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A Multifluid Perspective on
Multimessenger Modeling

Nils Andersson*

Mathematical Sciences and STAG Research Centre, University of Southampton, Southampton, United Kingdom

This brief review introduces the notion of a relativistic multifluid system—a

multi-component system with identifiable relative flows—and outlines a set of models for

scenarios relevant for different astronomical observation channels. The specific problems

used to illustrate the key principles include superfluid hydrodynamics (with relevance for

radio and x-ray pulsar timing and gravitational-wave searches), heat flow (connecting to

the problem of neutron star cooling and associated x-ray observations) and the coupling

between matter and electromagnetism (linking to explosive phenomena like gamma-ray

bursts and more subtle issues like the long-term evolution of a neutron star’s magnetic

field). We also comment on the coupling between matter and radiation, for which the

multifluid approach would seem less appropriate. The main motivation of the survey is

to illustrate less familiar aspects that come into play in multifluid problems, establish the

relevant “language” and provide a platform for more detailed work on these issues.
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1. MULTI-MESSENGER MODELING

The spectacular neutron star merger observation on 17 August 2017 (Abbott et al., 2017a) provided
a number of firsts for astronomy: The direct detection of gravitational waves from systems involving
neutron stars. Indisputable support for the connection between neutron star mergers and short
gamma-ray bursts (Abbott et al., 2017b). Clear evidence for mass outflows leading to rapid nuclear
reactions and kilonova emission (Alexander et al., 2017; Cowperthwaite et al., 2017). A meaningful
constraint on the neutron star radius via the tidal deformability imprint (or perhaps rather, lack
of) on the inspiral signal (Abbott et al., 2017a; De et al., 2018). With astronomers tracking the
event across the electromagnetic spectrum, while gravitational-wave analysts tried to tease out as
much information from the signal as possible, this was an awesome opening episode1 for the era of
multi-messenger astronomy.

As we sober up from the celebrations, it is natural to consider what we have to do—as theorists—
to keep up with the rapidly improving precision of the observations—driven by the seemingly
inexhaustible ingenuity of the teams that design new and improved instruments. One thing is clear:
We may soon reach the point where data extracted from observations require theoretical models
with a precision we are (at this point) unable to provide. This is particularly the case for problems
involving neutron stars. These are complex systems, the description of which requires much of the
physics we know (and some aspects we do not know particularly well, if at all). The issues range

1From a historical perspective, onemight want to argue that SN1987A represents a (much) earlier example ofmulti-messenger

astronomy, with neutrinos associated with the event observed along with the visible light (Hirata et al., 1987). However,

it is equally fair to argue that, in that case the different observation channels did not provide comparable “high-quality”

information.
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Andersson Multifluid Perspective

from nuclear physics (both the strong and weak interaction),
to gravity, electromagnetism and features from condensed
matter and low-temperature physics (Graber et al., 2017),
as well. In essence, the modeling of these systems is a
playground for theoretical physics. This is inspiring and
intimidating in—possibly depending on personality and
inclination—equal measure.

Much of what we (think we) know about neutron stars build
on relatively simplemodels of hydrostatic equilibrium, essentially
solutions to the Tolman-Oppenheimer-Volkoff equations for
some given matter equation of state. This allows us to consider
issues like the maximum mass (Greif et al., 2020) (above which
the star must collapse to form a black hole) and the range of
expected radii (Miller et al., 2019; Raaijmakers et al., 2019),
both of which have been confronted by observations. Dynamical
problems are, inevitably, more complicated. We have to consider
how high-density matter moves and neutron stars involve a
number of (at least to some extent) distinguishable matter
components. In fact, the simplest “reasonable” neutron star
model involves four distinct fluid components (Andersson et al.,
2017a) [although one may argue that we should consider as
many as seven components (Rau and Wasserman, 2020), which
could be (way) more than we can realistically handle]. Heat may
flow relative to matter. Charges have to flow relative to one
another to support the star’s large-scale magnetic field. Superfluid
components may be fairly weakly coupled to the rest of the
star. These different features are independent of one another
(although coupled) so if we also consider the bulk matter flow
we end up with four distinct “fluxes.” This realization takes us
beyond the familiar territory of text-book fluid dynamics into
less frequently traveled terrain. An aspect that comes to the fore
is the ability of different fluid components (sharing the same
volume) to flow—or perhaps closer to reality, drift—relative to
each other. We are dealing with a multifluid system and we need
to understand what this implies. The issues involved are both
conceptual and practical.

The desire to explore this kind of system motivates this brief
overview. Drawing on a recent exhaustive review2 of relativistic
fluid dynamics (Andersson and Comer, 2007), we consider some
of the issues that arise when we approach the dynamics of
multifluid systems, highlight new aspects that arise and sketch
how we may be able to build the next generation of models for
relevant neutron star scenarios.

2. MULTIFLUID MODELS

The convective variational approach pioneered by Carter (1989)
and a number of collaborators (see Andersson and Comer,
2007 for a detailed review) provides a natural framework for
a discussion of relativistic multifluid systems. The approach is
fairly intuitive. Consider a system with a number of identifiable

2As the material in Andersson and Comer (2007) provides much of the relevant

context material and links to the relevant literature, we have not tried to be

all-inclusive here. The aim is to provide an introduction and a starting point rather

than an encyclopedic review.

matter constituents, labeled by x, y, . . ., each associated with a flux

nax = nxu
a
x, (1)

(we use a, b, c, . . . to represent spacetime indices and it should
be noted that the label x is not summed over when repeated).
Each four velocity is normalized, gabu

a
xu

b
x = −1 (with gab the

spacetime metric and we assume units such that c = G = 1
throughout the discussion), and the number density measured
by a co-moving observer is

nx = −uxan
a
x. (2)

The variational principle involves a matter Lagrangian, 3, taken
to be a relativistic invariant and hence depending only on
covariant scalars formed out of the different fluxes. Effectively,
this provides the equation of state for matter. In the general case,
we have to consider both

n2x = −gabn
a
xn

b
x, (3)

and

n2xy = −gabn
a
xn

b
y with y 6= x. (4)

An unconstrained variation of 3 with respect to the fluxes nax
and the spacetime metric then gives (ignoring terms that can be
written as total derivatives, which may be thought of as “surface
terms” in the action)

δ
(√

−g3
)

=
√

−g

[

∑

x

µx
aδn

a
x +

1

2

(

3gab +
∑

x

naxµ
b
x

)

δgab

]

,

(5)
where g is the determinant of the metric. This defines the
individual fluid momenta

µx
a =

(
∂3

∂nax

)

nby

= gab



B
xnbx +

∑

y 6=x

A
xynby



 , (6)

with

B
x = −2

∂3

∂n2x
, (7)

and

A
xy = A

yx = −
∂3

∂n2xy
, y 6= x. (8)

The covectorµx
a provides the fluidmomentum and its magnitude

gives the chemical potential (intuitively, the energy associated
with adding a particle of the x-species to the system). For a
co-moving observer, we have

µx = −uaxµ
x
a. (9)

We can now identify one of the key features of amultifluidmodel.
Each momentum may be “tilted” relative to the corresponding
matter current. This is the so-called entrainment effect (Andreev
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and Bashkin, 1975; Comer and Joynt, 2003; Andersson and
Comer, 2007), and it enters the model through the Axy

coefficients. We will consider the relevance of this later.
Returning to the variational argument, Equation (5) shows

why it is necessary to constrain the action. As it stands, the
variation of 3 suggests that the equations of motion would be
µx
a = 0—none of the fluids carry energy or momentum, which is

not a very interesting situation to consider. The actual equations
of motion follow if we constrain the fluxes to be conserved3:

∇an
a
x = 0. (10)

This is typically done by changing to a Lagrangian perspective
and making use of a lower-dimensional matter space (Carter,
1989). The relevant steps are outlined in Andersson and Comer
(2007) and we will not repeat them here. Our focus will be on
applying the model rather than the derivation. The constrained
variation leads to

δ
(√

−g3
)

=
√

−g

[

1

2

(

9δab +
∑

x

naxµ
x
b

)

gbcδgac −
∑

x

f xa ξax

]

,

(11)
where ξax represents the Lagrangian displacement associated with
each fluid’s set of worldlines, which are taken to be conserved as a
consequence of (10). We have also introduced the “force” acting
on the x-component, f ax , leading to the equations of motion

f xb ≡ 2nax∇[aµ
x
b] = 0, (12)

(since the displacements are independent and arbitrary). It also
follows that the stress-energy tensor (the variation with respect
to the spacetime metric) takes the form

Ta
b = 9δab +

∑

x

naxµ
x
b, (13)

where

9 = 3 −
∑

x

naxµ
x
a, (14)

is a generalized pressure. We will make this notion more precise
in the following.

The equations we have written down may seem somewhat
peculiar. The standard approach to relativistic fluid dynamics
takes the divergence of the stress-energy tensor—and the fact that
it must vanish by virtue of the Einstein equations and the Bianchi
identities—as the starting point. Here we seem to instead have a
set of force-balance relations represented by (12), involving the
vorticity formed from each fluid momentum

ωx
ab = 2∇[aµ

x
b]. (15)

3The convective variational approach builds on the assumption of conserved

fluxes. Strictly, thismeans that we need to amend the strategy if we want to consider

non-conserved flows, as in the case of dissipative systems. We will sketch some

results in this direction, focussing on “resistivity” later. The general problem is

much more complicated (Andersson and Comer, 2015; Celora et al., 2020).

However, the two pictures are perfectly consistent. We have

∇aT
a
b = ∇b3 − ∇b

(

∑

x

naxµ
x
a

)

+ ∇a

(

∑

x

naxµ
x
b

)

= ∇b3 −
∑

x

µx
a∇bn

a
x

︸ ︷︷ ︸

=0

−
∑

x

nax∇bµ
x
a +

∑

x

µx
b ∇an

a
x

︸ ︷︷ ︸

=0

+
∑

x

nax∇aµ
x
b =

∑

x

f xb = 0. (16)

In other words, if the set of equations (12) are satisfied then
∇aT

a
b = 0 follows as an identify. Intuitively, the argument in

(16) is “Newton’s third law” in action.
Let us keep the focus on the stress-energy tensor (13). It

may be helpful to, first of all, highlight the single-fluid result
(simply dropping the chemical labels as there is only one
matter component);

Ta
b = 9δab + naµb. (17)

In this case we have na = nua and µa = µua so the expression
for the generalized pressure leads to

9 = 3 + nµ. (18)

We then have

Ta
b = (3 + nµ) δab + nµ uaub, (19)

and an observer moving along with ua would measure the energy

ε = uau
bTa

b = −3. (20)

This then leads to

nµ = 9 + ε, (21)

and a comparison with the standard Gibbs relation from
thermodynamics supports the interpretation of9 as the pressure,
p, in this case. This then leads to an interpretation of (14) as a
generalized Gibbs relation, appropriate for the multifluid setting
and analogous to (more phenomenological) relations introduced
in the context of extended irreversible thermodynamics (Jou
et al., 1993).

3. LINEAR DRIFT ARGUMENT

At this point it should be clear that the multifluid model extends
the familiar fluid logic and introduces features that we need to
get used to. On the one hand, this is important as it allows us to
describe the additional dynamical degrees of freedom of a given
problem—and the coupling between them. On the other hand,
the model may be too general for many situations of interest. In
particular, we have to keep track of the individual fluxes, or—if we
introduce a preferred observer—the different relative velocities
and the associated Lorentz factors. We may also not have a
good handle on the parameters we need to complete the model.
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In particular, the nuclear physics calculations that provide state-
of-the-art neutron star equations of state tend to assume that
the matter is in equilibrium. There are two aspects to this. First,
we may insist on chemical and thermodynamical equilibrium, as
appropriate if we want to determine a static matter configuration.
If we want to model a dynamical scenario—even for a single
matter component—we need to allow for the matter not being in
equilibrium, e.g., due to changes in the local temperature. This is
regularly done in modern numerical relativity simulations. The
multifluid problem adds a different dimension, as the relative
motion between the different components means that there is no
“obvious” matter frame with respect to which we can develop the
thermodynamics4.

In order to explain this point, and as a step toward a simplified
model, let us introduce an observer, associated with a four
velocity Ua such that (with the speed of light c = 1)

uax = γx(U
a + Va

x ), (22)

with

UaV
a
x = 0 and where γx =

(

1− V2
x

)−1/2
, (23)

provides the Lorentz factors associated with the different flows in
the system. We then have

nax = nxγx(U
a + Va

x ), (24)

and it is natural to introduce the number density measured byUa

as

n̂x = −Uan
a
x = nxγx . (25)

For the momenta we get

µx
a = gab



µ̂x(U
b + Vb

x )+
∑

y 6=x

A
xyn̂yW

b
yx



 , (26)

with the relative velocity

Wa
yx = Va

y − Va
x , (27)

and µ̂x = −Uaµx
a the chemical potentials measured by the

chosen observer.
The energy measured by the observer is [recall (17)]

ε̂ = UaU
bTa

b = −9 +
∑

x

(

Uan
a
x

)
(

Ubµx
b

)

= −9 +
∑

x

n̂xµ̂x.

(28)

4The issue of equilibrium is intricate. For a real system, we may consider

different equilibrium states, e.g., dynamical, chemical, and thermodynamical.

Strictly speaking, one might expect the true equilibrium to account for all these

aspects (see the recent discussion in Celora et al., 2020). However, there are

exceptions, like perfect superfluids where one may define an equilibrium state with

a relative flow (see for example Gavassino and Antonelli, 2020). To some extent,

the linear drift argument allows us to avoid this issue.

This seems like the intuitive generalization of (21), but if we
combine the result with (14) we see that we can no longer identify
−3 with the measured energy. Instead, we need

9 = 3 +
∑

x

n̂xµ̂x −
∑

x

n̂xV
a
x



µ̂xV
x
a +

∑

y 6=x

A
xyn̂yW

yx
a



 ,

(29)
which leads to

ε̂ = −3 +
∑

x

n̂xµ̂xV
2
x +

∑

x

∑

y 6=x

A
xyn̂xn̂yV

a
x

(

V
y
a − Vx

a

)

= −3 +
∑

x

n̂xµ̂xV
2
x −

1

2

∑

x

∑

y 6=x

A
xyn̂xn̂yW

2
yx. (30)

The quadratic terms complicate the thermodynamics (essentially
representing kinetic energy contributions relative to the chosen
frame). In order to make progress we need to keep track of
the entrainment and the relative velocities. From a formal point
of view, we have everything we need to solve the problem. In
particular, the prescription is Lorentz invariant and as such it
is expected to prevent causality violations. However, if we want
to make contact with a given model for the microphysics then
we have a problem. The relative flows (obviously) impact on the
energy of the system and this, in turn, affects the thermodynamics
and issues like chemical equilibrium. If the chemical potentials
are observer dependent—as they have to be in the general
case—then we need to decide how to implement the notion
of equilibrium (Celora et al., 2020). Who measures what? This
problem does not arise in standard approaches to dissipative
fluid dynamics, which tend to be based on formal expansions in
the deviation from equilibrium (Baier et al., 2008; Romatschke,
2010a,b) (see Bemfica et al., 2019; Kovtun, 2019; Gavassino et al.,
2020a for recent progress). Our problem is different: We need to
reconcile the non-linear multifluid model with our “incomplete”
description of the thermodynamics (Carter, 1991; Andersson and
Comer, 2015; Andersson et al., 2017b).

As a step toward applications, we may simplify the model by
linearizing in the relative flows—essentially neglecting quadratic
terms in Va

x (Andersson et al., 2017a). This may seem like a
drastic move, but it is a natural assumption because many of
the situations we are interested in involve a gentle and gradual
drift of one component relative to another rather than a vigorous
relativistic stream. Of course, we have to be careful, because if
we linearize the model we ignore the relative Lorentz factors, as
we have

uax ≈ Ua + Va
x . (31)

In effect, the model is no longer Lorentz invariant and we must
not extend it into the non-linear regime. However, if we take
appropriate care in this respect, the linear drift model has a
number of attractive features. In particular, it is easy to see that
the connection with thermodynamics becomes straightforward.
As γx ≈ 1, all linearly related observers agree on the number
densities and chemical potentials. We also get ε̂ ≈ ε ≈ −3
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(in essence, we can drop the hats on all the scalar quantities) and
the usual Gibbs relation applies. This is quite attractive.

Given the linear drift assumption, the equations of motion
(12) simplify to [after a bit of algebra and noting that the force
only has three independent components—recall that naxf

x
a = 0

follows from (12)—so we focus on the projection orthogonal to
Ua]

f xb = 0 H⇒ µx

(

Ua∇aUb + Va
x∇aUb+ ⊥a

b U
c∇cV

x
a

)

+ ⊥a
b ∇aµx + Vx

bU
a∇aµx

+ 2Ua
∑

y 6=x

∇[anyA
xyW

yx

b]
= 0, (32)

where

⊥a
b = δab + UaUb. (33)

For the stress-energy tensor we get (noting that the entrainment
contributions cancel!)

Tab = εUaUb + p ⊥ab +2
∑

x

nxµxU
(aVb)

x , (34)

where we have used the usual multi-component Gibbs relation to
define the pressure

p+ ε =
∑

x

nxµx. (35)

The result now looksmuchmore familiar. If we define the relative
momentum flux

qa =
∑

x

nxµxV
a
x , (36)

we get the final expression

Ta
b ≈ εUaUb+ ⊥a

b p+ 2U(aqb). (37)

We recognize this as the stress-energy tensor for a system with
a linearized heat flux (Andersson and Comer, 2007). Notably,
the “stress” terms associated with relative flows are removed by
the linearization.

In order to complete the description, we need the continuity
equations. It is easy to see that these become

(

Ua + Va
x

)

∇anx + nx∇a

(

Ua + Va
x

)

= 0. (38)

With this we have all the equations we need to consider specific
applications, notably without at this point having committed
ourselves to a specific observer. We could carry on working with
a general model, but this might get confusing so it is better
to consider specific examples. We will do this in three steps.
First we consider a superfluid system with two components,
then we turn to a problem with heat flux and a non-conserved
entropy current and finally we outline a model for charged
systems with resistivity. These problems have all been discussed
in the literature (see Andersson et al., 2017a for a closely related
discussion), so we do not expect to learn anything “new” here.
Rather, the point of the discussion is to highlight the common
features of the different models and consider the framework
required for more complex situations step by step.

4. SUPERFLUIDS

The variational multifluid model provides a natural framework
for discussing superfluid systems, both in the laboratory context
and for neutron stars. The minimum requirement of a workable
model is that it should represent the expected two-fluid dynamics
(e.g., the second sound and the presence of oscillation modes
that reflect the two degrees of freedom, see Andersson, 2021
for a recent discussion) and the anticipated entrainment effect
(which encodes the relative “mobility” of the two components).
As we will see, the variational model easily satisfies these criteria5.
Moreover, we can go further and consider the quantization of
vorticity—required for a superfluid to exhibit bulk rotation—
which is easily imposed on the canonical momentum (Carter and
Langlois, 1995) and the implications for the dynamics become
quite intuitive. Alternative descriptions are, of course, available
(see for example the seminal contributions by Israel (1981, 1982,
1985) or the more recent discussion in Carter and Khalatnikov
(1992) for the relativistic case or Andersson (2021) for a recent
summary of the corresponding Newtonian problem). We will
only comment on a few of the relevant aspects here.

First of all, note that (12) is automatically satisfied if the
momentum is given by the gradient of a scalar phase,µx

a = ∇aφx.
This implies that the fluid is irrotational6. However, for most
problems of interest one assumes an averaged vorticity such that
the normal fluid equations apply. The argument comes with the
caveat that the required (quantized) vortices may introduce new
features (like mutual friction and vortex elasticity; Andersson
et al., 2016; Andersson et al., 2020), but here we will focus on the
simplest model for bulk dynamics. The entrainment then plays a
central role, so it is natural to start by providing an interpretation
of this effect.

In order to make the example clear, let us focus on the two-
fluid model for neutron star cores, with a neutron superfluid
(x = n) coupled to a charge-neutral conglomerate of protons and
electrons (x = p). We then have the spatial components of the
proton momentum (relative to Ua)

µi
p = µpV

i
p + nnA

npWi
np. (39)

Suppose we let the observer ride along with the neutrons, in such
a way that V i

n = 0, then we can introduce the effective proton
mass as

µi
p =

(

µp − nnA
np
)

V i
p ≡ m∗

pV
i
p, (40)

[this argument is analogous to the Newtonian discussion in
Andersson (2021), see also Prix (2004)]. A similar argument for
the neutrons definesm∗

n and we see that we have

A
np =

1

np

(

µn −m∗
n

)

=
1

nn

(

µp −m∗
p

)

. (41)

5In fact, the first relativistic study of neutron star oscillations (Comer et al., 1999)

was carried out within this framework.
6Note that the superfluid vorticity is associated with the momentum rather than

the velocity of the fluid. Hence, the notion of an irrotational superfluid is subtly

different from the usual notion in fluid dynamics.
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In a neutron star core, the entrainment accounts for an important
aspect of the strong interaction; the flow of neutrons pulls some
protons along (and vice versa) (Comer and Joynt, 2003). The
notion of entrainment is also important for the dynamics of
the star’s inner crust, in this case due to Bragg scattering off
of the elastic lattice of nuclei (Chamel, 2006, 2012). However,
the presence of the nuclear lattice brings in additional aspects
which we will not go into here, see Andersson (2021) for a brief
summary. Also, in the general case, with a number of distinct
flows (or several entrainment mechanisms), the expression for
the effective mass is not as simple as (40)—we end up with an
effective mass matrix—but the concept still makes sense.

Turning to the dynamics of the system, an advantage of
considering superfluids is that both nuclear reactions and
resistive scattering are suppressed, so we can focus on the
non-dissipative problem with conserved fluxes. This is precisely
the setting for which the variational approach was intended
(Andersson and Comer, 2007), so we can make direct use of the
equations we have written down. Moreover, in many situations of
interest the relative flow between the components is small so the
linear drift assumption should apply.

When we consider the equations of motion, we need to make
further decisions. We can introduce a specific observer and we
may opt to work with different combinations of the equations.
It is worth explaining both of these points as different strategies
have been used in the literature and it is helpful to understand
how they are related.

First consider the momentum equations (32). We can decide
to represent the two dynamical degrees of freedom by the
equations for f na and f

p
a . This makes the mathematics fairly

“symmetric” in that the two fluids are treated on the same
footing. As an example, this strategy has been used in the context
of neutron star seismology (Comer et al., 1999; Andersson
et al., 2002; Lin et al., 2008). However, this approach does
not exactly reflect the anticipated dynamics. It is easy to argue
that the natural degrees of freedom are better described in
terms of the total flux and the difference between the velocities
(see Andersson, 2021 for a discussion and pointers to the
literature). The decoupling is not complete (apart from in
idealized situations) but we can opt to work with a set of
equations that is closer to the physics. This could, for example,
involve the sum of the two force equations—which we already
know is equivalent to the vanishing divergence of the stress-
energy tensor—and a weighted difference [such that the four
acceleration term in (32) is removed]. An example of this
procedure, in the context of charged plasmas, can be found in
Andersson (2012). A somewhat simpler option is to combine
the equations from the stress-energy tensor with one of the fluid
force equations to remove the four acceleration from the latter to
get a direct expression for the evolution of the chosen velocity
Va
x . We will outline this approach, which is close in spirit to

themore “traditional” approach to superfluid dynamics—notably
championed by Gusakov and collaborators in the context of
relativity (Gusakov and Andersson, 2006; Kantor and Gusakov,
2011)—in the following.

Before we work out the relevant details, it is useful to consider
the choice of observer. First we note that, if we add the continuity

equations (38) and define

nVa =
∑

x

nxV
a
x , (42)

with

n =
∑

x

nx, (43)

then we get

(

Ua + Va
)

∇an+ n∇a

(

Ua + Va
)

= 0. (44)

We can clearly simplify this by letting the observer be such that
Va = 0. This has the advantage that (44) reduces to the usual
single-fluid continuity equation, involving only n and Ua. In
the two-component example we are considering at the moment,
n = nn + np represents the total baryon number density and
we have

Va = 0 H⇒ Va
p = −

nn

np
Va
n H⇒ Wa

np =
n

np
Va
n . (45)

This relation allows us to work with equations forUa andVa
n . The

specific observer choice is analogous to the Eckart frame familiar
from discussions of dissipative relativistic fluid dynamics (Eckart,
1940).

Another option is to focus on the stress-energy tensor and
simplify life by making it as close to the perfect fluid as we can.

This involves introducing an observer such that

qa = 0 H⇒ Va
p = −

nnµn

npµp
Va
n H⇒ Wa

np =
p+ ε

npµp
Va
n . (46)

This choice leads to the well-known Landau-Lifshitz frame
(Landau and Lifshitz, 1959). Other combinations are, of course,
available. The bottom line is that we can use the observer to
“simplify” some aspects of the models (possibly at the cost of
complicating others...). It is also worth keeping in mind that the
remaining relative velocity, Va

n , refers to different observers and
therefore has slightly different “meaning” in the two cases.

Suppose we commit to one of these choices, say, (46). Then we
have the text-book equations of motion for a perfect fluid (as the
stress-energy tensor takes the same form):

Ua∇aε + (p+ ε)∇aU
a = 0, (47)

and

Ua∇aUb = −
1

p+ ε
⊥a

b ∇ap. (48)

This is nice, but... we are still dealing with a two-fluid problem.
Representing the second degree of freedom by the superfluid
neutrons, we also need

Ua∇aUb + Va
n∇aUb+ ⊥a

b U
c∇cV

n
a

+
1

µn

(

⊥a
b ∇aµn + Vn

bU
a∇aµn − 2Ua∇[a

p+ ε

µp
A

npVn
b]

)

= 0.

(49)
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Using (48) to remove the four acceleration from this equation, we
have (admittedly after some algebra...) an evolution equation for
the superfluid component

⊥a
b U

c∇c

[(

µn −
p+ ε

µp
A

np

)

Vn
a

]

+ µnV
a
n∇aUb

+ ⊥a
b

(

∇aµn −
µn

p+ ε
∇ap

)

−
p+ ε

µp
A

npVa
n ⊥c

b ∇cUa = 0. (50)

Recalling the effective mass from (41), we have

µn −
p+ ε

µp
A

np = µn −
p+ ε

npµp

(

µn −m∗
n

)

= µn −

(

1+
nnµn

npµp

)
(

µn −m∗
n

)

= m∗
n −

nnµn

npµp

(

µn −m∗
n

)

,

(51)

which illustrates how entrainment impacts on the inertia of
the superfluid.

It is now clear that the observer choice simplifying (48) is a
mirage. We still have to deal with the second degree of freedom
and the relevant momentum equation has the additional features
we expect, like entrainment. The fact that the problem remains
complex is also apparent when we consider the continuity
equations. We can take one of the two relations to be represented
by (47) (representing energy conservation), which is nice, but we
need to keep in mind that the model requires us to keep track of
two number densities, some combination of n, nn, and np or some
function of them, like ε. In the single fluid case, we know that

µ =
dε

dn
, (52)

so (47) can be written

µ∇a(nU
a) = 0, (53)

and the conserved flux implies the energy equation (and the other
way around). This does not follow in the two-fluid case where—at
the linear drift level—we have

∇aε = µn∇ann + µp∇anp, (54)

and it follows that, if we choose to work with n and nn (say) we get

µp∇a(nU
a)+ (µn − µp)∇a(nnU

a) = 0. (55)

This form is instructive because the second term vanishes if we
impose chemical equilibrium7, bringing us back to the single
fluid result. Of course, in the case of superfluids the nuclear
reactions required to establish equilibrium are suppressed so this

7Remember that the “proton” component here includes the electrons, so the

condition for beta equilibrium becomes µn = µp.

argument does not really help us. We need to keep track of the
second number density, which (in this example) is governed by

(

Ua + Va
n

)

∇ann + nn∇a

(

Ua + Va
n

)

= 0. (56)

Although there are many issues one might want to add to the
discussion, especially regarding vortices (Carter and Langlois,
1995; Gusakov, 2016; Andersson et al., 2020; Gavassino et al.,
2020b), we will move on at this point. The key aim was to
illustrate how the multifluid model can be adapted to account
for the superfluid degree of freedom and how this introduces
new microphysics parameters associated with entrainment [and
which have to be provided from nuclear physics, see Comer and
Joynt (2003), or Watanabe and Pethick (2017); Sauls et al. (2020)
for recent efforts in this direction]. The simple fact that the two-
fluid equations that result involve elements of choice is important
to keep in mind.

5. THE FLOW OF HEAT

Staying at the formal level, let us turn to a problem that
allows us to discuss how the model changes when the fluxes
are not conserved. The simplest reasonable problem in this
direction is that of heat flowing relative to matter (Carter,
1983, 1988; Andersson and Comer, 2010; Andersson and Lopez-
Monsalvo, 2011; Lopez-Monsalvo and Andersson, 2011). In
this case, the minimal model includes a distinct heat flow and
the connection to the second law of thermodynamics (entropy
must not decrease) which makes the problem dissipative. This
situation can (again) be represented by two components. We will
take them to be the matter (x = n) and the entropy (s) and
it would usually be the case that the associated heat flux is a
gentle drift so we should be able to make progress within the
linear approximation.

A key aspect of the heat-flux problem is that the entropy
current is not conserved. Letting sa = nas we have (for
an isolated system)

∇as
a = Ŵs ≥ 0, (57)

in accordance with the second law of thermodynamics8. Given
this, let us first ask a general question. What happens to the
multifluid formalism if the fluxes are not conserved? This forces
us to either adjust the variational argument (as explored in
Andersson and Comer, 2015; Andersson et al., 2017b; Celora
et al., 2020) or proceed in a more phenomenological manner.
Here, we will take the latter approach, essentially adding the main
dissipation mechanism of interest and not worrying too much
about the general problem. We simply note that if we have

∇an
a
x = Ŵx, (58)

in (16), then we must adjust the force equation in such a way that
(Carter, 1991; Andersson and Comer, 2015)

2nbx∇[bµ
x
a] + Ŵxµ

x
a = Rxa, (59)

8We will make the common assumption that the second law is to be imposed at

the local level, even though it is (strictly) a global statement relating to the total

entropy of the system.
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with
∑

x

Rxa = 0. (60)

and the constraint

Ŵx = −
1

µx

(

uaxR
x
a

)

. (61)

That is, the reaction rate determines the time component (in a
co-moving frame) of the resistivity Rxa [which, in turn, must be
included in (59) since the original force term is orthogonal to nax].

Let us now focus on a problem involving a single matter
component—letting nan = na, for simplicity, with the
corresponding chemical potential being µn = µ—and an
entropy component (from before) for which the chemical
potential is the temperature, so µs = T. At the linear drift level,
we then have the (familiar) thermodynamical relation

p+ ε = nµ + sT. (62)

It also follows that (57) becomes

Ua∇as+ s∇aU + ∇a

(
qa

T

)

= Ŵs, (63)

where we have introduced the heat flux (in the usual way)

qa = sTVa
s . (64)

Turning to the momentum of the thermal component, when we
allow for entrainment between matter and heat—this may seem
like an unusual idea, but let us go along with it and see where it
takes us—we have

µs
a = T

(

Ua + Vs
a

)

+A
snnWns

a , (65)

and we may introduce the effective mass for the thermal
component through

A
ns =

1

n

(

T −m∗
s

)

. (66)

This relates the entropy entrainment to the effective inertia of
heat, a notion that is expected to play an important role in
the relativistic heat problem (Herrera et al., 1997; Herrera and
Martínez, 1998).

So far, the results are straight translations of previous relations.
Moreover, opting—as in the superfluid case—to work in the
centre of momentum frame, we have

Wa
sn =

p+ ε

nµ
Va
s ≈

qa

sT
, (67)

(assuming that sT≪nµ, which seems likely to be the case in most
situations of interest). This means that we have

µs
a ≈ TUa +

[

T −

(

p+ ε
)

Asn

µ

]

qa

sT
≈ TUa +

m∗
s

sT
qa. (68)

In order to proceed, we need an expression for the resistivity,
Rax. Making use of the results from Andersson et al. (2017b)
we have—assuming that the reaction rates Ŵx and the resistivity
coefficientsRxy are provided by the microphysics,

Rxa = Ŵxµxu
x
a +

∑

y 6=x

R
xy(δba + Vb

xUa)W
yx

b
, (69)

for all material particles, along with the constraint on the entropy:

Rsa = −
∑

x6=s

Rxa. (70)

In the present context, with only two components and Ŵn = 0,
this leads to

TŴs = −uasR
s
a ≈ (Ua + Va

s )
∑

x6=s

Rxa = R
nsW2

ns ≥ 0. (71)

We see that the Rns = Rsn coefficient is required to be positive
by the second law of thermodynamics.

It is also useful tomake contact with the standard discussion of
the problem by introducing the thermal conductivity κ such that

Ŵs =
q2

κT2
H⇒ R

sn ≈
s2T

κ
. (72)

It follows that—as should have been expected—the entropy
creation rate Ŵs is quadratic in the relative velocity. Hence, the
corresponding contribution to the momentum equations should
be neglected at the linear drift level. This leaves only the resistive
contribution to the entropy momentum equation. In effect, we
only need to add a term to the right-hand side of (32) (where we
need to keep in mind that we divided through by an overall factor
of nx)

1

s
⊥a

b Rsa =
1

s
⊥a

b

[

ŴsT(Ua + Vs
a)+R

sn(δca + Vb
s Ua)W

ns
c

]

≈
1

s
R

snWns
b = −

qb

κ
. (73)

This means that we have an evolution equation for the heat flux:

⊥a
b U

c∇c

(
m∗

s

sT
qa

)

+
qa

s
∇aUb +

m∗
s − T

sT
qa ⊥c

b ∇cUa +
1

κ
qb

= − ⊥a
b

(

∇aT −
T

p+ ε
∇ap

)

. (74)

This model—which arises naturally in the multifluid
framework—helps explain the main features of the relativistic
heat problem. In the absence of heat flow the terms on the
right-hand side bring out the classic result (when combined with
the Tolman-Oppenheimer-Volkoff equations for hydrostatic
equilibrium) that the redshifted temperature is uniform
(Tolman, 1930). In effect, heat has weight. If we neglect the
terms involving Ua, we get the relation for the heat flux qa

required for a derivation of the equations used to describe the
gradual cooling of neutron stars (Andersson and Comer, 2007).
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In the general case, we have a telegraph-type equation—as in
extended irreversible thermodynamics (Jou et al., 1993)—with
the effective mass m∗

s regulating the thermal relaxation, which
is key to keeping the model causal and stable (Andersson and
Lopez-Monsalvo, 2011). Perhaps the main lesson of the exercise
is that it paid off to take the entropy entrainment seriously.

6. ELECTROMAGNETISM

The third problem we are going to consider, again from the two-
fluid point of view, introduces charged flows and the coupling to
electromagnetism. The marriage between electromagnetism and
the multifluid model is easy and comfortable (Andersson, 2012),
as should be expected given that both derive from an action
principle (Andersson and Comer, 2007). When we consider
the problem of charged flows in relativity, with the aim to
reach beyond text-book results, a minimal requirement is to
add resistivity to magnetohydrodynamics (Bekenstein and Oron,
1978; Palenzuela et al., 2009; Dionysopoulou et al., 2013; Wright
and Hawke, 2020). Essentially, we want to write down a version
of Ohm’s law that connects to the notion of the charge current as
arising from the relative flow between two components (Kandus
and Tsagas, 2008; Koide, 2009).

Starting from the usual assumption of minimal coupling,
the electromagnetic Lagrangian is built from the anti-symmetric
Faraday tensor;

Fab = 2∇[aAb], (75)

where Aa is the vector potential, and the electromagnetic
field couples to the matter flow through the charge current
ja (via a coupling term µ0j

aAa in the Lagrangian, where the
coupling constant µ0 is the magnetic permeability). In order
for this construction to be gauge invariant, the current must be
conserved. That is, if the model involves a number of charge
carriers, each with a charge qx per particle, we have the constraint

∇aj
a = 0, (76)

where

ja =
∑

x

jax =
∑

x

qxn
a
x. (77)

Clearly, this constraint is automatically satisfied when the
individual fluxes are conserved. If we account for reactions, as we
may want to do for neutron stars, we must impose overall charge
conservation

∑

x

qxŴx = 0. (78)

The coupling to the vector potential impacts on the matter
momentum in the fashion anticipated from text-book quantum
mechanism, and we have

µ̄x
a = µx

a + qxAa. (79)

Formally, this is the only change we need to make to the fluid
equations. As long as we change µx

a → µ̄x
a the individual force

equations (12) remain unchanged. Meanwhile, a variation of the
action with respect to the vector potential (keeping ja fixed!),
leads to the Maxwell equations

∇bF
ab = µ0j

a, (80)

completed by the symmetry relation

∇[aFbc] = 0. (81)

Finally, a variation with respect to the spacetime metric leads
to the electromagnetic contribution to the stress-energy tensor,
which satisfies

∇aT
ab
EM = jaF

ab ≡ −f bL , (82)

in turn, defining the Lorentz force, f bL . Basically, we may take the
view that the matter stress-energy tensor still takes the form from
(13) (in terms of the pure matter momenta) and that we have9

∇aT
ab
M = −∇aT

ab
EM = f bL , (83)

If we insist on separating the electromagnetic contributions from
the matter ones in this way, we end up with a new set of
momentum equations of form

2nbx∇[bµ
x
a] + Ŵxµ

x
a = jbxFab + Rxa − ŴxqxAa. (84)

Let us unpick the different contributions to (82) and (84), starting
with the electromagnetic terms. In order to help intuition, it may
be useful to introduce the (obviously observer dependent) electric
and magnetic fields, ea and ba [although it is obvious from (84)
that, if Ŵx 6= 0 we must also keep track of the vector potential,
see Baumgarte and Shapiro (2003) for the starting point for such
a formulation]. These are defined by

Fab = 2U[aeb] + ǫabcb
c, (85)

where ǫabc = Udǫdabc is associated with a right-handed tetrad
moving along with the observer (and noting that each field has
three independent components as Uaea = Uaba = 0). We also
have the charge current

ja = σUa + Ja , with JaUa = 0. (86)

That is, we have

σ = −Uaj
a =

∑

x

qxnx, (87)

and it is evident that—since they agree on the number densities—
all observers within the linear drift family must agree on the
charge density σ . This is important as it means that we can

9This separation follows from the assumption of minimal coupling. It would not be

possible in a general polarized medium, where the presence of the electromagnetic

field affects the matter properties.
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consistently impose the usual condition of charge neutrality10

simply by setting σ = 0. This then leads to

∇aJ
a = 0, (88)

while the Lorentz force takes the form

f bL = −jaF
ab =

(

Jae
a
)

Ub + ǫbacJabc. (89)

Meanwhile, for the individual momentum equations (84)
we need

jbxFab = qxnx

[

ea + Ua

(

Vb
x eb

)

+ ǫabcV
b
xb

c
]

. (90)

Finally, we need the resistivity Rxa, which is given by (69) (with µ̄x
a

replacing µx
a). That is, in (84) we need

Rxa−Ŵxµ̄
x
a =

∑

y 6=x

R
xy
(

δba +Vb
xUa

)

W
yx

b
+Ŵx

[

µ̄x

(

Ua +Vx
a

)

− µ̄x
a

]

≈
∑

y 6=x

(

R
xy − nyŴxA

xy
)

W
yx
a − qxŴx(⊥

b
a +Vx

aU
b)Ab. (91)

In order to make the discussion more specific, let us focus on the
simplest neutron star setting11, i.e., a four-component system,
with neutrons (n), protons (p), electrons (e), and entropy (s).
This system reduces to two fluid degrees of freedom if we allow
the electrons to drift relative to the other components (which are
taken to be locked12), thus providing the required charge current.
In effect, if we take Va

n = Va
p = Va

s 6= Va
e then the charge current

is given by (assuming local charge neutrality and using qe = −e,
which should not be confused with the local electric field ea)

Ja = eneW
a
pe H⇒ Va

p = Va
e +

1

ene
Ja. (92)

We also have the condition for the center of momentum frame:
∑

x

nxµxV
a
x = 0 H⇒

(

nnµn + npµp + sT
)

Va
p + neµeV

a
e = 0,

(93)
where local charge neutrality leads to np = ne. Putting things
together, we have

Va
e = −

(

1−
neµe

p+ ε

)
Ja

ene
≈ −

Ja

ene
, (94)

where the approximation is valid as long as neµe≪p+ε. We will
assume that this is the case13.

10Whether this condition should be expected to hold on the different scales of the

problem is a different question...
11Focusing on the star’s interior, as the exterior near-vacuum conditions are

obviously different.
12This may not be a fair reflection on the actual physics since the electrons may be

the main entropy carriers in the system, but we could easily change the model to

either lock the entropy to the electrons or even allow for the heat to drift relative

to all matter components. All that happens is that the equations get a little bit less

intuitive.
13This assumption should be (moderately) reasonable for neutron stars, but it is

useful to keep in mind thatµe≫me in high density neutron star matter, so one has

to be a little bit careful with the usual argument that the “electron is light compared

to the proton.”

We now have all the ingredients we need to write down the
momentum equation for the electrons (for which we ignore the
possible entrainment coupling14, leading to Aex = 0). Adapting
the previous results, we get

⊥a
b U

c∇c(µeV
e
a)+ µeV

a
e∇aUb+ ⊥a

b ∇aµe −
µe

p+ ε
⊥a

b ∇ap

= −e
(

eb + ǫbacV
a
e b

c
)

+
1

en2e

∑

y 6=e

R
eyJb+

eŴe

ne

(

⊥a
b −

JbU
a

ene

)

Aa.

(95)

Assuming that the electron flux is conserved (Ŵe = 0), defining
the total resistivity

R =
∑

y 6=e

R
ey , (96)

and introducing the electro-chemical field (Blandford et al., 1983;
Andersson et al., 2017a)

E
a = ea +

1

e
⊥ab

(

∇bµe −
µe

p+ ε
∇bp

)

, (97)

we have

Eb−
1

ene
ǫbacJ

abc−
R

e2n2e
Jb =⊥a

b U
c∇c

(
µe

e2ne
Ja

)

+
µe

e2ne
Ja∇aUb.

(98)
In general, this dynamical equation for the charge current
complements the equation for total energy-momentum
conservation. If the latter is taken from (83) and we work in
the centre of momentum frame (as we have assumed), then Tab

M
notably has the perfect fluid form. This supports the logic often
taken as starting point for relativistic magnetohydrodynamics
in the literature, but it is evident that this assumption strictly
depends on the choice of observer (or may only be approximately
true; Andersson et al., 2017a).

At this point, the problem still has two distinct degrees of
freedom, represented by Ua and Ja, both governed by dynamical
evolution equations. In essence, the model retains the underlying
plasma properties. To simplify things, one would typically start
by ignoring the right-hand side of (98) (essentially the electron
inertia). This leads to a version of Ohm’s law:

Eb −
1

ene
ǫbacJ

abc ≈
R

e2n2e
Jb. (99)

If we further ignore the “battery terms” [the gradients in (97)]
and the Hall term in (99) we are left with

eb ≈ R̂Jb, (100)

where we have defined R̂ = R/e2n2e . This result should
be familiar.

14Note that we ignore the argument we just made for the relevance of entropy

entrainment here, which may seem somewhat inconsistent.
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It is obviously rewarding to see that we arrive at the expected
result from the multifluid model, but the most important insights
relate to the steps involved in the derivation. Depending on the
degree of accuracy we require, we can undo the steps one by
one and check if the assumptions are warranted for different
problems of interest.

Finally, in the ideal limit—when the resistivity vanishes so we
have a perfect conductor (with R̂ = 0)—we see that the electric
field vanishes in the fluid frame. This is the usual assumption of
magnetohydrodynamics. Of course, we have to be mindful of the
chosen frame and the assumption that the other contributions to
(98) can all be neglected. Again, the usual result is most likely only
approximately true.

7. RADIATION HYDRODYNAMICS

So far we have considered three models relating to a range
of observed neutron star phenomena: pulsar glitches explored
through radio timing and considered as possible gravitational-
wave sources (superfluid hydrodynamics), neutron star cooling
observed by x-ray satellites (heat flux) and a range of magnetic
field related phenomena, from explosive dynamics to the
gradual long-term field evolution over thousands of years
(resistive magnetohydrodynamics). These examples demonstrate
the versatility of the multifluid formalism, but (at least) one
interesting problem remains to be contemplated: the coupling
between matter and radiation. This is a crucial issue for both
supernova core collapse (where neutrinos are thought to provide
the key explosion mechanism) and neutron star mergers (where
the merger remnant heats up to temperatures similar to those
reached in high-energy colliders). The problem of neutrino
transport is extremely challenging (Mezzacappa et al., 2020), but
it has one simple and intuitive limit. At high temperatures, the
neutrinos are trapped by the matter and they may have a short
enough mean-free path that we can meaningfully describe them
as a fluid (Pomraning, 1973; Hsieh and Spiegel, 1976). Without
going into the fine print of the problem, it seems useful to ask to
what extent we can expect to make progress with such a strategy.
In essence, we want to consider if the radiation problem can be
meaningfully considered from the multifluid perspective.

At a glance, the idea seems promising. Suppose we consider
the simple case of a single photon—the logic is similar for
neutrinos, but in that case we also have to consider lepton
number conservation—then we have a radiation stress-energy
tensor

Tab
R =

(
h

ν

)

kakb, (101)

where h is Planck’s constant, ν is the photon frequency and

ka = ν(Ua + la), (102)

is null, so lal
a = 1. The vector la provides the direction of

propagation relative to the observer Ua. It is easy to see that this
leads to the anticipated energy

ε = UaUbT
ab
R = hν. (103)

We can obviously rewrite the stress-energy tensor as

Tab
R = εUaUb + 2U(aq

b)
R + Pab, (104)

with

qaR = εla, (105)

and

Pab = εlalb. (106)

Viewing these results from a fluid perspective, it is clear that
(104) reminds us of, for example, (37)—after all, it has the form
of a general stress-energy tensor. The comparison is, however,
misleading. For example, in the case of radiation, we do not
have—at least not yet—an identifiable “drift velocity” that can be
linearized. A photon moves at the speed of light regardless of the
observer. There may be a meaningful concept of “collective drift,”
but this is not evident yet.

Formally, we can always assume minimal coupling between
matter (a perfect fluid, say) and radiation in such a way that

∇aT
ab = 0 H⇒ ∇aT

ab
M = −∇aT

ab
R ≡ Gb. (107)

This is obvious, as is the fact that we run into trouble if we
try to bring the variational multifluid formalism to bear on the
problem. The variational approach builds on the conservation of
fluid element worldlines (Andersson and Comer, 2007). Because
the radiation is null, this argument does not apply (in the
free-streaming limit). Of course, the logic should work for
neutrinos (which have a small—but nevertheless—rest mass)
and one might also make progress by thinking of the radiation
as associated with an effective mass (as we did in the case
of heat, where the entropy is also massless, strictly speaking).
Intuitively, the argument should work for systems with “trapped”
radiation, so the objection may be more a formality than a real
stumbling block. One might, for example, consider a picture
where the interaction withmatter (perhaps through some form of
entrainment?) endows the radiation with an effective mass. This
effective mass would then have to vanish in the free streaming
limit (which inevitably becomes singular given that ka is null, but
one might be able to make this workable).

The real question is not if we can build a multifluid model
for the radiation problem. Rather, we might want to ask if
we should. In order for the effort to make sense, we would
have to learn something new by going in this direction. This
is where we seem to run into trouble. In a realistic setting,
we are not dealing with a single photon with a well-defined
direction of propagation. Instead we have an energy/momentum
spectrum, with a distribution typically governed by Boltzmann’s
equation. The formalism for this is well-developed and the issues
associated with it are well-understood (in the context of kinetic
theory). The actual challenge is computational (Kotake et al.,
2012; Mezzacappa et al., 2020), given the added dimensions
associated with the radiation phase space. This is why practical
implementations (Stone et al., 1992; Shibata and Sekiguchi, 2012;
Skadowski et al., 2013; Anninos and Fragile, 2020) typically
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involve simplifying the problem by integrating out momentum
aspects, leading to a well-defined moment expansion. Truncating
this expansion, we arrive at a radiation stress-energy tensor
of form (104), which means that the formal fluid comparison
“makes sense” (Gavassino et al., 2020c) but in reality we do not
learnmuch from this. The key point is that we do not have a single
relative velocity that can be used to identify the “second fluid” in
the problem. Instead, we have a situation where different pieces
(say, frequency bins) are associated with separate momentum
contributions, leading to the multi-group approach to numerical
simulations. We could always think of this as a souped up
multifluid problem, with different “fluids” representing different
frequency bins, but there hardly seems to be any merit to this
idea. It certainly does not provide us with anything that the
current technology does not already consider. In essence then,
the coupled problemmatter and radiation does not appear to be a
multifluid problem, at least not in a meaningful sense. There may
be a strongly coupled limit where the idea applies, but this seems
somewhat artificial (as we cannotmodel the transition to the free-
streaming limit) and it does not really help us make progress on
the problem we actually need to solve.

8. CONCLUDING REMARKS

This survey was written with the aim of providing a (somewhat
introductory) perspective on the ongoing effort to develop
a flexible formalism for relativistic multifluid systems. The
connection between this (more formal) endeavor and the
need for a reliable description of the physics required for
multimessenger astronomy is fairly clear. A number of relevant
physics scenarios require multifluid aspects to be taken into
account. As illustrations, we considered three settings: (i) the
problem of superfluid dynamics, (ii) the issue of heat flow,
and (iii) the combination of charge currents and resistivity
leading to Ohm’s law. In each case we demonstrated that
the multifluid approach provides valuable insight, motivating
concepts (like the effective inertia of heat) which have often
been introduced phenomenologically. The simple fact that the
different problems are described within a single over-arching
framework is important as it makes a combination of the
problems fairly straightforward (Andersson et al., 2017a). For
example, one can easily formulate a three-fluid model to
demonstrate the thermo-electric effect or consider how the onset
of superfluidity impacts on the evolution of a neutron star’s
magnetic field. These—and many other—interesting problems
are now within reach.

This is rewarding, but the job is not done. Neutron stars are
complex systems, and the multifluid model is not (quite) able
to cover all the relevant aspects. Most notably, many scenarios
of interest involve dissipation and we also need to improve the
description of the coupling between matter and radiation (like
photons or neutrinos). In this survey, we only tried to explain
why the latter is not a multifluid problem (at least not in the
usual sense). The argument is fairly obvious and may seem rather

dismissive. This was, however, not quite the intention. The aim
was to argue that the fluid approach to radiation will always
be limited and to suggest that the multifluid logic is only truly
useful if it brings new perspective. The three models we discussed
provide such insights while the consideration of the radiation
problem does not (yet) do so. There is, of course, scope for
progress in this direction. We may just have to dig deeper.

While the variational framework for multifluid systems is
mature and covers a number of aspects with (more or less)
immediate importance for astrophysical applications, a number
of issues require further thought. This involves both formal
aspects and applications. For example, on the formal side, it
would be interesting to extend existing work on elasticity (see
Andersson and Comer, 2007 for a summary) to account for
plastic flow and viscoelasticity and consider the impact of the
superfluid neutron component that is present in the inner crust of
a neutron star. This formal development then has an immediate
application, as one may consider the impact of the gradual
superfluid decoupling (as the star cools) on the evolution of a
neutron star’s magnetic field. This would be naturally phrased
as a three-fluid problem. Of course, we also need to consider
what is calculable and what is not (given our understanding of
the physics). In particular, we need to make sure that the models
remain grounded in realistic microphysics. For any problem
involving neutron star crust dynamics, the entrainment (Chamel,
2006, 2012) is expected to play an important role but a number
of related issues remain (somewhat) unsettled (see Watanabe
and Pethick, 2017; Sauls et al., 2020). The context of elasticity
is, of course, just one of many possible future directions. The
framework we have outlined should be flexible enough to cope
with pretty much anything we choose to throw at it.
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