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Doctor of Philosophy

AN EMPIRICAL STUDY OF PROGRAMMING LANGUAGES IN OPEN-SOURCE

SOFTWARE PROJECTS BASED ON MINING SOFTWARE REPOSITORIES

by Muna Altherwi

There are dozens of programming languages in use today, and new languages and lan-

guage features are being introduced frequently. However, there are only a few empirical

studies on the usage and practice of programming languages. In this research we ex-

plored languages from an empirical/pragmatic perspective to address their association

with open-source software (OSS) projects and practices. The research was conducted in

a comparative setting to investigate whether a signi�cant association exists. That is, a

comparison was made between languages both individually and in groups to understand

similarities and examine di�erences, if any, in popularity and user adoption, feature

usage, and OSS project attributes. The methodology was based on mining software re-

positories, and the results obtained from an analysis of possibly the largest open-source

dataset (a sample of 5,350 projects from a total of 15,000 projects), where a main lan-

guage was identi�ed. The investigation revealed that a considerable association exists;

however, the e�ect size of such association was modest. When accounting for confound-

ing factors such as project size and type, the �ndings held only in a small number of the

tested cases. Thus, the choice of language has a limited e�ect on OSS development.
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Chapter 1

Introduction

Programming language debates are often subjective and inconclusive. Language design-

ers and early adopters make di�erent claims about their languages to di�erentiate them

from others and to attract users. Unfortunately, a number of such claims is based on

personal a�nity and not supported by strong evidence. Claims are more overstated in

modern languages than in earlier ones (Markstrum 2010).

Research on programming language links to software projects has revealed a divide on

whether the choice of language has a signi�cant e�ect on software development. Some

studies stated that programming languages do not have a considerable e�ect on software

development, performance, productivity, and practical programming, and that there is

no hard evidence to support such claims (Boehm 1981, Wulf 1980). They expressed

that the impact of languages on software is rather limited and subtle in terms of pro-

gram's readability and error propensity and that choice of language is not signi�cant in

developing software projects. However, a number of empirical studies have shown that

the choice of language has a considerable e�ect on software development. Early studies

(Schneider 1978, Harrison & Adrangi 1986) in this regard revealed strong di�erences

between low-level and high-level languages, and no comparisons were carried within the

group of high-level ones due to limited sample size. Later attempts (from the 1990s

onwards) on the high-level group were preliminary, their results were sometimes contra-

dictory, and some were based on small-scale experiments (Phipps 1999, Bhattacharya &

Neamtiu 2011b, Myrtveit & Stensrud 2008, Nanz & Furia 2015, Ray et al. 2014, Berger

et al. 2019a). Thus, studies on programming languages from an empirical/pragmatic

perspective are needed to provide supportive evidence and objective comparisons among

them.

The overall goal of this research is to empirically compare a range of modern, popular,

and high-level programming languages to inspect how much such languages di�er from

one another in open-source software development projects and practices. More import-

antly, this research will investigate whether an association between language and OSS

15



16 Chapter 1 Introduction

projects and practices exists in the dataset, the signi�cance of such association, and its

magnitude. This investigation is carried out on a large-scale setting based on mining

software repositories.

1.1 Research Motivation

Why an empirical comparison between programming languages?

Since the appearance of modern computers, progress has been made in designing various

programming languages. Nowadays, there are dozens of programming languages in use,

and new languages and/or language features are being introduced continuously. The

nature of such languages as special software tools makes it di�cult to �nd measures to

draw objective conclusions about them. Moreover, language designers, advocates, and

early adopters make di�erent claims to di�erentiate them from others and to attract

users. Unfortunately, a number of such claims are based on personal a�nity and are not

supported by hard evidence. Claims are more overstated in modern languages than in

earlier ones (Markstrum 2010). Thus, one approach that can be used to provide objective

information about languages is empirical comparison. Looking into languages from an

empirical perspective would provide supportive evidence and valuable conclusions about

them.

Why Open-Source Software?

Open-source software (OSS) has successfully made it to the mainstream and obtained

increasing popularity over time. The growth rate of the number of OSS projects has

increased exponentially in the period of 1993-2007 (Deshpande & Riehle 2008). Fur-

thermore, OSS has been embraced by the vast majority (91%) of enterprise, according

to a 2016 survey (Zenoss Inc 2016) of di�erently sized companies worldwide. This con-

siderable interest in OSS, along with the availability of these projects data on online

code hosting platforms that allows gathering of a reasonably large sample size attracted

attention to consider OSS projects for this research.

Why mining software repositories?

Mining software repositories (MSR) for uncovering patterns and discovering �ndings

about the artifact and the delivery process have gained importance as a research area

during the last decade. In 2004, a specialized conference1. on mining software repositories

evolved from the premium International Conference On Software Engineering (ICSE) 2,

in recognition of the importance and potential of this �eld. This active research area has

utilized the availability of project data along with data mining tools and techniques to

analyse and understand software projects. Moreover, it provides an opportunity to build

large-scale datasets of selected, high quality, real project data for research purposes. For
1"Mining Software Repositories." Available: http://www.msrconf.org/
2"International Conference on Software Engineering (ICSE)" Available: http://www.icse-

conferences.org/
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instance, Github, a widely used software hosting platform, hosts some prominent open-

source projects, such as Linux kernel, Ruby on Rails, and JQuery. In addition to the

availability of source codes, it also o�ers a wealth of data related to the software artifact

and the development process, making it a valuable resource for researchers.

1.2 Research aims

The overall goal of this work is to address the association between general-purpose, high-

level programming languages and OSS projects and practices, if any. In particular, there

is an interest in comparing languages individually and in groups based on their design

using an empirical methodology that is based on data mining. The general aims of this

research are summarised in the following points:

• To investigate current trends, directions, and practices in software development

and programming languages.

• To investigate state-of-the-art practice of language features.

• To investigate programming language relationships with classic software develop-

ment aspects.

1.3 Thesis structure

The remainder of this thesis is structured as follows:

• Chapter 2 provides the background needed to understand the work done in this

thesis.

• Chapter 3 covers the research objectives, the methodology used for achieving the

research objectives, the data collection process.

• Chapter 4 describes the �rst study in this research area current trends and dir-

ections in programming languages. In this chapter the aim is to identify popular

languages in developing OSS; compare their usage; and observe trends and patterns

in language use.

• Chapter 5 covers the second study; which investigates how language features are

used in practice and whether there is a signi�cant association between language

design and feature usage.

• Chapter 6 covers the third study in this thesis that investigates the relation of

general-purpose programming languages and open-source software development.
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• Finally, in Chapter 7 the limitations of this research are provided along with the

contributions and the conclusions.



Chapter 2

Background and related work

The purpose of this chapter is to give background for the presented research. Section 2.1

provides information about software development, in particular, the open-source software

development covered in Section 2.1.1. Then, Section 2.2 covers the related work that

investigated the relationship between software development and languages. In Section 2.3

the di�erences between some programming languages categories are brie�y discussed, and

milestones in the time-line of programming languages are presented in Section 2.4.

2.1 Software development

IT industry has made signi�cant progress over the years, growing from non-existence

early last century to a multi-billion pounds industry nowadays. In the early days of the

industry (1950s-1960s), the cost of hardware exceeded the cost of software. This gradu-

ally changed during the 1970s when an increase in software costs started to dominate

the scene as demonstrated in Figure 2.1. Since then the need to improve software de-

velopment practices and the impact of such enhancements has been recognized (Boehm

2006). According to Boehm, a 20% improvement in software development would worth

$90 billion worldwide, as of the last decade of the twentieth century (Boehm 1987).

Software development refers to tasks associated with planning, designing, building, and

maintaining software. In the beginning, software projects were smaller in size and as-

sembly was the language of writing programs. Back then, programming e�ort used to

make about 80% of the total development cost (Jones & Bonsignour 2011) due to the

di�culty of writing programs in assembly. Basic assembly is one level higher than ma-

chine code and the mapping between code statement and machine instruction is about

one-to-one, making programming e�ort quite high. Over the time, �ourishing of high-

level languages along with advances in the software industry, have managed to limit

the programming e�ort to about 20% to 30% of the total development cost (Jones &

Bonsignour 2011).

19
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Figure 2.1: Hardware-software cost trends in large organizations (1973 predic-
tion). Reference: Boehm (2006)

2.1.1 Open-Source Software development

Software can be closed-source, also called proprietary software, in which the use, re-

distribution, and alteration of the software or its source code is protected by copyrights

and controlled by the vendors. On the other hand, in the open-source software, the

source code is available and the publication is licensed. That is, the use, modify, and

re-distribute is permitted to anyone. Over the years, OSS has made it to the mainstream

and obtained increasing popularity. An exponential growth of OSS between 1993 and

2008 has been depicted in Figure 2.2.

OSS projects has a long history and managed to gain wide popularity over the time.

Prominent examples of such software include Linux operating system, Apache web server,

Python programming language, and Mozilla web browser. In this open setting, a com-

munity of developers and users can collaborate to build, extend, and maintain software.

This development paradigm is di�erent from the proprietary one, where such processes

are appointed to speci�c teams of developers (Ming-Wei Wu et al. 2001). In 1999, a

milestone in the history of OSS was reached when Eric Raymond identi�ed and di�er-

entiated the two development models (Raymond 1999). Raymond compared the OSS

development model to a bazaar, where everyone can participate in order to produce a

quality software, as opposed to the cathedral-builder style, where a speci�c group of

experts is responsible for creating and maintaining the software. This work in�uenced

Netscape to join the movement and make its Communicator suite open source.

2.2 Programming languages and software development

Empirical comparisons have been conducted with a range of programming languages to

investigate whether there exist signi�cant di�erences among them. More importantly,

whether such di�erences have an e�ect on software development and its related aspects.
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Figure 2.2: Graph showing the total number of open-source projects from
November of 1993 through August of 2007. Source: Deshpande & Riehle (2008).

There is a disagreement among the studies in the body of literature as to whether pro-

gramming languages are similar in their e�ect on software development, performance,

and practical programming.

Some researchers have stated that programming languages do not have a considerable

e�ect on software development, performance or practical programming, and that there

is no hard evidence to support such claims. They claimed that the e�ect of languages

on software development is rather limited and subtle in terms of a program's readability

and error propensity (Wulf 1980). Boehm's empirical experiment in 1981 examined

the in�uence of a programming language on the success of software projects (Boehm

1981). The study concluded that the choice of language was not signi�cant in developing

small projects. However, the experiment was focused on programming in the small. It

was carried out with two small groups of students developing the same project in two

high-level languages (Fortran and Pascal). Other studies stated that languages coupled

with speci�c programming style, rather than other languages, could a�ect productivity

and e�ciency, (Port & McArthur 1999). Another study on a software development

productivity of C and C++ concluded that there is no empirical evidence of di�erences

between them (Myrtveit & Stensrud 2008).

Conversely, other cost models considered programming languages to be a factor a�ecting

software development costs. Thus, the e�ect of languages on software development have

been recognized by the following cost models: SDC (Nelson 1967), Putnam SLIM (Put-

nam 1978), and SOFCOST (Dircks 1981), whereas languages were excluded by others

such as COCOMO (Boehm et al. 1995), Jensen (Jensen 1983), and TRW. One of the

reasons for this exclusion can be the `non-quantitative' nature of programming languages

(Harrison & Adrangi 1986).

In addition, a number of studies have found some associations between languages and

software development. A study by Harrison and Adrangi (1986) investigated the role
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of programming languages in software development costs with an analysis of 279 De-

partment of Defence software projects that used Assembly, COBOL, FORTRAN, and

PL/1. Their �ndings demonstrated that any of the high-level languages will reduce the

amount of e�ort required to develop a given size of project when compared to assembly

language. However, due to the lack of sample sizes for COBOL and PL/1 projects,

they could not compare the high-level languages with each other because it would have

produced misleading results (Harrison & Adrangi 1986).

Such �ndings go along with the outcome from Schneider (1978), where the development

e�ort of high-level and low-level languages were compared and the results indicated that

high-level languages are roughly twice as e�cient as low-level languages. Again, no com-

parison was done on the high-level languages. Another study compared defect density

and programmer productivity in Java and C++ and showed that Java had two to three

times fewer bugs per line of code than C++, about 15% to 50% fewer defects per line,

and was about six times faster to debug (Phipps 1999). However, when defect density

was measured (defects against development time) it showed no di�erences between the

two languages. This experiment was carried out on a small scale. However, it is essential

to consider that the style of programming and the programmer's pro�ciency can consid-

erably a�ect the performance of small scale applications. Moreover, it has been found

that variability of performance among programmers of the same language is greater than

the variability among the di�erent languages (Prechelt 2000).

Figure 2.3: Program memory in Mbytes. Reference: Prechelt (2000)

Another study (Bhattacharya & Neamtiu 2011a) assessed the impact of language on

software development and maintenance in an investigation of the di�erences between C

and C++. The researchers concluded that C++ is better in software quality and e�ort.

Their �ndings contradict the �ndings of Myrtveit & Stensrud (2008), who concluded that

there was no empirical evidence of di�erences between C and C++ in terms of develop-

ment e�ort and that there was no superiority of C++ over C. An experiment examining

on Java and C++ showed that Java was about 30% to 200% more productive than C++
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Figure 2.4: Program runtime in seconds. Reference: Prechelt (2000)

(Phipps 1999). While such attempts are valuable, the ability to draw conclusive �ndings

are limited because these studies are based on comparisons of only a couple of languages.

A relatively large empirical comparison (Prechelt 2000) of seven programming languages

that implemented the same set of requirements showed that languages have di�erent

e�ects on software performance in terms of memory consumption (Figure 2.3), execution

speed (Figure 2.4), and on the design and writing of programs. However, no di�er-

ences were found between languages in terms of program reliability. A large-scale study

examining languages and software development productivity was carried out on about

500 languages and showed that di�erent languages produced di�erent productivity levels

(Jones 1996). Nonetheless, the research stated that their �ndings were preliminary and

noted that the error margin in the results can be quite high. Another study of nine

languages aimed at determining if there is evidence of an e�ect on software development

concluded that the choice of language was a signi�cant factor in writing programs and

that developers' productivity rates are not constant among di�erent languages (Delorey

et al. 2007).

An additional study (Lavazza et al. 2016) exploring the e�ect of 11 programming lan-

guages on development e�ort con�rmed the �ndings of Jones (1996) and Delorey et al.

(2007) that every language has its own rate. However, the study's results showed ef-

fort levels that were higher than those of Jones' (1996) and Delorey et al. (2007) for the

same languages. A further work from ISBSG of comparing a database of 6,000 projects in

terms of development hours per function point of software demonstrated that the choice

of language had a signi�cant e�ect on development schedule, as can be seen in Table 2.1

(Software Project Benchmarking - ISBSG 2012). A large-scale 2014 study by Ray et al.

has investigated 729 projects in 17 languages for the e�ect of programming language on

code quality found that languages can signi�cantly e�ect quality, however, the e�ect size

was modest (Ray et al. 2014). The study was replicated in 2019 by Berger et al. (2019a)

who �rst reproduced the �ndings with the same 729 projects and following the same
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methodology and analysis, resulting in a partially successful replication. Then, they re-

analysed the included projects but followed di�erent methodologies for data processing

and statical analysis than the original study. As a result, a smaller number of projects

were included (423 projects), and most of the claims did not hold. In addition, for the

cases, where the claims did hold, the relationship between programming language and

defects were found to be exceedingly small in e�ect size. Another large-scale study (Nanz

& Furia 2015) based on mining 7,087 programs in eight languages inspected conciseness,

performance, and failure proneness as language features. They found that a language's

paradigms a�ected conciseness di�erently, with functional and scripting languages per-

forming better than procedural and object-oriented languages. In performance, in terms

of running time, C was the best language on large inputs, followed by Go. Procedural

languages were more e�cient with memory usage than languages from other paradigms.

Language Hours per Function Point

Classic ASP 06.1
Visual Basic 08.5

Java 10.6
SQL 10.8
C++ 12.4
C 13.0
C# 15.5
PL/1 14.2

COBOL 16.8
ABAP 19.9

Table 2.1: Development hours per function point of software, ranked by principal
programming language (courtesy of ISBSG)

As discussed in Section 2.1, other factors a�ect software development and its related as-

pects, such as the size of the development team, their experience, and the complexity and

type of application. However, our focus here is on the factor of programming languages.

The nature of programming languages as a special software tool makes it di�cult to �nd

objective metrics that can be used to provide meaningful comparisons among them. Pro-

gramming language designers and early adopters make di�erent claims about languages

in order to di�erentiate them from others and to attract users. Furthermore, some de-

velopers back certain languages rather than others. Unfortunately, a number of their

claims are based on personal a�nity and are not supported by hard evidence. Claims

are more overstated for modern languages than the earlier ones (Markstrum 2010). Thus,

studies on programming languages from a pragmatic perspective are needed to provide

supportive evidence and valuable comparisons among them.
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2.3 Programming language categories

A programming language is a set of notations used to communicate information to a

machine, in particular, a computer. They have strict syntax and de�ned semantics

that are used to describe a program or an algorithm CITE. Programming languages

are universal and can, in principle, perform any computation that the famous universal

Turing machine can perform (Igarashi et al. 2014). General-purpose languages are used

for a wide range of applications. They run on traditional machines and are useful for a

wide variety of problems, unlike the domain-speci�c languages. A programming language

that is machine-independent and re�ects the problem it solved rather than the structure

of the computer or operating system is a high-level one (Ousterhout 1998b).

Programming languages can be categorised according to their features, abstraction level

from hardware, type system, programming paradigm, the purpose for which they are

created and other factors. Based on the abstraction level, languages can have less or no

abstraction from the hardware in which they called low-level languages such as Assembly

and machine languages (Budd 2002). Such languages are hardware-friendly because they

can be directly interpreted by them. However, they lack portability, and each machine

has it own instruction set. High-level languages are designed to overcome such issues, are

hardware-independent, and are user-friendly; however, a translation step into machine

language is required for them to be understood by the hardware(Igarashi et al. 2014).

Another method of categorisation of high-level programming languages classi�es them

into two groups: scripting languages and system programming languages. This is known

as Ousterhout's dichotomy (Ousterhout 1998a). According to this dichotomy, the main

characteristics of scripting languages are being typeless and interpreted. Scripting lan-

guages are also considered to be a higher level of abstraction from the machine than

the system programming ones. Example languages that fall under this category are Tcl,

Python, Perl, Rexx, and Visual Basic. In contrast, system programming languages are

strongly typed and compiled. PL/1, Pascal, C, C++, and Java are examples of such

languages.

Language could also be categorised based on the programming paradigm they support,

such as imperative, functional, object-oriented and more. The computation in functional

languages is achieved through the evaluation of expressions (Hudak & Paul 1989). That

is, functions can be passed to other functions as arguments and can be returned as a

result of a function. Common features of those languages are (a) higher-order functions;

(b) immutable data structure; and (c) recursion. Imperative languages have a di�erent

set of common features, which are (a) variables that are named memory storage areas,

(b) assignment statements to assign values to the variables, and (c) iteration (Petricek &

Skeet 2009). In such languages, programs are sets of commands that tell the computer

what to do. In object-oriented languages, data are encapsulated inside objects. The
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common features here include classes and objects, messages and methods, inheritance,

and polymorphism. (Budd 2002)

It is important to note that categories of programming languages are not mutually ex-

clusive. High-level languages today manage to support di�erent features, making it

di�cult to draw boundaries to categorise them. For instance, a language like Java is a

hybrid one (imperative and object-oriented), and it also supports anonymous functions

(λ-abstractions), a functional feature that was added to Java 8 (Oracle 2016). Another

example is C#, which supports imperative, declarative, and functional programming

(Petricek & Skeet 2009). However, a language's syntax and services, in addition to other

factors such as its libraries, coding conventions, and guidelines, may direct a program-

mer's choice towards a speci�c language.

2.4 Evolution of high-level programming languages

It is di�cult to identify the �rst appearance of a language, in the same way as with the

�rsts in history. The language team may have been working for several years prior. They

may have given an informal presentation. Sometimes a research paper is published in

a di�erent year of submission date. So, it is not possible or meaningful to compare the

year of the �rst appearance. Thus, we are considering the `conceptual' development of

programming languages rather than the historical one.

One of the most signi�cant languages appeared in the year 1957, called FORTRAN

(which stands for FORmula TRANslating system), and almost all later imperative lan-

guages were in�uenced by it. FORTRAN is used for mathematical and scienti�c comput-

ing (O'Regan 2008). It included the DO loop statement, the logical IF selection state-

ment, and input/output formatting (Rajaraman 1997). The language was developed by

J. W. Backus, a Turing Award winner, and his team in IBM labs. And during the time

between 1958 and 1960, Backus was also involved in the ALGOL design team.

ALGOL 60 had a strong in�uence on the design of other languages developed from 1960

onwards, such as Pascal, C#, C++, Java, and C#. It was designed in such a way

that it is machine-independent and it is the �rst language to have a formally described

syntax (Backusâ��Naur Form). In ALGOL 60 two evaluation strategies for parameters

passing were supported: pass by value and pass by name (O'Regan 2008). Also, the

concept of block structure (grouping declarations and statements in a local scope) was

introduced, nested procedures were supported, and recursive procedures were allowed.

Although recursive functions were new to the imperative languages world, LISP had

already supported them back in the 1959 (W.Sebesta 2008).

LISP (LISt Processing) was developed in 1958, as a functional programming language

for list processing, by John McCarthy in MIT labs. In Lisp there is no formal di�erence
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between code and data. The language targeted Arti�cial Intelligence (AI) applications,

and for about 25 years, LISP completely led the �eld of AI (W.Sebesta 2008). Along with

its success in large-scale and AI applications, Lisp is also a major language in functional

programming. Although now quite old, Lisp, in the forms of its big family of dialects

and descendants such as Common Lisp and Scheme, still remains in use today.

Functional programming is di�erent than the imperative paradigm, the computation in

this style of programming is achieved through the evaluation of expressions (Hudak &

Paul 1989). In this function-centric style, functions are considered as values, they can

be passed to other functions as arguments and can be returned as a result of a function.

This methodology often provides shorter programs, which are easier to read, and easier to

reason about. Some common features of this paradigm are (a) higher-order functions, in

which one can send function as arguments to another function, such functions, however,

has limited support in some imperative languages in which we de�ne objects to get

advantage of higher-order functions; (b) immutable data structure; and (c) recursion as

a core mechanisms for de�ning functions. Additionally, functional languages support the

concept of lambda abstractions (making a term into a function of some variable). Even

with these features and bene�ts, however, functional languages have been slower to gain

mainstream acceptance than some of their advocates hoped (Petricek & Skeet 2009).

Languages belong to this category are relatively small (niche languages) such as Scheme,

Haskell, ML, and F#.

Returning to imperative languages, another member of the ALGOL family is Pascal, a

descendant of ALGOL 60, designed in 1970 (O'Regan 2008). It adopted the concepts of

structured programming de�ned by E. W. Dijkstra and C. A. R Hoare. Pascal helped

the development of dynamic and recursive data structures (e.g. linked lists, trees, and

graphs) (W.Sebesta 2008). It included some landmark features to make it possible to

build these dynamic structures, such as pointers. In Pascal, pointers are powerful fea-

tures, they are used to access dynamically allocated variables. However, Pascal uses

manual memory management, which mean that explicit deallocation is required. This

explicit deallocation process can be feasible for small programs but can be very complex

and costly for large ones (W.Sebesta 2008).

Another powerful language that has its roots in Algol is C. It is a general-purpose lan-

guage designed back in 1972 in Bell Laboratories. The famous operating system UNIX

is written in C, which made the language traditionally used for systems programming.

C is at a lower-level on the abstraction hierarchy, making it close to the machine code

but still high-level language to allow program's reuse and `portability' (O'Regan 2008).

Pointers in C are used as addresses; they give us more explicit access to di�erent memory

locations since they can point at virtually any variable anywhere in memory, whereas in

Pascal and Ada 83 pointers can only point into the heap (W.Sebesta 2008). Memory

management in C is again manual which makes it vulnerable to bugs since allocate and
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release storage need great care (Detlefs et al. 1994). C language in�uenced the design of

both C++, Java, and others.

In the late 1960's and mid-1980's a new programming paradigm was evolving, known as

Object-Oriented Programming (OOP). This paradigm gained huge popularity in the 80s

and 90s. Many books and special issues of journals covered the new topic and its di�erent

techniques, while software engineers, compiler writers, and designers were bustling to

move their products to the new paradigm (Budd 2002). The key characteristics of this

paradigm revolve around objects, the �rst-class citizens here. Whereas for instance,

functions are the �rst-class citizens in the functional programming paradigm â�� we

discussed above. Data in OOP is encapsulated inside objects, so, any object owns its data

and the operations on them. The behavior of objects can be extended by adding more

operations (methods), where at the same time, they protect their data and operations

from other objects under their interface. The fundamental concepts of OOP include

classes and objects, messages and methods, inheritance, and polymorphism (Budd 2002).

The �rst major programming language that fully supported object-oriented programming

concepts was Smalltalk (Smalltalk-80 speci�cally) back in 1980 (Igarashi et al. 2014,

W.Sebesta 2008).

Smalltalk advocates two major ideas, object-oriented methodology and windowed user

interfaces (known as Graphical User Interfaces today). Everything in Smalltalk is an

object, from primitive types (integers, booleans, characters) to large complex systems.

And classes, are likewise no exception, in the sense that a class is an instance of the

metaclass of that class, and each metaclass is an instance of another parent or root

class (Igarashi et al. 2014). However, this is not the case with other languages such as

C++ and Java. C++ and Java are hybrid, combining imperative and object-oriented

features (Wu 2009). Both of the latter languages have strongly a�ected the software

development industry and the programming languages world over the last years. They

both became and remain very popular. Similar languages also include Objective-C which

played a major role in developing Apple's operating systems and applications, and had

an in�uence on their new language Swift.

C++, which was initially called (C with Classes), was built on top of C in AT&T Bell

Laboratories by B. Stroustrup in 1980 as a general-purpose language. Originally, C++

embraced traditional programming methodology besides data abstraction to improve

the programmer's e�ciency and the clarity of the code. Accordingly, C++ provides two

constructs to exhibit data abstractions, the class, and the struct. Along with further

modi�cations, object-oriented facilities were added to the language later in 1983 to sup-

port OOP. Eventually, C++ supported both procedural and OO programming. The

language has multiple inheritance, it provides operators overloading, and has dynamic

binding. C++ spread widely due to the enhancements it had over the well-known C:

it is higher-level than C, it also facilitates code reuse and entity representation through
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adopting OO concepts. C++ became a leading language that is suitable for large-scale

commercial software projects (Stroustrup 1999, Wu 2009).

Sun Microsystems back in 1990, considered two widely used languages, C and C++

and attempted to develop a new language that supports object-oriented concepts for

consumer devices and to have the power and �exibility of C++. According to this

attempt, Java was intended to be a small, simple and machine independent language.

Its support for the abstract datatype is similar to C++, except that in Java all user-

de�ned data types are classes (there are no structs), and methods should always de�ne

in a class. Java is built in such a way that its program is compiled to an intermediate

machine-like code for an imaginary machine, the Java Virtual Machine. Eventually, the

use of this language spread rapidly in the software industry world. Java's popularity

was a result of the facilities it provides for Internet application, such as portability (Wu

2009). Since Java's bytecode is machine and system independent, it allows Internet

applications to run on di�erent local machines after being downloaded. Moreover, Java

supports automatic memory management instead of allocating and deallocating memory

explicitly (Arnold et al. 2005). The built-in garbage collector will be responsible for

reclaim memory automatically for reuse (such a language is so called garbage-collected

language). Over the years many features were added to the language, its libraries became

bigger and bigger, making it hard to say that it is a small or a simple language by now.

On the other hand, another category of languages that are di�erent in style from `system'

programming languages (e.g. C++ and Java), has arisen. Such languages, referred to as

scripting languages, are not intended for writing applications from scratch, as in system

languages. They are primarily designed to extend the features of existing components,

and this is where its name "glue languages or system integration languages" came from.

These languages are typically interpreted from source code or bytecode, rather than

compiled (Ousterhout 1998b). Some scripting languages are used in scripting command

line applications, such as Rexx, Shell, and Perl.

JavaScript is an example of a popular scripting language. After the invention of graphical

web browsers, and �ourishing of the World Wide Web in the 1990s, the need for dynamic

modi�cation and creation for the static HTML documents led to the appearance of

JavaScript in late 1995. JavaScript is a lightweight language, its code is embedded in

HTML document and interpreted when the document displayed in a web browser. The

language support object-oriented concepts, excluding inheritance, and dynamic binding

of method calls to methods (Flanagan 1998).

Another example of a popular language scripting language is Python. It is a dynamically-

typed language, object-oriented, and interpreted scripting language. It was created in the

early 1990s (Rossum 2003). Python was typically used for relatively small programs, and

because of interpretation, it is used for prototyping and rapid application development

tasks rather than high-performance computing. A signi�cant advantage of Python is its
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ability to be extended. Modules with additional or new functionality and new types can

be built to be used from Python. Furthermore, these extension modules can be written

in any compiled language (for example C and C++).

Many of today's languages now support a mix of imperative, functional and object-

oriented features. For instance, a hybrid language (imperative and OOP) like Java now

support anonymous functions (λ-abstractions), a functional feature, which were added

to Java 8. Another example is C#, which is a multi-paradigm language, it supports im-

perative, declarative and functional programming (Petricek & Skeet 2009). However, the

syntax and capabilities of a language are generally biased to only one of these paradigms.

A language's syntax and services, in addition to other factors such as its libraries, coding

conventions and guidelines, may direct a programmer's choice toward a speci�c language.

Currently, there are many languages created for di�erent purposes. Figure 2.5 shows the

time-line of selected programming languages and the impact languages have on others.

We can see in Figure 2.5 that some languages have a strong in�uence on others, for

instance, ALGOL60 and C. Whereas, some could barely make an in�uence/existence,

such as Prolog and sh. However, it is important to note that in�uence and popularity

(usage) are di�erent things. Even if a language did not introduce a new concept that

can in�uence the design of others, it still can make it to the mainstream.
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Figure 2.5: Time-line of selected languages showing their approximate date of in-
troduction. Redrawn based on a Computer Languages History diagram (Lévénez
2016)





Chapter 3

Research methodology

This chapter presents research objectives and describes the methodology we followed to

achieve them. The objectives are listed in Section 3.1. In Section 3.2 we present the

methods used per objective, Section 3.2.1 covers the tools and describes the approach

used to collect, store, and analyse the data. The dataset is presented in Section 3.3.

Then in Section 3.4 we discuss the importance of the collected dataset. Finally, the

conclusion is provided in Section 3.5.

3.1 Research question and objectives

There are dozens of programming languages in use today and new languages, and lan-

guage features are being introduced frequently. However, there is little empirical work

examining the usage and practice of programming languages. In this research we look

into languages from an empirical perspective to address their relationship with software

development projects and practices. This relationship is investigated in three directions:

(1) the association between language/language design and user adoption and popular-

ity, (2) language features usage, and (3) project development attributes. The research

is carried out in a comparative settings to investigate the following question: what is

the impact of programming language on open-source projects and related practices?. In

other words, a comparison is made between languages both individually and in groups to

understand similarities and examine di�erences, if any, in three aspects; popularity and

user adoption, feature usage, and OSS projects attributes. This study has three primary

objectives summarised next.

Research objectives:

1. Examine trends in language adoption and investigate their popularity in open-

source software.

33
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2. Examine language feature usage, and inspect statistical association between lan-

guage and features usage in a large-scale setting.

3. Examine statistical association between language and the development of OSS

projects in a large-scale setting.

Throughout this research we inspect the practices of developers through mining software

repositories on Github. This should provide insights about the current state-of-the-

art practices for both language designers and developers. It will also help language

designers understand the user community, as well as how their languages are used in real

projects and whether there is any di�erence between the usage among languages and the

usage among language groups that would suggest a strong relationship between the two.

Moreover, adopting data mining methods in this context encourages an evidence-based

design of programming language rather than a design based on anecdote and assumed

needs. This investigation was conducted in a large-scale setting using statical methods

by accounting for confounding factors, such as project size and type, per language and

language group. Each one of the objectives is studied in a separate chapter.

3.2 Research methods

The research methodology is primarily based on mining software repositories. Di�erent

mining techniques have been used throughout the thesis to address the research question

and ful�l the related objectives. The methods we followed are summarised in Table 3.1.

Nevertheless, as the research is divided into three related studies, a detailed methodology

is discussed for each study.

Objective Reasearch method

Objective #1

Hypothesis testing (Mann-Whitney U test)
Statistical analysis
Trend analysis
Association rules and Apriori algorithm
Topic modelling (Natural language processing)

Objective #2
Statistical hypothesis testing (Mann-Whitney U test)
Mining source code
Statistical analysis

Objective #3
Statistical hypothesis testing (Mann-Whitney U test)
Mining software repositories
Statistical analysis

Table 3.1: A summary of the research methodology.

We intended to use an open source dataset for this investigation. We compared a number

of the mostly used online repositories for open source projects in terms of size (users and
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projects), establishment date, and available features. The repositories managed to o�er

similar features, however, Github had the largest number of users and projects compared

to other popular repositories such as SourceForge, Launchpad, and Bitbucket (Table 3.2).

Repository Established Users Projects

GitHub Github (n.d.) 2007 56,000,000 100,000,000
Bitbucket (Davis, Justine 2016) 2008 6,000,000 unknown

SourceForge (Slashdot Media 2017) 1999 3,700,000 502,000
Launchpad (Canonical Ltd. 2017) 2004 3,713,633 40,457

GitLab (Babb, Luke 2016) 2011 100,000 unknown

Table 3.2: Source code repositories ranked by size (in terms of users and projects)

3.2.1 Approach and tool suite

We have checked about 15,000 repositories on GitHub, and retrieved the data of 5,350

selected projects. The methods and tools used to retrieve, store, and analyse the dataset

are summarised in the following phases:

1. Data retrieval: Which has the following steps:

(a) retrieval of the initial list of popular repositories from GitHub: repositories

that have at least 500 stars rating,

(b) automated identi�cation of primary language: the language that makes up at

least 95% of the project's total code, and

(c) retrieval of the projects' data and source code from those repositories.

The initial retrieval phase has been implemented through GitHub Archive mirror-

ing API on Google BigQuery. After that, the resulting JSON �le was parsed, and

repositories were checked for their main language. This checking process was con-

ducted using GitHub REST API (V3). If the repository had a primary language,

we pulled the repository data (such as project ID, owner, commits, contributors,

etc.) along with the source code �les directly from Github, instead of the mirroring

APIs. This was done to avoid retrieving curated data from the archiving services

and ensure data freshness. It is also worth noting that Github uses a specialized

tool, called linguist, to determine the repository's main language. This tool detects

the main language by aggregating all the languages in a repository and naming the

top one as the main language. Sometimes, the main language can sometimes make

up just a small part of the total code. Thus, to address this issue, we decided to

create our own de�nition of what the main language is: the main language is one

that makes up at least 95% of the project's code.
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2. Data storage: The projects' data are stored locally in JSON �les as well as in

a relational MySQL database. The source code �les are also stored locally to be

inspected for their content. After examining the top starred repositories on GitHub,

we found that the projects where a main language can be identi�ed comprised

48% of the total inspected population, whereas repositories that did not have a

main language (i.e. the codebase is shared between multiple languages) constitute

44.5%, and repositories dedicated for documenting purposes only (tutorials and

books) make up about 7.5% of the total population.

3. Data analysis: The projects' data are analysed statistically using R.

The 3-phases approach and tools used are illustrated in Figure 3.1

Figure 3.1: Tools used in data retrieval, storage, and analysis.

3.3 The dataset

We have examined the most popular 15,000 repositories on GitHub, based on the rat-

ings from January 2012 to December 2019. The selected projects have the following

characteristics:
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1. The project should have a main language, which makes up 95% of its total code.

2. The main language should be a high-level, and general-purpose one.

3. The repository should not have a reportedly in�nite number of contributors and/or

commits by Github. It should not be missing key project attributes.

4. There should be at least 60 projects per language to be considered for the dataset.

The collected data per project include, but are not limited to, languages (including the

main one), source code, size in bytes, creation time/data, last pushed commit time/date,

contributors, and commits. Project's duration has been calculated from the creation

date of the repository to the last release. However, if no releases were found in the

repository, the duration is calculated from the creation date to the last pushed commit.

After excluding projects with special purpose languages (such as Shell and HTML) and

the ones with missing key data for the purposes of consistency, cleaning and removing

any duplications, we arrived with 5,350 projects. The top 12 primary languages are:

JavaScript, Java, Python, Go, Objective-C, Swift, PHP, Ruby, C#, C++, TypeScript,

and C. Table 3.3 shows the programming languages along with the number of the selected

projects per language in descending order. This dataset is not a random sample; it was

systematically generated based on a speci�c criteria.

Language Projects

1 JavaScript 1559
2 Java 1087
3 Python 747
4 Go 455
5 Objective-C 349
6 Swift 267
7 PHP 278
8 Ruby 180
9 C# 159
10 C++ 111
11 TypeScript 93
12 C 65

TOTAL 5350

Table 3.3: Most popular languages on GitHub based on number of projects.

Per language

The dataset projects are varied in type, characteristics, and complexity. The majority

of them (49%) were written in JavaScript (29%) and Java (20%), followed by Python

(14%), and Go (9%). C++, TypeScript, and C languages come last with 111, 93, and 65

projects, making up 2% for each of C++ and TypeScript, and 1% for C of the dataset

size. Table 3.4 shows means of selected projects data per language, whilst Table 3.5

shows the medians of selected projects data per language.
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Language Size (SLOC) Commits Contributors Duration (months)
JavaScript 30663 850 57 51

Java 56510 995 32 37
Python 33673 1520 67 53
Go 119670 996 56 50

Objective-C 13244 330 25 44
Swift 13117 565 28 39
PHP 20697 1355 94 73
Ruby 27189 2692 195 93
C# 124765 2409 71 61
C++ 293834 3862 76 61

TypeScript 31572 2758 293 57
C 494122 1406 549 66

Table 3.4: Means of selected projects data per language.

Language Size (SLOC) Commits Contributors Duration (months)
JavaScript 5005 316 26 47

Java 4455 131 7 30
Python 4873 359 22 52
Go 9759 338 27 52

Objective-C 2658 142 13 42
Swift 2527 231 14 41
PHP 3217 542 48.5 74
Ruby 4127 773 75.5 100
C# 49065 1300 50 64
C++ 31324 767 30 62

TypeScript 7788 1354 71 57
C 11063 412 18 65

Table 3.5: Medians of selected projects data per language.

When dataset projects are classi�ed according to size in SLOC, the majority of the

included projects are small (35%) and medium (25%), as shown in Figure 3.2. Tiny

projects make up 16% of the dataset, while very large projects make up 14% of it. Large

size projects make up the smallest portion of the dataset (11%). The scale used here for

project sizing is de�ned as follows:

• tiny: <1000 SLOC

• small: 1,000 - 5,000 SLOC

• medium: 5,001 - 20,000 SLOC

• large: 20,001 - 50,000 SLOC

• very large: >50,000 SLOC



Chapter 3 Research methodology 39

As per language (individually), the majority of JavaScript (32%), Java (43%), Objective-

C (46%), Swift (54%), PHP (38%), and Ruby (45%) projects are small. The small and

medium projects in Python and Go form almost the same proportion at 27% and 28%

respectively, that is the majority of projects in these two languages. When it comes

to C# and C++, the majority of projects are of a very large size, at 52% and 44%

respectively. These �gures are based on the means of project sizes that are shown in

Table 3.6.

On the other hand, when projects are categorised based on the number of contributors,

half (51%) of the dataset projects are of a large size (see Figure 3.2). The scale used for

project sizing in number of contributors is de�ned as follows:

• small: <5 contributors

• medium: 5 - 20 contributors

• large: >20 contributors

When languages are considered individually, the majority of JavaScript(58%), Python

(54%), Go (56%), PHP (81%), Ruby(84%), C# (75%), C++ (56%), and C (47%) pro-

jects have a large number of contributors, while Objective-C (42%) and Swift (47%)

projects have a medium number of contributors. Java the only language with projects

that have mostly a small number of contributors (43%). These �gures are shown in

Figure 3.3.

Figure 3.2: Project sizes in SLOC and in number of contributors.

% JavaScript Java Python Go Objective-C Swift PHP Ruby C# C++ C

Tiny 15.42% 10.22% 17.73% 7.49% 18.04% 14.16% 18.04% 8.43% 1.55% 3.19% 10.94%
Small 31.94% 43.15% 26.95% 28.24% 46.20% 53.54% 38.14% 45.18% 6.20% 17.02% 15.63%
Medium 29.58% 23.93% 27.48% 28.24% 23.73% 22.57% 25.26% 30.72% 19.38% 19.15% 32.81%
Large 12.12% 9.92% 12.59% 10.37% 7.91% 4.42% 9.28% 7.23% 20.93% 17.02% 12.50%
V.large 10.94% 12.78% 15.25% 25.65% 4.11% 5.31% 9.28% 8.43% 51.94% 43.62% 28.13%

Table 3.6: Distribution of projects' sizes (SLOC) per language.

Per language group

We categorised the included languages based on their design into three binary groups;
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Figure 3.3: Distribution of projects' sizes (number of contributors) per language.

statically typed vs dynamically typed languages, strongly vs weakly typed ones, and

managed vs unmanaged memory languages as can be seen in Table 3.7.

Language Classes Languages

Type system Static C, C++, C#, Java, Go, Swift, TypeScript
Dynamic JavaScript, Python, Ruby, PHP

Type checking Strong Java, Go, Python, Ruby, Swift, Objective-C, TypeScript
Weak C, C++, C#, JavaScript

Memory management Managed Ruby, Python, PHP, JS., Java, Swift, Go, C#, TS.
Unmanaged C, C++, Objective-C

Table 3.7: A classi�cation of languages based on their design.

When languages are categorised according to type system, the total number of included

projects is 5001 and the sample size appears to be balanced per language group. The

statically typed languages group has 2237 projects, and the dynamically typed languages

group has 2764 projects. When projects are sized in source line-of-code, the majority of

the two groups are small and medium sized (i.e., 59% of the statically typed group and

60% of the dynamically typed group). When they are sized according to the number of

contributors, 36% of the projects in the statically typed group are of a medium size, and

42% are large. In the dynamically typed group, 31% are of medium size and 61% are

large. The distribution of the included projects according to size in source line-of-code

and in contributors per group are shown in Figure 3.4.

When grouped according to language type checking, 3,178 out of 5,072 projects are

strongly typed while 1,894 projects are weakly typed. Again, the majority of the two

groups are small- and medium-sized when projects are sized in SLOC (i.e., 63% of the

strongly typed group and 56% of the weakly typed )group). When projects are sized in
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Figure 3.4: Distribution of projects' sizes per language group (static vs dynamic).

Figure 3.5: Distribution of projects' sizes per language group (strong vs weak).

number of contributors, 36% of the projects in the strongly typed group are medium-

sized and 43% of them are large. The largest proportion of the projects in the weakly

typed group is also large large (59%), whilst 43% are medium-sized. The distribution

of the included projects according to size in source line-of-code and in contributors per

group are shown in Figure 3.5.

Finally, when projects are categorised based on memory management, 3,738 out of 5,350

projects are in the managed memory group, while 1,612 in the un-managed memory

languages group. The distribution of projects according to size in SLOC also shows that

the majority of projects in the two groups are small- and medium-sized. This means

that 32% small and 26% medium in the memory managed group make up 58% of the

total projects in the group. Whereas, 40% of the projects are small in the unmanaged

memory group and 24% are medium making together 64% of projects in the group.

When projects are sized based on number of contributors, the majority of them are

large (60%) in the managed memory group. In the unmanaged memory group, the

largest proportion of projects are medium-sized (39%), and the rest of them are equally

distributed between the small and large size for about 30% each. The distribution of the

included projects according to size in source line-of-code and in contributors per group

are shown in Figure 3.6.
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Figure 3.6: Distribution of projects' sizes per language group (managed vs un-
managed memory).

3.4 Signi�cance and contributions

The issue and importance of the reproducibility of empirical software engineering studies

have been discussed by di�erent researchers (Leeuw et al. 2001, Shull et al. 2004, Vegas

et al. 2006, Shull et al. 2008, Robles 2010). The availability of research datasets is critical

in validating �ndings and replicating and reproducing studies which can, in turn, enhance

research in the �eld. However, a study of 170 MSR research papers (Robles 2010) found

that a very small number of the authors make their datasets publicly available (6 papers

only). Another study (Sureka et al. 2015) conducted on MSR paper authors reported

that only one third of the respondents stated that their datasets are publicly available.

This is in line with the �ndings from (Cosentino et al. 2016), that more than two thirds

of empirical studies on Github do not publish their dataset. Hence, despite the use of

publicly available data, authors do not make their research datasets available, making it

di�cult to replicate the �ndings or even compare their outcomes.

Although Github is the most used online hosting service for open source projects in

the world (Gousios et al. 2014) with more than 56 million users and more than 100

million software repositories as of December, 2020, 80% of its repositories have no stars

(favouring or liking by registered users)(Sanatinia & Noubir 2016). Moreover, after

excluding the non-starred repositories, 95% have 13 stars or less. The repositories in

this study's dataset have at least 500 stars, making it good representative of popular

open source projects that can be used to empirically validate claims about open source

software (OSS) development and artifacts.

Furthermore, our dataset is relatively large and made up of real, popular projects that

re�ect current practices in the software industry. The data was also collected from

Github directly rather than curated mirroring APIs. It is important to emphasize here

that the dataset includes only projects where a main language can be identi�ed. The

main language is the programming language that comprises at least 95% of the total

project code. This further restriction makes this dataset a good choice for comparative

language studies.
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Nevertheless, mining Github repositories and retrieving large amounts of data is a chal-

lenging task. Github allows its data to be accessed over HTTPS as JSON, but it does not

provide a schema for its data. Therefore, to mine Github it is necessary to traverse back

its data using REST requests and JSON responses. Moreover, Github imposes a rate

limit on its API of 5000 requests per hour. Given the huge number of events generated

per day with every single event leading to a series of dependent requests, pulling large

amounts of data from Github would create signi�cant delay.

In summary, this research has generated and published a dataset that meets the following

objectives:

1. The volume of the dataset is relatively large, with 5,350 projects in 12 languages.

2. The projects are the most popular ones on Github, with at least 500 stars given

by registered users.

3. Projects in the dataset have a primary language that makes up 95% of the source

code.

4. Up-to-date project data re�ects current, modern practices in the software industry.

3.4.1 Dataset availability

The dataset associated with this research is published under CC BY-NC-SA 4.0 license

and is available at https://www.kaggle.com/muname/github-repos-mainlang.

3.5 Conclusion

The availability of research datasets is important in order to empirically validate claims

about software development processes and the resulting artifacts. However, it has been

found in the literature that more than two thirds of empirical studies on Github do not

publish their dataset making it di�cult to replicate �ndings or even compare outcomes.

To address this issue, this work publishes a reasonably large, systematic, and complete

for the selected criteria dataset of 5,350 projects in 12 general-purpose, programming

languages for research purposes. The dataset is made up of real projects re�ecting

current practices in the software industry, and the data is collected from Github directly,

rather than curated mirroring APIs. This dataset can be used to empirically validate

claims about software development, software artifacts, pragmatic aspect of languages,

and in data mining and machine learning training and test sets.





Chapter 4

Programming language popularity

and trends in OSS projects

In this chapter, the �rst research objective is ful�lled, in which language popularity and

trends are examined. In Section 4.1, the chapter objectives are listed. Next, in Section 4.2

language popularity is discussed. In Section 4.3 trends in programming languages are

investigated. The most common combinations of languages in OSS projects are studied in

Section 4.4 and inSection 4.5 the project types in the dataset are inspected. The chapter

results are discussed in Section 4.6. Then, the related work is covered in Section 4.7 and

the chapter work is concluded in Section 4.8.

4.1 Objectives

Examining the usage and practice of programming languages is important to understand

their popularity and recognize trends. This provides insights for both language designers

and developers to observe whether the adoption of a speci�c language or language feature

is headed towards a particular direction. The overall aim of this chapter is to identify

popular languages and compare their usage, and to observe trends and patterns of lan-

guage usage in OSS projects. This is to investigate if a relation between user adopting

and language design exist in the dataset. This purpose is comprised by the following

objectives:

• Investigate the most popular languages in developing open source software.

• Study patterns of change in language popularity and usage over time to investigate

whether language usage has increased or decreased, and the pace at which the

change has occurred.

• Examine the most common combinations of languages in OSS projects.

45
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• Explore the nature of the included projects based on their description.

Hence, we investigated the following questions:

1. What are the most popular languages in developing OSS projects? Are they the

same as in other popularity indexes?

2. What are current trends in language usage?

3. Which language combinations are most common?

4. What is the nature of the projects that have been written in those popular lan-

guages?

4.2 Language popularity in OSS projects

Language popularity is de�ned here in three ways; (a) languages that have the largest

number of projects, (b) languages with the highest number of stars (favouring by re-

gistered users) given to its projects, and (c) languages with the highest number of con-

tributors to its projects. As explained in Chapter 3, the examined projects should have a

threshold of at least 500 stars and the period of study covered projects created between

2008 and 2019.

The 15 popular languages based on the total number of projects per language are shown

in Figure 4.1(a). When de�nitions (b) and (c) are applied, a language needs at least

10 projects to be considered for popularity lists. In Figure 4.1(b), languages are listed

based on the mean number of stars given to its projects. In Figure 4.1(c), languages are

listed based on the mean number of contributors to its projects.

Languages that appear in the 3 lists are C++, TypeScript, and Ruby. JavaScript, Go,

PHP, Shell, CSS, Dart, MakeFile and Clojure have made appearances in 2 lists.

The languages are mainly general-purpose in the �rst list Figure 4.1(a), except for Shell,

HTML and CSS. As can be seen, JavaScript is the most popular language with 3,000

projects, followed by Java (1,443 projects) and Python as 3rd with 1,362 projects. These

3 languages make about 50% of the total number of inspected projects (11,872).

Another story can be seen in the 2nd list Figure 4.1(b), with 9 di�erent languages and

more special-purpose languages than the �rst one, however, with considerably fewer

projects. That is, the total number of projects in the top 3 languages in this list (Dart,

Assembly, and DockerFile) is 42 compared to 796 projects in the last 3 languages on the

�rst list (C#, Shell, and CSS). Dart is at the top here with a mean of 10,737 stars given

to its projects, followed by Assembly with a mean of 7,520 stars. Docker�le, Make�le,
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Figure 4.1: Most popular languages in GitHub based on (a) number of projects
with >= 500 stars, (b) the mean number of stars given to its projects, (c) the
mean number of contributors and (d) number of projects with >= 500 stars and
amain language.

Typescript, and JavaScript come next with a mean in the range between 6,850 and 6,000

stars. The rest of the languages have a similar mean of around 5592 stars.

The 3rd list Figure 4.1(c), has a number of languages that support functional program-

ming and did not appear in the previous 2 lists, such as Elixir, Emacs Lisp, Scala, OCaml,

Haskell, Rust and Erlang. The languages with the highest mean of contributors, that are

182 and 175, are Elixir and Emacs Lisp respectively, with 14 projects each. This is fol-

lowed by 7 languages of a mean around 116 contributors, and the remaining 6 languages

are of a mean around 83 contributors.

The language in those lists has been reported by Github. To detect and name the

project's language, Github uses a specialized tool called linguist1 that aggregates all

the languages in a project repository and names the mostly used one as the project's

language. Accordingly, this language can make up a relatively small proportion of the

total code (30% for instance); however, it occupies the largest space compared to the

1github.com/github/linguist
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other languages in the project. Thus, we de�ned and applied another de�nition of a main

language, as the one that makes up at least 95% of the project's code. Correspondingly,

a slightly di�erent list resulted Figure 4.1(d), that is based on the number of projects

where a main language can be identi�ed.

In this study, we focus on the �rst de�nition of language popularity, which is based

on the number of projects. This list has almost the same languages as in the �rst list

(4.1a), however, with a slightly di�erent order and one language di�erence. The styling

language CSS is replaced here with Jupyter notebook, which is a documentation language

for the open-source application development environment Jupyter. The order of the other

languages has been a�ected because the number of projects decreased when the main

language de�nition was applied. New languages, Go and Swift, come 4th (455 projects)

and 6th (267 projects), although they were introduced in 2009 and 2014, respectively.

Whereas C, with the longest history (being introduced in 1972), could barely make it to

the list, with 65 projects.

Additionally, for the purpose of this research, we only considered general-purpose pro-

gramming languages, and excluded styling, documenting, and special purpose languages

such as HTML, CSS and Jupyter notebook. Thus, the dataset of the subsequent sections

is shown in Table 4.1.

Language Projects
1 JavaScript 1559
2 Java 1087
3 Python 747
4 Go 455
5 Objective-C 349
6 Swift 267
7 PHP 278
8 Ruby 180
9 C# 159
10 C++ 111
11 TypeScript 93
12 C 65

TOTAL 5350

Table 4.1: Most popular languages on GitHub based on number of projects
which have at least 500 rating and have a primary language that made 95% of
project's codebase.

4.3 Trends in language usage

Trend analysis is an approach to observe and predict statistically detectable changes. It

is used to investigate a hypothesised relationship between quantitative variables statist-

ically (Lavrakas 2008). In this section, a trend analysis based on the historical data of
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the included projects is conducted to detect and describe patterns in languages' adoption

over the speci�ed time period. Trends here are analysed graphically as per language (in-

dividually), and using Sen slopes and Mann-Whitney U test to compare trends between

language groups (Field et al. 2012). Mann-Whitney U test is a non-parametric, stat-

istical hypothesis test to determines if a statistical signi�cant di�erence exist between

two groups. That is, the medians of the two groups are compared and if the resulted

p value below the alpha value (usually 0.05), a signi�cant di�erence is reported (Field

et al. 2012).

The usage curve di�ers from one language to another as depicted in Figure 4.2. JavaS-

cript, the language with the highest number of projects, has an arch-shape curve, starting

around 2009. The curve renders a gradual increase in popularity, followed by a gradual

but faster decrease after reaching the peak in 2015. The highest values occurred between

start of 2014 and 3rd quarter of 2016. Then, decline in usage started to shape around

the last quarter of 2016. In July 2018, a surge happened, which is rapidly followed by

a drop to hit the lowest point in 2019, with no new projects introduced. Java's curve is

similar in shape to JavaScript's, however, with a smaller number of projects. That is,

a gradual increase, reaching the highest values between 2015 and 2016 was followed by

a decline starting around the 2nd quarter of 2017. Unlike Java and JavaScript's curves

with narrow peaks, Python's is more �attened, with the highest values spread over a

larger period of time, September 2014 to August 2018. A drop in number of projects

follows the curve reaching the lowest value in 2019, with no new projects. Go's curve is

similar to Python's in shape, with a smaller number of projects and the highest values

spread between the end of 2012 and the end of 2018. Again, almost no new project was

introduced in 2019. PHP's curve is almost �at with values spread all over the curve and

several small hills. Objective-C's curve is another �at one with most of the values centred

between the end of 2012 and 3rd quarter of 2016. Swift's curve starts with a surge in

June 2014, when the language was introduced. The curve then decreases gradually to-

wards the drop of 2019. C#'s has an almost �at curve, with the highest values between

2014 and the �rst quarter of 2015. Another semi-�at curve is Ruby's, however, it has

earlier projects than any other language, having projects introduced in 2008, whereas

other languages had them later. TypeScript also has a �at curve, with the highest values

between November of 2015 and November of 2017. C++ has its highest values between

May 2014 and March 2015, whereas, C's curve has its highest values between mid-2015

early 2016.

After that, languages are categorised into 3 binary groups based on features they have;

statically typed vs dynamically typed languages, strongly vs weakly typed ones, and

managed vs unmanaged memory languages. The projects' data are plotted on a time

series graph and a regression trend line representing the usage data per group as obtained

as can be seen in Figure 4.3. Usage data are then compared and checked for statistical
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Figure 4.2: 100% Stacked Programming language popularity over time based on
number of projects.

signi�cant di�erences using a Mann-Whitney U test. That is, to inspect the relationship

between language features and popularity over the speci�ed time period.

Figure 4.3: Programming language popularity over time based on number of
projects per language group.

For the �rst language group, type system I, the statically and dynamically typed language

groups share a similar usage pattern as depicted in Figure 4.3a. That is, a gradual

increase since 2008, the year when GitHub was founded, until around January 2017

where a gradual, yet faster, decline starts to occur. The curve reaches its highest values
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between 2015 and 2017, inclusive, for both groups. Then, usage data used to statistically

test the following hypothesis:

• Hypothesis 1. There is no di�erence in usage between statically and dynamically

typed language.

A two-tailed U-test at 95% con�dence was used here. The results show that there is a

statistically signi�cant di�erence in the popularity between statically typed languages

(M=89.79, SD=716.36) and the dynamically typed ones(M=356.55, SD=3827.34); at

U(2721.05)=-6.45 , and p=.001. Thus, the null hypothesis is rejected. The U-test stat-

istics are listed in Table 4.2.

In the second group, type system II, again, the two categories share a similar pattern

in the usage curve as shown in Figure 4.3b. That is, a gradual increase, followed by a

decline after reaching the highest values between about mid-2014 to mid-2017 for the

strongly typed languages, and between start of 2015 and about end of 2016. Thus, the

peak of the strongly typed group is wider with the highest values spread over a larger

period of time. The usage data for the two curves are then used to test the following

hypothesis:

• Hypothesis 2. There is no di�erence in usage between strongly and weakly typed

language.

A two-tailed U-test was used to test the hypothesis (95% con�dence). The results show

a statistically signi�cant di�erence in the popularity of strongly languages projects at

U(4224.24)=13.34, and p =.001. Strongly typed languages are higher in the popularity

as can be seen in Figure 4.3b, and the U-test statistics are listed in Table 4.2.

Likewise the usage curves of the previous language groups, the managed and unmanaged

memory languages share almost the same pattern. That is, an arch-shape curve that

renders a gradual incline, followed by a gradual, faster decline after reaching the peak

in 2015 for the two groups. The highest values occur between start of 2015 and end of

2016, as shown in Figure 4.3c. After that, the usage data are compared and used to test

the following hypothesis:

• Hypothesis 3. There is no di�erence in usage between the managed and unmanaged

memory languages.

The hypothesis was tested with a two-tailed U-test at 95% con�dence. The results show

a statistically signi�cant di�erence in the popularity of the managed languages projects

and the unmanaged languages; at U(2849.37)=1.316, and p=.000. The U-test statistics

are listed in Table 4.2. Managed memory languages are higher in the popularity as can

be seen in Figure 4.3.c.
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Language group U df p
Type system I -6.45 2721.05 .001 *
Type system II 13.341 4224.24 .001 *
Memory management 1.316 2849.37 .000 *

* 95% con�dence.

Table 4.2: U-test statistics of comparing usage/popular-
ity as per language group.

4.4 Languages combination

This section studies language usage combinations and examines which languages are

frequently used together. The results are based on analysing two datasets built on

number of projects, whether they have main language that makes up 95% of the source

code or not. This is to check whether the same �ndings hold regardless of projects

have a primary language. To study the combinations, we use the Apriori algorithm and

association rules.

The Apriori algorithm (proposed in 1994) is a classical algorithm in data mining and

machine learning to �nd patterns and regularities in data (Agrawal & Srikant 1994).

It is used to mine frequent itemsets and relevant association rules based on an iterative

bottom-up search. An association rule is a pattern that indicates with certain probability

the co-occurrence of items in a dataset. Apriori is applied here to �nd the most frequent

combinations of languages used per project, and the related association rules.

First, results that are based on the larger dataset, where the included projects need not

to have a main language, are presented. The analyzed projects (11,918) are written

in a mean of 4.15 languages, 149 languages maximum, and 1 language minimum. As

can be seen in Figure 4.4, the strongest relationships (shown in bold line) based on

co-occurrence frequency are between JavaScript on one side and HTML, CSS and Shell

on the other. Also, between CSS and HTML and Shell on the other, and between

Shell on one side and HTML and Python on the other. To further inspect relationships

between language combinations, the Apriori algorithm was applied using IBM Modeler.

As a result, 42 association rules were produced with a lift between 0.78% and 3.19%,

con�dence between 35.19% and 89.91% and support between 17.61% and 45.55%. The

top 10 association rules ordered by lift ratio are shown in Table 4.3. Lift, con�dence, and

support are di�erent criteria to measure the strength of the resulting rules. Support is the

percentage of how frequently the consequent and antecedent occur together. Con�dence

is the probability of occurrence of consequent given the antecedent and lift is the ratio

of con�dence to expected con�dence. A lift ratio of >1.0 indicates that the association

between the antecedent and the consequent is signi�cant and they are dependable. The

larger the lift ratio, the more signi�cant the relationship between the parts.
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Figure 4.4: Strong/weak connections between programming languages usage in
the dataset.

Consequent Antecedent Lift Con�dence % Support %
C++ Python and Shell 3.19 40.45 17.61
C Python and Shell 2.88 42.12 17.61
CSS HTML and JavaScript 2.56 76.58 29.48
HTML CSS and JavaScript 2.29 86.36 26.15
CSS JavaScript and Shell 2.26 67.57 17.67
CSS HTML and Shell 2.24 67.13 18.07
HTML CSS 2.22 83.93 29.92
CSS HTML 2.22 66.50 37.77
HTML JavaScript and Shell 2.03 76.69 17.67
JavaScript CSS and HTML 1.97 89.91 25.11

Table 4.3: The top 10 association rules based on mining all the projects in the
dataset ordered by lift.

In the second dataset, about 5350 projects were analysed where main language could

be identi�ed. The mean number of languages used in projects is 2.38, 24 language at

maximum, and 1 language at minimum. Except for projects where Java, PHP and

Ruby are the main languages, the majority of projects (more than 50%) were written

in more than one language. The strength of relationships between languages is shown

in Figure 4.5 where the strongest relationships are shown between (1) JavaScript and

each of HTML, CSS, and Shell, (2) Shell and Python, CSS and HTML, and (3) CSS and

HTML. Medium strength relationships are shown between (1) Ruby and Objective-C,

Swift and Shell, (2) Go and Shell, (3) JavaScript and TypeScript, (4) Shell and Java, Go

and CSS. When the Apriori algorithm was applied here to identify which languages are

frequently used together, nine association rules resulted, as presented in Table 4.4 with
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a lift between 1.47% and 6.89%, con�dence between 41.29% and 75.46%, and support

between 10.6% and 19.74%.

Figure 4.5: Strong/weak connections between programming languages usage.

Consequent Antecedent Lift Con�dence % Support %
Objective-C Ruby 6.86 51.04 11.06
CSS HTML and JavaScript 5.10 54.11 11.15
HTML CSS 3.90 68.36 10.60
CSS HTML 3.90 41.29 17.55
JavaScript CSS 2.47 75.46 10.60
JavaScript HTML 2.08 63.56 17.55
Shell Make�le 1.93 54.53 12.81
Shell Python 1.55 43.66 19.74
Shell CSS 1.47 41.51 10.60

Table 4.4: Association rules based on mining projects where main language can
be identi�ed.

It is clear that the the relationships between languages hold both datasets for the same

languages as seen in in Figure 4.4 and Figure 4.5. The two graphs are almost identical

except that fewer languages are included in the second case, hence, the relationships

weight is a�ected. In addition, HTML, Shell and CSS are the languages that frequently

co-occur with other languages in the investigated projects as listed in Table 4.5.
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Project language Mean#languages Max. Min. Combined with languages
JavaScript 2.03 20 1 HTML, CSS, Shell
Java 2.02 18 1 Shell, HTML, CSS
Python 2.24 18 1 Shell, HTML, CSS
Go 2.91 13 1 Shell, Python, HTML
PHP 1.71 8 1 Shell, HTML, JavaScript
Objective-C 2.51 8 1 Ruby, C, Shell
Swift 2.80 10 1 Ruby, Objective-C, Shell
C# 3.97 15 1 PowerShell, Shell, HTML
Ruby 2.07 21 1 Shell, HTML, CSS
TypeScript 2.88 10 1 JavaScript, HTML, Shell
C++ 5.15 21 1 C, Shell, Python
C 4.89 24 1 C++, Shell, Python

Table 4.5: Summary statistics of projects where a main language can be identi-
�ed and their most frequent combinations.

4.5 Projects types

To understand the nature of the included software projects, that is, their type (web

libraries, data analysis tools, mobile applications,etc.), a mining projects' description

was carried out. Projects hosted on Github optionally can have short description to

illustrate their purpose. The description is written usually in natural languages. Thus,

to identify project types, a topic modeling approach was used to analyse the descriptions

and detect the underlying abstracts, hence, the potential types.

In the context of Natural Languages Processing (NLP), topic modeling is a probabilistic

text-mining method used to detect the abstracts in a set of textual documents (Hof-

mann 1999). Abstracts are clusters of related words that are discovered in the examined

documents based on their statistics. In this work, we use the Latent Dirichlet Alloca-

tion (LDA) model for topic modeling, which detects the underlying topics according to

word frequencies (Blei et al. 2003). The LDA model is found to be reasonably accurate

in recognizing the hidden topics within text documents. We applied the model using

RapidMiner version 9.6, and the approach we followed is depicted in Figure 4.6

The model was evaluated on 4 to 10 topics to �nd the optimal number of types those

projects can be classi�ed into. In the evaluation process, �xed alpha and beta values

were used and the average coherence and perplexity scores were compared. The topics'

number with the optimal average coherence values was 5. Thus, we categorised the

included projects into 5 types: web application, mobile applications, machine learning

and AI, web libraries and mobile services.

The largest part of JavaScript (40%), PHP (52%), TypeScript (42%) and Ruby (36%)

projects are of the �rst type. Conversely, 47% of Java, 59% of Objective-C, and 52% of
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Figure 4.6: Topic modelling approach to detect projects types based on mining
their description.

Swift projects are of the second type. Regarding to C# (37%), C++ (30%), Go (45%),

and Ruby (35%) projects, the largest part of their projects are of the third type. Finally,

33% of C projects are of the fourth type, and 42% of Python projects are of the �fth

type, as shown in Table 4.6.

Project type ID
Language 1 2 3 4 5
Java 11 47 20 17 6
JavaScript 40 16 19 14 12
Python 12 5 22 18 42
Objective-C 8 59 10 21 3
PHP 52 2 26 15 6
C 16 8 29 33 15
C# 25 4 37 24 10
C++ 16 12 30 18 24
TypeScript 42 9 31 9 9
Go 25 3 45 14 12
Swift 12 52 17 11 8
Ruby 36 5 35 13 12

Table 4.6: Project types' distribution per language (percentage).

When projects were categorised based on language feature, the majority (56%) of stat-

ically typed language projects were of second and third type (28% each), whereas the

largest portion of the dynamically typed ones were of the �rst type (31%). In the second

group, the majority of strongly typed projects were of second (26%) and third (25%)

types, however, 38% of the weakly typed ones were of the �rst type. In the third group

of languages, 26% and 24% of the managed memory languages were of the �rst and third

types respectively. Conversely, 37% of the unmanaged memory projects were of second

type, as shown in Figure 4.7.
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Category Project Type ID
1 2 3 4 5

Type system I (safety)
Static 18 28 28 16 9
Dynamic 31 14 21 16 19

Type system II
Strong 16 26 25 16 17
Weak 38 12 22 16 11

Memory management
Managed 26 19 24 15 15
UnManaged 11 37 18 22 11

Table 4.7: Project types' distribution per language group (percentage).

4.6 Discussion

We divide our discussion into 4 subsections, answering the four study questions:

RQ1. What are the most popular languages in developing OSS projects? Are

they the same as in other indexes?

The most popular languages based on the number of projects per language where a main

language can be identi�ed are listed in Table 4.1 on page 48. As can be seen in the

table, JavaScript and Java are the most popular ones, making up together about 50%

of the total population, followed by Python ( about 15% of the population). Go and

Objective-C come next, together making up 15% of the total population.

In comparisons with other language popularity studies that have a dataset of more than

300 projects and list at least the top 10 languages (Delorey et al. 2007, Mayer & Bauer

2015, Sanatinia & Noubir 2016), we found similarities and di�erences in the listed lan-

guages. That is, although these studies cover di�erent time periods and their de�nitions

of popularity di�er as well, JavaScript and Python made a strong appearance in each

of them. They are the only two languages that made an appearance in each of the four

studies. Java, C++, PHP and C made an appearance in three studies out of the four,

and Objective-C, C# and CSS, made 2.

When compared with other language popularity indexes such as TIOBE2 and PYPL3 for

the same period (Table 4.8), Java, JavaScript, Python, Objective-C, PHP, and C# made

appearance in the three indexes. Whereas, C++ and C appeared in two lists out of the

three. As in the popularity studies, those indexes have di�erent de�nitions of popular-

ity. TIOBE is based on the frequency of web searching about programming languages,

whereas, PYPL uses Google Trends for developers' searches to indicate popularity of a

language.
2tiobe.com/tiobe-index/
3pypl.github.io/PYPL.html
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TIOBE PYPL Github
1 Java Java JavaScript
2 C PHP Java
3 C# Python Python
4 C++ C# Go
5 PHP JavaScript Objective-C
6 Python Objective-C Swift
7 JavaScript Matlab PHP
8 Visual Basic C Ruby
9 Perl C++ C#
10 Objective-C Swift C++

Table 4.8: Most popular languages in TIOBE, PYPL, and Github.

The reasons behind the popularity of a language are varied; scalability and portability

factors as in Java, the support of a large enterprise such as in Go, C#, and Swift the wide

user community, libraries and tool support are some examples. However, investigating

popularity-related factors are out of this research scope.

RQ2. What are current trends in language usage?

Individual languages, along with language groups, have shared a similar pattern of usage

involving a gradual increase followed by faster decline, starting around 2016. This pattern

of usage is a�ected by the popularity of Github as a hosting platform for open source

projects. Although there has been a decline in the number of new projects hosted on

GitHub, it is still the platform with the highest number of projects; thus, projects hosted

there are good representation of current usage and practices of programming languages

in OSS.

It is clear, however, that Java and JavaScript have considerably higher usage than other

languages, followed by Python, as seen in Figure 4.2. The graph also shows that the

introduction of some languages can a�ect others. This is the case of Swift, which was

introduced in 2014 (Swift.org n.d.) and saw an increase in usage till the decline point of

2016, and Objective-C. This can be attributed to the fact that both Swift and Objective-

C are used for Apple iOS applications development.

When language features were investigated, statistically signi�cant di�erences were found

between usage of statically and dynamically typed languages, strongly typed and weakly

typed ones, and managed and unmanaged memory languages. That is, languages with

managed memory had increased usage over the period included, and to a smaller degree

strongly typed languages over the weakly typed ones, and the statically typed over the

dynamically typed ones as illustrated in Figure 4.3. This pattern corresponds with what

has been found by (Ray et al. 2014) based on mining Github repositories: strongly

typed languages are better than weakly typed ones, statically typed are better than the
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dynamically typed, and managed memory languages are better than the unmanaged in

code quality.

RQ3. Which language combinations are most common?

Since the appearance of modern computers, progress has been made in designing vari-

ous high-level programming languages. Nowadays, many languages are hybrid; they

support di�erent programming paradigms, and new features are being added to them

continuously. In addition, it is also common to use multiple languages to develop a single

software project. About 49% of the projects in the population of the study did not have

a primary language (constituting 95% of the codebase). That is, the codebase of the

projects is shared between di�erent languages to a large extent. On average, the most

popular projects are written in 4.15 languages. In the dataset where a main language

can be identi�ed, the average is 2.38 languages. Moreover, in the small dataset, although

having a primary language, the majority of projects (> 50%) are written in more than

one language, except for projects where Java, PHP, and Ruby are the main one. HTML,

Shell and CSS frequently co-occur with other languages in the investigated projects.

The popular language combinations hold for both datasets for the same languages. The

frequent combinations along with the projects' main language are shown in Table 4.9.

Project language Combined with languages
JavaScript HTML, CSS, Shell
Java Shell, HTML, JavaScript
Python Shell, HTML, JavaScript
Go Shell, HTML, JavaScript
PHP HTML, CSS, JavaScript
Objective-C Ruby, C, Shell
Swift Ruby, Objective-C, Shell
C# PowerShell, Shell, HTML
Ruby HTML, Shell, CSS
TypeScript JavaScript, HTML, CSS
C++ C, Shell, Python
C C++, Shell, Python

Table 4.9: The most popular languages and their most frequent combinations.

RQ4. What is the nature of the projects that have been written in these

popular languages?

It is found that projects in the dataset are categorised into 5 types; web applications,

mobile applications, web libraries, mobile services, and machine-learning and AI projects.

This categorisation is based on mining and analysing projects' descriptions using natural

language processing model, LDA, and is hence subjective. They are di�erent than project

categories in other software engineering works such as the ones by Capers Jones (2008),

Sommerville (2011) and Ray et al. (2014). In the �rst two, the categorisations are classic

and may not be applicable in the context of OSS projects. Hence, the di�erence can
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be attributed to the open nature of the projects included in this dataset. Moreover,

although the Ray et al. (2014) study is based on OSS projects gathered from Github

repositories and used a similar technique for mining project descriptions, after applying

the LDA algorithm, they found 30 types and reduced them to 6 after manual inspection.

In this work, we found that after applying the LDA model, the optimal number of types

is 5. Nevertheless, the labeling and inferring the category from keywords is subjective,

and hence, di�erent from one work to another. The types they found were: application,

database, code analyzer, middleware, library, framework and other.

Nevertheless, we found that the largest portion of Java, Objective-C, Swift and C pro-

jects in our dataset were mobile-related. Conversely, the largest part of JavaScript, PHP,

C#, C++, TypeScript, Ruby and Go are categorised as web-related. Finally, the largest

part of Python is AI-related. When languages were classi�ed into groups based on their

features, the majority of statically and strongly typed languages projects were divided

between web and mobile-related ones. While, the majority (>50%) of dynamically and

weakly typed languages projects were web-related. When languages were classi�ed based

on memory management, it was found that the majority of managed memory projects

were web related, whereas, the majority of the unmanaged language projects were cat-

egorised as mobile-related.

4.7 Related work

Studies of programming languages that are based on mining software repositories are

varied. They cover di�erent language-related issues and can be broadly categorised as

(1) feature adoption studies (2) language usage, trend and popularity studies and (3)

documents and bug reports analysis studies to derive insights about artifacts qualities

that have been written in certain languages. The ones that fall under the �rst type

include the work of Parnin et al. (2011) that mined 20 Java repositories to investigate

the adoption of generics by developers and Okur & Dig (2012) which investigated the

usage of another language feature, the parallel libraries based on analyzing 655 C#

projects.

In the second category, on which this work relies, a study by Karus & Gall (2011) on

22 projects over 12 years to investigate the language usage evolution, with a particular

interest in special-purpose languages such as XSL and XML, found that the size of the

language share in the projects' codebase di�ers signi�cantly. Moreover, the usage of XSL

and XML has shown a signi�cant increase. In addition, they have found some common

co-changes in the dataset �les such as JavaScript and XSL, and Java and XML �les.

Our work, however, focused more on general-purpose languages rather than the special-

purpose ones. A similar work (Chen et al. 2005) empirically analyzed the evolution of 17

languages during the years 1993, 1998, and 2003. The study produced in a quantitative
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model of intrinsic and extrinsic factors for the evolution of programming languages trends.

However, since our study is an observational one with no control over the data we could

not use this model in our analysis.

Further research (Meyerovich & Rabkin 2013) investigated language adoption empirically

based on multiple surveys and including over 200,000 SourceForge projects to identify

factors a�ecting language adoption. The study found that language adoption follows a

power low, and that the most signi�cant factor for developers in choosing the language

is open source libraries, followed by code extendability and reusability, and social factors

such as team experience and personal a�nity. (Sanatinia & Noubir 2016)± study also

investigated programming languages' popularity and language co-concurrences in the

top 1,000 repositories of Github. However, their dataset included the top languages in

terms of the highest number of projects, whereas our selection criteria were based on

the number of projects that received 500 stars at least. We set this threshold in an

attempt to have a sample of high-quality projects that could serve as a good proxy for

OSS projects, considering that 80% of Github repositories have ≤13 stars.

Another study that has investigated language combinations in open source software is by

Mayer & Bauer (2015) mining 1,150 OSS projects and �nding that the projects' codebase

was shared between a mean of 5 languages. Moreover, the study showed that the number

of languages is a�ected signi�cantly by size, number of commits, and the main language

in the project. In Delorey et al. (2007), 9,999 OSS projects from SourceForge were mined

to determine the most popular languages hosted on the platform, along with examining

the impact programming languages might have on code writing. In 2014, a large-scale

study (Ray et al. 2014) investigating 729 projects in 17 languages based on mining

Github repositories for the e�ect of languages on code quality found that languages have

signi�cantly a�ected quality; however, the e�ect size was modest.

4.8 Summary and conclusions

Open source software (OSS) hosting platforms, such as Github, are producing valuable

and rich datasets for mining studies. They are hosting popular, high-quality software pro-

jects, providing data about the development history and its related activities including

code writing, team communications, and artifact debugging. Such projects are a reas-

onable proxy for open source software and re�ect current practices in OSS community.

Thus, this study was based on mining and analyzing the most popular 15,000 reposit-

ories on Github to obtain insights about current trends and directions in programming

languages that are used in developing OSS projects.

The results have shown that popular Github projects are written in 64 languages. The

top 15 based on number of projects per language were mainly general-purpose, whereas

the top 15 based on the number of stars (favouring by registered users) were mainly
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special-purpose ones with a considerably smaller number of projects. It is also clear

that languages with managed memory have increased in usage over the period included,

and to a smaller degree strongly typed languages and system programming ones over the

weakly typed and scripting ones respectively. Future research into language design should

take note of theses trends. Further research is required to investigate and understand

them in more depth. Moreover, the codebase of the projects in the dataset is shared

between di�erent languages to a considerable extent. That is, 49% of the projects in

the whole dataset did not have a primary language; this comprised 95% of the codebase.

Thus, the support for language interoperability should be an important goal for language

and runtime tool designers as this would improve reusability and e�ciency of the overall

development process. Additionally, although the included data are for actual projects and

would provide signi�cant insight about the observed trends in software development, the

generalization of their �ndings is problematic since they are based solely on open source

projects from Github repositories in the reported period. The languages included have

been identi�ed as reported by Github and languages' popularity in the study is a�ected

by Github usage.



Chapter 5

Programming language features

usage

In this chapter, the second research objective is ful�lled, in which language features usage

is investigated. In Section 5.1, the chapter objectives are listed. Next, in Section 5.2 the

followed methodology is explained. In Section 5.3 the results are provided per mining

method. Then, in Section 5.4 the study questions are answered and discussed. The

related work is covered in Section 5.5 and the study work is concluded in Section 5.6.

5.1 Objectives

There is a lack of empirical work investigating how features are used by developers in

di�erent languages. Is there a tendency to use the same features regardless of the chosen

language for the job? Is there any statistical link between their usage and language

design?. The goal of this chapter is to quantify language features usage at a large scale.

We study the practice of developers through mining source code �les of OSS projects

to understand the current state of the practice. This is to help language designers

understand the user community, how their features are used in the popular languages in

real projects, and whether there is any di�erence in feature usage between languages and

between language groups that would suggest a link between the two. Moreover, adopting

data mining methods in this context encourages evidence-based design of programming

language rather than anecdotes and assumed needs.

More importantly, to understand language impact, we investigate the relationship between

language design and feature usage. That is, when languages o�er the same features, is

there any statistical di�erence in their usage? The existence of such di�erences would

suggest a substantial association between the two.

63
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The overall aim of this chapter is to identify how language features are used in practice

and whether there is a signi�cant link between language design and feature usage. This

investigation is carried out in a large scale setting using statistical methods by accounting

for confounding factors such as project size and type, per language and language group.

Thus, we investigate the following questions:

1. How frequently are language features used by developers in practice?

The list of the selected features for this study is based on a prior work by (Mey-

erovich & Rabkin 2013). We approach this question to validate our selection em-

pirically through investigating the practice of programming languages against the

perception. The features that are included in this study are: inheritance, class

interface, exceptions, threads, anonymous functions (as a proxy for higher-order

functions), and generics. As we investigate the usage of language features per se,

rather than that of the compiler, the editor, or the development tool, we included

only language intrinsic features.

2. What are the most frequently used features per language? Is there any di�erence

in feature usage between languages?

As the overall aim of this research is to study programming language e�ect, we need

to investigate whether languages are used in a similar manner. Little is known

about how developers adopt features in practice. Thus, this inquiry is intended

to inspect when languages provide the same features, and do developers use the

same features regardless of the chosen language, or is there a tendency to use the

same features at the same frequency in all of them. Such an inquiry implies an

understanding of the user community and of how its members implement language

features per individual languages.

3. What are the most frequently used features per language group? Is there an asso-

ciation between language design and feature usage?

Rather than inspecting languages individually, for this question we group languages

according to their type system and memory management technique. This allows

us to inspect whether there is an association between language design and feature

usage, and whether there is a tendency to use certain features more in some groups

than in others. Furthermore, such an approach allows us to check if language

design encourages using certain features more than others. Signi�cant di�erences

between the included groups would suggest a link between language design and

feature usage.

Thus, we propose the following objectives:

• Analyse language intrinsic feature usage based on mining the projects' source codes.

• Examine how frequently such features are used in practice, as per language and

language group, and to what extent they di�er or are similar.
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• Investigate statistical relationships between language design and feature usage,

while accounting for confounding factors such as project size and type.

The chapter contributions are:

• The �rst study of such a large volume, investigating the usage of 6 features in 11

languages.

• Adopting text mining methods on source codes to �nd su�cient empirical evidence

in the dataset.

• Accounting for confounding factors such as project size and type when investigating

a language's e�ect on feature usage.

• Inform the state of the practice of language features usage, using rigid statistical

methods to support �ndings.

5.2 Methodology

The methodology is based on mining source code �les to inspect feature usage. We adop-

ted what is already established in the data mining �eld, that is, a classic mining process

goes through three fundamental steps: (a) data gathering, (b) data pre-processing and

cleaning, and (c) information extraction. Here, for the �rst step, the source code �les for

the included projects were downloaded from Github in a compressed form to be searched

for the features. Then, only the main language �les were extracted. That is, if the

project's main language is Java, which makes 95% of the total source code �les, and was

combined with other language and documentation �les, only Java's �les are extracted.

For data pre-processing and cleaning, documentation annotations and the di�erent types

of comments were removed from the �les. Additionally, strings, HTML, and XML tags

were detected and removed to enhance the mining process through avoiding interference

with language features when source codes are scanned thereby minimizing the size of the

processed �les and time of feature detection.

As source codes are texts with special characteristics, text mining methods were utilised

to detect features and extract needed information. Thus, we use three text mining

methods here:

1. Binary term occurrence: as the name indicates, this method reveals whether or

not a term has occurred in the document, and therefore detects whether or not the

feature has been used in the processed project.

2. Term occurrence: indicates the number of times a term occurs in the document,

and therefore detects the number of feature occurrences per project.
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3. Term frequency: the number of times a term occurs normalised by the occurrence

of other terms in the processed document.

Features have special constructs per language, and language users can derive di�erent

forms of each within the language. Thus, we mined source code �les using regular ex-

pressions to detect the di�erent variations of features. A regular expression is a sequence

of characters that follows speci�c rules to describe a pattern of a set of strings (Sebesta

2012). Hence, regular expressions can be used to match the occurrence of features. The

overall methodology used in this chapter is summarised in Figure 5.1.

Figure 5.1: Feature mining methodology

After mining the source codes for features, we used statistical methods to analyse the

outcomes. For binary term occurrence, we used Chi-squared for hypothesis testing and

e�ect size for investigating the magnitude of an existing di�erence, if any, as Chi-squared

is used for binary and categorical data (Field et al. 2012). For term occurrence and term

frequency, we use the U-test for hypothesis testing, as the data are not normally distrib-

uted (Field et al. 2012), along with e�ect size and descriptive statistics. In addition, we

account for di�erent sizes and types of projects included in the dataset to observe if the

outcomes hold for the di�erent variations.

5.2.1 Feature selection

The features that are included in this study are: inheritance, class interface, exceptions,

threads, anonymous functions (as a proxy for higher-order functions), and generics. The

features are de�ned as follows:
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Inheritance: this is a feature that is traditionally associated with object-oriented pro-

gramming (OOP). A subtype (subclass) can inherit all the methods and variable com-

ponents in order to bene�t from a previously written type (or class), and can also add

additional ones. Languages can have strict inheritance in which a subtype can only have

one super type from which to inherit, known as single inheritance. Some languages also

support multi-inheritance, in which a single subtype can inherit from many super types

(O'Regan 2008).

Class interface: this is another feature that is traditionally associated with OOP. In-

terfaces enforce certain behaviour on a user-de�ned type that implements them. The

implementing types are required to provide a de�nition for the behaviour (Petricek &

Skeet 2009).

Exception: this is an abnormal event that occurs when the program's normal �ow is

disrupted. A program requires the following of a special mechanism to deal with this

exceptional event (W.Sebesta 2008).

Threads: a thread is a lightweight �ow of control inside a program that shares resources

with another thread. Heavy duty programs need to split execution into a number of

simultaneous threads (W.Sebesta 2008).

Anonymous functions: traditionally associated with functional programming, anonymous

functions are nameless constructs that can be passed to and returned from higher-order

functions (Petricek & Skeet 2009).

Generic: program units that are de�ned in terms of types-to-be-speci�ed later manner.

They enable multiple versions of the same construct to be instantiated on di�erent data

types to minimise code repetition. Such mechanisms sometimes called parametric poly-

morphism (O'Regan 2008).

The selected features are based on a study of 415 respondents who ranked the top fea-

tures they value the most (Meyerovich & Rabkin 2013). As we investigate the usage of

language features per se, rather than that of the compiler, the editor, or the development

tool, we included only language intrinsic features. Furthermore, in an attempt to object-

ively compare the usage of features between languages, the included features should be

supported natively by most of the languages in the dataset. In programming languages,

features that are not natively supported can be simulated using other features. Thus, a
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language has to provide a construct (or unit) that facilitates delivery of the aforemen-

tioned de�nitions of features, in a direct manner to be included in this study. Table 5.1

shows a summary of the included features and their associated language support.

Language Inheritance Exceptions Threads Anonymous func. Generics interface
Java Y Y Y Y Y Y
JavaScritp N Y N Y N N
Python Y Y Y Y N N
Go N Y Y Y N Y
Obj-C Y Y Y Y Y Y
PHP Y Y Y Y N Y
Swift Y Y N N Y Y
Ruby Y Y Y Y N N
Csharp Y Y Y Y Y Y
C++ Y Y Y Y Y N
TypeScript Y Y N Y Y N

Table 5.1: Programming Language Support for Features

As can be seen in Table 5.1, the language support for features is arbitrary. Exceptions

constitute the feature that is supported by all of the included languages (100%), followed

by anonymous functions with a support of 91%. Inheritance ranks next (82%), followed

by threads (73%), interfaces (64%), and �nally generics at 55% support in the languages.

As per language, C is the only language in the dataset that does not support any of the

included features. Thus, in this chapter, we excluded C from analysis and discussion.

JavaScript is the language with the least supporting features, with only two features

supported, whereas, in other languages, at least 4 features are supported (36.4% of

languages). Five feature are supported in 27.3% of languages, and a total support is

found in another 27.3%.

To mine projects' source code for features occurrence, we tried existing text mining tools

such as RapidMiner, the freely available versions. Many of these tools did not process

source code �les and/or they exhibited memory issues, as some projects are of a relatively

large size and have multiple �les. Therefore, we mined the source codes using grep. Grep

is a line-based utility that can search and match regex pattern. In this manner, we were

able to overcome issues of reading source code �les and stack over�ow arising from using

regex engines.

5.3 Results

We present the results here as per the mining method, thus, there are three subsections.

For each, we go through the results per language, followed by the results per language

group, in which we also present the results of testing the chapter's main hypothesis. The

hypothesis is tested in each subsection per language classi�cation. Then, the hypothesis
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is tested again after accounting for di�erent project sizes and types. The hypothesis as

follows:

Hypothesis: There is no association between feature usage and language design.

5.3.1 Binary term occurrence

When mining language features using binary term occurrence method, inheritance is

found to be the most frequently used, having been used in 88% of the projects in the

dataset, followed by exceptions (used in 80%), interfaces (78%), and generics (76%).

Anonymous function comes after that, used in 71%, and �nally threads, which has been

used in 45% of the included projects. These percentages are calculated based on projects

in which the language supports the feature shown in Figure 5.2.

Figure 5.2: Feature Usage in Projects (%, percentage).

As listed in Table 5.2, as per language, inheritance is the most frequently used feature

in Objective-C (for which it is used in 99.7% of projects), Java (99.2%), Swift (92%),

PHP (88.6%), C++ (87.1%), and Ruby(80%). Anonymous functions constitute the most

frequently used in Go (99.2% of projects), JavaScript (99.1%), and TypeScript in which

it has been detected in all of its projects. Exceptions constitute the most frequently

used feature in Python, with a usage rate of 92.5% in its projects and C# (49.7%). In

addition to exceptions, C#'s most frequently used feature is shared with generics, with

the same usage rate, of 49.7%. Threads and interfaces were not found to constitute the

most frequently used features in any of the included languages.

When languages are categorised per group, for the �rst classi�cation, type system I,

inheritance is the most used feature in the statically typed group (used in 88.1% of

projects). By contrast, anonymous functions constitute the least frequently used feature

with a usage rate of 47.4%. In the dynamically typed group, anonymous functions

constitute the most frequently used feature (86.8%) and threads constitute the least

frequently used, with a 22.5% usage, as shown in Figure 5.3.
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Language Inheritance Interfaces Exceptions Threads Anonymous Fnc. Generics
Java 99.2 87.1 90.6 58.6 22.6 96.7
JavaScript n/a n/a 83.9 n/a 99.1 n/a
Python 82.7 n/a 92.5 32.6 73.2 n/a
Go n/a 84.9 95.0 83.2 99.2 n/a
Obj-C 99.7 76.6 41.9 34.1 95.8 45.8
PHP 88.6 64.1 84.5 1.0 79.0 n/a
Swift 92.0 46.2 24.1 n/a n/a 47.6
Ruby 80.0 n/a 66.2 12.4 45.5 n/a
Csharp 49.4 45.1 49.7 28.4 42.3 49.7
Cpp 87.1 n/a 66.3 65.3 26.7 86.1
TypeScript 89.8 94.9 90.8 n/a 100.0 95.9

Table 5.2: Feature Usage per Language (%, percentage)

Figure 5.3: Feature Usage per Language Group (%percentage)

To further inspect the relationship between the feature usage and the language type (or

group), we test the following hypothesis,

• Hypothesis 1: There is no di�erence between statically and dynamically typed lan-

guages in feature usage.
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The two variables here are binary, the feature usage as a binary occurrence, and the

language group (static vs dynamic types). In addition, the usage data are not normally

distributed. Thus, we select the non-parametric Chi-square test of independence to

evaluate the association between the two variables, that is, to determine whether the

relationship is statistically signi�cant or not (Field et al. 2012). The test was applied as

per feature between the two groups, and the results are listed next in Table 5.3.

Feature p Chi-Square df E�ect Size
Inheritance 0.00 202.31 2.00 0.25 M
Interfaces 0.00 3459.66 2.00 0.84 L
Exceptions 0.00 387.20 2.00 0.27 M
Threads 0.00 549.34 2.00 0.40 L
Anonymous Fncs 0.00 728.62 2.00 0.38 L
Generics n/a n/a n/a n/a n/a

Table 5.3: Hypothesis test statistics for static and dynamic languages (Binary
mining).

We have excluded generics from the test, as in the dynamically typed group there is no

usage for it. This is because the languages in this group do not support generics natively.

For all of the other �ve features, the p-value is less than our chosen signi�cance level

(alpha=0.05). Hence, the null hypothesis is rejected and we can state that there is a

statistically signi�cant association between feature usage and language group (p<0.05)

for all of the �ve tested features. In addition to signi�cance, we also investigated the

e�ect size in order to report the magnitude of the detected di�erence between the two

groups. The e�ect size is reported here using Cramer's V. The results suggest a medium-

sized e�ect between the two groups in inheritance, exceptions, and generics usage, whilst

a large-sized e�ect was seen in the case of threads, anonymous functions, and interfaces

usage.

The same hypothesis was tested for the di�erent project sizes and di�erent project types

in this classi�cation. As for statistical signi�cance, when accounting for di�erent projects

sizes, generics was excluded from the test, as in the dynamically typed group there is

no usage for it. Also, the large and very large sizes in inheritance were excluded as no

projects were found in these two groups for this feature. Otherwise, the results hold in

threads, anonymous functions, and interfaces for all sizes. Results for e�ect size for the

di�erent project sizes are rather arbitrary between one size to another, and only hold in

case of interfaces. That is, the e�ect size is large for all of the di�erent project sizes.

When accounting for project types, results for signi�cance hold for all types for all

features except type 5 in inheritance and anonymous functions. However, results for

e�ect size for the di�erent types hold in exceptions (tiny), threads (large), and interfaces

(large). The full results for accounting for di�erent project types and sizes are listed

Appendix B.
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In the second classi�cation, type system II, inheritance is the most used feature in the

strongly typed languages group, with a usage of 92.4% of the included projects, whilst,

threads is the least frequently used with a usage of 50.5%. Interfaces is the most fre-

quently used feature in the weakly typed language group, with a usage rate of 90.1%,

whereas, similar to the strongly typed languages, threads is the least frequently used,

with 37.2% usage. In order to investigate the association between the feature usage and

language type, we use statistical hypothesis testing to determine whether the association

is signi�cant or not, per feature. The hypothesis we investigate is as follows:

• Hypothesis 2: There is no di�erence between strongly and weakly typed languages

in feature usage.

Again, for the same previously mentioned reasons for testing Hypothesis 1,the Chi-square

test of independence has been used and the testing results are listed in Table 5.4. The

results show a statistically signi�cant di�erence in all of the 6 included features for the

our chosen alpha=0.05. Thus, the null hypothesis is rejected for all of the included

features. Consequently, we can conclude there is a statistically signi�cant association

between feature usage and language type II at p<0.05 for the tested features. However,

a trivial e�ect size has been found in the data for inheritance and exceptions usage, a

small-sized e�ect in case of generics, a medium one for threads and anonymous functions,

and a large e�ect found in interfaces usage between the two groups.

Feature p Chi-Square df E�ect Size
Inheritance 0.00 11.89 2.00 0.06 <S
Interfaces 0.00 1690.05 2.00 0.59 L
Exceptions 0.00 17.18 2.00 0.06 <S
Threads 0.00 280.80 2.00 0.29 M
Anonymous Fncs 0.00 611.49 2.00 0.35 M
Generics 0.00 55.13 1.00 0.16 S

Table 5.4: Hypothesis test statistics for strong and weak languages (Binary
mining).

Similarly, the hypothesis was tested for the di�erent project sizes and types for signi�c-

ance and the magnitude of the di�erence, if any. The full results are listed Appendix B.

When accounting for di�erent project sizes, large and very large sizes for inheritance

usage were excluded as well as very large sizes for generics usage, as no projects were in

this category. Otherwise, statistically signi�cant results hold for inheritance, anonymous

function, and interfaces. For e�ect size, they hold only for interfaces (large). E�ects

are arbitrary otherwise for the di�erent project sizes. As for the di�erent project types,

statistically signi�cant results hold for inheritance, threads, anonymous for all types, and

interfaces (for all except type 5) as not enough projects are found. The e�ect size holds

for inheritance (large) and threads (large). Otherwise, the e�ect size is arbitrary for the

di�erent project types.
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Finally, when languages are classi�ed based on memory management, inheritance is most

frequently used feature in both the managed and unmanaged language groups, with a

usage of 86.8% and 96.6%, respectively. Exceptions rank second for the managed memory

languages, whereas, anonymous functions constitute the second most frequently used in

the unmanaged memory languages group. Threads constitute the least frequently used

feature in the two groups. To further investigate the relationship between feature usage

and the two groups of memory management languages, we test the next hypothesis,

• Hypothesis 3: There is no di�erence between memory managed and unmanaged

languages in feature usage.

Similarly, the Chi-square test of independence is used here for the association signi�cance,

and the e�ect size for the results is investigated using Cramer's V value. The Chi-

squared test statistics and the e�ect sizes are listed in Table 5.5. The results show a

statistically signi�cant di�erence between the two groups of memory management for all

of the included features, at p<0.05. Thus, we further report the e�ect size to deduce

the strength of the resulting di�erence. The �ndings suggest a trivial-sized e�ect for

inheritance, threads, and anonymous functions usage between the two groups. However,

there is a small-sized e�ect for exceptions and interfaces usage, and a medium-sized one

for using generics between the groups.

Feature p Chi2 df E�ect Size
Inheritance 0.00 11.42 1.00 0.06 <S
Interfaces 0.00 106.85 2.00 0.14 S
Exceptions 0.00 381.61 1.00 .270 S S
Threads 0.02 5.56 1.00 0.04 <S
Anonymous Fncs 0.02 5.14 1.00 0.03 <S
Generics 0.00 300.99 1.00 .379 M M

Table 5.5: Hypothesis test statistics for memory managed and unmanaged lan-
guages (Binary mining).

When accounting for project sizes, the results of statistical signi�cance hold for generics,

except for very large projects, as statistics were not reported because no projects were

found for this size group. However, size e�ects are rather arbitrary and do not hold for

the di�erent sizes. When accounting for di�erent projects types, statistically signi�cance

results hold for all features except anonymous functions and interfaces. E�ect size only

holds in case of generics (large), otherwise is arbitrary for the di�erent types. The results

for accounting for di�erent project types and sizes are listed Appendix B.

5.3.2 Term occurrence

As the feature occurrence data per language are not normally distributed, the arithmetic

median is chosen to describe the average. Table 5.6 shows the feature occurrence average
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Language Inheritance Interfaces Exceptions Threads
Anonymous
functions

Generics

Java 37 6 19 1 0 60
JavaScript n/a n/a 12 n/a 359 n/a
Python 18 n/a 35 0 4 n/a
Go n/a 8 59.5 12 407 n/a

Objective-C 19 3 0 0 33.5 0
PHP 14 2 16 0 7 n/a
Swift 3 0 0 n/a n/a 0
Ruby 6 n/a 3 0 0 n/a
C# 243 35.5 294 1 14 1422
C++ 38.5 n/a 13.5 5 0 121

TypeScript 32 38 26 n/a 706.5 144.5

Table 5.6: Average Feature Occurrence per Language (Median).

per language. As listed in the table, generics is the feature with the highest average in

Java (60 occurrences), next is C# (1422), and then C++ (121). Anonymous functions

is the feature with the highest average in each of JavaScript, with 359 occurrences, Go

with 407 occurrences, and TypeScript with an average of 707. In Python and PHP it

is exceptions with averages of 35 and 16, respectively, whilst, inheritance is the feature

with the highest average of occurrence in Ruby only (6 occurrence).

Next, when languages are categorised into groups based on their design, the occur-

rences data are compared and checked for statistically signi�cance di�erences using

Mann-Whitney U-test as the data is not normally distributed, that is, to inspect the

relationship between language features usage and language group, followed by e�ect size

(Field et al. 2012).

For the �rst language group, type system I, the statically and dynamically typed lan-

guages have di�erent features that are most frequently used. While it is generics in the

statically typed group with an average of 73 occurrences, anonymous functions has with

the highest average in the dynamically typed language groups, with 55 occurrences, as

displayed in Figure 5.4. The least frequently used feature in the two groups is threads,

with a median of 2 and 0 in the statically and dynamically groups, respectively.

Then, the usage data used to statistically test the following hypothesis:

• Hypothesis 1. There is no di�erence between statically and dynamically typed

languages in feature usage.

A non-parametric U-test at 95% con�dence was used here. The results show that there

is a statistically signi�cant di�erence in the feature usage occurrences between the stat-

ically typed and the dynamically typed languages at p<.05 in �ve features: inheritance,

exceptions, threads, anonymous functions, and interfaces. Thus, the null hypothesis is
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Figure 5.4: Average Feature Occurrence per Language Group (Median).

rejected for those �ve features. However, for generics, the Mann-Whitney test could not

be performed, as the dynamically-typed languages group is empty. The U-test statistics

are listed in Table 5.7.

For 5 features; inheritance, exceptions, threads, anonymous functions, and interfaces,

the p-value is less than our chosen signi�cance level alpha = 0.05. Hence, the null

hypothesis is rejected and we conclude that there is a relationship between feature usage

and language type for those features. Thus, there is a statistically signi�cant association

between feature usage and language type (p<.05) for �ve features out of the included six.

In addition to the U-test, we also investigated the e�ect size to report the magnitude of

the reported di�erence between the two groups. The results show a small-sized e�ect in

inheritance, exceptions, anonymous functions and interfaces. Whereas, a medium-sized

e�ect found between the two groups in threads usage.

When accounting for project size, results hold for all features in small and very large

projects. They also hold for threads and anonymous functions for all sizes, and in

interfaces except for tiny projects. As for e�ect size, it holds for threads for the di�erent

sizes (medium e�ect). Otherwise, it is rather arbitrary.

When we control for project types, results of statistical signi�cance hold in inheritance

and exceptions for the di�erent types. E�ect size results hold in inheritance except type1

and type3. In exceptions the e�ect is small per type, whereas, it is tiny when in general,

i.e. when we do not control for types.

In the second categorisation, type system II, the two groups share the same feature as

the most frequently used one, generics, with an average of 23 and 889 occurrences for

strongly and weakly typed languages, respectively. Again, the least frequently used is

threads with a median of 1 for the strongly typed and 2 for the weakly typed group, as
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Features p Z N r E�ect Size
Static vs Dynamic Languages

Inheritance 0.000 -13.377 2975 -0.245 S
Exceptions 0.000 -8.626 4946 -0.123 S
Threads 0.000 -23.67 3142 -0.422 M

Anonymous func. 0.000 -17.724 4734 -0.258 S
Generics n/a n/a 1782 n/a
Interface 0.000 -9.211 2338 -0.190 S

Strong vs Weak Languages
Inheritance 0.000 -16.387 2993 -0.300 S
Exceptions 0.000 -3.831 4964 -0.054 T
Threads 0.000 -3.883 3160 -0.069 T

Anonymous func. 0.000 -30.139 4752 -0.437 M
Generics 0.000 -19.237 2090 -0.421 M
Interface 0.000 -8.998 2358 -0.185 S

Memory managed vs unmanaged Languages
Inheritance 0.467 -0.727 3283 -0.013 T
Exceptions 0 -17.554 5254 -0.242 S
Threads 0.113 -1.586 3450 -0.027 T

Anonymous func. 0 -3.885 5042 -0.055 T
Generics 0 -15.655 2090 -0.342 M
Interface 0.000 -5.267 2649 -0.102 S

Table 5.7: U-test statistics per language group (occurrence mining).

listed in Figure 5.4. The occurrence data for the two groups are then used to test the

following hypothesis.

• Hypothesis 2. There is no di�erence between strongly and weakly typed languages

in feature usage.

Similarly, a U-test at 95% con�dence was used to test the hypothesis. The results show

that there is a statistically signi�cant di�erence in the feature usage occurrences between

strongly typed languages and the weakly typed ones at p<0.05 for all of the 6 features, as

the p-value is less than the chosen signi�cance alpha (0.05). Hence, the null hypothesis

is rejected and a statistically signi�cant association between feature usage and language

group (p < .05) for all of the six tested features exists, as listed in Table 5.7. The results

suggested a tiny-sized e�ect in exceptions and threads, and a small-sized e�ect between

groups in inheritance and interfaces usage, whereas, a medium-sized e�ect is found in

the case of using anonymous functions, and generics. When accounting for project sizes,

results hold for all features in the large-sized for anonymous functions usage for the

di�erent project sizes. In inheritance usage, results hold for all sizes except the very

large ones. Again, in threads they hold for all sizes except the very large projects. As for

the e�ect size, results are rather arbitrary; mainly they are of small and medium e�ect

for the di�erent project sizes.
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When controlled for the project types, signi�cant results hold for anonymous functions

and generics for all types. As for e�ect size, they hold in anonymous functions (medium)

except type2 (large) and type3 (small). In generics, they hold in types (medium) except

type2 and type3, in which the size is small.

As for the third categorisation, the managed and unmanaged memory languages have

di�erent most frequently used features. The highest occurrence feature is generics in the

managed language group with an average of 72 occurrence, whilst it is inheritance with

an average occurrence of 20 in the unmanaged group. Again, for the least used feature

it is threads for the two groups along with exceptions for the unmanaged memory group,

as displayed in Figure 5.4. Next, the usage data are compared and used to test the

following hypothesis.

• Hypothesis 3. There is no di�erence in usage between the managed and unmanaged

memory languages.

Again, the Mann-Whitney U-test is used to test the hypothesis. The results show a stat-

istically signi�cant di�erence in four features: exceptions, anonymous function, generics,

and interfaces at p<0.05. Thus, the null hypothesis is rejected for those four, whereas, no

di�erence was found in inheritance and threads usages between the groups for the chosen

alpha, and the null hypothesis is retained for those two. Based on the results, we can

state that there is a statistically signi�cant association between feature usage occurrence

and memory management in exceptions, anonymous function, generics, and interfaces.

However, the e�ect size is found to be trivial in the data for anonymous functions usage.

In the case of exceptions and interfaces, it is a small-sized e�ect, and medium-sized for

generics. The related statistics results are listed in Table 5.7.

When accounting for projects size, results of statistical signi�cance hold for exceptions

and generics for all sizes. However, the e�ect size holds in tiny projects for exception

usage (small), in large projects for generics (medium), and in very large projects for

both exceptions and generics. Otherwise, an arbitrary e�ect sizes found for the di�erent

project sizes. As for project types, statistical signi�cance holds in exceptions except

type5, anonymous functions except type4, and generics except for type5. The e�ect size

results hold in exceptions except type1 (tiny), otherwise, the results hold as small e�ects.

For generics, the e�ect size only holds in type1 (small), and for anonymous functions it

is rather arbitrary in the di�erent project types.

5.3.3 Term frequency

As with feature occurrences, feature frequency usage data are not normally distributed.

Thus, the median is selected to describe the average (Field et al. 2012). As shown
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Figure 5.5: Average Feature Frequency per Language Group (Median).

in Table 5.8, anonymous functions constitute the feature with the highest average in

JavaScript, Go, Objective-C, and TypeScript. Inheritance is the highest in PHP, Swift,

and Ruby. In Java, C#, and C++ it is generics, whereas exceptions is the feature with

the highest average of frequencies in Python. Threads has not made it to the highest

average list in any of the included languages. In fact, threads is the feature with the

lowest frequency average in Python, Go, Objective-c, PHP, Ruby, and C#.

Language Inheritance Interfaces Exceptions Threads
Anonymous
Functions

Generics

Java 0.0110064 0.0015652 0.0056258 0.0001514 0 0.0175285
JavaScript n/a n/a 0.004268 n/a 0.1296646 n/a
Python 0.0064549 n/a 0.0129445 0 0.0011513 n/a
Go n/a 0.0007519 0.0049412 0.0006809 0.0381545 n/a

Objective-C 0.0078128 0.0009712 0 0 0.0142172 0
PHP 0.0073294 0.0005916 0.0066192 0 0.0030264 n/a
Swift 0.0196025 0 0 n/a n/a 0
Ruby 0.0099048 n/a 0.0049562 0 0 n/a
C# 0.0062048 0.0007071 0.008599 0.0000248 0.0003256 0.0336887
C++ 0.0026661 n/a 0.0005219 0.0002245 0 0.0053858

TypeScript 0.0039408 0.0050547 0.0043319 n/a 0.0846009 0.0193486

Table 5.8: Average Feature Frequency per Language (Median).

Per language group, in the �rst categorisation, type system I, the feature with the highest

average of frequency in the statically and dynamically typed languages is di�erent, as seen

in Figure 5.5. It is generics in the statically typed group, whilst, anonymous functions is

the one with the highest average in the dynamically typed languages. The least frequently

used feature in the statically typed group is anonymous functions, whereas it is threads

in the dynamically typed group.
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To further investigate the di�erence, the frequency usage data has been used to statist-

ically test the following hypothesis.

• Hypothesis 1. There is no di�erence in feature usage frequencies between statically

and dynamically typed languages.

Mann-Whitney U-test at 95% con�dence was used to test the hypothesis (Field et al.

2012). The results show that there is a statistically signi�cant di�erence in the feature

usage frequencies between the statically and dynamically typed languages at p<0.05 in

�ve features; inheritance, exceptions, threads, anonymous functions, and interfaces as

listed in Table 5.9. Therefore, the null hypothesis is rejected for those features. Mann-

Whitney test could not be performed for generics as the dynamically-typed languages

group is empty. Thus, we can state that there is a statistically signi�cant association

between feature usage frequencies and languages groups of the �rst categorisation, type I,

in ; inheritance, exceptions, threads, anonymous functions, and interfaces. For the e�ect

size, the results suggested a tiny-sized e�ect in exceptions, small-sized e�ect between the

two groups in inheritance and interfaces, a medium-sized e�ect in threads and anonymous

functions.

When accounting for project size, signi�cant results hold for all features in the small-

sized projects, for threads and anonymous functions for all sizes. In using interfaces,

they hold for all sizes except tiny projects. The e�ect size results hold for threads for

all project sizes. In anonymous functions usage, e�ect size results hold (medium) for all

but small projects (large).

When accounting for the di�erent types, signi�cant results hold for type4 for all features,

and for anonymous functions for all types and threads except for type2. As for e�ect

size, they hold for type4 for all features, otherwise it is rather arbitrary.

In the second categorisation, type system II, the two features with the highest average

frequency per group are the same two in type system I, that is, generics and anonymous

functions. Generics is the highest average feature in the strongly typed languages group,

whilst, it is anonymous function in the weakly typed languages group, as listed in Table?.

The least frequently used feature is threads in both groups. The frequency data for the

two groups are then used to test the following hypothesis:

• Hypothesis 2. There is no di�erence in feature usage frequency between strongly

and weakly typed languages.

Similarly, a U-test at 95% con�dence was used to test the hypothesis. The results show

that there is a statistically signi�cant di�erence in the feature usage frequency between

strongly typed languages and the weakly typed ones at p<0.05 in �ve features: inher-

itance, exceptions, anonymous function, generics, and interfaces, as seen in Table 5.9.
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Features p Z N r E�ect Size
Static vs Dynamic Languages

Inheritance 0.000 -11.137 2813 -0.210 S
Exceptions 0.000 -6.502 4784 -0.094 T
Threads 0.000 -22.358 2980 -0.410 M

Anonymous func. 0.000 -30.362 4572 -0.449 M
Generics n/a n/a 1620 n/a n/a
Interface 0.000 -6.721 2285 -0.141 S

Strong vs Weak Languages
Inheritance 0.0000 -9.75 2831 -0.183 S
Exceptions 0.004 -2.849 4802 -0.041 T
Threads 0.547 -0.602 2998 -0.011 T

Anonymous func. 0 -42.927 4590 -0.634 L
Generics 0 -7.751 1928 -0.177 S
Interface 0.000 -3.932 2303 -0.082 T

Memory managed vs un-managed Languages
Inheritance 0 -5.592 3121 -0.100 S
Exceptions 0 -21.8 5092 -0.306 M
Threads 0.131 -1.512 3288 -0.026 T

Anonymous func. 0 -4.649 4880 -0.067 T
Generics 0 -19.561 1928 -0.445 M
Interface 0.003 -3.008 2593 -0.059 T

Table 5.9: U-test statistics per language group (feature frequency mining).

Hence, the null hypothesis is rejected and a statistically signi�cant association between

feature usage and language group for those �ve features exists. However, the results show

there is no di�erence between the two in threads usage frequency. As for the e�ect size,

a large-sized e�ect is found between the two groups in anonymous functions frequency,

a small-sized e�ect in inheritance and generics, and a tiny-sized e�ect between the two

groups in exceptions and interfaces.

When accounting for project sizes, result of signi�cance hold in inheritance and an-

onymous functions for all of the di�erent sizes. They also hold in exceptions for all but

small-sized projects, and in generics for large projects only. As for the e�ect size, it holds

in inheritance except for very large projects, and in anonymous functions except for large

and very large projects.

When accounting for project types, results hold in anonymous functions for all types,

and also, in inheritance except for type5, and in exceptions except for type4. As for

the e�ect size, results hold in inheritance. In exceptions they are small and tiny. In

anonymous, they hold for all types but type3,(medium).

As in the other two categorisation, the features with the highest average are generics and

anonymous functions. In the managed memory languages group it is generics, whereas,

the least used is threads. In the unmanaged memory group, the most frequently used
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feature is anonymous functions and the least used are exceptions and threads. After

that, the usage frequency data are compared and used to test the following hypothesis.

• Hypothesis 3. There is no di�erence in usage frequency between the managed and

unmanaged memory languages.

Again, the Mann-Whitney U-test is used to test the hypothesis, as the data are not

normally distributed. The results show a statically signi�cant di�erence in �ve features:

inheritance, exceptions, anonymous function, generics, and interfaces, at p<0.05. Thus,

the null hypothesis is rejected for those �ve. By contrast, no di�erence was found in

threads usages between the groups for the chosen alpha, as shown in Table 5.9. Hence,

the null hypothesis is retained. Based on the results, there is a statistically signi�cant

association between usage frequency and memory management in languages design in

�ve features: inheritance, exceptions, anonymous function, generics, and interfaces. The

e�ect size is found to be medium in the data for exceptions and generics usage. In the

case of inheritance, it is a small-sized e�ect, and tiny-sized for anonymous functions and

interfaces.

When accounting for project sizes, signi�cant results hold for exceptions and generics

for all sizes. It also holds in inheritance for all except tiny projects. The e�ect size in

exceptions is small for some project sizes and medium for others. As for generics, the

e�ect size is rather arbitrary for the di�erent sizes.

When accounting for di�erent project types, signi�cant results hold in exceptions and

generics for all types,and in inheritance except for type5, and in anonymous functions

except for type4. As for the e�ect size results, they hold in inheritance, and in generics

except for type5 (small). In anonymous function, it holds for type4, otherwise the e�ect

is small.

5.4 Discussion

Before answering the research questions and discussing the �ndings, we need to point out

the impact of using the three text mining methods on the �ndings. Depending on the

mining method, results can vary. The feature binary occurrence method shows that the

feature has been used in the language projects but does not show the intensity nor the

frequency of using it. The feature occurrence method shows the number of occurrence(s)

a feature made per project, whereas, in the feature frequency method, the number of

occurrences is normalised by the size of the project in SLOC. Using such di�erent methods

is to approach the chapter questions from multiple perspectives, in addition to providing

a clear and objective view of the state of the practice and its implications. The discussion

is divided into 3 subsections, answering the three chapter questions, described below.
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Binary Term Occurrence Term Occurrence Term Frequency
Inheritance (55.6%) Generics (50%) Generics (50%)
Anon (30%) Anon (40%) Anon (40%)
Exceptions (9.1%) Inheritance (22.2%) Inheritance (33.3%)
Generics (16.7%) Exceptions (18.2%) Exceptions (9.1%)
Threads 0 Threads 0 Threads 0
Interfaces 0 Interfaces 0 Interfaces 0

Table 5.10: The most frequently used feature per mining method per language.

RQ1. How frequently are such features used by developers in practice?

It is found here that the most frequently used feature applying the binary occurrence

mining method is inheritance. Inheritance has been used in 88% of the projects, followed

by exceptions which has been used in 80% of the projects, and then by interfaces in 78%

of the projects. Generics (76%) and anonymous functions (70%) are next leaving threads

to be the least frequently used feature with 45% usage in the included projects. These

calculations are solely based on projects in which such features are language supported.

Hence, the �ndings con�rm that the selected features for this study, except for threads,

are used in the majority of projects (>70%), hence, important to the user community

and representative to get insights about the state of the practice of language features.

In addition, the feature with the highest occurrence average is generics (median 44),

followed by anonymous functions (28), inheritance (25), exceptions (16), interfaces (5),

and �nally, threads with a median of 0. This ordering of features is similar to that

depicted in the �ndings of feature occurrence and frequency mining methods, in which

the most frequently used features per language are summarised. Table 5.10 summarises

the �ndings per mining method. Noticeably, threads and interfaces did not make it

to the most frequently used feature in any of the mining methods. Also, considerable

similarities are found between term occurrence and frequency methods.

In Meyerovich & Rabkin (2013), inheritance comes �rst as the most important feature.

This perception has also been found in our dataset as the most frequently used feature

using binary mining, however, the order of the other features on the list did not hold.

For instance, higher-order functions and generics came in last on their list, whereas, in

ours, they both come �rst in usage occurrences and frequency. Additionally, higher-

order functions (anonymous functions) come in second as the most used in binary term

occurrence, after inheritance.

The variations in the features order can be due to the mining method, as well as to the

nature of features. For instance, inheritance is typically an object-oriented feature and is

usually used once, at a class-level, whereas generics is a functional feature and used inline

when needed, which can occur many times in a single class. This can explain the reasons
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why inheritance came �rst as the most frequently used feature when �ndings are based

on binary term occurrence, whereas generics came �rst in occurrence and frequency.

The �ndings also highlight that threads usage is considerably low compared to other fea-

tures. It has been used in 45% of the included projects (the lowest usage percentage) and

never ranked as the most frequently used feature in any of the included languages. Inter-

faces also was never named the most frequently used feature in any languages although

it has been used in 78% of the projects.

In summary, the studied features, except for threads, are used in the majority of projects,

however, the intensity and frequency of their use are varied across projects. Thus, they

are essential to have in a language and worthy of study. The feature usage �ndings can

be a�ected by the mining method and the feature nature, causing variations in the most

frequently used feature lists. Nevertheless, the chosen methodology helps understand

user community by analysing usage and by encouraging evidence-based language design.

RQ2. What are the most frequently used features per language?

As per language, the results of the three mining methods have many similarities and some

di�erences. In four out of the eleven languages (36.4%), there is a di�erence between

the results of the mining methods: Java, Objective-C, PHP, and C#. Regardless of the

mining method, the most used features per language are as follows:

• Java: inheritance and generics.

• JavaScript: anonymous functions.

• Python: exceptions.

• Go: anonymous functions.

• Objective-C: inheritance and anonymous functions.

• PHP: inheritance and exceptions.

• Swift: inheritance.

• Ruby: inheritance.

• C#: exceptions and generics.

• C++: generics.

• TypeScript: anonymous function.

In Java, 99.2% of projects use inheritance, however, the average occurrence is 37, and the

average frequency is 0.011, which is considerably lower than generics average occurrence

(60) and average frequency (0.018). This is reasonable, because inheritance is a per class
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feature, whilst generics can be used many times per class. Thus, such a di�erence in

the nature of the feature a�ects the �ndings of the three mining methods. Similarly, in

Objective-C, inheritance is used in 99.7% of the projects, with an average occurrence of

19 and frequency of 0.008, whereas anonymous functions are used in 79% of projects, but

with a higher average occurrence (33.5) and frequency (0.014). In PHP, inheritance is

used in 88.6% of the projects, and this is the only case in which occurrence and frequency

results di�er. That is, although exception is of a higher occurrence average, the frequency

of using inheritance is higher. In C#, both exceptions and generics are used in 49.7%

of the projects, however, generics are considerably of higher occurrence and frequency of

use. The numbers for this section are listed in Table 5.2, Table 5.6, and Table 5.8

In Figure 5.6, we group languages based on their similarities in regard to the most used

features.

Figure 5.6: Most Used Feature per Language Group.

As per mining method, based on the binary occurrence of the features, inheritance is

the most frequently used feature in Java, Objective-C, PHP, Swift, Ruby, and C++.

Anonymous functions is the most used in JavaScript, Go, and TypeScript. Exceptions

is most used in Python and also in C# along with generics (a tie). The results that are

based on feature occurrence mining and feature frequency mining methods are almost

identical, with a subtle di�erence. Anonymous functions is the most frequently used

feature in JavaScript, Go, Objective-c, and TypeScript, using both methods. Generics

is the most used in Java, C#, and C++. Inheritance is the most used in Swift and

Ruby, and exceptions in Python. PHP has the only di�erence between the two methods.

That is, the most frequently used feature using term occurrence is exceptions, whilst it
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is inheritance in the case of feature frequency, with only a small margin of di�erence

between the two. It is also noticeable that threads and interfaces were never named as

the most frequently used feature in any language using any of the mining methods.

The overall aim of this research is to study programming language e�ect, and, as we are

investigating eleven languages, it is important to investigate whether languages are used

in a similar manner. This is another step toward understanding the user community,

how they use features per language, and whether there is a tendency to use the same

features at the same frequency regardless of the chosen language. For this purpose, we

also list the least frequently used features per language, regardless of the mining method:

• Java: anonymous functions,

• JavaScript: exceptions

• Python: threads

• Go: threads, interfaces.

• Objective-C: threads, exceptions, generics

• PHP: threads

• Swift: exceptions, generics, interfaces

• Ruby: threads, anonymous

• C#: threads

• C++: anonymous

• TypeScript: inheritance, exceptions

To check whether there is a tendency to use same features at the same frequency re-

gardless of the chosen language, the two lists of the most and least used features per

language were compared. Although some similarities were found, there were also di�er-

ences in features usage between languages.

RQ3. What are the most frequently used features per language group? Is

there an association between language design and feature usage?

The results have shown similarities and di�erences in the most used and least used fea-

tures between groups. The binary feature occurrence mining shows that inheritance

is the most used feature in static, strong, managed and unmanaged memory language

groups, whilst it is anonymous functions in dynamically typed group, and interfaces in

the weakly typed language groups. Based on mining feature occurrence it is generics
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in the static, strong, weak, and memory managed groups, anonymous function in the

dynamically typed, and inheritance in the unmanaged memory languages. Using the

third mining method, the feature frequency, the results are split equally into two groups.

The �rst group is where generics is the most frequently used feature. This group in-

cludes statically typed, strongly typed, and managed memory languages. However, in

the second group, it is anonymous functions, that is, in dynamically, weakly, and un-

managed memory languages. These �ndings are previously summarised in Section 5.3.

The relationship between feature usage and language design was inspected using stat-

istical hypothesis testing and e�ect size for the magnitude of the di�erence, if any. The

tested hypothesis was there is no association between feature usage and language design.

We investigated the hypothesis in three binary classi�cations of languages, using six

intrinsic features, and based on the data of three feature mining methods. Then, we

accounted for project size (5 sizes) and project type (5 types) to inspect whether the

�ndings hold. The results revealed that there is a statistically signi�cant di�erence

between the groups of the three classi�cations in most of the features usage. Out of 54

tests, 47 signi�cant di�erences were found; that is, all of the cases except the generics

feature in type system I groups (statics vs dynamic) for all of the three mining methods,

threads in memory management groups (managed vs unmanaged) in both of the feature

occurrence and feature frequency mining methods, and also in threads in type system

II groups (strong vs weak) in feature frequency method, and �nally, inheritance in the

memory management groups in the feature occurrence mining method. Those �ndings

suggest a considerable association between language group and feature usage. However,

when the e�ect size was inspected, more than half of the cases were of small and trivial

e�ect. That is, although the majority of cases showed a signi�cant di�erence, about 62%

of them are of small and trivial e�ect, and 38% are of medium and large e�ect. The cases

of the medium and large e�ect are arbitrary between the di�erent groups and features.

A summary of the e�ect sizes per group are shown in table.

Moreover, the results hold only in a few cases, when accounting for di�erent project sizes

and types. When accounting for di�erent sizes, signi�cant results hold only in 18 cases

(out of 235 = 8% of tests) and e�ect size results hold only in 4 cases. When accounting

for di�erent types, signi�cant results hold only in 16 cases, and e�ect results hold only

in 6 cases.

In summary, although a signi�cant association exists between language design and feature

usage (87% of the tests), the e�ect size of such associations is trivial (<small) in 28%

of the tested cases, small in 34%, medium in 28% and large in 11% cases. Additionally,

when the hypothesis was tested in groups of a smaller scale, as when accounting for the

di�erent sizes and types, the results of both signi�cant and e�ect size hold only in a

limited number of cases.
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In similar studies in which a large scale dataset was used (Ray et al. 2014, Berger et al.

2019a, Nanz & Furia 2015), signi�cant statistical di�erences were found and associations

were reported. However, such statistical di�erence can be due to the large size of the

sample Lantz (2013). Thus, we went further in our investigation and accounted for

the di�erent sizes and types. We found that, in the smaller groups, such hypothesis of

languages association do not hold in most of the tested cases.

5.5 Related work

A number of studies that examine the features of programming languages have inspected

the usage of one or two features in a single or a couple of languages. The investigated

features included language intrinsic and extrinsic features, such as performance, generics,

quality, libraries, inheritance, and lambdas, among others. Parnin et al. (2011) have

mined 20 Java repositories to investigate the adoption of generics by developers. A

randomised controlled experiment on lambdas and iterators usage in C++ shed light on

the di�culty of lambdas syntax in C++, compared to iterators Uesbeck et al. (2016).

The adoption of exceptions by Java developers was analysed based on mining 90 projects

and the factors that a�ect them, such as the project domain and type by Osman et al.

(2017). The usage of inheritance in Python has been investigated using 51 projects in

Orru et al. (2015), which is a replication of a prior study on Java's projects by Tempero

et al. (2008). Okur & Dig (2012) investigated the usage of another language feature,

the parallel libraries, based on analysing a dataset of 655 C# projects. Phipps (1999)

compared defects density between Java and C++, the results of which showed that Java

had two to three times less bugs per line of code than C++, about 15% to 50% less defects

per line, and was about six times faster to debug. Another study about languages and

quality by Bhattacharya & Neamtiu (2011b) investigated the di�erences between C and

C++ in code quality, stating that C++ is better in software quality. Such attempts

are valuable, however limited to understand the di�erences between languages and to

investigate whether there is a link between language design and feature usage, as they

are based on a couple of languages or features.

A smaller number of studies went further to inspect more languages and a variety of

related features, most of which bene�t from the availability of online hosting platforms,

such as Github and SourceForge, to create datasets of large size that re�ect current

practices in programming and programming languages. Prechelt (2000)'s controlled ex-

periment on seven languages, each one implementing the same set of requirements res-

ulting in 80 programs, showed that performance variability exists between programmes

in di�erent languages in terms of memory consumption and execution speed. However,

performance variability among programmers of the same language was found to be larger

than variability among the di�erent languages. This variability can be undermined if a

larger dataset is used. Moreover, the di�erent languages had di�erent e�ects on program
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conciseness and structure. Although the experiment was carried out on a small scale,

such attempts are valuable indicators and point the way towards stronger evidence.

In 2014, a large-scale study (Ray et al. 2014) investigated 729 projects in 17 languages

based on mining Github repositories for the association between language and code

quality. The study found that a language's feature (such as the typing system) has sig-

ni�cantly a�ected quality in terms of propensity for defects, however, the e�ect size is

modest. The study was replicated in 2019 by Berger et al. (2019a). They �rst reproduced

the �ndings based on analysing the same 729 projects following the same methodology

and analysis, in which the replication process succeeded partially. Then, they re-analysed

the included projects by following a di�erent methodology for data processing and stat-

istical analysis than did the original paper. As a result, a smaller number of projects

was included (423 projects) and most of the claims did not hold. Nevertheless, for those

cases were claims held, the relationship between programming languages and defects was

found to be exceedingly small in e�ect size.

Another large-scale study (Nanz & Furia 2015) based on mining 7,087 programs in 8 lan-

guages, inspected conciseness, performance, and failure proneness as language features.

The study found that the paradigms of a language a�ect conciseness di�erently, such

that functional and scripting languages are better than procedural and object oriented.

In performance, in terms of running time, C is the best language on large inputs, fol-

lowed by Go as second. Procedural languages are more e�cient in memory usage than

are languages from other paradigms. Finally, strongly typed languages are less prone to

defects than weakly typed ones.

5.6 Summary and conclusions

This is the �rst study of such a large volume that investigates the usage of 6 language-

intrinsic features in eleven languages while accounting for project size and type in an

attempt to investigate the link between language design and feature usage. We in-

vestigated how language features are used in practice and whether there is a signi�cant

association between language design and feature usage. The investigation was carried out

in a large-scale setting using statistical methods by accounting for confounding factors

such as project size and type, per language and language group. The studied features,

except threads, are used in the majority of projects, however, the intensity and frequency

of using them are varied across projects. Hence, they are essential to have in a language

and in a representative set for investigating language features usage.

Additionally, to understand the user community and whether there is a tendency to use

the same features regardless of the language, we checked the most and least frequently

used features across languages. It was found that although there are some similarities,

features usage is varied between languages. Finally, the association between language
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design and feature usage was investigated, and although the majority of tested cases

suggest a signi�cant association, the e�ect sizes of 62% of them are of small and trivial,

and 38% are of medium and large e�ect size. The cases of the medium and large e�ect are

arbitrary between the di�erent groups and features. Moreover, the results of signi�cance

and e�ect size hold only in a limited number of cases, when the hypothesis was tested on a

smaller scale; when accounting for di�erent project sizes and types. Thus, language choice

does not have signi�cant e�ect on feature usage. Nevertheless, the chosen methodology

in this chapter helps understanding the user community by analysing their usage, and

encourages evidence-based language design.





Chapter 6

Programming language and OSS

development

In this chapter, the third research objective is ful�lled, in which project development

attributes are investigated. In Section 6.1, the chapter objectives are listed. Next, in

Section 6.2 the followed methodology is explained. In Section 6.3 the results are provided

per mining method. Then, in Section 6.4 the study questions are answered and discussed.

The related work is covered in Section 6.5 and the study is concluded in Section 6.6.

6.1 Objectives

This chapter investigates the impact of general-purpose programming languages on open-

source software development. It examines whether there is a strong evidence that indic-

ates a relationship between language choice and the development process of OSS projects,

in a large-scale setting. A comparison is made between projects written in the included

languages based on mining project's repository data. Comparisons were made per lan-

guage, (individually) and per language group to examine di�erences, if any. Project

attributes such as size, duration, and contribution rate were used for this comparison to

inspect and understand the relationship between language design and OSS development.

The chapter objectives are summarised as follows:

1. Examine to which extent projects in the di�erent languages di�er or

similarise. This study compares projects written in the di�erent languages to ex-

amine whether signi�cant di�erences exist between them in developing open-source

software. Project attributes are examined, per language, to determine whether they

are the same in their attributes regardless on the chosen language.

2. Investigate the relationship between language design and OSS project

attributes statistically while accounting for the di�erent sizes and types

91
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as confounding factors. This study aims to investigate whether a signi�c-

ant statistical relationship exists between language design and project attributes.

Such an association may suggest a strong e�ect of languages on software projects.

Moreover, this study also to investigate the statistical relationships between lan-

guage design and development attributes while accounting for project size and type

as confounding factors.

3. Examine the �ndings of language association to software development in

a large-scale setting. Early studies on languages and software development have

revealed signi�cant di�erences between low-level and high-level languages, while no

comparisons were carried within the group of high-level languages due to limited

sample size. Research from the 1990s onwards on the high-level group are prelimin-

ary, their results are sometime contradictory, and some were based on small-scale

experiments. Thus, this study is a step towards understanding the relationship

between language choice and it's possible association to the development process.

To address these objectives, we identi�ed the following research questions:

1. How do projects written in the di�erent languages vary and similarise in their

development attributes?

2. Is there any association between language design and development attributes?

After accounting for di�erent sizes and types as confounding factors will �ndings

hold?

3. What is the e�ect of programming languages on software development?

Lastly, This chapter o�ers the following contributions:

• It investigates a large volume of data to �nd su�cient empirical evidence of lan-

guage association with software development.

• It accounts for confounding factors such as project size and type when inspecting

language's e�ect.

• It informs state-of-the-practice of OSS project development attributes using rigid

statistical methods to support �ndings.

6.2 Methodology

Here we utilise the availability of open-source data to understand the development process

of OSS and inspect the impact of the language factor on it. The methodology is primarily
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based on the mining software repositories (MSR) of Github statistical methods were used

to inspect the outcomes. As with classic data mining process, we go through the following

steps: (a) data gathering; (b) data cleaning and preparing; and (c) information extraction

(Liao et al. 2012). The data gathering has been discussed in chapter 3. Here we list the

steps brie�y:

• Get the list of the popular repositories on Github.

• Identify the project primary language.

• Pull the repository data.

• Save the data as JSON �les.

In the second step; the selected data for this chapter are: artifact size in KB, artifact

source code �les, repository creation date/time, last pushed commit date/time, last

release date/time, repository contributions, and contributors data. Those data were

utilised to get the following development process attributes: project size in SLOC, project

duration calculated in two ways; from the creation date of the repository to the last

release and from the creation date to the last pushed commit if no releases were found,

total number of contributions to the repository, total number of contributors, and rate of

contribution. Those attributes are used to investigate the e�ect of the chosen languages

on the development process and extract information on the relationship strength and

magnitude, if any.

The motivation behind choosing this methodology is summarised in the following pints:

• The intended dataset is open source due to its availability. Thus, we compared a

number of the most used online repositories for open source projects in terms of

size (users and projects), establishment date, and available features. The repos-

itories managed to o�er similar features. However, Github was the one with the

largest number of users and projects compared to other popular repositories such

as SourceForge and Launchpad.

• Github hosts some prominent open source projects, such as Linux kernel, Ruby

on rails, and JQuery. In addition to the availability of source codes, it also o�ers

a wealth of data related to the software artifact and the development process,

making it a valuable source for researchers. Thus, it provides an opportunity to

build large-scale datasets of selected, high quality, real project data for research

purposes.

• Mining software repositories (MSR) to uncover patterns and discover �ndings about

the artifact and the delivery process has renown as a research area over the last two
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decades. In 2004, a specialised conference1 on mining software repositories evolved

from the premium international conference on software engineering (ICSE)2, in

recognition of the importance and potential of this �eld.

Nevertheless, mining Github repositories and retrieving large amounts of data from Git-

hub is a challenging task. Github allows their data to be accessed over HTTPS as JSON.

However, it does not provide a schema for its data. Thus, for it to be examined it is

necessary to traverse back its data using REST requests and JSON responses. Moreover,

Git hub imposes a rate limit on its API: 5000 requests per hour. Given the huge number

of events generated per day, and that every single event would lead to a series of de-

pendent requests, pulling large amounts of data from Github would result to signi�cant

delay.

6.2.1 The dataset

The total number of projects in the dataset is 5350. The mean size of projects is 55161

SLOC (very large), whereas, the median is 4949 SLOC (small). Commits mean is 1174,

with a mean of 67 contributors and 26 commits per person. The durations of projects

vary between a minimum of less than a month up to 154 months maximum with a mean

of 51.Table 6.1 shows the descriptive statistics of the dataset used for this chapter.

Attribute N Mean Std. Deviation Min. Max. Median
Project size (SLOC) 5350 55161 387408 8 11885756 4949
Commits 5350 1174 4484 2 204379 296
Contributors 5350 67 435 1 21111 21
Commits per contributor 5350 26 51 0 1214 14
Duration (Months) 5350 51 34 0 154 47
Project Size (KB) 5350 23823 104384 7 2778030 2808

Table 6.1: Descriptive statistics of dataset projects attributes.

6.2.2 The statical methods

As the included attributes for the study are quantitative data, they have been inspected

for normality to decide which statical method to use for the analysis phase. Thus, we

used hypothesis testing and graphical representation such as the Q-Q normal probability

plot and histogram (Field et al. 2012). We �rst proposed to investigate the following

normality hypothesis for the included �ve attributes using Shapiro�Wilk normality test:

• Hypothesis 1. The sample data of the statically and dynamically typed language

are not signi�cantly di�erent from a normal population.
1"Mining Software Repositories." http://msrconf.org/
2"International Conference on Software Engineering (ICSE)" http://icse-conferences.org/
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For the �ve attributes; project size, commits count, contributors count, contribution rate,

and duration, the p-value is less than our chosen signi�cance level alpha (0.05). Thus,

the null hypothesis is rejected and we state that data do not follow a normal distribution.

Test statistics are listed inTable 6.2. In addition to the Shapiro�Wilk test, we also went

through the Q-Q plot and histogram to inspect data normality, and same results hold.

Project attribute Lang. Group Statistic df Sig.
SLOC S 0.155 1482 0.00

D 0.134 1958 0.00
Commits S 0.284 1482 0.00

D 0.152 1958 0.00
Contributors S 0.052 1482 0.00

D 0.301 1958 0.00
Commits per contributor S 0.446 1482 0.00

D 0.408 1958 0.00
Duration (Months) S 0.964 1482 0.00

D 0.973 1958 0.00

Table 6.2: Normality test statistics of development attributes per language group
(static vs dynamic).

Similarly, the data in the second language classi�cation has been tested for normality

using same methods: Shapiro�Wilk test and graphical representation. The tested hypo-

thesis is:

• Hypothesis 2. The sample data of the strongly and weakly typed language are not

signi�cantly di�erent from a normal population.

The results showed that the p-value is less than the chosen signi�cance level alpha, which

is 0.05. The null hypothesis is rejected accordingly, and it is revealed that the data do

not follow a normal distribution for all of the included �ve attributes. Test statistics are

listed inTable 6.3.

Finally, the normality was inspected for third language classi�cation for projects at-

tributes using Shapiro�Wilk test along with the Q-Q plot and histogram. The tested

hypothesis is:

• Hypothesis 3. The sample data of the memory managed and unmanaged languages

are not signi�cantly di�erent from a normal population.

For the �ve included attributes, the results shows that the p-value is less than our chosen

signi�cance level alpha (0.05) as listed in Table 6.4. Thus, the null hypothesis is rejected

and we state that the data do not follow a normal distribution. In addition to the
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Project attribute Lang. Group Statistic df Sig.
SLOC S 0.153 1822 0.00

W 0.1 1372 0.00
Commits S 0.177 1822 0.00

W 0.258 1372 0.00
Contributors S 0.096 1822 0.00

W 0.051 1372 0.00
Commits per contributor S 0.393 1822 0.00

W 0.531 1372 0.00
Duration (Months) S 0.955 1822 0.00

W 0.973 1372 0.00

Table 6.3: Normality test statistics of development attributes per language group
(strong vs weak).

Shapiro�Wilk test, the Q-Q plot and histogram were used to discern data normality, and

the same results hold.

Project attribute Lang. Group Statistic df Sig.
Commits Mgd. 0.172 2710 0.00

Unmgd. 0.295 730 0.00
Contributors Mgd. 0.113 2710 0.00

Unmgd. 0.045 730 0.00
SLOC Mgd. 0.183 2710 0.00

Unmgd. 0.116 730 0.00
Duration (Months) Mgd. 0.975 2710 0.00

Unmgd. 0.925 730 0.00
Commits per contributor Mgd. 0.418 2710 0.00

Unmgd. 0.467 730 0.00

Table 6.4: Normality test statistics of development attributes per language group
(managed vs unmanaged memory).

As the normality tests showed that the data of the included project attributes is not

normally distributed for the three language classi�cations, the arithmetic median were

chosen to describe the average, and the Mann-Whitney U-test was used for hypothesis

testing (Field et al. 2012) along with e�ect size. In addition, we accounted for di�erent

sizes and types of projects included in the dataset to observe if outcomes hold for the

di�erent variations. Thus, for this chapter we propose to investigate the following main

hypothesis:

• Hypothesis 1. There is no di�erence between languages in software development

attributes.
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6.3 Results

Per language As the project attributes data is not normally distributed, the median

has been selected to describe the average. The average size of projects in the dataset is

4949 source-line-of-code (SLOC). The project sizes vary between a lowest average of 2527

SLOC for Swift and the highest average of 49065 SLOC for C#. The three languages

with the highest SLOC average are C#, C++, and C respectively. For the contributions

count, the dataset has an average of 296 commits/contributions. The language with the

lowest average is Java with 131 commits, and the language with the highest average is

Typescript followed by C#, and Ruby, with a median of 1354, 1300, and 773 commits,

respectively. For the third attribute, the number of contributors, the average is 21

person per project for the whole dataset. Similar to commits, Java is the language

with the lowest average contributors,( 7 contributor per project).Meanwhile, Ruby is

the language with the highest average of contributors to its projects (76 contributors),

followed by TypeScript, and C#, with a median of 71 and 50 contributors. When it

comes to the contribution rate, C++, C#, and Java have the highest average rates

with 28, 25, an 18 contributions per person, respectively. Whilst, Ruby's average is

the lowest with 10 contributions per person. The average contribution rate is 13.53

commits/contributions per contributor for the whole dataset. Finally, the language with

the lowest average project duration is Java with 30 months, whereas Ruby's projects have

the highest average duration with 100 months, followed by PHP, and C with medians of

74 and 65 months, respectively. The average duration in the dataset is 47 months. The

averages are shown in Figure 6.1.

Per language group When languages are categorised into groups based on their

design, the attributes data are compared and checked for statistically signi�cant di�er-

ences using the Mann-Whitney U-test.

For the �rst language classi�cation, type system I, the sample size of the projects in the

statically typed language group is 2237 projects. The project size average is 5872 SLOC

with an average of about 15 contributors and 252 commits. Accordingly, the contribution

rate is about 17 contributions per person. The duration of projects in this group has an

average of 45 months with a maximum of 146 months. The average statistics of statically

typed languages projects are shown in Figure 6.2.

In the dynamically typed languages group, the project size average is 4653 SLOC, with

an average of 29 contributors and 364 commits per project. The contribution rate is

about 12 contributions per person. Projects duration in this group has an average of 55

months and up to 154 months maximum. Those numbers are based on a sample size

of 2764 projects. Figure 6.2 shows the average statistics of the related variables in this

language group projects.
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Figure 6.1: Project attributes per language (median).

To further investigate the di�erences, the attributes data has been used to statistically

test the following hypothesis:

• Hypothesis 1. There is no di�erence between statically and dynamically typed

language in software development attributes.

A non-parametric U-test at 95% con�dence was used. The results show that there

is a statistically signi�cant di�erence in the projects development attributes between

the statically typed and the dynamically typed languages at p<.05 in all of attributes;

project size (SLOC), commits, contributors, contribution rate, and project duration.

Thus, the null hypothesis is rejected for these attributes. The U-test statistics are listed

in Table 6.5. As listed, the p-value is less than our chosen signi�cance level (alpha

= 0.05). Hence, there is a relationship between project's development and language

design: a statistically signi�cant association between OSS development and language

design for the included attributes. The dynamically typed languages group is have larger

commits, contributors, and project duration. On the other hand, the statistically typed

projects have a higher project size and contribution rate. In addition to the U-test, we
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Figure 6.2: Project attributes per language group (static vs dynamic).

also investigated the e�ect size to demonstrate the magnitude of the reported di�erence

between the two groups. The results show a small e�ect size in project size, number of

contributors, contribution rate, and projects duration. Meanwhile, the e�ect size was

found to be less than small (trivial) for the commits between the two groups.

p z n r E�ect size
SLOC 0.00 -7.908 5001 -0.1118248 S
Commits 0.00 -7.062 5001 -0.0998618 T
Contributors 0.00 -15.095 5001 -0.2134542 S
Commits per contributor 0.00 -13.192 5001 -0.1865444 S
Duration 0.00 -13.061 5001 -0.184692 S

Table 6.5: Hypothesis test and e�ect size statistics per language group (static
vs dynamic).

When project size is accounted for, results of statistical signi�cance hold for all the

attributes in the tiny and large projects. As per attribute, results hold for contributors

and commits rate for all sizes. For e�ect size results, they hold only for commits for the

di�erent project sizes (i.e, they have trivial). Otherwise, the e�ect size is rather arbitrary

between the di�erent groups for the di�erent attributes. However, no large e�ect has

been shown for any attribute in any of the project sizes.

When the di�erent project types are accounted for, results of statistical signi�cance hold

only in comments rate for the di�erent project types. E�ect size results are arbitrary

between the di�erent types for the di�erent attributes. Nevertheless, as with when

project size is accounted for, no large e�ect size has been found in any of the included

attributes for any project type. Results per project type and size are summarised in the

Appendix C.
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In the second categorisation, type system II, the sample size of the projects in the strongly

typed language group is 3178 projects. The project size average is 4431 SLOC with an

average of about 16 contributors and 242 commits. Accordingly, the contribution rate is

about 14 contributions per person. The projects duration here has an average of 43, and

154 months maximum. The average of statically typed languages projects attributes are

listed in Figure 6.3.

On the other hand, for the weakly typed languages group, the sample size of projects in

the dataset group is 1894 projects. The average size is 6743 SLOC per project, with an

average of 27 contributors and 361 commits per project. The contribution rate here is

13 commits per person. The duration of projects has an average of 50 months, and up

to 146 months maximum. Figure 6.3 shows averages of the development attributes in

this group projects.

Figure 6.3: Project attributes per language group (strong vs weak).

The attributes data for the two groups are then used to test the following hypothesis:

• Hypothesis 2. There is no di�erence between strongly and weakly typed language

in software development attributes.

Similarly, a U-test at 95% con�dence was used to test the hypothesis. The results show

that there is a statistical signi�cant di�erence in the development attributes between

strongly typed languages and the weakly typed languages at p<0.05 for all of the �ve

attributes project size in SLOC, commits count, contributors, contribution rate, and

project duration as seen in Table 6.6. Hence, the null hypothesis is rejected and a

statistically signi�cant association between project development and language design for

those �ve attributes exists.

We also investigated the e�ect size to get insights into the strength of the reported

association between the development attributes and language group/design. The e�ect
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size was found to be small and trivial between the two groups for the included attributes.

It is tiny in projects size, contribution rate, and project duration and small in commits

and contributors between the two groups.

p z n r E�ect size
SLOC 0 -5.234 5072 -0.0734927 T
Commits 0 -9.068 5072 -0.1273274 S
Contributors 0 -12.099 5072 -0.1698869 S
Commits per contributor 0 -3.81 5072 -0.0534977 T
Duration 0 -7.525 5072 -0.1056615 T

Table 6.6: Hypothesis test and e�ect size statistics per language group (strong
vs weak).

When project sizes are accounted for, result of signi�cance hold only in the tiny size

projects for all of the included attributes. As per attribute, no signi�cance result hold

per attribute for all of the project sizes. E�ect size results did not hold between the

di�erent groups. However, they are either trivial or small. No medium or large e�ect

size was found for any attribute in any of the project sizes.

When project types are accounted for, result of signi�cance did not hold for project size

in any of the attributes. As for the e�ect size, results did not hold for the di�erent types,

while there are either trivial or small and no medium or large e�ect for any attribute

in any of the project types. Results per project type and size are summarised in the

Appendix C.

In the third categorisation (memory-managed) the sample size of the projects in the

memory managed language group is 3738 projects. The project size average is 5170

SLOC with an average of about 28 contributors and 374 commits. Accordingly, the

contribution rate is about 13 contributions per person. The projects duration average

in this group is 53 months, and the maximum duration for projects in this group is 154

months. The statistics of memory managed languages projects are listed in Figure 6.4.

Meanwhile, in the unmanaged memory languages group, the sample size of projects in

the dataset group is 1612 projects. The average size is 4627 SLOC per project, with an

average of 10 contributors and 151 commits per project. The contribution rate here is

about 16 contributions per person. The duration of projects varied between a minimum

of 1 month up to 146 months. Figure 6.4 shows the averages of the related attributes in

these group projects.

After this, the development attributes data are compared and used to test the following

hypothesis:

• Hypothesis 3. There is no di�erence in software development between the managed

and unmanaged memory languages.



102 Chapter 6 Programming language and OSS development

Figure 6.4: Hypothesis test and e�ect size statistics per language group (man-
aged vs unmanaged memory).

Again, the Mann-Whitney U-test was used to test the hypothesis as the data is not

normally distributed. The results show a statically signi�cant at pt<0.05 in four of the

�ve attributes: out of the included �ve: number of commits, contributions, contribution

rate, and project duration at p<0.05. Thus, the null hypothesis is rejected for those four.

On the other hand, no di�erence was found in project size between the two groups for

the chosen alpha, as shown in Table 6.7. Hence, the null hypothesis is retained for this

attribute. Based on the results, there is a statistically signi�cant association between

software development and memory management in languages' design in four attributes:

commits count, contributions, contribution rate, and project duration. The e�ect size is

found to be medium in the data for contributors only. In the case of commits, commits

rate, and project duration, the e�ect size was small.

p z n r E�ect size
SLOC 0.681 -0.412 5350 -0.0056327 none
Commits 0.00 -16.649 5350 -0.2276204 S
Contributors 0.00 -22.567 5350 -0.3085297 M
Commits per contributor 0.00 -8.556 5350 -0.1169752 S
Duration 0.00 -11.154 5350 -0.1524943 S

Table 6.7: Hypothesis test and e�ect size statistics per language group (managed
vs unmanaged memory).

When project size is accounted for, signi�cant results hold for commits count and dur-

ation for all sizes. It also holds in small size projects for all of the included attributes.

However, the e�ect size results are rather arbitrary for the di�erent sizes between trivial,

small and medium, and it is never found to be large for any of the attributes in any

project size.
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When the di�erent project types are accounted for, results of signi�cance did not hold

for any of the included attributes. Results per project type and size are summarised in

the Appendix C.

6.4 Discussion

RQ1. How do projects written in the di�erent languages vary and similarise

in their development attributes?

When projects in di�erent languages are compared based on their attributes, we get the

following results per attribute:

• Project size (SLOC) Swift, Objective-C, and PHP projects have the smallest

average sizes. They are followed by Ruby, Java, and Pythons projects, which also

have an average of small size (between 1000 and 5000 source line-of-code). The

average size for JavaScript, TypeScript, Go, and C projects is medium, which

means their projects have between 5000 and 20000 SLOC. The projects of C++

and C# are the ones with the largest codebases.

• Commits count Java, Objective-C, and Swift have fewer commits compared to

other languages. On the other hand, C# and TypeScript have the highest number

of commits with an average of 1300, and 1354 commits respectively.

• Number of contributors The average project size based on number of contrib-

utors among the included languages is either medium or large. (i.e, no language

has an average number of contributors is less than 5) Java comes �rst with the

smallest number of contributors, followed by Objective-C, Swift, and C. Each of

those languages is of a medium sized team (between 5 and 20). C#, TypeScript,

and Ruby are the languages with the largest number of contributors, averaging 50,

71, and 76 contributors respectively.

• Contribution rate The contribution rates of Ruby and PHP projects are similar.

These are followed by Objective-C and JavaScript, which have the lowest contri-

bution rate (commits per contributor) among the languages. On the other hand,

Java, C# and C++ have the highest rates.

• Duration Java projects have the shortest time period, with an average of 30

months, followed by Swift (41 months), and Objective-C (42). The languages with

the longest project duration are PHP with an average of 74 months and Ruby with

an average 100 months.
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Based on the similarities and di�erences in the aforementioned attributes, languages are

categorised into �ve groups as shown in Figure 6.5. The �rst group (A) has Objective-

C, Python, Java, and Swift. Projects written in these languages are associated with

small attributes: size, commits, contributors, contribution rate, and short project dura-

tion. Group B projects are associated with medium-sized attributes and are written in

TypeScript, C, and C++. The third group of projects (C) posses large-sized attributes

and are written in C#. Group D projects are written in PHP and Ruby. Although they

are small in size (SLOC), they have medium to large attributes, except for contribution

rate. Finally, Go and JavaScript projects make up the �fth group (E). Projects in this

group are of medium size (SLOC), and have relatively small attributes.

Figure 6.5: A classi�cation of languages based on their similarities and di�er-
ences in project attributes.

Here we looked into languages to address to which extent they are used in a similar/dif-

ferent way. The aforementioned classi�cation categorised them based on the their usage

in open-source projects. The set of the included languages are of a general-purpose,

and results revealed similarities and di�erences between them in development attrib-

utes. However, those can be related to language characteristics, project characteristics,

or personnel experience.

RQ2. Is there any association between language design and development

attributes? After accounting for di�erent sizes and types as confounding

factors will �ndings hold?

The relationship between project attributes and language group was inspected using stat-

istical hypothesis testing. The hypothesis was there is no association between open-source

projects attributes and language design. It was investigated in three binary classi�cations



Chapter 6 Programming language and OSS development 105

of languages using �ve attributes based, on the data of mining software repositories.

Then, we controlled for project size (5 sizes) and project type (5 types) to see whether

�ndings hold. The results revealed that there is a statistically signi�cant di�erence

between the groups in almost all of the included projects attributes. Out of 15 tests, 14

signi�cant di�erences were found (i.e, all of the cases except project size in the memory

management classi�cation).

Projects that have been written in statically typed languages are of a signi�cantly lar-

ger project size and higher contributions rate than those written in the dynamically

typed ones. On the other hand, the dynamically typed projects have higher numbers of

commits, have more contributors to their projects, and are of a longer duration.

In the second classi�cation, projects written in strongly typed languages have a signi-

�cantly higher contribution rate compared to the weakly typed ones. Meanwhile, the

projects in the weakly typed group have larger sizes, have more commits, more contrib-

utors, and longer duration.

In the third classi�cation, projects from the memory managed languages group have

higher number of commits, contributors, and longer duration than the unmanaged memory

group. On the other hand, the unmanaged languages have a higher contribution rate.

No signi�cant di�erence was found between the two groups in project size. Such �ndings

suggest a strong association between language design and OSS development attributes.

Nevertheless, when the e�ect size was inspected, the vast majority of cases were small

and had trivial e�ect. In other words, although the majority of cases showed signi�cant

di�erence, the magnitude of this di�erence is small and tiny in about 93% of tested cases.

Moreover, the statistical signi�cance results hold in fewer cases when di�erent project

size and types are accounted for. When accounted for project sizes, signi�cance results

hold in 8.6% of tests and e�ect size results remain trivial and small in the majority of

them. When di�erent types are accounted for, signi�cance and e�ect size results did not

hold.

In summary, although a signi�cant statistical association exists between language design

and projects attributes (93% of the tests), the size of such associations is trivial (<small)

in 28.6% of the tested cases, small in 64.3%, and medium only in 7.14% cases. Meanwhile,

no large size e�ect was reported in tested cases. Additionally, when the hypothesis was

tested in small scale groups, as when accounted for the di�erences in project size and

types, results for both signi�cance and e�ect size hold only in a limited number of cases.

RQ3. What is the e�ect of programming languages on software development?

The role of programming languages in software development has been recognised by

a number of cost models, such as SDC, Putnam SLIM, and SOFCOST. Meanwhile,

they were excluded from TRW, COCOMO, and Jensen. One of the reasons for this

exclusion can be the `non-quantitative" nature of programming languages. Research
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that investigated languages e�ect, approached it using comparative settings in corpus

studies and controlled experiments. Their outcomes revealed a divide on whether there

is an e�ect and whether the magnitude of such one is critical.

Studies that inspected and compared languages individually and reported di�erences

between them in aspects such as software quality, productivity, defects and memory

consumption, did not inspect the strength and the magnitude of such di�erence.

Bene�ting from the availability of open-source software projects data along with exer-

cising data mining methods, we approached this potential e�ect, also in a comparative

setting, in an attempt to expose more about it. This investigation looked for signi�cant

associations in the dataset between language design and open-source software devel-

opment. The development was identi�ed in terms of project's attributes such as pro-

jects size(SLOC), commits, contributors, contribution rate, and project duration. The

comparison of individual languages have shown similarities and di�erences in included

attributes. However, it is di�cult to link them to language alone.

Thus, this study went further to investigate the association in groups rather than in-

dividually. The groups were based on the languages underlying design. The �ndings

showed that 4 out of 5 attributes have shown signi�cant statical association between

language design and the investigated projects attributes. However, the magnitude of the

reported association is rather modest in the vast majority of the tested cases.

In similar studies in which a large scale dataset was used (Ray et al. 2014, Berger et al.

2019a, Nanz & Furia 2015), signi�cant statistical di�erences were found and associations

were reported. However, such statistical di�erence can be due to the large size of the

tested sample Lantz (2013). Thus, we went further in our study and accounted for the

variability in sizes and types. We found that, in the smaller groups, such hypothesis of

languages association do not hold in most of the tested cases.

6.5 Related work

Empirical comparisons have been conducted with a range of programming languages to

investigate whether there exist signi�cant di�erences among them. More importantly,

whether such di�erences have an e�ect on software development and its related aspects.

There is a disagreement among the studies in the body of literature as to whether pro-

gramming languages are similar in their e�ect on software development, performance,

and practical programming.

Some researchers have stated that programming languages do not have a considerable

e�ect on software development, performance or practical programming, and that there

is no hard evidence to support such claims. They claimed that the e�ect of languages on

software development is rather limited and subtle in terms of a program's readability and
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error propensity (Wulf 1980, Boehm 1981, Port & McArthur 1999, Myrtveit & Stensrud

2008).

Conversely, a number of studies have found some associations between languages and

software development. A study compared defect density and programmer productivity

in Java and C++ and showed that Java had two to three times fewer bugs per line of

code than C++, about 15% to 50% fewer defects per line, and was about six times faster

to debug. However, when defect density was measured (defects against development

time) it showed no di�erences between the two languages (Phipps 1999). Another study

(Bhattacharya & Neamtiu 2011a) assessed the impact of language on software develop-

ment and maintenance in an investigation of the di�erences between C and C++. The

researchers concluded that C++ is better software quality and e�ort. Their �ndings

contradict the �ndings of (Myrtveit & Stensrud 2008), who concluded that there was no

empirical evidence of di�erences between C and C++ in terms of development e�ort and

that there is no superiority of C++ over C. An experiment examining on Java and C++

(Phipps 1999) showed that Java was about 30% to 200% more productive than C++.

While such attempts are valuable, the ability to draw conclusive �ndings are limited

because these studies are based on comparisons of only a couple of languages.

A relatively large empirical comparison (Prechelt 2000) of seven programming languages

implemented the same set of requirements showed that languages have di�erent e�ect

on software performance in terms of memory consumption, execution speed, and on the

design and writing of programs. However, no di�erences were found between languages

in terms of program reliability. Another study of nine languages aimed at determining

if there is evidence of an e�ect on software development concluded that the choice of

language was a signi�cant factor in writing programs and that developers' productivity

rates are not constant among di�erent languages (Delorey et al. 2007).

An additional study exploring the e�ect of 11 programming languages on development

e�ort con�rmed the �ndings of Jones 1996 and Delorey et al. 2007 that every language

has its own rate. A large-scale2014 study by Ray et al has investigated 729 projects in 17

languages for the e�ect of programming languages on code quality found that languages

can signi�cantly e�ect quality; however, the e�ect size was modest (Ray et al. 2014). The

study was replicated in 2019 by (Orru et al. 2015) who �rst reproduced the �ndings with

the same 729 projects and following the same methodology and analysis, resulting in a

partially successful replication. Then, they re-analysed the included projects but followed

di�erent methodologies for data processing and statical analysis than the original study.

As a result, a smaller number of projects were included (423 projects) and most of the

claims did not hold. In addition, for the cases, where the claims did hold the relationship

between programming language and defects were found to be exceedingly small in e�ect

size. Another large-scale study (Nanz & Furia 2015) based on mining 7,087 programs

in eight languages inspected conciseness, performance, and failure proneness as language

features. They found that a language's paradigms a�ected conciseness di�erently, with
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functional and scripting languages performing better than procedural and object-oriented

languages. In performance, in terms of running time, C was the best language for large

inputs, followed by Go. Procedural languages were more e�cient with memory usage

than languages from other paradigms.

Besides languages, there are other factors a�ecting development productivity, such as

the size of the developing team, their experience, and type of the application. However,

our focus here is the factor of programming languages.

6.6 Summary and conclusions

In this study we investigated whether this is a strong statistical association between

language design and open-source projects. The investigation was carried out in a large-

scale setting using statistical methods and by accounting for confounding factors such as

project size and type. The study was carried out on 12 languages and 5 project attributes:

project size in source line-of-code, commits count, contributors count, contribution rate,

and project duration. It was found that individual languages show similarities and

di�erences in those attributes. However, although di�erences exist between projects

written in the included languages, it is di�cult to link them to language alone. We

investigated the extent to which they di�er and similarise and a classi�cation of �ve

groups were suggested. After this, the study investigated the possible association of

at language groups level instead of individual ones. Accordingly, it was found that a

signi�cant statistical association exists between language design and the investigated

project attributes. However, when the e�ect size was inspected, the vast majority of the

cases (93%) were of small and trivial, 7% of the cases were of medium e�ect size, and

no large size e�ect was reported in tested cases. Additionally, when the association was

tested in small scale groups, as when accounted for the di�erences in project size and

types, results of both signi�cance and e�ect size hold only in a limited number of cases.

Thus, although strong association is found in the dataset between high-level, general-

purpose language/language design and OSS project attributes, the magnitude of such

association is limited. In other words, the choice of language has a very limited (small)

e�ect on open-source software development.



Chapter 7

Conclusions

7.1 Summary and conclusions

Early studies on language's programming e�ect on software development, performance,

and practical programming, managed to point out signi�cant distinctions between low-

level and the higher-level ones (Schneider 1978, Harrison & Adrangi 1986). Nonetheless,

such attempts could not provide similar �ndings within the group of high-level languages

due to the limited sample size of software projects in such languages at that time. From

the 1990's onwards, research has been continued on high-level languages and their as-

sociation with software development and practices. Some have based their �ndings on

a couple languages (Phipps 1999, Myrtveit & Stensrud 2008, Bhattacharya & Neamtiu

2011b), some went to a larger size (from �ve to eleven languages) (Port & McArthur

1999, Delorey et al. 2007, Lavazza et al. 2016, Nanz & Furia 2015, Ray et al. 2014, Ber-

ger et al. 2019b), and another part went further to cover about 500 languages (Jones

1996). Nevertheless, such attempts have shown preliminary, sometimes contradictory,

results.

We have examined the association between languages and software projects and practices

in three studies: the �rst study discussed in Chapter 4 investigated the trends, directions

and the popularity of languages. More importantly, it inspected the relation between

user adoption and language design. It has revealed that statistical association exists.

The second study, Chapter 5, investigated how language features are used in practice

and whether there is a signi�cant association between language design and feature usage

through mining source code �les of OSS projects. The �ndings also shows signi�cant

association between language design and feature usage. However, the e�ect sizes of 62%

of them are of small and trivial, and 38% are of medium and large e�ect size. Additionally,

the results of signi�cance and e�ect size hold only in a limited number of cases, when

accounting for di�erent project sizes and types. That is, when the hypothesis is tested

in a small scale.
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Finally, the third study on language association to OSS project attributes showed similar

results (Chapter 6). That is, when the hypothesis of association was tested in a large

scale, signi�cant association is reported. However, the e�ect size in the vast majority of

cases (93%) was modest. Moreover, when accounting for variability in project sizes and

types, �ndings hold in exceedingly small cases.

The large size of the dataset can be attributed to the statistical signi�cance, and this

can explain the variations in the results when investigating the association in the small.

Nevertheless, the e�ect size of the association is found to be modest in the majority of

the tested cases. Thus, the choice of language has only a limited e�ect on OSS projects

and practices.

The results provided here are based on the analysis of possibly the largest open source

dataset through examining a population of 15,000 and by including a sample of about

5,350 projects that re�ects current practices in programming and development practices.

The study utilised a rigorous mining and statistical approach to investigate associations

and inform state-of-the-practice of OSS projects and practices. The methods we have

used to contribute to knowledge are:

• Investigates a large volume of data to �nd su�cient empirical evidence of language

association with software development projects and practices.

• Investigates a dataset that consists of highly rated projects, where a main language

that makes up at least 95% of the source code can be identi�ed.

• Accounts for confounding factors such as project size and type when inspecting the

e�ect of language.

7.2 Future work and limitations

Looking into programming languages from a pragmatic, empirical perspective helps un-

derstand current directions in programming and programming languages, and inform the

design of new languages and language features. Future work should include an investig-

ation into the language's extrinsic features, projects and teams nature and complexity,

and examine the relationship between these aspects, and language choice. However, this

research is based on data from OSS projects which may di�er from closed source projects.

In addition, the utilised methods can provide subjective outcomes, such as mining pro-

jects description using NLP algorithms and mining features using regular expressions.

Moreover, besides language, software project and practices can be a�ected by other

factors, such as programmer skills, project complexity, the development environment,

etc. and assessing the e�ect of an individual factor can be quite challenging.



Appendix A

Programming languages ranked by

popularity

Top 10 popular languages according to TIOBE, PYPL, RedMonk, and TrendySkills

indexes during 2012-2019:

TIOBE PYPL RedMonk TrendySkills

1 Java Java JavaScript Java
2 C PHP Java JavaScript
3 C# C PHP XML
4 C++ C++ Python HTML
5 Objective-C Python Ruby C#
6 PHP JavaScript C# C++
7 Visual Basic C# C++ PHP
8 Python Objective-C C C
9 Perl Visual Basic Objective-C Perl
10 JavaScript/Ruby Matlab Shell Python

Table A.1: Programming languages ranked by popularity in 2012.

TIOBE PYPL RedMonk TrendySkills

1 Java Java JavaScript Java
2 C PHP Java C#
3 C# Python PHP JavaScript
4 C++ C# Python HTML
5 Objective-C C++ C# XML
6 PHP C C++ C++
7 Visual Basic JavaScript Ruby PHP
8 Python Objective-C CSS Python
9 Perl Matlab C C
10 JavaScript/Ruby Visual Basic Objective-C/Perl/Shell Perl

Table A.2: Programming languages ranked by popularity in 2013.
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TIOBE PYPL RedMonk TrendySkills

1 Java Java JavaScript Java
2 C PHP Java JavaScript
3 C# Python PHP C#
4 C++ C# Python HTML
5 Objective-C C++ C# PHP
6 PHP C C++ C++
7 Visual Basic JavaScript Ruby XML
8 Python Objective-C CSS Python
9 JavaScript Matlab C C
10 Transact-SQL Visual Basic Objective-C HTML5

Table A.3: Programming languages ranked by popularity in 2014.

TIOBE PYPL RedMonk TrendySkills

1 Java Java JavaScript Java
2 C PHP Java JavaScript
3 C# Python PHP C#
4 C++ C# Python HTML
5 Objective-C C++ C# PHP
6 PHP C C++ C
7 Visual Basic JavaScript Ruby C++
8 Python Objective-C CSS HTML5
9 Perl Matlab C Python
10 JavaScript R/Swift Objective-C XML

PL/SQL
Delphi/Object Pascal

Table A.4: Programming languages ranked by popularity in 2015.

TIOBE PYPL RedMonk TrendySkills

1 Java Java JavaScript Java
2 C Python Java JavaScript
3 C# PHP PHP C#
4 C++ C# Python HTML
5 PHP C++ C# PHP
6 Visual Basic C C++ Python
7 Python JavaScript Ruby C++
8 Perl Objective-C CSS HTML5
9 JavaScript R C C
10 Ruby/Assembly Swift/Matlab Objective-C XML

Table A.5: Programming languages ranked by popularity in 2016.

Table A.7 summarizes the total number of languages occurrences during 2012-2017:
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TIOBE PYPL RedMonk TrendySkills

1 Java Java JavaScript Java
2 C Python Java JavaScript
3 C# PHP PHP C#
4 C++ C# Python PHP
5 PHP JavaScript C# HTML
6 Visual Basic C++ C++ C++
7 Python C Ruby C
8 Perl Objective-C CSS HTML5
9 JavaScript R C Python
10 Assembly Swift Objective-C XML

Table A.6: Programming languages ranked by popularity in 2017.

Language Total occurrences

C 24
C++ 24
C# 24
Java 24

JavaScript 24
PHP 24
Python 24

Objective-C 16
Visual Basic 9

Ruby 9
Perl 8

HTML 6
XML 6
CSS 5

Matlab 5
HTML5 4

R 3
Swift 3

Assembly 2
Shell 2
Delphi 1

Object Pascal 1
PL 1
SQL 1

Transact-SQL 1

Table A.7: Programming languages ordered by total number of occurrences in
TIOBE; PYPL; RedMonk; and TrendySkills popularity indexes during 2012-
2017.
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Term occurrence p Z N eta squared r size
S/D types
Inheritance 0.000 -13.248 3283 0.053 -0.231 M
Exceptions 0.000 -12.192 5254 0.028 -0.168 M
Threads 0.000 -24.147 3450 0.169 -0.411 LL
Anonymous func. 0.000 -17.812 5042 0.063 -0.251 L
Generics 0.000 -18.788 2090 0.169 -0.411 LL
S/D type no Obj-C
Inheritance 0.000 -13.377 2975 0.060 -0.245 L
Exceptions 0.000 -8.626 4946 0.015 -0.123 M
Threads 0.000 -23.67 3142 0.178 -0.422 LL
Anonymous func. 0.000 -17.724 4734 0.066 -0.258 L
Generics Mann-Whitney Test cannot be performed on empty groups 1782

S/W type
Inheritance 0.000 -10.234 3283 0.032 -0.179 M
Exceptions 0.000 -3.291 5254 0.002 -0.045 S
Threads 0.000 -6.003 3450 0.010 -0.102 M
Anonymous func. 0.000 -27.352 5042 0.148 -0.385 LL
Generics 0.000 -19.237 2090 0.177 -0.421 LL
S/W type_NoPHP
Inheritance 0.000 -16.387 2993 0.090 -0.300 L
Exceptions 0.000 -3.831 4964 0.003 -0.054 S
Threads 0.000 -3.883 3160 0.005 -0.069 S
Anonymous func. 0.000 -30.139 4752 0.191 -0.437 LL
Generics 0.000 -19.237 2090 0.177 -0.421 LL
S/W type_NoTS
Inheritance 0.000 -10.291 3186 0.033 -0.182 M
Exceptions 0.000 -3.449 5157 0.002 -0.048 S
Threads 0.000 -6.003 3450 0.010 -0.102 M
Anonymous func. 0.000 -28.912 4945 0.169 -0.411 LL
Generics 0.000 -19.447 1993 0.190 -0.436 LL
S/W type_NoPHPNoTS
Inheritance 0.000 -16.424 2896 0.093 -0.305 L
Exceptions 0.000 -3.975 4867 0.003 -0.057 S
Threads 0.000 -3.883 3160 0.005 -0.069 S
Anonymous func. 0.000 -31.6 4655 0.215 -0.463 LL
Generics 0.000 -19.447 1993 0.190 -0.436 LL
mgd/unmgd memory
Inheritance 0.467 -0.727 3283 0.000 -0.013 S
Exceptions 0 -17.554 5254 0.059 -0.242 M
Threads 0.113 -1.586 3450 0.001 -0.027 S
Anonymous func. 0 -3.885 5042 0.003 -0.055 S
Generics 0 -15.655 2090 0.117 -0.342 L
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Inheritance Exceptions Threads Anonymous func. Generics

Static Mean 336 504 20 693 1558
STD 1031 3126 68 3032 6355
Min 0 0 0 0 0
Max 12693 70626 1188 50022 133766
Median 39 30 2 4 73
Mode 2 0 0 0 0

Dynamic II Mean 98 113 1 1169 0
STD 335 511 6 6002 #DIV/0!
Min 0 0 0 0 0
Max 4551 20520 124 164607 0
Median 14 16 0 55 #NUM!
Mode 0 0 0 0 #N/A

Strong I Mean 169 207 12 512 615
STD 632 797 50 2594 2582
Min 0 0 0 0 0
Max 10733 18879 953 50022 33763
Median 20 15 1 5 23
Mode 0 0 0 0 0

Weak II Mean 656 412 17 1634 4131
STD 1497 3305 76 7049 11609
Min 0 0 0 0 0
Max 12693 70626 1188 164607 133766
Median 197 20 2 204 889
Mode 0 0 0 0 0

Managed Mean 237 294 12 984 1570
STD 826 2176 49 5000 6451
Min 0 0 0 0 0
Max 12693 70626 953 164607 133766
Median 25 20 0 31 72
Mode 0 0 0 0 0

Unmanaged Mean 126 47 14 106 349
STD 548 223 73 276 2294
Min 0 0 0 0 0
Max 9361 2163 1188 3173 40948
Median 20 0 0 19 2
Mode 6 0 0 0 0



118 Appendix B Extended statistics for the 2d study

Size p Z N eta squared r size
n^2=z^2/(n-1) r = Z/â��N n r

S/D type no Obj-C
commits 0.000 -7.062 5001 -0.100 T
All_contributors 0.000 -15.095 5001 -0.213 S
Total/Code 0.000 -7.908 5001 -0.112 S
commits per contributor 0.000 -13.192 5001 -0.187 S
MONTHS 0.000 -13.061 5001 -0.185 S
Months(release) 0.000 -9.896 5001 -0.140 S
Tiny
commits 0.000 -4.985 778 -0.179 S
All_contributors 0.000 -6.333 778 -0.227 S
Total/Code 0.000 -4.216 778 -0.151 S
commits per contributor 0.000 -3.956 778 -0.142 S
MONTHS 0.000 -4.108 778 -0.147 S
Months(release) 0.000 -4.744 778 -0.170 S
Small
commits 0.000 -15.188 1687 -0.370 M
All_contributors 0.000 -16.942 1687 -0.412 M
Total/Code 0.700 -0.386 1687 -0.009 T
commits per contributor 0.000 -6.243 1687 -0.152 S
MONTHS 0.000 -12.393 1687 -0.302 M
Months(release) 0.000 -9.647 1687 -0.235 S
Medium
commits 0 -7.861 1276 -0.220 S
All_contributors 0 -11.41 1276 -0.319 M
Total/Code 0.879 -0.152 1276 -0.004 T
commits per contributor 0 -6.882 1276 -0.193 S
MONTHS 0 -7.787 1276 -0.218 S
Months(release) 0 -5.494 1276 -0.154 S
Large
commits 0.024 -2.262 548 -0.097 T
All_contributors 0 -4.758 548 -0.203 S
Total/Code 0.022 -2.296 548 -0.098 T
commits per contributor 0 -3.692 548 -0.158 S
MONTHS 0.006 -2.774 548 -0.118 S
Months(release) 0 -3.575 548 -0.153 S
V.Large
commits 0.747 -0.323 712 -0.012 T
All_contributors 0.047 -1.986 712 -0.074 T
Total/Code 0 -5.22 712 -0.196 S
commits per contributor 0.001 -3.468 712 -0.130 S
MONTHS 0.01 -2.583 712 -0.097 T
Months(release) 0.647 -0.458 712 -0.017 T
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S/W type_NoPHP
commits 0.000 -9.068 5072 -0.127 S
All_contributors 0.000 -12.099 5072 -0.170 S
Total/Code 0.000 -5.234 5072 -0.073 T
commits per contributor 0.000 -3.81 5072 -0.053 T
MONTHS 0.000 -7.525 5072 -0.106 S
Months(release) 0.000 -5.521 5072 -0.078 T
Tiny
commits 0 -4.378 777 -0.157 S
All_contributors 0 -5.261 777 -0.189 S
Total/Code 0 -4.021 777 -0.144 S
commits per contributor 0.008 -2.643 777 -0.095 T
MONTHS 0.019 -2.344 777 -0.084 T
Months(release) 0.014 -2.455 777 -0.088 T
Small
commits 0 -9.463 1741 -0.227 S
All_contributors 0 -10.608 1741 -0.254 S
Total/Code 0.284 -1.072 1741 -0.026 T
commits per contributor 0.001 -3.22 1741 -0.077 T
MONTHS 0 -5.508 1741 -0.132 S
Months(release) 0 -4.503 1741 -0.108 S
Medium
commits 0.592 -0.536 1295 -0.015 T
All_contributors 0 -4.476 1295 -0.124 S
Total/Code 0.107 -1.614 1295 -0.045 T
commits per contributor 0 -5.796 1295 -0.161 S
MONTHS 0 -3.542 1295 -0.098 T
Months(release) 0.014 -2.461 1295 -0.068 T
Large
commits 0.161 -1.402 551 -0.060 T
All_contributors 0.303 -1.031 551 -0.044 T
Total/Code 0.339 -0.957 551 -0.041 T
commits per contributor 0.008 -2.658 551 -0.113 S
MONTHS 0.926 -0.092 551 -0.004 T
Months(release) 0.194 -1.298 551 -0.055 T
V.Large
commits 0.838 -0.205 708 -0.008 T
All_contributors 0.909 -0.115 708 -0.004 T
Total/Code 0.118 -1.563 708 -0.059 T
commits per contributor 0.328 -0.977 708 -0.037 T
MONTHS 0.145 -1.456 708 -0.055 T
Months(release) 0.827 -0.219 708 -0.008 T
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mgd/unmgd memory
commits 0.000 -16.649 5350 -0.228 S
All_contributors 0.000 -22.567 5350 -0.309 M
Total/Code 0.681 -0.412 5350 -0.006 T
commits per contributor 0.000 -8.556 5350 -0.117 S
MONTHS 0.000 -11.154 5350 -0.152 S
Months(release) 0.000 -12.63 5350 -0.173 S
Tiny
commits 0.000 -10.627 841 -0.366 M
All_contributors 0.000 -10.764 841 -0.371 M
Total/Code 0.000 -7.938 841 -0.274 S
commits per contributor 0.366 -0.905 841 -0.031 T
MONTHS 0.000 -5.058 841 -0.174 S
Months(release) 0.000 -6.649 841 -0.229 S
Small
commits 0.000 -18.908 1847 -0.440 M
All_contributors 0.000 -19.093 1847 -0.444 M
Total/Code 0.036 -2.101 1847 -0.049 T
commits per contributor 0.000 -4.277 1847 -0.100 T
MONTHS 0.000 -10.531 1847 -0.245 S
Months(release) 0.000 -11.914 1847 -0.277 S
Medium
commits 0.000 -10.445 1359 -0.283 S
All_contributors 0.000 -14.052 1359 -0.381 M
Total/Code 0.071 -1.806 1359 -0.049 T
commits per contributor 0.000 -7.032 1359 -0.191 S
MONTHS 0.000 -6.654 1359 -0.180 S
Months(release) 0.000 -7.306 1359 -0.198 S
Large
commits 0.000 -4.349 576 -0.181 S
All_contributors 0.000 -6.491 576 -0.270 S
Total/Code 0.910 -0.113 576 -0.005 T
commits per contributor 0.001 -3.407 576 -0.142 S
MONTHS 0.171 -1.369 576 -0.057 T
Months(release) 0.001 -3.285 576 -0.137 S
V.Large
commits 0.006 -2.74 727 -0.102 S
All_contributors 0.885 -0.145 727 -0.005 T
Total/Code 0.796 -0.258 727 -0.010 T
commits per contributor 0.000 -4.825 727 -0.179 S
MONTHS 0.015 -2.444 727 -0.091 T
Months(release) 0.016 -2.411 727 -0.089 T
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Type p Z N eta squared r size
r

Type_1
commits 0.414 -0.817 898 -0.027 T
All_contributors 0.095 -1.672 898 -0.056 T
Total/Code 0.000 -5.399 898 -0.180 S
commits per contributor 0.000 -4.432 898 -0.148 S
MONTHS 0.003 -3.01357537 898 -0.101 S
Months(release) 0.002 -3.043 898 -0.102 S
Type_2
commits 0.000 -6.693 627 -0.267 S
All_contributors 0.000 -8.652 627 -0.346 M
Total/Code 0.195 -1.295 627 -0.052 T
commits per contributor 0.016 -2.402 627 -0.096 T
MONTHS 0.000 -6.65500777 627 -0.266 S
Months(release) 0.000 -5.269 627 -0.210 S
Type_3
commits 0.853 -0.185 888 -0.006 T
All_contributors 0.001 -3.247 888 -0.109 S
Total/Code 0.000 -7.470 888 -0.251 S
commits per contributor 0.000 -5.521 888 -0.185 S
MONTHS 0.000 -5.52235578 888 -0.185 S
Months(release) 0.000 -4.342 888 -0.146 S
Type_4
commits 0.568 -0.571 544 -0.024 T
All_contributors 0.001 -3.419 544 -0.147 S
Total/Code 0.000 -4.711 544 -0.202 S
commits per contributor 0.000 -7.201 544 -0.309 M
MONTHS 0.002 -3.07300835 544 -0.132 S
Months(release) 0.012 -2.517 544 -0.108 S
Type_5
commits 0.001 -3.420 495 -0.154 S
All_contributors 0.030 -2.166 495 -0.097 T
Total/Code 0.000 -4.991 495 -0.224 S
commits per contributor 0.001 -3.381 495 -0.152 S
MONTHS 0.055 -1.9174002 495 -0.086 T
Months(release) 0.976 -0.030 495 -0.001 T
S/W type_NoPHP
commits 0.196 -1.292 804 -0.046 T
All_contributors 0.167 -1.381 804 -0.049 T
Total/Code 0.992 -0.010 804 0.000 T
commits per contributor 0.758 -0.309 804 -0.011 T
MONTHS 0.261 -1.125 804 -0.040 T
Months(release) 0.185 -1.325 804 -0.047 T
Type_2
commits 0.000 -6.329 734 -0.234 S
All_contributors 0.000 -7.852 734 -0.290 S
Total/Code 0.001 -3.218 734 -0.119 S
commits per contributor 0.174 -1.361 734 -0.050 T
MONTHS 0.000 -5.028 734 -0.186 S
Months(release) 0.000 -5.027 734 -0.186 S
Type_3
commits 0.225 -1.213 843 -0.042 T
All_contributors 0.511 -0.657 843 -0.023 T
Total/Code 0.256 -1.137 843 -0.039 T
commits per contributor 0.262 -1.122 843 -0.039 T
MONTHS 0.311 -1.013 843 -0.035 T
Months(release) 0.612 -0.508 843 -0.017 T
Type_4
commits 0.006 -2.746 546 -0.118 S
All_contributors 0.000 -4.092 546 -0.175 S
Total/Code 0.042 -2.031 546 -0.087 T
commits per contributor 0.113 -1.584 546 -0.068 T
MONTHS 0.011 -2.558 546 -0.109 S
Months(release) 0.016 -2.414 546 -0.103 S
Type_5
commits 0.009 -2.597 492 -0.117 S
All_contributors 0.004 -2.901 492 -0.131 S
Total/Code 0.104 -1.627 492 -0.073 T
commits per contributor 0.537 -0.617 492 -0.028 T
MONTHS 0.012 -2.518 492 -0.114 S
Months(release) 0.954 -0.058 492 -0.003 T
mgd/unmgd memory
Type_1
commits_count 0.899 -0.127 915 -0.004 T
contributors_count_with_anonymous 0.001 -3.399 915 -0.112 S
Total/Code 0.000 -4.900 915 -0.162 S
commits per contributor 0.000 -5.620 915 -0.186 S
MONTHS 0.318 -0.998 915 -0.033 T
Months(release) 0.569 -0.570 915 -0.019 T

commits_count 0.000 -8.560 737 -0.315 M
contributors_count_with_anonymous 0.000 -9.572 737 -0.353 M
Total/Code 0.594 -0.534 737 -0.020 T
commits per contributor 0.418 -0.809 737 -0.030 T
MONTHS 0.000 -3.943 737 -0.145 S
Months(release) 0.000 -7.260 737 -0.267 S

commits_count 0.196 -1.292 904 -0.043 T
contributors_count_with_anonymous 0.000 -4.320 904 -0.144 S
Total/Code 0.000 -4.359 904 -0.145 S
commits per contributor 0.000 -4.746 904 -0.158 S
MONTHS 0.397 -0.846 904 -0.028 T
Months(release) 0.164 -1.390 904 -0.046 T

commits_count 0.060 -1.879 583 -0.078 T
contributors_count_with_anonymous 0.000 -4.636 583 -0.192 S
Total/Code 0.020 -2.318 583 -0.096 T
commits per contributor 0.000 -4.618 583 -0.191 S
MONTHS 0.113 -1.584 583 -0.066 T
Months(release) 0.009 -2.609 583 -0.108 S

commits_count 0.008 -2.638 503 -0.118 S
contributors_count_with_anonymous 0.388 -0.863 503 -0.038 T
Total/Code 0.000 -5.774 503 -0.257 S
commits per contributor 0.000 -3.637 503 -0.162 S
MONTHS 0.007 -2.708 503 -0.121 S
Months(release) 0.174 -1.358 503 -0.061 T
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Ranks
S_0/D_1 N Mean Rank Sum of Ranks

commits 0 2237 2340.73 5236210
1 2764 2630.71 7271292
Total 5001

All_contributors 0 2237 2158.5 4828561
1 2764 2778.2 7678941
Total 5001

Total/Code 0 2237 2680.47 5996220
1 2764 2355.75 6511282
Total 5001

size 0 2237 2829.76 6330175
1 2764 2234.92 6177326
Total 5001

commits per contributor 0 2237 2800.37 6264436
1 2764 2258.71 6243066
Total 5001

Months(release) 0 1482 1527.9 2264345
1 1958 1866.28 3654175
Total 3440

SW Test Statisticsa
commits All_contributors Total/Code commits per contributor Months(release)

Mann-Whitney U 2552117 2399369 2745518 2817384 1259316
Wilcoxon W 7603548 7450800 7796949 4611949 3392461
Z -9.068 -12.099 -5.234 -3.81 -5.521
Asymp. Sig. (2-tailed) 0 0 0 0 0
a Grouping Variable: S_0/W_1

Ranks
SW N Mean Rank Sum of Ranks

commits 0 3178 2392.56 7603548
1 1894 2778.03 5261581
Total 5072

All_contributors 0 3178 2344.49 7450800
1 1894 2858.67 5414328
Total 5072

Total/Code 0 3178 2453.41 7796949
1 1894 2675.91 5068179
Total 5072

size 0 3178 2625.39 8343494
1 1894 2387.35 4521634
Total 5072

commits per contributor 0 3178 2596.97 8253180
1 1894 2435.03 4611949
Total 5072

Months(release) 0 2065 1642.84 3392461
1 1372 1833.63 2515742
Total 3437
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Feature p Chi-Square df E�ect Size
Inheritance 0.00 202.31 2.00 0.25 M
Interfaces 0.00 3459.66 2.00 0.84 L
Exceptions 0.00 387.20 2.00 0.27 M
Threads 0.00 549.34 2.00 0.40 L
Anonymous Fncs 0.00 728.62 2.00 0.38 L
Generics 0.00 391.48 1.00 0.43 M

Table B.1: Hypothesis test statistics per language group (Binary mining) for
static and dynamic languages.

Feature p Chi-Square df E�ect Size
Inheritance 0.00 11.89 2.00 0.06 <S
Interfaces 0.00 1690.05 2.00 0.59 L
Exceptions 0.00 17.18 2.00 0.06 <S
Threads 0.00 280.80 2.00 0.29 M
Anonymous Fncs 0.00 611.49 2.00 0.35 M
Generics 0.00 55.13 1.00 0.16 S

Table B.2: Hypothesis test statistics per language group (Binary mining) for
strong and weak languages.

Feature p Chi2 df E�ect Size
Inheritance 0.00 11.42 1.00 0.06 <S
Interfaces 0.00 106.85 2.00 0.14 S
Exceptions 0.00 381.61 1.00 .270 S S
Threads 0.02 5.56 1.00 0.04 <S
Anonymous Fncs 0.02 5.14 1.00 0.03 <S
Generics 0.00 300.99 1.00 .379 M M

Table B.3: Hypothesis test statistics per language group (Binary mining) for
managed and unmanaged memory languages.
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Extended statistics for the 3rd study

Mann-Whitney U-test per group:

S/D Test Statisticsa
commits All_contributors Total/Code commits per contributor Months(release)

Mann-Whitney U 2733007 2325358 2690052 2421836 1165442
Wilcoxon W 5236210 4828561 6511282 6243066 2264345
Z -7.062 -15.095 -7.908 -13.192 -9.896
Asymp. Sig. (2-tailed) 0.000 0.000 0.000 0.000 0.000

Per project size:

Ranks
S_0/D_1 N Mean Rank Sum of Ranks

commits 0 2237 2340.73 5236210
1 2764 2630.71 7271292
Total 5001

All_contributors 0 2237 2158.5 4828561
1 2764 2778.2 7678941
Total 5001

Total/Code 0 2237 2680.47 5996220
1 2764 2355.75 6511282
Total 5001

size 0 2237 2829.76 6330175
1 2764 2234.92 6177326
Total 5001

commits per contributor 0 2237 2800.37 6264436
1 2764 2258.71 6243066
Total 5001

Months(release) 0 1482 1527.9 2264345
1 1958 1866.28 3654175
Total 3440
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SW Test Statisticsa
commits All_contributors Total/Code commits per contributor Months(release)

Mann-Whitney U 2552117 2399369 2745518 2817384 1259316
Wilcoxon W 7603548 7450800 7796949 4611949 3392461
Z -9.068 -12.099 -5.234 -3.81 -5.521
Asymp. Sig. (2-tailed) 0 0 0 0 0
a Grouping Variable: S_0/W_1

Ranks
SW N Mean Rank Sum of Ranks

commits 0 3178 2392.56 7603548
1 1894 2778.03 5261581
Total 5072

All_contributors 0 3178 2344.49 7450800
1 1894 2858.67 5414328
Total 5072

Total/Code 0 3178 2453.41 7796949
1 1894 2675.91 5068179
Total 5072

size 0 3178 2625.39 8343494
1 1894 2387.35 4521634
Total 5072

commits per contributor 0 3178 2596.97 8253180
1 1894 2435.03 4611949
Total 5072

Months(release) 0 2065 1642.84 3392461
1 1372 1833.63 2515742
Total 3437

Memory Test Statisticsa
commits All_contributors Total/Code commits per contributor Months(release)

Mann-Whitney U 2149792 1843288 2991497 2569346 959086
Wilcoxon W 3449870 3143366 9979688 9557537 1432937
Z -16.649 -22.567 -0.412 -8.556 -12.63
Asymp. Sig. (2-tailed) 0 0 0.681 0 0
a Grouping Variable: Mgd_0/Un_1
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Ranks
Memory N Mean Rank Sum of Ranks

commits 0 3738 2906.38
1 1612 2140.12 3449870
Total 5350

All_contributors 0 3738 2988.38 11170559
1 1612 1949.98 3143366
Total 5350

Total/Code 0 3738 2669.79 9979687.5
1 1612 2688.73 4334237.5
Total 5350

size 0 3738 2531.44 9462537
1 1612 3009.55 4851388
Total 5350

commits per contributor 0 3738 2556.86 9557537
1 1612 2950.61 4756388
Total 5350

Months(release) 0 2710 1974.59 5351149.5
1 973 1472.7 1432936.5
Total 3683
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Size p Z N eta squared r size
n^2=z^2/(n-1) r = Z/â��N n r

S/D type no Obj-C
commits 0.000 -7.062 5001 -0.100 T
All_contributors 0.000 -15.095 5001 -0.213 S
Total/Code 0.000 -7.908 5001 -0.112 S
commits per contributor 0.000 -13.192 5001 -0.187 S
MONTHS 0.000 -13.061 5001 -0.185 S
Months(release) 0.000 -9.896 5001 -0.140 S
Tiny
commits 0.000 -4.985 778 -0.179 S
All_contributors 0.000 -6.333 778 -0.227 S
Total/Code 0.000 -4.216 778 -0.151 S
commits per contributor 0.000 -3.956 778 -0.142 S
MONTHS 0.000 -4.108 778 -0.147 S
Months(release) 0.000 -4.744 778 -0.170 S
Small
commits 0.000 -15.188 1687 -0.370 M
All_contributors 0.000 -16.942 1687 -0.412 M
Total/Code 0.700 -0.386 1687 -0.009 T
commits per contributor 0.000 -6.243 1687 -0.152 S
MONTHS 0.000 -12.393 1687 -0.302 M
Months(release) 0.000 -9.647 1687 -0.235 S
Medium
commits 0 -7.861 1276 -0.220 S
All_contributors 0 -11.41 1276 -0.319 M
Total/Code 0.879 -0.152 1276 -0.004 T
commits per contributor 0 -6.882 1276 -0.193 S
MONTHS 0 -7.787 1276 -0.218 S
Months(release) 0 -5.494 1276 -0.154 S
Large
commits 0.024 -2.262 548 -0.097 T
All_contributors 0 -4.758 548 -0.203 S
Total/Code 0.022 -2.296 548 -0.098 T
commits per contributor 0 -3.692 548 -0.158 S
MONTHS 0.006 -2.774 548 -0.118 S
Months(release) 0 -3.575 548 -0.153 S
V.Large
commits 0.747 -0.323 712 -0.012 T
All_contributors 0.047 -1.986 712 -0.074 T
Total/Code 0 -5.22 712 -0.196 S
commits per contributor 0.001 -3.468 712 -0.130 S
MONTHS 0.01 -2.583 712 -0.097 T
Months(release) 0.647 -0.458 712 -0.017 T
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S/W type_NoPHP
commits 0.000 -9.068 5072 -0.127 S
All_contributors 0.000 -12.099 5072 -0.170 S
Total/Code 0.000 -5.234 5072 -0.073 T
commits per contributor 0.000 -3.81 5072 -0.053 T
MONTHS 0.000 -7.525 5072 -0.106 S
Months(release) 0.000 -5.521 5072 -0.078 T
Tiny
commits 0 -4.378 777 -0.157 S
All_contributors 0 -5.261 777 -0.189 S
Total/Code 0 -4.021 777 -0.144 S
commits per contributor 0.008 -2.643 777 -0.095 T
MONTHS 0.019 -2.344 777 -0.084 T
Months(release) 0.014 -2.455 777 -0.088 T
Small
commits 0 -9.463 1741 -0.227 S
All_contributors 0 -10.608 1741 -0.254 S
Total/Code 0.284 -1.072 1741 -0.026 T
commits per contributor 0.001 -3.22 1741 -0.077 T
MONTHS 0 -5.508 1741 -0.132 S
Months(release) 0 -4.503 1741 -0.108 S
Medium
commits 0.592 -0.536 1295 -0.015 T
All_contributors 0 -4.476 1295 -0.124 S
Total/Code 0.107 -1.614 1295 -0.045 T
commits per contributor 0 -5.796 1295 -0.161 S
MONTHS 0 -3.542 1295 -0.098 T
Months(release) 0.014 -2.461 1295 -0.068 T
Large
commits 0.161 -1.402 551 -0.060 T
All_contributors 0.303 -1.031 551 -0.044 T
Total/Code 0.339 -0.957 551 -0.041 T
commits per contributor 0.008 -2.658 551 -0.113 S
MONTHS 0.926 -0.092 551 -0.004 T
Months(release) 0.194 -1.298 551 -0.055 T
V.Large
commits 0.838 -0.205 708 -0.008 T
All_contributors 0.909 -0.115 708 -0.004 T
Total/Code 0.118 -1.563 708 -0.059 T
commits per contributor 0.328 -0.977 708 -0.037 T
MONTHS 0.145 -1.456 708 -0.055 T
Months(release) 0.827 -0.219 708 -0.008 T
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mgd/unmgd memory
commits 0.000 -16.649 5350 -0.228 S
All_contributors 0.000 -22.567 5350 -0.309 M
Total/Code 0.681 -0.412 5350 -0.006 T
commits per contributor 0.000 -8.556 5350 -0.117 S
MONTHS 0.000 -11.154 5350 -0.152 S
Months(release) 0.000 -12.63 5350 -0.173 S
Tiny
commits 0.000 -10.627 841 -0.366 M
All_contributors 0.000 -10.764 841 -0.371 M
Total/Code 0.000 -7.938 841 -0.274 S
commits per contributor 0.366 -0.905 841 -0.031 T
MONTHS 0.000 -5.058 841 -0.174 S
Months(release) 0.000 -6.649 841 -0.229 S
Small
commits 0.000 -18.908 1847 -0.440 M
All_contributors 0.000 -19.093 1847 -0.444 M
Total/Code 0.036 -2.101 1847 -0.049 T
commits per contributor 0.000 -4.277 1847 -0.100 T
MONTHS 0.000 -10.531 1847 -0.245 S
Months(release) 0.000 -11.914 1847 -0.277 S
Medium
commits 0.000 -10.445 1359 -0.283 S
All_contributors 0.000 -14.052 1359 -0.381 M
Total/Code 0.071 -1.806 1359 -0.049 T
commits per contributor 0.000 -7.032 1359 -0.191 S
MONTHS 0.000 -6.654 1359 -0.180 S
Months(release) 0.000 -7.306 1359 -0.198 S
Large
commits 0.000 -4.349 576 -0.181 S
All_contributors 0.000 -6.491 576 -0.270 S
Total/Code 0.910 -0.113 576 -0.005 T
commits per contributor 0.001 -3.407 576 -0.142 S
MONTHS 0.171 -1.369 576 -0.057 T
Months(release) 0.001 -3.285 576 -0.137 S
V.Large
commits 0.006 -2.74 727 -0.102 S
All_contributors 0.885 -0.145 727 -0.005 T
Total/Code 0.796 -0.258 727 -0.010 T
commits per contributor 0.000 -4.825 727 -0.179 S
MONTHS 0.015 -2.444 727 -0.091 T
Months(release) 0.016 -2.411 727 -0.089 T
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Type p Z N eta squared r size
r

Type_1
commits 0.414 -0.817 898 -0.027 T
All_contributors 0.095 -1.672 898 -0.056 T
Total/Code 0.000 -5.399 898 -0.180 S
commits per contributor 0.000 -4.432 898 -0.148 S
MONTHS 0.003 -3.01357537 898 -0.101 S
Months(release) 0.002 -3.043 898 -0.102 S
Type_2
commits 0.000 -6.693 627 -0.267 S
All_contributors 0.000 -8.652 627 -0.346 M
Total/Code 0.195 -1.295 627 -0.052 T
commits per contributor 0.016 -2.402 627 -0.096 T
MONTHS 0.000 -6.65500777 627 -0.266 S
Months(release) 0.000 -5.269 627 -0.210 S
Type_3
commits 0.853 -0.185 888 -0.006 T
All_contributors 0.001 -3.247 888 -0.109 S
Total/Code 0.000 -7.470 888 -0.251 S
commits per contributor 0.000 -5.521 888 -0.185 S
MONTHS 0.000 -5.52235578 888 -0.185 S
Months(release) 0.000 -4.342 888 -0.146 S
Type_4
commits 0.568 -0.571 544 -0.024 T
All_contributors 0.001 -3.419 544 -0.147 S
Total/Code 0.000 -4.711 544 -0.202 S
commits per contributor 0.000 -7.201 544 -0.309 M
MONTHS 0.002 -3.07300835 544 -0.132 S
Months(release) 0.012 -2.517 544 -0.108 S
Type_5
commits 0.001 -3.420 495 -0.154 S
All_contributors 0.030 -2.166 495 -0.097 T
Total/Code 0.000 -4.991 495 -0.224 S
commits per contributor 0.001 -3.381 495 -0.152 S
MONTHS 0.055 -1.9174002 495 -0.086 T
Months(release) 0.976 -0.030 495 -0.001 T
S/W type_NoPHP
commits 0.196 -1.292 804 -0.046 T
All_contributors 0.167 -1.381 804 -0.049 T
Total/Code 0.992 -0.010 804 0.000 T
commits per contributor 0.758 -0.309 804 -0.011 T
MONTHS 0.261 -1.125 804 -0.040 T
Months(release) 0.185 -1.325 804 -0.047 T
Type_2
commits 0.000 -6.329 734 -0.234 S
All_contributors 0.000 -7.852 734 -0.290 S
Total/Code 0.001 -3.218 734 -0.119 S
commits per contributor 0.174 -1.361 734 -0.050 T
MONTHS 0.000 -5.028 734 -0.186 S
Months(release) 0.000 -5.027 734 -0.186 S
Type_3
commits 0.225 -1.213 843 -0.042 T
All_contributors 0.511 -0.657 843 -0.023 T
Total/Code 0.256 -1.137 843 -0.039 T
commits per contributor 0.262 -1.122 843 -0.039 T
MONTHS 0.311 -1.013 843 -0.035 T
Months(release) 0.612 -0.508 843 -0.017 T
Type_4
commits 0.006 -2.746 546 -0.118 S
All_contributors 0.000 -4.092 546 -0.175 S
Total/Code 0.042 -2.031 546 -0.087 T
commits per contributor 0.113 -1.584 546 -0.068 T
MONTHS 0.011 -2.558 546 -0.109 S
Months(release) 0.016 -2.414 546 -0.103 S
Type_5
commits 0.009 -2.597 492 -0.117 S
All_contributors 0.004 -2.901 492 -0.131 S
Total/Code 0.104 -1.627 492 -0.073 T
commits per contributor 0.537 -0.617 492 -0.028 T
MONTHS 0.012 -2.518 492 -0.114 S
Months(release) 0.954 -0.058 492 -0.003 T
mgd/unmgd memory
Type_1
commits_count 0.899 -0.127 915 -0.004 T
contributors_count_with_anonymous 0.001 -3.399 915 -0.112 S
Total/Code 0.000 -4.900 915 -0.162 S
commits per contributor 0.000 -5.620 915 -0.186 S
MONTHS 0.318 -0.998 915 -0.033 T
Months(release) 0.569 -0.570 915 -0.019 T

commits_count 0.000 -8.560 737 -0.315 M
contributors_count_with_anonymous 0.000 -9.572 737 -0.353 M
Total/Code 0.594 -0.534 737 -0.020 T
commits per contributor 0.418 -0.809 737 -0.030 T
MONTHS 0.000 -3.943 737 -0.145 S
Months(release) 0.000 -7.260 737 -0.267 S

commits_count 0.196 -1.292 904 -0.043 T
contributors_count_with_anonymous 0.000 -4.320 904 -0.144 S
Total/Code 0.000 -4.359 904 -0.145 S
commits per contributor 0.000 -4.746 904 -0.158 S
MONTHS 0.397 -0.846 904 -0.028 T
Months(release) 0.164 -1.390 904 -0.046 T

commits_count 0.060 -1.879 583 -0.078 T
contributors_count_with_anonymous 0.000 -4.636 583 -0.192 S
Total/Code 0.020 -2.318 583 -0.096 T
commits per contributor 0.000 -4.618 583 -0.191 S
MONTHS 0.113 -1.584 583 -0.066 T
Months(release) 0.009 -2.609 583 -0.108 S

commits_count 0.008 -2.638 503 -0.118 S
contributors_count_with_anonymous 0.388 -0.863 503 -0.038 T
Total/Code 0.000 -5.774 503 -0.257 S
commits per contributor 0.000 -3.637 503 -0.162 S
MONTHS 0.007 -2.708 503 -0.121 S
Months(release) 0.174 -1.358 503 -0.061 T
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