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Abstract 

 

In order to attenuate structural waves in beams, a damped mass-spring absorber system is 

considered that is attached continuously along the beam length. Compared with other 

measures, such as impedance changes or tuned neutralisers applied at a single point, it is 

effective for excitation at any location along the beam. Although it is a tuned system, it can 

also be designed to be effective over a broad frequency range by the use of a high damping 

loss factor and multiple tuning frequencies. It has the advantage over constrained layer 

damping treatments that it can be effective even when the structural wavelength is long. The 

parameters controlling its behaviour are investigated and simple formulae developed, 

allowing optimisation of its performance. A particular application is the reduction of noise 

from a railway track, which requires the attenuation of structural waves along the rail to be 

increased typically in the frequency range 500 to 2000 Hz.  
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List of symbols 

 

A Cross-sectional area of beam 

E Young’s modulus 

I Second moment of area of beam 

L  Perimeter length of the beam cross-section 

S Surface area of beam 

Wrad Radiated sound power 

c0 Speed of sound in air 

k Wavenumber in the beam (real part) 

k0 Wavenumber of the unsupported beam at ω0

ka Wavenumber of the unsupported beam at ωa

kb Bending wavenumber in the unsupported beam 

kl Longitudinal wavenumber in the unsupported beam  

'  Mass per unit length of absorber am

'bm  Mass per unit length of beam 

'  Mass per unit length of intermediate mass in two layer support sm

s Stiffness of foundation per unit length  

s1 Stiffness of upper foundation layer per unit length  

s2 Stiffness of lower foundation layer per unit length  

sa Stiffness of absorber per unit length  

u Longitudinal displacement of beam 

v Vibration velocity of beam 

w Bending displacement of beam 

x Distance along beam 

∆ Decay rate of wave in beam (dB/m) 

β Wavenumber in the beam (imaginary part) 

δω Frequency bandwidth of absorber 

ε Increment of frequency 

η Damping loss factor of foundation 

η1 Damping loss factor of upper foundation layer 

η2 Damping loss factor of lower foundation layer 
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ηa Damping loss factor of absorber 

ηb Damping loss factor of beam 

ηb,eq Equivalent damping loss factor of beam due to absorber 

µ Ratio of absorber mass to beam mass 

ρ0 Density of air 

σ Radiation ratio of beam 

ω Angular frequency 

ω0 Cut-off frequency of beam on elastic foundation 

ωa Tuning frequency of absorber 

ωb Upper frequency of absorber stop band 

ωc Mid frequency of absorber stop band 

ζ Damping ratio 
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1. Introduction 

 

Structural wave propagation in beam structures can lead to unwanted noise transmission and 

radiation. The particular application providing the motivation for the present work is a railway 

track (Thompson et al. 2003, Jones et al. 2006) but many other examples exist, such as piping 

systems for fluids or gases (see e.g. Clark 1995, de Jong 1994), or beam-like components 

which are present in structures such as bridges, cranes and buildings. Such beam systems are 

often very long and may be characterised in the audio frequency range in terms of propagating 

waves rather than modal behaviour. Whereas geometrical attenuation plays a significant role 

in two- and three-dimensional structures, in a one-dimensional structure there is no 

attenuation with distance apart from the effect of damping or discontinuities. Thus, in lightly 

damped uniform beams, structural waves may propagate over large distances and noise may 

be transmitted far from its source, to be radiated as sound by the beam itself or by some 

receiver structure. To reduce the total noise radiated by a vibrating beam, the spatial 

attenuation must be increased. 

 

The use of a damped mass-spring absorber system applied continuously on a beam is studied 

here. The purpose of introducing such a system is to attenuate structural waves over a broad 

frequency range, and for arbitrarily located excitation. A specific application of such a system 

to a railway track is discussed by Thompson et al. (2007) where, by sufficiently increasing the 

attenuation of vibration along the rail in a broad frequency band, the radiated noise from the 

track has been reduced by around 6 dB.  

 

The focus in this report is on determining the effects of the various parameters controlling the 

behaviour of a continuous absorber attached to a beam and deriving simple formulae for this 

behaviour. After a discussion of the background to the problem, a simple model of a beam on 

an elastic foundation is first considered. The decay rates of waves in the beam and the effects 

of the support are illustrated. Using this as a basis, the analysis is extended to an unsupported 

beam to which a continuous absorber is attached, the absorber being treated as a frequency-

dependent complex support stiffness. Approximate formulae are then derived for the effects 

of the absorber, illustrating simply the influence of mass and damping. The use of multiple 

tuning frequencies is also considered in order to widen the bandwidth of the absorber. It is 

then shown that the damping effect of an absorber system attached to a supported beam can 

be approximated by adding the separate spatial attenuations from the supported beam and the 
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beam with the absorber system. Finally some practical issues relating to the application of 

absorber systems to railway tracks are discussed.  

 

2. Background 

 

2.1 Techniques for reduction of vibration 

Various vibration control techniques may be used in order to reduce such wave propagation in 

beams (Mead 2000).  

 

Impedance changes at discontinuities, for example by added stiffness, mass, resilient 

connections or section changes, may be used to introduce reflection and thereby reduce 

transmitted power (Mead 2000, Cremer et al. 1988). In practice, such discontinuities cannot 

always be used, however. In the particular case of a railway track, continuous welded rail is 

used to avoid impact noise due to discontinuities in the rail running surface and it is therefore 

undesirable to reintroduce discontinuities. 

 

To increase the damping, constrained layer or unconstrained layer damping treatments are 

particularly effective for relatively thin plate systems (Mead 2000, Nashif et al. 1985), but 

beams are often stiffer in order to carry structural loads. Consequently the structural 

wavelengths are long and surface strains are small so that, to be effective, the corresponding 

damping treatments would become too large for practical application. An absorber system 

responds to surface motion rather than strain and can therefore be arranged to be efficient at 

low frequencies (Zapfe & Lesieutre 1997). 

 

2.2 Vibration absorbers 

Mass-spring or mass-spring-damper systems are widely used to control the response of 

resonant structures, see Mead (2000), Nashif et al. (1985), Brennan & Ferguson (2004) and 

Hunt (1979). These are variously called tuned vibration absorbers, dynamic vibration 

absorbers, tuned mass dampers or vibration neutralisers. By appropriate choice of parameters, 

the frequency of an added mass-spring system can be matched to a resonance of the original 

structure or to a forcing frequency. The design of the system differs depending on whether the 

purpose is to suppress the response at a troublesome resonance frequency due to a broad-band 

excitation or to suppress the response at a troublesome forcing frequency. Following the 
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terminology used in (Brennan & Ferguson 2004) they may be called dynamic absorbers in the 

former case and vibration neutralisers in the latter case. 

 

The performance in both situations increases as the added mass is increased. However, the 

need for damping in the added system depends on the application. In the case of a vibration 

absorber applied to deal with a resonance there is an optimum value of the damping; if it is 

too high the response is not modified at the original resonance, but if it is too low the response 

at modified resonances of the coupled system will remain a problem. In practice, relatively 

high values of damping loss factor are usually required for effective results (Brennan & 

Ferguson 2004). On the other hand, for neutralisers intended to suppress the response at some 

troublesome forcing frequency, the damping should be low to obtain good performance at the 

intended frequency. The low damping means that the bandwidth of operation becomes small. 

Therefore, in order to cover a broader frequency range, for example to allow for variations in 

the forcing frequency, either the damping has to be compromised or an adaptive system may 

be used (Brennan 1997a). Note that the term ‘absorber’ will be used throughout the remainder 

of this report, even when discussing undamped cases, as the practical applications envisaged 

have broad-band excitation and will generally require high damping.  

 

The theory of the dynamic vibration absorber was first presented by Ormondroyd & den 

Hartog (1928). They demonstrated an application of an undamped cantilever beam on a 

generator bearing pedestal of a turbine to eliminate a problem at the turbine operating speed. 

Since then, dynamic absorbers have been applied in a wide variety of situations. In his book 

on the subject, Hunt (1979) discusses many examples of applications, including gas turbine 

blades, a footbridge, chimneys, suspended electricity cables, electric clippers, helicopters and 

multi-storey buildings. 

 

Various practical designs exist and are discussed for example by Mead (2000), Nashif et al. 

(1985) and Hunt (1979). These include: cantilever with added mass, double cantilever with 

added masses, cruciform, pendulum, mass on elastomer in compression, mass on elastomer in 

shear and cylindrical shear type. It is also possible to use piezoelectric patches along with 

passive, resonant electronic circuits to form vibration absorbers (Maurini et al. 2004). 

 

At its resonance frequency an undamped mass-spring system pins the host structure; it should 

therefore be tuned to the resonance of the original structure. However, to give the best effect 
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over a frequency band under random excitation, Den Hartog (1985) derived optimum values 

for the frequency of a damped absorber and its damping ratio in order to minimise the 

displacement response of the host structure, see also Mead (2000) and Brennan & Ferguson 

(2004). The absorber frequency should be tuned to ω = ωm / (1+µ), where ωm is the natural 

frequency of the original resonance to be damped and µ is the ratio of absorber mass to the 

(modal) mass of the host structure. The optimum damping ratio is found to be ζ = 

(3µ / (8(1+µ)3))1/2. 

 

Absorbers are generally intended to deal with a single resonance of the host structure and they 

therefore have only small effect at other structural resonances that lie far from the tuning 

frequency (Mead 2000). It is possible to add multiple absorbers on a structure tuned to deal 

with different resonances. Rana & Soong (1998) considered applying three absorbers to a 

three-degree-of-freedom building model to reduce the response to earthquake excitation, but 

they found that the addition of absorbers intended to deal with the second and third modes led 

to a slight increase in the response at the first mode due to the additional mass. 

 
A recent high-profile vibration problem was the excessive lateral sway motion caused by 

crowds walking across the Millennium footbridge in London in June 2000 (Newland 2003, 

Newland 2004). This provided particular motivation for a renewed increase in research in this 

field. In an extensive review of this topic (Zivanovic et al. 2005), dynamic vibration absorbers 

are identified as a common solution for both lateral and vertical motion of footbridges. Other 

solutions include viscous dampers and the tuning of natural frequencies to avoid the main 

frequency region of excitation due to pedestrian-induced forces. The Millennium Bridge was 

subsequently modified to increase the damping ratios of lateral modes below 1.5 Hz from less 

than 1% to between 15% and 20% (Newland 2003). To achieve this the bridge was fitted with 

37 viscous dampers acting between frames added beneath the deck and fours pairs of laterally 

acting vibration absorbers (Newland 2003, Zivanovic et al. 2005). Additionally, 26 pairs of 

vertically acting tuned absorbers were installed to increase the damping of vertical modes to 

between 5 and 10% (Newland 2003). 

 

2.3 Application to waves in beams 

Although most applications of absorber systems have been to resonant finite systems, lightly 

damped tuned neutralisers have also been considered for application at a point on a long beam 

such as a pipe to form an impedance change tuned to a particular forcing frequency (Clark 
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1995, Brennan 1998). This is seen as particularly effective at low frequencies. Due to the 

influence of near-field waves in the beam, the maximum blocking effect occurs at a frequency 

just above the tuning frequency of the mass-spring system if the system is arranged to apply a 

point force. At the tuning frequency itself only half of the incident energy in a bending wave 

is reflected, since the neutraliser effectively pins the beam. In (Clark 1995) the bandwidth of 

such a neutraliser, defined there as the frequency range over which the attenuation is greater 

than 3 dB, is found to be equal to ωaµk/4, where ωa is the tuning frequency (the natural 

frequency of the grounded mass-spring system), k is the bending wavenumber in the beam 

and µ is the ratio of the mass of the neutraliser to the mass per unit length of the beam. 

Similarly, if the system applies a moment, the maximum effect occurs just below the tuning 

frequency (Clark 1995) and again only half the incident energy is reflected at the tuning 

frequency itself. 

 

If it is required to attenuate structural wave propagation in the beam over a wide frequency 

range, such a mass-spring system applied at a single point is not suitable. Moreover, if the 

excitation can in principle be at any location along the beam, as is the case for a railway track, 

it is clear that some form of distributed treatment is required.  

 

2.4 Distributed absorbers 

Applications of absorbers distributed across a structure are much less common than those 

applied at a point intended to deal with particular modes of the structure. 

 

Kashina & Tyutekin (1990) describe the use of a set of undamped resonators to reduce 

longitudinal or flexural waves in beams or plates. They envisage a group of mass-spring 

systems located over a certain length of the beam or plate and derive relations for the 

optimum mass and number of oscillators required to give attenuation over a specified 

frequency band. 

 

Smith et al. (1986) give an analysis of a beam or plate with a continuous layer of absorbers 

applied to it. Their interest was in ship hulls. It was recognised that there is potential to use 

the mass of installed machinery in the ship as a distributed absorber with a high mass ratio. If 

mass is added that has no other function it must be much smaller but appreciable reductions 

may still be possible. 
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Analysis of an undamped absorber by (Smith et al. 1986) showed that waves in the beam (or 

plate) have a wavenumber with an imaginary part (i.e. strong decay) in the frequency range 

1 < ω / ωa < (1+µ)1/2 where ωa is the absorber tuning frequency and µ is the ratio of absorber 

mass to beam mass. It was recognised that adding damping to an array of absorbers on a plate 

or beam will reduce the wave attenuation at its peak value but spread the effect over a wider 

bandwidth. Numerical results were presented which showed this, but no analysis was given of 

the bandwidth or attenuation in the damped case. For the case considered by (Smith et al. 

1986), it is stated that the undamped bandwidth is approximately correct if the damping loss 

factor is less than 0.1. Experiments were presented on an aluminium beam ending in a non-

reflecting boundary which confirmed the predictions. It was also demonstrated experimentally 

that there is additional benefit if the absorber mass is distributed between two different tuning 

frequencies.  

 

This work does not appear to have led to the development of distributed absorbers for 

attenuating structural waves. Other papers discussing distributed absorbers are generally 

concerned with the control of modes of vibration (Zapfe & Lesieutre 1997) or the control of 

acoustic transmission, for example in aerospace structures (Fuller et al. 1997, Marcotte et al. 

1999, Estève & Johnson 2002).  

 

2.5 Broadband absorbers 

In order to broaden the bandwidth of an absorber, Hunt & Nissen (1982) describe the use of a 

particular practical form of non-linear softening spring. They show that the suppression 

bandwidth of a dynamic vibration absorber can be doubled using such a non-linear spring. An 

interesting concept that is widely considered is the development of a wideband vibration 

absorber by using an array of absorbers with a range of resonance frequencies (Brennan 

1997b, Maidanik & Becker, 1999). For the same overall mass, the maximum impedance is 

reduced but the bandwidth is increased by a greater factor (Brennan 1997b). Strasberg & Feit 

(1996) present a simple deterministic derivation of the damping effect of a set of small 

oscillators attached to a large main structure, representing attached substructures. It is shown 

that the damping effect is primarily determined by the attached mass and not the damping of 

the attached systems.  
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3. Beam on elastic foundation 

 

3.1 Undamped case 

Before studying a continuous absorber attached to a beam, it is helpful to review the results 

for a beam on an elastic foundation. Consider a uniform Euler-Bernoulli beam with bending 

stiffness EI and mass per unit length mb′ on an elastic foundation of stiffness per unit length s, 

as shown in Figure 1. Initially damping is omitted.  

 

 

 s, η 

EI, mb′, ηb 

 w 

 x 

 

Figure 1. Beam on elastic foundation. 

 

Considering harmonic motion at frequency ω, the free vibration satisfies (Graff 1991) 

 ( ) 0' 2
4

4

=−+ wms
dx

wdEI b ω  (1) 

where w is the complex vibration amplitude and x is the coordinate along the beam direction. 

Seeking free wave solutions of the form xkie
~

− , the wavenumber in the supported beam, 

βikk −=
~ , which may in principle be complex, satisfies 

 0'~ 24 =−+ ωbmskEI  (2) 

which has solutions 

 2

2
02

2
2 1'~

ω
ωω

−±=
−

±= b
b k

EI
smk  (3) 

where ω0 = (s/mb′)1/2 is the resonance frequency of the beam mass on the support stiffness and 

kb = (ω2mb′/EI)1/4 is the wavenumber of free waves in the unsupported beam. In the absence of 

damping, the wavenumber k~  has purely real and imaginary solutions for frequencies above 

ω0. These wavenumbers are always smaller in magnitude than the corresponding ones for the 

unsupported beam, but tend towards kb at high frequency. At ω = ω0, k~  = 0 and the 

wavelength of free wave propagation becomes infinite, meaning that the whole beam moves 
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in phase along its length. This is referred to as the cut-off frequency for free waves in the 

supported beam (or sometimes ‘cut-on’ frequency). 

 

For frequencies below ω0, free wave propagation cannot occur. Instead, all waves have a 

wavenumber k~  with a non-zero imaginary part β that is equal in magnitude to the real part, 

and waves occur in complex conjugate pairs. These waves are attenuated rapidly along the 

beam length. For ω << ω0, the wavenumber in the fourth quadrant of the complex plane 

satisfies 

 
2
0k

k ≈−= β  (4) 

where k0 = (s/EI)1/4, is the wavenumber of the unsupported beam at frequency ω0.  

 

The attenuation of a wave along the beam is determined by the imaginary part β and is zero 

for the propagating waves above ω0 in the absence of damping. For a complex wavenumber 

βikk −=
~ , the amplitude reduces over a distance of 1 m by a factor exp(–β). The decay rate 

∆ may be expressed in dB/m and is given by  

 ∆ = 20 log10(exp(β)) =  8.686 β.  (5) 

The rate of attenuation of vibration along the beam is important for the noise radiated. As 

shown in Appendix A, the total sound power radiated by a damped propagating wave in an 

infinite beam is inversely proportional to β and hence to the decay rate, ∆. Thus the sound 

power level (in dB) is actually related to –10 log10(∆).  

 

3.2 Effect of damping 

Introducing damping into the support by means of a complex stiffness, s → s(1+iη) and 

similarly for the beam EI → EI(1+iηb), gives complex wavenumbers 

 ( )
4/12

04/1 )1(11~
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
+⎟

⎠
⎞

⎜
⎝
⎛−+= − η
ω
ωη iikk bb  (6) 

Three particular cases can be considered: 

(i) At high frequency, for ω >> ω0, the real part, k ≈ kb. The imaginary part is given by 

 ⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟
⎠
⎞

⎜
⎝
⎛+≈

2
0

44 ω
ωηηβ b

bk . (7) 
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 Since kb ∝ ω1/2, the first term is proportional to ηbω1/2, whereas the second term is 

proportional to ηω–3/2. Thus, even if η >> ηb, at high enough frequency the effect of 

beam damping will predominate over that in the support. 

(ii) At the cut-off frequency, ω = ω0, support damping dominates and . Of 

the various roots, the one with the smallest imaginary part (and hence the lowest 

attenuation) has 

( ) 4/1/ EIsik η−≈

( ) 4/18/ /~ EIsek i ηπ−= . This gives, 

  , . (8) 0
4/1924.0 kk η= 0

4/1383.0 kηβ =

(iii) For ω << ω0, the attenuation is large and the addition of damping has negligible effect 

compared with the undamped case. Therefore the wavenumber is given approximately by 

Eq. (4). 

 

Figure 2 shows the wavenumber and wave decay rate in non-dimensional form for various 

values of damping loss factor. The frequency is shown relative to the cut-off frequency ω0 

whilst the real and imaginary parts of the wavenumber are non-dimensionalised by dividing 

by k0, the wavenumber in the unsupported beam at ω0. 

 

 (a) (b) 
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Figure 2. Wavenumbers of a beam on an elastic foundation. (a) Real part for ηb = 0: ⎯, η = 

0.01; − − −, η = 0.1, ⋅⋅⋅⋅⋅⋅, unsupported beam. (b) Imaginary part: ⎯, η = 0.01, ηb = 0; − − −, 

η = 0.1, ηb = 0; ⋅⋅⋅⋅⋅⋅, η = ηb = 0.01; − ∆ −, η = 0.1, ηb = 0.01; − ⋅ −, η = ηb = 0.1. 

 

The real part of the wavenumber is affected by damping only in the vicinity of ω0, where 

increasing the support damping η leads to an increase in the magnitude at the minimum. 

Results for different values of beam damping loss factor, ηb, are indistinguishable and 
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therefore not shown. Both real and imaginary parts of k/k0 tend to 2/1  at low frequency, see 

Eq. (4). At high frequency the real part, k tends to kb which is proportional to ω1/2. The high 

frequency behaviour of β can be seen to follow Eq. (7), with a slope of ω–3/2 in the absence of 

beam damping or ω1/2 where beam damping dominates. Extrapolating this high frequency 

behaviour back to ω = ω0 gives β/k0 → η/4 or ηb/4 respectively. It can be seen that adding 

damping to the beam is effective over a much wider frequency range than adding damping to 

the support. 

 

4. Beam with attached continuous absorber 

 

Next, a beam is considered to which a continuous mass-spring system is attached, as shown in 

Figure 3. The beam is considered without any support stiffness in order to separate the effects 

of the absorber more readily; the combined effect will be considered in Section 7 below. The 

bending stiffness of the absorber mass is ignored as this will usually be much more flexible 

than the beam itself. 

 
 

 ma′ 

 sa, ηa 

EI, mb′, ηb 

 

Figure 3. Beam connected to continuous mass-spring system. 

 

4.1 Frequency-dependent stiffness 

The absorber is assumed to have mass per unit length ma′ and stiffness per unit length sa. 

These are related by the ‘tuning frequency’ of the absorber, ωa = (sa/ma′)1/2 which is the 

resonance frequency of the mass-spring system when attached to a rigid foundation. 

Hysteretic damping is added to the springs using a loss factor ηa. The analysis of Section 3 

can be used directly by replacing s by a frequency-dependent ‘support stiffness’, s(ω) 

describing the attached mass-spring system, which is given by, 

 
)1(

)1(
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1)( 22

21
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aaa i
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ηωω
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Figure 4. Equivalent stiffness s(ω) of tuned absorber normalised by sa, for µ = 0.2. − − −, real 

part for ηa = 0.001; ⎯, real part for ηa = 0.1; − ⋅ − ⋅, imaginary part for ηa = 0.001; ⋅⋅⋅⋅⋅⋅, 

imaginary part for ηa = 0.1.  

 

The equivalent stiffness s(ω) from Eq. (9) is shown in non-dimensional form in Figure 4 for 

small and large damping values (ηa = 0.001 and 0.1). These are shown for a mass ratio µ of 

0.2 where µ is defined as the ratio of the absorber mass to the beam mass, ma′ / mb′. At high 

frequency the real part of s(ω) in Eq. (9) is positive (stiffness-like) as seen in the figure and 

s(ω) can be approximated by the damped absorber stiffness,  

 )1()( aa iss ηω +→  for ω >> ωa (10) 

Thus for ω >> ωa, the beam can be expected to have similar behaviour to that described in 

Section 3. At ωa, however, for an undamped system the denominator of Eq. (9) is zero giving 

s(ω) → ∞. For a damped system this becomes 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−≈ 1)(

a
a

iss
η

ω  for ω ≈ ωa (11) 
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The imaginary part of s(ω) is thus large in the vicinity of ωa. Below ωa, the real part of s(ω) is 

negative (mass-like), as seen in Figure 4. At low frequencies it is determined by the absorber 

mass, which becomes effectively rigidly connected to the beam. However, s(ω) also has a 

small imaginary part in this region which will prove to be important, so that it is useful to 

retain the second order terms to give 

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛

+
+−≈

)1(
1')( 2

2
2

aa
a i

ms
ηω

ωωω  for ω << ωa (12) 

The wavenumber in the beam in the presence of the mass-spring system can be determined by 

substituting s(ω) from Eq. (9) into Eq. (2), to give  

 ⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−+
+

+=
)/(1

11~
22

44

aa

a
b i

ikk
ωωη

ηµ  (13) 

 

4.2 Undamped absorber 

Considering first an undamped absorber, below ωa the wavenumber will be increased by the 

presence of the absorber, as s(ω) is mass-like. At low frequencies the effective mass of the 

beam becomes mb′ + ma′ but as the frequency approaches ωa the effective mass becomes large 

and the wavenumber increases towards infinity. Above the tuning frequency, s(ω) is stiffness-

like, initially with a very large stiffness. Therefore a blocked region can be expected, where 
2~k  is imaginary, in the same way as for the beam on elastic foundation below its cut-off 

frequency.  

 

For the undamped absorber, this blocked region will extend from ωa to the cut-off frequency 

of free waves in the beam, ωc, which is given by setting k~  = 0 in Eq. (2), i.e. 

 0'')( 2
22

2
2 =−

−
=− b

a

a
b msms ω

ωω
ωωω  (14) 

This is satisfied by  

 ⎟
⎠
⎞

⎜
⎝
⎛ +≈+=

2
11 µωµωω aac    for µ << 1 (15) 

as found by Smith et al. (1986). The wavenumbers are shown in Figure 5 for various mass 

ratios. These have been normalised by the free beam wavenumber at ωa, denoted ka = 

(µsa/EI)1/4. In the blocked region, between ωa and ωc, the wavenumbers are large and in 
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conjugate pairs. For practical parameters, µ << 1 and the undamped absorber has a fairly 

narrow blocked region. 

 

(a) (b) 

0.5              1  2 
10

−1

10
0

10
1

ω/ω
a

k/
k a

0.5              1  2 
10

−1

10
0

10
1

ω/ω
a

β/
k a

 
Figure 5. Wavenumbers of beam with undamped tuned absorber. ⎯, µ = 0.1; − − −, µ = 0.2; 

− ⋅ − ⋅ µ = 0.5, ⋅⋅⋅⋅⋅⋅ µ = 0. (a) Real part of first wave, (b) imaginary part of first wave. 

 

In the absence of damping, non-zero spatial attenuation only occurs in the blocked region; 

elsewhere k~  is real. At ωa the decay rates tend to infinity, while at ωc they tend to 0, as seen 

in Figure 5(b). Between these extremes the mass ratio affects the width of the blocked region 

but not the magnitude of the decay rates within this region. 

 

This can also be shown analytically by considering the frequency ωb given by 

 which is roughly in the centre of the blocked region. Substituting this into 

Eq. (9) gives 

)2/1(22 µωω += ab

 
a

aab
b i

ims
ηµ
ηωω

−
+

=
2/

)1(')(
2

 (16) 

which in the undamped case reduces to 

  (17) '2)( 2
bbb ms ωω =

Hence, the wavenumber at ωb is given by 

 ( )
2

11~ 4/1 ikkk bb
−

=−=  (18) 

which is independent of µ for µ << 1. It increases slightly if µ is large, as kb will be slightly 

higher at ωb than at ωa. 
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4.3 Damped absorber 

By adding damping to the mass-spring system, the frequency range in which beam vibration 

is attenuated can be increased. Results obtained for different damping loss factors are shown 

in Figures 6 to 8 for an absorber mass of µ = 0.1, 0.2 and 0.5. The imaginary part of the 

wavenumber is related to the decay rate according to Eq. (5). It is again shown normalised by 

the free beam wavenumber at ωa. 

 

Clearly, as the damping is increased, particularly for large values, the decay rate at the peak is 

reduced whilst the height of the flanks is increased. Comparing the different figures, it can be 

seen that, as the mass ratio is increased, the blocked region becomes wider, as was seen in 

Figure 5 for the undamped case, and the decay rate at the flanks is increased. These effects 

will be demonstrated analytically in Section 5.  
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Figure 6. Normalised decay rate of beam with tuned absorber, µ = 0.1. ⎯, ηa = 0.001; − − −, 

ηa = 0.01; ⋅⋅⋅⋅⋅⋅, ηa = 0.1; − ⋅ − ⋅, ηa = 0.4.  
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Figure 7. Normalised decay rate of beam with tuned absorber, µ = 0.2. ⎯, ηa = 0.001; − − −, 

ηa = 0.01; ⋅⋅⋅⋅⋅⋅, ηa = 0.1; − ⋅ − ⋅, ηa = 0.4.  
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Figure 8. Normalised decay rate of beam with tuned absorber, µ = 0.5. ⎯, ηa = 0.001; − − −, 

ηa = 0.01; ⋅⋅⋅⋅⋅⋅, ηa = 0.1; − ⋅ − ⋅, ηa = 0.4. 
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4.4 Motion of absorber mass 

The vibration of the absorber mass, wa is given by 

 

2

22

)1(

)1(
')1(

)1(

a
a

a

saa

aaa

i

i
mis

is
w
w

ω
ωη

η
ωη

η
τ

−+

+
=

−+
+

==  (19) 

This is shown in Figure 9 for different values of damping. The result is independent of 

absorber mass once the frequency is normalised by ωa. This is the conventional 

transmissibility of a single degree of freedom system. At low frequencies τ → 1, while at high 

frequencies . Close to ω22 /ωωτ a−→ a the absorber mass has large motion for low damping. 

For a loss factor of 0.4 it has an amplitude of motion at most a factor of 2.7 greater than that 

of the beam. 
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Figure 9. Ratio of absorber mass displacement to beam displacement (modulus). ⎯, ηa = 

0.01; − − −, ηa = 0.1; − ⋅ − ⋅, ηa = 0.4. 

 

This motion of the absorber mass may lead to additional noise radiation. However, if µ << 1 

the absorber mass is likely to be small in size compared with the beam and consequently its 

noise radiation should also be lower. For example, for compact masses of the same density as 

the beam, the cross-sectional areas would be approximately in the ratio µ. The radius a of the 
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equivalent cylinders will therefore be approximately in the ratio µ1/2. At low frequencies 

where ka << 1, with k the acoustic wavenumber, the radiation ratio of a long oscillating 

cylinder is proportional to (ka)3 (Fahy 1985), which will be in the ratio µ3/2. Thus the power 

radiated by a given vibration amplitude of the masses will be a factor µ2 times that of the 

beam. As the power is proportional to the square of the velocity, the overall effect is (µτ)2. 

For example with ηa = 0.4 and µ = 0.2, the sound power from the absorber mass is at most a 

factor of 0.54 times that of the beam, the presence of the absorber mass leading to an increase 

of 2 dB. However, this occurs at the frequency where the attenuation of bending waves is 

greatest, so the effect on broad-band noise is much less than this and may be neglected. For 

lower values of damping or for masses which are not compact the noise from the absorbers 

may be significant. 

 

5. Approximate formulae 

 

5.1 Approximate formulae for the decay rate far from the tuning frequency 

The effects shown in Figures 6 to 8 can be demonstrated analytically. First the decay rate far 

from the tuning frequency is considered. From Eq. (3) the imaginary part of the wavenumber 

is given by 
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⎪
⎬
⎫
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⎪
⎨
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At high frequencies, from Eq. (10) and substituting sa = ma′ωa
2, 

 a
abk µη

ω
ωβ 2

2

4
≈   for ω >> ωa (21) 

Similarly at low frequencies, from Eq. (12) 

 
)1()1(4 24/32

2

a

a

a

bk
ηµ

µη
ω
ωβ

++
≈   for ω << ωa (22) 

which for small values of µ and ηa reduces to 

 a
a

bk µη
ω
ωβ 2

2

4
≈   for ω << ωa (23) 

Comparing Eq. (21) and (23), these both increase directly in proportion to the mass ratio µ 

and the damping loss factor ηa. This is confirmed by reference to the results in Figures 6 to 8 

for low and high frequencies. 
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The frequency dependence is complicated by the presence of kb which is proportional to ω1/2 

so that below the tuning frequency β is proportional to ω5/2 while at high frequency it 

decreases with ω–3/2. It is possible to simplify the interpretation by considering an equivalent 

loss factor of the beam which will be defined by (compare Eq. (7)) 

 
b

eqb k
βη 4

, =  (24) 

Thus 

 a
a

eqb µη
ω
ωη 2

2

, ≈   for ω << ωa (25) 

 a
a

eqb µη
ω
ωη 2

2

, ≈   for ω >> ωa (26) 

These results only apply at very low levels of decay rate and cannot be used to determine a 

useful frequency ‘bandwidth’ of the absorber effect. In Figures 6 to 8 it can be seen that the 

straight parts of the graphs only occur well below ωa/2 and above 2ωa. The curved flanks will 

be considered further below. 

 

5.2 Approximate formulae for the decay rate in the blocked zone 

In this section the decay rate at the peak will be determined. In order to estimate this, it is 

convenient to consider the frequency ωb given in Section 4.2 above, which is at the centre of 

the blocked zone for the undamped case. Evaluating the imaginary part of the wavenumber at 

this frequency from Eq. (20), 
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Two extreme cases can be considered. Firstly, for small damping ηa << µ/2 (and ηa << 1) 
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Here the imaginary terms inside the brackets are small compared with –1, so that the decay 

rate is given by the earlier result for the undamped case, see Eq. (18), which is independent of 

both the mass ratio and the loss factor,  

 bk
2

1
=β  (29) 
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The ‘equivalent loss factor’ of the beam is 83.222, =≈eqbη . 

 

Secondly, for large damping ηa >> µ/2 (and µ << 2), Eq. (27) reduces to 

 
a

bk
η
µβ

4
=  (30) 

This increases as the mass ratio increases but reduces as the damping of the absorber 

increases. The equivalent loss factor of the beam is 

 
a

eqb η
µη =,  (31) 

Reference to Figures 6 to 8 confirms that the damping effect in the blocked region is 

independent of ηa at low values and reduces as ηa increases according to Eq. (30). Comparing 

the results for different mass ratios, the width of the blocked region increases with increasing 

µ, and for high values of ηa its height is increased as µ increases.  

 

5.3 Bandwidth of absorber 

It is desriable to determine the bandwidth of the absorber, that is, the frequency bandwidth for 

which the decay rate (or equivalent loss factor) is above a certain value. It has been noted that 

Eqs (21, 23) cannot be used practically for this purpose as they describe the behaviour too far 

from the blocked region. Consider instead frequencies in the vicinity of ωa and write 

ω = ωa(1+ε). Then provided that |ε| << 1, from Eq. (13) 
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Expanding 
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Provided that ηb,eq << 4, the imaginary part of the expression inside the round brackets will be 

small compared with the real part, allowing it to be expressed as  
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Consistent with the assumption that Re( k~ ) ≈ kb ≈ ka, the first expression in Eq. (34), which is 

equal to the real part associated with Eq. (34), is approximately equal to 1 and can be 

neglected. The remaining expression can be solved for ε:  
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This has two roots ε+ and ε– which are above and below zero (either side of ωa) so that the 

bandwidth δω within which ηb,eq is greater than a certain value is given by 
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For the limiting case of low damping, ηa → 0, this reduces to µ/2, which agrees with Eq. (15). 

When ηa is not small and µ << 1, the bandwidth in Eq. (37) can be approximated by 

 2

,
a

eqb

a

a

η
η
µη

ω
δω

−≈  (38) 

Figure 10 shows the actual bandwidth obtained for µ = 0.1 for various levels of damping, 

determined numerically from results such as those in Figure 6. Each plot shows the bandwidth 

at a particular value of equivalent loss factor. Also shown are the estimates obtained from 

Eq. (37). These can be seen to agree very well with the observed bandwidths in most cases. 

Figure 11 shows corresponding results for µ = 0.5. Agreement is found to be slightly less 

good for this case, as the approximations made are no longer valid when ε is not small. Also 

shown in Figures 10 and 11 are the estimates obtained using the approximate expressions 

according to Eqs (15) and (38). It can be seen that these give good agreement at low and high 

values of ηa respectively.  
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Figure 10. Relative frequency bandwidth at various levels of equivalent loss factor, µ = 0.1. 

(a) ηb,eq = 0.03,  (b) ηb,eq = 0.1,  (c) ηb,eq = 0.3,  (d) ηb,eq = 1. •••••, from decay rate curves; 

⎯, full estimate, Eq. (37); − − −, simplified estimate from Eq. (38); − ⋅ − ⋅ estimate from 

undamped system, Eq. (15). 

 

The bandwidth according to Eq. (38) is dominated by the first term except for very high 

values of ηa where the peak of the decay rate curve is approached. From Eq. (31) it will be 

recalled that for high damping the peak is characterised by ηb,eq = µ/ηa, which gives δω = 0 in 

Eq. (38). However, for most of the range of values considered and where ηa > 0.01, a 

reasonable estimate is given by 
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µη

ω
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≈  (39) 

This shows directly the benefit of increasing the absorber damping and mass ratio on the 

bandwidth. However, as has been seen, the effect is limited by the second term in Eq. (38) if 

the absorber loss factor is increased too far. 

 

 21



10
10

−2

10
−1

10
0

10
1

−4
10

−2
10

0

η
a

δω
/ω

a

10
−4

10
−2

10
0

10
−2

10
−1

10
0

10
1

(a) (b)

δω
/ω

a

η
a

10
−4

10
−2

10
0

10
−2

10
−1

10
0

10
1

η
a

δω
/ω

a

10
−4

10
−2

10
0

10
−2

10
−1

10
0

10
1

(c) (d)

η
a

δω
/ω

a

 
Figure 11. Relative frequency bandwidth at various levels of equivalent loss factor, µ = 0.5. 

(a) ηb,eq = 0.03,  (b) ηb,eq = 0.1,  (c) ηb,eq = 0.3,  (d) ηb,eq = 1. •••••, from decay rate curves; 

⎯, full estimate, Eq. (37); − − −, simplified estimate from Eq. (38); − ⋅ − ⋅ estimate from 

undamped system, Eq. (15). 

 

It may be noted from these results that the bandwidth of the absorber is independent of the 

beam wavenumber, see Eq. (38). Thus by selecting an appropriate tuning frequency, such an 

absorber can be used to treat any frequency. In particular, it can be effective even at low 

frequencies where the wavelength in the beam is too long for constrained layer damping 

treatments to be used successfully.  

 

6. Multiple tuning frequencies 

 

It is worthwhile considering the potential benefit of dividing the absorber mass between two 

or more added systems tuned to different frequencies such that their bandwidths do not 

overlap (but are adjacent to each other). Such an approach has been used for discrete 

neutralisers, for example by Brennan (1997b), see also Maidanik and Becker (1999).  
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For a continuous system, the combined bandwidth of two such absorbers is then 
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Assuming that the mass is equally divided, µ1 = µ2 = µ/2, and that the loss factors are 

identical,  
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This gives a bandwidth that is wider than for a single absorber of the same overall mass by a 

factor of approximately √2 = 1.41 provided that the first term in Eq. (38) remains dominant. 

Similarly, dividing the mass equally between three absorbers of different frequencies leads to 

a bandwidth which is √3 = 1.73 wider than the single absorber, etc. However, as the mass is 

divided further, the height of each damping peak is reduced so that it becomes more difficult 

to obtain high decay rates. Thus there is a trade-off between bandwidth and high decay rate. 

 

Figure 12 shows results calculated for single, double and triple absorbers with a loss factor of 

0.4 and the same combined mass of µ = 0.2. Also shown is a result for ten absorbers with the 

same combined mass. The tuning frequencies have been chosen in each case to ensure that the 

equivalent loss factor ηb,eq just remains above 0.1 in a continuous frequency band. Although 

the bandwidth is clearly increased, it can be seen that the height of the peaks is reduced. The 

net effect for a broad-band excitation can be found by integrating the curves in Figure 12 and 

is only the equivalent of 1.2 dB greater for ten absorbers than for one, although the actual 

benefit will depend on the form of the excitation spectrum. The result for ten absorbers can be 

seen to be close to a limiting case such that, if the mass is further subdivided while 

maintaining the same beam loss factor, no further gain is obtained. 

 

The peaks can be observed to increase slightly in height with increasing frequency, due to the 

influence of kb ∝ ω1/2. This suggests that if the target is for a particular value of decay rate, it 

would be more efficient to divide the mass unevenly between the various tuning frequencies, 

with more mass concentrated at the lower frequencies. 
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Figure 12. Decay rate of beam with tuned absorbers, ηa = 0.4. ⎯, single absorber with µ = 0.2 

tuned to ωa; − − −, two absorbers each with µi = 0.1 tuned to 0.72ωa and 1.45ωa; − ⋅ − ⋅ three 

absorbers each with µi = 0.067, tuned to 0.57ωa, ωa and 1.75ωa; ⋅⋅⋅⋅⋅⋅ ten absorbers each with 

µi = 0.02, tuned to frequencies between 0.38ωa and 2.7ωa. 

 

7. Absorber applied to beam on elastic foundation 

 

If an absorber system is applied to a beam on an elastic foundation, the dynamic behaviour 

should be predicted using both the foundation stiffness and the equivalent stiffness of the 

absorber in Eq. (9) to give the total frequency-dependent stiffness s(ω). However, since the 

absorber is designed to increase the attenuation of propagating waves in the region above the 

cut-off frequency due to the support, it is reasonable to assume that ω0 << ωa. Where these 

frequencies are well separated, it is possible to predict the vibration decay rate as the sum of 

that of the supported beam with no absorber and of the free beam with absorber. Such an 

approach was used by (Thompson et al. 2007) in determining the decay rates of a rail 

 24



absorber, in order to simplify the analysis. In this section, the validity of this approach is 

investigated. 

 

Including the foundation stiffness s1 into Eq. (9), gives (in the absence of damping) 
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This yields a cut-off frequency, satisfying mr′ω2 – s(ω) = 0, which for ω << ωa gives  
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This is lower than that in the absence of the absorber, due to the addition of the absorber 

mass. Waves are blocked below ω0'. 

 

Including damping in each of the springs and the beam itself, the imaginary part of the 

wavenumber is given by a modified form of Eq. (20), 
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Around and above ωa the final term dominates. This is related to the absorber, and the decay 

rate can be estimated using the relations in Section 4. For ω >> ωa,  
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The first two terms represent the damping effect of the beam and foundation layer 

respectively, given by Eq. (7) and the third term is that of absorber above its tuning frequency, 

Eq. (21). This shows that the damping effects can be simply combined by adding the separate 

decay rates. 

 

For frequencies well below ωa, Eq. (44) may be approximated as 
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This can be expressed as 
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which is equivalent to the result in Eq. (7) for a beam of mass mb′(1+µ) on the elastic 

foundation. Thus the absorber actually reduces the attenuation in this region, due to the 

increase in mass and the corresponding shift in cut-off frequency ω0′. 
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Figure 13. Normalised decay rate of supported Euler-Bernoulli beam with tuned absorbers, 

µ = 0.2, ω0 = 0.3ωa, η = 0.1, ηa = 0.4. ⋅⋅⋅⋅⋅⋅, direct calculation of supported beam with 

absorber; − ⋅ − ⋅, absorber on free beam; − − −, supported beam with no absorber; ⎯, sum of 

decay rates of absorber on free beam and supported beam including absorber mass. 

 

Figure 13 shows the normalised decay rate in the form of β/ka for the beam on elastic 

foundation with absorber, according to Eq. (44). The initial cut-off frequency for the beam on 

elastic foundation ω0 is here set to 0.3ωa. For simplicity the beam damping loss factor η is set 

to zero. In addition, the separate results are shown for the beam on elastic foundation and the 

unsupported beam with absorber. As noted above, the effective cut-off frequency due to the 

support stiffness is reduced, here by about 9%, and consequently the decay rate is reduced 

slightly between about 0.2ωa and 0.5ωa (around and above ω0) by the addition of the absorber 

mass. By adjusting the mass of the beam to include that of the absorber, a good approximation 

to the exact result can be obtained using the sum of the two separate results.  
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Figure 14 shows corresponding results for µ = 0.5. The shift in cut-off frequency is greater for 

the larger mass ratio; in this case it is 18%. Again the sum of the two separate results gives a 

good approximation to the actual result when the absorber mass is added to the supported 

beam.  
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Figure 14. Normalised decay rate of supported Euler-Bernoulli beam with tuned absorbers, 

µ = 0.5, ω0 = 0.3ωa, η = 0.1, ηa = 0.4. ⋅⋅⋅⋅⋅⋅, direct calculation of supported beam with 

absorber; − ⋅ − ⋅, absorber on free beam; − − −, supported beam with no absorber; ⎯, sum of 

decay rates of absorber on free beam and supported beam including absorber mass. 

In Figure 15 results are shown for a stiffer support, giving ω0 = 0.5ωa, with µ = 0.2. Here, in 

the vicinity of ωa the combined effect is slightly larger than predicted by adding the separate 

effects. However, the difference is still less than 1 dB and the approximate approach is 

acceptable. 
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Figure 15. Normalised decay rate of supported Euler-Bernoulli beam with tuned absorbers, 

µ = 0.2, ω0 = 0.5ωa, η = 0.1, ηa = 0.4. ⋅⋅⋅⋅⋅⋅, direct calculation of supported beam with 

absorber; − ⋅ − ⋅, absorber on free beam; − − −, supported beam with no absorber; ⎯, sum of 

decay rates of absorber on free beam and supported beam including absorber mass. 

 

8. Two-layer foundation viewed as an absorber 

 

In this section a beam on a two-layer foundation is considered, as shown in Figure 16. This 

can represent, for example, a railway track consisting of a rail supported on sleepers, with 

resilient rail pads between the rail and sleeper and ballast beneath the sleeper providing a 

further layer of resilience. It has long been recognised that the sleeper mass forms a dynamic 

absorber which increases the rail decay rate in a particular frequency band (Thompson and 

Vincent 1995). The analysis here shows the effect of including the absorber mass within the 

foundation in this way. The stiffness per unit length of the upper spring is denoted s1, the 

mass per unit length of the intermediate mass is ms′ and s2 is the stiffness per unit length of 

the lower spring. 
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Figure 16. (a) Beam on two-layer foundation, (b) equivalent mass-spring system. 

 

The analysis of Section 3 can be repeated but with a frequency-dependent support stiffness, 

s(ω), which in the undamped case is given by 
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Damping can be added as before by making s1 and s2 complex with loss factors η1 and η2 

respectively. If the beam is constrained, the mass ms′ vibrates freely on the combined stiffness 

of the two layers at the frequency ωa, given by 
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This corresponds to an anti-resonance of the support as seen at the beam and is in effect the 

tuning frequency of the two layer support at which it acts as a neutraliser to the beam. 

 

There are two frequencies at which mr′ω2 – s(ω) = 0, corresponding to the condition of cut-off 

seen in Section 3. These cut-off frequencies are the natural frequencies of the corresponding 

two-degree-of-freedom system shown in Figure 16(b). From the equations of motion of the 

two-degree-of-freedom system, these frequencies can be found as 
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where ω1 and ω2 are given by  
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The two cut-off frequencies ωc are plotted in Figure 17 for different values of '/' bs mm=µ  

and 21 / ss=κ . These results have been normalised by the absorber tuning frequency ωa from 
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Eq. (45). The absorber bandwidth [ωa, ωc2] can be seen to be smaller than the corresponding 

result from Eq. (15), shown by the circles, which forms the limit as s2 → 0. 
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Figure 17. Bounding frequencies of propagating wave behaviour shown relative to ‘absorber 

tuning frequency’ of two-layer foundation. ⎯, µ = 0.5; − − −, µ  = 1; ⋅⋅⋅⋅⋅⋅, µ = 2; − ⋅ − ⋅ −, 

µ = 4; o, limit for s2 = 0. 

 

Examples of the wavenumbers are shown in Figure 18. These are shown normalised to the 

free beam wavenumber at ωa. These results are given for µ = 4, which is typical of a railway 

track with concrete sleepers, although much larger than considered in earlier sections.  

 

As for the case of a single stiffness support, below the cut-off frequency ωc1, a low frequency 

‘blocked’ region occurs where no waves propagate, the wavenumbers having equal real and 

imaginary parts. Free wave propagation occurs in the whole of the region between ωc1 and ωa. 

At ωa the support stiffness s(ω) becomes infinite and changes sign and free wave propagation 

ceases. There follows a second ‘blocked’ region of complex wavenumbers between ωa and 

ωc2, in which the wavenumber falls with increasing frequency, above which free wave 

propagation again commences. At high frequency the wavenumber tends to that of the 
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unsupported beam, kb. The region between ωa and ωc2 resembles that of the absorber seen in 

Section 4. 
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(a) (b)

(c) (d)

Figure 18. First wavenumber for beam on two-layer foundation, µ = 4. ⎯, κ = ∞ (sb = 0);  

− − −, κ = 5; − ⋅ − ⋅ κ = 1, ⋅⋅⋅⋅⋅⋅ free beam. Frequency normalised by ωa, wavenumbers by 

beam free wavenumber at ωa. (a) Real part of first wave, undamped, (b) imaginary part of 

first wave, undamped, (c) real part of first wave, η1 = 0.1, η2 = 1, (d) imaginary part of first 

wave, η1 = 0.1, η2 = 1. 

 

As the stiffness of the lower layer (s2) increases, relative to s1, the width of the blocked zone 

above ωa reduces, making the absorber less effective. Conversely, the blocked region at low 

frequency extends higher in frequency.  

 

Also shown in Figure 18 are results including damping in the support layers. These show 

similar trends to the undamped results, with the ‘blocked’ regions still discernible below ωc1 

and between ωa and ωc2. The attenuation (imaginary part) is no longer zero outside these 

blocked regions. As for the undamped case, the effectiveness of the intermediate mass acting 
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as an absorber can be seen to reduce as the stiffness of the lower layer increases. For smaller 

values of µ, not shown, the bandwidth of the absorber peak is reduced and again it is further 

reduced as κ reduces. 

 

Clearly, significant attenuation can be introduced to the beam over a frequency bandwidth of 

at least an octave by a configuration with a mass ratio µ = 4 and stiffness ratio κ = 5. These 

values are quite typical of a railway track with concrete sleepers (Thompson and Vincent 

1995). Thus it is confirmed that the sleeper in a railway track acts like a tuned absorber. Since 

it has quite large mass compared with the beam, large attenuation is possible over a wide 

frequency range. The effectiveness is reduced, however, as the stiffness of the upper resilient 

layer is reduced relative to that of the lower layer. 

 

9. Results for other wave types 

 

9.1 Non-dispersive waves 

The results throughout this report have been for waves in an Euler-Bernoulli beam. In this 

section the case of a system carrying non-dispersive waves is considered briefly as an 

alternative. These may be longitudinal or torsional waves of a rod or shear waves. The latter 

can be considered as a high frequency approximation to bending in a thick beam. 

 

Taking as an example the longitudinal motion of a beam on an elastic foundation, the 

equation of free vibration for harmonic motion at frequency ω is 
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where u is the complex vibration amplitude and x is the coordinate along the beam direction. 

This is a second order equation as opposed to the fourth order bending equation of Eq. (1). 

The wavenumber in the supported beam, βikk −=
~  has solutions 
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where ω0 = (s/mb′)1/2 is the resonance frequency of the beam mass on the support stiffness as 

before and kl = (ω2mb′/EA)1/2 is the wavenumber of the unsupported beam. In the absence of 

damping, the wavenumber k~  has purely real solutions for frequencies above ω0, while for 

frequencies below ω0, it is purely imaginary. For ω << ω0, the imaginary part 
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β ≈ k0 = (s/EA)1/2, which is equal to the wavenumber of the unsupported beam, kl, at 

frequency ω0.  

 

Introducing damping into the support and the beam itself by means of loss factors η and ηb, 

gives complex wavenumbers 
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Note that these have terms to the power ½ where the bending equation, Eq. (6), had terms to 

the power ¼. At high frequency, for ω >> ω0, the imaginary part is given by 
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which differs from Eq. (7) by a factor of 2 as well as the presence of the wavenumber for 

longitudinal waves kl.  

 

Introducing an absorber for longitudinal motion to a free beam, the frequency-dependent 

stiffness corresponding to the absorber is identical to Eq. (9). The wavenumber in the beam in 

the presence of the mass-spring system is modified to 
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The bandwidth of the blocked region for the undamped case is identical to that for bending, 

Eq. (15), but in this region the wavenumber is now purely imaginary. 

 

For the damped absorber, the imaginary part of the wavenumber far above the tuning 

frequency is given by 
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while at low frequencies 
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Comparing these with Eqs (21) and (23), they again differ by a factor of 2 as well as the 

modified wavenumber. 
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Evaluating the wavenumber at ωb, which is at the centre of the blocked zone for the 

undamped case, gives 
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As before, two extreme cases can be considered. Firstly, for small damping ηa << µ/2 (and 

ηa << 1) the decay rate is independent of both the mass ratio and the loss factor,  

 lk=β  (60) 

Secondly, for large damping ηa >> µ/2 (and µ << 2), Eq. (59) reduces to 
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Thus for non-dispersive waves, similar results are found to those for bending waves, but in 

each case the attenuation is greater by a factor of 2 (a factor of √2 in the blocked zone for the 

lightly damped case) and is proportional to kl, which is in turn proportional to ω rather than 

ω1/2. Thus greater attenuation can be expected at high frequency and a reduced effect below 

the tuning frequency. 

 

9.2 Timoshenko beam 

At high frequencies beams no longer behave according to the Euler-Bernoulli equations. 

Timoshenko beam theory offers an improvement by including shear deformation and 

rotational inertia, leading to an increase in the wavenumber. For the vertical bending of a rail 

this correction is found to be necessary above about 500 Hz, which is also typically where 

free waves commence (Thompson and Vincent 1995). 

 

The wavenumbers corresponding to a UIC60 rail (see Thompson and Vincent 1995) 

normalised to an absorber tuning frequency of 1 kHz are shown in Figure 19. From this it can 

be seen that the wavenumber of the Timoshenko beam tends to that of a shear wave at high 

frequencies, sb GAmk /'ω=  where G is the shear modulus and As the reduced cross-section 

area effective in shear. For the particular choice of parameters, the shear wavenumber and the 

Euler-Bernoulli bending wavenumber cross at 2ωa. Thus it can be expected that the results at 

frequencies well above ωa will follow the trends described in Section 9.1. 

 34



10
−1

10
0

10
1

10
−1

10
0

10
1

ω/ω
a

k/
k a

 
Figure 19. Normalised wavenumbers. ⎯ Timoshenko beam tuned absorbers, ηa = 0.4, µ = 

0.2; − − −, Euler-Bernoulli beam, − ⋅ − ⋅, shear beam. 

 

In Figure 20 the decay rates are shown for a Timoshenko beam with added continuous 

absorber in comparison with an Euler-Bernoulli beam, all other parameters remaining as 

before. Higher decay rates are obtained at high frequencies using the Timoshenko beam. This 

can be attributed to the change in wavenumber.  
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Figure 20. Normalised decay rate of beam with tuned absorbers, ηa = 0.4, µ = 0.2. − − −, 

Timoshenko beam; ⎯, Euler-Bernoulli beam. 
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Figure 21 shows the ratio of decay rates and the ratio of free wavenumber in each case. In the 

various expressions for the decay rate, Eqs (21), (23) and (30), the factor kb/4 is present. 

Changing from an Euler-Bernoulli beam to a Timoshenko beam increases kb as seen here and 

also changes the factor 4 in the above equations to a factor of 2 as seen in the previous 

subsection for longitudinal waves.  
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Figure 21. Effect of changing from Timoshenko beam to Euler-Bernoulli beam. ⎯ Ratio of 

decay rates with tuned absorbers, ηa = 0.4, µ = 0.2; − − −, ratio of free wavenumbers. 

 

From this discussion it can be expected that similar phenomena will be observed for a 

Timoshenko beam as were seen above for an Euler-Bernoulli beam, but that the performance 

of the absorber will be improved at high frequencies, which will improve both the peak decay 

rate and the frequency bandwidth. 

 

10. Practical application to railway track 

 

Various configurations of absorber applied to railway track are described in (Thompson & 

Gautier 2007). One particular application, described in (Thompson et al. 2007), has a total 

mass per unit length of 17.5 kg/m. For rails with mass per unit length 60 kg/m this 

corresponds to a mass ratio µ of 0.3. It has two steel masses on each side of the rail, separated 

from each other and from the rail by layers of an elastomeric material. This gives two 

resonances in the vertical direction in a suitable ratio (about a factor of 2 apart), which is 

effective in reducing the vertical bending motion of the rail; this was the dominant noise 

source for the track considered. A three-frequency system was also considered but found to 

give negligible additional benefit in terms of the overall noise. For the lateral direction it was 
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not possible to obtain two natural frequencies in a suitable ratio within the geometric 

constraints but this is of less importance for the overall noise. 

 

The actual design was developed using finite element models of the rail and absorber cross-

section. This allows for the cross-sectional deformation that occurs in the rail at higher 

frequencies (Thompson 1993). Extensive tests were also carried out on material samples to 

arrive at a suitable elastomer. In order to meet the requirement for a high loss factor, the 

elastomer operates in its transition region and there is therefore a high dependence of both 

stiffness and damping with temperature and frequency. 

 

Field measurements on a track fitted with a prototype rail absorber were conducted as part of 

the ‘Silent Track’ EU project (Hemsworth et al. 2000, Thompson & Gautier 2007). The decay 

rates in the track were measured using impact excitation and rolling noise measurements were 

made using a test train.  

 

Measurements showed an overall noise reduction of 5.6 dB(A). In order to show the reduction 

in track noise most clearly, these results were for a low-noise wheel (Hemsworth et al. 2000). 

Estimates in which the wheel noise is removed indicate that the track noise was reduced by 

about 6 dB(A) due to the absorber in this situation, although this will depend on the track 

design, in particular the stiffness of the rail pad. Further details are given in (Thompson et al. 

2007).  

 

11. Conclusions 

 

The use of a continuous, damped mass-spring system added to a beam has been shown to be 

effective in increasing the attenuation of propagating structural waves in the beam and hence 

reducing the radiated noise. It is effective at any tuning frequency, independent of the bending 

wavelength in the beam, and so is particularly useful for stiff beams or at low frequencies, 

where constrained layer damping would be impractical. This has been developed for the 

particular application to a railway track but could also be considered for piping systems and 

many other beam-like structures. 

 

Approximate formulae for the effect have been derived. The effective frequency bandwidth 

increases as the mass of the absorber is increased. Although the bandwidth is independent of 
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the absorber damping loss factor for low damping, for moderate damping the bandwidth 

increases as the damping is increased. For large values of loss factor the height of the decay 

rate peak is reduced. For a given mass, the effective bandwidth can also be increased by 

dividing the mass to form multiple absorbers with different tuning frequencies, although the 

height of the decay rate peak is reduced as a result. A practical application with two tuning 

frequencies has been demonstrated in railway track yielding a 6 dB reduction in rolling noise. 

 

For a beam on an elastic foundation, the addition of an absorber can be represented well by 

adding the decay rates of the unsupported beam with absorber and the supported beam 

without absorber but including the absorber mass. For a Timoshenko beam the increase in 

wavenumber due to shear deformation causes the absorber to be more effective than for the 

corresponding Euler-Bernoulli beam at high frequencies. 

 

For a railway track with concrete sleepers, the mass of the sleeper acts as a tuned absorber 

which increases the decay rate over a wide frequency region. The large mass relative to the 

rail makes this an effective system. However, the fact that the absorber is integral to the 

support system in this case means that the benefit is less than that for a separate absorber of 

the same mass, especially if the rail pad is not much stiffer than the ballast layer below the 

sleeper. 
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Appendix A. Relation between radiated sound from an infinite beam and spatial 

attenuation rate 

 

The general expression for the radiated sound power Wrad from a vibrating structure can be 

written as (Fahy 1985) 

 2
002

1 vScWrad σρ=  (A1) 

where S is the surface area, ρ0c0 is the characteristic acoustic impedance of air, σ is the 

radiation ratio which depends on frequency and 2v  is the spatially averaged velocity 

amplitude normal to the surface. For an infinitely long beam along the x axis this can be 

expressed as 

 ∫
∞

∞−

= dxxvLcWrad
2

002
1 )(σρ  (A2) 

where L is a perimeter length of the cross-section, v(x) is the velocity amplitude at 

longitudinal position x. Above the cut-off frequency the evanescent wave component has only 

a small effect on the integral since it decays rapidly, and the above expression can be 

approximated by 

 ∫
∞

−≈
0

2~2
002

1 )0( dxevLcW xki
rad σρ  (A3) 

For a complex valued wavenumber βikk −=
~ , the integral reduces to 

 
β

β

2
1

0

2

0

2~
== ∫∫

∞
−

∞
− dxedxe xxki  (A4) 

giving 

 
β

σρ
4

)0( 2
00 vLc

Wrad ≈  (A5) 

which shows that the radiated power is inversely proportional to β and to the decay rate, ∆ = 

8.686β. 
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