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UNIVERSITY OF SOUTHAMPTON

ABSTRACT

FACULTY OF ENGINEERING, SCIENCE AND MATHEMATICS

SCHOOL OF ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy

Modelling the signal propagation through structural connections in the

brain: A circuit theory approach

by Sarbani Das

The neural function of the brain is characterized by activated brain regions and the

connectivities among them. It is still unknown, how a static structural connectivity net-

work affects the occurrence of task-dependent dynamic functional connectivity or why

two structurally connected brain regions, are not functionally connected and vice-versa.

Studies have shown, the underlying cause for many neurodegenerative diseases is the

functional disruptions in neural connections. So understanding the relationship between

structural and functional connectivity is important for understanding the impairment

characteristics in the brain networks which is in essence depends upon the nature of

signal flow through the structural connections in the brain. The purpose of this work

is to characterize the signal propagation characteristics through structural connectivity

and its influence on functional connectivity of the brain by applying a circuit theory-

based modelling approach. Modelling structural connections using circuit theory will

allow the analysis of signal propagation in both time and frequency domains. So far

the studies on the correlation between structural and functional connectivity were done

from the time domain perspective of signal propagation. However, the very definition of

functional connectivity indicates that the underlying structural connectivity networks

has filter like properties and holds the frequency-phase characteristics. In this work,

we explore this phenomenon following a step-by-step approach: (1) we develop an au-

tomated tool for extracting structural connectivity network from structural MRI image

by considering a more general (compared to standard cortical mapping) non-anatomical

equal-area parcellation process of the Regions of Interest (ROI) of the brain and ex-

tracting the geometrical properties of the white matter tracts between the ROIs, (2)

developing circuit-based model for characterising signal propagation through a single

myelinated axon fibre and representing it as a simplified transfer function encompass-

ing its time and frequency properties, (3) extending this model for coupled axon fibres

and characterising the time and frequency properties of the signal propagation through

them under the influence of ephaphtic coupling between them and finally;(4) applying
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iv

the models developed in (2) and (3) for creating an automated tool that is capable to

characterising signal propagation through a bundle of axons - the typical scenario of a

white matter tract. Our work results in an end-to-end tool taking inputs as the struc-

tural and diffusional MRI data and outputting the phase and frequency characteristics

of the signal through the axon bundle with a defined geometrical property - the under-

lying phenomenon for deriving the relationship between structural and functional brain

connectivity.



v





Contents

Nomenclature xvii

Declaration of Authorship xix

Acknowledgements xxi

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Aims and objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Contribution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.4 Thesis organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background and Literature Review 5

2.1 Brain connectivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.1 Structural connectivity . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1.2 Functional connectivity . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.3 Effective connectivity . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.4 Graph theory measures to analyse brain connectivity . . . . . . . . 7

2.1.4.1 Measures of functional segregation . . . . . . . . . . . . . 7

2.1.4.2 Measures of functional integration . . . . . . . . . . . . . 8

2.1.4.3 Measures of centrality . . . . . . . . . . . . . . . . . . . . 8

2.1.4.4 Measures of network resilience . . . . . . . . . . . . . . . 9

2.1.5 Relationship between structural and functional connectivity: stud-
ies done so far . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Neuro-image processing of Structural MRI data for cortical surface par-
cellation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.1 Structural MRI(T1 and T2 weighted MRI) . . . . . . . . . . . . . 11

2.2.2 Cortical surface reconstruction and parcellation . . . . . . . . . . . 12

2.2.3 Brain parcellation . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.2.3.1 Cortical parcellation based on anatomical nomenclature . 14

2.2.3.2 Cortical parcellation based on non-anatomical Recursive
Zonal Equal Area Partitioning . . . . . . . . . . . . . . . 15

2.3 Neuroimaging processing of Diffusional MRI data for Structural Connec-
tome . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.3.1 Diffusion of water in white matter: the basis of Diffusional MRI . 16

2.3.1.1 Structure of white matter tracts . . . . . . . . . . . . . . 16

2.3.1.2 Fractional anisotrophy (FA) . . . . . . . . . . . . . . . . 17

2.3.2 Diffusional Weighted MRI . . . . . . . . . . . . . . . . . . . . . . . 17

vii



viii CONTENTS

2.3.3 Pre-processing Diffusional MRI data . . . . . . . . . . . . . . . . . 18

2.3.3.1 Denoising . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.3.3.2 Distortion correction . . . . . . . . . . . . . . . . . . . . . 19

2.3.4 Constrained Spherical Deconvolution (CSD) . . . . . . . . . . . . . 19

2.3.5 Anatomical Constrained Tractography (ACT) . . . . . . . . . . . . 20

2.3.6 Spherical-deconvolution Informed Filtering of Tractograms (SIFT) 20

2.3.7 Structural Connectome . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.8 White Matter tracts and its geometrical properties . . . . . . . . . 20

2.3.8.1 Apparent Fibre density (AFD) of white matter tracks . . 22

2.3.8.2 Fibre-bundle cross section (FC) and Fibre density and
cross-section (FDC) of white matter tracks . . . . . . . . 23

2.4 Neuronal dynamics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.4.1 Ion channels . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.4.2 Nernst potential or equilibrium potential . . . . . . . . . . . . . . 27

2.4.3 Resting potentials . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.4.4 Hodgkin-Huxley neuron model . . . . . . . . . . . . . . . . . . . . 28

2.4.5 Core conductor theory and cable equation . . . . . . . . . . . . . . 30

2.4.6 Axonal functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.5 Saltatory conduction in a myelinated axon . . . . . . . . . . . . . . . . . . 35

2.6 Ephaptic coupling between myelinated axons . . . . . . . . . . . . . . . . 35

2.6.1 Effect of coupling on excitation/inhibition of action potential in
neighbouring neurons . . . . . . . . . . . . . . . . . . . . . . . . . 35

2.6.2 Effect of coupling on the propagation of action potential in syn-
chronized neurons . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.7 Axon bundle physiology . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

2.8 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3 Automated Tool development for Parcellation and Extraction of Struc-
tural Connectome and its Geometry 41

3.1 Brain parcellation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

3.1.1 Performing cortical surface partitioning using EQSP: Recursive
Equal Zone Sphere Partitioning . . . . . . . . . . . . . . . . . . . . 42

3.1.2 Reconstructing the cortical surface using equal zone cortical sur-
face partitioning atlas . . . . . . . . . . . . . . . . . . . . . . . . . 44

3.1.3 Results and validation of the model . . . . . . . . . . . . . . . . . 45

3.1.3.1 Viewing volumes . . . . . . . . . . . . . . . . . . . . . . . 45

3.1.3.2 Viewing surfaces in 3D . . . . . . . . . . . . . . . . . . . 46

3.2 Structural connectome construction . . . . . . . . . . . . . . . . . . . . . . 50

3.2.1 Structural Image processing . . . . . . . . . . . . . . . . . . . . . . 50

3.2.2 Diffusional Image processing . . . . . . . . . . . . . . . . . . . . . 50

3.2.3 Structural Connectome construction . . . . . . . . . . . . . . . . . 51

3.2.4 Graph Theory analysis: . . . . . . . . . . . . . . . . . . . . . . . . 52

3.2.5 Results and validation of tool . . . . . . . . . . . . . . . . . . . . . 52

3.2.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.3 Geometrical properties estimation of axon bundles . . . . . . . . . . . . . 56



CONTENTS ix

3.3.1 Computing Fibre Density (FD) and Fibre Cross-section (FC) and
Fibre Density Cross-ection(FDC) of white matter tracts between
two ROIs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.3.2 Results and validation of tool . . . . . . . . . . . . . . . . . . . . . 58

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

3.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4 Circuit Model for analysing Signal Propagation Dynamics in Single
Myelinated Axon 63

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.2 Impulse initiation and saltatory conduction modelling in a myelinated
nerve fibre . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2.1 Circuit modelling of Nodes of Ranvier as Hodgkin Huxley cell . . . 65

4.2.2 Circuit modelling of myelin sheath as a passive cable model . . . . 68

4.2.3 Circuit arrangements of nodes and internodes . . . . . . . . . . . . 69

4.2.4 Circuit simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

4.2.5 Result and validation of the model with respect to published ex-
perimental data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.3 Frequency response analysis of single myelinated axon . . . . . . . . . . . 77

4.3.1 Modelling internode in simscape in MATLAB . . . . . . . . . . . . 78

4.3.2 Model simulation and impulse response generation . . . . . . . . . 80

4.3.3 Estimation of the transfer function . . . . . . . . . . . . . . . . . . 81

4.3.4 Stability analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.3.5 Frequency response analysis . . . . . . . . . . . . . . . . . . . . . . 85

4.3.6 Cut-off frequency determination . . . . . . . . . . . . . . . . . . . 85

4.3.7 Cut-off frequency Vs myelin diameter and length . . . . . . . . . . 86

4.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

5 Circuit Model for explaining Ephaphtic Coupling effect in Two Myeli-
nated Axons 91

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.2 Theory of ephaptic coupling in terms of circuit theory . . . . . . . . . . . 92

5.3 Circuit modelling of ephaptic coupling between two parallel myelinated
axons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93

5.3.1 Excitation of passive axon and range of inter-axon distance . . . . 96

5.3.2 Inhibition of spikes due to coupling . . . . . . . . . . . . . . . . . . 97

5.3.3 Reduction of conduction velocity: . . . . . . . . . . . . . . . . . . . 99

5.3.4 Synchronization of phases of two active axons . . . . . . . . . . . . 100

5.3.5 Effect of misalignment between two axons . . . . . . . . . . . . . . 101

5.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

6 Circuit Model for analysing Signal Propagation Dynamics in Myeli-
nated Axon Bundle 105

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6.2 Signal propagation modelling in myelinated axon bundle . . . . . . . . . . 106

6.2.1 Circuit design and simulation of axon bundle using PSpice . . . . 109



x CONTENTS

6.2.2 Conduction Velocity and Fibre Density . . . . . . . . . . . . . . . 111

6.2.3 Maximum Myelin Length and Fibre Density . . . . . . . . . . . . . 114

6.2.4 Limiting Frequency and Fibre Density . . . . . . . . . . . . . . . . 115

6.2.5 Stochastic firing of axons in bundle . . . . . . . . . . . . . . . . . . 117

6.3 Frequency response modelling in an axon bundle . . . . . . . . . . . . . . 123

6.3.1 Transfer Function modelling for Multi-Axon bundle . . . . . . . . 123

6.3.2 Gain and Phase analysis of NR . . . . . . . . . . . . . . . . . . . . 124

6.3.3 Model interconnection . . . . . . . . . . . . . . . . . . . . . . . . . 125

6.3.4 Gain and Phase analysis of interconnected model . . . . . . . . . . 125

6.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

7 Conclusions 131

7.1 Current work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

7.2 Future plan . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

A Appendix 135

Bibliography 171



List of Figures

1.1 A Flowchart representation of the thesis work . . . . . . . . . . . . . . . . 3

2.1 Structural, Functional and Effective Connectivity. [Source: SPM Course,
London 2017] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 T1 Weighted Image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.3 T2 Weighted Image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.4 Anatomical Parcellation on spherical surface . . . . . . . . . . . . . . . . . 14

2.5 Non-anatomical Equal Area Parcellation on spherical surface . . . . . . . 15

2.6 (a) Axon Beaulieu (2014) (b) White matter microstructure Ellingson et al.
(2015) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

2.7 Isotropic and Anisotropic diffusion . . . . . . . . . . . . . . . . . . . . . . 17

2.8 Diffusion of water molecules through white matter structure . . . . . . . 18

2.9 Diffusional Weighted MRI image . . . . . . . . . . . . . . . . . . . . . . . 18

2.10 ADC- Apparent Diffusion Coefficient from diffusion MRI image . . . . . 21

2.11 White matter structure of human brain (from MRI) . . . . . . . . . . . . 21

2.12 Calculating FOD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.13 Apparent Fibre Density overview (Raffelt et al., 2012) . . . . . . . . . . . 23

2.14 Anatomy of a Neuron . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

2.15 An action potential curve . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.16 Hodgkin Huxley cell equivalent . . . . . . . . . . . . . . . . . . . . . . . . 29

2.17 Cable model of axon (Johnston and Wu, 1994) . . . . . . . . . . . . . . . 31

2.18 A Sketch of a portion of the dendritic tree of a neuron emerging from the
soma at right. B Portion of a secondary dendrite divided into three sub-
cylinders. The axial current Ii and the membrane current Im are shown
next to the arrows. C Discrete electrical model for the three sub-cylinders. 32

2.19 Summary of axonal functions (Debanne et al., 2011) . . . . . . . . . . . . 33

2.20 Ultrastructure of myelinated axons in the CNS and PNS . . . . . . . . . . 37

2.21 Schematic figure of an axon . . . . . . . . . . . . . . . . . . . . . . . . . . 38

3.1 Centre point of each partitioned regions . . . . . . . . . . . . . . . . . . . 43

3.2 The Annotation files of Left Hemisphere and Right Hemisphere . . . . . . 44

3.3 Segmented Brain Volume and White/Pial surfaces . . . . . . . . . . . . . 45

3.4 Segmented cortical surface and their colour code . . . . . . . . . . . . . . 46

3.5 The pial surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.6 The white surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.7 The inflated surface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.8 The parcellated cortical surface . . . . . . . . . . . . . . . . . . . . . . . . 48

3.9 The parcellated segmented surface . . . . . . . . . . . . . . . . . . . . . . 49

xi



xii LIST OF FIGURES

3.10 Left and right hemisphere parcellation statistics . . . . . . . . . . . . . . . 49

3.11 Parcellated Image . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.12 Fibre Oriented Distribution in voxels . . . . . . . . . . . . . . . . . . . . . 52

3.13 The Generated Tracks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.14 Connectome generation steps . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.15 The Structural Connectome constructed using the equal sized parcellated
nodes and white matter streamlines. . . . . . . . . . . . . . . . . . . . . . 55

3.16 The structural connectivity strength among the equal sized ROI-to-ROI. . 55

3.17 The graphical representations of structural network measures . . . . . . . 56

3.18 Flow chart for computing FD values . . . . . . . . . . . . . . . . . . . . . 58

3.19 Step by step generation of fixel based analysis results while extracting
geometrical metrices of fibre tracts . . . . . . . . . . . . . . . . . . . . . . 60

4.1 Hodgkin Huxley Cell and neuron gating circuit Szlavik et al. (2006) . . . 65

4.2 Circuit Design for gating variables Szlavik et al. (2006) . . . . . . . . . . . 66

4.3 (a)The schematic diagram of NR, (b) The schematic diagram of IN of Pure
resistive circuit, (c) The schematic diagram of IN of resistive-capacitive
circuit used for modelling intracellular fluid . . . . . . . . . . . . . . . . . 68

4.4 The schematic diagram of connections between NR and IN . . . . . . . . 71

4.5 Action potetial generated at nodes of Ranvier; V(xsub1.26): Membrane
potential; I(I1): Input current . . . . . . . . . . . . . . . . . . . . . . . . . 73

4.6 HH neuron node showing m,h, and n gate activation; V(xsub1.2): m
variable, V(xsub1.3): h variable, V(xsub1.4): n variable . . . . . . . . . . 74

4.7 Na:I(xsub1.FNA), K:I(xsub1.FK) and capacitive: I(xsub1.CE) currents
dynamics during generation of AP . . . . . . . . . . . . . . . . . . . . . . 75

4.8 Temporal distribution of action potential . . . . . . . . . . . . . . . . . . 76

4.9 Action potential failed to reach threshold to the next node . . . . . . . . . 76

4.10 Dynamic of membrane voltage at various internode length when action
potential (a) is successfully propagated to next node; (b) has failed to
reach next node . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

4.11 Conduction velocity of different axon types; conduction velocity decreases
with reduction of axon diameter . . . . . . . . . . . . . . . . . . . . . . . 78

4.12 Maximum myelin length: The length of myelin internode till which the
impulse signal propagate from one node to another node without failing,
If the length of myelin is bigger then this then the impulse signal will
not propagate to the next node; The value of maximum myelin length for
different types of axons in both resistive and resistive-capacitive models . 79

4.13 Conduction velocity at various internodal lengths . . . . . . . . . . . . . . 80

4.14 The Main Model of Internode in simscape . . . . . . . . . . . . . . . . . . 81

4.15 (a) The pole-zero plot of the transfer function for all axon types; (b)The
pole-zero plot of the transfer function for all axon types . . . . . . . . . . 84

4.16 Gain and phase plots obtained from transfer functions of all axon types
for their standard myelin length . . . . . . . . . . . . . . . . . . . . . . . . 86



LIST OF FIGURES xiii

4.17 Axon Diameter Vs Cut-off frequency; Blue curve is showing cut-off fre-
quency of PNS axons of diameters 1µm ,5µm,6µm, 12µm, 13µm and
20µm for IN length 1mm; Red curve is showing cut-off frequency of CNS
axons for diameters 3.06µm, 2.41µm, 1.35µm for IN length 0.1mm; 1mm
IN length is greater than the maximum IN length permitted for signal
propagation in CNS axons . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

4.18 Myelin length vs cut-off frequency extracted for FMN, PNS and CNS axons 89

5.1 (a) Circuit model for ephaptic coupling between two parallel axons as
both resistive and capacitive path; (b) Circuit model for ephaptic coupling
between two parallel axons as resistive path as derived from calculation . 92

5.2 Circuit Modelling of two parallel axon aligned to each other connected by
extracellular resistance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5.3 Effects of coupling on passive axon . . . . . . . . . . . . . . . . . . . . . . 95

5.4 Extracellular resistance varies with inter-axon distance . . . . . . . . . . . 97

5.5 Maximum inter-axon distance for coupling effects of active axon on pas-
sive axon for all Group-A PNS axons . . . . . . . . . . . . . . . . . . . . . 98

5.6 Inhibition of AP due to ephaptic coupling . . . . . . . . . . . . . . . . . . 99

5.7 (a) At single axon spikes propagates from first NR (the green one) to
tenth NR (the pink one) in 2.3ms time, and the amplitude of the spike at
tenth NR is a little larger than the rest of the NRs; (b) At double axon
spikes propagates from first NR (the green one) to tenth NR (the pink
one) in 4.8ms time; so in double axon spikes take longer time to propagate
from 1st NR to 10th; hence CV is reduced at the double axon, and the
shape of the APs at all NRs are same . . . . . . . . . . . . . . . . . . . . 100

5.8 Effects of coupling on spike synchronization; The spikes fired in different
times get synchronized in later nodes . . . . . . . . . . . . . . . . . . . . . 101

5.9 When two axons are not aligned then effects of resistive coupling started
receding based on the overlapping areas of two nodes . . . . . . . . . . . . 102

5.10 When two axons are staggered the AP are not generated from axon-1 to
axon-2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

5.11 When two axons are staggered then APs are still inhibited in later NRs
in case of small diameter axons . . . . . . . . . . . . . . . . . . . . . . . . 102

6.1 (a) and (c) Ultrastructure of myelinated axons in the CNS and PNS; (b)
cross-sectional view of the adhered model design of fibre bundle from Fig.
(a) for CNS axon bundle of 12 axons, for PNS axon bundle we adhered the
same design but leave 20% extra space in extracellular space to model the
gap between axons in the bundle; because in the PNS, the Schwann cell
plasma membrane is covered with a basal lamina and the myelinated fibres
are separated by connective tissue (Stassart et al., 2018). (d) Schematic
view of fibre bundle consists of 12 axons . . . . . . . . . . . . . . . . . . . 107

6.2 Schematic diagram of 12 myelinated axons parallel to each other and
ephapticaly connected . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

6.3 CV Vs FD; For all axon types it is observed that CV varies inversely with
FD and the relation between CV and FD is best described by polynomial
equation; Here, the data are not equally sampled across density due to
the characteristics of fibre packing density of tightly packed bundle . . . 112



xiv LIST OF FIGURES

6.4 MML varies with number of axons in bundle; the result is consistent for
different types of PNS axons: the plot with pink line shows PNS axon
Aα−20µm diameter, the plot with blue line shows PNS axon Aα−13µm
diameter, the plot with green line shows PNS axon Aα− 12µm diameter,
the plot with red line shows PNS axon Aα−6µm diameter, the plot with
purple line shows PNS axon Aα−5µm diameter, the plot with yellow line
shows PNS axon Aα− 1µm diameter . . . . . . . . . . . . . . . . . . . . . 115

6.5 In FMN axon (a) membrane voltage drops with increase of input fre-
quency (b) LF decreases with increases of FD . . . . . . . . . . . . . . . . 116

6.6 LF varying with FD for larger diameter and smaller diameter axons in
resistive (FMN) and resistive-capacitive model (PNS and CNS) . . . . . . 117

6.7 When one axon is simulated in the bundle the firing at the beginning and
end of the bundle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

6.8 When two axons are simulated in the bundle the firing at the beginning
and end of the bundle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.9 When three axons are simulated in the bundle the firing at the beginning
and end of the bundle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

6.10 When four or more axons are simulated the firing at beginning and end
of the bundle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120

6.11 When four or more axons are simulated for smaller diameter axons few
AP are not generated at the end of the bundle . . . . . . . . . . . . . . . 121

6.12 FMN axons are simulated with random noise source at the beginning of
the bundle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.13 PNS axons are simulated with random noise source at the beginning of
the bundle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

6.14 CNS axons are simulated with random noise source at the beginning of
the bundle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6.15 Simscape model of NR and its output same as PSPice model . . . . . . . 124

6.16 Simscape model of parallel circuit build using NR and IN PSpice subcircuits124

6.17 (a) Bode plot of system function NR (b) Output of system function of
NR with it original model output . . . . . . . . . . . . . . . . . . . . . . . 125

6.18 (a)The system function model of three axons bundle build with system
function of NR and IN (b) The single system function model developed
after interconnecting three models . . . . . . . . . . . . . . . . . . . . . . 126

6.19 (a) Gain and phase plot, ((b) Output waveform of system function model
of three axons bundle build with system function of NR and IN . . . . . . 127

6.20 Gain and phase plot of all the inputs and outputs of three axon model . . 127

6.21 Gain and phase plot of all the inputs and outputs of 12 axon model . . . 128

A.1 The Color Look Up Table. . . . . . . . . . . . . . . . . . . . . . . . . . . . 141



List of Tables

2.1 Nernst equilibrium potentials in a typical mammalian neuron . . . . . . . 28

2.2 Values of maximum ionic conductance, leakage conductance and the equi-
librium (reversal) potentials . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.3 Different axon types and their parameter values; Inner diameter is the in-
ternode axon diameter; Outer diameter is the internodal myelin diameter;
Myelin length is the length of myelinated area between two consecutive
nodes as shown in Figure 2.21 . . . . . . . . . . . . . . . . . . . . . . . . 39

3.1 Graph theory measures . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4.1 Parameters for node of Ranvier . . . . . . . . . . . . . . . . . . . . . . . . 68

4.2 Parameters for internode for different types of axons (The parameter val-
ues of PNS axons are obtained from Tsubo and Kurokawa (2018) and
dimensions of CNS axons are obtained from Ford et al. (2015) and pa-
rameter values of FMN are sourced from Hodgkin and Huxley (1952).
These data were obtained by applying the conversion formulas to axons
of various diameters as it is mentioned in Tsubo and Kurokawa (2018)) . 70

4.3 Conduction velocity for different axon diameters . . . . . . . . . . . . . . 74

4.4 Coefficients of transfer function . . . . . . . . . . . . . . . . . . . . . . . . 82

4.5 Cut-off frequencies of myelin segment for different axon types . . . . . . . 87

4.6 Coefficients with (95% confidence bounds) . . . . . . . . . . . . . . . . . 87

5.1 Minimum value of transverse extracellular resistance RMin for maximum
coupling effect for all Group A PNS axons where dNR diameter of node,
dIN diameter of internode, LMin minimum distance between two nodes
of two parallel axons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6.1 Data for axon bundles for different types of axon; Here we showed data
for axon bundle of 2 axons and 12 axons; in Chapter A we gave all the data110

6.2 Curve fitting statistics parameters for different axons . . . . . . . . . . . . 113

6.3 Population average mean firing rate at the beginning and end of the bun-
dle for different types of axons . . . . . . . . . . . . . . . . . . . . . . . . 121

A.1 Data table for Aα− 20µm and Aα− 13µm bundle . . . . . . . . . . . . . 157

A.2 Data table for Aα− 12µm and Aα− 6µm bundle . . . . . . . . . . . . . 160

A.3 Data table for Aα− 5µm and Aα− 1µm bundle . . . . . . . . . . . . . . 163

A.4 Data for SBC and GBCMed axon bundles . . . . . . . . . . . . . . . . . . 166

A.5 Data table for GBCLat and FMN axons . . . . . . . . . . . . . . . . . . . 169

xv





Nomenclature

ACT Anatomical Constrained Tractography

AFD Apparent Fibre Density

AP Action potential

BOLD Blood-oxygen-level-dependent

CNS Central Nervous System

CSD Constraint Spherical Deconvolution

CV Conduction velocity

DTI Diffusion Tensor Imaging

DWI Diffusion-weighted magnetic resonance imaging

EEG Electroencephalogram

EQSP Equal Area Sphere Partitioning

FA Fractional Anisotropy

FC Fibre-bundle cross section

FD Fibre density

FDC Fibre density and cross-section

FMN Frog Motor Nerve

FMRI Functional magnetic resonance imaging

FOD Fibre Orientation Distribution

GBCL Globular Bushy Cell Medial

GBCM Globular Bushy Cell Lateral

HH Hodgkin-Huxley

ICC Intraclass correlation coefficient

IN Internode

LF Limiting Frequency

MML Maximum myelin length

MRI Magnetic resonance imaging

NR Nodes of Ranvier

ODF Orientation Distribution Function

PNS Peripheral Nervous System

SIFT Spherical-Deconvolution Informed Filtering Tractograms

SBC Spherical Bushy Cell

ROI Region of Interest

xvii





Declaration of Authorship

I, Sarbani Das declare that this thesis entitled Modelling the signal propagation through

structural connections in the brain: A circuit theory approach and the work presented

in it is my own and has been generated by me as the result of my own original research.

I confirm that:

1. This work was done wholly or mainly while in candidature for a research degree

at this University;

2. Where any part of this thesis has previously been submitted for a degree or any

other qualification at this University or any other institution, this has been clearly

stated;

3. Where I have consulted the published work of others, this is always clearly at-

tributed;

4. Where I have quoted from the work of others, the source is always given. With

the exception of such quotations, this thesis is entirely my own work;

5. I have acknowledged all main sources of help;

6. Where the thesis is based on work done by myself jointly with others, I have made

clear exactly what was done by others and what I have contributed myself;

7. None of this work has been published before submission

Signed:.......................................................................... Date:..................

xix





Acknowledgements

It has been a gratifying experience so far to carry out my Ph.D. research work along with

my family life with two little kids. It won’t have been possible without the continuous

support and guidance of my supervisor Prof. Koushik Maharatna. His timely inputs

have given a thrust to come over various obstacles in making progress. I would also

like to thank my co-supervisor, Dr Brigitte Vollmer, for her time to time support and

encouragement during my Ph.D. I want to thank Dr. Saptarshi Das for the kind helps

he has extended toward me throughout my Ph.D. journey. A big thank you must go to

my husband, for his continuous support and encouragement to achieve my goals, and to

my two kids, who are my inspiration to achieve any greatness. Lastly, I would like to

thank my parents specially my mother who has been always the pillar of strength for

me.

xxi





Chapter 1

Introduction

Neurodegenerative diseases are a serious concern in the modern world as the prediction

made by the World Health Organization (WHO) that by 2040, as many developed

countries’ populations get older, neurodegenerative diseases such as Alzheimer’s and

other causes of dementia, as well as conditions that affect mainly motor functions, such

as Parkinson’s disease and Amyotrophic Lateral Sclerosis, will outstrip other diseases

to become the second leading cause of mortality after cardiovascular disease (Gammon,

2014). Recent research shows that neural functions not only depend upon the brain

region activated but the topography of communication network both structural and

functional amongst them (Sporns et al., 2005; Honey et al., 2007; Hagmann et al., 2008;

Deco et al., 2008; Honey et al., 2009; Rubinov et al., 2009; Rubinov and Sporns, 2010;

Honey et al., 2010; Mǐsić et al., 2016). Several studies also pointed out that impairment in

such a network is the fundamental reason behind different neurodegenerative conditions

(Sporns et al., 2005; Rubinov and Sporns, 2010; Braun et al., 2015; Fleischer et al., 2017).

Over the past decade, techniques have been developed to characterise structural brain

networks and to couple this with functional brain networks (Honey et al., 2007; Hagmann

et al., 2008; Honey et al., 2009; Rubinov et al., 2009). Application of these techniques

to characterise the brain networks of a neurodegenerative disorder patient appears to

be a promising technique to understand the impairment characteristics of the network.

This can lead to improving the early prediction of neurodegenerative outcomes, and

importantly this can help in exploring the manipulation of these networks by applying

neuro-modulation which will be the new means to treat neurodegenerative patients.

1.1 Motivation

However, the problem is, the present understanding of the relationships between anatom-

ical and functional connectivity networks are at a nascent stage. By nature, the func-

tional connectivity is temporally dynamic and its topography varies from one frequency
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2 Chapter 1 Introduction

band to the other. On the other hand, structural brain connectivity does not change

rapidly over time and thus is static in nature in the scale of temporal variation of func-

tional connectivity. But how such a static structural connectivity network impacts and

enables the occurrence of task-dependent dynamic functional connectivity is still an

unsolved problem in neuroscience. The other problem is that how the signal actually

propagates through a bundle of axons from one ROI to another ROI is not clear. Given

a bundle of axons, there is no definite evidence that all the axons will fire at the same

time. Moreover, there could be the random firing of axons which may influence the sig-

nal propagation throughout the axon bundle. So, the correspondence between structural

connectivity and functional connectivity is hinged upon the fact of how the signal actu-

ally propagates through the structural brain connectivity network. We hypothesised that

signal propagation disruptions leading to disruptions of functional connectivity might

happen not only because of the time-domain property of signal but also because of the

frequency domain property of the transmission medium i.e. myelinated axon. We also

hypothesise that it behaves as a filter that only passes a certain frequency range while

dampens the other frequency range depending upon its geometry. This has motivated

us to explore this phenomenon and put it in the perspective of functional and structural

brain connectivity. Recent research shows that an axon can be modelled as a Hodgkin-

Huxley (mHH) circuit arrangement combined with passive cable theory (Huxley and

Stämpeli, 1949; Hodgkin and Huxley, 1952; Fitzhugh, 1962). This research work will

design a circuit theory-based computational model which characterizes the frequency-

phase characteristics of signal propagation through a bundle of axons. This will then be

extended to develop a framework of an automated toolchain that takes input from MRI

data and output the phase and frequency characteristics of the signal.

1.2 Aims and objectives

Following our motivation, the aims of this thesis are (1) modelling the signal propagation

through a bundle of myelinated axon fibre by applying a circuit theory-based compu-

tational modelling approach and (2) creating a framework of an end-to-end automated

toolchain that processes raw MRI data and extract phase-frequency relationship of the

signal of the nerve bundle at the output.

So the objectives are:

• (1) Developing an automated tool-chain for extracting geometry of white matter

tracts from MRI.

• (2) Modelling frequency characteristics of a single myelinated axon.

• (3) Modelling the effect of ephaptic coupling between two myelinated axons and

find the influence on signal propagation.
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• (4) Translating these models into a framework of an automated toolchain that

characterizes signal propagation through a bundle of axons.

Figure 1.1 shows a flow-chart representation of the thesis work.

Figure 1.1: A Flowchart representation of the thesis work

1.3 Contribution

The contributions of this research include:

1. The existing method of cortical parcellation from MRI data is mainly based on

fixed Brodmann atlas; which does not support neonate’s brain or adult’s brain

with neuro-plasticity anomalies. We have designed and developed an algorithm
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to parcellate the cortical surface in non-anatomical equal size areas from struc-

tural MRI data and extracted geometrical properties of white matter tracts from

diffusional MRI data using equal area cortical parcellation.

2. We have created mathematical models of the transfer function of a single myeli-

nated axon and signal propagation characteristics of two myelinated axons coupled

by ephaptic coupling.

3. We have designed a computational circuit model for a bunch of axons; derived

the mathematical relation between conduction velocity of axons in a bundle with

its fibre density; determined limiting the frequency of signal transmission through

axon in a bundle and explore temporal and phase-frequency characteristics of signal

propagation through a bundle of myelinated axons.

Papers: The list of papers accepted and in preparations:

Conference paper:

1. Das, S. and Maharatna, K., 2020, July. An automated tool-chain for quantitative

characterisation of structural connectome from MRI based on non-anatomical cortical

parcellation. In 2020 42nd Annual International Conference of the IEEE Engineering in

Medicine & Biology Society (EMBC) (pp. 5653-5656). IEEE.

Journal paper:

1. Sarbani Das, Koushik Maharatna. Filtering property of myelin sheathe and its effect

on neural signal propagation in single and ephaphtically coupled axons (In preparation

for Scientific Reports).

2. Sarbani Das, Koushik Maharatna. Signal propagation dynamics in myelinated axon

bundle (In preparation for a journal).

1.4 Thesis organization

The thesis is organized as below: Chapter 2 presents a literature review covering brain

connectivity, MRI Image processing, neuronal dynamics and axon physiology. Chapter 3

presents an automated tool development for parcellation and extraction of the structural

connectome and its geometry from Structural and dMRI data. Chapter 4 presents the

circuit model for analysing signal propagation through a single myelinated axon in time

and frequency domains. Chapter 5 presents the circuit model for modelling the effects

of ephaphtic coupling in two myelinated axons. Chapter 6 presents the circuit model

for analysing signal propagation dynamics in a bundle of myelinated axons and define a

system definition for determining phase-frequency characteristics of signal propagation

through the bundle.



Chapter 2

Background and Literature

Review

2.1 Brain connectivity

The most fundamental characteristic of the neural network is brain connectivity. Brain

connectivity analysis is a way to study the information processing in neural networks.

The neural networks are build of spatially segregated but functionally integrated brain

regions which continuously communicate through neural pathways. There exist three

kinds of connectivity patterns among neuronal populations or anatomically segregated

brain regions: anatomical links which are the axonal pathways (axon bundles), statis-

tical dependencies of brain regions - the functional connectivity and causal interactions

between them - the effective connectivity (Rubinov and Sporns, 2010). The three kinds

of brain connectivity are depicted in Figure 2.1.

2.1.1 Structural connectivity

Structural connectivity is the anatomical links of the brain that are made of synaptic

and axonal (white matter) pathways. It is static and does not change rapidly over time

in the scale of temporal variation of functional connectivity. It is the backbone for

functional connectivity as brain function gets affected if axonal pathways are disrupted.

So structural connectivity provides the base for couplings of a set of neurally activated

macroscopic cortical columns (Honey et al., 2009). The aim of structural connectivity

analysis is to determine the geometric properties of the white matter connectivity of the

brain which is obtained from Diffusion MRI imaging data. There is a new strategy de-

veloped by Sporns et al. (2005) to describe the structural connectivity; the ’Connectome’

matrix which is a unified and readily available neuro-informatics resource to be used in all

areas of experimental and theoretical neuroscience. Though Sporns et al. (2005) coined

5
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Figure 2.1: Structural, Functional and Effective Connectivity. [Source: SPM Course,
London 2017]

the term connectome but the representation of brain connectivity as a matrix has been

around for a long time; such as Felleman and Van Essen (1991) presented distributed

hierarchical connectivity of cerebral cortex for rhesus monkey and around same time Ya-

mamoto and Achacoso (1992) presented connectivity in the nematode Caenorhabditis

elegans.

2.1.2 Functional connectivity

Functional connectivity is a way to characterize the integration among activated brain

areas by measuring the correlations of neural activities (Friston, 2011). It is dynamic

and varies in temporal scale. There are two brain imaging techniques commonly used

to obtain functional connectivity of the brain - EEG and functional MRI (fMRI). EEG

measures the electrical activity of the brain via electrodes that are placed on the scalp.

It tells from the surface measurements how active the brain is. When a particular

task or job is performed, a certain area of the brain gets activated and receives slightly

more oxygen-rich blood. fMRI measures the blood oxygenation level dependent (BOLD)

signals from the active parts of the brain. Because of the imaging methodology, EEG

signal has high time resolution but low spatial resolution whereas fMRI BOLD signal

has low time resolution but high spatial resolution. According to Segall et al. (2012),

functional connectivity measured by using resting-state functional magnetic resonance
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imaging (rs-fMRI) is an indirect measure of neuronal activity of neuronal cells mainly

form the gray matter (GM) and the majority of connectome research excluded GM

measures. In his work, Segall et al. (2012) explored the gray matter area to understand

both structural and functional connectivity. A functional correlation matrix is obtained

by analysing the functional connectivity among brain areas.

2.1.3 Effective connectivity

Effective connectivity describes the causal relationships among brain regions. According

to Aertsen (1991) effective connectivity is the time-dependent, simplest possible circuit

diagram that replicates the observed timing relationships between the recorded neurons.

According to Friston (2011) integration within a distributed system is usually better un-

derstood regarding effective connectivity because effective connectivity refers explicitly

to the influence that one neural system exerts over another, either at a synaptic or pop-

ulation level. Effective connectivity corresponds to the parameter of a model that tries

to explain observed dependencies (functional connectivity). Friston et al. (2003) has

developed an approach for the analysis of effective connectivity using experimentally de-

signed inputs and fMRI responses, which is called Dynamic Causal Modelling. Dynamic

Causal Modelling infers the value of causal connectivity strength that one neural system

exerts over another which is physically not measurable. Granger causality is a way to in-

vestigate causality between two variables in a time series. The method is a probabilistic

account of causality; it uses empirical data sets to find patterns of correlation.

2.1.4 Graph theory measures to analyse brain connectivity

As described by (Rubinov and Sporns, 2010), brain connectivities are analysed by charac-

terizing them using graph-theoretic measures. Some graph theory parameters character-

ize the whole graph (network), while others are node-specific. There are different graph

theory measures that detect functional integration and segregation, quantify centrality

of individual brain regions or pathways, characterize the pattern of local anatomical

circuitry and test the resilience of the network to insult.

2.1.4.1 Measures of functional segregation

The measure of segregation quantifies the presence of densely interconnected groups of

brain regions responsible for specialized processing (Rubinov and Sporns, 2010).

Clustering Coefficient : Clustering coefficient is a measure of the degree to which

nodes in a graph tend to cluster together. Measures of segregation are based on

the number of triangles in the network, with a high number of triangles implying
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segregation (Rubinov and Sporns (2010)). Clustering coefficient quantifies the

fraction of triangles around an individual node, which is equivalent to the fraction

of the node’s neighbours that are also neighbours of each other. The high value of

clustering coefficient implies densely interconnected groups of brain ROIs that are

functionally segregated.

Modularity : The measures of segregation not only describe the presence of densely in-

terconnected groups of regions but also find the exact size and composition of these

individual groups. The network’s modular structure (community structure), is de-

scribed by subdividing the network into groups of nodes, with a maximally possible

number of within-group links, and a minimally possible number of between-group

links. The degree to which the network may be subdivided into such clearly de-

lineated and non-overlapping groups is quantified by the modularity (Rubinov

and Sporns (2010)). A high value of modularity indicates that the node within a

module has a dense connection and that there are minimum possible connections

outside of the modules.

2.1.4.2 Measures of functional integration

Measures of integration estimate the ease with which brain regions communicate and

are commonly based on the concept of a path (Rubinov and Sporns, 2010).

Characteristic Path Length : Characteristic path length measures the average short-

est paths between all node pairs in the graph. To calculate this, we constructed a

table with all of the shortest paths between all pairs of a node and then calculated

the average.

Global Efficiency : Global efficiency is a related measure that quantifies the average

inverse shortest path length in a network.

2.1.4.3 Measures of centrality

Measures of node centrality variously assess the importance of individual nodes on in-

teracting with many other regions, facilitating functional integration, and playing a key

role in network resilience to insults (Rubinov and Sporns, 2010).

Degree : The degree of a node is equal to the number of nodes it is connected to. It

reflects the importance of the nodes in the network.

Betweenness Centrality : Betweenness centrality measures the importance or influ-

ence of the node in the network. It estimates this by determining the shortest

paths that cross the node.
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2.1.4.4 Measures of network resilience

Measures of resilience quantify anatomical features that reflect network vulnerability to

insults (Rubinov and Sporns, 2010).

Degree Distribution : The degree of all nodes in the network comprises degree dis-

tribution.

Assortativity : Assortativity coefficient measures the trend of each node regarding

how it connects with nodes of the same degree. A positive value means that the

node is connected to nodes that have the same degree.

2.1.5 Relationship between structural and functional connectivity: stud-

ies done so far

In this section, we have explored the existing works which have been previously done

on establishing the relationship between structural and functional connectivity. Batista-

Garćıa-Ramó and Fernández-Verdecia (2018) in their study of structural and functional

relation, mentioned that neuro-image processing, network theory and computational

modelling have played essential roles in the study of structure-function interactions.

Available literature in this area can be broadly categorized into two categories. The

first category of work has used computational modelling while the second category of

work has been carried out using the data analysis method. The work done by (Honey

et al., 2007; Hagmann et al., 2008; Honey et al., 2009; Rubinov et al., 2009) falls into the

former category where the computational modelling has been used to derive functional

connectivity from structural connectivity. On the other hand, the work done by (Honey

et al., 2010) and (Hütt et al., 2014) is based on statistical analysis of diffusional MRI

data and fMRI data for finding the correlation between the two connectivity. There are

other sets of research works that have been carried out recently such as the works done

by (Mǐsić et al., 2016; Messé et al., 2015; Dı́az-Parra et al., 2017; Zamora-López et al.,

2016) pertain to the study of connectivity patterns to both functional and anatomical

in humans and animals, and the study of the relationship of brain connectivity with

neurodegenerative conditions such as Alzheimers and Parkinsons diseases were done by

(Son et al., 2017; Manza et al., 2016; Fleischer et al., 2017). Reviewing the research

works done by (Honey et al., 2007; Hagmann et al., 2008; Honey et al., 2009; Rubinov

et al., 2009), we found an important aspect of the relationship between the two forms of

connectivity. These research works show that in some cases the functional connectivity

can be derived from the structural connectivity, but not always, which means if there

is structural connectivity between two brain ROIs they may not become functional con-

nected. On the contrary, their research works also show that there are instances where

even if there was no structural connectivity, there was functional connectivity (Honey
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et al., 2009). In his research work, Rubinov et al. (2009) simulated spontaneous brain

dynamics on structural connectivity networks, using coupled non-linear maps. Using

computational modelling, Honey et al. (2009) investigated if systems-level properties of

functional networks as well as their spatial statistics and persistence across time can be

explained by properties of the underlying anatomical network. They measured resting-

state functional connectivity (using fMRI) and structural connectivity (using diffusion

spectrum imaging tractography) in the same individuals at high resolution and built a

model. Their research reveals that resting-state functional connectivity is variable and is

often present between regions which do not have any direct structural linkage. However,

the strength, persistence, and spatial statistics of the functional connectivity is limited

by the large-scale anatomical structure of the human cerebral cortex. Hagmann et al.

(2008) constructed connection maps of the entire cortical surface and did computational

analyses of the same to figure out the regions of the cortex that are connected. Honey

et al. (2007) used a computational approach in order to relate the features of spontaneous

cortical dynamics to the underlying anatomical connectivity. Simulating non-linear neu-

ronal dynamics on a network that captures the large-scale interregional connections of

macaque neocortex, and applying information-theoretic measures to identify functional

networks, they found the relationship between structural and functional connectivity

at multiple temporal scales. The studies that were done on connectivity patterns, both

functional and anatomical, in humans and animals in recent years are (Sethi et al., 2017;

Mǐsić et al., 2016; Messé et al., 2015; Dı́az-Parra et al., 2017; Zamora-López et al., 2016)

and their relationship with neurodegenerative conditions are (Son et al., 2017; Manza

et al., 2016; Fleischer et al., 2017). According to Honey et al. (2010), the degree of corre-

spondence between structural and functional connectivity depends on spatial resolution

and time scales.

As mentioned by Batista-Garćıa-Ramó and Fernández-Verdecia (2018) there are some

limitations on existing studies. For example (1) the images acquisition and processing

offer inherent limitations of the methodology. For instance, when structural connectivity

is based on DTI, it can ignore long-distance and fibre-cross connections and does not

provide information about the directionality of the connections. In the case of fMRI,

it is important to note some aspects: neuronal activity is not directly a measure of the

blood oxygenation level dependence (BOLD) signal; it is an integration of a variety of

neuronal activities and the increase of excitatory or inhibitory synaptic activity can cause

an increase of metabolic activity. Logothetis et al. (2001) mentioned in his work that

the haemodynamic response seems to be better correlated with the LFPs, implying that

activation in an area is often likely to reflect the incoming input and the local processing

in a given area rather than the spiking activity. Such limitations, properties of neuro-

imaging techniques, may lead to imprecise brain network representations, affecting the

analysis of network properties such as the study of the structure-function relationship.

(2) Next, in the case of using methodologies and procedures such as connectivity measure

and graph construction to produce the correlation there is no established guidelines
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to follow. (3) In the case of computational modelling, parameter estimation becomes

complex when high numbers of variables being used for modelling.

While reviewing the relevant literatures, we have observed that there is a gap in the

studies of finding the correlation between functional and structural connectivity. The

functional connectivity of the brain is obtained by measuring the phase correlation of

time series signals between two activated brain regions. This signifies that the signal

propagated through a bundle of axons has frequency characteristics which determine

the propagation criteria as well along with other factors. But in the studies done so

far on brain connectivity, the frequency domain analysis has not been considered. In

our approach, we will represent the bundle of axons using a circuit theory-based model

and perform the phase and frequency response analysis of the signal in the frequency

domain. Analysing signal propagation through axon in frequency domain will surely

lead to finding the correlation between functional and structural brain connectivity.

2.2 Neuro-image processing of Structural MRI data for

cortical surface parcellation

Brain connectivity is about the integration of spatially segregated brain regions. So

delineating and defining the spatially segregated brain regions as nodes of the network

is the first step of brain connectivity analysis. Cortical parcellation serves the purpose of

parcellating the cortical and subcortical layers of the cortex in terms of some reference

atlas and assigning to them a neuroanatomical label either automatically or manually

resulting in a complete labelling of cortical sulci and gyri (Fischl et al., 2004). It is

performed on structural MRI images because structural magnetic resonance imaging

(MRI) provides extensive detail about the anatomical structure of the brain. First,

a brief description of structural T1 and T2 weighted MRIs are given followed by the

process of surface reconstruction and then cortical parcellation.

2.2.1 Structural MRI(T1 and T2 weighted MRI)

Structural MRI imaging provides anatomical information of the brain. Pathological

processes are described in terms of T1 and T2 signal behaviours, in addition to contrast

enhancement, anatomical location, and morphological characteristics (Symms et al.,

2004).

T1 Weighted scan as shown in Figure 2.2 gives the good contrast between gray and

white matter. It produces a very high resolution ( 1mm) image. It is very useful in

identifying brain structure and is used for parcellation of the cortical surface.
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Figure 2.2: T1 Weighted Image

T2 Weighted spin echo (TSE) scan as shown in Figure 2.3 produces very high-resolution

T2-weighted images within a reasonable scan time. In T2-TSE images, both fat and wa-

ter are hyper-intense and appear bright.

Figure 2.3: T2 Weighted Image

2.2.2 Cortical surface reconstruction and parcellation

To study cortical properties in humans, it is necessary to obtain an accurate and explicit

representation of the cortical surface from 3D structural MRI image (Dale et al., 1999).

Cortical reconstruction is basically the derivation of a computerized representation of the

cerebral cortical layer based on three-dimensional (3D) magnetic resonance (MR) images

of the brain for quantitative analysis of the human brain structure. The reconstructed

surface is used for serving as a reference basis for all further analysis, and must be

geometrically accurate and topologically correct in order to provide valid and accurate

quantitative measures of brain structure (Han et al., 2004).
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I. Segmentation : Segmentation is a process to reconstruct gray/white and pial sur-

faces of the cerebral cortex from a high-resolution T1-weighted MRI scan. It is

essential for the analysis of features of the cortical surface, including structural

properties such as cortical thickness, as well as functional characteristics such as

topographic structure. The whole procedure is a complex task that involves some

subtasks such as intensity normalization, skull-stripping, filtering, segmentation

and surface deformation. Dale et al. (1999) defined an automated process that

performs these whole sets of procedures on raw T1 weighted brain image, and

returns reconstructed segmented cortical surface.

II. Inflation, Flattening, and a Surface-Based Coordinate System : The most

common process of analysing functional MRI data is to project the functional data

from a sequence of slices onto a standardized anatomical 3D substrate. But this

process has a major drawback. As the cortex is a 2D sheet with 60-to-70% folded

and curved geometry, it gives difficulty in visualization and error in computation.

To overcome these problems a set of procedures was designed by (Fischl et al.,

1999) for modifying the representation of the cortical surface to (1) inflate the

surface so that activity buried inside sulci may be visualized, (2) cut and flatten an

entire hemisphere, and (3) transform each hemisphere into a simple parametrizable

surface such as a sphere for establishing a surface-based coordinate system.

III. Parcellation : Techniques for labelling geometric features of the cerebral cortex

are useful for analysing a variety of functional and structural neuroimaging data.

Identification of every point in the entire cortex, rather than the labelling of a

discrete set of cortical features is known as a parcellation (Fischl et al., 2004). One

of the main aims in neuroscience is defining the brain regions based on neuronal

activation related to specific tasks.

2.2.3 Brain parcellation

To study cortical properties, it is necessary to obtain a representation of the cortical

surface from MRI image (Dale et al., 1999). Cortical parcellation serves the purpose

by parcellation of the cortical and sub-cortical layers of the cortex in terms of some

reference atlas and assigning to them a neuroanatomical label either automatically or

manually resulting in complete labelling of cortical sulci and gyri (Fischl et al., 2004).

It is performed on structural MRI images because structural MRI provides extensive

detail about the anatomical structure of the brain.

There are some important key points to consider while defining brain regions in the

cortical parcellation process. First, a parcellation scheme should completely cover the

surface of the cortex, or of the entire brain, and individual nodes should not spatially

overlap (Rubinov and Sporns, 2010). Second, structural and functional networks should
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share the same parcellation scheme because networks constructed using distinct par-

cellation schemes may significantly differ in their properties and cannot, in general, be

quantitatively or meaningfully compared (Wang et al., 2009; Honey et al., 2009) and

might not as a whole have a homogeneous and corresponding functional and structural

connectivity architecture (Horn et al., 2014). Third, if applied parcellation is based on

preselected regions of interest (ROI) then it might lead to selection bias, do not account

for inter-individual anatomical differences.

Two approaches are mainly followed for performing cortical parcellation of structural

MRI images; anatomically based cortical parcellation and non-anatomically based cor-

tical parcellation.

2.2.3.1 Cortical parcellation based on anatomical nomenclature

This is a technique for automatically assigning a neuro-anatomical label from an atlas

to each location on a cortical surface. It is done based on probabilistic information

estimated from a manually labelled training set. This procedure incorporates both

geometric information derived from the cortical model, and neuroanatomical convention,

as found in the training set. This procedure performs complete labelling of cortical sulci

and gyri and it uses manually labelled data as the basis for an automated parcellation

procedure (Fischl et al., 2004). An anatomical parcellation on the spherical surface is

shown in Figure 2.4.

Figure 2.4: Anatomical Parcellation on spherical surface
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2.2.3.2 Cortical parcellation based on non-anatomical Recursive Zonal Equal

Area Partitioning

Parcellation following a standardized anatomical atlas is not appropriate in some cases

(Tymofiyeva et al., 2012), such as (1) developing brain of neonates, who have imma-

ture sulcation, (2) cases of cerebral reorganization after brain damage (neuroplasticity),

(3) cases where young children undergoing treatment of intractable epilepsy, cortical

plasticity and change of connectivity allow the contralateral hemisphere to assume the

functions of the lost hemisphere without significant neurologic deficits, and (4) in the

case of normal anatomy of the adult brain, where different subjects have, different dom-

inant hemispheres. In these cases, a non-anatomical equal-area cortical parcellation is

more appropriate than anatomical parcellation. The non-anatomical equal-area parcel-

lation process divides the cortical surface into some equal size areas, which is a template

free and atlas free approach and not constrained by anatomy. A non-anatomical equal-

area cortical parcellation on a spherical surface is shown in Figure 2.5. It is performed

by dividing the cortical surface into nodes based on Recursive Zonal Equal Area Sphere

Partitioning (Leopardi, 2006).

Figure 2.5: Non-anatomical Equal Area Parcellation on spherical surface

In this work, the Freesurfer tool (Fischl, 2012) has been extended to perform the non-

anatomic equal partition cortical parcellation because Freesurfer is the most commonly

utilized tool to perform automated labelling. It utilizes surface registration to align

the subject surface and atlas to provide the anatomical labelling of the surface (Fischl

et al., 2004). FreeSurfer (Fischl, 2012) has been shown to have good reliability. It

utilized the intraclass correlation coefficients (ICCs) to compare volumes of manually

and automatically labelled regions of interest. The only limitation of this software was

that in the past it did not work on neonates. But now it has developed an automated

segmentation and surface extraction pipeline that is designed to accommodate paediatric

brain MRI images from a population of 0-2 year-olds relying on clinical T1-weighted MR

images.
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2.3 Neuroimaging processing of Diffusional MRI data for

Structural Connectome

A connectome is a structural description of the human brain in the form of a connection

matrix which is as defined by a unified, time-invariant, and readily available neuroinfor-

matics resource for use in all areas of experimental and theoretical neuroscience (Sporns

et al., 2005). Connectome is a square adjacency matrix where the nodes represent the

brain regions and values represent the anatomical links among the brain regions. The

connectome representation of structural connectivity significantly increases the under-

standing of how functional brain states derive from their underlying structural base

and gives a clear perception into how brain function is affected if the brain structure

is disrupted (Sporns et al., 2005). The diffusion-weighted MRI imaging technique is

an effective way to extract white matter connectivity of whole-brain (Hagmann et al.,

2007).

2.3.1 Diffusion of water in white matter: the basis of Diffusional MRI

Diffusion-weighted magnetic resonance imaging (DWI) uses the diffusive motion of water

to perform macroscopic in vivo investigations of white matter tissue microstructure. The

interaction of diffusing water and coherently ordered cellular structures, such as axon

membranes, results in an anisotropic profile of diffusion which forms the basis of many

aspects of DWI (Raffelt et al., 2012).

2.3.1.1 Structure of white matter tracts

Figure 2.6: (a) Axon Beaulieu (2014) (b) White matter microstructure Ellingson et al.
(2015)

The microstructure of white matter consists of submillimetre-scale tubular fascicles filled

with thousands of small neuronal fibres (axons) wrapped by multiple lamellae of the

membrane (myelin) and ordered filaments of proteins (microtubulin) that build the

axonal skeleton within these fibres as shown in Figure 2.6. In addition, neuroglial cells

surround and support this fibre arrangement. The extent to which these structures

affect water displacement is not clear, but it is reasonable to speculate that water passage
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through the cellular components of white matter is not unrestricted. Cell membranes are

permeable to water molecules to a variable extent depending on the number of proteins

that are spread on the membrane and the existence and functionality of water channels

(such as extracellular water, myelin water, intra-axonal water, glial intracellular water)

(Jones, 2010).

2.3.1.2 Fractional anisotrophy (FA)

Measurement of the degree and directionality (i.e., anisotropy) of water diffusion at the

micron level within a tissue provides an indirect measure of the underlying microstruc-

ture. The diffusing water molecule samples and interacts with the local environment,

and thus, by measuring the degree and direction of water motion, the structure can be

inferred. For example, if the water encounters highly ordered barriers such that the

distance travelled in one direction is greater than that in another direction in the same

amount of time, the diffusion is said to be anisotropic. This fundamental property of

anisotropic water diffusion is the physical basis behind the utility of diffusion tensor

imaging (DTI) and tractography of white matter tracts in the brain. Diffusion in the

isotropic and anisotropic sample have explained in Figure 2.7. Figure 2.8 shows a sim-

plistic schematic longitudinal view of a myelinated axon. Myelin, the axonal membrane,

microtubules, and neurofilaments are all longitudinally oriented structures that could

hinder water diffusion perpendicular to the length of the axon (Beaulieu, 2002).

Figure 2.7: Isotropic and Anisotropic diffusion

2.3.2 Diffusional Weighted MRI

The DWI-MRI works on the physical principles of water diffusion in the brain and

imaging techniques. The DWI-MRI technique is sensitive to water molecular movement

in a specific direction. By acquiring many DWI images sensitive to different directions,

a 3D picture of the diffusion at a particular point in tissue can be created. DWI-MRI
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Figure 2.8: Diffusion of water molecules through white matter structure

is used to assess or diagnose acute stroke and to image white matter fibre tracts in the

brain. An image of diffusional MRI data is shown in figure 2.9.

Figure 2.9: Diffusional Weighted MRI image

2.3.3 Pre-processing Diffusional MRI data

The MRI image data gets induced with various artefacts and noise during decoding time.

The pre-processing of MRI image data is important to retrieve the correct information

about the brain.

2.3.3.1 Denoising

The first step in DWI-MRI image processing is image denoising. The type of noise

present in DWI-MRI data is thermal noise. It is very important to remove thermal
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noise at the very beginning so that other processing steps such as motion and distortion

correction in their smoothing and interpolation steps can not alter noise characteristics.

The denoising process follows the method defined by Veraart et al. (2016), to remove

noise-only principal components, thereby enabling signal-to-noise ratio enhancements.

This yields parameter maps of improved quality for visual, quantitative, and statistical

interpretation.

2.3.3.2 Distortion correction

In this step, the DWI-MRI image is processed to correct the three types of distortion

captured during MRI image acquisition time: the motion distortion (occur due to motion

of the patient), the eddy-current distortion (electrical currents induced by a changing

magnetic field) and susceptibility induced distortion (A magnetic susceptibility artifact

is caused by the presence of an object in the FOV with a higher or lower magnetic

susceptibility).

2.3.4 Constrained Spherical Deconvolution (CSD)

Spherical deconvolution (Tournier et al., 2004) is a technique that presents information

about the distributions of brain white matter fibres in regions containing multiple fibre

orientations. All white matter bundles in the brain share the same diffusion character-

istics. Thus, any difference in diffusion anisotropy is mainly for partial volume effects.

The fibre orientation density function (ODF) gives the distribution of fibre orientations

within the voxel and the response function is the diffusion-weighted attenuation profile

for a typical fibre bundle in a single voxel. The attenuation of the diffusion-weighted

signal measured over the surface of a sphere is described as the convolution over the

sphere of a response function with the fibre orientation density function (ODF). Thus

the spherical deconvolution method is used to obtain the fibre ODF in a voxel (Tournier

et al., 2004). The spherical deconvolution method is performed by the simple matrix

inversion method. If low pass filtering is not done on the DWI-MRI signal to remove

the noise in the signal, then it will generate a spurious negative lobe in reconstructed

FODs. This is physically not possible. This phenomenon is used by adding a constraint

on the presence of these negative values in the FOD to remove the noise artifacts with-

out filtering out the high angular frequencies. This process is referred to as constrained

spherical deconvolution (CSD) (Tournier et al., 2007).
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2.3.5 Anatomical Constrained Tractography (ACT)

Anatomical Constrained tractography is about defining an accurate delineation for dif-

fusion MRI streamlines for determining the propagation and termination of the stream-

lines. This is implemented by segmenting the anatomical image into a five tissue type

image (5TT). In that image, the volumes of tissue types appear in the order of, Corti-

cal gray matter, sub-cortical gray matter, white matter, CSF, Pathological tissue. The

pathological tissue type is used optionally where the architecture of the tissue present

is not defined. Thus information available from anatomical image segmentation, and

the known properties of the neuronal axons being reconstructed, biologically realistic

priors are applied to the streamlines generation and known as Anatomical Constrained

tractography (Smith et al., 2012).

2.3.6 Spherical-deconvolution Informed Filtering of Tractograms (SIFT)

SIFT is an algorithm for filtering more biologically accurate streamlines from whole-

brain fibre-tracking data sets. It follows the approach to find a subset of streamlines

that best matches the diffusion signal. This method uses the results of spherical de-

convolution of the diffusion signal to determine which streamlines to remove from the

data set, hence the acronym SIFT: spherical-deconvolution informed filtering of trac-

tograms. The algorithm first assigns some white matter axon volume per unit length

to each streamline in the reconstruction, construct the fibre orientation distributions

and compare them. Streamlines that are detrimental are removed and more plausible

streamlines are generated (Smith et al., 2013).

2.3.7 Structural Connectome

In this step, the filtered streamlines are mapped to the nodes of the parcellated structural

image to construct the structural connectome matrix. The method either uses a simple

voxel lookup value at each streamline endpoint, or performs a radial search from each

streamline endpoint to locate the nearest node, or traverses from each streamline end-

point inwards along the streamline, in search of the last node traversed by the streamline

or project the streamline forwards from the endpoint in search of a parcellation node

voxel or assign the streamline to all nodes it intersects along its length.

2.3.8 White Matter tracts and its geometrical properties

The white matter is basically the myelinated axons tracts of the central nervous system

(CNS). The main job of the tracts is to carry nerve impulses between neurons. The
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Figure 2.10: ADC- Apparent Diffusion Coefficient from diffusion MRI image

white matter is white because of the fatty substance that covers the nerve bundles (ax-

ons). This fatty substance surrounding the long nerve fibres acts as electrical insulation

and stops neurotransmitters from dissipating while carrying the signal. So the myelin is

an important factor for transferring the message from one place to another. Figure 2.11

shows the white matter structure of the human brain taken by diffusional MRI (dMRI).

The voxels within tracts are colour coded according to their FA values (i.e., blue, low

anisotropy; and red, high anisotropy. Fractional anisotropy (FA) is a scalar value be-

tween zero and one that describes the degree of anisotropy of a diffusion process. A

value of zero means the diffusion is isotropic. Advanced neuroimaging techniques such

as diffusion tensor imaging (DTI), diffusion MRI Tractography are used to study brain

white matter by using magnetic resonance imaging (MRI) brain images (Hagmann et al.,

2007; Tournier et al., 2011).

Figure 2.11: White matter structure of human brain (from MRI)
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2.3.8.1 Apparent Fibre density (AFD) of white matter tracks

The spherical deconvolution is a method that provides an estimate of the distribution of

fibres within imaging voxel of diffusion-weighted magnetic resonance images (Tournier

et al., 2007). The method as shown in Figure 2.12 is based on the assumption that the

Figure 2.12: Calculating FOD

measured high angular resolution diffusion signal can be expressed as the convolution

over spherical coordinates of a single canonical fibre response function with the fibre

orientation distribution (FOD). The response function is assumed to correspond to the

DWI signal (as a function of orientation) that would be measured for a voxel with a

single fibre population oriented along the z-axis (Tournier et al., 2004). The FOD can

then be estimated by performing the reverse spherical deconvolution operation using

spherical and rotational harmonics. FOD is a continuous distribution representing the

partial volume of the underlying fibres as a function of orientation (Tournier et al., 2004).

AFD is a relative measure of the intra-axonal volume occupied by fibres aligned with a

direction. It is based on the assumption that intra-axonal water is restricted in the radial

direction and the radial DW signal emanating from the intra-axonal compartment is in-

dependent of axonal diameter and hence proportional to the intra-axonal water content.

Figure 2.13 shows (A) Coherently ordered axons within a single imaging voxel. (B) The

perpendicular plane of fibres in A, illustrating the intra-cellular (restricted diffusion)

and extra-cellular compartments. (C) Expected attenuated dMRI signal profile at high

b-values (> 3000s/mm2). The magnitude of the radial dMRI signal is approximately

proportional to the volume of the intracellular compartment (green in B). (D) The am-

plitude of the FOD (Apparent Fibre Density) along a given orientation is proportional

to the magnitude of the dMRI signal in the perpendicular (radial) plane (as shown in

C), and hence to the intra-axonal volume along with the corresponding orientation.
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Figure 2.13: Apparent Fibre Density overview (Raffelt et al., 2012)

2.3.8.2 Fibre-bundle cross section (FC) and Fibre density and cross-section

(FDC) of white matter tracks

While fibre density gives the number of fibre per bundle per voxel, to obtain a more com-

plete measure related to the total number of white matter axons, information from both

within-voxel microscopic fibre density and macroscopic morphology must be combined

(Raffelt et al., 2017). Fibre-bundle cross-section (FC) gives the calibre of a fibre bundle.

It is another property that factors into the bundles total intra-axonal space across its

full cross-sectional extent and hence influence its total capacity to carry information. To

obtain a more comprehensive measure related to the total intra-axonal volume within a

pathway, both Fibre bundle (FD), Fibre cross-section (FC) values need to be taken into

account and ideally be combined. Therefore, FDC= FD X FC.

2.4 Neuronal dynamics

Neurons are the fundamental unit of communication in the nervous system. Neurons

communicate with each other in the neural network using pulse frequency modulation

of spikes or action potentials (Weiss, 1996). The flow of ions in the cell is controlled

by gated ion channels present in neuron cell membrane (Izhikevich, 2007). The main

components of a Neuron are dendrites, soma or nucleus and axon as shown in figure 2.14.

The central processing unit of the neuron is the soma. It produces enzymes, proteins,

Figure 2.14: Anatomy of a Neuron
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and other essential cell chemicals. The receiving unit of a neuron are dendrites that

receive both excitatory and inhibitory synaptic inputs from presynaptic terminals. An

excitatory synaptic input helps to increase the membrane potential and brings it closer

to the threshold membrane potential where an inhibitory synaptic input decreases it.

When the potential across the neuron membrane reaches the threshold potential, an

action potential or spike is generated (Andrew, 2003). The Figure 2.15 shows the de-

scription of an action potential wave: (1) stimulus starts the rapid change in membrane

potential, (2) depolarization: influx of sodium ions, (3) repolarization: sodium channel

inactivation, outflux of potassium ions, (4) hyperpolarization: lowered membrane po-

tential caused by the efflux of potassium ions, closing of the potassium channels, (5)

resting state: membrane potential at resting state and no ions exchange. A single presy-

naptic cell does not possess enough electrical strength to produce an action potential

in a postsynaptic neuron. The integration of many excitatory postsynaptic potentials

(EPSPs) both spatially or temporally, generate an action potential. The axon hillock

which connects the neuron to the axon; has the largest concentration of voltage-gated

ion channels and therefore has the lowest membrane threshold potential (Kandel et al.,

2000). Temporal and spatial inputs are integrated at the axon hillock to generate action

Figure 2.15: An action potential curve

potentials that propagate down the axon to the terminal buttons (Hill and Blagburn,

2001). The myelin sheath in the axon isolates the inside of the neuron from the excita-

tory extracellular fluid. It has a high electrical resistance, which decreases conduction

efficiency and velocity. The action potential generated at the axon hillock passively

decays. The action potential would attenuate to 50% of its peak value in about 20mm

of axonal length if it were not for the Nodes of Ranvier (Weiss, 1996). The Nodes of



Chapter 2 Background and Literature Review 25

Ranvier exposes the axon directly to the extracellular fluid, which contains ions nec-

essary to regenerate an action potential. They are uniformly spaced in an axon. The

Nodes of Ranvier have a large concentration of sodium channels that can be excited once

the action potential reaches them. The myelin sheath and the Nodes of Ranvier work

together to propagate the action potential in a myelinated neuron. It looks as though

the electrical signal is leaping from node to node (Stephanova and Bostock, 1995). This

kind of leaping propagation of the action potential from one node to another is called

saltatory conduction.

2.4.1 Ion channels

The plasma membrane of neuron cells is built up with lipid fat and protein structures.

The complex structure of proteins creates the ion channels across the membrane which

regulates the flow of ions. The main ion channels across the membrane are sodium

and potassium channels. Hodgkin and Huxley in their electric circuit described the

conductance of ion channels to changes in membrane potential using Ohm’s law (V=IR;

V=I/G; V=Voltage measured across the conductor, I=Current through the conductor,

R=Resistance of the conductor, G=Conductance). The conductance across the cell

membrane is the summation of all ion channel conductance. The calculation of the

conductance is accomplished by using an equivalent circuit model using Ohm’s law.

The current Ix where x is the conducting ion is a function of membrane conductance gx,

the voltage Vm, being applied to the membrane and the battery potential Ex.

Ik = gk(VM − Ek) (2.1)

gk = Ik/(Vk − Ek) (2.2)

INa = gNa(VM − ENa) (2.3)

gNa = INa/(VM − ENa) (2.4)

Membrane conductance for sodium(Na) and potassium(K) was calculated as a function

of membrane potential, where both the voltage and current are known.

Conductance of potassium depended on the maximum potassium conductance Gk, and

a gating variable n.

Gk = Gkn
4 (2.5)
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where Gk is known constant. The gating variable’s dependence on voltage and time can

be put into two forms. One such form is dependent on the rate constants αn and βn.

dn

dt
= αn(1− n)− βnn (2.6)

The other form is written in terms of a time constant τn and the final value n∞.

τn
dn

dt
+ n = n∞ (2.7)

n∞ =
αn

(αn + βn)
(2.8)

The time and rate constants for the potassium channel n gate, τn, αn and βn are all

functions of the membrane potential. Hodgkin and Huxley characterize the rate and

time constants empirically using data collected from voltage clamp experiments.

αn =
−0.01(VM + 50)

e−0.1(VM+50) − 1
(2.9)

βn = 0.125e−0.0125(VM+60) (2.10)

τn =
1

αn + βn
(2.11)

The membrane potential VM , is expressed in mV, and the α and β quantities are

expressed in ms−1. Sodium channel conductance is dependent on the maximum sodium

conductance GNa as well as the activation and inactivation gate, m and h respectively

[34].

GNa = GNam
3h (2.12)

The conductance equation for sodium is more complicated and requires two gating vari-

ables. GNa is a measured constant, and the m and h gating variables are both described

using a first-order differential equation. The combined action of m and h variables

controls the sodium channels.

dm

dt
= αm(1−m)− βmm (2.13)

dh

dt
= αh(1− h)− βhh (2.14)

Using a time constant τm, τh and the final values m∞ and h∞

τm
dm

dt
+m = m∞ (2.15)

τh
dh

dt
+ h = h∞ (2.16)
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with

m∞ =
αm

αm + βm
(2.17)

h∞ =
αh

αh + βh
(2.18)

All above are functions of membrane potential.

αm =
−0.1(Vm + 35)

e−0.1(Vm+35) − 1
(2.19)

βm = 4e−
0.0125(Vm+60)

18 (2.20)

τm =
1

αm + βm
(2.21)

αh = 0.07e−0.05(Vm+60) (2.22)

βh =
1

1 + e−0.1(Vm+30)
(2.23)

τh =
1

αh + βh
(2.24)

The m gate increases conduction, and the h gate decreases conduction with the increase

in membrane activation (Weiss, 1996). The leakage channel in a neuron model represents

other conducting ions not represented by the potassium or sodium channels.

2.4.2 Nernst potential or equilibrium potential

The two forces that drive each ion species through the membrane channel are concen-

tration and electric potential gradients. First, the ion diffuses down the concentration

gradient creating positive and negative charges accumulating on the opposite sides of the

membrane surface. This generates an electric potential gradient across the membrane-

called membrane voltage. This membrane voltage slows the diffusion of ions as ions are

attracted to the opposite side and repelled from the same side. This leads to an equi-

librium state where concentration gradient and electric potential gradient exert equal

and opposite forces that counterbalance each other. The value of such an equilibrium

potential depends on the ionic species and is given by the Nernst equation (Izhikevich,

2007):

Ex =
RT

zF
log

coX
ciX

(2.25)

Where cX is the concentration of the ions inside and outside of the cell, T is the tem-

perature of the environment in kelvin (K◦=273.16+C◦), and z is the valence of the ion

(z=1 for Na+ and K+; z = -1 for Cl− ; and z=2 for Ca2+), R is the gas constant in

joules per kelvin per mole (8,315 mJ/K◦.Mol) and F is the Faraday’s constant coulombs

per mole (96,480 coulombs/Mol). Nernst equilibrium potentials in a typical mammalian

neuron are summarized in table 2.1.
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Equilibrium Potentials

Na+ 61mV
K+ -90mV
Cl− -89mV
Ca2+ 136mV

Table 2.1: Nernst equilibrium potentials in a typical mammalian neuron

2.4.3 Resting potentials

Most membranes contain a diversity of channels. The value of the membrane potentials

at which all inward and outward currents balance each other so that net membrane

current is zero corresponds to the resting membrane potential (Izhikevich, 2007). So

the resting membrane potential is the stable state with regards to diffusion and electri-

cal gradients. The Goldman equation can be used to calculate the resting membrane

potential. To write the Goldman equation for a neuron membrane permeable to only

potassium and sodium, the intracellular and extracellular concentrations of the ions are

required, as well the relative permeability of sodium to potassium.

2.4.4 Hodgkin-Huxley neuron model

In 1950, Hodgkin-Huxley performed an experiment on giant squid and derived the equa-

tions for the action potential. The schematic diagram of Hodgkin-huxley model is shown

in Figure 2.16. It is the lipid fat and protein structures that built up the plasma mem-

brane of neuron cell. According to Hodgkin Huxley Model, the semipermeable cell

membrane acts as a capacitor and divides the interior of the cell from the extracellular

liquid. The complex structure of proteins creates the ion channels across the membrane

which regulates the flow of ions inside to outside or vice versa. When an input cur-

rent I(t) is given into the cell, it may add the further charge on the capacitor, or pass

through the channels in the cell membrane. Because of active ion transport through the

cell membrane, the ion concentration in the extracellular liquid is different from that

inside the cell. The Nernst potential generated by these ion concentration differences is

represented by a dc voltage source. Putting the above considerations in a mathematical

equation, equation 2.26 is derived.

I(t) = IC(t) +
∑

kIk(t) (2.26)

where the sum runs over all ion channels. From the definition of a capacity C, if Q is a

charge and u the voltage then C = Q/u, then dQ/dt = Cdu/dt, so the charging current

IC = Cdu/dt. Hence from above equation

C
du

dt
= −

∑
kIk(t) + I(t) (2.27)
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Figure 2.16: Hodgkin Huxley cell equivalent

So u is the voltage across the membrane and
∑

k Ik is the sum of the ionic currents

which pass through the cell membrane (Gerstner et al., 2014). By replacing the ionic

currents in the equation, the total current IM flowing through the membrane is:

IM = CM
dV

dt
+Ik+INa+IL = CM

dV

dt
+GNam

3h(V −VNa)+GKn
4(V −VK)+GL(V −VL)

(2.28)

where V is the membrane potential and CM is the membrane capacitance; IK and INa

are the currents generated by the flow of the sodium and potassium ions through the

channels and IL is a leakage current with VNa, VK and VL the corresponding equilibrium

potentials. GNa , GK , GL are the sodium, potassium and leakage maximum conduc-

tance through the membrane, respectively. The activation and inactivation parameters

of the sodium channels m and h and the activation parameter of the potassium channel

is n; which signified the fractions of open and closed channels:

dm

dt
= αm(1−m)− βmm (2.29)

dh

dt
= αh(1− h)− βhh (2.30)

dn

dt
= αn(1− n)− βnn (2.31)

where αm, βm, αh, βh, αn and βn are the exponentially voltage dependent rate constants

αm, αh and αn determine the rate of ion transfer from outside to inside while βm, βh and

βn determine the transfer in the opposite direction as described by (Hodgkin and Huxley,

1952). The m gate increases conduction, and the h gate decreases conduction with the

increase in membrane activation (Weiss, 1996). The leakage channel in a neuron model

represents other conducting ions not represented by the potassium or sodium channels.

The Table 2.2 describes the values for the maximum ionic conductance, for the leakage

conductance and the corresponding equilibrium (reversal) potentials, as fetched from
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literature (Hodgkin and Huxley, 1952).

Membrane Characteristics Parameters

gNa 120mS/cm2
gK 36mS/cm2
gL 0.3mS/cm2
VNa -115mV
VK 12mV
VL -10.6mV

Table 2.2: Values of maximum ionic conductance, leakage conductance and the equilib-
rium (reversal) potentials

2.4.5 Core conductor theory and cable equation

The physical concept that provides the basis for a cable theory treatment of current and

potential in neuronal core conductors is that: for nerve axons or dendrites, the resistance

to electric current flow across the membrane is much greater than the core resistance and

because of those relative resistances, electric current inside the core conductor tends to

flow parallel to the cylinder axis for a considerable distance before significant fraction can

leak out across the membrane (Rall, 2011). Cable theory in computational neuroscience

was introduced by Professor William Thomson (later known as Lord Kelvin) in 1850

but the importance of cable theory in modelling the behaviour of axons began surfacing

in the 1930s from work done by Cole, Curtis, Hodgkin, Sir Bernard Katz, Rushton,

Tasaki and others. The aim behind cable theory is to provide a mathematical model

to calculate electric current and voltage along passive neurites such as dendrites, axons.

The core conductor model is built upon some assumptions as mentioned here. (1)

The cell membrane is a cylindrical boundary that separates two conductors of electrical

current, the intracellular and extracellular solutions. These conductors are assumed to be

homogenous and ohmic. (2) All electrical variables have cylindrical symmetry. (3) Ohms

law of voltage and current is sufficient to describe the system therefore electromagnetic

effects are considered negligible. (4) Current in the inner and outer conductors flow in

the longitudinal directions only and current through the membrane is through the radial

direction only. (5) At a given longitudinal position the inner and outer conductors are

equipotential. Therefore, the only change in membrane potential is in the longitudinal

direction.

Figure 2.18 shows a neuron’s dendritic membrane where A. shows a sketch of the neuron,

B. shows a cylindrical representation of the dendrite, C. shows an electrical cable model

for this length of the cylinder. Each of the sub-cylinders labelled 1, 2, and 3 is assumed to

be an isopotential patch of membrane. The membrane of each sub-cylinder is represented

by a parallel combination of membrane capacitance cm∆x and an unspecified circuit for
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Figure 2.17: Cable model of axon (Johnston and Wu, 1994)

the ionic conductance in the membrane, represented by a box. The total current through

a membrane patch is Im(x)∆x. Note that the membrane current varies with distance x

down the cylinder. Im and cm are membrane current and capacitance per unit length of

the cylinder so that multiplying by ∆x gives the total current and capacitance in a sub-

cylinder. The membrane of each sub-cylinder is represented by a parallel combination

of membrane capacitance cm∆x and an unspecified circuit for the ionic conductance in

the membrane, represented by a box. The total current through a membrane patch is

Im(x)x.

The membrane current is denoted by Im.

The capacitance per unit length of cylinder is Cm.

The membrane potentials inside the cell Vi(x) and outside the cell Ve(x).

The potentials vary with distance down the cylinder. The membrane potential is Vi(x)−
Ve(x)

The total current flowing down the interior of the cylinder is Ii(x)

The total current flowing parallel to the cylinder in the extracellular space Iex

The resistance of the solutions inside the cylinder between the center of one sub-cylinder

and the center of the next is ri∆x The resistance in the extracellular space between the

center of two sub-cylinders is re∆x The resistances per unit length of cylinder are ri and

re.

Ohms law for current flow in the intracellular and extracellular spaces gives:

Vi(x)− Vi(x+ ∆x) = Ii(x)ri∆xVe(x)− Ve(x+ ∆x) = Ie(x)re∆x (2.32)

By rearranging and taking the limit as ∆x goes to 0,

lim
Vi(x+ ∆x)− Vi(x)

∆x
=
δVi
δx

= −riIi(x) (2.33)

δVe
δx

= −reIe(x) (2.34)
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Figure 2.18: A Sketch of a portion of the dendritic tree of a neuron emerging from
the soma at right. B Portion of a secondary dendrite divided into three sub-cylinders.
The axial current Ii and the membrane current Im are shown next to the arrows. C

Discrete electrical model for the three sub-cylinders.

By the law of conservation, current at the intracellular and extracellular nodes gives:

Ii(x−∆x)−Ii(x) = Im(x)∆xor
δli
δx

= −Im(x)Ie(x−∆x)−Ie(x) = −Im(x)∆xor
δle
δx

= Im(x)

(2.35)

Defining the membrane potential as V = Vi − Ve
It allows the membrane current Im to be written as the sum of the ionic current

Iion(x, V, t) through the box and the current through the membrane capacitance:

Im(x)∆x = Iion(x, V, t)∆x+ Cm(x)∆x
δV

δt
(2.36)

Im, Iion are the ionic current per unit length of membrane cylinder.
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Differentiating and subtracting 2.33 and substituting 2.34 allows the following relation-

ship between membrane potential and membrane current to be written:

δ2V

δx2
=
δ2(Vi − Ve)

δx2
= −ri

δli
δx

+ re
δle
δx

= (ri + re)Im (2.37)

Substituting 2.36 gives the nonlinear cable equation:

1

ri + re

δ2V

δx2
= Cm

δV

δx
+ Iion (2.38)

2.38 models the distribution of membrane potential in a membrane cylinder.

2.4.6 Axonal functions

Figure 2.19: Summary of axonal functions (Debanne et al., 2011)

Figure 2.19 depicts the summary of axonal functions (Debanne et al., 2011). A pyramidal

neuron is schematized with its different compartments. Four major functions of the axon

are illustrated (i.e., spike initiation, spike propagation, excitation release coupling, and

integration). A spike initiates in the axon initial segment (AIS) and propagates towards
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the terminal where the neurotransmitter is released. In addition, electrical signals gen-

erated in the somatodendritic compartment are integrated along the axon to influence

spike duration and neurotransmitter release (green arrow). The other important part of

the axon is myelin which makes the information transmission faster through the axon.

It is a concentrically laminated membrane structure surrounding an axon around which

lamellae (or cellular protrusions) repeat radially at a period of about 12 nm (Waxman,

1995). Different glial cell types make myelin in a different manner, depending on the lo-

cation. In PNS nerves Schwann cells make myelin, and in CNS oligodendrocytes. Where

in the PNS, one Schwann cell forms a single myelin sheath, in the CNS, the oligoden-

drocyte sends cell processes to myelinate multiple segments on many axons. The basic

myelin sheath arrangement and the electrophysiological characteristics are essentially

the same, though there are several molecular or morphological differences between nerve

fibres in the PNS and CNS (Susuki, 2010). It has been identified that axonal signalling

regulates myelination in the PNS axon, but it was unclear how myelination is regulated

in the CNS (Susuki, 2010). But, now there are more kinds of literature available on

how the activity is related to myelination. Kaiser (2020) in his book has described that

concerning the role of neural activity, optogenetic stimulation of projection neurons of

the mouse motor cortex increases proliferation of oligodendrocyte progenitor cells and

differentiation of oligodendrocytes in both cortex and subcortical white matter. As a

result, the thickness of the myelin sheath is increased along the whole length of axons

of stimulated neurons, not just near the stimulation site (Gibson et al., 2014). Such

an interplay between activation and myelination also seems to occur in humans in both

adults and children. Diffusion imaging studies showed changed fractional anisotropy of

language-related fibre tracts in bilingual compared to monolingual children (Mohades

et al., 2012). Similar changes were observed for adults who learned Chinese as a second

language (Schlegel et al., 2012; Hosoda et al., 2013), suggesting that activity-related

changes in myelination can occur throughout the life span right into adulthood. Fibre

tract changes were also observed after learning new motor skills such as piano playing

or juggling (Bengtsson et al., 2005; Scholz et al., 2009).

About myelination, it is not that all axons are myelinated but in the CNS, almost

all axons with diameters greater than 0.2 m are myelinated. The ratio between axon

diameter and that of the total nerve fibre (axon and myelin) is 0.6-0.7, a ratio that is well

maintained regardless of the axon calibre. Between two adjacent myelin segments, there

are approximately 1µm long gaps called nodes of Ranvier where the axon is exposed

to the extracellular space. Suminaite et al. (2019) illustrated emerging evidence that

the myelin sheath itself has rich physiology capable of influencing axonal physiology and

local adaptive mechanisms might influence sheath length and in turn conduction. In

past, in-vivo voltage-clamp experiments reported filter like characteristics FMN axon

(Schumann et al., 1983; Nonner et al., 1978).
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2.5 Saltatory conduction in a myelinated axon

Since an axon can be myelinated or unmyelinated, there are two ways the action poten-

tial propagates through the axon: saltatory conduction where nerve signal leaps through

the myelinated axon, and continuous conduction for unmyelinated axon. Saltatory con-

duction of the action potential in the myelin fibre is well studied. This process is outlined

as the charge passively spreading to the next node of Ranvier to depolarize it to a thresh-

old which will then trigger an action potential in this region which will then passively

spread to the next node and so on.

Saltatory conduction provides one advantage over conduction that occurs along an axon

without myelin sheaths. This is that the increased speed afforded by this mode of

conduction assures faster interaction between neurons. On the other hand, depending

on the average firing rate of the neuron, calculations show that the energetic cost of

maintaining the resting potential of oligodendrocytes can outweigh the energy savings

of action potentials. So, axon myelination does not necessarily save energy (Harris and

Attwell (2012)).

2.6 Ephaptic coupling between myelinated axons

Ephaptic coupling is a form of communication within the nervous system different from

direct communications such as electrical synapses and chemical synapses. Ephaptic

coupling refers to the coupling of adjacent (touching) nerve fibres either caused by the

exchange of ions between the cells, or as a result of local electric fields. Ephaptic coupling

between the two adjacent nerves is not sufficient to stimulate an action potential in the

resting nerve but it can influence the synchronization and timing of action potential

firing in neurons. Myelination is thought to inhibit ephaptic interactions.

2.6.1 Effect of coupling on excitation/inhibition of action potential in

neighbouring neurons

Arvanitaki (1942) first introduce the term ’ephapse’ to describe the coupling and to

distinguish it from synaptic communications in the neuron(s). According to Katz and

Schmitt (1940) ephaptic coupling between the two adjacent nerves is insufficient to

stimulate an action potential in the resting nerve. Katz and Schmitt (1940) in their

experiment, demonstrated that maximum depolarization in neighbouring nerve was ap-

proximately 20% of the threshold potential. Ramon and Moore (1978) in their ex-

periment demonstrated that by modulating conditions such as increasing extracellular

resistance by changing the medium or by lowering threshold voltage by increasing cal-

cium concentration in the cellular fluid, action potential was possible to generate in



36 Chapter 2 Background and Literature Review

the neighbouring nerve. According to some study ephaptic coupling can inhibit action

potential propagation in the neighbouring neuron.

2.6.2 Effect of coupling on the propagation of action potential in syn-

chronized neurons

Research has shown that ephaptic coupling has an effect on synchronization and timing

of action potentials in neurons (Binczak et al., 2001; Scott, 1975). In the adjacent fibres

if simultaneous stimulation is performed the impulse slows down while propagating to

the next node. This happens because both fibres are limited to exchange ions solely

with the interstitial fluid (increasing the resistance of the nerve). Slightly offset impulses

(conduction velocities differing by less than 10%) are able to exchange ions constructively

and the action potentials propagate slightly out of phase at the same velocity.

Shneider and Pekker (2015) in their work, have shown a mechanism similar to saltatory

conduction for modelling coupling effect. They calculated the dynamics of current and

voltage near to the vicinity of the node and scaled, up to what distance coupling can be

possible. More recent research, however, has focused on the more general case of electric

fields that affect a variety of neurons. It has been observed that local field potentials in

cortical neurons can serve to synchronize neuronal activity (Anastassiou et al., 2011)

2.7 Axon bundle physiology

Axons are the slender, electrically excitable, cable-like extensions of nerve cells that

form the nerves and tracts that relay information between neurons within the nervous

system and between neurons and peripheral target tissues in highly regulated manners.

In the central and peripheral nervous systems, most axons over a critical diameter are

enwrapped by myelin, which reduces internodal membrane capacitance and facilitates

rapid conduction of electrical impulses. Myelin which covers the vast majority of the

axonal surface, influencing the axon’s physical shape, the localisation of molecules on

its membrane and the composition of the extracellular fluid (in the periaxonal space)

that immerses it, is produced by oligodendrocytes and Schwann cells. In the CNS,

myelinated axons are densely packed within white matter and the myelin sheaths of

neighbouring fibres often directly touch as shown in top-left in Figure. 2.20. In PNS,

the axons are bundled together into groups called fascicles, and each fascicle is wrapped

in a layer of connective tissue called the perineurium as shown in bottom-left in Figure.

2.20. Top-right of Figure. 2.20 shows one cell in the CNS bundle and bottom-right of

Figure. 2.20 shows one cell in the PNS bundle. In PNS, each axon is surrounded by a

delicate endoneurium layer. A tough fibrous sheath called epineurium encloses all the

fascicles to form the nerve. Here, we have used a number of different axon types both
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from PNS and CNS axons to run the study as shown in Table 2.3. In Table 2.3, we

also have shown the different parameter values such as inner diameter (DNR), outer

diameter (DIN ) and myelin length (LIN ), of the different axon types that we have used

in this study. A schematic representation of different parameters of an axon is shown

in Figure 2.21. Among PNS axons, here we have used data of Group A nerve fibre,

which are found in both motor and sensory pathways. The Group A nerve fibres are

again classified into four groups (I, II, III, IV) based on their physical features and signal

conduction properties. We have used data of myelinated Group A nerve fibre I, II, III

in our experiments. Then, in CNS axons we have used data of auditory nerve fibres

SBC, GBCMed and GBCLat axons. The PNS axons data were taken from Tsubo and

Kurokawa (2018). The CNS axons data were taken from Ford et al. (2015). The FMN

data were taken from Binczak et al. (2001).

Figure 2.20: Ultrastructure of myelinated axons in the CNS and PNS
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Figure 2.21: Schematic figure of an axon

2.8 Conclusions

The study of literature on myelinated axon shows that signal propagation through myeli-

nated axon were studied mainly in time scale. Functional connectivity of the brain is

defined by the phase correlation of neural signal in different frequency band. Our hy-

pothesis is that studying the filter like properties of passing signal of certain frequency

range while dampens the other frequency range depending upon its geometry, can cor-

relates the disruptions of functional connectivity to underneath structural connectivity.

Hence, we will be modelling phase-frequency characteristic of signal prorogation through

single myelinated axon and then bundle of axons in our work.
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Table 2.3: Different axon types and their parameter values; Inner diameter is the intern-
ode axon diameter; Outer diameter is the internodal myelin diameter; Myelin length is
the length of myelinated area between two consecutive nodes as shown in Figure 2.21





Chapter 3

Automated Tool development for

Parcellation and Extraction of

Structural Connectome and its

Geometry

Brain connectivity is pivotal for neural function. Studies on brain connectivity have

revealed that even if two brain areas are structurally connected they may not be func-

tionally connected and vice versa (Honey et al., 2007; Hagmann et al., 2008; Honey

et al., 2009; Rubinov et al., 2009). This signifies that there is selective propagation

of the signal through the underlying physical connection of the brain. The functional

connectivity of the brain is measured by phase correlation in time series signals between

two areas of the brain. So characterizing the phase and frequency response of structural

connectivity of the brain will lead to understanding the dynamics of signal propagation

through a physical connection. To characterize the physical connection of the brain, we

are analysing the MRI data. MRI is a medical imaging technique to generate images

of the anatomy and the physiological process of the brain. In this chapter, we will be

developing a toolchain for

• parcellating cortical surface into non-anatomical equal sized areas,

• constructing structural connectome, the structural connectivity,

• extracting geometrical properties of the axon bundle between two ROIs.
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Chapter 3 Automated Tool development for Parcellation and Extraction of Structural

Connectome and its Geometry

3.1 Brain parcellation

Brain connectivity is about the integration of spatially segregated brain regions. So

delineating and defining the spatially segregated brain regions as nodes of the network

is the first step of brain connectivity analysis (Rubinov and Sporns, 2010). Cortical

parcellation serves the purpose by parcellation of the cortical and subcortical layers of

the cortex in terms of some reference atlas and assigning to them a neuroanatomical label

either automatically or manually resulting in complete labelling of cortical sulci and gyri

(Fischl et al., 2004). The most commonly used method of defining network nodes is to

register the brain to a standardized anatomical atlas based on the Brodmann areas. But

this process of parcellation has limitations in many cases such as (1) developing brain

of neonates, who have immature sulcation, (2) cases of cerebral reorganization after

brain damage (neuroplasticity), (3) cases where young children undergoing treatment of

intractable epilepsy, cortical plasticity and change of connectivity allow the contralateral

hemisphere to assume the functions of the lost hemisphere without significant neurologic

deficits, and (4) in the case of normal anatomy of the adult brain, where different

subjects have different dominant hemispheres. In these cases, a non-anatomical equal-

area cortical parcellation is more appropriate than anatomical parcellation. Typically

Freesurfer (Fischl, 2012) is used for parcellation and reconstruction of brain surface

from MRI images. But Freesurfer does not support parcellation of the cortical surface

into non-anatomical equal-sized areas. Here we have developed a new methodology

to perform parcellation of the cortical surface into equal-sized areas using Freesurfer

as a tool. The structural MRI data, obtained from the human connectome databank

(db.humanconnectome.org) has been used here.

3.1.1 Performing cortical surface partitioning using EQSP: Recursive

Equal Zone Sphere Partitioning

The recursive zonal equal-area sphere partitioning (EQSP) given by Leopardi (2006)

divides a spherical surface into equal-sized areas. We have used the EQSP algorithm

to partition each hemisphere into equal-sized areas and make new atlas for cortical

parcellation. While reconstructing cortical surface from MRI image Freesurfer turns each

hemisphere into an inflated spherical surface. The spherically inflated original surface

was used to perform the partitioning. The details of generating this spherically inflated

surface using Freesurfer (Fischl, 2012) surface reconstruction pipeline are described in

section Section 3.1.2. Each hemisphere was inflated to a spherical surface and then

was used for partitioning. Here the cortical surface was parcellated into 80 equal nodes

where 80 is an arbitrary number. The algorithm was designed in such a way that users

can choose the number of nodes for their parcellation process. The steps to perform the

partitioning are described below:
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• First the vertex coordinates of the entire surface points of the inflated spherical

surface of the hemisphere were obtained from Freesurfer pipeline.

• Next an array in Cartesian coordinates representing the ‘centre’ points of an EQ

partition of the sphere into 40 regions was created using the EQSP algorithm.

• Then the centre points were scaled to the original surface. The scaling factor

was obtained manually by comparing the original surface coordinates with the uni

sphere surface coordinates. Here the scaling factor obtained was 100. The centre

point of each partitioned region is shown in Figure 3.1.

Figure 3.1: Centre point of each partitioned regions

• For each of the surface points the nearest centre point was found and was assigned

to a label file that is defined for that centre point. Thus all the surface points of

the cortical surface were assigned to the nearest centre point and listed in label

files.

• Next, these label files were saved into a computer disk. Thus for each parcellated

area, a label file was created. Two sets of label files were created as per parcellated

areas for each hemisphere. A label is an integer value, or a name (depending on

context) which can be associated with a vertex of a surface mesh, or with a voxel

of an MRI volume, to indicate that it belongs to some region of interest.

• Next, all label files are put together to create the annotation file for each hemi-

sphere following the steps of surface reconstruction in Freesurfer. The generated

annotation files for left and right hemisphere is shown in Figure 3.2.

• Next cortical parcellation atlas file was generated using a probabilistic information

algorithm given by Freesurfer by utilizing the annotated subjects.
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Connectome and its Geometry

Figure 3.2: The Annotation files of Left Hemisphere and Right Hemisphere

Thus the two atlas files leftaparc.gcs and rightaparc.gcs were generated to be used in

the surface reconstruction pipeline later for creating parcellated and segmented brain

surface. The atlas file in Freesurfer is saved with .gcs extension.

3.1.2 Reconstructing the cortical surface using equal zone cortical sur-

face partitioning atlas

FreeSurfer (Fischl, 2012) provides a full processing pipeline for structural MRI data,

which involves: Skull stripping, B1 bias field correction (Bias field signal is a low-

frequency and very smooth signal that corrupts MRI images ), gray-white matter seg-

mentation, reconstruction of gray-white boundary surface and pial surface, Labeling of

regions on the cortical surface and sub-cortical brain structures, registration of the cor-

tical surface of an individual with an atlas. But it can also be grouped into three steps

by using appropriate options. Here the whole process was performed in three steps.

• First, the main T1 MRI image is processed to correct errors that occur in the

image due to motion, intensity non-uniformity and intensity fluctuation. Then the

image is processed to remove the skull.

• The major steps are done in next step are segmentation of cortical surface, separa-

tion of white matter surface, cutting of midbrain from the cerebrum, generation of

left and right hemisphere generate the original surface, inflating the white surface,
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Figure 3.3: Segmented Brain Volume and White/Pial surfaces

transforming it to a spherical surface, generating pial surface (the surface rep-

resenting the boundary between grey matter and cerebrospinal fluid) and white

surface.

• In this step, inflate the Orig surface into a sphere. This sphere surface was used

in the equal parcellation process to create an equal parcellation atlas as described

in section 3.1.1. Generate parcellated cortical surface mapping the leftaparc.gcs

and rightaparc.gcs atlas files created in equal parcellation steps. Maps the cortical

labels from the cortical parcellation (aparc) to the segmentation volume (aseg).

Generate the final parcellated and segmented image.

3.1.3 Results and validation of the model

3.1.3.1 Viewing volumes

View of the output volumes such as white matter; surfaces such as white and sub-cortical

segmentation of is shown in Figure 3.3. These are the axial, coronal and sagittal views

of the segmented volumes. The blue line is the boundary between white matter and

gray matter and defines the white surface. It is used to calculate the total white matter

volume. The red line is the boundary between the cortical gray matter volume and CSF

and is defined as the pial surface. Figure 3.4(a) shows the complete segmentation of

the subcortical structures. As shown in the image, the red area is the cerebral cortex,

the gray area is the white matter, the green area is the thalamus, the yellow area is the

hippocampus, and the pink area is the putamen. The complete list of segmented areas

is given in the table 3.4(b).
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(a) Segmented areas.

(b) Segmented areas colour code.

Figure 3.4: Segmented cortical surface and their colour code

3.1.3.2 Viewing surfaces in 3D

Pial Surface: The volume shown in the image Figure 3.5, is the pial surface. The

green regions are gyri and red regions are sulci. In this surface the sulci are mostly

hidden.

White Surface: The surface shown in the image Figure 3.6, is the white surface. The

white surface shows the boundary between white matter and gray matter. Here sulci is

better visible.
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Figure 3.5: The pial surface

Figure 3.6: The white surface

Inflated Surface: The surface shown in the image Figure 3.7, is the curvature of the

inflated surface. In the inflated surface the sulci is completely visible.

Cortical Parcellation: The surface shown in the image Figure 3.8, is the 3D view

(sagittal view) of the parcellated cortical surface. The image shown in Figure 3.9 is

the 2D (axial, sagittal and coronal) views of the parcellated and segmented image.

Each parcellated node has been represented with a unique colour code as defined in the

colorlookup table.

The table 3.10 displays the statistical values such as the number of vertexes and surface
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Figure 3.7: The inflated surface

area for each parcellated node. In the statistics table, the number of vertices is unitless

and the surf area of parcellated nodes are in mm2.

Figure 3.8: The parcellated cortical surface

So, in summary in this work, each surface point of an inflated spherical surface of

each hemisphere has been assigned to an equally divided area of a sphere and saved as

label files. Then the Label files were put together to generate annotation files for the

surface. Then from the annotation files, the atlas files were created for left and right

hemispheres. The output statistics of the parcellated segmented image shows that all

parcellated areas from atlas files have been successfully mapped to the cortical surface.

Thus a novel approach was designed to reconstruct a surface from an MRI image by

parcellating the cortical surface into equal-sized areas using the Freesurfer tool.
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Figure 3.9: The parcellated segmented surface

Figure 3.10: Left and right hemisphere parcellation statistics
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3.2 Structural connectome construction

The neuroimaging data of diffusional-weighted MRI reveals the white matter connec-

tivity of the human brain. The structural MRI and diffusional MRI data both are

necessary for structural connectome construction and were obtained here from Human

Connectome Project (HCP) databank. The main two steps of DW MRI image pro-

cessing are denoising and distortion correction. The image denoising is performed first

because motion and distortion correction during their smoothing and interpolation steps

can not alter the noise characteristics and produce a low quality visual and statistical

result. Then the image is corrected for distortion such as eddy current, motion and

susceptibility induced distortion. The diffusional MRI data obtained from the human

connectome databank is already preprocessed hence didn’t need to perform the denoising

and distortion correction here.

3.2.1 Structural Image processing

The parcellated structural image is used here to construct the nodes of the connectome

matrix.

• First the values of the parcellated node in the image were modified so that numbers

in the image correspond to rows and columns of the connectome. The parcellated

structural MRI image is shown in Figure 3.11.

• Then tissues of the structural image file were segmented into five tissue types

(cortical gray matter, sub-cortical gray matter, white matter, CSF, pathological

tissue) for applying the tractography process. The five tissue types act as anatom-

ical prior and define the propagation and termination conditions for white matter

tracts.

3.2.2 Diffusional Image processing

• In diffusion image processing, first the response function was estimated. This is

the signal value of a voxel containing a single, coherently-oriented fibre bundle and

it is used as the kernel for the deconvolution step.

• Then constrained spherical deconvolution was performed to generate an image

with three volumes, corresponding to the tissue densities of CSF, gray matter and

white matter. This is displayed in mrview as an RGB image with CSF as red, GM

as green and WM as blue as shown in Figure 3.12.

• Then anatomically constrained tractography was performed to generate the initial

tracts as shown in Figure 3.13.
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Figure 3.11: Parcellated Image

• Then the tracts were filtered using the Spherical-deconvolution Informed Filtering

of Tractograms (SIFT) algorithm which was applied to reduce the overall tracts

count and get more biologically meaningful estimates of structural connection den-

sity.

3.2.3 Structural Connectome construction

The connectome matrix was built using the generated white matter tracks and the

parcellated nodes. Here we are using a novel approach to use the equal-sized parcellated

nodes constructed in 3.1.2. The nodes of the connectome matrix are the parcellated

ROIs and the values of the matrix are the white matter connectivity strengths among

the ROIs. A toolchain has been developed in python that can take a set of subjects in

a group as input and generate the set of connectome matrix as output. The flowgram

of the whole process of structural connectome construction is shown in Figure 3.14.
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Figure 3.12: Fibre Oriented Distribution in voxels

3.2.4 Graph Theory analysis:

The graph theory measures are calculated on the constructed structural connectome

matrix to quantify the properties of the structural network. To calculate the network

measures, we integrate Matlab based Brain connectivity toolbox (brain-connectivity-

toolbox.net) into our toolchain as the final steps of processing.

3.2.5 Results and validation of tool

Data Acquisition: A single-subject MRI data is obtained from WU-Minn the Human

Connectome Project (HCP) database at http://db.humanconnectome.org. The charac-

teristics of the subject are as follows: Subject ID: 100307; Gender: Female; aged 26-30;

Female, Accession ID: ConnectomeDB S00230.

Cortical Parcellation: We parcellate the cortical surface into N = 80 equal-sized

areas where each of the hemispheres are parcellated into 40 equal regions. We arrange

the parcellated areas of each hemisphere in such a way that the symmetry of the left

and right hemispheres is maintained. In Figure 3.9, we show the axial view of generated

parcellated segmented brain image used as nodes in graph theory analysis.
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Figure 3.13: The Generated Tracks

Structural Connectome Extraction: From diffusional MRI data for each voxel of

white matter fibre oriented distribution (FOD) values are calculated. Then following an

iterative algorithm for each voxel, the convoluted fibre oriented distribution is traced to

generate the tracks. Thus, 1 million tracks are generated. Then the tracks are filtered to

select 0.8 million more biologically plausible tracks. The constructed structural connec-

tome is shown in Figure 3.15, where nodes are the parcellated ROIs and edges are the

streamline count of white matter tracts extracted. In Figure 3.16, we show the matrix

of the structural connectome developed from white matter tracks and parcellated brain

image. The light blue, green and yellow regions are where connectivity strength is high.

Graph Theory Measures : Table 3.1 shows the values of density, characteristic path

length (CPL), small world index (SWI), transitivity, assortativity of the structural con-

nectivity network; which is of the form of a weighted undirected graph; constructed from

extracted white matter tracts and parcellated ROIs. The streamline count is used as

the connectivity metric in the network, hence the weight of the network is the stream-

line count. Fig. 3.17 shows the graphical representations of the degree distribution,

community structure indices, betweenness centrality and clustering coefficients of the

structural brain connectivity. The optimal community structure subdivides the network

into non-overlapping groups of nodes that maximises the number of within-group edges
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Figure 3.14: Connectome generation steps

and minimizes the number of between-group edges. The modularity is the degree to

which the network may be subdivided into such clearly delineated groups, and here
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Figure 3.15: The Structural Connectome constructed using the equal sized parcellated
nodes and white matter streamlines.

Figure 3.16: The structural connectivity strength among the equal sized ROI-to-ROI.

Metrics Density CPL SWI Transitivity Assortivity Modularity

Values 0.5117 1.1297 10.69 0.7783 -0.1191 0.553

Table 3.1: Graph theory measures

the value is 0.553 as shown in Table 3.1. These measures are useful for comparing or

studying brain connectivity networks.

3.2.6 Conclusion

In this section, the diffusion MRI data were processed to extract white matter tracts.

By using the equal-sized brain ROIs generated in the previous section and extracted



56
Chapter 3 Automated Tool development for Parcellation and Extraction of Structural

Connectome and its Geometry

Figure 3.17: The graphical representations of structural network measures

white matter tracts the structural connectivity of the brain was obtained in form of a

’Connectome’ matrix.

3.3 Geometrical properties estimation of axon bundles

Diffusion MRI (dMRI) is the most popular method for characterizing the white matter

microstructure. The displacement of water molecules during diffusion encoding helps

to characterize and quantify the underlying cellular structure (Hagmann et al., 2007;

Jelescu and Budde, 2017).

Based on the kinds of literature (Raffelt et al., 2017, 2012; Assaf et al., 2008); measuring

fibre density (FD) is the most popular method for quantifying white matter tracts. Since

the intracellular volume of axons within a tract is influenced by a number of axons, the

measure of fibre density (FD) is basically the measure of intracellular volume. So in

this section, we are extracting measures such as FD of white matter track by processing

diffusion-weighted MRI (DWI) data to use it for modelling our circuit. It has been

observed that a measure of FD alone cannot fully quantify the white matter track,
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because not only the number of axons but a change of axon diameter can also influence

the intra-axonal volume (Raffelt et al., 2017). So measuring the fibre bundle cross-

section (FC) is also an integral part to quantify white matter tracks. Here, we are

processing diffusion MRI data and extracting quantifying measures such as FD, FC

and FDC=FD*FC of white matter tracks which can be called geometrical properties of

the bunch of axons. The diffusion MRI data from the databank of Human Connectome

Project (HCP) https://db.humanconnectome.org has been downloaded and used here.

The open source software Mrtrix3 https://github.com/MRtrix3/) has been used to

process the diffusion data to extract the measures of white matter tracks.

3.3.1 Computing Fibre Density (FD) and Fibre Cross-section (FC)

and Fibre Density Cross-ection(FDC) of white matter tracts be-

tween two ROIs

We have performed the following steps to compute Fibre Desnsity (FD), Fibre Cross-

section (FC) and Fibre Density Cross-section (FDC) values from white matter tracts:

First, the diffusion MRI data were processed to remove noise and artefacts such as eddy

current distortion, motion distortion and susceptibility-induced distortion to extract

clean data. The DWI volumes often have a non-negligible bias field, mostly due to

high-density receiver coils. If it is left uncorrected, it can be incorrectly interpreted

as a spatially varying fibre density. Therefore bias field correction is highly required.

The low-frequency intensity inhomogeneities were eliminated by applying a bias field

correction algorithm. A Group average response function can be used as the unit of

the final apparent fibre density metric. So this was calculated by first estimating a

response function per subject, then averaging them. To increase anatomical contrast

and improve downstream template building, registration, tractography and statistics,

the diffusion data was upsampled. Fibre orientation distribution (FOD) estimation

(Tournier et al., 2007) basically determining orientations of fibre bundles in a single

voxel. It was computed by performing Constrained Spherical Deconvolution (CSD)

(Tournier et al., 2007) method using the group average response function. Then each

FOD lobe in the FOD images was segmented to identify the number and orientation of

fixels in each voxel. The output also contains the apparent fibre density (AFD) (Raffelt

et al., 2012) value per fixel (estimated as the FOD lobe integral): (Smith et al., 2013) to

estimate fixels and their AFD. Next fixel orientations were reoriented, subject fixels were

assigned to template fixels and fibre cross-section (FC) metric and fibre density (FD) and

cross-section (FDC) were computed on the fixel. Then whole-brain fibre tractography

was performed to extract white matter tracts from the FOD template and tractography

biases were reduced by performing SIFT (Smith et al., 2013) algorithm. Tracts were

then mapped to the parcellated image to generate the connectome matrix for the entire

brain. Next, streamlines are extracted based on their node assignment to parcellated

https://db.humanconnectome.org
https://github.com/MRtrix3/)
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nodes. Next, the list of streamlines connecting two brain nodes was extracted from the

connectome. The extracted streamlines are then mapped to the fixel data image files

to link the measured metrics (FD/FC/FDC) to the tracts. Earlier, the FD, FC and

FDC values were computed on the fixel images. Next, track scalar files (tsf files) are

generated by mapping fixel values to streamline points, saving them in a tsf file. Finally,

the track scalar files were visualised using the tractography tool in MRview. The fibre

tracts are the one that connect two brain regions and streamlines are the estimates of

the underlying white matter tracts which are reconstructed by Diffusion Tensor Imaging

(DTI). All these output files are accessible from Matlab and values can be used for

computation.

The different steps and the intermediate outputs of computing fibre density (FD) values

from diffusion MRI data have been shown in a flowchart form in Figure 3.18.

Figure 3.18: Flow chart for computing FD values

3.3.2 Results and validation of tool

Here we are showing step by step the various outputs that were obtained during the

geometry extraction process

• The first output is the total number of white matter tracks in the brain from

diffusional MRI data. Figure 3.19(a) shows the white matter tracts for the whole

brain that was obtained in our experiment. Also a text file was generated where
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there is one row for each streamline, and each row contains a list of numbers

corresponding to the parcels to which that streamline was assigned.

(a) 2 million white matter tracks were generated (b) Tracts between left and right superiorfrontal

• Next, the streamlines are extracted from the tractogram based on their assignment

to parcellated nodes. The text file that was generated earlier containing streamlines

and their assigned nodes is used here to extract the streamlines from tractograms.

The streamlines between brain regions cortex left superior frontal and cortex right

superior frontal, have been extracted from whole-brain tractography and shown in

Figure 3.19(b). The number of streamlines connecting these two brain regions is

4175. The total number of streamlines connected between these two regions may

be higher as there may be loss of streamlines during the reconstruction process.

But these are the estimated streamlines that are solely connecting these two brain

regions.

(c) Length of the tracts between left and right superior-
frontal

(d) Statistics values tract length
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(e) FD values (f) FC values

(g) FDC values in voxels (h) FD and FC values in the tracts

Figure 3.19: Step by step generation of fixel based analysis results while extracting
geometrical metrices of fibre tracts

• Next we calculate the fibre length (FL) value of all the streamlines between two

brain ROIs as shown in Figure 3.19(c). We also calculated the statistic values such

as mean,mode,std on the length of streamlines as shown in the Figure 3.19(d).

• Next, we mapped the streamlines to the fixel data image files to link the measured

metrics (FD/FC/FDC) to the tracts. Then we extracted the FD in a fibre bundle

by following the steps of fixel based analysis as mentioned before. Figure 3.19(e)

shows the value of fibre density of a fibre bundle in a voxel. As shown in the figure

the value of fibre density(FD) at position 19.5, -8.83, 14.13 in voxel [84 89 83] is

1.83e+06.
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• Next, we extracted the fibre bundle calibre, internal diameter of fibre tract of white

matter from fixel images obtained from tracks. Figure 3.19(f) shows the value of

cross section of a fibre bundle in position at position 19.5, -8.83, 14.13 in voxel [84

89 83] is 1.83e+06.

• Also we obtained the value of fibre density cross-section by multiplying FD and

FC for the tracks. Figure 3.19(g) shows the value of fibre density(FDC) at position

19.5, -8.83, 14.13 in voxel [84 89 83] is 3.35e+12 which is basically FD*FC.

• We are also able to view the FD/FC/FDC values of a particular tract. The

Figure 3.19(h) shows the fibre density (FD) and fibre crosssection (FC) values

over the extracted tract.

3.4 Discussion

In this chapter, first, we processed the structural MRI image and generated parcellated

segmented cortical surface consists of equal-sized brain areas. Typically Freesurfer is

used for parcellation of cortical surface anatomical areas based on Brodmann atlas. Us-

ing our methodology, we are now able to perform non-anatomical equal-area parcellation

of the cortical surface using Freesurfer, which helps to process the subjects with neuro-

plasticity anomalies or adults brains with different dominant areas. Next, we processed

the DWI-MRI data and extracted white matter tracts of the whole brain. By using the

extracted white matter tracts and defined equal-sized brain ROIs we have defined the

structural connectivity of the brain in form of a structural connectome matrix. The

nodes of the matrix are equal-sized non-anatomical brain ROIs and the edges between

the nodes are white matter counts between them. We performed graph theory analysis

on the connectome matrix and extracted different network matrices to determine the

functional segregation and integration of the brain. Next, we processed the streamlines

data generated from the tractogram to calculate FD, FC and FDC values fibre bundle

connecting the equal-sized areas from the cortical surface. Thus we extracted geometri-

cal metrices of white matter tracts of the brain where the cortical surface is parcellated

into equal-sized non-anatomical areas.

3.5 Conclusion

In this work, we present a toolchain that process structural and diffusional MRI data

and calculate graph theory measures for quantifying the structural connectivity based

on equal area parcellation to dene brain ROIs. Our tool is fully automated and does

not need separate intervention at its different processing stages. Being based on equal

parcellation, the construction of structural connectomes can be customized based on
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user need making it available for structural connection analysis for neonates as well

as brain injury cases. The entire toolchain has been validated with HCP data which

showed correct working and its ease of use. Then, we also perform fixel based analysis

and extracted geometrical features such as FD, FC and FDC of the white matter tracts

connecting non-anatomical equal-sized areas of the brain. The main goal of the thesis is

to define the phase-frequency characteristics of the structural connectivity of the brain so

that a correlation between functional and structural connectivity can be established. A

circuit based computational approach has been taken to model the structural connection

between two ROIs. Here in this chapter, we have extracted the value of the parameters

from MRI data that will be used to model the structural connections between two brain

ROIs.



Chapter 4

Circuit Model for analysing

Signal Propagation Dynamics in

Single Myelinated Axon

4.1 Introduction

Functional brain connectivity is fundamentally computed from frequency-dependent

phase relationships between two activated brain ROIs (Whitfield-Gabrieli and Nieto-

Castanon, 2012), connected via structural connectivity. Analysing signal propagation

dynamics of an equivalent circuit model of a bunch of axons in the frequency domain is

paramount in understanding the implicit correlation between the structural and func-

tional brain connectivity. The main objective of the thesis is to develop a computational

circuit model that simulates the signal propagation characteristics of a bunch of ax-

ons and analyses its signal propagation disruptions behaviours both in temporal and

frequency domains, which can provide an insight into possible functional connectivity

disruptions in the presence of structural connections between two brain areas. Previ-

ously in Chapter 3, we have processed and extracted parameters of white matter tracts

from diffusion-MRI data. Our objective here is to design an equivalent circuit of a single

myelinated axon, which will be a building block for an equivalent circuit of a bunch of

axons.

In this chapter, we have designed a computational circuit model of a single myelinated

axon. We have used the circuit simulation tool Personal Simulation Program with Inte-

grated Circuit Emphasis (PSpice) for our circuit design and modelling. The advantages

of using the PSpice tool are: it provides an in-depth analysis of circuits and circuit

designs with advanced simulation functions, processes Netlist circuit design, and oper-

ates from MATLAB/Simulink. First, we have simulated the signal propagation through

63
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a single axon in the time domain by perturbing the model with an independent cur-

rent source. Then we have calculated signal propagation matrices such as Conduction

Velocity (CV), Maximum Myelin Length (ML) and compared them with published ex-

perimental data to validate our computational model. Finally, we have determined the

frequency response of the cable circuit and generated a system definition for signal prop-

agation through a single myelinated axon. Previously, many works were done on signal

propagation through axon where exploration of signal propagation was done mainly in

time scale (Fitzhugh, 1962; Goldman and Albus, 1968; Brill et al., 1977; Moore et al.,

1978; Carpio and Peral, 2011; Seidl, 2014; Cohen et al., 2020). Here we have taken a

novel approach to model the frequency and phase characteristics of axons through circuit

theory modelling.

4.2 Impulse initiation and saltatory conduction modelling

in a myelinated nerve fibre

A myelinated axon is made up of Nodes of Ranvier’s (NR) and myelinated Internode

(IN). The Action Potential (AP) generated at soma passively spreads out through the

myelinated segment to the next NR to depolarize it to the threshold and trigger AP at

the next NR. In this section, we designed an electric circuit model of a single myelinated

axon using PSpice to simulate the activity of excitable membrane for NR and saltatory

signal conduction (see Chapter 2, Section 2.5) for IN. Fitzhugh (1962) has provided

a mathematical model for the electrical properties of a myelinated axon fibre. The

model is consisted of the Hodgkin-Huxley ordinary differential equations (Chapter 2

Equation: 2.28) (Hodgkin and Huxley, 1952) to represent the membrane at the nodes

of Ranvier, and a partial differential cable equation (Chapter 2 Equation: 2.38) to

represent the internodes surrounded by myelin sheath. That mathematical model has

been implemented in this circuit model. The details of parameters values for nodes and

internodes of the circuit have been taken from literature (Hodgkin and Huxley, 1952;

Tasaki and Frank, 1955; Binczak et al., 2001; Tsubo and Kurokawa, 2018; Ford et al.,

2015) and presented in tabular forms later in the chapter. In the designing process,

first, the models for NR and IN areas of axon were designed as nodes and internodes

and then these two were connected for designing the whole model of a single myelinated

axon. The resultant circuit model was perturbed by independent current sources, and

the responses calculated by PSpice were compared with published experimental data

Huxley and Stämpeli (1949); Tasaki and Fujita (1948); Binczak et al. (2001); Tsubo and

Kurokawa (2018); Ford et al. (2015) for validation of the developed model.



Chapter 4 Circuit Model for analysing Signal Propagation Dynamics in Single
Myelinated Axon 65

4.2.1 Circuit modelling of Nodes of Ranvier as Hodgkin Huxley cell

As mentioned above, the circuit model for NR was designed based on the current equa-

tions given by Hodgkin and Huxley (1952). We adapted the SPICE-based neuron model

from the works of Masanotti et al. (2006); Szlavik et al. (2006). The total membrane

current during an action potential is given by the sum of a capacitive current and three

ionic currents, carried by sodium, potassium, and other ions (Hodgkin and Huxley,

1952). A detail description of current and voltage dynamics of Hodgkin-Huxley circuit

was given in literature review (Chapter 2 Section 2.4.4). The same dynamics have been

formulated in the netlist code of PSpice to model the circuit. The Figure 4.1 shows a

schematic representation of the netlist code of the Hodgkin Huxley model. As shown in

Figure 4.1: Hodgkin Huxley Cell and neuron gating circuit Szlavik et al. (2006)

the Figure 4.1 the Nernst potential (the potential at which there is no net flow of that

particular ion from one side to another) of Sodium(Na) and Potassium(K) ion channels

are scripted by ENa and EK variables. The capacitance of the membrane is scripted

by CM . The FNA and FK are two current-controlled control sources used to model the

propagation of Na and K currents INa and IK respectively. The magnitudes of Na and

K currents are determined by the dynamics of gating variables represented in a gating

circuit model as shown in Figure 4.2. A voltage-controlled voltage source ENAK with

a unitary gain is modelled to detect potential change across the inner ( node 31) and

the outer surface (node 30) of the cell and generate an equivalent potential across the

gating circuit. The current is generated in the gating circuit and passed to the Na and K

channel by VINA and VK, the zero potential generators. Ionic currents from the current-

controlled current source FNA and FK generates the membrane potential across inner

and outer membranes. The activity of the m, h and n gates are modelled in the neuron

gating circuit as shown in Figure 4.2. The rate constants αn and βn (description of rate

constants are given in Chapter 2 Section 2.4.4) associated with gate n are defined by
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Figure 4.2: Circuit Design for gating variables Szlavik et al. (2006)

the voltage-controlled voltage sources EAN and EBN. These controlled voltage sources

generate an output based on the membrane potential control voltage. The rate con-

stant equations used in our PSpice model, are shown in Equation 4.1 and Equation 4.2

where Vm in these equations is the membrane potential in millivolts. Both of these

equations contain terms associated with the membrane potential which is implemented

in the voltage-controlled voltage source.

αn =
−0.01(Vm + 50)

e[−0.1(Vm+50)] − 1
(4.1)
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βn = 0.125e[−0.0125(Vm+60)] (4.2)

The rate constants associated with the m and h gates are shown in Equation 4.3 to

Equation 4.6.

αm =
−0.1(Vm + 35)

e[−0.1(Vm+35)] − 1
(4.3)

βm = 4e(
(−Vm+60

18
) (4.4)

αh = 0.07e[−0.05(Vm+60)] (4.5)

βh =
1

1 + e[−0.1(Vm+30]
(4.6)

The voltage-controlled current sources GAN and GBN along with the capacitor, im-

plement the rate equation associated with the n gate as shown in Equation 4.7. The

capacitor provides the differential operation associated with the potential, which is the

gating variable. The other terms in the equation are formed using the polynomial feature

available in SPICE.
dn

dt
= T.αn(1− n)− T.βnn (4.7)

Temperature dependence of the HH- model is included using the scaling constant T.

The rate equations associated with the other two gating variables m and h are shown in

Equation 4.8 and Equation 4.9, respectively

dm

dt
= T.αm(1−m)− T.βmm (4.8)

dh

dt
= T.αh(1− h)− T.βhh (4.9)

The gating variable n is used as the control voltage for the voltage-controlled voltage

source EN4. This controlled source is used to generate a potential that is equivalent

to the fourth power of the gating variable. The voltage-controlled current source GK

takes, as control inputs, n4 , as well as the difference between the transmembrane poten-

tial Vm and the Nernst equilibrium potential for potassium EK . A voltage-controlled

voltage source EMK is used to generate a potential equivalent to (Vm − EK). The

voltage-controlled current source GK is used to generate a current equivalent to the to-

tal potassium ionic current using the SPICE polynomial feature. A current is generated

by this controlled source that is equivalent to Gkn
4(Vm − EK), where Gk, computed

for the cell surface area as per Table 4.1, is the maximum potassium conductance. The

m gate increases conduction, and the h gate decreases conduction with the increase in

membrane activation. Thus the circuit model of NR was destined as a node of the circuit

considering the parameter values as given in Table 4.1. The quantities in the circuit that

needed defining were the initial conditions to the gating variables, the concentration of

potassium inside and outside the cell, the temperature, the cell capacitance, as well as

the conductance of the potassium and sodium channels. All of these parameters have
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Parameter Value

m0 0.0393
h0 0.6798
n0 0.2803
coNa 491.0 mM/L
ciNa 50.0 mM/L
coK 20.11 mM/L
ciK 400.0 mM/L
¯GNa 120.0 mS
ḠK 36.0 mS
CE 1.0 pF

Table 4.1: Parameters for node of Ranvier

been previously published (Hodgkin and Huxley (1952); Stephanova and Bostock (1996);

Szlavik et al. (2006); Weiss (1994)) and are presented in Table 4.1. The expressions for

the α and β are appropriate of temperature of 6.3oC as per Hodgkin and Huxley (1952).

But, in our model, we scaled them with temperature scaling factor T to adapt to any

other temperatures as well. For validating our model results with published data, we

kept the temperature factor, T, of 0.26E − 3 at 18.5oC (Bunow et al., 1985). The

Figure 4.3.(a) shows the schematic view of the circuit model of a node designed using

resistors, capacitors and conductors.

Figure 4.3: (a)The schematic diagram of NR, (b) The schematic diagram of IN of
Pure resistive circuit, (c) The schematic diagram of IN of resistive-capacitive circuit

used for modelling intracellular fluid

4.2.2 Circuit modelling of myelin sheath as a passive cable model

The myelinated node or the internode has been designed as a resistance-capacitance

(RC) circuit to represent the membrane potential of the core conductor model (see

Chapter 2.4.5) of distributed leaky cable Fitzhugh (1962). A dc voltage source Vm is

used in the circuit to create the resting membrane potential. The voltage source Vm is
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put in series with the resistance Rm of the myelin sheath. The resistor Rm and voltage

source Vm in series models the conductance of ions across the myelin. The myelin sheath

has the ability to store the charge represented by a capacitor. The battery and resistor

series network is put in parallel with the capacitor Cm to model the properties of the

myelin sheaths permeability. There are two different types of modelling approaches

available in the literature for modelling axonal fluid in an axon: (1) pure resistive, (2)

resistive-capacitive Tsubo and Kurokawa (2018). Here, we are incorporating both of

these approaches in our model design. The Figure 4.3.(b) shows the circuit model of

an internode of pure resistive circuits and Figure 4.3.(c) shows the circuit model of

an internode of a resistive-capacitive circuit. The parameter values for the RC circuit

has been used from FMN, PNS (Aα − 20µm, Aα − 13µm, Aβ − 12µm, Aβ − 6µm,

Aδ−5µm,Aδ−1µm) and CNS (SBC, GBCMed, GBCLAt) axons as shown in Table 4.2.

The SBC, GBCMed, GBCLat axons have different internode axon diameters than the

diameter of the node. The internode axon diameters of SBC, GBCMed, GBCLat axons

are 1.35µm, 2.41µm and 3.06µm respectively. These internode axon diameters are used

for their parameters value calculation in Table 4.2. The values of PNS axons are obtained

from Tsubo and Kurokawa (2018) and parameter values of CNS axons are obtained from

Ford et al. (2015) and parameter values of FMN are sourced from Hodgkin and Huxley

(1952).

4.2.3 Circuit arrangements of nodes and internodes

The circuit designs of NR and IN were saved as sub-circuit library files. PSpice supports

the creation of subcircuit library files. Each subcircuit design has input and output

ports specified, through which it can interact with the overall circuit design. The design

of a subcircuit is useful when a specific circuit design is being used many times in the

overall circuit design. Another added advantage of the subcircuit file is, it quickly allows

any modification of the parameters of the model. The subcircuit library files allow for

the modelling of any size neuron with ease. An axon length can be modified by adding

more nodes connected by internode segments. For example, we wanted to model an IN

of length 2mm. So two IN subcircuits were connected to the model the 2mm internode

segment. The whole circuit of a single myelinated axon was designed by interconnecting

the subcircuit for node and internodes through their input and output ports as shown in

Figure 4.4. The output ports of the subcircuit of the node were connected to input ports

of the subcircuit of 2mm IN and then output ports 2mm IN were connected to input ports

of the subcircuit node. The NR and IN both have input and output ports in the inner

conductor and outer conductor. The inner conductor models the inside of the axon and

the outer conductor models the extracellular fluid. The outer conductor resistances as

shown in Figure 4.3 were set to 1 to model it as connecting wires with very low resistance

compared to axoplasm resistance (1Ω much less than 14MΩ mm axoplasm resistance

Fitzhugh (1962)). The inner conductor resistances were set as 7MΩ, half of 14MΩ
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Table 4.2: Parameters for internode for different types of axons (The parameter values
of PNS axons are obtained from Tsubo and Kurokawa (2018) and dimensions of CNS
axons are obtained from Ford et al. (2015) and parameter values of FMN are sourced
from Hodgkin and Huxley (1952). These data were obtained by applying the conversion
formulas to axons of various diameters as it is mentioned in Tsubo and Kurokawa (2018))

mm longitudinal axoplasm resistance. The inner conductor resistance is set to half the

required resistance because when two resistors are connected in series the resistances

are additive. The terminal resistance of the circuit was set to a high resistance value,
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1020MΩ to model the boundary condition. Here, we described the circuit arrangement

with the values of FMN. Similarly, we developed the model for all other axon types we

have used in our experiment. The Figure 4.4 shows a schematic of the connections of

subcircuits.

Figure 4.4: The schematic diagram of connections between NR and IN

4.2.4 Circuit simulation

To stimulate the circuit, a current pulse of 6nA was applied to the inner conductor. The

applied current was sufficient to increase the membrane potential above the threshold

and generate an action potential to propagate down the axon fibre.
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4.2.5 Result and validation of the model with respect to published

experimental data

Here are the lists of results that we have observed by perturbing the circuit with input

stimulus current:

• Generation of action potential : The circuit required a minimum 6nA stimulus

current to generate an action potential. Input current less than 6nAmp was not

sufficient to generate the action potential. The Figure 4.5 shows the generated

action potential in the node with respect to the given stimulus current. The x-axis

is showing time and the y-axis is showing the membrane voltage. As shown in the

Figure 4.5 the resting potential of the membrane is -65mV, the peak voltage in

depolarization is 53mV and the membrane voltage in repolarization is -70mV.

• Activation of m, h and n gates: The Figure 4.6 shows the activation of m, h

and n gating variables during action potential generation. The green line shows

the m-gating variable, the red line shows the h-gate activation variable, and the

blue line shows the activation of the n-gate.

• Dynamics of Na, K and capacitive currents: The Figure 4.7 shows the

Na,K,and capacitive currents across the membrane. These curves are showing

different dynamics of HH cell that match with the experimental output of Hodgkin

and Huxley (1952).

• Temporal distribution of action potential :Figure 4.8 shows the temporal

propagation of action potential through 5 nodes. The green curve is generated

from 1st node V(xsub2.26); red is from 2nd node V(xsub4.26); purple is from 3rd

node V(xsub6.26); yellow is from 4th node V(xsub8.26) and pink is from 5th node

V(xsub10.26). The figure shows how the spikes are propagating in time scale.

• Conduction velocity : CV is an important aspect of nerve conduction studies.

It is the speed at which an impulse propagates down an axonal pathway. We

computed the CV of impulse propagation from one node to another for FMN,

PNS (Aα − 20µm, Aα − 13µm, Aβ − 12µm, Aβ − 6µm, Aδ − 5µm,Aδ − 1µm)

and CNS (SBC, GBCMed, GBCLAt) axons. The description of these of axons

are given in Table 2.3 in Chapter 2. The longitudinal propagation velocity CV is

calculated from the measured propagation time PT and internodal myelin length

L, using the following equation:

CV =
L(mm)

PT (ms)
(4.10)
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Figure 4.5: Action potetial generated at nodes of Ranvier; V(xsub1.26): Membrane
potential; I(I1): Input current

Table 4.3 displays the conduction velocity of different axon types computed in

both resistive and resistive-capacitive models along with published values avail-

able in the literature. We found that the computed value of CV of FMN axons ob-

tained from resistive model matches with the value published in literature Binczak

et al. (2001) and within range in experimental measurement by Tasaki and Fu-

jita (1948). The computed value of CV of PNS and CNS axons obtained from

resistive-capacitive model matches with the value published in literature Tsubo

and Kurokawa (2018); Ford et al. (2015). We also plot the CV values of different

axon types in a bar chart form in Figure 4.11. From the bar chart, we also observed

that CV decreases with a decrease in axon diameter. As the results obtained from

the resistive-capacitive model is giving more accurate values with published data

for PNS and CNS axons and results obtained from the resistive model result is

matching with FMN axon, we selected the resistive-capacitive model for PNS-CNS

axons and resistive model for FMN axons for basic models for our experiments and

explorations.

• Maximum myelin length : Our simulation result shows that after 12 IN seg-

ments, the signal was failed to propagate to the next node. That means 11mm



74
Chapter 4 Circuit Model for analysing Signal Propagation Dynamics in Single

Myelinated Axon

Figure 4.6: HH neuron node showing m,h, and n gate activation; V(xsub1.2): m
variable, V(xsub1.3): h variable, V(xsub1.4): n variable

Axon
Types

IN length
(mm)

CV (m/s)

(Published

data)

CV (m/s)

(Resistive

model)

CV(m/s)

(Resistive-Capacitive

model)

FMN 2 28 28.62 -
Aα− 20µm 2 120 112.04 119.35
Aα− 13µm 1.3 80 31.96 80.41
Aβ − 12µm 1.2 75 27.25 72.62
Aβ − 6µm 0.6 33 12.92 33.05
Aδ − 5µm 0.5 30 8.53 29.52
Aδ − 1µm 0.1 3 0.69 3.14

SBC − 1.35µm 0.164 4.4 0.97 4.46
GBMed− 2.41µm 0.239 8.5 2.42 7.11
GBCLat− 3.06µm 0.198 11.3 4.11 11.22

Table 4.3: Conduction velocity for different axon diameters

of 12 internode segments is Maximum Myelin Length (MML) beyond which the

signal fails to bring the adjacent node above its threshold voltage and causes fail-

ure of signal propagation to the next NR. This happens because as myelin length

increases current flowing through axonal fluid gets decreased, and next NR does
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Figure 4.7: Na:I(xsub1.FNA), K:I(xsub1.FK) and capacitive: I(xsub1.CE) currents
dynamics during generation of AP

not get enough current to bring its membrane voltage potential above threshold

voltage to generate an impulse. Figure 4.9 shows the membrane potentials at

two adjacent nodes where signal propagation fails to occur. Figure 4.10 shows

dynamic of membrane potentials through internode when signal is successfully

propagated to next node Figure 4.10.(a); when signal fails to spread to next node

Figure 4.10.(b). The length of 12 internode segments is 12mm here. This dynamic

of signal propagation failure correlates with the description given in Binczak et al.

(2001). Similar to FMN, we determine the maximum myelin length of signal prop-

agation for other 6 different types of PNS and 3 different types of CNS axons and

show in Figure 4.2.5.

• Conduction velocity and myelin length : Here we explored conduction velocity

values for different myelin lengths of an axon up to MML. In Figure 4.13 we placed

the conduction velocity values calculated from the resistive-capacitive circuit model

at various myelin lengths for all axon types. We can see that initially up to a

certain length of myelin, CV decreases with the increase of myelin length. Then it

gets increased and then again starts decreasing. For example for PNS-Aα-20µm

diameter axon, the values of CV decrease with increased myelin length up to 15mm.
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Figure 4.8: Temporal distribution of action potential

Figure 4.9: Action potential failed to reach threshold to the next node

After that for 16mm of myelin length CV value gets increased and then again it

starts decreasing. This happens due to the loss of an impulse; which couldn’t fire



Chapter 4 Circuit Model for analysing Signal Propagation Dynamics in Single
Myelinated Axon 77

Figure 4.10: Dynamic of membrane voltage at various internode length when action
potential (a) is successfully propagated to next node; (b) has failed to reach next node

an AP but resulted in some Na+ ion channel activation at the NR node. For

example; when myelin length is 16mm, some of the impulses from the AP pulse

train couldn’t get generated due to the low strength of the ionic current flowing

through longer myelin length distance; but that stimulus current cause some Na+

ions concentration inside the cell by opening their channel in NR. As a result,

the membrane potential at NR reaches the threshold voltage quickly during the

generation of the next AP. That in effect increased the CV of the axon. So, it shows

that the Na+ ions play an active part in CV and causes a non-linear behaviour

in CV. As we can see from Figure 4.13, at 16mm for Aα − 20µm axon, 9mm for

Aα− 13µm axon, 6mm for Aα− 12µm axon, 0.4mm for Aα− 1µm axon, 0.7mm

for SBC axon, 2mm for GBCLat axon and 10mm for FMN axon, the increase of

CV happens, but after that again CV starts decreasing. So, we can conclude that

generally, CV decreases with the increase of myelin length if Na+ concentration is

constant, else it exhibits a non-linear behaviour.

4.3 Frequency response analysis of single myelinated axon

Literature shows, it is still an open question why two brain ROIs, which are structurally

connected, are not sometimes functionally connected. In our work, we are trying to find

an answer to this question by analyzing the signal propagation in the axon bundle in the
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Figure 4.11: Conduction velocity of different axon types; conduction velocity de-
creases with reduction of axon diameter

frequency domain. Our hypothesis is that analyzing signal propagation in the frequency

domain may exhibit filter like characteristics of passing selective signals through the

system. So, we are trying to devise a model that can explain this phenomenon from

the perspective of phase and the frequency characteristic of signal transmission. In the

previous section, we have built a circuit model of the single axon and analyze its signal

propagation dynamics in the time domain, and validate our model with published data.

Here, our objective is to characterize that model with a system definition and analyze

signal propagation characteristics through the axon in the frequency domain.

4.3.1 Modelling internode in simscape in MATLAB

Myelin is the fatty substance that surrounds axons to insulate them and increase the rate

at which electrical impulses (called AP) are passed along the axon. Nodes of Ranvier

are uninsulated parts of the axon that are highly enriched in ion channels, allowing

them to participate in the exchange of ions required to regenerate the AP. In saltatory

conduction along the myelinated axon, AP seems to ”jump” from one node to the next

along the axon, resulting in faster conduction of signal. That implies the responsible

part of passing impulses through the axon is the myelin, as the job of the nodes is to

regenerate the attenuated impulse passed by myelin. So, our focus here is on the myelin

part of the axon to analyze the signal transmission properties in the frequency domain.
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Figure 4.12: Maximum myelin length: The length of myelin internode till which the
impulse signal propagate from one node to another node without failing, If the length of
myelin is bigger then this then the impulse signal will not propagate to the next node;
The value of maximum myelin length for different types of axons in both resistive and

resistive-capacitive models

Simscape helps to create a model of a physical system within the Simulink environment.

With Simscape, physical components models are built based on physical connections

that directly integrate with block diagrams other modelling paradigms. The advantage of

modelling in Simscape is, it provides more complex components and analysis capabilities.

In this section, we have modelled the IN section of the axon using Simscape modelling.

During circuit modelling, in the previous section, we have modelled the myelinated IN

as a resistive capacitive (RC) circuit to represent it as a passive cable as described by

Fitzhugh (1962) in his work. We have followed the same modelling here to design the

Simscape circuit. Simscape has a repository of device elements. We have taken the

resistor, capacitor and dc voltage from the repository and connected them as shown

in Figure 4.14.(b) to model one segment of the internode. The dc voltage is used in

the circuit to create the resting membrane potential. The dc voltage source is put in

series with the myelin sheaths resistance. A resistor and dc voltage in series models

the conductance of ions across the myelin. The myelin sheath has the ability to store

charge represented by a capacitor. The battery and resistor series network is put in

parallel with the capacitor to model the properties of the myelin sheaths permeability.

The parameter values of the resistor, capacitor, battery and other parameters were

obtained from Fitzhugh (1962); Tasaki and Frank (1955); Tsubo and Kurokawa (2018)
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Figure 4.13: Conduction velocity at various internodal lengths

and provided in the Table 4.2. To model the 2mm of internode length these segments

are connected with each other to form a chain-like structure as shown in Figure 4.14.(a).

The circuit was simulated with impulse function and the response was used to determine

the frequency characteristics of the system.

4.3.2 Model simulation and impulse response generation

The frequency response of a system can be measured by measuring its impulse response.

Since the impulse function contains all frequencies, the impulse response defines the
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Figure 4.14: The Main Model of Internode in simscape

response of a system for all frequencies. To generate the impulse response for the intern-

ode, a derivative of a unit step function has been used, as shown in Figure 4.14. The

initial and final values of the step function were as 0 and 1. The step time was set as

0.001 and the same as the sample time of the simulation. The input and output both

were captured from the Simulink environment used later in the workspace to estimate

the transfer function from them.

4.3.3 Estimation of the transfer function

A Transfer Function fully describes a control system by defining its ’Order’, ’Type’ and

’Frequency response’. If the impulse response of a system is given by h(t), then the

transfer function of a system is given by H(s), where H(s) is the Laplace Transform of

h(t). We simulated the system with impulse input and took the input and output of

impulse function to MATLAB and estimated the transfer function by providing value for

its Poles and Zeros. Poles and Zeros of a transfer function are the important frequencies

for which the value of the denominator and numerator of transfer function becomes

zero respectively. They are the roots of the characteristic equation of the system. By

varying the values of the poles and the zeros, we checked the accuracy and stability of

the transfer function. We checked the ’FitPercent’ value to estimate the accuracy of

our system model. The ’FitPercent’ value is calculated by the normalised root mean

squared error (NRMSE) as shown below:

fit = [1− ‖x− x̂‖
‖x− x̄‖

] ∗ 100%
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Coefficients FMN PNS Axon SBC Axon GBCLat Axon

C1 -897.4 1.927e13 -2.241e14 -6.668e12
C2 - 4.916e06 3.101e16 - 3.576e17 - 1.113e16
C3 5836 8.835e17 - 3.065e18 - 9.203e17
C4 6.113e06 1.239e10 1.463e11 4.189e09
C5 - 3.97e13 4.644e14 1.379e13
C6 - 3.236e16 3.706e17 1.191e16
C7 - 9.029e17 3.156e18 9.293e17

Table 4.4: Coefficients of transfer function

where x̂ indicates the simulated output, x̄ is the mean of the output and x is the measured

output. To model the transfer function which can describe the myelin segment most

accurately we calculated the prediction ability, the ’FitPercent’ value of the transfer

function of the system for poles value 1 to 10. The Figure 4.15(a) shows the ’FitPercent’

value for FMN, PNS, SBC and GBCLat axons for their unit myelin lengths. The good

prediction ability of a system is indicated by greater than 90% fit of the prediction

results. So, we build an algorithm to select the smallest value for poles (other than

pole 1) for which ’FitPercent’ is more than 90% fit and for each poles we checked the

system for zeros value 1 to pole minus one. We selected the value for zeros based on the

best consistent results of frequency response for all myelin lengths. The higher value of

poles gives a more accurate estimation of the system but increases the complexity of the

system, so we tried to pick the lowest number of poles while the percentage of fit is more

than 90. With that logic, we found out that the value of the poles for the system function

for the FMN axon as 2, poles value for the PNS axon and the SBC axons as 4 and poles

value for GBCLat axon as 5; are the lowest values which are giving ’FitPercent’ value

more than 90%, other than poles 1. But, when we observed the frequency response curve

of all the axons for all myelin lengths we found out that for FMN axons poles value 2,

zeros value 1 and for PNS, SBC and GBCLat axons poles value 4 and zeros value 2 are

giving the most consistent frequency response characteristics as shown in Figure 4.16.

Thus, for the internode segment of all the axons we generated the transfer functions of

the form as shown below:

For FMN axons:

H(s) =
C1 ∗ s+ C2

s2 + C3 ∗ s+ C4

For PNS, SBC and GBCLat axons:

H(s) =
C1 ∗ s2 + C2 ∗ s+ C3

s4 + C4 ∗ s3 + C5 ∗ s2 + C6 ∗ s+ C7

The values coefficients of the transfer function for all axon types are given in Table 4.4.
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4.3.4 Stability analysis

To analyse the stability of the system we used the root locus plot of the transfer function

model. The root locus plots of system functions of FMN, PNS, SBC and GBCLat

axons are shown in Fig. 4.15(b), where system poles are marked by x, and zeros are

marked by o. The location of the poles is shown in s-plane confirms that the system

is asymptotically stable and the response of the system is exponentially decaying in

nature leading to a stable condition. Hence, we conclude that system design by transfer

function model is a stable system.
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(a)

(b)

Figure 4.15: (a) The pole-zero plot of the transfer function for all axon types; (b)The

pole-zero plot of the transfer function for all axon types
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4.3.5 Frequency response analysis

The objective of determining the transfer function for the myelin segment is to obtain

the phase-frequency characteristics of the system. In order to do so, we calculated

the transfer function of the myelinated segments of a single axon for various lengths

of the myelinated section. The frequency response of a system is characterized by the

magnitude of the system’s response, typically measured in decibels (dB) or as a decimal,

and the phase, measured in radians or degrees, versus frequency in radians/sec or Hertz

(Hz) as shown below:

Gain = 20 ∗ log|Vout
Vin
| (4.11)

and

Phase = arctan(
Vout
Vin

). (4.12)

So here, we obtained gain and phase plots of the transfer functions for the different myelin

segments for different axon types by plotting the magnitude and phase measurements

on two rectangular plots as functions of frequency in radians/sec. Figure 4.16 shows the

plotting of magnitude and phase as a function of frequency for different axon types. The

shape of the curves conforms that the system exhibit the behaviour of a low pass filter,

which implies that signal of higher frequency will be attenuated and will not be passed

through the myelin segments.

4.3.6 Cut-off frequency determination

Next, we calculated the cut-off frequency of the unit myelin segments of each axon to

determine up to which frequency the neural signal will be able to propagate through the

segments. Ideally, the cut-off frequency is defined as being the frequency point where

the capacitive reactance and resistance are equal. When this occurs the output signal is

attenuated to 70.7% of the input signal value or -3dB (20 log (Vout/Vin)) of the input.

In the case of neural signal, for an action potential to be fired the membrane voltage

need to reach the threshold voltage VTh which is the same as -30mV for HH cell, where

the resting potential Vrest is -70mV and the Nernst or reversal potential VNern is 50mV.

So the magnitude Vmag of an action potential is 120mV as per the below rule:

Vmag = VNern − Vrest. (4.13)

Then, to reach the threshold membrane voltage of -30mV the magnitude of an action

potential Vout needs to be 40mV as per (Vout = VTh−Vrest). Using these values of Vmag

and Vout we calculated the new cut-off frequency for the myelin segments following the

Eq. 4.11 which gives us -9dB (20 log (Vout/Vmag) of the gain, which will determine

the cut-off frequency of the myelin. Using this calculation, we obtained the value of

cut-off frequency for all axon types. We found the value of cut-off frequency of FMN
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Figure 4.16: Gain and phase plots obtained from transfer functions of all axon types
for their standard myelin length

axon for 2mm myelin segment as 600.64Hz. In Table 4.5, we put the cut-off frequency

of different types of axons calculated from our circuit models. It is observed that the

cut-off frequency values for all PNS A group axons are the same. This is because

the ratio of inner diameter to myelin length is constant for all those PNS axons. In

literature, Debanne et al. (2011) illustrated that depending on the axon type, conduction

failures are encountered following moderate (10-50 Hz) or high-frequency (200-300 Hz)

stimulation of the axon. The frequency value we obtained from our simulation results

is of that scale of frequency values mentioned by Debanne et al. (2011).

4.3.7 Cut-off frequency Vs myelin diameter and length

Here, we investigated the relationship between cut-off frequency of the identified system

function of an axon with its myelin length. We found out relation between cut-off

frequency of myelin length and axon diameter. In Figure 4.17, the blue line is showing

cut-off frequency for axon diameter 1µm, 5µm, 6µm,12µm, 13µm and 20µm for IN

length 1mm; and the red line is showing cut-off frequency for axon diameter 3.06µm,

2.41µm, 1.35µm and 1µm for IN length 0.1mm. We kept the myelin length 1mm constant
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Axon Types IN length(mm) Cut-off frequency (Hz)

FMN 2 600.64
Aα− 20µm 2 758.68
Aα− 13µm 1.3 758.68
Aβ − 12µm 1.2 758.68
Aβ − 6µm 0.6 758.68
Aδ − 5µm 0.5 758.68
Aδ − 1µm 0.1 758.68

SBC 0.164 752.99
GBCLat 0.198 389.20

Table 4.5: Cut-off frequencies of myelin segment for different axon types

Coeffcients FMN Aα Axon SBC Axon GBCLat Axon

a
455.4

(435.4, 475.3)
-1.371e+04

(-1.584e+06, 1.557e+06)
558.7

(431.6, 685.7)
84.23

(-1090, 1259)

b
-258.5

(-337.3, -179.7)
-1.449e+04

(-1.585e+06, 1.556e+06)
-224.9

(-334.2, -115.6)
-313.6

(-1474, 846.9)

c
0.3212

(0.169, 0.4733)
0.0006221

(-0.06733, 0.06858)
0.8125

(0.006366, 1.619)
0.1084

(-0.3788, 0.5956)

Table 4.6: Coefficients with (95% confidence bounds)

for larger diameter axons ,so that we can read the changes of cut-off frequency with

diameter. The 1mm IN length is greater than the maximum IN length permitted for

signal propagation in smaller diameter axons, so took 0.1mm for smaller diameter axons.

Next, we determined the cut-off frequency for different length of IN segments for different

axon types and plotted them in a graph. We observed from the results obtained from

cut-off frequency calculation that axon types where inner diameter of axon to myelin

length ratio is same their cut-off frequency is also same. So, we showed cut-off frequency

vs myelin length plot only for axon types FMN, PNS Aα20µm, CNS SBC and CNS

GBCMed. Figure 4.18 shows the graphs cut-off frequency Vs. myelin length of PNS,

SBC and GBCLat axons obtained from resistive-capacitive model, and of FMN axon

obtained from resistive model. In the Figure 4.18 the blue dashed curves shows the

change in cut-off frequency with myelin length and the red curve shows the fitted curve.

We performed curve fitting on the cut-off frequency and myelin length data as shown

in Figure 4.18 and obtained an mathematical exponential equation for cut-off frequency

with myelin length:

fc = a− b ∗ exp(−c ∗ L) (4.14)

where fc is the cut-off frequency and L is the myelin length and values of the coefficients

as shown in Table 4.6. In the Section 4.2, we have learned that all axons have a myelin

length limit, beyond which the signal fails to bring the adjacent node above its threshold,

hence failed to propagate to the next node. That is why here we have calculated the

frequency response of the system up to the maximum myelin length allowed for each

axon. As it is observed from the graph of Figure 4.16, the myelin segment of myelinated
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Figure 4.17: Axon Diameter Vs Cut-off frequency; Blue curve is showing cut-off
frequency of PNS axons of diameters 1µm ,5µm,6µm, 12µm, 13µm and 20µm for IN
length 1mm; Red curve is showing cut-off frequency of CNS axons for diameters 3.06µm,
2.41µm, 1.35µm for IN length 0.1mm; 1mm IN length is greater than the maximum IN

length permitted for signal propagation in CNS axons

axon behaves as a low pass filter and the value of its cut-off frequency is obtained from

the calculation, it implies that the system will pass selective signals if the frequency of

the signal is lower than the value of cut-off frequency.

4.4 Results and Discussion

In this work, we have designed and developed a computational circuit model of a single

myelinated axon using circuit simulation software tool PSpice and analysed its signal

propagation characteristics using computational analysis tool MATLAB. We have de-

veloped and validated our model with data of different axons such as Frog motor nerve,

peripheral axons of group A, CNS axons SBC, GBSMed and GBCLat by simulating

neuronal dynamics of AP and measuring their CV. After the validation of our model,

we analysed its frequency characteristics of signal propagation and obtained a system

function definition. Our objective here was to explore the signal propagation charac-

teristics of a single myelinated axon in the frequency domain to understand if the axon

has any characteristics of passing selective signals beyond which signal propagation will

not happen. We have generated results that can conclude the possible reasons for signal
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Figure 4.18: Myelin length vs cut-off frequency extracted for FMN, PNS and CNS
axons

propagation failure in a myelinated single axon. The following points we conclude from

our modelling and simulation results:

• CV determines how faster the information can transfer through the axon. Our

simulation results show that CV varies inversely with the myelin length of an

axon. It means that in elongated myelin sheath the CV will be reduced leading to

slower propagation of a signal from one node to another. We presented this result

in Figure 4.13 which is obtained from the resistive-capacitive model.

• Our simulation results predict that there is an upper limit of myelin length beyond

which signal propagation failure occurs. So the myelin length of each axon should

be within this limit for the successful propagation of a signal from one node to

another. We presented this result in Figure 4.2.5. Stassart et al. (2018) mentioned

that myelin length varies according to the need of a signal transmission.

• Our modelling of single axon exhibits that the myelin segments of axon exhibit

the system behaviour of low pass filter. From there the simulation results predict,

that while passing the signal from one node of Ranvier to another through myelin

segment, the segment passes only selective signal below the cut-off frequency; above
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the cut-off frequency the signal gets attenuated. We presented the cut-off frequency

values of different axon types in Table 4.5.

• We also found from our simulation results that the cut-off frequency of myelin

segment changes with the length and diameter of the myelin. The cut-off frequency

decreases with an increase of myelin length shown in Figure 4.18 and a decrease

of diameter. We derived a mathematical relation between cut-off frequency and

myelin length from the generated results and presented it in Equation 4.14.

So, the myelin segment of a single axon is modelled with a system identification function.

This system model of a single myelinated axon will be the basis of the modelling phase

and frequency characteristics of a bunch of axons. Previously, many works were done

on signal propagation through axon where exploration of signal propagation was done

mainly in time scale. Here we have taken a novel approach to model the frequency and

phase characteristics of a single axon. Next, our objective is to model signal disruption

properties of a bunch of axons; which can help us to understand the absence of functional

connectivity in structural connections.

4.5 Conclusions

In this paper, we explored the signal propagation disruption phenomenon in a myeli-

nated axon using a cable theory PSPICE model. Our exploration shows that signal

propagation disruption occurs at a higher myelin length and, the myelinated section of

a single axon acts as a low pass filter where the cut-off frequency is dependent on myelin

length. This implies that depending on the myelin geometry a rate coded nerve signal

propagation through structural connection could be disrupted resulting in functional

disconnection between two brain areas. In the next chapter, our aim is to explore this

phenomenon in an ephaptically coupled bundle of axons to understand the relationship

between structural and functional brain connectivity.



Chapter 5

Circuit Model for explaining

Ephaphtic Coupling effect in Two

Myelinated Axons

5.1 Introduction

Non-synaptic interaction occurs due to one axon’s electrodynamical effects on another

within a bundle of parallel myelinated nerve fibres is known as ephaptic coupling. The

word ephaptic originated from the Greek word ”ephaps” meaning ”to touch” (Arvani-

taki, 1942). Ephaptic coupling plays a functional role in neural processing and signal

propagation through a bundle of the axon by controlling features such as synchroniza-

tion of impulses, Conduction Velocity (CV) and excitation/inhibition in axon bundle

(Binczak et al., 2001; Anastassiou et al., 2011; Shneider and Pekker, 2015; Goldwyn

and Rinzel, 2016; Capllonch-Juan and Sepulveda, 2017; Das et al., 2016). Modelling

ephaptic interaction between impulses on myelinated nerve fibres is a significant part of

future signal propagation modelling using a number of axons for finding frequency re-

sponse. This chapter designs a circuit model of two myelinated parallel axons in PSPice

to model the ephaptic interactions between parallel fibres impulses to be utilized in the

next chapter when we model with multiple axons bundle. In the chapter, we first de-

scribed the theory of ephaptic coupling in terms of the fundamentals of circuit theory.

Then, we modelled ephaptic coupling between two parallel myelinated axons when they

are aligned, and our simulation results conform to all the effects of ephaptic coupling.

Finally, we modelled ephaptic coupling between myelinated axons when they are stag-

gered and showed the simulation results. In the next chapter, we will design a circuit

model of axon bundle by extending the model build in this chapter and analyze phase

and frequency characteristics of signal propagation through axon bundle.

91
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5.2 Theory of ephaptic coupling in terms of circuit theory

Ephaptic coupling is the mechanism by which one axon can influence AP generation in

another axon in the bundle of parallel axons arrange in order. AP is generated in NR

when membrane potential Vm reaches the threshold voltage VTH . So eventually a time-

dependent voltage gets generated due to axonal current. Now myelin sheath being an

insulator the ephaptic coupling can only occur only at NRs between two parallel axons

because that is where there is no myelin cover and membrane are in parallel suspended

in extracellular fluid, which for the time being we assume NaCl solution. Such a scenario

could be modelled in terms of capacitive resistive circuit elements as shown in Figure 5.1.

Now we find out how to calculate C(L) and R(L) and which one of them dominates from

Figure 5.1: (a) Circuit model for ephaptic coupling between two parallel axons as
both resistive and capacitive path; (b) Circuit model for ephaptic coupling between

two parallel axons as resistive path as derived from calculation

coupling standpoint. Between the two expose NR it is the cylinder of NaCl which acts

as the medium of coupling. Then

C(L) =
εA

L
(5.1)

where εNaCl = 45 for saturated NaCl at 20oC. Therefore, ε = εNaClXε0 = 45∗8.85∗1012

i.e., O(10−10). Now area A = π
L2
NR
4 ; i.e., C(L) is of O(1012) considering Nodes of
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Ranvier’s (NR’s) length LNR of the 1 − 2µm; and L is of O(106). So O(C(L)) =

O(10−10 ∗ 10−12/10−6) = O(1016); order of Impedance of C(L) O(ZCL) = 1
2π∗f∗C(L) ; f =

Frequency. Therefore O(ZCL) = O(1016)Ω. Of course this depends upon frequency, as

the frequency increases this will come lower. But AP is of the Hz order and therefore

O(ZCL) will remain at O(1016)Ω. Here we consider a parallel-plate capacitor since the

dielectric medium between the two faces is not bounded by a cylindrical surface but

actually extended throughout the extracellular fluid medium. Now,

R(L) = ρ
L

A
(5.2)

where ρ = 5Ω− cm = 5 ∗ 102Ω−m for saturated NaCl; i.e. O(102), O(A) = O(10−12)

and O(L) = O(10−6). So, O(R(L) = O(10−2 ∗ 10−6)/10−12 = O(104)Ω ; i.e., 10s of

KΩ. Therefore the resistance offered by the capacitive path is at least 12 orders higher

than the resistive path; so if there is a coupling, it has to be resistive coupling. Now,

if i(t) = V12/R(L) is enough to evoke an AP then the axon 2 will fire. As L increases

R(L) also increases; therefore polarisation current i(t) decreases meaning that for distant

axons there will not be any ephaphtic coupling. The situation can be seen better with

the Hodgkin-Huxley (HH) cell representation of the Axon 2 dependent voltage source.

i(t, L) = VAP (t)/R(L) = O(= 10−3/104) = O(10−7) amp (considering L is of m order).

Typically an HH requires O(nA) current to be activated and therefore this current should

be sufficient to trigger AP in the 2nd axon. To carry out this experiment, we first build

the circuit model of two parallel myelinated axon arrange in a bundle using the PSpice

tool.

5.3 Circuit modelling of ephaptic coupling between two

parallel myelinated axons

So far, in-vivo, in-vitro, numerical simulation studies were performed on ephaptic cou-

pling (Binczak et al., 2001; Anastassiou et al., 2011; Shneider and Pekker, 2015; Goldwyn

and Rinzel, 2016; Das et al., 2016; Capllonch-Juan and Sepulveda, 2017). In this work,

we studied ephaptic coupling between parallel axons using the circuit theory approach

and developed an electric circuit model using the circuit simulation tool PSpice. We cre-

ated the circuit model of two parallel myelinated axons aligned in a bundle coupled with

extracellular resistance. We studied this model to explore the effects of ephaptic cou-

pling in signal propagation through a bundle of axons. The model of a single myelinated

axon developed in Chapter 4, has been extended to model the two myelinated axons.

We showed in Section 5.2 that the coupling between two NRs has to be resistive. As

shown in Figure 5.1.(b), we connected the output port of two single axon model circuits

in the outer conductor using a resistive path. We adapted the design concept from Barr

and Plonsey (1992) but with modifications. The longitudinal extracellular resistance
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ReL value is calculated using cross-sectional area AE of two axon bundle and IN length

LIN and extracellular resistivity value Re as 330Ωcm (Goldwyn and Rinzel (2016)) using

(ReL = Re ∗ L/AE). Thus based on the length of the axon the ReL resistance is added

up in series to model the extracellular resistance. We calculated one extracellular resis-

Figure 5.2: Circuit Modelling of two parallel axon aligned to each other connected
by extracellular resistance

tance and connect the output port of NR of each axon to it. The transverse extracellular

resistance RT value between two NR is calculated by the formula of calculating R(L).

The resultant circuit model of two myelinated axons lying in parallel to each other in

the extracellular fluid is shown in Figure 5.2. To simulate the circuit the rectangular

input stimulus current pulses of 0.6nA (the same current that was applied to the single

axon model) was applied intra-cellularly to the axon circuit. Voltage recordings were

made from the NR cells 1, 3 of each axon in order to measure AP propagation through

the coupled axon bundle. In our experiment, first, the stimulus current was applied at

the first axon to see the coupling effect in the second. Then input currents were applied

to the input of both the axons and results were recorded.
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(a) Excitation of passive axon by ephatic coupling; Axon 1 is active and firing; Axon 2 was passive but got

induced by Axon 2 and firing little later than Axon 1; The lines are representing the membrane voltages at

five consecutive nodes in axons in a time span of 5ms; The green line : membrane voltage at node xsub1; the

red line: membrane voltage at node xsub3; the blue line: membrane voltage at node xsub5; the yellow line:

membrane voltage at node xsub7; the pink line: membrane voltage at node xsub9

(b) No excitation of passive axon by ephatic coupling. Axon 1 is active and firing; Axon 2 is passive but didn’t

get induced by Axon 2; The lines are representing the membrane voltages at five consecutive nodes

Figure 5.3: Effects of coupling on passive axon
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Axon
Types

dNR
(µm)

dIN
(µm)

LMin

(µm)
RMin

(Ω)

Aα 20 28 8 8.4E+6
Aα 13 18.2 5.2 13E+6
Aβ 12 16.8 4.8 14E+6
Aβ 6 8.4 2.4 28E+6
Aδ 5 7 2 33.6E+6
Aδ 1 1.4 0.4 168E+6

Table 5.1: Minimum value of transverse extracellular resistance RMin for maximum
coupling effect for all Group A PNS axons where dNR diameter of node, dIN diameter
of internode, LMin minimum distance between two nodes of two parallel axons

5.3.1 Excitation of passive axon and range of inter-axon distance

We have seen from our calculation that in a perfectly aligned two myelinated axons, in

HH cell representation of the Axon 2 dependent voltage source and distance between

two NRs is of the order of micrometre, the current generated by AP of O(10−7) should

be sufficient to excite AP in the 2nd axon. Figure 5.3(a), shows AP generated at

axon 2 induced by the AP generated at axon 1 while satisfying mentioned conditions.

Next, we found out for what range of R(L) such AP could be induced in the 2nd axon.

We considered that the minimum range of current needed to initiate AP is O(nA).

Therefore, R(L) must be at least of O(106)Ω. Then, L = A∗R(L)
ρ = O(10−12)∗O(106)

O(10−2)
=

O(10−4)m = O(100µm). So ephaphtically induced AP may happen until the interaxonal

distance with perfect alignment is of the order of 100 µm. Beyond this, there will not

be sufficient excitation current to induce AP in the 2nd axon. Figure 5.3(b) shows that

at L = 104µm the AP has not generated at axon 2. The variation of transversal and

longitudinal resistances as inter-axonal length increases for Group-A type axons of all

diameters are shown in Figure 5.4. The transversal extracellular resistance increases

with the increase of inter-axon distance whereas longitudinal extracellular resistance

decreases with increases of inter-axon distance. In Figure 5.5, we showed an approximate

maximum inter-axon distance to induce AP in axon 2 for all Group-A types axons. The

maximum effect of coupling will happen when two axons are at their closest possible

arrangement. In that case, the distance between two NRs will be double of their myelin

thickness. So, LMin = (dIN − dNR) where dIN is diameter of internode and dNR is

diameter of Nodes of Ranvier and RMin = ρLMin
A . Table 5.1 shows the table of RMin

for all Group-A-types axons. So, that’s the results of the exploration of the effects of

ephaptic coupling of active axon on the axon which is passive in the case of perfectly

aligned two myelinated axons. In a real neural system, in a bundle of myelinated axons,

there are always more than two axons laying in different alignments; so their conjugate

effects may generate different outcomes than our exploration results.
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Figure 5.4: Extracellular resistance varies with inter-axon distance

5.3.2 Inhibition of spikes due to coupling

So far, we found that ephaptic coupling can induce AP from simulated axon to passive

axon and excite that in some ideal conditions. Here, we explored under what condition,

the ephaptic coupling can inhibit AP in other axons. We know that AP is generated in

NR when membrane potential Vm reaches the threshold voltage VTH . Now, membrane
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Figure 5.5: Maximum inter-axon distance for coupling effects of active axon on passive
axon for all Group-A PNS axons

potential is equal to intra-cellular potential minus extra-cellular potential [Vm = Vx11 −
V12, as shown in Figure 5.1]. When two axons are firing at the same time, that means

the impulses at NRs at two axons are generated at the same, the current flowing through

the extracellular longitudinal resistance decreases the membrane voltage Vm across the

next NRs. In that case, if the current which will flow through the axon, is not to be

able to bring the Vm above VTH the AP will not be generated; in other words, AP will

be inhibited. Figure 5.6(a), shows 5 NRs at a single small diameter axon generating

synchronous AP, but Figure 5.6(b), shows that when two small-diameter axons are

coupled in 2nd NRs onwards the alternate APs in the spike trail is inhibited. This is,

due to the coupling effect that happened after the generation of AP at the first node.

The current flowing through extracellular resistance decreases membrane voltages across

the next NRs. Now, being a small diameter axon, the current flowing through the axon

is not strong enough to bring the Vm above threshold voltage VTH , hence the spike is

inhibited.
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(a) Spikes are generated at all 5 NRs in 1µm diameter Aδ axon

(b) Alternate spikes are inhibited from 2nd NR onwards in two axons bundle of 1µm diameter Aδ axon

Figure 5.6: Inhibition of AP due to ephaptic coupling

5.3.3 Reduction of conduction velocity:

When both the axons in the bundle are firing at the same time, the current flow through

the longitudinal resistance will decrease the membrane voltage VM across the next NRs

in axons. This will increase the time taken by the next NRs to reach threshold voltage

VTH , which implies that the Conduction Velocity (CV) of the axons will be decreased.

When we simulated both the axons in the bundle with input current at the same time we

found the propagation of spikes through the NRs as shown in Figure 5.7(b). Figure 5.7(a)

shows the propagation of spikes with the same input current in a single axon. So, in the

case of a single axon, spikes propagate from 1st NR, showing in the Figure 5.7(a) with

the green line, to 10th NR showing in the Figure 5.7(a) with the pink line in 2ms time.

But, at double axons bundle spike propagates from 1st NR (the green one) to 10th NR

(the pink one) in approx. 4.5ms time. So in coupled axons spike took a little longer



100
Chapter 5 Circuit Model for explaining Ephaphtic Coupling effect in Two Myelinated

Axons

time to propagate from 1st NR to 10th; which means CV is reduced at coupled axons

bundle.

(a) Single Axon

(b) Double Axons

Figure 5.7: (a) At single axon spikes propagates from first NR (the green one) to
tenth NR (the pink one) in 2.3ms time, and the amplitude of the spike at tenth NR is
a little larger than the rest of the NRs; (b) At double axon spikes propagates from first
NR (the green one) to tenth NR (the pink one) in 4.8ms time; so in double axon spikes
take longer time to propagate from 1st NR to 10th; hence CV is reduced at the double

axon, and the shape of the APs at all NRs are same

5.3.4 Synchronization of phases of two active axons

When in two axons, the NR of the axon-1 is fired a little later than the NR of the axon-2,

the spike in axon-2 will lead to the spike generated at axon-1. In that case, the current

flowing through the extracellular resistance from axon-1 is larger when the next NR in

axon-2 is ready to fire because the current generated from NR of axon-1 gets less time

to relax. This effect will make the 2nd NR in axon-2 take longer to fire which in effect

reduce the CV of axon-2. In a similar way, when 1st NR in axon-1 is fired a little later

in 1st NR of axon-2, the current in extracellular resistance from 1st NR of axon-2 will

be lesser when 2nd NR of axon-1 is ready to fire; because the current from 1st NR of
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axon-2 had more time to relax. This will in effect decrease the firing time of the 2nd NR

of axon-1, which means the CV of axon-1 will be increased. These effects of coupling

will lead to closing the gap of firing times between NRs of two axons and eventually

synchronizing the spikes of two axons. We observed this effect of ephaptic coupling in

synchronizing out of phase spikes of parallel axons in Figure 5.8. In that figure, in two

parallel axons, axon 2 is fired first and axon 2 fires 0.1ms later. We observed that after

propagation of the spikes through some NRs, they started firing synchronously at the

last NR.

Figure 5.8: Effects of coupling on spike synchronization; The spikes fired in different

times get synchronized in later nodes

5.3.5 Effect of misalignment between two axons

So far, we have explored the effects of ephaptic coupling when two axons are aligned.

Next, we investigated what happens when two axons are not aligned two each other. As

shown in Figure 5.9, as the axons are being staggered the cylindrical resistive coupling

path between NRs of two axons will be shrinkage. In Figure 5.9, LR is the replacement

variable denoting the replacement of the NR in axon 2 from NR of axon 1. Then the

diameter of the cylinder for calculating resistive path is = (LNR − LR) and the value

of R(L) = ρ 4∗L
π∗(LNR−LR)2

. The variable can vary between 0 and LNR; after that myelin

of one axon overlaps the NR of the other axon, giving no coupling effect of exciting

NR at the other axon. We modelled our circuit in this way and simulated it with the

input current. The simulation result showed that no AP was generated from axon 1 to

axon 2 when they are staggered as shown in Figure 5.10. The current flowing through

the longitudinal extracellular resistance is less than the O(10−9) as the length of myelin

IN is of O(10−3), hence no AP was generated from axon 1 to axon 2 when the axons

are staggered, but, we found the other effects of coupling were there; such as in small

diameter axons the spikes were inhibited in later NRs in axons in small diameter axons

as shown in Figure 5.11, and CV was reduced compared to the single axon.
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Figure 5.9: When two axons are not aligned then effects of resistive coupling started

receding based on the overlapping areas of two nodes

Figure 5.10: When two axons are staggered the AP are not generated from axon-1

to axon-2

Figure 5.11: When two axons are staggered then APs are still inhibited in later NRs

in case of small diameter axons
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5.4 Results and Discussion

In this work, we modelled ephaptic coupling between two parallel axons arranged in a

bundle using circuit theory. We modelled both aligned and staggered axons in a bundle

and simulated coupling effects. From the results generated from our model, we found

that (1) in an ideal condition when both axons are aligned and close to each other, if

one axon is simulated and fired, then active axon can excite AP in the passive axon,

(2) there is a range of inter-axon distance within which the coupling effects occur,(3)

in smaller diameter axons the external current generated at earlier nodes during AP

generation can inhibit the spike in later nodes, (4) the CV of coupled axons decreases

due to coupling effect, (5) coupling effects will lead to synchronization of spikes in axons

fired in different times, (6) in case of staggered axons the intensity of the external current

is lesser, hence AP are not generated in passive axon but other effects such as inhibition

of spikes in smaller diameter axons still occurs.

5.5 Conclusions

Here, we develop a computational model which generated the effects of ephaptic coupling

between two parallel myelinated axons, based on the circuit theory approach. The

results generated from the model shows that ephaptic coupling plays a significant role

in information processing through axonal pathways. For instance, based on a situation

ephaptic coupling can both excite or inhibit APs in Nodes of Ranvier in white matter

tracts. Also, our results show that the effects of ephaptic coupling can lower the speed

of spike transmission in myelinated axons if all the axons are firing synchronously at the

same time. If the myelinated axons are firing at different times then due to effects of

coupling, eventually the nodes of Ranvier will get synchronize and will start firing at the

same time, by increasing the speed of transmission of spikes in the axon which was firing

later and lowering the speed of transmission of spikes which was firing earlier than the

other. This shows the transmission of spikes in a single axon is different from the signal

transmission through a bundle of axons and coupling plays a role in the propagation of

signals through axonal pathways. In the next chapter, we used this model of the coupled

axon to build our multi axon model and explore signal propagation characteristics of an

axon bundle.





Chapter 6

Circuit Model for analysing

Signal Propagation Dynamics in

Myelinated Axon Bundle

6.1 Introduction

Structural brain connectivity refers to the axonal fibre bundles and pathways that form

the brain’s physical communication network, and functional connectivity refers to the

synchronisation of neural activity between different neuronal populations. Our hypoth-

esis is that, as the functional connectivity is calculated by the phase correlation between

the signals at two brain regions; the absence of it despite having structural connectivity

implies disruption of signal propagation between these two regions. In the previous chap-

ters, we have designed and developed computational circuit models for single myelinated

axon [in Chapter 4] and ephatically coupled double myelinated axons [in Chapter 5] and

examined their signal propagation dynamics by determining CV, cut-off frequency for

them. Here, our objective is to design a computational circuit model for exploring sig-

nal propagation disruption behaviour in a myelinated axon bundle. To do so, in this

chapter, we have designed and developed a computational circuit model for a bunch of

myelinated axons by extending the circuit models that we have designed in Chapter 4

and Chapter 5. We simulated our electrical circuit model by passing signals both from

stimulated current and voltage sources. By simulating the circuit with the current sig-

nal we calculated CV and observed that CV varies with the Fibre Density (FD) of the

bundle. We have used the terminology ’fibre density’ interchangeably with ’fibre pack

density’. We determined the relation between CV and FD for the axon bundle. By sim-

ulating the circuit with sinusoidal voltage signals of low to high frequency, we wanted

to experiment with ’rate code’ (the average number of APs per unit time) propagation

105
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through the axon bundle. But, with the input of high-frequency sinusoidal voltage sig-

nal, we found a surprising effect that firing pattern at Nodes of Ranvier (NR) changes

from Action Potential (AP) generation to sub-threshold oscillation of low voltage spikes,

which eventually becomes unable to generate APs at next NR after passing through the

internode (IN). This effect occurs at a very high frequency, which we termed as the ’Lim-

iting Frequency’ (LF), because beyond this frequency signals can not propagate down

the axon bundle. We also observed that this LF varies inversely with the FD of the axon

bundle. Then, we performed another experiment to explore how the signal propagates

when axons in the bundle are getting input in a random manner. We found that when

the ephaptic coupling is strong it can induce the passive axons and excite them to fire

synchronously with simulated axons and propagates signals through the bundle. Then

we performed a stochastic analysis of the circuit model to investigate how the bundle

performs to stochastic behaviour. We fired each of the axons in the bundle with random

noise and observed the signal propagation characteristics through it. At the end of this

chapter, we defined the system definition for our circuit model of a bunch of axons and

found that the behaviour of the system exhibits the characteristics of a low pass filter.

We also calculated cut-off frequency beyond which axon bundle can no longer convey

information from one region to another. In Section 6.2 we designed, developed and sim-

ulated the computational circuit model for the myelinated axon bundle. In Section 6.3

we defined system function for the same. For design and simulation of the circuit, we

have used the circuit simulation tool PSpice and for system identification of the model,

we have used MATLAB as done in previous chapters.

6.2 Signal propagation modelling in myelinated axon bun-

dle

Here, we have designed the computational model for the myelinated axon bundle using

the circuit theory approach. In our modelling, we use the data of FMN, PNS axons and

CNS axons and generated results accordingly. Within bundle (CNS or PNS), axons are

packed densely and (in general) aligned in parallel. As shown in Figure 6.1(a) and (c),

in the ultrastructure of CNS and PNS axons, the CNS myelinated axons are densely

packed within white matter and the myelin sheaths of neighbouring fibres often directly

touch, whereas the PNS axons are separated by connective tissue and are covered with

a basal lamina (Stassart et al., 2018). We adhered to the concept of densely pack fibre

bundle in our modelling by implementing the theory of circle packing into a circle which

is a two-dimensional packing problem with the objective of packing unit circles into

the smallest possible larger circle (Friedman, 2014). The smallest possible larger circle

defines the virtual confined area around the densely packed fibres which are used for

calculating the cross-sectional area of the fibre bundle. As shown in Figure 6.1.(b), we

modelled the bundle for 12 axons following the Figure 6.1.(a) of CNS axon bundle. For
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the time being for the PNS axon also implemented the same theory of circle packing

into a circle for modelling the outer area of the fibre bundle, where we know that the

PNS axons are not circular like CNS axons and don’t always touch each other. All the

axons in the bundle connected with each other in the form of a chain. In our experiment,

we varied the number of axons in the bundle from 2 to up to 12 and in each case, we

followed the theory of circle packing into a circle given by Friedman (2014) to define

the cross-sectional area of the bundle. In our model, we defined fibre density (FD) as

AF/AT and total intracellular to extracellular areas ratio, as Aax/AE, where AF is

the sum of the cross-sectional areas of the fibres, including their myelin sheaths, Aax

is the sum of their cross-sectional intracellular areas, AE is the total cross-sectional

extracellular area of the model, and AT is its total cross-sectional area. To model these

variables we followed the work of Capllonch-Juan and Sepulveda (2020). In a densely

packed bundle, the fibre density of the bundle is >= 0.5.

Figure 6.1: (a) and (c) Ultrastructure of myelinated axons in the CNS and PNS; (b)
cross-sectional view of the adhered model design of fibre bundle from Fig. (a) for CNS
axon bundle of 12 axons, for PNS axon bundle we adhered the same design but leave
20% extra space in extracellular space to model the gap between axons in the bundle;
because in the PNS, the Schwann cell plasma membrane is covered with a basal lamina
and the myelinated fibres are separated by connective tissue (Stassart et al., 2018). (d)

Schematic view of fibre bundle consists of 12 axons



108
Chapter 6 Circuit Model for analysing Signal Propagation Dynamics in Myelinated

Axon Bundle

Figure 6.2: Schematic diagram of 12 myelinated axons parallel to each other and
ephapticaly connected
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6.2.1 Circuit design and simulation of axon bundle using PSpice

The circuit details of the basic units representing NR and IN in PSpice have been given

in Chapter 4. For the present experiments, we modelled the axon bundle consists of 12

chains in parallel, each chain being 5 NR cells and 4 IN cells in length (12 X 9 model)

as shown in Fig. 6.2 using a circuit simulation tool PSpice. The whole extracellular

volume of the nerve is modelled with a resistor network which uses Barr and Plonsey

(1992) as the basic model of the extracellular medium between two cables. Ours is

an adaptation from such a model that suits any number of myelinated axons. The

longitudinal extracellular resistance ReL value is calculated using cross-sectional area AE

and IN length LIN and extracellular resistivity value Re as 330Ωcm taken from Goldwyn

and Rinzel (2016) using (ReL = Re ∗ L/AE). Thus based on the length of the axon the

RL resistance is added up in series to model the extracellular resistance. The transverse

extracellular resistance RT value between two NR is calculated using the same formula

and length of NR and distance between two myelinated axons. We showed in Chapter 4

that we modelled our circuit based on two ways of modelling the intracellular axonal

fluid in an axon (1) pure resistive and (2) resistive-capacitive. The results obtained

from the resistive model was accurate only for FMN, but for PNS and CNS axons the

resistive-capacitive model gives accurate results. So we selected the resistive model for

the FMN axon and the resistive-capacitive model for PNS and CNS axons and followed

the same here. Based on the calculation we showed in Chapter 5, Section 5.2, that

resistance offered by capacitive path is at least 12 orders higher than the resistive path

we ignored the dielectric behaviour of extracellular fluid represented by capacitive circuit.

All different axon type that we have used in our model are given in Table 2.3 in Chapter 2.

All electrical parameters are of the standard values and given in Table 4.2 in Chapter 4;

the values of the variables related to the experiments performed in this chapter are given

in Table A.5. Twelve identical electrical current sources were placed on the left end of

the model so that all 12 chains could be stimulated simultaneously. The rectangular

current pulses were all identical, i.e. 0.6 nA in amplitude and 0.25 ms in duration, and

stimulation was applied intra-cellularly. Voltage recordings were made from the NR

cells 1, 3, 5, 7 and 9 of each chain in order to measure AP propagation through the

coupled axon bundle. The longitudinal propagation velocity CV was calculated from

the measured total propagation time, IN length of each different axon.
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Table 6.1: Data for axon bundles for different types of axon; Here we showed data for

axon bundle of 2 axons and 12 axons; in Chapter A we gave all the data
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6.2.2 Conduction Velocity and Fibre Density

Conduction velocity (CV)which is the speed at which an impulse propagates down an

axonal pathway, is an important aspect of nerve conduction studies. Conduction veloc-

ities are specific to each individual axon and depend on an axon’s diameter and myelin

length, we have seen in Chapter 4 CV of a single axon varies. There, we have shown

the CV of different PNS and CNS axons, FMN and validated the results with the pub-

lished data. Here, in this work, we have calculated the CV of coupled axons bundle for

different types of axons and for a different number of axons in the bundle and plotted

them against the bundle’s fibre density. Our simulation results obtained from the cir-

cuit model revealed that the CV of coupled axon gets influenced by the coupling effects

from other axons. As the bundle density increases in the bundle, the CV of coupled

axons decreases. In Figure 6.3 we plotted the CV with FD for all axon types obtained

from our models. We performed a curve-fitting on the plotted data which resulted in a

second-order polynomial equation as given below by Equation 6.1:

f(x) = p1 ∗ x2 + p2 ∗ x+ p3 (6.1)

where x denotes FD and f(x) denotes CV. This is a new mathematical relationship

between the conduction velocity of an axon in a bundle with the fibre density of the

bundle; which describes how the conduction velocity of an axon will change based on the

fibre packing density of the bundle. The values of the parameters with (95% confidence

intervals) for different types of axons are placed in Table 6.2. Thus, we quantified the

relationship of conduction velocity of an axon bundle with its fibre density. Our finding

is valid as Binczak et al. (2001) also mentioned in his work that due to ephaptic coupling

the speed of the AP will reduce.
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Figure 6.3: CV Vs FD; For all axon types it is observed that CV varies inversely with

FD and the relation between CV and FD is best described by polynomial equation;

Here, the data are not equally sampled across density due to the characteristics of fibre

packing density of tightly packed bundle
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Table 6.2: Curve fitting statistics parameters for different axons
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6.2.3 Maximum Myelin Length and Fibre Density

In Chapter 4, we performed an experiment and analysis on the myelin length of the single

axon to investigate how the length of the myelin segment plays role in signal propagation

through the axon. In that study, we found that there is an upper limit on the length

of IN segment beyond which signal propagation does not occur. Here, we wanted to

extend that study to investigate if the upper limit of myelin length value remains the

same for the axon bundle or varies with the bundle. So, we designed a circuit of axon

bundles of various myelin lengths and the various number of axons and simulated them

with the input current. We performed these experiments on PNS axons for a number of

axons in bundles up to 10. Our simulation results showed that the upper limit of myelin

length that we obtained from a single axon model, changes in the axon bundle. We also

found that with a number of axons in the axon bundle this upper limit of myelin length

varies. We put our simulation results obtained from our models in Figure 6.4; where

we displayed the simulation results for different diameters of PNS axons. The results

show that with the number of axons in the bundle, the upper limit of myelin length

for propagating signal without disruption shortens. This is a new relationship that we

obtained on MML and FD of a bundle of myelinated axons.
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Figure 6.4: MML varies with number of axons in bundle; the result is consistent for

different types of PNS axons: the plot with pink line shows PNS axon Aα − 20µm

diameter, the plot with blue line shows PNS axon Aα− 13µm diameter, the plot with

green line shows PNS axon Aα−12µm diameter, the plot with red line shows PNS axon

Aα − 6µm diameter, the plot with purple line shows PNS axon Aα − 5µm diameter,

the plot with yellow line shows PNS axon Aα− 1µm diameter

6.2.4 Limiting Frequency and Fibre Density

High frequency brain activity have been reported in literature (Moffett et al., 2017;

Fedele et al., 2015; Scheer et al., 2011). We simulated the axons in the bundle with a

sinusoidal voltage pulse of low to the very high-frequency range. We observed that at

a high-frequency sinusoidal voltage input the NR switches from firing AP to generating

sub-threshold spikes. This frequency beyond which the NR cell stops emanating APs and

starts generating sub-threshold spikes; we termed it as LF because it limits the signal

propagation through bundle as the sub-threshold spikes can not generate AP at next NR.

Further increase of input frequency shows that the amplitude of sub-threshold oscillation

is decreasing. Eventually, this leads to disruption of the signal propagating through the

axon. We further noticed that this LF varies with the density of the bundle. As we

examined the LF with the number of axons in the bundle we found that LF decreases
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with the increase of fibre density. In Figure 6.5 we showed in FMN, Aα − 20µm and

GBCLat axon, how membrane voltage drops from 50mv to nearly -60mv with an increase

of input frequency of the signal. The red star shows the point where the transition from

50mv to -60mv happened.

Figure 6.5: In FMN axon (a) membrane voltage drops with increase of input frequency

(b) LF decreases with increases of FD

In Figure 6.6 we showed in FMN, Aα− 20µm and GBCLat axons bundle how LF value

changes with FD of the bundle. As seen in Figure 6.6, in all the three plots the LF

value is decreasing for an increase of FD value except in three cases number of axons in

the bundle are 8, 9, 10. But in the rest of the cases with an increase of FD value, the

LF value is decreasing. So, that shows the LF value of an axon gets influenced by the

coupling effects and as the number of fibre varies the LF value also gets change. This is

an important finding from our model that shows that any high-frequency sub-threshold

oscillation occurs in any part of the brain that will not be propagated to other parts via

the myelinated axon bundle.
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Figure 6.6: LF varying with FD for larger diameter and smaller diameter axons in

resistive (FMN) and resistive-capacitive model (PNS and CNS)

6.2.5 Stochastic firing of axons in bundle

So far in our experiments in axon bundle, we were firing all the axons simultaneously

and generating results. In this section, we performed an experiment where we wanted

to see how the axon will be propagating signals when they are fired stochastically. We

performed this experiment in two steps. In the first step, we took the 12 axons bundle

of FMN and started firing the axons in a gradual manner starting from 1 axon to 12

axons simultaneously and examined how the signal propagates at the end of the bundle.

In a second step, we fired each of the axons in a bundle with a random noise source and

observed how the signal propagates at the end of the bundle.

One axon is simulated: When only the 1st axon is simulated among 12 axons in the

bundle we found that at the end of the bundle only the 1st axon has sent the signal

and all the other axons are dormant and have not generated any signal. The same thing

happens if any single axon in the bundle is fired among the 12 axons. As shown in

the bottom part of Figure 6.7, xsub1 is the NR of the 1st axon that is fired with input

current and generated AP shown by the green line and denoted by V(xsub1.26), whereas
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xsub21 to xsub121 are the NRs of 2nd axon to 12th axon which was not simulated but

got induced by 1st axon’s AP and each generated a low sub-threshold spike denoted by

V(xsub1.26) to V(xsub121.26), which are put together and shown by the purple line,

which is the colour of the V(xsub121.26) the 12th axon. The dynamics at the end of

the bundle are shown in the top part of the Figure 6.7. In Figure 6.7, xsub9 is the last

NR of the 1st axon that has fired; shown by V(xsub9.26) by the green line, whereas

xsub29 to xsub129 are last NRs of 2nd axon to 12th axon which has not generated any

spikes and remained passive shown together by purple line where dots of other colours

are basically lines of other axon’s membrane potential.

Figure 6.7: When one axon is simulated in the bundle the firing at the beginning and

end of the bundle

Two axons are simulated: When two axons are simulated among the 12 axons in the

bundle the dynamics of AP generation is shown in Figure 6.8. We simulated 1st and

2nd axons, so the NR of 1st and 2nd axons generated AP, but they induced ephaptically

the other axons in the bundle and they also started firing but not as the same way as

1st and 2nd axon as shown in Figure 6.8. Every alternate spike was off from the spike

trail in AP generated by the 3rd axon to the 12th axon. The red line shows the AP

generated by the 1st and 2nd axon and the purple line shows the AP generated by the

3rd to 12th axon as shown in the bottom part of Figure 6.8. The dynamics at the end

of the bundle is shown at the top part in Figure 6.8. The last NR of the 1st axon and

2nd axon is fired the same way as they were firing at the beginning of the bundle; shown

together by the red line. The last NR of the 3rd axon to 12th axon are firing alternate

spikes in the same way they fired at the beginning of the bundle with some phase lag,

shown by the purple line.
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Figure 6.8: When two axons are simulated in the bundle the firing at the beginning

and end of the bundle

Three axons are simulated: When three axons are simulated in the bundle, what

happens in the axon bundle is shown in Figure 6.9. When the 1st, 2nd and 3rd axons are

stimulated, they are fired simultaneously as shown by the dark purple line (the line of

3rd axon) in the bottom part in Figure 6.9. We found that the rest of the axons also got

simulated by the ephaptic coupling and fired simultaneously but with different patterns;

as shown by the light purple colour line (the line of 12th axon) in the bottom part of

Figure 6.9. We observed some interesting coupling effects in the spike trail generated by

induced axons (4th to 12th axon) at the beginning of the bundle; the first induced spike

was generated at the same time as the spike generated by simulated axons (1st, 2nd

3rd axon); the second induced spike was generated at some phase lag with the second

simulated spike; the third induced spike was not generated; the fourth induced spike

was generated at the same time with a fourth simulated spike; the fifth induced spike

was again not generated, and this whole pattern was repeated in subsequent spikes; as

shown in bottom section Figure 6.9. At the end of the bundle, we observed the same

firing pattern as the beginning of the bundle; as shown in Figure 6.9.

Figure 6.9: When three axons are simulated in the bundle the firing at the beginning

and end of the bundle
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Four or more axons are simulated: From simulations of four axons and onward

in the bundle, we observed similar patterns in firing in the bundle as described by

Figure 6.10. We found that when four axons or more are simulated in the bundle it

induced the rest of the axons in the bundle by strong ephaptic coupling and the induced

axons fired in the same pattern as simulated axons. The bottom part in Figure 6.10

shows the firing pattern at the beginning of the axon bundle and the top part of the

Figure 6.10 shows the firing pattern at the end of the bundle. Both the beginning and

end of the bundle were firing in the same pattern.

Figure 6.10: When four or more axons are simulated the firing at beginning and end

of the bundle

So here we conclude that in a bundle of 12 axons if more than 3 axons are simulated in a

random way then all the rest of the axons will be induced strongly by ephaptic coupling.

When we compared the firing pattern in larger and very small diameter axons, we found

that the effects of strong ephaptic coupling occur differently in them. In the medium

to larger diameter axons (2µm to 20µm) we observed that when 4 or more axons are

simulated then all induced axons are firing in phase with simulated axons and the signal

propagates to the end of the bundle without any loss; as shown in Figure 6.10. But

for very small diameter (< 2µm) axons we observed some loss of AP at the end of the

bundle. So, when 4 or more axons are simulated, at the beginning of the bundle, both

simulated NR and induced NR were excited and generated all APs with respect to input

current, but at the end of the bundle both simulated and induced NRs are firing in phase

but some APs were not generated as shown in Figure 6.11. As we can see in Figure 6.11,

at the end of the bundle the NRs are firing in a 2:1 ratio with the APs generated at the

beginning of the bundle. So, here some of the APs were inhibited by the coupling effect

which leads to some information loss in passing the signal through the bundle.
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Figure 6.11: When four or more axons are simulated for smaller diameter axons few

AP are not generated at the end of the bundle

We quantified the signal propagation through the bundle of axons when they are ran-

domly fired for different types of axons. We calculated the population average value of

all the signals generated at the beginning and end of the bundle and then calculated

their mean firing rate respectively. Thus we got the population average mean firing rate

of the axons for the beginning and end of the bundle, shown in Table 6.3. We compare

them to find if the signal has propagated fully or there was some information loss. We

found that for small diameter axons mean firing rate is changing when four or more

axons are fired in a bundle of twelve axons. So here we showed that due to coupling

effects signals propagation can be disputed in densely packed high fibre density small

diameter axon bundle.

Axon type
Mean firing rate
at the beginning

Mean firing rate
at the end

Aα− 20µm diameter 0.0101 0.0101
Aα− 13µm diameter 0.0092 0.0092
Aβ − 12µm diameter 0.0092 0.0092
Aβ − 6µm diameter 0.0092 0.0092
Aδ − 5µm diameter 0.0092 0.0092
Aδ − 1µm diameter 0.0086 0.0043

GBCLat-3.06µm diameter 0.0086 0.0086
GBCMed-2.41µmdiameter 0.0079 0.0063

SBC-1.35µm diameter 0.0086 0.0043

Table 6.3: Population average mean firing rate at the beginning and end of the bundle
for different types of axons

Axons are simulated with random noise source: Here, we extended our experi-

ment to study the behaviour of the circuit when simulated with random noise source.

We generated a random noise source by using the RND function in PSpice and offset it

by -0.5V to center the random values at 0V with a +/- of 0.5V.
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Figure 6.12: FMN axons are simulated with random noise source at the beginning of

the bundle

We simulated each of the axons with this noise source and checked how the NR are

firing at the beginning and at the end of the bundle. We performed this experiment

on the FMN axon, a larger diameter PNS axon and a smaller diameter CNS axon. In

Figure 6.12 we showed the results we obtained by firing FMN axons in a bundle with

a random noise source. We found the NRs are simulated in a non-periodic manner at

the beginning of the bundle and the beginning and end of the bundle are not firing in

the same pattern and some of the APs are not generated as shown in Figure 6.12. In

Figure 6.13 we showed the results seen in larger diameter PNS axon. We found that the

NR of the axons at the beginning of the bundle got simulated by the random noise source

and firing but not in a periodic manner. We also found that the signal is propagated at

the end of the bundle but NRs are not firing in the same pattern as the beginning of

the bundle and some APs are inhibited, as shown Figure 6.13

Figure 6.13: PNS axons are simulated with random noise source at the beginning of

the bundle

When checked with a bundle of smaller diameter SBC axons we found similar results as

shown in Figure 6.14. We simulated the bundle of SBC axons of diameter 1.35µm with



Chapter 6 Circuit Model for analysing Signal Propagation Dynamics in Myelinated
Axon Bundle 123

a random noise source. Here also we found the NRs at the beginning of the bundle were

firing but not in any periodic manner. When we checked the end of the bundle we found

that some of the firings of AP were inhibited and the NRs are not firing in a similar way

as the beginning of the bundle, as shown in Figure 6.14.

Figure 6.14: CNS axons are simulated with random noise source at the beginning of

the bundle

6.3 Frequency response modelling in an axon bundle

6.3.1 Transfer Function modelling for Multi-Axon bundle

In Chapter 4 we have created the transfer function model for IN section of an axon and

analysed its system behaviour and signal propagation characteristics in the frequency

domain using MATLAB software. In this section, we created a transfer function model

for the axon bundle. We used the model of IN section that we created in Chapter 4,

in transfer function modelling of axon bundle here, but we took the transfer function

model of lower poles and zeroes to reduce the computational complexity of the model.

But before that, we created a transfer function model of the NR section. To create the

transfer function model of the NR section, we first converted the subcircuit model of

NR created in PSPice modelling into a Simscape block and imported it into MATLAB

platform as shown in Figure 6.15.(a). We simulated the circuit with current pulse 0.6nA

and generated the AP from the model as shown in Figure 6.15.(b). We got the same

results as we validated the output with PSpice tool. Then we modelled a parallel circuit

axon bundle with the NR and IN subcircuits as shown in Figure 6.16. We simulated the

circuit with impulse input and generated impulse response. With this input and output,

we linearised the circuit with MATLAB’s ’Linear Analysis’ control design analysis tool

and generated the gain plot and phase plot.
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Figure 6.15: Simscape model of NR and its output same as PSPice model

6.3.2 Gain and Phase analysis of NR

Figure 6.17.(a) shows the bode plot that was generated from the system model formed

after linearization of the NR block when placed into a parallel circuit of two axons. The

gain and phase plot shows that the behaviour of the linearised NR block exhibits the

characteristics of a low pass filter. The gain plot started at 150 dB due to the behaviour

of system input and output which is O(10−9) in input and O(10−3) in output. The phase

plot started at 0 dB and shows that the phase will change towards a higher frequency. In

Figure 6.16: Simscape model of parallel circuit build using NR and IN PSpice sub-
circuits

Figure 6.17.(b) we placed the output of the linearise system and output of the original

NR block. The figure of colour red is the original NR system output and the figure

of the colour blue is the linearised system output. As we can see from the graph the



Chapter 6 Circuit Model for analysing Signal Propagation Dynamics in Myelinated
Axon Bundle 125

output of the system model is in the same phase as the output of the circuit model;

their peak amplitude also matches; but the magnitude of the system output is smaller

than the circuit output and system output is not starting its waveform from -0.07v but

from -0.03v.

Figure 6.17: (a) Bode plot of system function NR (b) Output of system function of
NR with it original model output

6.3.3 Model interconnection

Then, we connected the system function of NR and IN together and build the models for

the axon bundle using MATLAB function ’append’, ’connect’. In Figure 6.18(a), we show

the interconnection of the bundle of three axons generated by using the system function

of NR and IN and in Figure 6.18(b) we show the single system function developed by

interconnecting NR, IN models of three axons.

6.3.4 Gain and Phase analysis of interconnected model

We generated the phase and gain plot and compared the output of the three axons

model with the original model as shown in Figure 6.19. As shown in Figure 6.19.(b) the

waveform of the red line is the original system’s output and the waveform of the blue

line is the system model’s output. As seen in the figure the system model’s output is in

phase with the original system’s output but the magnitude of the system model’s output

is smaller than the original circuit model’s output. The output waveform generated by

the system model started at -0.02V and went up to 0.042V whereas the output of the

circuit model starts at -0.067V and goes up to 0.045V. The gain and phase plot in

Figure 6.19.(b) shows that the bundle system behaviour is like a low pass filter. In the

gain plot in Figure 6.19.(b) we can see that it has started at 150 dB which is due to the

behaviour of system input and output which is O(10−9) in input and O(10−3) in output.
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The phase plot started at 0 db and shows that the phase will change up to 30 degrees

towards a higher frequency before the system reaches the cross-over frequency of the

system. The crossover frequency is the frequency point at which the gain and phase plot

after that will be greatly reduced. Figure 6.20 shows the gain and phase plot of all the

inputs and outputs of three axon system function sysT3ax. The inputs of the system

function sysT3ax are e(1), e(2) and e(3) and outputs are u(1), u(2) and u(3). The gain

phase plot of e(1) to u(1), e(2) to u(2) and e(3) to u(3) are of three axons coupled in

the bundle, as shown in Figure 6.20. Figure 6.20 shows the dynamic of phase-frequency

characteristics of three axons in the bundle are the same. So, the phase plot shows that

the signal propagates through the bundle of 3 axons will not change its phase when

reaches the end of the bundle and input and output of the bundle will be in phase up

to the cross-over frequency of the system. Similar way, we interconnected the NR and

Figure 6.18: (a)The system function model of three axons bundle build with system
function of NR and IN (b) The single system function model developed after intercon-

necting three models

IN models and built the system function model for 12 axons. The process of generating

12 axons model took much longer time than 3 axons. Figure 6.21 shows the gain and

phase plots of 12 axons in the bundle. The phase plots of the Figure 6.21 give the

phase-frequency characteristics of signal propagation through the axons in the bundle.

Our objective was to find out the phase-frequency characteristic of signal propagation

through white matter tracts i.e. a bundle of myelinated axons. This Figure 6.21 describes

the phase-frequency characteristics of a myelinated axon bundle which are ephaptically

coupled. The phase-frequency plot shows that the behaviour of the system definition of

a bunch of axons is similar to a low pass filter; that it will pass the signal of a certain

frequency and dampen out signal beyond that frequency. We determine the cut-off

frequency (-3db) of 319.42Hz of the system.
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Figure 6.19: (a) Gain and phase plot, ((b) Output waveform of system function model
of three axons bundle build with system function of NR and IN

Figure 6.20: Gain and phase plot of all the inputs and outputs of three axon model



128
Chapter 6 Circuit Model for analysing Signal Propagation Dynamics in Myelinated

Axon Bundle

Figure 6.21: Gain and phase plot of all the inputs and outputs of 12 axon model

6.4 Results and Discussion

Here, we developed a computational circuit model for a bundle of axons and explore

the propagation of the signal through them. From our simulation results, we found that

CV varies with the density of the fibre bundle. We defined the relation between CV

and FD by forming an equation and found that CV varies inversely with FD. So this

implies that as the density of fibre bundle will increase in the case of myelinated axon

the transmission speed of spike will slow down. From our experiments, we derived a new

frequency for the axon bundle which we termed as LF. The LF defines the frequency

beyond which the nodes of Ranvier will stop transmitting the signal through the bundle.

This is an important finding from our model that shows that any high-frequency sub-

threshold oscillation occurs in any part of the brain will not be propagated to other parts

via the myelinated axon bundle. We calculated this LF for different FD values of densely
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pack fibre bundle for larger and smaller diameter axons. We found that the value of LF

is lowering for higher FD values. Then, we found that the upper limit of myelin length

for non-disruptive signal propagation varies with the FD of the axon bundle. As the FD

value increasing the maximal length of myelin for non-disruptive signal propagation is

decreasing. Our exploration of the circuit model also shows that in the case of densely

packed bundles, for small diameter axons the signal may get lost due to coupling effects

while propagating through the bundle. We also defined a system function for the axon

bundle which shows the behaviour of the bundle is similar to the low pass filter. We

analysed the gain and phase plot of the bundle and found that the output signal at the

end of the bundle will be in phase with the input signal of the bundle up to the cross-over

frequency of the system. This system model can be extended and used in future for the

study of system behaviour of myelinated axon bundle for any number of axons.

6.5 Conclusions

Based on our simulation results we conclude that signal transmission in a bundle of

myelinated axons is influenced by the coupling effects of the number of fibres in the

bundle. If the density of the fibres is higher then the transmission speed of the impulses

will slow down. We also conclude from our simulation model that very high-frequency

stimulus input will disrupt signal propagation through the bundle of axons and the

threshold of this frequency changes inversely with the density of the fibre bundle. We also

conclude from our computational model that due to the influence of ephaptic coupling in

the bundle the signal propagation through myelin will be altered. The maximal myelin

length where impulse can propagate without dying out will shorten with the increase of

FD. The identification of the system model of the myelinated axon bundle exhibits the

behaviour of a low pass filter. The analysis of gain and phase plot of axon bundle implies

that after the cross-over frequency the firing between two consecutive nodes of Ranvier

may get out of phase. Our model of simulation can serve as the basis for a more detailed

theory of signal transmission through a myelinated axon bundle in various experimental

conditions.





Chapter 7

Conclusions

This project aims to model the phase and frequency characteristics of white matter

tracts with a circuit modelling approach so that signal propagation through white matter

tracts can be characterized in both temporal and frequency domains, and correspondence

between structural and functional connectivity can be established.

The steps to accomplish that goal are, model the structural connectivity of the brain

from MRI data and extract parameter values for tracts, design a circuit based compu-

tational model of the structural connectivity using parameter values obtain from MRI

data analysis, generate a system definition for the model, then finally analysis its phase

and frequency characteristics.

We started working with MRI data processing where we have designed an algorithm

to parcellate cortical surface. With the exiting methods of parcellation of the cortical

surface, we can only parcellate cortical surface into defined anatomical brain ROIs. Using

our algorithms we can demonstrate that cortical surface can also be parcellated into any

number of equal size areas. We have presented a framework for a toolchain that process

structural and diffusional MRI data and calculate graph theory measures for quantifying

the structural connectivity based on equal area parcellation to define brain ROIs. The

framework is of the fully automated toolchain that does not need separate intervention

at its different processing stages. Being based on equal parcellation, the construction

of structural connectomes can be customized based on user need making it available

for structural connection analysis for neonates as well as brain injury cases. The entire

toolchain processes have been validated with HCP data which showed correct working

and its ease of use.

From our single axon model, we have observed that the model exhibits low pass filter

behaviour. That means the model passes the signal of specific frequencies and dampens

signals of other frequencies. The cut-off frequency of the model varies with the geometry

of the axon. We have formulated a mathematical relation between the cut-off frequency

131



132 Chapter 7 Conclusions

and myelin length. We have also noted that the conduction velocity of signal propagation

through a single axon varies with the axon’s geometry. We have also found that there

is an upper limit of myelin length beyond which signal propagation will be disrupted.

From these, we can conclude that signal propagation disruption will occur in a single

myelinated axon if the axon’s myelin length is beyond its upper limit or the signal’s

frequency is above the cut-off frequency of the myelin. Overall we can conclude that

the experiment results we obtained here imply that depending on the myelin geometry

a rate coded nerve signal propagation through structural connection could be disrupted

resulting in functional disconnection between two brain areas.

We have observed that an axon’s conduction velocity is inversely proportional to the

axon bundle density from our axon bundle modelling. We have derived a mathematical

relationship between the conduction velocity and the fibre density of the axon bundle.

From this observation of the mathematical model, we can conclude that in densely

packed bundles in which the axons are ephaptically coupled with each other, an impulse’s

transmission speed will reduce with higher density of axons. In other words, in a tightly

coupled axon bundle signal propagation will face resistance. We have also found a new

phenomenon where we see the high-frequency signal changes the firing of the AP to sub-

threshold impulses in nodes of Ranvier which leads to disruption of signal propagation

to the next NR. This is an important finding from our model that shows that any

high-frequency sub-threshold oscillation occurs in any part of the brain will not be

propagated to other parts via the myelinated axon bundle. We have also found that

the axon bundle’s behaviour is similar to a low pass filter that passes selective signals

below the cut off frequency. Our simulation output implies that ephaptic coupling plays

a significant role in signal transmission through the myelinated axon bundle, either by

altering the transmission speed of impulses or changing the timing of AP firing. Based

on the geometrical structure of the myelinated axon, their alignment in the bundle and

their distance between each other, ephaptic coupling can either excite or inhibit the

firing in nearby axons, which can lead to amplification or pacification of mass neuron

firings.

In the below section, we have summarised the tasks that have been accomplished and

the scope of future works:

7.1 Current work

• A new parcellating cortical surface method has been developed to generate equal-

sized brain areas (ROIs) of the cortical surface. The existing method of cortical

surface parcellation is based on anatomical definitions of different brain areas. This

method is not useful for neonates or adults’ brains with neuroplasticity anomalies.

We propose a new methodology to parcellate the cortical surface into equal-sized
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areas from the structural MRI image for extracting white matter tracts’ geomet-

rical properties.

• We have designed a computational circuit model to analyse temporal and phase-

frequency characteristics of signal propagation in a single myelinated axon. We

have implemented the circuit model using the PSPice tool along with Matlab.

Using the model, we have derived CV, MML for a single axon. Then we have

defined a transfer function for the myelin segment of a single myelinated axon.

Using this transfer function, we have derived cut-off frequency for a single axon.

Using these data, we defined a mathematical relationship between cut-off frequency

and myelin length.

• We have modelled the effects of ephaptic coupling between two myelinated axons

using circuit theory.

• We have designed a computational circuit model to determine phase-frequency

signal propagation characteristics through a myelinated axon bundle. For the

design of this model, we have used the PSPice circuit simulation tool along with

Matlab. We further determined the CV, MML, and LF characteristics for the axon

bundle from the simulation model. We determined the mathematical relationship

between the CV and the density of the fibre bundle. Then we defined a transfer

function of the axon bundle and derived the phase-frequency characteristics of

signal propagation through the axon bundle.

7.2 Future plan

• Our models are based on simulated data. As a scope for future work, we need to

experimentally validate all the results.

• We have theoretically proved using the 12 axons model that temporal and phase-

frequency characteristics of signal propagation through a bundle of myelinated

axons exists. But we have not verified the scalability of this model yet. To extend

the scope of our work, we need to prove that the same theory holds for a large

number of axons. Also, as future work, we would experiment with signal prop-

agation in the model by scaling the length of axons, for example, 15cm between

hemispheres and 1m for the spinal cord.

• In this work, we have developed a framework for an automated toolchain. The

different parts of the model can be further integrated and enhanced so that all

aspects of structural and functional connectivity can be measured in further detail.
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Appendix

1. Matlab code for Equal Area Parcellation.

function equal_parcellation(N)

%

% equal_parcellation -Automated parcellation of cortical surface based on

equal area sphere partitioning.

%% Usage: equal_parcellation(fname ,N)

% Author: Sarbani.Das@soton.ac.uk

% Created: 20 March 2017

%

%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

for run =1:2

if run==1

fname = ’../surf/rh.sphere.reg ’;

hem= ’r’;

dir=’right ’;

elseif run ==2

fname = ’../surf/lh.sphere.reg ’;

hem= ’l’;

dir=’left ’

end

if (fopen(fname , ’rb’, ’b’) < 0)

str = sprintf(’could not open surface file %s.’, fname) ;

error(str) ;

end

if ischar(N)

N=str2num(N);

end

[vertex_cor ,~]= read_surf(fname);

points_x =100* eq_point_set (2,N);

points_x=points_x ’;

point_x1=points_x;

if(hem==’r’)

points_x=[-points_x (:,1) points_x (:,2) points_x (:,3)];

end

N=size(points_x ,1);

% [vertex_cor ,~]= read_surf(fname);

V=size(vertex_cor ,1);

atlas_point=zeros (1,5);
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f=1;

for v=1:V

[nearestIndex ,~] = mesh_vertex_nearest(points_x ,vertex_cor(v,:));

if f==1

f=0;

atlas_point =[v-1,nearestIndex ,vertex_cor(v,:)];

else

atlas_point =[ atlas_point ;[v-1,nearestIndex ,vertex_cor(v,:) ]];

end

end

for n=1:N

lxyz_n=zeros (1,3);

lindex=zeros (1,1);

lvals=zeros (1,1);

f=1;

for v=1:V

if n== atlas_point(v,2)

if f==1

lxyz_n=atlas_point(v ,3:5);

lindex=atlas_point(v,1);

lvals =0.1000000;

f=0;

else

lxyz_n =[ lxyz_n;atlas_point(v ,3:5)];

lindex =[ lindex;atlas_point(v,1)];

lvals=[ lvals ;0.1000000];

end

end

end

subjid = ’117122 ’;

labelfile=string(dir)+’/’+string(hem)+’h.node ’+ string(n)+’.label ’;

write_label(lindex ,lxyz_n ,lvals ,labelfile ,subjid);

end

end

2. Python code for creating strucurtal connectome for a set of subjects.

#!/ usr/bin/env python

import math , os , sys

import math , os , sys

MRTRIX_LIB_PATH=’~/ mrtrix3/scripts/’

sys.path.append(os.path.expanduser(MRTRIX_LIB_PATH))

import lib.app , lib.cmdlineParser

from datetime import date

def abspath (*arg):

return os.path.abspath(os.path.join(*arg))

def relpath (*arg):

return os.path.relpath(os.path.join(*arg),lib.app.workingDir)

from lib.printMessage import printMessage

from lib.errorMessage import errorMessage

from lib.runCommand import runCommand

lib.app.author = ’SD’
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lib.cmdlineParser.initialise(’Generate Structural Connectome for Human

Connectome Project ’)

lib.app.parser.add_argument(’input_dir ’, help=’The input directory

containing Diffusional and Structural preprocessed files ’)

lib.app.parser.add_argument(’output_dir ’, help=’The output directory will

have 5TT.mif , vis.mif ,nodes.mif ,nodes_fixsgm.mif ,DWI.mif ,meanb0.mif

,..... , connectome.csv’)

lib.app.initialise ()

lib.app.args.input_dir = relpath(lib.app.args.input_dir)

indir = lib.app.args.input_dir

if not os.path.exists(indir):

errorMessage(’input directory not found’);

outdir = lib.app.args.output_dir

outdir = str(date.today())+’_’+outdir

#lib.app. checkOutputFile (outdir)

#lib.app.make_dir(outdir)

inFiles = os.listdir(indir)

for inputdir in inFiles:

if len(inputdir) < 6:

printMessage(’not enough files found in input directory.’)

else:

printMessage(’Generating Structural connectome for ’+str(inputdir))

outputdir = outdir+’/’+str(inputdir)

inputdir = indir+’/’+inputdir

lib.app.checkOutputFile (outputdir)

lib.app.make_dir(outputdir)

runCommand(’cp -R ’+abspath(inputdir)+’ ’+abspath(outputdir))

printMessage(’Generate a tissue -segmented image appropriate for

Anatomically -Constrained Tractography:’)

#5ttgen fsl T1w_acpc_dc_restore_brain .nii.gz 5TT.mif -premasked

runCommand(’5ttgen fsl ’+abspath(inputdir ,’T1w_acpc_dc_restore_brain.nii.

gz’)+’ ’+abspath(outputdir ,’5TT.mif’)+’ -premasked ’)

printMessage(’Collapse the multi -tissue image into a 3D greyscale image for

visualisation: Check in mrview ’)

#5tt2vis 5TT.mif vis.mif; mrview vis.mif

runCommand(’5tt2vis ’+abspath(outputdir ,’5TT.mif’)+’ ’+abspath(outputdir ,’

vis.mif’))

# runCommand (’mrview ’+abspath(outputdir ,’vis.mif ’))

printMessage(’Modify the integer values in the parcellated image ’)

# labelconvert aparc+aseg.nii.gz FreeSurferColorLUT .txt fs_default .txt nodes

.mif

runCommand(’labelconvert ’+abspath(inputdir ,’aparc+aseg.nii.gz’)+’ /home/

koushik/mrtrix3/FreeSurferColorLUT.txt /home/koushik/mrtrix3/src/

connectome/tables/fs_default.txt ’+abspath(outputdir ,’nodes.mif’))

printMessage(’Replace FreeSurfers estimates of sub -cortical grey matter ’)
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runCommand(’labelsgmfix ’+abspath(outputdir ,’nodes.mif’)+’ ’+abspath(

inputdir ,’T1w_acpc_dc_restore_brain.nii.gz’)+’ /home/koushik/mrtrix3/src

/connectome/tables/fs_default.txt ’+abspath(outputdir ,’nodes_fixSGM.mif’

)+’ -premasked ’)

printMessage(’Convert the diffusion images into a non -compressed format ’)

runCommand(’mrconvert ’+abspath(inputdir ,’data.nii.gz’)+’ ’+abspath(

outputdir ,’DWI.mif’)+’ -fslgrad ’+abspath(inputdir ,’bvecs ’)+’ ’+abspath

(inputdir ,’bvals’)+’ -datatype float32 -stride 0,0,0,1’)

printMessage(’Generate a mean b=0 image (useful for visualisation):’)

runCommand(’dwiextract ’+abspath(outputdir ,’DWI.mif’)+’ - -bzero | mrmath -

mean ’+abspath(outputdir ,’meanb0.mif’)+’ -axis 3’)

printMessage(’Estimate the response function; note that here we are

estimating multi -shell , multi -tissue response functions:’)

runCommand(’dwi2response msmt_5tt ’+abspath(outputdir ,’DWI.mif’)+’ ’+

abspath(outputdir ,’5TT.mif’)+’ ’+abspath(outputdir ,’RF_WM.txt’)+’ ’+

abspath(outputdir ,’RF_GM.txt’)+’ ’+abspath(outputdir ,’RF_CSF.txt’)+’ -

voxels ’+abspath(outputdir ,’RF_voxels.mif’))

printMessage(’check appropriateness of response function voxel selections ’)

# runCommand (’mrview ’+abspath(outputdir ,’meanb0.mif ’)+’ -overlay.load ’+

abspath(outputdir ,’ RF_voxels.mif ’)+’ -overlay.opacity 0.5 ’)

printMessage(’Perform Multi -Shell , Multi -Tissue Constrained Spherical

Deconvolution:’)

runCommand(’dwi2fod msmt_csd ’+abspath(outputdir ,’DWI.mif’)+’ ’+abspath(

outputdir ,’RF_WM.txt’)+’ ’+abspath(outputdir ,’WM_FODs.mif’)+’ ’+abspath(

outputdir ,’RF_GM.txt’)+’ ’+abspath(outputdir ,’GM.mif’)+’ ’+abspath(

outputdir ,’RF_CSF.txt’)+’ ’+abspath(outputdir ,’CSF.mif’)+’ -mask ’+

abspath(inputdir ,’nodif_brain_mask.nii.gz’))

runCommand(’mrconvert ’+abspath(outputdir ,’WM_FODs.mif’)+’ - -coord 3 0 |

mrcat ’+abspath(outputdir ,’CSF.mif’)+’ ’+abspath(outputdir ,’GM.mif’)+’ -

’+abspath(outputdir ,’tissueRGB.mif’)+’ -axis 3’)

printMessage(’Visually make sure that both the tissue segmentations and the

white matter FODs are sensible ’)

# runCommand (’mrview ’+’ ’+abspath(outputdir ,’tissueRGB .mif ’)+’ -odf.load_sh

’+’ ’+abspath(outputdir ,’WM_FODs.mif ’))

printMessage(’Generate the initial tractogram:’)

runCommand(’tckgen ’+abspath(outputdir ,’WM_FODs.mif’)+’ ’+abspath(outputdir

,’10M.tck’)+’ -act ’+abspath(outputdir ,’5TT.mif’)+’ -backtrack -

crop_at_gmwmi -seed_dynamic ’+abspath(outputdir ,’WM_FODs.mif’)+’ -

maxlength 250 -number 10M -cutoff 0.06’)

#mrresize WM_FODs.mif FOD_downsampled .mif -scale 0.5 -interp sinc

runCommand(’mrresize ’+abspath(outputdir ,’WM_FODs.mif’)+’ ’+abspath(

outputdir ,’FOD_downsampled.mif’)+’ -scale 0.5 -interp sinc’)

#Apply the Spherical - deconvolution Informed Filtering of Tractograms (SIFT)

algorithm .This method reduces the overall streamline count , but

provides more biologically meaningful estimates of structural connection

density

printMessage(’Apply the Spherical -deconvolution Informed Filtering of

Tractograms (SIFT) algorithm.’)
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runCommand(’tcksift ’+abspath(outputdir ,’10M.tck’)+’ ’+abspath(outputdir ,’

FOD_downsampled.mif’)+’ ’+abspath(outputdir ,’1M_SIFT.tck’)+’ -act ’+

abspath(outputdir ,’5TT.mif’)+’ -term_number 1M’)

#Map streamlines to the parcellated image to produce a connectome :

printMessage(’Map streamlines to the parcellated image to produce a

connectome:’)

runCommand(’tck2connectome ’+abspath(outputdir ,’1M_SIFT.tck’)+’ ’+abspath(

outputdir ,’nodes_fixSGM.mif’)+’ ’+abspath(outputdir ,’connectome.csv’))

lib.app.complete ()

3. PSPICE code of circuit modeling for Axon

.SUBCKT RAV 100 99 101 102

************************************************************************

*

*

* coNa = 491.0E-3 Extracellular sodium concentration (mol/L)

* ciNa = 50.0E-3 Intracellular sodium concentration (mol/L)

* coK = 20.11E-3 Extracellular potassium concentration (mol/L)

* ciK = 400.0E-3 Intracellular potassium concentration (mol/L)

* GNaMax =120.0E-3

* GKMax =36.0E-3

* V_r = -62.5E-3 Resting Membrane Potential (V)

* Temp = 6.3 Temperature (Degrees Celsius)

* b = 0.02 Relative permeability of sodium to potassium

* R = 8.314 Reiberg gas constant (joules /(mole*kelvin))

* Z = 1.0 Sodium and potassium ionicvalence

* F = 9.648E4 Faraday ’s constant (coulombs/mole)

*

************************************************************************

*

Rax1 99 31 4E6

Rax 31 102 4E6

Ri1 100 103 1E-22

Ri 103 101 1E-22

Rnode 103 30 30E-6

FNA 31 27 VINA 1

FK 31 28 VIK 1

VNk 28 30 -72.0E-3

VNNa 27 30 55.0E-3

ENAK 26 0 31 30 1

CE 31 30 {1E-12} IC= -62.5E-3

*Sodium current current pathway

*M variable

CM 2 0 0.26E-3 IC =0.0393

RM 2 0 1E10

GAM 0 2 POLY (2) 2 0 5 0 0 0 1 0 -1

GBM 0 2 POLY (2) 2 0 6 0 0 0 0 0 -1

EAM 5 0 value ={ -0.1*(v(26)*1E3+35)/(exp ( -0.1*(v(26)*1E3+35)) -1)}

RAM 5 0 1E10

EBM 6 0 value ={4* exp(-(v(26)*1E3+60) /18)}

RBM 6 0 1E10

* Sodium current current pathway

* H Variable

CH 3 0 0.26E-3 IC =0.6798

RH 3 0 1E10



140 Appendix A Appendix

GAH 0 3 POLY (2) 3 0 7 0 0 0 1 0 -1

GBH 0 3 POLY (2) 3 0 8 0 0 0 0 0 -1

EAH 7 0 value ={0.07* exp ( -0.05*(v(26)*1E3+60))}

RAH 7 0 1E10

EBH 8 0 value ={1/(1+ exp ( -0.1*(v(26)*1E3+30)))}

RBH 8 0 1E10

*Potassium current current pathway

* K parameters

CN 4 0 0.26E-3 IC =0.2803

RN 4 0 1E10

GAN 0 4 POLY (2) 4 0 9 0 0 0 1 0 -1

GBN 0 4 POLY (2) 4 0 10 0 0 0 0 0 -1

EAN 9 0 value ={ -0.01*(v(26)*1E3+50)/(exp ( -0.1*(v(26)*1E3+50)) -1)}

RAN 9 0 1E10

EBN 10 0 value ={0.125* exp ( -0.0125*(v(26)*1E3+60))}

RBN 10 0 1E10

EMNA 15 0 26 11 1

RMNA 15 0 1E10

EM3 53 0 POLY (1) 2 0 0 0 0 1

EM3H 16 0 POLY (2) 53 0 3 0 0 0 0 0 1

RM3H 16 0 1E10

GNA 0 20 POLY (2) 15 0 16 0 0 0 0 0 6.7858E-006

VINA 20 0 0

VNA 11 0 55.0E-3

RNA 11 0 1E10

VK 12 0 -72.0E-3

RK 12 0 1E10

EMK 17 0 26 12 1

RMK 17 0 1E10

EN4 18 0 poly (1) 4 0 0 0 0 0 1

RN4 18 0 1E10

GK 0 21 POLY (2) 17 0 18 0 0 0 0 0 2.0358E-006

VIK 21 0 0

.ENDS

.SUBCKT MYLN 99 101 100 102

Rax 99 103 4E-6

Rax2 103 100 4E-6

RMY 103 30 250E6

CMY 103 31 1.5E-12

R 101 31 4E6

R2 31 102 4E6

VNAK 31 30 -63E-3

.ENDS

.SUBCKT MYLNSHEATH 3 4 15 16

xsub2 3 4 5 6 MYLN

xsub3 5 6 7 8 MYLN

xsub4 7 8 9 10 MYLN

xsub5 9 10 11 12 MYLN

xsub6 11 12 13 14 MYLN

xsub7 13 14 15 16 MYLN

xsub8 15 16 17 18 MYLN

.ENDS

I 0 2 pulse(0 6E-9 10E-6 100.0E-9 100.0E-9 0.1E-3 0.2E-3)

R2 1 0 1E100

*node1

xsub1 1 2 3 4 RAV
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xsub2 3 4 5 6 MYLNSHEATH

*node2

xsub3 5 6 7 8 RAV

xsub4 7 8 9 10 MYLNSHEATH

*node3

xsub5 9 10 11 12 RAV

R3 11 0 1E100

R4 12 0 1E100

.TRAN 0.1ms 5ms 0

.PROBE

.END

4. Color look up table for newly parcellated regions.

Figure A.1: The Color Look Up Table.
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5. Matlab code for estimating transfer function models by specifying number of poles.

%% Estimate Transfer Function Models by Specifying Number of Poles

%

%%

% Load time -domain system response data and use it to estimate a transfer

% function for the system.

%load iddata1 z1;

fitpercent = [];

pol = [];

i= 1;

previous = 0;

present = 10;

flag =0;

for np = 2:15

sys = tfest(z1,np);

%%

% |z1| is an |iddata| object that contains time -domain , input -output data.

%%

% |np| specifies the number of poles in the estimated transfer function.

simlog

%%

% |sys| is an |idtf| model containing the estimated transfer function.

%%

% To see the numerator and denominator coefficients of the resulting

estimated

% model |sys|, enter:

sys.Numerator;

sys.Denominator;

%%

% To view the uncertainty in the estimates of the numerator and denominator

% and other information , use |tfdata |.

v = sys.Report.Fit.FitPercent;

fitpercent (1,i) = v;

present = v;

pol(1,i)= np;

zeros = 0;

%if Test(i-1) ==0|| Test(i-2) ==0 && Test(i+1) ==0|| Test(i+2) ==0

%if v < 100 && v> 90 && (previous == present || abs(previous -present) < 1)

&& flag == 0

if v>99 && flag == 0

fte = bandwidth(sys);

poles = np;

%%%%%%%%%%%%%%%%%%%5

[mag ,phase ,wout] = bode(sys); % Get Plot Data

mag = squeeze(mag); %

Reduce (1x1xN) Matrix To (1xN)

phase= squeeze(phase);

magr2 = (mag/max(mag)).^2; %

Calculate Power Of Ratio Of m a g /max(mag)

dB3 = interp1(magr2 , [wout phase mag], 0.5, ’spline ’); %

Find Frequency & Phase & Amplitude of Half -Power (-3 dB) Point

%dB3 = interp1(magr2 , wout , 0.5, ’spline ’);
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figure (1)

subplot (2,1,1)

semilogx(wout , 20* log10(mag), ’-b’, dB3(1), 20* log10(dB3(3)), ’+r’,

’MarkerSize ’,10)

ylabel(’Magnitude(dB) ’)

text(dB3(1) ,20* log10(dB3 (3)),’\leftarrow cutoff frequency ’)

grid

subplot (2,1,2)

semilogx(wout , phase , ’-b’, dB3(1), dB3(2), ’+r’, ’MarkerSize ’,10)

ylabel(’Phase(Deg)’)

xlabel(’Frequency(rad/s)’)

grid

flag = 1;

end

i= i+1;

previous = v;

end

figure (2);

plot(pol , fitpercent);

grid;

axis ([2 15 90 104]);

xlabel(’Poles ’);

ylabel(’Fit Percent ’);

6. Pspice modeling of two myelinated axon propagating signal.

.SUBCKT RAV 103 99 102

************************************************************************

*

*

* coNa = 491.0E-3 Extracellular sodium concentration (mol/L)

* ciNa = 50.0E-3 Intracellular sodium concentration (mol/L)

* coK = 20.11E-3 Extracellular potassium concentration (mol/L)

* ciK = 400.0E-3 Intracellular potassium concentration (mol/L)

* GNaMax =120.0E-3

* GKMax =36.0E-3

* V_r = -62.5E-3 Resting Membrane Potential (V)

* Temp = 6.3 Temperature (Degrees Celsius)

* b = 0.02 Relative permeability of sodium to potassium

* R = 8.314 Reiberg gas constant (joules /(mole*kelvin))

* Z = 1.0 Sodium and potassium ionicvalence

* F = 9.648E4 Faraday ’s constant (coulombs/mole)

*

************************************************************************

*

Rax1 99 31 4

Rax 31 102 4

*Ri1 100 103 1E-22

*Ri 103 101 1E-22
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FNA 31 27 VINA 1

FK 31 28 VIK 1

VNk 28 30 -72.0E-3

VNNa 27 30 55.0E-3

ENAK 26 0 31 30 1

CE 31 30 {1E-12} IC= -62.5E-3

Rnode 103 30 30E6

*Sodium current current pathway

*M variable

CM 2 0 0.26E-3 IC =0.0393

RM 2 0 1E10

GAM 0 2 POLY (2) 2 0 5 0 0 0 1 0 -1

GBM 0 2 POLY (2) 2 0 6 0 0 0 0 0 -1

EAM 5 0 value ={ -0.1*(v(26)*1E3+35)/(exp ( -0.1*(v(26)*1E3+35)) -1)}

RAM 5 0 1E10

EBM 6 0 value ={4* exp(-(v(26)*1E3+60) /18)}

RBM 6 0 1E10

* Sodium current current pathway

* H Variable

CH 3 0 0.26E-3 IC =0.6798

RH 3 0 1E10

GAH 0 3 POLY (2) 3 0 7 0 0 0 1 0 -1

GBH 0 3 POLY (2) 3 0 8 0 0 0 0 0 -1

EAH 7 0 value ={0.07* exp ( -0.05*(v(26)*1E3+60))}

RAH 7 0 1E10

EBH 8 0 value ={1/(1+ exp ( -0.1*(v(26)*1E3+30)))}

RBH 8 0 1E10

*Potassium current current pathway

* K parameters

CN 4 0 0.26E-3 IC =0.2803

RN 4 0 1E10

GAN 0 4 POLY (2) 4 0 9 0 0 0 1 0 -1

GBN 0 4 POLY (2) 4 0 10 0 0 0 0 0 -1

EAN 9 0 value ={ -0.01*(v(26)*1E3+50)/(exp ( -0.1*(v(26)*1E3+50)) -1)}

RAN 9 0 1E10

EBN 10 0 value ={0.125* exp ( -0.0125*(v(26)*1E3+60))}

RBN 10 0 1E10

EMNA 15 0 26 11 1

RMNA 15 0 1E10

EM3 53 0 POLY (1) 2 0 0 0 0 1

EM3H 16 0 POLY (2) 53 0 3 0 0 0 0 0 1

RM3H 16 0 1E10

GNA 0 20 POLY (2) 15 0 16 0 0 0 0 0 6.7858E-006

VINA 20 0 0

VNA 11 0 55.0E-3

RNA 11 0 1E10

VK 12 0 -72.0E-3

RK 12 0 1E10

EMK 17 0 26 12 1

RMK 17 0 1E10

EN4 18 0 poly (1) 4 0 0 0 0 0 1
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RN4 18 0 1E10

GK 0 21 POLY (2) 17 0 18 0 0 0 0 0 2.0358E-006

VIK 21 0 0

.ENDS

.SUBCKT MYLN 103 101 102

*Rax 99 103 4E-6

*Rax2 103 100 4E-6

RMY 103 30 250E6

CMY 103 31 1.5E-12

Rout 101 31 3E6

Rout2 31 102 3E6

VNAK 31 30 -63E-3

.ENDS

* Current at single axon I1 0 2 pulse(0 6E-9 0 1E-6 1E-6 0.2E-3 2E-3)

*I1 0 2 pulse(0 6E-9 5E-3 100.0E-9 100.0E-9 0.1E-3 0)

I1 0 22 pulse (0 6E-9 1.5E-3 100.0E-9 100.0E-9 0.1E-3 2E-3)

I2 0 33 pulse (0 6E-9 1E-3 100.0E-9 100.0E-9 0.1E-3 2E-3)

*I1 0 22 pulse (0 6E-9 0.2E-3 1E-9 1E-9 0.1E-3 0.2E-3)

*I2 0 33 pulse (0 6E-9 1E-3 1E-9 1E-9 0.6E-3 0)

Ro0 33 0 1E100

Ro1 1 2 1E-22

xsub1 2 22 23 RAV

xsub11 2 33 34 RAV

Ro2 2 3 0.1E-22

Ro3 3 4 1E-22

xsub2 4 23 24 MYLN

xsub12 4 34 35 MYLN

Ro4 4 5 1E-22

Ro5 5 6 1E-22

xsub3 6 24 25 MYLN

xsub13 6 35 36 MYLN

Ro6 6 7 1E-22

Ro7 7 8 1E-22

xsub4 8 25 26 MYLN

xsub14 8 36 37 MYLN

Ro8 8 9 1E-22

Ro9 9 10 1E-22

xsub5 10 26 27 MYLN

xsub15 10 37 38 MYLN

Ro10 10 11 1E-22

Ro11 11 12 1E-22

xsub6 12 27 28 MYLN

xsub16 12 38 39 MYLN

Ro12 12 13 1E-22

Ro13 13 14 1E-22

xsub7 14 28 29 MYLN

xsub17 14 39 40 MYLN

Ro14 14 15 1E-22

Ro15 15 16 1E-22

xsub8 16 29 30 MYLN

xsub18 16 40 41 MYLN

Ro16 16 17 1E-22

Ro17 17 18 1E-22

xsub9 18 30 31 MYLN

xsub19 18 41 42 MYLN

Ro18 18 19 1E-22
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Ro19 19 20 1E-22

xsub10 20 31 32 RAV

xsub20 20 42 43 RAV

Ro20 20 21 1E-22

**

xsub72 21 32 83 MYLN

xsub712 21 43 135 MYLN

Ro74 21 52 1E-22

Ro75 52 56 1E-22

xsub73 56 83 84 MYLN

xsub713 56 135 136 MYLN

Ro76 56 57 1E-22

Ro77 57 58 1E-22

xsub74 58 84 85 MYLN

xsub714 58 136 137 MYLN

Ro78 58 59 1E-22

Ro79 59 60 1E-22

xsub75 60 85 86 MYLN

xsub715 60 137 138 MYLN

Ro710 60 61 1E-22

Ro711 61 62 1E-22

xsub76 62 86 87 MYLN

xsub716 62 138 139 MYLN

Ro712 62 63 1E-22

Ro713 63 64 1E-22

xsub77 64 87 88 MYLN

xsub717 64 139 140 MYLN

Ro714 64 65 1E-22

Ro715 65 66 1E-22

xsub78 66 88 89 MYLN

xsub718 66 140 141 MYLN

Ro716 66 67 1E-22

Ro717 67 68 1E-22

xsub79 68 89 90 MYLN

xsub719 68 141 142 MYLN

Ro718 68 69 1E-22

Ro719 69 70 1E-22

xsub710 70 90 91 RAV

xsub720 70 142 143 RAV

Ro720 70 71 1E-22

R1 1 0 1E100

*R3 43 0 1E100

R4 91 0 1E100

R5 143 0 1E100

*R6 22 0 1E100

R7 71 0 1E100

*.tran 0.5ms 5ms 0

.tran 0.5ms 15ms 0

.options LIMIT 9999

.probe

.END

7. Pspice modeling of myelinated axon bundle consisting of 12 axons propagating

signal.
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.SUBCKT RAV 100 30 102

************************************************************************

*

*

* coNa = 491.0E-3 Extracellular sodium concentration (mol/L)

* ciNa = 50.0E-3 Intracellular sodium concentration (mol/L)

* coK = 20.11E-3 Extracellular potassium concentration (mol/L)

* ciK = 400.0E-3 Intracellular potassium concentration (mol/L)

* GNaMax =120.0E-3

* GKMax =36.0E-3

* V_r = -62.5E-3 Resting Membrane Potential (V)

* Temp = 6.3 Temperature (Degrees Celsius)

* b = 0.02 Relative permeability of sodium to potassium

* R = 8.304 Reiberg gas constant (joules /(mole*kelvin ))

* Z = 1.0 Sodium and potassium ionicvalence

* F = 9.648E4 Faraday ’s constant (coulombs/mole)

*

************************************************************************

*

*Length of node of Ranvier = 2 m

**RI=3 ,500 MOhm/m; Ri =3 ,500*2/1000000=7 KOhm

Ri1 100 31 3.5E4

Ri2 31 102 3.5E4

*Ro1 100 30 32.3E6

*Ro2 30 101 32.3E6

*Rnode 103 30 30E-6

FNA 31 27 VINA 1

FK 31 28 VIK 1

VNk 28 30 -72.0E-3

VNNa 27 30 55.0E-3

ENAK 26 0 31 30 1

CE 31 30 {1.5E-12} IC=-62.5E-3

*Sodium current current pathway

*M variable

CM 2 0 0.26E-3 IC =0.0393

RM 2 0 1E10

GAM 0 2 POLY (2) 2 0 5 0 0 0 1 0 -1

GBM 0 2 POLY (2) 2 0 6 0 0 0 0 0 -1

EAM 5 0 value ={ -0.1*(v(26)*1 E3 +35)/( exp ( -0.1*(v(26)*1 E3+35)) -1)}

RAM 5 0 1E10

EBM 6 0 value ={4* exp(-(v(26)*1 E3 +60)/18)}

RBM 6 0 1E10

* Sodium current current pathway

* H Variable

CH 3 0 0.26E-3 IC =0.6798

RH 3 0 1E10

GAH 0 3 POLY (2) 3 0 7 0 0 0 1 0 -1

GBH 0 3 POLY (2) 3 0 8 0 0 0 0 0 -1

EAH 7 0 value ={0.07* exp ( -0.05*(v(26)*1 E3 +60))}

RAH 7 0 1E10

EBH 8 0 value ={1/(1+ exp ( -0.1*(v(26)*1 E3 +30)))}

RBH 8 0 1E10
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*Potassium current current pathway

* K parameters

CN 4 0 0.26E-3 IC =0.2803

RN 4 0 1E10

GAN 0 4 POLY (2) 4 0 9 0 0 0 1 0 -1

GBN 0 4 POLY (2) 4 0 10 0 0 0 0 0 -1

EAN 9 0 value ={ -0.01*(v(26)*1 E3 +50)/( exp ( -0.1*(v(26)*1 E3+50)) -1)}

RAN 9 0 1E10

EBN 10 0 value ={0.125* exp ( -0.0125*(v(26)*1 E3 +60))}

RBN 10 0 1E10

EMNA 15 0 26 11 1

RMNA 15 0 1E10

EM3 53 0 POLY (1) 2 0 0 0 0 1

EM3H 16 0 POLY (2) 53 0 3 0 0 0 0 0 1

RM3H 16 0 1E10

GNA 0 20 POLY (2) 15 0 16 0 0 0 0 0 6.7858E-006

VINA 20 0 0

VNA 11 0 55.0E-3

RNA 11 0 1E10

VK 12 0 -72.0E-3

RK 12 0 1E10

EMK 17 0 26 12 1

RMK 17 0 1E10

EN4 18 0 poly (1) 4 0 0 0 0 0 1

RN4 18 0 1E10

GK 0 21 POLY (2) 17 0 18 0 0 0 0 0 2.0358E-006

VIK 21 0 0

.ENDS

*Myelin of 20 micrometer axon of 2mm myelin length

*Diameter = 20 micrometer

*Myelin thickness= 4micrometer

*Myelin length= 2mm

*RI=3,500 MOhm/m; Rin =3 ,500*2/1000=7 MOhm

*RM=0.32 MOhm.m; RMY= 0.32*1000/2=160 MOhm

*CM=1300pF/m; CMY =1300*2/1000=2.6 pF

*CI =7.409E-14 F m; CIN= (0.07409*1000)/2=37.045 pF

.SUBCKT MYLN 99 31 100

Rin1 99 103 3.5E6

Rin2 103 100 3.5E6

Cin 99 100 37.045E-12

RMY 103 30 160E6

CMY 103 31 2.6E-12

VNAK 30 31 -63E-3

.ENDS

I1 0 1 pulse (0 6E-9 0 1E-9 1E-9 0.5E-3 3E-3 )

I2 0 21 pulse (0 6E-9 0 1E-9 1E-9 0.5E-3 3E-3 )

I3 0 41 pulse (0 6E-9 0 1E-9 1E-9 0.5E-3 3E-3 )

I4 0 61 pulse (0 6E-9 0 1E-9 1E-9 0.5E-3 3E-3 )

I5 0 81 pulse (0 6E-9 0 1E-9 1E-9 0.5E-3 3E-3 )

I6 0 151 pulse(0 6E-9 0 1E-9 1E-9 0.5E-3 3E-3 )

I7 0 171 pulse(0 6E-9 0 1E-9 1E-9 0.5E-3 3E-3 )

I8 0 191 pulse(0 6E-9 0 1E-9 1E-9 0.5E-3 3E-3 )



Appendix A Appendix 149

I9 0 211 pulse(0 6E-9 0 1E-9 1E-9 0.5E-3 3E-3 )

I10 0 231 pulse(0 6E-9 0 1E-9 1E-9 0.5E-3 3E-3 )

I11 0 251 pulse(0 6E-9 0 1E-9 1E-9 0.5E-3 3E-3 )

I12 0 271 pulse(0 6E-9 0 1E-9 1E-9 0.5E-3 3E-3 )

RL0 100 0 1

RL1 100 101 716252.1416

RL2 101 102 716252.1416

RL3 102 103 716252.1416

RL4 103 104 716252.1416

RL5 104 105 716252.1416

RL6 105 106 716252.1416

RL7 106 107 716252.1416

RL8 107 108 716252.1416

RL9 108 109 716252.1416

RL10 109 0 1E100

*First Axon

R1 1 0 1E100

xsub1 1 2 3 RAV

REX1 2 100 1

xsub2 3 4 5 MYLN

REX2 4 101 1

xsub3 5 6 7 RAV

REX3 6 102 1

xsub4 7 8 9 MYLN

REX4 8 103 1

xsub5 9 10 11 RAV

REX5 10 104 1

xsub6 11 12 13 MYLN

REX6 12 105 1

xsub7 13 14 15 RAV

REX7 14 106 1

xsub8 15 16 17 MYLN

REX8 16 107 1

xsub9 17 18 19 RAV

REX9 18 108 1

R4 19 0 1E100

*Second Axon

R21 21 0 1E100

xsub21 21 22 23 RAV

REX21 22 100 1

xsub22 23 24 25 MYLN

REX22 24 101 1

xsub23 25 26 27 RAV

REX23 26 102 1

xsub24 27 28 29 MYLN

REX24 28 103 1

xsub25 29 30 31 RAV

REX25 30 104 1

xsub26 31 32 33 MYLN

REX26 32 105 1

xsub27 33 34 35 RAV

REX27 34 106 1
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xsub28 35 36 37 MYLN

REX28 36 107 1

xsub29 37 38 39 RAV

REX29 38 108 1

R14 39 0 1E100

*Third Axon

R31 41 0 1E100

xsub31 41 42 43 RAV

REX31 42 100 1

xsub32 43 44 45 MYLN

REX32 44 101 1

xsub33 45 46 47 RAV

REX33 46 102 1

xsub34 47 48 49 MYLN

REX34 48 103 1

xsub35 49 50 51 RAV

REX35 50 104 1

xsub36 51 52 53 MYLN

REX36 52 105 1

xsub37 53 54 55 RAV

REX37 54 106 1

xsub38 55 56 57 MYLN

REX38 56 107 1

xsub39 57 58 59 RAV

REX39 58 108 1

R24 59 0 1E100

*FouCTh Axon

R41 61 0 1E100

xsub41 61 62 63 RAV

REX41 62 100 1

xsub42 63 64 65 MYLN

REX42 64 101 1

xsub43 65 66 67 RAV

REX43 66 102 1

xsub44 67 68 69 MYLN

REX44 68 103 1

xsub45 69 70 71 RAV

REX45 70 104 1

xsub46 71 72 73 MYLN

REX46 72 105 1

xsub47 73 74 75 RAV

REX47 74 106 1

xsub48 75 76 77 MYLN

REX48 76 107 1

xsub49 77 78 79 RAV

REX49 78 108 1

R34 79 0 1E100

*Fifts Axon

R51 81 0 1E100

xsub51 81 82 83 RAV

REX51 82 100 1

xsub52 83 84 85 MYLN

REX52 84 101 1

xsub53 85 86 87 RAV

REX53 86 102 1

xsub54 87 88 89 MYLN
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REX54 88 103 1

xsub55 89 90 91 RAV

REX55 90 104 1

xsub56 91 92 93 MYLN

REX56 92 105 1

xsub57 93 94 95 RAV

REX57 94 106 1

xsub58 95 96 97 MYLN

REX58 96 107 1

xsub59 97 98 99 RAV

REX59 98 108 1

R44 99 0 1E100

*Sixth Axon

R61 151 0 1E100

xsub61 151 152 153 RAV

REX61 152 100 1

xsub62 153 154 155 MYLN

REX62 154 101 1

xsub63 155 156 157 RAV

REX63 156 102 1

xsub64 157 158 159 MYLN

REX64 158 103 1

xsub65 159 160 161 RAV

REX65 160 104 1

xsub66 161 162 163 MYLN

REX66 162 105 1

xsub67 163 164 165 RAV

REX67 164 106 1

xsub68 165 166 167 MYLN

REX68 166 107 1

xsub69 167 168 169 RAV

REX69 168 108 1

R54 169 0 1E100

*Seventh Axon

R71 171 0 1E100

xsub71 171 172 173 RAV

REX71 172 100 1

xsub72 173 174 175 MYLN

REX72 174 101 1

xsub73 175 176 177 RAV

REX73 176 102 1

xsub74 177 178 179 MYLN

REX74 178 103 1

xsub75 179 180 181 RAV

REX75 180 104 1

xsub76 181 182 183 MYLN

REX76 182 105 1

xsub77 183 184 185 RAV

REX77 184 106 1

xsub78 185 186 187 MYLN

REX78 186 107 1

xsub79 187 188 189 RAV

REX79 188 108 1

R64 189 0 1E100

*Eighth Axon

R81 191 0 1E100
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xsub81 191 192 193 RAV

REX81 192 100 1

xsub82 193 194 195 MYLN

REX82 194 101 1

xsub83 195 196 197 RAV

REX83 196 102 1

xsub84 197 198 199 MYLN

REX84 198 103 1

xsub85 199 200 201 RAV

REX85 200 104 1

xsub86 201 202 203 MYLN

REX86 202 105 1

xsub87 203 204 205 RAV

REX87 204 106 1

xsub88 205 206 207 MYLN

REX88 206 107 1

xsub89 207 208 209 RAV

REX89 208 108 1

R74 209 0 1E100

*Nine Axon

R91 211 0 1E100

xsub91 211 212 213 RAV

REX91 212 100 1

xsub92 213 214 215 MYLN

REX92 214 101 1

xsub93 215 216 217 RAV

REX93 216 102 1

xsub94 217 218 219 MYLN

REX94 218 103 1

xsub95 219 220 221 RAV

REX95 220 104 1

xsub96 221 222 223 MYLN

REX96 222 105 1

xsub97 223 224 225 RAV

REX97 224 106 1

xsub98 225 226 227 MYLN

REX98 226 107 1

xsub99 227 228 229 RAV

REX99 228 108 1

R84 229 0 1E100

*Ten Axon

R101 231 0 1E100

xsub101 231 232 233 RAV

REX101 232 100 1

xsub102 233 234 235 MYLN

REX102 234 101 1

xsub103 235 236 237 RAV

REX103 236 102 1

xsub104 237 238 239 MYLN

REX104 238 103 1

xsub105 239 240 241 RAV

REX105 240 104 1

xsub106 241 242 243 MYLN

REX106 242 105 1

xsub107 243 244 245 RAV

REX107 244 106 1

xsub108 245 246 247 MYLN
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REX108 246 107 1

xsub109 247 248 249 RAV

REX109 248 108 1

R94 249 0 1E100

*Eleven Axon

R111 251 0 1E100

xsub111 251 252 253 RAV

REX111 252 100 1

xsub112 253 254 255 MYLN

REX112 254 101 1

xsub113 255 256 257 RAV

REX113 256 102 1

xsub114 257 258 259 MYLN

REX114 258 103 1

xsub115 259 260 261 RAV

REX115 260 104 1

xsub116 261 262 263 MYLN

REX116 262 105 1

xsub117 263 264 265 RAV

REX117 264 106 1

xsub118 265 266 267 MYLN

REX118 266 107 1

xsub119 267 268 269 RAV

REX119 268 108 1

R104 269 0 1E100

*Twelve Axon

R121 271 0 1E100

xsub121 271 272 273 RAV

REX121 272 100 1

xsub122 273 274 275 MYLN

REX122 274 101 1

xsub123 275 276 277 RAV

REX123 276 102 1

xsub124 277 278 279 MYLN

REX124 278 103 1

xsub125 279 280 281 RAV

REX125 280 104 1

xsub126 281 282 283 MYLN

REX126 282 105 1

xsub127 283 284 285 RAV

REX127 284 106 1

xsub128 285 286 287 MYLN

REX128 286 107 1

xsub129 287 288 289 RAV

REX129 288 108 1

R114 289 0 1E100

*Transverse resistance

RT1 2 22 8E6

RT2 6 26 8E6

RT3 10 30 8E6

RT4 14 34 8E6

RT5 18 38 8E6

RT11 22 42 8E6

RT12 26 46 8E6

RT13 30 50 8E6
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RT14 34 54 8E6

RT15 38 58 8E6

RT21 42 62 8E6

RT22 46 66 8E6

RT23 50 70 8E6

RT24 54 74 8E6

RT25 58 78 8E6

RT31 62 82 8E6

RT32 66 86 8E6

RT33 70 90 8E6

RT34 74 94 8E6

RT35 78 98 8E6

RT41 82 152 8E6

RT42 86 156 8E6

RT43 90 160 8E6

RT44 94 164 8E6

RT45 98 168 8E6

RT51 152 172 8E6

RT52 156 176 8E6

RT53 160 180 8E6

RT54 164 184 8E6

RT55 168 188 8E6

RT61 172 192 8E6

RT62 176 196 8E6

RT63 180 200 8E6

RT64 184 204 8E6

RT65 188 208 8E6

RT71 192 212 8E6

RT72 196 216 8E6

RT73 200 220 8E6

RT74 204 224 8E6

RT75 208 228 8E6

RT81 212 232 8E6

RT82 216 236 8E6

RT83 220 240 8E6

RT84 224 244 8E6

RT85 228 248 8E6

RT91 232 252 8E6

RT92 236 256 8E6

RT93 240 260 8E6

RT94 244 264 8E6

RT95 248 268 8E6

RT101 252 272 8E6

RT102 256 276 8E6

RT103 260 280 8E6

RT104 264 284 8E6

RT105 268 288 8E6

.tran .5ms 20ms
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.probe

.options LIMIT 99999

.END



156 Appendix A Appendix



Appendix A Appendix 157

M
o
d

e
l

B
u

n
d

le
d

ia
m

e
te

r
(µ
m

)

A
x
o
n

s
in

b
u

n
d

le

O
u

te
r

d
ia

m
e
te

r
o
f

a
x
o
n

(µ
m

)

In
n

e
r

d
ia

m
e
te

r
o
f

a
x
o
n

(µ
m

)
L
N
R

(µ
m

)
L
I
N

m
m

A
T

(µ
m

)2
A
F

(µ
m

)2
A
a
x

(µ
m

)2
A
E

(µ
m

)2
R
eL

M
Ω

R
eT

M
Ω

A
α
−

2
0µ
m

-B
u

n
d

le
-

2
56

2
2
8

20
2

2
24

64
.0

0
1
23

2.
0
0

62
8.

5
7

1
23

2.
0
0

5
.3

5
8
.4

A
α
−

2
0µ
m

-B
u

n
d

le
-

3
6
0
.3

1
3

28
20

2
2

2
85

8.
0
7

18
48

.0
0

9
42

.8
6

1
01

0.
0
7

6.
5
3

8.
4

A
α
−

2
0
µ
m

-B
u

n
d

le
-4

67
.5

9
4

2
8

20
2

2
35

89
.6

8
2
46

4.
0
0

12
57

.1
4

1
12

5.
6
8

5
.8

6
8.

4

A
α
−

2
0µ
m

-B
u

n
d

le
-5

75
.6

2
5

2
8

20
2

2
44

93
.9

7
3
08

0.
0
0

15
71

.4
3

1
41

3.
9
7

4
.6

6
8.

4

A
α
−

2
0µ
m

-B
u

n
d

le
-6

84
6

2
8

20
2

2
55

44
.0

0
3
69

6.
0
0

18
85

.7
1

1
84

8.
0
0

3.
5
7

8.
4

A
α
−

2
0µ
m

-B
u

n
d

le
-7

84
7

2
8

20
2

2
55

44
.0

0
4
31

2.
0
0

22
00

.0
0

1
23

2.
0
0

5.
3
5

8.
4

A
α
−

2
0µ
m

-B
u

n
d

le
-8

92
.5

1
8

2
8

20
2

2
67

24
.5

1
4
92

8.
0
0

25
14

.2
9

1
79

6.
5
1

3
.6

7
8.

4

A
α
−

2
0µ
m

-B
u

n
d

le
-9

1
01

.1
6

9
2
8

20
2

2
80

41
.1

2
5
54

4.
0
0

28
28

.5
7

2
49

7.
1
2

2
.6

4
8.

4

A
α
−

20
µ
m

-B
u

n
d

le
-1

0
10

6
.7

6
10

28
20

2
2

8
95

6.
0
0

61
60

.0
0

3
14

2.
8
6

27
96

.0
0

2.
3
6

8
.4

A
α
−

20
µ
m

-B
u

n
d

le
-1

1
10

9
.8

4
11

28
20

2
2

9
48

0.
2
0

67
76

.0
0

3
45

7.
1
4

27
04

.2
0

2.
4
4

8
.4

A
α
−

20
µ
m

-B
u

n
d

le
-1

2
11

2
.8

1
12

28
20

2
2

9
99

9.
4
3

73
92

.0
0

3
77

1.
4
3

26
07

.4
3

2.
5
3

8
.4

A
α
−

1
3µ
m

-B
u

n
d

le
-2

36
.4

2
18

.2
13

1.
3

1.
3

1
04

1.
0
4

52
0.

5
2

26
5.

5
7

52
0.

5
2

8.
2
4

12
.9

A
α
−

1
3µ
m

-B
u

n
d

le
-3

39
.2

0
3

1
8.

2
13

1.
3

1.
3

12
07

.5
3

7
80

.7
8

3
98

.3
6

4
26

.7
5

1
0.

0
1
2.

9

A
α
−

1
3µ
m

-B
u

n
d

le
-4

43
.9

3
4

1
8.

2
13

1.
3

1.
3

15
16

.6
4

1
04

1.
0
4

53
1.

1
4

47
5.

6
0

9.
0
2

12
.9

A
α
−

1
3µ
m

-B
u

n
d

le
-5

49
.1

5
5

1
8.

2
13

1.
3

1.
3

18
98

.7
0

1
30

1.
3
0

66
3.

9
3

59
7.

4
0

7.
1
8

12
.9

A
α
−

1
3µ
m

-B
u

n
d

le
-6

54
.6

6
18

.2
13

1.
3

1.
3

2
34

2.
3
4

15
61

.5
6

7
96

.7
1

7
80

.7
8

5
.4

9
1
2.

9

A
α
−

1
3µ
m

-B
u

n
d

le
-7

54
.6

7
18

.2
13

1.
3

1.
3

2
34

2.
3
4

18
21

.8
2

9
29

.5
0

5
20

.5
2

8
.2

4
1
2.

9

A
α
−

1
3µ
m

-B
u

n
d

le
-8

60
.1

3
8

1
8.

2
13

1.
3

1.
3

28
41

.1
1

2
08

2.
0
8

10
62

.2
9

7
59

.0
3

5
.6

5
1
2.

9

A
α
−

1
3µ
m

-B
u

n
d

le
-9

65
.7

5
9

1
8.

2
13

1.
3

1.
3

33
97

.3
7

2
34

2.
3
4

11
95

.0
7

1
05

5.
0
3

4.
0
6

12
.9

A
α
−

13
µ
m

-B
u

n
d

le
-1

0
6
9.

39
1
0

1
8.

2
13

1.
3

1.
3

37
83

.9
1

2
60

2.
6
0

13
27

.8
6

1
18

1.
3
1

3.
6
3

12
.9

A
α
−

13
µ
m

-B
u

n
d

le
-1

1
7
1.

39
1
1

1
8.

2
13

1.
3

1.
3

40
05

.3
8

2
86

2.
8
6

14
60

.6
4

1
14

2.
5
2

3.
7
5

12
.9

A
α
−

13
µ
m

-B
u

n
d

le
-1

2
7
3
.3

2
12

18
.2

13
1.

3
1.

3
4
22

4.
7
6

31
23

.1
2

1
59

3.
4
3

11
01

.6
4

3
.8

9
1
2.

9

Table A.1: Data table for Aα− 20µm and Aα− 13µm bundle
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Table A.2: Data table for Aα− 12µm and Aα− 6µm bundle
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Table A.3: Data table for Aα− 5µm and Aα− 1µm bundle
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Table A.4: Data for SBC and GBCMed axon bundles
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