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Abstract: We provide a bird’s-eye view of neutron-star seismology, which aims to probe the extreme
physics associated with these objects, in the context of gravitational-wave astronomy. Focussing on
the fundamental mode of oscillation, which is an efficient gravitational-wave emitter, we consider the
seismology aspects of a number of astrophysically relevant scenarios, ranging from transients (like
pulsar glitches and magnetar flares), to the dynamics of tides in inspiralling compact binaries and the
eventual merged object and instabilities acting in isolated, rapidly rotating, neutron stars. The aim is
not to provide a thorough review, but rather to introduce (some of) the key ideas and highlight issues
that need further attention.
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1. Motivation

Neutron stars represent many extremes of physics; in density, pressure, temperature
(through the early formation stages and during binary mergers), models for which require
aspects that may not yet be fully (or perhaps even partially) understood. The composition
and state of matter introduce concepts from across modern physics—fluid dynamics and
elasticity, thermodynamics, superfluidity and superconductivity, electromagnetism, nuclear
physics—while the models have to be developed in the curved spacetime framework of
general relativity. To suggest that this is a challenge is not an understatement. In fact,
from the theory point of view we may have to accept that we cannot—at least not at this
point—account for all aspects we know we ought to consider. Then there are (in the words
of a wise philosopher) the “unknown unknows”... Yet, we want to make progress.

The obvious question to ask is if we can use observations to make sense of the theory
mess. This may seem far fetched, given that neutron stars are small and (obviously) distant.
They are certainly not hands-on laboratories! Nevertheless, there has been clear progress.
Notably, we have precise mass estimates for many systems from radio pulsar timing
(telling us, in particular, that the matter equation of state must allow stars with a mass
above 2M� [1]) and the recent results from NICER constrain the neutron star radius (very
roughly to the range 11–14 km), as well [2,3]. The constraints on bulk properties—mass
and radius—should become increasingly precise as more data become available. Future
instruments, like the SKA in the radio and the planned eXTP mission for x-ray timing [4],
will ensure that this remains a healthy area of exploration. What is less clear is to what
extent this progress will allow us to probe aspects associated with the neutron star interior,
e.g., the state and composition of matter.

If we want to explore aspects associated with the dense neutron star interior, it is
natural to (try to) formulate a seismology strategy. It is well-known that the complex
interior physics is reflected in a rich spectrum of oscillation modes [5] and one may hope
to be able to use observations of related features to gain insight. Similar observation
programmes have been carried out—with enormous success—for both the Sun and distant
main-sequence stars. In the case of the Sun, much of the progress was driven by the
ESA/NASA SOHO (SOlar and Heliospheric Observatory) space mission. Studies of gravity
g-modes and low-multipole pressure p-modes have led to measures of the sound speed
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at different depths and the differential rotation throughout much of the Sun’s interior.
For other stars, NASA’s Kepler mission has provided key information about the structure
and internal dynamics, focussing on oscillations that are stochastically excited by surface
convection. This has led to a revolution is the field of asteroseismology [6]. Interestingly,
the same technology allows us to characterise the host stars of exoplanets, as the inference
of a precise stellar radius constrains the companion planetary radius, as well.

When it comes to neutron stars, we are not likely to be able to “resolve” surface features.
Instead, it is natural to consider the gravitational-wave aspects of the problem. In essence,
any non-axisymmetric deformation/acceleration of the matter in the star will generate
gravitational waves and one would expect to be able to express these waves in terms of the
star’s oscillation modes 1. The promise of such gravitational-wave asteroseismology [7–10]
relies on the answer to two questions. First, are the mode features robust enough that we
can use observations to constrain the physics? Second, are there realistic scenarios where
specific oscillation modes are excited to a level that the gravitational-wave signal can be
detected by current (or, indeed, future) instruments? Our aim here is to argue in favour of
affirmative answers to both of these questions. This is not to say that this venture will be in
any way straightforward, but the effort may pay off handsomely in the end.

2. The First Couple of Steps: The f-Mode

As a first illustration of the key aspects, let us consider the simplest setting; a non-
rotating uniform density star. This problem was considered by Lord Kelvin back in the
late 1800s, although the analysis was carried out in a fashion that would seem arcane to a
modern student (as it did not involve spherical harmonics).

In Newtonian gravity, the dynamics of a non-rotating star is governed by the Euler
equations (momentum conservation), together with the continuity equation (mass conser-
vation) and the Poisson equation for the gravitational potential. As we are (for now) taking
the density, ρ, to be constant, the continuity equation simplifies and we have (working
in a coordinate basis so that ∇i represents the covariant derivative associated with the
chosen coordinates)

∂tρ +∇i(ρvi) = 0 =⇒ ∇ivi = 0 . (1)

That is, the fluid flow—represented by the velocity vi—is incompressible. Analysing
the problem, we need to distinguish two kinds of perturbations. Eulerian perturbations
relate to changes in the various quantities at a fixed point in space; e.g., δp for the pressure
(where we obviously have δρ = 0 in this first example). This is in contrast to co-moving
Lagrangian perturbations, which relate to measurements carried out by an observer moving
along with the fluid. This leads to a pressure perturbation ∆p and if we introduce a
displacement vector ξ i to connect the perturbed fluid elements with the corresponding
ones in the unperturbed configuration, we have [11]

∆p = δp + ξ i∇i p . (2)

For non-rotating stars, which we focus on for the moment, the displacement vector is
simply related to the perturbed velocity through

∂tξ
i = ∆vi = δvi . (3)

In terms of Eulerian pertubations, the momentum equation takes the form

∂tδvi +
1
ρ
∇iδp +∇iδΦ = 0 , (4)

1 For a Newtonian stellar model, the oscillation modes form a complete set which can be used as a basis to express a general fluid motion. The
relativistic problem is more complicated in this respect, but one would nevertheless expect the modes to dominate the star’s response to a
perturbing agent.
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where δΦ is the variation in the gravitational potential, which is governed by

∇2δΦ = 4πδρ , (5)

such that the right-hand side vanishes for the interior of a constant density model. It
follows immediately from these equations that the perturbed velocity must be irrotational
and hence it makes sense to introduce a velocity potential such that

δvi = ∇iχ . (6)

The perturbed Euler equations then lead to

∂tχ +
1
ρ

δp + δΦ = constant . (7)

It follows that χ, δp and δΦ must all solve the homogeneous version of Laplace’s
equation. This, in turn, tells us that the quantities are naturally expanded in spherical
harmonics, Ym

l , and it is easy to show that, in order for the behaviour to be regular at the
centre, each quantity must be proportional to rlYm

l for a given (l, m) multipole. Finally, at
the surface of the star, a given oscillation mode must satisfy

∆p = δp + ξr∂r p = 0 at r = R , (8)

while the matching to the external gravitational potential requires 2

∂rδΦ +
l + 1

R
δΦ = −4πGρξr , at r = R , (9)

(noting that the right-hand side does not vanish for a constant density model or, indeed,
whenever the star’s surface is associated with a finite density, as it might be for a quark
star). Working out the algebra (in the Fourier-domain, with a harmonic time dependence
eiωt for all quantities), we find that we must have

ω2 =
8πGρ

3
l(l − 1)
2l + 1

. (10)

For each value of l we have two modes (associated with the two signs of the square
root), known as the fundamental f-modes. The mode frequency scales with the (square root
of the) average density of the star and increases with the multipole l (the mode frequencies
are the same for all values of m in a non-rotating star). The first scaling suggests that it
ought to be possible to use observations to constrain the physics of the star. Of course,
we also see that the observation of a single mode-frequency would not be enough, as it
would only constrain the average density. We need more information to untangle mass
and radius.

Next, in order to estimate the rate at which gravitational-wave emission damps the
f-mode we can use the standard post-Newtonian multipole formulas [5]. Focussing on a
single mode and the contribution from the mass multipole (noting that, in the case of the
uniform density model, the contribution comes from the star’s surface, where the density
is formally discontinuous [12]) we find the damping timescale

τ ∼
(

c2R
GM

)l+1 R
c

, (11)

where M is the star’s mass, G is Newton’s gravitational constant and c is the speed of light.

2 This follows by imposing the relevant junction conditions across the star’s surface, accounting the a finite density at r = R.
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What do we learn from this? Perhaps the most important insight is this: A given
uniform density model is described by two parameters, which we can take to be the density
and the radius. An observation of the mode frequency would provide the former and
then the damping rate would help us infer the radius—as the scaling with the parameters
is different. This is the main idea of gravitational-wave asteroseismology [7–10] and it
prompts a number of follow-on questions.

How likely are we to be able to infer both the frequency and the damping rate from
observations? The answer depends on the energy associated with the mode excitation, but
it is generally clear that—since these modes are rapidly damped—the oscillation frequency
is easier to pin down than the damping. As an illustration, consider the example from [5]
(which draws on the empirical relations from [9]) which shows that—for a typical f-mode
with frequency f = 2.4 kHz and damping time τ = 0.1 s, a galactic source at a distance of
10 kpc and a fiducial detector with sensitivity (spectral noise density) S1/2

n = 10−23 Hz−1/2

at the mode frequency (roughly the level of advanced LIGO instruments during the O3
science run), we expect a signal-to-noise ratio (not to be confused with the matter density)

ρn ≈ 30
(

E
10−6M�c2

)1/2
, (12)

where E represents the energy channeled through the specific mode we consider 3. We see
that, if the system radiates about E = 4× 10−7M�c2 through this mode we would detect
the signal with ρn ≈ 10. The relative error involved in the parameter estimation may be
estimated by a Fischer matrix analysis [9]. In the suggested example, this leads to

δ f / f ≈ 1.3× 10−3/ρn , (13)

and
δτ/τ ≈ 2/ρn . (14)

For a signal leading to ρn ≈ 10 we would accurately infer the mode frequency but
the damping rate would only be known at the 20% level. If we want to extract both the
frequency and the damping rate to (say) the 1% level, then we need a signal-to-noise ratio of
at least 200. This would require the release of an energy of order 4× 10−5M�c2, which—as
we will discuss below—may be unrealistic.

This brings us to the astrophysics. Are there realistic scenarios where different oscil-
lation modes are excited to a significant amplitude? We will consider some possibilities
later. Furthermore, what about more realistic stellar models? Are the suggested scaling
relations robust for a range of (say) compressible equations of state? On the one hand, we
want this to be the case as the observable features should then be robust, as well. On the
other hand, we need there to be differences, as the main aim of the exercise is to identify
the underlying matter properties and this (obviously) means that we need to be able to tell
the difference between different models.

The last point suggests that we need to consider more realistic implementations based
on relativistic neutron star models. Naturally, this calculation is a bit more involved. First
of all, we need to account for the compressibility of matter. This means that we have to
generalise the form for the displacement vector. Instead of working with the gradient of a
scalar potential, we now have to work with

ξ i =
W(r)

r
∇ir + V(r)∇iYlm , (15)

i.e., we need to calculate both the radial component of the displacement , W(r), and the
horizontal contribution, V(r). We also need to consider the density variations. These are

3 Here and in the following we adopt the relativist’s convention of relating to energies in terms of the solar mass equivalent. Anyone of an astrophysics
persuasion may want to keep in mind that M�c2 ≈ 2× 1054 erg.
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linked to the pressure via the equation of state, and depend explicitly on the speed of
sound, cs, in the stellar fluid. For a barotropic model with p = p(ρ), we have

c2
s =

dp
dρ

and ∆p =
pΓ1

ρ
∆ρ = c2

s ∆ρ . (16)

Notably, the background equilibrium and the Lagrangian perturbations are described
by “the same” equation of state in this case. As we will see later, this is not generally
the case.

Working through the details, we now find (in addition to the f-mode) a set of higher
frequency pressure p-modes. These depend directly on the compressibility of matter.
Higher overtone p-modes have—for a given multipole l—increasingly high frequecies.
The p-modes tend to be less efficient emitters of gravitational waves as they have radial
nodes in the eigenfunctions which lead to cancellations in the mass multipole integral [13].
Moreover, as the typical p-mode frequency lies above several kHz, these modes will be
difficult to detect with ground-based instruments (which tend to be designed with binary
inspirals in mind, leading to a sensitivity sweet spot around 100 Hz).

What happens when we consider the problem in general relativity, as we know we
must if we want to use a realistic matter description? Qualitatively, the problem is different
because the modes become “quasi”-normal. In a live spacetime, they are determined from
an asymptotic condition of purely outgoing gravitational waves. This means that they
have complex frequencies, with the imaginary part representing the damping rate—we no
longer have to resort to the multipole formula, but the mode solution is more complicated
as the outgoing wave condition needs to be implemented with care [13–15]. Fortunately,
there are a number of robust methods for dealing with this issue.

Focussing on the f-mode, the relativistic results largely bring out the expectations
from the Newtonian calculation. The results from [7,8] demonstrate that the scalings
from (10) and (11) work pretty well, leading to useful phenomenological relations for the
frequency and the damping rate. This is not too surprising because, even though the
microphysics associated with different equations of state may be different, the neutron
star bulk properties are fairly robust. In fact, Lattimer and Prakash have pointed out [16]
that the old Tolman VII solution to the Einstein equations [17], which takes as the starting
point a quadratic density distribution, accords extremely well with the results for a wide
range of “realistic” equations of state. This, in turn, suggests that we should not be
too surprised if different neutron star properties turn out to be related by more or less
“universal” relations [18].

Returning to the f-mode, the relativistic mode frequencies encode a dependence on the
gravitational redshift—as the modes are “observed” at infinity. This suggests an additional
dependence on the star’s compactness, M/R, and hence a more complicated parameter
scaling. The results from [19] show that a scaling in powers of the stellar compactness
leads to a useful f-mode relation for a range of matter models. An even tighter relation is
provided in [20], based on working with η = (M3/I)1/2, where I is the star’s moment of
inertia, as the scaling parameter. These relations are accurate enough that a seismology
strategy can be formulated for realistic neutron star models.

3. Transients

For isolated neutron stars, one might envisage a number of scenarios that lead to
transient gravitational-wave emission which may, in turn, be channeled through individal
modes of oscillations. In fact, if the modes form a complete set (in the mathematical sense)
then it should be possible to represent any given “initial data” as a mode-sum. This should
be the case in Newtonian theory (although the problem is intricate for rotating stars [21]),
but the modes are not expected to be complete in relativity 4. In essence, we may consider

4 Essentially, the inevitable gravitational-wave damping makes the problem non-Hermitian, and the evolution problem also involves a late-time
power-law tail associated with backscattering of waves by the spacetime curvature [22].
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the likely energy budget for different “explosive” phenomena and then, through a back-
of-the-envelope argument, estimate the gravitational-wave amplitude. This is instructive,
but the exercise comes with important caveats. In particular, an energy based argument
that something is possible in principle does not in any way demonstrate that this happens
in reality—a simple reflection of the fact that we need the energy to be associated with
asymmetries in the fluid motion in order to lead to gravitational-wave emission (a spherical
expansion/contraction simply will not do!). The converse is, of course, true. If we can show
that there is not enough energy available to excite a given mode to a relevant amplitude
then the proposed scenario is unlikely to be of interest.

We can estimate the gravitational-wave strain h from the standard flux formula [5]

c3

16πG
|ḣ|2 =

1
4πd2 Ė , (17)

where d is the distance to the source, and the dots represent time derivatives. In our
case, we characterize a given event by the damping time τ and assume that the signal is
monochromatic, with mode-frequency f . Then we use Ė ≈ E/τ and ḣ ≈ 2π f h to get

h ≈ 4× 10−23
(

E
10−9M�c2

)1/2( τ

0.1 s

)−1/2
(

f
2 kHz

)−1( d
10 kpc

)−1
, (18)

This rough estimate accords fairly well with the more precise statement of detectability
from before. The key point is that, for the energy budget to be reasonable we have to focus
on galactic events.

What kind of—ideally regularly occurring—astrophysical event may lead to a neutron
star exhibiting “large” amplitude oscillations? The traditional example would be the
supernova explosion in which the star is born. However, estimates for the energy radiated
as gravitational waves from supernovae tend to be rather pessimistic, suggesting a total
release of no more than the equivalent to 10−6M�c2, or so. This might still be enough to
secure a detection, but as we only expect a few galactic supernovae per century we may
need a fair bit of patience. Nevertheless, recent work has demonstrated that there are
interesting seismology aspects to the core collapse problem [23–26], so it is clearly worth
pursuing this in more detail.

Another potential excitation mechanism for stellar oscillations would be some kind
of starquake, e.g., associated with a pulsar glitch or a magnetar flare. The idea is that the
evolution of the star—e.g., associated with magnetic field decay—leads to strain in the
elastic crust and that the stored energy is suddenly released when the system reaches a
critical level. The typical energy released in this process would then be of the order of the
maximum mechanical energy that can be stored in the crust, estimated to be at the level of
10−9 − 10−7M�c2 [27,28]. This suggestion is interesting given that magnetars appear to be
associated with fairly regular flaring events [4]. If modes are excited in these systems, an
indication of the energy released in the most powerful bursts is the 10−9M�c2 estimated
for the 5 March 1979 burst in SGR 0526-66 [29]. However, if the main action leading to the
energy emission is associated with the low-density crust one would not expect significant
gravitational-wave emission. We may use observations as basis for an asteroseismology
analysis—as has indeed be done [30]—but the gravitational-wave aspect would be missing.
This does not means that we should not search for counterpart signals to the observed
flares—as has also been done [31–35]—but we should do this with realistic expectations.

The situation is somewhat similar for pulsar glitches, although these events involve
significantly less energy. In this case the release of energy is assumed to be associated with
large-scale superfluid vortex unpinning in the outer core/inner crust of the star [36]. A
simple energy estimate suggests that these events may be interesting for the dedicated
gravitational-wave astronomer [37], but a closer analysis indicates that the excitation of the
large-scale fluid motion we require may be less likely [38]. Still, searches for glitch-related
transients in LIGO gravitational-wave data have already been carried out [39].
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Yet another scenario associated with the star’s evolution relates to internal phase tran-
sitions. The idea is simple. As the star spins down—due to the expected electromagnetic
braking torque—the centrifugal force decreases and the star’s central density increases. If
the equation of state predicts a sharp phase transition at some density, e.g., linked to quark
deconfinement, then the star might rapidly contract when this density is reached 5. This
contraction leads to potential energy being converted into heat and, perhaps, gravitational
waves, as well. The latter component may, however, be small unless one can think of a
way for the phase transition to induce asymmetries. At the end of the day, it is difficult
to predict the actual level of gravitational-wave emission. The main dynamical feature is
likely to be large amplitude radial oscillations [41], with any asymmetries and associated
gravitational waves arising from nonlinear mode-coupling. From the theory point of
view this is problematic—as the problem becomes much harder—but this does not mean
that observers should not look for this kind of signal. Perhaps we need an observational
breakthrough to get the theory right.

Another issue with transient events is that one would have to distinguish an astro-
physical signal from instrumental artefacts; something that goes “ping” in the detector.
Both may look like exponentially damped sinusoids, so how do we tell the difference? In
this respect, it is interesting to note the transient candidate S191110af, announced by the
LIGO/Virgo collaboration on November 10 2019. The suggested “signal” consisted of a
1.78 kHz oscillation lasting 0.104 s [42]. Follow-up analysis identified instrumental artefacts
in the data, which led to retraction of S191110af as a genuine signal [43]. However, in the
intervening time it was noted that the parameters were consistent with the f-mode of a
fairly typical neutron star, see [44] and the simple estimates from above. It was also noted
that there was no evidence that a glitching pulsar could be responsible for S191110af [44].
The event is nevertheless interesting. The key point is that, while the particular event is
unlikely to have been of astrophysical origin, we have seen that neutron stars can exhibit
transients at the required level. Hence, it is natural to ask if we can design a strategy
that makes a distinction between astrophysical transients and instrumental features. An
interesting argument in this direction is outlined in [45]. The idea is to bring in additional
information. First of all, a transient associated with (say) an f-mode oscillation would have
to correlate with both the frequency and the damping rate. However, we know from the
example of S191110af that this may not be enough. In the ideal case we would have an
electromagnetic counterpart signal—a gamma-ray flare, an x-ray feature or perhaps a radio
pulsar glitch—but one might have to be very lucky to make such an observation. Another
reasonable strategy would be to draw on the known neutron star population. Is there for
example an excess of transients with “neutron star-like” features and an energy distribution
such that is could reasonably be associated with the galactic neutron star population? The
argument then becomes statistical rather than based on a single outstanding event. This
raises other issues, but it is one direction in which we might be able to make progress.

4. Adding Physics: The g-Modes

To date, we have not considered the complex physics that characterises the neutron
star interior. Additional features come into play when we consider the matter description
beyond the pressure-density relation; when we account for the composition and state of
matter. As a simple rule-of-thumb, each additional piece of “physics” brings (at least) one
new class of oscillation modes into existence. This makes the seismology problem richer,
but also more complicated as we need to keep track of new parameters and these may
not be well constrained by our understanding of the nuclear physics. The pessimist may
see an insurmountable obstacle here, but the optimist cannot help being excited by the
discovery potential.

If we add internal stratification associated with, for example, temperature or composi-
tion gradients (like a varying proton fraction), then the so-called gravity g-modes come

5 Phase transitions may also be relevant for neutron-star mergers [40], in which case the main challenge is to keep track of the dynamical phase boundary.
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into play [46]. One immediate way of seeing this is to introduce the adiabatic index of the
perturbations, Γ1, as before;

∆p
p

= Γ1
∆ρ

ρ
, (19)

leading to (for a spherical background star)

δp =
pΓ1

ρ
δρ + ξ i

[
pΓ1

ρ
∇iρ−∇i p

]
≡ pΓ1

ρ
δρ + pΓ1(ξ

r A) , (20)

which defines the Schwarzschild discriminant A. This adds a restoring force (buoyancy)
for the perturbed fluid and leads to the presence of g-modes.

It is crucial to consider the impact of nuclear reactions on the composition g-modes.
Following [47] we take as our starting point a two-parameter equation of state p = p(ρ, xp),
where xp = np/n is the proton fraction (in terms of the proton and baryon number
densities, np and n), and work in the context of Newtonian gravity. Then the mass density
is simply ρ = mBn where mB is the baryon mass. In essence, we can think of ρ as a
proxy for the baryon number density, which is conserved (by virtue of the continuity
equation). In order to account for nuclear reactions, we introduce a new dependent
variable β = µn − µp − µe which encodes the deviation from chemical equilibrium (with
µx and x = n, p, e representing the chemical potential for neutrons, protons and electrons,
respectively). For simplicity, we assume a pure npe-matter neutron star core, which means
that the relevant reaction timescales are those associated with the Urca reactions. Formally,
we then have the thermodynamical relation (as we focus on the matter composition, we
ignore the temperature here)

dp = ∑
x

nxdµx = n(dµn − xpdβ) , (21)

where we have assumed (local) charge neutrality (np = ne). As the background configura-
tion is in both hydrostatic and beta equilibrium we only account for reactions at the level
of the perturbations. We then, first of all, note that (21) should also hold for Lagrangian
perturbations, so we have

∆p = n(∆µn − xp∆β) , (22)

or, as it turns out to be more convenient to work with ρ and β,

∆p =

(
∂p
∂ρ

)
β

∆ρ +

(
∂p
∂β

)
ρ

∆β = c2
s ∆ρ +

(
∂p
∂β

)
ρ

∆β , (23)

where cs is sound speed for the background equilibrium.
How do we account for nuclear reactions? Well, for the protons we have

(∂t + vj∇j)np + np∇jvj = Γ , (24)

with Γ the relevant reaction rate (not to be confused with the adiabatic index Γ1). Combin-
ing this with overall baryon number conservation (assuming that all components move
together!) and assuming that the reaction rate relates to perturbations, we have

∆
[
(∂t + vj∇j)xp

]
= (∂t + vj∇j)∆xp =

Γ
n

, (25)

where, at least for small deviations from equilibrium [48,49],

Γ ≈ γ∆β , (26)

with γ encoding the relevant reaction rate.
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Now thinking of β as a function of ρ and xp, and assuming that the star is non-rotating
(so that vi = 0), we have

∂t∆β =

(
∂β

∂ρ

)
xp

∂t∆ρ +

(
∂β

∂xp

)
ρ

∂t∆xp =

(
∂β

∂ρ

)
xp

∂t∆ρ +

(
∂β

∂xp

)
ρ

γ

n
∆β . (27)

That is, we have
∂t∆β−A∆β = B∂t∆ρ , (28)

with

A =

(
∂β

∂xp

)
ρ

γ

n
, and B =

(
∂β

∂ρ

)
xp

. (29)

If we work in the frequency domain (essentially assuming a time-dependence eiωt for
the perturbations, and taking the coefficients A and B to be time independent) we have

∆β =
B

1 + iA/ω
∆ρ . (30)

At this point we can consider the timescales involved in the problem. Introducing a
characteristic reaction time as

tR =
1
A , (31)

(noting that the actual timescale is the absolute value of this) we see that, if the reactions
are fast compared to the dynamics (associated with a timescale ∼ 1/ω) then |tRω| � 1
and it follows that

∆β ≈ 0 . (32)

Basically, because the dynamics are slow compared to the reactions the fluid remains
in beta equilibrium. There will be no buoyancy and hence no g-modes. The situation
changes in the limit of slow reactions, where |tRω| � 1 and we can Taylor expand (30)
to get

∆β ≈ B(1− iA/ω)∆ρ ≈ B∆ρ . (33)

Using this result in (23), we have

∆p =

[(
∂p
∂ρ

)
β

+

(
∂p
∂β

)
ρ

(
∂β

∂ρ

)
xp

]
∆ρ ≡ C∆ρ , (34)

which leads to
δp = Cδρ +

[
Cξ j∇jρ− ξ j∇j p

]
. (35)

with C = pΓ1/ρ. However, since

∇j p =

(
∂p
∂ρ

)
β

∇jρ = c2
s∇jρ , (36)

we are left with

δp = Cδρ +

(
∂p
∂β

)
ρ

(
∂β

∂ρ

)
xp

ξ j∇jρ . (37)

In this case, the composition of matter affects both terms on the right-hand side of
the relation. The mathematics may be fairly straightforward, but the physics is less so.
In particular, we now need an equation of state that allows us to calculate the different
thermodynamical derivatives used to relate (37) and (20). While there are several such
models “on the market” (a notable example being the results from the Brussels-Montreal
collaboration [50]) it is clear that we are asking questions that go beyond the description
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of equilibrium configurations—we are beginning to touch upon issues like the relevant
transport properties associated with the matter [51].

This, fairly lengthy, argument may seem like a detour but it is important as it helps
us understand a number of issues. First of all, we see that it is straightforward to analyse
the problem in the two limits of fast and slow reactions. In the intermediate regime, where
the dynamical timescale is similar to that of reactions we have to explicitly solve for the
evolving proton fraction. Secondly, we see that the presence of g-modes depend entirely
on the timescales. For example, the relatively slow Urca reactions (we will quantify this
later) will allow g-modes associated with a varying proton fraction [46], but as the relevant
reactions are much faster there may be no g-modes arising from a varying hyperon fraction.
Detailed mode calculations—ignoring the argument we have just outlined—suggest that
the g-mode spectrum has a infinite number of “overtones” with decreasing frequency. Our
argument obviously impacts on this. If we account for the reaction rates, then no matter
how slow they are, there has to be a point where the oscillation of a (perhaps very) high
order g-mode is even slower. This mode should not exist, at least not as an oscillation
feature [47]. In essence, the spectrum of composition g-modes will be finite for a realistic
neutron star model. This may seem like a fine-print issue, but it could be conceptually
important (as in the tidal problem we consider below).

It is easy to see that thermal gradients may also lead to the presence of g-modes. The
previous logic applies. We need the dynamics to be fast compared to the thermal evolution.
Thermally supported g-modes are expected to be relevant for proto-neutron stars [52,53].
The state of matter also affects the g-modes. For example, in a superfluid neutron star core—
which requires a two-fluid model [54]—the varying proton fraction will not introduce
buoyancy. The g-modes disappear [55,56], at least until we reach the density where muons
enter the game. At this point there will be a composition gradient, now associated with
variations in the muon fraction. This re-introduces the g-modes, but at a slightly higher
frequency (roughly a factor 1/xp higher than in the case of npe-matter) [57,58].

5. Dynamical Tides

When we outlined scenarios for transient mode excitation we considered different
mechanisms internal to the star. One may also envisage oscillations being driven by an
external agent. The natural example of this is the tidal interaction in a binary system.
When the two components of a binary system are far apart, a point-particle description
of each body is sufficient to describe the orbital motion. This assumption is adequate
for both classic binary dynamics and the post-Newtonian approximation used to model
gravitational-wave signals from compact binaries [59]. However, the situation changes as
the stars are brought closer together through the emission of gravitational waves. Finite size
effects come into play during the late stages of inspiral, with the tidal deformability [60–62]
of the supranuclear density matter,

Λl =
2

(2l − 1)!!
kl

C2l+1 , (38)

where kl is the Love number for the l-multipole and C = M/R is the stellar compactness,
leaving an imprint on the gravitational-wave signal. As demonstrated in the celebrated
case of GW170817—the first observed neutron star binary merger [63]—this leads to a
constraint on the neutron star radius [64,65] and hence the equation of state.

As it turns out, a precise understanding of the tidal response requires an analysis of
both the state and composition of matter. One aspect of this relates to the fact that the
composition is likely to remain “frozen” during the late stages of binary inspiral. It is
easy to see that this should be the case. A typical neutron star binary system may spend
10–15 min in the sensitivity band of a ground-based interferometer (above 10 Hz). As the
stars are deformed by the tidal interaction, matter is driven out of equilibrium but the
relevant nuclear reactions are (likely to be) too slow to re-establish equilibrium on this
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timescale. This is evident from, for example, the estimates in [48], which suggest that the
equilibration timescale for the direct Urca reactions is 6

tD ∼ 0.1 month
(

T
108 K

)−4
, (39)

with the modified Urca relaxation a factor of about 107 slower (at 108 K). Given that inspiralling
binaries are mature—and hence cold—we can safely assume that the equilibration time will
be much longer than the time it takes a given system to move through the sensitivity band
of a ground-based interferometer (months-years vs. minutes). In fact, at the expected core
temperature the star’s interior should be superfluid, in which case reactions are suppressed
(exponentially), see [67] for comments on how superfluidity impacts on the tidal response
(a problem with a number of interesting aspects). In essence, the equilibration argument
supports the assumption that the equation of state is no longer barotropic, as has (indeed) been
assumed in the vast majority of studies of the tidal problem to date (see for example [68–71]).

There are two main aspects to the tidal problem. First of all, the tidal deformability,
usually represented by the Love numbers [60–62], provides the static response during an
adiabatic inspiral. Secondly, individual oscillation modes may become resonant with the
tidal driving, leading to a distinct contribution for some specific frequency range. The two
aspects may be explored separately (e.g., static deformations vs. time-dependent ones) but
as they are related it is useful to consider them within the same framework.

In the tidal case, the perturbed Euler equation (for a non-rotating and compressible
star) is

∂2
t ξi +

1
ρ
∇iδp− 1

ρ2 δρ∇i p +∇iδΦ = −∇iχ (40)

alongside the usual continuity equation and the Poisson equation for the gravitational
potential. We also need the tidal potential χ (due to the presence of the binary partner),
which is given by a solution to ∇2χ = 0. In a coordinate system centred on the primary,
which we will take to have mass M, we have [71]

χ = −GM′ ∑
l≥2

l

∑
m=−l

Wlmrl

Dl+1(t)
Ylme−imψ(t) , (41)

where M′ is the mass of the secondary and D is the orbital separation. The orbit of the
companion is taken to be in the equatorial plane and ψ is the orbital phase. For l = 2
(which dominates the gravitational-wave contribution) we have

W20 = −
√

π/5 , W2±1 = 0 , W2±2 =
√

3π/10 . (42)

We now want to express the driven response of the stellar fluid in terms of the
(presumably complete 7 ) set of normal modes. These correspond to solutions ξn (where n
labels the different modes in a suitable way). Working in the frequency domain, i.e., solving
the Fourier transform version of (40), and letting the mode-frequency be ωn (real-valued in
absence of dissipation) we have the mode-sum:

ξ i = ∑
n

anξ i
n , (43)

6 It is worth noting that the somewhat related problem of the bulk-viscosity damping of post-merger remnant dynamics requires a more detailed
analysis, given the finite temperature and the potentially large deviations from chemical equilibrium involved, see for example [66].

7 Mathematical completeness is not an absolute requirement, but in order for a mode-sum representation to be useful it must be the case that the
modes we include dominate the response. In the tidal problem, the (by far) largest contribution is made by the f-mode (at least for non-rotating
stars) [72,73] so we do not have to worry too much about the formal aspects here.
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where each individual mode satisfies

−ω2
n Aξ i

n + Cξ i
n = 0 . (44)

Here A = ρ, while the C operator is messy but we do not need the explicit expression
in the following. We will, however, make use of the orthogonality of the (time-independent)
eigenfunctions. This is demonstrated by introducing the inner product from [21]. For two
solutions ηi and ξ i to (44), we define

〈ηi, ξi〉 =
∫
(ηi)∗ξidV , (45)

where the asterisk denotes complex conjugation. It follows that (suppressing the component
indices to avoid cluttering up the expressions)

〈η, Aξ〉 = 〈ξ, Aη〉∗ , (46)

and
〈η, Cξ〉 = 〈ξ, Cη〉∗ . (47)

From these symmetry relations it is relatively easy to show that two mode solutions
ξ i

n and ξ i
n′ are orthogonal as long as n 6= n′. That is, we have (keeping the normalisation of

the modes explicit)
〈ξn′ , ρξn〉 = A2

nδnn′ , (48)

where (15) leads to (for polar modes, like the f-mode)

A2
n =

∫ R

0
ρ
[
W2

n + l(l + 1)V2
n

]
dr . (49)

We can also use the orthogonality to rewrite (40) as an equation for the mode amplitudes:

än + ω2
nan = − 1

A2
n
〈ξn, ρ∇χ〉 . (50)

Making use of the continuity equation and integrating by parts we have (assuming
that the density vanishes at the surface of the star)

− 〈ξn, ρ∇χ〉 = −
∫

ρ(ξ i
n)
∗∇iχdV =

∫
χ∇i(ρξ i

n)
∗dV = −

∫
χδρ∗ndV . (51)

Given the harmonic time dependence associated with the Fourier domain we have an
equation for the amplitude of tidally driven modes (for each l, as the different values of m
are degenerate for non-rotating stars):

an =
1

ω2
n −ω2

Qn

A2
n

vl , (52)

where vl follows from (41) (after integrating out the angles) and we have introduced the
“overlap integral”

Qn = −
∫

δρ∗nrl+2dr . (53)

Noting that the frequency support of the tidal potential (for slowly evolving orbits)
leads to ω = mΩ, where Ω is the orbital frequency, we have a driven set of modes which
may become resonant during a binary inspiral [68–70].

The Poisson equation allows us to relate the density perturbation to the gravitational
potential. The matching at the star’s surface then relates the result to the relevant multipole
moments, and we have

Qn =
2l + 1
4πG

Rl+1δΦn(R) = In , (54)
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where In is the contribution each mode makes to the mass multipole moment. We can then quantify,
for example, how much energy is deposited in a given mode during an inspiral. We can also express
the result for the dynamical tide as an effective tidal deformability/Love number. The result we want
follows immediately from

kl =
1
2

δΦ(R)
χ(R)

. (55)

Expressed as a sum over the modes of the star [73], we have

keff
l = −1

2
+

1
2Rl ∑

n

Qn

A2
n

1
ω2

n − (mΩ)2

[
ω2Vn(R)− GM

R3 Wn(R)
]

. (56)

This provides us with a useful expression for the dynamical tide, calculable once we solve for
star’s oscillation modes. Basically, the tidal response is a seismology problem [74,75].

In addition to the dynamical tide, the mode sum provides a representation for the static tide. In
the low-frequency driving limit (Ω→ 0) we retain the usual Love number. The relation is exact for
the constant density model, where we only have to consider the f-mode. We then get [73]

keff
l =

ω2
n − GMl/R3

2
[
(mΩ)2 −ω2

n
] → 3

4(l − 1)
= kl for mΩ� ωn . (57)

This is the expected result for the Love number [76].
In general, the mode-sum allows us to quantify the level at which the matter composition

enters the problem. Evidence for simple model problems (with a fixed value for Γ1 providing the
stratification) shows that the f-modes vastly dominate the tidal response, with p- and g-modes
contributing at (most at) the few percent level [73]. This is an interesting observation given that
third generation (3G) gravitational-wave detectors like the Einstein Telescope or the Cosmic Explorer
may be able to constrain the tidal deformability to the few percent level [77]. It would certainly
seem warranted to ask if this could allow us to use observations to constrain (some aspects of) the
internal composition.

The mode sum allows us to make progress on a number of issues. For example, assuming
that the f-mode dominates the mode sum—which seems a safe bet—it is easy to understand why
we should expect to find a robust “universal relation” between the mode frequency and the tidal
deformability. This result was demonstrated in [78] and recent evidence suggests that the relation
remains accurate for a wide range of equation of state models. Given this observation, we can
combine the mode sum with the phenomenological relation from [78] to write down—adding
assumptions about the redshift of the frequencies involved—a similar phenomenological expression
for the dynamical tide. As outlined in [75], this leads to

keff
l ≈

ω̄2
f kl

ω̄2
f − δ(2Ω̄)2

+
(2Ω̄)2

ω̄2
f − δ(2Ω̄)2

[
δ

2
−

ω̄2
f

C3
ε

l

(
kl +

1
2

)]
, (58)

where ω̄ f = ω f M is the f-mode frequency (the scaling with the star’s mass leading to the natural
dimensionless combination in relativity, and the orbital frequency is scaled in the same way). As
before, kl is the static Love number and we have introduced two free parameters, δ and ε. The first of
these, δ, accounts for the gravitational redshift and the rotational frame-dragging induced by the
orbital motion. However, it turns out that simply “removing” the redshift from the calculated mode
frequency [79] by taking δ = 1− 2C works quite well, so we are left with a one-parameter expression
for the dynamical tide. The example in Figure 1 shows that the result compares well with a more
thorough analysis in the effective-one-body framework [79,80]. Moreover, the dynamical tide has
been shown to compare well with results extracted from numerical simulations [81]. This suggests
that we have a good understanding of the physics of the dynamical tide.
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Figure 1. Comparing the effective Love number keff
l from (58), using δ = 1− 2C, to the results

from [79] for the quadrupole (l = 2) contribution to the dynamical tide. The horizontal line represents
the static Love number (kl = keff

l in the Ω→ 0 limit). The result from [79] is shown as a solid blue
curve, while estimates from (58) are shown for the range ε = 0.85− 0.9 with the latter representing
the lower edge of the filled (grey) band. The region beyond the merger frequency, ΩMt ≈ 0.057, with
Mt the total mass of the binary, is indicated by the shaded region.

Finally, we can make contact with the end point of the binary evolution, the merger. The merger
is associated with a wildly oscillating, hot remnant that (likely) eventually collapses to form a black
hole. Interestingly (given the present context), numerical simulations demonstrate that the dynamics
of the merged object exhibit robust high-frequency features [82–84]. These are generally thought to be
associated with specific modes of oscillation, with the main feature associated with the fundamental
mode [84–86]. This would be natural, although not straightforward to demonstrate as we have to
explore perturbations relative to a background that evolves on a relatively short timescale.

From a seismology point of view, there is no reason to expect the merger dynamics to be
connected with the inspiral phase. The physics of the equation of state should be “the same”, but the
two inpiralling objects are cold (on the nuclear physics temperature scale) while the merged object is
hot (possibly reaching temperatures higher than that of a supernova core) and differentially rotating.
Since the thermal pressure and the rotation will both impact on the dynamics of the object [87] one
would not expect features of the two stages to be related in a simple way. Nevertheless, they seem to
be. Focussing on an equal-mass binary and introducing [86]

κt
2 =

1
8

k2

C5 =
3
16

Λ2 , (59)

one finds (empirically) that the main peak in the spectrum of the merger dynamics ( f2) scales as

f2 Mt ≈ 0.144(κt
2)
−0.278, (60)

where Mt is the total mass of the system (as before; here assuming that we can neglect mass ejected
during the merger). This relation appears to link the two stages of binary evolution, which could
be useful when we (eventually) try to constrain the equation of state with observed merger signals.
Hence, it makes sense to try to understand if and why the result should be robust. We can make some
progress towards an answer by noting that the power law is similar to what one would expect for the
cold matter f-mode of the individual stars [87], which makes sense as it would associate the merger
oscillation with the fundamental mode of the remnant, but the issue is not settled at this point.

6. Adding a Bit of Spin: The CFS Instability
We know from the several thousand observed radio pulsars that neutron stars tend to be

spinning, in some cases with close to one revolution every millisecond. Due to the exquisite precision
of radio timing the spin rate is—by a considerable margin—the most accurately determined neutron
star parameter. Fundamental issues concerning the origin and evolution of the neutron star spin
[88], including irregularities like glitches and timing noise, continue to be explored. Rotation also
impacts on neutron star seismology; it alters existing oscillation modes and introduces new ones [5].
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In particular, the Coriolis force leads to the presence of so-called inertial modes [89]. The r-mode—
which may well be of astrophysical relevance, but will not be discussed here (see chapter 15 in [5] for
a detailed exposition)—is a particular example of this family of modes. In contrast, the centrifugal
force does not introduce new families of modes, but as it deforms the shape of the star it can have
significant impact on existing modes, shifting the frequencies as the spin rate increases.

Keeping our focus firmly on the f-mode, rotation breaks the symmetry of the non-rotating
problem in such a way that the various −l ≤ m ≤ l contributions become distinct and the different
l-multipoles are coupled. In effect, each mode is affected differently by the star’s spin. As the rotation
rate increases, an increasing number of Ym

l ’s are needed to describe a given mode. One must also
account for coupling between the polar (with displacement vectors of form (15)) and axial vectors
(representing contributions proportional to εijk(∇jr)∇kYm

l , which are orthogonal to (15)). These
factors make the problem of calculating pulsation modes of rapidly rotating stars a challenge. For
rapidly spinning stars a frequency domain calculation based on a slow-rotation expansion becomes
very messy when we go to second order (as many multipoles come into play). Relativity adds further
complications as we have to account for the rotational frame-dragging, which effectively enters the
problem as a differential rotation. The required outgoing-wave boundary condition that defines the
relativistic quasinormal modes is also tricky 8. Because of these complications, much of the recent
work has focussed on numerical simulations of the perturbation equations (see, for instance [91–95]).
Such time evolutions come with their own challenges. In particular, there is no easy way to isolate
individual modes—in a sense you have to live with what you get from the chosen initial data and the
(inevitable) numerical noise. Features like the f-mode may be relatively easy to identify, but higher
order modes or aspects associated with the star’s interior (like the crust or superfluid components)
significantly less so. To progress beyond the level of the current models we may need new ideas...

An important concept in the study of oscillating rotating stars is the pattern speed of a given
mode. As each mode is proportional to ei(mϕ+ωt), surfaces of constant phase are such that

dϕ

dt
= −ω

m
= σp , (61)

defines the pattern speed, σp. In terms of this quantity, we can make two observations for the (l = m)
f-modes. Let us denote the mode frequency observed in the rotating frame by ωr, while the inertial
frame frequency is ωi. We then see from (10) that the frequency of the f-modes increases with m
roughly as ωr ∼

√
m. According to (61) this means that the pattern speed of the f-modes decreases as

we increase m. As a consequence, one can always find an f-mode with arbitrarily small pattern speed
(corresponding to a suitably large value of m) even though the high-order f-modes have increasingly
high frequencies. This will turn out to be an important observation.

It is also useful to note that mode patterns corresponding to the different signs of m tend to rotate
around the star in opposite directions. Taking the positive direction to be associated with the rotation
of the star we see that the l = ±m modes are backwards and forwards moving (retro/prograde),
respectively, in the limit of vanishing rotation. However, rotation may change the situation. A very
rough estimate of the corresponding mode for a rotating star (observed in the inertial frame) would be

ωi(Ω) ≈ ωr(Ω = 0)−mΩ + O(Ω2) , (62)

where Ω is the star’s rotation rate. From (10) it then is easy to see that an originally retrograde mode
may be dragged forwards to become prograde at some rotation rate. An observer on the star would
still associate the oscillation with a wave moving “backwards”, but an inertial observer would see
the wave moving forwards, along with the bulk rotation. The importance of this will soon be clear.

The two features we have sketched are important because they help explain the so-called CFS
(Chandrasekhar-Friedman-Schutz) instability [21,96], a mechanism through which the emission
of gravitational waves amplifies a given oscillation leading to enhanced emission and a runaway
process (at least until nonlinear effects become prominent [97–99]). It is important to understand how
this works, so let us outline the argument.

In the rotating case, where the background velocity vi does not vanish, the Lagrangian displace-
ment is determined by an equation of form [11,21]

A∂2
t ξ + B∂tξ + Cξ = 0 . (63)

8 Because the rotating neutron star exterior is not associated with a Petrov type D spacetime [90] there is no (yet) known way to separate the variables,
as in the case of the Teukolsky equation for spinning black holes.
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where the symmetry properties for A and C remain as before, but

B∂tξ = 2ρvj∇j∂tξi , (64)

leads to
〈η, Bξ〉 = −〈ξ, Bη〉∗ . (65)

Assuming that η and ξ both solve the perturbed Euler Equation (63), again as before, it is
relatively easy to show that the quantity

W(η, ξ) =

〈
η, A∂tξ +

1
2

Bξ

〉
−
〈

A∂tη +
1
2

Bη, ξ

〉
, (66)

is conserved. That is, we have
∂tW = 0 . (67)

This motivates the definition of the canonical energy

Ec =
1
2

W(∂tξ, ξ) =
1
2
[〈∂tξ, A∂tξ〉+ 〈ξ, Cξ〉] , (68)

and, for axisymmetric systems (like a rotating star), the canonical angular momentum

Jc =
1
2

W(∂ϕξ, ξ) . (69)

Both these quantities are conserved.
The importance of the canonical energy and angular momentum stems from the fact that they

can be used to test the stability of the system. In particular [21]:

(i) if the system is coupled to radiation (e.g., gravitational waves) which carries away positive
energy (which we take to mean that ∂tEc < 0), then any initial data for which Ec < 0 will lead
to an instability.

(ii) dynamical instabilities (not requiring additional physics like dissipation or wave emission)
are only possible if Ec = 0. This is quite intuitive since the amplitude of a mode for which Ec
vanishes can grow without bound without violating any conservation laws.

Let us now make contact with the seismology problem by considering a complex normal-
mode solution to the perturbation equations (which is convenient as it allows us to “ignore” the
complicating presence of the so-called trivial displacements [21]). That is, we assume a solution
of form

ξ j = ξ̃ jeiωt , (70)

with ω possibly complex. Then the canonical energy becomes

Ec = ω

[
Re ω

〈
ξ̃, Aξ̃

〉
− i

2
〈
ξ̃, Bξ̃

〉]
, (71)

where the expression in the bracket is easily shown to be real valued. For the canonical angular
momentum we get

Jc = −m
[

Re ω
〈
ξ̃, Aξ̃

〉
− i

2
〈
ξ̃, Bξ̃

〉]
. (72)

Combining the two relations we see that, for real frequency modes we have

Ec = −
ω

m
Jc = σp Jc , (73)

where σp is the pattern speed of the mode. This is an important relation as it connects the mode
energy with the intuition associated with the pattern speed.

Moving on to the instability argument, for real-frequency modes (and uniform rotation) we can
use (72) to argue that [21]

σp −Ω
(

1 +
1
m

)
≤ Jc/m2〈

ξ̃, ρξ̃
〉 ≤ σp −Ω

(
1− 1

m

)
. (74)

Taking these inequalities as the starting point, consider a mode with finite frequency in the
Ω→ 0 limit (like the f-mode). For a co-rotating mode with σp > 0 the relation (74) implies that we
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must have Jc > 0, while a counter-rotating mode for which σp < 0 will have Jc < 0. In both cases
it follows from (73) that Ec > 0 , which means that both modes are stable. Now suppose we have
a mode such that σp = 0 for a finite value of Ω. In a region near this point we must have Jc < 0.
However, because of (73), Ec will change sign at the point where σp vanishes. As we have shown
that the mode was stable in the non-rotating limit the change of sign indicates that the canonical
energy becomes negative, which represents the onset of instability. Basically, a backwards moving
mode is dragged forwards by the rotation, as we have already discussed, but the mode is still moving
backwards in the rotating frame. The gravitational waves from such a mode carry positive angular
momentum away from the star but, since the perturbed fluid rotates slower than it would in absence
of the perturbation, the angular momentum of the mode is negative. The gravitational-wave emission
makes the angular momentum increasingly negative and we have a runaway situation. The unstable
mode continues to grow until viscosity or nonlinear effects come into play.

If we want to understand what this argument implies for realistic neutron star models, the logic
is fairly straightforward (although the execution may be challenging). First we need to establish
that the instability actually sets in at a realistic rotation rate. After all, the rotation of a fluid body
is limited. Once the star rotates fast enough that it sheds mass at the equator, we cannot spin it
up any more. This leads to the so called Kepler limit. Now, from what we have seen, we would
expect the large l = m f-modes to become unstable at a slower spin. However, these high order
modes are associated with smaller scale fluid motion so the viscous damping tends to dominate the
gravitational-wave driving, thus ensuring that these modes remain stable [100]. This complicates
the problem—especially since we need to consider a range of possible dissipation mechanisms (like
bulk and shear viscosity and the mutual friction that comes into play in a superfluid system [101]).
This is obviously difficult, as we do not really know the state and composition of the neutron star
interior. Anyway, it is natural to start by trying to establish that the modes have the potential to be
unstable in the first place, and worry about viscosity later. One way to do this is to focus on finding
neutral modes [102], modes which have zero frequency in the inertial frame. Such stationary features
are easier to calculate and represent the system at the onset of the CFS instability. Detailed work on
this problem [102,103] shows that the quadrupole f-mode—which is unlikely to become unstable in a
rotating Newtonian star—reaches the instability threshold just below the Kepler limit for a realistic
neutron star model. This then opens a window of opportunity for the instability to play a role in
astrophysical scenarios 9 involving the most rapidly spinning stars.

If we want to consider the role of viscosity or consider the evolution of an unstable mode, we
need dynamical mode calculation. The most detailed work in this direction builds on time-evolutions
for rotating relativistic stars (typically in the Cowling approximation [92], where variations in the
metric are ignored, although see [104]). As an illustration, let us consider the results from [105] which
provide empirical relations based on results for a collection of matter equations of state. For the
quadrupole f-modes we have, first of all, the frequency of the mode for non-rotating stars 10:

1
2π

ω0 ≈ 1.562 + 1.151
(

M0
1.4M�

)1/2( R0
10 km

)−3/2
(kHz) , (75)

where M0 and R0 are the mass and radius of the non-rotating model, respectively. With our conven-
tions, the inertial frame frequency of the prograde (l = −m = 2 in the non-rotating limit) mode is
(combining the results from [105] with ωi = ωr −mΩ):

ωi = ω0

[
1− 0.235

(
Ω

ΩK

)
− mΩ

ω0
− 0.358

(
Ω

ΩK

)2
]

. (76)

In this expression, the Kepler frequency, ΩK , is estimated by

1
2π

ΩK ≈ 1.716
(

M0
1.4M�

)1/2( R0
10 km

)−3/2
− 0.189 (kHz) . (77)

9 From the astrophysics point of view, the CFS instability is relevant as it offers an explanation for the absence of observed systems spinning close to
the Kepler limit [5].

10 Note that this leads to the f-mode frequency f ≈ 2.7 kHz, which is consistent with the results we quoted earlier.
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Similarly, for the retrograde (l = m = 2) f-mode we have

ωi = ω0

[
1 + 0.402

(
Ω

ΩK

)
− mΩ

ω0
− 0.406

(
Ω

ΩK

)2
]

. (78)

In order to understand the implications of these results, we may consider the illustration in
Figure 2, which shows the behaviour of the modes that limit to ±ω0 in the slow-rotation limit (the
rotational splitting leads to a pair of modes for each m = ±l). Focussing, first of all, on the pair of
modes that start out with a positive frequency, we see that the frequency of the prograde l = −m = 2
mode increases with the rotation rate. Meanwhile, the observed inertial frame frequency of the
originally retrograde mode decreases and passes through zero just above Ω ≈ 0.9 ΩK . At this point
the pattern speed of the mode changes sign, signalling the onset of the CFS instability. As expected,
the star has to spin very fast for the instability to kick in. Extrapolating beyond the region of validity
of the results, which is cheating 11 but serves the purpose of illustrating another important point,
we see that the CFS unstable mode that started out with negative frequency eventually catches up
with the originally prograde mode. The point where these two modes merge indicates the onset
of dynamical instability—the so-called bar-mode instability [106–108]. This dynamical instability
requires Ec = 0 which is possible when the two modes merge. This behaviour (mode merger leading
to instability) is familiar from many wave problems. Beyond this point our extrapolation absolutely
does not make sense 12, as the pair of modes would be replaced by a single complex-valued frequency
once the dynamical instability sets in.

Ω/ΩK

f i
(k

Hz
) C
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dy
na

m
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 in

st
ab

ili
ty

requires differential rotationuniform rotation

Figure 2. Illustrating the numerical results from [105] for the l = 2 f-modes of rotating neutron
stars. The inertial frame mode frequency fi = ωi/2π (in kHz) is shown as function of the (uniform)
rotation frequency Ω (scaled to the Kepler frequency ΩK).

While we have no observational evidence for mature neutron stars spinning fast enough for the
f-mode instability to come into play, it may be relevant for (some fraction of) newly born systems.
This depends entirely on the birth spin expected from a supernova core collapse. This issue is not
particularly well understood but it is expected [88] that some fraction of neutron stars will be born
rapidly spinning. This may, in fact, be a requirement for the dynamo mechanism needed to wind
up the star’s magnetic field to magnetar strength [110] (but, again, the detailed mechanism for this
is not understood). The unstable f-mode may also impact on the evolution of massive post-merger

11 Models reaching beyond ΩK require differential rotation.
12 Up to the mode merger the extrapolation can be “justified” by results for rotating ellipsoids, see [109] and the discussion in [5].
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remnants [111]. The outcome depends on, first of all, whether the spin of the system will be sufficient
for the instability to be triggered and, secondly, the saturation amplitude of the unstable mode
(expected to be due to the nonlinear coupling to other modes [97–99]). It has been suggested that
this kind of signal may be detectable at the distance to the Virgo cluster [111], an idea worth further
consideration.

7. Final Comments
In this brief overview, we have discussed aspects of neutron star seismology and how the

problem connects with the rapidly developing area of gravitational-wave astronomy. The aim was to
introduce the ideas rather than provide an exhaustive discussion of every possible angle. Hence, the
fundamental f-mode was allowed to take centre stage throughout, at the risk of downplaying the
role of other modes—like the infamous r-mode—and perhaps giving an overly simplified picture of
the oscillation problem. Given this, it makes sense to conclude with some comments on the bigger
picture—what we know and what we don’t know.

First of all, we are painfully aware that the oscillation problem for realistic neutron star models
is complicated. Different aspects of physics tend to be associated with (more or less) distinct families
of oscillation modes—composition/entropy gradients support the g-modes, the Coriolis force leads
to inertial modes, there are elastic shear modes in the crust, there are superfluid modes 13 and so on.
The range of physics can be intimidating and the progress on modelling these systems in as much
detail as we can muster has been fairly slow. Nevertheless, there have been notable advances.

Before going into the details it is worth going over a couple of overarching “ground rules”.
First of all, it is important to keep track of the ultimate aim of the exercise: We want to combine
our theory models with observations to constrain the physics. This means that—for each conceived
scenario and observation channel— we must not lose track of what may be achievable with current
and foreseeable technology. From the perspective of gravitational-wave astronomy (and given that
neutron star dynamics tends to be a high-frequency (kHz) phenomenon) our speculation should
focus on the current ground-based instruments and what may be possible with different planned
3G detectors like the Einstein Telescope or a Cosmic Explorer. In fact, clear arguments that certain
aspects of neutron star physics will come within reach in the 3G era would add to the—already
strong [112]—science case for these instruments.

Secondly, we need to develop the models in the framework of general relativity (or whatever
fashionable alternative theory may take our fancy). The motivation for this is simple: A realistic
matter description only makes sense in the context of a relativistic stellar model. For example, it
is well known that, for a given central density, the radius of a Newtonian star differs considerably
from the corresponding relativistic model. The “errors” tend to be so large that any discussion of the
impact of the fine print physics becomes meaningless. This does not mean that we have not learned
valuable lessons from Newtonian models. On the contrary, much of our understanding of the fluid
dynamics involved draws on work in the non-relativistic regime—and will likely continue to do so
for some time.

With these two points in mind, let us take stock of where we stand. When it comes to studying
the oscillation properties of “realistic” neutron star models, the state of the art models in [113] combine
internal composition gradients with realistic cooling (including the freezing of the star’s crust) to
explore the evolution of the oscillation spectrum as a young neutron star matures. These models do
not account for superfluity or, indeed, the magnetic field. The former aspect is not an insurmountable
challenge, given the formalism discussed in [114] and work on the torsional oscillations of the crust
(motivated by the observed quasiperiodic features in the tail of some magnetar flares [115]) but the
magnetic field provides a technical hurdle. This is not because we are unable to study the oscillations
of magnetic stars—the results from [116,117] show that such work is well under way—but the simple
reality is that the internal magnetic field configuration (which we need to provide a background for
our perturbation analysis) is not well understood. In fact, this is a drastic understatement. None of
the models we are able to build appear to be stable in the long term [118,119] and this presents us
with an obvious conceptual problem. In short, we are still some way away from modelling (even
non-spinning) neutron stars in their full glory. It is important that strive to do so, because the different
physics aspects are not independent and we need to understand how they are linked if we want make
secure inference statements for observed signals. This is particularly the case for the dynamical tide
which has so far been considered only for Newtonian models. This is an issue that need attention.

13 Superfluid aspects are particularly relevant as there is known to be an associated “doubling” of modes, making the identification of observed
seismology features more complicated. The problem has been recently reviewed in [54].
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When it comes to rotating relativistic stars, our models are less complete. We have a fairly good
handle on the impact of rotation on the f-mode and some idea of the effect on the pressure p-modes
and the gravity g-modes [94]. This work provides an understanding of the onset of the CFS instability
associated with the f-mode (for very high spin rates) [92,95,104,105,120], but we do not yet have a
good handle on the many different dissipation mechanisms that may affect an unstable mode. There
is a sharp contrast between the physics that has been brought into play in efforts to “kill” the inertial
r-mode instability (see [5]) and the level of discussion for the f-mode. Having said that, the work on
the r-modes is almost exclusively in the Newtonian domain so we are lacking in that respect, as well
(see [121–123] for a few notable exceptions). Similar statements apply to the effort to understand the
saturation of unstable modes, through the nonlinear coupling to other modes [97–99], for which a
relativistic framework has not been developed. Furthermore, let us not forget the phenomenology
that comes into play when we add differential rotation to the mix. In particular, suggestions that the
so-called low-T/W instability [124,125] may act in merger remnants are intriguing [126–128]. Again,
this is a mechanism that is much less well understood than it ought to be. The “wish list” for rotating
stars becomes quite long...

A much briefer summary would simply state that we have a lot of work left to do.
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