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Supra-subduction zone volcanoes record the chemical transfer of sedimentary and igneous material from 
the subducting plate to the overlying mantle and lithosphere. This transfer is thought to preferentially 
involve fluid-mobile elements, which swamp the signature of similar trace elements in the supra-
subduction mantle. Using high-resolution isotope measurements of fluid-mobile Pb, we have traced the 
evolution and inputs beneath the supra-subduction spreading ridge that is now the Troodos Ophiolite, 
Cyprus. It is apparent that variable but significant amounts of Pb are actually derived from the mantle 
wedge, and substantial amounts of the fluid-immobile elements like Nb are introduced from the slab. 
Our study identifies a chemical transformation of the spreading crust, which reflects a spatial change 
in the Neo-Tethyan slab. The west was influenced by the subduction of pelagic/carbonate sediments 
overlying MORB, whereas the east and south also include a high 206Pb/204Pb component, similar to 
high-μ mantle plumes distributed around northern Africa. This chemo-tectonic switch is interpreted to 
represent the location of supra-subduction spreading relative to the path of a seamount chain colliding 
with and subducting beneath the Troodos trench. The Hecataeus Rise, located to the southeast of Cyprus, 
is a candidate to be a foundered relic of this seamount chain, locked in the subduction zone. We also 
demonstrate that the supra-subduction mantle wedge was of an Atlantic/Pacific-type composition, but 
the subducting Neo-Tethyan oceanic crust had an Indian Ocean signature. As such, this destructive plate 
boundary can be defined as the Cretaceous interface between the Atlantic and Indian mantle domains.

© 2022 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Active intra-oceanic supra-subduction spreading is generally 
submarine, which makes detailed sampling of a wide geographic 
area with stratigraphic control challenging and cost-prohibitive. 
This limits the potential to identify and constrain spatial and 
temporal chemical variations in volcanism, which are required to 
understand the progressive interaction between subducted litho-
sphere and the overlying mantle. However, a potential analogue 
for this tectonic environment is the Troodos ophiolite, which is an 
extensive emergent tract of crust (125 x 35 km) formed by Late 
Cretaceous spreading, and contains all lithological units expected 
of ocean crust (Gass, 1968). Having escaped high-grade metamor-
phism, Troodos preserves fresh volcanic glass and hence presents 
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an opportunity to evaluate spatial variation of elements and iso-
topic systems most susceptible to mobilisation during alteration.

The chemical characteristics of Troodos are those of supra-
subduction zone magmatism rather than a mid-ocean ridge (Pearce 
et al., 1984; Rautenschlein et al., 1985). Enrichment of the fluid-
mobile elements (Pb, Ba, Rb, Cs, K) and a high water content are 
indicative of a contribution from fluids leaving the subducting slab 
(Konig et al., 2010; Woelki et al., 2020). This enrichment develops 
Ba/La and Ce/Pb which deviate significantly from typical mantle 
values (Woelki et al., 2018). For example, Ba/La in mid-ocean ridge 
basalt (MORB) is 2–6 but in Troodos is in the range 10–120, which 
is more typical of island arc magmas. Given the arc-like chemistry, 
it is postulated that Troodos developed at a spreading centre in an 
arc or fore-arc setting (Taylor et al., 1992), similar to the trench-
proximal environments found in the northern Tonga arc or trench 
(Cooper et al., 2010; Falloon et al., 2008), Andaman Sea (Moores et 
al., 1984) or in the fore-arc at the initiation of subduction (Ishizuka 
et al., 2014).
 under the CC BY license (http://creativecommons.org/licenses/by/4.0/).
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Volcanics in the Troodos ophiolite span a range of compositions 
from 53–56 wt% SiO2 at 9–13 wt% MgO ∼ 13 wt% MgO at 53.5 
wt% SiO2 through to more differentiated lavas with 7% to <2% 
MgO (Pearce and Robinson, 2010; Shen et al., 2020). Troodos lavas 
are predominantly boninite series volcanics, specifically low-silica 
boninites in the classification scheme of Pearce and Reagan (2019), 
with some higher-Ti samples falling into the siliceous high-Mg 
basalt category. The Low-silica boninites and Si-Hi-Mg basalts are 
olivine ± clinopyroxene ± orthopyroxene phyric, with plagioclase 
present in the groundmass of lower-Mg lavas (<8%). Differenti-
ated samples are plagioclase-pyroxene phyric high-Mg andesites, 
andesites and dacites, and are generally found in the lower part of 
the volcanic sequence. These were referred to as the Lower Pillow 
Lavas by early geological mapping surveys (Bear, 1960; Gass, 1960) 
and contrasted with the more primitive, high-Mg, olivine-phyric 
Upper Pillow Lavas (Cameron, 1985; Rautenschlein et al., 1985; Thy 
et al., 1985). Such a two-layer stratigraphy is certainly an over-
simplification, with primitive and evolved lavas juxtapositioned in 
some stratigraphic sections (Taylor, 1990; Thy and Esbensen, 1993).

Troodos lavas testify to a mantle source that was depleted rela-
tive to a typical MORB source. This depletion is variable, with the 
boninite and Si-Hi-Mg basalts having TiO2 ranging from 0.2–0.7 
wt% and Zr from 4–40 ppm, all at around 8–10 wt% MgO. Rare 
earth elements (REE) also reflect these characteristics in their vari-
able depletion of middle relative to heavy REE, with Dy/Yb(n)
0.66–1.0 (Taylor and Nesbitt, 1988; Coogan et al., 2003).

Isotopically, Troodos has the high radiogenic Sr isotope char-
acteristics of island arc magmas, but also has a diverse range 
of Nd and Pb isotope ratios, indicative of mixing between sub-
ducted crust and MORB-like mantle or mantle melts (Cameron, 
1985; Konig et al., 2008). Strong evidence for the involvement of 
sediments in the generation of these magmas comes from B iso-
topes and the high 207Pb/204Pb (Fonseca et al., 2017; Woelki et al., 
2018). However, the stratigraphic, spatial and, by association, tem-
poral variation in radiogenic isotopes across Troodos is relatively 
unexplored.

In this paper, we present high-resolution double spike Pb iso-
topes with associated major element, trace element and Sr-Nd 
radiogenic isotope data for 60 samples of fresh volcanic material 
from across Troodos. These data, with sample locations are pro-
vided in Supplementary Data Table S1. We use this information 
to investigate the influence of slab and mantle on the elemental 
make-up of subduction volcanism. However, what also emerges is 
a novel view of the tectonic and geochemical relationships around 
this Cretaceous intra-oceanic destructive plate margin. In partic-
ular, we utilise the spatial geochemistry to clarify: the spreading 
history and structure of the ophiolitic crust; the relationship be-
tween the tectonic and lithological units on the subducting slab 
and overriding plate; the position of Troodos with respect to global 
isotopic heterogeneities in the mantle.

2. Samples and methodology

2.1. Nature and distribution of volcanic samples

The vast majority of volcanic rocks found across the Troodos 
ophiolite experienced some degree of hydrothermal alteration to 
zeolite facies soon after their formation at a spreading centre. 
However, despite its Cretaceous age, many volcanic units contain 
relatively fresh glass as rinds to pillows or at the margins of mas-
sive flows. These glasses are present in all of the lithologies rep-
resented through the volcanic stratigraphy, and across most areas 
of the extrusive sequence. The volcanic glass varies from pristine 
shards attached to pillow rinds, to orbicules and spall found in 
hyaloclastite, pillow rim zones and around massive flows. To en-
able geographical coverage all types of glass were sampled in this 
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study, with efforts made to exclude alteration in the form of clays 
or bleaching.

Glassy rims were segregated and ultrasonically pre-cleaned in 
pure water, and selected fragments of this material were used 
for the analyses. This whole-sample methodology was preferred 
to picking of glass-only shards as it was more likely to integrate 
any isotopic heterogeneity that may be present in samples as doc-
umented by Fonseca et al. (2017). Loss on ignition for whole glass 
samples is typically 2.5–4.5%, with higher values in other samples 
suggesting some degree of glass hydration. Analyses were screened 
to check for samples with anomalous 238U/204Pb (>9 or <2), par-
ticularly those with >0.5wt% K2O which would indicate significant 
element loss or addition. Pb and Sr isotope data was collected 
on strongly leached microscopically-selected glass chips and is de-
tailed in section 2.2. Samples taken from the same eruptive units 
in the Margi area (supplementary Table S1) demonstrate that Pb 
isotope ratios are within double spike error both before and after 
age correction, this is despite differences in loss on ignition and 
glass appearance.

Sampling the fresh lavas to constrain isotopic evolution has the 
potential to be biased by a slightly greater abundance of unaltered 
material in the upper primitive lavas, and therefore not recognising 
stratigraphic isotope changes. To reinforce the coverage, and inte-
grate the Pb isotope signal from the bulk of the volcanic sequence, 
we have incorporated data from Fe-Cu sulphide ore deposits. These 
are the products of leaching metals from the pre-existing lava se-
quence and the underlying sheeted dykes. Data sources and Pb 
isotope uncertainties for ore deposit material is detailed further in 
section 2.3 below. It should be noted that all azimuthal references 
in this study; North, West etc., refer to present-day coordinates, 
rather than the orientations at 91 Ma, prior to the ∼90◦ anticlock-
wise rotation of the Troodos crust.

2.2. Analytical methods

Rocks were prepared by crushing inside a plastic envelope using 
a non-torque press. Crushed material was then separated to 0.5–1.0 
mm chips using a Teflon sieve set, and then repeatedly cleaned 
with ultra-pure water in an ultra-sonic bath. Cleaned rock-chips 
were then purified during a microscopic examination.

Major elements were analysed by X-ray fluorescence (XRF) by 
fusion of a mixture of subsamples of 0.5 g and lithium tetraborate 
in a ratio of 1:10. Analysis was using Philips Magix Pro WD-XRF 
in the School of Ocean and Earth Science, University of Southamp-
ton, UK or an equivalent instrument in the Geological Survey of 
Japan. Error and external accuracy was generally <2% for all sam-
ples. REE, Rb, Sr, Y, Zr, Nb, Cs, Ba, Hf, Pb, Th and U concentrations 
were determined by ICP-MS at SOES on a VG Plasmaquad PQ2+ in-
strument. Reproducibility is better than ±4% (RSD.) for the REE, Rb 
and Nb, and better than ±6% (RSD) for other elements. The preci-
sion of the elemental ratios is better than ±1% (RSD).

Around 0.3 g of each rock was picked from the 0.5–1.0 mm frac-
tion for isotopic analysis. All samples were leached for 30–40 min 
in 4M HCl at 200 ◦C in a sealed Teflon vessel prior to Pb separa-
tion using HBr-HCl anion exchange columns. Pb isotope ratios were 
measured by a Thermo Neptune MC-ICP-MS in the School of Ocean 
and Earth Science, University of Southampton UK, using a double 
spike run of each sample to correct for instrumental mass fraction-
ation. The 207Pb–204Pb SBL74 spike (Taylor et al., 2015) was added 
such that 204Pbsample/204Pbspike was 0.09 ± 0.03. Procedural blanks 
range between 30–105 pg Pb. NBS SRM 981 values achieved dur-
ing the measurement period were 206Pb/204Pb = 16.9404 ± 24, 
207Pb/204Pb = 15.4969 ± 26, 208Pb/204Pb = 36.7169 ± 66 (2sd; n 
= 44).

For Sr analysis, the Pb residue was evaporated and dissolved in 
3M HNO3. The Sr was isolated using Sr resin (Eichrom Industries, 



R.N. Taylor, O. Ishizuka, I. Hessey et al. Earth and Planetary Science Letters 584 (2022) 117509

Fig. 1. (a) 206Pb/204Pb vs 207Pb/204Pb and (b) 206Pb/204Pb vs 208Pb/204Pb for selected ore deposits from the Oxalid database. Uncertainty ellipses are calculated as 2sd for f
= c correction after Taylor et al. (2015) and are centred on the average value for each mine. Mathiati DS is a double spike analysis of a pyrite from this from this study. 
Northern hemisphere reference line (NHRL; after Hart (1984)) corrected back to 91 Ma (NHRL at 91 Ma). All ore deposit data on this plot are not age corrected.
Illinois, USA). For Nd isotopic analysis, the REE were initially sepa-
rated by cation exchange, before isolating Nd on Ln resin (Eichrom 
Industries, Illinois, USA) columns. Sr and Nd isotope ratios were 
measured on a nine-collector VG Sector 54 mass spectrometer at 
the Geological Survey of Japan, or on a similar instrument at the 
University of Southampton, as the average of 150 ratios. Reported 
values are the average of 150 ratios obtained by measuring ion in-
tensities in multidynamic collection mode normalised to 86Sr/88Sr 
= 0.1194 and 146Nd/144Nd = 0.7219. Measured values for NBS 
SRM-987 and JNdi-1 were 87Sr/86Sr = 0.710237 ± 15 (2 SD, n 
= 58) and 143Nd/144Nd = 0.512104 ± 7 (2 SD, n = 64) on both 
instruments during the measurement period. The Sr and Nd iso-
topic data presented here have been normalised to NBS SRM-987 
(0.710248) and JNdi (0.512110).

2.3. Ore deposit Pb isotope data

Fresh lava and volcanic glass is not available in all geographic 
locations or stratigraphic positions around the Troodos ophiolite. 
Therefore, to increase spatial isotopic coverage, we have utilised 
the “Oxalid” Pb isotope database (Gale et al., 1997; Stos-Gale and 
Gale, 2009), which includes sulphide mineral isotope data from all 
hydrothermal deposits across Cyprus. These data were collected 
using a constant− f mass fractionation correction ( f = c) using 
traditional thermal ionisation mass spectrometry in the 1980s and 
1990s, and hence contains an inherent measurement uncertainty 
that is 10–15 times larger than the double spike data presented 
in this study (Taylor et al., 2015). Beneficially though, the high Pb 
concentrations of the ore minerals (10–1000 ppm) mean that these 
measurements are less prone to the effects of blank contamination 
and are hence likely to be accurate, if imprecise.

To enhance the precision of the ore data and enable comparison 
with our high-precision lava analyses, we have used the average 
isotopic compositions of each deposit. If it is assumed that ores 
from each mine are isotopically homogeneous, and that any scatter 
in Pb isotopes is generated by measurement uncertainty, then Pb 
isotope ratios for each mine should be normally distributed about 
their mean. As such, the effect of averaging will more tightly con-
strain the true value in proportion to the number of samples, with 
uncertainty expressed as 2σ /√n at 95% confidence. The effects of 
this averaging technique are tested in Fig. 1, which shows that data 
from representative mines are distributed within the bounds of the 
appropriate f = c uncertainty ellipse for the given ratio pairs. An 
3

ore sample from Mathiati mine was measured in this study by 
double spiking, and lies at the centre of the non-double spike data 
from the same mine (Fig. 1) and is within double spike uncertainty 
of the non-double spike average. All ore data is compiled and 
presented with location information and statistical analysis in Sup-
plementary Data Table S2. An interesting feature of the uncertainty 
ellipse in 206Pb/204Pb–207Pb/204Pb (Fig. 1a) is that it is roughly par-
allel to lines of constant 207Pb/206Pb. This reduces the likelihood of 
analytical deviation from the true 207Pb/206Pb in f = c corrected 
Pb data such as the Oxalid database.

Pb is more compatible with pyrite and chalcopyrite than U 
and Th, and consequently hydrothermal sulphide deposits typically 
have low μ-values (238U/204Pb). Mid-ocean ridge pyrites have μ
∼0.5 ± 0.4 (Wang et al., 2018), which is more than 20 times 
lower than typical MORB lavas. A pyrite ore we have measured 
from the Mathiati mine has μ = 0.4 and ω (232Th/204Pb) = 0.0042 
which are 14 and 3000 times lower respectively than the aver-
ages for Troodos lavas. This means that the 91 Ma age-correction 
of Pb isotopes for Cyprus sulphides is essentially negligible, with 
206Pb/204Pb in the Mathiati pyrite decreasing by 0.0057. On this 
basis, and as U-Th-Pb concentrations are not available for the 
Cyprus ore database, Pb isotopes for the sulphide minerals are pre-
sented as averages of the measured values are alongside the age-
corrected ratios for the Troodos lavas. Ore Pb isotope data is only 
used to help constrain spatial variation, and is excluded from the 
assessment of geochemical dynamics in the Troodos subduction 
system, where only the high-precision double spike data is used.

2.4. Constraining spatial isotopic variation

An objective of this study is to examine the spatial variation of 
isotopes and trace element characteristics across the Troodos ophi-
olite. Here, rather than split the ophiolite into geographical regions 
and look for contrasting geochemistry, our method is to identify 
particular geochemical parameters of interest and examine how 
they are disposed spatially. Of the radiogenic isotope systems, Sr 
isotopes have the potential to be dominated by a seawater or ra-
diogenic compositions in all subducted materials, and are the most 
susceptible to modification during hydrothermal circulation. Be-
cause Pb has relatively low concentrations in seawater, it is a more 
robust isotope system with which to discriminate subduction com-
ponents involved in Troodos magma genesis. In addition, a feature 
of the Pb isotope ratios is the wide range of values present across 
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Fig. 2. 206Pb/204Pb vs at 207Pb/204Pb for Troodos volcanics. (a) Data undifferentiated; (b) data coded according to 207Pb/206Pb. All data are age corrected to 91 Ma. (For 
interpretation of the colours in the figure(s), the reader is referred to the web version of this article.)
the ophiolite: 206Pb/204Pb spanning 18.4 to 19.1 (Fig. 2). This range 
is ∼200 times greater than our Pb measurement precision, mean-
ing that it has a higher resolving power compared to 143Nd/144Nd, 
which has a range/precision of around 40.

The undifferentiated 206Pb/204Pb–207Pb/204Pb data in Fig. 2a 
broadly define two sub-aligned clusters of samples: a group 
with 206Pb/204Pb ∼ 18.5 with a steep positive trend, and a dis-
persed group with a shallower positive correlation extending to 
206Pb/204Pb ∼ 19.1. The steep positive trend lies roughly along 
a line with equal 207Pb/206Pb (∼0.842 at 91 Ma) and the shal-
lower tend has 207Pb/206Pb < 0.839. On this basis we have chosen 
to differentiate the samples based on their 207Pb/206Pb. Fig. 2b 
shows the samples coded as red with 207Pb/206Pb > 0.840, or-
ange with 207Pb/206Pb 0.840–0.835 and yellow with 207Pb/206Pb 
< 0.835. This division of samples and their associated colours are 
retained through subsequent geochemical and geographic figures. 
Based on isotopic characteristics, we refer to the low 207Pb/206Pb, 
high 206Pb/204Pb group as HiMu (Zindler and Hart, 1986): HiMu 
(or high-μ) refers to high 238U/204Pb in material that has gener-
ated, or has the potential to generate, high 206Pb/204Pb.

3. Tectonic and isotopic systematics of the ophiolite

A lithological and structural summary of the Troodos ophiolite 
is provided in Fig. 3a, and a matching map showing the distribu-
tion of the 207Pb/206Pb divisions is shown in Fig. 3b.

Measured strike of dykes varies across the ophiolite. In the west 
of Troodos dykes are dominantly N-S or NW-SE, but from Troo-
dos village eastwards they progressively realign to NE-SW (Fig. 3a). 
Further east towards Larnaca the dykes revert to NW-SE. Although 
these dyke orientations can be a guide to spreading direction, they 
can be significantly affected by post-intrusion block rotation about 
vertical and horizontal axes. Restoration of palaeomagnetic mea-
surements of dykes to a reference declination and inclination gives 
a more accurate picture of the spreading axis alignment (Aller-
ton and Vine, 1987; Morris et al., 1990). After restoration to initial 
dyke orientations across the ophiolite (Fig. 3a) it is apparent that 
spreading axis orientation was NW-SE (Abelson et al., 2002; Aller-
ton and Vine, 1991; Maffione et al., 2017; Morris and Maffione, 
2016; Scott et al., 2013). The most significant rotation of dykes 
is observed north of the exposed section of the Southern Troodos 
Transform Fault (Fig. 3a). This dyke re-orientation is taken to rep-
resent a clockwise rotation of blocks related to dextral slip along 
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this section of the transform (Cooke et al., 2014; MacLeod et al., 
1990; Morris et al., 1990). Limited rotation to the east and west 
of the exposed transform could reflect no slip or limited slip along 
these sections due to crust either side of the fault moving in the 
same direction at a similar rate (Allerton, 1989; Allerton and Vine, 
1991). These kinematics are consistent with the position of the 
Solea axis e.g. Moores et al. (1990); Varga and Moores (1985) and 
a concurrent axis located south of the transform and east of the 
ophiolite (Abelson et al., 2002; van Everdingen, 1995).

Overall, the Pb isotope variation across Troodos shows that the 
east and south east of the ophiolite has the low 207Pb/206Pb HiMu 
signature (Fig. 3b). Specific spatial observations are: 1) The HiMu 
signal increases eastwards across the north eastern flank of the 
ophiolite, 2) in the east the HiMu signal extends from the north-
ern to the southern margin of the ophiolite and is not exclusive to 
the transform domain, 3) HiMu is present across the crust south 
of the transform, but non-HiMu is also present at the western end 
of this crust, 4) samples at each location across the ophiolite have 
similar characteristics, regardless of position within the stratigra-
phy or whether of lava or mineralisation.

The easterly progression to HiMu is interesting because it is not 
symmetrical across the north of the ophiolite. This is inconsistent 
with simple spreading about a single axis, located near the centre 
of Troodos (such as the Solea axis, Fig. 3a) as it would be expected 
that HiMu would be present in the westernmost exposures to mir-
ror those in the east. It is however possible that the crust north 
of the transform could have developed at a long-lived spreading 
axis located west of current Cyprus, as proposed by Mackenzie et 
al. (2006). Alternatively, the crust could have been generated by an 
eastward jump of the spreading axis (Moores et al., 1990). In this 
case, the youngest crust would lie to the east, generated following 
a shift in spreading from the Solea axis to Larnaca axis, moving the 
active volcanism into the zone of HiMu influence.

The exact position of the boundary between the hypothesised 
Solea and Larnaca spreading domains is not well defined. Aller-
ton and Vine (1991) located the boundary to the east; whereas 
other studies (Martin et al., 2019; Moores et al., 1990) positioned 
it further west (the eastern and western dotted lines respectively 
in Fig. 3a). Comparing Figs. 3a and 3b it is observed that the east-
ward onset of the HiMu influence is coincident with the westerly 
boundary, whereas it straddles the easterly boundary. In the case 
of the easterly boundary, the oldest crust generated at the Solea 
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Fig. 3. Geological map of the Troodos ophiolite – adapted from Geological Survey of Cyprus geological maps and memoirs. (a) Key structural features: observed dyke 
strikes; dykes rotated to initial orientations restored via direction in which they acquired their magnetisation; postulated spreading axes; boundaries between axial spreading 
domains; Southern Troodos Transform Fault. Initial dyke orientations from (Abelson et al., 2002; Allerton and Vine, 1991; Cooke et al., 2014; MacLeod et al., 1990; Maffione 
et al., 2017; Morris et al., 1990; Morris and Maffione, 2016; Scott et al., 2013). (b) Sample locations for volcanics and ores coded according to 207Pb/206Pbt = 91.
axis would have been located in the HiMu zone. Subsequently, the 
Solea axis may then have migrated westwards away from the HiMu 
influence. However, what is missing from this arrangement is any 
evidence for a symmetrical HiMu signature in the far west of the 
ophiolite. In the case of the westerly boundary, Solea spreading 
would have been exclusively in the non-HiMu region, and a ridge 
jump to the Larnaca axis initiating spreading in the HiMu zone.

As the HiMu influence is found across the crust south of the 
transform it is possible that this material was generated at a 
spreading axis to the east: just south of Larnaca in Fig. 3a. West-
ward spreading from this axis displaced this crust relative to the 
material north of the transform via the expected dextral slip and 
sinistral ridge-offset.

As noted above, the western end of the crust south of the trans-
form appears to have both HiMu and non-HiMu characteristics in 
close proximity. The sample with the HiMu signature in this loca-
tion is from a Cu sulphide ore, which is likely to have integrated 
the signal from the lower sections of the lavas and dykes, while the 
non-HiMu samples are from the boninitic upper lavas. This could 
5

be the result of a superimposition of later non-HiMu volcanism on 
pre-existing HiMu crust. Lavas with a similar non-HiMu composi-
tion are also found just north of the transform, and it is therefore 
possible that these late-stage lavas represent the waning, youngest 
volcanic activity of the Solea axis, and were fed via late NW-SE 
boninitic dykes (Gass et al., 1994) propagating southwards across 
the transform. This needs to be tested by a more extensive isotopic 
characterisation of crustal units in this region. However, in most 
other areas of the ophiolite the ore deposits have Pb isotopes that 
match the local lavas, indicating that the high, intermediate and 
low-207Pb/206Pb signatures are characteristic of the whole crustal 
section at a given location.

Geochemical parameters other than Pb isotopes have been 
identified as varying systematically across Troodos. In particu-
lar, incompatible elements are recognised as having progressively 
lower concentrations relative to moderately incompatible elements 
(e.g. TiO2/Al2O3, MREE/HREE) towards the south of the ophiolite 
(Taylor and Nesbitt, 1988); taken to mark a southward progression 
to a more depleted and shallower mantle source located closer to 
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Fig. 4. Chondrite normalised rare earth element patterns from across the Troodos ophiolite. Samples are colour coded according to Gd/Dy(n). Elemental and location data is 
given in Table S1.
the trench (Taylor et al., 1992). These spatial characteristics are 
shared with modern arc environments (Escrig et al., 2012; Taylor 
et al., 1992; Woelki et al., 2019). Fig. 4 shows that northern Troo-
dos has moderately depleted LREE and chondritic Gd/Dy(n) (>0.95), 
whereas southern Troodos has these compositions alongside highly 
LREE depleted lavas with Gd/Dy(n) < 0.8. This tendency for greater 
LREE depletion from north to south (Fig. 4) is effectively inde-
pendent of the variation in Pb isotopes (Fig. 3b) which show a 
transition to HiMu from west to east.

4. Sources of isotopic variation

To examine the causes of the Pb isotope variation, we first set 
out the potential inputs that could have influenced the Pb isotopic 
composition of the Troodos spreading system. These are: the sub-
ducted slab, comprising sediments, igneous ocean crust and vol-
canic seamounts; and the mantle wedge, potentially of a MORB or 
OIB-like character. Given the spreading nature and extent of the 
Troodos crust, effects of lithospheric assimilation are likely to be 
limited. Compositions of these key components are highlighted in 
Fig. 5 and detailed below. Using this component framework, we 
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then discuss the interaction between subducted components and 
the mantle wedge.

Fig. 5 uses three different Pb isotope projections: 206Pb/204Pb–
�207Pb, 206Pb/204Pb–�208Pb, and �207Pb–�208Pb, which are
shown in Fig. 5a-5b, 5c-5d, and 5e respectively. �207Pb and 
�208Pb are vertical deviations of a sample’s 207Pb/204Pb and 
208Pb/204Pb respectively from the NHRL expressed in units of the 
second decimal place of their ratio: as defined by Hart (1984). 
Sample groupings (based on 207Pb/206Pb) show similar disposi-
tions in �207Pb and �208Pb (Fig. 5a and 5c), with the non-HiMu 
group (red) forming a steep trajectory from low to high �Pb, and 
the HiMu group (yellow) forming broad positive correlations from 
low to high 206Pb/204Pb (∼18.6-∼19.1).

4.1. Sediments

Subducted sediment compositions in the Cretaceous are best 
represented by deposits in the current Eastern Mediterranean, 
which overlie remnants of Jurassic-Triassic Tethyan ocean crust 
(Klaver et al., 2015) and are likely to have a similar provenance. 
An average of these sediments currently has 206Pb/204Pb ∼ 18.9, 
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Fig. 5. Pb isotopes of Troodos volcanics categorised by 207Pb/206Pbt = 91. Colour coding as for Fig. 2. (a & b) 206Pb/204Pb–�207Pb, (c & d) 206Pb/204Pb–�208Pb, (e) 
�207Pb–�208Pb. (a, c & e) Show fields for: Atlantic MORB and Indian MORB containing >75% of data from Tl-spike or double spike analyses compiled after Meyzen et 
al. (2007); Mediterranean sediments analysed via double spike (Klaver et al., 2015; Rodrigo-Gamiz et al., 2015); North African HiMu plumes. (b & d) Show average values 
for: Atlantic/Pacific MORB & Indian MORB compiled after Meyzen et al. (2007); Oman Triassic MORB (Lapierre et al., 2004); Gulf of Aden (Schilling et al., 1992); Madeira 
(Geldmacher and Hoernle, 2000; Geldmacher et al., 2006), Afar (Deniel et al., 1994; Rooney et al., 2012), Canary (Taylor et al., 2020), Etna (Nuccio et al., 2008); enriched Ma-
monia volcanics (Lapierre et al., 2007); Mamonia plagioclase separate (this study). Component isotope data listed in Supplementary data Table S1. (b & d) Show modelled 
trajectories for melting of variably-depleted mantle, metasomatised with four different hybrid fluids –further details of the modelling in the text.
�207Pb ∼ 15 and �208Pb ∼ 50 (18.66, 16.3 and 60 respectively 
at t = 91 Ma). Sediments of this composition have the potential 
to be a high �207Pb and �208Pb subduction component, par-
ticularly given the similarity between the Pb isotope ratios of 
the Aegean arc (Klaver et al., 2016) and the Troodos ophiolite. 
87Sr/86Sr of Mediterranean sediments is 0.708–0.717 at 91 Ma, and 
hence could generate the high and variable ratios of the Troodos 
lavas.
7

4.2. Igneous ocean crust

Constraints on the nature and composition of the subduct-
ing igneous crust can be gained from ophiolites along the length 
of the Tethyan suture. Some are thought to represent obducted 
Neo-Tethyan spreading centre crust, or remnants of back-arc 
or marginal basins. Generally these ophiolites have 206Pb/204Pb 
18.0–18.5 (Chauvet et al., 2011) and have N-MORB characteris-
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tics. It has been hypothesised based on Pb–Nd isotopes that such 
ophiolites indicate the Tethys ocean crust was generated from 
what today is the Indian Ocean mantle domain (Mahoney et al., 
1998; Zhang et al., 2005). Triassic MORB-like lavas found adja-
cent to Oman (Lapierre et al., 2004) could represent stranded 
Tethyan crust, and have Pb isotope systematics (206Pb/204Pb ∼
18.4; �207Pb ∼ 3; �208Pb ∼ 36 at t = 91 Ma; Fig. 5b and 5c) 
that are roughly equivalent to Indian MORB at that time. Such 
compositions are also similar to Indian MORB in the Gulf of Aden 
(Schilling et al., 1992) away from the influence of the Afar plume 
(Fig. 5b and 5c). Atlantic-type MORB crust could also have been in-
volved in the Troodos system, with Southern European ophiolites 
(e.g. Albania) suggestive of North Atlantic compositions (Zhang et 
al., 2005). Fields encompassing >80% of Atlantic and Indian MORB 
(translated to 91 Ma) are shown on Fig. 5a and 5c, and average 
Atlantic and Indian MORB values are shown on Fig. 5b and 5d. 
Strontium isotopes of the subducted ocean crust are more difficult 
to constrain, but are likely to be between original igneous values 
of 87Sr/86Sr ∼ 0.7025–0.7030 and hydrothermally altered values 
characterised by the Oman Triassic MORB (0.706 at 91 Ma).

4.3. OIB seamounts

Volcanic seamount chains of ocean island basalt (OIB) composi-
tion are common on many tracts of ocean crust (Haase et al., 2019; 
Koppers et al., 1998). Their influence on subduction-related volcan-
ism is well documented across the western Pacific, and when sub-
ducted wholescale, or as volcaniclastic sediments, can significantly 
influence the composition of arc volcanism (Ishizuka et al., 2006; 
Pearce et al., 1999; Peate and Pearce, 1998; Timm et al., 2011). Like 
the sediments and ocean crust, the seamounts are likely to have 
interacted with hydrothermal systems and consequently can tend 
towards seawater 87Sr/86Sr. Evidence for such material is present 
in the Mamonia Complex and Moni formation to the south of the 
Troodos ophiolite as blocks and clasts of material thought to have 
accreted during collision or collected in the trench during subduc-
tion (Robertson and Xenophontos, 1993). These include depleted 
tholeiitic lavas and OIB tholeiitic and alkaline volcanics thought to 
be Late Triassic in age (∼210 Ma) based on Norian-Carnian fauna 
in associated limestones (Lapierre et al., 2007). Though predomi-
nantly hydrothermally altered, a 238U–206Pb isochron constructed 
from the Mamonia OIB samples (Type 3 & 4; Lapierre et al., 2007), 
gives an age of 204 ± 7 Ma. This indicates the U-Pb systemat-
ics have been consistent since eruption and alteration, and enables 
an estimate of their initial isotope composition (Mamonia average, 
Fig. 5b and 5d). Fresh plagioclase feldspar separated from a Mamo-
nia lava in this study (Mamonia plag, Fig. 5b and 5d) validates the 
Pb isotopic composition from the Lapierre et al. (2007) whole rock 
data. Corrected to 91 Ma this produces a similar high 206Pb/204Pb 
(∼19.6) around the NHRL. Overall, the OIB-like Mamonia lavas are 
isotopically similar HiMu composition to many plume-related vol-
canics found around northern Africa, such as the Canaries, Madeira, 
Etna and Afar. Depleted tholeiitic samples found in Mamonia also 
have a similar HiMu isotopic flavour, but have less radiogenic Pb; 
redolent of ridge basalts influenced by a HiMu plume (Lapierre et 
al., 2007).

4.4. Mantle wedge

The full spreading regime represented by the Troodos supra-
subduction ophiolite is likely to have sourced the bulk of its 
magma from decompression melting of the mantle wedge. Compo-
sitionally, this mantle is characterised by REE patterns of the lavas 
which range from significantly depleted, with sub-chondritic lev-
els of Nd and Gdn/Dyn ∼ 0.7 to less depleted and more “normal” 
MORB-like with 8 times chondrite Nd and Gdn/Dyn ∼ 1. These 
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values are similar to intra-oceanic arc to forearc systems like Izu-
Bonin and Tonga (Falloon et al., 2008; Hickey-Vargas et al., 2018; Li 
et al., 2019), and imply a variable level of depletion or progressive 
melt extraction from the mantle wedge e.g. Cooper et al. (2010); 
Tamura et al. (2007). Isotopically, the wedge is likely to have char-
acteristics similar to MORB, with 143Nd/144Nd(91 Ma) ranging up to 
0.5130, and potentially could originate from the Indian or Atlantic 
mantle domains. It is also possible that the mantle wedge contains 
an OIB-like component, potentially as a metasomatic small melt 
fraction trapped within the depleted MORB matrix (Kostopoulos 
and Murton, 1992).

4.5. Fluid fluxing and interaction with depleted mantle

As a whole, Troodos lavas fall in a roughly triangular Pb iso-
tope array bounded by MORB, sediment and HiMu components 
(Fig. 5). Western Troodos (red symbols; non-HiMu group) form the 
low 206Pb/204Pb side of the triangle, and consequently define a 
line between MORB and sediment. More specifically, the western 
group range between low �208Pb Atlantic MORB and sediment, 
with some samples having �208Pb 20–30 (Fig. 5c). Eastern HiMu 
lavas extend away from the MORB-sediment trend towards HiMu, 
but dominantly lie on a broad trend between Atlantic MORB and a 
point intermediate between sediment and HiMu.

Interaction between potential subduction fluids (or melts) and 
the mantle wedge have been modelled and the results plotted 
on Fig. 5b and 5d. In this modelling the sediment, MORB crust 
(Indian-type) and HiMu OIB slab components are equilibrated with 
fluids at 6 GPa and 900 ◦C using the partitioning values of Kessel et 
al. (2005). Shallower and hotter combinations 4 GPa and 1000 ◦C 
produce similar results, but temperatures <900 ◦C do not repro-
duce the observed high field strength element mobility. These 
components are mixed to form a hybrid “cocktail” fluid, which 
is then equilibrated with variously depleted mantle (1%, 8% and 
16% previous melt extraction) of Atlantic-type. Variably depleted 
mantle is calculated as the residue after aggregate modal fractional 
melting of depleted MORB mantle (Workman and Hart, 2005) with 
no melt retention, using distribution coefficients compiled after 
White (2020). The mantle/fluid volume ratio is estimated as 50 
km3 of mantle wedge equilibrating with 1 km3 of slab which re-
leases 1% fluid, i.e. 5000:1. Final magmas are calculated as an 8% 
aggregate fractional melt of this metasomatised mantle.

Sediment-MORB hybrid fluids added to the variably depleted 
mantle result in linear Pb arrays (Fig. 5b and 5d). Adding fluid with 
a higher proportion of sediment relative to MORB (80:20 instead of 
20:80) contracts the model array towards sediment in accordance 
with the ∼20x more Pb in sediment relative to MORB. When the 
variably depleted mantle is fluxed with hybrid fluid equilibrated 
with HiMu OIB as well as sediment and MORB, the modelled tra-
jectories extend from Atlantic MORB mantle to intermediate points 
between sediment and HiMu OIB; the exact trend dependent on 
the amount of HiMu OIB in the hybrid fluid.

The relationship between mantle depletion and subduction en-
richment is explored further in Fig. 6. Pb isotopes are inferred 
to track the origins of the subduction fluid, so Fig. 6a, 6b, 6c 
and 6d show the variations in 206Pb/204Pb, �207Pb, �208Pb and 
Nb/Zr respectively with Gd/Dy(n) as the index of mantle depletion. 
Western Troodos samples (red; non-HiMu) show slight increases 
in 206Pb/204Pb and �208Pb, and significant increases in �207Pb
with lower Gd/Dy(n). Similarly, Eastern Troodos samples (orange & 
yellow; HiMu) show broad negative correlations between Gd/Dy(n)
and Pb isotopes.

The same modelling systematics used for the Pb–Pb isotopes 
(Fig. 5) are applied to the enrichment-Gd/Dy(n) modelling in Fig. 6. 
A feature of these models is that they use three levels of man-
tle depletion: generated by 1%, 8% and 16% prior melt extraction. 
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Fig. 6. (a–d) Pb isotopes and Nb/Zr vs Gd/Dy(n) (e & f) �207Pb and 143Nd/144Nd vs. Nb/Pb. Colour coding as for Fig. 2; modelling parameters as Fig. 5 and text. Indicative 
fields for fluid components and the variably depleted mantle wedge are shown.
9
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Fig. 7. Distribution of Th/Nb variation across the Troodos ophiolite. Th/Nb partitioned arbitrarily, with ratios <0.15 taken to distinguish high-Nb HiMu lavas.
The 1% depletion having a composition similar to a MORB source, 
and the 16% equivalent to a highly depleted MORB source with 
Gd/Dy(n) ∼ 0.6. So each model in Fig. 6 simulates melting of the 
three different mantle compositions with a particular hybrid fluid. 
These models show that melts generated by mantle wedge – hy-
brid fluid interaction provide a reasonable match for the variations 
observed in Western and Eastern Troodos.

Compositions of the likely mantle wedge and individual sub-
duction fluid components are also shown on Fig. 6. These fluid 
components are shown indicatively, as they are likely to have 
Gd/Dy(n) > 1.4. What is clear from the observed sample trends 
and model trajectories in Fig. 6 is that they do not extend on sim-
ple mixing parabola between the MORB mantle wedge and these 
fluids. Instead, each trajectory appears to represent similar fluid 
volumes and concentrations added to variably depleted mantle. 
As the fluid contains essentially no Gd or Dy, these elements are 
sourced from the mantle wedge, whereas the Pb is predominantly 
introduced by the fluid. Interestingly, Nb/Zr is also negatively cor-
related with Gd/Dy(n) (Fig. 6d), and by association correlates pos-
itively with �207Pb. This suggests that Nb is enriched relative to 
Zr with the addition of sediment-dominated fluid or melt, but also 
particularly enriched by the HiMu OIB-rich fluid. Such fluid en-
richment of high-field strength elements relative to REE in arcs 
has been recognised by a number of studies, e.g. Woodhead et al. 
(2011). Fluids at 6 MPa and 900 ◦C in equilibrium with OIB have 
∼28 ppm Nb, whereas the sediment and MORB fluids have 6 and 
1 ppm respectively, which is consistent with the particularly high 
Nb, Nb/Zr and low Th/Nb found in the Eastern Troodos HiMu lavas.

Enrichment of Nb via subduction fluid is explored further in 
Fig. 6d and 6e. Non-HiMu have a variable Nb/Pb in the lavas with 
lower �207Pb (<∼8) and higher 143Nd/144Nd (>0.51287), but have 
consistent Nb/Pb as �207Pb increases and 143Nd/144Nd decreases. 
This indicates that increasing input of sediment-dominated fluid 
results in a synchronous and proportional enrichment in Nb, Pb 
and Nd. In contrast, the HiMu eastern lavas show consistent or 
increasing Nb/Pb with increasing �207Pb and slightly decreasing 
143Nd/144Nd. An implication is that increased addition of their hy-
brid fluid produces a greater enrichment in Nb, which is in line 
with the mixing models involving variable proportions of HiMu in 
the hybrid fluid. Greater enrichment of Nb in the HiMu-influenced 
lavas is observed to match the spatial variation of HiMu Pb iso-
topes. Fig. 7 shows the variation in Th/Nb across Troodos, with 
low ratios dominating the south east and south of the ophiolite. 
This parameter lacks the finesse of the Pb isotopic discrimination, 
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however, it does show that low Th/Nb is present in both highly de-
pleted and less depleted samples (e.g. Fig. 4) across eastern Troo-
dos.

A key feature we observe in the Troodos lavas is the negative 
correlation between Gd/Dy(n) and Pb isotopes (Fig. 6a-c). It is pos-
sible that adding more fluid would increase the degree of melting 
and hence lower Gd/Dy(n) (Taylor and Nesbitt, 1988), but this is not 
consistent with the fact that Pb and other fluid mobile elements 
have similar abundances in samples with low and high Gd/Dy(n). 
Consistency in the concentration of elements introduced by fluids, 
versus elements marking variable mantle depletion is explored fur-
ther in Fig. 8. This shows pairs of samples, with equivalent MREE 
depletion, but with higher- and lower-fluid enrichment: Fig. 8a 
showing a sample pair from the western (non-HiMu) area and 
Fig. 8b a pair from eastern (HiMu) area. A less depleted sample 
from each area is also shown. Notably, the less depleted and de-
pleted samples have similar levels of enrichment in the LREE, Pb 
and highly incompatible elements. High-fluid and low-fluid pairs 
in each area show amplification of Pb, Nb, Th, U and the low field 
strength elements, shown by the % increase columns in the up-
per section of each plot. Key differences between the western and 
eastern areas are the greater Pb enrichment in the west compared 
to the east, and in the stronger Nb enrichment in the east.

A viable explanation is that the mantle wedge contributes sig-
nificantly to the Pb isotope budget of the wedge-fluid mixture. The 
least depleted mantle imparting more Pb (unradiogenic), and the 
most depleted wedge adding relatively little Pb. This is entirely 
possible with high mantle/fluid ratios, i.e. the fluid reacting with 
large mantle volumes during ascent.

Notably, the correlation between mantle depletion and enrich-
ment is present in the western non-HiMu and eastern HiMu lavas. 
Both converge on an unradiogenic Pb (206Pb/204Pb <18.4) in the 
least depleted examples (Fig. 6a), which indicates that the HiMu 
OIB was not an inherent part of the mantle wedge. This is also 
consistent with the apparent Pb isotope mixing trajectories in 
Fig. 5b&d. A MORB-like mantle wedge containing HiMu OIB melt 
or peridotite would extend the Troodos Pb isotope array towards 
sediment from a mixing line between MORB and HiMu OIB; i.e. 
along the NHRL in 206Pb/204Pb–�207Pb (Fig. 5a). As the array ex-
tends between MORB, sediment, and a point intermediate between 
sediment and HiMu OIB, this cannot be the case. On this basis we 
can conclude that the HiMu component is combined with sedi-
ment in the slab-derived hybrid fluid rather than in the mantle 
wedge.
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Fig. 8. (a) Incompatible element concentrations normalised to primitive mantle (Sun and McDonough, 1989) for western lavas: less depleted (sample CY102), high fluid 
(average of samples from Trimiklini and Yerasa, Table S1) low fluid (average of samples from Akamas). (b) Normalised concentrations for eastern lavas: less depleted (sample 
CY138b), high fluid (average of samples CY140, CY141, CY142 & X32a), low fluid (average of samples X84a, X81, CY134a-b-c, CY135). Bar charts above (a) and (b) show the 
relative concentration increase or decrease of elements between the high-fluid and low fluid-samples.
An important point about the trends produced by the west-
ern and eastern regions in Figs. 5 and 6 is that they converge 
at 206Pb/204Pb ∼ 18.33, �207Pb ∼ 1, �208Pb ∼ 15 and Gd/Dy(n)

∼ 1, which is indicative of a common mantle wedge component 
of Atlantic rather than Indian characteristics. However, it is ob-
served in Fig. 6c that there is a large range in �208Pb (21–49) in 
non-HiMu and HiMu samples with Gd/Dy(n) ∼ 1. This dispersion 
to high �208Pb is more clearly displayed in the �207Pb–�208Pb
plot presented in Fig. 5e. In this “double-delta” projection, the At-
lantic MORB, HiMu and sediment components are all co-linear, 
but Indian MORB lies to high �208Pb. Both the eastern HiMu and 
western non-HiMu groups form arrays extending broadly along the 
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sediment-HiMu-Atlantic alignment, but both groups also show a 
dispersion towards Indian MORB compositions. As this dispersion 
is independent of the mantle depletion index Gd/Dy(n), and is con-
sistent with the Indian MORB-rich model trajectories in Figs. 5
and 6, it points to this being a signature of subducted MORB 
crust. Overall, the inference is that Indian-type crust was sub-
ducted beneath Atlantic-type mantle. This is the inverse of the 
situation in the Western Pacific Izu-Bonin-Mariana system where 
Pacific/Atlantic-type crust is subducted beneath Indian-type mantle 
wedge (Ishizuka et al., 2020; Li et al., 2019). As such, the Troodos 
subduction zone marked the Cretaceous boundary between the In-
dian and Atlantic mantle domains.
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Fig. 9. Schematic tectonic reconstruction showing the evolution of spreading in the Troodos ophiolite with respect to the influence of HiMu subduction fluid. (a) Initial 
spreading at the Solea axis (non-HiMu) and at an axis south and east of the South Troodos Transform Fault (HiMu). (b) Spreading jumps from the Solea to Larnaca axis, 
generating HiMu crust north of the transform. (c) Schematic section showing spatially constrained seamount chain subduction beneath the then southern section of the 
Troodos Basin. Height of the block is nominally 80 km.
4.6. Seamount subduction

Observed changes in isotopic composition across the ophiolite 
are indicative of differences in the type of subducted material. To 
assess whether these reflect a temporal evolution of the slab, or 
are a function of the position of spreading segments relative to 
the subducting heterogeneity, the chemical observations are set in 
a tectonic framework in Fig. 9. As outlined above, sinistral ridge-
offset along the South Troodos transform displaced a western ridge 
located north of the fault from a contemporaneous eastern ridge 
in the south (Fig. 9a). Crust developed as non-HiMu at the west-
ern ridge and HiMu along the eastern ridge, with the dextral slip 
resulting in the juxtaposition of the magma types across the trans-
form. The postulated subsequent jump of the western ridge (Solea) 
to the east (Larnaca) initiated the production of HiMu crust at this 
new ridge location north of the fault (Fig. 9b). Therefore, it is log-
ical that the HiMu zone of influence was a spatial phenomenon 
rather than a temporal evolution, and was caused by heterogene-
ity in the subducting crust to the southeast that persisted during 
the lifespan of Troodos spreading.

HiMu-like material on the east of the subducting plate is most 
easily reconciled as an ocean island seamount or seamount chain 
transported on the Neo-Tethyan oceanic crust. It is likely that this 
volcanic chain developed from a HiMu mantle plume that im-
pacted close to the ridge axis of Neo-Tethys. Given the age of 
the HiMu Mamonia lavas, it is likely that this chain formed about 
110 Ma before reaching the subduction zone. Restriction of the 
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seamount signature to the eastern side of the ophiolite indicates 
that the chain subducted along a flow-line beneath this part of 
the Troodos fore-arc basin (Fig. 9c). It is unknown as to whether 
this was a complete seamount or the “feather-edge” in the form 
of seamount-derived volcaniclastic sediments intercalated within a 
pelagic sedimentary sequence. Such mixed HiMu-pelagic sedimen-
tary sequences are a feature of the Pacific plate outboard of the 
Mariana arc (Hauff et al., 2003; Plank and Langmuir, 1998), while 
their subducted counterparts are considered to be a cause of the 
compositional variations along the active Izu-Bonin-Mariana arcs 
(Freymuth et al., 2015; Ishizuka et al., 2006; Kelley et al., 2003; 
Plank et al., 2007).

A foundered block which potentially represents ocean crust 
and/or a seamount accreted to the Troodos crust is found locked 
on the north side of the Cyprus trench to the southeast of the 
island (Welford et al., 2015a). This is the Hecataeus Rise: a ∼50 
km diameter block of 14–20 km thick crust with the velocity 
structure of thickened oceanic lithosphere (Welford et al., 2015a), 
which distinguishes it from the micro-continental block of the Er-
atosthenes seamount found to the south of the destructive plate 
boundary (Welford et al., 2015b). Hecataeus is capped by a simi-
lar 7 km-thick Paleogene-Neogene sedimentary sequence (Symeou 
et al., 2018) similar to the deposits found on the southern flank 
of Troodos. Late Miocene deformation along the Yerasa lineament 
on Cyprus is observed to continue across Hecataeus (McCallum et 
al., 1993). This lineament is observed on land to be a fault zone 
separating folded Eocene-Miocene sediments from the Cretaceous 
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Troodos ophiolite and overlying Moni melange. Extending this re-
lationship offshore, and considering the chaotic seismic reflection 
characteristics of the pre-Eocene units, Reiche and Hubscher (2015)
suggest that the Hecataeus basement could be capped by similar 
melange material.

5. Conclusions

A chemical transformation is identified across the Troodos 
crust, which reflects a spatial change in the Neo-Tethyan slab that 
subducted beneath the Troodos Basin. Pelagic/carbonate sediments 
overlying MORB were subducted beneath the west of the ophio-
lite, whereas in the east and south, sediment was combined with 
a high 206Pb/204Pb component, similar to HiMu mantle plumes 
distributed around northern Africa. This switch in character is pro-
posed to represent a progressive change in the location of supra-
subduction spreading relative to the path of a seamount chain 
colliding with, and subducting beneath, the Troodos trench. The 
Hecataeus Rise, located to the current southeast of Cyprus, is a 
candidate to be a foundered relic of this seamount chain, locked in 
the subduction zone.

Both the sediment-rich and HiMu-rich components impart their 
Pb isotope signature via subduction fluid fluxing of the mantle 
wedge. While Pb enrichment from subduction is relatively consis-
tent, the Pb isotope composition of lavas generally correlates with 
the degree of melt depletion their mantle source had experienced. 
This indicates that the mantle wedge also significantly contributed 
to the Pb isotope signature, imparting its Atlantic/Pacific mantle 
characteristics. Isotopic evidence also points to the involvement of 
subducted ocean crust, which imparted a signature consistent with 
an origin at a spreading centre with Indian Ocean mantle charac-
teristics.

Lavas from both the sediment- and HiMu-influenced domains 
also show a variation in the amount of subduction fluid compo-
nent regardless of depletion. More fluid-enriched samples shifting 
Pb and Nd isotope compositions towards their appropriate domain 
signatures. However, along with the enrichment of Rb, Ba, K, Th 
and U, the greater addition of sediment and HiMu fluids also en-
hances Nb: an effect most apparent in the eastern HiMu-domain 
which is spatially characterised by low Th/Nb. This can be mod-
elled to originate from the significantly higher Nb found in HiMu 
lavas relative to sediments on the subducted slab.
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