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Abstract: The I-Love-Q relations are approximate equation-of-state independent relations that con-
nect the moment of inertia, the spin-induced quadrupole moment, and the tidal deformability of
neutron stars. In this paper, we study the I-Love-Q relations for superfluid neutron stars for a general
relativistic two-fluid model: one fluid being the neutron superfluid and the other a conglomerate of
all charged components. We study to what extent the two-fluid dynamics might affect the robustness
of the I-Love-Q relations by using a simple two-component polytropic model and a relativistic mean
field model with entrainment for the equation-of-state. Our results depend crucially on the spin
ratio Ωn/Ωp between the angular velocities of the neutron superfluid and the normal component.
We find that the I-Love-Q relations can still be satisfied to high accuracy for superfluid neutron
stars as long as the two fluids are nearly co-rotating Ωn/Ωp ≈ 1. However, the deviations from the
I-Love-Q relations increase as the spin ratio deviates from unity. In particular, the deviation of the
Q-Love relation can be as large as O(10%) if Ωn/Ωp differ from unity by a few tens of percent. As
Ωn/Ωp ≈ 1 is expected for realistic neutron stars, our results suggest that the two-fluid dynamics
should not affect the accuracy of any gravitational waveform models for neutron star binaries that
employ the relation to connect the spin-induced quadrupole moment and the tidal deformability.

Keywords: neutron stars; superfluidity; general relativity; gravitational waves

1. Introduction

The groundbreaking detection of the first gravitational wave signal from a binary
neutron star system GW170817 [1] has opened up a powerful channel to study the internal
structures of neutron stars and the poorly understood supranuclear equation-of-state (EOS).
In particular, the signal from the GW170817 event has been used to constrain the tidal
deformability and the implications for EOS models have also been studied extensively (see,
e.g., [2–10]). Observations of further gravitational wave events involving binary systems,
or even isolated neutron stars, with increasing precision will help us get closer to unlocking
the secrets of high density nuclear matter.

Observations of neutron stars can provide important information about the poorly
understood nuclear matter EOS due to the fact that the properties of neutron stars, in
general, depend sensitively on the matter model. It is thus quite surprising that various
approximately EOS-insensitive relations connecting different neutron star properties have
been discovered in the past decade [11–24]. These relations are “universal” in the sense that
they are insensitive to the EOS models to the O(1%) level (see [25,26] for reviews). These
universal relations can be powerful tools to infer the physical quantities of neutron stars.
For instance, by making use of the universal relation for the f -modes of neutron stars [12],
the mass and radius of an isolated neutron star can be inferred accurately if gravitational
waves emitted from the f -mode oscillations of the star can be detected.

Universal relations can also help reduce the number of parameters in theoretical
gravitational waveform models for binary neutron star inspirals [27–30]. It is noted that
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the I-Love-Q relations discovered by Yagi and Yunes [13,14] connect the moment of inertia
I, the l = 2 tidal deformability, and the spin-induced quadrupole moment Q of slowly
rotating neutron stars. The multipole Love relation discovered by Yagi [15] connects the
l = 2 and l = 3 tidal deformabilities. The f-mode-Love relations found by Chan et al. [16]
relate the f -mode frequency to the tidal deformability. For waveform models that include
the quadrupolar (l = 2) and octopolar (l = 3) adiabatic and dynamical tidal effects [29],
these universal relations [13–16] can be used to reduce the intrinsic matter parameters
from ten to two, namely the l = 2 (scaled) tidal deformabilities of the two stars. The other
eight matter parameters include the spin-induced quadrupole moments, the l = 3 tidal
deformabilities, and the l = 2 and l = 3 f -mode frequencies of the two stars.

In view of their relevance for neutron-star astrophysics and gravitational-wave physics,
it is important to test the robustness of these universal relations. Although they have been
demonstrated to be insensitive to many EOS models to the O(1%) level, it is not yet well
established whether these universal relations are also insensitive to more realistic neutron
star physics aspects, like the state of matter at high densities. Work in this direction includes
the extension of the I-Q relation for rapidly rotating stars. While it was originally found
that the relation becomes more EOS-dependent when considering rapidly rotating stars
with a fixed rotation frequency [31], it was later found that the I-Q relation, in fact, remains
approximately EOS-insensitive if one uses dimensionless parameters to characterize the
rotation [17,18]. The I-Q relation is also found to fail for slowly rotating neutron stars with
very strong magnetic fields so that the stellar deformation is dominated by the magnetic
field instead of rotation [32]. Thermal effects relevant for protoneutron stars have also
been shown to break the I-Love-Q relations [33,34]. It has also been demonstrated that the
I-Love-Q relations are still satisfied to within ∼3% for hybrid star models with a strong
first-order hadron-quark phase transition in the interior [35]. However, the I-Love relation
can be broken if the quark matter core is in a crystalline color-superconducting state [36,37].
In this paper, we add a contribution to this line of research by studying the impact of
nucleon superfluid dynamics on the I-Love-Q relations.

Apart from newly born neutron stars in supernova explosions and possibly also
binary neutron stars during the merger phase, typical neutron stars are very cold on the
nuclear temperature scale (∼1010 K). The internal temperature of a newborn neutron star
is expected to drop quickly below the transition temperatures (∼109 K) for neutrons and
protons to become superfluid and superconducting (see, e.g., [38–40]). It is thus expected
that nucleon superfluidity will exist in mature neutron stars. In fact, the pulsar glitch
phenomenon is generally thought to be a manifestation of the neutron superfluid. While
the exact mechanism is still not well understood, the basic idea involves the transfer of
angular momentum from the neutron superfluid to the normal component, leading to a
sudden spin up. In the standard model for large glitches (see [41] for a review) like those
observed in the Vela pulsar, the neutron superfluid rotates by forming a dense array of
vortices inside the neutron star. As the star spins down due to electromagnetic radiation,
the vortices are pinned to the crust [42] and the neutron superfluid essentially decouples
from the normal fluid and does not spin down. A lag between the superfluid and the
normal component develops, and a Magnus force is induced on the vortices. When the
lag is large enough, the vortices will suddenly unpin and the superfluid will spin down.
The crust then spins up, leading to a glitch, due to the conservation of angular momentum.
Furthermore, the long relaxation time following pulsar glitches is also suggested to be a
signature of the superfluid component [43].

Since there are strong theoretical and observational motivations to suggest its existence
in neutron stars, it is important to understand if and how nucleon superfluidity may leave
a signature on the gravitational waves emitted from a binary neutron star system. After all,
the stars are still expected to be cold when the system sweeps through the sensitivity
bands of ground-based detectors. It has been estimated that the core temperature of
superfluid neutron stars is only heated up to ∼107 K due to tidal heating in inspiralling
binaries [44], significantly below the superfluid transition temperature (∼109 K). However,
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numerical simulations [45–47] suggest that the temperature of a post-merger hypermassive
neutron star can be as high as several tens of 1010 K, at which superfluidity is expected
to be destroyed. As discussed above, the I-Love-Q relations can be used to reduce the
number of matter parameters in theoretical waveform models. More specifically, it is the
Q-Love relation that is used to express the spin-induced quadrupole moment by the tidal
deformability in waveform models. However, this is possible only if the relations are
insensitive to different EOS models and physics input. In this work, we test whether the
I-Love-Q relations remain valid for superfluid neutron stars. If the relations are broken
by the superfluid dynamics, we may then (in principle) be able to probe the existence
and properties of nucleon superfluidity in neutron stars by comparing observational data
against waveform models with and without the assumption of the I-Love-Q relations.

Protons, electrons, and nuclei in neutron stars couple strongly (via the electromagnetic
interaction) on a very short timescale. When neutrons become superfluid, they decouple
from the charged components to a first approximation. The interior of a superfluid neutron
star can thus be approximated by a two-fluid system: the neutron superfluid and the
“proton” fluid containing all charged particles. Besides being coupled via gravity, the two
fluids can also be coupled through the entrainment effect so that the flow of one fluid
induces a momentum in the other (as a result of the strong interaction between neutrons
and protons). The properties and dynamics of superfluid neutron stars have been studied
using this two-fluid model in a general relativistic framework (see [48] for a review). In this
paper, we use the two-fluid model to study the effects of superfluid dynamics on the
I-Love-Q relations. However, we neglect the effects of the solid crust as it is expected to
have only a tiny effect on global stellar quantities like the tidal deformability [49].

The plan of this paper is as follows. In Section 2, we provide an outline of the general
relativistic two-fluid formalism that we employ to calculate the moment of inertia, the
spin-induced quadrupole moment, and the tidal deformability of superfluid neutron stars.
Section 3 describes the EOS models used in this study. Section 4 presents our numerical
results. Finally, we summarize and discuss our results in Section 5. We use units where
G = c = h̄ = 1 unless otherwise noted.

2. General Relativistic Two-Fluid Formalism

Our study is based on the general relativistic two-fluid formalism developed by Carter
and his collaborators (e.g., [50–54]). The formalism is built around the master function
Λ(n2, p2, x2), which is formed by the scalars constructed from the neutron nµ and proton
pµ number density currents: n2 = −nµnµ, p2 = −pµ pµ, and x2 = −nµ pµ. As already
mentioned, the “proton” fluid is used to refer to a conglomerate made of all charged
components. The master function plays the role of the EOS in the two-fluid formulation.
Given a master function Λ, the stress-energy tensor is determined by

Tµ
ν = Ψδ

µ
ν + nµµν + pµχν, (1)

where the generalized pressure Ψ is given by

Ψ = Λ− nαµα − pαχα. (2)

The chemical potential covectors µα and χα (the fluid four-momenta), respectively,
for the neutrons and (conglomerate) protons are

µα = Bnα +Apα, χα = Cpα +Anα, (3)

where
A = − ∂Λ

∂x2 , B = −2
∂Λ
∂n2 , C = −2

∂Λ
∂p2 . (4)
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The coefficient A captures the entrainment effect [48,55] between the two fluids
through which the current of one fluid will induce a momentum in the other fluid. The equa-
tions of motion for the two fluids consist of two conservation equations,

∇µnµ = 0, ∇µ pµ = 0, (5)

and two Euler equations,

nµ∇[µµν] = 0, pµ∇[µχν] = 0. (6)

The I-Love-Q relations connect the moment of inertia I and quadrupole moment Q of
slowly rotating stars to the tidal deformability λtid of nonrotating stars. These quantities
are determined by perturbative calculations starting from a nonrotating equilibrium back-
ground solution. In the following, we shall outline the main steps involved in deriving
these quantities and summarize the relevant equations for our discussion. We refer the
reader to [56–58] for more details.

2.1. Nonrotating Stars

The unperturbed background solution is assumed to be a spherically symmetric and
static spacetime described by the metric

ds2 = −eν(r)dt2 + eλ(r)dr2 + r2(dθ2 + sin2 θdφ2). (7)

The equilibrium structure of a nonrotating superfluid neutron star, assuming that
the neutron and proton fluids coexist throughout the whole star, is studied in [56]. We
also make this assumption in our study. This is obviously a simplified model as a realistic
neutron star is expected to be a multilayer system due to the physics of the superfluid
phase transition [59,60]. For instance, due to the density dependence of the superfluid
gap function, the two-fluid region may be sandwiched by single-fluid layers in a realistic
neutron star (see Figure 2 of [60] for an illustration). However, we expect that the multilayer
aspects will reduce the two-fluid region in the star and make the I-Love-Q relations less
sensitive to the two-fluid dynamics. As we shall see later, the I-Love-Q relations remain
valid to high accuracy for our simplified two-fluid stellar model unless the value of the
spin ratio between the two fluids becomes quite unrealistic. We expect that a more realistic
multilayer model would strengthen this conclusion.

The resulting metric and hydrostatic equilibrium equations are given by Equations (25)–
(27) of [56]:

λ′ =
1− eλ

r
− 8πreλΛ,

ν′ = −1− eλ

r
+ 8πreλΨ,

A0
0 p′ + B0

0n′ +
1
2
(Bn +Ap)ν′ = 0,

C0
0 p′ +A0

0n′ +
1
2
(An + Cp)ν′ = 0, (8)

where primes denote derivatives with respect to r and the coefficients A0
0, B0

0 , and C0
0 are

determined from the master function Λ (see [56] for the explicit expressions). The radius R
of the background star is defined by the condition that the pressure vanishes at the surface
(i.e., Ψ(R) = 0) and the total mass M is obtained by

M = −4π
∫ R

0
r2Λ(r)dr. (9)
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2.2. Slowly Rotating Stars

Rotating superfluid neutron stars have been studied using the general relativistic
two-fluid formalism [57,61,62]. In this work, we determine the moment of inertia and
quadrupole moment of slowly rotating superfluid neutron stars by following the formalism
developed in [57]. The spacetime for a rotating star is given by an axisymmetric and
stationary metric of the form

ds2 = −
[

N2 − sin2 θK(Nφ)2
]
dt2 + Vdr2 − 2 sin2 θKNφdtdφ + K

(
dθ2 + sin2 θdφ2

)
. (10)

The neutron and proton fluids are assumed to be uniformly rotating with angular
velocities Ωn and Ωp, respectively. In the slow rotation approximation, the frequencies(

Ωn, Ωp,
√

ΩnΩp
)

are assumed to be much smaller than the characteristic Kepler frequency,
which is proportional to

√
M/R3 in Newtonian theory, and one can then expand the metric

functions up to second order in the rotation as

N = eν(r)/2(1 + h0(r) + h2(r)P2(cos θ)),
V = eλ(r)(1 + 2v0(r) + 2v2(r)P2(cos θ)),
K = r2(1 + 2k2(r)P2(cos θ)),
Nφ = ω(r), (11)

where P2(cos θ) = (3 cos2 θ − 1)/2 is the second-order Legendre polynomial. The per-
turbed metric functions h0, h2, v0, v2, and k2 are second order in angular velocities.
The frame-dragging term ω(r) is a first-order quantity determined by

1
r4

(
r4e−(λ+ν)/2 L̃′n

)′
− 16πe(λ−ν)/2(Ψ−Λ)L̃n = 16πe(λ−ν)/2χp(Ωn −Ωp), (12)

where L̃n = ω−Ωn and L̃p = ω−Ωp. It should be noted that the equation reduces to the
corresponding frame-dragging equation for a single-fluid model [63] when the two fluids
are co-rotating (i.e., Ωn = Ωp). Equation (12) is solved by choosing a central value L̃n(0) so
that the interior and exterior solutions match at the stellar surface to satisfy the condition

L̃n(R) = −Ωn +
2J
R3 , (13)

where J = Jn + Jp is the total angular momentum of the star. The neutron and proton
angular momenta are given, respectively, by

Jn = −8π

3

∫ R

0
drr4e(λ−ν)/2[µnL̃n +Anp(Ωn −Ωp)

]
,

Jp = −8π

3

∫ R

0
drr4e(λ−ν)/2[χpL̃p +Anp(Ωp −Ωn)

]
. (14)

The moment of inertia of a single-fluid star in general relativity is defined by the
ratio between the angular momentum and angular velocity of the star. We generalize the
definition to a two-fluid star so that the moments of inertia of the neutron and proton fluids
are defined, respectively, by

In =
Jn

Ωn
, Ip =

Jp

Ωp
. (15)

The total moment of inertia is then given by I = In + Ip, which reduces to the definition
for a single-fluid star if the two fluids are co-rotating (see also [62]). This completes the
discussion of a slowly rotating two-fluid star up to first order in the angular velocities.

In order to study the spin-induced quadrupole moment Q of a slowly rotating star,
one needs to consider the metric and fluid perturbations up to second order in the angular
velocities. The second-order metric perturbation functions defined in Equation (11) consist
of the l = 0 (h0, v0) and l = 2 (h2, v2, k2) contributions, where l is the order of the Legendre
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polynomials Pl(cos θ). The equations and numerical schemes for determining the interior
solutions of these quantities can be found in [57]. Outside the star, the problem is identical to
the single-fluid case and the metric functions can be obtained analytically [63]. In particular,
the exterior solution for h2 is given by

h2(r) = −A
[

3
2

( r
M

)2
(

1− 2M
r

)
ln
(

1− 2M
r

)
+

(r−M)(3− 6M/r− 2(M/r)2)

M(1− 2M/r)

]
+

J2

Mr3

(
1 +

M
r

)
, (16)

where the constant A is determined by matching the interior and exterior solutions at
the stellar surface. Far from the star, the function h2(r)P2(cos θ) becomes the perturbed
Newtonian potential and the quadrupole moment can be read off from the coefficient of
the P2(cos θ)/r3 term:

Q = −8
5

AM3 − J2

M
. (17)

The normalized (dimensionless) moment of inertia Ī and quadrupole moment Q̄ that
appear in the I-Love-Q relations are defined by

Ī =
I

M3 , Q̄ = − Q
a2M3 , (18)

where a = J/M2 is the dimensionless spin parameter.

2.3. Tidally Deformed Nonrotating Stars

The tidal deformability λtid measures the deformation of a neutron star due to the
tidal field produced by the companion in a binary system. In the static-tide limit and
when the separation between the two stars is large compared to the radii of the stars,
the computation of λtid for nonrotating single-fluid neutron stars is well established [64,65].
The tidal deformations of slowly rotating single-fluid neutron stars have also been studied
in [66,67]. The formulation has recently been extended to nonrotating superfluid neutron
stars within the general relativistic two-fluid formalism [58,68]. Similar to the study of
slowly rotating stars discussed in Section 2.2, the tidal deformability is determined by
perturbing a nonrotating background solution. We focus on the dominant quadrupolar
(l = 2) static tidal field and consider the even-parity perturbations in the Regge–Wheeler
gauge so that the full metric is given by

ds2 = −eν(r)[1 + H0(r)P2(cos θ)]dt2 + eλ(r)[1 + H2(r)P2(cos θ)]dr2

+r2[1 + K(r)P2(cos θ)](dθ2 + sin2 θdφ2). (19)

The perturbed Einstein equations impose the condition H0 = −H2 ≡ H. The lin-
earized metric and fluid equations inside the star yield the following equation for deter-
mining the tidal deformability [58]

H
′′
+ H

′
{

2
r
+ eλ

[
2m
r2 + 4πr(Ψ + Λ)

]}
+ H

[
−6eλ

r2 + 4πeλ(9Ψ− 5Λ− g)− ν
′2

]
= 0, (20)

where the function m is defined by eλ(r) = (1− 2m(r)/r)−1 and

g =
µ2C0

0 + χ2B0
0 − 2µχA0

0

(A0
0)

2 −B0
0C0

0
. (21)

Noticing that Ψ is the pressure and Λ is the negative energy density of the unperturbed
nonrotating background star, one can compare Equation (20) with the corresponding
equation in a single-fluid situation (see Equation (15) of [64]) for a barotropic EOS P(ρ) and
observe that the term (ρ + P)/(dP/dρ) in the single-fluid equation is now replaced by the



Universe 2021, 7, 111 7 of 19

function −g in the two-fluid equation. It can also be shown that Equation (20) reduces to
Equation (15) of [64] when the master function depends only on one particle density (e.g.,
Λ(p2)) in the single-fluid limit. Once the interior problem (Equation (20)) is solved for the
metric perturbation function H, the remaining step to determine the tidal deformability is
the same as that for the single-fluid counterpart.

The response of a nonrotating star to an external quadrupolar tidal field Eij results in the
following expansion of the metric function gtt in the star’s local asymptotic rest frame [64]:

− 1 + gtt

2
= −M

r
−

3Qij

2r3

(
xixj

r2 −
1
3

δij
)
+

1
2
Eijxixj, (22)

where Qij is the tidally induced traceless quadrupole moment tensor of the star. The tidal
deformability λtid of the star is defined by Qij = −λtidEij. It is also convenient to define the
dimensionless (l = 2) tidal Love number k2 ≡ 3λtid/2R5. Outside the star, the solutions of
Equation (20) are given by the associated Legendre functions Q2

2(x) and P2
2 (x):

H(r) = c1Q2
l (x) + c2P2

l (x), (23)

where x = r/M− 1. Using Equation (22), the coefficients c1 and c2 are related to the tidal
Love number by k2 = 4c1M5/15c2R5. The value of c1/c2 can be obtained by matching the
interior and exterior solutions of Equation (20) at the surface. The tidal Love number can
then be expressed as [64]

k2 =
8
5

C5(1− 2C)2[2 + 2C(y− 1)− y]

{
2C
[
4(1 + y)C4 + (6y− 4)C3 + (26− 22y)C2

+3C(5y− 8)− 3y + 6] + 3(1− 2C)2[2− y + 2C(y− 1)]log(1− 2C)

}−1

, (24)

where C = M/R is the compactness and y = RH
′
(R)/H(R). Finally, the normalized

(dimensionless) tidal deformability λ̄tid that appears in the I-Love-Q relations is defined by

λ̄tid =
λtid

M5 =
2
3

k2C−5. (25)

3. Equations of State
3.1. Two-Fluid Polytropic Model

As discussed in the previous section, the master function Λ(n2, p2, x2) plays the role
of EOS in the two-fluid formulation. We will use two different EOS models in this work.
The master function of the first model is taken to be [56]

Λ = −mnn− σnnβn −mp p− σp pβp , (26)

where the neutron and proton masses are assumed to be equal (mn = mp) for simplicity. We
choose the parameters σn = 0.2mn, σp = 2mn, βn = 2.3, and βp = 1.95 as in [57] to construct
background equilibrium models in this work. As the master function does not depend on
x2, there is no entrainment effect and the fluids behave as independent polytropes and
couple only through gravity. The various coefficients A,B, etc., (see Equation (8)) can be
easily computed for this model [56]. In particular, we have A = A0

0 = 0.

3.2. Relativistic Mean Field Model

The second EOS that we will consider is a more realistic model based on relativistic
mean field (RMF) approximation. RMF based models have been used previously in the
study of general relativistic superfluid neutron stars. Comer and Joynt [69,70] have calcu-
lated the entrainment effect in a relativistic σ−ω model. Kheto and Bandyopadhyay [71]
later extended the study to include the isospin dependence by using a relativistic σ−ω− ρ
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model. More recently, Char and Datta [58,68] used the same RMF model to study the
tidal deformability of superfluid neutron stars. In this work, we also use the relativistic
σ−ω− ρ model to construct a master function. The Lagrangian density for the system is
given by

L = ∑
B=n,p

Ψ̄B
(
iγµ∂µ −mB + gσBσ− gωBγµωµ − gρBγµτB · ρµ

)
ΨB

−1
2

∂µσ∂µσ− 1
2

m2
σσ2 − 1

3
bm(gσσ)3 − 1

4
c(gσσ)4 − 1

4
ωµνωµν

−1
2

m2
ωωµωµ − 1

4
ρµν · ρ

µν − 1
2

m2
ρρµ · ρ

µ, (27)

where ΨB is the Dirac spinor for baryons B with baryon mass mB and γµ denotes the Dirac
matrices. The isospin operator is denoted by τB. In this theory, we have the self-interacting
scalar σ field, the vector omega field ωµ, and the isovector rho field ρµ. The latter two fields
have the corresponding field tensors ωµν and ρµν. The nucleon mass m is taken to be the
average of the bare neutron and proton masses. The resulting equations of motion from the
Lagrangian are solved in the RMF approximation. The entrainment effect is incorporated
by choosing a frame in which the neutrons have zero spatial momentum and the proton
momentum is given by kµ

p = (k0, 0, 0, K) [69]. In the limit K → 0 that is relevant to the slow
rotation approximation considered in this work, the master function for determining the
equilibrium background neutron stars is given explicitly by [58]

Λ = − c2
ω

18π4 (k
3
n + k3

p)
2 −

c2
ρ

72π4 (k
3
p − k3

n)
2 − 1

4π2

(
k3

n

√
k2

n + m2∗|0 + k3
p

√
k2

p + m2∗|0
)

− 1
4c2

σ

{
(2m−m∗|0)(m−m∗|0) + m∗|0

[
bmc2

σ(m−m∗|0)2 + cc2
σ(m−m∗|0)3

]}
−1

3
bm(m−m∗|0)3 − 1

4
c(m−m∗|0)4 − 1

8π2

{
kp(2k2

p + m2
e)
√

k2
p + m2

e

−m4
e ln

 kp +
√

k2
p + m2

e

me

}, (28)

where kn = (3π2n)1/3 and kp = (3π2 p)1/3 are the neutron and proton Fermi momenta,
respectively. We have also added the contributions due to the electrons in the master
function (the last term containing the electron mass me). The background value for the
Dirac effective mass m∗|0 is determined by the following transcendental equation

m∗|0 = m−m∗|0
c2

σ

2π2

{
kn

√
k2

n + m2∗|0 + kp

√
k2

p + m2∗|0

+
1
2

m2
∗|0 ln

[
−kn +

√
k2

n + m2∗|0
kn +

√
k2

n + m2∗|0

]
+

1
2

m2
∗|0 ln

−kp +
√

k2
p + m2∗|0

kp +
√

k2
p + m2∗|0

}
+bmc2

σ(m−m∗|0)2 + cc2
σ(m−m∗|0)3. (29)

We refer the reader to [58] for the expressions of the various coefficients A, B, etc. (see
Equation (8)). In contrast to the two-fluid polytropic model, it should be noted that the
coefficient A, which is responsible for the entrainment effect, is nonzero in this RMF model.
The coupling constants c2

σ ≡ (gσ/mσ)2, c2
ω ≡ (gω/mω)2, c2

ρ ≡ (gρ/mρ)2, b, and c in the
master function are determined by the nuclear matter saturation properties [71]. In the
following, we shall use the same NL3 [72] and GM1 [73] parameter sets (see Table 1) as
employed in [58].
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Table 1. Parameter sets for the NL3 and GM1 models. The nucleon-meson coupling constants c2
σ, c2

ω ,
and c2

ρ are expressed in fm2, while b and c are dimensionless [58].

Model c2
σ c2

ω c2
ρ b c

NL3 15.739 10.530 5.324 0.002055 −0.002650
GM1 11.785 7.148 4.410 0.002948 −0.001071

Before studying the I-Love-Q relations, it is worth pointing out that our two-fluid
stellar models are dominated by the neutron superfluid as the typical central value of
the proton fraction in our models is about 10%, which is comparable to that of a realistic
neutron star. For example, Figure 1 shows the profiles of the proton fraction p/(n + p) for
1.4M� neutron stars constructed from our EOS models.

Figure 1. Profiles of the proton fraction p/(n + p) for 1.4M� neutron stars constructed from the
polytropic (Poly), GM1, and NL3 EOS models.

4. Numerical Results

The I-Love-Q universal relations [13,14] originally found for single-fluid neutron stars
connect the three dimensionless quantities Ī, Q̄, and λ̄tid. While one might naively expect
that Ī and Q̄ are somehow related to each other as they both characterize the effects of
rotation, the fact that these quantities together with λ̄tid are connected by the following
approximately EOS-independent relations are quite surprising [14]:

ln yi = ai + bi ln xi + ci(ln xi)
2 + di(ln xi)

3 + ei(ln xi)
4, (30)

where (xi, yi) are any two of Ī, Q̄, and λ̄tid. The set of fitting coefficients (ai, bi, ci, di, ei) are
different for different pairs of xi and yi (see Table I in [14]).

Our aim in this work is to study whether the I-Love-Q relations remain valid for
superfluid neutron stars. We have generalized the definitions of Ī, Q̄, and λ̄tid to two-
fluid stars in Section 2. For a given master function (i.e., a EOS model) in the two-fluid
formulation, the procedure in our calculation is to first build a nonrotating background
star for given central number densities n(0) and p(0). Note that the two densities are not
independent as the background star is assumed to be in chemical equilibrium [56]. A slowly
rotating model is then built by solving the perturbative equations with the nonrotating
background model as input. The neutron and proton fluids are assumed to be rigidly
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rotating with angular velocities Ωn and Ωp. However, instead of providing Ωn and Ωp as
input parameters, the system of equations can be scaled in such a way that it is sufficient to
specify the spin ratio Ωn/Ωp in the calculation [57]. We will thus present our results for
stellar sequences specified by Ωn/Ωp. The spin ratio is expected to be very close to unity
as suggested by the pulsar glitch phenomenon (see Section 5 for discussion). However, we
will explore a much wider parameter range to study the validity of the I-Love-Q relations.
The dimensionless moment of inertia Ī and quadrupole moment Q̄ can be determined for
the slowly rotating star as outlined in Section 2.2. The computation of the dimensionless
tidal deformability λ̄tid for the nonrotating star was also discussed in Section 2.3.

We first consider the results for the two-fluid polytropic EOS model. In Figure 2a,
we plot in the upper panel ln Ī against ln λ̄tid (i.e., the I-Love relation) for sequences of
stars with spin ratios Ωn/Ωp = 0.4, 0.7, 1, 1.3, and 1.6. The solid line is the fitting curve
(Equation (30)) for the I-Love relation for single-fluid ordinary neutron stars [14]. The lower
panel shows the relative error, E = (ŷ− y)/y, between the numerical data, ŷ, and the fitting
curve, y. We see from the upper panel that the numerical data can still match the fitting
curve for single-fluid stars very well. However, the effects of two-fluid dynamics become
more apparent in the lower panel. The co-rotating case Ωn/Ωp = 1 corresponds effectively
to a single-fluid system and has the smallest |E| among the different sequences, as expected.
It can also be seen that |E| becomes larger as the spin ratio deviates more away from unity.
For the cases where the neutron fluid rotates faster than the proton fluid (i.e., Ωn/Ωp > 1),
the error |E| increases with Ωn/Ωp. On the other hand, |E| increases as Ωn/Ωp decreases
from 0.7 to 0.4 for the opposite situation where the proton fluid rotates faster. Since λ̄tid
decreases with increasing compactness, the numerical results thus illustrate that the error
|E| increases with the compactness for a given sequence.

In Figure 2b,c, we plot ln Q̄ against ln λ̄tid and ln Ī against ln Q̄, respectively. Similar to
Figure 2a, the solid lines in these figures are the corresponding fitting curves for the Q-Love
and I-Q relations for single-fluid stars [14]. The relative errors between the numerical
data and the fitting curves are also plotted in the lower panel of the figures. Similar to
the I-Love relation in Figure 2a, the errors |E| for these two relations also increase as the
spin ratio deviates from unity. It should be pointed out that the I-Love-Q relations (i.e.,
the solid lines) for single-fluid stars are approximately EOS independent to within about
the 1% level. This means that the I-Love-Q relations may be considered to be broken by
the effects of two-fluid dynamics only for cases where |E| > 0.01. For our chosen values
of Ωn/Ωp, we see that the I-Love-Q relations are broken only for the case Ωn/Ωp = 0.4.
Taking our finding at face value, it implies that accurate independent measurements of any
pair of quantities in the I-Love-Q relations can in principle be used to test the existence of
two-fluid dynamics in superfluid neutron stars, though quite extreme values of Ωn/Ωp
are needed. The Q-Love relation plotted in Figure 2b is the most promising in this aspect
as the deviations between the two-fluid data and the fitting curve are more significant than
the other two relations. It should be noted that the error for the Q-Love relation can reach
up to |E| ∼ 0.1 level for the case Ωn/Ωp = 0.4.
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(a) (b)

(c)

Figure 2. The accuracy of the I-Love (a), Q-Love (b), and I-Q (c) relations for our chosen two-fluid polytropic EOS using
different spin ratios Ωn/Ωp. The solid line in the upper panel of each figure represents the corresponding fitting curve
for ordinary single-fluid neutron stars [14]. The lower panel of each figure shows the relative error between the two-fluid
results and the corresponding fitting curve.

As discussed in Section 1, we can make use of various universal relations to reduce the
matter parameters in theoretical waveform models. In particular, the Q-Love relation can be
used to get rid of Q̄ by expressing it in terms of λ̄tid, assuming that the relation is robust and
insensitive to EOS and various physics inputs to high accuracy. If the effects of two-fluid
dynamics can lead to O(10%) deviation of the Q-Love relation as illustrated in our results,
then this relation should be used with care in waveform modeling. This also suggests that
not imposing the Q-Love relation in waveform modeling can, in principle, allow the tests
of superfluid dynamics using gravitational wave observations. These implications depend
clearly on whether the spin ratio Ωn/Ωp can deviate significantly from unity, as considered
by us in Figure 2a–c. We will return to this issue and assess the astrophysical relevance of
our results in Section 5.
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While we have only presented the results of one particular set of parameters for the
two-fluid polytropic EOS model in Figure 2a–c, we have checked that the results obtained
from different sets of EOS parameters are qualitatively the same. In particular, the I-Love-
Q relations remain valid to good accuracy unless the spin ratio between the two fluids
deviates significantly from unity. However, the two-fluid polytropic model can at best
only provide a crude approximation to the properties of superfluid neutron stars since
the two fluids can couple only through gravity in this model. It is not obvious that the
conclusions derived from this simple model can be generalized directly to more realistic
EOS models. We fill this gap by considering the RMF model. This model is more realistic in
the sense that nucleon–nucleon interactions are taken into account through the exchange of
effective mesons and the coupling parameters are determined by fitting to known nuclear
matter properties. The RMF model also has the advantage that the corresponding master
function is simple enough that the various thermodynamics coefficients that we need
in the two-fluid calculations can be obtained analytically. Most importantly, in contrast
to the polytropic EOS, the RMF model contains the entrainment effect characterized by
A 6= 0, which is a unique property of superfluid dynamics. In Figure 3a–c, we present the
numerical results for the NL3 and GM1 parametrizations of the RMF model (see Table 1).
In each figure, we consider three sequences of Ωn/Ωp = 0.4, 1, and 1.6 for each EOS. We
see that the results of NL3 and GM1 EOSs match the I-Love-Q relations to high accuracy
for the co-rotating case Ωn/Ωp = 1 as expected. The data trends are qualitatively the same
as those of the polytropic EOS. We note that the relative errors |E| for all three relations
increase as the spin ratio deviates away from unity. For a given sequence of fixed EOS and
spin ratio, the errors also generally increase with the compactness. It can also be seen from
Figure 3b that the error for the Q-Love relation is the largest among the three relations and
can reach up to the |E| ∼ 0.1 level.

Let us now consider more extreme situations to explore the breaking of the Q-Love
relation when Ωn/Ωp deviates significantly from unity. We have studied the trend of
the numerical results in the ln Q̄− ln λ̄tid plane. In Figure 4, we plot the results for a few
representative spin ratios as an illustration. The solid line in the figure represents the
original Q-Love relation for single-fluid stars. We now consider how the data behave as
the spin ratio deviates from unity along the two opposite directions Ωn/Ωp > 1 and < 1.
In the former case, we find that the results converge to a large spin-ratio limit, which can
be approximated well by the case Ωn/Ωp = 10 (red data points). Increasing the spin ratio
further (e.g., Ωn/Ωp = 100) has little effect on the results. In this limit, the fluid motion
is dominated by the neutron superfluid as the proton fraction is small (see Figure 1). The
possible range of deviation from the Q-Love relation for Ωn/Ωp > 1 is thus approximately
bounded by the solid line and the red data points. Note, however, that the results for a
given spin ratio are still EOS-insensitive in this range.
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(a) (b)

(c)

Figure 3. Similar to Figure 2, but for the GM1 and NL3 EOS models.

We now turn to the situation for Ωn/Ωp < 1, which turns out to be more interesting.
As we decrease the spin ratio from unity, the results initially deviate from the solid line
gradually. As we have seen in Figure 3b, the results for Ωn/Ωp = 0.4 are still quite close
to the solid line. However, as the spin ratio is decreased further, the results deviate from
the solid line more significantly. We also see that the results become more sensitive to
the EOS models as the data shift further away from the solid line. Consider for example
the results for Ωn/Ωp = 0.1 (black data points) in the figure. If we keep decreasing the
spin ratio toward zero, the data move further upward in the figure and depend more on
the EOS models. However, if the spin ratio is further decreased to become negative so
that the two fluids are counter-rotating, the data would then shift downward in the figure.
The results for Ωn/Ωp = −0.4 and −1 in the figure show that the results move closer
to the solid line and become less sensitive to the EOS models as the spin ratio becomes
more negative. However, the results would not converge to the solid line as the spin
ratio is decreased further. Instead, the data converge to the large spin-ratio limit that we
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discussed above for Ωn/Ωp > 0. It can be seen from the results of Ωn/Ωp = −10 (green
data points) that the data are insensitive to the EOS models and agree quite well with the
results of Ωn/Ωp = 10. In fact, this should be expected as the system is dominated by the
neutron superfluid if |Ωn/Ωp| � 1 and the spin-induced quadrupole moment Q should
be independent of the sense of rotation of the neutron superfluid. There should thus be a
single large spin-ratio limit.

Figure 4. The breaking of the Q-Love relation for extreme spin ratios as illustrated by the polytropic
(Poly), GM1, and NL3 EOS models. The numerical values inside the parentheses in the legend box
denote the values of Ωn/Ωp. The solid line is the universal Q-Love relation for ordinary single-fluid
neutron stars [14].

Figure 4 shows that the results become more sensitive to the EOS models as the
data are far away from the single-fluid universal relation. While it is beyond the scope
of this work to study the EOS dependence for these extreme cases in general, we have
used different parameters for the two-fluid polytropic model to gain some understanding
of the general trend. In Table 2, we compare the values of ln Q̄ at ln λ̄tid = 5 for three
different polytropic EOS models. The EOS parameters are chosen in such a way that the
central proton fractions for 1.4M� neutron stars are 0.02 (Poly_2), 0.04 (Poly_4), and 0.08
(Poly_8). For comparison, our default polytropic model used in Figure 4 has a central
proton fraction about 0.09 for a 1.4M� star (see Figure 1). In the table, the numerical values
inside the parentheses are the percentage differences between the data and the value of
ln Q̄ predicted by the single-fluid Q-Love relation. For a given EOS model, we see that the
percentage differences increase significantly as the spin ratio decreases from 0.2 to 0.1. This
is consistent with the above observation that the deviations of the superfluid data from the
I-Love-Q relations increase as the spin ratio deviates further away from unity. On the other
hand, the deviations decrease with the proton fraction inside the stars for a fixed spin ratio.
This agrees with the expectation that the effects of two-fluid dynamics should become less
important if the system is dominated by one of the fluids.
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Table 2. Values of ln Q̄ at ln λ̄tid = 5 for three different polytropic EOS models with spin ratios 0.1
and 0.2. The EOS parameters are chosen in such a way that the central proton fractions for 1.4M�
stellar models are 0.02 (Poly_2), 0.04 (Poly_4), and 0.08 (Poly_8). The numerical values inside the
parentheses are the percentage differences between the data and the predictions of the single-fluid
Q-Love relation.

Ωn/Ωp Poly_2 Poly_4 Poly_8

0.1 2.22 (59%) 2.46 (76%) 2.66 (91%)
0.2 1.66 (18%) 1.79 (28%) 1.96 (40%)

The results presented in Figure 4 may have little astrophysical relevance as |Ωn/Ωp|
is not expected to deviate from unity significantly. It is also uncertain how the two fluids
can sustain counter-rotation globally so that the condition Ωn/Ωp < 0 can be achieved in
neutron stars. Nevertheless, the breaking of the Q-Love relation in these extreme situations is
interesting theoretically as it is still not properly understood why various universal relations
can exist at all, though some suggestions have been proposed [74,75]. Any examples of the
breaking of universal relations might provide hints on the origin of the universality. It has
been found that the I-Love-Q relations become less accurate if the ellipticity of isodensity
surfaces of a neutron star displays a large variation inside the star [74], such as the case for a
hot protoneutron star [33]. In Figure 5, we show the profiles of ellipticity e [76], normalized
by the dimensionless spin parameter a, of constant energy-density surfaces for four stellar
models constructed from the NL3 EOS with ln λ̄tid = 5 and different values of Ωn/Ωp.
It is seen that, similar to the case of Ωn/Ωp = 1, the profiles for Ωn/Ωp = −1 and 10
are nearly constant over a large part of the star. As we have seen in Figure 4, the Q-Love
data for these cases are still relatively insensitive to the EOS models, though the data for
Ωn/Ωp = −1 deviate largely from the single-fluid Q-Love relation. On the other hand,
the case of Ωn/Ωp = 0.1 has a more significant variation in the ellipticity profile, which
correlates to the observation that the Q-Love data in this case are more sensitive to the EOS
models as shown in Figure 4. Our results are thus consistent with the suggestion that the
breaking of the I-Love-Q relations is correlated with a large variation of the ellipticity [74].

Figure 5. Profiles of the ellipticity e (normalized by the spin parameter a) of constant energy-density
surfaces for stellar models constructed from the NL3 EOS with ln λ̄tid = 5 and different values of
Ωn/Ωp.
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5. Discussion

In summary, we have studied the I-Love-Q relations for superfluid neutron stars based
on a general relativistic two-fluid formulation. When neutrons become superfluid, they
decouple from the charged components to a first approximation. We model the interior
of a superfluid neutron star by a two-fluid system containing a neutron superfluid and
a ”proton” fluid containing all charged particles. The neutron and proton fluids are also
assumed to be uniformly rotating with angular velocities Ωn and Ωp, respectively. The
spin ratio Ωn/Ωp is the most important parameter in this work. We see from the results of
our chosen EOS models that the I-Love-Q relations originally discovered for single-fluid
ordinary neutron stars [13,14] are still satisfied to high accuracy for superfluid neutron
stars when the two fluids are nearly co-rotating so that Ωn/Ωp ≈ 1. However, it is also
seen that the errors between our superfluid data and the universal relations increase as the
spin ratio deviates from unity in both directions (i.e., Ωn/Ωp > 1 or < 1). If Ωn/Ωp could
be different from unity by a few tens of percent, the deviation of the Q-Love relation can be
as large as O(10%) and this may have implications for gravitational waveform models that
make use of this relation (as discussed in Section 1).

How much can the spin ratio Ωn/Ωp actually deviate from unity? We can try to
address this question by making a connection to the pulsar glitch phenomenon. The
neutron superfluid inside a spinning isolated neutron star is nearly decoupled from the
proton fluid, which spins down continuously due to electromagnetic radiation. The neutron
superfluid is thus expected to spin faster (i.e., Ωn/Ωp > 1). When the lag δΩ = Ωn −Ωp
increases to some critical value, the Magnus force induced on the superfluid vortices
becomes strong enough to lead to an unpinning of the vortices. The neutron superfluid
will then spin down and the proton fluid will spin up as a result of conservation of
angular momentum, leading to the glitch phenomenon. As a first approximation, it seems
reasonable to expect that the lag δΩ is comparable to the change in the spin frequency
during a glitch. The fractional change of spin frequency ∆ν/ν observed in pulsar glitches
ranges from 10−11 to 10−5 [41]. This would imply that Ωn/Ωp = 1 is satisfied to high
accuracy for isolated pulsars and the deviations of the universal relations due to the
two-fluid dynamics will not be observed astrophysically.

However, as one of our goals is to study whether the Q-Love relation remain robust
enough to be used in waveform modeling for binary neutron star systems, it is instructive
to also discuss the situation in binary systems. A new physical process that may come
into play in binary systems comparing to isolated stars is the possibility of mass transfer
between the two stars. While it is not expected that mass transfer can occur when a binary
neutron star system enters the LIGO sensitivity band during the early inspiral phase, it is
possible that the first-born neutron star of the system might have spun up due to accretion
of matter by Roche-lobe overflow when its companion (i.e., the second-born neutron star)
entered the post main-sequence evolution phase. In this case, the proton fluid can spin up
and rotate faster than the internal neutron superfluid, leading to the situation Ωn/Ωp < 1.
It is unclear whether this reverse condition, comparing to Ωn/Ωp > 1, could potentially
increase the deviation of the spin ratio away from unity. However, there may already be
some hints from observations.

Recently, three anti-glitches (i.e., ∆ν < 0) in the accreting pulsar NGC 300 ULX-1
have been observed by NICER [77] and their magnitudes |∆ν/ν| ∼ 10−4 are significantly
larger than typical glitches in isolated radio pulsars. Similarly, a glitch of magnitude
|∆ν/ν| ∼ 10−3 has also been seen in the accreting pulsar SXP 1062 [78]. The normal
component is expected to spin faster than the neutron superfluid due to accretion in these
systems and hence Ωn/Ωp < 1. If the glitches in these accreting pulsars are caused by the
transfer of angular momentum between the superfluid and normal components of the star,
with the assumption that the lag δΩ between the two fluids is also characterized by the
glitch magnitude, then these recent observations would suggest that the lag magnitude
|δΩ| that can be sustained between the two fluids could be much larger than that suggested
by the glitches in isolated pulsars.
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While it may be too optimistic (if not unrealistic) to expect that the spin ratio Ωn/Ωp
for neutron stars in binary systems could differ greatly from unity, to the level that the devi-
ation of the Q-Love relation can be as large as O(10%), a more detailed analysis of this issue
would require one to study not only the coupling between the normal and superfluid com-
ponents at the mesoscopic level inside a neutron star, but also the formation and evolution
of binary neutron star systems—issues that are currently far from completely understood.
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