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Abstract

Acoustic black holes (ABHs) are tapered structural features that can achieve high levels of structural damping within
lightweight constraints. It has previously been proposed to integrate feedforward active vibration control into an ABH
to enable control over a broad spectrum, however, the time-advanced information required in this control strategy is
not always available. In addition, it has been shown that controlling the reflection coefficient in a beam-based ABH
leads to an undesirable enhancement of the taper vibration. In this paper, a feedback control strategy is applied to an
ABH terminated beam, with a piezoelectric patch providing the control actuation. The feedback strategy is a remote
vibration control methodology and is used to examine the different compensators that are potentially available to
control simultaneously both the local taper vibration and the reflected wave component. The investigation highlights
that the taper vibration can be minimised without affecting the reflected wave, however, apart from a few isolated
frequencies, it is shown that the reflected wave cannot be minimised without increasing the taper vibration relative
to the passive case. Importantly, since the approach enables the passive ABH performance to be maintained whilst
simultaneously minimising the vibration in the tip, the fatigue life of the structure can potentially be extended with
the addition of the active control loop.
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1. Introduction

An ABH can be realised as a smoothly varying structural feature that tapers from a thicker to a thinner profile [1].
The flexural wave speed in a beam can be related to the thickness of the structure and so as a flexural wave travels down
the taper its speed is reduced, resulting in a low amount of reflected energy from the tip. In practice, a small amount of
damping material is required to achieve good passive performance [2] and it has been shown that this damping material5

can be optimally placed to minimise vibration [3–5] or radiated sound [6]. The properties of the damping material can
also be modified using temperature [7]. In addition to studies into the damping, there have been a variety of studies
that examine different ways to tune the narrow and broadband performance of an ABH by varying the geometric
design parameters, such as taper length, power law and tip height [3, 4, 8–14]. Different ABH constructions have also
been examined such as rolling up a long taper to reduce the size of the ABH whilst maintaining good low frequency10

performance [15]. In addition to the passive tuning methods available, it has been proposed that active components
could be used to enhance the performance of an ABH. The active ABH (AABH) can be realised using a number of
different active control strategies in order to minimise different cost functions and this was demonstrated in the context
of a feedforward wave-based control system in [16]. Although it was shown that the reflection coefficient could be
effectively controlled, this control strategy resulted in a significant enhancement in the taper vibration which may15

accelerate damage due to structural fatigue. Additionally, this feedforward control strategy required time-advanced
knowledge of the disturbance signal, something that is not always available in practical applications. A feedback
approach may, therefore, provide a number of practical benefits. To provide further insight into the effect of wave
control and to demonstrate a different and more compact approach to using an AABH, an investigation into the
implementation of a feedback remote damping vibration controller [17] using a sensor and actuator pair located20
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within the taper is presented in this paper. The approach, which was originally developed in [17], provides an explicit
parameterisation of the design freedom available for any feedback compensator and so enables the tradeoff between
minimising the local taper vibration and minimising the reflected wave component to be examined over a broad
frequency range. The paper is organised as follows. The experimental setup used in this investigation and a brief
overview of the wave decomposition method used to estimate the wave components in the structure are presented in25

Section 2. In addition, a controller is designed using the geometric approach from [17] and four control strategies
are highlighted that can be used to control both the reflected wave component and the local taper vibration. Each
compensator has initially been implemented in the frequency domain and the results are presented in Section 3.
Following this, a recursive least squares tonal controller is presented in Section 4 that can be used to implement each
compensator in the time domain and some examples are given. Finally, the conclusions of this work are presented in30

Section 5.

2. Controller Design

In this section, the controller design is presented for use on an active ABH termination. Initially, the experimental
setup is described in Section 2.1 and the frequency responses of the system are presented. In Section 2.2, a remote
damping controller that, when feasible, can simultaneously control the local taper vibration and the reflected wave35

component has been designed using the geometric approach described in [17].

2.1. Experimental Setup

Table 1 lists the dimensions of the experimental setup and a diagram of the setup is presented in Fig. 2. A photo
of the setup is also shown in Fig. 1. The beam with the ABH has been manufactured out of T6 aluminium and the
piezoelectric patch is a PI-876.A11 [18]. The primary disturbance, d, was used to drive a shaker with broadband white40

noise using a sampling frequency of 22 kHz. Accelerometers 1 and 2 were used to calculate the complex amplitude
of the reflected wave component in the beam, φ−, and accelerometer 3 was used to measure the local vibration in the
taper. The control signal, u, was used to drive the piezoelectric transducer in order to control either the reflected wave
component or the local taper vibration. Low-pass anti-aliasing and reconstruction filters with a cut-off frequency of
10 kHz were also used.

Figure 1: A photo showing the experimental setup.

Table 1: Dimensions of the experimental setup

Parameter Value
Beam length 300 mm
Beam height 10 mm
Beam width 40 mm
ABH length 70 mm

ABH power law 4
ABH tip height 0.5 mm

Piezo length 61 mm
Piezo height 0.4 mm
Piezo width 35 mm
Piezo mass 4 g

45

The frequency responses measured at each of the locations can be written in terms of the contributions from the
primary and secondary sources as [17] {

a3(ω)
φ−(ω)

}
=

[
g11(ω) g12(ω)
g21(ω) g22(ω)

] {
u(ω)
d(ω)

}
, (1)

where g11 is the frequency response between the input voltage used to drive the piezoelectric transducer and the accel-
eration measured using the accelerometer on the taper, g12 is the frequency response between the input voltage used
to drive the primary shaker and the acceleration measured using the accelerometer on the taper, g21 is the frequency50
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Figure 2: A diagram of an active ABH termination on one end of a beam. The primary disturbance is driven using the signal d, the control source
is driven using the control signal u, the local error signal el is measured using accelerometer a3 and the remote error signal eφ− is estimated using
accelerometers a1 and a2.

response between the input voltage used to drive the piezoelectric transducer and the reflected wave component esti-
mated using the accelerometers on the beam and g22 is the frequency response between the voltage used to drive the
primary shaker and the reflected wave component estimated using the accelerometers on the beam. The control signal
at any given frequency, u, can be calculated using the feedback control law,

u(ω) = −κ(ω)a3(ω). (2)

Using a sampling frequency of 22 kHz, the primary responses between the disturbance signal used to drive the55

shaker and the three accelerometers were measured. The measurements were then repeated whilst driving the piezo-
electric transducer to obtain the secondary responses. The primary and secondary frequency responses between the
input voltages and the acceleration measured at each accelerometer were subsequently calculated using the H1-
estimator. The frequency responses related to the accelerometers on the beam section were then used to estimate
the frequency response of the reflected wave component using far-field wave decomposition.60

In the frequency domain, the complex amplitudes of the incident and reflected wave components, φ+(ω) and
φ−(ω), can be written in terms of the signal measured at the two accelerometers, a1 and a2, as{

a1(ω)
a2(ω)

}
= −ω2

[
eik∆/2 e−ik∆/2

e−ik∆/2 eik∆/2

] {
φ+(ω)
φ−(ω)

}
, (3)

where ω is the angular frequency, k is the flexural wavenumber and ∆ is the sensor separation [22, 23]. Eq. 3 can be
rearranged to give {

φ+(ω)
φ−(ω)

}
= −

1
ω2 (

eik∆ − e−ik∆
) [

eik ∆
2 −e−ik ∆

2

−e−ik ∆
2 eik ∆

2

] {
a1(ω)
a2(ω)

}
, (4)

which can be simplified to

φ+(ω) = h−(ω)a2(ω) − h+(ω)a1(ω) (5)
φ−(ω) = h−(ω)a1(ω) − h+(ω)a2(ω), (6)

where

h+(ω) =
eik ∆

2

ω2 (
eik∆ − e−ik∆

) ; h−(ω) =
e−ik ∆

2

ω2 (
eik∆ − e−ik∆

) . (7)

In order to implement Eq. 5 and 6 in the time domain, h−(ω) and h+(ω) can be approximated using discrete-time FIR65

filters [22, 24, 25], which gives the vectors of filter coefficients h− and h+ respectively. To ensure that the filters are
causal, a small delay can be applied to the frequency responses prior to calculating the filters. Although effective,
these wave decomposition filters are subjected to some limitations imposed by the sensor separation and sensor array
location, which results in lower and upper frequency limits. In this investigation, the frequency range of interest
has been limited to 400 Hz – 10 kHz and further information regarding the derivation of these limits can be found70
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Figure 3: (a) The local (local taper vibration) and (b) remote (reflected wave component) frequency responses. The primary responses are shown
by the solid red lines and the secondary responses are shown by the dotted blue lines. Two frequencies have been highlighted by the black dashed
lines and correspond to the examples given in Fig. 6.

in [22, 24, 25]. The resulting frequency responses for the local taper vibration and reflected wave component are
presented over the selected frequency range in Fig. 3. From these frequency responses, it can be seen that for each set
of responses there is a cross-over frequency where the secondary responses become higher than the primary responses,
which is due to the better coupling between the piezoelectric patch and the structure at higher frequencies. For the
local taper vibration this occurs at 1.1 kHz and for the reflected wave component this occurs at 800 Hz. It has been75

previously demonstrated in [16] that an AABH termination has a lower cross-over frequency compared to a constant
thickness termination, which results in a comparatively lower energy input when implementing a control strategy.

2.2. Compensator Selection

A block diagram of the control system, corresponding to Fig. 2, is shown in Fig. 4. By substituting Eq. 2 into
Eq. 1 and re-arranging, the local taper and reflected wave closed loop transfer functions can be written as

el(ω)
d(ω)

=
g12(ω)

1 + g11(ω)κ(ω)
(8)

eφ− (ω)
d(ω)

= g22(ω) −
κ(ω)g12(ω)g21(ω)
(1 + g11(ω)κ(ω))

, (9)

where the error term el(ω) represents the local frequency response measured at accelerometer a3 and the error term
eφ− (ω) represents the reflected wave component frequency response φ−(ω). The frequency dependency is omitted80

from this point forward for clarity, but it should be assumed unless stated otherwise.
Following the approach presented in [17] the conditions required to control either the local taper acceleration or

the reflected wave can be determined by rewriting the closed loop transfer functions as

el

d
= fl(κ)g12 (10)

eφ−
d

= fφ− (κ)g22, (11)

where

fl(κ) =
1

1 + g11κ
(12)

fφ− (κ) = 1 −
κg12g21

g22(1 + g11κ)
. (13)
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Figure 4: A block diagram showing the feedback control system. The local error signal is fed back through a compensator, κ, to obtain the
control signal, u. The control signal is used to drive the piezoelectric transducer and the control of both the taper vibration and the reflected wave
component can be examined.

It can be seen that if κ = 0, fl(κ) and fφ− (κ) become equal to 1 and Eq.s 10 and 11 become the open loop transfer func-
tions for the local taper and reflected wave error respectively. To reduce both error signals relative to the uncontrolled
case requires that the following conditions,

| fl(κ)g12| < | fl(0)g12| (14)∣∣∣ fφ− (κ)g22
∣∣∣ < ∣∣∣ fφ− (0)g22

∣∣∣ , (15)

or equivalently ∣∣∣∣∣ 1
1 + g11κ

∣∣∣∣∣ < 1 (16)∣∣∣∣∣1 − κg12g21

g22(1 + g11κ)

∣∣∣∣∣ < 1, (17)

are simultaneously satisfied. By defining the sensitivity function as α, inequality 16 can be simply stated as

|α| < 1 (18)

and the compensator expressed as

κ =
(1 − α)
αg11

. (19)

As shown in [17], the sensitivity function can also be expressed in terms of a design freedom parameter γ as

α = γ + 1 (20)

so that inequality 16 becomes85

|γ + 1| < 1 (21)

and the compensator can then be expressed as

κ =
−γ

(1 + γ)g11
. (22)
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Inequality 17 can then be expressed in terms of the design parameter γ by substituting Eq 22 into Eq 17. The resulting
inequality is ∣∣∣∣∣1 +

γ

g̃

∣∣∣∣∣ < 1, (23)

where
g̃ =

g11g22

g12g21
. (24)

Condition 21 describes the interior of a circle on the complex γ-plane with unity radius and centre point located at90

(-1,0), whilst condition 23 describes the interior of a circle on the complex γ-plane with |g̃| radius and centre point
located at −g̃. An example of the two circles for a specific frequency is shown in Fig. 5. The design process proceeds
by selecting γ for a given frequency and calculating the respective compensator given by Eq. 22.

❋

❋

ℑ𝔪

ℛ𝔢

𝛾-plane

− '𝑔

−1

Figure 5: Mapping of the limit of inequality 23 onto the complex γ-plane. The black circle corresponds to the local error signal, the dashed red
circle corresponds to the remote error signal and the yellow highlighted area where the circles intersect represents a simultaneous reduction in both
error signals.

Referring to Fig. 5, the centre point of each of these circles corresponds to a point on the γ-plane that can be used
to calculate a compensator that completely cancels, or annihilates the respective error signal. Alternatively, if a point95

on the γ-plane is selected from the edge of one of the circles, then this value can be used to calculate a compensator
that neither attenuates nor enhances the error corresponding to that circle. Both circles will also intersect at the origin
(0,0) of the γ-plane and by referring to Eq. 22 it can be seen that when γ is equal to zero, κ is equal to zero and there is
subsequently no control. If, say, a point is chosen that falls within both circles, then a compensator can be calculated
that reduces both the local and remote error. However, if a point is chosen from outside one of the circles then that100

error signal will be enhanced. It should be noted that due to the formulation of Eq. 22, annihilation of the local error is
impractical because it requires an infinitely large gain. This could be solved by using, for example, an Instantaneous
Harmonic Controller (IHC) architecture [17].

The controller design presented here is tonal, which means that for each frequency γ must be selected from the
γ-plane in order to calculate κ. If this selection process is carried out over a broad range of frequencies, a vector of105

compensator values can be calculated that can be used to design a broadband controller. However, this process is
not straightforward, since both the causality and stability of this broadband controller must be considered. The basic
controller design process for the broadband case is explored in [17] and design procedures for minimum phase and
non-minimum phase control path transfer functions (i.e. g11) are detailed in [20] and [21] respectively.

To avoid predicting unrealistic levels of control, each compensator has been constrained by setting a lower limit
of 0.1 for inequalities 21 and 23, such that

0.1 < |γ + 1| < 1 (25)

0.1 <

∣∣∣∣∣1 +
γ

g̃

∣∣∣∣∣ < 1. (26)
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Figure 6: The thin red circle representing control of the reflected wave component plotted with respect to the thick black unit circle representing
control of the local vibration at (a) 582 Hz and (b) 3384 Hz. The solid lines represent 0 dB of attenuation, the dash-dotted lines represent 6
dB of attenuation, the dashed lines represent 6 dB of enhancement and the asterisk represents minimisation of the respective quantity. The cyan
square represents the best possible control of the local taper vibration without enhancing the reflected wave and the blue diamond represents the
best possible control of the reflected wave without enhancing the local taper vibration. The magenta circle in (a) is the point that gives an equal
reduction in both error signals. The green contours with arrows represent a velocity feedback system with an increasing gain in the direction of the
arrow.

This constraint can be implemented by ensuring that the point on the γ-plane used to calculate a compensator does110

not lie within a factor of 0.1 of each circle’s radius.
To demonstrate how a compensator can be selected from the controller design method presented above, two

examples are given in Fig. 6 at 582 Hz (on resonance) and at 3384 Hz (off resonance). These have been marked on
Figures 3(a) and 3(b) using black dashed lines. The results presented in Fig. 6 show a thick solid-lined black circle
that has been plotted in the γ-plane using Eq. 21 and a thin solid-lined red circle that has been plotted by mapping115

Eq. 23 onto the γ-plane. The asterisks at the centre of each circle represent the minimisation of the respective error
and the small blue diamond and cyan square represent the best control cases possible without enhancing either the
local taper vibration or the reflected wave component. Finally, the dash-dotted lines represent 6 dB of attenuation and
the dashed lines represent 6 dB of enhancement in the respective error signal.

In Fig. 6(a), it can be seen that the (-1,0) point that corresponds to minimisation of the local vibration lies within120

the -6 dB circle of control of the reflected wave. Therefore, at 582 Hz, minimising the local taper vibration will
also attenuate the reflected wave, in this case by approximately 10 dB. Minimising the reflected wave component
will also result in attenuation of the local taper vibration because the red asterisk lies within the -6 dB dash-dotted
black line. At this frequency, either of the two errors can be minimised without enhancing the other and therefore
the cyan square, that represents reducing the local taper vibration without enhancing the reflected wave, and the blue125

diamond, that represents reducing the reflected wave without enhancing the local taper vibration, are both located on
the minimisation asterisks. The final control case highlighted in Fig. 6(a) is marked by a magenta circle. This point
lies midway between the centres of both circles and can be used to calculate a compensator that equally controls the
reflected wave component and the local taper vibration.

The results in Fig. 6(b) show a different set of circles for this control system, at a frequency where minimising130

either quantity will result in enhancement of the other. From these results it can be seen that a compensator that
minimises the local taper vibration (from the (-1,0) point) will enhance the reflected wave component by approxi-
mately 5 dB, whilst a compensator that minimises the reflected wave component (from the -g̃ point) will enhance the
local taper vibration by approximately 3 dB. At this frequency, it can be seen that the largest reduction in the local
taper vibration that can be achieved without enhancing the reflected wave component will occur if a compensator is135

calculated using the point at (-0.5,0.3), which is highlighted by a cyan square. In this case, approximately 4 dB of
attenuation is achieved in the local taper vibration without enhancing the reflected wave component. It can also be
seen that if a compensator is calculated using the point (-0.2,0.5), highlighted by a blue diamond, then approximately
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6 dB of attenuation can be achieved in the reflected wave component without enhancing the local taper vibration.
An advantage of this geometric design procedure is that different control strategies can be mapped onto the γ-plane140

to determine how they will affect each error signal. In this case, a green contour with an arrow has been added to each
example to demonstrate how increasing the gain of a pure velocity feedback controller affects each error signal. At
each frequency this contour has been calculated by expressing the compensator in terms of velocity,

κ =
κv

iω
. (27)

Substituting Eq. 27 into Eq. 22 and rearranging for γ gives

γv =
−g11κv

(iω + κvg11)
, (28)

which can be plotted on the γ-plane for a range of gains. In each case, the contour starts at the origin, when κv =145

0, and converges to the (-1,0) point as κv → ∞. In Fig. 6(a), it can be seen that the pure velocity feedback contour
does not fall between the two circle centre-points for any value of κv and a higher gain is required to achieve any
reduction in the reflected wave component. In Fig. 6(b), the pure velocity feedback contour only falls between the
circle centre-points when the gain is higher, however at this point the reflected wave component is enhanced. These
results have shown that a pure velocity feedback controller is constrained to a particular contour on the γ-plane and,150

in this case, is not a suitable control strategy to achieve a reduction in both error signals.

3. Frequency domain performance

In this section the frequency responses are used to examine the tradeoff between minimising the local taper vibra-
tion and minimising the reflected wave component. Four control case studies are then selected and the corresponding
compensator values are calculated. The compensators are implemented in the frequency domain and the relationship155

between controlling the reflected wave component and controlling the local taper vibration is explored.
Using the four control compensator selection criteria described previously, the compensator responses have been

calculated over frequency and their performance can be seen in Fig. 7 over a bandwidth of 400 Hz to 10 kHz. In
each case, the compensator has been calculated using Eq. 22, taking into account the performance constraints, 25 and
26, which limit the maximum attenuation to approximately 20 dB for clarity and avoid the prediction of unrealistic160

levels of control gain. From the results presented in Fig. 7, it can be seen that when control is set to minimise the
local taper vibration (shown by the solid blue lines), the vibration in the taper is reduced by approximately 20 dB at all
frequencies, which is simply limited by the constraints used in the study. The corresponding reflected wave component
is generally unchanged, varying by approximately ± 1 dB over the bandwidth presented. However, there are specific
frequencies and frequency bands that are attenuated or enhanced slightly more. For instance, at 582 Hz, the resonance165

frequency used as an example in Fig. 6(a), there is approximately 10 dB of attenuation, which is consistent with the
prediction. Additionally, there is also a simultaneous reduction at 4198 Hz, which is very close in frequency to a large
enhancement, as detailed below. The frequency bands 600 Hz – 1 kHz, 1.4 kHz – 1.8 kHz and 2.8 kHz – 4.5 kHz
are enhanced by up to 30 dB. The largest of these enhancements occurs around 4190 Hz and, by referring back to
Fig. 3(b), it can be seen that there is a strong anti-resonance in the primary response of the reflected wave component at170

this frequency. The enhancement in the reflected wave component occurs because, although minimising the vibration
in the taper perfectly dampens the taper, this control strategy introduces a high impedance change at the ABH junction,
which can be considered as a zero velocity boundary condition. This essentially truncates the termination at the ABH
junction, making it equivalent to a flat termination. This study has shown that minimising vibration in the taper is not
a suitable control strategy if the objective is to maintain or improve the damping performance of the ABH.175

When control is set to minimise the reflected wave component (shown by the dash-dotted yellow lines), the results
in Fig. 7 show that the reflected wave component is reduced by approximately 20 dB at all frequencies, which is again
limited by constraints 25 and 26. It can be seen from the response in the taper, that this control strategy leads to a
significant increase in the taper vibration of up to 30 dB. There are, however, three narrow frequency bands where the
local vibration is reduced by up to 10 dB and these are around 582 Hz, 620 Hz and 4198 Hz. This control strategy180

is of particular interest because one of the key performance criteria of an ABH applied as a beam termination is its
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Figure 7: Feedback control implemented for the four cases and presented in terms of the responses (a, c) and attenuation (b, d). The effect that
each compensator has in the local vibration is shown in (a, b) and the effect that each compensator has in the reflected wave is shown in (c, d).
The uncontrolled case is represented by a thick grey line in (a, c) and 0 dB of attenuation in (b, d), the local minimisation case is represented by a
solid blue line, the reflected wave minimisation case is represented by a dash-dotted yellow line, the local reduction without enhancement of the
reflected wave case is represented by a dotted red line and the reflected wave reduction without enhancement of the local vibration is represented
by a dashed purple line.

reflection coefficient. It has been previously shown that the reflection coefficient can be controlled using a feedforward
control architecture in [16] and that this control strategy results in an enhancement in the taper response. This study
demonstrates the same relationship between the reflection coefficient and the taper vibration amplitude.

In order to reduce effects of structural fatigue, the results from the two control strategies that focus on minimising185

the reflected wave without enhancing the level of vibration in the taper or, alternatively, minimising the local vibration
in the taper without enhancing the reflected wave component have been presented. In the former case, the performance
is shown by the dashed purple line in Fig. 7 and it can be seen that there are a number of narrow bandwidths where the
reflected wave can be reduced by up to 20 dB (limited by the performance constraints) without enhancing the taper
vibration. These narrow bandwidths can all be seen to occur below 5 kHz, except one small reduction at approximately190

7.5 kHz. Although this control strategy is not particularly effective at higher frequencies, it should be noted that
the uncontrolled ABH already provides a high level of damping and so high frequency vibrations are unlikely to
cause issues in practice. When the latter control strategy is implemented to reduce the local taper vibration without
enhancing the reflected wave component, it can be seen from the red dotted line in Fig. 7 that a reduction in the local
vibration can be achieved over a number of frequency bands, covering the full bandwidth presented. In application,195

the choice of control strategy will depend on the nature of the problem and a combination of the different control
strategies will likely produce the best solution to a broadband problem.
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4. Time domain performance

In order to perform the time domain analysis, a recursive least squares (RLS) control architecture based on [19] is
used here. FIR filters with 2 coefficients were used to model the frequency responses presented in Section 2.1 at each200

chosen frequency. These FIR filters were estimated using the MATLAB function invfreqz. A block diagram of the
controller is shown in Fig. 8. In the block diagram shown, el(n) is the n-th sample of the error signal, z(n) is the n-th
sample of an artificially generated reference signal and u(n) is the control signal. êl(ω) is an estimate of the gain and
phase of the error signal relative to the reference signal, which can be expressed as

êl(ω) = νeiφ, (29)

where ν is the gain relative to the reference and φ is the phase shift relative to the reference. In order to calculate êl(ω),205

the n-th sample of the error signal can be expressed as a sinusoidal tone relative to the reference,

el(n) = ν sin(ωnT + φ) + ε(n), (30)

where T is the sampling time period, ω is the angular frequency, and ε represents random white measurement noise
with zero mean. Eq. 30 can be expanded as

el(n) = ν sin(ωnT ) cos(φ) + cos(ωnT ) sin(φ) + ε(n), (31)

which is condensed to
el(n) = θ(n)T z(n) + ε(n), (32)

where210

θ(n)T =
[
ν cos(φ) ν sin(φ)

]
(33)

is the vector containing the real and imaginary parts of the error signal with respect to the real and imaginary parts of
the reference signal, which are contained within the vector

z(n) =
[
sin(ω0nT ) cos(ω0nT )

]T
. (34)

θk can be estimated from the exponential forgetting RLS algorithm [26] as

θ(n) = θ(n − 1) + K(n)
(
el(n) − θ(n − 1)T z(n)

)
, (35)

where
K(n) =

(
1 + λ−1z(n)T P(n − 1)z(n)

)−1
λ−1P(n − 1)z(n) (36)

and215

P(n) = λ−1P(n − 1) + λ−1K(n)z(n)T P(n − 1). (37)

×

−𝜅

×

e!"#$

ℑ𝑚{… }
𝑢(𝑛)𝑒%(𝑛)

𝑧(𝑛) RLS Estimator

�̂�%(𝜔) 𝑢(𝜔)

Figure 8: A block diagram showing the RLS based IHC. The inputs are the local error signal (el(n)) and a tonal reference signal (z), which are
used to calculate the gain (ν) and phase (φ) of the tonal component of the error signal relative to the reference signal. The compensator (κ) is then
applied in the frequency domain and the signal is transformed back into the time domain. The imaginary, sinusoidal, part of this signal is taken as
the control signal.
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The λ term in Equations 36 and 37 is a forgetting factor and takes a real value between 0 and 1. Although it is
possible to implement the controller using a gradient descent method as shown in [19], in this study the compensator
has been calculated earlier in this section and is implemented directly. An instantaneous inverse Fourier transform is
then applied to the frequency domain control signal, u(ω), and the sinusoidal imaginary part of the subsequent signal
is taken as the time domain control signal. Taking the feedback control law from Eq. 2 and the estimated error signal
from Eq. 29, the time domain control signal [19] can be expressed as

u(n) = −κν sin(ωnT + φ). (38)

The results presented in this section serve to demonstrate the performance of each of the control strategies in the
time domain via simulation. The results are presented in terms of the AABH as a proof of concept and so no results
for the standard beam are shown. The compensators used to obtain the results in Section 3 have been implemented at
each frequency using the RLS based IHC architecture [19] described above. A pure sinusoidal tone was used as the
disturbance signal. The two frequencies, 582 Hz and 3384 Hz, presented as an example in Figure 6 have been used220

to demonstrate each of the compensators in the time domain. The local taper vibration and reflected wave component
error signals are shown before and after control, which has been turned on at t = 1 s, in Fig. 9 for each of the cases.
The error signal has been normalised so that the pre-control level is ± 1 in each case to improve the clarity of the
results. Each factor of 2 represents an increase or decrease of 6 dB in the error signal. For each case, Table 2 shows
the increase or decrease in the error signal in decibels relative to the respective uncontrolled level.225

Frequency Control Case Error Level Change
3384 Hz Local Minimisation el -20 dB

eφ− +5 dB
3384 Hz Local Reduction Without el -4 dB

Enhancing φ− eφ− ±0 dB
3384 Hz φ− Minimisation el +3 dB

eφ− -20 dB
3384 Hz φ− Reduction Without el ±0 dB

Enhancing Local Vibration eφ− -6 dB
582 Hz Simultaneous Reduction el -15 dB

eφ− -15 dB

Table 2: The change in the local and reflected wave component (φ−) error signals before and after control.

From the results shown in Fig. 9(a) and Table 2, it can be seen that at 3384 Hz the local taper vibration can be
reduced by 20 dB, which causes a 5 dB enhancement of the reflected wave component. These levels are consistent with
the frequency domain results shown in Section 3. The results in Fig. 9(b) and Table 2 show that approximately 4 dB of
attenuation can be achieved in the local taper vibration without enhancing the reflected wave component. These results
are also consistent with the frequency domain simulation results presented in Section 3. If, instead, the reflected wave230

component is minimised then from the results shown in Fig. 9(c) it can be seen that there is an enhancement in the
local taper vibration. Referring to Table 2, it can be seen that this enhancement is 3 dB. If it is ensured that there is no
enhancement in the local taper vibration, the controller can achieve approximately 6 dB of attenuation in the reflected
wave component, which is shown both in Table 2 and in Fig. 9(d). Examining the implementation of control at 582
Hz, it was shown in Sections 2.2 and 3 that simultaneous reduction could be achieved in both the local taper vibration235

and the reflected wave component. To demonstrate this, a compensator has been calculated from the midpoint on
the γ-plane between the two circles, which was highlighted by the magenta circle in Fig. 6(a). Implementing this
compensator in the time domain gives the results presented in Fig. 9(e), which show the simultaneous reduction in
both error signals. Referring to Table 2, it can be seen that each error signal is attenuated by approximately 15 dB.
This specific case was not presented in the frequency domain implementation, however, the results are very similar to240

those obtained by implementing the compensators that minimise each error signal and so are considered consistent.
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Figure 9: The local and remote error signals for each of the time domain cases, normalised with respect to the pre-control level. The frequencies
and cases are (a) 3384 Hz Local Minimisation, (b) 3384 Hz Local Control, (c) 3384 Hz Remote Minimisation, (d) 3384 Hz Remote Control and
(e) 582 Hz Simultaneous Control.
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5. Conclusions

An investigation into the use of feedback control in an AABH has been presented in this paper. A geometric
controller design for remote damping control has been used to examine the tradeoff between controlling the local taper
vibration and controlling the reflected wave component. Four different control cases were chosen at each frequency245

and a compensator was calculated for each. A frequency domain implementation has shown that minimising the local
taper vibration produces a small amount of unwanted enhancement in the reflected wave at frequencies below 5 kHz.
Intuitively, minimising the taper vibration imposes a zero velocity boundary condition at the ABH junction, which can
therefore be approximated as a constant thickness flat termination. Through further investigation, it has been shown
that a control strategy such as pure velocity feedback control does not have any significant performance benefits,250

except perhaps at one or two very specific frequencies, and an alternative controller is required. It has also been
shown that if the reflected wave component is minimised, similarly to the feedforward control strategy presented in
[16], the local vibration in the taper is greatly enhanced. Although this leads to an improvement in ABH performance
in terms of a low reflection coefficient, the subsequent enhancement of vibration in the thin region of the taper may
lead to early failure due to increased structural fatigue. In addition, designing a stable and robust feedback controller255

that greatly enhances the local vibration may be difficult. If a constraint is set so that the reflected wave is controlled
without enhancing the taper vibration, it has been shown that some level of reduction in the reflected wave can be
achieved below 5 kHz, but control above this frequency is very limited. There are only two narrow frequency bands
where a simultaneous reduction of the reflected wave and taper vibration is possible in the considered case. It should
be noted that one of these frequencies is a beam resonance and so this control strategy may be effective for controlling260

structurally radiated sound. If a constraint is set so that the taper vibration is controlled without enhancing the reflected
wave, a reduction in the local taper vibration is achievable across a significant number of frequency bands across the
full 400 Hz – 10 kHz bandwidth presented, including resonances. This control strategy may, therefore, be useful
in applications where the ABH provides enough damping passively but is prone to fatigue due to high amplitude
vibration in the taper. These final two control strategies have shown that a controller can be designed for applications265

where there are constraints on the performance or maximum vibration level. Finally, a time domain study has shown
that an RLS based IHC can be used to implement each of the compensators effectively in the time domain and the
results shown were consistent with the results from the frequency domain implementation.
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