The University of Southampton
University of Southampton Institutional Repository

Broadband compact substrate-independent textile wearable antenna for simultaneous near- and far-field wireless power transmission

Broadband compact substrate-independent textile wearable antenna for simultaneous near- and far-field wireless power transmission
Broadband compact substrate-independent textile wearable antenna for simultaneous near- and far-field wireless power transmission
Despite an increasing interest in wearable Wireless Power Transmission (WPT), until now, wearable antennas have been unable to simultaneously harvest from near-field resonant and far-field radiative WPT. Here, a dual-port antenna is proposed, integrating an inductive coil with a broadband monopole for near- and far-field wearable WPT. The coil acts simultaneously as a High Frequency (HF) near-field power receiver and an Ultra-High Frequency (UHF) resonator, enabling the miniaturization of the enclosed broadband monopole, both fabricated using all-textile conductors. On-body, the antenna maintains a 10 dB return loss over a measured 135% fractional bandwidth while maintaining compactness (0.312×0.312 λ2). The antenna is substrate-independent and is demonstrated on two textile substrates with different dielectric properties and thicknesses. In far-field mode, the rectenna maintains over 40% efficiency from sub-1 µW/cm2 power densities. In the near-field, a WPT efficiency up to 80% can be achieved. The simulated Specific Absorption Rate (SAR) shows up to 40 and 20 dBm power reception for HF and UHF operation, respectively, without exceeding the 1.7 W/kg limit. The far-field wearable rectenna is demonstrated powering a Bluetooth Low Energy node using a BQ25504 DC-DC converter from a best-in-class low power density of 0.88 and 0.55 µW/cm2 on-body and in-space, respectively.
Antenna feeds, Antennas, Bandwidth, Body Area Networks, Broadband antennas, Coils, Inductors, Microstrip antennas, NFC, RFID., Rectennas, Rectifiers, Substrates, UHF antennas
2637-6431
398 - 411
Wagih, Mahmoud
7e7b16ba-0c64-4f95-bd3c-99064055f693
Komolafe, Abiodun
5e79fbab-38be-4a64-94d5-867a94690932
Weddell, Alex S.
3d8c4d63-19b1-4072-a779-84d487fd6f03
Beeby, Steve
ba565001-2812-4300-89f1-fe5a437ecb0d
Wagih, Mahmoud
7e7b16ba-0c64-4f95-bd3c-99064055f693
Komolafe, Abiodun
5e79fbab-38be-4a64-94d5-867a94690932
Weddell, Alex S.
3d8c4d63-19b1-4072-a779-84d487fd6f03
Beeby, Steve
ba565001-2812-4300-89f1-fe5a437ecb0d

Wagih, Mahmoud, Komolafe, Abiodun, Weddell, Alex S. and Beeby, Steve (2022) Broadband compact substrate-independent textile wearable antenna for simultaneous near- and far-field wireless power transmission. IEEE Open Journal of Antennas and Propagation, 3, 398 - 411. (doi:10.1109/OJAP.2022.3167089).

Record type: Article

Abstract

Despite an increasing interest in wearable Wireless Power Transmission (WPT), until now, wearable antennas have been unable to simultaneously harvest from near-field resonant and far-field radiative WPT. Here, a dual-port antenna is proposed, integrating an inductive coil with a broadband monopole for near- and far-field wearable WPT. The coil acts simultaneously as a High Frequency (HF) near-field power receiver and an Ultra-High Frequency (UHF) resonator, enabling the miniaturization of the enclosed broadband monopole, both fabricated using all-textile conductors. On-body, the antenna maintains a 10 dB return loss over a measured 135% fractional bandwidth while maintaining compactness (0.312×0.312 λ2). The antenna is substrate-independent and is demonstrated on two textile substrates with different dielectric properties and thicknesses. In far-field mode, the rectenna maintains over 40% efficiency from sub-1 µW/cm2 power densities. In the near-field, a WPT efficiency up to 80% can be achieved. The simulated Specific Absorption Rate (SAR) shows up to 40 and 20 dBm power reception for HF and UHF operation, respectively, without exceeding the 1.7 W/kg limit. The far-field wearable rectenna is demonstrated powering a Bluetooth Low Energy node using a BQ25504 DC-DC converter from a best-in-class low power density of 0.88 and 0.55 µW/cm2 on-body and in-space, respectively.

Text
Wagih_OJAP22_DMode_NearFar_WPT_Rectenna - Version of Record
Available under License Creative Commons Attribution.
Download (4MB)

More information

Accepted/In Press date: 6 April 2022
Published date: 13 April 2022
Keywords: Antenna feeds, Antennas, Bandwidth, Body Area Networks, Broadband antennas, Coils, Inductors, Microstrip antennas, NFC, RFID., Rectennas, Rectifiers, Substrates, UHF antennas

Identifiers

Local EPrints ID: 456754
URI: http://eprints.soton.ac.uk/id/eprint/456754
ISSN: 2637-6431
PURE UUID: b1932c24-6fb7-45ed-ac4a-aad279ab875c
ORCID for Mahmoud Wagih: ORCID iD orcid.org/0000-0002-7806-4333
ORCID for Alex S. Weddell: ORCID iD orcid.org/0000-0002-6763-5460
ORCID for Steve Beeby: ORCID iD orcid.org/0000-0002-0800-1759

Catalogue record

Date deposited: 10 May 2022 16:51
Last modified: 25 Jun 2022 02:03

Export record

Altmetrics

Contributors

Author: Mahmoud Wagih ORCID iD
Author: Abiodun Komolafe
Author: Alex S. Weddell ORCID iD
Author: Steve Beeby ORCID iD

Download statistics

Downloads from ePrints over the past year. Other digital versions may also be available to download e.g. from the publisher's website.

View more statistics

Atom RSS 1.0 RSS 2.0

Contact ePrints Soton: eprints@soton.ac.uk

ePrints Soton supports OAI 2.0 with a base URL of http://eprints.soton.ac.uk/cgi/oai2

This repository has been built using EPrints software, developed at the University of Southampton, but available to everyone to use.

We use cookies to ensure that we give you the best experience on our website. If you continue without changing your settings, we will assume that you are happy to receive cookies on the University of Southampton website.

×