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Machine Learning for the Detection of Archaeological Sites from Remote

Sensor Data

by Iris Kramer

Deep learning for automated detection of archaeological sites (objects) on remote sensing

data is a highly novel field. The key challenge of this field is in the inherent nature of the

objects; they occur in small numbers, are sparsely located and feature a unique pattern

on the di↵erent remote sensing data modalities. To this extent we identify three main

contributions, (1) to include multi-sensor data, (2) to optimise Convolutional Neural

Networks (CNNs) for small datasets and, (3) to optimise detection of the sparsely located

objects. Our results demonstrate that deep learning can be successfully applied to detect

archaeological sites on each of the individual remote sensing images, that our e↵orts to

optimise CNNs for small datasets are successful, and that we have discovered new sites

that were missed in a manual data analysis and field survey. We have optimised a

workflow for the detection of new archaeological sites. We also share the first large-scale

publicly available dataset archaeological image classification and object detection along

with benchmarks of the most promising models that we applied in this thesis.
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Chapter 1

Introduction

An essential aspect of archaeology is the protection of sites from looters, extensive agri-

culture, and erosion. Under the constant threat of destruction, it is of utmost importance

that sites are located so that they can be monitored and protected. This is mostly done

by archaeologists on the ground or through manual analysis of remote sensing data such

as aerial images or Light Detection and Ranging (LiDAR) derived elevation models.

This task is time consuming and requires highly specialised and experienced people and

would thus immensely benefit from automation.

The recent explosion in the availability of high resolution imagery and in the variety

of new remote sensors underscores the need for automated methods. The increased

resolution has the improved the detail that can be recorded but has also increased the

amount of time that is spend per km2. Likewise the number of sensors that are available

for the detection of archaeology has increased the and brought a realisation that there

is more data than is humanly possible to assess Bennett et al. (2014).

Automation of archaeological objects in remote sensing data is highly challenging as

some of the most ‘overwritten’ signatures of the landscape need to be extracted from

petabytes of imagery. Despite previous attempts, researchers have not been able to de-

velop a method that is able to generalize well across archaeological objects, geographical

locations and remote sensing data sets. In order to generate a satisfactory method, it is

argued in this thesis that only a machine learning approach can reach the desired gener-

ality. Even though traditional machine learning required extensive feature engineering,

recent developments have moved towards automated feature learning. Deep learning

using Convolutional Neural Networks (CNNs) have been particularly successful in this

space and are therefore the main focus of this research.

In machine learning, the goal is to label image pixels into one or several classes. Image

classification can be binary where images are given a single object class or groups of pixels

within an image can be classified into di↵erent classes with semantic segmentation or

object detection.

1



2 Chapter 1 Introduction

The aim of this thesis is to discover approaches utilising deep learning that can be

applied to the detection of archaeology. In chapter 2 we review the challenges that are

be prevalent in the detection of archaeology on di↵erent remote sensing resources and

research and implement solutions. We have highlighted three main challenges:

• Small datasets: One of the essential requirements for deep learning is a su�-

ciently large training dataset of example objects. Our main concern in the domain

of archaeological object detection is that there are often only a few objects known

of a specific type, and these objects are sparsely distributed throughout the land-

scape. Our initial focus will therefore be on optimising di↵erent aspects of deep

learning for small datasets, and part of this is to include domain knowledge.

• Non-conventional data format: Archaeological sites can be detected using

di↵erent types of remote sensing data including multi-spectral aerial imagery and

LiDAR derived elevation models. The information captured in the signal of these

individual sensors could be leveraged with an integrated deep learning approach

using all of the data modalities.

• Deep learning architectures: In our experiments, we have specifically chosen

networks and parameters, mainly on regularisation and transfer learning, which

are known to work well with small datasets. We also compare the performance of

the networks when they are trained on individual remote sensing images, and with

those trained on images of stacked multi-sensor data.

In chapter 3 we present the results from our initial experiments to alleviate the high-

lighted challenges. We focus on the New Forest National Park and the detection of

barrows which are well known funerary sites that are found across the world. Our

datasets include LiDAR and multi-spectral aerial imagery.

In chapter 4 we further address the challenges that we were not able to overcome in

the previous chapter. This case study is focussed on the Isle of Arran in Scotland, uses

only LiDAR data and looks at round houses, shieling huts and small cairns. In the case

study we use datasets from Historic Environment Scotland (HES) and we incorporate

feedback on our results to optimise the approach.

In chapter 5 we discuss best practise that we have gathered from literature and our own

experience. We discuss the most important elements of a successful workflow ranging

from the creation of a dataset for deep learning to the selection of CNNs and evaluation

metrics that suit a specific dataset. We finally discuss the most promising technology

innovations that we hope will be used in future research projects for the detection of

archaeology on remote sensing data.

The main contribution of this thesis is a systematic workflow that encourages a deep

understanding of the dataset and applied methods. It also addresses the challenges
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that we have identified. The framework starts with optimising an image classification

methods and uses the optimised parameters in an object detection approach. In addi-

tion, we release a benchmark dataset and share our code to encourage comparison and

improvements in new approaches.

The additional goal was to encourage the uptake of automation in archaeology and

increase a positive outlook to new approaches. This PhD was designed to follow up

the MSc research from Kramer (2015). Since the start of this PhD, the automation

discussion has positively changed, highlighting particularly the use of machine learn-

ing for automated detection of archaeological sites. In part this shift in mindset has

been strengthened by the organisation of events by the community surrounding au-

tomation. The core of the discussion has taken place at the largest computer conference

in our field, the international conference for computer applications and quantitative

methods in archaeology (CAA). For example, at the recurring session run by Arianna

Traviglia and Dave Cowley on automation in remote sensing: “Computer vision vs hu-

man perception in remote sensing image analysis: time to move on.” (Traviglia and

Lambers (2016) at CAA-2016), “Automation is here to stay! The hitch-hiker’s guide

to automated object detection and image processing in remote sensing” (Traviglia and

Lambers (2017) at CAA-2017) and “Setting the automation agenda for remote sensing:

learning to see through a computer?” (Traviglia and Lambers (2018) at CAA-2018).

In contribution to this discussion I have presented various papers (Kramer (2016) (for

which I won best paper award), Kramer (2017), Kramer (2018b)) and organised a work-

shop on “The basics of deep learning for archaeological site detection on remote sensor

data” at CAA-2018 (Kramer (2018a)) teaching participants the basics of the approach

presented in chapter 4. At CAA-2019, in contribution to the wider discussion on appli-

cability of AI to archaeological applications I co-organised a session called “Challenges

and opportunities of machine learning in archaeological research” together with Wouter

Verschoof-Van Der Vaart and Alex Brandsen (Kramer et al., 2019). Based on its 2019

success we will organise this session “Machine learning in archaeological research; chal-

lenges and opportunities” at CAA-2021 with Wouter Verschoof-van der Vaart, Alex

Brandsen, Hector Orengo, Arnau Garcia-Molsosa and Francesc Conesa. Aside from the

CAA, several other events have taken place including a workshop “Tracing the Past:

Combining Citizen Science and Data Science” organised by Karsten Lambers and co-

hosted by Dave Cowley held in July 2018 at the Lorentz Center, Leiden University. In

November 2019, I also co-organised a two day international conference and workshop for

Machine Learning in Archaeology in Rome together with Christopher Stewart (Euro-

pean Space Agency) and Peter B. Campbell (British School at Rome) (Campbell et al.,

2019). It is in large part thanks to the discussions held at these various meetings that

the automation discussion has shifted away from discussing the potential of automation

towards researchers actively working together with their computer science departments

to apply state-of-the-art deep learning approaches to archaeological case studies.





Chapter 2

Aerial Archaeology and

Automation

In this chapter we discuss the history of: how new archaeological sites are manually

detected with the help of airborne techniques (section 2.2); what limits manual detection

(section 2.3); how automated methods have been applied in archaeology (section 2.4);

and, how deep learning can improve current methods (section 2.5). We critically review

the key issues need to be addressed to apply deep learning to archaeological site detection

and finish with what we aim to be an inspirational discussion of relevant fields that have

similar issues when applying deep learning (section 2.6).

2.1 A Brief History of Aerial Archaeology

Past human activity has left its fingerprint on the landscape. This impression is some-

times observed as standing remains like Stonehenge or Carnac but is most often buried

underground. Traditionally excavation is the main approach to studying such remains,

but excavations alone do not provide insights into the context of ancient landscapes.

Some archaeological features cannot be seen, or fully appreciated, without an aerial per-

spective (Crawford, 1923). The rise of aerial archaeology brought about the study of

landscape archaeology, in which archaeologists disentangle the hierarchies of land use in

di↵erent periods and find patterns that were previously unknown. Archaeology was one

of the first disciplines to use remote sensing in scientific investigations (Barber, 2011).

Aerial archaeology has allowed archaeologists to discover “about what lies beyond the

site, or the edge of the excavation” (Johnson, 2007). Filling the gaps between the sites

providing valuable information about human exploitation of the environment. Country-

wide research has especially added to such insights. In the UK, aerial archaeology was

pioneered by O. Crawford who worked for the national mapping agency, the Ordnance

Survey, where he became its first archaeology o�cer in 1920. Today Historic England

5



6 Chapter 2 Aerial Archaeology and Automation

holds the national archive of aerial archaeology and continually adds to it with their

National Mapping Programme.

2.2 Aerial Archaeology

Buried archaeological features (hereafter called objects to avoid confusion with the com-

puter science use of feature) in the landscape can be recognised as slight elevation dif-

ferences (earthwork or shallow buried walls) or through discolourations of the soil or

vegetation revealing di↵erent moisture content or growth habits to their surrounding,

undisturbed, soil. In this section we will discuss two di↵erent sensors and how we inter-

pret these signs of archaeology.

2.2.1 Aerial Photography

The visual appearance of preserved archaeological sites can be captured from aerial

photographs. The imagery is taken by sensors that measure visible light, this includes

sensors that measure other kinds of electromagnetic radiation, such as infrared and hy-

perspectral sensors. Mainly these sites are apparent through the textures or shadows of

earthworks, soil colouring and the di↵erence in stress and enhanced crop growth over

buried archaeological remains (Figure 2.1). The appearance of the site is highly de-

pendent on the environmental factors such geology, crop type, soil moisture, time of

year and even time of day. These extraordinary and sometimes serendipitous circum-

stances require aerial archaeology experts to have a deep understanding of the local

circumstances. It also means that they need to fly in very specific time frames or, when

looking at general purpose aerial/satellite imagery, they need to reflect on the envi-

ronmental conditions at the time the image was captured. Because of these specific

circumstances an image from a single time frame rarely tells the full story and experts

try to look for images for the same field from multiple years and at multiple times of the

year, mainly to account for crop-rotation. However, this practice is very costly and only

really undertaken in commercial archaeology where high accuracy over a single field is

necessary and worth the extra investment.

The environmental factors that reveal archaeology, such as soil moisture and crop type

and crop stress, have a disproportionate e↵ect on the spectrum beyond visible light.

Infrared and hyperspectral sensors can detect subtle vegetation characteristics (e.g.

stressed versus healthy plants) and soil properties (e.g. mineral composition) to a much

higher extent than any standard photographic method (Traviglia et al., 2006).
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Figure 2.1: A schematic timeline of images demonstrating how archaeology can result
in cropmarks. Reproduced from HistoricEngland (2018)

2.2.2 Airborne LiDAR

Di↵erent from aerial imagery LiDAR or Airborne Laser Scanning (ALS) sensors do not

measure electromagnetic radiation but instead measures the distance to objects from

the sensor. Rather than two dimensional data the LiDAR sensor captures 3D (XYZ)

coordinates. During an airborne LiDAR survey the land surface is scanned from an

aircraft by a high frequency pulsed Infrared laser beam which records the locations of

each ground/surface hit and calculates its elevation based on the time it takes for a pulse

to return to the transmitter (Hyyppa et al., 2009). Every laser beam may be returned

multiple times and could, depending on the track towards the surface, return on several

branches of a tree before it returns the terrain elevation (Figure 2.2). When using a

full-waveform recording scanner with a high point density this can pierce through dense

forest canopy and reveal hidden archaeological landscapes (Doneus et al., 2008; Sittler,

2004).

The resulting data, also called a point cloud, cannot be read by humans without further

processing. The raw XYZ point data is generally interpolated to generate a rasterized

Digital Elevation Model (DEM) from all the returned points or Digital Terrain Model

(DTM) from only the last return. In this process some potential key information could

be lost or image artefacts can be created which will perpetuate in further processing

and analysis. The resulting greyscale DTM will reveal the general terrain trends. This

image stretches over large height di↵erence and displays many shades of grey, often

in 16 bit images to retain the terrain detail. However, humans can only distinguish

between about 30 shades of grey which means they can interpret the di↵erence between

an area at sea level and a hilltop but not the local bomb craters in both areas. In

archaeology the immediate neighbouring pixels of a bomb crater are more important than

distant pixels. Further image processing where meaningful pixels are grouped together

by image transformations including smoothing, sharpening, contrasting, stretching is

required to highlight local archaeological earthworks (Figure 2.3)). There are several

such visualisations, also called ‘derivatives’, developed for archaeology. For example,

Local Relief Model (LRM) emphasises small-scale features by extracting local positive

and negative relief variations (Hesse, 2010). In this process a low-pass filter is applied
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to the DTM to approximate the large-scale landforms. The neighbourhood size of the

low pass filter determines the scale of features that will be visible in the LRM. Yet,

archaeological objects can be of varying size and height which means that this process

can result in the removal of some archaeological earthworks (Doneus, 2013). Therefore,

it is advised to use multiple derivatives which requires more interpretation time from

the expert. To improve the speed and accuracy of manual analysis, Kokalj and Somrak

(2019) propose the combination or fusion of multiple visualisations through di↵erent

blend modes (e.g. overlay, multiply).

Figure 2.2: Process of a LiDAR survey capturing elevation data (reproduced from
Doneus et al. (2008)

2.3 Need for Automation

Whereas in the 1990s aerial archaeologists had just a few aerial images in archives to

work with, in 2020 there are petabytes of satellite imagery available on top of yearly

national coverage of aerial imagery and frequent updates to LiDAR archives. Somewhere

in this data, all of the archaeological sites are captured; we just have not yet found a

way to extract it. The increase in data has encouraged many national and county

heritage agencies to launch projects for systematic large scale mapping. Historic England

undertook the National Mapping Programme (NMP) over 20 years and they were able

to cover approximately 1 km2 per person per day, looking mainly at aerial photography

(Bewley, 2003). In Baden-Württemberg (Germany) a single expert was appointed to
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Figure 2.3: Interpolated point data in the area of Savernake, Wiltshire, UK, showing
(A) the forest canopy and (B) revealed elevation di↵erences on the forest floor below

the canopy. Reproduced from HistoricEngland (2018b))

analyse only LiDAR data and was able to cover 35,000 km in six years (Hesse, 2013).

Historic Environment Scotland has also experimented with e�cient national mapping

through their Rapid Archaeology Mapping Programme (RAMP) in which they used the

Isle of Arran as a representative case study to later extrapolate to the rest of the country

(Banaszek et al., 2018). They were able to analyse 30 km2 per person per day on average

using only LiDAR data. Whereas (Somrak et al., 2020) noted that it took 8 man-months

to annotate 130 km2 of Mayan archaeology using LiDAR derived visualisation.

Despite significant e↵orts to speed up and systematise manual analysis there will always

be more data then a manual assessment can economically look at. In many scientific

disciplines this realisation was made early and has fuelled research into automation

approaches. In archaeology, automation has long been a controversial issue as clearly

highlighted by Parcak (2009) “Why does there even need to be an automated process

for satellite archaeology?”. There is a fear that human experts would be replaced with

computer vision in archaeological prospection (Casana, 2014). Most importantly au-

tomation is meant to become another tool, and not a replacement, for archaeologists.

It can be used to quickly create a baseline dataset of the features of interest over large

geographical areas, especially for studying high-density o↵-site features with relatively

uniform appearance (Soroush et al., 2020). The baseline of common, easily detectable

sites can further be used to infer the existence and preservation of more unique sites

that are di�cult to detect in specific areas which can further be used in policy making or

grant application to research an area. This is especially important for large scale map-

ping and monitoring of ancient landscapes that are inaccessible for fieldwork, threatened,

or permanently destroyed. Globally there are hundreds of thousands, if not millions, of

undiscovered ancient sites. If these site locations are unknown they remain at risk from
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development, warfare, intensive agriculture and climate change. As a profession, we are

responsible for saving the archaeological record as best as we possibly can (Institute for

Archaeologists’ code of conduct). By accelerating the detection rate with automation

we will be able to save more of our invaluable human past.

Aside from the speed in site detection, there are several arguments that could favour

computational over human interpretation. Humans are biased by their previous expe-

rience and their interest. A compelling research on bias within aerial archaeologists

has been presented by Cowley (2016). Cowley mainly critiques the traditional observer

directed approach where aerial archaeologists observe the landscape from an aircraft

around the time crop marking should be visible. For example, in Scotland aerial recon-

naissance causes a disparity between known sites in highly fertile arable land and areas

where soil types such as heavy clay and poor draining prevents obvious crop marking.

Aerial archaeologists expected to find less sites on the poor soils and chose to fly over the

attractive areas with beautiful crop marks and re-recording what was already known.

He also reflects on experience and notes that an expert will not see what they have

not been trained to see; observation doesn’t always lead to an interpretation. Another

important observation in archaeology is that many of the same sites have di↵erent ter-

minology and sometimes even interpretation of their ancient use which causes confusion

and wrong interpretation of patterns. By training a machine with data gathered by a

mix of experts a more averaged expert will arise. The confusion between the same sites

that have di↵erent terminology will persist but the critical expert working with the AI

should be alerted because of the lower AI performance on a group of similar sites and

they can correct such irregularities. Finally there is an argument to be made on the

reproducibility of the task when using machine learning. Humans are black boxes and

it is di�cult to understand what an expert knows and what not. Machines can be black

boxes as well, but because they will represent the average of the data that they were

trained on, they will be an average of di↵erent experts.

Aerial archaeology is also highly subjective to the data choices that the expert makes.

Humans can only see the visual spectrum of red, green and blue channels. Multi and

hyper spectral channels are not easily representable in a human readable form. Today,

these bands are visualised in greyscale, or by swapping it with a visual band, or by trans-

formations of di↵erent bands combinations into so called vegetation indexes. The choice

of visualisation biases the process and undoubtedly some integral information is lost.

Automation approaches could reduce this bias as computers can e↵ectively infinitely

stack channels and derive the key information from each channel. When using LiDAR

data in an archaeological context the expert has to choose the parameters for the ini-

tial point cloud processing, DTM created and the choice of visualisation that highlights

the archaeology. This process creates manual bias and also means that inevitably some

information is lost. This could be alleviated with automation because computers can
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Figure 2.4: Images from di↵erent domains that demonstrate the need for a system-
atic, automated, archaeological detection system on multi-spectral aerial observation
data.(A) RGB aerial observation of round archaeological structure at di↵erent levels of
visibility under di↵erent crops. (B) Aerial photography patterns of flying. (C) Map of

similar sights using di↵erent terminology. Images reproduced from Cowley (2016)

process the single channel numeric grids of height data directly. It is even possible to

apply machine learning on the raw point cloud data, as will be discussed in section.

Where LiDAR data is a highly reliable source for detecting earthworks in natural terrain,

in agricultural terrain these patterns are ploughed out which means that aerial/satellite

imagery is the only usable resource. As previously discussed in subsection 2.2.1, aerial

archaeologists often describe their finds on aerial photography as serendipitous. Most

sites are found on aerial photography during a summer dry spell when the crop is

ripening. Yet there are many other times of year that archaeology can be found in the

early/late crops as well as soil marks after ploughing and even with shadow marks in

the snow. All of this knowledge reveals that the quantity of time frames matter as well

as quality for their selection. It currently takes a very experienced expert to understand

the relationship between local geography and archaeological sites. Yet expert knowledge
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can be used to train machine learning algorithms to find the right time frames and to

do it tirelessly for many years.

All the information from the di↵erent data sources and di↵erent time frames can be

infinitely stacked by a machine which can then calculate the cumulative accuracy of all

the signals and extract the most insightful data points to feedback to the human expert

for verification. This isn’t humanly possible, but with machine learning it is.

2.4 The Current State of Automation Research

We have already discussed di↵erent approaches for image processing that can be applied

to visually enhance aerial imagery and LiDAR data. The next level of automation are

knowledge based algorithms that can be used for object detection and include explicit

feature selection. In archaeology we have seen several specialised algorithms for shape

detection (Zingman et al., 2016), template matching (de Boer, 2007; Trier and Pilo,

2012; Trier et al., 2015), and rule based pixel or Object Based Image Analysis (OBIA)

(de Laet et al., 2007). These feature engineering techniques rely heavily on the selection

of image processing techniques. Kramer (2015) in her Masters thesis reviewed the history

of such techniques and their applicability to archaeology. She also created an approach

to adaptive template matching and OBIA for round barrow detection using the Slope

visualisation of LiDAR data. She concluded that the drawback from knowledge based

approaches is that they aren’t transferable between sensors and objects, and don’t scale

geographically. The lack of scalability in combination with high false positive rates might

also be the reason why automated methods are not generally (re-) used or picked up by

national mapping programmes or commercial archaeology. The recommendation from

this thesis was to start applying deep learning techniques which in other complicated

fields have reached human level accuracy. Since her thesis several other papers have

been published with knowledge based approaches (e.g. Sevara et al., 2016), however,

most automation research has followed this recommendation. An up-to-date review of

knowledge based approaches can be found in Lambers et al. (2019).

2.5 Machine Learning

Di↵erent from feature engineering, with deep learning you ultimately want the algorithm

to choose or create the most important features needed for a correct classification. For

a visual understanding of features we have created Figure 2.5 with two di↵erent Sobel

kernels that highlight horizontal and vertical edges. The matrix transformations used

in image processing are used in deep learning algorithms like CNNs. Where a filter is

convolved over an image (another matrix of pixel values) to detect features such as edges

or colour intensities which are important for a correct classification.
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Figure 2.5: (A) Aerial image of a barrow next to a road in the New Forest (©Crown
copyright and database rights 2020 Ordnance Survey). (B) 3x3 pixel vertical Sobel
kernel applied to image (A), which highlights vertical lines. (C) 3x3 pixel horizontal
Sobel kernel applied to image (A), which highlights horizontal lines.(A) and (B) created

using Sobel kernels available at [https://setosa.io/ev/image-kernels]

Deep CNNs were first applied to a large dataset by Krizhevsky et al. (2012). They

drastically reduced the state-of-the-art error rate of the ImageNet image classification

competition (Deng et al., 2009) from 26.1% to 15.3%. These CNNs consist of several

layers of which Convolutional, Fully Connected, Rectified Linear Unit (RELU) and

Pooling layers are most important. A convolutional layer consists of a set of learnable

filters. This will output a stack of 2-dimensional activation maps which illustrate the

responses of the learned filter. This is often followed by a RELU layer which is an

activation function that keeps only the positive activations from the convolutions. After

this combination of layers, a pooling layer is used to downsample the spatial size of the

representation to reduce the computational load in the network. In most common CNNs

these three consecutive layers are repeated until the image has been merged spatially to a

small size. This is then finally followed by a fully-connected layer which predicts the final

score for each of the classes. In their architecture, CNNs appear to parallel mammalian

vision by learning filters to perform functions like edge detection at early layers and, at

higher levels, specific patterns which we may recognise as objects or their parts. In a

way, aerial image classification is a more simple task than classifying the general scenes

of ImageNet: it is generally consistent in viewpoint (overhead imagery) and scale (known

ground resolution) which reduces the variations of the object’s appearance and simplifies

the classification task (Mnih, 2013). However, there are many reasons why the detection

of archaeology on aerial imagery is more challenging which should be addressed with

more complex solutions:

• Small datasets; When a model is trained on only a few examples it is at risk of

overfitting to the training data. In this situation the model memorizes the training

samples and does not generalize well to new data. Many real-world problems that

are being solved with machine learning face this issue and thus several techniques

have become available to encourage CNNs to learn more general representations.
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• Class imbalance; in archaeology we have unbalanced datasets with only a few

examples for each class and globally a lot of background examples against only

a few foreground examples. In machine learning a loss-function minimizes the

model-error. With class imbalance this is solved most simply by classifying all

objects as the majority class (background). A specific loss function that penalises

this should be considered to overcome the issue.

• Noise; Archaeological sites are the most overwritten patterns in the landscape,

every period following another has added more noise which has an a↵ect on the

variability of site appearance and their detectability. Overgrown vegetation, natu-

ral erosion, agricultural activities and in some cases looting should be considered.

• Scale; in archaeology we are looking for small objects with detailed variation in

a large landscape which presents a harder task than separating a woodland area

from agricultural terrain. Undoubtedly this creates a much more complex decision

boundary. Due to the need to learn such highly nonlinear decision boundaries,

highly advanced machine learning approaches are required.

• Low contrast; In high-resolution LiDAR analysis the task is to separate earth-

works from the natural terrain undulation. This is much more challenging than

separating modern roads or buildings from their surroundings.

• Non-conventional data format; Data from LiDAR derived DTMs and (multi-) spec-

tral satellite imagery are often supplied in 16 and 32 bit or float images. For a large

DTM this is important because large continuous areas can span over 256 meter

height di↵erence and is often captured at < 1 metre resolution. When fitting this

data into an 8 bit image you will loose vital detail. An easy solution is to use one

or more of the previously mentioned DTM data visualisations that highlight the

local terrain di↵erences. However, inevitably detail is lost with such visualisations.

Raw DTM processing can be achieved with proper rescaling.

• Changing appearance; the archaeological remains have subtle changes in appear-

ance depending on the geology in di↵erent geographical areas.

• Fuzzy site definitions; Finally, archaeological sites are often classified according

to rough rules but show a lot of variance between them (e.g. banjo enclosures or

hillforts). The opposite is true for Roman sites which are often built according to

strict patterns which are similar to modern building practices.

In the following sections we present the known deep learning approaches to image classi-

fication (subsection 2.5.1), object detection (subsection 2.5.2) and object segmentation

(subsection 2.5.3). In image classification a class is predicted for the whole image. In

object detection all objects in an image are given a bounding box and class. In semantic

segmentation all pixels in an image are given a class. The results and key considerations
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from the reviewed papers are summarised in Table 2.2, Table 2.3 and Table 2.4. We

have mainly focused our review on their fundamental approach (Table 2.2) and their

additional e↵orts to prevent overfitting (Table 2.3). The results Table 2.4 reports on the

true positives, false positives, false negatives, precision, recall and F1 score (precision,

recall and F1 defined in Equation 2.1, Equation 2.2 and Equation 2.3 respectively). Re-

searchers in deep learning will generally try to optimise the trade-o↵ between recall and

precision to get the highest F1-score. The same table also reports on the number of

foreground and background examples in the validation dataset of image classification.

For object detection and segmentation we report on the area size of the validation area.

This addition is important because a larger area is more prone to have false positives

and it is more impressive when their results are good.

Precision =
TP

TP + FP
(2.1)

Recall =
TP

TP + FN
(2.2)

F1 = 2

✓
Recall ⇤ Precision

Recall + Precision

◆
(2.3)

Where TP = true positive, FP = false positive and FN = false negative.

2.5.1 Image Classification

The first deep learning approach in aerial archaeology was presented by Zingman et al.

(2016) who compared their research of a knowledge based rectangular-shape feature de-

tection algorithm with a CNN approach. Their pre-trained CNN was trained with only

9 real examples (plus 135 augmented examples) and 49584 negative samples. They con-

cluded that their handcrafted features yielded higher performance but recognised that

the actual detection rate of the CNN cannot be reliably estimated due to a very small

number of positive examples. Visually the results were interesting for a first time ap-

proach, the CNN classified images that are conceptually close to rectangles (Figure 2.5).

Another case study with image classification was presented by Trier et al. (2018) (re-

search was presented at a conference in 2016 (Trier et al., 2016)) who used greyscale

DTM (scaled between 0-255) to detect charcoal kilns. They had 375 (0.15 km 2) positive

examples and 10,027 (4 km2) negative locations of lookalike heap objects each cropped

to 101x101 pixels (20.2 m x 20.2 m). It’s interesting that they have chosen a challenging

background class. The approach will show how well it can discriminate between similar

classes, our expectation in such a case would be that the trained CNN would not gener-

alize well to the overall background terrain. For training the image classifier they used
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Figure 2.6: Four patches that generated the highest responses by AlexNet (top row)
and Vgg-f (bottom row) architectures of pre-trained CNNs. Images from Zingman et al.

(2016).

the AlexNet CNN that was pre-trained on ImageNet and used the second to last layer

as input to train a linear Support Vector Machine (SVM). To infer the success of their

approach they ran the image classifier over a large area with a sliding window of 1 meter

(the threshold for their final classification is unknown). Unfortunately the training data

for the image classification came from the same area as used in this inference step so

those reported results are biased. The inference area size is 9 km2 so almost half of the

negative examples (the heap class) and all positive examples were already seen previ-

ously by the image classifier. Most interesting result between the two approaches is that

in the large area assessment the false positives only increased by 184 so the approach

was relatively successful at disregarding the background of unseen data. They also found

9 previously overlooked potential sites. Even though the approach isn’t solid this was

another early stage example and provided an interesting case study.

The Norwegian Computing Center who created the previous case study was also com-

missioned to apply their approach to a case study from Historic Environment Scotland

on the Isle of Arran. Trier et al. (2019) used a Simplified Local Relief Model (SLRM)

visualisation of LiDAR data and trained on roundhouses (121), shieling huts (267) and

small cairns (384). They trained a separate ResNet18 (pre-trained on ImageNet) for

each class and trained against background/negative images. They excluded images with

common confusion objects such as burial cairns, enclosures and modern cattle feeders

to artificially reduce the false positive rate. We would argue against that practise be-

cause the CNN should learn to classify those objects as background, such discrimination

quality is especially important when it is applied over a large area. For inference they

have applied the same approach as Trier et al. (2019), running their image classification
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Table 2.1: Data reproduced from Trier et al. (2019), showing training accuracy and
validation accuracy change for each epoch on the roundhouse dataset. The training
accuracy is only improving from classifying all objects as background at epoch 7, 9 and

10.

Epoch
Training
Accuracy

Validation
Accuracy

1 0.9847 0.9936
2 0.9876 0.9925
3 0.9890 0.9946
4 0.9856 0.9946
5 0.9895 0.9834
6 0.9872 0.9845
7 0.9894 0.9791
8 0.9883 0.9914
9 0.9903 0.9925
10 0.9907 0.9888

model that was trained on the 101x101 pixel images on large 2048x2048 tiles. In this case

they have visualised the accuracy for each image with a probability map on top of the

SLRM (Figure 2.7). They didn’t threshold the results and decided true/false positives

on visual inspection. This defies the purpose of automation because the archaeologist

still has to look at each pixel to verify the results. Similar to Trier et al. (2018) it is

not clear whether the results shown were previously used for training so that should be

kept in mind when reviewing those results in Table 2.4. The results overall are poor

despite a seemingly good training and validation accuracy at the image classification

stage. At closer inspection the training accuracy is only improving from classifying all

objects as background at epoch 7, 9 and 10. This is evident because only 80 foreground

and 7355 background examples were used. Class imbalance is a known issue in machine

learning and sometimes overlooked because of a high accuracy as it was done here. The

authors should have done more experiments to better understand this issue and find

ways to improve it using hyperparameter tuning. A simple confusion matrix would have

helped them and the reader to understand the issue at hand. Instead of noticing the

issue they used the model weights at epoch 3 or 4 for their inference because the val-

idation accuracy seemed highest (Table 2.1). Probably, they used both training and

validation images in the inference because it would explain the poor overall results. The

discussion and conclusion section reflects that sometimes “artificial intelligence is being

applied without proper understanding” and “as the study presented here demonstrates,

the reasons for di↵ering performance of deep neural networks are complex, and there is

a pressing need to explore the reasons for this variability in output.”. They argue the

main reasons for poor performance are the neural network structure, the “black box”

problem and the number of training examples. However important those points are, we

argue that the authors made some fundamental faults that can easily be addressed.

Caspari and Crespo (2019) presented an image classification approach to detect burial

mounds on satellite imagery. Their data was split with 75% for training and 25% for
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Figure 2.7: Heatmap detection results (coloured overlay) from Trier et al. (2019). (A)
are the results for Glen Shurig, showing probability of roundhouses (cyan), shielings
(magenta) and small cairns (yellow) and verified sites are depicted as circles. The
results in this area were chaotic with a large number of false positives for shieling huts
and for roundhouses. (B) are the results for Machrie Moor with less chaos and some

correct detections.

testing and validation. They created their own CNN using 3 convolution and pooling

layers with ReLU activations and two fully connected layers before the final activation

with a sigmoid. We would recommend using a State-Of-The-Art (SOTA) model rather

than making custom networks. These SOTA models have been extensively benchmarked

on various datasets and are well understood. These also have pre-trained versions avail-

able which significantly reduces overfitting. That being said, we do appreciate the CNN

is benchmarked against another machine learning approach, here SVM. Overall the ap-

proach is simplistic but we appreciate that the authors were cautious in their approach

and understood key concepts.

Somrak et al. (2020) used images classification to map Aguada’s, Buildings & Platforms

in a 230 km2 area around Chactún, Mexico using LiDAR data. In their approach they

used several tests with di↵erent hyperparameters to find the best performing model.

They tried 2 and 15 pixel bu↵ers to understand the importance of context around ob-

jects. They also experimented with data augmentation and varied the trainability of

their VGG-19 architecture with 3 or 5 frozen layers at the top. Potentially the most

interest hyperparameter they experimented with are 6 di↵erent visualisation techniques

all of which they found worked well in the local environment. For example, Visualiza-

tion for Archaeological Topography (VAT) is a blend of analytical hill shading, slope,

positive openness and sky-view factor into a single greyscale image. They also made

several adaptions, for one they placed slope, positive openness and sky-view factor into

several channels to create RGB images. Their best performing model used this “VAT-

HS channels” visualization, image samples with 2-pixels edge bu↵er, data augmentation

and five frozen layers. They also extensively reviewed the confusion classes to better

understand how the deep learning model is performing which is key benefit of the image

classification approach. The results noted in Table 2.4 is the micro average of all the

classes including the background terrain.
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2.5.2 Object Detection

The first approach for object detection was published by Verschoof-van der Vaart and

Lambers (2019). The first author has developed and improved this approach for his

PhD in Archaeology (collaboratively with the Leiden Centre of Data Science). He has

developed a workflow called WODAN (Workflow for Object Detection of Archaeology)

to detect barrows and Celtic fields on a 440 km2 area using LRM visualisation of Li-

DAR. They applied the state-of-the-art (at the time of publishing) Faster R-CNN which

generates object proposals within an image, extract features from the proposals using

the CNN, and then classify those. The authors are very upfront about potential short-

comings. For example they have cut the large case study area without overlapping tiles.

This has dissected 3% of their target objects which will have an adverse e↵ect on their

detectability. They also note that they have manually found common false positives in

potential barrows and small dunes (caused by drift-sand) in image patches which they

have excluded from the analysis to avoid unbalanced increase in false positives. Only

12-18 epochs were used to train the model, to avoid overfitting. They have also ex-

perimented with di↵erent backbone network architectures and found that they weren’t

able to train Resnet50 for multi-class detection so they decided to favour VGG16. That

must be a bug in their implementation because any network can be reformed to detect

multiple classes. Nevertheless it is a really good first paper to apply deep learning to

aerial archaeology object detection.

2.5.3 Object Segmentation

The first case study using segmentation was presented by Gallwey et al. (2019) who

looked at mining pits on LiDAR derived DTM. They used a U-net model which has

proven to be successful in many domains. It was created by Ronneberger et al. (2015)

for the detection of cell tracking in biomedical image analysis. This domain and data

source shares similarities with aerial archaeology such as small datasets, fixed scale,

high resolution, small objects, indistinct boundaries and greyscale images. Because the

authors used raw DTM they had to rescale their 16-bit float images. They applied

min-max normalisation to rescale the individual patches between 0–1 which maintains

the original distribution before converting them to an 8-bit integer format. To enhance

contrast they further rescaled the image tiles linearly prior to model input. By quan-

tising from 16-bit (65,536 distinct values) to 8-bit (256 distinct values) they lose a lot

of information. This is not necessary because the model transforms the input image to

0-1 floating point. Using 8-bit images will especially have a large e↵ect on mountainous

regions where there is a high variance in height - sites would become visually indistinc-

tive. We further address this issue in subsection 5.2.2. Because they work with greyscale

images they realised that transfer learning using ImageNet weights would probably only

slightly improve their performance. Instead they used a model that was pre-trained on



20 Chapter 2 Aerial Archaeology and Automation

a large planet scale DEM dataset that was used to detect craters on the Moon. They

kept the hyperparameters the same and only retrained for 4 epochs on the 520 images

(1568 mines) of their own case study and they applied several data augmentation tech-

niques. The results can be found in Figure 2.8. They compared the approach results

from the raw DTM with several visualisations of the DTM and found that the raw DTM

worked best. This is expected because the model they used was pre-trained on a similar

DEM dataset and not on a dataset that is optimised for the human visual spectrum.

Nonetheless this is a great example of clever domain adaptation.

Figure 2.8: Detection results from Gallwey et al. (2019) on the Dartmoor Hexworthy
mine test area. (A) shows the true mining hole locations in blue and (B) shows the
model’s predicted mining hole results depicted with a graduated transparency colour

scale representing model confidence in magenta.

Kazimi et al. (2019) used a variation of DeepLabv3+ to detect bomb craters and charcoal

kilns on LiDAR derived raw DTM. The researchers of this paper also experimented with

min-max normalization on the whole dataset vs single images and they found that it

was essential to apply this on a per-image basis. To extract training data they cropped

256x256 pixel images from each object out of their large DTM into which they then

randomly cropped to smaller 128x128 images to ensure that not all objects had a centre

object. The input and output data to the original DeepLabv3+ model is 128x128 pixels

and the authors changed the output size to 64x64. This improved their result from the

baseline model.

A modified 3D version of a U-net was used by Soroush et al. (2020) to detect qanat shafts

on Cold War-era CORONA Satellite Imagery. This type of U-net was created for 3D
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Table 2.2: Summary of methods applied by key papers in the literature.

Reference Sensor Objects Method Deep Learning Platform

Zingman et al. (2016)
Satellite
Imagery

Enclosures
Image Classification,

Alexnet
Matlab toolbox,
MatConvNet

Trier et al. (2018) LiDAR Kilns
Image Classification,
Alexnet + SVM

CNN in Ca↵e,
SVM in Scikit Learn

? LiDAR
Cairns,

Shieling huts,
Roundhouses

Image Classification,
ResNet18

PyTorch

Caspari and Crespo (2019)
Satellite
Imagery

Burial mounds
Image Classification,

Custom CNN

Keras
&

TensorFlow

Somrak et al. (2020) LiDAR
Aguada,
Building,
Platform

Image Classification,
VGG-19

Keras
&

TensorFlow

Verschoof-van der Vaart and Lambers (2019) LiDAR
Burial mounds,
Celtic fields,
Charcoal kilns

Object detection,
Faster R-CNN
with VGG-16

Keras

Gallwey et al. (2019) LiDAR Mining Pits
Image Segmentation,

Unet
Keras

Kazimi et al. (2019) LiDAR
Bomb craters,
charcoal kilns

Image Segmentation,
DeepLabv3+

Keras

Soroush et al. (2020)
Satellite
Imagery

Qanat shafts
Image Segmentation,

3D Unet
Keras

medical data such as scans of the brain. It is unclear why the authors preferred this model

over the traditional U-net. They did not use a pre-trained model but instead focused on

several hyperparameters including a specific loss function, batch-normalisation, drop-

out and they added data augmentation to reduce overfitting. They consider adding

more approaches to artificially remove false positives with post-processing steps. Rather

than simply masking certain areas they propose to use their domain understanding of the

linear pattern in which these qanats were placed. It would be interesting to see if that is a

pattern that can be found with machine learning or whether that has to be hard coded.

This is especially so because context is important for almost all archaeological sites.

Unfortunately the authors didn’t report on training and validation results separately

and provide the result on all 11 patches. This means that readers cannot interpret the

transferability of the approach from one area to the next. Moreover, the trained model

will have memorized the examples in the training data so the recorded results are worse

than the results reported in the paper.

2.6 Discussion

At this early stage of deep learning most case studies in aerial archaeology are still in

the feasibility phase. There are several trends, critical observations and issues we will

discuss in this section and further address in the thesis.

Most studies face overfitting as their key issue. This can be seen because most studies

only train their approach between 3 and 20 epochs. They stop training because their

validation accuracy drops which means their model is overfitting. At that point the

model is learning the exact examples from the training data which doesn’t generalize
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Table 2.3: Summary of data processing types applied by key papers in the literature.

Reference Image Pre-processing Pre-training Data Augmentation Notes

Zingman et al. (2016) Raw greyscale ImageNet
16 rotation angles were
taken uniformly in the
interval [0, 360] degrees

Trier et al. (2018)

Greyscale, normalized
contrast and mean values
from dataset (scaled 0 -
255 with scaling factor
limited to 25 or less)

ImageNet
8 variation of rotating

and flipping

Trier et al. (2019)
SLRM (repeated for R-

G-B channels)
ImageNet

Horizontal flip, rotation,
random scaling and
random translation

Caspari and Crespo (2019) Raw colour (RGB) No pre-training
Horizontal flip, random

zoom and shearing

Somrak et al. (2020)
VAT, Flat VAT, VAT-HS,
VAT-HS channels, PRIM,

LD
ImageNet

Pre-processed 3
rotations to maintain

consistent hill shading. In
Keras; random zoom,
width shift and height

shift

1. Di↵erent numbers of
untrainable, frozen

layers at the beginning
of the network.

2. Oversampling the
aguada minority class by
rotation (creating multiple
hill shading directions)

Verschoof-van der Vaart and Lambers (2019) LRM ImageNet
Horizontal and vertical
flip and 90� rotations

Gallwey et al. (2019)
Greyscale with min-max
normalisation and linear

rescaling
Lunar DSM

Randomly flip, rotation
and shift

Pre-training on a dataset
similar to the target.

Kazimi et al. (2019)
Greyscale with min-max

normalisation
No pre-training

Random cropping,
random rotation

Soroush et al. (2020) Raw greyscale No pre-training
Horizontal and vertical

flip

Loss function was
designed for class-

imbalanced datasets.

Table 2.4: Summary of results by key papers in the literature.

Reference
Foreground/background

for total km2
True

positives
False

positives
False

negatives
Recall Precision F1

Zingman et al. (2016) Test: 1/57,504

Trier et al. (2018)
Test: 375/10,027
Train/Test: 9 km2

317
372

35
219

58
60

0.85
0.86

0.90
0.63

0.87
0.73

Trier et al. (2019)
Test 1: 1 km2

Test 2: 1 km2
15
5

54
65

20
14

0.43
0.26

0.22
0.07

0.29
0.11

? Test: 42/261 1 0.84 0.91
Somrak et al (2020) Test: 2492/2168 4453 184 23 0.99 0.96 0.98

Verschoof-van der Vaart and Lambers (2019) Test: 10.9 km2 55 6 23 0.71 0.79

Gallwey et al. (2019)
Test 1: 1 km2

Test 2: 0.2 km2
155
142

37
13

38
30

0.81
0.83

0.81
0.91

0.81
0.87

Kazimi et al. (2019)
Bomb crater area: ?
Charcoal kiln area: ?

49
228

?
2
5

0.96
0.97

Soroush et al. (2020) Train/Test: 60.5 km2 2863 1785 989 0.74 0.62 0.705

well to the unseen data in the validation dataset. Generally, deep learning requires large

training datasets but in aerial archaeology there aren’t many examples to train on. In

table x we have noted the various methods that the researchers have taken to prevent

overfitting. Most popular approaches are pre-training and data augmentation. However,

there might be a more fundamental problem such as a noisy dataset or class imbalance.

We fear that uncritical approaches fuel the disbelievers of automation approaches such

as the recent publication by Casana (2020). Quoting Verhoeven (2017): “Too often,

incorporating (new) digital technologies in archaeology while lacking any theoretical

framework is said to be meaningless and even erroneous conclusions are drawn”. Since

deep learning is completely reliant on digital data we need to be especially aware of bias.

Approaches have to be appropriately backed by theory and the results should be inter-

preted alongside theoretical frameworks. Contrary to knowledge based approaches, in
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deep learning researchers do not explicitly model their domain understanding. This ab-

straction can seem like the approach is a black box and researchers like Trier et al. (2018)

and Trier et al. (2019) have also reiterating that statement in their work. However, with

the proper understanding researchers can get a lot of feedback from their models which

they should use to tune several hyperparameters. We have seen extensive hyperparam-

eter tuning in Somrak et al. (2020). We have also seen that Soroush et al. (2020) chose

a loss function that was designed for class-imbalanced dataset and Gallwey et al. (2019)

used a network that was pre-trained on a LiDAR dataset and objects that were similar

to their target. Overall we think the right approach is to start with image classification

to test di↵erent parameters that are transferable to object detection and segmentation.

At this point researchers can quickly review confusion matrices to understand the re-

sulting accuracy and they can also visualise images that are most confused to quickly

understand whether the dataset is noisy (Somrak et al. (2020)). Understanding the

potential of a dataset at an early stage can speed up the research and helps researcher

to find out where to invest time to gain accuracy increase. Somrak et al. (2020) tried

several visualisations and found that Local Dominance didn’t work well on the dataset

despite being one of the most important manual tools for classifying the objects. Object

detection and segmentation take much longer to train than image classification and it

is thus more expensive to tune. If they went straight for large scale mapping than they

may have not had the means to tune the visualisation and would have had to conclude

that automation was useless on their case study.

Most researchers evaluate their approach with the false positive rate and the final F1

score. To improve their false positive rate Verschoof-van der Vaart et al. (2020) published

an updated version of their approach using Location Based Ranking to mask built-up

areas, and areas with drift-sand that were known to have low likelihood of archaeology

but a high number of false positives. Ultimately the success of an approach is not

dependent on one metric, it depends on what is most suited for a specific task (Soroush

et al., 2020). In the medical profession classifying a sick person as healthy has a di↵erent

cost than the opposite case and so doctors prefer to review more false positives and accept

a higher recall with lower precision. In the case of Verschoof-van der Vaart et al. (2020),

their focus was on large scale mapping where it was accessible to miss a few objects for

a higher precision to increase the overall success measured in the F1 score. Automation

in archaeology is still at an early stage where researchers are trying to locally optimise

their approach. In the future we foresee that a heritage managers may accept high recall

with lower precision when it only takes them a short while to sift through the detections.

The same is apparent in commercial archaeology where high recall is the most important

metric.

Our final observation is that some researchers are not concerned with geographically

separating their results. However, it is a really important test for the transferability of

the approach and only then can the validation and testing be really attested for. The
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testing areas of Gallwey et al. (2019) were 20 km2 and 500 km2 away from the training

data which is most impressive but also the approach of Soroush et al. (2020) works where

the whole study area is split in a training and validation areas.

In the remainder of this thesis we will further address our observations and propose

several of our own solutions.

We expect the next phase will include more research using object segmentation. This ap-

proach will address the major flaw in object detection which is that most archaeological

sites do not fit within bounding boxes. Rather than focusing on specific sites we suspect

that the most value will initially be in the detection of concave/convex earthworks on

LiDAR data or positive/negative crop marks on aerial imagery.

After this stage it starts to become more important to include more geographical sources

such as soil type, hydrology, land use and vegetation cover. It is a highly specialist job for

an archaeologist to distinguish natural and modern features from archaeological features.

Often just one source of data is not enough and specialists use other earth observation

sources or geographical maps.



Chapter 3

The New Forest Case Study

This chapter presents our initial approach to image classification and a first attempt at

object detection. Most of this research was undertaken in the first year of the PhD (2017)

when the literature on deep learning for remote sensing datasets was scarce, especially

in relation to archaeology. The objective of the experiments was to find out whether

CNNs could be trained to detect barrows in multi-spectral imagery and LiDAR derived

DTMs. We have particularly focused on our identified data challenges in chapter 2.

We first discuss the case study area and how we created the dataset (section 3.1). Our

initial experiments are divided into basic image classification (section 3.2) and object

detection (section 3.3). We will conclude the chapter in section 3.4 with a discussion

on the challenges that we addressed and describe which challenges need more work in

the following chapter and which we cannot overcome within the PhD and are classed as

future work.

3.1 Dataset

Despite the availability of countrywide remote sensing data for the UK, we are still un-

able to process the petabytes of data. We thus limit our research to a 600 km2 area of

the New Forest in the south of England. The area is known for its diverse land cover and

rich archaeology, and will thus be a good testing ground for including data from multiple

remote sensing. During the initial stages of this research we established a collaboration

with the New Forest Archaeological Mapping Project. Their extensive research of dis-

covering new archaeological sites, especially using remote sensing data, has provided

us with a very good dataset of known sites (subsection 3.1.1). In addition to the site

locations they have kindly provided us with LiDAR data which complements the aerial

imagery available from Ordnance Survey, who sponsored this research (subsection 3.1.2).

To view our datasets in their geographic context we used QGIS which is an open source

Geographical Information System (GIS) software used to process remote sensor (raster)

25
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data and location (vector) data (QGIS Development Team, 2020). In GIS software

vectors can consist of three types: polygons, lines, and points. In this software there

are several pre-existing tools for both vector and raster processing which can be pulled

together to process the large datasets into a format that be used for machine learning

(Verschoof-van der Vaart and Lambers, 2019). However, we found it easier to process

the data directly in Python with specific geography packages. For vector data we used

the OGR and Fiona libraries and for raster data we mainly used the GDAL library.

3.1.1 Site Locations

The objects chosen for this initial case study are barrows (Figure 3.1), also known as

grave mounds, which typically date back to the early-middle Bronze Age around 3,500

years ago (Field, 2011). These objects are amongst the most common monuments of

prehistory all over the world and have been the target of many other automation projects

(de Boer, 2007; Riley, 2009; Trier et al., 2015). Barrows appear as circular mound

structures and have similar appearance to naturally occurring elements (e.g. fairy ring
1) and modern human-made structures (e.g. roundabout), which are likely to cause false

positives and may challenge the accuracy of a CNN as noted by Trier et al. (2016).

The known archaeological site locations are a combination of the record from the local

archives Historic Environment Record (HER) and the more recent discoveries made

during the New Forest Archaeological Mapping Project. The locations of barrows are

shown in Figure 3.2. The data is provided as shapefiles2 with central points of every

site.

The archaeological sites used for this research have been discovered over the last 100

years using di↵erent methods including remote sensing, but also ground survey methods

such as geophysical techniques. This means that some objects are not visible on both

or even on either of the data modalities. Additionally, some objects are historically

classified and have since been destroyed. Experiments will determine whether the given

data can be used as a raw resource or if further manual tuning is required.

3.1.2 Remote Sensor Data

Remote sensing data is often very high resolution which over large area creates big data.

This big data is di�cult to load into memory or transfer and therefore datasets are

generally provided in multiple di↵erent files. These files can be processed individually

or as Virtual (VRT) Files. VRT files contain links to the individual images that are

available for a RS dataset. This file type significantly speeds up image cropping because

1A fairy ring is a naturally occurring ring or arc of mushrooms.
2The shapefile format is a geospatial vector data format.
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Figure 3.1: Photograph of a barrow captured by Champion (2006), at Longdown
(New Forest, grid ref SU36280830). This barrow is 8 metres in diameter and up to 0.5

metres high.

Figure 3.2: (A) New Forest National Park overlaid with the locations of known bar-
rows. (B) Location of the New Forest marked by a red indicator on a map of the United

Kingdom (GoogleMaps, 2020b).

it loads only the area of interest into memory and more importantly it includes all the

images during this process which allows objects at bordering images to be merged in

the process. Additionally, VRT files can be provided with additional instruction for

processing the data when images get extracted from it. In our case this includes the

re-projection of the coordinate system to EPSG:27700, to set the resolution to 0.5m

pixels and to scale all images at 8 bits per sampled pixel.
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3.1.3 Aerial Photography

The Ordnance Survey aerial imagery is captured with Red-Green-Blue-Near infrared

(RGBN) bands and is provided in 16-bit unsigned integer format. The images have

undergone some basic pre-processing for merging the individual photos captured during

the flight but are not colour corrected and thus show colour imbalance and artefacts at

the seams (Figure 3.1). In total, 6 grid tiles of 10 kilometres along each side (tiles SU20,

SU21, SU30, SU31, SZ29, SZ39 in the British National Grid) have been provided, with

0.5m ground resolution. Each of these is about 3.5-4 GB in size (Figure 3.3 (A)). This

data was captured in August 2016 which makes it possible for cropmarks to be seen,

especially in the near infrared band.

Figure 3.3: Colour imbalance between provided tiles SU20 (middle) and SZ29 (right).
©Crown copyright and database rights 2020 Ordnance Survey

3.1.4 Airborne LiDAR

The LiDAR data was captured in two di↵erent surveys in December 2011 and Jan-

uary 2015 (University of Cambridge, 2011, Natural England, 2015). Both surveys were

performed during the winter when the broadleaf trees are devoid of leaf cover and the

understory vegetation is at a minimum. The 2011 survey covers about 400 km2 and

has a minimum of 2 laser points per m2 (ppm) and reached up to 6 ppm. The point-

cloud data was processed to produce both Digital Surface Models (DSMs) and DTMs as

IMGs formatted rasters with a 0.5m cell size. These files cover regions of 30-40 km2 with

maximum IMG file sizes of 1 GB (Figure A.1 (B)). Unfortunately, the DTMs include

many ‘no data’ patches where no ground points were returned (e.g. houses or dense tree

coverage). These areas are not interpolated and might cause a problem for the training

of networks. The 2014 data covers about 650 km2 and is captured with 2 ppm and

delivered as a processed 1 m DSM and DTM. The coverage of this survey is significantly

larger than the 2011 survey and the images are interpolated without ‘no data’ patches

(Figure A.2 (B)).
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3.2 Image Classification

To process the geographical data in Python we used the GDAL (raster-data) and OGR

(vector-data) libraries. We have implemented the workflow in a Jupyter Notebook to

include intermediate feedback steps for printing details about the loaded files, their

geographical information and to show plots of the image crops (using Matplotlib) and

their geographical point locations (using Basemap from the Matplotlib toolkits).

There are various reasons why image classification is a good approach for the task at

hand. Image classification generally gives a bigger window around the object then ap-

proaches which perfectly localise objects (e.g. object detection and segmentation). This

bigger window is useful as barrows are often found in clusters (Field, 2011), so context

might be important for classification. Additionally, our barrows in the dataset are not

always accurately located / digitised at the given centre point, and so, a bigger window

may slightly alleviate this noise. As we are looking to classify a single object type we

mainly base our approach for this section on research from single class image classifica-

tion techniques which have previously been applied to large datasets like ImageNet.

The success of deep learning has mainly been shown by training large datasets such

as ImageNet and it has been argued before that better results come with deeper and

more advanced network architectures (He et al., 2016). In our case, however, we have

only very small datasets of 260 - 431 barrows and therefore need a di↵erent approach

where we carefully consider overfitting. Overfitting happens when a network trains on

too few examples and learns patterns that do not generalize well to new data. This

e↵ect can be witnessed when the validation accuracy is much lower than the training

accuracy. In this section we will discuss a range of approaches to alleviate the chance

of overfitting. In section subsection 3.3.2 we discuss data pre-processing and especially

the approach to overfitting by increasing the dataset by making minor alterations to our

existing dataset using techniques like flipping, rotating, scaling, cropping, translating, or

adding random noise. For a CNN which is invariant to these changes such augmentation

will be interpreted as distinct data to learn from. Besides increasing the amount of

data, data augmentation is also good for other reasons. Our images (supposedly) have

the object of interest in the centre. A network without augmentation might therefore

fit to images with objects in the centre and would not recognise an ‘unseen’ image of

a barrow that is not in the centre. So, to an extent, data augmentation can be used

to prevent overfitting, however, we need additional approaches. In subsection 3.2.2 we

research the best approaches to work with small datasets and experiment with di↵erent

CNN architectures. In subsection 3.2.3 we analyse the usefulness of transfer learning

and compare results from a network pre-trained on general image scenes to one that

was trained on aerial images. In subsection 3.2.4 we experiment with di↵erent image

pre-processing techniques that reduce the complexity of the LiDAR derived DTM and

highlight the local archaeology.
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3.2.1 Data Pre-processing

The central site locations (XY coordinates) are used to crop images from the VRT-

files. Starting with a 100x100 meter around centre location, shift this location by 20

meters (up, down, left, right), zoom to create an area of 80 meters at 0.4 m pixel size

(maintaining the same image size as other cropped images) and finally perform the

same shift on the zoomed locations (Figure 3.4). The augmentations were carefully

chosen to always include the full barrow and have a zoom within the range of expected

barrow sizes. Other augmentation options such as rotating, shearing and flipping were

considered unsuitable as they might confuse the network (due to human choices to

shape the barrows and natural e↵ects to the structure over centuries such as erosion

due to prevailing wind directions). Before saving the files, we exclude any images with

exclusively “no data” pixel values. We will train our network to distinguish “positive”

images with barrows from negative examples and thus create an equal number of negative

examples that are extracted at a bu↵er of 100 meters from all the known barrow.

Finally, all cropped images are saved as GeoTIFF files and separated into folders of 75%

training and 25% validation data. In order to later be able to assess the robustness of a

trained network to a new area, we have split the data into east and west sets rather than

a random division (Figure A.1 (B) and Figure A.2 (B)). Even though it is not expected

to a↵ect the RGBN dataset, this might influence the DTMs which have a higher general

elevation to the west than to the east (Figure A.1 (A) and Figure A.2 (A)). In the next

section this data will be used to train a CNN.

Figure 3.4: Di↵erent augmentations from the datasets showing the same barrow.
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3.2.2 Experiment 1: Simple Network with Added Regularisation

According to Chollet (2016), the choice of a CNN should depend on the size of the

dataset. Complex networks with many layers have more space for information to be

stored which has the potential to generate high accuracy. However, when having very

little data going through a complex network, this may lead to the creation of irrelevant

features and thus lead to overfitting. Whereas a network that can learn less features

will have to focus on the most significant features found in the data, and these are more

likely to be truly relevant and to generalize better. This argumentation is supported by

a demo created by Karpathy (2018) where they show that larger Neural Networks can

represent more complicated functions but at the same time it’s likely fit to noise/out-

liers (Figure 3.5). Conversely, they also argue that the complexity of larger network

can still be leveraged when the network has su�cient regularisation (Figure 3.6). Be-

low we employ a simple network as proposed by Chollet (2016) and compare di↵erent

regularisation techniques.

Figure 3.5: These images depict the e↵ect of network depth when classifying two
classes. The changing decision regions show that larger CNNs can represent more

complicated functions.

Figure 3.6: These images depict the e↵ects of regularization strength on a large
network (20 hidden neurons). With lower �, the model can increase its complexity by
assigning big values to the weights. On the other hand, when increasing �, the network

becomes simpler and smooths its final decision regions.
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For this experiment we use the Keras (Chollet, 2015) deep learning library with a Ten-

sorFlow (Abadi et al., 2016) back-end. Unfortunately, Keras does not natively accept

GeoTIFF files nor can it load images with more than 3 bands, so we have made custom

adaptions to the preprocessing/image.py file to load our data.

We initially used a simple network consisting of a stack of three convolution layers

with a RELU activation and max-pooling, and ending with two fully-connected layers,

dropout, a single unit and a sigmoid activation (following Chollet, 2016). Dropout

is one of the regularisation techniques mentioned by Karpathy (2018) where a layer

randomly switches o↵ part of the neurons to decorrelate the learning of di↵erent neurons.

Additionally, we applied the more common L2 weight regularization on the convolution

and dense layers. This technique forces a network to learn information from all the given

data instead of focusing on a specific pattern and does so by penalise spiky weights and

favouring di↵use weights. To compare di↵erent rates of weight regularization we trained

the network 6 times, varying the rate from 0 to 10-6. To train our model we used binary

cross entropy loss as we have a two-class problem and ended our network with a sigmoid

activation. Additionally, after several attempts with di↵erent optimisers we found that

RMSProp (Tieleman and Hinton, 2012) provided the most stable results. From the first

results we conclude that the network was able to train on RGB but did not generalize for

the DTMs. The poor results on DTMs were likely caused by the minimal pre-processing

of the DTM. The elevation in the New Forest ranges between 0 and 123 m, feeding the

raw DTM with absolute height data has likely confused the model. To overcome this, we

normalized the inputs with the means of the training data which improved the results

and developed more stable training and validation curves across the datasets.

The results on this network trained for 150 epochs on every dataset are presented in

Table 1 & 2 (best accuracy). From these results, we observe that:

• In all cases, we were able to obtain >50% accuracy, demonstrating there is an

underlying pattern to the images.

• The RGB and RGBN training show very similar patterns and have best validation

accuracies of 78.20% and 77.58% respectively. To further compare this, we also

trained the infrared as a greyscale image which on its own got up to 75.78%

accuracy.

• The DTM-1 m has the best validation accuracy of all datasets with 83.57% on the

maximum training data but during the equal comparison this dropped to 69.32%.

• The networks trained on the DTM-0.5 m show a very unstable validation accuracy

which may be a result of the noisy ‘no data’ patches in the training images.

• The networks trained on the DTM-0.5 m show a very unstable validation accuracy

which may be a result of the noisy ‘no data’ patches in the training images.
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• The combinational images do not perform better than RGBN trained networks.

Overall, combinational images perform better with the Near InfraRed (NIR) band.

• he networks trained on the RGBN and combinational images do not learn without

weight regularization.

• The weight regularization rate of 0.01 seems to be the best on the RGBN data

and combinational images. For just DTMs, the 0.0001 works better.

• The results vary a lot across rates and data combinations. This seems to confirm

the statement of Karpathy (2018) noting that most local minima in small networks

have a high loss and that you have to rely on luck not to get trapped in a bad

local minimum.

After various attempt we can confirm that a much deeper, state of the art, network

(VGG16) in its most original form without controlled regularisation did not learn no

matter the RS data, optimizer or with the addition of weight regularization. We posit

that is because of the relatively limited size of our dataset compared to the number

of parameters of the network. For better implementation of Karpathy (2018)’s argu-

ment and comparison to Chollet (2016)’s argument we will look at a deep network with

controlled weight regularisation in the next section.

To further test the success or increase the accuracy of this experiment, the next steps

involve:

• Using a deeper network.

• Increasing the dataset size.

• Add other augmentation techniques.

• Add image pre-processing techniques.

• Trying the networks with other object types.

• Applying the trained network on other areas.

3.2.3 Experiment 2: Transfer Learning

Transfer learning is a very commonly used technique for training on small datasets

(Razavian et al., 2014). In this process, a network is pre-trained on a very large dataset

(e.g. ImageNet contains 1.2 million RGB images with 1000 categories of objects) and

is used for its fixed features or to initialize feature extraction. During training, they

start by learning more abstract features and further on in the network start to generate



34 Chapter 3 The New Forest Case Study

Table 3.1: Accuracy results on networks trained for 150 epochs on the maximum
available data. Best result for each data type highlighted in red.

LR RGB N RGBN
DTM
1 m

DTM
0.5 m

DTM
1 m

+ RGB

DTM
1 m

+ RGBN

DTM
0.5 m

+ RGB

DTM
0.5m

+ RGBN
0 75.07 75.78 50.43 65.87 59.94 50.43 50.43 50.47 50.47
0.1 76.28 64.7 56.53 51.74 51.58 68.11 66.76 56.02 66.17
0.01 78.20 69.58 77.34 51.98 63.03 75.14 75.21 73.83 77.42
0.001 75.85 75.14 74.50 64.50 63.55 71.59 74.22 69.61 73.28
0.0001 76.49 74.57 76.70 83.57 63.86 71.66 73.72 69.30 75.63

Table 3.2: Accuracy results on networks trained for 150 epochs on 360 barrows (max
available barrows that have data in all modalities).

LR RGB N RGBN
DTM
1 m

DTM
0.5 m

DTM
1 m

+ RGB

DTM
1 m

+ RGBN

DTM
0.5 m

+ RGB

DTM
0.5m

+ RGBN
0 50.47 51.42 50.47 58.44 57.49 50.47 50.39 50.47 50.47
0.1 65.69 60.33 74.45 52.29 52.52 75.31 64.95 56.02 66.17
0.01 75.71 75.55 77.58 51.66 62.38 75.63 77.65 73.83 77.42
0.001 73.50 74.45 73.59 52.68 61.20 71.02 76.48 69.61 73.28
0.0001 75.53 74.68 72.81 69.32 58.91 68.52 69.63 69.30 75.63

features for the specific classes. Transfer learning has already been successfully applied

to satellite imagery (Penatti et al., 2015) and seems to have become essential as most

remote sensing-projects lack a large labelled dataset or time to train from scratch, e.g.

in disaster response (Zhu et al., 2017).

In this section we will compare a 50-layer ResNet (He et al., 2016) adapted by Chollet

(2016), pre-trained on everyday objects (ImageNet) and on aerial photography (To-

poNet). TopoNet was recently created by the Ordnance Survey and is trained on 1.4

million RGB images of RS-data from all over Britain captured with the same sensor as

our dataset. Even though the ImageNet dataset does not include our object types or

any aerial images for that matter, its trained network can still be useful for the features

learned by low-level convolutional blocks. For the comparison, we derive fixed features

from our data and use those to train a linear SVM classifier (like Penatti et al. (2015)).

We will run the classifier at each of the 50 activation layers in the network to analyse

how well lower (abstract features) and higher (specialised features) layers in the trained

networks perform on our dataset. Both networks were trained using Keras so for this

experiment we use the same library to extract the features from the networks. To im-

plement the SVM we use the scikit-learn library (Pedregosa et al., 2011) which is a

specialised library of various machine learning approaches.

The outcome of this experiment will not perfectly compare to the previous section.

The experiments are basic and mainly implemented to show how weights from di↵erent

datasets translate to a new target dataset. To this extent we have not applied data

augmentation and have also randomly selected train/valid/test data for the di↵erent
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experiment. We also only use the RGB images because we can only use data in the

same format as the network it was trained on, which in these cases is 3-band RGB. For

baseline comparison we have trained the linear SVM from scratch (without pre-training)

on our image data (colour histogram) which obtained a maximum test accuracy of 70%.

The best test accuracy result of ImageNet reached 55% and is worse than the SVM

trained from scratch (Figure 3.7). The graph is unstable and varies a lot between layers

so there seemingly is not a distinct favouring for earlier/later layers. We see more stable

results from the TopoNet data shown in Figure 3.8. The validation accuracy on TopoNet

gets to a maximum of about 71% and show an average increasing of accuracy towards

the later layers. This reaction of our data to the pre-trained TopoNet shows promising

results so we should continue to do more experiments with this is the future.

The next step from pre-training is fine-tuning (Yosinski et al., 2014). In this process a

pre-trained network is retrained to adapt to the target dataset. With a trained network

on images very similar to your target dataset one would only retrain the last layers of

the network and freeze the weights of earlier layers. Conversely, for a dataset that is

very di↵erent you would keep only the first layers frozen. To fine-tune ResNet50 we

chop of the fully convolutional layers at the end, which were tuned to classify ImageNet

into 1000 categories and TopoNet into 12 categories. We flatten the outcome at the

chopped layer and add a dense prediction layer for our 2 classes. Initial results of fine-

tuning the ResNet using both ImageNet and TopoNet weights on barrow data are poor.

We have applied fine-tuning on early, middle and late layers and with each of these

approaches we find that the networks easily over-fit and that it’s di�cult to find stable

hyper-parameters. So far it seems that retraining the networks without frozen layers

gives the best results with around 83% on TopoNet and 80% on ImageNet.

Figure 3.7: Results of SVM trained on di↵erent layers of ResNet50 trained on Im-
ageNet. (A) the best performing layer was 48 with a validation accuracy of 62% and
test accuracy of 55%. (B) the confusion matrix for this layer shows mostly barrow

predictions.
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Figure 3.8: Results of SVM trained on di↵erent layers of ResNet50 trained on To-
poNet. (A) the best performing layer was 45 with a validation accuracy of 78% and test
accuracy of 71%. (B) the confusion matrix for this layer shows a balanced classification

pattern.

3.2.4 Experiment 3: Improving the Pipeline

In our following experiments we researched the most e↵ective improvements. We found it

especially useful to visualise the model predictions and analyse what barrows the model

found easily and which were most challenging. In the top row of 3.9 the true positives

are shown where the model was most certain that the image showed a barrow. In most

of these images it’s rather di�cult to see a barrow and it’s mainly through shadow and

lack of vegetation that ditches around the barrow are seen for the first images and the

final two images are also visible through a di↵erent type of vegetation on and around

the barrow. In the second row we have depicted the false negatives where the model was

most certain that the image belonged to the background class. Visually, archaeology

experts are also unable to see a barrow because in the last two images barrows are

hidden under a forest and in the first two images agriculture has flattened the barrow

and because the field is recently ploughed the archaeology is also not visible through

the proxy of vegetation stress. Both results tell us that the dataset is noisy and that we

should improve the data with a one to one match between the site location and the RS

data to ensure the training data is useful and the results are not biased by the training

data. In the third row we show the most certain true negative predictions which show

modern buildings, straight lines and corners. The final row shows the false positives

where the model was most wrong and sure they were barrows. Again, these images are

very interesting and show locations of natural terrain with some curved paths.

Based on the results from the RGB and our intuition from manual analysis we suspected

that the DTM data should yield better results than we have previously seen because the

LiDAR sensor would have pierced through the forest which should reveal many more

sites than the aerial image. We previously found that we had to normalised the DTM to

the mean of the training data for the CNN to be trainable. Yet we are not satisfied with
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Figure 3.9: Results from experiment with RGB aerial images showing (A) the most
correct barrow, (B) most incorrect barrow, (C) most correct background, (D) most
incorrect background. ©Crown copyright and database rights 2020 Ordnance Survey

the result and try to further reduce the data complexity with visualisation techniques

that highlight local archaeology. Just like the previous experiments, this reduces the

complexity and should help the model to converge faster and prevent overfitting. For

this experiment we used a ResNet50 that was pre-trained on ImageNet weights. This

network required an input of 3-band imagery and thus we chose a multi-directional hill

shade which combines 3 hill-shade images that illuminate the image from 3 di↵erent

directions at a highly oblique angle (225�, 270�, 315� azimuth). The model was trained

for 50 epochs and reached an accuracy of 0.8133 which is still not as good as we hoped

so we again reviewed the results visually. In the top row of Figure 3.10 again the true

positives are shown where the model was most certain that the image showed a barrow.
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In these images the barrows are really prominent, the majority show multiple barrows

and also a strong ditch surrounding the barrow. In the second row we have depicted

the false negatives where the model was most certain that the image belonged to the

background class. The first barrow is probably plough levelled or removed and a second

other barrow that damaged by a ditch seems visible at the top. The second is also

destroyed and the third has been heavily ploughed out. The final barrow is small but

should have been found, the model is probably confused by the other disturbances. To

improve the detection rate, we could crop the images to the actual object size. In the

third row we show the most certain true negative predictions which show very irregular

shapes and texture that are mainly modern. The final row shows the false positives

where the model was most wrong and sure they were barrows. The first image are

modern circular silos, the second is a small hill of some sort but not a barrow, the third

might be archaeological nature but is not a barrow and the final image might actually

show three barrows that were not known before or not in our labelled dataset. Overall

each of these results have sensible explanations and we have mainly learned that the

dataset is noisy which we can improve. To further understand if the model is genuinely

“seeing what we see” we have also experimented with a Class Activation Map on one of

our barrow images (Figure 3.11). To make this image first a gradient image is created

using the weights of the second to last layer in the network. The weights for barrow

have been overlaid on our image which provides an insight of the region where a CNN

is looking to classify the barrow. Again, we can confirm that the model is finding the

right pattern.

As we found that the main issue was our noisy dataset, we manually improved it over

several days. We used our improved DTM dataset to further research the e↵ect of

DTM visualisations. Most visualisations are greyscale and in order for the pre-trained

ResNet50 to work we concatenated the same image three times along the channel axis

before feeding it to the network. We trained the models for 50 epochs and report on

the best validation accuracy. The results are shown in 3.3. Open Positive visualisation

works best and Hillshade performed the worst. With Hillshade the direction of the light

source changes the appearance of a barrow depending on the size which might have an

adverse e↵ect on the learned pattern. To further research the e↵ect of visualisations

we experimented with di↵erent visualisation combinations to fill the 3-band image that

feeds into the ResNet50. The results in 3.4 show that this improves the overall accuracy

and mostly improves the result for a combination of Open Negative, Slope and Open

Positive. The Hillshade visualisation combinations produces the lowest accuracy.
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Figure 3.10: Results from experiment with DTM 1 m resolution images showing (A)
the most correct barrow, (B) most incorrect barrow, (C) most correct background, (D)

most incorrect background

Figure 3.11: Class Activation Map (brighter yellow indicates the region is more
”barrow-like”).
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Table 3.3: Validation accuracy for each DTM visualisation.

Visualisation
Validation
Accuracy

Hillshade 0.85
Open Positive 0.96
Open Negative 0.95

Slope 0.89
Sky View Factor 0.91

Table 3.4: Validation accuracy for each combination (early fusion) of DTM visualisa-
tions

Visualisation
Validation
Accuracy

Open Negative, Sky View Factor, Open Positive 0.9739
Open Negative, Sky View Factor, Slope 0.9674

Open Negative, Sky View Factor, Hillshade 0.9587
Open Negative, Slope, Open Positive 0.9761

Open Negative, Slope, Hillshade 0.9609
Open Negative, Hillshade, Open Positive 0.9674
Sky View Factor, Slope, Open Positive 0.9609

Sky View Factor, Slope, Hillshade 0.9609
Sky View Factor, Hillshade, Open Positive 0.9435

Slope, Hillshade, Open Positive 0.9609

3.3 Object Detection

After having trained a good image classifier this can be used to localise objects across

all the available images. Traditionally this has been done using a sliding window ap-

proach where one gets a probability for each path that the sliding window comes across.

Although accurate, this is done at a very high computational cost. Recently, there have

been many improvements with methods such as region-CNN (R-CNN), You Only Look

Once (YOLO) and Single Shot Detection (SSD). Of these methods, R-CNN seems most

accurate but YOLO and SSD are most e�cient (Liu et al., 2016). As we have a very

large area to cover and are merely testing object detection we have chosen an SSD for

now.

3.3.1 Approach

Ideally, we would use the specialised trained networks of the previous chapter to apply to

the object detection problem. However, for now, we have sought a more basic approach

by implementing the open source Raster Vision API (Azavea, 2018). This API has a

variety of functionalities to make training data, train models, make predictions, and

evaluate created models for object detection. It’s especially useful to have their func-

tionalities as they have designed their API to work e�ciently on very large GeoTIFF
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files and on objects that are sparsely located within the images. Additionally, they can

process the input of objects located with geospatial coordinates using GeoJSON files and

output predictions in the same format which makes it easy to implement in a workflow.

Their object detection itself uses the TensorFlow Object Detection API with an SSD

approach using the MobileNet CNN pre-trained on COCO dataset (Huang et al., 2017).

If we choose to continue using Raster Vision in the future we can change the approach,

CNN and pre-trained weights accordingly.

3.3.2 Data Pre-processing

For input data the API requires training, validation regions and their respective GeoJ-

SON files with coordinates for the object squares in the images. The API will further

create training data by cropping the regions into smaller patches of 300 ⇥ 300 and

translating the coordinate system of the patch and labels to a local system. For data

augmentation we use a horizontal flip and random crop. For this experiment we use

a DTM multi-directional hillshade visualisation (Figure 3.12). This experiment was

undertaken before the noise was removed from the dataset which reflects in the results.

Figure 3.12: Multi-directional hillshade overlaid with the bounding box locations
around known barrow site locations.

3.3.3 Results and Evaluation

There are various hyper-parameters that we could tune in the API but for the sake of this

initial experiment we have kept most of the default settings. We have experimented with

various 3-band combinations for RGBN and di↵erent DTM derivatives. We found that

the RGBN results did not fluctuate much with di↵erent combination so, for now, we’ll

report only on the RGB results. We have experimented with di↵erent score thresholds

and eventually chose a rather low threshold of 0.4 which means we should expect low
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Table 3.5: Recall, precision and F1 result for DTM and RGB data model.

Recall Precision F1-Score
DTM 0.180 0.333 0.234
RGB 0.034 0.013 0.019

recall but also allows to detect more barrows. Going further we should find how we

wish to trade o↵ true positives/false positives ratio’s and set an appropriate threshold

accordingly. In total we had 299 detections for RGB and 98 for DTM. In Table 3.5 we

show the results of precision, recall and f1 scores on both data modalities.

Figure 3.13: Object detection results for RGB (yellow) compared to known barrows
(red). From top layer at each data modality: missed barrows that are obscure to the
human eye, missed barrows that are visually recognisable, interesting detections, sample
of rightfully detected barrows, most likely detections. ©Crown copyright and database

rights 2020 Ordnance Survey

For RGB images we gained rather poor results; out of 84 barrows in the validation area

it detected 8. This may seem surprising as we previously gained accuracies to over 80%.

However, those experiments had an equal split of background vs object examples whereas

now we have the challenge of detecting barrows against a large amount of background

examples. Seemingly the objects are not distinct enough or include too much noise for

the classifier to extract a robust pattern. To analyse the reason for the poor results we
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Figure 3.14: Object detection results for DTM (blue) compared to known barrows
(red). From top layer at each data modality: missed barrows that are obscure to the
human eye, missed barrows that are visually recognisable, interesting detections, sample

of rightfully detected barrows, most likely detections.

have taken a closer look at the kinds of objects that were detected. In Figure 3.13 and

Figure 3.14 we show an extensive comparison between detections and known barrows.

From this we note that the quality of the known barrows is poor; some barrows do not

show a distinctive pattern and others have been destroyed for construction of houses or

roads. There are also barrows are surprisingly not picked up on, possibly because they

are too small. To avoid this, we could create bounding boxes that perfectly fit around the

barrow. Another insight from the box detection is that we see a lot of variation in length

and width which does not appear in barrows. We might have to constraint the proposal

of boxes to be a perfect square with a range of sizes. The false positives prove most

insightful as to what the classifier has learned. Some show imaginable parts of barrows

such as a circular object in the centre of the box, mostly trees or low vegetation. In other

cases, mainly over forest or houses, the false positives do not have any resemblance to

a barrow. Another interesting pattern is that we see high concentrations of detections

over certain distinct types of agricultural fields (Figure 3.15). This is most likely caused

by similar examples in the training dataset that do not visually show a barrow. Our

main conclusion from the experiment on RGB data is that we need to re-evaluate the
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barrow dataset to remove the obvious destructed barrows and experiment with some of

the more ambiguous types. Despite the misleading detections we noted some possible

new barrows that require further inspection from an expert and possibly a field visit.

Figure 3.15: Clusters of RGB detections over distinct agricultural fields. ©Crown
copyright and database rights 2020 Ordnance Survey

Figure 3.16: DTM detections including damaged barrow on the left. The more
prominent barrows are detected whereas the levelled or otherwise severely destructed

barrows are not.

DTM results are more interesting with a low recall against a somewhat high precision.

We may conclude that out of all known barrows we detect relatively few (low recall) but

out of all detections a high proportion are known barrows (high precision) (Figure 3.16).

In this case we detected 55 barrows out of 143. From the known barrows we note that

some have been levelled due to agriculture, some are destructed for other reasons and

some show poor interpolation of the DTM possibly due to buildings or impenetrable

forest. Same as with RGB we did not manage to detect very small barrows (see example

in Figure 3.17) and, in this case, we also failed to detect an unusually large barrow.

We again see a few odd size rectangles of false positives, so, further tuning of relevant
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Figure 3.17: Overlapping DTM and RGB detections where both detect most promi-
nent barrow.

hyper-parameters is needed. Amongst the false positives we found some notable objects

such as bomb craters, post medieval quarries, and a windmill mound. On the DTM

derivative all false positives show similar patterns to barrows. However, bomb craters

have the inverse pattern of a mound, so we argue that this is caused by our choice of

DTM visualisation which could be avoided when using the raw DTM or a more suitable

visualisation. Notably, of the many true positives we see a robustness to quite significant

destruction. Amongst the DTM false positives there seem to be promising detections

that need further analysis.

Most observations for improvements to the object detection overlap between the RGB

and DTM datasets and focus on tuning hyper-parameters in the API and improving the

dataset of known barrows and their visibility on the data and within the boxes.

3.4 Conclusions and Discussion

We have shown that we were able to successfully train CNNs for both image classification

and object detection on both LiDAR derived DTMs and multi-spectral aerial imagery.

Somewhat surprisingly, DTM derived visualisations preformed better than the raw and

more detailed greyscale DTM. Based on those results we have learned that transfer

learning is one of the most important approaches to include when training on a small

dataset. With a larger dataset or when using transfer learning with a CNN that is

pretrained on a similar dataset we expect that the raw and detailed DTM will out-

perform the visualisation.

Our main challenge in this case study has been the noise in the dataset. The known sites

were derived from local HERs which include legacy data which has meant that many

sites were no longer present. Similarly, many sites were not visible on one or both of
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the remote sensing data used because of the time of year, forest canopy or because of

ploughing. Because we are not aerial archaeology experts we have chosen not to improve

the dataset but to look for another clean dataset which will be presented in chapter 4.



Chapter 4

The Arran Case Study

This chapter presents a case study on the Isle of Arran where we further address the

optimisation of approaches on small datasets. The case study was o↵ered by HES who

have used the Isle of Arran in multiple case studies to showcase di↵erent approaches for

improved mapping of archaeological sites. The known site locations have been mapped

over a short period and on the same LiDAR dataset that we will use in our case study.

This overcomes the major blocker for our previous chapter. HES also o↵ered to provide

continuous feedback and discussions on the approach and results which have made this

a collaborative case study between local experts and computer scientists. This collabo-

ration has contributed a lot to the optimisation of the approach to the local conditions.

We will first introduce the dataset and case study area in section 4.1. We then move

into our image classification approach in which we experiment with di↵erent hyperpa-

rameters. In section 4.2 we use these optimised settings for the dataset to train our

object detection approach. Our image classification approach follows the experiments

that we optimised in section 4.3. The object detection approach introduces a CNN

called RetinaNet which is optimised for sparse, small datasets. This network has further

improved the outcome and contributed to the detection of many previously unknown

archaeological sites.

4.1 Dataset

Arran lies in the west of Scotland and is known at HES as ‘Scotland in miniature’ because

it has a range of landscapes from highlands to lowlands that are generally representative

of the rest of Scotland. Arran is being used by HES to develop approaches to rapid

large area mapping using remote sensing datasets (Banaszek et al., 2018; Cowley et al.,

2020; Cowley and López-López, 2017). Manually they have optimised their approach on

the 432 km2 island systematically using specific DTM visualisations, orthophotographs,

47
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and supporting information such as 19th century maps. They were able to achieve an

average coverage of 90 km2 per day in their desk-based approach. The results from

the di↵erent experts were gathered and analysed to select the least confident sites for

field verification. They only looked at the less confident classifications because they are

very confident that LiDAR is a reliable source and a field visit doesn’t always add more

information about commonly known sites (e.g. Figure 4.1). This consideration is an

important part of their strategy for rapid mapping.

Figure 4.1: LiDAR derived hillshade visualisation from a DEM with insets showing
the round houses on the ground during a field survey. Despite uneven vegetation,
the LiDAR e↵ectively captured most archaeological remains hidden by the vegetation.

Images reproduced from Cowley and López-López (2017).

4.1.1 Site locations

The HES survey has more than doubled the number of known archaeological sites from

on the Island that are available from the National Record of the Historic Environment

(NRHE). The new discoveries include sites in what today are remote locations, such as

the tops of valleys, but also in areas of dense known site distributions. The site loca-

tions that we are looking at in this study are prehistoric roundhouses (203), shieling huts

(transhumant grazing) of medieval or post-medieval date (344), and small field clearance

cairns (403) which are remains from agriculture (Figure 4.2, Figure 4.3). Finding such

sites helps HES to understand the pattern of prehistoric settlement on the island, and

the use of upland grazing in medieval and more recent times. Round houses appear as

circular wide doughnut rings with opening(s) and range from 8 m to 15 m in diame-

ter. Shieling huts and small cairns are smaller at 2–6 m across. Shieling huts are also
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doughnut shape but are less wide than roundhouses. Small cairns are small mounds.

We expect shieling huts to be a confusion object to round houses because they have the

same ring structure but have a di↵erent size, and also to small cairns because they are

both circular and have the same size. Other archaeological confusion objects that are

known on Arran include burial cairns, burned mounds, enclosures, kilns, rectangular

buildings, and horse platforms (Figure 4.4). There are also several modern confusion

objects including cattle feed stances and sand bunkers and tees in golf courses. Also,

there are geological confusion objects like glacial drumlins and peat erosion mounds that

look like small cairns and shieling huts.

Figure 4.2: (A) a map of Arran with the site distribution of round houses, shieling huts
and small cairns. ©Crown Copyright, ©Historic Environment Scotland. (B) shows
the location of the Isle of Arran in the United Kingdom with a red arrow (GoogleMaps,

2020a).

4.1.2 Airborne LiDAR

The LiDAR data used in this case study are from the Scottish Remote Sensing Portal, a

partnership between the Scottish Government and the Joint Nature Conservation Com-

mittee. The average ‘ground’ point density per square metre was 2.75, but varies from

0.43 to 7.44 depending on vegetation density and the presence of buildings. The LiDAR

data was processed into a DTM at 0.5 m spatial resolution and is provided in 16-bit

unsigned integer format. Along with the DTM Several pre-processed DTM visualisa-

tions were supplied (Figure 4.5). In some areas of Arran dense coniferous plantations

obscured the ground which created gaps in the data (Figure 4.6) which for single trees

can create circular confusion objects.
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Figure 4.3: Examples of each class that is used in the Arran case study (shown on
Multi-directional hillshade). Top row: Roundhouses. Second row: Shieling huts. Third
row: Cairns. Fourth row: Random (background). ©Historic Environment Scotland.

Figure 4.4: Archaeological confusion objects (shown on Multi-directional hillshade).
(A) burial cairn, (B) burned mound, (C) enclosure, (D) kiln, (E) rectangular building,

(F) horse platform (all 20x20 meter images). ©Historic Environment Scotland.

4.2 Image classification

The approach to image classification is the same as the New Forest case study. We

found it very useful to apply image classification as a first step to better understand

the dataset and make our hypothesis for the object detection stage. For this brief case

study we used multi-directional hillshade.

4.2.1 Data pre-processing

Similar to the New Forest case study the data is provided as shapefiles with central

points of every site which we have used to create images around each point. For the

round houses we created 20x20 meter so 40x40pixel images, and for shieling huts and

small cairns we created 10x10 meter so 20x20pixel images. We created 316 random
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Figure 4.5: DTM visualisations supplied by HES. (A) Multi-Directional Hillshade,
(B) RGB-combination of Local Dominance, Open-Positive and Slope, (C) Sky View
Factor, (D) DTM, (E) Local Dominance, (F) Open Positive, (G) Hillshade, (H) Slope.
The image also shows the parameters used to create each visualisation. ©Historic

Environment Scotland.

Figure 4.6: (A) ground point density and (B) aerial image of a coniferous plantation
in Kilmartin Glen (Western Scotland mainland). The LiDAR data was captured at
high point density but still wasn’t able to penetrate the dense forest cover. This area

shows similar forestation to Arran. Image reproduced from Cowley et al. (2020).

images that were randomly cropped at 40x40 and 20x20 pixels (Figure 4.3). The split

between training and validation images in again made geographically, this time between

with the training data in the south and validation data in the north. Di↵erent from the

New Forest case study, augmentations in this research were applied in Keras. We only

used random flips and 90 degree rotations.
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4.2.2 Experiments

Based on the New Forest experiment and brief trial and error on our current dataset we

found that a pre-trained ResNet50 was able to obtain high accuracy for all the classes.

The main confusion has been between shieling hut and small cairns where it is also

challenging to see the di↵erence by eye (Figure 4.7). Also, the fainter objects have

sometimes been classified as background/random class. Only very few objects that were

random have been classified as objects, either because of a circular appearance or other

mount structure.

We also experimented with the di↵erent image visualisations that were available to us.

This showed that overall the Open-Positive and Local Dominance were best followed by

Slope and Multi-directional hillshade (Table 4.4). Because Open-Positive, Local Dom-

inance and Slope were the best performing single band visualisations we concatenated

those images into and RGB-image called LD OPEN-POS SLOPE for further analysis

(Figure 4.5 (B)).

Based on these results we feel comfortable that the dataset is su�cient. We required no

further data cleaning or di↵erent LiDAR visualisations.

Figure 4.7: (A) confusion matrix from image classification depicted in percentages,
(B) images that represent the confusion objects. ©Historic Environment Scotland.

4.3 Object detection

During our preparation for the second case study we reviewed the suitability of the

SSD algorithm which we previously applied in section 3.3 and compared this with
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Table 4.1: Image classification results showing the validation accuracy from di↵erent
LiDAR visualisations.

LiDAR visualisation
Validation
Accuracy

Slope 0.78
SVF 0.75

Open-positive 0.89
Local dominance 0.86

DTM 0.43
Hillshade 0.76

Multi-directional HS 0.78

new research on object detection. We found that one-stage detectors like SSD have a

foreground-background class imbalance problem. These detectors evaluate hundreds of

candidate locations per image but only a few locations contain objects which is especially

problematic in our case study where we have a very sparse dataset with only a few fore-

ground examples against a lot of background. The easy negative/background examples

can overwhelm training and lead to worse performance of the models. Since our initial

case study, a new approach in archaeology was presented by Verschoof-van der Vaart

and Lambers (2019) who successfully applied a Faster Region-CNN (Faster R-CNN).

In two-stage detectors such as Faster R-CNN, the first stage, region proposal network

narrows down the number of candidate object locations which filters out most of the

background. In the second stage, classification is performed for each candidate object

location. At this stage the class-imbalance is further addressed with sampling heuristics

which is implemented by a fixed foreground-to-background ratio (1:3) per minibatch.

With further research into the issue we found that Focal Loss is another, improved ap-

proach to address the issue organically. The Focal loss function down-weights “easy”

negative examples and thus focuses training on “hard” negatives, which improves the

prediction accuracy. This concept was introduced by Lin et al. (2017) and is accompa-

nied with a CNN called RetinaNet. This is a one-stage detector that uses ResNet and

a Feature Pyramid Network (FPN) as backbone for feature extraction, plus two task-

specific subnetworks for classification and bounding box regression (Figure 4.8). The

hierarchical FPN merges information from di↵erent scales. This cross-scale learning is

critical for archaeological objects that vary in size and where context is important.

Figure 4.8: ResNet architecture with (A) ResNet, (B) Feature Pyramid Network, (C)
the two task-specific sub-networks for classification and (D) bounding box regression.

Image reproduced from Lin et al. (2017).
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4.3.1 Approach

When we started this experiment there were not any specialised geographical approaches

that implemented or utilised RetinaNet. Instead we used the Fizyr implementation of

RetinaNet in Keras (Gaiser, 2019). This implementation is widely used because it has

very good documentation, debugging tools and options to change hyperparameters. We

used most of the implementation’s default hyperparameters and will describe in the next

sections where we altered the code for our domain.

4.3.2 Data pre-processing

The implementation we used inputs a csv-file with links to the images, box coordinates

and class names (path/to/image.jpg,x1,y1,x2,y2,class name). Each line contains

only one box annotation and for images without objects the coordinates and class name

remained blank. We wrote our own code to transfer our geographical coordinates into

image coordinates and generate the csv-file with the required format.

To ensure that we did not mix training and validation data we divided the large DTM

into areas that were 10 times the size of our input images. These area’s were divided

into our input images. Through experimentation we found that 500x500 pixels (250x250

meter) was the best input image size (Figure 4.9). With larger image size (1000x1000)

our objects became too small (discovered through debugging option in the RetinaNet

implementation), and with smaller image sizes (100x100, 200x200) the model struggled

to detect our larger, roundhouse, objects. We further overlapped our input images by

10% to ensure that edges did not detract from detections. Another useful aspect of

the debugging option in the RetinaNet implementation is the feedback on objects close

to the edge of the image. Those objects would not be too small for a classification by

the model which would reduce the accuracy. To overcome this, we updated our data

preparation code to exclude all object annotations that were 10 pixels from the image

edge.

We have split our data into 80% training and 20% validation areas. We experimented

with North/South divide of training and validation areas and found that the best was

South training and North validation (Figure 4.10). There is a large cluster of small cairns

in the South West of the island which is di�cult to break up into even training and and

validation sets (Figure 4.2 (A)). When choosing the South side for our validation area

only 14 small cairns would be included against 25 in the North side (Table 4.2). We also

experimented with 75%/25% training/validation balance however we then found half of

the small cairns to be in the validation area. To maintain enough small cairns in the

validation data we selected the train/validation divide from Table 4.2 (A).
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Figure 4.9: Images show the image pre-processing step from the Fizyr implementation
of RetinaNet: debugging object detection input images (Gaiser, 2019). All boxes are
green which means that the boxes are big enough for the image size and that they are

not too close to the border.

Table 4.2: Separation of objects per class in Training and Validation sets for both
North/South and South/North data splits. When using the South for validation data

there are only 14 known cairn sites.

Roundhouse Shieling Small cairn
South/North training 247 477 541
South/North validation 44 106 25
North/South training 252 472 552
North/South validation 39 111 14

Figure 4.10: Visual representation of the North/South or South/North training/val-
idation divide. (A) Shows the South/North divide of training and validation data. (B)
Shows the North/South divide of training and validation data. ©Historic Environment

Scotland.

4.3.3 Hyperparameter tuning

Even though we used most of the implementation’s default hyperparameters, we did

change some parameters and code for our domain adaptation.
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Because many locations around an object will have high confidence many overlapping

bounding boxes are created for each object. Non-Maximum Suppression (NMS) removes

the boxes that overlap more than a given threshold (called Intersection over Union

(IoU)), the box with the lower confidence value will be removed. The default IoU for

the implementation is 0.5 which did not work well for us because of the relation between

our object size and pixel resolution (Figure 4.11). Through experimentation we found

that 0.20 was the optimal threshold for our case study.

Figure 4.11: An evaluation of the NMS hyperparameter. (A) Shows the image result
from RetinaNet implementation with the standard parameter of IoU 0.5. (B) Shows our
review of di↵erent IoU values in GIS software with standard 0.5 (red) and our choice

of 0.2 (green). ©Historic Environment Scotland.

The score threshold is a parameter that is often changed but we kept it at 0.05. We

found that it was better to have more detections and accept a higher recall because

the additional boxes which might represent new sites could be quickly verified by the

experts.

At the evaluation stage the RetinaNet implementation generates bounding boxes with

image coordinates so that those results can be reviewed per image. To view these results

in our GIS system we transformed the image coordinates (created in eval.py) to geo-

coordinates and saved those in a GeoJSON file. Because of the overlapping images we

end up with multiple detections along the edges which are removed with an additional

non-max suppression step. We reviewed the IoU threshold and found that 15% worked

best. A lower IoU would have removed more of the overlapping boxes which could

improve the precision but for objects that tend to cluster closely together like shieling

huts it would reduce the recall. For a specialist it would be very simple to remove the

extra boxes at the manual inspection stage and so we kept the IoU at 15%.

After prediction, we would generally import the GeoJSON file with the detections into

our GIS project and analyse the results. Here we found that the boxes were again

overlapping from the concatenation of the di↵erent images that were overlapped by 10%

at the image pre-processing stage. We applied our NMS and reviewed those results

again for precision and recall separately which were compared to a GeoJSON file that

was created for the known sites with an attribute column showing their train/validation

split.
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Table 4.3: Results of object detection for di↵erent LiDAR visualisations. The results
are shown for precision per class and the Mean average precision across the classes.

Validation Areas Round House Small Cairn Shieling MaP
Slope 83% 23% 51% 50%
SVF 79% 18% 36% 44%

Hillshade 73% 13% 40% 42%
Open-positive 78% 22% 53% 51%

Local dominance 78% 31% 15% 41%
Multi-directional hillshade 73% 39% 49% 54%

4.3.4 Experiment 1: Training on images that contain objects

In our first experiment we trained only on the images with objects in them. This allowed

us to quickly experiment with hyperparameters and understand the result we could aim

for when looking for new sites in the remaining images. This also reduced the chance of

finding false positives from new/unknown sites. However, it also meant that the model

was only trained on high quality data which wouldn’t generalise well to areas where less

or no sites are known.

Our first results are shown in Table 4.3. Similar to our image classification experiment

we found that Slope and Open Positive overall perform really well. Interestingly Local

Dominance is performing poorly shieling huts but exceptionally well on small cairns.

The best overall performance was by the multi-directional hillshade so we based our

further experiment on that visualisation.

For our next step we used the trained model to detect previously unknown sites on the

images that were not used for training or validation. We visually inspected this data and

requested feedback on our results from the HES expert. He confirmed that the approach

caused many false positives but that they were reasonable and could also be made by

an inexperienced image analyst. For example there were many small cairn detections

made on areas where there is high peat depth. In such areas the false positives showed

glacial drumlins and peat erosion mounds Figure B.2. To further understand these

false positives we comparing this data to a map of peat depth that was supplied by HES

(Figure B.1 (A)). The map is very generalized at 1:250,000 but still allowed us to analyse

the pattern. We found that there aren’t any known examples of small cairns at 1 and 1.5

peat depth but respectively 21 and 225 small cairns were detected (Table B.1). Another

area of clustering false positives was found in modern built up areas such as urban

areas, recreation areas (mainly golf courses) and coniferous plantations. To analyse the

scale of the e↵ect HES supplied us with a Historic Land-use Assessment (HLA) map

(Millican et al. (2017), Figure B.1 (B)). We visually compared the false positives to

these areas and indeed found that golf bunkers on a golf course were detected as round

houses (Figure B.3). Again we also found that there aren’t any known sites in the

modern built up area which could be masked out in further analysis (Table B.2). We

also found that there aren’t many known sites in the “Agriculture and Settlement” class

which does produce a lot of false positives such as a confusion between cattle feeders
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and round houses (Figure 4.12). An expert might want to exclude these areas in their

analysis if they are interested in a very rapid mapping project. However, the areas close

to the modern built up area are also most prone to destruction from development or

land use. For our further analysis we didn’t exclude those areas. Another suggested

area to exclude were locations where low LiDAR point density caused by coniferous

plantations created visible groups of points resembling “boulders” that were detected as

round houses (Figure 4.13). We eventually didn’t go through with this mask because

the boulders weren’t a significant issue and could be quickly disregarded by the expert.

Figure 4.12: (A) image of a cattle feeder on the ground where cattle have been fed
around a metal bin, (B) on LiDAR data where it shows the e↵ect of the trampled soil
and (C) as a false positive roundhouse detection. ©Historic Environment Scotland.

Figure 4.13: (A) Low ground point density caused by filtering the pointcloud to
create a DTM. (B) This has selectively removed large boulders and produced a circular

feature that looks like a round house. ©Historic Environment Scotland.

Based on this experiment we found that many false positives could be removed with a

mask based on domain knowledge. Although a mask would be fine for rapid analysis,

for accurate mapping we should improve the model or approach itself. Ideally the model

would learn internally what makes a modern object di↵erent from an archaeological

object. Another hypothesis we explored was to include common false positives as classes

in our model (Figure 4.4). However, this made the approach more sensitive to finding

these objects and confusion between the objects increased. As such we decided against

continuing to develop that approach.

4.3.5 Experiment 2: Training on all the images

Our next experiment was to train and validate on all the available images. Even though

the quick experiments reduced the chance of finding false positives from new/unknown
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Table 4.4: Recall, precision and F1 results from object detection with a LiDAR
visualisation combination of Local Dominance, Slope and Open Positive.

Train Valid
Roundhouse Shieling Small cairn Roundhouse Shieling Small cairn

True positive 159 311 377 22 4 0
False positive 1 28 79 9 44 16
False negative 5 4 28 14 24 20
Precision 0.994 0.917 0.827 0.710 0.083 0
Recall 0.970 0.987 0.931 0.611 0.143 0
F1 0.981 0.951 0.876 0.657 0.105 0

sites, it also meant that the model was only trained on high quality data which didn’t

generalise well to areas where less or no sites are known. We considered the possibility

that including all the images in the training would allow the model to learn to disregard

modern built up areas and peat erosion mounds. We undertook this experiment using

the LiDAR visualisation combination of Local Dominance, Slope and Open Positive

(Figure 4.5). Through trial and error we also found that we got our best results when

training each object class individually. The implementation of RetinaNet optimises the

approach to Mean average Precision (MaP) which in practice meant that the model

seemed to optimise to just one of the classes. Training each class individually increased

the computation time but the trade-o↵ was found to be worth it. As soon as we changed

this element of approach we received visually impressive results in the validation area

which we shared with HES for feedback. Unfortunately, we weren’t able to retrieve

the information from the best performing epoch (due to a power outage in the o�ce)

and so for each model we used the weights from the final epoch 50. Based only on the

numbers in Table 4.4 it is clear that the model was overfitting on training data for the

shieling huts and especially for the small cairns. Only 4 and 0 known sites were found

respectively. Still, the visual results looked promising with possible new detections so

feedback on the false positives would be useful to further tune the approach. In addition

to the false positives in the validation we also ran the model in the training area to find

out if any new sites could be found among the false positives.

Table 4.5: Recall, precision and F1 results from object detection adjusted by manual
verification of the results. The manual verification increased the number of True Pos-
itives, especially for shieling huts and small cairns in both the training and validation

areas.
Train Valid

Manual verified Roundhouse Shieling Small cairn Roundhouse Shieling Small cairn
True positive 159 334 435 26 48 10
False positive 1 5 21 5 0 6
False negative 5 4 28 14 24 20
Precision 0.994 0.985 0.954 0.839 1.000 0.625
Recall 0.970 0.988 0.940 0.650 0.667 0.333
F1 0.981 0.987 0.947 0.732 0.800 0.435

The feedback from the HES expert was really useful; for each false positive he provided
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a basic interpretation of ‘yes’, ‘maybe’ and ‘no’ with further comments on why a detec-

tion was likely right or wrong (Figure B.4, Figure B.5). We updated the True Positives

results from Table 4.4 by adding all the ‘yes’ and ‘maybe’ detections and removing those

from False Positives and we then recalculated Precision, Recall and the F1 score (Ta-

ble 4.5). The feedback from the HES expert has dramatically changed the initial results

in both the training and the validation areas. To visualise the results we have created

images for each class that show True Positives with low predictions, False negatives,

False positives that were verified ‘Yes’ or ‘Maybe’, and False positives that were verified

‘No’ (Figure 4.14, Figure 4.15, Figure 4.16).

Figure 4.14: Round houses detections: Visual examples of True Positive, False Neg-
ative and False positives that were verified as “Yes”, “Maybe”, and “No” accompanied
with further explanation from the HES expert. ©Historic Environment Scotland.

Shieling huts now have the highest F1-scores. Shieling huts went from 28 down to 5 false

positives in the training area and from 44 to 0 in the validation area. The True Positives

with low predictions for shieling huts found mainly objects that were just outside of the

known site and could be removed with a stronger threshold of IoU. Although shieling

huts do tend to cluster together and overlap in that way as can be seen on the row False

positives that were verified ‘Yes’ or ‘Maybe’. The False Negative row shows training
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Figure 4.15: Shieling hut detections: Visual examples of True Positive, False Negative
and False positives that were verified as “Yes”, “Maybe”, and “No” accompanied with

further explanation from the HES expert. ©Historic Environment Scotland.

examples that are atypical but the validation examples seem like they should have been

detected so the model must have overfitted to the training data.

Small cairns went from 79 down to 21 false positives in the training area and from 16 to

10 in the validation area. It seems that for small cairns the model was overfitting more

than it was on shieling huts. There are two obvious cairn fields in the validation area

that were missed by the approach (Figure B.5). The cairn field the west of the island was

however found and makes up the majority of the new True positives (Figure B.5). An

interesting observation is that in both the training and validation areas the small cairn

detections in clusters have a seemingly higher prediction than stand-alone detections

of cairns in the landscape. The model seems to have learned the clustering pattern in

the training data which is a positive e↵ect of the FPN structure and shows that it is

considering the same geospatial pattern of context as an expert would do. We also noted

that most of the false positives that were manually verified as ‘no’ were part of clusters.

We expect that some of these objects would have been disregarded if they were found

in an empty part of the landscape.
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Figure 4.16: Small cairn detections: Visual examples of True Positive, False Negative
and False positives that were verified as “Yes”, “Maybe”, and “No” accompanied with

further explanation from the HES expert. ©Historic Environment Scotland.

4.3.6 Comparison with established results

The Isle of Arran case study has provided us with the opportunity to compare our

automation approach to an exemplary manual approach. The dataset that we were able

to use was free of noise because the site locations were manually tagged on the same

LiDAR data. We were very surprised to have discovered 139 archaeological sites that

were not in the training dataset. The expert from HES was most impressed with the

new detections of round houses. Generally, those are simple to detect easy to verify just

with the LiDAR data. One round house detection made by our AI was also identified as

‘enclosure’ on the LiDAR by one of the experts during the desk-based stage and it was

given low confidence score so it was verified in the field (Figure 4.17). In the fieldwork

stage it was dismissed as being ‘Natural’ but the main expert at HES now agrees with

the model and is convinced this is an actual round house based on just the LiDAR. The

False negatives for the round houses are all very faint or atypical.
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Figure 4.17: (A) RAMP Stage 1: Desk-based identification = ‘Enclosure’. Level of
confidence = 2. (B) RAMP Stage 2: Field visit = ‘Natural’. (C) Object detection:
Round house:0.97. The HES expert agrees with the round house detection. ©Historic

Environment Scotland.

In chapter 2, subsection 2.5.1, we introduced the automation approach of Trier et al.

(2019) on the Isle of Arran. The Norwegian Computing Center was commissioned by

HES to preform an automation approach which they had previously presented in Trier

et al. (2018). They trained three individual ResNet18 CNNs on round houses, shieling

huts and small cairns. To infer new sites in a large area, they used a sliding window

approach where each patch gets a probability from model. The combined result of the 3

heatmaps is shown in Figure 4.18-A. To visually compare the results with our approach

we show our results side-by-side in Figure 4.18-B. Based only on this comparison we

see that our approach detected 3 shieling huts that were not in the training set, 2 of

these were verified true and 1 maybe. The detections of Trier et al. (2018) are more

di�cult to interpret. Our object detection approach creates a vector file that can be

used with GIS to quickly iterate through the detected locations. With a vector file the

heritage manager can also query the result as we have shown by comparing the locations

of detections with land use and peat depth maps. In the workflow of a heritage manager

this creates a more e�cient approach than scanning the raster map for the entire case

study area. It is probably more convenient and e�cient to manually analyse the DTM

visualisation than it is to interpret the raster heatmap. However, by thresholding the

pixel locations that have a high class confidence in the the raster map, a polygon vector

file could be created. This file can then be iteratively reviewed and queried. Based on

a visually inspection of Trier et al. (2019) result for Glen Shuring this would probably

result in many False positives and False negatives. Overall a HES expert compared our

results to the Trier et al. (2019) outputs saying: “your data seems much cleaner – less

noise for certain – and (to me) a clearer rationale for the false positives”. We consider

that our object detection approach performed better because we trained on more true

negative locations which improved the generalisability of the trained CNN.
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Figure 4.18: Comparison of our approach with previous automation work shown
at Glen Shurig. (A) shows the result from Trier et al. (2019) with a heatmap of
the probability of roundhouses (cyan), shielings (magenta) and small cairns (yellow)
(verified sites are depicted as circles). (B) shows our object detection results. ©Historic

Environment Scotland

4.4 Summary

In this chapter we streamlined our approach from experimenting with image classification

to using optimised parameters in our object detection approach. We found in our image

classification stage that Local Dominance, Slope and Open Positive DTM visualisations

performed best on small cairn, round house and shieling hut respectively. We used a

combination of these bands in our object detection approach. Di↵erent than chapter 3

we applied RetinaNet for object detection which generated better detections with less

false positives. In the object detection we experimented with training on only images

that had objects. This was a useful stage for quick iteration of di↵erent hyperparameters.

We did however find that this trained model did not generalize well across the island.

The majority of sites in Arran are on moorland and so the training data did not include

images of the modern built-up area and only a few images of agriculture and woodland

areas. Rather than removing potential false positives by masking them out we decided

to re-train the model with all the images and this resulted in much cleaner detections.

These result was shared with HES who verified our false positives and were pleased to

find many sites that weren’t previously known. In total 139 sites that were classed as

a false positives turned out to be actual archaeological sites. We expect that retraining

the experiment with the newly verified detections would again increase the number of

new sites. We didn’t pursue this because the value of the technique had been shown

with this experiment alone. However, if we would improve this case study we would

try to improve the balance of the training/validation data. We do expect that there

are be more sites to be discovered in the dataset. By publicly sharing the dataset

along with our RetinaNet benchmark we encourage our results to be improved and new

detections to be made (Kramer and Hare, 2020). We envision this to be a learning

resource and a testing ground for new techniques. To the best of our knowledge this is

the first large-scale publicly available dataset of archaeological sites for benchmarking

automation approaches.
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Discussion

The aim of this thesis is to find an optimal automation approach for archaeologists who

are new to deep learning. Based on our experiments and extensive literature we have

gathered deep insights on best practise for successful workflows. In section 5.1 we review

our experiences on gathering and labelling data for deep learning approaches. In sec-

tion 5.2 we review our most e↵ective approach to using deep learning, and overcoming

challenges that we have found while working with remote sensor data to detect archae-

ology. In section 5.3 we discuss future work topics that we think will further solve our

identified problems.

5.1 Creating a deep learning dataset

The most important element of any deep learning approach is a high quality dataset.

Most researchers spend the majority of their time improving or expanding the dataset

because it is often the best way to improve accuracy. So, rather than tweaking network

parameters for small percent improvements, most researchers should review and improve

their dataset quality and quantity and results will improve.

5.1.1 Evaluating data quality

In chapter 3 we used archaeological site locations that were available through local

archives (HER) that are gathered in a similar approach across the country. This allowed

us to test the usability of such a dataset for automation and analyse how our approach

could be scaled up across the country. Through our experience we found that this data

source required some manual improvement. For example, the dataset contained legacy

data which meant that some sites no longer excised due to modern development. We

also found that some of the sites were not visible on one or both of the remote sensor
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datasets we used. Finally we also had to adjust the box size for each barrow. Because

there was a lot of size variation between the barrows, our initial approach of using the

largest barrow size as a guide to crop all barrows resulted in low detections rates of

the smallest barrows. We were able to improve the data quality over a couple of days.

However, we are not local experts so mistakes could have induced some noise. Overall

the dataset was very good to work with because the New Forest has been extensively

researched over the years. Our experience of this dataset will probably transfer well to

similar case study areas but we expect that less studied areas might require more expert

manual interpretation of the area. Alternatively one could speed up the manual process

by iteratively applying deep learning and reviewing results to update the training dataset

and retrain the algorithm.

In chapter 4 we were able to use a manually improved version of the national database

which was very accurate and thus quick to experiment with. The case study covered

432km2 which provided enough objects for training our deep learning approach. The

clustering of known objects in the west of the island made it di�cult to separate areas

for training and validation whilst maintaining a good balance of object classes in the

respective areas. In our approach we divided the training and validation areas based

on their km2 size and accepted the training/validation object class imbalance. We

experimented with increasing the validation objects by using a larger validation area

but we did not find a good balance. This was mainly because we choose to create the

same training/validation area split for all classes and maintain geographical separation.

If we relaxed those requirements, an improved approach might be to divide the areas

based on the number of known sites per class. Our result evaluation yielded many false

positives which turned our to be previously unknown archaeological sites. We expect

this will be the same for most cases studies if the area has had long periods of occupation.

On balance we would recommend that very simple case studies can use national datasets

albeit with the caveat of the known issues and suggested quick improvements. For an

in-depth research we would recommend the approach of collaborating with local experts

that have resources to provide a high-quality dataset, and time to provide feedback

and discussions on the results. This allowed us to find many new sites among the false

positives and come up with potential improvements. Without this feedback, we were at

danger of optimising our approach to a dataset that is too noisy.

5.1.2 Expert labelling tools

At the start of this PhD there were no labelling tools available that could be used for

a geographical purpose. We therefore created our own code to automatically create

training data based on the known site locations. In both case studies we were provided

with a Shapefile that contained the centre points of known sites. We also asked for

the maximum width of the objects which we then used to crop our images for image
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classification or to create a file with bounding boxes for object detection. This approach

worked well on Arran but in the New Forest there was a lot of variance of barrow width

which reduced general accuracy and manual adjustment of boxes was required to gain

further improvements. Our tools are shared in our GitHub repository and although they

work for points and maximum object width, the full approach works best with polygons

that indicate the width of each object (Kramer and Hare, 2020).

There are several opensource labelling tools used in archaeology; Verschoof-van der Vaart

and Lambers (2019) used a general image labelling tool called LabelImg for object detec-

tion and Soroush et al. (2020) used 3D Slicer for segmentation which is an open source

software platform widely used in medical image processing and annotation. Both these

tools do not support geocoordinates and are not able to automatically transfer known

sites locations to a machine learning format. Because they require manual tagging the

labelling process can be time consuming. These tools are also only useful to create

labels which means that either the interpretation is can only be done locally with re-

sulting images from the deep learning package used. If they would want to analyse their

resulting detections in a GIS software then they require additional tools to transfer the

local detection coordinates into geocoordinates. For us it was more convenient to write

our own code.

There are several commercial labelling tools that have geocoordinate options. Ground-

Work is the first annotation tool designed for geospatial data. One can upload any

remote sensor dataset to label and selected parameters to create overlapping tiles that

can be exported to use directly for machine learning. ArcGIS Pro is a commercial GIS

software that has recently expanded its software with tools to transfer GIS datasets into

a deep learning format and tools to review results. This was used in archaeology by

Gallwey et al. (2019) to automatically convert their labelled vector file containing geo-

graphical site locations and raster data containing the DTM into deep learning training

datasets. Although ArcGIS Pro is expensive, the tools seem well suited for aerial archae-

ology because archaeologists are often already familiar with the software and it provides

good user support and guides. Another labelling tool that has some geospatial options

is Amazon Sagemaker which could be useful when using the full AWS machine learning

pipeline. A similar one-stop platform is Google Earth Engine which has limited labelling

tools but accepts GIS vector and raster data without further processing requirements

(Gorelick et al., 2017).

5.1.3 Crowd sourced labelling

Alternative to expert interpretation, labels could be created with the help of crowd

sourcing. The ImageNet dataset is also crowd sourced and approach and showed the

impressive nature of deep learning. The ImageNet crowd sourcing was run on a com-

mercial platform called Amazon Mechanical Turk where users are paid per label. In
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archaeology all crowd sourcing projects have been run as citizen science experiments

where citizens contribute to scientific discovery and are upskilled in both archaeology

and remote sensor interpretation. Although most experiments discussed below were not

created for the purpose of deep learning, many can be used for this.

The successful project of the search for Genghis Khan’s tomb by National Geographic

attracted 10,000 volunteers who contributed 30,000 hours (3.4 years), and together ex-

amined 6000 km2 of high-resolution satellite images in Mongolia (Lin et al., 2014). The

volunteers were asked to provide centre locations of potential heritage and this generated

2.3 million points that included burial mounds, megaliths, and city fortifications. Their

approach of allowing any site type to be added to the database does require extensive

post-processing which is very time consuming.

In early 2017 another approach was launched by Sarah Parcak called GlobalXplorer. The

platform used binary image classification to identify and quantify looting and encroach-

ment to archaeological sites. This in a sense is more e�cient because it is a simple task

that can be quickly learned so the resulting data is likely of good quality. The images

are shown to multiple users and those that are consistently marked as showing looting

are further analysed by project sta↵. This type of labelled data could be used to train

a deep learning approach.

The previously mentioned deep learning approach by Verschoof-van der Vaart and Lam-

bers (2019) found around 1000 new sites during the manual tagging of their research

area. The extrapolated potential of the entire research area was found significant and so

they explored the opportunity to use crowd sourcing for image labelling (Lambers et al.,

2019). They launch their crowd sourcing campaign Heritage Quest on the Zooniverse

platform. The tasks were to identify the centre point of barrows, segmenting Celtic field

systems and segment cart tracks. With this approach they detected many potential

archaeological sites. In addition to the traditional online crowd sourcing they are also

experimenting with volunteer field verification.

Stewart et al. (2020) also used crowd sourcing for the purpose of training a machine

learning algorithm. In their pilot study they used binary image classification to identify

crop marking on Satellite Imagery using the Pybossa platform. While only 28% of the

tasks are completed they already identified many new cropmarks which can be used at

the next stage of their research in which they will apply machine learning. However,

they also realise that the detection of cropmarks is very challenging because the patterns

are very di↵erent between crop types and growth stages.

Whereas Lin et al. (2014) allowed a wide range of archaeological detection, most ap-

proaches implemented simplified tasks that require limited training and post-processing

work. This reduces the ability to detect unusual archaeological sites and so most projects
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have added the opportunity for expert users to notify tiles that include potential archae-

ological sites. Such unique detections are unlikely to be found with deep learning because

of their limited occurrence, making crowd sourcing the superior the superior choice.

5.2 E↵ective workflow

5.2.1 Iterative workflow

We have found that it is challenging to gain intuition without experience. We have

therefore built our approach on experiments that take a baseline and improve that step

by step. This both builds intuition and provides a justification for each tool that has

been applied which together result in improved outcomes.

The most important step of our process is to start with image classification to get to know

your dataset and to test your hypothesis. Our first step was to establish a simple deep

learning baseline. We iteratively added more complexity to ensure that each step was

improving our deep learning workflow. This included data augmentation, pre-trained

networks, data visualisations, data fusion and di↵erent CNNs. Based on the outcome of

the image classification we set our expectations for object detection.

Our best workflow for object detection was developed during the Arran case study.

Here we also set a simple baseline from which we would test potential improvements.

Whilst we initially trained our approach on all classes we eventually chose to train on

individual classes to ensure that the model could optimise the outcome for each class

individually. The baseline included only the tiles that had known sites to enable quick

iteration and avoid overwhelming noise from false positives. We then used the optimised

trained model to validate on the remaining tiles. This resulted in a lot of noise from false

positives because the model was not trained on modern land cover. To omit the noise,

we considered masking the areas that caused the majority of false positives. Although

we decided against this because it could potentially remove actual sites. For our final

approach we divided the whole island in train and validation areas so that the model

could learn to disregard false positives in modern areas. This resulted in very high

performing model that drastically reduced the false positives although it still had a

much lower precision than recall for shieling hut and small cairn, even in the training

area. We shared the resulting detections of both training and validation areas with our

local expert and the feedback was essential to discover new sites and further hypothesise

improvements.
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5.2.2 Problem reduction

In this thesis we have discussed several reasons why using deep learning for the detection

of archaeology on remote sensor data is much more challenging than the generally used

ImageNet datasets. The main challenges include the non-conventional data format, low

contrast and the small size of our datasets. In order to make deep learning work for

our problem we have had to reduce our problem which means to modify our data to a

known problem such that it can be easily solved using existing techniques.

For example, LiDAR data is captured in a point cloud and at the start of this PhD

there were no deep learning solutions to this problem. We therefore experimented with

raw DTMs which worked but they were underperforming when compared to the aerial

photography. Large parts of the case study area were covered with forest canopy which

precludes detections on aerial photography. We found that the raw DTM input required

normalizing which we did with the means of the training data. Kazimi et al. (2019)

addressed the same problem and found that applying min-max normalization on a per-

image basis worked better than on the whole dataset. This process emphasises the

importance of the local pixels without losing detail of the DTM. To maintain this high

level of detail, it is important not to convert the image into 8 bit before feeding it to the

CNN as previously discussed in subsection 2.5.3.

Even though per-image normalization could have improved our outcome, we consider

that in this approach the small dataset will remain challenging to work with. The most

powerful tool for small datasets is the use of pre-trained networks which is why most

approaches in archaeology, including ours, focussed on DTM visualisations. The DTM

visualisations are essential to human interpretation of LiDAR data which makes them an

excellent fit for LiDARs that are pre-trained on the natural image scenes of ImageNet.

Most researchers including Trier et al. (2019) and Verschoof-van der Vaart and Lambers

(2019) used a SLRM which is commonly used for flat terrain but is discouraged to use

in a more dynamic landscape. To overcome this Somrak et al. (2020) used a blend

of analytical hill shading, slope, positive openness and sky-view factor into a single

greyscale image called VAT. We contributed to this debate by using the 3 visualisations

that worked best for our case study and combined them as the Red, Green and Blue

bands of an image. This both allowed us to use a pre-trained network and to add more

detail for the CNN to learn from. Despite this innovative approach the visualisation still

reduces the detail that is available in the DTM. We are therefore very excited by the

Lunar LiDAR pre-trained approach from Gallwey et al. (2019) because it maintains the

detail of the DTM.
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5.2.3 Choosing a deep learning algorithm

We have found that most deep CNNs will provide a similar result on our datasets

and have therefore not focussed extensively on creating new CNNs but rather explore

auxiliary techniques to alleviate specific problems we identified with the data. We found

that deep CNNs worked better than shallow networks although the deep CNNs required

transfer learning to perform well. We also found that RetinaNet worked best because it

addresses the class imbalance and scale issues with focal loss and the FPN.

The choice between object detection or segmentation should depend on the case study

aims. We have seen that Verschoof-van der Vaart and Lambers (2019) used object

detection for the discovery of Celtic fields which can take irregular shapes and do not

fit into a bounding box. At first sight the choice of object detection over segmentation

might seem odd but their objective was to detect new sites not to perfectly segment

them. If pixel accuracy is not the most important metric than using loss-functions for

per-pixel optimisation is not the right approach.

5.2.4 Choosing an evaluation metric

Most researchers evaluate their approach with the false positive rate and the final F1

score. To improve their false positive rate Verschoof-van der Vaart et al. (2020) published

an updated version of their approach using Location Based Ranking to mask built-up

areas, and areas with drift-sand that were known to have low likelihood of archaeology

but a high number of false positives. Ultimately the success of an approach is not

dependent on one metric, it depends on what is most suited for a specific task (Soroush

et al., 2020). In the medical profession classifying a sick person as healthy has a di↵erent

cost than the opposite case and so doctors prefer to review more false positives and accept

a higher recall with lower precision. In the case of Verschoof-van der Vaart et al. (2020),

their focus was on large scale mapping where it was acceptable to miss a few objects for

a higher precision to increase the overall success measured in the F1 score. Automation

in archaeology is still at an early stage where researchers are trying to locally optimise an

approach. In the future we foresee that a heritage manager may accept high recall with

lower precision when it only takes them a short while to shift through the detections.

The same is apparent in commercial archaeology where high recall is the most important

metric.

5.2.5 Choosing an implementation

For most archaeologists it will be challenging to recreate a deep learning approach based

on a paper alone. Luckily, many papers in deep learning are published with code that is

available through GitHub folders. This was the case for the RetinaNet implementation
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we used and also for the Lunar LiDAR approach that Gallwey et al. (2019) used. These

implementations make it a lot easier to apply deep learning but users still require skills

in coding to use this. In our case we had to write code to generate images and matching

label-files that could be interpreted by our RetinaNet implementation. We further wrote

code that transformed the outcome back into geocoordinates and applied NMS on all

the detections to remove duplicate detections caused by overlapping tiles. Gallwey et al.

(2019) was able to find a ArcGIS Pro solution for most of these coding problems which

made it easier to use their implementation. Yet this approach requires multiple pieces

of software and is not flexible when experimenting with other CNN implementations.

We extensively researched alternative options and found two open-source end-to-end

implementations, Avezea Raster Vision and Solaris, that are specifically designed for

deep learning on remote sensing. They both o↵er a wide array of deep learning imple-

mentations written in Python with PyTorch and have good documentation and support.

Their implementations o↵er image classification, object detection and object segmenta-

tion and multiple choices of CNNs. They are both part of commercial companies and

have large teams that maintain the platform so we are confident that they will be main-

tained for a long period throughout which they will update the approach with the latest

deep learning research.

5.3 Future works

During the course of the PhD the field of deep learning expanded rapidly with many new

approaches published on non-conventional data sources. Work on self-driving cars has

especially pushed research using LiDAR sensors. This has resulted in many networks

resigned for convolutions directly on the point cloud (Özdemir and Remondino, 2019; Qi

et al.). It also resulted in networks that combined both RGB images and LiDAR point

cloud or LiDAR derived depth maps (Hazirbas et al., 2016; Qin et al., 2018). Progress

on each of these elements has also been shown on remote sensor data which can be very

helpful for archaeology. For example, Rudner et al. (2019) segmented flooded buildings

based on change detection in two satellite images before and after the flood. This could

also be used for archaeology to aide the detection of site destruction because of modern

development, climate change or looting.

We also inspired by the crop stress dataset that was published by Chiu et al. (2020)

and so we embarked on our own research to detect crop marks. In our first attempt

we hoped that we could use high resolution aerial imagery from the Ordnance Survey

that was captured during a drought in the summer of 2018. For site locations we were

able to get crop mark locations from the national database (https://canmore.org.uk/)

from HES. Unfortunately there weren’t enough matches between the known cropmarks

of the past and the images provided by the Ordnance Survey to train a CNN. Our
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second attempt included the national database (https://canmore.org.uk/) from HES

which includes all the historic cropmarks that have been captured by HES. This approach

provided a reasonable match between the objects and the images. Many objects were

captured multiple times which increased the number of training examples. Although

not every image included a the same/all cropmarks that were digitised (due to crop

rotation or other growth di↵erences in the field). Yet, we still persevered to see what

result could be achieved. The object information was provided in lines which created

a challenge because for our desired segmentation approach we required polygons. To

create polygons from the lines we experimented with the bu↵er and polygonise options

in QGIS (Figure 5.1). We discovered that polygonise worked well for enclosed lines and

that bu↵er worked well for stand-alone lines. Although this worked most of the time we

noticed that many polygon-type features were not enclosed such as the paleochannels

in Figure 5.2. Rather than focusing on all cropmarks we reduced the problem to only

detecting round houses. We had 5654 individual instances of round house in the dataset

we would be a good dataset to train on. To further simplify the approach we chose

not to continue with segmentation but experiment with our already verified RetinaNet

approach (subsection 4.3.5). We created bounding boxes around each round house entry

and created our training data (Figure 5.3). The results of a quick training routine were

not good and after further inspection we found that many objects were in a white

background that had value 255 rather than no data (Figure 5.4). We experimented with

removing the objects that contained values of 255 but this also removed many good

objects. In the end we decided that there were too many problems with the data and

this project should be continued in a dedicated project where resources are available to

manually improve the data.
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Figure 5.1: From top left to bottom right the image shows the process of creating
polygons from lines. We found that the GIS bu↵ering option didn’t enclose the circular
feature. We also found that polygonising didn’t represent the actual lines properly.
We found that the start/end vertices of the polygon object were on the same location
for the circular feature which separated them from the lines. Using this insight we
were able to separately polygonise and bu↵er the di↵erent object types. ©Historic

Environment Scotland. Licensor canmore.org.uk

Figure 5.2: Image shows that our separate polygonise and bu↵er approach did not
work for all objects. ©Historic Environment Scotland. Licensor canmore.org.uk
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Figure 5.3: Image showing the created bounding boxes for object detection on aerial
images. We used the extent of the round houses to create bounding boxes. ©Historic

Environment Scotland. Licensor canmore.org.uk

Figure 5.4: Image showing bounding boxes that are stored where the aerial image is
cut o↵. ©Historic Environment Scotland. Licensor canmore.org.uk





Chapter 6

Conclusions

This thesis presented an in-depth research of deep learning approaches and the challenges

that are presented by the datasets of archaeological sites and the pattern they leave on

remote sensing data. In chapter 2 we highlighted several reasons why the detection of

archaeology on aerial imagery is highly challenging. In the following case study chapters

we addressed most challenges in extensive experimentation and created a workflow that

addresses these central issues.

In chapter 3 we focussed on the use of multiple sensors, comparing results from multi-

spectral imagery with LiDAR derived DTMs. The case study focussed only on barrows

in the New Forest National Park and we used the known sites primarily from the lo-

cal archives HER for training locations. Through experimentation we found the best

results with DTMs derived visualisations that highlight the archaeological earthworks.

This showed that for small datasets the problem should be simplified to attain high ac-

curacy. Although we do expect that with larger datasets or pretraining with DTMs (or

similar dataset) will eventually surpass the accuracy that can be obtained with simplified

visualisations. We also discovered that noise in the dataset was trailing our accuracy and

that extensive manual improvement of datasets is required for deep learning use cases.

In this chapter we also experimented with a multitude of networks and hyperparameters.

Eventually we concluded that the SOTA networks also work best for our datasets and

that network tweaks are less important than improving/increasing training data.

In chapter 4 we focussed only on LiDAR data but diversified with 3 di↵erent archae-

ological object types; round houses, shieling huts and small cairns. The dataset from

the Isle of Arran was provided by HES and had been gathered through extensive desk-

based and field verification. In this case study we were able to perfect our workflow

that encourages feedback and critical evaluation of the dataset and results by starting

with image classification and using those learnings/ optimised hyperparameters to apply

object detection. We shared our approach and dataset on GitHub as a benchmark which

is the first in it’s field and we hope it will encourage comparison with new research.
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In chapter 5 we discussed the best practise for the workflow that we created based on

the literature review and our own experiments. The discussion can be read as general

advice for new researchers in the field and ranges from the creation of a deep learning

dataset to model selection and model evaluation. We finally concluded the chapter with

a review of the latest research in deep learning that could be used in archaeology to

improve the approaches that have been published so far.

In chapter 2 we listed the key challenges of archaeological label datasets and the remote

sensing datasets. Below we have summarised our most important experience to overcome

each of the challenges:

• Small datasets; We used several tools such as data augmentation, transfer learning

to improve outcomes for small datasets and tested these hyperparameters during

the image classification stage.

• Class imbalance; We addressed the issue of class imbalance only at the object

detection stage with a RetinaNet that implements focal loss.

• Noise; We addressed the possibility of noisy labels during the image classification

stage by reviewing the most extreme “right” and “wrong” predictions from the

CNN. We also highlighted the importance of improving the dataset before moving

into object detection. We discovered many unknown sites at the object detection

stage by critically analysing the relatively high number of false positives in both

our training and validation areas. We concluded that the algorithm should be

iteratively updated with new verified detections to gain the optimal result.

• Scale; We addressed the issue of scale at the object detection stage with a feature

pyramid network that analyses objects at di↵erent scales and was able to detect

very small objects. We also suspect the FPN learned to increase probability if

certain objects were found in clusters.

• Low contrast; We used DTM visualisations to reduce the data complexity and

improve visual interpretation with distinct lines and edges. These patterns are

learned in CNNs that are pretrained on ImageNet. Using a pretrained CNN was

essential for solving the previously mentioned small data problem.

• Non-conventional data format; We learned that using the raw DTM was not as

successful as using a visualisation in the experiment of chapter 3. Using a CNN

that was pretrained on 16 bit DTM or similar dataset like Gallwey et al. (2019)

should improve the results because the raw DTM contains more details than the

visualisations.

• Changing appearance; We addressed this issue by training and validating the ap-

proach in geographically distinct areas. On our scale this e↵ect was not significant.
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• Fuzzy site definitions; Our approach in Arran contained round houses and shieling

huts which have the same function. We saw many detections of both classes on

the same location. In all cases the NMS removed the least confident class which

was the confused classification.

We have addressed each of our main concerns with the archaeological datasets but there

is still much to be improved. We hope to that the availability of our new datasets

and benchmark will both facilitate more comparisons of existing methods and lead to

increased interest in the detection of archaeology on remote sensing data in the machine

learning and computer vision communities.

Like we said in chapter 1, archaeology is under constant threat of destruction, and it of

utmost importance that sites are located so that they can be monitored and protected.

The potential saving that automation can provide is huge. In addition, we have shown

that more training data creates better results. We envision a continuous loop with deep

learning detections and manual verification which in turn is fed back into the model

for retraining. In time the model will be able to detect all the archaeological sites and

monitor any changes. We therefore encourage bold initiatives for large scale mapping.
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Figure A.1: (A)RGBN data as it was provided by the Ordnance Survey and (B)
Spatial spread of RGBN positive/negative images.
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Figure A.2: Spatial spread of RGBN positive/negative images.
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Figure A.3: DTM-0.5 m data as it was captured and processed by University of
Cambridge (2011) and provided by the New Forest Knowledge project.

Figure A.4: Spatial spread of DTM-0.5 m positive/negative images.
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Figure A.5: Training and validation regions for (A) RGB and (B) DTM overlaid with
known barrows and new detections.
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Figure B.1: Map of Arran with peat depth (A) and historic landuse (B) distribution.
©Historic Environment Scotland.
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Figure B.2: Map showing a cluster of false positives from object detection using Multi-
directional hillshade. The HES experts identified these sites as peat erosion mounds.
The image is overlaid with a map of peat depth where darker colours are deeper peat.
Labels show the peat depth and the class. The insert shows that the objects visually

look like small cairns. ©Historic Environment Scotland.

Table B.1: Comparison of the known sites and detections in areas with di↵erent peat
depth. The small cairn detections in red show that no sites were known at 1-1.5 meter
depth but 225-21 objects respectively were detected. This confirms the pattern of false

positives from peat erosion mounds.

Peat Depth Area (m2)
Known

roundhouse
Known
shieling

Known
smallcairn

Detections
roundhouse

Detections
shieling

Detections
smallcairn

1.5 592589818 4 71 0 57 120 225
1 7226899 7 0 0 4 8 21

0.75 62683531 50 6 155 62 52 51
0 301201636 118 141 52 386 344 370
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Table B.2: Comparison of the known sites and detections in areas with di↵erent
landuse. The detections in red show that no sites were known modern built up areas

where many detections were made.

Historic Landuse Area (m2)
Known

roundhouse
Known
shieling

Known
smallcairn

Detections
roundhouse

Detections
shieling

Detections
smallcairn

Energy, Extraction and Waste 176288 0 0 0 0 6 3
Spiritual and Ritual 11817 0 0 0 0 0 0

Water Body 678577 0 0 0 1 0 0
Built-up Area 3595744 0 0 0 46 4 27

Designed Landscape 215318 0 0 0 0 0 0
Leisure and Recreation 2565834 0 0 0 30 4 38

Agriculture and Settlement 48728243 12 0 1 83 28 104
Woodland and Forestry 110507165 18 10 0 70 88 104

Moorland and Rough Grazing 262236380 149 208 205 294 398 448

Figure B.3: Map showing a cluster of false positives from object detection using
Multi-directional hillshade. The HES experts identified these sites as objects on a golf
course. Labels show the Historic Landuse and the object class. The insert shows that
some golf course objects have a similar size/shape to round houses but are clearly not

round houses. ©Historic Environment Scotland.
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Figure B.4: Detected cluster of shieling huts in the validation area. The boxes show
associated labels, predictions and the manual verification (”Y”: Yes, ”?”: Maybe, ”N”:

No). ©Historic Environment Scotland.

Figure B.5: Detected cairn field in the validation area. The boxes show associated
labels, predictions and the manual verification (”Y”: Yes, ”?”: Maybe, ”N”: No). The
roundhouse was previously known and the small cairns were known in the NRHE as a
cairnfield but the individual objects were not tagged. ©Historic Environment Scotland.
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Figure B.6: Clusters of false negatives on cairn fields in the validation area. ©Historic
Environment Scotland.
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