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ABSTRACT 
 

    The waveguide finite element (WFE) method is a numerical method to investigate wave 

motion in a uniform waveguide. Numerical issues for the WFE method are specifically 

illustrated in this report. The method starts from finite element mass and stiffness matrices of 

only one element of the section of the waveguide. The matrices may be derived from 

commercial FE software such that existing element libraries can be used to model complex 

general structures. The transfer matrix, and hence the eigenvalue problem, is formed from the 

dynamic stiffness matrix in conjunction with a periodicity condition. The results of the 

eigenvalue problem represent the free wave characteristics in the waveguide. This report 

concerns numerical errors occurring in the WFE results and proposing approaches to improve 

the errors. 

    In the WFE method, numerical errors arise because of (1) the FE discretisation error, (2) 

round-off errors due to the inertia term and (3) ill-conditioning. The FE discretisation error 

becomes large when element length becomes large enough compared to the wavelength. 

However, the round-off error due to the inertia term becomes large for small element lengths 

when the dynamic stiffness matrix is formed. This tendency is illustrated by numerical 

examples for one-dimensional structures. 

    Ill-conditioning occurs when the eigenvalue problem is formed and solved and the resulting 

errors can become large, especially for complex structures. Zhong’s method is used to 

improve the conditioning of the eigenvalue problem in this report. Errors in the eigenvalue 

problem are first mathematically discussed and Zhong’s method validated. In addition, 

singular value decomposition is proposed to reduce errors in numerically determining the 

eigenvectors. For waveguides with a one-dimensional cross-section, the effect of the aspect 

ratio of the elements on the conditioning is also illustrated. For general structures, there is a 

crude trade-off between the conditioning, the FE discretisation error and the round-off error 

due to the inertia term. To alleviate the trade-off, the model with internal nodes is applied. At 

low frequencies, the approximate condensation formulation is derived and significant error 

reduction in the force eigenvector components is observed. 

    Three approaches to numerically calculate the group velocity are compared and the finite 

difference and the power and energy relationship are shown to be efficient approaches for 

general structures. 
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1. INTRODUCTION 

 

 

1.1 Introduction 

The waveguide finite element (WFE) method is a useful method when the dynamic 

behaviour of a uniform structure is of concern. The method involves the reformulation of the 

dynamic stiffness matrix, which includes the mass and stiffness matrices of a section of the 

structure, into the transfer matrix. Structural wave motion is expressed in terms of the 

eigenvalues and the eigenvectors of this matrix and these represent the wavenumbers and the 

wave modes respectively. However, several numerical difficulties arise when the problem is 

reformulated from a conventional finite element (FE) model. The aim of this report is (1) to 

identify and quantify the potential numerical problems and (2) to suggest alternative ways of 

determining the wave properties of a structure such that the numerical errors are reduced. 

 

1.2 Overview of Periodic Structure Analysis 

Many structures have uniformity or periodicity in certain directions. To analyse such 

structures, Floquet theory [1], which is one of the basic theories of wave propagation in 

periodic structures, or the transfer matrix method e.g. [2] can be used. The basic idea is that 

the propagation properties of waves in a periodic structure can be obtained from the 

propagation constants or by the transfer matrix. Although most of the early papers give the 

analytical dispersion relationship for relatively simple structures [3,4], numerical calculation 

is generally needed for complex structures. For complex structures, the finite element method 

(FEM) may be applied to calculate the propagation constants [5,6,7]. The transfer matrix is 

formed from the mass and stiffness matrices of discretised elements and the wave propagation 

characteristics are then described by the eigenvalues and eigenvectors of the transfer matrix. 

The WFE method is based on this idea and several applications can be found in the 

literature. Early work can be found in [8] which investigated the propagation and stop band 

for periodic structures consisted from a beam and a plate. The forced response to random 

pressure fields was also presented. Thompson [9] and Gry et al [10,11] applied the method to 

analyse railway vibration, and Houillon et al [12] investigated wave motion in a general thin-

shell structure. Duhamel et al [13] and Mace et al [14] discussed the accuracy of numerical 
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results for simple structures and Hinke et al [15] analysed wave properties in a sandwich 

panel. Mencik [16] formulated the problem of wave coupling between two general 

substructures and Maess [17] analysed a fluid filled pipe using an eigenpath analysis. One of 

the advantages of the WFE method is the computational cost [18] since this method needs 

information drawn from only one small section along the direction which the waves 

propagate. Another possible way of analysing such structures is the spectral finite element 

method [19] which uses a special shape function to represent the motion of a cross-section of 

the structure. However, this method needs special shape functions and element matrices to be 

developed for different wave types.  

The WFE method needs only the conventional mass and stiffness matrices of a structure. 

Since the standard FE-package can be utilised to generate the stiffness and mass matrices, the 

full power of existing element libraries can be employed. In addition, since the wave 

characteristics are calculated for a given frequency, nearfield and oscillating decaying waves, 

which might be important for the system response near excitation points or discontinuities, 

can be effectively included. The forced response can be calculated using the wave approach 

(e.g. [20]). 

 

1.3 Outline of the Report 

The wave motion could be derived from the eigenvalues and eigenvectors of the transfer 

matrix. However, numerical difficulties may be encountered when solving the eigenvalue 

problem. Most papers mention the matrix conditioning of the eigenvalue problem 

[9,10,11,13,14,17] but do not discuss many details.  

In this report, only free wave propagation is described and, in particular, numerical issues 

are discussed. First, the WFE formulation is briefly introduced and the conditioning of the 

eigenvalue problem is described. The application of the singular value decomposition (SVD) 

to determine the eigenvectors is proposed. Numerical errors in the eigenvalue problem are 

mathematically discussed and potential errors in the WFE method are enumerated. Numerical 

examples are presented for simple waveguides where the analytical solutions are available. 

The accuracy and validity of the results using different algorithms and FE models are also 

discussed. All calculations are performed in MATLAB. Finally some conclusions are drawn.  
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2. OVERVIEW OF THE WAVEGUIDE FINITE 

ELEMENT METHOD 

 

 

2.1 Introduction 

    In this section, a brief overview of the WFE formulation is given. A small section of a 

structure is first modelled using FE. From the dynamic stiffness matrix of the elements the 

transfer matrix is formed. The transfer matrix describes the wave motion through the element 

and the eigenvalues and the eigenvectors of the resulting eigenvalue problem represent the 

wavenumbers and the wave modes in the structure.  

 

2.2 Finite Element Formulation of a Structural Element 

    The equation of motion for uniform structural waveguides can be expressed as 

 + + =Mq Cq Kq f�� �  (2.1) 

where M, K, and C are the mass, stiffness and damping matrices respectively, f represents the 

loading vector and q is the vector of the nodal displacement degrees of freedom (DOFs). 

Throughout this report, time harmonic motion j te ω  is implicit. Equation (2.1) then becomes 

 ( )2 jω ω= − + + =Dq M C K q f  (2.2) 

where D is the dynamic stiffness matrix. The nodal forces and DOFs are decomposed into 

sets associated with the left (L), right (R) cross-section and interior (I) nodes. For the case 

where there are no external forces on the interior nodes, equation (2.2) can be partitioned into 

 

LL LR LI L L

RL RR RI R R

IL IR II I

     
     =     
          

D D D q f

D D D q f

D D D q 0

 (2.3) 

which may be expressed as 

 
MM MI M M

IM II I

     
=     
    

D D q f

D D q 0
 (2.4) 

where the subscript M represents master nodes containing the left and right cross-section 

nodes. The second row of equation (2.4) leads to 
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 1

I II IM M

−= −q D D q  (2.5) 

such that 

 
1

M

M M

I II IM

−

   
= =   −   

q I
q Rq

q D D
 (2.6) 

where I is the identity matrix. Using the matrix R in equation (2.6), equation (2.4) becomes 

 T MM MI

M M

IM II

 
= 

 

D D
R Rq f

D D
. (2.7) 

Expanding equation (2.7) leads to 

 1

MM MI II IM M M

− − = D D D D q f  (2.8) 

such that DOFs associated with internal nodes can be eliminated. 

    If the group velocity is calculated from the power flow and energy relationship stated later 

in this section, the form of equation (2.7) is useful to derive the reduced ,M K  and C  

matrices. Putting these matrices instead of D into equation (2.7) readily gives the reduced 

matrices. The reduced mass matrix is, for example, 

 T 1 1 1 1

MM MI II IM MI II IM MI II II II IM

− − − −= − − +R MR M D D M M D D D D M D D . (2.9) 

    After removing internal DOFs, equation (2.2) for the section can be written as 

 
LL LR L L

RL RR R R

     
=     

     

D D q f

D D q f
. (2.10) 

For a uniform section, the following relationships hold: 

 T T T, ,LL LL RR RR LR RL= = =D D D D D D  (2.11) 

and 

 sgn , sgnRRij LLij RLij LRij= ⋅ = ⋅D D D D  (2.12) 

where T⋅  indicates the transpose and the signs in equations (2.12) depend on whether DOFs 

at the element interface are symmetric or anti-symmetric [9]. 

 

2.3 Wave Basis 

    Wave propagation can be described by the transfer matrix. The transfer matrix, hence the 

eigenvalue problem, can be formulated from the dynamic stiffness matrix. The eigenvalues 

and eigenvectors represent the wavenumbers and the wave mode shapes.  
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2.3.1 Transfer Matrix 

The transfer matrix can be defined on the basis of the continuity of displacements and the 

equilibrium of forces of adjacent elements as [1] 

 
L R

L R

   
=   −   

q q
T
f f

 (2.13) 

where T is the transfer matrix. The transfer matrix can be formed from the elements of the 

dynamic stiffness matrix as [13] 

 

1 1

1 1

LR LL LR

RL RR LR LL RR LR

− −

− −

 −
=  

− + − 

D D D
T

D D D D D D
. (2.14) 

From a periodicity condition [1], free wave motion over the element length ∆  is described in 

the form of an eigenvalue problem such that 

 λ
   

=   
   

q q
T
f f

.  (2.15) 

Although equation (2.15) formulates the basic principle for the WFE method, this eigenvalue 

problem is likely to be ill-conditioned for general problems because of the ill-conditioning of 

LRD  and the fact that the elements of the eigenvector range over a large magnitude. The 

conditioning of the eigenvalue problem is described in Section 3. 

 

2.3.2 Eigenvalues and Eigenvectors 

The eigenvalues iλ  in equation (2.15) relate to wave propagation over the distance ∆  such 

that [1] 

 ijk

i eλ − ∆=  (2.16) 

where ik  represents the wavenumber for the ith wave. The wavenumber can be purely real, 

purely imaginary or complex, associated with a propagating, a nearfield (evanescent) or 

oscillating decaying wave respectively. The eigenvector corresponding to the ith eigenvalue 

can be expressed as 

 
i

i

i

 
=  
 

q
Φ

f
. (2.17) 

The eigenvector represents a wave mode and contains information about both the 

displacements and the internal forces. For uniform waveguides, there exist positive and 

negative going wave pairs in the form of ijk

i eλ ± ∆± =  and the eigenvalues and associated 
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eigenvectors are expressed as ( ),i iλ +Φ  and ( )1 ,i iλ −Φ . Positive-going waves are those for 

which the magnitude of the eigenvalues is less than 1, i.e. 1iλ <  or if 1iλ = , such that the 

power is positive going, i.e. { } { }H HRe Im 0ω= >f q f q�  [13,14] where H⋅  represents the 

complex conjugate transpose or Hermitian.  

 

2.4 Group Velocity 

The group velocity is the velocity at which the wave propagates. The group velocity for the 

ith wave is defined by (e.g. [21]) 

 gi

i

c
k

ω∂
=
∂

. (2.18) 

There are several approaches to the numerical calculation of the group velocity.  

    The finite difference method calculates the group velocity from a first order approximation 

as 

 
( )

( ) ( )

( ) ( )

1 1

1 1

n n
n

gi n n

i i

c
k k

ω ω+ −

+ −

−
=

−
 (2.19) 

where n-1, n, n+1 are consecutive discrete frequencies. Other definitions for equation (2.19) 

are possible. Once the dispersion relationship is determined, the group velocity can be 

obtained.    

    Another approach for the group velocity is in terms of the power and energy as [21] 

 
,

i
gi

tot i

P
c

E
=  (2.20) 

where P is the time average power transmission thorough the cross section of a waveguide 

and Etot is the total energy density. These values are given by [14,21]  

 { } { }H H1
Re Im

2 2
i i i i iP

ω
= =f q f q� . (2.21) 

and 

 
{ } { } { }

, , ,

2
H H H

, ,

,

1 1
Re Re , Re

4 4 4

tot i k i p i

k i i i i i p i i i

E E E

E E
ω

= +

= = − =
∆ ∆ ∆

q Mq q Mq q Kq� �
 (2.22) 

where Ek,i and Ep,i represent the kinetic and potential energy densities for the ith wave. The 

dissipated power follows from the imaginary part of K and/or the damping matrix C.  
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In addition, the group velocity could be determined directly by differentiating the 

eigenproblem [22]. The group velocity can be expressed as 

 
21

2
gi

i i

c
k k

ω ω
ω

∂ ∂
= =
∂ ∂

 (2.23) 

and 2k ω∂ ∂  is found from the differentiation of the eigenvalue problem (2.15) such that 

 
( )

( ){ }
2 iλ

ω
∂

− =
∂

T I Φ 0 . (2.24) 

Expanding equation (2.24), using equations (2.16), (2.23) and premultiplying by the left 

eigenvector iΨ  leads to 

 
( )2

0
2

i
i i i

kj
λ

ω ωω

 ∂∂ ∆
 + =
 ∂∂ 

Ψ T I Φ . (2.25) 

Recalling equation (2.14), noting the differentiation of the matrix inverse [23], 

( )
1 1 1

2 LR LR LR LRω
− − −∂
= −

∂
D D M D , ( )2ω∂ ∂T  in equation (2.25) can be evaluated as 

 
( )

1 1 1 1 1

1

1 1 12

1 1 1

LR LR LR LL LR LL LR LR LR

RL RR LR LL

RR LR RR LR LR LR

RR LR LR LR LL RR LR LL

ω

− − − − −

−
− − −

− − −

 − +
 ∂

= − + −∂  − 

D M D D D M D M D

T M M D D
M D D D M D

D D M D D D D M

. (2.26) 

From the above equations the group velocity is given by 

 

( )2

2

i i i
gi

i i

j
c

λ
ω

ω

∆
= −

∂

∂

Ψ IΦ

Ψ TΦ

. (2.27) 

    Three formulations of the group velocity have been introduced. The accuracy of each 

approach is discussed later in this report. 
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3. NUMERICAL ISSUES AND 

IMPLEMENTATION 

 

 

3.1 Introduction 

    In this section, the conditioning of the eigenvalue problem is illustrated. Numerical errors 

occurring in the eigenvalue problem are mathematically explained and the conditioned 

eigenvalue problem is introduced. In particular, the singular value decomposition (SVD) is 

applied to reduce errors for numerically determining the eigenvectors. Numerical errors in the 

WFE method are then enumerated.  

 

3.2 Conditioning of the Eigenvalue Problem 

    The eigenvalue problem was formulated using the transfer matrix (2.15). However, the 

results from the eigenvalue problem might be inaccurate. In this section the conditioned 

eigenvalue problem is introduced and SVD application is proposed to reduce numerical 

inaccuracies for determining the eigenvectors. 

 

3.2.1 Mathematical Background of Numerical Errors in the 

Eigenvalue Problem 

    Numerical errors occur (1) when the eigenvalue problem is formulated and (2) when the 

eigenvalue problem is solved. When the eigenvalue problem (2.14) is formulated, numerical 

errors can arise predominantly from the matrix inversion. The maximum resulting errors for 

the matrix inversion 1−A  can be of the order of ( )ε κ⋅ A  where ε  is the machine precision 

and 

 ( ) 1

max minκ σ σ−= =A A A  (3.1) 

is the condition number [24], ⋅  is the 2-norm and, maxσ  and minσ  are the largest and 

smallest singular values. For general matrices, the matrix can be ill-conditioned if there are 

comparatively large numbers on the off-diagonal elements, e.g.[24,25]. When the transfer 
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matrix approach (2.15) is formed, 1

LR

−
D  should be calculated which in general might be ill-

conditioned. This causes numerical errors when the eigenvalue problem is formed.  

    Next, numerical errors occurring in the solution of the eigenproblem are discussed. The 

matrix for the eigenvalue problem in the WFE method is square, complex and non-symmetric. 

For such matrix Schur factorisation is known to be most useful in numerical analysis because 

all matrices, including defective ones, can be factored in this way [24]. Major software 

packages such as MATLAB and Mathematica use Schur factorisation for solving such 

eigenvalue problems.  

    Many different approaches for assessing the error bounds on the computed eigenvalues and 

eigenvectors have been proposed, e.g. [26,27]. A well-known estimate for the error bound is 

given by Gerschgorin’s theorem [24]. However, this theorem usually gives a large error 

bound for an ill-conditioned matrix. More precisely, the following discussion holds for Schur 

factorisation [25].  

    When the eigenvalue problem λ=AΦ Φ  or H Hλ=Ψ A Ψ  is solved using Schur 

factorisation, the matrix A is factorised into the form H = +Q AQ D N  where Q  is unitary, D  

is diagonal and N  is strictly upper-triangular [25]. The resulting errors for the eigenvalue 

problem are estimated from ( )κ Q  or N  [25]. If ( )κ Q  is large then the eigenvector matrix 

is ill-conditioned. If the eigenvectors are far from orthogonal to each other, the results may 

contain large errors [24,25]. Since the eigenvectors in the transfer matrix approach (2.15) 

contains both the displacement and force components and usually each eigenvector is far from 

orthogonal to each other, ( )κ Q  is likely to be issue for general cases. A large value for N  

means that A  is far from normal, e.g. strongly asymmetric [25]. Such eigenvalue problems 

are likely to have a large error in the computed results, which is the case for the transfer 

matrix approach stated in equation (2.14). 

    Specifically, for 5n ≥  for the n n×  matrix A, there is no analytical expression for the roots 

of the characteristic polynomial so that the eigensolver must be iterative [24]. For a matrix of 

large size, conditioning becomes more important for errors when Schur factorisation is 

applied to solve the eigenvalue problem. In this report, the matrix size for a rod and a beam is 

2, 4n =  respectively such that conditioning effects are small. However, the conditioning 

becomes important for a plate example as the matrix size becomes large. 

    It is worth noting that if the eigenvalue problem is ill-conditioned, complex conjugate 

eigenvalues occur as numerical artefacts [25] if 
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( )2
1

1is λ
≤

−

Ε

A
 (3.2) 

where Ε  is the perturbation matrix incurred from the round-off error because of the finite 

digit arithmetic and ( )is λ  is the sensitivity of the eigenvalue with respect to the perturbation, 

given by [25] 

 ( ) ( ) ( ) ( )H
1 1i i is λ λ λ= ≥Ψ Φ  (3.3) 

with 1i i= =Φ Ψ . Under the condition (3.2), two distinct but similar eigenvalues ,i jλ λ  

become repeated eigenvalues ' ',i jλ λ  whose values are different from both iλ  and jλ  [25]. 

Examples using  MATLAB eigenvalue solvers can be found in [28,29].  

 

3.2.2 Overview of the Conditioning for the Eigenvalue Problem  

    To improve the ill-conditioned problem (2.15), several works [10,13,14,15,16] applied 

Zhong’s algorithm [30]. The details can be seen in [30,31,32]. This method formulates the 

conditioned, general eigenvalue problem such that LRD  is not necessarily inverted. In addition, 

since the eigenvector contains only displacement components, numerical error could be 

reduced because ( )κ Q  can be smaller. Thompson [9] also derived the similar eigenvalue 

problem using symmetric relationships, e.g. equations (2.11), (2.12), which results in smaller 

size of the eigenvalue problem.  

    In this report, Zhong’s algorithm has been applied because the approach seems well 

matched with the problems which have been considered so far.  

 

3.2.3 Zhong’s Method and Practical Implementation 

    Zhong’s method [30] is illustrated in this section. The method starts from a reformulation 

of equation (2.13) into the relationships for the displacement vectors alone: 

 ,
L n L R n L

L LL LR R R RL RR R

           
= =           − −           

q I 0 q q 0 I q

f D D q f D D q
. (3.4) 

After some matrix operations using the periodicity condition and the symplectic relationship 

[30], equations (3.4) can be rearranged as 

 ,
RL LL RR L LR L

RL L RL L

λ
λ λ

− − −       
=       − −       

D D D q 0 D q

0 D q D 0 q
 (3.5) 
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and 

 
1

.
LR L LR L

RR LL LR L RL Lλ λλ
       

=       + −       

D 0 q 0 D q

D D D q D 0 q
 (3.6) 

Adding equations (3.5) and (3.6) gives the general eigenvalue problem: 

 1 2µ
λ λ
   

=   
   

q q
Z Z

q q
 (3.7) 

with 

 
( ) ( )
( ) ( )1 2,

LR RL LL RRLR

LL RR LR RLRL

− − +  
= =    + −−   

D D D D0 D
Z Z

D D D DD 0
 (3.8) 

where 1µ λ λ= +  and the subscript L for the eigenvector is suppressed for clarity. For 

symmetric elements, several elements of 2Z  in equation (3.7) cancel each other as certain 

relationships (2.11), (2.12) hold and 1Z  and 2Z  in equation (3.7) become skew-symmetric.  

    In practice, it is recommended that either 1Z  or 2Z  is inverted such that the standard 

eigenvalue problem 

 1

1 2µ
λ λ

−   
=   

   

q q
Z Z

q q
  or  1

2 1

1

λ λµ
−   

=   
   

q q
Z Z

q q
 (3.9) 

is formulated. To reduce numerical errors, the matrix with the smaller condition number 

should be inverted [33]. In addition, the pseudo matrix inverse (e.g. [24]) can be applied to 

reduce numerical errors.  

    One might be interested in only several waves with small wavenumbers. A limiting case is 

when a wave is at the cut-off frequency (usually 0k → ) such that usually 1 2µ λ λ= + → . 

In such cases, it is beneficial to take the form of 2µ −  ( )or 1 0.5µ −  rather than µ  ( )1 µ  in 

equations (3.9) such that the important eigenvalues can be bounded by several smallest 

(largest) values. 

    Equations (3.9) are a standard, double eigenvalue problem whose eigenvectors contain only 

the displacement components. The original eigenvalues ,1i iλ λ  can be determined from the 

calculated eigenvalue 1i i iµ λ λ= +  by solving the quadratic equation or by using a 

trigonometric function of the form ( )1 2cosi ijk jk

i i i ie e kµ λ λ − ∆ ∆= + = + = ∆ . 

    There are two independent eigenvectors 1 2,φ φ  associated with the double eigenvalues, 

which are given by 
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1,2

1,2

1,2λ
 

=  
 

q
φ

q
. (3.10)  

The original eigenvector associated with eigenvalues ,1i iλ λ  can be found from a linear 

combination of 1 2,φ φ  [13,14,30], i.e.,  

 1 1 2 2α α
λ
 

= = + 
 

q
φ φ φ

q
. (3.11) 

Substituting equations (3.11) and (3.10) into equation (3.5) gives 

 
1 2

1 2

1 2

RL LL RR LR

RL RL

λ
α α

λ λ λ
 − − − −      

+ =      −        

D D D D q q
0

D D q q
. (3.12) 

Taking the scalar product of H

1φ  leads to the relationship between 1α  and 2α  such that [13] 

 

1H H

1 1

12

2H H1

1 1

2

RL LL RR LR

RL RL

RL LL RR LR

RL RL

λ
λ

λ λα
λα

λ
λ λ

− − − −   
       −   = −

− − − −   
       −   

D D D D q
q q

D D q

D D D D q
q q

D D q

. (3.13) 

Although equation (3.13) is algebraically correct, there may be some difficulties when 

calculating it numerically. In the next section, an alternative way of determining the 

eigenvectors is investigated using singular value decomposition (SVD). 

 

3.2.4 Application of SVD for Determination of Eigenvectors 

    The eigenvectors could be obtained from equation (3.13) but numerical problems may 

occur. For the limiting case 1λ → , equation (3.13) approaches 2 1 0 0α α →  and round-off 

errors during arithmetic calculations become large. 

    Alternatively, SVD may be applied. Equation (3.12) can be written in another form as 

 
1 2 1

1 2 2

RL LL RR LR

RL RL

λ α
λ λ λ α
− − − −     

=     −     

D D D D q q
0

D D q q
. (3.14) 

Writing equation (3.14) as [ ]T1 2α α =A 0  with an 2n×  rectangular matrix A, where n is the 

length of the eigenvector, the problem is now to solve an overdetermined simultaneous 

equation if 3n ≥ . SVD can be applied to solve an overdetermined linear equation [34]. 

Performing SVD on A gives  

 H=A USV  (3.15) 
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where the matrix dimensions are ( ) ( ) ( ) ( )2 , , 2 , 2 2n n n n∈ × ∈ × ∈ × ∈ ×A U S V� � � � . 

Equation (3.15) can be written as 

 
( )

T

111 12

21 22

0 0 0

0 0 0 0

v v

v v ε

σ
σ

  
=    ≈   

A U
�

�
. (3.16) 

The matrix S contains two singular values on its leading diagonal and one of these is almost 

zero. The second column of equation (3.16) and expanding A to the original expression gives 

 
1 2 12

1 2 22

RL LL RR LR

RL RL

v

v

λ
λ λ λ
− − − −     

≈     −     

D D D D q q
0

D D q q
 (3.17) 

such that [ ]T1 2α α  are given by 

 2 22

1 21

v

v

α
α

= . (3.18) 

The advantages of SVD approach are  

(1) equation (3.18) can be derived from only one matrix multiplication while equation 

(3.13) needs two multiplications for both the denominator and numerator such that 

numerical errors through the matrix operations can be reduced and, 

(2) the orders of 21 22,v v  in equation (3.18) are typically ( )1O  while that of the original 

values 1 2,α α  in equation (3.13) may be very small. 

    After finding the vector of displacements from equations (3.11) and (3.18), the 

corresponding force eigenvector can be calculated from the first row of equation (2.15) as 

 ( )LL LRλ= +f D D q . (3.19) 

The original right eigenvector associated with iλ  is then 

 ( )
( )
( )

( )
( ) ( )

i i

i i

i LL i LR i

λ λ
λ

λ λ λ
   

= = =   +   

q q
Φ Φ

f D D q
. (3.20) 

Similarly, the original left eigenvector can be obtained as [13] 

 ( ) ( ) ( ) ( )
TT

1 1i i i RR i LR iλ λ λ λ = = +
  

Ψ Ψ q D D q . (3.21) 

 

3.3 Numerical Errors in the WFE Method 

    Even if the conditioned eigenvalue problem is solved, numerical errors still occur. Errors 

arising in the WFE method are enumerated and each is explained.  
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3.3.1 Errors in the Conditioned Eigenvalue Problem 

The sequential procedure for the WFE method, based on the conditioned eigenvalue problem, 

can be illustrated as follows. The damping matrix C is excluded for simplicity. 

(1) Discretise a section of a structure of length ∆  using FE such that K, M are formed. 

(2) Calculate the dynamic stiffness matrix 2ω= −D K M  for each frequency. 

(3) Formulate the standard eigenvalue problem, i.e. equation (3.9). 

(4) Solve the eigenvalue problem. 

(5) Calculate the original eigenvalues and eigenvectors, i.e. equations (3.11) and (3.18). 

(6) Calculate the force components from equation (3.20). 

    For steps (3)-(5), the conditioning is essential to reduce numerical errors for a matrix of 

large size. For step (1), the FE discretisation error should be first considered and specifically 

for step (2), the round-off error can be important. Each error is explained. 

 

3.3.2 FE Discretisation Error 

    When a structure is discretised using FE, FE discretisation errors occur. To represent the 

system motion accurately, 6 or more FE are generally needed for each wavelength [35]. In the 

WFE formula, this criterion can be expressed as [13] 

 1k∆ ≤ . (3.22) 

Equation (3.22) should be satisfied both along the waveguide and over its cross-section. 

    For accurate results, small ∆  is needed for large wavenumbers. However, very small ∆  is 

inappropriate because the conditioning is likely to deteriorate and the round-off error due to 

the inertia term increases. The section length ∆  should be carefully determined when the 

structure is modelled. Examples will be shown in Sections 4 and 5. 

     

3.3.2 Round-Off Errors in the Dynamic Stiffness Matrix 

    The round-off errors occur in every numerical arithmetic operation. Specifically, this error 

can be important when the dynamic stiffness matrix, 2ω= −D K M , is numerically calculated. 

The error becomes large when 2

ij ijωK M�  because of the finite precisions of arithmetic 

operations.  

    It should be noted that the criteria where the round-off errors become large depends not 

only on ω  but also the length ∆ . Small ∆  increases ijK  but decreases ijM  for the 

discretised elements. When significant effective digit numbers of the inertia term are rounded, 
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D  becomes inaccurate such that the eigenvalue problem cannot be accurately formed. To 

evaluate the round-off error due to the inertia term, ( )2min ii iiω M K  may be a indication 

since some off-diagonal terms may not be important. To reduce this error, ∆  should not be 

too small when the structure is modelled.  

    To solve the compromise between the FE discretisation error and the round-off error due to 

the inertia, condensation using internal nodes can be used. If a structure is modelled with 

internal nodes and DOFs associated with the internal nodes are reduced using equation (2.7), 

the round-off error could be reduced. A numerical example is shown in Section 5.   
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4. NUMERICAL EXAMPLES OF A ROD AND A 

BEAM 

 

 

4.1 Introduction 

    The quasi-longitudinal waves in a rod and flexural waves in a beam are considered. The 

accuracy of results calculated by the WFE method is discussed in this section. No damping is 

assumed. 

 

4.2 Quasi-Longitudinal Waves in a Rod 

    The quasi-longitudinal waves in a rod are considered in this section. The WFE results are 

compared with the analytical solution and the accuracies are evaluated. 

 

4.2.1 Discretisation of a Rod Element 

    The mass and stiffness matrices for the rod element can be modelled using a linear shape 

function such that [35] 

 
1 1

1 1

EA − 
=  −∆  

K ,  
2 1

1 26

Aρ  ∆
=  

 
M  (4.1) 

where E is the Young’s modulus, A is the cross-sectional area, ρ  is the mass density and ∆  is 

the length of a section. The dynamic stiffness matrix, 2ω= −D K M , then becomes 

 

( ) ( )

( )

2 2

2

1 1
3 6

. 1
3

L L

L

k k

EA

k
sym

 ∆ ∆
− − − 

 =
 ∆ ∆
 −
 

D  (4.2) 

where  

 Lk Eρ ω=  (4.3) 

is the quasi-longitudinal wavenumber [36]. The dynamic stiffness matrix in equation (4.2) is 

accurate for the analytical dynamic stiffness matrix [37] up to ( ){ }2LO k ∆  with error being 
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( ){ }4LO k ∆  for small Lk ∆ . The transfer matrix (2.14) can be obtained from equation (4.2) 

[13] such that  

 
( )

( )

( ) ( ) ( )

2

4 22
2

1
31

11
12 36

L

L LL
L

k

EA

k kEAk
k

 ∆ ∆
− − 

 
=   ∆ ∆∆   ∆ − −+  

 ∆    

T . (4.4) 

 

4.2.2 Analytical Expressions for the Eigenvalues and Eigenvectors 

    The analytical solution for the WFE formulation can be found from equation (4.4). The 

eigenvalues are analytically given as [13] 

 
( )

( ) ( ) ( )2 2

2

1
1 1

3 12
1

6

L L

L

L

k k
j k

k
λ±

 ∆ ∆ 
= − ∆ − 

∆   +

∓ . (4.5) 

For small Lk ∆ , equation (4.5)can be expanded to 

 
( ) ( )2 3

5
1

2 24

L L

L

k k
jk jλ± ∆ ∆

= ∆ − ± +∓ �  (4.6) 

and this is accurate up to ( ){ }2LO k ∆  with error being ( ){ }3LO k ∆ . It should be noted that the 

error in the wavenumber given from ( )log j kλ ± ±− = ∆  becomes from equation (4.6) 

 ( ) ( )2
1

8

L

L

k
k k

±  ∆
∆ = ± ∆ + 

 
 

∓�  (4.7) 

such that relative error in the wavenumber is ( ){ }2LO k ∆ . 

    The right eigenvectors associated with the eigenvalues (4.5) can be analytically obtained as 

 ( )2
1

1
12

L

u
kf jEAk

±

 
   

= =  ∆ 
  − 

 

Φ
∓

 (4.8) 

where u is the longitudinal displacement and f is the normal force. The exact solution for a 

continuous rod is [36] 

 [ ]f u jEAk
±
= ∓ . (4.9) 

The force eigenvector per unit displacement in equation (4.8) can be simplified to 
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 [ ] ( ){ }2
1 24LWFE

f u jEAk k
±

= − ∆∓  (4.10) 

for small Lk ∆  with the relative error being ( ){ }2LO k ∆ .  

 

4.2.3 Relative Errors in the Eigenvalues and Eigenvectors 

    Figures 4.1, 4.2 show the relative errors in the wavenumber, ( )L Lk k k− , and the force 

eigenvector per unit displacement, ( )WFEf f f− , respectively. In both figures, the trend of 

the curve is same. The relative errors increase for 43 10Lk −∆ > ⋅  because of the FE 

discretisation error and, for 43 10Lk −∆ < ⋅  because of the round-off errors due to the inertia 

term. Although the size of the error is small for very small Lk ∆ , it should be noted that not 

only the magnitude but also the phase of the force eigenvector fluctuates such that the forced 

response of the system will fluctuate because of the numerical errors. When the forced 

response at low frequencies is of concern, length of the element ∆  should be chosen as 

enough large to reduce the round-off errors due to the inertia term. 

    Asymptotic slopes in the relative errors at large Lk ∆  and small Lk ∆  are +20 dB/decade and 

-20 dB/decade, respectively. For large Lk ∆ , the asymptotic slope is about +20 dB/decade in 

both figures. This behaviour can be explained from equations (4.7) for the wavenumber 

(Figure 4.1) and equation (4.10) for the eigenvector (Figure 4.2).  

    For small Lk ∆ , the round-off error is dominant for the relative errors such that the 

minimum value of 2

ii iiω M K  is of concern since some off-diagonal terms may not be 

important for general cases. From equations (4.1), it is given that  ( )2min ii iiω =M K  

( )21 3 Lk ∆ . From this estimation, the round-off error due to the inertia term is related to 

( ) 2

Lk
−

∆ , which is same as the asymptotic slope in the relative errors. If the ratio is greater 

than 1610  ( )810Lk −∆ < , all the inertia terms could be rounded in double precision calculation 

as can be seen in the figures. 
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Figure 4.1: Relative error in the wavenumber: ····· asymptote 20dB decade± . 
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Figure 4.2: Relative error in the eigenvector: ····· asymptote 20dB decade± . 

 

4.2.4 Relative Errors in the Group Velocity 

    The group velocity is numerically calculated using the approaches illustrated in Section 2.4. 

The relative errors in the group velocity ( )( )g gg WFE
c c c−  are plotted in Figure 4.3 where gc  

is the analytical group velocity, gc E ρ=  [21]. The analysed frequency range is linearly 

discretised into 1000 frequency steps in the log scale.  
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    For all methods, the relative error is almost same above 310Lk −∆ > . The relative error of 

the power and energy relationship is smallest below 310Lk −∆ < . Since the group velocity is 

calculated from the power flow and the energy density given in equations (2.21) and (2.22),  

small fluctuated errors in the eigenvectors can be improved through the calculation. At this 

frequency range, the relative error for the differentiation of the eigenproblem shows the 

almost same curve as those in the wavenumber and eigenvector while that the error for the 

finite difference method is larger very slightly. Although the error for the finite difference 

method depends on the frequency step, too small frequency step does not always improve the 

error because the error becomes more sensitive to the errors in the dispersion relationship. 
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Figure 4.3: Relative errors in the group velocity: ― finite difference, – – power and energy 

relationship,  −·− differentiation of the eigenproblem. 
 

 

4.3 Flexural Waves in an Euler-Bernoulli Beam 

    The flexural waves in the Euler-Bernoulli beam (e.g. [36]) are considered. The WFE results 

are evaluated with the analytical solution. 

 

4.3.1 Analytical Expression for the Discretised Beam Element 

    Using a cubic polynomial as a shape function, the mass and stiffness matrices of the beam 

can be formulated as [35] 
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2 2

3

2

12 6 12 6

4 6 2

. 12 6

4

EI

sym

∆ − ∆ 
 ∆ − ∆ ∆ =
 − ∆∆
 

∆ 

K , 
2 2

2

156 22 54 13

4 13 3

. 156 22420

4

A

sym

ρ

∆ − ∆ 
 ∆ ∆ − ∆∆  =
 − ∆
 

∆ 

M  (4.11) 

where EI is the bending stiffness, ρ  is the mass density and A is the cross-sectional area. The 

dynamic stiffness matrix then becomes 

( ) ( ) ( ) ( )

( ) ( ) ( )

( ) ( )

( )

4 4 4 4

4 4 42 2

3
4 4

42

156 22 54 13
12 6 12 6

420 420 420 420

4 13 3
4 6 2

420 420 420

156 22
. 12 6

420 420

4
4

420

B B B B

B B B

B B

B

k k k k

k k k
EI

sym k k

k

       − ∆ ∆ − ∆ − − ∆ ∆ + ∆              
      ∆ − ∆ ∆ − − ∆ ∆ + ∆     

     
=
∆    − ∆ ∆ − + ∆   

   

 ∆ − ∆ 
 

D






 
 
 
 
 
 
 


 (4.12) 

where 

 4
B

A
k

EI

ρ
ω=  (4.13) 

is the bending wavenumber [36]. The dynamic stiffness matrix in equation (4.2) is accurate 

for the analytical dynamic stiffness matrix [37] up to ( ){ }4BO k ∆  with error being ( ){ }8BO k ∆  

for small Bk ∆ .  

    The transfer matrix derived from equation (4.12) becomes [13] 
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( ) ( )

( ) ( ) ( ) ( )( )
( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

( )

4 8

4 8 4 8

4 8

4 8

4 8 12 4 8 12

3 2

4

1

302400 720

302400 13320 26 302400 3240 2

50400 120
302400 13320 10

7 1
302400 2820 151200 570

2 4

151200 570

B B

B B B B

B B

B B

B B B B B B

B

k k

k k k k

k k
k k

EI k k k EI k k k

EI k k

= ×
+ ∆ + ∆

+ ∆ + ∆ ∆ + ∆ + ∆

∆ + ∆
+ ∆ + ∆

∆
   ∆ + ∆ + ∆ ∆ + ∆ + ∆   
   

∆ ∆

− ∆ −

T

( ) ( ) ( ) ( ) ( )

( )( ) ( )( )

( )( ) ( )( )

( ) ( ) ( ) ( )

( )

8 12 4 8 12

2

4 43 2

4 42

4 8

4 8

4

1 1
50400 78

4 60

50400 180 151200 780

151200 780 302400 3240

50400 120
302400 13320 26

302400 3240

B B B B B

B B

B B

B B

B B

B

k EI k k k

k k

EI EI

k k

EI EI

k k
k k

k












    ∆ − ∆ − ∆ − ∆ − ∆       

 ∆ ∆

∆ + ∆ ∆ − − ∆

∆ + ∆ ∆ − − ∆

− ∆ − ∆
+ ∆ + ∆

∆

∆ − − ∆ ( )( ) ( ) ( )8 4 8
2 302400 13320 10B B Bk k k











− ∆ + ∆ + ∆ 

.(4.14) 

Approximate solutions for the characteristic equation derived from the transfer matrix (4.14) 

are [13] 

      

( ) ( ) ( ) ( ) ( ) ( )

( ) ( ) ( ) ( ) ( ) ( )

2 3 4 5

1,2

2 3 4 5

3,4

1 1 23
1 ,

2 6 24 2880

1 1 1 23
1

2 6 24 2880

B B B B B B

B B B B B B
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where 1,2λ  are related to the propagating waves and 3,4λ  to the nearfield waves. From 

equations (4.15) the eigenvalues are accurate up to ( ){ }4BO k ∆  with error being ( ){ }5BO k ∆ . 

The relative errors in the wavenumber, ( )log j kλ − = ∆ , are from equation (4.15) 
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such that the relative error in the wavenumbers are ( ){ }4BO k ∆ . 

    The eigenvectors associated with 1,2λ  are also analytically given such that 
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where w  is the translational displacement and , ,f mθ  are the rotational displacement, the 

shear force and the moment per unit displacement. The analytical solution is available 

anywhere (e.g. [20,36]). The relative error in the elements of the analytical eigenvectors 

(4.17) are ( ){ }4BO k ∆ . Similar expression holds for 3,4λ  with the relative error in the elements 

of the eigenvectors being ( ){ }4BO k ∆ . 

    Although the details are omitted, the same accuracies are given using the conditioned 

eigenvalue problem (3.9), i.e. the relative error is ( ){ }4BO k ∆  for the wavenumbers and 

components in the eigenvectors.  

 

4.3.2 Relative Errors in the Eigenvalues and Eigenvectors 

    The relative errors in the wavenumbers (eigenvalues) and eigenvectors are investigated in 

this section. The properties of the beam are assumed to be 0.175EI = , 0.078Aρ =  and ∆  is 

selected as 32 10−⋅ , all in SI units. The results using both the transfer matrix approach (2.15) 

and the conditioned eigenvalue problem (3.9) are compared. 

Figure 4.4 shows the relative errors in the propagating wavenumber using both eigenvalue 

problems. Regardless of the eigenvalue problems, the relative errors take the minimum 

around 0.04Bk ∆ =  and the similar trend with the quasi-longitudinal waves can be seen. That 

is, the FE discretisation errors govern the relative errors for large Bk ∆  while for the round-off 

errors due to the inertia term become significant for small Bk ∆ .  

The asymptotic slopes for large Bk ∆  and for small Bk ∆  are +40 dB/decade and -40 

dB/decade. For large Bk ∆  the slope can be explained from equations (4.16). The value of 

( )2min ii iiω M K  from equations (4.11) explains the asymptotic slope for small Bk ∆  such 

that ( ) ( )42min 1 420ii ii Bkω = ∆M K , which is related to 21 ω . 
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In this case, the transfer matrix results show marginally better accuracy. This is because the 

fact that the conditioned eigenvalue problem gives the repeated eigenvalues such that the 

method is more sensitive to perturbation [24]. For this example, the condition number of the 

matrices to be inverted in the transfer matrix approach and that in the conditioned eigenvalue 

problem is about same, as shown in Figure 4.5 (the peaks in the figure correspond to 

singularities in the matrix to be inverted). In addition, the matrix size is small ( )4n =  such 

that the ill-conditioning of the eigenvalue problem is not so significant. Because of these 

reasons, the transfer matrix approach show better results.  

    Basically the same discussion holds for the relative errors in the eigenvectors. Figure 4.6 

shows the relative errors in the rotational displacement of the eigenvector per unit 

displacement, which is analytically given by w kθ =  (e.g. [20,36]). The same trend as the 

relative error in the wavenumber can be seen. 

    The eigenvectors using the conditioned eigenvalue problem contain only displacement 

components such that force components are calculated using either equation (3.13) or (3.18). 

The shear force per unit displacement, which are analytically given by 3f w EIk=  (e.g. 

[20,36]), are investigated. The relative errors in the shear force per unit displacement are 

plotted in Figure 4.7. The relative error associated with the transfer matrix approach shows 

the minimum especially at low frequencies because of the reason as stated previously. For the 

conditioned eigenvalue problem, the round-off error occurs through calculating either the 

original equation (3.13) or the SVD approach (3.18). It can be seen that the proposed SVD 

approach marginally reduces the relative errors especially at low frequencies where the round-

off errors increase. Although the details are omitted, the same discussion holds for the 

moment component. 
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Figure 4.4: Relative errors in the propagation wavenumber for ― the conditioned eigenvalue problem 

(3.9), – – the transfer matrix approach (2.15), ····· asymptote 40dB decade± . 
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Figure 4.5: The condition numbers of (a) the matrix to be inverted: ― the conditioned eigenvalue 

problem (3.9), – – the transfer matrix (2.15). 
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Figure 4.6: Relative errors in the rotational displacement per unit displacement: ― the conditioned 

eigenvalue problem (3.9), – – the transfer matrix approach (2.15), ····· asymptote 

40dB decade± . 
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Figure 4.7: Relative errors in the shear force per unit displacement. Notation is same as Figure 4.7. 

 

 

4.3.3 Relative Errors in the Group Velocity 

    The group velocity is numerically calculated using the methods outlined in Section 2.4. 

Figure 4.8 shows the relative error in the various estimates of the group velocity. The 
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analytical solution is given by 2g Bc kω=  (e.g. [21]). 1000 discretised frequencies are 

linearly taken in the log space of frequency.  

    The power and energy relationship and the differentiation of the eigenproblem show 

accurate results. The differentiation of the eigenproblem is likely to suffer from numerical 

errors because the method needs 1

LR

−
D  to be evaluated and a large number of matrix operations 

such that numerical errors may accumulate. Smaller frequency step improves the accuracy of 

the result using the finite difference method for 0.04Bk ∆ >  and the error curve follows other 

two lines, which is the error bound given from the accuracy of the wavenumber.  

    Regardless of the methods, the numerical results show small errors for the range of, say, 

0.01 1Bk≤ ∆ ≤  where both the eigenvalues and eigenvectors are accurately calculated. For the 

rod case, the range was about 610 1Lk− ≤ ∆ ≤ . The difference of the lower bound results from 

the round-off errors due to the inertia term.  
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Figure 4.8: Relative errors in the group velocity: ― finite difference, – – power and energy 

relationship,  −·− differentiation of the eigenproblem. 
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5. NUMERICAL EXAMPLE OF A PLATE STRIP 

 

5.1 Introduction 

    For two-dimensional structures, the conditioned eigenvalue problem should be applied to 

improve ill-conditioning occurring in the transfer matrix approach. Numerical examples are 

shown for flexural waves in a thin isotropic plate strip. No damping is assumed. 

 

5.2 Analytical Expression for Flexural Waves in a Plate 

    A plate strip of width yL , shown in Figure 5.1, is considered. The plate is thin and isotropic 

with simply supported boundary conditions along the y-wise plate edges. For such plate, the 

analytical wavenumber is given by [36] 

 2 2 2

x y

h
k k k

D

ρ
ω= + = ±  (5.1) 

where ( )3 212 1D Eh ν= −  is the bending rigidity, h is the thickness of the plate strip and ν  

is the Poisson’s ratio. For the simply supported boundary condition along the plate edges 

0, yy L= , the wave modes have displacements proportional to ( )sin yn y Lπ  where n is an 

integer. The wavenumber along the x-direction is then given by 

 ( )
2

2 1,2,xn

y

h n
k n

D L

ρ π
ω

 
= ± − =  

 
� . (5.2) 

Substituting 0xnk =  into equation (5.2) gives the cut-off frequency for the nth wave as 

 ( )
2

1,2,n

y

D n
n

h L

π
ω

ρ

 
= =  

 
� . (5.3) 

The group velocity is given from equation (5.2) as 

 2gn xn

xn

D
c k

k h

ω
ρ

∂
= =
∂

. (5.4) 
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Figure 5.1: Simply supported plate strip. 

 

5.3 Flexural Waves in a Plate Strip Using the WFE Method 

    The flexural waves in the plate strip are solved using the WFE method and results 

evaluated. In particular, reducing numerical errors is suggested using a FE model with 

internal nodes. 

 

5.3.1 The WFE Formulation 

     The plate is assumed to be a steel plate with 0.18yL = , 112.0 10E = ⋅ , 7800ρ = , 0.30ν =  

and 31.8 10h −= ⋅ , all in SI units. The mass and stiffness matrices are formed using ANSYS 

7.1. A four node plane strain shell element (SHELL63), which uses cubic polynomial shape 

functions for both the x- and y-directions, was chosen. The aspect ratio of FE 1x yγ = ∆ ∆ ≈  

is preferable since 1x xk ∆ ≤  and 1y yk ∆ ≤  should be satisfied.  

  

5.3.2 Results Using the Transfer Matrix 

    The ill-conditioning of the transfer matrix approach is illustrated in this section. Consider a 

plate strip model comprising 4 elements as shown in Figure 5.2. After removing the in-plane 

DOFs and DOFs associated with the boundary conditions, there are 22 resulting DOFs for the 

model. Since the y-wise wavenumber is y yk n Lπ=  for the nth wave mode, only the n=1 

wave mode could be expected to be accurate since ( )4 1y yk π∆ = < .  

    The dispersion relationships are shown in Figures 5.3. The abscissa represents the non-

dimensional frequency 2 2

yL h Dπ ρ ωΩ =  and the cut-off frequencies occur at 2nΩ =  

(n=1,2,3…). The ordinate shows the non-dimensional wavenumber, x yk L π , which becomes 

Ly 

y 
x 

z 

x 

y 

x∆  

Ly 
y∆  



30 

-jn for the nth mode at 0Ω = . When 1x xk ∆ =  then 3.18x yk L π = , so that the FE 

discretisation error should be small if 3.18x yk L π < . 

    The wavenumber calculated from the transfer matrix (2.15) and that from the conditioned 

eigenvalue problem (3.9) are shown in Figure 5.3 (a) and (b), respectively. There are two 

waves associated with the n=1 mode. One is a propagating wave which cuts-on at 1Ω =  and 

another is a nearfield wave. In Figure 5.3 (a), it can be seen that the wave near the cut-off 

frequency ( )1Ω =  is inaccurate. This is because the two roots associated with the positive and 

negative going wave are such that 1jkxe± →  around the cut-off frequency and such roots are 

likely to be estimated inaccurately because of the ill-conditioning. In turn, relatively accurate 

results are obtained for the conditioned eigenvalue problem in Figure 5.3 (b) because of the 

conditioning described in Section 3. 

    The condition numbers of the matrices to be inverted ( LRD  in equation (2.14) and 2Z  in 

equation (3.9)) and those of the eigenvalue problems (T  in equation (2.15) and 1

2 1

−
Z Z  in 

equation (3.9)) are plotted in Figures 5.4. Both the condition number for the matrix to be 

inverted in Figure 5.4 (a) and that for the eigenvalue problem in Figure 5.4 (b) are worse-

conditioned when the transfer matrix approach is used. The condition numbers are almost 

constant in this frequency range of interest. For plate strip models with more elements, the 

numerical artefact around the cut-off frequency becomes more prominent because of the 

worse conditioning and the results using the transfer matrix approach will completely break 

down. 

 

 

 

           
 

Figure 5.2: The plate strip FE model, ( )18 , 45 4
x y ymm mm L∆ = ∆ = . 
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x 
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Figures 5.3: Dispersion relationships: ― analytical solution, ···· the WFE result using (a) the transfer 

matrix approach, (b) the conditioned eigenvalue problem. 
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Figures 5.4: The condition numbers of (a) the matrices to be inverted, (b) the eigenvalue problems:    

– – the transfer matrix approach, ― the conditioned eigenvalue problem. 
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5.3.3 Relationship between the Condition Number and Matrix 

Size 

    Even for the conditioned eigenvalue problem, the conditioning is still of concern. The 

condition number κ  of the matrix to be inverted is discussed in this section. For flexural 

waves in a plate strip, the condition number of 2Z  in equation (3.9) is examined. If κ  is 

large, numerical errors occur when the matrix is inverted and the resulting eigenvalue 

problem is likely to be numerically contaminated. 

The condition number depends on the modelling of the plate strip model. Here κ  are 

determined for several plate strip models and the results are shown in Figure 5.5. It can be 

seen that as (1) x∆  becomes smaller and (2) the matrix size increases and (3) the aspect ratio 

γ  of the element becomes large, κ  increases. From the figure, the relationships between κ , 

∆  and the number of elements, N, are approximately expressed as 

  2

xκ −∝ ∆     or    2Nκ ∝  (5.5) 

for the same element aspect ratio. As the number of elements increases, the condition number 

gets larger because the number of the singular values of the matrix increases which usually 

results in there being a wider range of the relative magnitudes of the singular values. 

    Next the effect of the aspect ratio, γ , is determined for the same element area as Figure 5.6. 

The case of 0.2γ =  is also included. For elements of the same area, the dependence in γ  is 

shown in Figure 5.7. The ordinate shows the ratio of κ  to that for 1γ = . From the figure, the 

relationships between γ  and κ  are roughly estimated as 

 ( ) ( )2.1 0.4

1 11 , 1γ γκ κ γ γ κ κ γ γ−
= =∝ > ∝ <  (5.6) 

such that rectangular elements ( )1γ ≠  cause κ  to be larger. The condition number of the 

matrix to be inverted is usually related to ( )LRκ D . The matrix LRD  represents the 

relationship between forces and displacements across an element, i.e. L LR R=f D x . When the 

range of the magnitude of elements in LRD  increases, the condition number often 

deteriorates. For elements with 1γ ≠ , only some elements become large compared to others. 

More detail expression of the effect of γ  in LRD  can be seen in [35]. Some elements 

approach infinity with different coefficients for the limiting case of γ →∞  or 0γ →  such 

that ( )LRκ D  deteriorates.  
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Figure 5.5: Condition numbers of the matrix to be inverted at Ω = 7.48 . Each number in the figure 

denotes the numbers of elements. 
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Figure 5.6: Condition numbers as a function of the area of an element. 
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Figure 5.7: Condition number as a function of the aspect ratio. 

 

 

5.3.4 Relative Error in the Eigenvalues and Eigenvectors 

Based on the previous discussions, the relative error in the eigenvalues is investigated using 

the conditioned eigenvalue problem. An 18 elements ( )10x y mm∆ = ∆ =  plate strip model is 

first evaluated. The dispersion relationship is shown in Figure 5.8. For the model, 1x xk ∆ =  is 

associated with 5.73x yk L π =  and 1.05y yk ∆ =  for the n=6 wave mode. 

Six wave modes cut on in the frequencies analysed. The dispersion relationship shows that 

the WFE results generally agree well with the analytical solution. Some discrepancies can be 

seen for higher wave modes and for large x yk L π  as the FE discretisation errors (and the 

round-off error due to the inertia term at low frequencies) increase. At low frequencies, two 

nearfield waves calculated in the WFE method become complex conjugate pairs as a 

numerical artefact. The real part is small compared to the imaginary part by a factor of about 

10. In the figure, only the imaginary part is plotted for clarity. 
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Figure 5.8: Dispersion relationship for the 18 element plate strip ( )10
x y

mm∆ = ∆ = : ― analytical 

solution, – – WFE result. ( )
max

1.16
x x

k ∆ ≈ . 

 

The relative error in the wavenumber associated with the n=1 mode is shown in Figure 5.9. 

The results are shown for three FE models, which are the 18 elements ( )10
x y

mm∆ = ∆ = , 36 

elements ( )5
x y

mm∆ = ∆ =  and 90 elements ( )2
x y

mm∆ = ∆ =  plate strip models. The peaks at 

the cut-off frequency ( )1Ω =  occur because the denominator approaches 0 ( )0k → . The FE 

discretisation errors become smaller for the smaller x∆  FE models. However, the round-off 

errors due to the inertia term increase at low frequencies for small ∆  (the 90 elements model). 

For the 90 elements model, x xk ∆  becomes 1 around 900Ω = . 

Similarly, the relative errors in the eigenvector (the rotational displacement per unit 

displacement ( )wθ ) associated with the n=1 wave are shown in Figure 5.10. A similar trend 
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to the eigenvalue can be seen. The relative error in the eigenvector is generally larger than that 

in the eigenvalues for large matrix size as can be seen also in this case.  

    The shear force is next evaluated using the SVD approach (3.18). The analytical expression 

for the shear force is [36] 

 ( )( )2 22x x yw jDk k kτ ν= + − . (5.7) 

The relative error in the calculated shear force per unit translational displacement ( )wτ  is 

shown in Figure 5.11. It can be seen that the errors associated with the 18 and 36 elements 

model are similar to that in the wavenumbers and eigenvectors. However, the error associated 

with the 90 elements model is large because (1) x xk ∆  is small such that 1λ ≈  in equation 

(3.19) causes the round-off errors in arithmetic calculation and (2) the matrix size is large 

such that round-off errors may accumulate.  

The SVD approach for numerically determining the eigenvector reduces the numerical 

error. Although the error in each eigenvalue component ( ),w θ  is small, the error in τ  can be 

substantial. Figure 5.12 shows the relative error in wτ  using the original approach (3.13) and 

the SVD approach (3.18). It can be seen that the relative error associated with the SVD 

approach is generally smaller especially at low frequencies and around the cut-off frequency 

where the round-off error through the matrix operations in the original approach (3.13) is 

likely to occur.  
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Figure 5.9: Relative errors in the wavenumber for the n=1 mode: � the 18 elements, −·− 36 

elements,  – – 90 elements plate strip model.  
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Figure 5.10: Relative errors in wθ  in the eigenvector. Notation is same as Figure 5.9. 
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Figure 5.11: Relative errors in wτ  in the eigenvector. Notation is same as Figure 5.9. 

 

1
x x

k ∆ =  

1
x x

k ∆ =  

1
x x

k ∆ =  

1
x x

k ∆ =  



38 

10
-3

10
-2

10
-1

10
0

10
1

10
-4

10
-3

10
-2

10
-1

10
0

Ω

|(
τ W

F
E-
τ)
 /
 τ
|

 

Figure 5.12: Relative errors in wτ  in the eigenvector: �  the SVD approach, ····· the original 

approach. 

 

5.3.5 Reducing Numerical Errors Using a FE Model with Internal 

Nodes 

    There is a clear trade-off among the round-off errors due to the inertia term, the FE 

discretisation error and the conditioning especially at low frequencies. To calculate accurate 

results at low frequencies, using internal nodes for the FE model (two or more series of 

elements jointed together) as shown in Figure 5.13 can be used. After the DOFs associated 

with internal nodes are condensed using equation (2.7), the resulting FE model can reduce 

both the round-off error due to the inertia term and the FE discretisation error because the 

length ∆  is increased and more accurate shape function is equivalently applied in the 

direction of wave propagation after removing the DOFs associated with internal nodes. By 

using this approach, the trade-off can be alleviated. The number of rows for internal nodes can 

be more than 1 but care should be taken because the large condition number of  IID  in 

equation (2.8) may cause another numerical error.  

    The relative error in the wavenumber for the n=1 mode is shown in Figure 5.14. The results 

using a FE model with one row of internal nodes ( )4 , 2
x y

mm mm∆ = ∆ =  are compared with 

the original FE model ( )2
x y

mm∆ = ∆ = . In addition, results using a model of 90 rectangular 
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elements ( )4 , 2
x y

mm mm∆ = ∆ =  without internal nodes are also shown. It can be seen that the 

relative error for the model with internal nodes is reduced especially at low frequencies.  

    Table 5.1 shows the value of ii iiM K  associated with , ,x ym mτ  (the DOFs associated 

with flexural motion) for small Ω . Especially for DOFs associated with the moment ym , the 

value is increased because of the increase in x∆  so that the round-off error due to the inertia is 

reduced for the model with internal nodes and the model with rectangular elements. Since y∆  

is same for all FE models, ( )2min ii iiω M K  is about same for the models as can be seen 

from Table 5.1 (elements associated with xm ). Figure 5.15 shows ( )2min ii iiω M K  for the 

model with internal nodes as a function of Ω  as a rough estimate of the round-off errors. All 

the models typically show similar results to Figure 5.15. 

    Similarly, the relative error in wτ  is considered. The results using the 90 element model 

( )2
x y

mm∆ = ∆ =  is poor (Figure 5.11) because of the round-off error due to the inertia term 

and the small value of x xk ∆  ( )1λ ≈ . These errors can be improved using the model with 

internal nodes. Results using the model with internal nodes are shown in Figure 5.16. It can 

be seen that the FE model using internal nodes can greatly improve accuracy of the result.  

    The condition number ( )IIκ D  for the FE model using internal nodes is about 1310  in the 

frequency range of interest and the pseudo-matrix inverse is applied. Even for such a large 

condition number, it is seen that a FE model with internal nodes reduces numerical errors.  

 

 

 

 

           

 

Figures 5.13: (a) Single element, (b) multiple elements with N series of internal nodes to be 

concentrated. 
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Figure 5.14: Relative errors in the wavenumber for the n=1 mode: ····· original FE model, ― FE 

model with internal nodes,  – – rectangular FE model. 

 

 

 Single element set 

( )2x y mm∆ = ∆ =  

Two series of elements 

(with internal nodes) 

( )4 , 2x ymm mm∆ = ∆ =  

Single element set 

( )4 , 2x ymm mm∆ = ∆ =  

,x xm θ  154.82 10−×  155.24 10−×  155.92 10−×  

,y ym θ  154.82 10−×  143.42 10−×  145.70 10−×  

,wτ  143.14 10−×  147.64 10−×  147.74 10−×  

 

Table 5.1: 
ii ii

M K  associated with each DOF. 
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Figure 5.15: ( )2
min

ii ii
ω M K  as a function of Ω . 
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Figure 5.16: Relative errors in wτ  in the eigenvector: ····· original FE model, ― FE model with 

internal nodes,  – – rectangular FE model. 
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5.3.6 Condensation Using Approximate Expressions 

    In Section 5.3.5, the FE model using internal nodes has been validated and good 

improvement in numerical errors has been shown. However, the method needs the matrix 

inverse 1

II

−
D  in equation (2.8) to be evaluated at each frequency and hence the calculation cost 

is high. In addition, round-off errors may be large in the calculation of the elements of the 

dynamic stiffness matrix. It should be noted that this section focuses on reducing round-off 

errors in numerical calculations for elements of the dynamic stiffness matrix, not for the 

inertia term. 1

II

−
D  can be expressed as 

 ( ) ( )1 1
1 2 2 1 1

II II II II II IIω ω
− −− − −= − = −D K M I K M K  (5.8) 

where ,II IIM K  are the elements of the mass and stiffness matrices associated with internal 

DOFs. For small 1

II II

−
K M  a series expansion can be applied, i.e. to the first order  

 ( )1 1 1

II II II IIO− − −= +D K K M  (5.9) 

or, to the second order, 

  ( ) ( )21 2 1 1 1

II II II II II IIOω− − − −= + +D I K M K K M . (5.10) 

Equations (5.9) and (5.10) need only 1

II

−
K  to be evaluated such that the calculation cost is low. 

    For clarity, equation (5.9) is referred to the 1st order approximation and equation (5.10) is 

referred to the 2nd order approximation while the original approach is referred as dynamic 

condensation. Using equations (5.9) and (5.10), the original equation (2.8) and the associated 

mass and stiffness matrices (for the calculation of the group velocity) can be derived. 

    For the 1st order approximation (5.9), the condensation (2.8) becomes 

    ( )1 1 2 1 1 .MM MI II IM MM MI II IM MM MI II IM MI II IMω− − − −− ≈ − − − −D D D D K K K K M K K M M K K  (5.11) 

The associated mass and stiffness matrices become 

 

T 1

T 1 1

,

.

MM MI II IM

MM MI II IM MI II IM

−

− −

≈ −

≈ − −

R KR K K K K

R MR M K K M M K K
 (5.12) 

It can be seen that the large terms associated with the stiffness and the small terms associated 

with the inertia are appropriately grouped such that the round-off errors in the arithmetic 

operation can be reduced.  

    Similarly, the 2nd order approximation (5.10) gives 
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    ( )
( )

1 1

2 1 1 1 1

4 1 1 1 1 1

MM MI II IM MM MI II IM

MM MI II IM MI II IM MI II II II IM

MI II IM MI II II II IM MI II II II IM

ω

ω

− −

− − − −

− − − − −

− ≈ −

− − − +

− − −

D D D D K K K K

M K K M M K K K K M K K

M K M K K M K M M K M K K

 (5.13) 

and 

        
( )

( )

T 1

4 1 1 1 1 1

T 1 1 1 1

2 1 1 1 1 1

,

2 .

MM MI II IM

MI II IM MI II II II IM MI II II II IM

MM MI II IM MI II IM MI II II II IM

MI II IM MI II II II IM MI II II II IM

ω

ω

−

− − − − −

− − − −

− − − − −

≈ −

+ − −

≈ − − +

+ − −

R KR K K K K

M K M K K M K M M K M K K

R MR M K K M M K K K K M K K

M K M K K M K M M K M K K

 (5.14) 

    Using these two approximations, the relative errors in the wavenumber are evaluated and 

compared with the result using dynamic condensation (as shown in Figure 5.14). The result is 

shown in Figure 5.17. The relative error for the 1st order approximation is poor at high 

frequencies and becomes about 1 % at 110−Ω =  where ( )2min ii iiω M K  is 1010−  as seen 

from Figure 5.15. In the frequency range analysed, the 2nd order approximation gives good 

results as shown in Figure 5.18, with accuracy comparable to that using the dynamic 

condensation.  

    For the frequencies where 2

ij ijω M K  is small enough, the 2nd order approximation, 

equations (5.13) and (5.14), is recommended to reduce round-off errors in arithmetic 

calculations and to reduce the calculation cost. Since 2

ij ijω M K  is small enough, ( )IIκ K  

is about same as ( )IIκ D  as shown in Figure 5.19.  
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Figure 5.17: Relative errors in the wavenumber for the n=1 mode: ― dynamic condensation,  – – the 

1st order approximation, ····· the 2nd order approximation. 
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Figure 5.18: Relative errors in the wavenumber for the n=1 mode: ― (thin) dynamic condensation, 

 �  (thick) the 2nd order approximation. 
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Figure 5.19: (a) Condition numbers: ― ( )II
κ D ,    – – ( )II

κ K . (b)  ( ) ( )II II
κ κK D . 

 

 

5.3.7 Relative Errors in the Group Velocity 

    In this section, the approaches for numerically calculating the group velocity, illustrated in 

Section 2.4, are compared. The relative errors in the group velocity for the n=1 mode are 

shown for frequencies around the cut-off frequency in Figure 5.20. Results for the 18 

elements model are shown. A frequency increment of 37.5 10δ −Ω = ⋅ ( )1f Hzδ =  is chosen. 

The result from differentiation of the eigenvalue problem shows poor accuracy. This is 

because LRD  must be inverted which is ill-conditioned and the fact that the approach needs 

many matrix operations. Therefore numerical errors accumulate. 

    Although all relative errors become large near the cut-off frequency, both the power and 

energy relationship and the finite difference approaches show reasonable accuracy. Both the 

power and energy relationship and the finite difference method have advantages and 

disadvantages in terms of accuracy and calculation cost. When both the eigenvalues and 

eigenvectors are accurately calculated, the power and energy relationship seems an 

appropriate approach. However, the eigenvectors are likely to be less accurate than the 

eigenvalues such that the finite difference method is typically more accurate. However, the 

finite difference method needs a small frequency increment around cut-off frequencies and 

branch points because the wavenumbers may change rapidly.  



46 

 

1 1.5 2 2.5 3

10
-6

10
-4

10
-2

10
0

Ω

|c
g
W
F
E-
c
g
| 
/ 
|c
g
|

 

Figure 5.20: Relative errors in the group velocity: ― finite difference, – – power and energy 

relationship,  −·− differentiation of the eigenproblem. 
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6. CONCLUSIONS AND DISCUSSION 

 

 

6.1 Concluding Remarks 

In this report, the numerical issues for the waveguide finite element (WFE) method have 

been discussed. In the WFE method, the transfer matrix, hence the eigenvalue problem, can 

be formed from the elementary mass and stiffness matrix of a general structure. However 

because the transfer matrix might be ill-conditioned, the conditioning of the matrix is essential 

for general complex structures. To improve the matrix conditioning, Zhong’s approach [30] 

has been applied and the validity has been investigated. To calculate the eigenvectors, an 

SVD approach has been proposed to improve numerical errors and the validity evaluated.  

Potential numerical errors have been discussed and categorised into the FE discretisation 

errors, the round-off errors due to the inertia term and errors induced by ill-conditioning.  

The relative errors in the eigenvalues and eigenvectors were explained by the FE 

discretisation error and the round-off error due to the inertia term for rod and beam problems. 

Ill-conditioning becomes prominent for plate problems as the matrix size increases. The 

relationship between the condition number and the shape of a FE element was investigated. 

The FE model, specifically the length of a section of a structure ∆ , is important to determine 

numerical errors. The FE model with internal nodes was used to alleviate the trade-off among 

the potential numerical errors. The 1st order approximation for the condensation was derived, 

which showed best accuracy at low frequencies. 

Three approaches for numerically calculating the group velocity have been introduced and 

the accuracy investigated. The power and energy relationship and the finite difference method 

seem appropriate approaches specifically for general structures.  
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