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UNIVERSITY OF SOUTHAMPTON
ABSTRACT

FACULTY OF ENGINEERING AND PHYSICAL SCIENCES
SCHOOL OF ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy

Machine Learning for the Detection of Archaeological Sites from Remote

Sensor Data

by Iris Kramer

Deep learning for automated detection of archaeological sites (objects) on remote sensing
data is a highly novel field. The key challenge of this field is in the inherent nature of the
objects; they occur in small numbers, are sparsely located and feature a unique pattern
on the different remote sensing data modalities. To this extent we identify three main
contributions, (1) to include multi-sensor data, (2) to optimise Convolutional Neural
Networks (CNNs) for small datasets and, (3) to optimise detection of the sparsely located
objects. Our results demonstrate that deep learning can be successfully applied to detect
archaeological sites on each of the individual remote sensing images, that our efforts to
optimise CNNs for small datasets are successful, and that we have discovered new sites
that were missed in a manual data analysis and field survey. We have optimised a
workflow for the detection of new archaeological sites. We also share the first large-scale
publicly available dataset archaeological image classification and object detection along

with benchmarks of the most promising models that we applied in this thesis.
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Chapter 1

Introduction

An essential aspect of archaeology is the protection of sites from looters, extensive agri-
culture, and erosion. Under the constant threat of destruction, it is of utmost importance
that sites are located so that they can be monitored and protected. This is mostly done
by archaeologists on the ground or through manual analysis of remote sensing data such
as aerial images or Light Detection and Ranging (LiDAR) derived elevation models.
This task is time consuming and requires highly specialised and experienced people and

would thus immensely benefit from automation.

The recent explosion in the availability of high resolution imagery and in the variety
of new remote sensors underscores the need for automated methods. The increased
resolution has the improved the detail that can be recorded but has also increased the
amount of time that is spend per km?. Likewise the number of sensors that are available
for the detection of archaeology has increased the and brought a realisation that there

is more data than is humanly possible to assess Bennett et al. (2014).

Automation of archaeological objects in remote sensing data is highly challenging as
some of the most ‘overwritten’ signatures of the landscape need to be extracted from
petabytes of imagery. Despite previous attempts, researchers have not been able to de-
velop a method that is able to generalize well across archaeological objects, geographical
locations and remote sensing data sets. In order to generate a satisfactory method, it is
argued in this thesis that only a machine learning approach can reach the desired gener-
ality. Even though traditional machine learning required extensive feature engineering,
recent developments have moved towards automated feature learning. Deep learning
using Convolutional Neural Networks (CNNs) have been particularly successful in this

space and are therefore the main focus of this research.

In machine learning, the goal is to label image pixels into one or several classes. Image
classification can be binary where images are given a single object class or groups of pixels
within an image can be classified into different classes with semantic segmentation or

object detection.



2 Chapter 1 Introduction

The aim of this thesis is to discover approaches utilising deep learning that can be
applied to the detection of archaeology. In chapter 2 we review the challenges that are
be prevalent in the detection of archaeology on different remote sensing resources and

research and implement solutions. We have highlighted three main challenges:

e Small datasets: One of the essential requirements for deep learning is a suffi-
ciently large training dataset of example objects. Our main concern in the domain
of archaeological object detection is that there are often only a few objects known
of a specific type, and these objects are sparsely distributed throughout the land-
scape. Our initial focus will therefore be on optimising different aspects of deep

learning for small datasets, and part of this is to include domain knowledge.

e Non-conventional data format: Archaeological sites can be detected using
different types of remote sensing data including multi-spectral aerial imagery and
LiDAR derived elevation models. The information captured in the signal of these
individual sensors could be leveraged with an integrated deep learning approach

using all of the data modalities.

e Deep learning architectures: In our experiments, we have specifically chosen
networks and parameters, mainly on regularisation and transfer learning, which
are known to work well with small datasets. We also compare the performance of
the networks when they are trained on individual remote sensing images, and with

those trained on images of stacked multi-sensor data.

In chapter 3 we present the results from our initial experiments to alleviate the high-
lighted challenges. We focus on the New Forest National Park and the detection of
barrows which are well known funerary sites that are found across the world. Our

datasets include LiDAR and multi-spectral aerial imagery.

In chapter 4 we further address the challenges that we were not able to overcome in
the previous chapter. This case study is focussed on the Isle of Arran in Scotland, uses
only LiDAR data and looks at round houses, shieling huts and small cairns. In the case
study we use datasets from Historic Environment Scotland (HES) and we incorporate

feedback on our results to optimise the approach.

In chapter 5 we discuss best practise that we have gathered from literature and our own
experience. We discuss the most important elements of a successful workflow ranging
from the creation of a dataset for deep learning to the selection of CNNs and evaluation
metrics that suit a specific dataset. We finally discuss the most promising technology
innovations that we hope will be used in future research projects for the detection of

archaeology on remote sensing data.

The main contribution of this thesis is a systematic workflow that encourages a deep

understanding of the dataset and applied methods. It also addresses the challenges
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that we have identified. The framework starts with optimising an image classification
methods and uses the optimised parameters in an object detection approach. In addi-
tion, we release a benchmark dataset and share our code to encourage comparison and

improvements in new approaches.

The additional goal was to encourage the uptake of automation in archaeology and
increase a positive outlook to new approaches. This PhD was designed to follow up
the MSc research from Kramer (2015). Since the start of this PhD, the automation
discussion has positively changed, highlighting particularly the use of machine learn-
ing for automated detection of archaeological sites. In part this shift in mindset has
been strengthened by the organisation of events by the community surrounding au-
tomation. The core of the discussion has taken place at the largest computer conference
in our field, the international conference for computer applications and quantitative
methods in archaeology (CAA). For example, at the recurring session run by Arianna
Traviglia and Dave Cowley on automation in remote sensing: “Computer vision vs hu-
man perception in remote sensing image analysis: time to move on.” (Traviglia and
Lambers (2016) at CAA-2016), “Automation is here to stay! The hitch-hiker’s guide
to automated object detection and image processing in remote sensing” (Traviglia and
Lambers (2017) at CAA-2017) and “Setting the automation agenda for remote sensing:
learning to see through a computer?” (Traviglia and Lambers (2018) at CAA-2018).
In contribution to this discussion I have presented various papers (Kramer (2016) (for
which I won best paper award), Kramer (2017), Kramer (2018b)) and organised a work-
shop on “The basics of deep learning for archaeological site detection on remote sensor
data” at CAA-2018 (Kramer (2018a)) teaching participants the basics of the approach
presented in chapter 4. At CAA-2019, in contribution to the wider discussion on appli-
cability of Al to archaeological applications I co-organised a session called “Challenges
and opportunities of machine learning in archaeological research” together with Wouter
Verschoof-Van Der Vaart and Alex Brandsen (Kramer et al., 2019). Based on its 2019
success we will organise this session “Machine learning in archaeological research; chal-
lenges and opportunities” at CAA-2021 with Wouter Verschoof-van der Vaart, Alex
Brandsen, Hector Orengo, Arnau Garcia-Molsosa and Francesc Conesa. Aside from the
CAA, several other events have taken place including a workshop “Tracing the Past:
Combining Citizen Science and Data Science” organised by Karsten Lambers and co-
hosted by Dave Cowley held in July 2018 at the Lorentz Center, Leiden University. In
November 2019, I also co-organised a two day international conference and workshop for
Machine Learning in Archaeology in Rome together with Christopher Stewart (Euro-
pean Space Agency) and Peter B. Campbell (British School at Rome) (Campbell et al.,
2019). It is in large part thanks to the discussions held at these various meetings that
the automation discussion has shifted away from discussing the potential of automation
towards researchers actively working together with their computer science departments

to apply state-of-the-art deep learning approaches to archaeological case studies.






Chapter 2

Aerial Archaeology and

Automation

In this chapter we discuss the history of: how new archaeological sites are manually
detected with the help of airborne techniques (section 2.2); what limits manual detection
(section 2.3); how automated methods have been applied in archaeology (section 2.4);
and, how deep learning can improve current methods (section 2.5). We critically review
the key issues need to be addressed to apply deep learning to archaeological site detection
and finish with what we aim to be an inspirational discussion of relevant fields that have

similar issues when applying deep learning (section 2.6).

2.1 A Brief History of Aerial Archaeology

Past human activity has left its fingerprint on the landscape. This impression is some-
times observed as standing remains like Stonehenge or Carnac but is most often buried
underground. Traditionally excavation is the main approach to studying such remains,
but excavations alone do not provide insights into the context of ancient landscapes.
Some archaeological features cannot be seen, or fully appreciated, without an aerial per-
spective (Crawford, 1923). The rise of aerial archaeology brought about the study of
landscape archaeology, in which archaeologists disentangle the hierarchies of land use in
different periods and find patterns that were previously unknown. Archaeology was one
of the first disciplines to use remote sensing in scientific investigations (Barber, 2011).
Aerial archaeology has allowed archaeologists to discover “about what lies beyond the
site, or the edge of the excavation” (Johnson, 2007). Filling the gaps between the sites
providing valuable information about human exploitation of the environment. Country-
wide research has especially added to such insights. In the UK, aerial archaeology was
pioneered by O. Crawford who worked for the national mapping agency, the Ordnance

Survey, where he became its first archaeology officer in 1920. Today Historic England

5
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holds the national archive of aerial archaeology and continually adds to it with their

National Mapping Programme.

2.2 Aerial Archaeology

Buried archaeological features (hereafter called objects to avoid confusion with the com-
puter science use of feature) in the landscape can be recognised as slight elevation dif-
ferences (earthwork or shallow buried walls) or through discolourations of the soil or
vegetation revealing different moisture content or growth habits to their surrounding,
undisturbed, soil. In this section we will discuss two different sensors and how we inter-

pret these signs of archaeology.

2.2.1 Aerial Photography

The visual appearance of preserved archaeological sites can be captured from aerial
photographs. The imagery is taken by sensors that measure visible light, this includes
sensors that measure other kinds of electromagnetic radiation, such as infrared and hy-
perspectral sensors. Mainly these sites are apparent through the textures or shadows of
earthworks, soil colouring and the difference in stress and enhanced crop growth over
buried archaeological remains (Figure 2.1). The appearance of the site is highly de-
pendent on the environmental factors such geology, crop type, soil moisture, time of
year and even time of day. These extraordinary and sometimes serendipitous circum-
stances require aerial archaeology experts to have a deep understanding of the local
circumstances. It also means that they need to fly in very specific time frames or, when
looking at general purpose aerial/satellite imagery, they need to reflect on the envi-
ronmental conditions at the time the image was captured. Because of these specific
circumstances an image from a single time frame rarely tells the full story and experts
try to look for images for the same field from multiple years and at multiple times of the
year, mainly to account for crop-rotation. However, this practice is very costly and only
really undertaken in commercial archaeology where high accuracy over a single field is

necessary and worth the extra investment.

The environmental factors that reveal archaeology, such as soil moisture and crop type
and crop stress, have a disproportionate effect on the spectrum beyond visible light.
Infrared and hyperspectral sensors can detect subtle vegetation characteristics (e.g.
stressed versus healthy plants) and soil properties (e.g. mineral composition) to a much

higher extent than any standard photographic method (Traviglia et al., 2006).
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FIGURE 2.1: A schematic timeline of images demonstrating how archaeology can result
in cropmarks. Reproduced from HistoricEngland (2018)

2.2.2 Airborne LiDAR

Different from aerial imagery LiDAR or Airborne Laser Scanning (ALS) sensors do not
measure electromagnetic radiation but instead measures the distance to objects from
the sensor. Rather than two dimensional data the LiDAR sensor captures 3D (XYZ)
coordinates. During an airborne LiDAR survey the land surface is scanned from an
aircraft by a high frequency pulsed Infrared laser beam which records the locations of
each ground/surface hit and calculates its elevation based on the time it takes for a pulse
to return to the transmitter (Hyyppa et al., 2009). Every laser beam may be returned
multiple times and could, depending on the track towards the surface, return on several
branches of a tree before it returns the terrain elevation (Figure 2.2). When using a
full-waveform recording scanner with a high point density this can pierce through dense
forest canopy and reveal hidden archaeological landscapes (Doneus et al., 2008; Sittler,
2004).

The resulting data, also called a point cloud, cannot be read by humans without further
processing. The raw XYZ point data is generally interpolated to generate a rasterized
Digital Elevation Model (DEM) from all the returned points or Digital Terrain Model
(DTM) from only the last return. In this process some potential key information could
be lost or image artefacts can be created which will perpetuate in further processing
and analysis. The resulting greyscale DTM will reveal the general terrain trends. This
image stretches over large height difference and displays many shades of grey, often
in 16 bit images to retain the terrain detail. However, humans can only distinguish
between about 30 shades of grey which means they can interpret the difference between
an area at sea level and a hilltop but not the local bomb craters in both areas. In
archaeology the immediate neighbouring pixels of a bomb crater are more important than
distant pixels. Further image processing where meaningful pixels are grouped together
by image transformations including smoothing, sharpening, contrasting, stretching is
required to highlight local archaeological earthworks (Figure 2.3)). There are several
such visualisations, also called ‘derivatives’, developed for archaeology. For example,
Local Relief Model (LRM) emphasises small-scale features by extracting local positive

and negative relief variations (Hesse, 2010). In this process a low-pass filter is applied
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to the DTM to approximate the large-scale landforms. The neighbourhood size of the
low pass filter determines the scale of features that will be visible in the LRM. Yet,
archaeological objects can be of varying size and height which means that this process
can result in the removal of some archaeological earthworks (Doneus, 2013). Therefore,
it is advised to use multiple derivatives which requires more interpretation time from
the expert. To improve the speed and accuracy of manual analysis, Kokalj and Somrak
(2019) propose the combination or fusion of multiple visualisations through different

blend modes (e.g. overlay, multiply).

Ranging Unit

signal power discrete echo full-waveform

Emltted Ulse determination digitisation
p '<

~
~ 3
==

1
/l
1

A
Tree echo

o

aw
awn
awn

A
Scrub echo
Terrain echo

FIGURE 2.2: Process of a LIDAR survey capturing elevation data (reproduced from
Doneus et al. (2008)

2.3 Need for Automation

Whereas in the 1990s aerial archaeologists had just a few aerial images in archives to
work with, in 2020 there are petabytes of satellite imagery available on top of yearly
national coverage of aerial imagery and frequent updates to LiIDAR archives. Somewhere
in this data, all of the archaeological sites are captured; we just have not yet found a
way to extract it. The increase in data has encouraged many national and county
heritage agencies to launch projects for systematic large scale mapping. Historic England
undertook the National Mapping Programme (NMP) over 20 years and they were able
to cover approximately 1 km? per person per day, looking mainly at aerial photography

(Bewley, 2003). In Baden-Wiirttemberg (Germany) a single expert was appointed to
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FIGURE 2.3: Interpolated point data in the area of Savernake, Wiltshire, UK, showing
(A) the forest canopy and (B) revealed elevation differences on the forest floor below
the canopy. Reproduced from HistoricEngland (2018b))

analyse only LiDAR data and was able to cover 35,000 km in six years (Hesse, 2013).
Historic Environment Scotland has also experimented with efficient national mapping
through their Rapid Archaeology Mapping Programme (RAMP) in which they used the
Isle of Arran as a representative case study to later extrapolate to the rest of the country
(Banaszek et al., 2018). They were able to analyse 30 km? per person per day on average
using only LiDAR data. Whereas (Somrak et al., 2020) noted that it took 8 man-months

to annotate 130 km? of Mayan archaeology using LiDAR. derived visualisation.

Despite significant efforts to speed up and systematise manual analysis there will always
be more data then a manual assessment can economically look at. In many scientific
disciplines this realisation was made early and has fuelled research into automation
approaches. In archaeology, automation has long been a controversial issue as clearly
highlighted by Parcak (2009) “Why does there even need to be an automated process
for satellite archaeology?”. There is a fear that human experts would be replaced with
computer vision in archaeological prospection (Casana, 2014). Most importantly au-
tomation is meant to become another tool, and not a replacement, for archaeologists.
It can be used to quickly create a baseline dataset of the features of interest over large
geographical areas, especially for studying high-density off-site features with relatively
uniform appearance (Soroush et al., 2020). The baseline of common, easily detectable
sites can further be used to infer the existence and preservation of more unique sites
that are difficult to detect in specific areas which can further be used in policy making or
grant application to research an area. This is especially important for large scale map-
ping and monitoring of ancient landscapes that are inaccessible for fieldwork, threatened,
or permanently destroyed. Globally there are hundreds of thousands, if not millions, of

undiscovered ancient sites. If these site locations are unknown they remain at risk from
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development, warfare, intensive agriculture and climate change. As a profession, we are
responsible for saving the archaeological record as best as we possibly can (Institute for
Archaeologists’ code of conduct). By accelerating the detection rate with automation

we will be able to save more of our invaluable human past.

Aside from the speed in site detection, there are several arguments that could favour
computational over human interpretation. Humans are biased by their previous expe-
rience and their interest. A compelling research on bias within aerial archaeologists
has been presented by Cowley (2016). Cowley mainly critiques the traditional observer
directed approach where aerial archaeologists observe the landscape from an aircraft
around the time crop marking should be visible. For example, in Scotland aerial recon-
naissance causes a disparity between known sites in highly fertile arable land and areas
where soil types such as heavy clay and poor draining prevents obvious crop marking.
Aerial archaeologists expected to find less sites on the poor soils and chose to fly over the
attractive areas with beautiful crop marks and re-recording what was already known.
He also reflects on experience and notes that an expert will not see what they have
not been trained to see; observation doesn’t always lead to an interpretation. Another
important observation in archaeology is that many of the same sites have different ter-
minology and sometimes even interpretation of their ancient use which causes confusion
and wrong interpretation of patterns. By training a machine with data gathered by a
mix of experts a more averaged expert will arise. The confusion between the same sites
that have different terminology will persist but the critical expert working with the Al
should be alerted because of the lower Al performance on a group of similar sites and
they can correct such irregularities. Finally there is an argument to be made on the
reproducibility of the task when using machine learning. Humans are black boxes and
it is difficult to understand what an expert knows and what not. Machines can be black
boxes as well, but because they will represent the average of the data that they were

trained on, they will be an average of different experts.

Aerial archaeology is also highly subjective to the data choices that the expert makes.
Humans can only see the visual spectrum of red, green and blue channels. Multi and
hyper spectral channels are not easily representable in a human readable form. Today,
these bands are visualised in greyscale, or by swapping it with a visual band, or by trans-
formations of different bands combinations into so called vegetation indexes. The choice
of visualisation biases the process and undoubtedly some integral information is lost.
Automation approaches could reduce this bias as computers can effectively infinitely
stack channels and derive the key information from each channel. When using LiDAR
data in an archaeological context the expert has to choose the parameters for the ini-
tial point cloud processing, DTM created and the choice of visualisation that highlights
the archaeology. This process creates manual bias and also means that inevitably some

information is lost. This could be alleviated with automation because computers can
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FIGURE 2.4: Images from different domains that demonstrate the need for a system-
atic, automated, archaeological detection system on multi-spectral aerial observation
data.(A) RGB aerial observation of round archaeological structure at different levels of
visibility under different crops. (B) Aerial photography patterns of flying. (C) Map of
similar sights using different terminology. Images reproduced from Cowley (2016)

process the single channel numeric grids of height data directly. It is even possible to

apply machine learning on the raw point cloud data, as will be discussed in section.

Where LiDAR data is a highly reliable source for detecting earthworks in natural terrain,
in agricultural terrain these patterns are ploughed out which means that aerial/satellite
imagery is the only usable resource. As previously discussed in subsection 2.2.1, aerial
archaeologists often describe their finds on aerial photography as serendipitous. Most
sites are found on aerial photography during a summer dry spell when the crop is
ripening. Yet there are many other times of year that archaeology can be found in the
early/late crops as well as soil marks after ploughing and even with shadow marks in
the snow. All of this knowledge reveals that the quantity of time frames matter as well
as quality for their selection. It currently takes a very experienced expert to understand

the relationship between local geography and archaeological sites. Yet expert knowledge
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can be used to train machine learning algorithms to find the right time frames and to

do it tirelessly for many years.

All the information from the different data sources and different time frames can be
infinitely stacked by a machine which can then calculate the cumulative accuracy of all
the signals and extract the most insightful data points to feedback to the human expert

for verification. This isn’t humanly possible, but with machine learning it is.

2.4 The Current State of Automation Research

We have already discussed different approaches for image processing that can be applied
to visually enhance aerial imagery and LiDAR data. The next level of automation are
knowledge based algorithms that can be used for object detection and include explicit
feature selection. In archaeology we have seen several specialised algorithms for shape
detection (Zingman et al., 2016), template matching (de Boer, 2007; Trier and Pilo,
2012; Trier et al., 2015), and rule based pixel or Object Based Image Analysis (OBIA)
(de Laet et al., 2007). These feature engineering techniques rely heavily on the selection
of image processing techniques. Kramer (2015) in her Masters thesis reviewed the history
of such techniques and their applicability to archaeology. She also created an approach
to adaptive template matching and OBIA for round barrow detection using the Slope
visualisation of LiDAR data. She concluded that the drawback from knowledge based
approaches is that they aren’t transferable between sensors and objects, and don’t scale
geographically. The lack of scalability in combination with high false positive rates might
also be the reason why automated methods are not generally (re-) used or picked up by
national mapping programmes or commercial archaeology. The recommendation from
this thesis was to start applying deep learning techniques which in other complicated
fields have reached human level accuracy. Since her thesis several other papers have
been published with knowledge based approaches (e.g. Sevara et al., 2016), however,
most automation research has followed this recommendation. An up-to-date review of

knowledge based approaches can be found in Lambers et al. (2019).

2.5 Machine Learning

Different from feature engineering, with deep learning you ultimately want the algorithm
to choose or create the most important features needed for a correct classification. For
a visual understanding of features we have created Figure 2.5 with two different Sobel
kernels that highlight horizontal and vertical edges. The matrix transformations used
in image processing are used in deep learning algorithms like CNNs. Where a filter is
convolved over an image (another matrix of pixel values) to detect features such as edges

or colour intensities which are important for a correct classification.
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FIGURE 2.5: (A) Aerial image of a barrow next to a road in the New Forest ((©Crown

copyright and database rights 2020 Ordnance Survey). (B) 3x3 pixel vertical Sobel

kernel applied to image (A), which highlights vertical lines. (C) 3x3 pixel horizontal

Sobel kernel applied to image (A), which highlights horizontal lines.(A) and (B) created
using Sobel kernels available at [https://setosa.io/ev/image-kernels]

Deep CNNs were first applied to a large dataset by Krizhevsky et al. (2012). They
drastically reduced the state-of-the-art error rate of the ImageNet image classification
competition (Deng et al., 2009) from 26.1% to 15.3%. These CNNs consist of several
layers of which Convolutional, Fully Connected, Rectified Linear Unit (RELU) and
Pooling layers are most important. A convolutional layer consists of a set of learnable
filters. This will output a stack of 2-dimensional activation maps which illustrate the
responses of the learned filter. This is often followed by a RELU layer which is an
activation function that keeps only the positive activations from the convolutions. After
this combination of layers, a pooling layer is used to downsample the spatial size of the
representation to reduce the computational load in the network. In most common CNNs
these three consecutive layers are repeated until the image has been merged spatially to a
small size. This is then finally followed by a fully-connected layer which predicts the final
score for each of the classes. In their architecture, CNNs appear to parallel mammalian
vision by learning filters to perform functions like edge detection at early layers and, at
higher levels, specific patterns which we may recognise as objects or their parts. In a
way, aerial image classification is a more simple task than classifying the general scenes
of ImageNet: it is generally consistent in viewpoint (overhead imagery) and scale (known
ground resolution) which reduces the variations of the object’s appearance and simplifies
the classification task (Mnih, 2013). However, there are many reasons why the detection
of archaeology on aerial imagery is more challenging which should be addressed with

more complex solutions:

e Small datasets; When a model is trained on only a few examples it is at risk of
overfitting to the training data. In this situation the model memorizes the training
samples and does not generalize well to new data. Many real-world problems that
are being solved with machine learning face this issue and thus several techniques

have become available to encourage CNNs to learn more general representations.
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e (Class imbalance; in archaeology we have unbalanced datasets with only a few
examples for each class and globally a lot of background examples against only
a few foreground examples. In machine learning a loss-function minimizes the
model-error. With class imbalance this is solved most simply by classifying all
objects as the majority class (background). A specific loss function that penalises

this should be considered to overcome the issue.

e Noise; Archaeological sites are the most overwritten patterns in the landscape,
every period following another has added more noise which has an affect on the
variability of site appearance and their detectability. Overgrown vegetation, natu-

ral erosion, agricultural activities and in some cases looting should be considered.

e Scale; in archaeology we are looking for small objects with detailed variation in
a large landscape which presents a harder task than separating a woodland area
from agricultural terrain. Undoubtedly this creates a much more complex decision
boundary. Due to the need to learn such highly nonlinear decision boundaries,

highly advanced machine learning approaches are required.

e Low contrast; In high-resolution LiDAR analysis the task is to separate earth-
works from the natural terrain undulation. This is much more challenging than

separating modern roads or buildings from their surroundings.

e Non-conventional data format; Data from LiDAR derived DTMs and (multi-) spec-
tral satellite imagery are often supplied in 16 and 32 bit or float images. For a large
DTM this is important because large continuous areas can span over 256 meter
height difference and is often captured at < 1 metre resolution. When fitting this
data into an 8 bit image you will loose vital detail. An easy solution is to use one
or more of the previously mentioned DTM data visualisations that highlight the
local terrain differences. However, inevitably detail is lost with such visualisations.

Raw DTM processing can be achieved with proper rescaling.

e Changing appearance; the archaeological remains have subtle changes in appear-

ance depending on the geology in different geographical areas.

e Fuzzy site definitions; Finally, archaeological sites are often classified according
to rough rules but show a lot of variance between them (e.g. banjo enclosures or
hillforts). The opposite is true for Roman sites which are often built according to

strict patterns which are similar to modern building practices.

In the following sections we present the known deep learning approaches to image classi-
fication (subsection 2.5.1), object detection (subsection 2.5.2) and object segmentation
(subsection 2.5.3). In image classification a class is predicted for the whole image. In
object detection all objects in an image are given a bounding box and class. In semantic

segmentation all pixels in an image are given a class. The results and key considerations
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from the reviewed papers are summarised in Table 2.2, Table 2.3 and Table 2.4. We
have mainly focused our review on their fundamental approach (Table 2.2) and their
additional efforts to prevent overfitting (Table 2.3). The results Table 2.4 reports on the
true positives, false positives, false negatives, precision, recall and F1 score (precision,
recall and F1 defined in Equation 2.1, Equation 2.2 and Equation 2.3 respectively). Re-
searchers in deep learning will generally try to optimise the trade-off between recall and
precision to get the highest Fl-score. The same table also reports on the number of
foreground and background examples in the validation dataset of image classification.
For object detection and segmentation we report on the area size of the validation area.
This addition is important because a larger area is more prone to have false positives

and it is more impressive when their results are good.

. TP
Precision = W (21)
TP
e — 2.2
Recall TPLFN (2.2)

Precisi
1 < Recall * Precision > (2.3)

Recall + Precision

Where TP = true positive, FP = false positive and FN = false negative.

2.5.1 Image Classification

The first deep learning approach in aerial archaeology was presented by Zingman et al.
(2016) who compared their research of a knowledge based rectangular-shape feature de-
tection algorithm with a CNN approach. Their pre-trained CNN was trained with only
9 real examples (plus 135 augmented examples) and 49584 negative samples. They con-
cluded that their handcrafted features yielded higher performance but recognised that
the actual detection rate of the CNN cannot be reliably estimated due to a very small
number of positive examples. Visually the results were interesting for a first time ap-

proach, the CNN classified images that are conceptually close to rectangles (Figure 2.5).

Another case study with image classification was presented by Trier et al. (2018) (re-
search was presented at a conference in 2016 (Trier et al., 2016)) who used greyscale
DTM (scaled between 0-255) to detect charcoal kilns. They had 375 (0.15 km 2) positive
examples and 10,027 (4 km?) negative locations of lookalike heap objects each cropped
to 101x101 pixels (20.2 m x 20.2 m). It’s interesting that they have chosen a challenging
background class. The approach will show how well it can discriminate between similar
classes, our expectation in such a case would be that the trained CNN would not gener-

alize well to the overall background terrain. For training the image classifier they used
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FIGURE 2.6: Four patches that generated the highest responses by AlexNet (top row)
and Vgg-f (bottom row) architectures of pre-trained CNNs. Images from Zingman et al.
(2016).

the AlexNet CNN that was pre-trained on ImageNet and used the second to last layer
as input to train a linear Support Vector Machine (SVM). To infer the success of their
approach they ran the image classifier over a large area with a sliding window of 1 meter
(the threshold for their final classification is unknown). Unfortunately the training data
for the image classification came from the same area as used in this inference step so
those reported results are biased. The inference area size is 9 km? so almost half of the
negative examples (the heap class) and all positive examples were already seen previ-
ously by the image classifier. Most interesting result between the two approaches is that
in the large area assessment the false positives only increased by 184 so the approach
was relatively successful at disregarding the background of unseen data. They also found
9 previously overlooked potential sites. Even though the approach isn’t solid this was

another early stage example and provided an interesting case study.

The Norwegian Computing Center who created the previous case study was also com-
missioned to apply their approach to a case study from Historic Environment Scotland
on the Isle of Arran. Trier et al. (2019) used a Simplified Local Relief Model (SLRM)
visualisation of LiDAR data and trained on roundhouses (121), shieling huts (267) and
small cairns (384). They trained a separate ResNetl8 (pre-trained on ImageNet) for
each class and trained against background/negative images. They excluded images with
common confusion objects such as burial cairns, enclosures and modern cattle feeders
to artificially reduce the false positive rate. We would argue against that practise be-
cause the CNN should learn to classify those objects as background, such discrimination
quality is especially important when it is applied over a large area. For inference they

have applied the same approach as Trier et al. (2019), running their image classification
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TABLE 2.1: Data reproduced from Trier et al. (2019), showing training accuracy and

validation accuracy change for each epoch on the roundhouse dataset. The training

accuracy is only improving from classifying all objects as background at epoch 7, 9 and
10.

Epoch Training | Validation

Accuracy | Accuracy
1 0.9847 0.9936
2 0.9876 0.9925
3 0.9890 0.9946
4 0.9856 0.9946
5 0.9895 0.9834
6 0.9872 0.9845
7 0.9894 0.9791
8 0.9883 0.9914
9 0.9903 0.9925
10 0.9907 0.9888

model that was trained on the 101x101 pixel images on large 2048x2048 tiles. In this case
they have visualised the accuracy for each image with a probability map on top of the
SLRM (Figure 2.7). They didn’t threshold the results and decided true/false positives
on visual inspection. This defies the purpose of automation because the archaeologist
still has to look at each pixel to verify the results. Similar to Trier et al. (2018) it is
not clear whether the results shown were previously used for training so that should be
kept in mind when reviewing those results in Table 2.4. The results overall are poor
despite a seemingly good training and validation accuracy at the image classification
stage. At closer inspection the training accuracy is only improving from classifying all
objects as background at epoch 7, 9 and 10. This is evident because only 80 foreground
and 7355 background examples were used. Class imbalance is a known issue in machine
learning and sometimes overlooked because of a high accuracy as it was done here. The
authors should have done more experiments to better understand this issue and find
ways to improve it using hyperparameter tuning. A simple confusion matrix would have
helped them and the reader to understand the issue at hand. Instead of noticing the
issue they used the model weights at epoch 3 or 4 for their inference because the val-
idation accuracy seemed highest (Table 2.1). Probably, they used both training and
validation images in the inference because it would explain the poor overall results. The
discussion and conclusion section reflects that sometimes “artificial intelligence is being
applied without proper understanding” and “as the study presented here demonstrates,
the reasons for differing performance of deep neural networks are complex, and there is
a pressing need to explore the reasons for this variability in output.”. They argue the
main reasons for poor performance are the neural network structure, the “black box”
problem and the number of training examples. However important those points are, we

argue that the authors made some fundamental faults that can easily be addressed.

Caspari and Crespo (2019) presented an image classification approach to detect burial

mounds on satellite imagery. Their data was split with 75% for training and 25% for
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FIGURE 2.7: Heatmap detection results (coloured overlay) from Trier et al. (2019). (A)

are the results for Glen Shurig, showing probability of roundhouses (cyan), shielings

(magenta) and small cairns (yellow) and verified sites are depicted as circles. The

results in this area were chaotic with a large number of false positives for shieling huts

and for roundhouses. (B) are the results for Machrie Moor with less chaos and some
correct detections.

testing and validation. They created their own CNN using 3 convolution and pooling
layers with ReLLU activations and two fully connected layers before the final activation
with a sigmoid. We would recommend using a State-Of-The-Art (SOTA) model rather
than making custom networks. These SOTA models have been extensively benchmarked
on various datasets and are well understood. These also have pre-trained versions avail-
able which significantly reduces overfitting. That being said, we do appreciate the CNN
is benchmarked against another machine learning approach, here SVM. Overall the ap-
proach is simplistic but we appreciate that the authors were cautious in their approach

and understood key concepts.

Somrak et al. (2020) used images classification to map Aguada’s, Buildings & Platforms
in a 230 km? area around Chactiin, Mexico using LIDAR data. In their approach they
used several tests with different hyperparameters to find the best performing model.
They tried 2 and 15 pixel buffers to understand the importance of context around ob-
jects. They also experimented with data augmentation and varied the trainability of
their VGG-19 architecture with 3 or 5 frozen layers at the top. Potentially the most
interest hyperparameter they experimented with are 6 different visualisation techniques
all of which they found worked well in the local environment. For example, Visualiza-
tion for Archaeological Topography (VAT) is a blend of analytical hill shading, slope,
positive openness and sky-view factor into a single greyscale image. They also made
several adaptions, for one they placed slope, positive openness and sky-view factor into
several channels to create RGB images. Their best performing model used this “VAT-
HS channels” visualization, image samples with 2-pixels edge buffer, data augmentation
and five frozen layers. They also extensively reviewed the confusion classes to better
understand how the deep learning model is performing which is key benefit of the image
classification approach. The results noted in Table 2.4 is the micro average of all the

classes including the background terrain.
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2.5.2 Object Detection

The first approach for object detection was published by Verschoof-van der Vaart and
Lambers (2019). The first author has developed and improved this approach for his
PhD in Archaeology (collaboratively with the Leiden Centre of Data Science). He has
developed a workflow called WODAN (Workflow for Object Detection of Archaeology)
to detect barrows and Celtic fields on a 440 km? area using LRM visualisation of Li-
DAR. They applied the state-of-the-art (at the time of publishing) Faster R-CNN which
generates object proposals within an image, extract features from the proposals using
the CNN, and then classify those. The authors are very upfront about potential short-
comings. For example they have cut the large case study area without overlapping tiles.
This has dissected 3% of their target objects which will have an adverse effect on their
detectability. They also note that they have manually found common false positives in
potential barrows and small dunes (caused by drift-sand) in image patches which they
have excluded from the analysis to avoid unbalanced increase in false positives. Only
12-18 epochs were used to train the model, to avoid overfitting. They have also ex-
perimented with different backbone network architectures and found that they weren’t
able to train Resnetb0 for multi-class detection so they decided to favour VGG16. That
must be a bug in their implementation because any network can be reformed to detect
multiple classes. Nevertheless it is a really good first paper to apply deep learning to

aerial archaeology object detection.

2.5.3 Object Segmentation

The first case study using segmentation was presented by Gallwey et al. (2019) who
looked at mining pits on LiDAR derived DTM. They used a U-net model which has
proven to be successful in many domains. It was created by Ronneberger et al. (2015)
for the detection of cell tracking in biomedical image analysis. This domain and data
source shares similarities with aerial archaeology such as small datasets, fixed scale,
high resolution, small objects, indistinct boundaries and greyscale images. Because the
authors used raw DTM they had to rescale their 16-bit float images. They applied
min-max normalisation to rescale the individual patches between 0-1 which maintains
the original distribution before converting them to an 8-bit integer format. To enhance
contrast they further rescaled the image tiles linearly prior to model input. By quan-
tising from 16-bit (65,536 distinct values) to 8-bit (256 distinct values) they lose a lot
of information. This is not necessary because the model transforms the input image to
0-1 floating point. Using 8-bit images will especially have a large effect on mountainous
regions where there is a high variance in height - sites would become visually indistinc-
tive. We further address this issue in subsection 5.2.2. Because they work with greyscale
images they realised that transfer learning using ImageNet weights would probably only

slightly improve their performance. Instead they used a model that was pre-trained on
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a large planet scale DEM dataset that was used to detect craters on the Moon. They
kept the hyperparameters the same and only retrained for 4 epochs on the 520 images
(1568 mines) of their own case study and they applied several data augmentation tech-
niques. The results can be found in Figure 2.8. They compared the approach results
from the raw DTM with several visualisations of the DTM and found that the raw DTM
worked best. This is expected because the model they used was pre-trained on a similar
DEM dataset and not on a dataset that is optimised for the human visual spectrum.

Nonetheless this is a great example of clever domain adaptation.

(a) - (b)

265400 265600 265800 265400 265600 265800

True mining hole locations Predicted mining hole locations
(o) Confidence
T T T T T 1 1 0 T T T T T 1
02040 80 120 160 200 Meters i 02040 80 120 160 200 Meters

FIGURE 2.8: Detection results from Gallwey et al. (2019) on the Dartmoor Hexworthy

mine test area. (A) shows the true mining hole locations in blue and (B) shows the

model’s predicted mining hole results depicted with a graduated transparency colour
scale representing model confidence in magenta.

Kazimi et al. (2019) used a variation of DeepLabv3+ to detect bomb craters and charcoal
kilns on LiDAR derived raw DTM. The researchers of this paper also experimented with
min-max normalization on the whole dataset vs single images and they found that it
was essential to apply this on a per-image basis. To extract training data they cropped
256x256 pixel images from each object out of their large DTM into which they then
randomly cropped to smaller 128x128 images to ensure that not all objects had a centre
object. The input and output data to the original DeepLabv3+ model is 128x128 pixels
and the authors changed the output size to 64x64. This improved their result from the

baseline model.

A modified 3D version of a U-net was used by Soroush et al. (2020) to detect qanat shafts
on Cold War-era CORONA Satellite Imagery. This type of U-net was created for 3D
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TABLE 2.2: Summary of methods applied by key papers in the literature.

Reference Sensor Objects Method Deep Learning Platform
. Satellite Image Classification, Matlab toolbox,
Zingman et al. (2016) Imagery Enclosures Alexnet MatClonvNet
. . . Image Classification, CNN in Caffe,
distgr el (U LEIDJEES Kilns Alexnet + SVM SVM in Scikit Learn
Cairns, . .
? LiDAR Shieling huts, Image Classification, PyTorch
ResNet18
Roundhouses
; . . Keras
Caspari and Crespo (2019) RS Burial mounds Image Classification, &
Imagery Custom CNN
TensorFlow
Aguada, P Keras
Somrak et al. (2020) LiDAR Building, Image Classification, &
VGG-19
Platform TensorFlow
Burial mounds, Object detection,
Verschoof-van der Vaart and Lambers (2019) | LiDAR Celtic fields, Faster R-CNN Keras
Charcoal kilns with VGG-16
Gallwey et al. (2019) LiDAR Mining Pits Image S%g;;fmatlom Keras
R . Bomb craters, Image Segmentation, .
Kazimi et al. (2019) LiDAR charcoal Kilns DeepLaby3-+- Keras
Satellite ) Image Segmentation, )
Soroush et al. (2020) Imagery Qanat shafts 3D Unet Keras

medical data such as scans of the brain. It is unclear why the authors preferred this model
over the traditional U-net. They did not use a pre-trained model but instead focused on
several hyperparameters including a specific loss function, batch-normalisation, drop-
out and they added data augmentation to reduce overfitting. They consider adding
more approaches to artificially remove false positives with post-processing steps. Rather
than simply masking certain areas they propose to use their domain understanding of the
linear pattern in which these qanats were placed. It would be interesting to see if that is a
pattern that can be found with machine learning or whether that has to be hard coded.
This is especially so because context is important for almost all archaeological sites.
Unfortunately the authors didn’t report on training and validation results separately
and provide the result on all 11 patches. This means that readers cannot interpret the
transferability of the approach from one area to the next. Moreover, the trained model
will have memorized the examples in the training data so the recorded results are worse

than the results reported in the paper.

2.6 Discussion

At this early stage of deep learning most case studies in aerial archaeology are still in
the feasibility phase. There are several trends, critical observations and issues we will

discuss in this section and further address in the thesis.

Most studies face overfitting as their key issue. This can be seen because most studies
only train their approach between 3 and 20 epochs. They stop training because their
validation accuracy drops which means their model is overfitting. At that point the

model is learning the exact examples from the training data which doesn’t generalize
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TABLE 2.3: Summary of data processing types applied by key papers in the literature.

Reference Image Pre-processing Pre-training Data Augmentation Notes

16 rotation angles were

Zingman et al. (2016) Raw greyscale ImageNet taken uniformly in the

interval [0, 360] degrees
Greyscale, normalized

contrast and mean values

Trier et al. (2018) from dataset (scaled 0 - ImageNet

255 with scaling factor

limited to 25 or less)

8 variation of rotating
and flipping

Horizontal flip, rotation,

ImageNet random scaling and
random translation

Horizontal flip, random

SLRM (repeated for R-

Trier et al. (2019) G-B channels)

Caspari and Crespo (2019) Raw colour (RGB) No pre-training ——
1. Different numbers of
Pre-processed 3 untrainable, frozen
VAT, Flat VAT, VAT-HS, I'OFationS 'tO mail%tain layers at the beginning
Somrak et al. (2020) VAT-HS channels, PRIM, ImageNet consistent hill shading. In of the nctw‘ork.
LD Keras; random zoom, 2. Oversampling the
width shift and height aguada minority class by
shift rotation (creating multiple
hill shading directions)
Verschoof-van der Vaart and Lambers (2019) LRM ImageNet teterrantie] v wenitent

flip and 90° rotations
Greyscale with min-max

Gallwey et al. (2019) normalisation and linear Lunar DSM
rescaling

Randomly flip, rotation Pre-training on a dataset
and shift similar to the target.

Kazimi et al. (2019) Greyscale wiAth I'nin—max o =i Random cropp}ng,
normalisation random rotation
Loss function was
. Horizontal and vertical .
Soroush et al. (2020) Raw greyscale No pre-training orzonta, and vertica designed for class-

flip

imbalanced datasets.

TABLE 2.4: Summary of results by key papers in the literature.

Reference Foreground/backgzround Tf‘lfe Fe.ﬂ?e Fals.e Recall | Precision | F1
for total km positives | positives | negatives
Zingman et al. (2016) Test: 1/57,504
. Test: 375/10,027 317 35 58 0.85 0.90 0.87
Trier et al. (2018) Train/Test: 9 km? 372 219 60 0.86 063 | 0.73
. Test 1: 1 km? 15 54 20 0.43 0.22 0.29
Trier et al- (2019) Test 2 1 km? 5 63 14 0.26 007 | 011
? Test: 42/261 1 0.84 0.91
Somrak et al (2020) Test: 2492/2168 4453 184 23 0.99 0.96 0.98
Verschoof-van der Vaart and Lambers (2019) Test: 10.9 km? 55 6 23 0.71 0.79
Test 1: 1 km? 155 37 38 0.81 0.81 0.81
allw : ¢ .
Gallwey et al. (2019) Test 2: 0.2 km? 142 13 30 0.83 091 | 087
Bomb crater area: ? 49 2 0.96
il &b & ?
Hezwiimtt ol (@01, Charcoal kiln area: ? 228 : 5 0.97
Soroush et al. (2020) Train/Test: 60.5 km? 2863 1785 989 0.74 0.62 0.705

well to the unseen data in the validation dataset. Generally, deep learning requires large
training datasets but in aerial archaeology there aren’t many examples to train on. In
table x we have noted the various methods that the researchers have taken to prevent
overfitting. Most popular approaches are pre-training and data augmentation. However,
there might be a more fundamental problem such as a noisy dataset or class imbalance.
We fear that uncritical approaches fuel the disbelievers of automation approaches such
as the recent publication by Casana (2020). Quoting Verhoeven (2017): “Too often,
incorporating (new) digital technologies in archaeology while lacking any theoretical
framework is said to be meaningless and even erroneous conclusions are drawn”. Since

deep learning is completely reliant on digital data we need to be especially aware of bias.

Approaches have to be appropriately backed by theory and the results should be inter-

preted alongside theoretical frameworks. Contrary to knowledge based approaches, in
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deep learning researchers do not explicitly model their domain understanding. This ab-
straction can seem like the approach is a black box and researchers like Trier et al. (2018)
and Trier et al. (2019) have also reiterating that statement in their work. However, with
the proper understanding researchers can get a lot of feedback from their models which
they should use to tune several hyperparameters. We have seen extensive hyperparam-
eter tuning in Somrak et al. (2020). We have also seen that Soroush et al. (2020) chose
a loss function that was designed for class-imbalanced dataset and Gallwey et al. (2019)
used a network that was pre-trained on a LiDAR dataset and objects that were similar
to their target. Overall we think the right approach is to start with image classification
to test different parameters that are transferable to object detection and segmentation.
At this point researchers can quickly review confusion matrices to understand the re-
sulting accuracy and they can also visualise images that are most confused to quickly
understand whether the dataset is noisy (Somrak et al. (2020)). Understanding the
potential of a dataset at an early stage can speed up the research and helps researcher
to find out where to invest time to gain accuracy increase. Somrak et al. (2020) tried
several visualisations and found that Local Dominance didn’t work well on the dataset
despite being one of the most important manual tools for classifying the objects. Object
detection and segmentation take much longer to train than image classification and it
is thus more expensive to tune. If they went straight for large scale mapping than they
may have not had the means to tune the visualisation and would have had to conclude

that automation was useless on their case study.

Most researchers evaluate their approach with the false positive rate and the final F1
score. To improve their false positive rate Verschoof-van der Vaart et al. (2020) published
an updated version of their approach using Location Based Ranking to mask built-up
areas, and areas with drift-sand that were known to have low likelihood of archaeology
but a high number of false positives. Ultimately the success of an approach is not
dependent on one metric, it depends on what is most suited for a specific task (Soroush
et al., 2020). In the medical profession classifying a sick person as healthy has a different
cost than the opposite case and so doctors prefer to review more false positives and accept
a higher recall with lower precision. In the case of Verschoof-van der Vaart et al. (2020),
their focus was on large scale mapping where it was accessible to miss a few objects for
a higher precision to increase the overall success measured in the F1 score. Automation
in archaeology is still at an early stage where researchers are trying to locally optimise
their approach. In the future we foresee that a heritage managers may accept high recall
with lower precision when it only takes them a short while to sift through the detections.
The same is apparent in commercial archaeology where high recall is the most important

metric.

Our final observation is that some researchers are not concerned with geographically
separating their results. However, it is a really important test for the transferability of

the approach and only then can the validation and testing be really attested for. The
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testing areas of Gallwey et al. (2019) were 20 km? and 500 km? away from the training
data which is most impressive but also the approach of Soroush et al. (2020) works where

the whole study area is split in a training and validation areas.

In the remainder of this thesis we will further address our observations and propose

several of our own solutions.

We expect the next phase will include more research using object segmentation. This ap-
proach will address the major flaw in object detection which is that most archaeological
sites do not fit within bounding boxes. Rather than focusing on specific sites we suspect
that the most value will initially be in the detection of concave/convex earthworks on

LiDAR data or positive/negative crop marks on aerial imagery.

After this stage it starts to become more important to include more geographical sources
such as soil type, hydrology, land use and vegetation cover. It is a highly specialist job for
an archaeologist to distinguish natural and modern features from archaeological features.
Often just one source of data is not enough and specialists use other earth observation

sources or geographical maps.



Chapter 3

The New Forest Case Study

This chapter presents our initial approach to image classification and a first attempt at
object detection. Most of this research was undertaken in the first year of the PhD (2017)
when the literature on deep learning for remote sensing datasets was scarce, especially
in relation to archaeology. The objective of the experiments was to find out whether
CNNs could be trained to detect barrows in multi-spectral imagery and LiDAR derived
DTMs. We have particularly focused on our identified data challenges in chapter 2.
We first discuss the case study area and how we created the dataset (section 3.1). Our
initial experiments are divided into basic image classification (section 3.2) and object
detection (section 3.3). We will conclude the chapter in section 3.4 with a discussion
on the challenges that we addressed and describe which challenges need more work in
the following chapter and which we cannot overcome within the PhD and are classed as

future work.

3.1 Dataset

Despite the availability of countrywide remote sensing data for the UK, we are still un-
able to process the petabytes of data. We thus limit our research to a 600 km? area of
the New Forest in the south of England. The area is known for its diverse land cover and
rich archaeology, and will thus be a good testing ground for including data from multiple
remote sensing. During the initial stages of this research we established a collaboration
with the New Forest Archaeological Mapping Project. Their extensive research of dis-
covering new archaeological sites, especially using remote sensing data, has provided
us with a very good dataset of known sites (subsection 3.1.1). In addition to the site
locations they have kindly provided us with LiDAR data which complements the aerial

imagery available from Ordnance Survey, who sponsored this research (subsection 3.1.2).

To view our datasets in their geographic context we used QGIS which is an open source

Geographical Information System (GIS) software used to process remote sensor (raster)

25
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data and location (vector) data (QGIS Development Team, 2020). In GIS software
vectors can consist of three types: polygons, lines, and points. In this software there
are several pre-existing tools for both vector and raster processing which can be pulled
together to process the large datasets into a format that be used for machine learning
(Verschoof-van der Vaart and Lambers, 2019). However, we found it easier to process
the data directly in Python with specific geography packages. For vector data we used
the OGR and Fiona libraries and for raster data we mainly used the GDAL library.

3.1.1 Site Locations

The objects chosen for this initial case study are barrows (Figure 3.1), also known as
grave mounds, which typically date back to the early-middle Bronze Age around 3,500
years ago (Field, 2011). These objects are amongst the most common monuments of
prehistory all over the world and have been the target of many other automation projects
(de Boer, 2007; Riley, 2009; Trier et al., 2015). Barrows appear as circular mound
structures and have similar appearance to naturally occurring elements (e.g. fairy ring
1y and modern human-made structures (e.g. roundabout), which are likely to cause false

positives and may challenge the accuracy of a CNN as noted by Trier et al. (2016).

The known archaeological site locations are a combination of the record from the local
archives Historic Environment Record (HER) and the more recent discoveries made
during the New Forest Archaeological Mapping Project. The locations of barrows are
shown in Figure 3.2. The data is provided as shapefiles? with central points of every

site.

The archaeological sites used for this research have been discovered over the last 100
years using different methods including remote sensing, but also ground survey methods
such as geophysical techniques. This means that some objects are not visible on both
or even on either of the data modalities. Additionally, some objects are historically
classified and have since been destroyed. Experiments will determine whether the given

data can be used as a raw resource or if further manual tuning is required.

3.1.2 Remote Sensor Data

Remote sensing data is often very high resolution which over large area creates big data.
This big data is difficult to load into memory or transfer and therefore datasets are
generally provided in multiple different files. These files can be processed individually
or as Virtual (VRT) Files. VRT files contain links to the individual images that are
available for a RS dataset. This file type significantly speeds up image cropping because

' A fairy ring is a naturally occurring ring or arc of mushrooms.
2The shapefile format is a geospatial vector data format.
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FIGURE 3.1: Photograph of a barrow captured by Champion (2006), at Longdown
(New Forest, grid ref SU36280830). This barrow is 8 metres in diameter and up to 0.5
metres high.

FIGURE 3.2: (A) New Forest National Park overlaid with the locations of known bar-
rows. (B) Location of the New Forest marked by a red indicator on a map of the United
Kingdom (GoogleMaps, 2020b).

it loads only the area of interest into memory and more importantly it includes all the
images during this process which allows objects at bordering images to be merged in
the process. Additionally, VRT files can be provided with additional instruction for
processing the data when images get extracted from it. In our case this includes the
re-projection of the coordinate system to EPSG:27700, to set the resolution to 0.5m

pixels and to scale all images at 8 bits per sampled pixel.
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3.1.3 Aerial Photography

The Ordnance Survey aerial imagery is captured with Red-Green-Blue-Near infrared
(RGBN) bands and is provided in 16-bit unsigned integer format. The images have
undergone some basic pre-processing for merging the individual photos captured during
the flight but are not colour corrected and thus show colour imbalance and artefacts at
the seams (Figure 3.1). In total, 6 grid tiles of 10 kilometres along each side (tiles SU20,
SU21, SU30, SU31, SZ29, SZ39 in the British National Grid) have been provided, with
0.5m ground resolution. Each of these is about 3.5-4 GB in size (Figure 3.3 (A)). This
data was captured in August 2016 which makes it possible for cropmarks to be seen,

especially in the near infrared band.

(B)

FIGURE 3.3: Colour imbalance between provided tiles SU20 (middle) and SZ29 (right).
(©Crown copyright and database rights 2020 Ordnance Survey

3.1.4 Airborne LIDAR

The LiDAR data was captured in two different surveys in December 2011 and Jan-
uary 2015 (University of Cambridge, 2011, Natural England, 2015). Both surveys were
performed during the winter when the broadleaf trees are devoid of leaf cover and the
understory vegetation is at a minimum. The 2011 survey covers about 400 km? and
has a minimum of 2 laser points per m? (ppm) and reached up to 6 ppm. The point-
cloud data was processed to produce both Digital Surface Models (DSMs) and DTMs as
IMGs formatted rasters with a 0.5m cell size. These files cover regions of 30-40 km? with
maximum IMG file sizes of 1 GB (Figure A.1 (B)). Unfortunately, the DTMs include
many ‘no data’ patches where no ground points were returned (e.g. houses or dense tree
coverage). These areas are not interpolated and might cause a problem for the training
of networks. The 2014 data covers about 650 km? and is captured with 2 ppm and
delivered as a processed 1 m DSM and DTM. The coverage of this survey is significantly
larger than the 2011 survey and the images are interpolated without ‘no data’ patches
(Figure A.2 (B)).
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3.2 Image Classification

To process the geographical data in Python we used the GDAL (raster-data) and OGR
(vector-data) libraries. We have implemented the workflow in a Jupyter Notebook to
include intermediate feedback steps for printing details about the loaded files, their
geographical information and to show plots of the image crops (using Matplotlib) and

their geographical point locations (using Basemap from the Matplotlib toolkits).

There are various reasons why image classification is a good approach for the task at
hand. Image classification generally gives a bigger window around the object then ap-
proaches which perfectly localise objects (e.g. object detection and segmentation). This
bigger window is useful as barrows are often found in clusters (Field, 2011), so context
might be important for classification. Additionally, our barrows in the dataset are not
always accurately located / digitised at the given centre point, and so, a bigger window
may slightly alleviate this noise. As we are looking to classify a single object type we
mainly base our approach for this section on research from single class image classifica-

tion techniques which have previously been applied to large datasets like ImageNet.

The success of deep learning has mainly been shown by training large datasets such
as ImageNet and it has been argued before that better results come with deeper and
more advanced network architectures (He et al., 2016). In our case, however, we have
only very small datasets of 260 - 431 barrows and therefore need a different approach
where we carefully consider overfitting. Overfitting happens when a network trains on
too few examples and learns patterns that do not generalize well to new data. This
effect can be witnessed when the validation accuracy is much lower than the training
accuracy. In this section we will discuss a range of approaches to alleviate the chance
of overfitting. In section subsection 3.3.2 we discuss data pre-processing and especially
the approach to overfitting by increasing the dataset by making minor alterations to our
existing dataset using techniques like flipping, rotating, scaling, cropping, translating, or
adding random noise. For a CNN which is invariant to these changes such augmentation
will be interpreted as distinct data to learn from. Besides increasing the amount of
data, data augmentation is also good for other reasons. Our images (supposedly) have
the object of interest in the centre. A network without augmentation might therefore
fit to images with objects in the centre and would not recognise an ‘unseen’ image of
a barrow that is not in the centre. So, to an extent, data augmentation can be used
to prevent overfitting, however, we need additional approaches. In subsection 3.2.2 we
research the best approaches to work with small datasets and experiment with different
CNN architectures. In subsection 3.2.3 we analyse the usefulness of transfer learning
and compare results from a network pre-trained on general image scenes to one that
was trained on aerial images. In subsection 3.2.4 we experiment with different image
pre-processing techniques that reduce the complexity of the LiDAR derived DTM and
highlight the local archaeology.
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3.2.1 Data Pre-processing

The central site locations (XY coordinates) are used to crop images from the VRT-
files. Starting with a 100x100 meter around centre location, shift this location by 20
meters (up, down, left, right), zoom to create an area of 80 meters at 0.4 m pixel size
(maintaining the same image size as other cropped images) and finally perform the
same shift on the zoomed locations (Figure 3.4). The augmentations were carefully
chosen to always include the full barrow and have a zoom within the range of expected
barrow sizes. Other augmentation options such as rotating, shearing and flipping were
considered unsuitable as they might confuse the network (due to human choices to
shape the barrows and natural effects to the structure over centuries such as erosion
due to prevailing wind directions). Before saving the files, we exclude any images with
exclusively “no data” pixel values. We will train our network to distinguish “positive”
images with barrows from negative examples and thus create an equal number of negative

examples that are extracted at a buffer of 100 meters from all the known barrow.

Finally, all cropped images are saved as GeoTIFF files and separated into folders of 75%
training and 25% validation data. In order to later be able to assess the robustness of a
trained network to a new area, we have split the data into east and west sets rather than
a random division (Figure A.1 (B) and Figure A.2 (B)). Even though it is not expected
to affect the RGBN dataset, this might influence the DTMs which have a higher general
elevation to the west than to the east (Figure A.1 (A) and Figure A.2 (A)). In the next
section this data will be used to train a CNN.

(A) DTM1m DTM1m DTM1m (B)
centoer_barrow420215-114146 left‘rbarrow420215-114146 centeorz_barrow420215-114146 Saome barrow center (rgb)
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F1GURE 3.4: Different augmentations from the datasets showing the same barrow.
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3.2.2 Experiment 1: Simple Network with Added Regularisation

According to Chollet (2016), the choice of a CNN should depend on the size of the
dataset. Complex networks with many layers have more space for information to be
stored which has the potential to generate high accuracy. However, when having very
little data going through a complex network, this may lead to the creation of irrelevant
features and thus lead to overfitting. Whereas a network that can learn less features
will have to focus on the most significant features found in the data, and these are more
likely to be truly relevant and to generalize better. This argumentation is supported by
a demo created by Karpathy (2018) where they show that larger Neural Networks can
represent more complicated functions but at the same time it’s likely fit to noise/out-
liers (Figure 3.5). Conversely, they also argue that the complexity of larger network
can still be leveraged when the network has sufficient regularisation (Figure 3.6). Be-
low we employ a simple network as proposed by Chollet (2016) and compare different

regularisation techniques.

3 hidden neurons 6 hidden neurons 20 hidden neurons

FicURE 3.5: These images depict the effect of network depth when classifying two
classes. The changing decision regions show that larger CNNs can represent more
complicated functions.

A =0.001 A=0.01

FIGURE 3.6: These images depict the effects of regularization strength on a large

network (20 hidden neurons). With lower A, the model can increase its complexity by

assigning big values to the weights. On the other hand, when increasing A, the network
becomes simpler and smooths its final decision regions.
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For this experiment we use the Keras (Chollet, 2015) deep learning library with a Ten-
sorFlow (Abadi et al., 2016) back-end. Unfortunately, Keras does not natively accept
GeoTIFF files nor can it load images with more than 3 bands, so we have made custom

adaptions to the preprocessing/image.py file to load our data.

We initially used a simple network consisting of a stack of three convolution layers
with a RELU activation and max-pooling, and ending with two fully-connected layers,
dropout, a single unit and a sigmoid activation (following Chollet, 2016). Dropout
is one of the regularisation techniques mentioned by Karpathy (2018) where a layer
randomly switches off part of the neurons to decorrelate the learning of different neurons.
Additionally, we applied the more common L2 weight regularization on the convolution
and dense layers. This technique forces a network to learn information from all the given
data instead of focusing on a specific pattern and does so by penalise spiky weights and
favouring diffuse weights. To compare different rates of weight regularization we trained
the network 6 times, varying the rate from 0 to 10-6. To train our model we used binary
cross entropy loss as we have a two-class problem and ended our network with a sigmoid
activation. Additionally, after several attempts with different optimisers we found that
RMSProp (Tieleman and Hinton, 2012) provided the most stable results. From the first
results we conclude that the network was able to train on RGB but did not generalize for
the DTMs. The poor results on DTMs were likely caused by the minimal pre-processing
of the DTM. The elevation in the New Forest ranges between 0 and 123 m, feeding the
raw DTM with absolute height data has likely confused the model. To overcome this, we
normalized the inputs with the means of the training data which improved the results

and developed more stable training and validation curves across the datasets.

The results on this network trained for 150 epochs on every dataset are presented in

Table 1 & 2 (best accuracy). From these results, we observe that:

e In all cases, we were able to obtain >50% accuracy, demonstrating there is an

underlying pattern to the images.

e The RGB and RGBN training show very similar patterns and have best validation
accuracies of 78.20% and 77.58% respectively. To further compare this, we also
trained the infrared as a greyscale image which on its own got up to 75.78%

accuracy.

e The DTM-1 m has the best validation accuracy of all datasets with 83.57% on the

maximum training data but during the equal comparison this dropped to 69.32%.

e The networks trained on the DTM-0.5 m show a very unstable validation accuracy

which may be a result of the noisy ‘no data’ patches in the training images.

e The networks trained on the DTM-0.5 m show a very unstable validation accuracy

which may be a result of the noisy ‘no data’ patches in the training images.
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e The combinational images do not perform better than RGBN trained networks.

Overall, combinational images perform better with the Near InfraRed (NIR) band.

e he networks trained on the RGBN and combinational images do not learn without

weight regularization.

e The weight regularization rate of 0.01 seems to be the best on the RGBN data
and combinational images. For just DTMs, the 0.0001 works better.

e The results vary a lot across rates and data combinations. This seems to confirm
the statement of Karpathy (2018) noting that most local minima in small networks
have a high loss and that you have to rely on luck not to get trapped in a bad

local minimum.

After various attempt we can confirm that a much deeper, state of the art, network
(VGG16) in its most original form without controlled regularisation did not learn no
matter the RS data, optimizer or with the addition of weight regularization. We posit
that is because of the relatively limited size of our dataset compared to the number
of parameters of the network. For better implementation of Karpathy (2018)’s argu-
ment and comparison to Chollet (2016)’s argument we will look at a deep network with

controlled weight regularisation in the next section.

To further test the success or increase the accuracy of this experiment, the next steps

involve:

Using a deeper network.

Increasing the dataset size.

Add other augmentation techniques.

Add image pre-processing techniques.

Trying the networks with other object types.

Applying the trained network on other areas.

3.2.3 Experiment 2: Transfer Learning

Transfer learning is a very commonly used technique for training on small datasets
(Razavian et al., 2014). In this process, a network is pre-trained on a very large dataset
(e.g. ImageNet contains 1.2 million RGB images with 1000 categories of objects) and
is used for its fixed features or to initialize feature extraction. During training, they

start by learning more abstract features and further on in the network start to generate
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TABLE 3.1: Accuracy results on networks trained for 150 epochs on the maximum
available data. Best result for each data type highlighted in red.

DTM DTM DTM DTM

LR RGB N RGBN DlTHl\l/I (])):‘ﬁ 1m 1m 0.5 m 0.5m
) + RGB + RGBN + RGB + RGBN

0 75.07 75.78  50.43 65.87  59.94 50.43 50.43 50.47 50.47

0.1 76.28  64.7 56.53 51.74  51.58 68.11 66.76 56.02 66.17

0.01 78.20 69.58 77.34 51.98  63.03 75.14 75.21 73.83 77.42

0.001 | 75.85 75.14  74.50 64.50  63.55 71.59 74.22 69.61 73.28

0.0001 | 76.49 74.57  76.70 83.57  63.86 71.66 73.72 69.30 75.63

TABLE 3.2: Accuracy results on networks trained for 150 epochs on 360 barrows (max
available barrows that have data in all modalities).

DTM DTM DTM DTM

LR RGB N RGBN DlTri\l/I (]))g‘ll\fl 1m 1m 0.5 m 0.5m
) + RGB + RGBN + RGB + RGBN

0 50.47 51.42  50.47 58.44  57.49 50.47 50.39 50.47 50.47

0.1 65.69 60.33  74.45 52.29  52.52 75.31 64.95 56.02 66.17

0.01 75.71  75.55 77.58 51.66  62.38 75.63 77.65 73.83 77.42

0.001 | 73.50 74.45  73.59 52.68  61.20 71.02 76.48 69.61 73.28

0.0001 | 75.53 74.68  72.81 69.32  58.91 68.52 69.63 69.30 75.63

features for the specific classes. Transfer learning has already been successfully applied
to satellite imagery (Penatti et al., 2015) and seems to have become essential as most
remote sensing-projects lack a large labelled dataset or time to train from scratch, e.g.

in disaster response (Zhu et al., 2017).

In this section we will compare a 50-layer ResNet (He et al., 2016) adapted by Chollet
(2016), pre-trained on everyday objects (ImageNet) and on aerial photography (To-
poNet). TopoNet was recently created by the Ordnance Survey and is trained on 1.4
million RGB images of RS-data from all over Britain captured with the same sensor as
our dataset. Even though the ImageNet dataset does not include our object types or
any aerial images for that matter, its trained network can still be useful for the features
learned by low-level convolutional blocks. For the comparison, we derive fixed features
from our data and use those to train a linear SVM classifier (like Penatti et al. (2015)).
We will run the classifier at each of the 50 activation layers in the network to analyse
how well lower (abstract features) and higher (specialised features) layers in the trained
networks perform on our dataset. Both networks were trained using Keras so for this
experiment we use the same library to extract the features from the networks. To im-
plement the SVM we use the scikit-learn library (Pedregosa et al., 2011) which is a

specialised library of various machine learning approaches.

The outcome of this experiment will not perfectly compare to the previous section.
The experiments are basic and mainly implemented to show how weights from different
datasets translate to a new target dataset. To this extent we have not applied data

augmentation and have also randomly selected train/valid/test data for the different
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experiment. We also only use the RGB images because we can only use data in the
same format as the network it was trained on, which in these cases is 3-band RGB. For
baseline comparison we have trained the linear SVM from scratch (without pre-training)

on our image data (colour histogram) which obtained a maximum test accuracy of 70%.

The best test accuracy result of ImageNet reached 55% and is worse than the SVM
trained from scratch (Figure 3.7). The graph is unstable and varies a lot between layers
so there seemingly is not a distinct favouring for earlier /later layers. We see more stable
results from the TopoNet data shown in Figure 3.8. The validation accuracy on TopoNet
gets to a maximum of about 71% and show an average increasing of accuracy towards
the later layers. This reaction of our data to the pre-trained TopoNet shows promising

results so we should continue to do more experiments with this is the future.

The next step from pre-training is fine-tuning (Yosinski et al., 2014). In this process a
pre-trained network is retrained to adapt to the target dataset. With a trained network
on images very similar to your target dataset one would only retrain the last layers of
the network and freeze the weights of earlier layers. Conversely, for a dataset that is
very different you would keep only the first layers frozen. To fine-tune ResNet50 we
chop of the fully convolutional layers at the end, which were tuned to classify ImageNet
into 1000 categories and TopoNet into 12 categories. We flatten the outcome at the
chopped layer and add a dense prediction layer for our 2 classes. Initial results of fine-
tuning the ResNet using both ImageNet and TopoNet weights on barrow data are poor.
We have applied fine-tuning on early, middle and late layers and with each of these
approaches we find that the networks easily over-fit and that it’s difficult to find stable
hyper-parameters. So far it seems that retraining the networks without frozen layers

gives the best results with around 83% on TopoNet and 80% on ImageNet.
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FIGURE 3.7: Results of SVM trained on different layers of ResNet50 trained on Im-

ageNet. (A) the best performing layer was 48 with a validation accuracy of 62% and

test accuracy of 55%. (B) the confusion matrix for this layer shows mostly barrow
predictions.
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F1cURE 3.8: Results of SVM trained on different layers of ResNet50 trained on To-

poNet. (A) the best performing layer was 45 with a validation accuracy of 78% and test

accuracy of 71%. (B) the confusion matrix for this layer shows a balanced classification
pattern.

3.2.4 Experiment 3: Improving the Pipeline

In our following experiments we researched the most effective improvements. We found it
especially useful to visualise the model predictions and analyse what barrows the model
found easily and which were most challenging. In the top row of 3.9 the true positives
are shown where the model was most certain that the image showed a barrow. In most
of these images it’s rather difficult to see a barrow and it’s mainly through shadow and
lack of vegetation that ditches around the barrow are seen for the first images and the
final two images are also visible through a different type of vegetation on and around
the barrow. In the second row we have depicted the false negatives where the model was
most certain that the image belonged to the background class. Visually, archaeology
experts are also unable to see a barrow because in the last two images barrows are
hidden under a forest and in the first two images agriculture has flattened the barrow
and because the field is recently ploughed the archaeology is also not visible through
the proxy of vegetation stress. Both results tell us that the dataset is noisy and that we
should improve the data with a one to one match between the site location and the RS
data to ensure the training data is useful and the results are not biased by the training
data. In the third row we show the most certain true negative predictions which show
modern buildings, straight lines and corners. The final row shows the false positives
where the model was most wrong and sure they were barrows. Again, these images are

very interesting and show locations of natural terrain with some curved paths.

Based on the results from the RGB and our intuition from manual analysis we suspected
that the DTM data should yield better results than we have previously seen because the
LiDAR sensor would have pierced through the forest which should reveal many more
sites than the aerial image. We previously found that we had to normalised the DTM to
the mean of the training data for the CNN to be trainable. Yet we are not satisfied with
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|Host correct barrow

(A) 0.0071929954 0.020095564 0.022640642 0.023167627

Most incorrect barrows

(B) 0.98673105 0.9861895 0.9567639 0.95584965

Most correct nonBarrows

(C) 0.9952325 0.982728 0.9771071 0.97526705

Most incorrect non barrows

(D) 0.04659514 0.07550182

0.09193189

FIGURE 3.9: Results from experiment with RGB aerial images showing (A) the most
correct barrow, (B) most incorrect barrow, (C) most correct background, (D) most
incorrect background. (©)Crown copyright and database rights 2020 Ordnance Survey

the result and try to further reduce the data complexity with visualisation techniques
that highlight local archaeology. Just like the previous experiments, this reduces the
complexity and should help the model to converge faster and prevent overfitting. For
this experiment we used a ResNetb0 that was pre-trained on ImageNet weights. This
network required an input of 3-band imagery and thus we chose a multi-directional hill
shade which combines 3 hill-shade images that illuminate the image from 3 different
directions at a highly oblique angle (225°, 270°, 315° azimuth). The model was trained
for 50 epochs and reached an accuracy of 0.8133 which is still not as good as we hoped
so we again reviewed the results visually. In the top row of Figure 3.10 again the true

positives are shown where the model was most certain that the image showed a barrow.
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In these images the barrows are really prominent, the majority show multiple barrows
and also a strong ditch surrounding the barrow. In the second row we have depicted
the false negatives where the model was most certain that the image belonged to the
background class. The first barrow is probably plough levelled or removed and a second
other barrow that damaged by a ditch seems visible at the top. The second is also
destroyed and the third has been heavily ploughed out. The final barrow is small but
should have been found, the model is probably confused by the other disturbances. To
improve the detection rate, we could crop the images to the actual object size. In the
third row we show the most certain true negative predictions which show very irregular
shapes and texture that are mainly modern. The final row shows the false positives
where the model was most wrong and sure they were barrows. The first image are
modern circular silos, the second is a small hill of some sort but not a barrow, the third
might be archaeological nature but is not a barrow and the final image might actually
show three barrows that were not known before or not in our labelled dataset. Overall
each of these results have sensible explanations and we have mainly learned that the
dataset is noisy which we can improve. To further understand if the model is genuinely
“seeing what we see” we have also experimented with a Class Activation Map on one of
our barrow images (Figure 3.11). To make this image first a gradient image is created
using the weights of the second to last layer in the network. The weights for barrow
have been overlaid on our image which provides an insight of the region where a CNN
is looking to classify the barrow. Again, we can confirm that the model is finding the

right pattern.

As we found that the main issue was our noisy dataset, we manually improved it over
several days. We used our improved DTM dataset to further research the effect of
DTM visualisations. Most visualisations are greyscale and in order for the pre-trained
ResNeth0 to work we concatenated the same image three times along the channel axis
before feeding it to the network. We trained the models for 50 epochs and report on
the best validation accuracy. The results are shown in 3.3. Open Positive visualisation
works best and Hillshade performed the worst. With Hillshade the direction of the light
source changes the appearance of a barrow depending on the size which might have an
adverse effect on the learned pattern. To further research the effect of visualisations
we experimented with different visualisation combinations to fill the 3-band image that
feeds into the ResNet50. The results in 3.4 show that this improves the overall accuracy
and mostly improves the result for a combination of Open Negative, Slope and Open

Positive. The Hillshade visualisation combinations produces the lowest accuracy.
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| Most correct barrow

(A) 1.3576172e-05 0.00012504494 0.00031262173 0.0005826863

Most incorrect barrows

(B) _ 0.97133535

Most correct nonBarrows

(C) 0.99919397 0.99600804

Most incorrect non barrows

(D) 0.0076070796

FIGURE 3.10: Results from experiment with DTM 1 m resolution images showing (A)
the most correct barrow, (B) most incorrect barrow, (C) most correct background, (D)
most incorrect background

(B)

FIGURE 3.11: Class Activation Map (brighter yellow indicates the region is more
"barrow-like” ).
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TABLE 3.3: Validation accuracy for each DTM visualisation.

Visualisation Validation
Accuracy
Hillshade 0.85
Open Positive 0.96
Open Negative 0.95
Slope 0.89
Sky View Factor 0.91

TABLE 3.4: Validation accuracy for each combination (early fusion) of DTM visualisa-

tions

Visualisation Validation

Accuracy
Open Negative, Sky View Factor, Open Positive 0.9739
Open Negative, Sky View Factor, Slope 0.9674
Open Negative, Sky View Factor, Hillshade 0.9587
Open Negative, Slope, Open Positive 0.9761
Open Negative, Slope, Hillshade 0.9609
Open Negative, Hillshade, Open Positive 0.9674
Sky View Factor, Slope, Open Positive 0.9609
Sky View Factor, Slope, Hillshade 0.9609
Sky View Factor, Hillshade, Open Positive 0.9435
Slope, Hillshade, Open Positive 0.9609

3.3 Object Detection

After having trained a good image classifier this can be used to localise objects across
all the available images. Traditionally this has been done using a sliding window ap-
proach where one gets a probability for each path that the sliding window comes across.
Although accurate, this is done at a very high computational cost. Recently, there have
been many improvements with methods such as region-CNN (R-CNN), You Only Look
Once (YOLO) and Single Shot Detection (SSD). Of these methods, R-CNN seems most
accurate but YOLO and SSD are most efficient (Liu et al., 2016). As we have a very
large area to cover and are merely testing object detection we have chosen an SSD for

now.

3.3.1 Approach

Ideally, we would use the specialised trained networks of the previous chapter to apply to
the object detection problem. However, for now, we have sought a more basic approach
by implementing the open source Raster Vision API (Azavea, 2018). This API has a
variety of functionalities to make training data, train models, make predictions, and
evaluate created models for object detection. It’s especially useful to have their func-

tionalities as they have designed their API to work efficiently on very large GeoTIFF
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files and on objects that are sparsely located within the images. Additionally, they can
process the input of objects located with geospatial coordinates using GeoJSON files and
output predictions in the same format which makes it easy to implement in a workflow.
Their object detection itself uses the TensorFlow Object Detection API with an SSD
approach using the MobileNet CNN pre-trained on COCO dataset (Huang et al., 2017).
If we choose to continue using Raster Vision in the future we can change the approach,

CNN and pre-trained weights accordingly.

3.3.2 Data Pre-processing

For input data the API requires training, validation regions and their respective GeolJ-
SON files with coordinates for the object squares in the images. The API will further
create training data by cropping the regions into smaller patches of 300 x 300 and
translating the coordinate system of the patch and labels to a local system. For data
augmentation we use a horizontal flip and random crop. For this experiment we use
a DTM multi-directional hillshade visualisation (Figure 3.12). This experiment was

undertaken before the noise was removed from the dataset which reflects in the results.

FiGURrRE 3.12: Multi-directional hillshade overlaid with the bounding box locations
around known barrow site locations.

3.3.3 Results and Evaluation

There are various hyper-parameters that we could tune in the API but for the sake of this
initial experiment we have kept most of the default settings. We have experimented with
various 3-band combinations for RGBN and different DTM derivatives. We found that
the RGBN results did not fluctuate much with different combination so, for now, we’ll
report only on the RGB results. We have experimented with different score thresholds

and eventually chose a rather low threshold of 0.4 which means we should expect low
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TABLE 3.5: Recall, precision and F1 result for DTM and RGB data model.

‘ Recall Precision F1-Score
DTM | 0.180 0.333 0.234
RGB | 0.034 0.013 0.019

recall but also allows to detect more barrows. Going further we should find how we
wish to trade off true positives/false positives ratio’s and set an appropriate threshold
accordingly. In total we had 299 detections for RGB and 98 for DTM. In Table 3.5 we

show the results of precision, recall and f1 scores on both data modalities.

‘
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FIGURE 3.13: Object detection results for RGB (yellow) compared to known barrows

(red). From top layer at each data modality: missed barrows that are obscure to the

human eye, missed barrows that are visually recognisable, interesting detections, sample

of rightfully detected barrows, most likely detections. (©€)Crown copyright and database
rights 2020 Ordnance Survey
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For RGB images we gained rather poor results; out of 84 barrows in the validation area
it detected 8. This may seem surprising as we previously gained accuracies to over 80%.
However, those experiments had an equal split of background vs object examples whereas
now we have the challenge of detecting barrows against a large amount of background
examples. Seemingly the objects are not distinct enough or include too much noise for

the classifier to extract a robust pattern. To analyse the reason for the poor results we
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FIGURE 3.14: Object detection results for DTM (blue) compared to known barrows

(red). From top layer at each data modality: mlssed barrows that are obscure to the

human eye, missed barrows that are visually recognisable, interesting detections, sample
of rightfully detected barrows, most likely detections.

have taken a closer look at the kinds of objects that were detected. In Figure 3.13 and
Figure 3.14 we show an extensive comparison between detections and known barrows.
From this we note that the quality of the known barrows is poor; some barrows do not
show a distinctive pattern and others have been destroyed for construction of houses or
roads. There are also barrows are surprisingly not picked up on, possibly because they
are too small. To avoid this, we could create bounding boxes that perfectly fit around the
barrow. Another insight from the box detection is that we see a lot of variation in length
and width which does not appear in barrows. We might have to constraint the proposal
of boxes to be a perfect square with a range of sizes. The false positives prove most
insightful as to what the classifier has learned. Some show imaginable parts of barrows
such as a circular object in the centre of the box, mostly trees or low vegetation. In other
cases, mainly over forest or houses, the false positives do not have any resemblance to
a barrow. Another interesting pattern is that we see high concentrations of detections
over certain distinct types of agricultural fields (Figure 3.15). This is most likely caused
by similar examples in the training dataset that do not visually show a barrow. Our

main conclusion from the experiment on RGB data is that we need to re-evaluate the
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barrow dataset to remove the obvious destructed barrows and experiment with some of
the more ambiguous types. Despite the misleading detections we noted some possible

new barrows that require further inspection from an expert and possibly a field visit.

Legend
771 Known barrows
RGB detections

FIGURE 3.15: Clusters of RGB detections over distinct agricultural fields. (€)Crown
copyright and database rights 2020 Ordnance Survey

Legend
771 Known barrows
DTM detections

FiGURE 3.16: DTM detections including damaged barrow on the left. The more
prominent barrows are detected whereas the levelled or otherwise severely destructed
barrows are not.

DTM results are more interesting with a low recall against a somewhat high precision.
We may conclude that out of all known barrows we detect relatively few (low recall) but
out of all detections a high proportion are known barrows (high precision) (Figure 3.16).
In this case we detected 55 barrows out of 143. From the known barrows we note that
some have been levelled due to agriculture, some are destructed for other reasons and
some show poor interpolation of the DTM possibly due to buildings or impenetrable
forest. Same as with RGB we did not manage to detect very small barrows (see example
in Figure 3.17) and, in this case, we also failed to detect an unusually large barrow.

We again see a few odd size rectangles of false positives, so, further tuning of relevant
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Legend

L -~} Known barrows
DTM detections
RGB detections

FIGURE 3.17: Overlapping DTM and RGB detections where both detect most promi-
nent barrow.

hyper-parameters is needed. Amongst the false positives we found some notable objects
such as bomb craters, post medieval quarries, and a windmill mound. On the DTM
derivative all false positives show similar patterns to barrows. However, bomb craters
have the inverse pattern of a mound, so we argue that this is caused by our choice of
DTM visualisation which could be avoided when using the raw DTM or a more suitable
visualisation. Notably, of the many true positives we see a robustness to quite significant
destruction. Amongst the DTM false positives there seem to be promising detections

that need further analysis.

Most observations for improvements to the object detection overlap between the RGB
and DTM datasets and focus on tuning hyper-parameters in the API and improving the

dataset of known barrows and their visibility on the data and within the boxes.

3.4 Conclusions and Discussion

We have shown that we were able to successfully train CNNs for both image classification
and object detection on both LiDAR derived DTMs and multi-spectral aerial imagery.
Somewhat surprisingly, DTM derived visualisations preformed better than the raw and
more detailed greyscale DTM. Based on those results we have learned that transfer
learning is one of the most important approaches to include when training on a small
dataset. With a larger dataset or when using transfer learning with a CNN that is
pretrained on a similar dataset we expect that the raw and detailed DTM will out-

perform the visualisation.

Our main challenge in this case study has been the noise in the dataset. The known sites
were derived from local HERs which include legacy data which has meant that many

sites were no longer present. Similarly, many sites were not visible on one or both of
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the remote sensing data used because of the time of year, forest canopy or because of
ploughing. Because we are not aerial archaeology experts we have chosen not to improve

the dataset but to look for another clean dataset which will be presented in chapter 4.



Chapter 4

The Arran Case Study

This chapter presents a case study on the Isle of Arran where we further address the
optimisation of approaches on small datasets. The case study was offered by HES who
have used the Isle of Arran in multiple case studies to showcase different approaches for
improved mapping of archaeological sites. The known site locations have been mapped
over a short period and on the same LiDAR dataset that we will use in our case study.
This overcomes the major blocker for our previous chapter. HES also offered to provide
continuous feedback and discussions on the approach and results which have made this
a collaborative case study between local experts and computer scientists. This collabo-

ration has contributed a lot to the optimisation of the approach to the local conditions.

We will first introduce the dataset and case study area in section 4.1. We then move
into our image classification approach in which we experiment with different hyperpa-
rameters. In section 4.2 we use these optimised settings for the dataset to train our
object detection approach. Our image classification approach follows the experiments
that we optimised in section 4.3. The object detection approach introduces a CNN
called RetinaNet which is optimised for sparse, small datasets. This network has further
improved the outcome and contributed to the detection of many previously unknown

archaeological sites.

4.1 Dataset

Arran lies in the west of Scotland and is known at HES as ‘Scotland in miniature’ because
it has a range of landscapes from highlands to lowlands that are generally representative
of the rest of Scotland. Arran is being used by HES to develop approaches to rapid
large area mapping using remote sensing datasets (Banaszek et al., 2018; Cowley et al.,
2020; Cowley and Lépez-Lépez, 2017). Manually they have optimised their approach on
the 432 km? island systematically using specific DTM visualisations, orthophotographs,

47
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and supporting information such as 19th century maps. They were able to achieve an
average coverage of 90 km? per day in their desk-based approach. The results from
the different experts were gathered and analysed to select the least confident sites for
field verification. They only looked at the less confident classifications because they are
very confident that LiDAR is a reliable source and a field visit doesn’t always add more
information about commonly known sites (e.g. Figure 4.1). This consideration is an

important part of their strategy for rapid mapping.

FIGURE 4.1: LiDAR derived hillshade visualisation from a DEM with insets showing

the round houses on the ground during a field survey. Despite uneven vegetation,

the LiDAR effectively captured most archaeological remains hidden by the vegetation.
Tmages reproduced from Cowley and Lépez-Lépez (2017).

4.1.1 Site locations

The HES survey has more than doubled the number of known archaeological sites from
on the Island that are available from the National Record of the Historic Environment
(NRHE). The new discoveries include sites in what today are remote locations, such as
the tops of valleys, but also in areas of dense known site distributions. The site loca-
tions that we are looking at in this study are prehistoric roundhouses (203), shieling huts
(transhumant grazing) of medieval or post-medieval date (344), and small field clearance
cairns (403) which are remains from agriculture (Figure 4.2, Figure 4.3). Finding such
sites helps HES to understand the pattern of prehistoric settlement on the island, and
the use of upland grazing in medieval and more recent times. Round houses appear as
circular wide doughnut rings with opening(s) and range from 8 m to 15 m in diame-

ter. Shieling huts and small cairns are smaller at 2—6 m across. Shieling huts are also
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doughnut shape but are less wide than roundhouses. Small cairns are small mounds.
We expect shieling huts to be a confusion object to round houses because they have the
same ring structure but have a different size, and also to small cairns because they are
both circular and have the same size. Other archaeological confusion objects that are
known on Arran include burial cairns, burned mounds, enclosures, kilns, rectangular
buildings, and horse platforms (Figure 4.4). There are also several modern confusion
objects including cattle feed stances and sand bunkers and tees in golf courses. Also,
there are geological confusion objects like glacial drumlins and peat erosion mounds that

look like small cairns and shieling huts.
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FIGURE 4.2: (A) amap of Arran with the site distribution of round houses, shieling huts

and small cairns. (C)Crown Copyright, (©Historic Environment Scotland. (B) shows

the location of the Isle of Arran in the United Kingdom with a red arrow (GoogleMaps,
2020a).

4.1.2 Airborne LiDAR

The LiDAR data used in this case study are from the Scottish Remote Sensing Portal, a
partnership between the Scottish Government and the Joint Nature Conservation Com-
mittee. The average ‘ground’ point density per square metre was 2.75, but varies from
0.43 to 7.44 depending on vegetation density and the presence of buildings. The LiDAR
data was processed into a DTM at 0.5 m spatial resolution and is provided in 16-bit
unsigned integer format. Along with the DTM Several pre-processed DTM visualisa-
tions were supplied (Figure 4.5). In some areas of Arran dense coniferous plantations
obscured the ground which created gaps in the data (Figure 4.6) which for single trees

can create circular confusion objects.
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Cairn  Shieling Roundhouse

Random

FIGURE 4.3: Examples of each class that is used in the Arran case study (shown on
Multi-directional hillshade). Top row: Roundhouses. Second row: Shieling huts. Third
row: Cairns. Fourth row: Random (background). (©Historic Environment Scotland.

-.

FIGURE 4.4: Archaeological confusion objects (shown on Multi-directional hillshade).
(A) burial cairn, (B) burned mound, (C) enclosure, (D) kiln, (E) rectangular building,
(F) horse platform (all 20x20 meter images). @Hlstorlc Environment Scotland.

4.2 Image classification

The approach to image classification is the same as the New Forest case study. We
found it very useful to apply image classification as a first step to better understand
the dataset and make our hypothesis for the object detection stage. For this brief case

study we used multi-directional hillshade.

4.2.1 Data pre-processing

Similar to the New Forest case study the data is provided as shapefiles with central
points of every site which we have used to create images around each point. For the
round houses we created 20x20 meter so 40x40pixel images, and for shieling huts and

small cairns we created 10x10 meter so 20x20pixel images. We created 316 random
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FIGURE 4.5: DTM visualisations supplied by HES. (A) Multi-Directional Hillshade,

(B) RGB-combination of Local Dominance, Open-Positive and Slope, (C) Sky View

Factor, (D) DTM, (E) Local Dominance, (F) Open Positive, (G) Hillshade, (H) Slope.

The image also shows the parameters used to create each visualisation. (C)Historic
Environment Scotland.
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FIGURE 4.6: (A) ground point density and (B) aerial image of a coniferous plantation

in Kilmartin Glen (Western Scotland mainland). The LiDAR data was captured at

high point density but still wasn’t able to penetrate the dense forest cover. This area
shows similar forestation to Arran. Image reproduced from Cowley et al. (2020).

images that were randomly cropped at 40x40 and 20x20 pixels (Figure 4.3). The split
between training and validation images in again made geographically, this time between
with the training data in the south and validation data in the north. Different from the
New Forest case study, augmentations in this research were applied in Keras. We only

used random flips and 90 degree rotations.
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4.2.2 Experiments

Based on the New Forest experiment and brief trial and error on our current dataset we
found that a pre-trained ResNet50 was able to obtain high accuracy for all the classes.
The main confusion has been between shieling hut and small cairns where it is also
challenging to see the difference by eye (Figure 4.7). Also, the fainter objects have
sometimes been classified as background /random class. Only very few objects that were
random have been classified as objects, either because of a circular appearance or other

mount structure.

We also experimented with the different image visualisations that were available to us.
This showed that overall the Open-Positive and Local Dominance were best followed by
Slope and Multi-directional hillshade (Table 4.4). Because Open-Positive, Local Dom-
inance and Slope were the best performing single band visualisations we concatenated
those images into and RGB-image called LD_OPEN-POS_SLOPE for further analysis
(Figure 4.5 (B)).

Based on these results we feel comfortable that the dataset is sufficient. We required no

further data cleaning or different LiDAR, visualisations.

(A) Confusion matrix (B) Confusion matrix
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FIGURE 4.7: (A) confusion matrix from image classification depicted in percentages,
(B) images that represent the confusion objects. (©)Historic Environment Scotland.

4.3 Object detection

During our preparation for the second case study we reviewed the suitability of the

SSD algorithm which we previously applied in section 3.3 and compared this with
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TABLE 4.1: Image classification results showing the validation accuracy from different
LiDAR visualisations.

LiDAR visualisation Validation
Accuracy
Slope 0.78
SVF 0.75
Open-positive 0.89
Local dominance 0.86
DTM 0.43
Hillshade 0.76
Multi-directional HS 0.78

new research on object detection. We found that one-stage detectors like SSD have a
foreground-background class imbalance problem. These detectors evaluate hundreds of
candidate locations per image but only a few locations contain objects which is especially
problematic in our case study where we have a very sparse dataset with only a few fore-
ground examples against a lot of background. The easy negative/background examples
can overwhelm training and lead to worse performance of the models. Since our initial
case study, a new approach in archaeology was presented by Verschoof-van der Vaart
and Lambers (2019) who successfully applied a Faster Region-CNN (Faster R-CNN).
In two-stage detectors such as Faster R-CNN, the first stage, region proposal network
narrows down the number of candidate object locations which filters out most of the
background. In the second stage, classification is performed for each candidate object
location. At this stage the class-imbalance is further addressed with sampling heuristics
which is implemented by a fixed foreground-to-background ratio (1:3) per minibatch.
With further research into the issue we found that Focal Loss is another, improved ap-
proach to address the issue organically. The Focal loss function down-weights “easy”
negative examples and thus focuses training on “hard” negatives, which improves the
prediction accuracy. This concept was introduced by Lin et al. (2017) and is accompa-
nied with a CNN called RetinaNet. This is a one-stage detector that uses ResNet and
a Feature Pyramid Network (FPN) as backbone for feature extraction, plus two task-
specific subnetworks for classification and bounding box regression (Figure 4.8). The
hierarchical FPN merges information from different scales. This cross-scale learning is

critical for archaeological objects that vary in size and where context is important.

class+box
subnets class
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class+box I x4 %256 KA
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(a) ResNet (b) feature pyramid net () class subnet (top) (d) box subnet (bottom)

class+box
subnets

FIGURE 4.8: ResNet architecture with (A) ResNet, (B) Feature Pyramid Network, (C)
the two task-specific sub-networks for classification and (D) bounding box regression.
Tmage reproduced from Lin et al. (2017).
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4.3.1 Approach

When we started this experiment there were not any specialised geographical approaches
that implemented or utilised RetinaNet. Instead we used the Fizyr implementation of
RetinaNet in Keras (Gaiser, 2019). This implementation is widely used because it has
very good documentation, debugging tools and options to change hyperparameters. We
used most of the implementation’s default hyperparameters and will describe in the next

sections where we altered the code for our domain.

4.3.2 Data pre-processing

The implementation we used inputs a csv-file with links to the images, box coordinates
and class names (path/to/image.jpg,x1,y1,x2,y2,class name). Each line contains
only one box annotation and for images without objects the coordinates and class name
remained blank. We wrote our own code to transfer our geographical coordinates into

image coordinates and generate the csv-file with the required format.

To ensure that we did not mix training and validation data we divided the large DTM
into areas that were 10 times the size of our input images. These area’s were divided
into our input images. Through experimentation we found that 500x500 pixels (250x250
meter) was the best input image size (Figure 4.9). With larger image size (1000x1000)
our objects became too small (discovered through debugging option in the RetinaNet
implementation), and with smaller image sizes (100x100, 200x200) the model struggled
to detect our larger, roundhouse, objects. We further overlapped our input images by
10% to ensure that edges did not detract from detections. Another useful aspect of
the debugging option in the RetinaNet implementation is the feedback on objects close
to the edge of the image. Those objects would not be too small for a classification by
the model which would reduce the accuracy. To overcome this, we updated our data
preparation code to exclude all object annotations that were 10 pixels from the image

edge.

We have split our data into 80% training and 20% validation areas. We experimented
with North/South divide of training and validation areas and found that the best was
South training and North validation (Figure 4.10). There is a large cluster of small cairns
in the South West of the island which is difficult to break up into even training and and
validation sets (Figure 4.2 (A)). When choosing the South side for our validation area
only 14 small cairns would be included against 25 in the North side (Table 4.2). We also
experimented with 75%/25% training/validation balance however we then found half of
the small cairns to be in the validation area. To maintain enough small cairns in the
validation data we selected the train/validation divide from Table 4.2 (A).
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FIGURE 4.9: Images show the image pre-processing step from the Fizyr implementation

of RetinaNet: debugging object detection input images (Gaiser, 2019). All boxes are

green which means that the boxes are big enough for the image size and that they are
not too close to the border.

TABLE 4.2: Separation of objects per class in Training and Validation sets for both
North/South and South/North data splits. When using the South for validation data
there are only 14 known cairn sites.

Roundhouse Shieling Small cairn
South/North training 247 477 541
South/North validation 44 106 25
North/South training 252 472 552
North/South validation 39 111 14

FIGURE 4.10: Visual representation of the North/South or South/North training/val-

idation divide. (A) Shows the South/North divide of training and validation data. (B)

Shows the North/South divide of training and validation data. (©Historic Environment
Scotland.

4.3.3 Hyperparameter tuning

Even though we used most of the implementation’s default hyperparameters, we did

change some parameters and code for our domain adaptation.
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Because many locations around an object will have high confidence many overlapping
bounding boxes are created for each object. Non-Maximum Suppression (NMS) removes
the boxes that overlap more than a given threshold (called Intersection over Union
(IoU)), the box with the lower confidence value will be removed. The default IoU for
the implementation is 0.5 which did not work well for us because of the relation between
our object size and pixel resolution (Figure 4.11). Through experimentation we found

that 0.20 was the optimal threshold for our case study.

FIGURE 4.11: An evaluation of the NMS hyperparameter. (A) Shows the image result

from RetinaNet implementation with the standard parameter of IoU 0.5. (B) Shows our

review of different IoU values in GIS software with standard 0.5 (red) and our choice
of 0.2 (green). (©Historic Environment Scotland.

The score threshold is a parameter that is often changed but we kept it at 0.05. We
found that it was better to have more detections and accept a higher recall because
the additional boxes which might represent new sites could be quickly verified by the

experts.

At the evaluation stage the RetinaNet implementation generates bounding boxes with
image coordinates so that those results can be reviewed per image. To view these results
in our GIS system we transformed the image coordinates (created in eval.py) to geo-
coordinates and saved those in a GeoJSON file. Because of the overlapping images we
end up with multiple detections along the edges which are removed with an additional
non-max suppression step. We reviewed the IoU threshold and found that 15% worked
best. A lower IoU would have removed more of the overlapping boxes which could
improve the precision but for objects that tend to cluster closely together like shieling
huts it would reduce the recall. For a specialist it would be very simple to remove the

extra boxes at the manual inspection stage and so we kept the IoU at 15%.

After prediction, we would generally import the GeoJSON file with the detections into
our GIS project and analyse the results. Here we found that the boxes were again
overlapping from the concatenation of the different images that were overlapped by 10%
at the image pre-processing stage. We applied our NMS and reviewed those results
again for precision and recall separately which were compared to a GeoJSON file that
was created for the known sites with an attribute column showing their train/validation

split.
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TABLE 4.3: Results of object detection for different LiDAR visualisations. The results
are shown for precision per class and the Mean average precision across the classes.

Validation Areas ‘ Round House Small Cairn Shieling MaP
Slope 83% 23% 51% 50%

SVF 79% 18% 36% 44%

Hillshade 73% 13% 40% 42%
Open-positive 78% 22% 53% 51%

Local dominance 78% 31% 15% 41%
Multi-directional hillshade 73% 39% 49% 54%

4.3.4 Experiment 1: Training on images that contain objects

In our first experiment we trained only on the images with objects in them. This allowed
us to quickly experiment with hyperparameters and understand the result we could aim
for when looking for new sites in the remaining images. This also reduced the chance of
finding false positives from new/unknown sites. However, it also meant that the model
was only trained on high quality data which wouldn’t generalise well to areas where less

or no sites are known.

Our first results are shown in Table 4.3. Similar to our image classification experiment
we found that Slope and Open Positive overall perform really well. Interestingly Local
Dominance is performing poorly shieling huts but exceptionally well on small cairns.
The best overall performance was by the multi-directional hillshade so we based our

further experiment on that visualisation.

For our next step we used the trained model to detect previously unknown sites on the
images that were not used for training or validation. We visually inspected this data and
requested feedback on our results from the HES expert. He confirmed that the approach
caused many false positives but that they were reasonable and could also be made by
an inexperienced image analyst. For example there were many small cairn detections
made on areas where there is high peat depth. In such areas the false positives showed
glacial drumlins and peat erosion mounds Figure B.2. To further understand these
false positives we comparing this data to a map of peat depth that was supplied by HES
(Figure B.1 (A)). The map is very generalized at 1:250,000 but still allowed us to analyse
the pattern. We found that there aren’t any known examples of small cairns at 1 and 1.5
peat depth but respectively 21 and 225 small cairns were detected (Table B.1). Another
area of clustering false positives was found in modern built up areas such as urban
areas, recreation areas (mainly golf courses) and coniferous plantations. To analyse the
scale of the effect HES supplied us with a Historic Land-use Assessment (HLA) map
(Millican et al. (2017), Figure B.1 (B)). We visually compared the false positives to
these areas and indeed found that golf bunkers on a golf course were detected as round
houses (Figure B.3). Again we also found that there aren’t any known sites in the
modern built up area which could be masked out in further analysis (Table B.2). We
also found that there aren’t many known sites in the “Agriculture and Settlement” class

which does produce a lot of false positives such as a confusion between cattle feeders
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and round houses (Figure 4.12). An expert might want to exclude these areas in their
analysis if they are interested in a very rapid mapping project. However, the areas close
to the modern built up area are also most prone to destruction from development or
land use. For our further analysis we didn’t exclude those areas. Another suggested
area to exclude were locations where low LiDAR point density caused by coniferous
plantations created visible groups of points resembling “boulders” that were detected as
round houses (Figure 4.13). We eventually didn’t go through with this mask because
the boulders weren’t a significant issue and could be quickly disregarded by the expert.

(A) (©)

roundhouse : 1

= 3 » a9
N TS

roundhouse : 1

FIGURE 4.12: (A) image of a cattle feeder on the ground where cattle have been fed
around a metal bin, (B) on LIDAR data where it shows the effect of the trampled soil
and (C) as a false positive roundhouse detection. (©Historic Environment Scotland.

FIGURE 4.13: (A) Low ground point density caused by filtering the pointcloud to
create a DTM. (B) This has selectively removed large boulders and produced a circular
feature that looks like a round house. (©Historic Environment Scotland.

Based on this experiment we found that many false positives could be removed with a
mask based on domain knowledge. Although a mask would be fine for rapid analysis,
for accurate mapping we should improve the model or approach itself. Ideally the model
would learn internally what makes a modern object different from an archaeological
object. Another hypothesis we explored was to include common false positives as classes
in our model (Figure 4.4). However, this made the approach more sensitive to finding
these objects and confusion between the objects increased. As such we decided against

continuing to develop that approach.

4.3.5 Experiment 2: Training on all the images

Our next experiment was to train and validate on all the available images. Even though

the quick experiments reduced the chance of finding false positives from new/unknown
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TABLE 4.4: Recall, precision and F1 results from object detection with a LiDAR
visualisation combination of Local Dominance, Slope and Open Positive.

Train Valid

Roundhouse  Shieling  Small cairn | Roundhouse  Shieling  Small cairn
True positive 159 311 377 22 4 0
False positive 1 28 79 9 44 16
False negative 5 4 28 14 24 20
Precision 0.994 0.917 0.827 0.710 0.083 0
Recall 0.970 0.987 0.931 0.611 0.143 0
F1 0.981 0.951 0.876 0.657 0.105 0

sites, it also meant that the model was only trained on high quality data which didn’t
generalise well to areas where less or no sites are known. We considered the possibility
that including all the images in the training would allow the model to learn to disregard
modern built up areas and peat erosion mounds. We undertook this experiment using
the LiDAR visualisation combination of Local Dominance, Slope and Open Positive
(Figure 4.5). Through trial and error we also found that we got our best results when
training each object class individually. The implementation of RetinaNet optimises the
approach to Mean average Precision (MaP) which in practice meant that the model
seemed to optimise to just one of the classes. Training each class individually increased
the computation time but the trade-off was found to be worth it. As soon as we changed
this element of approach we received visually impressive results in the validation area
which we shared with HES for feedback. Unfortunately, we weren’t able to retrieve
the information from the best performing epoch (due to a power outage in the office)
and so for each model we used the weights from the final epoch 50. Based only on the
numbers in Table 4.4 it is clear that the model was overfitting on training data for the
shieling huts and especially for the small cairns. Only 4 and 0 known sites were found
respectively. Still, the visual results looked promising with possible new detections so
feedback on the false positives would be useful to further tune the approach. In addition
to the false positives in the validation we also ran the model in the training area to find

out if any new sites could be found among the false positives.

TABLE 4.5: Recall, precision and F1 results from object detection adjusted by manual

verification of the results. The manual verification increased the number of True Pos-

itives, especially for shieling huts and small cairns in both the training and validation
areas.

Train Valid
Manual verified | Roundhouse Shieling Small cairn | Roundhouse Shieling Small cairn

True positive 159 334 435 26 48 10
False positive 1 5 21 5 0 6
False negative 5 4 28 14 24 20

Precision 0.994 0.985 0.954 0.839 1.000 0.625

Recall 0.970 0.988 0.940 0.650 0.667 0.333

F1 0.981 0.987 0.947 0.732 0.800 0.435

The feedback from the HES expert was really useful; for each false positive he provided
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a basic interpretation of ‘yes’, ‘maybe’ and ‘no’ with further comments on why a detec-
tion was likely right or wrong (Figure B.4, Figure B.5). We updated the True Positives
results from Table 4.4 by adding all the ‘yes’ and ‘maybe’ detections and removing those
from False Positives and we then recalculated Precision, Recall and the F1 score (Ta-
ble 4.5). The feedback from the HES expert has dramatically changed the initial results
in both the training and the validation areas. To visualise the results we have created
images for each class that show True Positives with low predictions, False negatives,
False positives that were verified ‘Yes’ or ‘Maybe’, and Fulse positives that were verified
‘No’ (Figure 4.14, Figure 4.15, Figure 4.16).

@A) B) © D) (E)
- ;. trdin, valid valid valid
é .g foundhotseidioo ToumalesE 0 roundhouse: 0.31 roundhouse: 0.43
:g _§ roundhouse: 0.04
Q.
2

False negative

i f u R il i valid
roundhouse: 0.98-Y] i3 dhouse: 0.97-Y| roundhouse: 0.4-? roundhouse: 0.97-Y

False positive -
verified "yes" or "maybe"

"Great - we missed it!" "Dismissed in field but I =~ "Needs ground check, "A possible
am 90% certain it is but looks interesting" roundhouse, but
OK" definately an enclosure"

valid
roundhouse: 0.81-N

T svalid
roundhouse: 0.97-N

valid
roundhouse: 0.06-N

valid
roundhouse: 0.06-N

train
roundhouse: 0.55-N

e -

False positive -
verified "no"

"Burial cairn" "Bunker in golf course" "Palaeochannels" "Natural pond in peat -  "Natural peat - based
based on orthophotos" on context"

FIGURE 4.14: Round houses detections: Visual examples of True Positive, False Neg-
ative and False positives that were verified as “Yes”, “Maybe”, and “No” accompanied
with further explanation from the HES expert. (C)Historic Environment Scotland.

Shieling huts now have the highest F1-scores. Shieling huts went from 28 down to 5 false
positives in the training area and from 44 to 0 in the validation area. The True Positives
with low predictions for shieling huts found mainly objects that were just outside of the
known site and could be removed with a stronger threshold of IoU. Although shieling
huts do tend to cluster together and overlap in that way as can be seen on the row Fualse

positives that were verified ‘Yes’ or ‘Maybe’. The False Negative row shows training
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FIGURE 4.15: Shieling hut detections: Visual examples of True Positive, False Negative
and False positives that were verified as “Yes”, “Maybe”, and “No” accompanied with
further explanation from the HES expert. (C)Historic Environment Scotland.

examples that are atypical but the validation examples seem like they should have been

detected so the model must have overfitted to the training data.

Small cairns went from 79 down to 21 false positives in the training area and from 16 to
10 in the validation area. It seems that for small cairns the model was overfitting more
than it was on shieling huts. There are two obvious cairn fields in the validation area
that were missed by the approach (Figure B.5). The cairn field the west of the island was
however found and makes up the majority of the new True positives (Figure B.5). An
interesting observation is that in both the training and validation areas the small cairn
detections in clusters have a seemingly higher prediction than stand-alone detections
of cairns in the landscape. The model seems to have learned the clustering pattern in
the training data which is a positive effect of the FPN structure and shows that it is
considering the same geospatial pattern of context as an expert would do. We also noted
that most of the false positives that were manually verified as ‘no’ were part of clusters.
We expect that some of these objects would have been disregarded if they were found

in an empty part of the landscape.
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FIGURE 4.16: Small cairn detections: Visual examples of True Positive, False Negative
and False positives that were verified as “Yes”, “Maybe”, and “No” accompanied with
further explanation from the HES expert. (©Historic Environment Scotland.

4.3.6 Comparison with established results

The Isle of Arran case study has provided us with the opportunity to compare our
automation approach to an exemplary manual approach. The dataset that we were able
to use was free of noise because the site locations were manually tagged on the same
LiDAR data. We were very surprised to have discovered 139 archaeological sites that
were not in the training dataset. The expert from HES was most impressed with the
new detections of round houses. Generally, those are simple to detect easy to verify just
with the LiDAR data. One round house detection made by our Al was also identified as
‘enclosure’ on the LiDAR by one of the experts during the desk-based stage and it was
given low confidence score so it was verified in the field (Figure 4.17). In the fieldwork
stage it was dismissed as being ‘Natural’ but the main expert at HES now agrees with
the model and is convinced this is an actual round house based on just the LiDAR. The

False negatives for the round houses are all very faint or atypical.
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FIGURE 4.17: (A) RAMP Stage 1: Desk-based identification = ‘Enclosure’. Level of

confidence = 2. (B) RAMP Stage 2: Field visit = ‘Natural’. (C) Object detection:

Round house:0.97. The HES expert agrees with the round house detection. (©)Historic
Environment Scotland.

In chapter 2, subsection 2.5.1, we introduced the automation approach of Trier et al.
(2019) on the Isle of Arran. The Norwegian Computing Center was commissioned by
HES to preform an automation approach which they had previously presented in Trier
et al. (2018). They trained three individual ResNet18 CNNs on round houses, shieling
huts and small cairns. To infer new sites in a large area, they used a sliding window
approach where each patch gets a probability from model. The combined result of the 3
heatmaps is shown in Figure 4.18-A. To visually compare the results with our approach
we show our results side-by-side in Figure 4.18-B. Based only on this comparison we
see that our approach detected 3 shieling huts that were not in the training set, 2 of
these were verified true and 1 maybe. The detections of Trier et al. (2018) are more
difficult to interpret. Our object detection approach creates a vector file that can be
used with GIS to quickly iterate through the detected locations. With a vector file the
heritage manager can also query the result as we have shown by comparing the locations
of detections with land use and peat depth maps. In the workflow of a heritage manager
this creates a more efficient approach than scanning the raster map for the entire case
study area. It is probably more convenient and efficient to manually analyse the DTM
visualisation than it is to interpret the raster heatmap. However, by thresholding the
pixel locations that have a high class confidence in the the raster map, a polygon vector
file could be created. This file can then be iteratively reviewed and queried. Based on
a visually inspection of Trier et al. (2019) result for Glen Shuring this would probably
result in many False positives and False negatives. Overall a HES expert compared our
results to the Trier et al. (2019) outputs saying: “your data seems much cleaner — less
noise for certain — and (to me) a clearer rationale for the false positives”. We consider
that our object detection approach performed better because we trained on more true

negative locations which improved the generalisability of the trained CNN.
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F1cURE 4.18: Comparison of our approach with previous automation work shown

at Glen Shurig. (A) shows the result from Trier et al. (2019) with a heatmap of

the probability of roundhouses (cyan), shielings (magenta) and small cairns (yellow)

(verified sites are depicted as circles). (B) shows our object detection results. (©)Historic
Environment Scotland

4.4 Summary

In this chapter we streamlined our approach from experimenting with image classification
to using optimised parameters in our object detection approach. We found in our image
classification stage that Local Dominance, Slope and Open Positive DTM visualisations
performed best on small cairn, round house and shieling hut respectively. We used a
combination of these bands in our object detection approach. Different than chapter 3
we applied RetinaNet for object detection which generated better detections with less
false positives. In the object detection we experimented with training on only images
that had objects. This was a useful stage for quick iteration of different hyperparameters.
We did however find that this trained model did not generalize well across the island.
The majority of sites in Arran are on moorland and so the training data did not include
images of the modern built-up area and only a few images of agriculture and woodland
areas. Rather than removing potential false positives by masking them out we decided
to re-train the model with all the images and this resulted in much cleaner detections.
These result was shared with HES who verified our false positives and were pleased to
find many sites that weren’t previously known. In total 139 sites that were classed as
a false positives turned out to be actual archaeological sites. We expect that retraining
the experiment with the newly verified detections would again increase the number of
new sites. We didn’t pursue this because the value of the technique had been shown
with this experiment alone. However, if we would improve this case study we would
try to improve the balance of the training/validation data. We do expect that there
are be more sites to be discovered in the dataset. By publicly sharing the dataset
along with our RetinaNet benchmark we encourage our results to be improved and new
detections to be made (Kramer and Hare, 2020). We envision this to be a learning
resource and a testing ground for new techniques. To the best of our knowledge this is
the first large-scale publicly available dataset of archaeological sites for benchmarking

automation approaches.
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Discussion

The aim of this thesis is to find an optimal automation approach for archaeologists who
are new to deep learning. Based on our experiments and extensive literature we have
gathered deep insights on best practise for successful workflows. In section 5.1 we review
our experiences on gathering and labelling data for deep learning approaches. In sec-
tion 5.2 we review our most effective approach to using deep learning, and overcoming
challenges that we have found while working with remote sensor data to detect archae-
ology. In section 5.3 we discuss future work topics that we think will further solve our

identified problems.

5.1 Creating a deep learning dataset

The most important element of any deep learning approach is a high quality dataset.
Most researchers spend the majority of their time improving or expanding the dataset
because it is often the best way to improve accuracy. So, rather than tweaking network
parameters for small percent improvements, most researchers should review and improve

their dataset quality and quantity and results will improve.

5.1.1 Evaluating data quality

In chapter 3 we used archaeological site locations that were available through local
archives (HER) that are gathered in a similar approach across the country. This allowed
us to test the usability of such a dataset for automation and analyse how our approach
could be scaled up across the country. Through our experience we found that this data
source required some manual improvement. For example, the dataset contained legacy
data which meant that some sites no longer excised due to modern development. We

also found that some of the sites were not visible on one or both of the remote sensor
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datasets we used. Finally we also had to adjust the box size for each barrow. Because
there was a lot of size variation between the barrows, our initial approach of using the
largest barrow size as a guide to crop all barrows resulted in low detections rates of
the smallest barrows. We were able to improve the data quality over a couple of days.
However, we are not local experts so mistakes could have induced some noise. Overall
the dataset was very good to work with because the New Forest has been extensively
researched over the years. Our experience of this dataset will probably transfer well to
similar case study areas but we expect that less studied areas might require more expert
manual interpretation of the area. Alternatively one could speed up the manual process
by iteratively applying deep learning and reviewing results to update the training dataset

and retrain the algorithm.

In chapter 4 we were able to use a manually improved version of the national database
which was very accurate and thus quick to experiment with. The case study covered
432km? which provided enough objects for training our deep learning approach. The
clustering of known objects in the west of the island made it difficult to separate areas
for training and validation whilst maintaining a good balance of object classes in the
respective areas. In our approach we divided the training and validation areas based
on their km? size and accepted the training/validation object class imbalance. We
experimented with increasing the validation objects by using a larger validation area
but we did not find a good balance. This was mainly because we choose to create the
same training/validation area split for all classes and maintain geographical separation.
If we relaxed those requirements, an improved approach might be to divide the areas
based on the number of known sites per class. Our result evaluation yielded many false
positives which turned our to be previously unknown archaeological sites. We expect

this will be the same for most cases studies if the area has had long periods of occupation.

On balance we would recommend that very simple case studies can use national datasets
albeit with the caveat of the known issues and suggested quick improvements. For an
in-depth research we would recommend the approach of collaborating with local experts
that have resources to provide a high-quality dataset, and time to provide feedback
and discussions on the results. This allowed us to find many new sites among the false
positives and come up with potential improvements. Without this feedback, we were at

danger of optimising our approach to a dataset that is too noisy.

5.1.2 Expert labelling tools

At the start of this PhD there were no labelling tools available that could be used for
a geographical purpose. We therefore created our own code to automatically create
training data based on the known site locations. In both case studies we were provided
with a Shapefile that contained the centre points of known sites. We also asked for

the maximum width of the objects which we then used to crop our images for image
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classification or to create a file with bounding boxes for object detection. This approach
worked well on Arran but in the New Forest there was a lot of variance of barrow width
which reduced general accuracy and manual adjustment of boxes was required to gain
further improvements. Our tools are shared in our GitHub repository and although they
work for points and maximum object width, the full approach works best with polygons
that indicate the width of each object (Kramer and Hare, 2020).

There are several opensource labelling tools used in archaeology; Verschoof-van der Vaart
and Lambers (2019) used a general image labelling tool called Labellmg for object detec-
tion and Soroush et al. (2020) used 3D Slicer for segmentation which is an open source
software platform widely used in medical image processing and annotation. Both these
tools do not support geocoordinates and are not able to automatically transfer known
sites locations to a machine learning format. Because they require manual tagging the
labelling process can be time consuming. These tools are also only useful to create
labels which means that either the interpretation is can only be done locally with re-
sulting images from the deep learning package used. If they would want to analyse their
resulting detections in a GIS software then they require additional tools to transfer the
local detection coordinates into geocoordinates. For us it was more convenient to write

our own code.

There are several commercial labelling tools that have geocoordinate options. Ground-
Work is the first annotation tool designed for geospatial data. Omne can upload any
remote sensor dataset to label and selected parameters to create overlapping tiles that
can be exported to use directly for machine learning. ArcGIS Pro is a commercial GIS
software that has recently expanded its software with tools to transfer GIS datasets into
a deep learning format and tools to review results. This was used in archaeology by
Gallwey et al. (2019) to automatically convert their labelled vector file containing geo-
graphical site locations and raster data containing the DTM into deep learning training
datasets. Although ArcGIS Pro is expensive, the tools seem well suited for aerial archae-
ology because archaeologists are often already familiar with the software and it provides
good user support and guides. Another labelling tool that has some geospatial options
is Amazon Sagemaker which could be useful when using the full AWS machine learning
pipeline. A similar one-stop platform is Google Earth Engine which has limited labelling
tools but accepts GIS vector and raster data without further processing requirements
(Gorelick et al., 2017).

5.1.3 Crowd sourced labelling

Alternative to expert interpretation, labels could be created with the help of crowd
sourcing. The ImageNet dataset is also crowd sourced and approach and showed the
impressive nature of deep learning. The ImageNet crowd sourcing was run on a com-

mercial platform called Amazon Mechanical Turk where users are paid per label. In
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archaeology all crowd sourcing projects have been run as citizen science experiments
where citizens contribute to scientific discovery and are upskilled in both archaeology
and remote sensor interpretation. Although most experiments discussed below were not

created for the purpose of deep learning, many can be used for this.

The successful project of the search for Genghis Khan’s tomb by National Geographic
attracted 10,000 volunteers who contributed 30,000 hours (3.4 years), and together ex-
amined 6000 km? of high-resolution satellite images in Mongolia (Lin et al., 2014). The
volunteers were asked to provide centre locations of potential heritage and this generated
2.3 million points that included burial mounds, megaliths, and city fortifications. Their
approach of allowing any site type to be added to the database does require extensive

post-processing which is very time consuming.

In early 2017 another approach was launched by Sarah Parcak called GlobalXplorer. The
platform used binary image classification to identify and quantify looting and encroach-
ment to archaeological sites. This in a sense is more efficient because it is a simple task
that can be quickly learned so the resulting data is likely of good quality. The images
are shown to multiple users and those that are consistently marked as showing looting
are further analysed by project staff. This type of labelled data could be used to train

a deep learning approach.

The previously mentioned deep learning approach by Verschoof-van der Vaart and Lam-
bers (2019) found around 1000 new sites during the manual tagging of their research
area. The extrapolated potential of the entire research area was found significant and so
they explored the opportunity to use crowd sourcing for image labelling (Lambers et al.,
2019). They launch their crowd sourcing campaign Heritage Quest on the Zooniverse
platform. The tasks were to identify the centre point of barrows, segmenting Celtic field
systems and segment cart tracks. With this approach they detected many potential
archaeological sites. In addition to the traditional online crowd sourcing they are also

experimenting with volunteer field verification.

Stewart et al. (2020) also used crowd sourcing for the purpose of training a machine
learning algorithm. In their pilot study they used binary image classification to identify
crop marking on Satellite Imagery using the Pybossa platform. While only 28% of the
tasks are completed they already identified many new cropmarks which can be used at
the next stage of their research in which they will apply machine learning. However,
they also realise that the detection of cropmarks is very challenging because the patterns

are very different between crop types and growth stages.

Whereas Lin et al. (2014) allowed a wide range of archaeological detection, most ap-
proaches implemented simplified tasks that require limited training and post-processing

work. This reduces the ability to detect unusual archaeological sites and so most projects
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have added the opportunity for expert users to notify tiles that include potential archae-
ological sites. Such unique detections are unlikely to be found with deep learning because

of their limited occurrence, making crowd sourcing the superior the superior choice.

5.2 Effective workflow

5.2.1 Iterative workflow

We have found that it is challenging to gain intuition without experience. We have
therefore built our approach on experiments that take a baseline and improve that step
by step. This both builds intuition and provides a justification for each tool that has

been applied which together result in improved outcomes.

The most important step of our process is to start with image classification to get to know
your dataset and to test your hypothesis. Our first step was to establish a simple deep
learning baseline. We iteratively added more complexity to ensure that each step was
improving our deep learning workflow. This included data augmentation, pre-trained
networks, data visualisations, data fusion and different CNNs. Based on the outcome of

the image classification we set our expectations for object detection.

Our best workflow for object detection was developed during the Arran case study.
Here we also set a simple baseline from which we would test potential improvements.
Whilst we initially trained our approach on all classes we eventually chose to train on
individual classes to ensure that the model could optimise the outcome for each class
individually. The baseline included only the tiles that had known sites to enable quick
iteration and avoid overwhelming noise from false positives. We then used the optimised
trained model to validate on the remaining tiles. This resulted in a lot of noise from false
positives because the model was not trained on modern land cover. To omit the noise,
we considered masking the areas that caused the majority of false positives. Although
we decided against this because it could potentially remove actual sites. For our final
approach we divided the whole island in train and validation areas so that the model
could learn to disregard false positives in modern areas. This resulted in very high
performing model that drastically reduced the false positives although it still had a
much lower precision than recall for shieling hut and small cairn, even in the training
area. We shared the resulting detections of both training and validation areas with our
local expert and the feedback was essential to discover new sites and further hypothesise

improvements.
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5.2.2 Problem reduction

In this thesis we have discussed several reasons why using deep learning for the detection
of archaeology on remote sensor data is much more challenging than the generally used
ImageNet datasets. The main challenges include the non-conventional data format, low
contrast and the small size of our datasets. In order to make deep learning work for
our problem we have had to reduce our problem which means to modify our data to a

known problem such that it can be easily solved using existing techniques.

For example, LiDAR data is captured in a point cloud and at the start of this PhD
there were no deep learning solutions to this problem. We therefore experimented with
raw DTMs which worked but they were underperforming when compared to the aerial
photography. Large parts of the case study area were covered with forest canopy which
precludes detections on aerial photography. We found that the raw DTM input required
normalizing which we did with the means of the training data. Kazimi et al. (2019)
addressed the same problem and found that applying min-max normalization on a per-
image basis worked better than on the whole dataset. This process emphasises the
importance of the local pixels without losing detail of the DTM. To maintain this high
level of detail, it is important not to convert the image into 8 bit before feeding it to the

CNN as previously discussed in subsection 2.5.3.

Even though per-image normalization could have improved our outcome, we consider
that in this approach the small dataset will remain challenging to work with. The most
powerful tool for small datasets is the use of pre-trained networks which is why most
approaches in archaeology, including ours, focussed on DTM visualisations. The DTM
visualisations are essential to human interpretation of LiDAR data which makes them an
excellent fit for LIDARs that are pre-trained on the natural image scenes of ImageNet.
Most researchers including Trier et al. (2019) and Verschoof-van der Vaart and Lambers
(2019) used a SLRM which is commonly used for flat terrain but is discouraged to use
in a more dynamic landscape. To overcome this Somrak et al. (2020) used a blend
of analytical hill shading, slope, positive openness and sky-view factor into a single
greyscale image called VAT. We contributed to this debate by using the 3 visualisations
that worked best for our case study and combined them as the Red, Green and Blue
bands of an image. This both allowed us to use a pre-trained network and to add more
detail for the CNN to learn from. Despite this innovative approach the visualisation still
reduces the detail that is available in the DTM. We are therefore very excited by the
Lunar LiDAR pre-trained approach from Gallwey et al. (2019) because it maintains the
detail of the DTM.
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5.2.3 Choosing a deep learning algorithm

We have found that most deep CNNs will provide a similar result on our datasets
and have therefore not focussed extensively on creating new CNNs but rather explore
auxiliary techniques to alleviate specific problems we identified with the data. We found
that deep CNNs worked better than shallow networks although the deep CNNs required
transfer learning to perform well. We also found that RetinaNet worked best because it

addresses the class imbalance and scale issues with focal loss and the FPN.

The choice between object detection or segmentation should depend on the case study
aims. We have seen that Verschoof-van der Vaart and Lambers (2019) used object
detection for the discovery of Celtic fields which can take irregular shapes and do not
fit into a bounding box. At first sight the choice of object detection over segmentation
might seem odd but their objective was to detect new sites not to perfectly segment
them. If pixel accuracy is not the most important metric than using loss-functions for

per-pixel optimisation is not the right approach.

5.2.4 Choosing an evaluation metric

Most researchers evaluate their approach with the false positive rate and the final F1
score. To improve their false positive rate Verschoof-van der Vaart et al. (2020) published
an updated version of their approach using Location Based Ranking to mask built-up
areas, and areas with drift-sand that were known to have low likelihood of archaeology
but a high number of false positives. Ultimately the success of an approach is not
dependent on one metric, it depends on what is most suited for a specific task (Soroush
et al., 2020). In the medical profession classifying a sick person as healthy has a different
cost than the opposite case and so doctors prefer to review more false positives and accept
a higher recall with lower precision. In the case of Verschoof-van der Vaart et al. (2020),
their focus was on large scale mapping where it was acceptable to miss a few objects for
a higher precision to increase the overall success measured in the F1 score. Automation
in archaeology is still at an early stage where researchers are trying to locally optimise an
approach. In the future we foresee that a heritage manager may accept high recall with
lower precision when it only takes them a short while to shift through the detections.
The same is apparent in commercial archaeology where high recall is the most important

metric.

5.2.5 Choosing an implementation

For most archaeologists it will be challenging to recreate a deep learning approach based
on a paper alone. Luckily, many papers in deep learning are published with code that is

available through GitHub folders. This was the case for the RetinaNet implementation
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we used and also for the Lunar LiDAR approach that Gallwey et al. (2019) used. These
implementations make it a lot easier to apply deep learning but users still require skills
in coding to use this. In our case we had to write code to generate images and matching
label-files that could be interpreted by our RetinaNet implementation. We further wrote
code that transformed the outcome back into geocoordinates and applied NMS on all
the detections to remove duplicate detections caused by overlapping tiles. Gallwey et al.
(2019) was able to find a ArcGIS Pro solution for most of these coding problems which
made it easier to use their implementation. Yet this approach requires multiple pieces

of software and is not flexible when experimenting with other CNN implementations.

We extensively researched alternative options and found two open-source end-to-end
implementations, Avezea Raster Vision and Solaris, that are specifically designed for
deep learning on remote sensing. They both offer a wide array of deep learning imple-
mentations written in Python with PyTorch and have good documentation and support.
Their implementations offer image classification, object detection and object segmenta-
tion and multiple choices of CNNs. They are both part of commercial companies and
have large teams that maintain the platform so we are confident that they will be main-
tained for a long period throughout which they will update the approach with the latest

deep learning research.

5.3 Future works

During the course of the PhD the field of deep learning expanded rapidly with many new
approaches published on non-conventional data sources. Work on self-driving cars has
especially pushed research using LiDAR sensors. This has resulted in many networks
resigned for convolutions directly on the point cloud (Ozdemir and Remondino, 2019; Qi
et al.). It also resulted in networks that combined both RGB images and LiDAR point
cloud or LiDAR derived depth maps (Hazirbas et al., 2016; Qin et al., 2018). Progress
on each of these elements has also been shown on remote sensor data which can be very
helpful for archaeology. For example, Rudner et al. (2019) segmented flooded buildings
based on change detection in two satellite images before and after the flood. This could
also be used for archaeology to aide the detection of site destruction because of modern

development, climate change or looting.

We also inspired by the crop stress dataset that was published by Chiu et al. (2020)
and so we embarked on our own research to detect crop marks. In our first attempt
we hoped that we could use high resolution aerial imagery from the Ordnance Survey
that was captured during a drought in the summer of 2018. For site locations we were
able to get crop mark locations from the national database (https://canmore.org.uk/)
from HES. Unfortunately there weren’t enough matches between the known cropmarks

of the past and the images provided by the Ordnance Survey to train a CNN. Our
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second attempt included the national database (https://canmore.org.uk/) from HES
which includes all the historic cropmarks that have been captured by HES. This approach
provided a reasonable match between the objects and the images. Many objects were
captured multiple times which increased the number of training examples. Although
not every image included a the same/all cropmarks that were digitised (due to crop
rotation or other growth differences in the field). Yet, we still persevered to see what
result could be achieved. The object information was provided in lines which created
a challenge because for our desired segmentation approach we required polygons. To
create polygons from the lines we experimented with the buffer and polygonise options
in QGIS (Figure 5.1). We discovered that polygonise worked well for enclosed lines and
that buffer worked well for stand-alone lines. Although this worked most of the time we
noticed that many polygon-type features were not enclosed such as the paleochannels
in Figure 5.2. Rather than focusing on all cropmarks we reduced the problem to only
detecting round houses. We had 5654 individual instances of round house in the dataset
we would be a good dataset to train on. To further simplify the approach we chose
not to continue with segmentation but experiment with our already verified RetinaNet
approach (subsection 4.3.5). We created bounding boxes around each round house entry
and created our training data (Figure 5.3). The results of a quick training routine were
not good and after further inspection we found that many objects were in a white
background that had value 255 rather than no data (Figure 5.4). We experimented with
removing the objects that contained values of 255 but this also removed many good
objects. In the end we decided that there were too many problems with the data and
this project should be continued in a dedicated project where resources are available to

manually improve the data.
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—— HES Cropmarks ; —— HES Cropmarks ; —— HES Cropmarks
I Buffered M Polygonised

F1GURE 5.1: From top left to bottom right the image shows the process of creating

polygons from lines. We found that the GIS buffering option didn’t enclose the circular

feature. We also found that polygonising didn’t represent the actual lines properly.

We found that the start/end vertices of the polygon object were on the same location

for the circular feature which separated them from the lines. Using this insight we

were able to separately polygonise and buffer the different object types. (©Historic
Environment Scotland. Licensor canmore.org.uk

FIGURE 5.2: Image shows that our separate polygonise and buffer approach did not
work for all objects. (©QHistoric Environment Scotland. Licensor canmore.org.uk
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F1GURE 5.3: Image showing the created bounding boxes for object detection on aerial
images. We used the extent of the round houses to create bounding boxes. (©)Historic
Environment Scotland. Licensor canmore.org.uk

FIGURE 5.4: Image showing bounding boxes that are stored where the aerial image is
cut off. (©)Historic Environment Scotland. Licensor canmore.org.uk






Chapter 6

Conclusions

This thesis presented an in-depth research of deep learning approaches and the challenges
that are presented by the datasets of archaeological sites and the pattern they leave on
remote sensing data. In chapter 2 we highlighted several reasons why the detection of
archaeology on aerial imagery is highly challenging. In the following case study chapters
we addressed most challenges in extensive experimentation and created a workflow that

addresses these central issues.

In chapter 3 we focussed on the use of multiple sensors, comparing results from multi-
spectral imagery with LiDAR derived DTMs. The case study focussed only on barrows
in the New Forest National Park and we used the known sites primarily from the lo-
cal archives HER for training locations. Through experimentation we found the best
results with DTMs derived visualisations that highlight the archaeological earthworks.
This showed that for small datasets the problem should be simplified to attain high ac-
curacy. Although we do expect that with larger datasets or pretraining with DTMs (or
similar dataset) will eventually surpass the accuracy that can be obtained with simplified
visualisations. We also discovered that noise in the dataset was trailing our accuracy and
that extensive manual improvement of datasets is required for deep learning use cases.
In this chapter we also experimented with a multitude of networks and hyperparameters.
Eventually we concluded that the SOTA networks also work best for our datasets and

that network tweaks are less important than improving/increasing training data.

In chapter 4 we focussed only on LiDAR data but diversified with 3 different archae-
ological object types; round houses, shieling huts and small cairns. The dataset from
the Isle of Arran was provided by HES and had been gathered through extensive desk-
based and field verification. In this case study we were able to perfect our workflow
that encourages feedback and critical evaluation of the dataset and results by starting
with image classification and using those learnings/ optimised hyperparameters to apply
object detection. We shared our approach and dataset on GitHub as a benchmark which

is the first in it’s field and we hope it will encourage comparison with new research.

"
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In chapter 5 we discussed the best practise for the workflow that we created based on
the literature review and our own experiments. The discussion can be read as general
advice for new researchers in the field and ranges from the creation of a deep learning
dataset to model selection and model evaluation. We finally concluded the chapter with
a review of the latest research in deep learning that could be used in archaeology to

improve the approaches that have been published so far.

In chapter 2 we listed the key challenges of archaeological label datasets and the remote
sensing datasets. Below we have summarised our most important experience to overcome

each of the challenges:

e Small datasets; We used several tools such as data augmentation, transfer learning
to improve outcomes for small datasets and tested these hyperparameters during

the image classification stage.

e Class imbalance; We addressed the issue of class imbalance only at the object

detection stage with a RetinaNet that implements focal loss.

e Noise; We addressed the possibility of noisy labels during the image classification
stage by reviewing the most extreme “right” and “wrong” predictions from the
CNN. We also highlighted the importance of improving the dataset before moving
into object detection. We discovered many unknown sites at the object detection
stage by critically analysing the relatively high number of false positives in both
our training and validation areas. We concluded that the algorithm should be

iteratively updated with new verified detections to gain the optimal result.

e Scale; We addressed the issue of scale at the object detection stage with a feature
pyramid network that analyses objects at different scales and was able to detect
very small objects. We also suspect the FPN learned to increase probability if

certain objects were found in clusters.

e Low contrast; We used DTM visualisations to reduce the data complexity and
improve visual interpretation with distinct lines and edges. These patterns are
learned in CNNs that are pretrained on ImageNet. Using a pretrained CNN was

essential for solving the previously mentioned small data problem.

e Non-conventional data format; We learned that using the raw DTM was not as
successful as using a visualisation in the experiment of chapter 3. Using a CNN
that was pretrained on 16 bit DTM or similar dataset like Gallwey et al. (2019)
should improve the results because the raw DTM contains more details than the

visualisations.

e Changing appearance; We addressed this issue by training and validating the ap-

proach in geographically distinct areas. On our scale this effect was not significant.
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e Fuzzy site definitions; Our approach in Arran contained round houses and shieling
huts which have the same function. We saw many detections of both classes on
the same location. In all cases the NMS removed the least confident class which

was the confused classification.

We have addressed each of our main concerns with the archaeological datasets but there
is still much to be improved. We hope to that the availability of our new datasets
and benchmark will both facilitate more comparisons of existing methods and lead to
increased interest in the detection of archaeology on remote sensing data in the machine

learning and computer vision communities.

Like we said in chapter 1, archaeology is under constant threat of destruction, and it of
utmost importance that sites are located so that they can be monitored and protected.
The potential saving that automation can provide is huge. In addition, we have shown
that more training data creates better results. We envision a continuous loop with deep
learning detections and manual verification which in turn is fed back into the model
for retraining. In time the model will be able to detect all the archaeological sites and

monitor any changes. We therefore encourage bold initiatives for large scale mapping.
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known barrows and new detections.
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FIGURE B.2: Map showing a cluster of false positives from object detection using Multi-

directional hillshade. The HES experts identified these sites as peat erosion mounds.

The image is overlaid with a map of peat depth where darker colours are deeper peat.

Labels show the peat depth and the class. The insert shows that the objects visually
look like small cairns. (C)Historic Environment Scotland.

TABLE B.1: Comparison of the known sites and detections in areas with different peat

depth. The small cairn detections in red show that no sites were known at 1-1.5 meter

depth but 225-21 objects respectively were detected. This confirms the pattern of false
positives from peat erosion mounds.

Peat Depth Area (m?) Known Known Known Detections Detections Detections
roundhouse shieling smallcairn roundhouse shieling smallcairn

1.5 592589818 4 71 0 57 120 225

1 7226899 7 0 0 4 8 21

0.75 62683531 50 6 155 62 52 51

0 301201636 118 141 52 386 344 370
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TABLE B.2: Comparison of the known sites and detections in areas with different
landuse. The detections in red show that no sites were known modern built up areas
where many detections were made.

. . 9 Known Known Known Detections Detections Detections
Historic Landuse Area (m?) - . - .
roundhouse shieling smallcairn roundhouse shieling smallcairn
Energy, Extraction and Waste 176288 0 0 0 0 6 3
Spiritual and Ritual 11817 0 0 0 0 0 0
Water Body 678577 0 0 0 1 0 0
Built-up Area 3595744 0 0 0 46 4 27
Designed Landscape 215318 0 0 0 0 0 0
Leisure and Recreation 2565834 0 0 0 30 4 38
Agriculture and Settlement 48728243 12 0 1 83 28 104
Woodland and Forestry 110507165 18 10 0 70 88 104
Moorland and Rough Grazing 262236380 149 208 205 294 398 448
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Leisure and Recreation Leisure and Recreation 1
roundhouse’ roundhouse . IS

hayndhouse

Leisure and Recreation
roundhouse’

Leisure and Recreation Leisure and Recreation
roundhouse’ roundhouse
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shieling
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roundhouse

FicUure B.3: Map showing a cluster of false positives from object detection using

Multi-directional hillshade. The HES experts identified these sites as objects on a golf

course. Labels show the Historic Landuse and the object class. The insert shows that

some golf course objects have a similar size/shape to round houses but are clearly not
round houses. (©Historic Environment Scotland.
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F1GURE B.4: Detected cluster of shieling huts in the validation area. The boxes show
associated labels, predictions and the manual verification ("Y”: Yes, ”?”: Maybe, "N”:
No). (©Historic Environment Scotland.

smallcair : 0.92-

smallcair : 0.92-Y

201350 201400 201450

FIGURE B.5: Detected cairn field in the validation area. The boxes show associated
labels, predictions and the manual verification ("Y”: Yes, ”?”: Maybe, "N”: No). The
roundhouse was previously known and the small cairns were known in the NRHE as a
cairnfield but the individual objects were not tagged. (©Historic Environment Scotland.
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FIGURE B.6: Clusters of false negatives on cairn fields in the validation area. (C)Historic
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