass

b1 b2 · · · bs

(9.6)

where aij and bi appear in (9.4) and (9.5). The ci quantities are employed when the

ODE is a function of time, so they are ignored in this discussion since (9.1) is not a

time-varying function.

If the Butcher tableau is lower triangular, the RK method is explicit, whereas IRK

methods do not display this property. As a result, in (9.5), the equations for ki are

interdependent. Therefore, solution of the system of equations for ki is achieved by

defining the vector k

k =
[
k1, k2, . . . , ks

]
(9.7)

and defining a new function
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G(k) =




f
(
tn + c1h, xn + h

∑s
j=1 a1jkj

)
− k1

f
(
tn + c2h, xn + h

∑s
j=1 a2jkj

)
− k2

...

f
(
tn + csh, xn + h

∑s
j=1 a3jkj

)
− ks




(9.8)

and seeking a solution to the equation

G(k) = 0. (9.9)

This equation has no exact solution in general, so instead a k that minimises the mean-

squared error is sought:

k? = arg min
k
‖G(k)‖2. (9.10)

This is a nonlinear least squares problem, solution of which can be achieved by applying

Newton’s method, which for a matrix problem like (9.10) can be written as:

∂G

∂k

∣∣∣∣
k=k̃i

∆k = −G(k̃i) (9.11)

with the iterative update

k̃i+1 = k̃i + ∆k. (9.12)

9.1.2 Least Squares Problems

Equation (9.11) is in fact a linear least squares (LLSQ) problem, which can be generically

written as

Ax = b, (9.13)

with A ∈ Rm×m and b ∈ Rm. This is in general an overdetermined system, and the

solution is defined as the x which minimises the residual error, defined as

x̂ = arg min
x

‖b−Ax‖2. (9.14)
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Some of the most stable algorithms when A is real and square employ QR decomposition,

in which the matrix A is decomposed as A = QR, where Q is an orthogonal matrix and

R is upper or lower triangular, depending on the implementation. This is shown in

Algorithm 9.5. The number of iterations of (9.12) required depends on the properties of

(9.1), principally the degree of nonlinearity and the stiffness of the system. Once k has

been found, the IRK update (9.4) is used to compute xn+1.

Algorithm 9.5 Algorithm for solution of a linear least squares problem using QR
decomposition.

1: procedure least squares(A, b)
2: {Q,R} ← QR(A) . QR decomposition of A
3: c← QT b
4: x̂← R−1c . Gaussian elimination
5: return x̂
6: end procedure

9.1.3 Sensitivity Generation

In addition to the solution of the IVP (2.77), gradient based optimisation methods

require the derivatives of the cost and constraint functions with respect to the decision

variable z. The derivative of the defect constraints (2.76d) requires the matrix ∂F (sn,qn,p)
∂z .

There are many options for calculating this quantity, see [97] for a discussion. The

approach favoured in many real-time MPC applications, such as [98], is derived by

applying the implicit function theorem (IFT) to the IRK update equation (9.4):

dk

dzn
= −∂G

∂k

−1 ∂G

∂zn
(9.15a)

∂xn+1

∂zn
=
∂xn
∂zn

+ h
s∑

i=1

bi
dki
dzn

. (9.15b)

The matrix ∂G
∂k and its factorisation has already been calculated as part of the IRK

iterations (9.11).

9.2 Parallelisation of Multiple Shooting

The direct multiple shooting algorithm was introduced in Subsection 2.4.6, wherein it

was discussed that this framework involves the splitting of the prediction horizon into N

segments. Numerical integration of each of these intervals is carried out independently,

with constraints added to the optimisation programme to ensure the consistency of

trajectories across segment boundaries.
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Defining the number of integration steps to cross each multiple shooting segment as β =
H
h , Algorithm 9.6 displays the numerical integration part of the direct multiple shooting

algorithm. The outermost loop iterates over each of theN steps of the prediction horizon.

The i loop iterates over the integration steps required inside each shooting segment. The

innermost j loop executes a fixed number L of Newton iterations as given in (9.11). Note

that unlike [97], the quantity ∂G
∂k is recalculated at each Newton step as this becomes

one step of the accelerator pipeline and so does not require additional computation time.

Conversely, it generates an improved guess at k at each IRK iteration, which thereby

reduces the number of Newton iterations (9.12) required for convergence of k?.

Algorithm 9.6 Algorithm for numerical integration part of direct multiple shooting
using the IRK integrator.

1: procedure multiple shooting(z)
2: for n = 1 : N do
3: for i = 1 : β do
4: for j = 1 : L do

5: ∆k ← ∂G
∂k

∣∣−1

k
G(k)

6: k ← k + ∆k
7: end for
8: sn+1 ← sn + h

∑s
i=1 biki

9: compute ∂sn+1

∂zn
as given in (9.15)

10: end for
11: end for
12: end procedure

In Algorithm 9.6, each Newton step is dependent on the previous iteration, since line 5

uses the value of kn computed at the previous iteration. Now a trait of direct multiple

shooting is exploited: each segment is independent. Thus it is possible to rearrange

Algorithm 9.6 as shown in Algorithm 9.7.

Algorithm 9.7 computes a Newton step for each of the N segments in turn and does this

L times, after which kn is a solution for (9.9) in each segment n. The IRK update (9.4)

is then applied and the sensitivity (9.15) calculated for each segment n ∈ {0, . . . , N−1}.

9.3 Hardware Accelerator Design

Algorithm 9.7 requires N × L × β solutions of the LLSQ problem (9.11). This is com-

putationally expensive, particularly where β and L are large, which is commonly the

case for stiff systems, and where N is large, which implies a long horizon. However, the

arrangement in Algorithm 9.7 permits batches of N ×L LLSQ problems to be solved in

a pipelined manner. As such, in this section, a pipelined hardware LLSQ accelerator is

designed.
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Algorithm 9.7 Restructured direct multiple shooting integration algorithm to remove
data dependencies from inner loops.

1: procedure multiple shooting parallel(z)
2: for i = 1 : β do
3: for j = 1 : L do
4: for n = 1 : N do
5: ∆k ← ∂G

∂k

∣∣−1

kn
G(kn)

6: kn ← kn + ∆k
7: end for
8: end for
9: for n = 1 : N do

10: sn+1 ← sn + h
∑s

i=1 bikn,i
11: compute ∂sn+1

∂zn
as given in (9.15)

12: end for
13: end for
14: end procedure

It should be noted that the QR decomposition (line 2 of Algorithm 9.5) is the most

expensive part of the LLSQ solver, yet it does not require the vector b. The accelerator

can therefore be optimised by beginning the QR decomposition as soon as A is received

from the CPU, before b is transmitted. It should also be noted that line 4 of Algorithm

9.5 does not involve a matrix inversion since the matrix R is triangular, and x̂ is therefore

found by Gaussian elimination.

The accelerator was constructed with a 5-stage pipeline as shown in Figure 9.1. Each

stage of the pipeline is separated by a block RAM (BRAM) in the FPGA fabric con-

figured in ping-pong mode. Note that in stage 2, the accelerator is already computing

the QR decomposition of A whilst b is transferred from the CPU. This arrangement

permits the accelerator to consume either an A or a b matrix at each stage of pipeline

execution, and produces a result x̂ at each iteration.

The advanced extensible interconnect standard, version 4 (AXI4) is adopted by Xilinx for

intellectual property (IP) blocks which are implemented in the programmable logic. The

point-to-point address-free AXI-Stream interconnect was chosen for the data input and

output interfaces of the least-squares accelerator, since it provides low latency for bulk

data transfer. An AXI-Lite interface is also provided by the accelerator for initialisation,

control and diagnostics.

Resource utilisation for the accelerator is shown in Table 9.1. Block RAMs (BRAMs) are

18 kilobyte memories which are used for creating the pipeline stages and storage inside

the pipeline stages. The DSP48 slices are configurable multiply-accumulate blocks that

can be leveraged to perform arithmetic operations rather than implementing custom

logic. Flip-flops (FFs) and look-up tables (LUTs) are used to construct custom logic to

implement the hardware accelerator.
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Data Input

Data Output

Receive A

{Q,R} = QR(A) Receive b

Compute c = QT b

Compute x̂ = R−1c

Transmit x̂
Block RAM

Figure 9.1: Pipelining arrangement of the hardware LLSQ solver, showing block
RAMs configured as ping-pong memory to create the pipeline.

Table 9.1: Resource utilisation of the LLSQ accelerator, showing percentages for the
ZC702 device.

Stage\Resource BRAM DSP48 FF LUT

QR(A) 2 40 8765 12178
c = QT b 8 5 734 1243
x̂ = R−1c 0 5 1412 1940
Pipeline 4 0 3328 192
Other 0 0 26 83

Total 14 50 14503 15820
Utilisation (%) 5 22 13 29

9.4 Accelerator Implementation

The Xilinx Zynq ZC702 SoC contains a pair of ARM Cortex-A9 application micropro-

cessors coupled with an Artix-7 series FPGA. A development board as shown in Figure

9.2 provides test and debug facilities as well as flash storage for the program code.

The LLSQ accelerator was implemented into the programmable logic (PL) of the Zynq,

along with a DMA controller as shown in Figure 9.3, which is an IP block provided

by the vendor. The DMA controller interfaces between the streaming interface of the

accelerator and the memory mapped CPU. The DMA was configured to read and write

directly from on-chip memory (OCM) via the accelerator coherency port (ACP) of the

processing system, since this gives the lowest latency access to the CPU memory system.

Whilst the development board provides off-chip DDR memory, it was disabled for this
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Figure 9.2: The Zedboard Xilinx Zynq-7000 development board.
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Figure 9.3: Schematic of the Zynq SoC architecture, with only CPU0 used in this
application whilst CPU1 remains in suspend mode.

application since it is typically not available in small embedded systems. Program code

was stored in the flash read-only memory (ROM).

The performance of the implemented accelerator was tested by comparing the compu-

tation time for varying numbers of LLSQ problems as solved by the accelerator versus

a pure software implementation, with results shown in Table 9.2. The reported times
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Table 9.2: Reported speedup as function of number of sequential independent LLSQ
problems.

No. of problems Software Time (ms) Accelerated Time (ms) Speedup

1 0.271 0.044 6.16
5 1.251 0.113 11.1
10 2.478 0.200 12.4
50 12.12 0.893 13.6
100 24.46 1.761 13.9
1000 242.2 17.38 13.9

include the time taken for transfer of data to and from the accelerator over the AXI-

Stream interface, but do not include the time taken to initialise and configure the various

hardware, including the accelerator and the DMA controller. It is clear that even with

just one LLSQ problem, the accelerator outperforms the software implementation, how-

ever it is questionable as to whether the additional cost of the hardware and design time

are worth it for few LLSQ problems. For greater numbers of problems, the speedup

increases. When there are 50 or more problems to be solved, the accelerator reaches its

maximum speedup.

9.5 Application to SCR Controller Implementation

The MPC problem to be applied is that formulated in Section 6.3, where the MPC

problem is to simultaneously control the urea injection and electric catalyst heater. As

such, the model comprises nx = 4 states and nu = 2 inputs. A Radau-IIA IRK method

was chosen, which has s = 3 stages. This gives m = s×nx = 12 in (9.13). With this size

of LLSQ problem, the pipelined accelerator was able to execute at a initiation interval

(II) of 2064 cycles at a clock speed of 117 MHz, meaning new inputs are accepted and

new outputs are generated every 17.6 µs. At this rate, the accelerator is able to solve

around 56, 600 LLSQ problems of size 12× 12 per second.

The real-time iterations algorithm [172] with condensing was implemented to solve the

optimal control problem. The QP which is formed at each time step and whose Hessian

has size Nnu × Nnu was solved with the embedded version of qpOASES [83]. The

OCP was designated a H = 1 second control interval and a Hp = 20 second prediction

horizon, giving N = 20 in (2.73). Due to a highly stiff model, the integration time

step can be no larger than 100 milliseconds for successful convergence of the numerical

integration, giving β = 10. The number of Newton iterations was fixed at L = 20,

since this permitted convergence in the worst-case conditions, such as step changes in

disturbances. This value was fixed rather than using a runtime heuristic in order to

produce an algorithm with a fixed and deterministic execution time.
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Table 9.3: Profiler result of real-time iterations on the Zynq-7000 with and without
hardware acceleration of the least-squares solver.

Function Native Time (ms) Accelerated Time (ms)

solve odes 1365 320
qp condense 174 174
qp solve 131 131
solve sensitivities 88 88
generate matrices 88 -

Total 1950 772

The most time consuming five functions in the real-time iterations algorithm, both with

and without the hardware least-squares accelerator, are shown in Table 9.3. Notice

that without acceleration, the numerical integration of the ODEs (solve odes) takes

around 70% of the time per iteration. However, the accelerated solver carries out the

numerical integration in less than 25% of the time required by the native version. The

time for generation of the matrices for the least-squares problems is not shown since

this generation is part of the accelerator pipeline. The time required for condensing

(qp condense) and solving the QP (qp solve) is unchanged, the speedup comes only

from the acceleration of the numerical integration.

9.6 Concluding Remarks

Real-time solution of optimal control problems remains a barrier to their wider uptake

by industry. Recent work has provided algorithms to calculate the optimal controls (or

an approximation thereof) at each time step, but the numerical integration of the plant

and the associated sensitivity generation can preclude real-time application, particularly

for stiff systems on long horizons. Implicit integrators are known to be efficient for stiff

systems due to their large region of stability. However, the requirement for solution of

nonlinear least-squares problems can lead to excessive computational complexity.

In this chapter, a hardware accelerator was implemented to solve the Newton steps for

calculation of the solution of the nonlinear least squares problem. It was shown that

this accelerator could be pipelined and rearrangement of the multiple shooting algorithm

could exploit the speedup that this provided. The real-time iterations algorithm was im-

plemented on a Zynq SoC with the hardware accelerator attached to the microprocessor

via a low-latency streaming interface. The speedup provided was tabulated versus the

number of least-squares problems to be solved, and linked to the stiffness and horizon

length of the MPC problem. The MPC controllers for SCR designed in Chapter 6 were

implemented using the hardware accelerator and it was demonstrated that this topology

permits real-time execution of the MPC controllers. This is despite a stiff system of
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differential equations arising from the combination of chemical and thermal dynamics,

as well as a long prediction horizon which is required to adequately capture the plant

dynamics.



Chapter 10

Conclusions and Further Research

10.1 Conclusions

Recent research into the effects of NOx on human health have prompted investigation

into areas where these pollutants are highly concentrated. One key area of concern is

urban environments, which has resulted in legislation to drastically reduce the permitted

emissions from road vehicles, since lean-burn internal combustion engines are one of the

principal culprits. The problem is largely still unsolved, and major cities across the world

remain in breach of safe exposure levels. To meet their targets, the automotive industry

has invested heavily in aftertreatment systems, of which SCR is currently favoured across

a broad range of applications, from passenger vehicles to heavy duty. This thesis aims

to find solutions to solve these problems by improving SCR efficiency through advanced

control.

This thesis began by examining the current state of the art in automotive aftertreatment,

concentrating particularly on SCR. Control and estimation strategies were assimilated

to produce a broad overview of the current methods applied in industrial applications

of SCR. The control of the SCR catalyst was shown to be an open problem, with many

previous works in the literature under various control frameworks.

To understand why current applications of SCR were not achieving the design levels of

NOx reduction in practice, urban passenger buses in Southampton were instrumented

with PEMS and telematics equipment. Extensive data was acquired from these exper-

iments which gave significant insight into the operation of SCR catalysts in real world

driving. The results led to the understanding that catalyst temperature is critical to

effective operation, and therefore simultaneous chemical and thermal management of

SCR was required in order to achieve the desired NOx removal in low speed driving

conditions.
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With the aim of model based control and estimation in mind, this thesis then used

the modelling techniques in the literature to construct high fidelity catalyst models

and control oriented models, which are less accurate but permit faster-than-realtime

execution. In order to provide a pathway to application of model based controllers for

SCR in industry, the reference governor framework was explored and proven feasible

for SCR. This proved that this approach allows integration of systematic constraint

handling into existing feedback controllers, as are currently utilised in industry. The

applicability of this approach on automotive hardware was also demonstrated. The

model based control research then expanded to MPC, wherein linear and nonlinear

control approaches were explored. The performance improvement of MPC over industry

standard map-based controllers was thoroughly proven. The nonlinear approach was

proven to be more capable with regards to constraint satisfaction across the operating

temperature range of the catalyst, and the natural extension of MPC to MIMO problems

was demonstrated by the inclusion of a catalyst heater to provide thermal management

of the catalyst alongside chemical control.

Real applications of SCR controllers require state estimation, as was discussed in the

review of the existing literature. The highly nonlinear nature of the models developed

in this thesis led to performance issues with existing estimators. As a result, two novel

estimators were designed based on the UKF and particle filter frameworks. Their per-

formance was shown to be noticeably improved over current strategies, and the UKF was

considered applicable for real-time applications. The computational complexity of the

particle filter was mitigated by leveraging the parallel computing capabilities of modern

GPUs.

Real-time application of model based control is still a barrier to their wider adoption by

industry. This thesis has designed two novel extensions to the literature on fast solution

of optimal control problems. Firstly, the explicit MPC framework was extended into

the nonlinear MPC domain by an approximate grid strategy, which employed parallel

computing for fast generation of the offline data but relied on truncation of the state

space which is not always practical. Secondly, the real-time iterations approach was

investigated, where it was determined that online solution of the stiff model was the

principal barrier to performance. In this vein, a hardware accelerated least squares

solver was designed and implemented on the Xilinx Zynq SoC. This approach permits

real-time solution of stiff systems on long horizons in MPC, which is typically a difficult

combination.

This thesis reconciles the recent academic progress in the design and application of

model-based control and estimation with the tightening emissions legislation for lean-

burn internal combustion engines. It has covered the design and calibration of models,

various model-based control approaches and their pathways to integration with existing

software and hardware, and strategies to manage their inherent computational com-

plexity. All of these steps are required for the successful industrial adoption of model
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based control. The results presented in this thesis indicate that predictive control shows

promise for achieving the stated aims of improving SCR efficiency. It is therefore re-

commended that further research is carried out with the aim of demonstrating that this

technology can be embedded successfully into an automotive electronic control unit and

benchmarked on a testbed to prove that the performance gains can be realised in a

practical setting.

10.2 Further Research

Model predictive control holds numerous advantages over classical control, many of

which have been clearly exhibited in its application to SCR, and similar benefits can be

expected in other areas of the automotive industry. This thesis has shown that MPC

achieves improved performance, decreased calibration effort and constraint certification,

which are all highly desirable in the automotive industry and beyond. Consequently,

the main technical barrier to its uptake is now the computational aspects, which are

eminently surmountable, even on automotive grade embedded hardware. This situation

will improve as microprocessor and embedded computational hardware continues to

increase in capability and fall in cost. The automotive industry is highly conservative,

so the legal and political barriers are also something which must be overcome. This

thesis has presented some technical pathways to enable this adoption. The future for

MPC in the automotive industry is thus hugely promising, and therein lie improvements

in all arenas of automotive control, including but not limited to performance, emissions

and safety.

Research continuing from this thesis could take one of many directions. Some further

directions which are important to address could be listed as follows, which is far from

being exhaustive:

• Examination of the robustness of predictive control in the face of manufacturing

and ageing-related variability. The literature around robust and adaptive MPC

is expansive and many of the techniques and results presented therein could be

applied to the SCR control problem.

• Demonstration of predictive controllers on a testbed SCR. This would require

calibration of an SCR model, such as those in Chapter 4, to match a physical

catalyst. It is not necessary to embed the controller on automotive grade hardware

in order to verify its performance.

• Embedding real-time predictive control on an automotive ECU with the hardware

acceleration components designed as custom application-specific integrated circuits

(ASICs). This research would involve demonstrating that the custom hardware
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designed in Chapter 9 can be ported to custom silicon and linked to an application

processor via a fast interconnect, perhaps Ethernet or CAN.

• Examine further expanding the authority of the predictive controller to include

other system components such as high/low pressure EGR, boost pressure and

injection timing in order to quantify if any or all of these variables permit further

emissions reductions. Whilst this implies modelling of these components, this is

often carried out during control design to permit model-in-the-loop verification.

• Significant effort is being expended to improve the chemical and thermal properties

of the catalysts which are used for SCR. Combining advanced control with these

efforts would be a highly worthwhile direction for future work.
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[74] L. Grüne and M. Stieler. “A Lyapunov function for economic MPC without ter-

minal conditions”. In: 53rd IEEE Conference on Decision and Control. 2014,

pp. 2740–2745.
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