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UNIVERSITY OF SOUTHAMPTON
ABSTRACT

FACULTY OF ENGINEERING, SCIENCE AND MATHEMATICS
SCHOOL OF ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy

Modelling the signal propagation through structural connections in the

brain: A circuit theory approach

by Sarbani Das

The neural function of the brain is characterized by activated brain regions and the
connectivities among them. It is still unknown, how a static structural connectivity net-
work affects the occurrence of task-dependent dynamic functional connectivity or why
two structurally connected brain regions, are not functionally connected and vice-versa.
Studies have shown, the underlying cause for many neurodegenerative diseases is the
functional disruptions in neural connections. So understanding the relationship between
structural and functional connectivity is important for understanding the impairment
characteristics in the brain networks which is in essence depends upon the nature of
signal flow through the structural connections in the brain. The purpose of this work
is to characterize the signal propagation characteristics through structural connectivity
and its influence on functional connectivity of the brain by applying a circuit theory-
based modelling approach. Modelling structural connections using circuit theory will
allow the analysis of signal propagation in both time and frequency domains. So far
the studies on the correlation between structural and functional connectivity were done
from the time domain perspective of signal propagation. However, the very definition of
functional connectivity indicates that the underlying structural connectivity networks
has filter like properties and holds the frequency-phase characteristics. In this work,
we explore this phenomenon following a step-by-step approach: (1) we develop an au-
tomated tool for extracting structural connectivity network from structural MRI image
by considering a more general (compared to standard cortical mapping) non-anatomical
equal-area parcellation process of the Regions of Interest (ROI) of the brain and ex-
tracting the geometrical properties of the white matter tracts between the ROIs, (2)
developing circuit-based model for characterising signal propagation through a single
myelinated axon fibre and representing it as a simplified transfer function encompass-
ing its time and frequency properties, (3) extending this model for coupled axon fibres
and characterising the time and frequency properties of the signal propagation through

them under the influence of ephaphtic coupling between them and finally;(4) applying
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the models developed in (2) and (3) for creating an automated tool that is capable to
characterising signal propagation through a bundle of axons - the typical scenario of a
white matter tract. Our work results in an end-to-end tool taking inputs as the struc-
tural and diffusional MRI data and outputting the phase and frequency characteristics
of the signal through the axon bundle with a defined geometrical property - the under-
lying phenomenon for deriving the relationship between structural and functional brain

connectivity.
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Chapter 1

Introduction

Neurodegenerative diseases are a serious concern in the modern world as the prediction
made by the World Health Organization (WHO) that by 2040, as many developed
countries’ populations get older, neurodegenerative diseases such as Alzheimer’s and
other causes of dementia, as well as conditions that affect mainly motor functions, such
as Parkinson’s disease and Amyotrophic Lateral Sclerosis, will outstrip other diseases
to become the second leading cause of mortality after cardiovascular disease (Gammon,
2014). Recent research shows that neural functions not only depend upon the brain
region activated but the topography of communication network both structural and
functional amongst them (Sporns et al., 2005; Honey et al., 2007; Hagmann et al., 2008;
Deco et al., 2008; Honey et al., 2009; Rubinov et al., 2009; Rubinov and Sporns, 2010;
Honey et al., 2010; Misi¢ et al., 2016). Several studies also pointed out that impairment in
such a network is the fundamental reason behind different neurodegenerative conditions
(Sporns et al., 2005; Rubinov and Sporns, 2010; Braun et al., 2015; Fleischer et al., 2017).
Over the past decade, techniques have been developed to characterise structural brain
networks and to couple this with functional brain networks (Honey et al., 2007; Hagmann
et al., 2008; Honey et al., 2009; Rubinov et al., 2009). Application of these techniques
to characterise the brain networks of a neurodegenerative disorder patient appears to
be a promising technique to understand the impairment characteristics of the network.
This can lead to improving the early prediction of neurodegenerative outcomes, and
importantly this can help in exploring the manipulation of these networks by applying

neuro-modulation which will be the new means to treat neurodegenerative patients.

1.1 Motivation

However, the problem is, the present understanding of the relationships between anatom-
ical and functional connectivity networks are at a nascent stage. By nature, the func-

tional connectivity is temporally dynamic and its topography varies from one frequency

1



2 Chapter 1 Introduction

band to the other. On the other hand, structural brain connectivity does not change
rapidly over time and thus is static in nature in the scale of temporal variation of func-
tional connectivity. But how such a static structural connectivity network impacts and
enables the occurrence of task-dependent dynamic functional connectivity is still an
unsolved problem in neuroscience. The other problem is that how the signal actually
propagates through a bundle of axons from one ROI to another ROI is not clear. Given
a bundle of axons, there is no definite evidence that all the axons will fire at the same
time. Moreover, there could be the random firing of axons which may influence the sig-
nal propagation throughout the axon bundle. So, the correspondence between structural
connectivity and functional connectivity is hinged upon the fact of how the signal actu-
ally propagates through the structural brain connectivity network. We hypothesised that
signal propagation disruptions leading to disruptions of functional connectivity might
happen not only because of the time-domain property of signal but also because of the
frequency domain property of the transmission medium i.e. myelinated axon. We also
hypothesise that it behaves as a filter that only passes a certain frequency range while
dampens the other frequency range depending upon its geometry. This has motivated
us to explore this phenomenon and put it in the perspective of functional and structural
brain connectivity. Recent research shows that an axon can be modelled as a Hodgkin-
Huxley (mHH) circuit arrangement combined with passive cable theory (Huxley and
Stampeli, 1949; Hodgkin and Huxley, 1952; Fitzhugh, 1962). This research work will
design a circuit theory-based computational model which characterizes the frequency-
phase characteristics of signal propagation through a bundle of axons. This will then be
extended to develop a framework of an automated toolchain that takes input from MRI

data and output the phase and frequency characteristics of the signal.

1.2 Aims and objectives

Following our motivation, the aims of this thesis are (1) modelling the signal propagation
through a bundle of myelinated axon fibre by applying a circuit theory-based compu-
tational modelling approach and (2) creating a framework of an end-to-end automated
toolchain that processes raw MRI data and extract phase-frequency relationship of the

signal of the nerve bundle at the output.
So the objectives are:
e (1) Developing an automated tool-chain for extracting geometry of white matter
tracts from MRI.
e (2) Modelling frequency characteristics of a single myelinated axon.

e (3) Modelling the effect of ephaptic coupling between two myelinated axons and

find the influence on signal propagation.
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e (4) Translating these models into a framework of an automated toolchain that

characterizes signal propagation through a bundle of axons.

Figure 1.1 shows a flow-chart representation of the thesis work.

Aim: (1) modelling the signal propagation through a bundle of myelinated
axon fibre and (2) creating a framework of an automated tool chain for doing
end-to-end processing for a MRI data

Analyse MRI data Model a single axon using Hodgkin-
Huxley circuit model

Y
Define the regions of cortical surface
to use them as nodes in brain

connectivity networks.
|
v

Determine the physical connections
among the brain regions by
extracting the structural
connectivity.

h 4

Define transfer function H(f) for a
single axon for generating frequency
phase response of signal
propagation through axon

A 4

Estimate number of axons between

two brain ROIs from diffusion MRI
data

h J

Extract geometrical properties such
as density, cross-section for the
bunch axons from the same diffusion

Define transfer function Hf) for
bundle of axons for determining

"| frequency and phase characteristics

MRI data of signal propagation

FIGURE 1.1: A Flowchart representation of the thesis work

1.3 Contribution

The contributions of this research include:

1. The existing method of cortical parcellation from MRI data is mainly based on
fixed Brodmann atlas; which does not support neonate’s brain or adult’s brain

with neuro-plasticity anomalies. We have designed and developed an algorithm
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to parcellate the cortical surface in non-anatomical equal size areas from struc-
tural MRI data and extracted geometrical properties of white matter tracts from

diffusional MRI data using equal area cortical parcellation.

2. We have created mathematical models of the transfer function of a single myeli-
nated axon and signal propagation characteristics of two myelinated axons coupled

by ephaptic coupling.

3. We have designed a computational circuit model for a bunch of axons; derived
the mathematical relation between conduction velocity of axons in a bundle with
its fibre density; determined limiting the frequency of signal transmission through
axon in a bundle and explore temporal and phase-frequency characteristics of signal

propagation through a bundle of myelinated axons.

Papers: The list of papers accepted and in preparations:
Conference paper:

1. Das, S. and Maharatna, K., 2020, July. An automated tool-chain for quantitative
characterisation of structural connectome from MRI based on non-anatomical cortical
parcellation. In 2020 42nd Annual International Conference of the IEEE Engineering in
Medicine & Biology Society (EMBC) (pp. 5653-5656). IEEE.

Journal paper:

1. Sarbani Das, Koushik Maharatna. Filtering property of myelin sheathe and its effect
on neural signal propagation in single and ephaphtically coupled azons (In preparation

for Scientific Reports).

2. Sarbani Das, Koushik Maharatna. Signal propagation dynamics in myelinated axon

bundle (In preparation for a journal).

1.4 Thesis organization

The thesis is organized as below: Chapter 2 presents a literature review covering brain
connectivity, MRI Image processing, neuronal dynamics and axon physiology. Chapter 3
presents an automated tool development for parcellation and extraction of the structural
connectome and its geometry from Structural and dMRI data. Chapter 4 presents the
circuit model for analysing signal propagation through a single myelinated axon in time
and frequency domains. Chapter 5 presents the circuit model for modelling the effects
of ephaphtic coupling in two myelinated axons. Chapter 6 presents the circuit model
for analysing signal propagation dynamics in a bundle of myelinated axons and define a
system definition for determining phase-frequency characteristics of signal propagation
through the bundle.



Chapter 2

Background and Literature

Review

2.1 Brain connectivity

The most fundamental characteristic of the neural network is brain connectivity. Brain
connectivity analysis is a way to study the information processing in neural networks.
The neural networks are build of spatially segregated but functionally integrated brain
regions which continuously communicate through neural pathways. There exist three
kinds of connectivity patterns among neuronal populations or anatomically segregated
brain regions: anatomical links which are the axonal pathways (axon bundles), statis-
tical dependencies of brain regions - the functional connectivity and causal interactions
between them - the effective connectivity (Rubinov and Sporns, 2010). The three kinds

of brain connectivity are depicted in Figure 2.1.

2.1.1 Structural connectivity

Structural connectivity is the anatomical links of the brain that are made of synaptic
and axonal (white matter) pathways. It is static and does not change rapidly over time
in the scale of temporal variation of functional connectivity. It is the backbone for
functional connectivity as brain function gets affected if axonal pathways are disrupted.
So structural connectivity provides the base for couplings of a set of neurally activated
macroscopic cortical columns (Honey et al., 2009). The aim of structural connectivity
analysis is to determine the geometric properties of the white matter connectivity of the
brain which is obtained from Diffusion MRI imaging data. There is a new strategy de-
veloped by Sporns et al. (2005) to describe the structural connectivity; the ’Connectome’
matrix which is a unified and readily available neuro-informatics resource to be used in all

areas of experimental and theoretical neuroscience. Though Sporns et al. (2005) coined
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Structural, functional & effective connectivity

structural connectivity functional connectivity effective connectivity

Spoms 2007. Scholarpedia

« anatomical/structural connectivity
= presence of axonal connections

« functional connectivity
= statistical dependencies between regional time series

« effective connectivity
= causal (directed) influences between neurons or neuronal populations

FIGURE 2.1: Structural, Functional and Effective Connectivity. [Source: SPM Course,
London 2017]

the term connectome but the representation of brain connectivity as a matrix has been
around for a long time; such as Felleman and Van Essen (1991) presented distributed
hierarchical connectivity of cerebral cortex for rhesus monkey and around same time Ya-
mamoto and Achacoso (1992) presented connectivity in the nematode Caenorhabditis

elegans.

2.1.2 Functional connectivity

Functional connectivity is a way to characterize the integration among activated brain
areas by measuring the correlations of neural activities (Friston, 2011). It is dynamic
and varies in temporal scale. There are two brain imaging techniques commonly used
to obtain functional connectivity of the brain - EEG and functional MRI (fMRI). EEG
measures the electrical activity of the brain via electrodes that are placed on the scalp.
It tells from the surface measurements how active the brain is. When a particular
task or job is performed, a certain area of the brain gets activated and receives slightly
more oxygen-rich blood. fMRI measures the blood oxygenation level dependent (BOLD)
signals from the active parts of the brain. Because of the imaging methodology, EEG
signal has high time resolution but low spatial resolution whereas fMRI BOLD signal
has low time resolution but high spatial resolution. According to Segall et al. (2012),

functional connectivity measured by using resting-state functional magnetic resonance
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imaging (rs-fMRI) is an indirect measure of neuronal activity of neuronal cells mainly
form the gray matter (GM) and the majority of connectome research excluded GM
measures. In his work, Segall et al. (2012) explored the gray matter area to understand
both structural and functional connectivity. A functional correlation matrix is obtained

by analysing the functional connectivity among brain areas.

2.1.3 Effective connectivity

Effective connectivity describes the causal relationships among brain regions. According
to Aertsen (1991) effective connectivity is the time-dependent, simplest possible circuit
diagram that replicates the observed timing relationships between the recorded neurons.
According to Friston (2011) integration within a distributed system is usually better un-
derstood regarding effective connectivity because effective connectivity refers explicitly
to the influence that one neural system exerts over another, either at a synaptic or pop-
ulation level. Effective connectivity corresponds to the parameter of a model that tries
to explain observed dependencies (functional connectivity). Friston et al. (2003) has
developed an approach for the analysis of effective connectivity using experimentally de-
signed inputs and fMRI responses, which is called Dynamic Causal Modelling. Dynamic
Causal Modelling infers the value of causal connectivity strength that one neural system
exerts over another which is physically not measurable. Granger causality is a way to in-
vestigate causality between two variables in a time series. The method is a probabilistic

account of causality; it uses empirical data sets to find patterns of correlation.

2.1.4 Graph theory measures to analyse brain connectivity

As described by (Rubinov and Sporns, 2010), brain connectivities are analysed by charac-
terizing them using graph-theoretic measures. Some graph theory parameters character-
ize the whole graph (network), while others are node-specific. There are different graph
theory measures that detect functional integration and segregation, quantify centrality
of individual brain regions or pathways, characterize the pattern of local anatomical

circuitry and test the resilience of the network to insult.

2.1.4.1 Measures of functional segregation

The measure of segregation quantifies the presence of densely interconnected groups of

brain regions responsible for specialized processing (Rubinov and Sporns, 2010).

Clustering Coefficient : Clustering coefficient is a measure of the degree to which
nodes in a graph tend to cluster together. Measures of segregation are based on

the number of triangles in the network, with a high number of triangles implying
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segregation (Rubinov and Sporns (2010)). Clustering coefficient quantifies the
fraction of triangles around an individual node, which is equivalent to the fraction
of the node’s neighbours that are also neighbours of each other. The high value of
clustering coefficient implies densely interconnected groups of brain ROIs that are

functionally segregated.

Modularity : The measures of segregation not only describe the presence of densely in-
terconnected groups of regions but also find the exact size and composition of these
individual groups. The network’s modular structure (community structure), is de-
scribed by subdividing the network into groups of nodes, with a maximally possible
number of within-group links, and a minimally possible number of between-group
links. The degree to which the network may be subdivided into such clearly de-
lineated and non-overlapping groups is quantified by the modularity (Rubinov
and Sporns (2010)). A high value of modularity indicates that the node within a
module has a dense connection and that there are minimum possible connections

outside of the modules.

2.1.4.2 Measures of functional integration

Measures of integration estimate the ease with which brain regions communicate and

are commonly based on the concept of a path (Rubinov and Sporns, 2010).

Characteristic Path Length : Characteristic path length measures the average short-
est paths between all node pairs in the graph. To calculate this, we constructed a
table with all of the shortest paths between all pairs of a node and then calculated

the average.

Global Efficiency : Global efficiency is a related measure that quantifies the average

inverse shortest path length in a network.

2.1.4.3 Measures of centrality

Measures of node centrality variously assess the importance of individual nodes on in-
teracting with many other regions, facilitating functional integration, and playing a key

role in network resilience to insults (Rubinov and Sporns, 2010).

Degree : The degree of a node is equal to the number of nodes it is connected to. It

reflects the importance of the nodes in the network.

Betweenness Centrality : Betweenness centrality measures the importance or influ-
ence of the node in the network. It estimates this by determining the shortest

paths that cross the node.
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2.1.4.4 Measures of network resilience

Measures of resilience quantify anatomical features that reflect network vulnerability to
insults (Rubinov and Sporns, 2010).

Degree Distribution : The degree of all nodes in the network comprises degree dis-

tribution.

Assortativity : Assortativity coefficient measures the trend of each node regarding
how it connects with nodes of the same degree. A positive value means that the

node is connected to nodes that have the same degree.

2.1.5 Relationship between structural and functional connectivity: stud-

ies done so far

In this section, we have explored the existing works which have been previously done
on establishing the relationship between structural and functional connectivity. Batista-
Garcia-Ramé and Ferndndez-Verdecia (2018) in their study of structural and functional
relation, mentioned that neuro-image processing, network theory and computational
modelling have played essential roles in the study of structure-function interactions.
Available literature in this area can be broadly categorized into two categories. The
first category of work has used computational modelling while the second category of
work has been carried out using the data analysis method. The work done by (Honey
et al., 2007; Hagmann et al., 2008; Honey et al., 2009; Rubinov et al., 2009) falls into the
former category where the computational modelling has been used to derive functional
connectivity from structural connectivity. On the other hand, the work done by (Honey
et al., 2010) and (Hiitt et al., 2014) is based on statistical analysis of diffusional MRI
data and fMRI data for finding the correlation between the two connectivity. There are
other sets of research works that have been carried out recently such as the works done
by (Misi¢ et al., 2016; Messé et al., 2015; Diaz-Parra et al., 2017; Zamora-Lépez et al.,
2016) pertain to the study of connectivity patterns to both functional and anatomical
in humans and animals, and the study of the relationship of brain connectivity with
neurodegenerative conditions such as Alzheimers and Parkinsons diseases were done by
(Son et al., 2017; Manza et al., 2016; Fleischer et al., 2017). Reviewing the research
works done by (Honey et al., 2007; Hagmann et al., 2008; Honey et al., 2009; Rubinov
et al., 2009), we found an important aspect of the relationship between the two forms of
connectivity. These research works show that in some cases the functional connectivity
can be derived from the structural connectivity, but not always, which means if there
is structural connectivity between two brain ROIs they may not become functional con-
nected. On the contrary, their research works also show that there are instances where

even if there was no structural connectivity, there was functional connectivity (Honey
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et al., 2009). In his research work, Rubinov et al. (2009) simulated spontaneous brain
dynamics on structural connectivity networks, using coupled non-linear maps. Using
computational modelling, Honey et al. (2009) investigated if systems-level properties of
functional networks as well as their spatial statistics and persistence across time can be
explained by properties of the underlying anatomical network. They measured resting-
state functional connectivity (using fMRI) and structural connectivity (using diffusion
spectrum imaging tractography) in the same individuals at high resolution and built a
model. Their research reveals that resting-state functional connectivity is variable and is
often present between regions which do not have any direct structural linkage. However,
the strength, persistence, and spatial statistics of the functional connectivity is limited
by the large-scale anatomical structure of the human cerebral cortex. Hagmann et al.
(2008) constructed connection maps of the entire cortical surface and did computational
analyses of the same to figure out the regions of the cortex that are connected. Honey
et al. (2007) used a computational approach in order to relate the features of spontaneous
cortical dynamics to the underlying anatomical connectivity. Simulating non-linear neu-
ronal dynamics on a network that captures the large-scale interregional connections of
macaque neocortex, and applying information-theoretic measures to identify functional
networks, they found the relationship between structural and functional connectivity
at multiple temporal scales. The studies that were done on connectivity patterns, both
functional and anatomical, in humans and animals in recent years are (Sethi et al., 2017;
Misi¢ et al., 2016; Messé et al., 2015; Diaz-Parra et al., 2017; Zamora-Lépez et al., 2016)
and their relationship with neurodegenerative conditions are (Son et al., 2017; Manza
et al., 2016; Fleischer et al., 2017). According to Honey et al. (2010), the degree of corre-
spondence between structural and functional connectivity depends on spatial resolution

and time scales.

As mentioned by Batista-Garcia-Ramé and Ferndndez-Verdecia (2018) there are some
limitations on existing studies. For example (1) the images acquisition and processing
offer inherent limitations of the methodology. For instance, when structural connectivity
is based on DTI, it can ignore long-distance and fibre-cross connections and does not
provide information about the directionality of the connections. In the case of fMRI,
it is important to note some aspects: neuronal activity is not directly a measure of the
blood oxygenation level dependence (BOLD) signal; it is an integration of a variety of
neuronal activities and the increase of excitatory or inhibitory synaptic activity can cause
an increase of metabolic activity. Logothetis et al. (2001) mentioned in his work that
the haemodynamic response seems to be better correlated with the LFPs, implying that
activation in an area is often likely to reflect the incoming input and the local processing
in a given area rather than the spiking activity. Such limitations, properties of neuro-
imaging techniques, may lead to imprecise brain network representations, affecting the
analysis of network properties such as the study of the structure-function relationship.
(2) Next, in the case of using methodologies and procedures such as connectivity measure

and graph construction to produce the correlation there is no established guidelines
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to follow. (3) In the case of computational modelling, parameter estimation becomes

complex when high numbers of variables being used for modelling.

While reviewing the relevant literatures, we have observed that there is a gap in the
studies of finding the correlation between functional and structural connectivity. The
functional connectivity of the brain is obtained by measuring the phase correlation of
time series signals between two activated brain regions. This signifies that the signal
propagated through a bundle of axons has frequency characteristics which determine
the propagation criteria as well along with other factors. But in the studies done so
far on brain connectivity, the frequency domain analysis has not been considered. In
our approach, we will represent the bundle of axons using a circuit theory-based model
and perform the phase and frequency response analysis of the signal in the frequency
domain. Analysing signal propagation through axon in frequency domain will surely

lead to finding the correlation between functional and structural brain connectivity.

2.2 Neuro-image processing of Structural MRI data for

cortical surface parcellation

Brain connectivity is about the integration of spatially segregated brain regions. So
delineating and defining the spatially segregated brain regions as nodes of the network
is the first step of brain connectivity analysis. Cortical parcellation serves the purpose of
parcellating the cortical and subcortical layers of the cortex in terms of some reference
atlas and assigning to them a neuroanatomical label either automatically or manually
resulting in a complete labelling of cortical sulci and gyri (Fischl et al., 2004). It is
performed on structural MRI images because structural magnetic resonance imaging
(MRI) provides extensive detail about the anatomical structure of the brain. First,
a brief description of structural T1 and T2 weighted MRIs are given followed by the

process of surface reconstruction and then cortical parcellation.

2.2.1 Structural MRI(T1 and T2 weighted MRI)

Structural MRI imaging provides anatomical information of the brain. Pathological
processes are described in terms of T1 and T2 signal behaviours, in addition to contrast
enhancement, anatomical location, and morphological characteristics (Symms et al.,
2004).

T1 Weighted scan as shown in Figure 2.2 gives the good contrast between gray and
white matter. It produces a very high resolution ( lmm) image. It is very useful in

identifying brain structure and is used for parcellation of the cortical surface.
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FIGURE 2.2: T1 Weighted Image

T2 Weighted spin echo (TSE) scan as shown in Figure 2.3 produces very high-resolution
T2-weighted images within a reasonable scan time. In T2-TSE images, both fat and wa-

ter are hyper-intense and appear bright.

FIGURE 2.3: T2 Weighted Image

2.2.2 Cortical surface reconstruction and parcellation

To study cortical properties in humans, it is necessary to obtain an accurate and explicit
representation of the cortical surface from 3D structural MRI image (Dale et al., 1999).
Cortical reconstruction is basically the derivation of a computerized representation of the
cerebral cortical layer based on three-dimensional (3D) magnetic resonance (MR) images
of the brain for quantitative analysis of the human brain structure. The reconstructed
surface is used for serving as a reference basis for all further analysis, and must be
geometrically accurate and topologically correct in order to provide valid and accurate

quantitative measures of brain structure (Han et al., 2004).
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I. Segmentation: Segmentation is a process to reconstruct gray/white and pial sur-
faces of the cerebral cortex from a high-resolution T1-weighted MRI scan. It is
essential for the analysis of features of the cortical surface, including structural
properties such as cortical thickness, as well as functional characteristics such as
topographic structure. The whole procedure is a complex task that involves some
subtasks such as intensity normalization, skull-stripping, filtering, segmentation
and surface deformation. Dale et al. (1999) defined an automated process that
performs these whole sets of procedures on raw T1 weighted brain image, and

returns reconstructed segmented cortical surface.

II. Inflation, Flattening, and a Surface-Based Coordinate System: The most
common process of analysing functional MRI data is to project the functional data
from a sequence of slices onto a standardized anatomical 3D substrate. But this
process has a major drawback. As the cortex is a 2D sheet with 60-to-70% folded
and curved geometry, it gives difficulty in visualization and error in computation.
To overcome these problems a set of procedures was designed by (Fischl et al.,
1999) for modifying the representation of the cortical surface to (1) inflate the
surface so that activity buried inside sulci may be visualized, (2) cut and flatten an
entire hemisphere, and (3) transform each hemisphere into a simple parametrizable

surface such as a sphere for establishing a surface-based coordinate system.

III. Parcellation: Techniques for labelling geometric features of the cerebral cortex
are useful for analysing a variety of functional and structural neuroimaging data.
Identification of every point in the entire cortex, rather than the labelling of a
discrete set of cortical features is known as a parcellation (Fischl et al., 2004). One
of the main aims in neuroscience is defining the brain regions based on neuronal

activation related to specific tasks.

2.2.3 Brain parcellation

To study cortical properties, it is necessary to obtain a representation of the cortical
surface from MRI image (Dale et al., 1999). Cortical parcellation serves the purpose
by parcellation of the cortical and sub-cortical layers of the cortex in terms of some
reference atlas and assigning to them a neuroanatomical label either automatically or
manually resulting in complete labelling of cortical sulci and gyri (Fischl et al., 2004).
It is performed on structural MRI images because structural MRI provides extensive

detail about the anatomical structure of the brain.

There are some important key points to consider while defining brain regions in the
cortical parcellation process. First, a parcellation scheme should completely cover the
surface of the cortex, or of the entire brain, and individual nodes should not spatially

overlap (Rubinov and Sporns, 2010). Second, structural and functional networks should
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share the same parcellation scheme because networks constructed using distinct par-
cellation schemes may significantly differ in their properties and cannot, in general, be
quantitatively or meaningfully compared (Wang et al., 2009; Honey et al., 2009) and
might not as a whole have a homogeneous and corresponding functional and structural
connectivity architecture (Horn et al., 2014). Third, if applied parcellation is based on
preselected regions of interest (ROI) then it might lead to selection bias, do not account

for inter-individual anatomical differences.

Two approaches are mainly followed for performing cortical parcellation of structural
MRI images; anatomically based cortical parcellation and non-anatomically based cor-

tical parcellation.

2.2.3.1 Cortical parcellation based on anatomical nomenclature

This is a technique for automatically assigning a neuro-anatomical label from an atlas
to each location on a cortical surface. It is done based on probabilistic information
estimated from a manually labelled training set. This procedure incorporates both
geometric information derived from the cortical model, and neuroanatomical convention,
as found in the training set. This procedure performs complete labelling of cortical sulci
and gyri and it uses manually labelled data as the basis for an automated parcellation
procedure (Fischl et al., 2004). An anatomical parcellation on the spherical surface is

shown in Figure 2.4.

FI1GURE 2.4: Anatomical Parcellation on spherical surface
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2.2.3.2 Cortical parcellation based on non-anatomical Recursive Zonal Equal

Area Partitioning

Parcellation following a standardized anatomical atlas is not appropriate in some cases
(Tymofiyeva et al., 2012), such as (1) developing brain of neonates, who have imma-
ture sulcation, (2) cases of cerebral reorganization after brain damage (neuroplasticity),
(3) cases where young children undergoing treatment of intractable epilepsy, cortical
plasticity and change of connectivity allow the contralateral hemisphere to assume the
functions of the lost hemisphere without significant neurologic deficits, and (4) in the
case of normal anatomy of the adult brain, where different subjects have, different dom-
inant hemispheres. In these cases, a non-anatomical equal-area cortical parcellation is
more appropriate than anatomical parcellation. The non-anatomical equal-area parcel-
lation process divides the cortical surface into some equal size areas, which is a template
free and atlas free approach and not constrained by anatomy. A non-anatomical equal-
area cortical parcellation on a spherical surface is shown in Figure 2.5. It is performed
by dividing the cortical surface into nodes based on Recursive Zonal Equal Area Sphere
Partitioning (Leopardi, 2006).

FIGURE 2.5: Non-anatomical Equal Area Parcellation on spherical surface

In this work, the Freesurfer tool (Fischl, 2012) has been extended to perform the non-
anatomic equal partition cortical parcellation because Freesurfer is the most commonly
utilized tool to perform automated labelling. It utilizes surface registration to align
the subject surface and atlas to provide the anatomical labelling of the surface (Fischl
et al., 2004). FreeSurfer (Fischl, 2012) has been shown to have good reliability. It
utilized the intraclass correlation coefficients (ICCs) to compare volumes of manually
and automatically labelled regions of interest. The only limitation of this software was
that in the past it did not work on neonates. But now it has developed an automated
segmentation and surface extraction pipeline that is designed to accommodate paediatric
brain MRI images from a population of 0-2 year-olds relying on clinical T1-weighted MR

images.
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2.3 Neuroimaging processing of Diffusional MRI data for

Structural Connectome

A connectome is a structural description of the human brain in the form of a connection
matrix which is as defined by a unified, time-invariant, and readily available neuroinfor-
matics resource for use in all areas of experimental and theoretical neuroscience (Sporns
et al., 2005). Connectome is a square adjacency matrix where the nodes represent the
brain regions and values represent the anatomical links among the brain regions. The
connectome representation of structural connectivity significantly increases the under-
standing of how functional brain states derive from their underlying structural base
and gives a clear perception into how brain function is affected if the brain structure
is disrupted (Sporns et al., 2005). The diffusion-weighted MRI imaging technique is
an effective way to extract white matter connectivity of whole-brain (Hagmann et al.,
2007).

2.3.1 Diffusion of water in white matter: the basis of Diffusional MRI

Diffusion-weighted magnetic resonance imaging (DWTI) uses the diffusive motion of water
to perform macroscopic in vivo investigations of white matter tissue microstructure. The
interaction of diffusing water and coherently ordered cellular structures, such as axon
membranes, results in an anisotropic profile of diffusion which forms the basis of many
aspects of DWI (Raffelt et al., 2012).

Axon Membrane

2.3.1.1 Structure of white matter tracts

—,{_ —
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——— Microtubules
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FIGURE 2.6: (a) Axon Beaulieu (2014) (b) White matter microstructure Ellingson et al.
(2015)

The microstructure of white matter consists of submillimetre-scale tubular fascicles filled
with thousands of small neuronal fibres (axons) wrapped by multiple lamellae of the
membrane (myelin) and ordered filaments of proteins (microtubulin) that build the
axonal skeleton within these fibres as shown in Figure 2.6. In addition, neuroglial cells
surround and support this fibre arrangement. The extent to which these structures

affect water displacement is not clear, but it is reasonable to speculate that water passage
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through the cellular components of white matter is not unrestricted. Cell membranes are
permeable to water molecules to a variable extent depending on the number of proteins
that are spread on the membrane and the existence and functionality of water channels
(such as extracellular water, myelin water, intra-axonal water, glial intracellular water)
(Jones, 2010).

2.3.1.2 Fractional anisotrophy (FA)

Measurement of the degree and directionality (i.e., anisotropy) of water diffusion at the
micron level within a tissue provides an indirect measure of the underlying microstruc-
ture. The diffusing water molecule samples and interacts with the local environment,
and thus, by measuring the degree and direction of water motion, the structure can be
inferred. For example, if the water encounters highly ordered barriers such that the
distance travelled in one direction is greater than that in another direction in the same
amount of time, the diffusion is said to be anisotropic. This fundamental property of
anisotropic water diffusion is the physical basis behind the utility of diffusion tensor
imaging (DTI) and tractography of white matter tracts in the brain. Diffusion in the
isotropic and anisotropic sample have explained in Figure 2.7. Figure 2.8 shows a sim-
plistic schematic longitudinal view of a myelinated axon. Myelin, the axonal membrane,
microtubules, and neurofilaments are all longitudinally oriented structures that could

hinder water diffusion perpendicular to the length of the axon (Beaulieu, 2002).

Diffusion in Diffusion in

sotropic Sample Anisotropic Sample

FIGURE 2.7: Isotropic and Anisotropic diffusion

2.3.2 Diffusional Weighted MRI

The DWI-MRI works on the physical principles of water diffusion in the brain and
imaging techniques. The DWI-MRI technique is sensitive to water molecular movement
in a specific direction. By acquiring many DWI images sensitive to different directions,

a 3D picture of the diffusion at a particular point in tissue can be created. DWI-MRI
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Fi1GURE 2.8: Diffusion of water molecules through white matter structure

is used to assess or diagnose acute stroke and to image white matter fibre tracts in the

brain. An image of diffusional MRI data is shown in figure 2.9.

FicURE 2.9: Diffusional Weighted MRI image

2.3.3 Pre-processing Diffusional MRI data
The MRI image data gets induced with various artefacts and noise during decoding time.

The pre-processing of MRI image data is important to retrieve the correct information

about the brain.

2.3.3.1 Denoising

The first step in DWI-MRI image processing is image denoising. The type of noise

present in DWI-MRI data is thermal noise. It is very important to remove thermal
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noise at the very beginning so that other processing steps such as motion and distortion
correction in their smoothing and interpolation steps can not alter noise characteristics.
The denoising process follows the method defined by Veraart et al. (2016), to remove
noise-only principal components, thereby enabling signal-to-noise ratio enhancements.
This yields parameter maps of improved quality for visual, quantitative, and statistical

interpretation.

2.3.3.2 Distortion correction

In this step, the DWI-MRI image is processed to correct the three types of distortion
captured during MRI image acquisition time: the motion distortion (occur due to motion
of the patient), the eddy-current distortion (electrical currents induced by a changing
magnetic field) and susceptibility induced distortion (A magnetic susceptibility artifact
is caused by the presence of an object in the FOV with a higher or lower magnetic

susceptibility).

2.3.4 Constrained Spherical Deconvolution (CSD)

Spherical deconvolution (Tournier et al., 2004) is a technique that presents information
about the distributions of brain white matter fibres in regions containing multiple fibre
orientations. All white matter bundles in the brain share the same diffusion character-
istics. Thus, any difference in diffusion anisotropy is mainly for partial volume effects.
The fibre orientation density function (ODF') gives the distribution of fibre orientations
within the voxel and the response function is the diffusion-weighted attenuation profile
for a typical fibre bundle in a single voxel. The attenuation of the diffusion-weighted
signal measured over the surface of a sphere is described as the convolution over the
sphere of a response function with the fibre orientation density function (ODF). Thus
the spherical deconvolution method is used to obtain the fibre ODF in a voxel (Tournier
et al., 2004). The spherical deconvolution method is performed by the simple matrix
inversion method. If low pass filtering is not done on the DWI-MRI signal to remove
the noise in the signal, then it will generate a spurious negative lobe in reconstructed
FODs. This is physically not possible. This phenomenon is used by adding a constraint
on the presence of these negative values in the FOD to remove the noise artifacts with-
out filtering out the high angular frequencies. This process is referred to as constrained
spherical deconvolution (CSD) (Tournier et al., 2007).
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2.3.5 Anatomical Constrained Tractography (ACT)

Anatomical Constrained tractography is about defining an accurate delineation for dif-
fusion MRI streamlines for determining the propagation and termination of the stream-
lines. This is implemented by segmenting the anatomical image into a five tissue type
image (5TT). In that image, the volumes of tissue types appear in the order of, Corti-
cal gray matter, sub-cortical gray matter, white matter, CSF, Pathological tissue. The
pathological tissue type is used optionally where the architecture of the tissue present
is not defined. Thus information available from anatomical image segmentation, and
the known properties of the neuronal axons being reconstructed, biologically realistic
priors are applied to the streamlines generation and known as Anatomical Constrained
tractography (Smith et al., 2012).

2.3.6 Spherical-deconvolution Informed Filtering of Tractograms (SIFT)

SIFT is an algorithm for filtering more biologically accurate streamlines from whole-
brain fibre-tracking data sets. It follows the approach to find a subset of streamlines
that best matches the diffusion signal. This method uses the results of spherical de-
convolution of the diffusion signal to determine which streamlines to remove from the
data set, hence the acronym SIFT: spherical-deconvolution informed filtering of trac-
tograms. The algorithm first assigns some white matter axon volume per unit length
to each streamline in the reconstruction, construct the fibre orientation distributions
and compare them. Streamlines that are detrimental are removed and more plausible

streamlines are generated (Smith et al., 2013).

2.3.7 Structural Connectome

In this step, the filtered streamlines are mapped to the nodes of the parcellated structural
image to construct the structural connectome matrix. The method either uses a simple
voxel lookup value at each streamline endpoint, or performs a radial search from each
streamline endpoint to locate the nearest node, or traverses from each streamline end-
point inwards along the streamline, in search of the last node traversed by the streamline
or project the streamline forwards from the endpoint in search of a parcellation node

voxel or assign the streamline to all nodes it intersects along its length.

2.3.8 White Matter tracts and its geometrical properties

The white matter is basically the myelinated axons tracts of the central nervous system

(CNS). The main job of the tracts is to carry nerve impulses between neurons. The
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F1GURE 2.10: ADC- Apparent Diffusion Coefficient from diffusion MRI image

white matter is white because of the fatty substance that covers the nerve bundles (ax-
ons). This fatty substance surrounding the long nerve fibres acts as electrical insulation
and stops neurotransmitters from dissipating while carrying the signal. So the myelin is
an important factor for transferring the message from one place to another. Figure 2.11
shows the white matter structure of the human brain taken by diffusional MRI (dMRI).
The voxels within tracts are colour coded according to their FA values (i.e., blue, low
anisotropy; and red, high anisotropy. Fractional anisotropy (FA) is a scalar value be-
tween zero and one that describes the degree of anisotropy of a diffusion process. A
value of zero means the diffusion is isotropic. Advanced neuroimaging techniques such
as diffusion tensor imaging (DTI), diffusion MRI Tractography are used to study brain
white matter by using magnetic resonance imaging (MRI) brain images (Hagmann et al.,
2007; Tournier et al., 2011).

FIGURE 2.11: White matter structure of human brain (from MRI)
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2.3.8.1 Apparent Fibre density (AFD) of white matter tracks

The spherical deconvolution is a method that provides an estimate of the distribution of
fibres within imaging voxel of diffusion-weighted magnetic resonance images (Tournier
et al., 2007). The method as shown in Figure 2.12 is based on the assumption that the
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F1GURE 2.12: Calculating FOD

measured high angular resolution diffusion signal can be expressed as the convolution
over spherical coordinates of a single canonical fibre response function with the fibre
orientation distribution (FOD). The response function is assumed to correspond to the
DWI signal (as a function of orientation) that would be measured for a voxel with a
single fibre population oriented along the z-axis (Tournier et al., 2004). The FOD can
then be estimated by performing the reverse spherical deconvolution operation using
spherical and rotational harmonics. FOD is a continuous distribution representing the
partial volume of the underlying fibres as a function of orientation (Tournier et al., 2004).
AFD is a relative measure of the intra-axonal volume occupied by fibres aligned with a
direction. It is based on the assumption that intra-axonal water is restricted in the radial
direction and the radial DW signal emanating from the intra-axonal compartment is in-
dependent of axonal diameter and hence proportional to the intra-axonal water content.
Figure 2.13 shows (A) Coherently ordered axons within a single imaging voxel. (B) The
perpendicular plane of fibres in A, illustrating the intra-cellular (restricted diffusion)
and extra-cellular compartments. (C) Expected attenuated dMRI signal profile at high
b-values (> 3000s/mm2). The magnitude of the radial dMRI signal is approximately
proportional to the volume of the intracellular compartment (green in B). (D) The am-
plitude of the FOD (Apparent Fibre Density) along a given orientation is proportional
to the magnitude of the dMRI signal in the perpendicular (radial) plane (as shown in

C), and hence to the intra-axonal volume along with the corresponding orientation.
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FIGURE 2.13: Apparent Fibre Density overview (Raffelt et al., 2012)

2.3.8.2 Fibre-bundle cross section (FC) and Fibre density and cross-section
(FDC) of white matter tracks

While fibre density gives the number of fibre per bundle per voxel, to obtain a more com-
plete measure related to the total number of white matter axons, information from both
within-voxel microscopic fibre density and macroscopic morphology must be combined
(Raffelt et al., 2017). Fibre-bundle cross-section (FC) gives the calibre of a fibre bundle.
It is another property that factors into the bundles total intra-axonal space across its
full cross-sectional extent and hence influence its total capacity to carry information. To
obtain a more comprehensive measure related to the total intra-axonal volume within a
pathway, both Fibre bundle (FD), Fibre cross-section (FC) values need to be taken into
account and ideally be combined. Therefore, FDC= FD X FC.

2.4 Neuronal dynamics

Neurons are the fundamental unit of communication in the nervous system. Neurons
communicate with each other in the neural network using pulse frequency modulation
of spikes or action potentials (Weiss, 1996). The flow of ions in the cell is controlled
by gated ion channels present in neuron cell membrane (Izhikevich, 2007). The main
components of a Neuron are dendrites, soma or nucleus and axon as shown in figure 2.14.

The central processing unit of the neuron is the soma. It produces enzymes, proteins,

Direction message travels

Axon terminals

Nucleus

Soma
(cell body)

i Myelin
e Sheaths

FIGURE 2.14: Anatomy of a Neuron
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and other essential cell chemicals. The receiving unit of a neuron are dendrites that
receive both excitatory and inhibitory synaptic inputs from presynaptic terminals. An
excitatory synaptic input helps to increase the membrane potential and brings it closer
to the threshold membrane potential where an inhibitory synaptic input decreases it.
When the potential across the neuron membrane reaches the threshold potential, an
action potential or spike is generated (Andrew, 2003). The Figure 2.15 shows the de-
scription of an action potential wave: (1) stimulus starts the rapid change in membrane
potential, (2) depolarization: influx of sodium ions, (3) repolarization: sodium channel
inactivation, outflux of potassium ions, (4) hyperpolarization: lowered membrane po-
tential caused by the efflux of potassium ions, closing of the potassium channels, (5)
resting state: membrane potential at resting state and no ions exchange. A single presy-
naptic cell does not possess enough electrical strength to produce an action potential
in a postsynaptic neuron. The integration of many excitatory postsynaptic potentials
(EPSPs) both spatially or temporally, generate an action potential. The axon hillock
which connects the neuron to the axon; has the largest concentration of voltage-gated
ion channels and therefore has the lowest membrane threshold potential (Kandel et al.,

2000). Temporal and spatial inputs are integrated at the axon hillock to generate action
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FIGURE 2.15: An action potential curve

potentials that propagate down the axon to the terminal buttons (Hill and Blagburn,
2001). The myelin sheath in the axon isolates the inside of the neuron from the excita-
tory extracellular fluid. It has a high electrical resistance, which decreases conduction
efficiency and velocity. The action potential generated at the axon hillock passively
decays. The action potential would attenuate to 50% of its peak value in about 20mm

of axonal length if it were not for the Nodes of Ranvier (Weiss, 1996). The Nodes of
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Ranvier exposes the axon directly to the extracellular fluid, which contains ions nec-
essary to regenerate an action potential. They are uniformly spaced in an axon. The
Nodes of Ranvier have a large concentration of sodium channels that can be excited once
the action potential reaches them. The myelin sheath and the Nodes of Ranvier work
together to propagate the action potential in a myelinated neuron. It looks as though
the electrical signal is leaping from node to node (Stephanova and Bostock, 1995). This
kind of leaping propagation of the action potential from one node to another is called

saltatory conduction.

2.4.1 Ion channels

The plasma membrane of neuron cells is built up with lipid fat and protein structures.
The complex structure of proteins creates the ion channels across the membrane which
regulates the flow of ions. The main ion channels across the membrane are sodium
and potassium channels. Hodgkin and Huxley in their electric circuit described the
conductance of ion channels to changes in membrane potential using Ohm’s law (V=IR;
V=I/G; V=Voltage measured across the conductor, I=Current through the conductor,
R=Resistance of the conductor, G=Conductance). The conductance across the cell
membrane is the summation of all ion channel conductance. The calculation of the
conductance is accomplished by using an equivalent circuit model using Ohm’s law.
The current I, where x is the conducting ion is a function of membrane conductance g,

the voltage V,,,, being applied to the membrane and the battery potential FE,.

I, = g1 (Vi — Ek) (2.1)
9k = I/ (Vk — Ek) (2.2)
Ing = gna(Vi — ENa) (2.3)
gNa = Ina/ (Vi — ENa) (2.4)

Membrane conductance for sodium(Na) and potassium(K) was calculated as a function

of membrane potential, where both the voltage and current are known.

Conductance of potassium depended on the maximum potassium conductance G, and

a gating variable n.
G = Gyn? (2.5)
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where G}, is known constant. The gating variable’s dependence on voltage and time can

be put into two forms. One such form is dependent on the rate constants «,, and (3,,.

— =ap(l—n)—Byn (2.6)

The other form is written in terms of a time constant 7, and the final value nq..

d
Tnd—:: +n=n (2.7)

%
(on + Bn)

The time and rate constants for the potassium channel n gate, 7,, a,, and 3, are all

(2.8)

Noo =

functions of the membrane potential. Hodgkin and Huxley characterize the rate and

time constants empirically using data collected from voltage clamp experiments.

- —0.01(Vs + 50)

On = T0A(Var450) _ | (2.9)
1
n n

The membrane potential Vj; , is expressed in mV, and the o and 8 quantities are
expressed in ms~!. Sodium channel conductance is dependent on the maximum sodium
conductance G, as well as the activation and inactivation gate, m and h respectively
[34].

Gna = Gyam’h (2.12)
The conductance equation for sodium is more complicated and requires two gating vari-
ables. G g is a measured constant, and the m and h gating variables are both described

using a first-order differential equation. The combined action of m and h variables

controls the sodium channels.

dm

L (2.13)
% = ah(l — h) — ,th (2.14)

Using a time constant 7,,,, 7, and the final values mq, and hso

d
Tm—dT Fm = Me (2.15)
dh
Th— +h = hoo (2.16)

dt
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with
Qm
Mey, = ——————— 2.17
> m + Bm ( )
ap,

= 2.18
“an+ B (2.18)

All above are functions of membrane potential.

—0.1(V;, + 35)

Om = (Vi +35) _ 1 (2.19)
B, = de—22LEn o) (2.20)

1
Tm = ————— 2.21
" am + Bm ( )
ay, = 0.07¢™0-05(VinF60) (2.22)

1
Br = T o 01(Vet30) (2.23)

1
Th = ————— (2.24)

ap + B

The m gate increases conduction, and the h gate decreases conduction with the increase
in membrane activation (Weiss, 1996). The leakage channel in a neuron model represents

other conducting ions not represented by the potassium or sodium channels.

2.4.2 Nernst potential or equilibrium potential

The two forces that drive each ion species through the membrane channel are concen-
tration and electric potential gradients. First, the ion diffuses down the concentration
gradient creating positive and negative charges accumulating on the opposite sides of the
membrane surface. This generates an electric potential gradient across the membrane-
called membrane voltage. This membrane voltage slows the diffusion of ions as ions are
attracted to the opposite side and repelled from the same side. This leads to an equi-
librium state where concentration gradient and electric potential gradient exert equal
and opposite forces that counterbalance each other. The value of such an equilibrium
potential depends on the ionic species and is given by the Nernst equation (Izhikevich,
2007):

E, = RT log & (2.25)
zF cy
Where cx is the concentration of the ions inside and outside of the cell, T is the tem-
perature of the environment in kelvin (K°=273.16+C°), and z is the valence of the ion
(z=1 for Na* and K*; z = -1 for Cl~ ; and z=2 for Ca?"), R is the gas constant in
joules per kelvin per mole (8,315 mJ/K°.Mol) and F is the Faraday’s constant coulombs
per mole (96,480 coulombs/Mol). Nernst equilibrium potentials in a typical mammalian

neuron are summarized in table 2.1.
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Equilibrium Potentials

Na* 61mV
Kt -90mV
Cl~ -89mV
Ca’** 136mV

Table 2.1: Nernst equilibrium potentials in a typical mammalian neuron
2.4.3 Resting potentials

Most membranes contain a diversity of channels. The value of the membrane potentials
at which all inward and outward currents balance each other so that net membrane
current is zero corresponds to the resting membrane potential (Izhikevich, 2007). So
the resting membrane potential is the stable state with regards to diffusion and electri-
cal gradients. The Goldman equation can be used to calculate the resting membrane
potential. To write the Goldman equation for a neuron membrane permeable to only
potassium and sodium, the intracellular and extracellular concentrations of the ions are

required, as well the relative permeability of sodium to potassium.

2.4.4 Hodgkin-Huxley neuron model

In 1950, Hodgkin-Huxley performed an experiment on giant squid and derived the equa-
tions for the action potential. The schematic diagram of Hodgkin-huxley model is shown
in Figure 2.16. It is the lipid fat and protein structures that built up the plasma mem-
brane of neuron cell. According to Hodgkin Huxley Model, the semipermeable cell
membrane acts as a capacitor and divides the interior of the cell from the extracellular
liquid. The complex structure of proteins creates the ion channels across the membrane
which regulates the flow of ions inside to outside or vice versa. When an input cur-
rent I(t) is given into the cell, it may add the further charge on the capacitor, or pass
through the channels in the cell membrane. Because of active ion transport through the
cell membrane, the ion concentration in the extracellular liquid is different from that
inside the cell. The Nernst potential generated by these ion concentration differences is
represented by a dc voltage source. Putting the above considerations in a mathematical

equation, equation 2.26 is derived.

I(t) =Ic(t) + > kli(t) (2.26)

where the sum runs over all ion channels. From the definition of a capacity C, if Q is a
charge and u the voltage then C' = Q/u, then d@Q/dt = Cdu/dt, so the charging current
IC = Cdu/dt. Hence from above equation

C% ==Y kI(t) +1(t) (2.27)
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FI1GURE 2.16: Hodgkin Huxley cell equivalent

So u is the voltage across the membrane and ), I is the sum of the ionic currents
which pass through the cell membrane (Gerstner et al., 2014). By replacing the ionic

currents in the equation, the total current Ij; flowing through the membrane is:

Iy = CM%/HHINQHL = CM%—FTMm%(V—VNa)+G7Kn4(V—VK)+G7L(V—VL)

(2.28)
where V' is the membrane potential and C; is the membrane capacitance; Ix and Iya
are the currents generated by the flow of the sodium and potassium ions through the
channels and Iy, is a leakage current with V., Vik and V7, the corresponding equilibrium
potentials. Gy, , Gx , G are the sodium, potassium and leakage maximum conduc-
tance through the membrane, respectively. The activation and inactivation parameters
of the sodium channels m and h and the activation parameter of the potassium channel

is n; which signified the fractions of open and closed channels:

% = ap(1—h) — Brh (2.30)
%7; — an(1—n) - Bun (2.31)

where auy,, Bm, an, Br, o, and 5, are the exponentially voltage dependent rate constants
Qm, ap, and o, determine the rate of ion transfer from outside to inside while 3,,,, 8, and
Bn determine the transfer in the opposite direction as described by (Hodgkin and Huxley,
1952). The m gate increases conduction, and the h gate decreases conduction with the
increase in membrane activation (Weiss, 1996). The leakage channel in a neuron model
represents other conducting ions not represented by the potassium or sodium channels.
The Table 2.2 describes the values for the maximum ionic conductance, for the leakage

conductance and the corresponding equilibrium (reversal) potentials, as fetched from
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literature (Hodgkin and Huxley, 1952).

Membrane Characteristics Parameters

JNa 120mS/cm2
9K 36mS/cm2
gL 0.3mS/cm2

Viva -115mV
Vi 12mV
Vi, -10.6mV

Table 2.2: Values of maximum ionic conductance, leakage conductance and the equilib-
rium (reversal) potentials

2.4.5 Core conductor theory and cable equation

The physical concept that provides the basis for a cable theory treatment of current and
potential in neuronal core conductors is that: for nerve axons or dendrites, the resistance
to electric current flow across the membrane is much greater than the core resistance and
because of those relative resistances, electric current inside the core conductor tends to
flow parallel to the cylinder axis for a considerable distance before significant fraction can
leak out across the membrane (Rall, 2011). Cable theory in computational neuroscience
was introduced by Professor William Thomson (later known as Lord Kelvin) in 1850
but the importance of cable theory in modelling the behaviour of axons began surfacing
in the 1930s from work done by Cole, Curtis, Hodgkin, Sir Bernard Katz, Rushton,
Tasaki and others. The aim behind cable theory is to provide a mathematical model
to calculate electric current and voltage along passive neurites such as dendrites, axons.
The core conductor model is built upon some assumptions as mentioned here. (1)
The cell membrane is a cylindrical boundary that separates two conductors of electrical
current, the intracellular and extracellular solutions. These conductors are assumed to be
homogenous and ohmic. (2) All electrical variables have cylindrical symmetry. (3) Ohms
law of voltage and current is sufficient to describe the system therefore electromagnetic
effects are considered negligible. (4) Current in the inner and outer conductors flow in
the longitudinal directions only and current through the membrane is through the radial
direction only. (5) At a given longitudinal position the inner and outer conductors are
equipotential. Therefore, the only change in membrane potential is in the longitudinal

direction.

Figure 2.18 shows a neuron’s dendritic membrane where A. shows a sketch of the neuron,
B. shows a cylindrical representation of the dendrite, C. shows an electrical cable model
for this length of the cylinder. Each of the sub-cylinders labelled 1, 2, and 3 is assumed to
be an isopotential patch of membrane. The membrane of each sub-cylinder is represented

by a parallel combination of membrane capacitance cmAz and an unspecified circuit for
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FIGURE 2.17: Cable model of axon (Johnston and Wu, 1994)

the ionic conductance in the membrane, represented by a box. The total current through
a membrane patch is Im(x)Az. Note that the membrane current varies with distance x
down the cylinder. Im and c¢m are membrane current and capacitance per unit length of
the cylinder so that multiplying by Ax gives the total current and capacitance in a sub-
cylinder. The membrane of each sub-cylinder is represented by a parallel combination
of membrane capacitance cmAx and an unspecified circuit for the ionic conductance in
the membrane, represented by a box. The total current through a membrane patch is
I ().

The membrane current is denoted by I,,.

The capacitance per unit length of cylinder is Cy,.

The membrane potentials inside the cell V;(x) and outside the cell V(x).

The potentials vary with distance down the cylinder. The membrane potential is V;(x) —
Ve(a)

The total current flowing down the interior of the cylinder is I;(z)

The total current flowing parallel to the cylinder in the extracellular space I.x

The resistance of the solutions inside the cylinder between the center of one sub-cylinder
and the center of the next is r;Ax The resistance in the extracellular space between the
center of two sub-cylinders is r. Az The resistances per unit length of cylinder are r; and
Te.

Ohms law for current flow in the intracellular and extracellular spaces gives:
Vi(z) — Vi(z + Ax) = Li(z)r; AxVe(z) — Ve(x + Azx) = I (z)reAx (2.32)

By rearranging and taking the limit as Az goes to 0,

. Vilr + Az) = Vi(z) Vi
lim A =5, = —r;1; () (2.33)

oVe
= —r.d, 2.34
 — rl (@) (2:34)
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F1GURE 2.18: A Sketch of a portion of the dendritic tree of a neuron emerging from

the soma at right. B Portion of a secondary dendrite divided into three sub-cylinders.

The axial current Ii and the membrane current Im are shown next to the arrows. C
Discrete electrical model for the three sub-cylinders.

By the law of conservation, current at the intracellular and extracellular nodes gives:
Sl dle
Ii(z—Ax)—I;(z) = Im(a:)A:zor(S— = —In(z)l.(x—Azx)—I.(z) = —Im(x)Axoré— =In(z
x
(2.35)
Defining the membrane potential as V =V, — V,
It allows the membrane current I,, to be written as the sum of the ionic current
Lion(z,V,t) through the box and the current through the membrane capacitance:
oV

L(@) A = Lion(2, V) Az + Crn(2) Aw (2.36)

Ly, Lo, are the ionic current per unit length of membrane cylinder.



Chapter 2 Background and Literature Review 33

Differentiating and subtracting 2.33 and substituting 2.34 allows the following relation-

ship between membrane potential and membrane current to be written:

B2V 82V, — V) 5ty 6l

522 = 522 = —rl-% Te% = (ri+re)ln (2.37)
Substituting 2.36 gives the nonlinear cable equation:
1 &V %
—=Cpn—+ 1 2.38
Ti + Te 0x? " ox +hion (2.38)

2.38 models the distribution of membrane potential in a membrane cylinder.

2.4.6 Axonal functions
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FIGURE 2.19: Summary of axonal functions (Debanne et al., 2011)

Figure 2.19 depicts the summary of axonal functions (Debanne et al., 2011). A pyramidal
neuron is schematized with its different compartments. Four major functions of the axon
are illustrated (i.e., spike initiation, spike propagation, excitation release coupling, and

integration). A spike initiates in the axon initial segment (AIS) and propagates towards
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the terminal where the neurotransmitter is released. In addition, electrical signals gen-
erated in the somatodendritic compartment are integrated along the axon to influence
spike duration and neurotransmitter release (green arrow). The other important part of
the axon is myelin which makes the information transmission faster through the axon.
It is a concentrically laminated membrane structure surrounding an axon around which
lamellae (or cellular protrusions) repeat radially at a period of about 12 nm (Waxman,
1995). Different glial cell types make myelin in a different manner, depending on the lo-
cation. In PNS nerves Schwann cells make myelin, and in CNS oligodendrocytes. Where
in the PNS, one Schwann cell forms a single myelin sheath, in the CNS, the oligoden-
drocyte sends cell processes to myelinate multiple segments on many axons. The basic
myelin sheath arrangement and the electrophysiological characteristics are essentially
the same, though there are several molecular or morphological differences between nerve
fibres in the PNS and CNS (Susuki, 2010). It has been identified that axonal signalling
regulates myelination in the PNS axon, but it was unclear how myelination is regulated
in the CNS (Susuki, 2010). But, now there are more kinds of literature available on
how the activity is related to myelination. Kaiser (2020) in his book has described that
concerning the role of neural activity, optogenetic stimulation of projection neurons of
the mouse motor cortex increases proliferation of oligodendrocyte progenitor cells and
differentiation of oligodendrocytes in both cortex and subcortical white matter. As a
result, the thickness of the myelin sheath is increased along the whole length of axons
of stimulated neurons, not just near the stimulation site (Gibson et al., 2014). Such
an interplay between activation and myelination also seems to occur in humans in both
adults and children. Diffusion imaging studies showed changed fractional anisotropy of
language-related fibre tracts in bilingual compared to monolingual children (Mohades
et al., 2012). Similar changes were observed for adults who learned Chinese as a second
language (Schlegel et al., 2012; Hosoda et al., 2013), suggesting that activity-related
changes in myelination can occur throughout the life span right into adulthood. Fibre
tract changes were also observed after learning new motor skills such as piano playing
or juggling (Bengtsson et al., 2005; Scholz et al., 2009).

About myelination, it is not that all axons are myelinated but in the CNS, almost
all axons with diameters greater than 0.2 m are myelinated. The ratio between axon
diameter and that of the total nerve fibre (axon and myelin) is 0.6-0.7, a ratio that is well
maintained regardless of the axon calibre. Between two adjacent myelin segments, there
are approximately 1um long gaps called nodes of Ranvier where the axon is exposed
to the extracellular space. Suminaite et al. (2019) illustrated emerging evidence that
the myelin sheath itself has rich physiology capable of influencing axonal physiology and
local adaptive mechanisms might influence sheath length and in turn conduction. In
past, in-vivo voltage-clamp experiments reported filter like characteristics FMN axon
(Schumann et al., 1983; Nonner et al., 1978).
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2.5 Saltatory conduction in a myelinated axon

Since an axon can be myelinated or unmyelinated, there are two ways the action poten-
tial propagates through the axon: saltatory conduction where nerve signal leaps through
the myelinated axon, and continuous conduction for unmyelinated axon. Saltatory con-
duction of the action potential in the myelin fibre is well studied. This process is outlined
as the charge passively spreading to the next node of Ranvier to depolarize it to a thresh-
old which will then trigger an action potential in this region which will then passively

spread to the next node and so on.

Saltatory conduction provides one advantage over conduction that occurs along an axon
without myelin sheaths. This is that the increased speed afforded by this mode of
conduction assures faster interaction between neurons. On the other hand, depending
on the average firing rate of the neuron, calculations show that the energetic cost of
maintaining the resting potential of oligodendrocytes can outweigh the energy savings
of action potentials. So, axon myelination does not necessarily save energy (Harris and
Attwell (2012)).

2.6 Ephaptic coupling between myelinated axons

Ephaptic coupling is a form of communication within the nervous system different from
direct communications such as electrical synapses and chemical synapses. Ephaptic
coupling refers to the coupling of adjacent (touching) nerve fibres either caused by the
exchange of ions between the cells, or as a result of local electric fields. Ephaptic coupling
between the two adjacent nerves is not sufficient to stimulate an action potential in the
resting nerve but it can influence the synchronization and timing of action potential

firing in neurons. Myelination is thought to inhibit ephaptic interactions.

2.6.1 Effect of coupling on excitation/inhibition of action potential in

neighbouring neurons

Arvanitaki (1942) first introduce the term ’ephapse’ to describe the coupling and to
distinguish it from synaptic communications in the neuron(s). According to Katz and
Schmitt (1940) ephaptic coupling between the two adjacent nerves is insufficient to
stimulate an action potential in the resting nerve. Katz and Schmitt (1940) in their
experiment, demonstrated that maximum depolarization in neighbouring nerve was ap-
proximately 20% of the threshold potential. Ramon and Moore (1978) in their ex-
periment demonstrated that by modulating conditions such as increasing extracellular
resistance by changing the medium or by lowering threshold voltage by increasing cal-

cium concentration in the cellular fluid, action potential was possible to generate in



36 Chapter 2 Background and Literature Review

the neighbouring nerve. According to some study ephaptic coupling can inhibit action

potential propagation in the neighbouring neuron.

2.6.2 Effect of coupling on the propagation of action potential in syn-
chronized neurons

Research has shown that ephaptic coupling has an effect on synchronization and timing
of action potentials in neurons (Binczak et al., 2001; Scott, 1975). In the adjacent fibres
if simultaneous stimulation is performed the impulse slows down while propagating to
the next node. This happens because both fibres are limited to exchange ions solely
with the interstitial fluid (increasing the resistance of the nerve). Slightly offset impulses
(conduction velocities differing by less than 10%) are able to exchange ions constructively

and the action potentials propagate slightly out of phase at the same velocity.

Shneider and Pekker (2015) in their work, have shown a mechanism similar to saltatory
conduction for modelling coupling effect. They calculated the dynamics of current and
voltage near to the vicinity of the node and scaled, up to what distance coupling can be
possible. More recent research, however, has focused on the more general case of electric
fields that affect a variety of neurons. It has been observed that local field potentials in

cortical neurons can serve to synchronize neuronal activity (Anastassiou et al., 2011)

2.7 Axon bundle physiology

Axons are the slender, electrically excitable, cable-like extensions of nerve cells that
form the nerves and tracts that relay information between neurons within the nervous
system and between neurons and peripheral target tissues in highly regulated manners.
In the central and peripheral nervous systems, most axons over a critical diameter are
enwrapped by myelin, which reduces internodal membrane capacitance and facilitates
rapid conduction of electrical impulses. Myelin which covers the vast majority of the
axonal surface, influencing the axon’s physical shape, the localisation of molecules on
its membrane and the composition of the extracellular fluid (in the periaxonal space)
that immerses it, is produced by oligodendrocytes and Schwann cells. In the CNS,
myelinated axons are densely packed within white matter and the myelin sheaths of
neighbouring fibres often directly touch as shown in top-left in Figure. 2.20. In PNS,
the axons are bundled together into groups called fascicles, and each fascicle is wrapped
in a layer of connective tissue called the perineurium as shown in bottom-left in Figure.
2.20. Top-right of Figure. 2.20 shows one cell in the CNS bundle and bottom-right of
Figure. 2.20 shows one cell in the PNS bundle. In PNS; each axon is surrounded by a
delicate endoneurium layer. A tough fibrous sheath called epineurium encloses all the

fascicles to form the nerve. Here, we have used a number of different axon types both
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from PNS and CNS axons to run the study as shown in Table 2.3. In Table 2.3, we
also have shown the different parameter values such as inner diameter (Dyp), outer
diameter (Dyy) and myelin length (L;y), of the different axon types that we have used
in this study. A schematic representation of different parameters of an axon is shown
in Figure 2.21. Among PNS axons, here we have used data of Group A nerve fibre,
which are found in both motor and sensory pathways. The Group A nerve fibres are
again classified into four groups (I, I, ITI, IV) based on their physical features and signal

conduction properties. We have used data of myelinated Group A nerve fibre I, IT, IIT

in our experiments. Then, in CNS axons we have used data of auditory nerve fibres
SBC, GBCMed and GBCLat axons. The PNS axons data were taken from Tsubo and
Kurokawa (2018). The CNS axons data were taken from Ford et al. (2015). The FMN
data were taken from Binczak et al. (2001).

F1GURE 2.20: Ultrastructure of myelinated axons in the CNS and PNS
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FIGURE 2.21: Schematic figure of an axon

2.8 Conclusions

The study of literature on myelinated axon shows that signal propagation through myeli-
nated axon were studied mainly in time scale. Functional connectivity of the brain is
defined by the phase correlation of neural signal in different frequency band. Our hy-
pothesis is that studying the filter like properties of passing signal of certain frequency
range while dampens the other frequency range depending upon its geometry, can cor-
relates the disruptions of functional connectivity to underneath structural connectivity.
Hence, we will be modelling phase-frequency characteristic of signal prorogation through

single myelinated axon and then bundle of axons in our work.
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Table 2.3: Different axon types and their parameter values; Inner diameter is the intern-
ode axon diameter; Outer diameter is the internodal myelin diameter; Myelin length is
the length of myelinated area between two consecutive nodes as shown in Figure 2.21






Chapter 3

Automated Tool development for
Parcellation and Extraction of
Structural Connectome and its

Geometry

Brain connectivity is pivotal for neural function. Studies on brain connectivity have
revealed that even if two brain areas are structurally connected they may not be func-
tionally connected and vice versa (Honey et al., 2007; Hagmann et al., 2008; Honey
et al., 2009; Rubinov et al., 2009). This signifies that there is selective propagation
of the signal through the underlying physical connection of the brain. The functional
connectivity of the brain is measured by phase correlation in time series signals between
two areas of the brain. So characterizing the phase and frequency response of structural
connectivity of the brain will lead to understanding the dynamics of signal propagation
through a physical connection. To characterize the physical connection of the brain, we
are analysing the MRI data. MRI is a medical imaging technique to generate images
of the anatomy and the physiological process of the brain. In this chapter, we will be

developing a toolchain for

e parcellating cortical surface into non-anatomical equal sized areas,
e constructing structural connectome, the structural connectivity,

e extracting geometrical properties of the axon bundle between two ROIs.

41
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3.1 Brain parcellation

Brain connectivity is about the integration of spatially segregated brain regions. So
delineating and defining the spatially segregated brain regions as nodes of the network
is the first step of brain connectivity analysis (Rubinov and Sporns, 2010). Cortical
parcellation serves the purpose by parcellation of the cortical and subcortical layers of
the cortex in terms of some reference atlas and assigning to them a neuroanatomical label
either automatically or manually resulting in complete labelling of cortical sulci and gyri
(Fischl et al., 2004). The most commonly used method of defining network nodes is to
register the brain to a standardized anatomical atlas based on the Brodmann areas. But
this process of parcellation has limitations in many cases such as (1) developing brain
of neonates, who have immature sulcation, (2) cases of cerebral reorganization after
brain damage (neuroplasticity), (3) cases where young children undergoing treatment of
intractable epilepsy, cortical plasticity and change of connectivity allow the contralateral
hemisphere to assume the functions of the lost hemisphere without significant neurologic
deficits, and (4) in the case of normal anatomy of the adult brain, where different
subjects have different dominant hemispheres. In these cases, a non-anatomical equal-
area cortical parcellation is more appropriate than anatomical parcellation. Typically
Freesurfer (Fischl, 2012) is used for parcellation and reconstruction of brain surface
from MRI images. But Freesurfer does not support parcellation of the cortical surface
into non-anatomical equal-sized areas. Here we have developed a new methodology
to perform parcellation of the cortical surface into equal-sized areas using Freesurfer
as a tool. The structural MRI data, obtained from the human connectome databank

(db.humanconnectome.org) has been used here.

3.1.1 Performing cortical surface partitioning using EQSP: Recursive
Equal Zone Sphere Partitioning

The recursive zonal equal-area sphere partitioning (EQSP) given by Leopardi (2006)
divides a spherical surface into equal-sized areas. We have used the EQSP algorithm
to partition each hemisphere into equal-sized areas and make new atlas for cortical
parcellation. While reconstructing cortical surface from MRI image Freesurfer turns each
hemisphere into an inflated spherical surface. The spherically inflated original surface
was used to perform the partitioning. The details of generating this spherically inflated
surface using Freesurfer (Fischl, 2012) surface reconstruction pipeline are described in
section Section 3.1.2. Each hemisphere was inflated to a spherical surface and then
was used for partitioning. Here the cortical surface was parcellated into 80 equal nodes
where 80 is an arbitrary number. The algorithm was designed in such a way that users
can choose the number of nodes for their parcellation process. The steps to perform the

partitioning are described below:
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e First the vertex coordinates of the entire surface points of the inflated spherical

surface of the hemisphere were obtained from Freesurfer pipeline.

e Next an array in Cartesian coordinates representing the ‘centre’ points of an EQ

partition of the sphere into 40 regions was created using the EQSP algorithm.

e Then the centre points were scaled to the original surface. The scaling factor
was obtained manually by comparing the original surface coordinates with the uni
sphere surface coordinates. Here the scaling factor obtained was 100. The centre

point of each partitioned region is shown in Figure 3.1.

F1GURE 3.1: Centre point of each partitioned regions

e For each of the surface points the nearest centre point was found and was assigned
to a label file that is defined for that centre point. Thus all the surface points of
the cortical surface were assigned to the nearest centre point and listed in label
files.

e Next, these label files were saved into a computer disk. Thus for each parcellated
area, a label file was created. Two sets of label files were created as per parcellated
areas for each hemisphere. A label is an integer value, or a name (depending on
context) which can be associated with a vertex of a surface mesh, or with a voxel

of an MRI volume, to indicate that it belongs to some region of interest.

e Next, all label files are put together to create the annotation file for each hemi-
sphere following the steps of surface reconstruction in Freesurfer. The generated

annotation files for left and right hemisphere is shown in Figure 3.2.

e Next cortical parcellation atlas file was generated using a probabilistic information

algorithm given by Freesurfer by utilizing the annotated subjects.
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Left annotation file imposed on spherical surface Right annotation file imposed on spherical surface

FI1GURE 3.2: The Annotation files of Left Hemisphere and Right Hemisphere

Thus the two atlas files leftaparc.gcs and rightaparc.gcs were generated to be used in
the surface reconstruction pipeline later for creating parcellated and segmented brain

surface. The atlas file in Freesurfer is saved with .gcs extension.

3.1.2 Reconstructing the cortical surface using equal zone cortical sur-
face partitioning atlas

FreeSurfer (Fischl, 2012) provides a full processing pipeline for structural MRI data,
which involves: Skull stripping, Bl bias field correction (Bias field signal is a low-
frequency and very smooth signal that corrupts MRI images ), gray-white matter seg-
mentation, reconstruction of gray-white boundary surface and pial surface, Labeling of
regions on the cortical surface and sub-cortical brain structures, registration of the cor-
tical surface of an individual with an atlas. But it can also be grouped into three steps

by using appropriate options. Here the whole process was performed in three steps.

e First, the main T1 MRI image is processed to correct errors that occur in the
image due to motion, intensity non-uniformity and intensity fluctuation. Then the

image is processed to remove the skull.

e The major steps are done in next step are segmentation of cortical surface, separa-
tion of white matter surface, cutting of midbrain from the cerebrum, generation of

left and right hemisphere generate the original surface, inflating the white surface,
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FIGURE 3.3: Segmented Brain Volume and White/Pial surfaces

transforming it to a spherical surface, generating pial surface (the surface rep-
resenting the boundary between grey matter and cerebrospinal fluid) and white

surface.

e In this step, inflate the Orig surface into a sphere. This sphere surface was used
in the equal parcellation process to create an equal parcellation atlas as described
in section 3.1.1. Generate parcellated cortical surface mapping the leftaparc.gcs
and rightaparc.gcs atlas files created in equal parcellation steps. Maps the cortical
labels from the cortical parcellation (aparc) to the segmentation volume (aseg).

Generate the final parcellated and segmented image.

3.1.3 Results and validation of the model
3.1.3.1 Viewing volumes

View of the output volumes such as white matter; surfaces such as white and sub-cortical
segmentation of is shown in Figure 3.3. These are the axial, coronal and sagittal views
of the segmented volumes. The blue line is the boundary between white matter and
gray matter and defines the white surface. It is used to calculate the total white matter
volume. The red line is the boundary between the cortical gray matter volume and CSF
and is defined as the pial surface. Figure 3.4(a) shows the complete segmentation of
the subcortical structures. As shown in the image, the red area is the cerebral cortex,
the gray area is the white matter, the green area is the thalamus, the yellow area is the
hippocampus, and the pink area is the putamen. The complete list of segmented areas
is given in the table 3.4(Db).
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(a) Segmented areas.

Area Names Color Code
Cerebral-White-Matter
Cerebral-Cortex
Lateral-Ventricle
Inf-Lat-Vent

Cerebellum-White-Matter
Cerebellum-Cortex

Thalamus-Proper
Caudate
Putamen

Pallidum

Hippocampus

Amygdala

Accumbens-area
VentralDC
vessel

choroid-plexus

(b) Segmented areas colour code.

FIGURE 3.4: Segmented cortical surface and their colour code

3.1.3.2 Viewing surfaces in 3D

Pial Surface: The volume shown in the image Figure 3.5, is the pial surface. The
green regions are gyri and red regions are sulci. In this surface the sulci are mostly
hidden.

White Surface: The surface shown in the image Figure 3.6, is the white surface. The
white surface shows the boundary between white matter and gray matter. Here sulci is

better visible.
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FIGURE 3.5: The pial surface

FIGURE 3.6: The white surface

Inflated Surface: The surface shown in the image Figure 3.7, is the curvature of the

inflated surface. In the inflated surface the sulci is completely visible.

Cortical Parcellation: The surface shown in the image Figure 3.8, is the 3D view
(sagittal view) of the parcellated cortical surface. The image shown in Figure 3.9 is
the 2D (axial, sagittal and coronal) views of the parcellated and segmented image.
Each parcellated node has been represented with a unique colour code as defined in the

colorlookup table.

The table 3.10 displays the statistical values such as the number of vertexes and surface
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FIGURE 3.7: The inflated surface

area for each parcellated node. In the statistics table, the number of vertices is unitless

and the surf area of parcellated nodes are in mm?.

FI1GURE 3.8: The parcellated cortical surface

So, in summary in this work, each surface point of an inflated spherical surface of
each hemisphere has been assigned to an equally divided area of a sphere and saved as
label files. Then the Label files were put together to generate annotation files for the
surface. Then from the annotation files, the atlas files were created for left and right
hemispheres. The output statistics of the parcellated segmented image shows that all
parcellated areas from atlas files have been successfully mapped to the cortical surface.
Thus a novel approach was designed to reconstruct a surface from an MRI image by

parcellating the cortical surface into equal-sized areas using the Freesurfer tool.
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F1GURE 3.9: The parcellated segmented surface

Hemispher StructName Numvyert |SurfArea Hemispher StructNam NumWert SurfArea
left nodel 3470 1958 right nodel 3043 1831
left node2 2839 1875 right node2 2984 2056
left node3 4132 2768 right node3 3596 2455
left noded 3794 2247 right noded 3392 2322
left nodeS 2877 1728 right nodeS 3441 2134
left node6 2284 1473 right node6 2389 1459
left node7 2486 1479 right node7 2503 1452
left nodes 2826 1695 right nodes 2539 1626
left node9 2340 1667 right node9 1998 14185
left nodel10 3751 2570 right node10 2826 2006
left nodell 5223 3428 right nodell A207 2799
left nodel2 A1 849 2756 right nodel2 5313 3518
left nodel3 3116 2061 right nodel3 4013 2716
left nodel14 2666 1774 right nodel4d 2891 1920
left nodelS 2567 1788 right nodelS 2630 1700
left nodel6 3135 1970 right nodels 2850 17949
left nodel? 3789 2420 right nodel? 2813 1726
left nodels 3027 1822 right nodels 3028 1797
left nodeldg 2656 1794 right nodel9 3137 1857
left node20 2508 1742 right node20 2326 1602
left node21 2599 2197 right node21 2309 2024
left node22 3503 2436 right node22 2993 2053
left node23 4340 3028 right node23 3784 2566
left node24 3001 2003 right node2a4 3444 2227
left node25 2451 1637 right node25 2616 1734
left node26 3388 2285 right node26 2801 1795
left node27 2807 1858 right node27 2808 1854
left node28 4546 3006 right node28 3321 2212
left node29 4711 2958 right node29 4901 3132
left node30 44571 2817 right node30 5190 3116
left node31 2981 1979 right node31 4287 2762
left node32 1846 1474 right node32 1927 13549
left node33 2959 2160 right node33 2568 1805
left node34 2387 1583 right node34 2554 1745
left node35 4543 3037 right node35 3498 2319
left node36 A618 2022 right node36 3637 2516
left node37 A807F 3227 right node37 5709 3826
left node38 3857 2529 right node38 A319 2728
left node39 2173 1422 right node39 2755 1822
left nodeda0 3484 2353 right nodead0 ATFS55 3276

FIGURE 3.10: Left and right hemisphere parcellation statistics
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3.2 Structural connectome construction

The neuroimaging data of diffusional-weighted MRI reveals the white matter connec-
tivity of the human brain. The structural MRI and diffusional MRI data both are
necessary for structural connectome construction and were obtained here from Human
Connectome Project (HCP) databank. The main two steps of DW_MRI image pro-
cessing are denoising and distortion correction. The image denoising is performed first
because motion and distortion correction during their smoothing and interpolation steps
can not alter the noise characteristics and produce a low quality visual and statistical
result. Then the image is corrected for distortion such as eddy current, motion and
susceptibility induced distortion. The diffusional MRI data obtained from the human
connectome databank is already preprocessed hence didn’t need to perform the denoising

and distortion correction here.

3.2.1 Structural Image processing

The parcellated structural image is used here to construct the nodes of the connectome

matrix.

e First the values of the parcellated node in the image were modified so that numbers
in the image correspond to rows and columns of the connectome. The parcellated

structural MRI image is shown in Figure 3.11.

e Then tissues of the structural image file were segmented into five tissue types
(cortical gray matter, sub-cortical gray matter, white matter, CSF, pathological
tissue) for applying the tractography process. The five tissue types act as anatom-
ical prior and define the propagation and termination conditions for white matter

tracts.

3.2.2 Diffusional Image processing

e In diffusion image processing, first the response function was estimated. This is
the signal value of a voxel containing a single, coherently-oriented fibre bundle and

it is used as the kernel for the deconvolution step.

e Then constrained spherical deconvolution was performed to generate an image
with three volumes, corresponding to the tissue densities of CSF, gray matter and
white matter. This is displayed in mrview as an RGB image with CSF as red, GM

as green and WM as blue as shown in Figure 3.12.

e Then anatomically constrained tractography was performed to generate the initial

tracts as shown in Figure 3.13.
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FIGURE 3.11: Parcellated Image

e Then the tracts were filtered using the Spherical-deconvolution Informed Filtering
of Tractograms (SIFT) algorithm which was applied to reduce the overall tracts
count and get more biologically meaningful estimates of structural connection den-

sity.

3.2.3 Structural Connectome construction

The connectome matrix was built using the generated white matter tracks and the
parcellated nodes. Here we are using a novel approach to use the equal-sized parcellated
nodes constructed in 3.1.2. The nodes of the connectome matrix are the parcellated
ROIs and the values of the matrix are the white matter connectivity strengths among
the ROIs. A toolchain has been developed in python that can take a set of subjects in
a group as input and generate the set of connectome matrix as output. The flowgram

of the whole process of structural connectome construction is shown in Figure 3.14.
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FIGURE 3.12: Fibre Oriented Distribution in voxels

3.2.4 Graph Theory analysis:

The graph theory measures are calculated on the constructed structural connectome
matrix to quantify the properties of the structural network. To calculate the network
measures, we integrate Matlab based Brain connectivity toolbox (brain-connectivity-

toolbox.net) into our toolchain as the final steps of processing.

3.2.5 Results and validation of tool

Data Acquisition: A single-subject MRI data is obtained from WU-Minn the Human
Connectome Project (HCP) database at http://db.humanconnectome.org. The charac-
teristics of the subject are as follows: Subject ID: 100307; Gender: Female; aged 26-30;
Female, Accession ID: ConnectomeDB S00230.

Cortical Parcellation: We parcellate the cortical surface into N = 80 equal-sized
areas where each of the hemispheres are parcellated into 40 equal regions. We arrange
the parcellated areas of each hemisphere in such a way that the symmetry of the left
and right hemispheres is maintained. In Figure 3.9, we show the axial view of generated

parcellated segmented brain image used as nodes in graph theory analysis.
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FIGURE 3.13: The Generated Tracks

Structural Connectome Extraction: From diffusional MRI data for each voxel of
white matter fibre oriented distribution (FOD) values are calculated. Then following an
iterative algorithm for each voxel, the convoluted fibre oriented distribution is traced to
generate the tracks. Thus, 1 million tracks are generated. Then the tracks are filtered to
select 0.8 million more biologically plausible tracks. The constructed structural connec-
tome is shown in Figure 3.15, where nodes are the parcellated ROIs and edges are the
streamline count of white matter tracts extracted. In Figure 3.16, we show the matrix
of the structural connectome developed from white matter tracks and parcellated brain

image. The light blue, green and yellow regions are where connectivity strength is high.

Graph Theory Measures : Table 3.1 shows the values of density, characteristic path
length (CPL), small world index (SWI), transitivity, assortativity of the structural con-
nectivity network; which is of the form of a weighted undirected graph; constructed from
extracted white matter tracts and parcellated ROIs. The streamline count is used as
the connectivity metric in the network, hence the weight of the network is the stream-
line count. Fig. 3.17 shows the graphical representations of the degree distribution,
community structure indices, betweenness centrality and clustering coefficients of the
structural brain connectivity. The optimal community structure subdivides the network

into non-overlapping groups of nodes that maximises the number of within-group edges
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FIGURE 3.14: Connectome generation steps

and minimizes the number of between-group edges. The modularity is the degree to

which the network may be subdivided into such clearly delineated groups, and here
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FI1GURE 3.15: The Structural Connectome constructed using the equal sized parcellated
nodes and white matter streamlines.
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FIGURE 3.16: The structural connectivity strength among the equal sized ROI-to-ROI.

Metrics || Density || CPL SWI || Transitivity || Assortivity | Modularity
Values || 0.5117 || 1.1297 || 10.69 0.7783 -0.1191 0.553

Table 3.1: Graph theory measures

the value is 0.553 as shown in Table 3.1. These measures are useful for comparing or

studying brain connectivity networks.

3.2.6 Conclusion

In this section, the diffusion MRI data were processed to extract white matter tracts.

By using the equal-sized brain ROIs generated in the previous section and extracted
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FIGURE 3.17: The graphical representations of structural network measures

white matter tracts the structural connectivity of the brain was obtained in form of a

’Connectome’ matrix.

3.3 Geometrical properties estimation of axon bundles

Diffusion MRI (dMRI) is the most popular method for characterizing the white matter
microstructure. The displacement of water molecules during diffusion encoding helps
to characterize and quantify the underlying cellular structure (Hagmann et al., 2007;
Jelescu and Budde, 2017).

Based on the kinds of literature (Raffelt et al., 2017, 2012; Assaf et al., 2008); measuring
fibre density (FD) is the most popular method for quantifying white matter tracts. Since
the intracellular volume of axons within a tract is influenced by a number of axons, the
measure of fibre density (FD) is basically the measure of intracellular volume. So in
this section, we are extracting measures such as FD of white matter track by processing
diffusion-weighted MRI (DWI) data to use it for modelling our circuit. It has been

observed that a measure of FD alone cannot fully quantify the white matter track,
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because not only the number of axons but a change of axon diameter can also influence
the intra-axonal volume (Raffelt et al., 2017). So measuring the fibre bundle cross-
section (FC) is also an integral part to quantify white matter tracks. Here, we are
processing diffusion MRI data and extracting quantifying measures such as FD, FC
and FDC=FD*FC of white matter tracks which can be called geometrical properties of
the bunch of axons. The diffusion MRI data from the databank of Human Connectome
Project (HCP) https://db.humanconnectome.org has been downloaded and used here.
The open source software Mrtrix3 https://github.com/MRtrix3/) has been used to

process the diffusion data to extract the measures of white matter tracks.

3.3.1 Computing Fibre Density (FD) and Fibre Cross-section (FC)
and Fibre Density Cross-ection(FDC) of white matter tracts be-
tween two ROIs

We have performed the following steps to compute Fibre Desnsity (FD), Fibre Cross-

section (FC) and Fibre Density Cross-section (FDC) values from white matter tracts:

First, the diffusion MRI data were processed to remove noise and artefacts such as eddy
current distortion, motion distortion and susceptibility-induced distortion to extract
clean data. The DWI volumes often have a non-negligible bias field, mostly due to
high-density receiver coils. If it is left uncorrected, it can be incorrectly interpreted
as a spatially varying fibre density. Therefore bias field correction is highly required.
The low-frequency intensity inhomogeneities were eliminated by applying a bias field
correction algorithm. A Group average response function can be used as the unit of
the final apparent fibre density metric. So this was calculated by first estimating a
response function per subject, then averaging them. To increase anatomical contrast
and improve downstream template building, registration, tractography and statistics,
the diffusion data was upsampled. Fibre orientation distribution (FOD) estimation
(Tournier et al., 2007) basically determining orientations of fibre bundles in a single
voxel. It was computed by performing Constrained Spherical Deconvolution (CSD)
(Tournier et al., 2007) method using the group average response function. Then each
FOD lobe in the FOD images was segmented to identify the number and orientation of
fixels in each voxel. The output also contains the apparent fibre density (AFD) (Raffelt
et al., 2012) value per fixel (estimated as the FOD lobe integral): (Smith et al., 2013) to
estimate fixels and their AFD. Next fixel orientations were reoriented, subject fixels were
assigned to template fixels and fibre cross-section (FC) metric and fibre density (FD) and
cross-section (FDC) were computed on the fixel. Then whole-brain fibre tractography
was performed to extract white matter tracts from the FOD template and tractography
biases were reduced by performing SIFT (Smith et al., 2013) algorithm. Tracts were
then mapped to the parcellated image to generate the connectome matrix for the entire

brain. Next, streamlines are extracted based on their node assignment to parcellated
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nodes. Next, the list of streamlines connecting two brain nodes was extracted from the
connectome. The extracted streamlines are then mapped to the fixel data image files
to link the measured metrics (FD/FC/FDC) to the tracts. Earlier, the FD, FC and
FDC values were computed on the fixel images. Next, track scalar files (tsf files) are
generated by mapping fixel values to streamline points, saving them in a tsf file. Finally,
the track scalar files were visualised using the tractography tool in MRview. The fibre
tracts are the one that connect two brain regions and streamlines are the estimates of
the underlying white matter tracts which are reconstructed by Diffusion Tensor Imaging
(DTT). All these output files are accessible from Matlab and values can be used for

computation.

The different steps and the intermediate outputs of computing fibre density (FD) values

from diffusion MRI data have been shown in a flowchart form in Figure 3.18.

Generate
Resp

function

FI1GURE 3.18: Flow chart for computing FD values

3.3.2 Results and validation of tool

Here we are showing step by step the various outputs that were obtained during the

geometry extraction process

e The first output is the total number of white matter tracks in the brain from
diffusional MRI data. Figure 3.19(a) shows the white matter tracts for the whole

brain that was obtained in our experiment. Also a text file was generated where
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to parcellated nodes. The text file that was generated earlier containing streamlines

and their assigned nodes is used here to extract the streamlines from tractograms.

The streamlines between brain regions cortex left superior frontal and cortex right

superior frontal, have been extracted from whole-brain tractography and shown in

Figure 3.19(b). The number of streamlines connecting these two brain regions is

4175. The total number of streamlines connected between these two regions may

be higher as there may be loss of streamlines during the reconstruction process.

But these are the estimated streamlines that are solely connecting these two brain

regions.
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(e) FD values (f) FC values

(g) FDC values in voxels (h) FD and FC values in the tracts

FIGURE 3.19: Step by step generation of fixel based analysis results while extracting
geometrical metrices of fibre tracts

e Next we calculate the fibre length (FL) value of all the streamlines between two
brain ROIs as shown in Figure 3.19(c). We also calculated the statistic values such

as mean,mode,std on the length of streamlines as shown in the Figure 3.19(d).

e Next, we mapped the streamlines to the fixel data image files to link the measured
metrics (FD/FC/FDC) to the tracts. Then we extracted the FD in a fibre bundle
by following the steps of fixel based analysis as mentioned before. Figure 3.19(e)
shows the value of fibre density of a fibre bundle in a voxel. As shown in the figure
the value of fibre density(FD) at position 19.5, -8.83, 14.13 in voxel [84 89 83] is
1.83e+06.
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e Next, we extracted the fibre bundle calibre, internal diameter of fibre tract of white
matter from fixel images obtained from tracks. Figure 3.19(f) shows the value of
cross section of a fibre bundle in position at position 19.5, -8.83, 14.13 in voxel [84
89 83] is 1.83e+-06.

e Also we obtained the value of fibre density cross-section by multiplying FD and
FC for the tracks. Figure 3.19(g) shows the value of fibre density(FDC) at position
19.5, -8.83, 14.13 in voxel [84 89 83] is 3.35e+12 which is basically FD*FC.

e We are also able to view the FD/FC/FDC values of a particular tract. The
Figure 3.19(h) shows the fibre density (FD) and fibre crosssection (FC) values

over the extracted tract.

3.4 Discussion

In this chapter, first, we processed the structural MRI image and generated parcellated
segmented cortical surface consists of equal-sized brain areas. Typically Freesurfer is
used for parcellation of cortical surface anatomical areas based on Brodmann atlas. Us-
ing our methodology, we are now able to perform non-anatomical equal-area parcellation
of the cortical surface using Freesurfer, which helps to process the subjects with neuro-
plasticity anomalies or adults brains with different dominant areas. Next, we processed
the DWI-MRI data and extracted white matter tracts of the whole brain. By using the
extracted white matter tracts and defined equal-sized brain ROIs we have defined the
structural connectivity of the brain in form of a structural connectome matrix. The
nodes of the matrix are equal-sized non-anatomical brain ROIs and the edges between
the nodes are white matter counts between them. We performed graph theory analysis
on the connectome matrix and extracted different network matrices to determine the
functional segregation and integration of the brain. Next, we processed the streamlines
data generated from the tractogram to calculate FD, FC and FDC values fibre bundle
connecting the equal-sized areas from the cortical surface. Thus we extracted geometri-
cal metrices of white matter tracts of the brain where the cortical surface is parcellated

into equal-sized non-anatomical areas.

3.5 Conclusion

In this work, we present a toolchain that process structural and diffusional MRI data
and calculate graph theory measures for quantifying the structural connectivity based
on equal area parcellation to dene brain ROIs. Our tool is fully automated and does
not need separate intervention at its different processing stages. Being based on equal

parcellation, the construction of structural connectomes can be customized based on
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user need making it available for structural connection analysis for neonates as well
as brain injury cases. The entire toolchain has been validated with HCP data which
showed correct working and its ease of use. Then, we also perform fixel based analysis
and extracted geometrical features such as FD, FC and FDC of the white matter tracts
connecting non-anatomical equal-sized areas of the brain. The main goal of the thesis is
to define the phase-frequency characteristics of the structural connectivity of the brain so
that a correlation between functional and structural connectivity can be established. A
circuit based computational approach has been taken to model the structural connection
between two ROIs. Here in this chapter, we have extracted the value of the parameters
from MRI data that will be used to model the structural connections between two brain

ROIs.



Chapter 4

Circuit Model for analysing
Signal Propagation Dynamics in

Single Myelinated Axon

4.1 Introduction

Functional brain connectivity is fundamentally computed from frequency-dependent
phase relationships between two activated brain ROIs (Whitfield-Gabrieli and Nieto-
Castanon, 2012), connected via structural connectivity. Analysing signal propagation
dynamics of an equivalent circuit model of a bunch of axons in the frequency domain is
paramount in understanding the implicit correlation between the structural and func-
tional brain connectivity. The main objective of the thesis is to develop a computational
circuit model that simulates the signal propagation characteristics of a bunch of ax-
ons and analyses its signal propagation disruptions behaviours both in temporal and
frequency domains, which can provide an insight into possible functional connectivity
disruptions in the presence of structural connections between two brain areas. Previ-
ously in Chapter 3, we have processed and extracted parameters of white matter tracts
from diffusion-MRI data. Our objective here is to design an equivalent circuit of a single
myelinated axon, which will be a building block for an equivalent circuit of a bunch of

axons.

In this chapter, we have designed a computational circuit model of a single myelinated
axon. We have used the circuit simulation tool Personal Simulation Program with Inte-
grated Circuit Emphasis (PSpice) for our circuit design and modelling. The advantages
of using the PSpice tool are: it provides an in-depth analysis of circuits and circuit
designs with advanced simulation functions, processes Netlist circuit design, and oper-

ates from MATLAB/Simulink. First, we have simulated the signal propagation through
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a single axon in the time domain by perturbing the model with an independent cur-
rent source. Then we have calculated signal propagation matrices such as Conduction
Velocity (CV), Maximum Myelin Length (ML) and compared them with published ex-
perimental data to validate our computational model. Finally, we have determined the
frequency response of the cable circuit and generated a system definition for signal prop-
agation through a single myelinated axon. Previously, many works were done on signal
propagation through axon where exploration of signal propagation was done mainly in
time scale (Fitzhugh, 1962; Goldman and Albus, 1968; Brill et al., 1977; Moore et al.,
1978; Carpio and Peral, 2011; Seidl, 2014; Cohen et al., 2020). Here we have taken a
novel approach to model the frequency and phase characteristics of axons through circuit

theory modelling.

4.2 Impulse initiation and saltatory conduction modelling

in a myelinated nerve fibre

A myelinated axon is made up of Nodes of Ranvier’s (NR) and myelinated Internode
(IN). The Action Potential (AP) generated at soma passively spreads out through the
myelinated segment to the next NR to depolarize it to the threshold and trigger AP at
the next NR. In this section, we designed an electric circuit model of a single myelinated
axon using PSpice to simulate the activity of excitable membrane for NR and saltatory
signal conduction (see Chapter 2, Section 2.5) for IN. Fitzhugh (1962) has provided
a mathematical model for the electrical properties of a myelinated axon fibre. The
model is consisted of the Hodgkin-Huxley ordinary differential equations (Chapter 2
Equation: 2.28) (Hodgkin and Huxley, 1952) to represent the membrane at the nodes
of Ranvier, and a partial differential cable equation (Chapter 2 Equation: 2.38) to
represent the internodes surrounded by myelin sheath. That mathematical model has
been implemented in this circuit model. The details of parameters values for nodes and
internodes of the circuit have been taken from literature (Hodgkin and Huxley, 1952;
Tasaki and Frank, 1955; Binczak et al., 2001; Tsubo and Kurokawa, 2018; Ford et al.,
2015) and presented in tabular forms later in the chapter. In the designing process,
first, the models for NR and IN areas of axon were designed as nodes and internodes
and then these two were connected for designing the whole model of a single myelinated
axon. The resultant circuit model was perturbed by independent current sources, and
the responses calculated by PSpice were compared with published experimental data
Huxley and Stampeli (1949); Tasaki and Fujita (1948); Binczak et al. (2001); Tsubo and
Kurokawa (2018); Ford et al. (2015) for validation of the developed model.
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4.2.1 Circuit modelling of Nodes of Ranvier as Hodgkin Huxley cell

As mentioned above, the circuit model for NR was designed based on the current equa-
tions given by Hodgkin and Huxley (1952). We adapted the SPICE-based neuron model
from the works of Masanotti et al. (2006); Szlavik et al. (2006). The total membrane
current during an action potential is given by the sum of a capacitive current and three
ionic currents, carried by sodium, potassium, and other ions (Hodgkin and Huxley,
1952). A detail description of current and voltage dynamics of Hodgkin-Huxley circuit
was given in literature review (Chapter 2 Section 2.4.4). The same dynamics have been
formulated in the netlist code of PSpice to model the circuit. The Figure 4.1 shows a

schematic representation of the netlist code of the Hodgkin Huxley model. As shown in
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FIGURE 4.1: Hodgkin Huxley Cell and neuron gating circuit Szlavik et al. (2006)

the Figure 4.1 the Nernst potential (the potential at which there is no net flow of that
particular ion from one side to another) of Sodium(Na) and Potassium(K) ion channels
are scripted by En, and Ex variables. The capacitance of the membrane is scripted
by Cps. The FNA and FK are two current-controlled control sources used to model the
propagation of Na and K currents Iy, and Ix respectively. The magnitudes of Na and
K currents are determined by the dynamics of gating variables represented in a gating
circuit model as shown in Figure 4.2. A voltage-controlled voltage source ENAK with
a unitary gain is modelled to detect potential change across the inner ( node 31) and
the outer surface (node 30) of the cell and generate an equivalent potential across the
gating circuit. The current is generated in the gating circuit and passed to the Na and K
channel by VINA and VK, the zero potential generators. Ionic currents from the current-
controlled current source FNA and FK generates the membrane potential across inner
and outer membranes. The activity of the m, h and n gates are modelled in the neuron
gating circuit as shown in Figure 4.2. The rate constants «,, and (3,, (description of rate

constants are given in Chapter 2 Section 2.4.4) associated with gate n are defined by
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FIGURE 4.2: Circuit Design for gating variables Szlavik et al. (2006)

the voltage-controlled voltage sources EAN and EBN. These controlled voltage sources
generate an output based on the membrane potential control voltage. The rate con-
stant equations used in our PSpice model, are shown in Equation 4.1 and Equation 4.2
where V,,, in these equations is the membrane potential in millivolts. Both of these
equations contain terms associated with the membrane potential which is implemented
in the voltage-controlled voltage source.

—0.01(V;, + 50)

An = e[=0.1(Vin+50)] _ 1 (4.1)
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B, = 0.125¢70-0125(Vn+60)] (4.2)

The rate constants associated with the m and h gates are shown in Equation 4.3 to

Equation 4.6.

—0.1(Vin + 35)
Om = oA (V439 _ 1 (4.3)
ap, = 0.07el70-05(Vm +60)] (45)
1
(4.6)

b= 1 e[0T (V+30]

The voltage-controlled current sources GAN and GBN along with the capacitor, im-
plement the rate equation associated with the n gate as shown in Equation 4.7. The
capacitor provides the differential operation associated with the potential, which is the
gating variable. The other terms in the equation are formed using the polynomial feature
available in SPICE.

Cfi—? =T.an(l—n)—T.Byn (4.7)
Temperature dependence of the HH- model is included using the scaling constant T.
The rate equations associated with the other two gating variables m and h are shown in

Equation 4.8 and Equation 4.9, respectively

dm
dh
o = Tan(L = h) = T.fyh (4.9)

The gating variable n is used as the control voltage for the voltage-controlled voltage
source EN4. This controlled source is used to generate a potential that is equivalent
to the fourth power of the gating variable. The voltage-controlled current source GK
takes, as control inputs, n* , as well as the difference between the transmembrane poten-
tial V},, and the Nernst equilibrium potential for potassium Ex . A voltage-controlled
voltage source EMK is used to generate a potential equivalent to (V,, — Ex). The
voltage-controlled current source GK is used to generate a current equivalent to the to-
tal potassium ionic current using the SPICE polynomial feature. A current is generated
by this controlled source that is equivalent to Gyn*(V,, — Ef), where G, computed
for the cell surface area as per Table 4.1, is the maximum potassium conductance. The
m gate increases conduction, and the h gate decreases conduction with the increase in
membrane activation. Thus the circuit model of NR was destined as a node of the circuit
considering the parameter values as given in Table 4.1. The quantities in the circuit that
needed defining were the initial conditions to the gating variables, the concentration of
potassium inside and outside the cell, the temperature, the cell capacitance, as well as

the conductance of the potassium and sodium channels. All of these parameters have
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Parameter Value
mg 0.0393
ho 0.6798
ng 0.2803
Na 491.0 mM/L
Na 50.0 mM/L
'k 20.11 mM/L
ck 400.0 mM/L
Gi\/’a 120.0 mS
Gk 36.0 mS
Cg 1.0 pF

Table 4.1: Parameters for node of Ranvier

been previously published (Hodgkin and Huxley (1952); Stephanova and Bostock (1996);
Szlavik et al. (2006); Weiss (1994)) and are presented in Table 4.1. The expressions for
the o and (3 are appropriate of temperature of 6.3°C' as per Hodgkin and Huxley (1952).
But, in our model, we scaled them with temperature scaling factor T to adapt to any
other temperatures as well. For validating our model results with published data, we
kept the temperature factor, T, of 0.26F — 3 at 18.5°C' (Bunow et al., 1985). The
Figure 4.3.(a) shows the schematic view of the circuit model of a node designed using

resistors, capacitors and conductors.
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FIGURE 4.3: (a)The schematic diagram of NR, (b) The schematic diagram of IN of
Pure resistive circuit, (¢) The schematic diagram of IN of resistive-capacitive circuit
used for modelling intracellular fluid

4.2.2 Circuit modelling of myelin sheath as a passive cable model

The myelinated node or the internode has been designed as a resistance-capacitance
(RC) circuit to represent the membrane potential of the core conductor model (see
Chapter 2.4.5) of distributed leaky cable Fitzhugh (1962). A dc voltage source V,, is

used in the circuit to create the resting membrane potential. The voltage source V,, is
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put in series with the resistance R, of the myelin sheath. The resistor R,, and voltage
source V,, in series models the conductance of ions across the myelin. The myelin sheath
has the ability to store the charge represented by a capacitor. The battery and resistor
series network is put in parallel with the capacitor C,, to model the properties of the
myelin sheaths permeability. There are two different types of modelling approaches
available in the literature for modelling axonal fluid in an axon: (1) pure resistive, (2)
resistive-capacitive Tsubo and Kurokawa (2018). Here, we are incorporating both of
these approaches in our model design. The Figure 4.3.(b) shows the circuit model of
an internode of pure resistive circuits and Figure 4.3.(c) shows the circuit model of
an internode of a resistive-capacitive circuit. The parameter values for the RC circuit
has been used from FMN, PNS (Aa — 20um, Ao — 13um, A — 12um, AB — 6um,
Ad§ —5um,Ad — 1pm) and CNS (SBC, GBCMed, GBCLAt) axons as shown in Table 4.2.
The SBC, GBCMed, GBCLat axons have different internode axon diameters than the
diameter of the node. The internode axon diameters of SBC, GBCMed, GBCLat axons
are 1.35um, 2.41pum and 3.06um respectively. These internode axon diameters are used
for their parameters value calculation in Table 4.2. The values of PNS axons are obtained
from Tsubo and Kurokawa (2018) and parameter values of CNS axons are obtained from
Ford et al. (2015) and parameter values of FMN are sourced from Hodgkin and Huxley
(1952).

4.2.3 Circuit arrangements of nodes and internodes

The circuit designs of NR and IN were saved as sub-circuit library files. PSpice supports
the creation of subcircuit library files. Each subcircuit design has input and output
ports specified, through which it can interact with the overall circuit design. The design
of a subcircuit is useful when a specific circuit design is being used many times in the
overall circuit design. Another added advantage of the subcircuit file is, it quickly allows
any modification of the parameters of the model. The subcircuit library files allow for
the modelling of any size neuron with ease. An axon length can be modified by adding
more nodes connected by internode segments. For example, we wanted to model an IN
of length 2mm. So two IN subcircuits were connected to the model the 2mm internode
segment. The whole circuit of a single myelinated axon was designed by interconnecting
the subcircuit for node and internodes through their input and output ports as shown in
Figure 4.4. The output ports of the subcircuit of the node were connected to input ports
of the subcircuit of 2mm IN and then output ports 2mm IN were connected to input ports
of the subcircuit node. The NR and IN both have input and output ports in the inner
conductor and outer conductor. The inner conductor models the inside of the axon and
the outer conductor models the extracellular fluid. The outer conductor resistances as
shown in Figure 4.3 were set to 1 to model it as connecting wires with very low resistance
compared to axoplasm resistance (12 much less than 14M {2 mm axoplasm resistance
Fitzhugh (1962)). The inner conductor resistances were set as 7MS), half of 14M<Q
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Table 4.2: Parameters for internode for different types of axons (The parameter values
of PNS axons are obtained from Tsubo and Kurokawa (2018) and dimensions of CNS
axons are obtained from Ford et al. (2015) and parameter values of FMN are sourced
from Hodgkin and Huxley (1952). These data were obtained by applying the conversion
formulas to axons of various diameters as it is mentioned in Tsubo and Kurokawa (2018))

mm longitudinal axoplasm resistance. The inner conductor resistance is set to half the
required resistance because when two resistors are connected in series the resistances

are additive. The terminal resistance of the circuit was set to a high resistance value,
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102°MQ to model the boundary condition. Here, we described the circuit arrangement
with the values of FMN. Similarly, we developed the model for all other axon types we
have used in our experiment. The Figure 4.4 shows a schematic of the connections of

subcircuits.

Nodes of Ranvier Extracellular

P,

Internodal Segments
Membrane

Jojowelp uox

Ri Ri Ri1 Ri2 Ri1 Ri2 Ri Ri
— W W\ W— N — WA A

Gla < GK Rm = b T GK cm
;;— = vm — ym — E =
ENa. | Ex T T T ENa - | Ex T
Ro RO Ro1 Ro2 Ro1 Ro2 Ro Ro
—WA AN ——— A — A ——— AN
Node (NR) Internode (IN) Node (NR)

FIGURE 4.4: The schematic diagram of connections between NR and IN

4.2.4 Circuit simulation

To stimulate the circuit, a current pulse of 6nA was applied to the inner conductor. The
applied current was sufficient to increase the membrane potential above the threshold

and generate an action potential to propagate down the axon fibre.
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4.2.5 Result and validation of the model with respect to published
experimental data

Here are the lists of results that we have observed by perturbing the circuit with input

stimulus current:

e Generation of action potential: The circuit required a minimum 6nA stimulus
current to generate an action potential. Input current less than 6nAmp was not
sufficient to generate the action potential. The Figure 4.5 shows the generated
action potential in the node with respect to the given stimulus current. The x-axis
is showing time and the y-axis is showing the membrane voltage. As shown in the
Figure 4.5 the resting potential of the membrane is -65mV, the peak voltage in

depolarization is 53mV and the membrane voltage in repolarization is -70mV.

e Activation of m, h and n gates: The Figure 4.6 shows the activation of m, h
and n gating variables during action potential generation. The green line shows
the m-gating variable, the red line shows the h-gate activation variable, and the

blue line shows the activation of the n-gate.

e Dynamics of Na, K and capacitive currents: The Figure 4.7 shows the
Na,K,and capacitive currents across the membrane. These curves are showing
different dynamics of HH cell that match with the experimental output of Hodgkin
and Huxley (1952).

e Temporal distribution of action potential:Figure 4.8 shows the temporal
propagation of action potential through 5 nodes. The green curve is generated
from 1st node V(xsub2.26); red is from 2nd node V(xsub4.26); purple is from 3rd
node V(xsub6.26); yellow is from 4th node V(xsub8.26) and pink is from 5th node
V(xsub10.26). The figure shows how the spikes are propagating in time scale.

e Conduction velocity: CV is an important aspect of nerve conduction studies.
It is the speed at which an impulse propagates down an axonal pathway. We
computed the CV of impulse propagation from one node to another for FMN,
PNS (Aa — 20um, Aa — 13um, AB — 12um, AB — 6um, Ad — bum,Ad — Lum)
and CNS (SBC, GBCMed, GBCLAt) axons. The description of these of axons
are given in Table 2.3 in Chapter 2. The longitudinal propagation velocity CV is
calculated from the measured propagation time PT and internodal myelin length

L, using the following equation:

L(mm)

eV = PT(ms)

(4.10)
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FIGURE 4.5: Action potetial generated at nodes of Ranvier; V(xsubl.26): Membrane
potential; I(I1): Input current

Table 4.3 displays the conduction velocity of different axon types computed in
both resistive and resistive-capacitive models along with published values avail-
able in the literature. We found that the computed value of CV of FMN axons ob-
tained from resistive model matches with the value published in literature Binczak
et al. (2001) and within range in experimental measurement by Tasaki and Fu-
jita (1948). The computed value of CV of PNS and CNS axons obtained from
resistive-capacitive model matches with the value published in literature Tsubo
and Kurokawa (2018); Ford et al. (2015). We also plot the CV values of different
axon types in a bar chart form in Figure 4.11. From the bar chart, we also observed
that CV decreases with a decrease in axon diameter. As the results obtained from
the resistive-capacitive model is giving more accurate values with published data
for PNS and CNS axons and results obtained from the resistive model result is
matching with FMN axon, we selected the resistive-capacitive model for PNS-CNS
axons and resistive model for FMN axons for basic models for our experiments and

explorations.

Mazimum myelin length: Our simulation result shows that after 12 IN seg-

ments, the signal was failed to propagate to the next node. That means 11mm
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CV (m/s) CV (m/s) CV(m/s)
Axon IN length (Published (Resistive (Resistive-Capacitive
Types (mm) data) model) model)
FMN 2 28 28.62 -
Aa —20um 2 120 112.04 119.35
Aa — 13um 1.3 80 31.96 80.41
AB —12um 1.2 75 27.25 72.62
AB — 6um 0.6 33 12.92 33.05
Ad — bum 0.5 30 8.53 29.52
Ad — 1um 0.1 3 0.69 3.14
SBC — 1.35um 0.164 4.4 0.97 4.46
GBMed — 2.41um 0.239 8.5 2.42 7.11
GBC Lat — 3.06um 0.198 11.3 4.11 11.22

Table 4.3: Conduction velocity for different axon diameters

of 12 internode segments is Maximum Myelin Length (MML) beyond which the
signal fails to bring the adjacent node above its threshold voltage and causes fail-
ure of signal propagation to the next NR. This happens because as myelin length

increases current flowing through axonal fluid gets decreased, and next NR does
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not get enough current to bring its membrane voltage potential above threshold
voltage to generate an impulse. Figure 4.9 shows the membrane potentials at
two adjacent nodes where signal propagation fails to occur. Figure 4.10 shows
dynamic of membrane potentials through internode when signal is successfully
propagated to next node Figure 4.10.(a); when signal fails to spread to next node
Figure 4.10.(b). The length of 12 internode segments is 12mm here. This dynamic
of signal propagation failure correlates with the description given in Binczak et al.
(2001). Similar to FMN, we determine the maximum myelin length of signal prop-
agation for other 6 different types of PNS and 3 different types of CNS axons and

show in Figure 4.2.5.

Conduction velocity and myelin length: Here we explored conduction velocity
values for different myelin lengths of an axon up to MML. In Figure 4.13 we placed
the conduction velocity values calculated from the resistive-capacitive circuit model
at various myelin lengths for all axon types. We can see that initially up to a
certain length of myelin, CV decreases with the increase of myelin length. Then it
gets increased and then again starts decreasing. For example for PNS-Aa-20um

diameter axon, the values of CV decrease with increased myelin length up to 15mm.
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FIGURE 4.9: Action potential failed to reach threshold to the next node

After that for 16mm of myelin length CV value gets increased and then again it

starts decreasing. This happens due to the loss of an impulse; which couldn’t fire
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FI1GURE 4.10: Dynamic of membrane voltage at various internode length when action
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an AP but resulted in some Na™ ion channel activation at the NR node. For
example; when myelin length is 16mm, some of the impulses from the AP pulse
train couldn’t get generated due to the low strength of the ionic current flowing
through longer myelin length distance; but that stimulus current cause some Na™
ions concentration inside the cell by opening their channel in NR. As a result,
the membrane potential at NR reaches the threshold voltage quickly during the
generation of the next AP. That in effect increased the CV of the axon. So, it shows
that the Na™ ions play an active part in CV and causes a non-linear behaviour
in CV. As we can see from Figure 4.13, at 16mm for Aa — 20pum axon, 9mm for
Aa — 13um axon, 6mm for Aa — 12um axon, 0.4mm for Ao — 1pum axon, 0.7mm
for SBC axon, 2mm for GBCLat axon and 10mm for FMN axon, the increase of
CV happens, but after that again CV starts decreasing. So, we can conclude that
generally, CV decreases with the increase of myelin length if Na™ concentration is

constant, else it exhibits a non-linear behaviour.

4.3 Frequency response analysis of single myelinated axon

Literature shows, it is still an open question why two brain ROIs, which are structurally
connected, are not sometimes functionally connected. In our work, we are trying to find

an answer to this question by analyzing the signal propagation in the axon bundle in the
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frequency domain. Our hypothesis is that analyzing signal propagation in the frequency
domain may exhibit filter like characteristics of passing selective signals through the
system. So, we are trying to devise a model that can explain this phenomenon from
the perspective of phase and the frequency characteristic of signal transmission. In the
previous section, we have built a circuit model of the single axon and analyze its signal
propagation dynamics in the time domain, and validate our model with published data.
Here, our objective is to characterize that model with a system definition and analyze

signal propagation characteristics through the axon in the frequency domain.

4.3.1 Modelling internode in simscape in MATLAB

Myelin is the fatty substance that surrounds axons to insulate them and increase the rate
at which electrical impulses (called AP) are passed along the axon. Nodes of Ranvier
are uninsulated parts of the axon that are highly enriched in ion channels, allowing
them to participate in the exchange of ions required to regenerate the AP. In saltatory
conduction along the myelinated axon, AP seems to ”jump” from one node to the next
along the axon, resulting in faster conduction of signal. That implies the responsible
part of passing impulses through the axon is the myelin, as the job of the nodes is to
regenerate the attenuated impulse passed by myelin. So, our focus here is on the myelin

part of the axon to analyze the signal transmission properties in the frequency domain.
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FIGURE 4.12: Maximum myelin length: The length of myelin internode till which the

impulse signal propagate from one node to another node without failing, If the length of

myelin is bigger then this then the impulse signal will not propagate to the next node;

The value of maximum myelin length for different types of axons in both resistive and
resistive-capacitive models

Simscape helps to create a model of a physical system within the Simulink environment.
With Simscape, physical components models are built based on physical connections
that directly integrate with block diagrams other modelling paradigms. The advantage of
modelling in Simscape is, it provides more complex components and analysis capabilities.
In this section, we have modelled the IN section of the axon using Simscape modelling.
During circuit modelling, in the previous section, we have modelled the myelinated IN
as a resistive capacitive (RC) circuit to represent it as a passive cable as described by
Fitzhugh (1962) in his work. We have followed the same modelling here to design the
Simscape circuit. Simscape has a repository of device elements. We have taken the
resistor, capacitor and dc voltage from the repository and connected them as shown
in Figure 4.14.(b) to model one segment of the internode. The dc voltage is used in
the circuit to create the resting membrane potential. The dc voltage source is put in
series with the myelin sheaths resistance. A resistor and dc voltage in series models
the conductance of ions across the myelin. The myelin sheath has the ability to store
charge represented by a capacitor. The battery and resistor series network is put in
parallel with the capacitor to model the properties of the myelin sheaths permeability.
The parameter values of the resistor, capacitor, battery and other parameters were
obtained from Fitzhugh (1962); Tasaki and Frank (1955); Tsubo and Kurokawa (2018)
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F1GURE 4.13: Conduction velocity at various internodal lengths

and provided in the Table 4.2. To model the 2mm of internode length these segments
are connected with each other to form a chain-like structure as shown in Figure 4.14.(a).

The circuit was simulated with impulse function and the response was used to determine

the frequency characteristics of the system.

4.3.2 Model simulation and impulse response generation

The frequency response of a system can be measured by measuring its impulse response.

Since the impulse function contains all frequencies, the impulse response defines the
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response of a system for all frequencies. To generate the impulse response for the intern-
ode, a derivative of a unit step function has been used, as shown in Figure 4.14. The
initial and final values of the step function were as 0 and 1. The step time was set as
0.001 and the same as the sample time of the simulation. The input and output both
were captured from the Simulink environment used later in the workspace to estimate

the transfer function from them.

4.3.3 Estimation of the transfer function

A Transfer Function fully describes a control system by defining its ’Order’, "Type’ and
"Frequency response’. If the impulse response of a system is given by h(t), then the
transfer function of a system is given by H(s), where H(s) is the Laplace Transform of
h(t). We simulated the system with impulse input and took the input and output of
impulse function to MATLAB and estimated the transfer function by providing value for
its Poles and Zeros. Poles and Zeros of a transfer function are the important frequencies
for which the value of the denominator and numerator of transfer function becomes
zero respectively. They are the roots of the characteristic equation of the system. By
varying the values of the poles and the zeros, we checked the accuracy and stability of
the transfer function. We checked the ’FitPercent’ value to estimate the accuracy of
our system model. The 'FitPercent’ value is calculated by the normalised root mean
squared error (NRMSE) as shown below:
|z — &

fit =1 — 1% 100%

l — x|
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Coefficients FMN PNS Axon SBC Axon GBCLat Axon

C1 -897.4 1.927e13 -2.241el4 -6.668e12
C2 - 4.916e06 3.101el6 - 3.576el7 - 1.113e16
C3 5836 8.835el7 - 3.065¢18 - 9.203el7
C4 6.113e06 1.239e10 1.463el1 4.189¢09
C5 - 3.97el3 4.644e14 1.379e13
C6 - 3.236e16 3.706el7 1.191el16
c7 - 9.029e17 3.156e18 9.293el7

Table 4.4: Coefficients of transfer function

where Z indicates the simulated output, Z is the mean of the output and x is the measured
output. To model the transfer function which can describe the myelin segment most
accurately we calculated the prediction ability, the ’FitPercent’ value of the transfer
function of the system for poles value 1 to 10. The Figure 4.15(a) shows the "FitPercent’
value for FMN, PNS, SBC and GBCLat axons for their unit myelin lengths. The good
prediction ability of a system is indicated by greater than 90% fit of the prediction
results. So, we build an algorithm to select the smallest value for poles (other than
pole 1) for which "FitPercent’ is more than 90% fit and for each poles we checked the
system for zeros value 1 to pole minus one. We selected the value for zeros based on the
best consistent results of frequency response for all myelin lengths. The higher value of
poles gives a more accurate estimation of the system but increases the complexity of the
system, so we tried to pick the lowest number of poles while the percentage of fit is more
than 90. With that logic, we found out that the value of the poles for the system function
for the FMN axon as 2, poles value for the PNS axon and the SBC axons as 4 and poles
value for GBCLat axon as 5; are the lowest values which are giving ’FitPercent’ value
more than 90%, other than poles 1. But, when we observed the frequency response curve
of all the axons for all myelin lengths we found out that for FMN axons poles value 2,
zeros value 1 and for PNS, SBC and GBCLat axons poles value 4 and zeros value 2 are
giving the most consistent frequency response characteristics as shown in Figure 4.16.
Thus, for the internode segment of all the axons we generated the transfer functions of

the form as shown below:

For FMN axons:
Clxs+C2

H(S)252+C3*5+C’4

For PNS, SBC and GBCLat axons:

Clsxs2+C2xs+C3

His) —
(5) st4+Caxs34+Chxs2+C6xs+CT

The values coefficients of the transfer function for all axon types are given in Table 4.4.
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4.3.4 Stability analysis

To analyse the stability of the system we used the root locus plot of the transfer function
model. The root locus plots of system functions of FMN, PNS, SBC and GBCLat
axons are shown in Fig. 4.15(b), where system poles are marked by x, and zeros are
marked by o. The location of the poles is shown in s-plane confirms that the system
is asymptotically stable and the response of the system is exponentially decaying in
nature leading to a stable condition. Hence, we conclude that system design by transfer

function model is a stable system.
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FIGURE 4.15: (a) The pole-zero plot of the transfer function for all axon types; (b)The
pole-zero plot of the transfer function for all axon types
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4.3.5 Frequency response analysis

The objective of determining the transfer function for the myelin segment is to obtain
the phase-frequency characteristics of the system. In order to do so, we calculated
the transfer function of the myelinated segments of a single axon for various lengths
of the myelinated section. The frequency response of a system is characterized by the
magnitude of the system’s response, typically measured in decibels (dB) or as a decimal,
and the phase, measured in radians or degrees, versus frequency in radians/sec or Hertz

(Hz) as shown below:

m

Gain = 20 * log| “/;Ut | (4.11)

and

Phase = arctan( ‘X/;Ut) (4.12)

in
So here, we obtained gain and phase plots of the transfer functions for the different myelin
segments for different axon types by plotting the magnitude and phase measurements
on two rectangular plots as functions of frequency in radians/sec. Figure 4.16 shows the
plotting of magnitude and phase as a function of frequency for different axon types. The
shape of the curves conforms that the system exhibit the behaviour of a low pass filter,
which implies that signal of higher frequency will be attenuated and will not be passed

through the myelin segments.

4.3.6 Cut-off frequency determination

Next, we calculated the cut-off frequency of the unit myelin segments of each axon to
determine up to which frequency the neural signal will be able to propagate through the
segments. Ideally, the cut-off frequency is defined as being the frequency point where
the capacitive reactance and resistance are equal. When this occurs the output signal is
attenuated to 70.7% of the input signal value or -3dB (20 log (Vout/Vin)) of the input.
In the case of neural signal, for an action potential to be fired the membrane voltage
need to reach the threshold voltage Vpp which is the same as -30mV for HH cell, where
the resting potential Vs is -70mV and the Nernst or reversal potential Ve, is 50mV.

So the magnitude V;,q4 of an action potential is 120mV as per the below rule:

Vmag = VNern — Vrest- (413)

Then, to reach the threshold membrane voltage of -30mV the magnitude of an action
potential V,,; needs to be 40mV as per (Vour = Vi, — Viest). Using these values of Va4
and V,,; we calculated the new cut-off frequency for the myelin segments following the
Eq. 4.11 which gives us -9dB (20 log (Vout/Vmag) of the gain, which will determine
the cut-off frequency of the myelin. Using this calculation, we obtained the value of

cut-off frequency for all axon types. We found the value of cut-off frequency of FMN
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FMN axon diameter 10um, myeoin length 2mm PNS axon diameter 20um, myelin length 2mm
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FIGURE 4.16: Gain and phase plots obtained from transfer functions of all axon types
for their standard myelin length

axon for 2mm myelin segment as 600.64Hz. In Table 4.5, we put the cut-off frequency
of different types of axons calculated from our circuit models. It is observed that the
cut-off frequency values for all PNS A group axons are the same. This is because
the ratio of inner diameter to myelin length is constant for all those PNS axons. In
literature, Debanne et al. (2011) illustrated that depending on the axon type, conduction
failures are encountered following moderate (10-50 Hz) or high-frequency (200-300 Hz)
stimulation of the axon. The frequency value we obtained from our simulation results

is of that scale of frequency values mentioned by Debanne et al. (2011).

4.3.7 Cut-off frequency Vs myelin diameter and length

Here, we investigated the relationship between cut-off frequency of the identified system
function of an axon with its myelin length. We found out relation between cut-off
frequency of myelin length and axon diameter. In Figure 4.17, the blue line is showing
cut-off frequency for axon diameter lum, 5um, 6um,12um, 13um and 20um for IN
length 1mm; and the red line is showing cut-off frequency for axon diameter 3.06um,

2.41um, 1.35um and 1um for IN length 0.1mm. We kept the myelin length 1mm constant



Chapter 4 Circuit Model for analysing Signal Propagation Dynamics in Single
Myelinated Axon 87

Axon Types IN length(mm) Cut-off frequency (Hz)

FMN 2 600.64
Aa — 20pum 2 758.68
Aa — 13um 1.3 758.68
AB —12um 1.2 758.68
AB —6um 0.6 758.68

Ad — bum 0.5 758.68
Ad — 1um 0.1 758.68

SBC 0.164 752.99
GBCLat 0.198 389.20

Table 4.5: Cut-off frequencies of myelin segment for different axon types

Coeffcients FMN Aa Axon SBC Axon GBCLat Axon
455.4 -1.371e+04 558.7 84.23
a (435.4, 475.3)  (-1.584e+06, 1.557e406) (431.6, 685.7) (-1090, 1259)
-258.5 -1.449e+04 -224.9 -313.6
b (-337.3, -179.7)  (-1.585e+-06, 1.556e+06) (-334.2, -115.6) (-1474, 846.9)
0.3212 0.0006221 0.8125 0.1084
C (0.169, 0.4733) (-0.06733, 0.06858) (0.006366, 1.619) (-0.3788, 0.5956)

Table 4.6: Coefficients with (95% confidence bounds)

for larger diameter axons ,so that we can read the changes of cut-off frequency with
diameter. The 1mm IN length is greater than the maximum IN length permitted for
signal propagation in smaller diameter axons, so took 0.1mm for smaller diameter axons.
Next, we determined the cut-off frequency for different length of IN segments for different
axon types and plotted them in a graph. We observed from the results obtained from
cut-off frequency calculation that axon types where inner diameter of axon to myelin
length ratio is same their cut-off frequency is also same. So, we showed cut-off frequency
vs myelin length plot only for axon types FMN, PNS Aa20um, CNS SBC and CNS
GBCMed. Figure 4.18 shows the graphs cut-off frequency Vs. myelin length of PNS,
SBC and GBCLat axons obtained from resistive-capacitive model, and of FMN axon
obtained from resistive model. In the Figure 4.18 the blue dashed curves shows the
change in cut-off frequency with myelin length and the red curve shows the fitted curve.
We performed curve fitting on the cut-off frequency and myelin length data as shown
in Figure 4.18 and obtained an mathematical exponential equation for cut-off frequency
with myelin length:

fe=a—bxerp(—c* L) (4.14)

where f. is the cut-off frequency and L is the myelin length and values of the coefficients
as shown in Table 4.6. In the Section 4.2, we have learned that all axons have a myelin
length limit, beyond which the signal fails to bring the adjacent node above its threshold,
hence failed to propagate to the next node. That is why here we have calculated the
frequency response of the system up to the maximum myelin length allowed for each

axon. As it is observed from the graph of Figure 4.16, the myelin segment of myelinated
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axon behaves as a low pass filter and the value of its cut-off frequency is obtained from
the calculation, it implies that the system will pass selective signals if the frequency of

the signal is lower than the value of cut-off frequency.

4.4 Results and Discussion

In this work, we have designed and developed a computational circuit model of a single
myelinated axon using circuit simulation software tool PSpice and analysed its signal
propagation characteristics using computational analysis tool MATLAB. We have de-
veloped and validated our model with data of different axons such as Frog motor nerve,
peripheral axons of group A, CNS axons SBC, GBSMed and GBCLat by simulating
neuronal dynamics of AP and measuring their CV. After the validation of our model,
we analysed its frequency characteristics of signal propagation and obtained a system
function definition. Our objective here was to explore the signal propagation charac-
teristics of a single myelinated axon in the frequency domain to understand if the axon
has any characteristics of passing selective signals beyond which signal propagation will

not happen. We have generated results that can conclude the possible reasons for signal
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axons

propagation failure in a myelinated single axon. The following points we conclude from

our modelling and simulation results:

e CV determines how faster the information can transfer through the axon. Our

simulation results show that CV varies inversely with the myelin length of an
axon. It means that in elongated myelin sheath the CV will be reduced leading to
slower propagation of a signal from one node to another. We presented this result

in Figure 4.13 which is obtained from the resistive-capacitive model.

Our simulation results predict that there is an upper limit of myelin length beyond
which signal propagation failure occurs. So the myelin length of each axon should
be within this limit for the successful propagation of a signal from one node to
another. We presented this result in Figure 4.2.5. Stassart et al. (2018) mentioned

that myelin length varies according to the need of a signal transmission.

Our modelling of single axon exhibits that the myelin segments of axon exhibit
the system behaviour of low pass filter. From there the simulation results predict,
that while passing the signal from one node of Ranvier to another through myelin

segment, the segment passes only selective signal below the cut-off frequency; above
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the cut-off frequency the signal gets attenuated. We presented the cut-off frequency

values of different axon types in Table 4.5.

e We also found from our simulation results that the cut-off frequency of myelin
segment changes with the length and diameter of the myelin. The cut-off frequency
decreases with an increase of myelin length shown in Figure 4.18 and a decrease
of diameter. We derived a mathematical relation between cut-off frequency and

myelin length from the generated results and presented it in Equation 4.14.

So, the myelin segment of a single axon is modelled with a system identification function.
This system model of a single myelinated axon will be the basis of the modelling phase
and frequency characteristics of a bunch of axons. Previously, many works were done
on signal propagation through axon where exploration of signal propagation was done
mainly in time scale. Here we have taken a novel approach to model the frequency and
phase characteristics of a single axon. Next, our objective is to model signal disruption
properties of a bunch of axons; which can help us to understand the absence of functional

connectivity in structural connections.

4.5 Conclusions

In this paper, we explored the signal propagation disruption phenomenon in a myeli-
nated axon using a cable theory PSPICE model. Our exploration shows that signal
propagation disruption occurs at a higher myelin length and, the myelinated section of
a single axon acts as a low pass filter where the cut-off frequency is dependent on myelin
length. This implies that depending on the myelin geometry a rate coded nerve signal
propagation through structural connection could be disrupted resulting in functional
disconnection between two brain areas. In the next chapter, our aim is to explore this
phenomenon in an ephaptically coupled bundle of axons to understand the relationship

between structural and functional brain connectivity.



Chapter 5

Circuit Model for explaining
Ephaphtic Coupling effect in Two
Myelinated Axons

5.1 Introduction

Non-synaptic interaction occurs due to one axon’s electrodynamical effects on another
within a bundle of parallel myelinated nerve fibres is known as ephaptic coupling. The
word ephaptic originated from the Greek word ”ephaps” meaning ”to touch” (Arvani-
taki, 1942). Ephaptic coupling plays a functional role in neural processing and signal
propagation through a bundle of the axon by controlling features such as synchroniza-
tion of impulses, Conduction Velocity (CV) and excitation/inhibition in axon bundle
(Binczak et al., 2001; Anastassiou et al., 2011; Shneider and Pekker, 2015; Goldwyn
and Rinzel, 2016; Capllonch-Juan and Sepulveda, 2017; Das et al., 2016). Modelling
ephaptic interaction between impulses on myelinated nerve fibres is a significant part of
future signal propagation modelling using a number of axons for finding frequency re-
sponse. This chapter designs a circuit model of two myelinated parallel axons in PSPice
to model the ephaptic interactions between parallel fibres impulses to be utilized in the
next chapter when we model with multiple axons bundle. In the chapter, we first de-
scribed the theory of ephaptic coupling in terms of the fundamentals of circuit theory.
Then, we modelled ephaptic coupling between two parallel myelinated axons when they
are aligned, and our simulation results conform to all the effects of ephaptic coupling.
Finally, we modelled ephaptic coupling between myelinated axons when they are stag-
gered and showed the simulation results. In the next chapter, we will design a circuit
model of axon bundle by extending the model build in this chapter and analyze phase

and frequency characteristics of signal propagation through axon bundle.

91
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5.2 Theory of ephaptic coupling in terms of circuit theory

Ephaptic coupling is the mechanism by which one axon can influence AP generation in
another axon in the bundle of parallel axons arrange in order. AP is generated in NR
when membrane potential V;;,, reaches the threshold voltage Vrpy. So eventually a time-
dependent voltage gets generated due to axonal current. Now myelin sheath being an
insulator the ephaptic coupling can only occur only at NRs between two parallel axons
because that is where there is no myelin cover and membrane are in parallel suspended
in extracellular fluid, which for the time being we assume NaCl solution. Such a scenario
could be modelled in terms of capacitive resistive circuit elements as shown in Figure 5.1.

Now we find out how to calculate C'(L) and R(L) and which one of them dominates from

If Vx11 — V12>V
Vi1 Then V(t)=Var(t)
qauy == 3RO
V12
IV"‘M If Vx21— V12>V
Then V(t)=Vae(t)

W11
i —V1zsVw

Then V(t)=Var(t)

V12
R(L)= O(10s of KQ)

I\m I i(t)= Var(t)/R(L)

(b)

FIGURE 5.1: (a) Circuit model for ephaptic coupling between two parallel axons as
both resistive and capacitive path; (b) Circuit model for ephaptic coupling between
two parallel axons as resistive path as derived from calculation

coupling standpoint. Between the two expose NR it is the cylinder of NaCl which acts
as the medium of coupling. Then
€A
C(L)=— 5.1

(=" (51)

where €nqc; = 45 for saturated NaCl at 20°C. Therefore, € = enac1Xeo = 45%8.85%1012
2

ie., O(10719%). Now area A = ﬂ%; i.e., C(L) is of O(10'2) considering Nodes of
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Ranvier’s (NR’s) length Lyg of the 1 — 2um; and L is of O(10°). So O(C(L)) =
0(10719%10712/107%) = O(10'°); order of Impedance of C(L) O(Z¢r) = WC(L); f=
Frequency. Therefore O(Zcr) = O(10)Q. Of course this depends upon frequency, as
the frequency increases this will come lower. But AP is of the Hz order and therefore
O(Zcy) will remain at O(10*¢)Q2. Here we consider a parallel-plate capacitor since the
dielectric medium between the two faces is not bounded by a cylindrical surface but

actually extended throughout the extracellular fluid medium. Now,

L

R(L) = 'OZ

(5.2)
where p = 50 — em = 5 % 10Q — m for saturated NaCl; i.e. O(10%), O(A) = O(10712)
and O(L) = O(1076). So, O(R(L) = O(1072 % 107%)/107'2 = O(10*)Q ; i.e., 10s of
K. Therefore the resistance offered by the capacitive path is at least 12 orders higher
than the resistive path; so if there is a coupling, it has to be resistive coupling. Now,
if i(t) = Via/R(L) is enough to evoke an AP then the axon 2 will fire. As L increases
R(L) also increases; therefore polarisation current i(¢) decreases meaning that for distant
axons there will not be any ephaphtic coupling. The situation can be seen better with
the Hodgkin-Huxley (HH) cell representation of the Axon 2 dependent voltage source.
i(t,L) = Vap(t)/R(L) = O(= 1073/10*) = O(10~") amp (considering L is of m order).
Typically an HH requires O(nA) current to be activated and therefore this current should
be sufficient to trigger AP in the 2nd axon. To carry out this experiment, we first build
the circuit model of two parallel myelinated axon arrange in a bundle using the PSpice

tool.

5.3 Circuit modelling of ephaptic coupling between two

parallel myelinated axons

So far, in-vivo, in-vitro, numerical simulation studies were performed on ephaptic cou-
pling (Binczak et al., 2001; Anastassiou et al., 2011; Shneider and Pekker, 2015; Goldwyn
and Rinzel, 2016; Das et al., 2016; Capllonch-Juan and Sepulveda, 2017). In this work,
we studied ephaptic coupling between parallel axons using the circuit theory approach
and developed an electric circuit model using the circuit simulation tool PSpice. We cre-
ated the circuit model of two parallel myelinated axons aligned in a bundle coupled with
extracellular resistance. We studied this model to explore the effects of ephaptic cou-
pling in signal propagation through a bundle of axons. The model of a single myelinated
axon developed in Chapter 4, has been extended to model the two myelinated axons.
We showed in Section 5.2 that the coupling between two NRs has to be resistive. As
shown in Figure 5.1.(b), we connected the output port of two single axon model circuits
in the outer conductor using a resistive path. We adapted the design concept from Barr

and Plonsey (1992) but with modifications. The longitudinal extracellular resistance
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R,y value is calculated using cross-sectional area AFE of two axon bundle and IN length
Ly and extracellular resistivity value R, as 330Q2cm (Goldwyn and Rinzel (2016)) using
(Rer, = Re * L/AE). Thus based on the length of the axon the Ry, resistance is added

up in series to model the extracellular resistance. We calculated one extracellular resis-

- Ri Node (NR) Ri ri1 Internode (IN) ri2 r  Node (NR) Ri
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F1cURrE 5.2: Circuit Modelling of two parallel axon aligned to each other connected
by extracellular resistance

tance and connect the output port of NR of each axon to it. The transverse extracellular
resistance Rr value between two NR is calculated by the formula of calculating R(L).
The resultant circuit model of two myelinated axons lying in parallel to each other in
the extracellular fluid is shown in Figure 5.2. To simulate the circuit the rectangular
input stimulus current pulses of 0.6nA (the same current that was applied to the single
axon model) was applied intra-cellularly to the axon circuit. Voltage recordings were
made from the NR cells 1, 3 of each axon in order to measure AP propagation through
the coupled axon bundle. In our experiment, first, the stimulus current was applied at
the first axon to see the coupling effect in the second. Then input currents were applied

to the input of both the axons and results were recorded.
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(b) No excitation of passive axon by ephatic coupling. Axon 1 is active and firing; Axon 2 is passive but didn’t

get induced by Axon 2; The lines are representing the membrane voltages at five consecutive nodes

FiGURE 5.3: Effects of coupling on passive axon
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Axon dNR din  Lyin Rumin
Types (um) (um) (um) (2

Aa 20 28 8  84E+6
Aa 13 182 52  13E+6
AB 12 168 4.8  14E+6
AB 6 84 24  28E+6
Ab 5 7 2 33.6E+6
A5 1 14 04 168E+6

Table 5.1: Minimum value of transverse extracellular resistance R, for maximum
coupling effect for all Group A PNS axons where dygr diameter of node, d;y diameter
of internode, Ljs;, minimum distance between two nodes of two parallel axons

5.3.1 Excitation of passive axon and range of inter-axon distance

We have seen from our calculation that in a perfectly aligned two myelinated axons, in
HH cell representation of the Axon 2 dependent voltage source and distance between
two NRs is of the order of micrometre, the current generated by AP of O(10~7) should
be sufficient to excite AP in the 2nd axon. Figure 5.3(a), shows AP generated at
axon 2 induced by the AP generated at axon 1 while satisfying mentioned conditions.
Next, we found out for what range of R(L) such AP could be induced in the 2nd axon.
We considered that the minimum range of current needed to initiate AP is O(nA).
Therefore, R(L) must be at least of O(10%)Q. Then, L = A*}Z(L) = 0(10(;(1123i2)(106) =
O(10~*)m = O(100um). So ephaphtically induced AP may happen until the interaxonal

distance with perfect alignment is of the order of 100 pm. Beyond this, there will not
be sufficient excitation current to induce AP in the 2nd axon. Figure 5.3(b) shows that
at L = 104pm the AP has not generated at axon 2. The variation of transversal and
longitudinal resistances as inter-axonal length increases for Group-A type axons of all
diameters are shown in Figure 5.4. The transversal extracellular resistance increases
with the increase of inter-axon distance whereas longitudinal extracellular resistance
decreases with increases of inter-axon distance. In Figure 5.5, we showed an approximate
maximum inter-axon distance to induce AP in axon 2 for all Group-A types axons. The
maximum effect of coupling will happen when two axons are at their closest possible
arrangement. In that case, the distance between two NRs will be double of their myelin
thickness. So, Lpsin = (diy — dyg) where dyy is diameter of internode and dypg is
diameter of Nodes of Ranvier and Ry, = po‘f('". Table 5.1 shows the table of Rpsp

for all Group-A-types axons. So, that’s the results of the exploration of the effects of
ephaptic coupling of active axon on the axon which is passive in the case of perfectly
aligned two myelinated axons. In a real neural system, in a bundle of myelinated axons,
there are always more than two axons laying in different alignments; so their conjugate

effects may generate different outcomes than our exploration results.
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FIGURE 5.4: Extracellular resistance varies with inter-axon distance

5.3.2 Inhibition of spikes due to coupling

So far, we found that ephaptic coupling can induce AP from simulated axon to passive

axon and excite that in some ideal conditions. Here, we explored under what condition,

the ephaptic coupling can inhibit AP in other axons. We know that AP is generated in

NR when membrane potential V,,, reaches the threshold voltage Vrg. Now, membrane
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FI1GURE 5.5: Maximum inter-axon distance for coupling effects of active axon on passive
axon for all Group-A PNS axons

potential is equal to intra-cellular potential minus extra-cellular potential [V, = V11 —
Vie, as shown in Figure 5.1]. When two axons are firing at the same time, that means
the impulses at NRs at two axons are generated at the same, the current flowing through
the extracellular longitudinal resistance decreases the membrane voltage V;,, across the
next NRs. In that case, if the current which will flow through the axon, is not to be
able to bring the V,,, above Vg the AP will not be generated; in other words, AP will
be inhibited. Figure 5.6(a), shows 5 NRs at a single small diameter axon generating
synchronous AP, but Figure 5.6(b), shows that when two small-diameter axons are
coupled in 2nd NRs onwards the alternate APs in the spike trail is inhibited. This is,
due to the coupling effect that happened after the generation of AP at the first node.
The current flowing through extracellular resistance decreases membrane voltages across
the next NRs. Now, being a small diameter axon, the current flowing through the axon

is not strong enough to bring the V,, above threshold voltage Vrp, hence the spike is
inhibited.
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FIGURE 5.6: Inhibition of AP due to ephaptic coupling
5.3.3 Reduction of conduction velocity:

When both the axons in the bundle are firing at the same time, the current flow through
the longitudinal resistance will decrease the membrane voltage Vs across the next NRs
in axons. This will increase the time taken by the next NRs to reach threshold voltage
Vrp, which implies that the Conduction Velocity (CV) of the axons will be decreased.
When we simulated both the axons in the bundle with input current at the same time we
found the propagation of spikes through the NRs as shown in Figure 5.7(b). Figure 5.7(a)
shows the propagation of spikes with the same input current in a single axon. So, in the
case of a single axon, spikes propagate from 1st NR, showing in the Figure 5.7(a) with
the green line, to 10th NR showing in the Figure 5.7(a) with the pink line in 2ms time.
But, at double axons bundle spike propagates from 1st NR (the green one) to 10th NR

(the pink one) in approx. 4.5ms time. So in coupled axons spike took a little longer
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time to propagate from 1st NR to 10th; which means CV is reduced at coupled axons
bundle.
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FIGURE 5.7: (a) At single axon spikes propagates from first NR (the green one) to

tenth NR (the pink one) in 2.3ms time, and the amplitude of the spike at tenth NR is

a little larger than the rest of the NRs; (b) At double axon spikes propagates from first

NR (the green one) to tenth NR (the pink one) in 4.8ms time; so in double axon spikes

take longer time to propagate from 1st NR to 10th; hence CV is reduced at the double
axon, and the shape of the APs at all NRs are same

5.3.4 Synchronization of phases of two active axons

When in two axons, the NR of the axon-1 is fired a little later than the NR of the axon-2,
the spike in axon-2 will lead to the spike generated at axon-1. In that case, the current
flowing through the extracellular resistance from axon-1 is larger when the next NR in
axon-2 is ready to fire because the current generated from NR of axon-1 gets less time
to relax. This effect will make the 2nd NR in axon-2 take longer to fire which in effect
reduce the CV of axon-2. In a similar way, when 1st NR in axon-1 is fired a little later
in 1st NR of axon-2, the current in extracellular resistance from 1st NR of axon-2 will

be lesser when 2nd NR of axon-1 is ready to fire; because the current from 1st NR of
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axon-2 had more time to relax. This will in effect decrease the firing time of the 2nd NR
of axon-1, which means the CV of axon-1 will be increased. These effects of coupling
will lead to closing the gap of firing times between NRs of two axons and eventually
synchronizing the spikes of two axons. We observed this effect of ephaptic coupling in
synchronizing out of phase spikes of parallel axons in Figure 5.8. In that figure, in two
parallel axons, axon 2 is fired first and axon 2 fires 0.1ms later. We observed that after
propagation of the spikes through some NRs, they started firing synchronously at the
last NR.

4. 0084

Axon 1

>>>>>

F1cUre 5.8: Effects of coupling on spike synchronization; The spikes fired in different

times get synchronized in later nodes

5.3.5 Effect of misalignment between two axons

So far, we have explored the effects of ephaptic coupling when two axons are aligned.
Next, we investigated what happens when two axons are not aligned two each other. As
shown in Figure 5.9, as the axons are being staggered the cylindrical resistive coupling
path between NRs of two axons will be shrinkage. In Figure 5.9, Lp is the replacement
variable denoting the replacement of the NR in axon 2 from NR of axon 1. Then the
diameter of the cylinder for calculating resistive path is = (Lygr — LR) and the value
of R(L) = pm. The variable can vary between 0 and Lyg; after that myelin
of one axon overlaps the NR of the other axon, giving no coupling effect of exciting
NR at the other axon. We modelled our circuit in this way and simulated it with the
input current. The simulation result showed that no AP was generated from axon 1 to
axon 2 when they are staggered as shown in Figure 5.10. The current flowing through
the longitudinal extracellular resistance is less than the O(107°) as the length of myelin
IN is of O(1073), hence no AP was generated from axon 1 to axon 2 when the axons
are staggered, but, we found the other effects of coupling were there; such as in small
diameter axons the spikes were inhibited in later NRs in axons in small diameter axons

as shown in Figure 5.11, and CV was reduced compared to the single axon.
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FIGURE 5.9: When two axons are not aligned then effects of resistive coupling started

receding based on the overlapping areas of two nodes
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in case of small diameter axons
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5.4 Results and Discussion

In this work, we modelled ephaptic coupling between two parallel axons arranged in a
bundle using circuit theory. We modelled both aligned and staggered axons in a bundle
and simulated coupling effects. From the results generated from our model, we found
that (1) in an ideal condition when both axons are aligned and close to each other, if
one axon is simulated and fired, then active axon can excite AP in the passive axon,
(2) there is a range of inter-axon distance within which the coupling effects occur,(3)
in smaller diameter axons the external current generated at earlier nodes during AP
generation can inhibit the spike in later nodes, (4) the CV of coupled axons decreases
due to coupling effect, (5) coupling effects will lead to synchronization of spikes in axons
fired in different times, (6) in case of staggered axons the intensity of the external current
is lesser, hence AP are not generated in passive axon but other effects such as inhibition

of spikes in smaller diameter axons still occurs.

5.5 Conclusions

Here, we develop a computational model which generated the effects of ephaptic coupling
between two parallel myelinated axons, based on the circuit theory approach. The
results generated from the model shows that ephaptic coupling plays a significant role
in information processing through axonal pathways. For instance, based on a situation
ephaptic coupling can both excite or inhibit APs in Nodes of Ranvier in white matter
tracts. Also, our results show that the effects of ephaptic coupling can lower the speed
of spike transmission in myelinated axons if all the axons are firing synchronously at the
same time. If the myelinated axons are firing at different times then due to effects of
coupling, eventually the nodes of Ranvier will get synchronize and will start firing at the
same time, by increasing the speed of transmission of spikes in the axon which was firing
later and lowering the speed of transmission of spikes which was firing earlier than the
other. This shows the transmission of spikes in a single axon is different from the signal
transmission through a bundle of axons and coupling plays a role in the propagation of
signals through axonal pathways. In the next chapter, we used this model of the coupled
axon to build our multi axon model and explore signal propagation characteristics of an

axon bundle.






Chapter 6

Circuit Model for analysing
Signal Propagation Dynamics in
Myelinated Axon Bundle

6.1 Introduction

Structural brain connectivity refers to the axonal fibre bundles and pathways that form
the brain’s physical communication network, and functional connectivity refers to the
synchronisation of neural activity between different neuronal populations. Our hypoth-
esis is that, as the functional connectivity is calculated by the phase correlation between
the signals at two brain regions; the absence of it despite having structural connectivity
implies disruption of signal propagation between these two regions. In the previous chap-
ters, we have designed and developed computational circuit models for single myelinated
axon [in Chapter 4] and ephatically coupled double myelinated axons [in Chapter 5] and
examined their signal propagation dynamics by determining CV, cut-off frequency for
them. Here, our objective is to design a computational circuit model for exploring sig-
nal propagation disruption behaviour in a myelinated axon bundle. To do so, in this
chapter, we have designed and developed a computational circuit model for a bunch of
myelinated axons by extending the circuit models that we have designed in Chapter 4
and Chapter 5. We simulated our electrical circuit model by passing signals both from
stimulated current and voltage sources. By simulating the circuit with the current sig-
nal we calculated CV and observed that CV varies with the Fibre Density (FD) of the
bundle. We have used the terminology ’fibre density’ interchangeably with ’fibre pack
density’. We determined the relation between CV and FD for the axon bundle. By sim-
ulating the circuit with sinusoidal voltage signals of low to high frequency, we wanted

to experiment with 'rate code’ (the average number of APs per unit time) propagation
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through the axon bundle. But, with the input of high-frequency sinusoidal voltage sig-
nal, we found a surprising effect that firing pattern at Nodes of Ranvier (NR) changes
from Action Potential (AP) generation to sub-threshold oscillation of low voltage spikes,
which eventually becomes unable to generate APs at next NR after passing through the
internode (IN). This effect occurs at a very high frequency, which we termed as the "Lim-
iting Frequency’ (LF), because beyond this frequency signals can not propagate down
the axon bundle. We also observed that this LF varies inversely with the FD of the axon
bundle. Then, we performed another experiment to explore how the signal propagates
when axons in the bundle are getting input in a random manner. We found that when
the ephaptic coupling is strong it can induce the passive axons and excite them to fire
synchronously with simulated axons and propagates signals through the bundle. Then
we performed a stochastic analysis of the circuit model to investigate how the bundle
performs to stochastic behaviour. We fired each of the axons in the bundle with random
noise and observed the signal propagation characteristics through it. At the end of this
chapter, we defined the system definition for our circuit model of a bunch of axons and
found that the behaviour of the system exhibits the characteristics of a low pass filter.
We also calculated cut-off frequency beyond which axon bundle can no longer convey
information from one region to another. In Section 6.2 we designed, developed and sim-
ulated the computational circuit model for the myelinated axon bundle. In Section 6.3
we defined system function for the same. For design and simulation of the circuit, we
have used the circuit simulation tool PSpice and for system identification of the model,

we have used MATLAB as done in previous chapters.

6.2 Signal propagation modelling in myelinated axon bun-
dle

Here, we have designed the computational model for the myelinated axon bundle using
the circuit theory approach. In our modelling, we use the data of FMN, PNS axons and
CNS axons and generated results accordingly. Within bundle (CNS or PNS), axons are
packed densely and (in general) aligned in parallel. As shown in Figure 6.1(a) and (c),
in the ultrastructure of CNS and PNS axons, the CNS myelinated axons are densely
packed within white matter and the myelin sheaths of neighbouring fibres often directly
touch, whereas the PNS axons are separated by connective tissue and are covered with
a basal lamina (Stassart et al., 2018). We adhered to the concept of densely pack fibre
bundle in our modelling by implementing the theory of circle packing into a circle which
is a two-dimensional packing problem with the objective of packing unit circles into
the smallest possible larger circle (Friedman, 2014). The smallest possible larger circle
defines the virtual confined area around the densely packed fibres which are used for
calculating the cross-sectional area of the fibre bundle. As shown in Figure 6.1.(b), we
modelled the bundle for 12 axons following the Figure 6.1.(a) of CNS axon bundle. For
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the time being for the PNS axon also implemented the same theory of circle packing
into a circle for modelling the outer area of the fibre bundle, where we know that the
PNS axons are not circular like CNS axons and don’t always touch each other. All the
axons in the bundle connected with each other in the form of a chain. In our experiment,
we varied the number of axons in the bundle from 2 to up to 12 and in each case, we
followed the theory of circle packing into a circle given by Friedman (2014) to define
the cross-sectional area of the bundle. In our model, we defined fibre density (FD) as
AF/AT and total intracellular to extracellular areas ratio, as Aax/AE, where AF is
the sum of the cross-sectional areas of the fibres, including their myelin sheaths, Aax
is the sum of their cross-sectional intracellular areas, AF is the total cross-sectional
extracellular area of the model, and AT is its total cross-sectional area. To model these
variables we followed the work of Capllonch-Juan and Sepulveda (2020). In a densely
packed bundle, the fibre density of the bundle is >= 0.5.
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FIGURE 6.1: (a) and (c) Ultrastructure of myelinated axons in the CNS and PNS; (b)

cross-sectional view of the adhered model design of fibre bundle from Fig. (a) for CNS

axon bundle of 12 axons, for PNS axon bundle we adhered the same design but leave

20% extra space in extracellular space to model the gap between axons in the bundle;

because in the PNS, the Schwann cell plasma membrane is covered with a basal lamina

and the myelinated fibres are separated by connective tissue (Stassart et al., 2018). (d)
Schematic view of fibre bundle consists of 12 axons
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FIGURE 6.2: Schematic diagram of 12 myelinated axons parallel to each other and
ephapticaly connected
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6.2.1 Circuit design and simulation of axon bundle using PSpice

The circuit details of the basic units representing NR and IN in PSpice have been given
in Chapter 4. For the present experiments, we modelled the axon bundle consists of 12
chains in parallel, each chain being 5 NR cells and 4 IN cells in length (12 X 9 model)
as shown in Fig. 6.2 using a circuit simulation tool PSpice. The whole extracellular
volume of the nerve is modelled with a resistor network which uses Barr and Plonsey
(1992) as the basic model of the extracellular medium between two cables. Ours is
an adaptation from such a model that suits any number of myelinated axons. The
longitudinal extracellular resistance Ry, value is calculated using cross-sectional area AF
and IN length L;xy and extracellular resistivity value R, as 330Q2cm taken from Goldwyn
and Rinzel (2016) using (R.r, = Re * L/AFE). Thus based on the length of the axon the
R resistance is added up in series to model the extracellular resistance. The transverse
extracellular resistance Rp value between two NR is calculated using the same formula
and length of NR and distance between two myelinated axons. We showed in Chapter 4
that we modelled our circuit based on two ways of modelling the intracellular axonal
fluid in an axon (1) pure resistive and (2) resistive-capacitive. The results obtained
from the resistive model was accurate only for FMN, but for PNS and CNS axons the
resistive-capacitive model gives accurate results. So we selected the resistive model for
the FMN axon and the resistive-capacitive model for PNS and CNS axons and followed
the same here. Based on the calculation we showed in Chapter 5, Section 5.2, that
resistance offered by capacitive path is at least 12 orders higher than the resistive path
we ignored the dielectric behaviour of extracellular fluid represented by capacitive circuit.
All different axon type that we have used in our model are given in Table 2.3 in Chapter 2.
All electrical parameters are of the standard values and given in Table 4.2 in Chapter 4;
the values of the variables related to the experiments performed in this chapter are given
in Table A.5. Twelve identical electrical current sources were placed on the left end of
the model so that all 12 chains could be stimulated simultaneously. The rectangular
current pulses were all identical, i.e. 0.6 nA in amplitude and 0.25 ms in duration, and
stimulation was applied intra-cellularly. Voltage recordings were made from the NR
cells 1, 3, 5, 7 and 9 of each chain in order to measure AP propagation through the
coupled axon bundle. The longitudinal propagation velocity CV was calculated from

the measured total propagation time, IN length of each different axon.
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Table 6.1: Data for axon bundles for different types of axon; Here we showed data for

axon bundle of 2 axons and 12 axons; in Chapter A we gave all the data
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6.2.2 Conduction Velocity and Fibre Density

Conduction velocity (CV)which is the speed at which an impulse propagates down an
axonal pathway, is an important aspect of nerve conduction studies. Conduction veloc-
ities are specific to each individual axon and depend on an axon’s diameter and myelin
length, we have seen in Chapter 4 CV of a single axon varies. There, we have shown
the CV of different PNS and CNS axons, FMN and validated the results with the pub-
lished data. Here, in this work, we have calculated the CV of coupled axons bundle for
different types of axons and for a different number of axons in the bundle and plotted
them against the bundle’s fibre density. Our simulation results obtained from the cir-
cuit model revealed that the CV of coupled axon gets influenced by the coupling effects
from other axons. As the bundle density increases in the bundle, the CV of coupled
axons decreases. In Figure 6.3 we plotted the CV with FD for all axon types obtained
from our models. We performed a curve-fitting on the plotted data which resulted in a

second-order polynomial equation as given below by Equation 6.1:
f(z) = pl*x®+p2*x+ p3 (6.1)

where x denotes FD and f(z) denotes CV. This is a new mathematical relationship
between the conduction velocity of an axon in a bundle with the fibre density of the
bundle; which describes how the conduction velocity of an axon will change based on the
fibre packing density of the bundle. The values of the parameters with (95% confidence
intervals) for different types of axons are placed in Table 6.2. Thus, we quantified the
relationship of conduction velocity of an axon bundle with its fibre density. Our finding
is valid as Binczak et al. (2001) also mentioned in his work that due to ephaptic coupling
the speed of the AP will reduce.
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Here, the data are not equally sampled across density due to the characteristics of fibre

packing density of tightly packed bundle
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Table 6.2: Curve fitting statistics parameters for different axons
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6.2.3 Maximum Myelin Length and Fibre Density

In Chapter 4, we performed an experiment and analysis on the myelin length of the single
axon to investigate how the length of the myelin segment plays role in signal propagation
through the axon. In that study, we found that there is an upper limit on the length
of IN segment beyond which signal propagation does not occur. Here, we wanted to
extend that study to investigate if the upper limit of myelin length value remains the
same for the axon bundle or varies with the bundle. So, we designed a circuit of axon
bundles of various myelin lengths and the various number of axons and simulated them
with the input current. We performed these experiments on PNS axons for a number of
axons in bundles up to 10. Our simulation results showed that the upper limit of myelin
length that we obtained from a single axon model, changes in the axon bundle. We also
found that with a number of axons in the axon bundle this upper limit of myelin length
varies. We put our simulation results obtained from our models in Figure 6.4; where
we displayed the simulation results for different diameters of PNS axons. The results
show that with the number of axons in the bundle, the upper limit of myelin length
for propagating signal without disruption shortens. This is a new relationship that we
obtained on MML and FD of a bundle of myelinated axons.
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FIGURE 6.4: MML varies with number of axons in bundle; the result is consistent for

different types of PNS axons: the plot with pink line shows PNS axon Aa — 20um

diameter, the plot with blue line shows PNS axon Aa — 13pm diameter, the plot with

green line shows PNS axon Aa—12um diameter, the plot with red line shows PNS axon

Aa — 6pm diameter, the plot with purple line shows PNS axon Aa — bum diameter,
the plot with yellow line shows PNS axon Aa — 1um diameter

6.2.4 Limiting Frequency and Fibre Density

High frequency brain activity have been reported in literature (Moffett et al., 2017;
Fedele et al., 2015; Scheer et al., 2011). We simulated the axons in the bundle with a
sinusoidal voltage pulse of low to the very high-frequency range. We observed that at
a high-frequency sinusoidal voltage input the NR switches from firing AP to generating
sub-threshold spikes. This frequency beyond which the NR cell stops emanating APs and
starts generating sub-threshold spikes; we termed it as LF because it limits the signal
propagation through bundle as the sub-threshold spikes can not generate AP at next NR.
Further increase of input frequency shows that the amplitude of sub-threshold oscillation
is decreasing. Eventually, this leads to disruption of the signal propagating through the
axon. We further noticed that this LF varies with the density of the bundle. As we

examined the LF with the number of axons in the bundle we found that LF decreases
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with the increase of fibre density. In Figure 6.5 we showed in FMN, Aa — 20um and
GBCLat axon, how membrane voltage drops from 50mv to nearly -60mv with an increase
of input frequency of the signal. The red star shows the point where the transition from

50mv to -60mv happened.
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FIGURE 6.5: In FMN axon (a) membrane voltage drops with increase of input frequency
(b) LF decreases with increases of FD

In Figure 6.6 we showed in FMN, Ao — 20pum and GBCLat axons bundle how LF value
changes with FD of the bundle. As seen in Figure 6.6, in all the three plots the LF
value is decreasing for an increase of FD value except in three cases number of axons in
the bundle are 8, 9, 10. But in the rest of the cases with an increase of FD value, the
LF value is decreasing. So, that shows the LF value of an axon gets influenced by the
coupling effects and as the number of fibre varies the LF value also gets change. This is
an important finding from our model that shows that any high-frequency sub-threshold
oscillation occurs in any part of the brain that will not be propagated to other parts via

the myelinated axon bundle.
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6.2.5 Stochastic firing of axons in bundle

So far in our experiments in axon bundle, we were firing all the axons simultaneously

and generating results. In this section, we performed an experiment where we wanted

to see how the axon will be propagating signals when they are fired stochastically. We

performed this experiment in two steps. In the first step, we took the 12 axons bundle

of FMN and started firing the axons in a gradual manner starting from 1 axon to 12

axons simultaneously and examined how the signal propagates at the end of the bundle.

In a second step, we fired each of the axons in a bundle with a random noise source and

observed how the signal propagates at the end of the bundle.

One axon is simulated: When only the 1st axon is simulated among 12 axons in the

bundle we found that at the end of the bundle only the 1st axon has sent the signal

and all the other axons are dormant and have not generated any signal. The same thing

happens if any single axon in the bundle is fired among the 12 axons. As shown in
the bottom part of Figure 6.7, xsubl is the NR of the 1st axon that is fired with input
current and generated AP shown by the green line and denoted by V(xsubl1.26), whereas
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xsub21 to xsubl21 are the NRs of 2nd axon to 12th axon which was not simulated but
got induced by 1st axon’s AP and each generated a low sub-threshold spike denoted by
V(xsubl.26) to V(xsub121.26), which are put together and shown by the purple line,
which is the colour of the V(xsub121.26) the 12th axon. The dynamics at the end of
the bundle are shown in the top part of the Figure 6.7. In Figure 6.7, xsub9 is the last
NR of the 1st axon that has fired; shown by V(xsub9.26) by the green line, whereas
xsub29 to xsub129 are last NRs of 2nd axon to 12th axon which has not generated any
spikes and remained passive shown together by purple line where dots of other colours

are basically lines of other axon’s membrane potential.
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FIGURE 6.7: When one axon is simulated in the bundle the firing at the beginning and
end of the bundle

Two axons are simulated: When two axons are simulated among the 12 axons in the
bundle the dynamics of AP generation is shown in Figure 6.8. We simulated 1st and
2nd axons, so the NR of 1st and 2nd axons generated AP, but they induced ephaptically
the other axons in the bundle and they also started firing but not as the same way as
1st and 2nd axon as shown in Figure 6.8. Every alternate spike was off from the spike
trail in AP generated by the 3rd axon to the 12th axon. The red line shows the AP
generated by the 1st and 2nd axon and the purple line shows the AP generated by the
3rd to 12th axon as shown in the bottom part of Figure 6.8. The dynamics at the end
of the bundle is shown at the top part in Figure 6.8. The last NR of the 1st axon and
2nd axon is fired the same way as they were firing at the beginning of the bundle; shown
together by the red line. The last NR of the 3rd axon to 12th axon are firing alternate
spikes in the same way they fired at the beginning of the bundle with some phase lag,
shown by the purple line.



Chapter 6 Circuit Model for analysing Signal Propagation Dynamics in Myelinated
Axon Bundle 119

—
—
—

End of bundle

=1
-
‘r:sﬁ
T
"
—

it
) A | )

-100mv

. b29.26) o
100mv
ov Ii \\

L

FIGURE 6.8: When two axons are simulated in the bundle the firing at the beginning
and end of the bundle

== |
—
— |’
——
’7.

e

SEL>>

Three axons are simulated: When three axons are simulated in the bundle, what
happens in the axon bundle is shown in Figure 6.9. When the 1st, 2nd and 3rd axons are
stimulated, they are fired simultaneously as shown by the dark purple line (the line of
3rd axon) in the bottom part in Figure 6.9. We found that the rest of the axons also got
simulated by the ephaptic coupling and fired simultaneously but with different patterns;
as shown by the light purple colour line (the line of 12th axon) in the bottom part of
Figure 6.9. We observed some interesting coupling effects in the spike trail generated by
induced axons (4th to 12th axon) at the beginning of the bundle; the first induced spike
was generated at the same time as the spike generated by simulated axons (1st, 2nd
3rd axon); the second induced spike was generated at some phase lag with the second
simulated spike; the third induced spike was not generated; the fourth induced spike
was generated at the same time with a fourth simulated spike; the fifth induced spike
was again not generated, and this whole pattern was repeated in subsequent spikes; as
shown in bottom section Figure 6.9. At the end of the bundle, we observed the same

firing pattern as the beginning of the bundle; as shown in Figure 6.9.
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FIGURE 6.9: When three axons are simulated in the bundle the firing at the beginning
and end of the bundle
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Four or more axons are simulated: From simulations of four axons and onward
in the bundle, we observed similar patterns in firing in the bundle as described by
Figure 6.10. We found that when four axons or more are simulated in the bundle it
induced the rest of the axons in the bundle by strong ephaptic coupling and the induced
axons fired in the same pattern as simulated axons. The bottom part in Figure 6.10
shows the firing pattern at the beginning of the axon bundle and the top part of the
Figure 6.10 shows the firing pattern at the end of the bundle. Both the beginning and

end of the bundle were firing in the same pattern.
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FIGURE 6.10: When four or more axons are simulated the firing at beginning and end
of the bundle

So here we conclude that in a bundle of 12 axons if more than 3 axons are simulated in a
random way then all the rest of the axons will be induced strongly by ephaptic coupling.
When we compared the firing pattern in larger and very small diameter axons, we found
that the effects of strong ephaptic coupling occur differently in them. In the medium
to larger diameter axons (2um to 20pum) we observed that when 4 or more axons are
simulated then all induced axons are firing in phase with simulated axons and the signal
propagates to the end of the bundle without any loss; as shown in Figure 6.10. But
for very small diameter (< 2um) axons we observed some loss of AP at the end of the
bundle. So, when 4 or more axons are simulated, at the beginning of the bundle, both
simulated NR and induced NR were excited and generated all APs with respect to input
current, but at the end of the bundle both simulated and induced NRs are firing in phase
but some APs were not generated as shown in Figure 6.11. As we can see in Figure 6.11,
at the end of the bundle the NRs are firing in a 2:1 ratio with the APs generated at the
beginning of the bundle. So, here some of the APs were inhibited by the coupling effect

which leads to some information loss in passing the signal through the bundle.
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FIGURE 6.11: When four or more axons are simulated for smaller diameter axons few
AP are not generated at the end of the bundle

We quantified the signal propagation through the bundle of axons when they are ran-
domly fired for different types of axons. We calculated the population average value of
all the signals generated at the beginning and end of the bundle and then calculated
their mean firing rate respectively. Thus we got the population average mean firing rate
of the axons for the beginning and end of the bundle, shown in Table 6.3. We compare
them to find if the signal has propagated fully or there was some information loss. We
found that for small diameter axons mean firing rate is changing when four or more
axons are fired in a bundle of twelve axons. So here we showed that due to coupling
effects signals propagation can be disputed in densely packed high fibre density small

diameter axon bundle.

Mean firing rate Mean firing rate

Axon type at the beginning at the end

Ao — 20pm diameter 0.0101 0.0101
Aa — 13um diameter 0.0092 0.0092
AB — 12pum diameter 0.0092 0.0092
Ap — 6pm diameter 0.0092 0.0092
Aé — 5um diameter 0.0092 0.0092
Ad — 1um diameter 0.0086 0.0043
GBCLat-3.06um diameter 0.0086 0.0086
GBCMed-2.41 ymdiameter 0.0079 0.0063
SBC-1.35um diameter 0.0086 0.0043

Table 6.3: Population average mean firing rate at the beginning and end of the bundle
for different types of axons

Axons are simulated with random noise source: Here, we extended our experi-
ment to study the behaviour of the circuit when simulated with random noise source.
We generated a random noise source by using the RND function in PSpice and offset it
by -0.5V to center the random values at 0V with a +/- of 0.5V.
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We simulated each of the axons with this noise source and checked how the NR are
firing at the beginning and at the end of the bundle. We performed this experiment
on the FMN axon, a larger diameter PNS axon and a smaller diameter CNS axon. In
Figure 6.12 we showed the results we obtained by firing FMN axons in a bundle with
a random noise source. We found the NRs are simulated in a non-periodic manner at
the beginning of the bundle and the beginning and end of the bundle are not firing in
the same pattern and some of the APs are not generated as shown in Figure 6.12. In
Figure 6.13 we showed the results seen in larger diameter PNS axon. We found that the
NR of the axons at the beginning of the bundle got simulated by the random noise source
and firing but not in a periodic manner. We also found that the signal is propagated at
the end of the bundle but NRs are not firing in the same pattern as the beginning of
the bundle and some APs are inhibited, as shown Figure 6.13
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FIGURE 6.13: PNS axons are simulated with random noise source at the beginning of
the bundle

When checked with a bundle of smaller diameter SBC axons we found similar results as

shown in Figure 6.14. We simulated the bundle of SBC axons of diameter 1.35um with



Chapter 6 Circuit Model for analysing Signal Propagation Dynamics in Myelinated
Axon Bundle 123

a random noise source. Here also we found the NRs at the beginning of the bundle were
firing but not in any periodic manner. When we checked the end of the bundle we found
that some of the firings of AP were inhibited and the NRs are not firing in a similar way

as the beginning of the bundle, as shown in Figure 6.14.
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FIGURE 6.14: CNS axons are simulated with random noise source at the beginning of
the bundle

6.3 Frequency response modelling in an axon bundle

6.3.1 Transfer Function modelling for Multi-Axon bundle

In Chapter 4 we have created the transfer function model for IN section of an axon and
analysed its system behaviour and signal propagation characteristics in the frequency
domain using MATLAB software. In this section, we created a transfer function model
for the axon bundle. We used the model of IN section that we created in Chapter 4,
in transfer function modelling of axon bundle here, but we took the transfer function
model of lower poles and zeroes to reduce the computational complexity of the model.
But before that, we created a transfer function model of the NR section. To create the
transfer function model of the NR section, we first converted the subcircuit model of
NR created in PSPice modelling into a Simscape block and imported it into MATLAB
platform as shown in Figure 6.15.(a). We simulated the circuit with current pulse 0.6nA
and generated the AP from the model as shown in Figure 6.15.(b). We got the same
results as we validated the output with PSpice tool. Then we modelled a parallel circuit
axon bundle with the NR and IN subcircuits as shown in Figure 6.16. We simulated the
circuit with impulse input and generated impulse response. With this input and output,
we linearised the circuit with MATLAB’s ’Linear Analysis’ control design analysis tool

and generated the gain plot and phase plot.
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6.3.2 Gain and Phase analysis of NR

Figure 6.17.(a) shows the bode plot that was generated from the system model formed
after linearization of the NR block when placed into a parallel circuit of two axons. The
gain and phase plot shows that the behaviour of the linearised NR block exhibits the
characteristics of a low pass filter. The gain plot started at 150 dB due to the behaviour
) in input and O(1073) in output. The phase
plot started at 0 dB and shows that the phase will change towards a higher frequency. In

of system input and output which is O(10~?
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FIGURE 6.16: Simscape model of parallel circuit build using NR and IN PSpice sub-
circuits

Figure 6.17.(b) we placed the output of the linearise system and output of the original
NR block. The figure of colour red is the original NR system output and the figure

of the colour blue is the linearised system output. As we can see from the graph the
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output of the system model is in the same phase as the output of the circuit model;
their peak amplitude also matches; but the magnitude of the system output is smaller
than the circuit output and system output is not starting its waveform from -0.07v but
from -0.03v.
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FIGURE 6.17: (a) Bode plot of system function NR (b) Output of system function of
NR with it original model output

6.3.3 Model interconnection

Then, we connected the system function of NR and IN together and build the models for
the axon bundle using MATLAB function 'append’, 'connect’. In Figure 6.18(a), we show
the interconnection of the bundle of three axons generated by using the system function
of NR and IN and in Figure 6.18(b) we show the single system function developed by

interconnecting NR, IN models of three axons.

6.3.4 Gain and Phase analysis of interconnected model

We generated the phase and gain plot and compared the output of the three axons
model with the original model as shown in Figure 6.19. As shown in Figure 6.19.(b) the
waveform of the red line is the original system’s output and the waveform of the blue
line is the system model’s output. As seen in the figure the system model’s output is in
phase with the original system’s output but the magnitude of the system model’s output
is smaller than the original circuit model’s output. The output waveform generated by
the system model started at -0.02V and went up to 0.042V whereas the output of the
circuit model starts at -0.067V and goes up to 0.045V. The gain and phase plot in
Figure 6.19.(b) shows that the bundle system behaviour is like a low pass filter. In the
gain plot in Figure 6.19.(b) we can see that it has started at 150 dB which is due to the
behaviour of system input and output which is O(10~?) in input and O(10~3) in output.



Chapter 6 Circuit Model for analysing Signal Propagation Dynamics in Myelinated
126 Axon Bundle

The phase plot started at 0 db and shows that the phase will change up to 30 degrees
towards a higher frequency before the system reaches the cross-over frequency of the
system. The crossover frequency is the frequency point at which the gain and phase plot
after that will be greatly reduced. Figure 6.20 shows the gain and phase plot of all the
inputs and outputs of three axon system function sysT3ax. The inputs of the system
function sysT3ax are e(1), e(2) and e(3) and outputs are u(1), u(2) and u(3). The gain
phase plot of e(1) to u(1), e(2) to u(2) and e(3) to u(3) are of three axons coupled in
the bundle, as shown in Figure 6.20. Figure 6.20 shows the dynamic of phase-frequency
characteristics of three axons in the bundle are the same. So, the phase plot shows that
the signal propagates through the bundle of 3 axons will not change its phase when
reaches the end of the bundle and input and output of the bundle will be in phase up

to the cross-over frequency of the system. Similar way, we interconnected the NR and
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FIGURE 6.18: (a)The system function model of three axons bundle build with system
function of NR and IN (b) The single system function model developed after intercon-
necting three models

IN models and built the system function model for 12 axons. The process of generating
12 axons model took much longer time than 3 axons. Figure 6.21 shows the gain and
phase plots of 12 axons in the bundle. The phase plots of the Figure 6.21 give the
phase-frequency characteristics of signal propagation through the axons in the bundle.
Our objective was to find out the phase-frequency characteristic of signal propagation
through white matter tracts i.e. a bundle of myelinated axons. This Figure 6.21 describes
the phase-frequency characteristics of a myelinated axon bundle which are ephaptically
coupled. The phase-frequency plot shows that the behaviour of the system definition of
a bunch of axons is similar to a low pass filter; that it will pass the signal of a certain
frequency and dampen out signal beyond that frequency. We determine the cut-off
frequency (-3db) of 319.42Hz of the system.
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FIGURE 6.21: Gain and phase plot of all the inputs and outputs of 12 axon model

6.4 Results and Discussion

Here, we developed a computational circuit model for a bundle of axons and explore
the propagation of the signal through them. From our simulation results, we found that
CV varies with the density of the fibre bundle. We defined the relation between CV
and FD by forming an equation and found that CV wvaries inversely with FD. So this
implies that as the density of fibre bundle will increase in the case of myelinated axon
the transmission speed of spike will slow down. From our experiments, we derived a new
frequency for the axon bundle which we termed as LF. The LF defines the frequency
beyond which the nodes of Ranvier will stop transmitting the signal through the bundle.
This is an important finding from our model that shows that any high-frequency sub-
threshold oscillation occurs in any part of the brain will not be propagated to other parts

via the myelinated axon bundle. We calculated this LF for different FD values of densely
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pack fibre bundle for larger and smaller diameter axons. We found that the value of LF
is lowering for higher FD values. Then, we found that the upper limit of myelin length
for non-disruptive signal propagation varies with the FD of the axon bundle. As the FD
value increasing the maximal length of myelin for non-disruptive signal propagation is
decreasing. Our exploration of the circuit model also shows that in the case of densely
packed bundles, for small diameter axons the signal may get lost due to coupling effects
while propagating through the bundle. We also defined a system function for the axon
bundle which shows the behaviour of the bundle is similar to the low pass filter. We
analysed the gain and phase plot of the bundle and found that the output signal at the
end of the bundle will be in phase with the input signal of the bundle up to the cross-over
frequency of the system. This system model can be extended and used in future for the

study of system behaviour of myelinated axon bundle for any number of axons.

6.5 Conclusions

Based on our simulation results we conclude that signal transmission in a bundle of
myelinated axons is influenced by the coupling effects of the number of fibres in the
bundle. If the density of the fibres is higher then the transmission speed of the impulses
will slow down. We also conclude from our simulation model that very high-frequency
stimulus input will disrupt signal propagation through the bundle of axons and the
threshold of this frequency changes inversely with the density of the fibre bundle. We also
conclude from our computational model that due to the influence of ephaptic coupling in
the bundle the signal propagation through myelin will be altered. The maximal myelin
length where impulse can propagate without dying out will shorten with the increase of
FD. The identification of the system model of the myelinated axon bundle exhibits the
behaviour of a low pass filter. The analysis of gain and phase plot of axon bundle implies
that after the cross-over frequency the firing between two consecutive nodes of Ranvier
may get out of phase. Our model of simulation can serve as the basis for a more detailed
theory of signal transmission through a myelinated axon bundle in various experimental

conditions.






Chapter 7

Conclusions

This project aims to model the phase and frequency characteristics of white matter
tracts with a circuit modelling approach so that signal propagation through white matter
tracts can be characterized in both temporal and frequency domains, and correspondence

between structural and functional connectivity can be established.

The steps to accomplish that goal are, model the structural connectivity of the brain
from MRI data and extract parameter values for tracts, design a circuit based compu-
tational model of the structural connectivity using parameter values obtain from MRI
data analysis, generate a system definition for the model, then finally analysis its phase

and frequency characteristics.

We started working with MRI data processing where we have designed an algorithm
to parcellate cortical surface. With the exiting methods of parcellation of the cortical
surface, we can only parcellate cortical surface into defined anatomical brain ROIs. Using
our algorithms we can demonstrate that cortical surface can also be parcellated into any
number of equal size areas. We have presented a framework for a toolchain that process
structural and diffusional MRI data and calculate graph theory measures for quantifying
the structural connectivity based on equal area parcellation to define brain ROIs. The
framework is of the fully automated toolchain that does not need separate intervention
at its different processing stages. Being based on equal parcellation, the construction
of structural connectomes can be customized based on user need making it available
for structural connection analysis for neonates as well as brain injury cases. The entire
toolchain processes have been validated with HCP data which showed correct working

and its ease of use.

From our single axon model, we have observed that the model exhibits low pass filter
behaviour. That means the model passes the signal of specific frequencies and dampens
signals of other frequencies. The cut-off frequency of the model varies with the geometry

of the axon. We have formulated a mathematical relation between the cut-off frequency
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and myelin length. We have also noted that the conduction velocity of signal propagation
through a single axon varies with the axon’s geometry. We have also found that there
is an upper limit of myelin length beyond which signal propagation will be disrupted.
From these, we can conclude that signal propagation disruption will occur in a single
myelinated axon if the axon’s myelin length is beyond its upper limit or the signal’s
frequency is above the cut-off frequency of the myelin. Overall we can conclude that
the experiment results we obtained here imply that depending on the myelin geometry
a rate coded nerve signal propagation through structural connection could be disrupted

resulting in functional disconnection between two brain areas.

We have observed that an axon’s conduction velocity is inversely proportional to the
axon bundle density from our axon bundle modelling. We have derived a mathematical
relationship between the conduction velocity and the fibre density of the axon bundle.
From this observation of the mathematical model, we can conclude that in densely
packed bundles in which the axons are ephaptically coupled with each other, an impulse’s
transmission speed will reduce with higher density of axons. In other words, in a tightly
coupled axon bundle signal propagation will face resistance. We have also found a new
phenomenon where we see the high-frequency signal changes the firing of the AP to sub-
threshold impulses in nodes of Ranvier which leads to disruption of signal propagation
to the next NR. This is an important finding from our model that shows that any
high-frequency sub-threshold oscillation occurs in any part of the brain will not be
propagated to other parts via the myelinated axon bundle. We have also found that
the axon bundle’s behaviour is similar to a low pass filter that passes selective signals
below the cut off frequency. Our simulation output implies that ephaptic coupling plays
a significant role in signal transmission through the myelinated axon bundle, either by
altering the transmission speed of impulses or changing the timing of AP firing. Based
on the geometrical structure of the myelinated axon, their alignment in the bundle and
their distance between each other, ephaptic coupling can either excite or inhibit the
firing in nearby axons, which can lead to amplification or pacification of mass neuron

firings.

In the below section, we have summarised the tasks that have been accomplished and

the scope of future works:

7.1 Current work

e A new parcellating cortical surface method has been developed to generate equal-
sized brain areas (ROIs) of the cortical surface. The existing method of cortical
surface parcellation is based on anatomical definitions of different brain areas. This
method is not useful for neonates or adults’ brains with neuroplasticity anomalies.

We propose a new methodology to parcellate the cortical surface into equal-sized
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7.2

areas from the structural MRI image for extracting white matter tracts’ geomet-

rical properties.

We have designed a computational circuit model to analyse temporal and phase-
frequency characteristics of signal propagation in a single myelinated axon. We
have implemented the circuit model using the PSPice tool along with Matlab.
Using the model, we have derived CV, MML for a single axon. Then we have
defined a transfer function for the myelin segment of a single myelinated axon.
Using this transfer function, we have derived cut-off frequency for a single axon.
Using these data, we defined a mathematical relationship between cut-off frequency

and myelin length.

We have modelled the effects of ephaptic coupling between two myelinated axons

using circuit theory.

We have designed a computational circuit model to determine phase-frequency
signal propagation characteristics through a myelinated axon bundle. For the
design of this model, we have used the PSPice circuit simulation tool along with
Matlab. We further determined the CV, MML, and LF characteristics for the axon
bundle from the simulation model. We determined the mathematical relationship
between the CV and the density of the fibre bundle. Then we defined a transfer
function of the axon bundle and derived the phase-frequency characteristics of

signal propagation through the axon bundle.

Future plan

Our models are based on simulated data. As a scope for future work, we need to

experimentally validate all the results.

We have theoretically proved using the 12 axons model that temporal and phase-
frequency characteristics of signal propagation through a bundle of myelinated
axons exists. But we have not verified the scalability of this model yet. To extend
the scope of our work, we need to prove that the same theory holds for a large
number of axons. Also, as future work, we would experiment with signal prop-
agation in the model by scaling the length of axons, for example, 15cm between

hemispheres and 1m for the spinal cord.

In this work, we have developed a framework for an automated toolchain. The
different parts of the model can be further integrated and enhanced so that all

aspects of structural and functional connectivity can be measured in further detail.
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Appendix

1. Matlab code for Equal Area Parcellation.

function equal_parcellation(N)

yA

% equal_parcellation -Automated parcellation of cortical surface based on
equal area sphere partitioning.

%% Usage: equal_parcellation(fname,N)

% Author: Sarbani.Das@soton.ac.uk
% Created: 20 March 2017
yA

Tl Tl Tt et oo tole o to e o to o To to fe T to e o o e T Tl T 0ol T o T T T T T o e T o T T 0o T T o T ol Do 0o o o o s e
for run=1:2
if run==
fname = °’../surf/rh.sphere.reg’;
hem= ’r’;
dir="right’;
elseif run ==
fname = ’../surf/lh.sphere.reg’;
hem= ’17;
dir=’left’
end
if (fopen(fname, ’rb’, ’b’) < 0)
str = sprintf (’could not open surface file Y%s.’, fname) ;
error (str) ;
end
if ischar (N)
N=str2num(N) ;
end
[vertex_cor ,”]=read_surf (fname) ;
points_x =100*eq_point_set (2,N);
points_x=points_x’;
point_xl=points_x;
if (hem==’1r"’)
points_x=[-points_x(:,1) points_x(:,2) points_x(:,3)];
end
N=size (points_x,1);
% [vertex_cor , ]=read_surf (fname) ;
V=size(vertex_cor,1);

atlas_point=zeros(1,5);
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f=1;
for v=1:V
[nearestIndex ,”] = mesh_vertex_nearest(points_x,vertex_cor(v,:));
if f==
£f=0;
atlas_point=[v-1,nearestIndex ,vertex_cor(v,:)];
else

atlas_point=[atlas_point;[v-1,nearestIndex,vertex_cor(v,:)]];
end
end
for n=1:N
lxyz_n=zeros (1,3);
lindex=zeros (1,1);

lvals=zeros (1,1);

f=1;
for v=1:V
if n==atlas_point(v,2)
if f==
lxyz_n=atlas_point(v,3:5);
lindex=atlas_point(v,1);
1lvals=0.1000000;
£=0;
else
lxyz_n=[1lxyz_n;atlas_point(v,3:5)];
lindex=[lindex;atlas_point(v,1)];
lvals=[1lvals;0.1000000];
end
end
end

subjid=’117122";
labelfile=string(dir)+’/’+string (hem)+’h.node’+string(n)+’.label’;

write_label(lindex,lxyz_n,lvals,labelfile,subjid);

end

end

2. Python code for creating strucurtal connectome for a set of subjects.

#!/usr/bin/env python

import math, os, sys

import math, os, sys
MRTRIX_LIB_PATH=’"/mrtrix3/scripts/’

sys.path.append (os.path.expanduser (MRTRIX_LIB_PATH))
import 1lib.app, lib.cmdlineParser

from datetime import date

def abspath(*arg):
return os.path.abspath(os.path. join(*arg))

def relpath(*arg):
return os.path.relpath(os.path.join(*arg),lib.app.workingDir)

from lib.printMessage import printMessage

from lib.errorMessage import errorMessage

from 1lib.runCommand import runCommand

lib.app.author = ’8SD’
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lib.cmdlineParser.initialise(’Generate Structural Connectome for Human
Connectome Project’)

lib.app.parser.add_argument (’input_dir’, help=’The input directory
containing Diffusional and Structural preprocessed files’)

lib.app.parser.add_argument (’output_dir’, help=’The output directory will
have B5TT.mif, vis.mif ,nodes.mif ,nodes_fixsgm.mif ,DWI.mif ,meanbO.mif

e ,connectome.csv’)
lib.app.initialise ()

lib.app.args.input_dir = relpath(lib.app.args.input_dir)
indir = lib.app.args.input_dir
if not os.path.exists(indir):
errorMessage (’input directory not found’);
outdir = lib.app.args.output_dir
outdir = str(date.today())+’_’+outdir
#1ib.app.checkOutputFile (outdir)
#1ib.app.make_dir (outdir)

inFiles = os.listdir(indir)
for inputdir in inFiles:
if len(inputdir) < 6:
printMessage (’not enough files found in input directory.’)
else:

printMessage (’Generating Structural connectome for ’+str(inputdir))

outputdir = outdir+’/’+str (inputdir)
inputdir = indir+’/’+inputdir
lib.app.checkOutputFile (outputdir)
lib.app.make_dir (outputdir)

runCommand (’cp -R ’+abspath(inputdir)+’ ’+abspath(outputdir))

printMessage (’Generate a tissue-segmented image appropriate for
Anatomically-Constrained Tractography:’)

#5ttgen fsl Tilw_acpc_dc_restore_brain.nii.gz 5TT.mif -premasked

runCommand (’5ttgen fsl ’+abspath(inputdir,’Tlw_acpc_dc_restore_brain.nii.
gz’)+’ ’+abspath(outputdir,’5TT.mif’)+’ -premasked’)

printMessage(’Collapse the multi-tissue image into a 3D greyscale image for
visualisation: Check in mrview’)
#5tt2vis S5TT.mif wis.mif; mrview vis.mif
runCommand (’5tt2vis ’+abspath(outputdir ,’5TT.mif’)+’ ’+abspath(outputdir,’
vis.mif’))

#runCommand (’mrview ’+abspath (outputdir,’vis.mif’))

printMessage (’Modify the integer values in the parcellated image’)

#labelconvert aparc+aseg.ntii.gz FreeSurferColorLUT.txzt fs_default.txzt nodes
.mif

runCommand (’labelconvert ’+abspath(inputdir,’aparc+aseg.nii.gz’)+’ /home/
koushik/mrtrix3/FreeSurferColorLUT.txt /home/koushik/mrtrix3/src/
connectome/tables/fs_default.txt ’+abspath(outputdir,’nodes.mif’))

printMessage (’Replace FreeSurfers estimates of sub-cortical grey matter’)
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runCommand (’labelsgmfix ’+abspath(outputdir,’nodes.mif’)+’ ’+abspath(
inputdir,’Tilw_acpc_dc_restore_brain.nii.gz’)+’ /home/koushik/mrtrix3/src
/connectome/tables/fs_default.txt ’+abspath(outputdir,’nodes_fixSGM.mif’
)+’ -premasked’)

printMessage (’Convert the diffusion images into a non-compressed format’)

runCommand (’mrconvert ’+abspath(inputdir,’data.nii.gz’)+’ ’+abspath(
outputdir ,’DWI.mif’)+’ -fslgrad ’+abspath(inputdir,’bvecs’)+’ ’+abspath
(inputdir,’bvals’)+’ -datatype float32 -stride 0,0,0,1°)

printMessage (’Generate a mean b=0 image (useful for visualisation):’)
runCommand (’dwiextract ’+abspath(outputdir,’DWI.mif’)+’ - -bzero | mrmath -

mean ’+abspath(outputdir,’meanb0.mif’)+’ -axis 3°’)

printMessage (’Estimate the response function; note that here we are
estimating multi-shell, multi-tissue response functions:’)

runCommand (’dwi2response msmt_5tt ’+abspath(outputdir,’DWI.mif’)+’> ’+
abspath (outputdir ,’5TT.mif’)+’ ’+abspath(outputdir,’RF_WM.txt’)+’ ’+
abspath(outputdir ,’RF_GM.txt’)+’ ’+abspath(outputdir,’RF_CSF.txt’)+’ -

voxels ’+abspath(outputdir,’RF_voxels.mif’))

printMessage (’check appropriateness of response function voxel selections’)
#runCommand (’mrview ’+abspath (outputdir,’meanb0.mif’)+’ -overlay.load ’+

abspath (outputdir, ’RF_vozels.mif’)+’ -overlay.opacity 0.5°)

printMessage (’Perform Multi-Shell, Multi-Tissue Constrained Spherical
Deconvolution:’)

runCommand (’dwi2fod msmt_csd ’+abspath(outputdir,’DWI.mif’)+’ ’+abspath(
outputdir ,’RF_WM.txt’)+’ ’+abspath(outputdir,’WM_FODs.mif’)+’ ’+abspath(
outputdir ,’RF_GM.txt’)+’ ’+abspath(outputdir,’GM.mif’)+’ ’+abspath(
outputdir ,’RF_CSF.txt’)+’ ’+abspath(outputdir,’CSF.mif’)+’ -mask °’+

abspath(inputdir,’nodif_brain_mask.nii.gz’))

runCommand (’mrconvert ’+abspath(outputdir,’WM_FODs.mif’)+’ - -coord 3 0 |
mrcat ’+abspath(outputdir,’CSF.mif’)+’ ’+abspath(outputdir,’GM.mif’)+’> -
’+abspath (outputdir,’tissueRGB.mif’)+’> -axis 3°)

printMessage (’Visually make sure that both the tissue segmentations and the
white matter FODs are sensible’)

#runCommand (’mrview ’+° ’+abspath (outputdir,’tissueRGB.mif’)+’ -odf.load_sh
’+7 ’+abspath (outputdir, ’WM_FODs.mif’))

printMessage (’Generate the initial tractogram:’)

runCommand (’tckgen ’+abspath(outputdir,’WM_FODs.mif’)+’ ’+abspath(outputdir
,>10M.tck’)+’ -act ’+abspath(outputdir,’5TT.mif’)+’ -backtrack -
crop_at_gmwmi -seed_dynamic ’+abspath(outputdir,’WM_FODs.mif’)+’ -
maxlength 250 -number 10M -cutoff 0.06°)

#mrresize WM_FODs.mif FOD_downsampled.mif -scale 0.5 -interp sinc
runCommand (’mrresize ’+abspath(outputdir,’WM_FODs.mif’)+’ ’+abspath(

outputdir ,’FOD_downsampled.mif’)+’ -scale 0.5 -interp sinc?’)

#Apply the Spherical -deconvolution Informed Filtering of Tractograms (SIFT)
algorithm.This method reduces the overall streamline count, but
provides more biologically meaningful estimates of structural connection
density
printMessage (’Apply the Spherical-deconvolution Informed Filtering of
Tractograms (SIFT) algorithm.?’)
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1

runCommand (’tcksift ’+abspath(outputdir,’10M.tck’)+’ ’+abspath(outputdir,’
FOD_downsampled.mif’)+’ ’+abspath(outputdir,’1M_SIFT.tck’)+’ -act ’+
abspath (outputdir,’5TT.mif’)+’ -term_number 1M’)

#Map streamlines to the parcellated image to produce a connectome:

printMessage(’Map streamlines to the parcellated image to produce a
connectome:’)

runCommand (’tck2connectome ’+abspath(outputdir,’1M_SIFT.tck’)+’ ’+abspath(

outputdir,’nodes_fixSGM.mif’)+’ ’+abspath(outputdir,’connectome.csv’))

ib.app.complete ()

3. PSPICE code of circuit modeling for Axon

*

*

*

* ¥ X ¥ ¥ ¥ ¥ ¥ ¥ *

*

*

*

*

*

SUBCKT RAV 100 99 101 102
Kk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok K K K K 3K 3 3 3 K K K ok ok ok ok ok ok ok ok ok ok ok ok ok ok K K K K 3 3 3 K K K K ok ok ok ok ok ok ok ok ok ok ok ok K K K K K K

coNa = 491.0E-3 Extracellular sodium concentration (mol/L)
ciNa = 50.0E-3 Intracellular sodium concentration (mol/L)
coK = 20.11E-3 Extracellular potassium concentration (mol/L)
ciK = 400.0E-3 Intracellular potassium concentration (mol/L)

GNaMax=120.0E-3
GKMax =36.0E-3

V_r = -62.5E-3 Resting Membrane Potential (V)

Temp = 6.3 Temperature (Degrees Celsius)

b = 0.02 Relative permeability of sodium to potassium
R = 8.314 Reiberg gas constant (joules/(mole*kelvin))
Z = 1.0 Sodium and potassium ionicvalence

F = 9.648E4 Faraday’s constant (coulombs/mole)

3k ok %k ok 3k ok %k ok ok ok %k >k ok ok %k >k K 5k %k %k 3k 5k %k %k 5k %k %k %k 5k 3k %k %k 5k k %k >k 5k 3k %k >k 5k %k %k > 5k %k %k 5k %k %k % % %k %k % > %k %k % % %k %k % >k % %k % >k k k *x

Rax1l 99 31 4E6

Rax 31 102 4E6

Ril1 100 103 1E-22
Ri 103 101 1E-22
Rnode 103 30 30E-6
FNA 31 27 VINA 1

F

K 31 28 VIK 1

VNk 28 30 -72.0E-3
VNNa 27 30 55.0E-3
ENAK 26 0 31 30 1
CE 31 30 {1E-12} IC=-62.5E-3

*

*

Sodium current current pathway

M variable

CM 2 0 0.26E-3 IC=0.0393
RM 2 0 1E10

GAM 0 2 POLY(2) 2 0500010 -1

GBM 0 2 POLY(2) 2 06 0 000 0 -1

EAM 5 0 value={-0.1x(v(26)*1E3+35)/(exp(-0.1*x(v(26)*1E3+35))-1)1}
RAM 5 0 1E10

EBM 6 0 value={4x*xexp(-(v(26)*1E3+60)/18)}

RBM 6 0 1E10

*

*

Sodium current current pathway
H Variable

CH 3 0 0.26E-3 IC=0.6798
RH 3 0 1E10
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GAH
GBH
EAH
RAH
EBH
RBH

0w N N O O

8

O O O W Ww

0

POLY(2) 3 07 0 0 01 0 -1

POLY(2) 3 0 8 0 0 0 0 0 -1
value={0.07*exp (-0.05*(v(26)*1E3+60) )}
1E10
value={1/(1+exp(-0.1*x(v(26)*1E3+30)))}
1E10

*Potassium current current pathway

* K parameters
CN 4 0 0.26E-3 IC=0.2803
RN 4 0 1E10

GAN
GBN
EAN
RAN
EBN
RBN

© © O O

o o

POLY(2) 4 0 9 0 0 0 1 0 -1

POLY(2) 4 0 10 0 0 0 0 O -1
value={-0.01%(v(26) *1E3+50) /(exp(-0.1x(v(26) *1E3+50)) -1)}
1E10

10 0 value={0.125*xexp(-0.0125*(v(26) *1E3+60))}
10 0 1E10

EMNA 15 0 26 11 1

RMNA 15 0 1E10

EM3 53 0 POLY(1) 2 0 0 0 0 1

EM3H 16 0 POLY(2) 53 0 3 0 0 0 0 0 1

RM3H 16 0 1E10

GNA O 20 POLY(2) 15 0 16 0 0 O O O 6.7858E-006
VINA 20 0 O

VNA 11 O 55.0E-3

RNA 11 0 1E10

VK 12 0 -72.0E-3
RK 12 0 1E10

EMK 17 0 26 12 1

RMK 17 0 1E10

EN4 18 0 poly(1) 4 0 0 0 0 0 1

RN4 18 0 1E10

GK 0 21 POLY(2) 17 0 18 0 0 0 0 O 2.0358E-006
VIK 21 0 0

.ENDS

.SUBCKT MYLN 99 101 100 102

Rax 99 103 4E-6

Rax2 103 100 4E-6

RMY 103 30 250E6

CMY 103 31 1.5E-12

R 101 31 4E6

R2 31 102 4E6

VNAK 31 30 -63E-3

.ENDS
.SUBCKT MYLNSHEATH 3 4 15 16

3 4 5 6 MYLN

xsub2
xsub3
xsub4

xsubb

xsub6

xsub7

xsub8
.ENDS

5 6 7 8 MYLN

7 8 9 10 MYLN

9 10 11 12 MYLN
11 12 13 14 MYLN
13 14 15 16 MYLN
15 16 17 18 MYLN

I 0 2 pulse(0 6E-9 10E-6 100.0E-9 100.0E-9 0.1E-3 0.2E-3)
R2 1 0 1E100

*nodel
xsubl 1 2 3 4 RAV
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xsub2 3 4 5 6 MYLNSHEATH
*node?2

xsub3 5 6 7 8 RAV

xsub4 7 8 9 10 MYLNSHEATH
*node3

xsub5 9 10 11 12 RAV

R3 11 0 1E100

R4 12 0 1E100

.TRAN O0.1ms 5ms O

.PROBE

.END

4. Color look up table for newly parcellated regions.

MNo. | Area R G B

O nodel 25 5 25
1 node2 220 20 100
2 node3 125 100 160
3 node<da 100 25 O

<1 nodeS 120 7O 50
5 nodeG 220 20 100
[&] node? 20 20 B0
7 nodes 180 220 140
8 node9 220 a0 220
L= nodel0 180 A0 120
10 nodell 1490 20 1490
11 nodel2 20 30 140
12 nodel3 35 75 50
13 nodela 225 140 140
14 nodels 200 35 75
15 nodelo 160 100 50
16 nodel7 S0 160 20
17 nodels 20 220 B0
18 nodel9 a0 220 B0
19 node20 220 180 140
20 node21 20 100 50
21 node22 220 a0 20
22 node23 120 100 B0
23 node2a 220 20 20
24 node25 220 180 220
25 node26 a0 20 220
26 node27 160 140 180
27 node28 S0 20 140
28 node29 75 50 125
29 node30 20 220 160
30 node31 20 180 140
21 node32 1430 220 220
32 node33 100 8] 100
33 nodae34 7O 20 170
34 node35 150 150 200
35 node36 255 192 32
35 node37 153 21 =1
37 node38 120 32 FO
38 node39 30 25 200
39 nodea0 240 10 100

FIGURE A.1: The Color Look Up Table.
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Matlab code for estimating transfer function models by specifying number of poles.

%% Estimate Transfer Function Models by Specifying Number of Poles
h

hh

% Load time-domain system response data and use it to estimate a transfer
% function for the system.

%load iddatal z1;

fitpercent = [];

pol = [1;

i= 1;
previous = 0;
present = 10;
flag =0;

for np = 2:15
sys = tfest(zl,np);

hh

% lz1| is an |iddatal object that contains time-domain, input-output data.

%ot

% Inp| specifies the number of poles in the estimated transfer function.
simlog

%h

% |Isys| is an |idtf| model containing the estimated transfer function.

'

% To see the numerator and denominator coefficients of the resulting
estimated

% model |sys|, enter:

sys.Numerator;

sys.Denominator;

hh

% To view the uncertainty in the estimates of the numerator and denominator
% and other information, use |tfdatal.

v = sys.Report.Fit.FitPercent;

fitpercent(1,i) = v;

present = v;

pol(1,i)= np;

zeros = 0;

%if Test(i-1)==0||Test(i-2)==0 && Test(i+1)==0]||Test (i+2)==

%if v < 100 && v> 90 && (previous == present || abs(previous-present) < 1)
&& flag == 0

if v>99 && flag == 0

fte = bandwidth(sys);
poles = np;

Dbl Tt ol hh %l % %5
[mag ,phase ,wout] = bode(sys); % Get Plot Data
mag = squeeze (mag); yA

Reduce (1x1xN) Matrix To (1xN)

phase= squeeze (phase);

magr2 = (mag/max(mag)).”2; %
Calculate Power 0f Ratio Of mag /max(mag)

dB3 = interpl(magr2, [wout phase mag], 0.5, ’spline’); %
Find Frequency & Phase & Amplitude of Half-Power (-3 dB) Point

%dB3 = interpl (magr2, wout, 0.5, ’spline’);
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figure (1)
subplot (2,1,1)
semilogx (wout, 20%*logl0(mag), ’-b’, dB3(1), 20%logl0(dB3(3)), ’+r’,

end

’MarkerSize’ ,10)
ylabel (’Magnitude (dB) ’)
text (dB3 (1) ,20%10og10(dB3(3)),’\leftarrow cutoff frequency’)
grid
subplot(2,1,2)

semilogx (wout, phase, ’-b’, dB3(1), dB3(2), ’+r’, ’MarkerSize’,10)

ylabel (’Phase (Deg) ’)
xlabel (’Frequency(rad/s) )
grid

flag = 1;

i= i+1;

previous = v;

end

figure (2);

plot(pol, fitpercent);

grid;

axis ([2 15 90 1041]1);
xlabel (’Poles’);
ylabel (’Fit Percent ’);

6. Pspice modeling of two myelinated axon propagating signal.

.SUBCKT RAV 103 99 102
sk ok ok ok ok ok ok ok ok oK oK K K K K 3 3 K K K K ok ok ok ok ok ok ok ok ok ok ok ok oK K K K K 3K 3 K 3 K K K K ok ok ok ok ok ok ok ok ok ok ok oK ok K K K K K K K K K K K ok ok

*

*

* ¥ ¥ ¥

*

*

b

* ¥ * ¥

*

R
Z
* F

*

cokK
cikK
GNaMax=120.0E-3
GKMax =36.0E-3
v_

Temp = 6.3 Temperature (Degrees Celsius)

r

coNa = 491.0E-3 Extracellular sodium concentration (mol/L)

ciNa = 50.0E-3 Intracellular sodium concentration (mol/L)

= 20.11E-3 Extracellular potassium concentration (mol/L)

= 400.0E-3 Intracellular potassium concentration (mol/L)

= -62.5E-3 Resting Membrane Potential (V)

0.02 Relative permeability of sodium to potassium
8.314 Reiberg gas constant (joules/(mole*kelvin))
1.0 Sodium and potassium ionicvalence

9.648E4 Faraday’s constant (coulombs/mole)

3k >k 3k %k %k >k 5k 3k ok >k ok %k %k 3k 5k 3k >k 3k ok %k %k 3k 5k %k %k 5k 5k %k %k 3k 3k %k %k 5k 3k %k % 5k 3k >k %k >k %k %k % 5k %k %k 5% >k %k % % %k %k %k 5% %k %k % % %k %k % 5% %k %k % >k k *k *

*

Rax1l 99 31 4
Rax 31 102 4
*Ril 100 103 1E-22
*Ri 103 101 1E-22
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FNA 31 27 VINA 1
FK 31 28 VIK 1

VNk 28 30 -72.0E-3

VNNa 27 30 55.0E-3

ENAK 26 0 31 30 1

CE 31 30 {1E-12} IC=-62.5E-3
Rnode 103 30 30E6

*Sodium current current pathway
*M variable

CM 2 0 0.26E-3 IC=0.0393

RM 2 0 1E10

GAM 0 2 POLY(2) 2 056 00 010 -1

GBM 0 2 POLY(2) 2 0 6 0 0 0 0 0 -1

EAM 5 0 value={-0.1x(v(26)*1E3+35)/(exp(-0.1*x(v(26)*1E3+35))-1)1}
RAM 5 0 1E10

EBM 6 0 value={4xexp(-(v(26)*1E3+60)/18)}

RBM 6 0 1E10

* Sodium current current pathway
* H Variable

CH 3 0 0.26E-3 IC=0.6798

RH 3 0 1E10

GAH 0 3 POLY(2) 3 07 00010 -1

GBH 0 3 POLY(2) 3 08 0 00 0 0 -1

EAH 7 0 value={0.07*exp(-0.05*(v(26)*1E3+60))1}
RAH 7 0 1E10

EBH 8 0 value={1/(1+exp(-0.1%(v(26)*1E3+30)))}
RBH 8 0 1E10

*Potassium current current pathway
* K parameters

CN 4 0 0.26E-3 IC=0.2803

RN 4 0 1E10

GAN 0 4 POLY(2) 4 0 9 00010 -1

GBN 0 4 POLY(2) 4 0 10 0 0 0 0 O -1

EAN 9 0 value={-0.01%(v(26)*1E3+50)/(exp(-0.1*%(v(26)*1E3+50))-1)}
RAN 9 0 1E10

EBN 10 0 value={0.125%exp(-0.0125%(v(26)*1E3+60))}
RBN 10 0 1E10

EMNA 15 0 26 11 1

RMNA 15 0 1E10

EM3 53 0 POLY(1) 2 0 0 0 0 1

EM3H 16 0 POLY(2) 53 0 3 0 0 0 0 0 1

RM3H 16 0 1E10

GNA 0 20 POLY(2) 15 0 16 0 0 0 0 0 6.7858E-006
VINA 20 0 0

VNA 11 O 55.0E-3

RNA 11 0 1E10

VK 12 0 -72.0E-3

RK 12 0 1E10

EMK 17 0 26 12 1

RMK 17 0 1E10

EN4 18 0 poly(1) 4 0 0 0 0 0 1
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RN4 18 0 1E10

GK 0 21 POLY(2) 17 0 18 0 0 0 O O 2.0358E-006
VIK 21 0 O

.ENDS

.SUBCKT MYLN 103 101 102
*Rax 99 103 4E-6

*Rax2 103 100 4E-6

RMY 103 30 250E6

CMY 103 31 1.5E-12

Rout 101 31 3E6

Rout2 31 102 3E6

VNAK 31 30 -63E-3

.ENDS

* Current at single axon I1 0 2 pulse(0 6E-9 0 1E-6 1E-6 0.2E-3 2E-3)
*I1 0 2 pulse(0 6E-9 5E-3 100.0E-9 100.0E-9 0.1E-3 0)
I1 0 22 pulse(0 6E-9 1.5E-3 100.0E-9 100.0E-9 0.1E-3 2E-3)
I2 0 33 pulse(0 6E-9 1E-3 100.0E-9 100.0E-9 0.1E-3 2E-3)
*I1 0 22 pulse(0 6E-9 0.2E-3 1E-9 1E-9 0.1E-3 0.2E-3)
*I2 0 33 pulse(0 6E-9 1E-3 1E-9 1E-9 0.6E-3 0)

Ro0O 33 0 1E100

Rol 1 2 1E-22

xsubl 2 22 23 RAV

xsubll 2 33 34 RAV

Ro2 2 3 0.1E-22

Ro3 3 4 1E-22

xsub2 4 23 24 MYLN

xsub12 4 34 35 MYLN

Ro4 4 5 1E-22

Ro5 5 6 1E-22

xsub3 6 24 25 MYLN

xsubl13 6 35 36 MYLN

Ro6 6 7 1E-22

Ro7 7 8 1E-22

xsub4 8 25 26 MYLN

xsubl14 8 36 37 MYLN

Ro8 8 9 1E-22

Ro9 9 10 1E-22

xsub5 10 26 27 MYLN

xsub15 10 37 38 MYLN

Ro10 10 11 1E-22

Rol1l 11 12 1E-22

xsub6 12 27 28 MYLN

xsubl6 12 38 39 MYLN

Rol12 12 13 1E-22

Rol13 13 14 1E-22

xsub7 14 28 29 MYLN

xsubl7 14 39 40 MYLN

Rol14 14 15 1E-22

Rol5 15 16 1E-22

xsub8 16 29 30 MYLN

xsub18 16 40 41 MYLN

Rol6 16 17 1E-22

Rol7 17 18 1E-22

xsub9 18 30 31 MYLN

xsub19 18 41 42 MYLN

Rol18 18 19 1E-22
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Rol9 19 20 1E-22
xsub10 20 31 32 RAV
xsub20 20 42 43 RAV
Ro20 20 21 1E-22

*

xsub72 21 32 83 MYLN
xsub712 21 43 135 MYLN
Ro74 21 52 1E-22

Ro75 52 56 1E-22

xsub73 56 83 84 MYLN
xsub713 56 135 136 MYLN
Ro76 56 57 1E-22

Ro77 57 58 1E-22

xsub74 58 84 85 MYLN
xsub714 58 136 137 MYLN
Ro78 58 59 1E-22

Ro79 59 60 1E-22

xsub75 60 85 86 MYLN
xsub715 60 137 138 MYLN
Ro710 60 61 1E-22

Ro711 61 62 1E-22
xsub76 62 86 87 MYLN
xsub716 62 138 139 MYLN
Ro712 62 63 1E-22

Ro713 63 64 1E-22
xsub77 64 87 88 MYLN
xsub717 64 139 140 MYLN
Ro714 64 65 1E-22

Ro715 65 66 1E-22
xsub78 66 88 89 MYLN
xsub718 66 140 141 MYLN
Ro716 66 67 1E-22

Ro717 67 68 1E-22
xsub79 68 89 90 MYLN
xsub719 68 141 142 MYLN
Ro718 68 69 1E-22

Ro719 69 70 1E-22
xsub710 70 90 91 RAV
xsub720 70 142 143 RAV
Ro720 70 71 1E-22

R1 1 0 1E100

*R3 43 0 1E100

R4 91 0 1E100

R6 143 0 1E100

*R6 22 0 1E100

R7 71 0 1E100
*.tran 0.5ms 5ms O
.tran 0.5ms 15ms O
.options LIMIT 9999
.probe

. END

Pspice modeling of myelinated axon bundle consisting of 12 axons propagating

signal.
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.SUBCKT RAV 100 30 102
ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok sk ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok

*

*

* ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ ¥ %

*

*

coNa = 491.0E-3 Extracellular sodium concentration (mol/L)
ciNa = 50.0E-3 Intracellular sodium concentration (mol/L)
coK = 20.11E-3 Extracellular potassium concentration (mol/L)
ciK = 400.0E-3 Intracellular potassium concentration (mol/L)

GNaMax=120.0E-3
GKMax =36.0E-3

V_r = -62.5E-3 Resting Membrane Potential (V)

Temp = 6.3 Temperature (Degrees Celsius)

b = 0.02 Relative permeability of sodium to potassium
R = 8.304 Reiberg gas constant (joules/(molexkelvin))
Z = 1.0 Sodium and potassium ionicvalence

F = 9.648E4 Faraday’s constant (coulombs/mole)

3k %k %k %k 5k 5k 5k >k Xk Xk %k %k %k %k %k %k %k 3k %k %k 3k 5k 5k 5%k 5% % %k %k %k %k %k %k %k %k %k %k % % % 3 3% > > % % % %k %k % % % %k % % % % 3% 3% % % % % % %k %k %k %k %k %k % %k %

*

*Length of node of Ranvier = 2 m
*%RI=3,500M0hm/m; Ri=3,500%2/1000000=7K0hm
Ril 100 31 3.5E4

Ri2 31 102 3.5E4

*Rol 100 30 32.3E6

*Ro2 30 101 32.3E6

*Rnode 103 30 30E-6

FNA 31 27 VINA 1
FK 31 28 VIK 1

VNk 28 30 -72.0E-3

VNNa 27 30 55.0E-3

ENAK 26 0 31 30 1

CE 31 30 {1.5E-12} IC=-62.5E-3

*Sodium current current pathway

*M variable
CM 2 0 0.26E-3 IC=0.0393
RM 2 0 1E10

GAM 0 2 POLY(2) 2 0500010 -1

GBM 0 2 POLY(2) 2 06 0000 0 -1

EAM 5 0 value={-0.1x(v(26)*1E3+35)/(exp(-0.1*x(v(26)*1E3+35))-1)}
RAM 5 0 1E10

EBM 6 0 value={4*xexp(-(v(26)*1E3+60)/18)}

RBM 6 0 1E10

*

*

Sodium current current pathway
H Variable

CH 3 0 0.26E-3 IC=0.6798
RH 3 0 1E10

GAH 0 3 POLY(2) 3 07 00 010 -1

GBH 0 3 POLY(2) 3 08 00 0 0 0 -1

EAH 7 0 value={0.07*exp(-0.05*(v(26)*1E3+60))}
RAH 7 0 1E10

EBH 8 0 value={1/(1+exp(-0.1%(v(26)*1E3+30)))}
RBH 8 0 1E10
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*Potassium current current pathway

* K paramet
CN 4 0 0.26
RN 4 0 1E10

GAN 0 4 POLY(2) 4 0 9 00 010

ers
E-3 IC=0.2803

GBN O 4 POLY(2) 4 0 10 0 0 0 0 O
EAN 9 0 value={-0.01%(v(26)*1E3+50)/(exp(-0.1x(v(26)*1E3+50))-1)}

RAN 9 0 1E1

0

-1

-1

EBN 10 O value={0.125*%exp(-0.0125%(v(26)*1E3+60))}
RBN 10 0 1E10
EMNA 15 0 26 11 1

RMNA 15 0 1
EM3 53 0 PO

E10
LY(1) 2 0 0 0 0 1

EM3H 16 0 POLY(2) 53 0 3 0 0 0 0 0 1

RM3H 16 0 1

GNA 0 20 POLY(2) 15 0 16 0 0 O O O 6.7858E-006

VINA 20 0 O
VNA 11 O 55

E10

.0E-3

RNA 11 O 1E10

VK 12 0 -72

.0E-3

RK 12 0 1E10

EMK 17 0 26

12 1

RMK 17 0 1E10

EN4 18 0 po

ly(1) 4 0 0 0 0 0 1

RN4 18 0 1E10
GK 0 21 POLY(2) 17 0 18 0 0 0 O O 2.0358E-006

VIK 21 0 O
.ENDS

*Myelin of 20micrometer axon of 2mm myelin length

*Diameter =

*Myelin thi

20micrometer

ckness= 4micrometer

*Myelin length= 2mm

*RI=3,500M0hm/m;

Rin=3,500%2/1000=7M0hm

*RM=0.32M0Ohm.m; RMY= 0.32%1000/2=160MO0Ohm

*CM=1300pF/m;

*CI=7.409E-

Rinl 99 103

CMY=1300%2/1000=2.6pF

14 F m; CIN= (0.07409%1000)/2=37.045pF
.SUBCKT MYLN 99 31 100

3.5E6

Rin2 103 100 3.5E6

Cin 99 100
RMY 103 30
CMY 103 31
VNAK 30 31
.ENDS

I1 0 1

I2 0 21

I3 0 41

I4 0 61

I5 0 81

I6 0 151
I7 0 171
I8 0 191

37.045E-12
160E6
2.6E-12
-63E-3

pulse (0 6E-9 0 1E-9 1E-9 0.5E-3 3E-3

pulse (0 6E-9 0 1E-9
pulse (0 6E-9 0 1E-9
pulse (0 6E-9 0 1E-9
pulse (0 6E-9 0 1E-9

1E-9
1E-9
1E-9
1E-9

0.5E-3
0.5E-3
0.5E-3
0.5E-3

3E-3
3E-3
3E-3
3E-3

pulse (0 6E-9 0 1E-9 1E-9 0.5E-3 3E-3
pulse (0 6E-9 0 1E-9 1E-9 0.5E-3 3E-3
pulse (0 6E-9 0 1E-9 1E-9 0.5E-3 3E-3

(SN N

)
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I9 0 211
I10 0 231
I11 0 251
I12 0 271

RLO 100 O 1

pulse (0 6E-9 0 1E-9 1E-9 0.5E-3 3E-3
pulse (0 6E-9 0 1E-9 1E-9 0.5E-3 3E-3
pulse (0 6E-9 0 1E-9 1E-9 0.5E-3 3E-3
pulse (0 6E-9 0 1E-9 1E-9 0.5E-3 3E-3

RL1 100 101 716252.1416
RL2 101 102 716252.1416
RL3 102 103 716252.1416
RL4 103 104 716252.1416
RL5 104 105 716252.1416
RL6 105 106 716252.1416
RL7 106 107 716252.1416
RL8 107 108 716252.1416
RL9 108 109 716252.1416

RL10 109 0 1E100

*First Axon
R1 1 0 1E100
xsubl 1 2 3
REX1 2 100 1
xsub2 3 4 5
REX2 4 101 1
xsub3 5 6 7
REX3 6 102 1
xsub4 7 8 9
REX4 8 103 1
xsub5 9 10 11
REX5 10 104 1

RAV

RAV

xsub6 11 12 13

REX6 12 105 1

xsub7 13 14 15

REX7 14 106 1

xsub8 15 16 17

REX8 16 107 1

xsub9 17 18 19

REX9 18 108 1
R4 19 0 1E100

*Second Axon

R21 21 0 1E100

xsub21 21 22
REX21 22 100
xsub22 23 24
REX22 24 101
xsub23 25 26
REX23 26 102
xsub24 27 28
REX24 28 103
xsub25 29 30
REX25 30 104
xsub26 31 32
REX26 32 105
xsub27 33 34
REX27 34 106

23
1
25
1
27
1
29
1
31
1
33
1
35
1

MYLN

MYLN

RAV

MYLN

RAV

MYLN

RAV

RAV

MYLN

RAV

MYLN

RAV

MYLN

RAV
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xsub28 35 36
REX28 36 107
xsub29 37 38
REX29 38 108

37
1
39
1

R14 39 0 1E100

*Third Axon

R31 41 0 1E100

xsub31 41 42
REX31 42 100
xsub32 43 44
REX32 44 101
xsub33 45 46
REX33 46 102
xsub34 47 48
REX34 48 103
xsub35 49 50
REX35 50 104
xsub36 51 52
REX36 52 105
xsub37 53 54
REX37 54 106
xsub38 55 56
REX38 56 107
xsub39 57 58
REX39 58 108

43
1
45
1
a7
1
49
1
51
1
53
1
55
1
57
1
59
1

R24 59 0 1E100

*FouCTh Axon

R41 61 0 1E100

xsub41l 61 62
REX41 62 100
xsub42 63 64
REX42 64 101
xsub43 65 66
REX43 66 102
xsub44 67 68
REX44 68 103
xsub4b5 69 70
REX45 70 104
xsub46 71 72
REX46 72 105
xsub47 73 74
REX47 74 106
xsub48 75 76
REX48 76 107
xsub49 77 78
REX49 78 108

63
1
65
1
67
1
69
1
71
1
73
1
75
1
77
1
79
1

R34 79 0 1E100

*Fifts Axon

R51 81 0 1E100

xsubb51 81 82
REX51 82 100
xsubb2 83 84
REX52 84 101
xsubb3 85 86
REX53 86 102
xsubb54 87 88

83
1
85
1
87
1
89

MYLN

RAV

RAV

MYLN

RAV

MYLN

RAV

MYLN

RAV

MYLN

RAV

RAV

MYLN

RAV

MYLN

RAV

MYLN

RAV

MYLN

RAV

RAV

MYLN

RAV

MYLN
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REX54 88 103 1

xsub55 89 90 91 RAV

REX55 90 104 1

xsub56 91 92 93 MYLN

REX56 92 105 1

xsubb7 93 94 95 RAV

REX57 94 106 1

xsub58 95 96 97 MYLN

REX58 96 107 1

xsubb59 97 98 99 RAV

REX59 98 108 1
R44 99 0 1E100

*Sixth Axon

R61 151 0 1E100
xsub61 151 152 153
REX61 152 100 1
xsub62 153 154 155
REX62 154 101 1
xsub63 155 156 157
REX63 156 102 1
xsub64 157 158 159
REX64 158 103 1
xsub65 159 160 161
REX65 160 104 1
xsub66 161 162 163
REX66 162 105 1
xsub67 163 164 165
REX67 164 106 1
xsub68 165 166 167
REX68 166 107 1
xsub69 167 168 169
REX69 168 108 1
R54 169 0 1E100

*Seventh Axon

R71 171 0 1E100
xsub71 171 172 173
REX71 172 100 1
xsub72 173 174 175
REX72 174 101 1
xsub73 175 176 177
REX73 176 102 1
xsub74 177 178 179
REX74 178 103 1
xsub75 179 180 181
REX75 180 104 1
xsub76 181 182 183
REX76 182 105 1
xsub77 183 184 185
REX77 184 106 1
xsub78 185 186 187
REX78 186 107 1
xsub79 187 188 189
REX79 188 108 1
R64 189 0 1E100

*Eighth Axon
R81 191 0 1E100

RAV

MYLN

RAV

MYLN

RAV

MYLN

RAV

MYLN

RAV

RAV

MYLN

RAV

MYLN

RAV

MYLN

RAV

MYLN

RAV
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xsub81 191 192 193
REX81 192 100 1
xsub82 193 194 195
REX82 194 101 1
xsub83 195 196 197
REX83 196 102 1
xsub84 197 198 199
REX84 198 103 1
xsub85 199 200 201
REX85 200 104 1
xsub86 201 202 203
REX86 202 105 1
xsub87 203 204 205
REX87 204 106 1
xsub88 205 206 207
REX88 206 107 1
xsub89 207 208 209
REX89 208 108 1
R74 209 0 1E100

*Nine Axon

R91 211 0 1E100
xsub91 211 212 213
REX91 212 100 1
xsub92 213 214 215
REX92 214 101 1
xsub93 215 216 217
REX93 216 102 1
xsub94 217 218 219
REX94 218 103 1
xsub95 219 220 221
REX95 220 104 1
xsub96 221 222 223
REX96 222 105 1
xsub97 223 224 225
REX97 224 106 1
xsub98 225 226 227
REX98 226 107 1
xsub99 227 228 229
REX99 228 108 1
R84 229 0 1E100

*Ten Axon

R101 231 0 1E100
xsub101 231 232 233
REX101 232 100 1
xsub102 233 234 235
REX102 234 101 1
xsub103 235 236 237
REX103 236 102 1
xsub104 237 238 239
REX104 238 103 1
xsub105 239 240 241
REX105 240 104 1
xsub106 241 242 243
REX106 242 105 1
xsubl107 243 244 245
REX107 244 106 1
xsub108 245 246 247

RAV

MYLN

RAV

MYLN

RAV

MYLN

RAV

MYLN

RAV

RAV

MYLN

RAV

MYLN

RAV

MYLN

RAV

MYLN

RAV

RAV

MYLN

RAV

MYLN

RAV

MYLN

RAV

MYLN
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REX108 246 107 1
xsub109 247 248 249 RAV
REX109 248 108 1
R94 249 0 1E100

*Eleven Axon

R111 251 0 1E100

xsubl111 251 252 253 RAV
REX111 252 100 1

xsub112 253 254 255 MYLN
REX112 254 101 1

xsub113 255 256 257 RAV
REX113 256 102 1

xsub114 257 258 259 MYLN
REX114 258 103 1

xsub115 259 260 261 RAV
REX115 260 104 1

xsubl116 261 262 263 MYLN
REX116 262 105 1

xsubl117 263 264 265 RAV
REX117 264 106 1

xsub118 265 266 267 MYLN
REX118 266 107 1

xsub119 267 268 269 RAV
REX119 268 108 1

R104 269 0 1E100

*Twelve Axon

R121 271 0 1E100

xsub121 271 272 273 RAV
REX121 272 100 1

xsub122 273 274 275 MYLN
REX122 274 101 1

xsub123 275 276 277 RAV
REX123 276 102 1

xsub124 277 278 279 MYLN
REX124 278 103 1

xsub125 279 280 281 RAV
REX125 280 104 1

xsub126 281 282 283 MYLN
REX126 282 105 1

xsub127 283 284 285 RAV
REX127 284 106 1

xsub128 285 286 287 MYLN
REX128 286 107 1

xsub129 287 288 289 RAV
REX129 288 108 1

R114 289 0 1E100

*Transverse resistance
RT1 2 22 8E6
RT2 6 26 8E6
RT3 10 30 8E6
RT4 14 34 8ES6
RT5 18 38 8E6

RT11 22 42 B8E6
RT12 26 46 8E6
RT13 30 50 8E6



154

Appendix A Appendix

RT14
RT15

RT21
RT22
RT23
RT24
RT25

RT31
RT32
RT33
RT34
RT35

RT41
RT42
RT43
RT44
RT45

RT51
RT52
RT53
RT54
RT55

RT61
RT62
RT63
RT64
RT65

RT71
RT72
RT73
RT74
RT75

RT81
RT82
RT83
RT84
RT85

RT91
RT92
RT93
RT94
RT95

RT101
RT102
RT103
RT104
RT105

.tran

34
38

42
46
50
54
58

62
66
70
74
78

82
86
90
94
98

152
156
160
164
168

172
176
180
184
188

192
196
200
204
208

212
216
220
224
228

232
236
240
244
248

54
58

62
66
70
74
78

82
86
90
94
98

15
15
16
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1
1
1
1
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1
1
2
2
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2
2
2
2
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2
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76 8
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04 8
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12 8
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24 8
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36 8

240 8
244 8
248 8

2
2
2
2
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264
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272
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280
284
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E6
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E6

E6
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E6
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E6
E6
E6
E6
E6

E6
E6
E6
E6
E6

E6
E6
E6
E6
E6

8E6
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8E6
8E6
8E6

.bms 20ms
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.probe
.options LIMIT 99999
.END
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Table A.1: Data table for Ao — 20pum and Ao — 13um bundle
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Table A.3: Data table for Ao — 5um and Aa — 1pm bundle
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Table A.4: Data for SBC and GBCMed axon bundles
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Table A.5: Data table for GBCLat and FMN axons
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