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Individual cells are often classified into cell ‘types” based on the expression of
so-called marker genes. Such marker-based classification assumes that cells of a given
type are (at least approximately) interchangeable with respect to the expression of
their associated markers. This traditional approach to cellular classification has been
disrupted by single-cell RNA-sequencing technologies, which are able to measure
genome-wide gene expression across thousands of individual cells. While potentially
providing a wealth of data for cellular classification, these technologies have revealed
that cells ostensibly of the same type are often highly heterogeneous (i.e. not
interchangeable) with respect to the expression of established marker genes.

A myriad of single-cell clustering methods has recently been developed to overcome
the issue of heterogeneity with respect to marker gene expression and identify cell
types directly from single-cell expression data. These methods typically proceed via:
(1) unsupervised identification of clusters from single-cell expression data sets; (2)
mapping of identified clusters to known cell types based on the expression of
previously established marker genes. However, this two-step cluster-based approach
to cellular classification is less biologically intuitive than the traditional marker-based
approach, involving substantial mathematical and biological assumptions regarding
the nature of cell type.

In this thesis, I formalise the traditional marker gene approach to cellular classification
using notions from information theory, and show how this formalism can be applied
to identifying cell types from single-cell RNA-sequencing data. Specifically, I develop
a novel clustering method based on the assumption that cells of the same type should
be minimally heterogeneous —i.e. approximately interchangeable — with respect to the
measured expression of a set of genes. Thus, this work offers an intuitive, formal
definition of cell type that unites the traditional and current approaches to cellular

classification through the mathematics of information theory.
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Chapter 1

Introduction

Robert Hooke first coined the term cell in the 1665 Micrographia (Hooke, 1665).
Nearly 200 years later, Schleiden and Schwann concluded that all living matter
was composed of cells (Schleiden, 1838; Schwann, 1839). Specifically, Schwann
formulated cell theory: that “the elementary parts of all tissues are formed of
cells” (Schwann, 1839). Cell theory has since become the “most general
structural paradigm in biology” (Mazzarello, 1999), providing a universal
basis for the study of life.

Much like the multicellular organisms they constitute, cells come in many
varieties. Cells display a range of morphologies and functions, occupying
distinct phenotypic niches known as cell types (Regev et al., 2017). These cell
types form the elements of a classification system of cells that stretches across
organs and species — as cell theory provides a general structural paradigm, cell
types provide a general organisational paradigm for the study of cell biology.

However, there is no universally acceptable criteria by which to classify a cell
type (Regev et al., 2017; Clevers et al., 2017; Xia and Yanai, 2019). An early
notion was that each distinct cell type carried only part of the genome. The
observed differences in cellular phenotype arose because each cell type had
access to a different set of “instructions” from the genome. Thus, cell types
could be precisely identified by genome sequence. However, the pioneering
experiments of Laskey and Gurdon disproved this idea, showing that all cells
of a given organism share the same DNA (aside from specific lymphocytes,
some neurons and anuclear cells)(Laskey and Gurdon, 1970). Distinct cell
types arise not due to differences in the genome but due to differences in
expression of the same genome.

Therefore, instead of classifying cells by genotype, cell types are identified by
phenotype. Cells are classified into distinct types based on aspects or features
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of cellular phenotype, including morphology, biological function, and gene
expression (Regev et al., 2017; Tanay and Regev, 2017; Alberts, 2017; Mescher,
2018). These identifying features are shared by cells of the same type and
distinguish cells of different types. For example, neurons and Spermatozoa
can be identified by their distinct morphology’s, B cells and T cells by function,
and pluripotent stem cells by gene expression (Xia and Yanai, 2019). This
feature-based identification of cell types is termed phenotypic classification
(Guillemin and Stumpf, 2020).

The phenotypic classification of cells assumes that the cells of each type are
interchangeable with respect to features of interest. For example, all
Spermatozoan are assumed to have the same morphology, and all erythrocytes
to have the same function. Conversely, phenotypic classification assumes cells
of different types are distinguishable with respect to features of interest. A
feature can only be used to classify a cell type if it is fulfils both criteria, with
cells of the same type being interchangeable and cells of different types being
distinguishable with respect to the feature.

However, the phenotypic classification of cell types has been disrupted with
the advent of high-throughput single-cell methods, primarily single-cell
RNA-sequencing (Trapnell, 2015; Regev et al., 2017; Casey et al., 2020b).
Single-cell sequencing technologies quantitatively profile the gene expression
of individual cells (Svensson et al., 2017). This profiling has revealed that cells
ostensibly of the same type are often heterogeneous, i.e. distinguishable, with
respect to established molecular characteristics, as illustrated in Fig 1.1
(Trapnell, 2015; Regev et al., 2017; Luecken and Theis, 2019).

This thesis aims to quantify the heterogeneity of cells with respect to gene
expression in the context of single-cell RNA-sequencing. Through this
quantification, I aim to formalise the phenotypic classification of cells with
respect to gene expression heterogeneity and extend the principles of
phenotypic classification to single-cell expression data. To that end, in this
introductory chapter, I will discuss the phenotypic classification of cell types
and the application of phenotypic classification to single-cell RNA-sequencing
data. I will introduce the dominant approach to cellular classification with
respect to single-cell sequencing data, unsupervised clustering. I will detail the
theory justifying the cluster-based classification of cells and discuss some of
the unsupervised clustering methods applied to single-cell RNA-sequencing.
Finally, I will conclude this chapter by introducing how clusters are identified
with established cell types via differential gene expression analysis.
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FIGURE 1.1: Phenotypic classification by marker gene expression. Each point corre-
sponds to the gene expression vector of an individual cell sampled from human bone
marrow projected into two dimensions using the t-SNE nonlinear dimension reduc-
tion method (Hinton and Roweis, 2003). (Left) The set of cells are classified into five
different cell types, highlighted in distinct colours: (1) Myeloblasts, (2) Monoblasts, (3)
Lymphoid Cells (4) Stem and Progenitors (5) Erythroblasts. (Right) Each cell type is
identified based on the expression of established marker genes. Despite each cell type
having been previously defined with respect to marker gene expression, the cells of
each type are heterogeneous with respect to the expression of their associated marker
gene. Figure reproduced from Casey et al. (2020b).

1.1 Phenotypic Classification of Cell Types

Phenotypic classification provides the de facto working definition of cell type.
Cells are identified as specific cell types based on shared aspects or features of
cellular phenotype (Tanay and Regev, 2017). Under this classification, cells are
identified with specific cell types when they match key marker characteristics
of the type, e.g. morphology, biological function or gene expression.

In phenotypic classification, cells of each type are assumed to be
(approximately) interchangeable with respect to their associated marker
teatures. Practically, this assumption is necessary as there are too many cells in
a given organism to characterise individually (there are at least 10'° cells in an
adult human, (Bianconi et al., 2013)). Moreover, the majority of cells cannot be
one-to-one mapped between individuals in complex multicellular organisms
(unlike with some simpler organisms, e.g. Caenorhabditis elegans) (Sender et al.,
2016; Sulston et al., 1983). Instead, phenotypic features are identified with
individual cell types.

Thus, where cell theory provides a general structural paradigm for cell
biology, cell types provide a general organisational paradigm. By assuming
that cells of each type are interchangeable (same morphology, same function,
same gene expression, etc.), the properties of one cell of a type can be
generalised to all cells of that type. A complete description of cellular
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phenotypes requires characterising only the relatively small set of cell types, as
opposed to individually characterising each cell (Trapnell, 2015).

In contrast, while cells of the same type must be interchangeable with respect
to a marker feature, cells of different types must be distinguishable with
respect to that feature. A given cell type is unlikely to be uniquely
distinguishable based on a single feature (morphology, function, gene
expression, etc.), but each marker feature must distinguish a cell type or set of
cell types from at least some other types of cell (Fischer and Gillis, 2021). For
example, the various types of T-cells can be distinguished based on the
expression of a set of surface proteins (Zheng et al., 2017).

Importantly, different features can disagree on the identity of a cell; for
example, cells can be of different developmental lineages but have similar
functions, e.g., trunk skeletal muscle cells and cranial skeletal muscle cells
have the same function but are from different lineages with different gene
expression patterns (Sambasivan et al., 2009). Thus, the identity of a given cell
may only be resolved based an accumulation of many different marker
features (Fischer and Gillis, 2021).

Sets of cells that do not belong to an established cell type and are
distinguishable with respect to a given feature may represent novel cell types
(Trapnell, 2015). However, establishing a set of cells as constituting a novel cell
type requires identifying many such features: the biological function of a given
cell type depends on the coordination of various aspects of cellular phenotype,
including morphology, gene expression and location. Therefore, cells of the
same type should be interchangeable with respect to many different features,
i.e. true cell types are distinguished from random groupings of cells based on
accumulating many distinct marker features (Melé et al., 2015).

Given that cells are only classifiable with respect to observable or measurable
aspects of cellular phenotype, the identification of novel cell types is method
dependent, i.e. not all cell types will be identifiable based on existing
experimental methods. For example, many of the earliest identified cell types
(e.g. Erythrocytes, Schwann cells, Purkinje cells, Sertoli cells, Astrocytes and
Spermatozoon) have distinctive whole-cell morphology’s (Mescher, 2018; Xia
and Yanai, 2019). Such large-scale morphologies are observable under a
traditional light microscope, the only method available for use in classifying
cells for some time.

As such, many cell types have only been made discoverable with the advent of
new experimental methodologies and technologies (Tanay and Regev, 2017). A
leading example of such methodological dependence lies in the tools of
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molecular biology, which enable the direct measurement of the molecular
products of gene expression. Based on the tools of molecular biology, the
molecular classification of cells has become a leading approach in identifying
known and novel cell types (Regev et al., 2017).

1.1.1 Gene Expression

Genes are expressed through a process known as the ‘central dogma’ (Krebs
etal.,, 2017; Alberts, 2017). Molecules of messenger RNA (mRNA) are
transcribed from the coding sequence of a given gene; the mRNA is then
exported from the nucleus and molecules of protein translated from each
molecule of mRNA. The level of expression of a given gene can be changed by
varying the rate of transcription or translation (Gygi et al., 1999). Note that as
the complete set of DNA molecules in a cell forms the genome, the complete
set of mMRNA transcripts form the transcriptome, and the complete set of
protein molecules form the proteome.

Within molecular biology, tools have been developed to measure the mRNA
and protein content of individual cells (Krebs et al., 2017; Alberts, 2017;
Mescher, 2018). Instead of relying on potentially subjective descriptions of
morphology or function, cell types can be identified through the expression of
so-called marker genes. The expression of characteristic genes, such as those
encoding cell surface proteins or transcription factors provides a reliable way
to identify cell types (Thomson et al., 1998; Akashi et al., 2000; Lv et al., 2014;
Tapscott et al., 1988; Mitsui et al., 2003).

Classifying cells into types based on the expression of marker genes provides a
common language for the identification of cell types, with each cell type being
identifiable based on the expression of a unique combination of ~ 10-200
genes (Arendt, 2008; Arendt et al., 2016; Xia and Yanai, 2019; Fischer and Gillis,
2021). Nevertheless, the marker gene approach to cell type discovery and
classification is limited by throughput. Traditionally, molecular biology
methods profile the expression of only one or a handful of genes at a time
(Tanay and Regev, 2017). However, with the advent of single-cell sequencing
technologies, it is now possible to measure the expression of all genes
simultaneously. By measuring the whole-transcriptome, single-cell sequencing
enables the systematic and comprehensive discovery of marker genes for
existing cell types and, importantly, provides sufficient data to identify all cells
types, known and novel, distinguishable at the level of the transcriptome
(Regev et al., 2017).
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1.1.2 Single-cell RNA-sequencing

Single-cell RNA-sequencing profiles the genome-wide gene expression of
individual cells, counting the number of mRNA molecules (which I will refer
to as ‘transcripts’ from here on) transcribed from each gene within individual
cells (Svensson et al., 2017; Ziegenhain et al., 2017). Note that the process of
sequencing requires lysing (destroying) the measured cells. The final output of
the experiment is a count matrix detailing the number of transcripts of each
gene measured in each cell. The count matrix represents a static snapshot of
the transcriptome of a cellular population. See the box “Single-cell
RNA-sequencing” for a brief outline of the stages of single-cell RNA-sequencing
and see Appendix A for more detail (Luecken and Theis, 2019).

Single-cell sequencing measures the whole transcriptome, profiling the
expression of every gene, and so capturing all possible differences in gene
expression between cell types (Tanay and Regev, 2017). Thus, instead of
conducting many successive experiments, single-cell sequencing provides
sufficient data to classify the complete set of cell types present in a population
from a single experiment (Trapnell, 2015; Regev et al., 2017). The marker genes
expressed by each cell can be identified, allowing the rapid and automatic
classification of each cell.

However, single-cell sequencing data has revealed substantial inconsistencies
in the expression of established marker genes (Brennecke et al., 2013; Dillies
etal., 2013; Griin et al., 2014; Kim et al., 2015; Vallejos et al., 2017). In sequenced
populations, each cell of a given type tends to express only a subset of relevant
marker genes or express those genes at varying levels (see again the example
in Fig 1.1). This inconsistency in marker gene expression prohibits the reliable
classification of cells based on the expression of any single marker gene.

These revealed inconsistencies in expression are termed heterogeneity, or more
formally, intra-type heterogeneity. Throughout this thesis, I define a set of cells
as heterogeneous with respect to the expression of a given gene when the cells
are distinguishable, i.e. not interchangeable, based on the observed expression
of the gene. When cells of the same type are heterogeneous with respect to the
expression of a given gene, any given cell cannot be reliably classified based on
that gene.

Intra-type heterogeneity with respect to maker gene expression is ubiquitous
(Regev et al., 2017). The revealed gene expression heterogeneity can be broadly
explained by two characteristics of single-cell RNA-sequencing: single-cell
technologies measure gene expression genome-wide, and single-cell
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Single-cell RNA-sequencing

Isolation The input for single-cell RNA-sequencing is a population of

cells, typically sampled from a biological tissue. The cellular popula-
tion is dissociated into a suspension of single cells, with each cell iso-
lated separately (Luecken and Theis, 2019). Throughout this thesis, I will
assume cells have been isolated by high-throughput droplet-based meth-
ods (e.g. Drop-seq or inDrop) that capture cells in microfluidic droplets
(Macosko et al., 2015; Klein et al., 2015; Ziegenhain et al., 2017; Papalexi
and Satija, 2018).

Barcoding Post-isolation, the mRNA content of each cell (or nucleus) is
released. Each transcript is associated with two nucleic acid barcodes,
one identifying the cell of origin (the cellular barcode) and the other iden-
tifying the individual transcript molecule (the unique molecular identifier
or UMI) (Papalexi and Satija, 2018; Kivioja et al., 2012; Islam et al., 2014;
Svensson et al., 2017). (Note that the use of UMIs is not universal, but for
simplicity, I will assume the use of UMIs throughout this thesis).

Sequencing Transcripts from each cell are pooled and amplified, produc-
ing many DNA molecules complementing each transcript. The amplified
DNA molecules are then sequenced, converting the set of nucleic acid
bases of each physical transcript into a digital sequencing read (Goodwin
et al., 2016).

Mapping The sequencing reads are then mapped back 1) onto the genome
to identify the expressed gene; 2) to the cell of origin by cellular barcode;
and, 3) to the individual transcript molecule via UMI. The result of this
mapping is the count matrix, detailing the number of individual tran-
scripts expressed by each gene in each cell.

technologies quantify gene expression on the level of individual transcript
molecules (Svensson et al., 2017).

By measuring the whole transcriptome, single-cell sequencing allows for and
enforces a higher stringency in classifying cell types. With lower-throughput
measurements, where cells are classified based on the expression of a single
gene, gene expression heterogeneity is hidden by the misclassification of
individual cells. Whereas, with whole-genome sequencing, each cell type is
identifiable based on all possible marker genes simultaneously. Therefore,
heterogeneity with respect to the expression of any one gene is revealed by the
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classification of cells with respect to the remaining genes (Tanay and Regev,
2017).

Single-cell RNA-sequencing is a high-resolution measurement, measuring
single molecules of mRNA in individual cells. Single-cell sequencing,
therefore, captures previously unobservable differences between cells
(Buettner et al., 2015; Bjorklund et al., 2016; Stuart et al., 2019). However,
single-cell sequencing is also a highly inefficient process, measuring only
3-10% of transcripts per cell; this inefficiency results in cells of the same type
being distinguishable solely due to technical error (Papalexi and Satija, 2018).
These alternative sources of gene expression heterogeneity can be sorted into
three main categories: biological function, biological noise and technical error.
See the box “Alternative Sources of Heterogeneity” for a detailed explanation of
each source of alternative heterogeneity.

In response to the revealed intra-type heterogeneity of cells with respect to
established marker genes, a novel classification approach has been developed
for identifying cell types from single-cell RN A-sequencing data. Instead of
classifying individual cells, cells are first grouped into clusters based on the
‘similarity” of cellular gene expression across all genes measured (Trapnell,
2015; Regev et al., 2017; Kiselev et al., 2019). Each cluster is then classified
based on the relative expression of marker genes within each cluster. The
clustering of cells is undertaken computationally via a process termed
unsupervised clustering; in the next section, I will outline the theoretical
motivation for the unsupervised clustering approach to classifying cell types,
before moving to discuss the practical application of unsupervised clustering
to single-cell data.

1.2 Unsupervised Clustering of Cell Types

Phenotypic classification identifies cells based on the univariate expression
patterns of individual marker genes. However, intra-type heterogeneity with
respect to marker gene expression prohibits the phenotypic classification of
individual cells based on single-cell RN A-sequencing data. Instead, cells are
tirst grouped into clusters of ‘similar” cells (Kiselev et al., 2019). Clusters are
then identified with established cell types by determining those marker genes
that are on average up or down-regulated in each cluster, with each cell
inheriting the identity of its assigned cluster (Love et al., 2014; Luecken and
Theis, 2019).
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Alternative Sources of Heterogeneity

Biological function Gene expression heterogeneity arising from biologi-

cal processes orthogonal to the emergence and maintenance of cell type.
The most prominent example of these functions is the cell cycle, where
gene expression undergoes a series of transitions through the different
stages of DNA replication and mitosis (Stuart et al., 2019).

Biological noise Gene expression heterogeneity arising from stochasticity
in transcription. Gene expression involves the interaction of small num-
bers of molecules. The motion of individual molecules is inherently ran-
dom, introducing substantial stochasticity in gene expression (Raj et al.,
2006). Moreover, transcription occurs in ‘bursts’, not continuously, in-
creasing the range in transcripts numbers present in the cell at any given
time (Raj et al., 2006).

Technical error Gene expression heterogeneity arising from the measure-
ment process (see Appendix A for a detailed description of the measure-
ment process). Single-cell sequencing is highly inefficient, capturing only
3-10% of transcripts in a given cell (Papalexi and Satija, 2018). Moreover,
the total number of transcripts measured per cell can vary by orders of
magnitude (Dillies et al., 2013). Thus, even if the relative proportion of
transcripts mapping to a given gene in each cell is constant, the absolute
number of transcripts measured per cell can vary dramatically. Technical
error is a substantial source of intra-type heterogeneity (Stuart et al., 2019;
Townes et al., 2019; Breda et al., 2021; Lause et al., 2020; Ahlmann-Eltze
and Huber, 2020).

Cells are grouped into clusters via a set of computational techniques known as
unsupervised clustering (Freytag et al., 2018; Duo et al., 2018; Kiselev et al.,
2019). Unsupervised clustering methods cluster cells based on overall
similarity in gene expression, leveraging the expression of many genes to
overcome intra-type heterogeneity with respect to the expression of any single
gene. Specifically, involvement in cell types induces a high level of
dependency or coordination between the expression of various genes.
Unsupervised clustering methods leverage this multivariate dependency in
gene expression to identify cells that are similar with respect to the
whole-transcriptome.

The classification of cells on the level of clusters assumes that all cells assigned
to a given cluster are of the same type. Therefore, unsupervised clustering
methods must be able to identify cell types from single-cell RNA-sequencing
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data without knowledge of which genes have been established as markers for
each cell type. Unsupervised clustering methods must be able to recover the
the inherent structure of a cellular population via solely computational and
mathematical means.

In this section, I will outline the justification for why unsupervised clustering
methods are able to group cells into types without human supervision. The
motivation for unsupervised clustering is substantially more involved than for
phenotypic classification: as phenotypic classification represents an
empirically-driven approach to cell type identification, unsupervised
clustering represents a theory-driven approach. Therefore, I will begin this
section by outlining the theoretical justification for the unsupervised clustering
identification of cell types. I will introduce how genes act collectively to give
rise to distinct cellular identities, demonstrating this collective action first
through small scale examples and then discussing how this occurs
genome-wide. I will discuss how this collective action makes it possible to
identify cell types without reference to any particular marker gene and how
cells types are identified by unsupervised clustering methods. Finally, I will
outline how unsupervised clustering is implemented in practice. Note that
parts of this section, Section 1.2, have been published in my review article
Casey et al. (2020b).

1.2.1 Gene Regulatory Networks

Cell types emerge through the coordinated action of many genes. This
coordination takes the form of regulatory interactions between genes, and in
particular between genes coding for transcription factors (transcription factors
being proteins that control the rate of transcription). The interactions are fixed
by the DNA of a given organism, encoded through regulatory sequences of
DNA (sequences of DNA to which transcription factors can bind to regulate
the expression of neighbouring genes), and through chemical interactions
between the RNA and protein outputs of gene expression (Krebs et al., 2017).

The coordinated action of set of genes is typically modelled through a gene
regulatory network (Britten and Davidson, 1969). A gene regulatory network
is the collection of genes and the regulatory interactions between each pair of
genes for a given cell. For a small set of genes, gene regulatory networks are
typically illustrated as a circuit diagram, with ‘wires’ representing interactions
between genes, typically inhibition or activation (Peter and Davidson, 2015).
These networks process the information provided by external signals, leading
to a specific set of transcription factors being expressed in the cell, which then
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activate downstream ‘batteries’ or ‘schedules’ of genes, resulting in the
acquisition of a distinct cell type.

Gene regulatory networks strongly constrain the expression patterns of the
individual genes: the expression of each gene in the network, including those
genes in downstream ‘batteries’, depends on the expression of the remaining
genes in the network. In the following section, Section 1.2.2, I will discuss how
this dependency, or coordination, in gene expression results in cells of the
same type being similar with respect to genome-wide gene expression. It is
this within-type similarity that enables unsupervised clustering methods to
identify cell types de novo. However, in this section, Section 1.2.1, I will first
illustrate the concept of the gene regulatory network through two
smaller-scale examples, involving only two/three genes: lambda phage and
the ventral neural tube (Ptashne, 2004; Balaskas et al., 2012).

The lambda phage was one of the first characterised examples of genetic
decision making (Jacob and Monod, 1961; Monod and Jacob, 1961). Phages are
acellular complexes of nucleic acid and protein that invade and replicate
within bacteria. They have a limited number of genes and posses minimal
gene regulatory networks. In lambda phage the gene regulatory network
decides between two possible “lifestyles” for the phage: while phages are not
cells, these “lifestyles” offer a simplified model of how gene regulatory
networks activate different cell types.

After introducing gene regulatory networks in phages, I will discuss a more
complex example in eukaryotes: the patterning of the ventral neural tube
(Balaskas et al., 2012). The ventral neural tube is an example of a morphogen
gradient. Morphogens are signalling molecules that trigger cellular
differentiation during development. But a single morphogen does not trigger a
single cell type; rather, a single morphogen can induce multiple distinct cell
types, depending on the exact conditions of the signalling (e.g. concentration
of the morphogen molecule). The ventral neural tube serves as an example of
how interactions between a small set of genes can give rise to multiple stable
cell types.

Lambda Phage

The lambda phage is a bacteriophage that has two distinct lifestyles: lysis and
lysogeny (Ptashne, 2004). Lysis involves mass replication of the phage through
hijacking of the bacteria’s DNA replication machinery, resulting in bacterial
cell death (lysis) and the release of many phage particles. In lysogeny, the
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FIGURE 1.2: Schematic of the gene regulatory network of A phage. The genes cro and
cll repress each others expression, represented by the block-head arrows, and activates
the phage lifestyles of lysis and lysogeny respectively, as represented by the dashed
arrows. The mutual repression forms a ‘genetic-switch” where only one of cro or cIl
is expressed at a given time. The purpose of the network is to determine the level of
nutrients in the environment via the level of protease expressed in the cell. In a high-
nutrition environment with high protease expression, the protein cII is broken down,
leading to expression of cro and the energetically expensive lysis lifestyle.

phage integrates itself into the host’s genome, replicating with the host
bacteria’s DNA.

Lysis is energetically expensive, so is preferred only when nutrients are
abundant; lysogeny is the preferred lifestyle for survival in a low-nutrient
environment. The phage makes this decision through a network of two key
proteins: cro and clI, shown in Fig 1.2.

As detailed in Ptashne (2004), each gene inhibits the transcriptional activation
of the other, forming a genetic switch: only one gene can be ‘on’ at a time. The
protein clI is broken down in the presence of bacterial proteases, and bacterial
proteases are produced in high-nutrient conditions: the circuit turns lysogeny
‘off” and lysis ‘on” in the presence of nutrients.

The genetic switch forces the phage into one of two mutually exclusive, stable
states. When cro is expressed, it inhibits the expression of clI, relieving any
inhibition on its own expression, leading to greater cro expression; the same is
true for cll. Intermediary states are unstable, as any imbalance in the levels of
cro or cll will self-amplify, shifting the phage into lysis or lysogeny (Assaf
etal., 2011).

More generally, such positive feedback circuits, where two competing genes
(or sets of genes) are mutually inhibitory, and so self-reinforcing, are
ubiquitous in gene regulatory networks (Milo et al., 2002; Soulé, 2006). They
provide an immediate resolution to how multiple cell types can stably emerge
from a single gene regulatory network: each cell type will correspond to a
stable state of the network. The choice of cell type depends on the imbalance in



1.2. Unsupervised Clustering of Cell Types 13

the circuit induced by the external cues, e.g. protease concentration in the case
of lambda phage.

The network as shown in Fig 1.2 is a minimal representation of the lambda
phage gene regulatory network: there are many proteins involved in the
mediation and fine-tuning of the shown interaction, see Casjens and Hendrix
(2015). In particular, the remaining genes of the network 1) aid in interpreting
the protease concentration, i.e. the external signal, and 2) make the
lysis/lysogeny decision reversible. Unlike with the majority of eukaryotic cell
types, the decision between lysis and lysogeny will at some point be reversed,
when the nutrient conditions change.

Nevertheless, the minimal representation demonstrates how interactions
between sets of genes give rise to distinct cell types. Distinct cell types, or in
the case of the lambda phage, distinct lifestyles, rely on the coordinated
expression of multiple genes: a given cell type is ‘defined” by both the
individual genes expressed and the interactions between those genes.

Morphogen Gradient

The sonic hedgehog gene regulatory network represents a substantially more
complex example of a gene regulatory network than the lambda phage. As
described in Balaskas et al. (2012), the sonic hedgehog network illustrates the
action of gene regulatory networks during the development of a complex
multicellular organism.

Sonic hedgehog is a morphogen, a signalling molecule involved in triggering
and regulating cellular differentiation during development. Sonic hedgehog
triggers the cells of the ventral neural tube to differentiate into one of three
distinct cell types: motor neurons, V2 neurons and V3 interneurons. The
three-way decision is made through a single gene regulatory network
composed of three transcription factors: Olig2, Pax6 and Nkx2.2.

These transcription factors are involved in an asymmetric and nested set of
positive and negative feedback loops, leading to the emergence of three stable
states of the network, which induce the three possible cell types. The network
in Fig 1.3 is complex, see the box “Sonic Hedgehog Gene Regulatory Network” for
a detailed description of the activity of the network.

As with cro and cII of the lambda phage, the expression of the three
transcription factors of the sonic hedgehog network are highly coordinated.
Each of the three cell types encoded by the network are defined with respect to
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FIGURE 1.3: Schematic of the gene regulatory network of sonic hedgehog. The extra-
cellular morphogen sonic hedgehog activates the intra-cellular intermediate Gli. Gli
activates the expression of the transcription factors Olig2 and Nkx2.2, as represented
by the pointed arrows. Both Olig2 and Nkx2.2 repress the expression of Pax6, as repre-
sented by the block-head arrows. Expression of each of Pax6, Olig2 and Nkx2.2 leads to
a cell differentiating into a different cell type. The final state of the network depends on
the strength and length of sonic hedgehog signalling, with the dominant transcription
factor swapping from Pax6 to Olig2 to Nkx2.2 over the course of prolonged signalling.

the expression of all three transcription factors. However, despite the
network’s complexity, the sonic hedgehog network remains only a (very) small
scale example of genetic regulation. Single-cell RNA-sequencing measures all
genes simultaneously; therefore, there is a need to consider how gene
regulatory networks, and the coordination in gene expression imposed by
genetic regulation, extends to the whole genome. Specifically, the mathematics
of dynamical systems theory and attractors is required.

1.2.2 Dynamical Systems Theory

Imagine there was sufficient data to determine an organism’s complete gene
regulatory network in fine detail: all the regulatory interactions are known,
with each interaction fully characterised with respect to both strength and
nature (inhibitory or activatory), enabling all the regulatory networks can be
knitted together into a cohesive whole. From this complexity, do distinct cell
types emerge as with the smaller scale gene regulatory networks?

This question was first addressed by Waddington in 1939 in the context of
development (Waddington et al., 1939; Waddington, 2014). During an
organism’s development, cells differentiate from embryonic and intermediate
cell types into adult cell types. Waddington imagined that the regulatory
interactions between genes formed a landscape along which the cell travelled
during development. The position of the cell on this landscape represents the
current developmental state of the cell. The movement of the cell down the
landscape represents the development of the cell, as constrained by the
regulatory interactions between genes.
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Sonic Hedgehog Gene Regulatory Network

In the absence of sonic hedgehog, Pax6 is active, leading to V2 neuron

cell type. Sonic hedgehog, through the intermediate Gli, activates Olig2,
which in turn inhibits Pax6, leading to a switch in fated identity from V2
neuron to motor neuron. If sonic signalling is then lost, Olig2 remains
expressed, inhibiting the return of Pax6 expression.

Gli also activates Nkx2.2, but while Pax6 remains, expression of Nkx2.2
is inhibited; as Olig2 inhibits Pax6, this relieves the inhibition of Nkx2.2,
allowing it to increase in expression. Nkx2.2, in turn, increases the inhibi-
tion of Pax6, accelerating its own activation, and inhibits Olig2, leading to
another switch in eventual identity from motor neuron to V3 interneuron.

As can been seen in Fig 1.3, Olig2 and Nkx2.2 are involved in a genetic
switch, as are Nkx2.2 and Pax6. These genetic switches induce a tri-
stability in the network, with sonic hedgehog signalling pushing the net-
work from one stable state to the next. If sonic hedgehog signalling is
withdrawn at an intermediate step, i.e. when Olig2 is expressed, but be-
fore substantial build-up of Nkx2.2, then the Olig2-Nkx2.2 genetic switch
maintains motor-neuron cell type. Under sustained sonic hedgehog sig-
nalling, this switch flips as described, leading to stable V3 interneuron
cell type.

While moving down the landscape, the cell will pass through various forks,
representing the decisions in cell type, like those encoded by the small-scale,
modular gene regulatory networks discussed above (see Fig 1.4 for
illustration). Starting from the peak of the landscape, representing the
undifferentiated unicellular zygote, Waddington imagined that cells would
move down through various forks before eventually coming to rest at a
specific valley representing the adult cell type. These valleys represent stable
configurations of the whole-genome regulatory network.

While proposed as a metaphor, Waddington’s approach has, with some
adjustment, substantial mathematical backing (Kauffman, 1969; Huang et al.,
2005; Huang, 2012; Weinreb et al., 2018; Strogatz, 2018; Casey et al., 2020b;
Newman, 2020; Greulich et al., 2020). Assume that the state of a cell can be
described by the vector x(t), where x;(t) is the level of expression of the i
gene at time ¢ (expression level can correspond to various measures, for
example, number of mRNA transcripts or number of protein molecules). The
change in cell state over time can be described by a set of coupled ordinary
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FIGURE 1.4: Waddington'’s epigenetic landscape. a) Waddington’s visualisation of a
cell (the ball) undergoing development by travelling through some landscape shaped
by b) the gene regulatory network. The position of the cell on the landscape represents
the cells developmental state. In b) the influence of genes, represented as black pins,

on the landscape is represented by the ‘ropes’. The collective action of genes shape the
landscape. Figure reproduced from Waddington (2014).

differential equations,

i—’t‘ — Flx), 11)
where F(x) is a set of functions encoding the dependence of changes in the
expression each gene, x;, on the expression of all genes (including itself), x.
Thus, F(x) encodes the regulatory interactions in gene regulatory networks.
Formally, Eqn 1.1 is a dynamical system describing how the gene expression of
a cell changes with time (Strogatz, 2018). More specifically, as cells exchange
energy/mass with the environment, Eqn 1.1 is a dissipative dynamical system
(Strogatz, 2018; Greulich et al., 2020).

F(x) encodes an organism’s complete gene regulatory network and formalises
Waddington’s landscape, detailing the constraints on how a cells state can
change over time. Moreover, F(x) encodes the possible cell types of a given
organism, as an emergent property of the dynamics of gene expression.

Imagine a random assortment of cells of varying initial states. Following the
evolution of these cells’ states over time, the cells converge towards isolated
subsets of states, with cells of similar initial states tending to converge towards
the same subset of states (Kauffman, 1969; Huang et al., 2005; Huang, 2012;
Weinreb et al., 2018; Strogatz, 2018; Casey et al., 2020b; Newman, 2020;
Greulich et al., 2020). These isolated subsets of states are termed the attractors
of the dissipative dynamical system.

Broadly, an attractor of a dissipative dynamical system is an isolated subset of
states toward which the system (cell) will evolve for a subset of initial states
(gene expression profiles). Note that an attractor can consist of multiple,
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FIGURE 1.5: Example of gene expression space. Each point corresponds to the gene

expression vector of an individual cell projected onto two dimensions using t-SNE

(Hinton and Roweis, 2003). Cell type represented by colour of cell. Figure reproduced
from Casey et al. (2020b).

contiguous states, i.e. gene expression profiles. In the case where an attractor
does consist of numerous states, the system will undergo periodic changes in
states, oscillating through the states making up the attractor (I will discuss
such oscillations in more detail in Chapter 5). The subset of initial states that
converge on a given attractor is termed that attractor’s basin of attraction
(Strogatz, 2018). All possible states belong to some basin of attraction, with
complex dynamical systems admitting multiple possible attractors, so
partitioning up states into different basins of attraction. Note that, if the
system’s initial state is in an attractor, the system will not leave the attractor.

Each attractor corresponds to a valley in Waddington’s landscape, the stable
sets of states towards which cells will evolve based on the constraints imposed
by the gene regulatory network. Thus, the attractors of an organism’s gene
regulatory network correspond to cell types.

In the context of single-cell RNA-sequencing, dynamical system theory
predicts that cell types will emerge as attractors in an abstract,
high-dimensional gene expression space. In this space, the measured set of
transcriptional counts is represented as a position vector (Casey et al., 2020b).
Each dimension of the space corresponds to a gene and a cell’s position along
each dimension corresponds to the level of expression of the gene. Thus, each
cell corresponds to a single position vector in this space. Cell types emerge as
attractors in this space, subsets of gene expression space towards which cells
will evolve with time. Fig 1.5 illustrates gene expression space projected onto
two dimensions.
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Attractors provide a general explanatory theory for the emergence of cell
types. While characterising an organism’s complete gene regulatory network
is impossible, dynamical systems theory predicts various testable phenomena.
For example, Kauffman (1969) simulated randomly assembled Boolean
networks (genes are restricted to being ‘on” or ‘off’) of size and complexity
similar to that found in nature. Kaufman’s networks converged onto sets of
oscillatory attractors, confirming the emergence of cellular attractors under
reasonable conditions.

Furthermore, Huang et al. (2005) experimentally tested the phenomenological
prediction from attractor theory that a given attractor will be approachable
from different states. Huang et al. (2005) triggered the differentiation of one
cell type into another using two distinct signals and followed the state of each
population of cells using microarrays — a precursor to single-cell
RNA-sequencing, measuring the gene expression of populations of cells as
opposed to single-cells — to measure the expression of thousands of genes
simultaneously. Initially distinct, the trajectory of the two populations
converged before arriving at the same cell type, empirical evidence for the
presence of a multi-dimensional attractor.

However, the theory of attractors relies on changes in gene expression being
deterministic. As discussed in Section 1.1.2, gene expression is noisy, with
changes in cell state having a stochastic component. Incorporating stochastic
noise into Eqn 1.1 gives rise to the Fokker-Planck equation, where cellular
gene expression evolves by the interaction of deterministic and stochastic
effects (Greulich et al., 2020). The Fokker-Planck equation does not encode
attractors; instead, the equation predicts that certain subsets of states will be
visited with high probability (Greulich et al., 2020). These high probability sets
of states are analogous to noisy attractors.

Attractors, deterministic or noisy, provide the (often implicit) justification for
the application of unsupervised clustering to single-cell RNA-sequencing data.
As I will outline in detail in the following section, unsupervised clustering
methods identify dense groupings of cells in gene expression space. These
dense groupings correspond to the attractors of the whole-genome regulatory
network. Thus, dynamical systems theory explains the ability of unsupervised
clustering methods to classify cells into types de novo, without explicit
reference to established marker genes.



1.2. Unsupervised Clustering of Cell Types 19

1.2.3 Unsupervised Clustering

Unsupervised clustering methods identify groups of cells that are ‘similar” in
high-dimensional gene expression space, where each unsupervised clustering
method’s measure of cellular similarity is encoded mathematically via the
so-called objective function (Jain, 2010; Trapnell, 2015; Kiselev et al., 2019). As
discussed above, the regulatory interactions between genes result in cell types
presenting as high-dimensional attractors in gene expression space. Therefore,
by identifying cells that are similar in gene expression, unsupervised
clustering methods can group cells into types.

In the rest of this section, I outline the specifics of how unsupervised clustering
methods identify the dense groupings of cells in gene expression space. I focus
on two clustering methods, k-means and the Louvain method (Lloyd, 1982;
Newman and Girvan, 2004; Blondel et al., 2008). The Louvain method method
is the best performing algorithm for clustering single-cell RN A-sequencing
data; however, the method is mathematically complex, utilising a graphical
representation of the data (Freytag et al., 2018; Duo et al., 2018; Luecken and
Theis, 2019; Stuart et al., 2019; Blondel et al., 2008). Therefore, I will first
discuss unsupervised clustering through the application of the more intuitive
k-means algorithm (Lloyd, 1982; Jain, 2010).

k-means

The k-means method measures the similarity of cells using the Euclidean
distance. The Euclidean distance is the ‘shortest-path distance’ between each
pair of cells in gene expression space, i.e. between each pair of gene expression
vectors. The distance is calculated across all genes, providing an overall
measure of similarity between cells. The generic equation for the Euclidean
distance between two vectors, p and g, each of length 7 is,

d(p,q) =/ (4 —pi)* (1.2)
=1

The Euclidean distance measures how similar or coordinated the gene
expression profiles of a pair of cells are: the more genes that are similar in
expression, the less the Euclidean distance between a pair of cells.

The k-means method seeks to maximise the overall similarity of cells within
each cluster. The algorithm does so by quantifying the total dissimilarity of
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cells within each cluster as the sum of the Euclidean distances of each cell, x, to
the centre of the cluster. The position of the centre of the cluster in gene space
is given by the mean expression, y;, of all cells in the cluster i. For a chosen
number of clusters, k (a hyperparameter that gives k-means its name), k-means
identifies the set of k clusters that minimises the total distance of each cell from
the centre of its cluster (Jain, 2010). This process is encoded by the k-means
objective function,

k
arg min Yo = will (1.3)

i=1x€S;

where S = Sy, ..., 5k is the set of k clusters and arg min corresponds to
identifying the clustering S that minimises the distance of each cell to the
centre of its assigned cluster. Importantly, the number of clusters has to be
chosen as a hyperparamter — minimising Eqn 1.3 only identifies the optimal
clustering with k clusters.

Optimising Eqn 1.3 identifies a clustering of cells wherein each cell is
maximally similar to the average expression of its assigned cluster. In doing
so, the k-means method identifies dense groupings of cells, putatively
identifying cell type-defining attractors in gene expression space. The total
similarity of each cluster is defined with respect to the mean gene expression
profile of each cluster, resulting in the k-means method finding clusters that
are approximately hyperspherical in gene expression space (Kiselev et al.,
2017). The explicit dependence on the average expression of the cluster is
advantageous with respect to the cluster-wise classification of cells, as the
mean expression of each cluster is broadly representative of the constituent
cells of the cluster. However, as I will now discuss, the k-means method is a
relatively inflexible approach to clustering, specifically with respect to
quantifying within-cluster similarity.

Note briefly that the identification of the optimal clustering is computationally
hard (formally, NP-hard) (Friedman et al., 2001). Accordingly, various
heuristic algorithms have been developed that do not attempt to find the
single best partition of cells; instead, they try to rapidly identify a good
partition of cells, without any guarantee that this is the best partition (Jain,
2010). Unsupervised clustering is a hard problem generally, with many
methods employing heuristics for more rapid clustering.
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Difficulty with Distance

The k-means method utilises the Euclidean distance of each cell to the centre of
its assigned cluster. However, not all distances are equally reliable.
Estimations of cellular distances can be severely affected by both noise
(technical and biological) and importantly, by gene regulatory interactions.

Consider the notion of cellular distance with respect to the gene regulatory
network presented in Fig 1.3. Recall that the three transcription factors change
expression level on exposure to the sonic hedgehog morphogen in a highly
coordinated way: initially, Pax6 is highly expressed, then Olig2 and finally
Nkx2.2. Discretising, this corresponds to three possible position vectors in gene
expression space:

Pax6 1 0
Olig2 =10],111],]0
Nkx2.2 0 1

The Euclidean distance between any pair of these is the same, v/2, i.e. the
Euclidean distance assumes that cells transition from one gene expression
profile to another along the shortest possible path in gene expression space.
However, in the above example, the regulatory interactions between genes
constrain cells to pass through the three states in order: gene regulatory
networks place highly non-linear constraints on changes in cellular gene
expression (see Fig 1.6 for illustration). These constraints make the Euclidean
distance an unreliable measure of cellular similarity with respect to gene
expression (Kim et al., 2019; Schiebinger et al., 2019).

However, the Euclidean distance is not uniformly unreliable. Transcription is a
stochastic process, yet cellular function remains consistent, robust to small
fluctuations in transcript numbers. For cellular function to be robust to small
changes in gene expression, cells that are close in gene space must be more
likely to be biologically similar (Raj et al., 2006; Casey et al., 2020b). Thus, the
Euclidean distance as a measure of cellular similarity must be reliable over
short distances, becoming increasingly unreliable over longer distances,

i.e. changes in gene expression can be assumed to occur linearly (in straight
lines) in gene expression space over short distances.

The assumption of linearity over short distances is not unique to single-cell
biology. Instead, it is a common refrain in mathematics to approximate
complex functions as locally linear; for example, Taylor’s theorem relates to
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FIGURE 1.6: Transitions in cellular gene expression. Diagrammatic representation
of the constraints imposed on changes in cell state by the non-linear interactions of
the gene regulatory network. The red line represents a cell changing in expression
from gene expression profile A to profile B via the path of steepest descent. This path
differs from the path assumed by the Euclidean distance represented by the dashed
black line. Figure reproduced with modification from Casey et al. (2020b).

the approximation of complex differentiable functions using k-order
polynomials, where the first-order Taylor polynomial is the linear
approximation of the function (Voit, 2017; Strogatz, 2018). Linear and
polynomial approximations enable the analysis of otherwise too complex
functions, such as those required to encode the non-linear dependencies
between different gene’s expressions (see Eqn 1.1).

The Louvain method accommodates the variable reliability of distance when
quantifying within-cluster similarity, utilising only the distances between
‘neighbouring’ cells (in gene expression space). This accommodation provides
a theoretical explanation for the relative success of the Louvain method in
clustering single-cell RN A-sequencing data (Casey et al., 2020b). I will now
discuss how the Louvain method quantifies within-cluster similarity, and how
this leads to a robust identification of cell types in gene expression space.

Louvain Method

Instead of utilising the distances between all cells in a cluster, the Louvain
method utilises only the distances between each cell and its nearest neighbours
(Newman and Girvan, 2004; Reichardt and Bornholdt, 2006). Total
within-cluster similarity is not defined with respect to a single point in gene
expression space, as with k-means, but with respect to the distance between
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each cell and the nearest cells assigned to the same cluster. The Louvain
method ignores the longer, less reliable distances between cells.

The Louvain method utilises a graphical representation of the data (Newman
and Girvan, 2004; Reichardt and Bornholdt, 2006). An undirected graph,

G = {V,E} consists of a set of N vertices, V =1,...,N, and a set of G edges,
eij € E, where each edge is defined with respect to a pair of vertices i and j.
The edges can be weighted or unweighted, with weighted edges assigned
some coefficient, w;;. In a weighted graph w;; = 0 indicates that the vertices i
and j are not connected by an edge.

Graphs offer a flexible representation of single-cell RN A-sequencing data. For
a k-nearest-neighbours graph, each cell is encoded as a vertex in a graph,

v; € V. Each cell has an edge to its k nearest cells by Euclidean distance

(Von Luxburg, 2007). The (inverse of the) distance between cells is encoded as
the weight of the edge. Thus, a kNN graph only encodes the subset of shorter,
more reliable distances between cells (Stuart et al., 2019). Changes in cell state
are explicitly treated as locally linearly, without any assumption of linearity
over longer scales.

Note that the kNN graph is only one possible graphical representation of the
data. Another, closely related form, is the shared-nearest-neighbours graph
(sNN) (Von Luxburg, 2007). In the sNN graph, an edge is only included if both
cells are k-nearest-neighbours of each other, avoiding biologically erroneous
edges to outlier cells (Stuart et al., 2019).

The Louvain method quantifies the total within-cluster similarity of a given
clustering, S, using a graph-theoretic measure termed modularity, Qs. High
modularity indicates that the cells of each cluster are densely interconnected,
compared to the interconnection density expected at random (see Eqn 1.4). As
cells are only connected if they have similar gene expression, high modularity
indicates a clustering with high within-cluster similarity.

Modularity is calculated based on the adjacency matrix. The adjacency matrix
of a graph, A, is a matrix representation of the graph. Each element of the

matrix, A;j, encodes the weight of the edge ¢;;, provided an edge is present

ijs
between cells i and j in the graph — A;; = 0 implies no edge is present. The
degree of a vertex (cell), v;, is the sum of the weights of each edge connected to

the vertex, v; = Z]- Ajj.

Based on the adjacency matrix, the modularity of a clustering of cells is found
by (Newman and Girvan, 2004),
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where S is the clustering of the cells and m = % Y.ij Aij is the total degree or
weight of the graph. Note that 6(S;, S;) is 1 if cells i and j are in the same
cluster and 0 otherwise, and that -y is the ‘resolution” hyperparameter.

The Louvain method seeks to maximise the modularity of the graphical
clustering (Blondel et al., 2008),

argmax Qs. (1.5)
3

Modularity measures the density of connections within each cluster against
the density expected at random. The resolution hyperparameter sets the
density of connections within graphical clusters expected at random. Thus, the
greater the resolution, the greater density expected, and so the greater number
of (denser) clusters returned.

As with the k-means clustering method, the Louvain method identifies dense
groupings of similar cells, putatively identifying cell type-defining attractors
in gene expression space. Unlike with the k-means method, the resulting
clusters can take any contiguous ‘shape’ in gene expression space, as
modularity is maximised by ensuring cells are close to at least some other cells
in the same cluster. This flexibility in shape enables the Louvain method to
accommodate substantial intra-type heterogeneity (Blondel et al., 2008; Kiselev
et al.,, 2019). However, the trade-off when compared to k-means is that the
mean expression of each cluster does not necessarily provide a reasonable
representation of the constituent cells of the cluster. Thus, the Louvain method
can accommodate substantially more intra-type heterogeneity than k-means,
albeit at the expense of an increase in conceptual complexity with respect to
the cluster-based classification of cells into types.

By identifying sets of cells that are similar with respect to gene expression,
unsupervised clustering identifies the attractors of gene expression space and
the putative mix of cell types in a cellular population. Unsupervised clustering
does not classify cells; instead, each cluster must be classified based on the
relative expression of known marker genes. I will discuss how clusters are
classified in the Section 1.3. First, however, it is important to note that while
the correspondence between dense clusters of similar cells and cell types is
theoretically justified (through dynamical systems theory), it is not trivial. The
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process of clustering single-cell RNA-sequencing data involves a series of
pre-processing stages.

1.2.4 Pre-processing

Pre-processing of single-cell expression data is an essential part of single-cell
clustering analysis (Vieth et al., 2019; Luecken and Theis, 2019). Single-cell
data must be pre-processed as the differences in gene expression between cell
types are not guaranteed to be the primary source of heterogeneity with
respect to gene expression. As discussed, there are various alternative sources
of heterogeneity, including biological noise and technical error. Unsupervised
clustering methods can cluster cells based on these alternative sources of
heterogeneity. For example, if the cell cycle has a larger influence on gene
expression heterogeneity than cell type, unsupervised clustering would group
cells by cell cycle stage (Xue et al., 2020). Alternatively, the total number of
transcripts measured per cell could be the dominant source of gene expression
heterogeneity, resulting in cells being clustered by cellular count depth (Dillies
et al., 2013).

Single-cell RN A-sequencing pre-processing constitutes three main steps:
normalisation, feature selection and linear dimension reduction (Vallejos et al.,
2017; Luecken and Theis, 2019; Yip et al., 2019; Vieth et al., 2019). These steps
seek to minimise the effects of alternative sources of heterogeneity. There are
many competing methods and algorithms available for each pre-processing
step, with a diversity of biological and mathematical assumptions about gene
expression and cell type (Dillies et al., 2013; Brennecke et al., 2013; Griin et al.,
2014; Love et al., 2014; Townes et al., 2019; Hafemeister and Satija, 2019; Breda
et al., 2021; Lause et al., 2020; Ahlmann-Eltze and Huber, 2020; Andrews and
Hemberg, 2019; Sparta et al., 2021; Jiang et al., 2016; Liu et al., 2020; Ranjan

et al., 2021; Ascension et al., 2021; Hotelling, 1933). However, the details of
these methods are largely technical. Therefore, I will briefly outline each step
in the box “Single-cell Pre-processing”, and survey the range of methods
available for each step in more detail in Appendix B.

Together with unsupervised clustering, pre-processing methods form a
computational pipeline for the automatic grouping of cells into cell types.
However, as discussed, these clusters must still be classified. I will now
discuss how clusters are identified based on the differential expression of
marker genes between clusters.
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Single-cell Pre-processing

Normalisation The total number of transcripts (count depth) measured

per cell can vary by orders of magnitude within a single data set (Dillies
et al., 2013). This variation is largely technical, resulting from inefficient
measurement of individual transcripts (Papalexi and Satija, 2018). Nor-
malisation methods estimate the relative level of gene expression in each
cell, with the principal aim of minimising the effects of count depth vari-
ation (Vallejos et al., 2017).

Feature selection Cellular similarity is calculated based on the expression
of all genes. Genes not variably expressed between cell types introduce
noise in calculating cellular similarity with respect to the goal of cluster-
ing cells by type. Feature selection methods select only those genes likely
to be informative in distinguishing between cell types for inclusion in
clustering (Yip et al., 2019).

Linear dimension reduction Euclidean distance is calculated based on
the sum of gene-wise differences in expression between cells. Over a
large number of genes, small differences in expression accumulate, inflat-
ing the final measure of cell-to-cell distance into meaninglessness (Beyer
etal., 1999). Linear dimension reduction techniques identify and collapse
sets of linearly dependent genes into ‘meta-genes’, reducing the overall
dimensionality of the data (Hotelling, 1933).

1.3 Classifying Clusters

In phenotypic classification, the type of each cell is identified via the presence
or absence of a phenotypic feature. With respect to gene expression, cells are
identified based on the expression of established marker genes. However, as
measured by single-cell RNA-sequencing, cells of each type often only
inconsistently express their associated marker genes, displaying substantial
intra-type heterogeneity. Accordingly, cells are not classified individually, but
on the level of clusters. Assuming that each cluster represents a single cell
type, an assumption justified by dynamical systems theory, each cell can be
classified by identifying its assigned cluster.

The marker genes expressed by each cluster are not identified absolutely but
relative to the remaining clusters in the population. Specifically, marker genes
are identified by differential gene expression analysis. For each gene and for
each cluster, a hypothesis test is conducted against the remaining clusters,
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determining if there is any significant difference in expression (Robinson et al.,
2010; Love et al., 2014; Soneson and Robinson, 2018; Wang et al., 2019; Luecken
and Theis, 2019). Those genes that do significantly differ in expression are
termed differentially expressed (or differentially expressing) genes.

Differential expression analysis overcomes intra-type heterogeneity by pooling
the expression of individual cells. Droplet-based single-cell sequencing
platforms typically measure thousands to tens-of-thousands of cells (Macosko
et al., 2015; Klein et al., 2015; Papalexi and Satija, 2018; Svensson et al., 2020).
Therefore, with a reasonable number of clusters, each cluster will likely
contain at least hundreds of cells. Leveraging each cell as one sample of a
cluster, hypothesis testing can robustly identify the marker genes differentially
expressed with respect to each cluster.

Qualitatively, differential gene expression between clusters can be assessed via
non-linear dimension reduction and visualisation. Explained in more detail in
Appendix B, non-linear dimension reduction techniques, such as UMAP
(Uniform Manifold Approximation and Projection) or tSNE (¢-distributed
Stochastic Neighbour Embedding) project the position of cells in gene
expression space onto a 2-dimensional plot (Hinton and Roweis, 2003; McInnes
et al.,, 2018). These reduction techniques preserve the distances between
neighbouring cells at the expense of distances between less similar cells, so are
able to project the cluster structure of the data onto two dimensions; see Fig 1.8
for illustration. The expression of various marker genes can then be overlaid
on the projection, allowing for a visual assessment of the differential
expression of marker genes and providing “proof by visualisation” for the
correspondence of unsupervised clusters with the phenotypic classification of
cells; see Fig 1.7 for an example of visual localisation of marker gene
expression (Fox Keller, 2002; Luecken and Theis, 2019).

If none of the differentially expressed genes in a given cluster correspond to
known marker genes, then the cluster potentially represents a novel cell type.
The combination of single-cell RNA-sequencing, unsupervised clustering and
differential expression analysis has led to an explosion in the number of
known cell types, particularly through the whole organism cell atlas projects,
the Tabulas” Sapiens, Mouse and Fly (The Tabula Sapiens Consortium and
Quake, 2021; Tabula Muris Consortium et al., 2018; Li et al., 2021a). Each of
these projects have identified hundreds of cell types. For example, the Tabula
Sapiens project identified 400 distinct cell types, expanding on the 200-300 cell
types that have traditionally been characterised in humans (Junqueira et al.,
1992; The Tabula Sapiens Consortium and Quake, 2021). The ongoing
consortium project, the Human Cell Atlas, aims to identify all cell types in
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FIGURE 1.7: Visualisation of differential gene expression. Expression of known
marker genes of five cell types overlaid on tSNE visualisation of human bone marrow
population (Hinton and Roweis, 2003). Figure reproduced from Casey et al. (2020b).

humans, sequencing and clustering each organ in the adult human
(Rozenblatt-Rosen et al., 2017).

Importantly, in the context of single-cell RNA-sequencing, differential
expression analysis provides the de facto working definition of cell types: cells
of different types form differentially expressed clusters in a population of cells.
Where previously, cell types would be defined by the absolute expression of
marker genes, with respect to single-cell sequencing data, known and novel
cell types are identified via differential expression.

This break from the traditional approach to cellular classification — from
classifying cells based on marker gene expression to classifying clusters based
on differential marker gene expression — is in response to the gene expression
heterogeneity revealed by single-cell RNA-sequencing. Therefore, it is
important to ask how well does this change accommodate gene expression
heterogeneity. Moreover, how does the differential expression conception of
cell type relate to the phenotypic classification of cell type. This thesis aims to
answer these questions by first quantifying the proportion of gene expression
heterogeneity attributable to differential expression between clusters and then
formalising the connection between differential gene expression analysis and
the phenotypic classification of cells.

In Chapter 2, I will develop a novel information-theoretic framework for
quantifying heterogeneity with respect to the expression of individual genes. I
will define a novel measure of heterogeneity with respect to the measured
expression of one gene or many. I will show that this measure is additively
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FIGURE 1.8: tSNE of the Tabula Muris. Two-dimensional tSNE embedding of Tabula
Muris data, coloured by organ. Figure reproduced from Tabula Muris Consortium

decomposable with respect

et al. (2018)

to a given clustering of cells into that heterogeneity

attributable to differential gene expression and that resulting from differences

in expression within each cluster. Through this decomposition, I will quantify:

(1) the proportion of heterogeneity attributable to differential gene expression;

and (2) the divergence of a set of clusters from the assumption that cells of the

same type are interchangeable with respect to measured gene expression.

Then in Chapter 3, I will utilise the mathematics developed in Chapter 2 to

develop a novel unsupervised clustering method. The unsupervised clustering

method will directly identify the set of clusters that are maximally

differentially expressed and are minimally divergent from the assumption that
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the cells of each cluster should be interchangeable. Importantly, the developed
method is justified not by dynamical systems theory and attractors but by the
principles of phenotypic classification.

Finally, in Chapter 4, I will return to the multivariate view of gene expression
utilised by traditional unsupervised clustering methods. Unsupervised
clustering methods, including the method developed in Chapter 3, require the
number of clusters to be specified via an external hyperparameter:
unsupervised clustering methods generally only identify the optimal
clustering for a set number of clusters. Therefore, I will develop a tool for
estimating the number of cell types in a population based on quantifying the
total heterogeneity of a cellular population with respect to the joint
distribution of gene expression. In doing so, I will introduce the mathematics
of hypergraph theory to single-cell analysis.
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Chapter 2

Information-Theoretic Clustering of
Cell Types

Introduction

In phenotypic classification, cell types are identified based on the presence or
absence of specific cellular phenotypes. Specifically, when observing cellular
phenotype at the level of gene expression, cell types are identified based on the
expression of specific genes. Genes whose expression is informative in
classifying cell types are termed marker genes (Tanay and Regev, 2017;
Luecken and Theis, 2019).

Single-cell RNA-sequencing measures gene expression genome-wide,
counting the number of transcripts (nNRNA molecules) expressed by each gene
(Svensson, 2020). Single-cell RN A-sequencing experiments therefore provide
sufficient data to classify all cells types distinguishable at the level of the
transcriptome (Regev et al., 2017). However, single-cell sequencing has
revealed that cells thought to be of the same type are often heterogeneous,

i.e. distinguishable, with respect to the expression of established marker genes.
Such intra-type heterogeneity prohibits reliable identification of cells based on
the expression of any single gene.

Instead, cells are clustered into groups based on overall similarity in gene
expression (Kiselev et al., 2019). Unsupervised clustering approaches leverage
the expression of all genes (or a large subset of genes) to identify groups of
cells with similar gene expression profiles. Clusters are then classified into
different cell types based on which marker genes are differentially expressed
with respect to each cluster, i.e. which marker genes are relatively up or
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down-regulated in each cluster (Love et al., 2014; Luecken and Theis, 2019).
Thus, differential expression analysis provides a classification scheme for cells,
defining cell types as differentially expressing non-overlapping sets of cells
(Trapnell, 2015).

Differential expression is a major source of gene expression heterogeneity,
resulting in cells of different types being distinguishable with respect to gene
expression (Robinson et al., 2010; Love et al., 2014). I will call the heterogeneity
resulting from differential gene expression inter-type heterogeneity, where the
greater the differential expression of a given gene between different cell types,
the greater the inter-type heterogeneity.

By phrasing differential expression in terms of heterogeneity, I aim to
determine how successfully unsupervised clustering accommodates gene
expression heterogeneity. Specifically, I aim to quantify the proportion of gene
expression heterogeneity attributable to differential expression between a set
of clusters. Given that cell types are defined by differential gene expression, I
expect a large proportion of gene expression heterogeneity to be attributable to
differential gene expression when clusters correspond to the set of cell types in
a population.

This chapter quantifies the proportion of gene expression heterogeneity
attributable to differential expression between clusters across all genes. To that
end, in the first half of this chapter, I will formally develop a framework for
quantifying heterogeneity with respect to the observed expression of each
gene, measuring: the heterogeneity of a population of cells with respect to the
expression of each gene; the proportion of gene expression heterogeneity
resulting from differential gene expression between clusters; and, the
proportion of gene expression heterogeneity resulting from differences in gene
expression within each cluster. I will then extend the framework to
quantifying heterogeneity with respect to the expression of many genes,
deriving a single measure of the proportion of heterogeneity attributable to
differential expression genome-wide.

In the second half of this chapter I will apply the developed framework to
publicly available single-cell RNA-sequencing data sets. I will demonstrate the
biological relevance of the proposed measure of gene expression heterogeneity
and confirm that the established cellular classification of each data set explains
a substantial proportion of gene expression heterogeneity (note that by
established classification, I refer to the classification of cells provided with the
original publications; see Table 2.1 later on for details). Principally, I will
establish between-cluster heterogeneity as a robust measure of differential
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expression, significantly associated with the true clustering of cells into cell
types (where I assume that the established classification represents the true
cellular classification for sequenced population).

The developed framework is based on the mathematics of information theory.
Therefore, I will begin this chapter by briefly introducing information theory
and specifically two key information-theoretic quantities, entropy and relative
entropy (Shannon, 1948; Kullback and Leibler, 1951).

2.1 Information Theory

In this and the following chapter, I will quantify gene expression heterogeneity
using tools from information theory. Information theory deals with the
quantification of information. Originally developed by Claude Shannon to
quantify the information content of messages, information theory has found
broad application, particularly in its intersection with statistics (Shannon, 1948;
Kullback and Leibler, 1951). I will here introduce the notions of information
theory used in the rest of the chapter.

Entropy

Shannon’s key insight was that the information content of a message depends
on context, i.e. on how probable the message is (Shannon, 1948; Cover and
Thomas, 2012; Smith and MacArthur, 2017). To illustrate this, consider the
game of hangman, where a player tries to identify a word by sequentially
guessing letters: what letters have the greatest potential information gain with
respect to identifying the word? Words containing the letter Z are substantially
rarer than those containing the letter E (letters capitalised without loss of
generality to avoid clash with mathematical nomenclature). Thus, knowing a
word contains the letter Z provides substantially more information about the
identity of the word than knowing the word contains the letter E.

Shannon demonstrated that this potential gain in information could be
quantified by the negative logarithm of the probability, — log x;, where x; is the
probability of the i possible outcome (Shannon, 1948). If the letter Z occurs in
0.44% of words, and the letter E in 11%, then the respective potential
information gains are — log, 0.0044 = 7.83 bits and — log, 0.11 = 3.18 bits
(Lewand, 2000). The typical units of information are termed bits, where n bits
of information are sufficient to discriminate between 2" possible choices of
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equal probability, e.g. gaining 1 bit of information in a game of hangman
halves the number of words possible. Alternatively, information can be
measured in nats, where the log is taken to base ¢, and where 1 nats of
information are sufficient to discriminate between e¢” possible choices of equal
probability.

OHowever, in choosing a letter, there is a trade-off, as the less frequent a letter,
the less chance there is to realise the potential information gain. Instead,
information would be gained from knowing a letter is not present. For
example, in choosing Z, there is a chance, with probability equal to 0.0044
(0.44%), to gain 7.83 bits of information if the letter is present; conversely, there
is a non-overlapping chance, with probability equal to 0.9956 (99.56%), to gain
(—log, 0.9956 =) 0.0064 bits of information if the letter is not present. The
average information gain from choosing the letter Z is given by

(0.0044)(—1log 0.0044) + (0.9956)(—10g 0.9956) = 0.041 bits. More generally,
the average information gain from realising a discrete random variable is,

N

H(X) =—-)_x;logx;, (2.1)
i=1

where H(X) is the information entropy (also known as Shannon’s entropy), X
is a discrete random variable on the set of integers {1, ..., N}, with probabilities
p(X =1) = x;, and N is the total number of choices (in the above example,

N = 2, where the letter is either present or not). By convention, 0 -log0 = 0,
that is, there is zero information to be gained from impossible events.

Information entropy quantifies the expected information gain from realising a
discrete random variable, taking into account the probability of an event
occurring, and the information gain that event carries. In a game of hangman,
to continue our example, the letter E should be chosen as it has a greater
entropy, —(0.11 - log, 0.11 4 0.89 - log, 0.89) = 0.50 bits, than the letter Z,
—(0.0044 - log, 0.0044 + 0.9956 - log, 0.9956) = 0.041 bits.

Shannon’s entropy is non-negative: you cannot lose information from
observing a random variable. Moreover, Shannon proved that log x is the only
function (up to a multiplicative constant) to satisfy three basic constraints
expected of information: monotonicity, independence, and branching
(Shannon, 1948). Monotonicity ensures that all else being equal, the entropy of
a random variable will increase with the number of possible outcomes,

i.e. more information will be gained from realising a random variable with
more possible outcomes, and independence ensures that the information



2.1. Information Theory 35

a b
3
3
1/6 1/3
1/2
1/3 5 >3
2
172 172
: 1

FIGURE 2.1: Example of branching. The discrete random variable X can be resolved

in a) one or b) two stages. There is an assigned probability for each possible choice

at each branch point. The entropy of both structures is the same, being the weighted
sum of the entropy of each branch point.

gained from realising two independent random variables is the sum of the
information gained from realising each of them separately. The constraint of
branching concerns the different possible ways to realise a discrete random
variable: “if a choice be broken down into two successive choices, the original
[entropy] should be the weighted sum of the individual values of [entropy]”,
Shannon (1948).

I will illustrate branching by example. Consider the discrete random variable
X on the set of integers {1,2,3} with probabilities {1, 1, 2 }. In realising X, I
can either make the choice directly or through a series of hierarchical choices.
For example I can first make the choice between the sets {1} and {2,3}, and, if
choosing the second one, make a further choice between {2} and {3}. This
results in two non-trivial branch-points for X, choosing between {1} and
{2,3}, and choosing between {2} and {3} (see Fig 2.1). Under the constraint of
branching, the total entropy of X is the sum of the entropy at each branch

point, weighted by the probability of arriving at that branch point,

111 11 1 21
H(E’é’é)_H(§’§)+§H<§’§)’

11
272
probability 1. The constraint of branching leads to the property of additive

where the first branch point with entropy H ( ) is arrived at with

decomposition, which I will discuss and utilise later in this chapter.

Discrete random variables with associated probabilities correspond to discrete
probability distributions: it is clear (see Eqn 2.1) that entropy is a property of
discrete probability distributions. The minimum value of entropy, 0, is
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FIGURE 2.2: Entropy of distributions. Entropy of discrete distributions decreases
from a maximum, log5 = 2.32 bits, with the uniform distribution (a) towards 0 bits
with the point distribution (d).

achieved only when p(X =i) =land p(X =j) =0forall j # i,i.e. no
information can be gained by sampling from a probability distribution when
there is only one possible outcome. Conversely, the value of entropy is at a
maximum, log N, for a uniform distribution over N possible outcomes,

p(X =1i)=1/N forall i.

Entropy is a measure of distribution uncertainty: the more uncertain a
statistical process, the broader its probability distribution, the greater the
entropy (see Fig 2.2 for illustration). The more uncertain a statistical process,
the more information is required to encode the possible outcomes. For
example, consider the distribution of a given letter in the the game of
hangman. If 50% of words contain a letter, the entropy is at a maximum, log 2,
and there is maximal uncertainty over whether the unknown word will
contain the letter. Conversely, as more and more, or fewer and fewer, words
contain the letter, the lower the entropy and the less uncertainty over whether
the word will contain the letter. When all or no words contain the letter, there
is zero entropy and zero uncertainty in whether the word contains the letter.

Relative Entropy

Consider quantifying the average information gain from a discrete random
variable based on incorrect or approximate probabilities, for example, if an
English game of hangman were to be played based on the frequency of letters
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in French. What is the reduction in average information gain, i.e. entropy,
based on using the alternative probabilities?

Relative entropy, also known as the Kullback-Leibler Divergence, measures the
information lost when realising one random variable, X, based on the
probabilities of another, Y (Kullback and Leibler, 1951). Let X be a discrete
random variable on the set of integers {1, ..., N} with probabilities

p(X =1i) = x;, and let Y be a discrete random variable on the set of integers
{1, ..., N} with probabilities p(Y = i) = y;. The relative entropy of X with
respect to Y is defined as,

N X
D(X|]Y) = )_ xilog (y—) , (2.2)
i=1 !

with the provision that g; = 0 implies p; = 0, and that 0 - log(3) = 0. For each
possible choice i, log (x;/y;) quantifies the loss in average information gain
due to the difference in the probabilities of X and Y.

Importantly, relative entropy provides a general measure of the difference
between two discrete distributions (Cover and Thomas, 2012). In the following
sections, I will develop a measure of gene expression heterogeneity based on
relative entropy, quantifying heterogeneity as the divergence of the observed
distribution of gene expression from the hypothetical case where all cells are
interchangeable with respect to gene expression.

2.2 Quantifying Heterogeneity

Recall from Section 1.1.2 that a set of cells are heterogeneous with respect to the
expression of a gene ¢ when the cells are distinguishable, i.e. not
interchangeable, based on the observed expression of . In this section, I
develop a measure of heterogeneity with respect to the expression of each gene
based on the relative entropy of the observed distribution of transcripts from
the hypothetical case where all cells are interchangeable with respect to g.

To quantify heterogeneity using relative entropy, I must first choose a
distribution on which to view the expression of each gene. Typically, each
cell’s measured set of transcript counts is represented as a position vector in a
high-dimensional gene expression space (see Section 1.2.2 for discussion on
gene expression space). Concerning the expression of a single gene, cells are
distributed with respect to the number of transcripts per cell (see Fig 2.3 for
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FIGURE 2.3: Distribution of transcripts per cell. Conventionally, with respect to a
single gene, cells are distributed with respect to the number of transcripts per cell.

illustration). This distribution, of transcripts per cell, is the conventional view
of a single gene’s expression (Robinson et al., 2010; Brennecke et al., 2013; Griin
et al., 2014; Love et al., 2014; Hafemeister and Satija, 2019; Townes et al., 2019;
Liu et al., 2020).

However, I instead introduce and utilise an alternative distribution (novel in
the context of single-cell analysis), inspired by experimental cell biology.
Imagine a population of cells as viewed under a microscope, where the
expression of some gene of interest, g, has been marked, e.g. by fluorescent
tagging or antibody staining. Under the microscope, a population of cells
appears as a field of individual cells, each with some read-off of the expression
level of g. If the set of cells are (approximately) interchangeable with respect to
the expression of g, then the expression level will be (approximately) uniform
across the field of cells. Conversely, the more heterogeneous the set of cells are
with respect to the expression of g, the greater expression levels will deviate
from uniformity

I construct the mathematical analogue of the view under the microscope for
single-cell count data. Consider the expression of a gene g across a population
of N cells. Let mlg be the number of transcripts of gene ¢ measured in cell i and
let YN, m;.g = MS be the total number of transcripts of gene ¢ measured. Note
that the measured number of transcripts may differ from the true number due
to error in the measurement process.

Now consider the stochastic process of assigning the M¢ observed transcripts
to the N cells profiled. Let X$ be the discrete probability distribution on the set
of cells {1,2,...,N}, where p(X8 =1i) = x‘ig is the probability of assigning a
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FIGURE 2.4: Uniform distribution of transcripts on the set of cells. Transcripts (black
bars) are distributed uniformly on a set of five cells. The set of cells are interchangeable
with respect to the expression this gene.

transcript of gene g to cell i. I estimate x¢ as p§ = m¢ /M, the proportion of the
total number of transcripts of ¢ measured in cell i. Note that plg is the
maximum likelihood estimate of x;g , see Townes et al. (2019).

This process of stochastic assignment constitutes a generative model of gene
expression. If the cells of the population are statistically interchangeable with
respect to the expression of g, then the M¢ transcripts of ¢ will be assigned to
the N cells independently and with equal probability, i.e. each transcript has a
probability of 1/N of being assigned to a given cell. This assignment
corresponds to the (discrete) uniform distribution U, where U is the discrete
probability distribution on the set of cells {1, ..., N}, with probability 1/N for
i=1,...,N. See Fig 2.4 for an illustration of U.

If the population of cells is heterogeneous with respect to the expression of g,
then transcripts will not be assigned uniformly. If the heterogeneity is due to
differential expression between a mix of cell types, transcripts will instead be
assigned preferentially to distinct subsets of cells, see Fig 2.5. Heterogeneity in
observed gene expression can therefore be quantified in terms of deviation
from the uniform distribution of transcripts, U.

I quantify the deviation from the uniform distribution via relative entropy.
From Eqn 2.2, I can derive the relative entropy of the observed transcript
distribution from U:

N g N
1) = Lt (g ) = Bt o ). 23)
i=1 i=1

I call I(g) the population heterogeneity of g, as it measures the heterogeneity of
the population of cells with respect to the expression of g. More precisely, I(g)
measures the information lost by approximating the observed expression
distribution with the uniform distribution, or conversely, the amount of
information required to encode the observed heterogeneity with respect to the
expression of g.
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FIGURE 2.5: Gene expression heterogeneity. Transcripts (black bars) are distributed

heterogeneously on a set of five cells of two differing types, where I define heterogene-

ity as deviation from uniformity. Aside from the the pair of purple cells, the cells are
not interchangeable with respect to the transcript distribution of this gene.

Intuitively, when a cellular population is unstructured with respect to the
expression of g, i.e. in the absence of a mixture of differentially expressing cell
types, then the assumption of uniformity is correct and I(g) = 0, its minimum
value. Conversely, the maximum value of I(g), log N, is reached when a gene
is only expressed in a single cell (xlg =0foralli # j, x;g = 1). Note that I(g)
does not require any a priori assumptions about the particular expression
pattern of g in the population, i.e. I(g) is a minimally assuming measure of
gene expression heterogeneity (with respect to the maximum entropy principle
of model construction; see Jaynes (1957) for discussion of maximum entropy
principle).

Broadly, I(g) increases as fewer cells express a given gene; see Fig 2.6 for
illustration. Accordingly, I(g) is particularly sensitive to differential gene
expression between discrete subsets of cells (see Fig 2.6, top right). Such
differential expression distinguishes the respective subsets of cells with respect
to the expression of g.

I(g) directly relates heterogeneity to Shannon’s entropy and uncertainty in
cellular classification. Expanding Eqn 2.3 (using log(xy) = log(x) log(y)), I get

I(g) = %xlg log(N) + ix? log (xf) = log(N) — H(X®) (2.4)
i=1 i=1

where H(X$¢) is the entropy of the observed distribution of transcripts of g on
the set of cells.

H(X8) measures the uncertainty in determining which cell expresses a given
transcript of gene g. H(X¢) = log N indicates maximum possible uncertainty,
occurring when cells uniformly express a given gene. Thus, I(g) measures the
reduction in uncertainty with respect to the distribution of transcripts.
Increasing gene expression heterogeneity reduces the uncertainty over which
cell expresses a given transcript of g, as illustrated in Fig 2.6.
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FIGURE 2.6: Quantifying heterogeneity. Transcripts (black bars) are distributed in a
population of cells. If the gene is expressed uniformly, then the heterogeneity is zero
(top left). As the population of cells increasingly deviates from uniformly expressing
the gene, the measured I(g) increases, reaching a maximum of log N, where N is the
number of cells, when only one cell expresses the gene (bottom right).

In the next section, I will repeat the above stochastic process but assign
transcripts first to clusters then to cells. By doing so, I can define two further
quantities related to I(g), measuring first the gene expression heterogeneity
between clusters and then the expression heterogeneity between cells assigned
to each cluster.

2.3 Heterogeneity by Cluster

In this section, I develop two further measures of gene expression
heterogeneity with respect to the decomposition of a cellular population into
non-overlapping clusters, where each cluster represents a (putative) cell type.
The first measure quantifies the expression heterogeneity attributable to
differential gene expression between clusters, and the second quantifies the
expression heterogeneity attributable to differences in gene expression
between cells within each cluster. Following the introduction of these
measures, I show that I(g) is the sum of these two measures, i.e. that
population heterogeneity is a sum of the heterogeneity between clusters and
the heterogeneity within each cluster. Together, the three measures of gene
expression heterogeneity provide a quantitative framework for assessing the
proportion of expression heterogeneity attributable to differential expression
with respect to a given clustering.



42 Chapter 2. Information-Theoretic Clustering of Cell Types

0 bits 0.48 bits 1.32bits 171

FIGURE 2.7: Inter-cluster heterogeneity. Transcripts (black bars) are distributed (left)
uniformly, (middle) differentially between clusters, and (right) exactly by cluster. The
value of Hg(g) increases as the uncertainty in classifying clusters with respect to gene
expression decreases. Importantly, Hs(g) is concerned only the total number of tran-
scripts assigned to each cluster — a gene can be expressed uniformly with respect to
a set of cluster, while deviating from uniformity within each cluster. For example, a
single cell in a given cluster could express all copies of the transcripts assigned to that
cluster.

2.3.1 Inter-cluster Heterogeneity

Consider again the stochastic process of assigning M3 transcripts to N cells.
Now consider grouping cells into C clusters Sy,...,Sc of sizes Ny, ..., Ng,
where Z,gzl N = N, so that transcripts are assigned to clusters as opposed to
cells. Each cell is unambiguously assigned to one of the C non-intersecting
clusters. Let Y€ be the discrete probability distribution on the set of clusters

S ={S1,...,Sc}, where p(Y& = S;) = ¥ is the probability of assigning a
transcript of gene g to cluster Si. Recalling that xlg is the probability of
assigning a transcript of gene g to cell i, the total probability of assigning a
transcript of g to Sy is y‘}: = Yies, xlg , i.e. the total proportion of transcripts of
gene ¢ measured in the cells assigned to cluster Sy.

Recall that if the cells of the population are statistically interchangeable with
respect to the expression of g, then xlg =1/Nforalliin1 <i < N. Thus, when
all cells in a population are interchangeable, the total probability of a transcript
of g being assigned to the cluster Sy is proportional to the the number of cells
assigned to the cluster, Ni. This corresponds to the (discrete) uniform
distribution Ugroyp, where Ugroyp is the discrete probability distribution on the
set S = {Sy,...,Sc} with probabilities N;/N fork =1,...,C. Carrying
forward the example of U in Fig 2.4, I illustrate an example of Ugoyp in Fig 2.7

(left).

Importantly, a gene can be expressed uniformly with respect to a set of clusters
while deviating from uniformity within each cluster. For example, in Fig 2.7
(left), the transcripts expressed by each cluster could be expressed in any
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combination by the cells of each cluster. Ugyoyp is only defined with respect to
the total number of transcripts assigned to each cluster.

I can again quantify the deviation from the uniform distribution via relative
entropy. The relative entropy of the observed cluster-wise distribution of
transcripts, Y¢, relative to Ugroup 1,

8
Hs(g) = ) yjlog ( Nf ’;N> : (2.5)

where Hg(g) measures the heterogeneity of the set of clusters with respect to
the expression of g. I call Hs(g) inter-cluster heterogeneity, as it quantifies how
distinguishable, i.e. heterogeneous, clusters are with respect to the expression
of g. The clustering S is not guaranteed to coincide with the true mix of cell
types in a population: when the clustering S does coincide with the set of cell
types, Hs(g) measures inter-type heterogeneity with respect to the expression
of g.

Hs(g) quantifies the differential expression between clusters: the greater the
difference in mean expression between clusters, the greater the inter-cluster
heterogeneity. Each additive term making up Hs(g) quantifies the divergence
of an individual cluster from the assumption that the set of clusters are
interchangeable with respect to g. As one cluster (or several) preferentially
expresses g, the other clusters must comparatively down-regulate g. Thus,
Hg(g) behaves similarly to I(g), where the more restricted expression of g is
between clusters, the greater the measured heterogeneity; see Fig 2.7 for
illustration.

As with I(g), Hs(g) has an information-theoretic interpretation as the amount
of information lost by assuming a set of clusters are interchangeable with
respect to the measured expression of g. Moreover, Hs(g) can be interpreted as
quantifying the uncertainty in assigning transcripts to clusters. The less
uncertain the assignment (i.e. the greater certainty over which cluster
expresses a given transcript of g) the greater the inter-cluster heterogeneity.

Hjs(g) provides an absolute measure of the heterogeneity attributable to
differential gene expression. However, to contextualise Hg(g) and determine
the proportion of gene expression heterogeneity attributable to differential
gene expression, a further measure, quantifying the heterogeneity resulting
from differences in gene expression within each cluster is required. In the
following section, I will develop this further measure of gene expression
heterogeneity.
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FIGURE 2.8: Intra-cluster heterogeneity. Diagram representing two clusters, where
the first cluster (left) is an example of within-cluster heterogeneity with respect gene
expression, D(Z;g ||Ux) = 1.58 bits and the second cluster (right) is an example of

within-cluster uniformity, D(Z;f ||Uy) = 0 bits.
2.3.2 Intra-cluster Heterogeneity

Consider again the stochastic process of assigning transcripts to C clusters,
focusing on the assignment of transcripts to the Nj cells within each cluster, Sy.
Let Z,f be the discrete probability distribution on the set of cells i € S (i.e., the
cells assigned to cluster Si), with probabilities z? = x? / y;f , where zlg is the
conditional probability of a transcript being assigned to cell i given that the
transcript has been assigned to cluster Sy.

If the cells of the cluster are statistically interchangeable with respect to the
expression of g, then the transcripts of g assigned to cluster Sy will be assigned
uniformly to the Nj cells of cluster Sy. This corresponds to the uniform
distribution Uy, where Uy is the discrete probability distribution defined on the
set i € Sy with probabilities1/Ny fork =1,...,C.

Uy differs from U and Ugyoyp in applying to only a subset of the cellular
population, with C distinct localised uniform distributions, U to U, as
illustrated in Fig 2.5. Accordingly, I separately quantify the heterogeneity of
each cluster S, measuring the relative entropy of the observed transcript
distribution Zl§ from the uniform distribution Uy,

xS xg/yg
D(Z{||Uy) = ), ~%log (—k : (2.6)
‘ iezsk yi 1/ Ny
=Y zflog (N25). (2.7)
iESk

D(Zf| |Uy ) measures the divergence of the observed transcript distribution
from the assumption of consistent, uniform expression within a given cluster.
When all cells are assigned to a single cluster, D(Z{||Uy) = I(g).
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The expression heterogeneity of a given gene within each cluster can be
summed, with the contribution of each cluster to the overall expression
heterogeneity weighted by the proportion of transcripts assigned to the cluster
(this weighting derives from the branching property of entropy, and will be
further discussed in Section 2.3.3). Accordingly, the total intra-cluster
heterogeneity is given by,

c
=Y v D(Z{ W), (2.8)
r

where hg(g) measures the heterogeneity resulting from differences in
expression of ¢ within each cluster. Importantly, 5(g) quantifies the total
expression heterogeneity within each cluster with respect to a given gene. The
measure is weighted by the proportion of transcripts assigned to each cluster;
therefore, clusters with greater expression of a given gene can contribute more
to the total intra-cluster heterogeneity.

In terms of information, hs(g) quantifies the amount of information lost by
assuming that the cells within each cluster are interchangeable with respect to
the measured expression of g. The further cells within each cluster are from
being interchangeable, the greater the intra-cluster heterogeneity. Conversely,
when hg(g) = 0, the cells of each cluster are exactly interchangeable, with g
expressed consistently and uniformly within each cluster.

Based on hi5(g) and the other measures of gene expression heterogeneity
developed above, I will construct a framework for quantifying the proportion
of expression heterogeneity attributable to differential gene expression.
Specifically, population heterogeneity, I(g), is the sum of inter-cluster
heterogeneity, Hs(g), and intra-cluster heterogeneity, hs(g). Thus, Hs(g)
quantifies the proportion of I(g) attributable to differential expression, with
hs(S) quantifying the remaining, unattributed gene expression heterogeneity.
In the following sections, I will derive this relation, showing that it follows
from the constraint of branching.

2.3.3 Additive Decomposition

I now have three measures of heterogeneity, measuring 1) the total population
heterogeneity, 2) the heterogeneity due to differential expression between
clusters, and 3) the heterogeneity remaining within each cluster. The measures
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FIGURE 2.9: Branching in transcript assignment. Branching underlies the additive
decomposition of inter- and intra-cluster heterogeneity. Transcripts (black bars) are
first assigned to one of two clusters, according to the distribution Y. Transcripts are
then assigned to a cell within each cluster k, accordin§ to the distribution Z. y; is
the proportion of transcripts assigned to cluster k and z; the proportion of transcripts
assigned to cell i in cluster k. The entropy of the population, H(X) (where x; € X is
the proportion of transcripts assigned to cell é) is equal to the sum H(Y) +y1H(Z!) +
y2H(Z7).

are related through the constraint of branching, discussed earlier in Section
2.1.

To apply the constraint of branching to the context of clustering, consider
again the stochastic assignment of a transcript to one of N cells, a process
described by the distribution X. Based on a clustering, S, I separate the
assignment process into two stages: first assigning transcripts to clusters, a
process described by the distribution Y, then to the cells within each cluster, a
non-overlapping set of processes described by the C distributions Z; (see Fig
2.9 for illustration).

By the constraint of branching, the entropy of X is equal to the sum of the
entropies of Y and Z;, for k =1,..., C, weighted by the fraction of transcripts
assigned to each distribution. The weighting of the entropies is

C
H(X)=H(Y)+ Y v; H(Z). (2.9)
k=1

This relation (which holds with respect to any clustering, or grouping of cells,
S) is called additive decomposition. In other words, the entropy of the
distribution X decomposes into additive components of the entropies of Y and
each Z;.
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Relative entropy is similarly additively decomposable (Theil, 1967; Shorrocks,
1980). Accordingly, population heterogeneity is equal to the weighted sum of
inter-cluster and intra-cluster heterogeneities,

I(g) = Hs(g) + hs(g), (2.10)

where the heterogeneity with respect to the expression of ¢ must arise from
either differential expression between clusters, or from differences in
expression within each cluster (see Section 2.3.4 for a full derivation). In the
absence of an assigned clustering, all cells can be considered as belonging to a
single cluster so that hs(g) = I(g) and Hs(g) = 0 (equally reasonably, in the
absence of an assigned clustering, each of the N cells in a population could be
considered as uniquely belonging to one of N clusters, so that g(g) = 0 and

Hs(g) = 1(g))-

Eqn 2.10 provides a framework for quantifying the proportion of heterogeneity
attributable to differential expression, with respect to the expression of a single
gene. Additive decomposition guarantees that all heterogeneity with respect
to a given gene is attributable to either the differential expression between
clusters or differences in expression within clusters. Therefore, Hs(g)
measures the heterogeneity attributable to differential expression as part of the
total gene expression heterogeneity, I(¢). In doing so, Hs(g) provides a basis
for assessing the success of a given clustering in accommodating expression
heterogeneity with respect to a single gene.

For example, consider the population illustrated in Fig 2.10. The population of
cells is heterogeneous with respect to gene expression, with I(g) = 0.8 bits.
This heterogeneity must result from either differential expression between
clusters, or differences in expression within clusters. For the proposed
clustering of cells in Fig 2.10, the majority of gene expression heterogeneity
results from differential expression, Hs(g) = 0.48 bits, with the remaining
heterogeneity resulting from differences in gene expression within one of the
clusters, with hg(g) = 0.32 bits.

In the next section, I will mathematically derive the property of additive
decomposition for relative entropy. Following that derivation, I will extend
each measure of heterogeneity to the case of many genes, developing
whole-genome measures of population, inter-cluster and intra-cluster
heterogeneity. Through this extension, I can measure the proportion of gene
expression heterogeneity attributable to differential expression across all
genes, with respect to a given clustering.
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FIGURE 2.10: Additive decomposition. Diagrammatic representation of the additive

decomposition of population heterogeneity into inter and intra-cluster heterogeneity.

Population heterogeneity is the sum of inter-cluster heterogeneity and intra-cluster

heterogeneities, where the contribution to intra-cluster heterogeneity from each cluster
is weighted by the proportion of transcripts assigned to that cluster.

2.3.4 Mathematical Derivation

I will now go through a self-contained derivation of additive decomposition
for relative entropy (cf. Theil (1967)), returning Eqn 2.10.

Recall that x; € X is the proportion of transcripts of assigned to cell i, that

Yk € Y is the proportion of transcripts of assigned to the cells of cluster Sy, and
that z¥ € Z; is the proportion of transcripts of assigned to the cell i in cluster
Si. Note that

Y zi= —:—le—l (2.11)

i€Sy i€Sk yk yk i€Sk

so z;, for i € Sy form a (discrete) probability distribution on Sy, for each
k=1,...,C.
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I(g) may be rewritten in terms of Y and Zj, as follows:
N
=) _xilog (Nx;), (2.12)
i=1
=log (N Z x;log ( ) (2.13)
= log (N Z Y xilog ( ) (2.14)
k= 1ZESk
Clog(N) - Yy ¥ (tog (57, ) +1o8 () .15)
k=1 ics, Uk Xi/ Y Yk
X; 1
=1lo “Llo ( ) “Llo ( ) (2.16)
8N ;yk,ezskyk 8 xi/ Y kzzlyklezskyk & Yk
H(Z,)
C ,./\..\
=log (N) — Z ye H(Zy) — Z log < ) Z X, (2.17)
k=1 Yx/ ics,
H(Y)
= log (N Z yk H(Z) — H(Y), (2.18)
k=1
C M
= log (N) — H(Y) — Z yklog (Ni) + ) yilog (Ni) — ) v H(Zy)
k=1 k=1 k=1
A B
(2.19)
Expression A may be rewritten as:
C
=log (N) — H(Y) = }_ yxlog (Ni), (2.20)
k 1
1 C
= Z yxlog (N 2 yi log (]/k) — Y yilog (Nk), (2.21)
k=1
Yk
_ log [ —2E_ ) 2.22
k;yk Og(Nk/N) (2.22)
— Hs(g). (2.23)
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Expression B may be rewritten as:

c C
B =) yilog (Ny) — ) vk H(Z), (2.24)
k=1 k=1
C
=) vk (log (Ni) — H(Z)), (2.25)
k=1
iy Y log (N xi) (2.26)
= k o k=)~ .
k=1 ies, Yk Yk
¢ X; (x'/yk)
= “log | = , (2.27)
k_zlyk ics, Yk S\1/N
C
= Y e D(Z |Uy) (2.28)
k=1
= hs(g)- (2.29)
Therefore, I(g) may be expressed as:
I(g) = Hs(8) + hs(g)- (2.30)

2.4 Heterogeneity of Many Genes

I have introduced how the heterogeneity attributable to differential expression
can be quantified with respect to a single gene. I will now extend this
quantification to many genes, developing a measure of the total amount of
heterogeneity attributable to differential expression across all genes. Given that
cell types are differentially expressing subsets of cells, I expect that the better a
given clustering represents the true set of cell types in a population, the more
heterogeneity should be attributable to differential expression genome-wide.

The intuitive solution to measuring heterogeneity genome-wide is to simply
sum across the gene-wise measures. Indeed, the intuitive approach is correct,
up to a multiplicative factor: each measure of heterogeneity, I(g), Hg(g) and
hs(g) is additive across genes, so that the total heterogeneity based on a set of

G genes is simply I = Y27 I(g), Hs = ¥.§ Hs(g) or hs = ¥, hs(g).

This gene-wise additivity stems from the property of branching. I will spend
the rest of this section, Section 2.4, proving the property of additivity by
considering the assignment of transcripts to both cells and genes. The
assignment of transcripts to cells is formalised as before, see Sections 2.2 & 2.3;
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I will therefore begin by introducing the process of assigning transcripts to
genes.

First, recall that M¢ is the total number of transcripts of gene g. Let

L= 25:1 MBS be the total number of transcripts measured in a single
experiment, where G is the number of genes. Consider the stochastic process
of assigning L transcripts to each gene in each cell. Let V be the discrete
probability distribution on the set of gene-cell pairs {1,...,G- N}, where Vig is
the probability of assigning a transcript to gene g in cell i.

Now consider the stochastic process of assigning L transcripts to the G genes
profiled. Let W be the discrete probability distribution on the set of genes
{1,...,G}, where p(W = g) = wy is the probability of assigning a transcript to
gene ¢. Let wg = M¢/L, the measured proportion of transcripts assigned to

gene g.

As illustrated in Fig 2.11, the assignment of transcripts can be arranged as a
branching process, first to genes and then to cells. Therefore, the entropy of the
overall assignment process, V is additively decomposable into the sum of the
entropy of the assignment of transcripts to genes, W, and the gene-wise
distribution of transcripts to cells, X3:

H(V) = H(W) + i wg H(XS). (2.31)
g=1

Note that H(V) is independent of the branching structure — the assignment
processes can be swapped, first assigning transcripts to cells and then to genes
without affecting the total entropy of the assignment process (Shannon, 1948).

To restate Eqn 2.31 in terms of I(g) instead of H(X¢), I must define
distributions against which the relative entropy of V and W can be measured.
For this, I will assume that transcripts are distributed with equal probability to
each gene in each cell. With respect to V, this assumption corresponds to the
discrete uniform distribution, U geyes, cerrsy defined on the set {1,...,G - N}
with equal probabilities 1/ (G - N). With respect to W, the assumption instead
corresponds to the discrete uniform distribution Ugenes, defined on the set
{1,..., G} with probabilities 1/ G.

Restating Eqn 2.31 with respect to the newly defined uniform distributions,

G
D(VHu{genes,cells}) = D<W| ’ugenes) + Z ws I(g), (2.32)
g=1
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FIGURE 2.11: Branching assignment of transcripts to genes and cells. Diagrammatic

representation of the process of assigning transcripts (black bars) first to specific genes,

then to individual cells. The assignment process follows a branching pattern analo-

gous to Fig 2.10. The relative entropy of this assignment process is additively decom-

posable into the relative entropy of the assignment of transcripts to genes, and the
relative entropy of the assignment of transcripts to cells.

where I(g) can itself be additively decomposed,

G G
D(VHu{genes,cells}) = D(WHugenes) + Z ws HS(g) + Z ws hS(g) (2.33)
g=1 g=1

Therefore, the many-gene measure of each type of heterogeneity is the sum of
each gene’s heterogeneity, weighted by the proportion of transcripts assigned
to each gene. This means that higher expressing genes contribute more heavily
to the total heterogeneity. Given that the heterogeneity of cells with respect to
lowly expressed genes, especially transcription factors, can be critical to
biological function (e.g. Nanog, see Smith et al. (2017)), I will instead assume
transcripts to be equally likely to be assigned to each gene.

Based on this assumption that w$ = é forg=1,...,G,

=0

e N G
D(V||U) = D(W/||Ugenes) + Y, w8 1(g) (2.34)
g=1
LY 1(g) )
— =Y I(9), 2.35
¢ & g (
1 G G
=z Hs(g)+ Y hs(9)]|. (2.36)
g=1 g=1

Moving forward, I drop the % constant so that each many-gene measure of
heterogeneity is simply the sum of each gene’s heterogeneity. Accordingly, I
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define I = ZgG I(g), Hs = 2? Hs(g) and hg = ZgG hs(g) as the many-gene
analogues of each of 1(g), Hs(g) and hs(g).

Importantly, the many-gene analogues retain the property of additive
decomposition, i.e.

I = Hg + hg. (2.37)

Eqn 2.37 provides a framework for assessing the proportion of heterogeneity
attributable to differential expression between a set of clusters S, with respect
to all genes. The total amount of heterogeneity attributable to genome-wide
differential expression is simply the sum of gene-wise inter-cluster
heterogeneities. Between the single-gene and many-gene measures,
differential expression can be intuitively quantified in terms of gene expression
heterogenedity.

In the rest of this chapter, I will apply both the single-gene and many-gene
measures to publicly available single-cell RNA-sequencing data sets. I will
introduce a method for robustly estimating expression heterogeneity from
single-cell RNA-sequencing data. I will validate that I(g) is a biologically
relevant measure of gene expression heterogeneity. I will demonstrate Hg(g)
as a practical measure of differential gene expression and establish the
association between Hg and the true clustering of cells into cell types (where I
assume that the established classification represents the true classification of
cells into types for each data set).

2.5 Implementation & Validation

In this section, I apply the framework developed above to a range of single-cell
RNA-sequencing data sets, detailed in Table 2.1. These data sets cover a wide
range with respect to the number of cell types present in each population, and
the cells of each data set have been classified by a diverse set of methods, both
computational and experimental. In particular, the data sets from Svensson

et al. (2017) and Tabula Muris Consortium et al. (2018) represent extremes with
respect to number of classified types, being a technical control data set and a
mouse cell atlas respectively. Note that from here on, I will refer to the Tabula
Muris Consortium et al. (2018) data set as the Tabula Muris).

The remaining data sets are chosen as they have well-established cellular
classifications derived from a variety of methods, i.e. the published
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Data Set || Cells (N) Genes (G) Cell Types (C) Classification

Svensson et al. (2017) 4000 4483 1 None

Tian et al. (2019) 902 14718 3 Genotypic

Zheng et al. (2017) 85423 11811 4 Phenotypic

Stumpf et al. (2020) 5504 8768 14 Clustering

Tabula Muris Consortium et al. (2018) 55656 16062 56 Clustering

TABLE 2.1: Data sets for use in validation. Table details the number of cells and
number of genes included post normalisation. Clustering refers to computational un-
supervised clustering with differential gene expression analysis.

classifications are likely to represent the true classification of cells into types.
For example, the Tian et al. (2019) data set consists of a mixture of three
cancerous cell lines, with each cell line acting as a proxy for a cell type. The
cells of the Tian et al. (2019) population were classified genotypically, with the
cells of each cell line having distinct genotypes.

The Zheng et al. (2017) data set represents an example of traditional
phenotypic classification. The data set concatenates multiple sequencing runs,
where each sequencing run consists of cells of a single cell type, with cells
having been sorted into different types prior to sequencing. Each cell type was
sorted based on surface protein expression, with all cells belonging to a distinct
peripheral blood mononuclear cell (PBMC) type, namely one of B-cells, T-cells,
monocytes (CD14+) and natural killer cells (CD56+). (Note that the T-cells
were sequenced in six different runs, each isolating a distinct T-cell sub-type; I
treat these cells as belonging to a single T-cell identity as in Zou et al. (2021)).

The Stumpf et al. (2020) data set consists of cells sampled from mouse bone
marrow. The cells are largely derived from the hematopoietic stem cell lineage:
cells of this developmental lineage are actively transitioning in type from a
stem cell identity to one of several possible mature cell types. Thus, the cells of
the Stumpf et al. (2020) data set do not strictly belong to discrete cell types;
instead, several of the published clusters group cells that are actively
transitioning from one type to another. As such, the Stumpf et al. (2020) data
set involves both discrete differences in expression between cell types and
substantial continuous variation in expression within each cluster (i.e. there is
substantial intra-type heterogeneity with respect to gene expression). Stumpf
et al. (2020) clustered the cells of the data set using the Louvain method and
classified each cluster based on differential expression of known marker genes
(Blondel et al., 2008; Stuart et al., 2019).

I will use these data sets to assess the relationship between I(g) and cell type
diversity, expecting 1(g) to positively correlate with the number of cell types in
the data set. I will then confirm that a significant proportion of gene
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expression heterogeneity can be attributed to differential gene expression
between the established clusters of each of the Tian et al. (2019), Zheng et al.
(2017) and Stumpf et al. (2020) data sets.

Throughout this section, I am interested in the expression heterogeneity
arising from differential gene expression between cell types. However,
single-cell RNA-sequencing is a noisy process, with substantive technical
error, causing biological uniform cells to be heterogeneous with respect to gene
expression. Therefore, I first need to introduce a method for denoising the
distribution of transcripts, X3, minimising the effect of technical error on the
measured gene expression heterogeneity.

2.5.1 Normalisation

Single-cell RNA-sequencing counts the number of individual mRNA
molecules in single cells. However, the measurement of single molecules is
both stochastic and inefficient: recall that single-cell sequencing experiments
only capture 3-10% of the total mRNA molecules in a given cell (Papalexi and
Satija, 2018). This low capture rate results in the sparse detection of lowly
expressed genes (Risso et al., 2018; Lopez et al., 2018; Eraslan et al., 2019;
Svensson, 2020; Lause et al., 2020; Sarkar and Stephens, 2021).

The effect of this sparsity can be observed in the Svensson et al. (2017)
technical control data set. In Svensson et al. (2017), cell-equivalents have been
generated from a mixed solution of endogenous human brain RNA and
External RNA Control Consortium spike-ins. Without any biological function,
the heterogeneity of the pseudo-population should be minimal, arising only
from technical error.

Nevertheless, I find that I(g) increases with respect to decreasing mean gene
expression, see Fig 2.12. Specifically, below an average of 1 transcripts per cell
(0 log mean expression), I find a log-linear relationship between mean gene
expression and I(g). With fewer transcripts than cells, the distribution of
transcripts cannot be uniform, as clearly, when M$ < N, there is no way to
distribute M? transcripts among N cells uniformly. Instead, for M3 < N, the
minimum value of I(g) = log({f ), where M¢ cells each express a single
transcript.

When calculating I(g), it is natural to assume xlg = plg , the measured
proportion of transcripts of g assigned to cell i. Indeed, this represents the
maximum likelihood estimate for X¢& (Townes et al., 2019). However,
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FIGURE 2.12: Effect of sparsity on population heterogeneity. Plot of population het-

erogeneity, I(g), against log;, mean gene expression for each gene in the Svensson

etal. (2017) data set. Values of I(g) are normalised by data set specific theoretical max-

imum of I(g), log N, where N is the number of cells in the data set. Below ~ 0 log;,

mean gene expression, i.e. a mean expression of 1 transcript per cell, I(g) increases
linearly with decreasing (log) mean gene expression.

maximum likelihood estimators performs poorly whenever there are fewer
observations, M$, than variables being estimated, N (James and Stein, 1992).
Therefore, to account for the effect of sparsity, I adopt an alternative estimator
for the transcript distribution X$: the James-Stein-type shrinkage estimator
(James and Stein, 1992).

Previously applied to microarray gene expression data in Hausser and
Strimmer (2009), the James-Stein-type estimator shrinks the maximum
likelihood estimate of the expression distribution of each gene towards the
uniform distribution, U, thus reducing I(g) (recall that I(g) measures the
divergence of the observed gene expression distribution from U). The strength
of the shrinkage determined by a scale factor. Specifically, the James-Stein-type
estimator strongly shrinks the distribution of those genes with fewer measured
transcripts, and those genes with greater variance in p; (wWhere the observed
transcripts are closer to being uniformly distributed).

The shrinkage strength for each gene, AS, is,

o I Var(pf) 1= (p))?

)\ — — 7
YN (G -pH2 (M) (2N (F - p9)?)

(2.38)

where p? is the maximum likelihood estimation of the frequency of gene g in
celliand & € U is the shrinkage probability. Note that AS € [0, 1].

The James-Stein-type distribution is a compromise between the maximum
likelihood estimate and the uniform distribution:
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FIGURE 2.13: James-Stein-type I(g) against mean gene expression. Plot of popu-
lation heterogeneity, I(g), against log,, mean gene expression for each gene in the
Svensson et al. (2017) data set. I(g) is calculated based on James-Stein-type shrinkage
estimations of X$. Using the James-Stein-type estimator abolishes the strict log-linear
relationship between mean gene expression and I(g), as was observed with respect to
values of I(g) calculated based on the maximum likelihood estimation of X$.

1
xS = Agﬁ + (1= A8)pf. (2.39)

At A8 = 0, the estimator returns the maximum likelihood distribution, and at
A8 =1, the estimator returns the uniform distribution.

Returning to the Svensson et al. (2017) data set, it is clear from Fig 2.13 that
calculating I(g) based on the James-Stein-type estimation of X8 minimises the
effect of sparsity without abolishing the potential for heterogeneity with
respect to lowly-expressed genes. However, for very lowly-expressed genes,
the James-Stein-type estimator remains insufficient with respect to minimising
the effect of sparsity. Therefore, in the following sections, I will remove the
most severe cases of sparsity in each data set analysed, namely, those genes
with less than 100 transcripts in total across all cells.

2.5.2 Population Heterogeneity

There are various sources of heterogeneity in a cellular population: differential
expression between cell types, biological functions orthogonal (unrelated) to
the differential gene expression between cell types, biological noise and
technical error (see Section 1.1.2 for greater discussion of each source of gene
expression heterogeneity). Through use of the James-Stein type estimator, I
aim to limit the effects of the mainly stochastic biological noise and technical
error. I therefore expect the remaining population heterogeneity to positively
correlate with the number of cell types and the extent of any other biological
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function. I(g) should capture both sources of heterogeneity through
inter-cluster and intra-cluster heterogeneity, respectively.

To confirm I(g) as a biologically relevant measure of gene expression
heterogeneity, I measure the gene-wise I(g) of data sets listed in Table 2.1. The
the number of cell types, increases across the collection of data sets. Therefore,
I expect the number of genes with substantial I(g) to increase across the data
sets as ordered in Table 2.1.

As shown in Fig 2.14, I find the expected correlation between gene-wise I(g)
and number of cell types. The relationship between number of cell types and
I(g) is made visually obvious by the differences between the Svensson et al.
(2017) technical control data set, C = 1, and the Tabula Muris cell atlas data set,
C = 56. These data sets demonstrate clear extremes in I(g), reflecting their
differing number of cell types (recall the value of C is the number of cell type
clusters reported with each data set). The differences between the remaining
data sets are more muted, but still reflective of a correlation between gene-wise
I(g) and number of cell types: the Zheng et al. (2017) data set (C = 4) has a
higher average value of I(g) with a mean of 0.24 nats compared to the mean of
0.20 nats of Tian et al. (2019) (C = 3).

Note that while the gene-wise measure of heterogeneity, I(g), strongly
correlates with the number of cell types, the association between the total gene
expression heterogeneity, I, and number of cell types is weaker. This is due to
the so-called ‘curse of dimensionality” (Beyer et al., 1999). Even with
adjustment by the James-Stein-type estimator, most genes will likely be
associated with some non-zero level of I(g) due to biological noise and
technical error. Over thousands of genes, these small amounts of gene
expression heterogeneity accumulate, resulting in the genome-wide measure
of population heterogeneity, I, being dominated by biological and technical
effects other than the differential expression between cell types. This results,
for instance, in the total heterogeneity of Svensson et al. (2017) exceeding that
of Tian et al. (2019), 4250 nats to 2930 nats. Though the total heterogeneity still
depends in part on the number of cell types: the Stumpf et al. (2020) and
Tabula Muris data sets have values of I of 7040 nats and 16500 nats,
respectively.

To confirm that I(g) additionally captures heterogeneity arising from

biological functions unrelated to differential expression, I examine the Stumpf
et al. (2020) data set in more detail. The cell types of the population sequenced
in Stumpf et al. (2020) are actively undergoing differentiation and maturation.
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FIGURE 2.14: Population heterogeneity of sequencing data sets. Plot of population
heterogeneity normalised by theoretical maximum, I(g)/ log N, against log,;, mean
gene expression for each gene in the a) Svensson et al. (2017) (number of cell types,
C = 1), b) Tian et al. (2019) (C = 3), ¢) Zheng et al. (2017) (C = 4), d) Stumpf et al.
(2020) (C = 14), and e) the Tabula Muris (C = 56) data sets (Tabula Muris Consortium
etal., 2018). The number of genes cells are heterogeneous with respect to, as measured
by I(g), broadly increases with increasing number of cell types, C, in the population.
See Table 2.1 for detailed information on each data set.

Therefore, there is substantial gene expression heterogeneity arising from
biological processes other than differential expression between cell types.

I confirm I(g) captures this heterogeneity by visualisation, projecting the gene
expression profiles of each cell in the Stumpf et al. (2020) data set down onto
two dimensions by non-linear dimension reduction (Mclnnes et al., 2018). I
restrict the dimension reduction to include only the top 500 genes by I(g). As
shown in Fig 2.15, these 500 genes are sufficient to capture the complex
topology of the (Stumpf et al., 2020) data set. Thus, genes with high values of
I(g) are associated with gene expression heterogeneity arising from both the
differential expression between cell types and the biological processes of
differentiation and maturation

The value of population heterogeneity, I(g), broadly corresponds to the
number of cell types in a population. In the next section, I will test the
relationship between information-theoretic heterogeneity and cell type
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FIGURE 2.15: UMAP of mouse bone marrow cells. Non-linear dimension reduction

of the expression of the top 500 genes by I(g), with cells coloured by their classification

in Stumpf et al. (2020). Top 500 genes by I(g) capture both the differential expression

between cell types, leading to clear separation of each identity, and the continuous
variation associated with cellular differentiation and maturation.

explicitly, calculating inter-cluster heterogeneity with respect to the established
classifications for the Tian et al. (2019), Zheng et al. (2017) and Stumpf et al.
(2020) data sets. Each of these classifications has been robustly established,
through genotype, surface protein expression or differential gene expression
analysis: these classifications represent a suitable approximation of the true
mixture of cell types in a population (up to the resolution afforded by each
classification method, see discussion of Zheng et al. (2017) data set in Section
3.1.4).
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2.5.3 Differential Gene Expression

Inter-cluster heterogeneity quantifies the gene expression heterogeneity
attributable to differential gene expression between clusters. In the context of
single-cell RNA-sequencing data, cell types are realised as differentially
expressing discrete sets of cells. Therefore, I expect the correct clustering of
cells into types to be associated with substantial inter-cluster heterogeneity,
both in terms of number of genes identified as differentially expressed by
Hs(g) and in terms of overall Hs.

I confirm the association between inter-cluster heterogeneity and the true
clustering of cells by comparing the inter-cluster heterogeneity of established
cellular classifications to randomly constructed clusterings of cells. I construct
these random clusterings through permuting the cell-wise classifications of
each data set, keeping the number and size of clusters the same between the
established and randomised clusterings.

For each data set where the classification has been robustly established, i.e. the
Tian et al. (2019), Zheng et al. (2017) and Stumpf et al. (2020) data sets, I
compare the associated values of Hg(g) and Hg between the established and
randomised clusterings. These comparisons are formalised as exact, one-sided
significance tests, generating an exact p-value for each gene and genome-wide,
based on 10* randomisations of each data set (Fisher, 2017).

For each gene, I test whether the amount of heterogeneity attributable to
differential expression between cell types exceeds that expected from a
random clustering of the same structure, i.e. a clustering with the same
number of clusters, C, and with the same proportion of cells assigned to each
cluster. Note that as many statistical tests are being carried out simultaneously,
the false discovery rate of the gene-wise comparisons must be controlled for
with respect to each data set (Benjamini and Hochberg, 1995). To maintain the
power of the analysis (and to avoid the computational cost of randomising all
> 10* genes of the large Zheng et al. (2017) data set), I restrict testing to the top
500 genes by I(g) for each data set. By doing so, I include only those genes
where substantial values of Hs(g) are possible (by additive decomposition, the
value of Hg(g) cannot exceed the value of I(g)).

For each data set, the majority of genes are significantly differentially
expressed as measured by Hg(g). Of the 500 genes tested in each data set, 485
in Tian et al. (2019), 472 in Zheng et al. (2017) and 498 in Stumpf et al. (2020)
significantly exceed the values of Hs(g) calculated with respect to the the
randomised clusterings (one-sided exact test, « = 0.05, false discovery rate
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Data Set H Known ‘ Mean SD Max

Tian et al. (2019) 199 6.04 061 10.1
Zheng et al. (2017) 161 | 0.796 0.16 1.77
Stumpf et al. (2020) 608 293 34 446

TABLE 2.2: Hg of established and randomised cellular clusterings. Hg of the estab-
lished classification of cells and the mean, standard deviation and maximum Hg of 10*
randomisations. All numeric values are in units of nats.

correction for 500 trials; see Fig 2.16). Moreover, for the majority of genes
tested in each data set, the value of Hg(g) with respect the established
classification exceeds that of all 10* randomisations, resulting in an exact
p-value of 0 (p-value = 0 for 459, 415 and 487 out of 500 genes tested in the
Tian et al. (2019), Zheng et al. (2017), and Stumpf et al. (2020) data sets,
respectively). See Fig 2.17 for illustration of Zheng et al. (2017) data set.

Furthermore, the overall inter-cluster heterogeneity, Hs, with respect to each
established classification significantly and substantially exceeds that of all
randomised clusterings, see Table 2.2. Thus, the true clustering of cells into
types is associated with significantly greater Hg than expected for a given
cluster structure. This association holds across the range of classification
methods used: genotypic, surface protein expression and unsupervised
clustering. The true clustering of cells into types is robustly associated with
substantial Hg, and by additive decomposition, low hg.

2.6 Discussion

This chapter developed a formal framework for the measurement of
heterogeneity with respect to gene expression, explicitly quantifying the
contribution of differential gene expression to observed heterogeneity. The
framework is based on the language of information theory, quantifying gene
expression heterogeneity as the amount of information required to encode the
observed distribution of gene expression on the set of cells/clusters. Overall,
this framework represents a novel approach to the quantification of
heterogeneity in the context of single-cell RN A-sequencing data (Brennecke
et al., 2013; Griin et al., 2014; Townes et al., 2019; Hafemeister and Satija, 2019;
Breda et al., 2021; Lause et al., 2020).

Throughout this chapter, I have focused on cellular classification via
differential gene expression analysis, assuming that cells of different types
form differentially expressing clusters. I have assessed the success of a given
clustering in attributing gene expression heterogeneity to differential gene
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FIGURE 2.16: Significance of Hs(g) with respect to randomisations. Plot of

log1p(p-values + 1), where the p-values are exact and controlled for false discovery

rate, for each gene in the a) Tian et al. (2019), b) Zheng et al. (2017), and ¢) Stumpf

et al. (2020) data sets. A pseudo-count is added to exact p-values as the majority of

p-values = 0. The horizontal red line at logjo(x + 1) represents the chosen signifi-

cance threshold of & = 0.05; genes below the threshold are significantly differentially
expressed as measured by Hg(g).

expression. However, the developed framework is also applicable to the more
traditional approach to cellular classification, phenotypic classification
(discussed in Section 1.1). Specifically, through the quantity hs(g), the
principles of phenotypic classification are generalised to the case of single-cell
RNA-sequencing data.

In phenotypic classification, cells are classified based on the expression of
marker genes. In classifying cells based on marker genes, cells of different
types are assumed to be (at least approximately) interchangeable with respect
to marker gene expression. Intra-cluster heterogeneity measures how well a
given clustering holds to this assumption, quantifying the divergence from the
assumption that cells of the same type should be interchangeable with respect
to measured gene expression.

Importantly, h5(g) generalises the fundamental assumption of phenotypic
classification: hg(g) quantifies the divergence from intra-cluster
interchangeability with respect to all clusters, as opposed to only a single
cluster (note that each additive component of /15(g), see Eqn 2.8, quantifies the
divergence from interchangeability within each individual cluster). The
assumption is generalised further through use of g, which quantifies the
divergence from intra-cluster interchangeability with respect to all genes, as
opposed to a single marker gene.

Hg, as established in Sections 2.3.1 & 2.4, represents a analogous
generalisation of differential gene expression, measuring differential
expression with respect to all clusters and all genes. Thus, the developed
framework formalises the correspondence between phenotypic classification
and differential gene expression analysis through the property of additive
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FIGURE 2.17: Normalised inter-cluster heterogeneity of Zheng et al. (2017) data. Plot

of Hg(g) for each gene in the Zheng et al. (2017) data set based on a) the established

surface protein classification or b) the best performing random clustering with respect
to each gene.

decomposition: as I = Hg + hg, the greater the differential expression between
a set of clusters, the less divergent the clusters from the assumption that cells
of the same type are interchangeable with respect to measured gene
expression. Thus, in establishing an empirical association between Hg and the
classification of cells into cell types, I have demonstrated that the fundamental
assumption of phenotypic classification — that cells of the same type are
approximately interchangeable with respect to measured gene expression —
extends to single-cell expression data.

In the next chapter, I will build on the empirical association established in
Section 2.5.3. I will assume that for a given data set, the clustering most likely
to represent the true clustering of cells into types maximises Hg and, by
additive decomposition, minimises hg. This assumption stems from both the
phenotypic and differential expression approaches to classification: the
clustering that maximises Hg will be both minimally divergent from the
assumption that the cells of each cluster should be interchangeable (with
respect to gene expression) and maximally differentially expressed (as
measured by Hg). Formally, in the next chapter, I will introduce a method for
the numerical optimisation of the following statement,

argmax Hg, (2.40)
S

where arg max refers to the clustering S that maximises Hs.
S

The numerical optimisation of Eqn 2.40 represents a novel unsupervised
clustering method. Notably, the novel clustering algorithm departs from the
traditional approach to unsupervised clustering: rather than implicitly
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assuming notions from dynamical systems theory (as discussed in Section
1.2.2), the novel method represents a mathematical formalisation of the
empirical principles of phenotypic classification.
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Chapter 3

Numerical Optimisation of
Information-Theoretic Clustering

Introduction

Chapter 2 formalised an information-theoretic framework for quantifying the
proportion of heterogeneity attributable to genome-wide differential
expression. I demonstrated that established cellular classifications, where the
clusters likely represent the true set of cell types in the population, attribute
significantly more gene expression heterogeneity to differential gene
expression between clusters (i.e. greater inter-cluster heterogeneity, Hs) and
significantly less heterogeneity to differences in gene expression within
clusters (i.e. less intra-type heterogeneity, hs).

Building on this association, in this chapter, I will assume that the true
clustering of cells into types maximises Hgs. This assumption builds on both
the phenotypic and differential expression approaches to classification: the
clustering that maximises Hg is both minimally divergent from intra-cluster
interchangeability (with respect to gene expression) and maximally
differentially expressing.

The assumption can be formalised as the partial optimisation statement,

arg max Hg, (3.1)
s

where the true clustering of cells into types, S, maximises H.
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Note that Eqn 3.1 is only a partial optimisation statement — optimising Eqn 3.1
will only identify the optimal clustering with respect to a specified number of
clusters C. There will therefore be a ‘true’ clustering for each possible number
of clusters. Determining the correct number of clusters is not a trivial task, as it
requires that the number of cell types in a population is known. I will present
one approach to inferring the correct choice of C in Chapter 4. For the majority
of this chapter, specifically Section 3.1, I will assume that the true number of
clusters is known.

This chapter will develop a computational approach to the optimisation of
inter-cluster heterogeneity, identifying the clustering of cells that maximises
Hg. This computational optimisation corresponds to a novel supervised
clustering method for single-cell expression data, clustering cells based on the
univariate expression distributions of individual genes. I will, therefore, first
discuss the general problem of unsupervised clustering before introducing the
specifics of the approach taken in this chapter.

Recall from Chapter 1 that unsupervised clustering methods group cells into
clusters without reference to any external knowledge or information;
supervised methods, by contrast, group cells based on a training set of
pre-classified cells. Unsupervised clustering methods consist of two parts: an
objective function to be optimised and an algorithm for the optimisation of the
objective function (Jain, 2010).

Objective functions of unsupervised clustering methods are often difficult to
optimise (Jain, 2010; Von Luxburg et al., 2012; Kiselev et al., 2019). Many
clustering objective functions are non-linear, so they are intrinsically more
difficult to solve for than linear functions (Bradley et al., 1977). Moreover, for
real-world large data sets (e.g. single-cell data sets containing thousands to
millions of cells), calculating the objective functions may be highly demanding
with respect to computational time and memory (Kiselev et al., 2019; Svensson
et al., 2020).

Furthermore, along with the single globally optimal solution, many objective
functions have multiple additional locally optimal solutions (Bradley et al.,
1977). In the context of single-cell clustering, a local optimum occurs when a
given clustering scores better by the objective function than any neighbouring
clustering, where neighbouring clusterings differ by the cluster assignment of
a single cell (this definition of neighbouring assumes that the clustering is
discrete; see Section 3.1.1 for discussion of non-discrete clusterings). These
local optima score less well with respect to the objective function than the
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FIGURE 3.1: Landscape of an objective function. Each potential clustering S of the
data x is associated with some value of the non-linear objective function fs(x). The ob-
jective function can be visualised as a landscape over the range of possible clusterings.
The objective function may have only a single peak in the landscape, representing the
sole optimal solution. Alternatively, there may be multiple optima with respect to S,
with only one global optimum (centre peak) and some number of local optima (two
side peaks). Local optimisation algorithms typically ‘move’ along the landscape, so
they can get ‘trapped’ at local optima (Bradley et al., 1977).

global optimum but score better than any neighbouring clustering (see Fig 3.1
for illustration).

Given the difficulties involved with many clustering optimisation problems,
different optimisation algorithms can be developed for a single objective
function; for example, the Louvain and Leiden methods are both algorithms
for modularity optimisation used in the context of single-cell clustering
(Blondel et al., 2008; Traag et al., 2019). Different optimisation algorithms have
different advantages and trade-offs. For instance, a major division in how
algorithms operate is whether they search locally or globally (Bradley et al.,
1977). Global optimisation algorithms attempt to find the single best solution
to the objective function. In contrast, local optimisation algorithms only
attempt to find a local optimum, usually in exchange for a substantial
reduction in the search time required.

Concerning inter-cluster heterogeneity, several algorithms have already been
developed for optimising (relative) entropy as an objective function for
unsupervised clustering, see Roberts et al. (2000, 2001), and Li et al. (2004).
However, the objective functions used by these methods do not exactly
correspond to inter-cluster heterogeneity, and moreover, these algorithms were
developed for substantially smaller data sets; the large size of single-cell
sequencing data sets requires a more scalable approach, able to cluster
thousands of cells in a reasonable length of time.
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To that end, I will begin this chapter by developing a novel approach to
optimising relative entropy in the context of unsupervised clustering. I will
adopt a fuzzy notion of clustering, allowing the adaption of an existing,
efficient local optimisation algorithm, the L-BFGS-B (Limited-memory
Broyden-Fletcher—-Goldfarb—Shanno Bound-constrained) algorithm (Zhu et al.,
1997). The L-BFGS-B algorithm is a very well established non-linear numerical
optimisation algorithm, developed for dense, large non-linear optimisation
problems, such as maximising Hg (Zhu et al., 1997).

Later in the chapter, in Section 3.1.4, I will validate the novel unsupervised
clustering method, which I call scEC (single-cell Entropic Clustering), on a
range of publicly available single-cell RNA-sequencing data sets with known
cellular classifications (see Table 2.1). I will compare the scEC clustering of
each data set to the respective established cellular classification and to a
clustering produced by a state-of-the-art single-cell clustering method. Note
that the code for scEC can be found in Appendix C and is available online at
https://github.com/mjcasy/scEC.

I will conclude the chapter by extending the developed unsupervised
clustering method to the semi-supervised setting. Semi-supervised methods
leverage some external information to enhance clustering. In the context of
single-cell clustering, semi-supervised methods allow cells to be clustered
directly into established types, directed by the known cellular classification of
a reference data set.

3.1 Optimising Inter-cluster Heterogeneity

To realise Eqn 3.1 as a practical clustering method, an efficient algorithm needs
to be adopted for the purpose of maximising Hgs. Brute force optimisation
(iterating all possible clusterings and computing the objective function for
each) is not feasible as there is an exponential number of ways (k") to partition
a set of n objects into k subsets.

Instead, I will adopt the limited-memory, box constrained BFGS (L-BFGS-B)
optimisation algorithm from the Python3 (v3.8.2) package SciPy (v1.5.3) (Byrd
et al., 1995; Zhu et al., 1997; Van Rossum and Drake, 2009; Virtanen et al.,
2020). The L-BFGS-B algorithm is a non-linear local optimisation method
developed for solving large, dense problems, such as that of clustering
single-cell RNA-sequencing data (Zhu et al., 1997). Concerning the
optimisation of a given vector of variables, w;, with respect to some objective
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function, the algorithm starts from a specified initial vector and searches the
space of possible values of w;;. The search is directed by the gradient of the
objective function and the inverse of a limited-memory approximation to the
Hessian of the objective function (Byrd et al., 1995). Note that the gradient
encodes the partial derivative of the objective function with respect to each
variable, wj,, and the Hessian encodes the second partial derivative of the
objective function with respect to each pair of variables, w;; & wyq.

L-BFGS-B is ideally suited to large optimisation problems due to the
algorithm’s efficient approximation of the Hessian. The Hessian encodes
additional information on the shape of the optimisation landscape beyond the
‘slope” along each dimension encoded by the gradient. However, the Hessian
is large — for an objective function of n variables, the gradient has n elements,
and the Hessian has 12 elements — so the matrix can be slow to compute for
large, dense data sets. The L-BFGS-B algorithm does not compute the Hessian
directly; instead, it derives an efficient, limited-memory representation of the
Hessian, based on the gradient, that scales linearly (instead of quadratically) in
memory with the number of variables n (Byrd et al., 1995). Thus, the L-BFGS-B
algorithm gains much of the advantage of the Hessian without incurring the
computational cost.

In the case of clustering, the variables being optimised are the cluster identities
of each cell. The L-BFGS-B algorithm utilises the derivative Hg with respect to
S. Carrying out such differentiation requires that Hg be continuous with
respect to S; however, the clustering S is discrete, with each cell assigned solely
to a single cluster. Therefore, I will adopt a fuzzy notion of clustering, allowing
each cell to be admitted to multiple clusters with differing degrees of
membership (Peters et al., 2013; Tasic et al., 2016). By adopting a fuzzy notion
of clustering, the objective function, Hg, is made continuous with respect to the
cluster membership of each cell, enabling the differentiation of Hg with respect
to S (or more strictly, with respect to the fuzzy cluster memberships of each
cell as encoded in S).

In the following sections (Sections 3.1.1 & 3.1.2), I will establish the necessary
mathematical machinery for implementing the L-BFGS-B optimisation
algorithm. I will begin by formally introducing a notion of fuzzy clustering,
with the corresponding fuzzy versions of inter and intra-cluster heterogeneity.
I will then demonstrate that the property of additive decomposition applies in
the fuzzy setting, confirming that maximising Hg minimises /g with respect to
the fuzzy clustering S. I will then derive the gradient of Hs with respect to S
by differentiating Hg with respect to the cluster memberships of each cell.
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Finally, based on the developed mathematics, I will adapt the L-BFGS-B
algorithm for the maximisation of Hg.

3.1.1 Fuzzy Clustering

I adopt a fuzzy conception of clustering in which cells are assigned to C
(possibly) overlapping, fuzzy clusters, Sy, ..., Sc. Each cell i has C
corresponding membership functions p(i): {1,...,N} — [0,1] for
k=1,2,...,C, where uy(i) = uj is the membership of cell i to cluster Sy for
1 <i< Nand1 <k <C.Iassume that the membership functions are
normalised,

C
Y i =1 with py >0, (3.2)
k=1

foreachi =1,2,..., N, guaranteeing that every cell belongs to at least one
cluster and possibly partially to several clusters. Based on Eqn 3.2, the
normalised value i, can be interpreted as the probability of the cell i being
assigned to the (fuzzy) cluster Sy.

The information-theoretic framework developed in Chapter 2 must be
adapted to the fuzzy setting. Population heterogeneity, I(g), is independent of
the chosen clustering, so it remains unaffected by the adoption of fuzzy
clusters, i.e. the total gene expression heterogeneity is unaffected by the choice
of discrete or fuzzy cluster memberships. For the calculations of inter-cluster
and intra-cluster heterogeneities, I extend the discrete random variables Y3
and Zf to the fuzzy setting, where Y¢ now measures the expression
distribution of the gene g across the C fuzzy clusters, and Zf measures the
expression distribution of the gene ¢ within fuzzy cluster Sy, as follows.

I define the discrete random variable Y¥ on the set of clusters Sy € {S4,...,S¢c}
with probabilities y;f given by,

8
k

=

Wik xlg. (3.3)

y:

1

I
—_

I also define, for each S € S, a discrete random variable Z,f on the set of cells,
i=1,...,N, with probabilities sz given by,
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g x§
Zik = ]’lik_lg' (3.4)
Yk

Note that because y;; defines the membership of every cell with respect to the
cluster Sy (with pj = 0 implying no membership), I define the fuzzy version of
Z,f on the set of all cells; whereas, the non-fuzzy Z,f was defined only on the
subset of cells included in each cluster.

Finally, I also extend N, the number of cells in the kth cluster, to the fuzzy
setting, as

N
Ne =) pik- (3.5)
i=1

Based on these extensions, Hs(g) and hg(g) can be redefined for fuzzy
clusterings as

C g
_ g Yx
Hs(g) = k_Zlyk log (—Nk y N) , (3.6)
and
N 438 XS/
hs(g) = Y ¢ Y pi—log (—k : (3.7)
k; kz':zl "y 1/Ng

Note that the form of Hs(g) is unaffected by the extension to fuzzy clustering
(see Eqn 2.5 for the non-fuzzy version). However, the fuzzy version of hs(g)
involves an additional y;j; term (see Eqn 2.8 for the non-fuzzy version). This
term is included as the contribution of each cell i to hs(g) must be weighted by
the probability, yj, that the cell is assigned to the cluster Sy. This weighting
means our measure of relative entropy, hs(g), corresponds not to Shannon’s
information entropy but rather to the generalisation of entropy to fuzzy sets
introduced by Zadeh (1968). See the box “Fuzzy Entropy” for a brief
explanation of fuzzy entropy.

With these extensions, the proof for additive decomposition then follows as
before, see Eqn 2.12 through Eqn 2.30, so that the additive decomposition of
heterogeneity on a fuzzy clustering is
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Fuzzy Entropy

Zadeh (1968) extended Shannon’s entropy to fuzzy subsets. For example,

let X be a discrete random variable on the set {1, ..., N}, with probabili-
ties p(X = i) = x;. The fuzzy subset k of the set {1,..., N} is defined by
weighting the inclusion of each member i of the set by a membership p .
The entropy of X with respect to the set {1,..., N} is defined in Eqn 2.1.
The entropy of X with respect to the fuzzy subset k is,

N
— Y paexilog x;,
i=1

where each element of the summation is weighted by its membership of
the subset. Note that when ZICZ « = Mik, the memberships of the fuzzy sub-
set k can be interpreted as the probability that each member i is included
in the fuzzy set.

s C N xl x;"/yg
nylog<N/N> ; Z _i <—1/N:> (3.8)

=1
= Hs(g) + hs(g)- (3.9)

As information-theoretic heterogeneity remains additively decomposable with
respect to the fuzzy clustering S, only one of Hg or /s needs to be optimised
and so only one of Hg or hg needs to differentiated. In the following section, I
will differentiate Hg with respect to the cluster memberships of each cell, .

3.1.2 Differentiation of Inter-cluster Heterogeneity

In this section, I find the gradient of Hg with respect to p;; for use in the
L-BFGS-B algorithm. Recall that the gradient of a function encodes the partial
derivative of the function with respect to each element of a vector (or matrix)
of variables. Concerning Hg, I aim to find the partial derivative of Hg with
respect to each element ;;, the membership of the cell i with respect to fuzzy
cluster Sy.

(Note that I will not be interpreting the gradient of Hg in terms of the biology
of gene expression or cell type. While the derivative may have some biological
interpretation, within the scope of this thesis, the gradient of Hg has a purely
technical role in the optimisation of Hg with respect to S.)
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I begin by repeating the definition of Hg in full,

G C yg
=Y Z y; log (NJN) . (3.10)

§=1k=1

(Recall that yf and Ny depend on pj, as per Eqn 3.3 & 3.5.)

I now differentiate Hs with respect to the N - C membership functions p,,
wherel <r < N,1<g<C.

From Eqn 3.3 and Eqn 3.5,

Wi _Jx k=g (3.11)
Ihrg 0 k+#g
Ihrg 0 k#gq

Using the product, chain and quotient rules, Hg(g) can be differentiated with
respect to the cluster memberships of each cell py:

)

S vi
= k; a;um (y log (N ) (log (Nk/N>> (3.14)
+

dHs(g) <iy log

Vi
Opirg _aym k=1 Ni/N

— x¥ log (N:’jN :Zly I;%Naim (Nf’;N> (3.15)
— ¥ log (% i % o (yk> (3.16)
~ xflog (% é ( e () Ne= i3 (M) ) 617
= x¥ log (% + Niq (x¥N; —v3) (3.18)

_ .8 Yq _ Y
= X3 (log (Nq> +log(N) + 1) N, (3.19)
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Eqn 3.19 is the gradient of Hg(g) with respect to cluster memberships, where

each element of ag{;& encodes the partial derivative of Hs(g) with respect to

the membership of the cell  to fuzzy cluster S.

The gradient of the objective function, Hg, is then,

9Hs _ - 9Hs(g)
e g=1 Ihrg

(3.20)

Recall that the memberships of each cluster are constrained, so that Hrg >0
and that 25:1 trg = 1. A convenient way to incorporate these constraints is to
introduce the unconstrained variables w;; related to the cluster memberships
Uik through the softmax function,

eWik

Hik
Regardless of the values of the variables wj, the softmax function guarantees
that p; > 0 and that YC iy = 1.

Making the objective function Hg a function of wy, the gradient of Hg can be
found with respect to wj; by the chain rule,

(3.22)

To determine gZZZ, I write M; = ZZC:1 evit so Eqn 3.21 becomes i, = e“ik / M;.

Then, by the quotient rule,

ewl‘k M; 7€2wlk

ifr=iandg =k,

M?
a]/qu d eWrg ewi’igul"k
= = — ! i =1 2
Wi Wik (Mr ) M; ifr=iandg #k (529
0 if r £ i.

Having derived suitably constrained objective and gradient functions, I will
now implement the L-BFGS-B algorithm in optimising Hy.
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3.1.3 Implementation of the L-BFGS-B Algorithm

Starting from an initial vector, wj, the L-BFGS-B algorithm carries out a search
for a local optimum in Hg (Byrd et al., 1995; Zhu et al., 1997). The search is
carried out via step-wise updates of w;. At each step of the search, the
algorithm determines a new direction for the search, in part, by computing the
gradient of Hg with respect to w; (given by Eqn 3.22). The search is bounded,
with the algorithm only assessing values of w;, between some range,

Ib < wj < ub, where the specific choice of upper (#b) and lower bounds (/b) is
arbitrary. Importantly, this optimisation is for a fixed number of clusters,
where the number of clusters is set via the size of the w;; matrix.

The result of the L-BFGS-B algorithm algorithm is a vector encoding the
variables w;, fori =1,...,Nand k = 1,...,C, which are converted to cluster
memberships y; through the softmax function, see Eqn 3.21. These
memberships encode a fuzzy clustering corresponding to a (local or global)
optimum in Hg, within the bounds of the search.

Concerning the initial vector, the cluster-wise memberships must be varied for
each cell. If all the membership values for a given cell are the same,

i.e. wjy = wj; for all j # k, then the initial gradient with respect to each
membership value w;; will be identical, resulting in no net direction for the
search. In other words, at each step, the relative cluster memberships p; will
remain unchanged. I break this symmetry through random initialisation,
choosing the initial vector w;;, through random sampling of a uniform
distribution centred on zero.

The specific clustering found by the algorithm is determined by the choice of
initial vector. The L-BFGS-B algorithm is only guaranteed to identify local
optima, so different initial vectors can result in finding different optima (Byrd
etal., 1995; Zhu et al., 1997). To make the implementation robust to the exact
choice of initial vector, the optimisation can be repeated multiple times with
different initial vectors, choosing the clustering S with the greatest inter-cluster
heterogeneity H.

The returned clustering is fuzzy. Nevertheless, biologically, cell types are
typically assumed to be discrete. Moreover, Hg is generally maximised when
there is no fuzziness in cluster membership; see Fig 3.2 for a diagrammatic
explanation. For example in the following section, I will cluster the Tian et al.
(2019) and Zheng et al. (2017) data sets. Concerning both data sets, the greatest
fuzzy membership weight for each cell y;, where y; = max () for
k=1,...,C,is approximately equal to 1 for nearly all cells. Specifically,
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& M|

Inter-cluster Heterogeneity
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FIGURE 3.2: Effect of fuzziness on inter-cluster heterogeneity. At maximum fuzzi-
ness, where every cell belongs equally to each cluster, with y; = Ny/N = 1/C, there
is zero inter-cluster heterogeneity. Here the number of clusters is two, so maximum
fuzziness corresponds i, = 0.5. As fuzziness reduces and cells are increasingly pref-
erentially assigned to one cluster or another, inter-cluster heterogeneity can emerge,
generally reaching a maximum when cells are discretely assigned to each cluster, rep-
resented in the diagram on the right-hand side. Importantly, not all discrete clusterings
will exceed all fuzzy clusterings with respect to Hg. However, when the clustering is
correct, the less fuzzy the clustering, the greater inter-cluster heterogeneity can be cap-
tured. Importantly, this only applies when the true clustering is genuinely discrete; see
the results of clustering the Stumpf et al. (2020) data set in Section 3.1.4.

concerning the returned clustering, u; > 0.99 for all cells in the Tian et al.
(2019) data set and for 99.7% of cells in the Zheng et al. (2017) data set.

Note that the L-BFGS-B algorithm cannot return discrete memberships as 1)
the algorithm is bounded and 2) discrete cluster memberships are asymptotic
with respect to w;k, with p =1 (and p;; = 0 for j # k) only when wj, = .
Therefore, I discretise the returned cluster memberships, assigning each cell
solely to the cluster with the highest membership. The overall unsupervised
clustering method, scEC, is therefore discrete (though I will discuss an
exception to this discrete view regarding the Stumpf et al. (2020) data set in
Section 3.1.4).

In the next section, I will validate scEC against various data sets. Specifically, I
will confirm that scEC is able to (largely) recover the established classifications
for the Tian et al. (2019), Zheng et al. (2017) and Stumpf et al. (2020) data sets
where the cellular classification has been derived via experiment or differential
gene expression analysis.



3.1. Optimising Inter-cluster Heterogeneity 79

3.1.4 Validation

In Chapter 2, I introduced three data sets where the classification of cells has
been established, either through experimental evidence (separate from gene
expression as measured by single-cell RNA-sequencing) or through
differential expression analysis of a set of clusters derived by unsupervised
clustering. Specifically, the cells of the Tian et al. (2019) data belong to three
different cancerous cell lines so are classified by cellular genotype; the cells of
the Zheng et al. (2017) data set were separated based on surface protein
expression prior to sequencing; and the cells of the Stumpf et al. (2020) data set
were grouped into cell types via unsupervised clustering, with each cluster
identified via differential gene expression analysis.

In this section, I cluster each of these three data sets using the scEC (single-cell
Entropic Clustering) clustering method developed above. (Note that for each
data set, I will cluster based on the top 500 genes by I(g); thus, each clustering
depends on only those genes likely to be differentially expressed). I will
compare the scEC clustering of each data set with the established classification
through the Adjusted Rand Index (ARI), where the ARI is a measure of
similarity between two classifications, adjusted for similarity that may emerge
from chance (Rand, 1971; Hubert and Arabie, 1985). An ARI of 1 indicates
perfect alignment, and an ARI of 0 indicates no greater similarity than
expected from chance. See the box “Adjusted Rand Index” for details of the
adjusted rand index.

The ARIs achieved by scEC are benchmarked against those achieved by an
alternative unsupervised clustering algorithm, the Louvain method (as
implemented in the R package Seurat, v3.2.3) (Blondel et al., 2008; Stuart et al.,
2019). I choose the Louvain method as it has been repeatedly recognised as the
best performing unsupervised clustering algorithm for single-cell
RNA-sequencing data, so it provides a benchmark for state-of-the-art
clustering performance (Freytag et al., 2018; Duo et al., 2018; Luecken and
Theis, 2019). For both scEC and the Louvain method, I specify the number of
clusters, choosing the same number of cell types as identified in the
established classification in each case, where C = 3 for Tian et al. (2019), C = 4
for Zheng et al. (2017) and C = 14 for Stumpf et al. (2020). The results of these
analyses are detailed in Table 3.1.

The Tian et al. (2019) data set is relatively simple, with clear, discrete clusters of
cell types. Both methods successfully recover the genotyped classification of
the Tian et al. (2019) population, with both methods achieving an ARI of 0.99.
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Adjusted Rand Index

The Adjusted Rand Index (ARI), as described in Hubert and Arabie
(1985), is a measure of the overlap between two sets of cluster annota-

tions, adjusted for the amount of overlap expected by chance. The ARI is
1 when two annotations, X and Y, overlap entirely, and 0 when they have
a level of overlap that could be expected to arise solely by chance. Neg-
ative ARIs can be achieved if the overlap is worse than that expected by
chance, though Hubert and Arabie (1985) did not derive a specific lower
bound on ARL

The calculation of the ARI is based on a contingency table of the form
presented below, recording the number of cells, n;;, belonging to cluster i
in clustering X and cluster j in clustering Y. The total number of clusters
in each data set is R for X and C for Y. The total number of cells in each
data set, n, is the same.

Class | Y7 Yo --- Yc | Sums
X1 |npn nyp oo+ myc | Ny
Xy |ny nyp -+ Hpc | N2
XR |NR1 nNR2 -+ HRc| MR

Sums | nq n, -+ nc n

The ARI of the above contingency table is found as,
i (5) — [Zi (3) X (njj)] / (3)
HE ) +5(D] - [ZH 5]/ ¢

where (;) is the binomial coefficient, detailing the number of ways to

ARI =

choose an (unordered) subset of k elements from a fixed set of # elements.

Both methods perform well on the Zheng et al. (2017) data set; however, the
Louvain method achieves a higher ARI (0.99) than scEC (0.87). Interestingly,
the surface protein classification of the Zheng et al. (2017) cells captures less
inter-cluster heterogeneity, 177 nats, than the scEC clustering, 199 nats. Thus,
the difference in the cellular classification reflects a genuine disagreement in
classification rather than poor optimisation of the objective function.

Importantly, both the established classification and the scEC clustering of the
Zheng et al. (2017) data set represent forms of phenotypic classification (as
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Data Set H scEC Louvain

Tian et al. (2019) || 0.99 0.99
Zheng et al. (2017) || 0.87 0.99
Stumpf et al. (2020) || 0.69 0.35

TABLE 3.1: Similarity of clustering results to established classifications. The simi-

larity of the unsupervised clustering produced by either scEC or the Louvain method

to the established classification for three data sets. Similarity is measured by the Ad-

justed Rand Index, where a value of 1 indicates perfect alignment and a value of 0
indicates no greater similarity than expected from chance.

discussed in Section 2.6). Indeed, where the established classification
identifies cells with respect to the measured expression of a handful of marker
genes, scEC clusters cells with respect to the measured expression of a large
subset of all genes (recall that the scEC clustering is based top 500 genes by
1(g)). The scEC clustering therefore represents a more exhaustive application
of the principles of phenotypic classification.

Moreover, the Zheng et al. (2017) data set is a concatenation of multiple
sequencing runs, where the cells of each type are sequenced separately. The
apparent success of the Louvain method could be interpreted as the successful
recovery of the separate sequencing runs via the associated batch effects (small
differences in expression across many genes resulting from cells being in
different batches) as opposed to the recovery of genuine biology. The scEC
method is robust to such batch effects, as the James-Stein-type estimator
minimises the influences of small changes in gene expression (see Section 2.5.1
for discussion of James-Stein-type estimator). The absence of heterogeneity
attributable to batch effects can be seen with respect to the Svensson et al.
(2017) data set, which is a concatenation of two separate sequencing runs.

The Hg(g) values associated with the novel scEC clustering and the clustering
in the original Zheng et al. (2017) publication are strongly positively correlated
(Pearson’s correlation coefficient of 0.94; including all genes with at least 100
transcripts expressed across all cells) with a mean gene-wise difference,
AHs(g) = Huover (§)~Horigina(§), of 0.0019. Those genes used to separate the
cell types on the level of surface protein expression — CD14, CD4, CD8 and
NCAM]I - are each associated with a significant value of Hs(g) with respect to
the novel clustering (Zheng et al., 2017). Performing a gene ontology
enrichment analysis of those genes where the value of Hs(g) with respect to
the novel clustering outperforms that of the originally published clustering by
at least 0.1 nat, i.e. AHg(g) > 0.1, reveals a significant enrichment of cell cycle
genes (p-value = 1.33 - 1078, correction for false discovery rate) (Ashburner

et al., 2000; Gene Ontology Consortium, 2021; Benjamini and Hochberg, 1995).
Conversely, those genes where the original clustering substantially
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‘ 1 2 3 4

T-Cells | 62929 1015 285 112
NK-Cells 983 7379 13 10
B-Cells 754 17 9311 3
Monocytes 35 6 25 2546

TABLE 3.2: Information-theoretic clustering of immune cells. Contingency table be-
tween surface protein-derived classification and the scEC clustering of the Zheng et al.
(2017) data set. The columns represent the four scEC clusters and the rows represent
the classification based on surface protein expression. Each element of the table en-
codes the number of cells in both an scEC cluster and a surface protein-based cell

type.

outperforms the novel clustering, AHs(g) < —0.1, are enriched with respect to
the immune response ontology term (p-value = 1.49 - 1073, correction for false
discovery rate). Therefore, the divergence in clustering is driven by the greater
influence of the cell cycle on scEC. This influence results from the large
number of genes involved in the cell cycle; in maximising the additive sum of
Hg(g) across individual genes, scEC is biased towards biological processes
involving larger tranches of genes.

The greatest difference in performance between the two unsupervised
clustering methods is with respect to the Stumpf et al. (2020) data set, with
scEC achieving an ARI of 0.69 and the Louvain method an ARI of 0.35 (see
Table 3.3 for contingency table of the scEC clustering against the established
classification). The Stumpf et al. (2020) data set is the most biologically
complex, with cells sampled from the haemopoietic stem cell lineage. The
haemopoietic stem cell lineage is a dynamic biological system in which cells
are actively transitioning from one cell type identity to another. Cells
transition along one of several different continuous developmental trajectories,
each associated with a distinct lineage of cell types. The data set is therefore
more difficult to classify, as the cells of the population do not truly identify
with a single discrete type. Experimental classifications of the type in Tian
et al. (2019) and Zheng et al. (2017) cannot be obtained for such biologically
dynamic systems; instead, approximate (discrete) classifications have to be
derived from computational clustering and validated based on differential
expression of established marker genes (as discussed in Section 1.3).

The substantially better performance of scEC compared to the Louvain
method on the Stumpf et al. (2020) data set is somewhat surprising, as scEC
assumes each cell type to consist of a set of approximately interchangeable
cells. In contrast, the Louvain method requires only that cells be similar to at
least some other cells of the same type. Given that the scEC objective function
Hg largely measures discrete differences in expression, it is interesting that
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FIGURE 3.3: Batch effect and the James-Stein-type estimator. The Svensson et al.

(2017) data set concatenates two separate sequencing runs, each of an equal number of

cells. There is no visible effect of these separate batches on I(g) as calculated based on

James-Stein-type estimator of the distribution of the expression of each gene. Through

additive decomposition, population heterogeneity represents the maximum possible

inter-cluster heterogeneity, Hs < I, so batch effect likely has only a minimal influence
over the clusterings produced by scEC.

information-theoretic clustering can recover the quasi-continuous cellular
identities of the Stumpf et al. (2020) data set.

The primary difference between the three classifications (scEC, Louvain and
established) is in the identities of the Erythrocyte clade (see Fig 2.15 and Fig
3.4). In the established classification of the Stumpf et al. (2020) data set, the
Erythrocyte cell type consists of cells drawn from along a continuous
maturation process. scEC appears to identify three stages of maturation:
stem-like, maturing and terminal Erythrocytes (see Fig 3.4a and Table 3.3).
The Louvain method, by contrast, breaks the Erythrocytes clade into five
distinct stages, substantially over-clustering the lineage relative to the
established classification (see Fig 3.4b). The number of cell types is fixed at
C = 14, so the over-clustering of Erythrocytes is balanced by the merging of
other cell types originally identified as distinct in Stumpf et al. (2020). The
merging of established cell types substantially reduces the ARI achieved.

The uncertainty in Erythrocyte identity is reflected in the original

(i.e. pre-discretisation) fuzzy membership values, y;x, of the Stumpf et al.
(2020) scEC clustering. Only 49.3% of cells are assigned to a single cluster with
a weighting of at least y; > 0.95. Of the cells with less certain assignments,

ui < 0.95, 87.3% are preferentially assigned to the Erythrocyte identity,

i.e. cluster number 7 in Table 3.3. These Erythrocyte cells have equal
probability, y;k of being assigned to both cluster number 7 and cluster number
14. I discretise the identity of the cells by arbitrarily choosing one of the two
clusters, assigning all cells to cluster 7 (this results in one fewer discrete cluster
being returned than originally specified). Importantly, this uncertainty is
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1 2 3 4 5 6 7 8 9 10 11 12 13 14

Erythroblasts| 0 0 233 0 0 02436 1 0171 1 0 3 0
Myeloblasts (313 0 0 0245 0 39 0 0 4 0 0 2 0
Pro-B| 0 0 018 0 0 38 0 0 0 0 0 0 O
Monocytes| 0 2 0 23 23 165 0O 0 0 0 4 0 0O
Basophils| 0 0 2 0 1 0 0130 0 0 0 0 0 O
Pericytes| 0 2 0 0 0 O 0 0 0 0 0110 0 O

PreB| 0 0 0 58 2 0 o 00 0 2 0 00
Megakaryocytes| 0 0 21 0 O O 0 040 0 0 0 0 O
T-NK| 0 0 0 0 1 0 3 00 05 0 0 O
Endothelial Cells| 0 41 4 0 0 1 o 00 0 0 4 00
HSPCs| 3 0182 5 50 1 49 7 0 4 2 0 0 O
Monoblasts | 16 0 3 7 200 66 7 0 0 0 0O 1 0 O
Neutrophils| 0 0 0 1 8 1 0 1.0 0 1 025 0
Myelocytes| 4 0 0 3 93 0 2 0 0 0 0 014 O

TABLE 3.3: Information-theoretic clustering of mouse bone marrow data set. Con-
tingency table between differential gene expression analysis validated classification
and the scEC clustering of the Stumpf et al. (2020) data set. The columns represent
the scEC clusters, the rows the established classification. Each element of the table
encodes the number of cells in both an scEC cluster and an established cell type. Note
that while the number of clusters was set to 14 for scEC, only 13 clusters were realised
when discretised: in the developed implementation of scEC, only the maximum num-
ber of clusters can be specified.

genuine. The discretised memberships outperform the fuzzy memberships,
with Hg = 608 nats and Hg = 574 nats, respectively; however, the discrete
clustering is itself slightly outperformed by the case where only those cells
with near-certain assignments, y;; > 0.95, are discretised, with Hg = 610 nats.
Thus, scEC can, to an extent, identify cells with uncertain cellular identities.

The Hs(g) values of the novel scEC clustering and the clustering in the
original Stumpf et al. (2020) publication are strongly positively correlated
(Pearson’s correlation coefficient of 0.99), with a mean AHs(g) of 0.024. All of
the primary lineage marker genes (stem and progenitor cells, Cd34; niche cells,
Kitl; myeloid lineage, Spil; erythroid lineage, Gatal; lymphoid lineage, Pax5)
and all of the cell type specific markers (Erythrocytes: Car2, Hemgn, Hba-a2,
and Aldhlal; Granulocytes: Elane, Ltf, Retnlg, and Mcpt8; Monocytes: Irf8, Kif4,
Ccr2, and Cx3cr1; Stem cells: Kit, Angpt1, Kitl, and Tek; Endothelial cells: Cdh5,
Cxcl12, Kdr, and Lepr; Lymphocytes: Fit3, 1I7r, Cd19, and Ms4al) identified in
Stumpf et al. (2020) are associated with significant values of Hs(g) with
respect to the novel (and original) clustering. With respect to gene ontology
terms, those genes with AHg(g) > 0.1 are significantly enriched with respect
to Erythrocyte differentiation and homeostasis (p-value = 1.80 - 10~2 and
p-values = 6.17 - 1074, correction for false discovery rate); conversely, those
genes with AHg(g) < —0.1 are significantly enriched with respect to the
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FIGURE 3.4: Visualisation of scEC clustering of mouse bone marrow data set. Non-

linear dimension reduction (UMAP) of cellular gene expression (McInnes et al., 2018).

Cells are coloured either by a) scEC clustering or b) Louvain clustering results. The

Erythrocyte clade (left-hand side) is split into either a) three or b) five clusters. See Fig

2.15 for visualisation with established cluster identities. Processing and visualisation
of genes performed using the Seurat package (Stuart et al., 2019).
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immune response (p-value = 2.57 - 1018, correction for false discovery
rate)(Ashburner et al., 2000; Gene Ontology Consortium, 2021; Benjamini and
Hochberg, 1995). This difference in genes corresponds in the shift in the novel
clustering from separating the cell types of the Neutrophil lineage to those of
the Erythrocyte clade, suggesting that the various stages of the Erythrocyte
clade are separable enough to be considered distinct cell types, in contrast to
the considerations of Stumpf et al. (2020).

The reduced ARIs of both clustering methods on the Stumpf et al. (2020) data
set relates to a broader point — that the performance of an unsupervised
clustering method depends strongly on the number of clusters specified. Both
scEC and the Louvain method optimise their respective objective functions for
a given number of clusters, with the number of clusters set via hyperparameter
and not learned from the data. More generally, deciding on the appropriate
number of clusters is an active and important choice in unsupervised
clustering, with most methods requiring that the number of clusters be
specified by hyperparameter (Von Luxburg et al., 2012; Kiselev et al., 2019).

There are generic tools available for choosing the number of clusters, e.g. the
GAP statistic, see Tibshirani et al. (2001). However, in specifying the number
of clusters, a strong statement is being made about the biology of a given
cellular population, with such tools attempting to infer the number of cell
types present in a population. In Chapter 4, I will develop one such tool for
estimating the true number of clusters in a single-cell expression data set,
based on a novel quantification of heterogeneity with respect to the joint
distribution of gene expression.

An alternative approach to learning the true cluster number is to leverage a
reference data set. For example, it is increasingly common to have access to a
previously classified single-cell RNA-sequencing data set of the biological
system of interest (Lotfollahi et al., 2021; Regev et al., 2017; Tabula Muris
Consortium et al., 2018; Li et al., 2021a; The Tabula Sapiens Consortium and
Quake, 2021). These data sets can act as references for the semi-supervised or
supervised classification of novel data sets, with the number of cell types in the
reference providing the maximum number of clusters in the novel test data set.
In the next section, I will develop a semi-supervised classification method for
single-cell expression data, extending scEC to the semi-supervised setting.
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3.2 Semi-supervised Classification

The success of single-cell RNA-sequencing and unsupervised clustering has
led to the ambition to sequence every cell type in humans and model
organisms. These large atlas projects can take the form of a single large
experiment, as typified by the Tabula projects, or a distributed organ-wise
approach, as seen with the massive Human Cell Atlas project (Tabula Muris
Consortium et al., 2018; Li et al., 2021a; The Tabula Sapiens Consortium and
Quake, 2021; Han et al., 2020; Regev et al., 2017).

These atlases can serve as reference transcriptomes, in analogy to reference
genomes (Nurk et al., 2021). Thus, for a given experimental data set: instead of
undertaking the full process of pre-processing, unsupervised clustering and
annotation by marker genes, cells can instead be mapped to the established
cell types of a relevant cell atlas (Kiselev et al., 2018; Luecken and Theis, 2019).
Each cell can then be identified not by unsupervised clustering but by
supervised or semi-supervised classification based on known cell types. Much
as sampling reads are not de novo characterised each time but mapped to the
reference genome, the repeated de novo classification of cells can be avoided
with cells instead mapped to a reference transcriptome.

However, this process is not as simple as with the genome, in which sequences
of DNA can be mapped exactly to their place along the 1-dimensional genome.
With the transcriptome, the problem is both high-dimensional and inexact,
with the intra-type heterogeneity arising from biological noise and technical
error prohibiting exact matching of cells to types. Nevertheless, methods for
mapping data sets to reference transcriptomes, such as Kiselev et al. (2018),
Pliner et al. (2019), Stuart et al. (2019), & Lotfollahi et al. (2021), are a
fast-growing area of single-cell analysis (Zappia and Theis, 2021).

In this section, I will extend scEC to the problem of semi-supervised
classification. That is, I will cluster an unclassified test data set based on a
mixed data set of both classified and unclassified cells, where the classified
cells are sourced from an established reference transcriptome (Regev et al.,
2017; Tanay and Regev, 2017; Stuart et al., 2019; Luecken and Theis, 2019). To
cluster the mixed data set, I again maximise inter-cluster heterogeneity, with
the distinction that a subset of cells, i.e. those from the reference data set, have
pre-assigned discrete cluster memberships. Importantly, this clustering
directly classifies the cells of the test data set, as each cell inherits the
classification of the reference cluster it is assigned to. The resulting method is
semi-supervised because the classification of each cell depends both on the



88 Chapter 3. Numerical Optimisation of Information-Theoretic Clustering

reference data set and on the test data set. (In contrast, in a supervised method,
the classification of each cell would depend solely on the reference data set).

More formally, let us consider a pair of count matrices, T = {T,, fr Tiest }, where
one count matrix, which I will term the reference, T}, has a known cluster
structure (and therefore each cell has a unique, discrete cell type classification).
The goal of reference mapping is to classify cells in the test matrix, T, based
on cellular classifications of the reference matrix, which I accomplish by
semi-supervised clustering of the mixed data set.

I tirst normalise each count matrix separately, using the James-Stein-type
estimator so that } e, x‘lg = 1 (see Section 2.5.1 for discussion on
James-Stein-type estimator) (James and Stein, 1992). To combine the
normalised count matrices, I assume that T,, £ and T are interchangeable
with respect to gene expression. Recall that when clusters of cells are
interchangeable with respect to gene expression, the proportion of transcripts
expressed in each cluster is Ny /N, where Nj is the number of cells in that
cluster (see Section 2.3.1). Therefore, treating both normalised count matrices
as interchangeable with respect to gene expression, the normalised, combined
count matrix, Xy, is given by the weighting:

N N
Xonix = I:;f Xref/ ;\?St Xtest | » (324-)

where N,, s the number of cells in the reference data set, N;qs; is the number
of cells in the unclassified data set, and N is the total number of cells across
both data sets.

As with scEC, I cluster the combined data set, X,,;,, by maximising the
inter-cluster heterogeneity of the combined data set with respect to the fuzzy
clustering S. However, unlike with scEC, a subset of cells have already been
identified. Let R = Ry, ..., Rc be the discrete clustering of the reference data
set, with cluster sizes ny, ..., nc, where Z,le 1 = Nyer. I define each cluster in
the reference data set as a subset of a cluster in the mixed data set, R € Sy,
where S = Sy,. .., Sc is the clustering of the mixed data set. Thus, the number
of clusters in the mixed data sets equals the number of clusters in the reference.

Based on the mixture of known and unknown cellular identities, I define y;%
and Nj of the combined data set X,,,;y,
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Ntest

yf = Z Uik xlg + Z xlg, and (3.25)
i=1 iGRk
Ntest

N, = Z Uik + 1y, (3.26)

=1

where each variable is a sum of both fuzzy and discrete terms.

Using the above formulations of y‘g and Nj, the definition of Hg follows as
before, see Eqn 2.5, and so the objective function remains the same, Eqn 3.10.
The derivative of the objective function follows as before, see Eqns 3.13
through 3.19, except that the membership function, 4 is only defined with
respect to cells of the test data set, 1 < r < Ny,st. Therefore, the gradient
function is the softmax formulation, Eqn 3.22, defined for 1 < i < Nigt.

I adopt the same implementation of the L-BFGS-B algorithm as for
unsupervised clustering, with the exception that each element of the initial
vector of cluster memberships, wj is set to 0. The known cellular identities of
the reference data set introduce the necessary asymmetry for numerical
optimisation; this eliminates the stochasticity of the initial choice of w;; and the
corresponding need for randomised initialisation. Moreover, because the
reference transcriptome provides the number of clusters, the optimisation
statement is now complete, and so has no tunable parameters.

For computational efficiency and the minimise the effects of technical and
biological noise, I include only those genes associated with substantial Hs(g)
with respect to the reference data set. Implicitly this restriction assumes that
the reference transcriptome provides a complete description of the biological
system: if the reference data captures the complete set of cell types in the
biological system, only those genes with substantial Hg(g) with respect to the
reference data set should be relevant to the cellular classification. This
reference-based feature selection increases the degree to which the
classification of the test data set is ‘supervised’ by the reference transcriptome.

Robustly validating semi-supervised or supervised clustering methods is
difficult as two distinct data sets with independently established cellular
classification are required, where the set of cell types in the test data set is a
subset of the cell types in the reference. Tian et al. (2019) generated such a pair
of data sets, namely the Tian3 and the Tian5 data sets. Up to now, I have
utilised only the Tian3 data set, sequenced from a mixture of three cancerous
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Data Set H Cells (N) Cell Lines
Tian3 902 H1975, H2228, HCC827

Tianb 3918 H1975, H2228, HCC827, H838, A549

TABLE 3.4: Cancer cell line data sets. Tian et al. (2019) generated two data sets, one
sequenced from a mixture of three cancerous cell lines, Tian3, and one sequenced from
a mixture of five cancerous cell lines, Tian5.

H1975 H2228 HCC827

H1975 276 2 0
H2228 0 308 1
HCC827 0 0 258
A549 29 5 15
H838 8 0 0

TABLE 3.5: Semi-supervised classification of cancer cell lines. Semi-supervised clas-

sification of Tian3, with Tian5 serving as the reference data set (Tian et al., 2019). The

columns represent the established genotypic classification of the cells of the three cell

lines data set, Tian3, and the rows represent the semi-supervised classification of cells

based on the Tian5 data set. The semi-supervised classification achieves an adjusted
rand index of 0.90.

cell lines (recall cell lines are proxies for cell types). The Tian5 data set is larger,
containing both more cells and an additional two cell lines, see Table 3.4.

I cluster both data sets together, with Tian3 serving as the test data set and
Tianb as the reference data set. The resulting clustering substantially overlaps
with the established genotypic classification of the Tian3 data set, achieving an
ARI of 0.90, see Table 3.5. Thus, the semi-supervised classification method
successfully recovers the established cell types of the Tian3 data set.

3.3 Discussion

In this chapter, I have developed a pair of novel single-cell clustering methods
based on the assumption that cells of the same type should be (at least
approximately) interchangeable with respect to the measured expression of a
set of genes. I have built on the information-theoretic framework developed in
Chapter 2, extending that framework to quantify the proportion of
heterogeneity attributable to differential gene expression between a set of
overlapping, fuzzy clusters. The extension to the fuzzy setting enables the
efficient optimisation of Hg with respect to S, identifying the set of clusters for
each data set that is maximally differentially expressed and minimally
divergent from the assumption that cells of the same type are interchangeable
with respect to measured gene expression (by the additive decomposition of I;
see discussion in Section 2.6).
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The scEC method applies the process of phenotypic classification to single-cell
RNA-sequencing data. The fundamental assumption of phenotypic
classification is that the cells of each type are interchangeable with respect to
marker gene expression. As outlined in Section 2.6, the measure /g extends
this assumption genome-wide, quantifying the deviation of the measured
patterns of gene expression from the hypothetical case where the cells of each
cluster are interchangeable with respect to the expression of many genes. Thus,
given that maximising Hg minimises hg, scEC can be interpreted as automating
the phenotypic classification of cells with respect to single-cell expression data.

The scEC method directly quantifies the importance of each gene to the final
clustering through Hs = Y, Hs(g), with those genes associated with high
values of Hs(g) representing putative marker genes. The final clustering, and
so the list of genes identified as putative markers, does not depend on the
differential expression of any one gene: when clustering based on hundreds or
thousands of genes, maximising the total Hg depends on maximising the value
of Hs(g) across many individual genes. Thus, the optimal clustering depends
on the number of differentially expressed genes with respect to each clustering
and the strength of each gene’s differential expression (measured through

Hs(g))-

Therefore, scEC uncovers and leverages the coordination (statistical
dependency) between the expression patterns of different genes. Given that
the value of Hg(g) associated with each gene is found with respect to the same
clustering, the expression of those genes that contribute most to the optimal
H;s will tend to be correlated with other highly-contributing, i.e. high Hg(g),
genes. Thus, the scEC method implicitly assumes that cell types emerge from
the coordinated expression of many genes, an assumption similarly made by
the more traditional single-cell clustering methods (as discussed in Section 1.2
in reference to gene regulatory networks and dynamical systems theory).

Traditional clustering methods uncover the coordination in gene expression in
a two-step process: first, the Euclidean distance quantifies the similarity in
gene expression between individual pairs of cells; then, cells are clustered
based on the Euclidean distance, indirectly identifying any coordination in
gene expression patterns (as discussed in Section 1.2.3). The scEC method
avoids the intermediate step, directly identifying any coordination between
the expression patterns of individual genes.

This difference in identifying coordination with respect to the expression
patterns of individual genes reflects a more fundamental difference between
scEC and traditional single-cell clustering methods: traditional unsupervised



92 Chapter 3. Numerical Optimisation of Information-Theoretic Clustering

clustering methods assume cell types emerge as regions of high probability
density in gene expression space. Philosophically (although often implicitly)
this assumption stems from a dynamical systems theory view of cell fate (as
discussed in Section 1.2.2) (Greulich et al., 2020). In contrast, scEC assumes
that cells of the same type are approximately interchangeable with respect to
measured gene expression, an assumption stemming from the empirical
principles of phenotypic classification.

With these considerations in mind it is notable that both scEC and the Louvain
method performed comparably well with respect to retrieving established
cellular classifications, suggesting that both conceptions of cell type are
reasonable despite their apparent philosophical differences. While the full
reasons for this concordance are not clear (see Chapter 5 for discussion on the
philosophical connections between the two approaches), it does suggest that
cells of the same type are at least approximately interchangeable and the
traditional working definition of cell type still has relevance in the world of
high-throughput single-cell RN A-sequencing data (Casey et al., 2020b).

Moreover, although the Louvain method is a more generally powerful
unsupervised clustering method than scEC (not least because it has been
validated across diverse data sets beyond single-cell RN A-sequencing), scEC
has a more intuitive biological interpretation that will be familiar to many
experimentalists. While the assumption that cell types emerge as dynamic
attractors in gene space is mathematically appealing, it is empirically
non-intuitive and can confound, rather than help, the distillation of biological
knowledge from complex single-cell data sets (Newman, 2020). Thus, the
choice of clustering method depends on whether power or interpretability is
preferred, the specifics of the data and the practitioner’s background.

The supervised and semi-supervised classification of cells based on reference
transcriptomes is a burgeoning and rapidly growing field of single-cell
analysis (Zappia and Theis, 2021). Where scEC extends the principles of
phenotypic classification genome-wide, (semi-)supervised classification
directly extends the process of phenotypic classification genome-wide. In
supervised classification, each cell or cluster of a test data set is compared to
the clusters of the reference data set. With respect to the reference data, each
cluster represents a cell type: thus, instead of classifying cells/clusters based
on the expression of a handful of marker genes, cells/clusters are classified
with respect to the expression of all genes (or at least a large subset of all
genes). By classifying each cell type with respect to genome-wide gene
expression, semi-supervised and supervised classification approaches offer a
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more robust approach to classification than the traditional marker gene-based
approach to classifying clusters (Luecken and Theis, 2019).

Existing computational classification approaches tend to be fully supervised,
directly mapping cells or clusters of cells in the unclassified data set onto the
reference (Kiselev et al., 2018; Pliner et al., 2019; Stuart et al., 2019; Lotfollahi

et al., 2021). With supervised approaches, classification depends solely on the
gene expression patterns of the reference data set, and with unsupervised
clustering, cellular classification depends solely on the gene expression
patterns of the test data set. The approach I have developed in Section 3.2 is
distinguished by being semi-supervised, leveraging information from both test
and reference data sets in classifying cells.

Semi-supervised classification provides a more robust approach to classifying
cells than wholly supervised methods. The differential expression patterns of
specific genes in the reference may result from technical error or from some
biological process specific to the reference population. Cellular classification
based solely on the reference data set can therefore be overfit (i.e. be overly
specific) to the reference data. The semi-supervised approach developed here
minimises the risk of overfitting by utilising the expression patterns of the test
data set and the reference.

The need to minimise overfitting is particularly important with respect to
cross-species classification. Many cell types are present in multiple species —
for example, the cell types of the hematopoietic stem cell lineage are largely
conserved between mouse and human, see Stumpf et al. (2020). Importantly,
reference data sets may be available for a more experimentally tractable
species (e.g. mouse) than for other, less easily studied species (e.g. humans).
However, in classifying cells cross-species, the risk of overfitting to one species
is substantial: semi-supervised classification offers a potentially more robust
approach to computational classification.

Having validated the semi-supervised classification algorithm on the dual
Tian et al. (2019) data sets, in future, I would aim to apply the semi-supervised
classification method to larger-scale reference transcriptomes, for instance, the
Human Cell Atlas (Regev et al., 2017). I would also aim to test the
classification of cells cross-species, a task in which semi-supervised
classification should have a substantial advantage.

In Chapters 2 & 3, I have formalised and automated the clustering and

classification of cells. However, as discussed, scEC only maximises Hg over a
subset of all possible clusterings. Specifically, scEC maximises Hg over the set
of clusterings, Sc, containing a fixed number of clusters, C. Indeed, the value
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of Hg(g) will, all else being equal, increase monotonically with the number of
clusters (see description of the property of monotonicity in Section 2.1)
(Shannon, 1948; Kullback and Leibler, 1951). Thus, the number of clusters
must be set as a hyperparameter for scEC. In the next chapter, I will develop a
method for estimating the true number of clusters (and thereby number of cell
types) in a heterogeneous population of cells. For this, I will return to the more
traditional multivariate view of gene expression, i.e. the joint distribution of
gene expression. However, instead of representing cellular gene expression
profiles as position vectors in a high-dimensional space (as is usual), I will
develop and utilise a novel hypergraph representation of gene expression data.
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Chapter 4

Estimating Cluster Number

Introduction

In Chapter 3, I developed a novel unsupervised clustering algorithm based on
the optimisation of inter-cluster heterogeneity. However, this optimisation
problem, and the optimisation problems underlying many unsupervised
clustering methods, are incomplete, requiring the number of clusters to be
specified via a hyperparameter (Von Luxburg et al., 2012). There are generic
tools available for inferring the number of clusters, e.g. the GAP statistic, but
choosing the true number of clusters is a domain-dependent problem; for
instance, choosing the number of clusters specifies the number of cell types in
a cellular population (Tibshirani et al., 2001; Von Luxburg et al., 2012).
Therefore, this chapter will develop a novel tool for inferring the true number
of clusters in a single-cell RN A-sequencing data set.

In Chapters 2 & 3, I adopted a univariate view of gene expression, viewing the
expression distribution of each gene individually. However, as discussed in
Section 1.2, cell types emerge from the coordinated action of many genes, with
this coordination inducing statistical dependency between the expression of
different genes. For example, recall the Sonic Hedgehog gene regulatory
network from Section 1.2.1: the expression of any one of Olig2, Pax6 or Nkx2.2
depends on the expression of at least one of the others (Balaskas et al., 2012).
To infer the number of clusters, independent of any specific clustering, a
multivariate view of gene expression is required, viewing the joint distribution
of the expression of a set of genes.

The joint distribution of gene expression encodes the full expression profile of
each cell, capturing any coordination between the expression of different
genes. The joint distribution is typically represented as a high-dimensional
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gene expression space, where each cell’s gene expression profile positions the
cell in the space (Kiselev et al., 2019). Under the dynamical systems
framework, cell types emerge as regions of high probability in gene expression
space, analogous to ‘noisy” attractors (see Section 1.2.2)(Greulich et al., 2020).
Thus, if this space could be visualised without distortion, i.e. without
dimension reduction, the number of cell types would be evident, with cells
densely grouped in distinct regions of gene expression space.

Nevertheless, the full, high-dimensional joint distribution of gene expression
cannot be visualised. Instead, the number of cell types must be inferred
indirectly through the mathematical properties of the joint distribution of gene
expression. Specifically, I propose that the number of cell types (and clusters)
in a cellular population can be inferred by quantifying heterogeneity with
respect to the joint distribution of gene expression.

Recall that a set of cells are heterogeneous with respect to the expression of a
single gene ¢ when the cells are distinguishable, i.e. are not interchangeable,
based on the observed expression of g. I define a set of cells as heterogeneous
with respect to the expression of the set of genes ¢ =1, ..., G when the cells
are distinguishable based on the joint distribution of gene expression.

I have shown that gene expression heterogeneity broadly increases with more
cell types present: recall that the number of genes associated with substantial
I(g) increased with an increasing number of cell types. However, the number
of cell types cannot be inferred from the sum of each gene’s associated value of
heterogeneity, | = }_, I(g), due to the ‘curse of dimensionality’ (see Section
2.5.2)(Beyer et al., 1999). Instead, an inherently multivariate measure is
required, quantifying the heterogeneity with respect to the joint distribution of
gene expression.

In this chapter, I will assume (and later prove) that the heterogeneity with
respect to the joint distribution of gene expression increases monotonically
with the number of cell types. Based on this assumption, I will infer the
number of clusters in a given test data set based on the expression
heterogeneity of previously classified data sets. Importantly, this inference
does not require that the novel and classified data sets be related, i.e. the
number of cell types can be determined without access to a specific reference
transcriptome (see Section 3.2 for discussion of reference transcriptomes).

To that end, this chapter adopts an alternative view of the joint distribution of
gene expression to the conventional high-dimensional gene expression space.
Specifically, I will introduce a novel mathematical form for representing gene
expression data, the hypergraph. Hypergraphs are a generalisation of graphs,
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which themselves have a range of powerful applications in single-cell analysis,
for example, in unsupervised clustering and non-linear dimension reduction
(Blondel et al., 2008; McInnes et al., 2018). Moreover, recent advances in
hypergraph theory make hypergraphs an increasingly attractive option for
representing gene expression data (Klamt et al., 2009; Jost and Mulas, 2021).

I will begin this chapter by discussing graph theory and the generalisation of
graph theory to the setting of hypergraphs. I will demonstrate that
hypergraphs offer a natural representation of the joint distribution of gene
expression and show that the mathematical properties of hypergraphs enable
the development of a novel measure of gene expression heterogeneity. I will
then apply this measure to a range of data sets, see Tables 2.1 & 3.4,
illustrating the use of this measure in inferring the number of cell types in a
cellular population.

Note that the work of this chapter has been published in Mulas and Casey
(2021), with the work of that publication carried out in collaboration between
the present author and Raffaella Mulas (RM). Specifically, the present author
and RM contributed equally to the conception of the idea to apply
hypergraphs to single-cell RNA-sequencing data as outlined in Section 4.2,
RM derived the mathematical properties presented in Section 4.3 with
biological interpretation provided by the present author, and the present
author undertook the computational work and interpretation of the results in
Sections 4.4 & 4.5. The initial introduction to graph theory in Section 4.1 is not
included in Mulas and Casey (2021).

4.1 Introduction to Graph Theory

Recall from Section 1.2.3 that an undirected graph, G = {V, E}, consists of a
set of N vertices, V =1,...,N, and a set of G edges, eij € E, where each edge is
defined with respect to a pair of vertices i and j. The edges can be weighted or
unweighted, with weighted edges assigned some coefficient, w;;. In a
weighted graph, w;; = 0 indicates that the vertices i/ and j are not connected by
an edge (Von Luxburg, 2007).

Graphs are useful in representing the connectivity or shape of a given data set.
For example, as discussed in Section 1.2.3, the Louvain method encodes
single-cell sequencing data sets in a graph structure, representing each of N
cells as one of N vertices (Blondel et al., 2008). Specifically, the Louvain
method encodes the distance between each cell i and the k most similar cells
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via weighted edges, forming a k-nearest-neighbour graph. This graph captures
the core shape of the data, allowing the identification of clusters via
modularity optimisation (Newman and Girvan, 2004).

Modularity, the objective function of the Louvain method, is not directly a
property of the graph G, but of the associated adjacency matrix A. Recall that
the weighted adjacency matrix A;; encodes the weight of the edge ¢;;, provided
an edge is present between cells i and j in the graph and that the degree of
each vertex (cell), v;, is the sum of the weights of each edge connected to it,

v; = Y j Ajj. Recall that the modularity of a weighted graph with respect to a
given clustering of vertex S is then

1 ’01"0]'
= — Y |A;— .S 4.1
Qs m - [ ij ,)/217’1‘| (5(51/5])/ ( )

where m = 3 Y_ij Ajj is the total number of edges in the graph, and 4(S;, §;) is 1
if cells i and j are in the same cluster and 0 otherwise (Newman and Girvan,
2004; Blondel et al., 2008).

In general, matrix representations of graphs are useful as they are more
computationally tractable. Specifically, matrix representations allow us to
apply the tools of linear algebra to compute informative quantitative
summaries of graphs, such as Q.

An alternative set of matrix representations are the graph Laplacians (Chung
and Graham, 1997). The graph Laplacian is inspired by a continuous operator
from physics of the same name that quantifies diffusion through a continuous
space; analogously, the graph Laplacian quantifies the “diffusion” of
information through a graph structure (Evans, 2010). There are various ways
to compute a graph Laplacian, L, with each Laplacian capturing different
structural properties of a graph (Chung and Graham, 1997; Von Luxburg,
2007). One such Laplacian, known as the normalised Laplacian, is defined as,

L=I1-D14, (4.2)

where [ is the identity matrix and D is the degree matrix of a graph (D is a
diagonal matrix where the i*" diagonal element encodes the degree, v;, of the
vertex i and the off-diagonal elements are 0). Importantly, in the next section,
Section 4.2, I will introduce a hypergraph analogue of the normalised
Laplacian.
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As a matrix, the various tools of linear algebra can be applied to the
normalised Laplacian. In particular, the set of N eigenvalues of L can be
computed, where the eigenvalues of the Laplacian are known as the spectrum
of the graph (Chung and Graham, 1997). The spectrum of a graph captures
information on the connectivity of the graph; for example, the multiplicity of
zero eigenvalues encodes the number of connected components in a graph
(Von Luxburg, 2007). Moreover, when the vertices of a graph represent a set of
data points or objects, the eigenvalues and eigenvectors of the Laplacian can
be used in spectral clustering, an alternative graphical clustering method to
modularity optimisation with demonstrated application to single-cell
expression data (Li et al., 2021b).

Graph theory yields various powerful tools for use in data analysis. However,
graphs are limited with respect to representing higher-order relationships
between objects or data points. For example, in a protein complex, many
proteins can be bound together, with the collective interaction of these proteins
giving rise to the function of the complex (Klamt et al., 2009). Such a complex
can be represented using a graph, encoding the complex as a series of
connections between each pair of proteins. However, the functionality of the
complex does not emerge from the pair-wise connections but the collective
interaction of all the proteins in the complex (Alberts, 2017).

There are two generalisations of graphs that can represent such higher-order
relationships: simplicial complexes and hypergraphs. Simplicial complexes
encode higher-order relationships hierarchically; for example, three-way
connections are built from three pair-wise interactions, four-way connections
are built from four three-way connections, etc. (Zomorodian, 2005).
Hypergraphs are a further generalisation, encoding higher-order connections
without the requirement for lower-order connections between vertices (Jost
and Mulas, 2021).

In the next section, I will exploit the substantial generality and flexibility of
hypergraphs to develop a natural representation of single-cell sequencing
count data. I will begin by introducing hypergraphs and the computation of a
specific hypergraph Laplacian. I will then demonstrate how hypergraphs
encode a natural representation of the joint distribution of gene expression,
with correspondence to the microscopy-view of gene expression adopted in
Chapters 2 & 3. Finally, I will demonstrate how the spectrum of the single-cell
hypergraph Laplacian provides a measure of heterogeneity with respect to the
joint distribution of gene expression.
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4.2 Hypergraph Construction

Hypergraphs can be constructed analogously to graphs. A hypergraph T,
consists of a set of N vertices, V = {1,..., N} and G hyperedges,

E = {ey,...,eg}, where each hyperedge is an arbitrary non-empty set of
vertices, thatis, e, C V for each ¢ = 1,..., G. The cardinality of a hyperedge e,
is the number of vertices, |e¢|, that are associated with the edge. The notion of
edge weights generalises to the hypergraph setting: in any hypergraph, a real
coefficient, c(i, g), can be associated with each vertex i for each hyperedge e,.

Thus, the key distinction between a graph and a hypergraph is that a single
edge (now hyperedge) can encode a relationship between any number of
vertices. In graphs, the cardinality of each edge must be two, whereas, with
hypergraphs, any number of vertices can be associated with a given
hyperedge. Hypergraphs are, as such, a more general mathematical
formulation than graphs.

However, with this generalisation, it is not immediately clear what properties
of graphs carry through to hypergraphs. Jost and Mulas (2021) derive a
generalisation of the normalised Laplacian and the associated spectrum
(introduced above; see Section 4.1) to hypergraphs with normalised real
coefficients.

First, note that the coefficients of a hypergraph are normalised when the degree
of each vertexis 1, i.e.,

Y c(i,g) =1 for each vertexi. (4.3)
8

The calculation of the normalised Laplacian then follows the same form as in
Eqn 4.2, with adjustment of each term for the hypergraph setting. The degree
of each vertex i is now given by,

vi=Y.c(i,g)? (4.4)
g

with the degree matrix, D of T again being a diagonal matrix where the i*"
element of the diagonal encodes the degree, v;, of vertex i, with off-diagonal
values of 0.
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The adjacency matrix is given by,
Ajj=—=Y c(i,g)-c(j,g) foralli#j, (4.5)
8

where the diagonal elements of the adjacency matrix are 0, i.e. no vertex is
connected to itself. The strength of the relationship between each pair of
vertices i and j, encoded in the element A;;, depends on the magnitude of the
coefficients of each vertex with respect to each hyperedge.

Finally, an NxG matrix specific to hypergraphs, the incidence matrix Id, is
required,

Idig = (i, 8), (4.6)

encoding the coefficient of each vertex with respect to each edge.

The normalised hypergraph Laplacian (from here on referred to as the
Laplacian) is then,

L=1Id—D'A. (4.7)

As in the graph setting, the N eigenvalues of the hypergraph Laplacian can be
computed, with the eigenvalues of L forming the spectrum of a hypergraph.
As with the graph spectrum, the hypergraph spectrum encodes various useful
summaries of data (Jost and Mulas, 2021). Specifically, it is from the
hypergraph spectrum that I will derive a measure of heterogeneity with
respect to the joint distribution of gene expression. However, I will first
introduce how hypergraphs can be used to represent single-cell
RNA-sequencing data.

4.2.1 Single-cell Hypergraphs

Consider the expression of a set of G genes in a population of N cells. Let mlg
be the number of transcripts of gene ¢ measured in cell i and let } , m‘lg = M,;
be the total number of transcripts measured in cell i. Note that the measured
number of transcripts may differ from the true number due to error in the
measurement process.

As in the graph setting, each of the N cells can be represented as one of N
vertices in the hypergraph I'. Each of the G genes can be represented as a
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hyperedge, e; € E, and the expression of each gene in each cell as the
coefficient ¢(i, ). (Note that I utilise the same indexing for both cells and
vertices and for both genes and hyperedges). Thus, the count matrix of a
single-cell RNA-sequencing experiment can be directly encoded as a

hypergraph.

As discussed above, the graph spectrum has been generalised to hypergraphs
with normalised coefficients. To satisfy the constraint Eqn 4.3, the expression
level of gene g in cell i is taken to be the proportion of transcripts measured in
cell i that are assigned to gene g, that is:

c(i,g) = m$ /M, (4.8)

The coefficient c(i, g) is an estimate of the relative level of gene expression in
each cell. As discussed in Section 1.2.4, such cell-wise normalisation is
required in many single-cell analyses, as the number of counts per cell can
vary by orders of magnitude solely due to technical error (Dillies et al., 2013;
Townes et al., 2019; Lause et al., 2020).

Note that each hyperedge, e, € E, encodes an analogous view of gene
expression as used in Chapters 2 & 3, i.e. the view of a field of cells through a
microscope. Each hyperedge encodes the expression of a gene over the set of
cells, with the expression distribution of a given gene defined via the
coefficients c(i,g) fori = 1,..., N. The hypergraph view differs from that used
in the developed information-theoretic framework with respect to
normalisation: in Chapter 2, normalisation is carried out gene-wise, based on
the total number of transcripts assigned to each gene; here, normalisation is
carried out cell-wise, based on the total number of transcripts assigned to each
cell.

Thus, hypergraphs provide a natural representation of the joint distribution of
gene expression over the set of cells. Based on this hypergraph representation
of gene expression, the hypergraph spectrum can be computed as described
above. In Mulas and Casey (2021), RM derives a set of properties of the largest
Laplacian eigenvalue. These properties make the largest eigenvalue an
appropriate quantity for measuring gene expression heterogeneity. In the next
section, Section 4.3, I will discuss these properties, omitting the mathematical
proofs to make clear my own scientific contribution to this work. I will
demonstrate the use of the largest Laplacian eigenvalue as a measure of gene
expression heterogeneity and illustrate its utility on a range of single-cell
RNA-sequencing data sets.
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4.3 Quantifying Heterogeneity

By encoding single-cell expression data as a hypergraph, the spectrum
associated with the data can be computed. The spectrum of a normalised
hypergraph is the set of N real, non-negative eigenvalues of the Laplacian
matrix of the hypergraph (Jost and Mulas, 2021; Mulas and Casey, 2021). These
eigenvalues encode different structural properties of the hypergraph, and
therefore, of the data (Oellermann and Schwenk, 1991; Jost and Mulas, 2021).

Specifically, Mulas and Casey (2021) show that the largest Laplacian
eigenvalue Ay is such that 1 < Ay < N and, moreover,

* Ay = lif and only if each edge has cardinality 1;

* Ay = N if and only if all edges have cardinality N and, for each edge k
and for all vertices i # j,

c(i,k) = c(j k).

Recall that the cardinality of a hyperedge g is the number of vertices with
non-zero coefficients with respect to g. In the context of single-cell
RNA-sequencing data, the cardinality of a gene is the number of cells that
express that gene. Therefore, Ay = 1 if and only if each gene is expressed in a
single cell. In such a case, each cell in the population is expressing a different
combination of genes, and all cells are absolutely distinguishable with respect
to the joint distribution of gene expression. Thus, Ay = 1 when the population
is maximally heterogeneous with respect to the joint distribution of gene
expression.

In contrast, Ay = N if and only if each gene is expressed in all cells to the same
level, c(i, k) = c(j, k) for i # j. In such a case, every cell is identical with respect
to the joint distribution of gene expression, i.e. every cell is exactly
interchangeable with respect to the gene expression. Thus, Ay = N in the
absence of any heterogeneity with respect to the joint distribution of gene
expression.

A normalised measure of gene expression heterogeneity, R, can be derived by
dividing through by the number of vertices, N, so that

(4.9)
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‘ Gene 1 ‘ Gene 2 ‘ Gene 1 ‘ Gene 2 ‘
Cell 1 0.3 0.7 Cell 1 0.1 0.9
Cell 2 0.3 0.7 Cell 2 1 0

TABLE 4.1: Toy examples of R. Two examples of normalised single-cell sequencing

data. In the first, the cells are interchangeable with respect to the normalised gene

expression values, so R = 1. In the second, both genes are differentially expressed.

Therefore, the cells are distinguishable with respect to gene expression, and R = 0.55
(note that the minimum value of R is 0.5 in this case as N = 2)

and where R is constrained to the range

1
— <R<1. 4.10
N SR=< (4.10)
Thus, with respect to the joint distribution of gene expression, as represented
by the hypergraph I', R = 1 if and only if cells are interchangeable and R =
if and only if cells are absolutely distinguishable: R quantifies heterogeneity
with respect to the joint distribution of gene expression.

To illustrate, consider the toy examples in Table 4.1. In the first example, both
cells are exactly interchangeable with respect to normalised gene expression,
and R = 1. In the second, the cells are heterogeneous with respect to the
expression of both genes, leading to a reduction in the value of R to 0.55.

The toy examples in Table 4.1 illustrate the relationship of R and gene
expression heterogeneity on a small scale. As discussed, the level of
heterogeneity with respect to the joint distribution should be associated with
the number of cell types in a population; in the next section, I will demonstrate
this association empirically, showing that R can serve as a tool in inferring the
number of cell types in a cellular population.

4.4 Estimating Cluster Number

I have previously introduced a range of data sets with various numbers of cell
types present, see Tables 2.1 & 3.4. The cells of these data sets have been
classified using a diversity of approaches, specifically by genotype, surface
protein expression and by unsupervised clustering (Svensson et al., 2017; Tian
et al., 2019; Zheng et al., 2017; Stumpf et al., 2020; The Tabula Sapiens
Consortium and Quake, 2021). Importantly, the number of clusters, C, in each
data set has been determined independently. Moreover, these data sets were
generated by various labs, each using different sequencing protocols. As such,
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X
Data Set R C 0.9 x
Svensson et al. (2017) 0953 1 Xx

Tian et al. (2019) (a) 0825 B 97

Zheng et al. (2017) 0.793 4

Tian et al. (2019) (b) 0771 5 03 X

Stumpf et al. (2020) 0.398 14 o
Tabula Muris Consortium et al. (2018) | 0.493 56 0.3

log C

TABLE 4.2: R of validation data sets. Heterogeneity with respect to joint distribution
of gene expression, R, and number of cell types, C, for range of data sets (left) detailed
and (right) plotted, demonstrating a log-linear relationship between C and R. The
outlying Stumpf et al. (2020) data set is highlighted in the plot, represented by a circle.

these data sets represent a diverse sampling of single-cell RNA-sequencing
data sets for testing the relationship between R and C.

Unfortunately, the computation of the hypergraph spectrum is
computationally demanding, with the matrix multiplication D~ A (see
computation of the hypergraph Laplacian, Eqn 4.7) scaling quadratically in
computational complexity with respect to the number of cells, N. This
computational complexity prohibits the direct computation of R for the larger
data sets from Zheng et al. (2017) and Tabula Muris Consortium et al. (2018)
which each consist of tens of thousands of cells (see Table 2.1). Instead, I use a
stratified sampling of 5,000 cells for both data sets, maintaining the relative
number of cells assigned to each cell type.

Across the six data sets, R strongly negatively correlates with the number of
cell types; see Table 4.2. Specifically, there is an apparent log-linear
relationship between number of cell types and R, with a Pearson’s correlation
coefficient between log C and R of —0.886 (p-value = 0.0186, two-sided, 95%
confidence interval of —0.988 to —0.267).

The Stumpf et al. (2020) data set is an outlier to this log-linear relationship,
with substantially lower R than expected for the number of cell types present
(C = 14), especially when compared to the Tabula Muris (C = 56). As
discussed in Section 2.5.2, the Stumpf et al. (2020) data sets consists of cells
actively transitioning in cellular identity from one type to another. Thus, there
is substantial intra-type heterogeneity arising from biological functions other
than the differential expression between cell types.

Restricting our analysis to those data sets where heterogeneity is
predominantly attributable to differential gene expression between cell types,
the strength of the correlation between R and log C increases to —0.999
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(p-value = 4.04 - 107, two-sided, 95% confidence interval of —0.999 to
—0.999). Thus, for biological systems where cellular identity is approximately
static, R correlates near-exactly with the number of cell types.

R provides a measure of heterogeneity with respect to the joint distribution of
gene expression, robust to the choice of cellular classification method (see
Table 2.1 for list of classification methods). In the absence of substantial
alternative sources of gene expression heterogeneity, the relationship between
R and cluster number is effectively exact. As such, the value of R measured in
an unclassified test data set relative to classified data sets provides a powerful
method for estimating the true number of clusters in a test population. In the
next section, I will explore further the case where there are substantial
alternative sources of gene expression heterogeneity, calculating R for each cell
type in the Stumpf et al. (2020) population.

4.4.1 Intra-type Heterogeneity

Subsetting the hypergraph of the full population, I measure the value of R for
each cell type in the Stumpf et al. (2020) data set. Note that unlike with the
previously presented information-theoretic framework, there are no theoretical
guarantees on the relation between the gene expression heterogeneity within
each type and the total population heterogeneity, i.e. unlike I(g), R is not
additively decomposable. Thus, there is no prior theoretical expectation on the
value of R for each cell type.

As seen in Fig 4.1, the value of R with respect to each cell type is remarkably
consistent. However, there are two distinct sets of outliers, one group with
lower R, the Pro-B, Pre-B and T-NK (Natural Killer) cell types, and another
group with greater R, the Neutrophil and Myelocyte cell types.

Interestingly, these outliers form two coherent developmental clades: the
Lymphocyte (Pro-B, Pre-B and T-NK cell types) and Neutrophil (Neutrophil
and Myelocyte cell types) lineages, respectively; see Fig 2.15 (Stumpf et al.,
2020). This coherence suggests that the value of R is informative of some
underlying biology of these lineages. For example, the cells of the Lymphocyte
lineage are functional in the immune response (Alberts, 2017). Given the
diversity of pathogens that the cells of the immune system respond to,
immune cells possess substantial heterogeneity with respect to cellular
function: this increased functional heterogeneity should be reflected in an
increased level of gene expression heterogeneity (Satija and Shalek, 2014).
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FIGURE 4.1: Intra-type R. R of each cell type in the Stumpf et al. (2020) data set. R

largely consistent across types indicating similar levels of gene expression heterogene-

ity. The exceptions are Pre-B, Pro-B and T-NK cell types, which form a coherent de-

velopmental lineage, and Neutrophils and Myelocytes, which form another coherent
developmental lineage.

However, given the diversity of biological functions of the remaining cell
types, each with relatively consistent value of R, it is unlikely that this
difference in R is solely biological. Instead, the differences in R could be an
artefact of clustering — R may detect over-/under-clustering of cells.

As discussed, the cell types of the Stumpf et al. (2020) are not truly discrete;
rather, they each capture a continuum of cellular differentiation and
maturation. Thus, the demarcation of each cell type along a given lineage is
partially arbitrary. For example, both the scEC and Louvain clusterings of the
Stumpf et al. (2020) data set presented in Section 3.1.4 merge the majority
(78.6% and 98.1%, respectively) of cells classified as Neutrophils or Myelocytes
in the established classification into a single cluster. This merging of cell types
with respect to both unsupervised clustering methods suggests that these cells
are over-clustered in the original classification. Such over-clustering would
result in each cell type being less heterogeneous with respect to gene
expression, as detected by the increase in R for the Neutrophil lineage cell

types.

Conversely, low values of R, such as with the Lymphocyte lineage, may
indicate under-clustering. However, unlike the cell types of the Neutrophil
lineage, the individual cell types of the Lymphocyte lineage are recovered by
both scEC and the Louvain method; see Section 3.1.4. Therefore, the cells may
be appropriately classified, with the decreased values of R reflecting the
increase in gene expression heterogeneity expected of immune cells.
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4.5 Discussion

This chapter aimed to complete the optimisation problem posed in Chapter 3,
developing a measure for inferring the number of cell types in a cellular
population. I have developed such a measure through hypergraph theory,
quantifying the heterogeneity of a cellular population with respect to the joint
distribution of gene expression via the largest eigenvalue of the normalised
hypergraph Laplacian. I have shown that the proposed measure of gene
expression heterogeneity, R, strongly correlates with the number of discrete
cell types present in a population, providing a simple way to infer the number
of clusters in a novel data set based on a random sampling of previously
classified data sets. Thus, comparing the relative value R offers one approach
to completing the optimisation problem underlying scEC (and other
unsupervised clustering methods).

R correlates strongly with the number of cell types in non-dynamic biological
systems, where each cell can be reasonably assumed to be uniquely assigned to
a single cell type, i.e. biological systems where the cell types are discrete. For
example, when excluding the biological outlier of the Stumpf et al. (2020) data
set, R and the (log) number of cell types correlate near-exactly, with a Pearson’s
correlation coefficient of —0.999. This correlation strength is particularly
notable given the diversity of approaches used in classifying the cells of each
data set, including both experimental and computational approaches.

However, it should be noted that this correlation is based on relatively few
data sets. Moreover, the utilised data sets represent a poor sampling with
respect to the number of cell types in each cellular population: there is only
one non-outlier data set, the Tabula Muris, with > 5 cell types. Furthermore,
the strength of the association between R and log C is suggestive of
confounding technical effects. While I have made best efforts to ensure that
there are no obvious technical confounders between the data sets, notably, all
utilised data sets were generated via droplet-based sequencing methods (see
Appendix A for an explanation of droplet-based sequencing). Therefore,
moving forward with this work, I would expand the number of data sets
involved in testing the association between R and the number of cell types,
specifically including more data sets with a large number of cell types and
data sets generated via plate-based sequencing methods (the primary
alternative to droplet-based sequencing methods) (Papalexi and Satija, 2018).

Methods for inferring the number of cell types will be increasingly valuable as
more and more single-cell data sets become available (Svensson et al., 2020).
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While (semi-)supervised classification methods can be used if there is an
available reference transcriptome, estimating the number of cell types in a
population de novo is a time-consuming and often arbitrary task (Luecken and
Theis, 2019). In the absence of a relevant reference transcriptome, R can be
used to estimate the true number of clusters based on a sampled variety (with
respect to number of cell types) of single-cell RNA-sequencing data sets.

Throughout this thesis, I have dealt with the classification of cells with respect
to single-cell RNA-sequencing data. I have formalised the notion of gene
expression heterogeneity in two mathematical languages: first in terms of
information theory; then in terms of hypergraph theory. I have utilised these
dual frameworks to determine the optimal clustering of cells and the optimal
number of clusters. In the next chapter, I will discuss how these distinct
frameworks can contribute to the concept and definition of cell type.
Specifically, I will contrast the notion of cell type used throughout this thesis —
i.e. that the cells of each type are interchangeable with respect to the measured
expression of a set of genes — with the conception of cell type stemming from
dynamical systems theory (as introduced in Section 1.2.2).
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Chapter 5

Discussion

The technology of single-cell RN A-sequencing has revolutionised the
classification of cells, but this revolution has precipitated an increase in
conceptual complexity with respect to cellular classification and the notion of
cell type (Moris et al., 2016; Clevers et al., 2017; Weinreb et al., 2018; Kiselev
et al., 2019; Greulich et al., 2020). The traditional approach to classifying cells,
phenotypic classification, is conceptually straightforward, identifying cells
based on the presence or absence of observable features, such as gene
expression (Mescher, 2018). However, single-cell sequencing technologies
have revealed that cells of the same type are heterogeneous, inconsistently
expressing established marker genes (Trapnell, 2015). Such intra-type
heterogeneity prohibits the application of phenotypic classification to
single-cell expression data at the level of individual cells.

Accommodating this heterogeneity, conceptually and practically, has become a
central theme of single-cell analysis (Soneson and Robinson, 2018; Yip et al.,
2019; Wang et al., 2019; Becht et al., 2019; Luecken and Theis, 2019). Instead of
classifying cells individually, cells are first clustered into types, with each
cluster identified based on the differential expression of marker genes relative
to the remaining clusters in the population. The process of cluster-wise
classification assumes that unsupervised clustering methods are able to group
cells into types without specific reference to established marker genes of the
phenotypic classification scheme, an assumption justified by dynamical
systems theory (Greulich et al., 2020).

Dynamical systems theory is the field of mathematics concerned with systems
that evolve in time (Strogatz, 2018). Of relevance to the classification of cells,
dynamical systems theory predicts that cellular gene expression profiles will
evolve towards certain subsets of gene expression space with time (see Section
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et

FIGURE 5.1: Example of a microscopy experiment. Image from microscopy experi-

ment observing gene expression in a population of cells. Cells are immediately classi-

fiable based on the expression of Nanog, a key marker gene for pluripotent stem cells,

with the two white arrows highlighting examples of cells with high/low Nanog ex-
pression. Image reproduced from Smith et al. (2017).

1.2.2). These subsets of the space of possible gene expression profiles are
termed attractors (Strogatz, 2018). Cells of a given type will evolve towards the
same attractor in time, resulting in cells of the same type being similar with
respect to gene expression. Unsupervised clustering methods detect these
groupings of similar cells and cluster accordingly.

This thesis develops a distinct motivation for the application of unsupervised
clustering based on the principles of phenotypic classification. Recall that the
process of phenotypic classification resembles a microscopy experiment.
Imagine looking down a microscope, observing the expression of a given gene
with respect to each cell. The cells can be sorted accordingly, classified into
different types based on the observed expression of different genes (see Fig 5.1
for an example of a microscopy image). Importantly, this view corresponds to
an empirically intuitive definition of cell type: cells of the same type are (at
least approximately) interchangeable with respect to gene expression.

The empirical conception of cell type does not accommodate intra-type
heterogeneity with respect to gene expression: when genes are expressed
inconsistently, the cells identified with each type cannot be treated as
interchangeable. Chapter 2 reconciled the gene expression heterogeneity
observed in single-cell sequencing data with the empirical conception of cell
type by developing a formal, information-theoretic framework for quantifying
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gene expression heterogeneity. One measure in this framework — kg,
intra-cluster heterogeneity — quantifies the divergence of a given classification
of cells from the assumption that cells of the same type are interchangeable
with respect to genome-wide gene expression. Thus, hg quantifies how well a
given classification holds to the traditional, empirical conception of cell type.

Through hg, the cellular classification or clustering of a given population that
best approximates the empirical conception of cell type can be identified.
Chapter 3 developed an algorithm for the minimisation of hg through
maximising another element of the information-theoretic framework, Hg. Hg
quantifies the heterogeneity arising from differential expression between cell
types, and by additive decomposition, the clustering of cells that maximises Hg
minimises hg. Thus, the developed algorithm, scEC, identifies the clustering
that is minimally divergent from the fundamental assumption of phenotypic
classification, with clusters that are maximally differentially expressed.

The scEC algorithm clusters cells into types based on the expression of each
gene in the genome. Thus, scEC represents a high-throughput, automatic
implementation of the principles of phenotypic classification, extended to
classify cells with respect to the expression of every gene. Such an extension is
only possible due to the quantitative nature of the developed
information-theoretic framework, weighing up the potentially conflicting
clusterings of cells preferred by each gene in the genome.

Importantly, the information-theoretic approach represents a distinct
conception of cell type to that of the attractor. The information-theoretic
framework encodes an empirically intuitive conception of cell type, drawing
from the principles of phenotypic classification. In contrast, the attractor
conception of cell type is inherently theoretical, drawing from the theory of
dynamical systems. However, the differing conceptions of cell type are not
unrelated. As I will outline below, the information-theoretic conception of cell
type is a static approximation of the dynamic cell type represented by
attractors.

As discussed, attractors emerge from the complex regulatory interactions of
different genes, confining the space of possible gene expression profiles for
each cell. Importantly, however, these attractors do not necessarily consist of a
single point in gene expression space. Instead, attractors can consist of a
contiguous series of gene expression profiles, forming non-trivial shapes in
gene expression space; see Fig 5.2 for example illustrations (Weinreb et al.,
2018; Greulich et al., 2020). For these attractors to be stable over time, they
have to be periodic structures, i.e. over time, cells repeatedly oscillate in
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FIGURE 5.2: The cell as a dynamical system. The expression of each gene is regulated
by the expression of other genes, collectively giving rise to a complex gene regula-
tory network. This network encodes a complex dynamical system that may admit
numerous attractors, each corresponding to a distinct cell type. These attractors parti-
tion gene expression space into discrete regions, termed basins of attraction. The gene
regulatory network of a cell may admit many different kinds of attractor including
various different kinds of fixed-point such as a) stable nodes and b) stable spirals, as
well as ¢) limit cycles, and d more topologically complex structures such as limit tori.
Figure reproduced with modification from Casey et al. (2020b).

expression through the constituent profiles of the attractors. Thus, these
complex attractors define each cell type not with respect to a singular gene
expression profile but with respect to a collection of different gene expression
profiles (Casey et al., 2020b).

One example of such oscillatory behaviour is the cell cycle (Kruse and Jiilicher,
2005). A cell of a given type can progress through the cell cycle while
maintaining a single type identity: the cell type is defined with respect to the
gene expression profiles at each cell cycle stage (Weinreb et al., 2018). More
generally, an attractor can involve multiple overlapping oscillations, resulting
in cell types being defined with respect to remarkably complex multivariate
gene expression patterns, such as the limit tori in Fig 5.2d.

Indeed, such complex attractors are expected to be the norm with respect to
cellular transcriptomes: single-state, so-called fixed-point attractors only
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FIGURE 5.3: Gene regulatory networks. Diagrammatic representations of an a) sym-
metric network and b) and asymmetric network (Ptashne, 2004; Balaskas et al., 2012).

emerge when the defining gene regulatory network is symmetric (that is all
regulatory interactions are bidirectional), such as in the lambda phage
network, see Fig 5.3a (Ptashne, 2004). However, symmetry is a strong
constraint to place on a network, and not one that will be generally met for
more complex gene regulatory networks, e.g. the Sonic hedgehog network, see
Fig 5.3b (Balaskas et al., 2012). As such, oscillatory cell types defined by
complex attractors are predicted to be the norm (Weinreb et al., 2018).

Accordingly, at a given moment in time, cells may be distributed at different
points along an attractor. Thus, at any specific time-point, the set of cells
associated with a given attractor, i.e. cells of the same type, will be
heterogeneous with respect to gene expression. However, these cells are not
truly biologically heterogeneous — over time, the behaviour of these cells is
interchangeable. Thus, the population is only heterogeneous when observed at
a single time point.

Therefore, instead of representing opposing conceptions of cell type, the
developed information-theoretic framework and dynamical systems theory
both realise the same conception of cell type, considered over different time
scales. The information-theoretic realisation is strict, expecting the cells of each
type to be interchangeable at any given point in time; the attractor realisation
expects cells of the same type to be interchangeable over more extended
periods of time. Thus, the information-theoretic conception of cell type is a
static approximation of the dynamic cell type formalised by attractors.

This simplifying approximation represents a trade-off between power and
interpretability. Single-cell RN A-sequencing captures a static snapshot of the
transcriptomes of a cellular population (Trapnell, 2015). In this static snapshot,
the oscillatory dynamics underpinning each cell type are frozen, resulting in
substantial intra-type heterogeneity with respect to gene expression (Weinreb
et al.,, 2018; Casey et al., 2020b). Dynamical systems theory predicts that this
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gene expression heterogeneity is structured, corresponding to the complex
shapes formed by attractors in gene expression shape (see again Fig 5.2).

The Louvain method — the best performing single-cell unsupervised clustering
method for single-cell RNA-sequencing data — identifies these complex cluster
structures, accommodating the associated intra-type heterogeneity with
respect to gene expression (Blondel et al., 2008; Luecken and Theis, 2019). The
Louvain method utilises a k-nearest-neighbours representation of the data, so
cells need not be similar to all other cells in their assigned cluster, but only to
some (Newman and Girvan, 2004; Blondel et al., 2008; Kiselev et al., 2019).
Indeed, the clustering method is able to identify clusters of arbitrary shape,
with the shape of each cluster limited only to being contiguous (unlike the
k-means clustering method, wherein clusters tend to be hyperspherical)
(Lloyd, 1982; Kiselev et al., 2019). Therefore, dynamical systems theory
justifies both the success of traditional unsupervised clustering generally and
the Louvain method in particular with respect to identifying cell types.

By contrast, scEC assumes that all intra-type heterogeneity with respect to
gene expression needs to be minimised. The scEC method is, therefore, less
accommodating and so less powerful than the Louvain method in identifying
complex cell types. In theory, the scEC method will perform less well when
cell types are defined with respect to complex attractors, consisting of
numerous, biologically important cell states or subtypes.

However, dynamical systems theory does not necessarily hold in practice. As
discussed in Chapter 1, the concept of attractors assumes that the system is
deterministic. When a system is stochastic, the correspondence of cell types to
attractors becomes more complex: cell types instead correspond to regions of
high probability density in the joint distribution of gene expression (Greulich
et al., 2020).

Unlike deterministic attractors, these regions of high probability density do
not necessarily imply that cells are interchangeable over time. To make that
inference, i.e. to identify periodic oscillations in gene expression, the
expression of a given set of cells would have to be followed through time.
Without such temporal information, whether the clusters identified by the
Louvain method are indeed interchangeable over time cannot be confirmed. In
contrast, the scEC framework does not require temporal information: scEC
assumes that cells are interchangeable within each type at the measured
time-point. Thus, scEC clusters are substantially simpler to interpret
concerning the static snapshot of the transcriptome produced by single-cell
RNA-sequencing.
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In future, the temporal information required to test the assumption that cells
are equivalent over time may become accessible; for example, a new single-cell
RNA-sequencing technology, Live-seq, is reportedly able to sequence cells at
multiple time points (the technology has not been published at the time of
writing, see Chen et al. (2021) for preprinted manuscript). Alternatively, it may
be possible to identify the specific oscillatory structures predicted by
dynamical systems theory at a single time point: a burgeoning set of tools,
collectively termed Topological Data Analysis, analyse the shape of data.
These tools, in particular that of persistent homology which quantifies the
number of ‘holes’” or “cycles’ in the shape of the data, could allow the gene
expression patterns associated with complex attractors to be identified from
the snapshot of gene expression space provided by single-cell
RNA-sequencing (Zomorodian, 2005; Carlsson, 2009; Rizvi et al., 2017;
Rabadan and Blumberg, 2019).

Nevertheless, the information-theoretic framework developed in Chapters 2 &
3 provides a formalised approach to clustering based in the empirically
intuitive conception of cell type utilised in phenotypic classification. The
comparable performance of the developed clustering method scEC to the
state-of-the-art Louvain method suggests that the relatively simple conception
of cell type, namely that cells of the same type are approximately
interchangeable, is sufficient to accommodate the gene expression
heterogeneity observed in single-cell sequencing data.

Information Theory for Single-cell Analysis

The central contribution of this work is conceptual, formalising the phenotypic
classification of cells in the language of information theory. However, the
practical undertaking of clustering single-cell RNA-sequencing data is not
trivial, requiring substantial pre-processing and post-hoc analysis of clusters
(Luecken and Theis, 2019). Alongside the unsupervised clustering algorithm,
scEC, the individual measures of the information-theoretic framework offer
practical alternatives and supplements to existing elements of single-cell
clustering analysis. Specifically, I(g) and Hs(g) readily provide a basis for
feature selection and differential expression analysis, respectively (see
Sections 1.2.4 & 1.3 for discussions on feature selection and differential
expression analysis, respectively).

The goal of feature selection is to identify, prior to clustering, those genes that
are likely to be differentially expressed between cell types (Yip et al., 2019).
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Differential gene expression increases the heterogeneity of cells of different
types with respect to gene expression. Hs(g) quantifies the heterogeneity
attributable to differential gene expression as an additive component of 1(g).
Thus, I(g) represents the maximum possible differential expression: high
values of I(g) directly identify those genes more likely to be differentially
expressed between cell types.

Self-evidently, differential gene expression analysis aims to identify those
genes that are differentially expressed between clusters (Soneson and
Robinson, 2018; Wang et al., 2019). Hs(g) quantifies the heterogeneity
attributable to differential expression between all clusters, so significant values
of Hs(g) (identified through exact testing, see Section 2.5.3) identify those
genes that are differentially expressed between clusters in a population.

As discussed in Section 1.3, clusters are classified based on which genes are
identified as differentially expressed with respect to each individual cluster.
Typical differential expression analyses therefore identify genes that are
significantly up or down-regulated in the cells of a specific cluster relative to
the rest of the cellular population (though there are exceptions; for example,
Rackham et al. (2016) calculates a single score for the differential expression of
a given gene across multiple cell types). However, when used in conjunction
with unsupervised clustering, differential gene expression has a
highly-inflated false positive rate, falsely identifying many genes as
differentially expressed (Luecken and Theis, 2019; Gao et al., 2020). This false
identification can lead to the misclassification of clusters and the generation of
flawed hypotheses with respect to the biological function of specific genes
(Squair et al., 2021).

In future, Hs(g) could be used in conjunction with traditional differential gene
expression testing, first identifying which genes are differentially expressed
and then identifying the clusters up or down-regulated with respect to the
expression of each gene. Such a composite two-step process to differential
expression would improve the statistical robustness of differential expression
analysis, limiting the false identification of genes as being differentially
expressed.

The information-theoretic framework developed in Chapter 2 offers a cohesive
mathematical framework for carrying out single-cell analysis in the language
of gene expression heterogeneity. However, as an analytic framework, it is
incomplete: the framework does not provide a visualisation of the distribution
of transcripts on the set of cells for large numbers of genes; the framework
provides no estimation of the true number of clusters in a data set; and, the
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framework (as implemented) is discrete, without accommodation for
quasi-continuous cellular identities, such as those found during cellular
differentiation (recall that the returned fuzzy membership values are
discretised in the scEC method). I will address the third point later (see “An
Information-Theoretic Approach to Cellular Differentiation”) as a matter for future
work, but first, I will discuss the domain-specific implications of a lack of
visualisation.

By visualisation, I refer to the various dimension reduction projections, both
linear and non-linear, that project the high-dimensional gene expression
profiles of individual cells onto two or three dimensions (Hotelling, 1933;
Hinton and Roweis, 2003; Mclnnes et al., 2018; Becht et al., 2019). These
reductions view cells as position vectors in some abstract gene expression
space; in contrast, in the information-theoretic framework, an alternative view
of gene expression is adopted, distributing transcripts onto the set of cells.
This view lacks any notion of distance between cells. Thus, the results of scEC
have to be projected and visualised using existing visualisation tools, such as
UMAP (Mclnnes et al., 2018).

The lack of visualisation is problematic as biology is an inherently visual field:
biologists require “proof by visualisation” (Fox Keller, 2002). For example,
while a given clustering may be formally validated by differential expression
analysis, different clusterings are informally analysed via visualisation
(Luecken and Theis, 2019; Becht et al., 2019; Chari et al., 2021). While such
visualisation often distorts the data, visualising results is an inherent part of
the culture of biological research (see Chari et al. (2021) for a discussion of the
distorting effects of non-linear dimension reduction and specifically UMAP on
single-cell expression data). Indeed, the motivation for scEC, phenotypic
classification, is a fundamentally visual approach to classification, as
illustrated in Fig 5.1. The lack of an inherent tool for visualisation limits the
biological interpretability of the developed information-theoretic framework.

The problem of estimating the true number of clusters in a data set is not
limited to scEC, being a general problem for unsupervised clustering methods.
This thesis has developed two methods for inferring the number of cell types.
Firstly, in Section 3.2, I developed a semi-supervised version of scEC to
classify cells based on an established reference transcriptome: in
semi-supervised classification, the number of cell types is derived from the
reference. Secondly, in the absence of a direct reference, in Chapter 4, I
developed a hypergraph theory method for inferring the true number of
clusters in a data set based on the relative level of gene expression
heterogeneity in a variety of independent single-cell sequencing data sets.
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I have validated both methods for cluster number estimation; however, both
methods would benefit from testing on additional data sets. For the
semi-supervised classification algorithm, there are a limited number of
test-reference data set pairs where the classification of both data sets are
known, so validation is more difficult than for unsupervised clustering
methods. In contrast, the hypergraph theory approach depends on collections
of biologically unrelated data sets, so is more easily tested than the
semi-supervised method. Recall that the relationship between cluster number
and the developed measure, R, was extremely strong for the trialled data sets,
with the notable biological outlier of the Stumpf et al. (2020) data set. In future,
by adding further test data sets, I aim to validate the strength of this
relationship, and determine the type of cellular populations for which R is an
informative measure of cluster number (e.g. dynamic versus static cell types).

An Information-Theoretic Approach to Cellular Differentiation

The clustering methods I developed in Chapter 3 rely on a generalisation of
the information-theoretic framework introduced in Chapter 2 to the case of
fuzzy cellular identities. I introduced fuzzy cellular identities primarily to
enable the efficient clustering of thousands of cells. However, as shown with
respect to the scEC clustering of the Stumpf et al. (2020) population, fuzzy
cluster identities may be of biological relevance (see Section 3.1.4). I have
assumed throughout this thesis that all cells will occupy a discrete cellular
identity, i.e. that each cell should be assigned to only a single cell type.
Moreover, even with fuzzy identities, discrete cellular identities are optimal
with respect to maximising Hg for most cell types trialled. However, cells do
not always occupy a discrete identity — during cellular differentiation, cells
change between discrete cell types. Fuzziness offers a mechanism for formally
encoding differentiation through fuzzy mixtures of intermediate cellular
identities as cells transition from one discrete cell type to another.

Viewing differentiating cells as identifying with a fuzzy set of different cell
types, the dynamics of cellular differentiation can be examined with respect to
the developed information-theoretic quantities. Specifically, Hs can be used as
a measure of the favourability for a given (fuzzy) set of cellular identities.
Assuming that the partition of cells into types maximises inter-cluster
heterogeneity (as I assumed for the scEC unsupervised clustering method), the
favourability of a cell differentiating from one type to another can be assessed.
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For example, consider a population of five cells with respect to the expression
of a single gene, g. Let four cells have discrete identities, with two belonging to
a high-expression cell type, which I term type A, and two to a low-expression
cell type, type B; let the final cell have a variable fuzzy membership with
respect to each type.

As shown in Fig 5.4, if the cell has a high expression of g, matching the cells of
type A, differentiation of the cell from type A to type B is unfavourable with
respect to Hg. Conversely, if the cell has a low expression of g, matching the
cells of type B, differentiation from A to B becomes favourable. Thus, the
favourability of differentiation is determined by the similarity of the gene
expression profile of the differentiating cell to the gene expression profiles of
the cells of the starting and terminal cell types.

When the cell has an intermediate expression of g, the favourability of
differentiation with respect to Hs becomes more complex. In the example
shown in Fig 5.4, the difference in Hg between y = 0 and p = 1 means that the
differentiation from type A to B is favourable. However, the process of
differentiation itself is unfavourable, where the intermediate identity of the
cell, a fuzzy mixture of both type A and type B identities is associated with a
lower value of Hg than either end state. Thus, when a cell has a gene
expression profile intermediate between two cell types, either identity can be
stably adopted — the identity of the cell is bistable with respect to Hg (Ferrell Jr,
2012).

Expanding on this toy example, I suggest an informal model of cellular
differentiation. Consider a cell of some initial type that is similar in gene
expression to other cells of the type. The cell becomes primed for
differentiation into some terminal type through random fluctuations in gene
expression or some active process, gaining an expression pattern intermediate
between the two types. Priming makes available a route for differentiation,
albeit only through an unfavourable intermediate. At the unfavourable
intermediate, transitioning to either cellular identity, the initial or the terminal,
is approximately equally favourable with respect to Hg — the cell could return
to identifying as the initial type. Post transition, it is favourable, with respect
to Hg, for the cell newly of the terminal type to increasingly resemble the other
cells of the terminal type, stabilising the new identity of the cell.

The prediction of an unstable intermediate qualitatively resembles the
transition state model proposed in Moris et al. (2016), itself inspired by the
transition states of chemical reaction dynamics. In this model, each cell type is
defined by a collection of gene expression profiles. A differentiating cell
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FIGURE 5.4: Inter and intra-cluster heterogeneity during cellular differentiation.
Population consisting of five cells, where cells are assigned to one (or both) of two cell
types, A and B. Two cells of type A (purple cells) highly express the gene g, and two
cells of type B (yellow cells) do not express g. The expression and cell type member-
ship of the final (middle) cell are variable. The variable cell can express g at a high
level (solid black line), at an intermediate level (red dashed line), or have no expres-
sion of g (green dotted line). The cell’s identity varies, being fully of type A at u = 0
and fully of type B at p = 1. Intermediate values of y indicate a fuzzy mixture of
identities, e.g. # = 0.6 means that the cell has a membership strength of type A of 0.4
and a membership strength of type B of 0.6. The a) inter-cluster and b) intra-cluster
heterogeneity of the population changes with both cellular identity and expression
(note that the population heterogeneity, I(g), differs between the different expression
levels of the variable cell). The favourability of the variable cell’s identity depends on
its expression, with y = 0 being favoured when g is highly expressed and = 1 when
g is lowly expressed. Either identity is stable when the cell has an intermediate level
of expression, with the transition between identities involving decreasing inter-cluster
heterogeneity and increasing intra-cluster heterogeneity.
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adopts a range of possible ‘transition state’ gene expression profiles,
intermediate between the expression profiles of two different cell types. The
available transition states are unstable, eventually collapsing to give rise, with
some probability, to either the new or original cell type.

Notably, the toy model in Fig 5.4 that gives rise to these qualitative dynamics
is defined with respect to the expression of only a single gene. Concerning Hg,
the favourability of a given gene expression profile is not determined by the
gene regulatory network but by the relative expression level of a given cell
with respect to the other cells in the population. Of course, differentiation is
driven by the dynamics of gene regulatory networks; nevertheless, Hg
provides a simple, heuristic approach to considering the favourability of cell
type transitions (Waddington et al., 1939; Britten and Davidson, 1969; Alberts,
2017; Greulich et al., 2020).

Such a simplification is useful, as gene regulatory networks are challenging to
impute quantitatively. Moreover, the dynamical systems theory measure of
tavourability, potential, cannot be realistically computed for high-dimensional
systems (Wang et al., 2010). Thus, in future, Hs could provide a practical,
heuristic measure of favourability with respect to cell type transitions,
building on the use of Hg as an objective function for unsupervised and
semi-supervised clustering.

To provide a formal theory of cellular differentiation and not simply a heuristic
measure of favourability, Hs would have to be motivated from physical
principles. Importantly, information theory has deep links with statistical
mechanics and thermodynamic entropy, and statistical mechanics has been
repeatedly proposed as a physical basis for understanding cellular
differentiation (Jaynes, 1957; Guillemin and Stumpf, 2020; Teschendorff and
Feinberg, 2021). In the future, it would be interesting to investigate the relation
between inter-cluster heterogeneity and thermodynamic entropy to develop a
formal, physical theory of cellular differentiation based on Hg. In doing so, the
information-theoretic definition of cell type developed here would emerge as a
property of the underlying thermodynamics of gene expression.






125

Appendix A

Single-cell RN A-sequencing

Single-cell RNA-sequencing

The experimental process of single-cell RN A-sequencing consists of four
principle steps: dissociation, isolation, library construction and sequencing
(Luecken and Theis, 2019). In this appendix, we discuss each of these steps in
turn, briefly surveying some of the choices available in a single-cell
RNA-sequencing experiment.

Dissociation

The input for single-cell RNA-sequencing is typically a sample of biological
tissue, but for single-cell sequencing, we require a suspension of dissociated
single cells. Therefore single-cell RNA-sequencing begins with the digestion of
the tissue sample (Luecken and Theis, 2019).

Isolation

Following dissociation, each cell must be separately isolated. How cells are
isolated forms the major split in single-cell technologies, with two main types:
plate-based and droplet-based (Papalexi and Satija, 2018). Plate-based
methods (e.g. SMART-seq v1-v3) separate cells into wells by micro-pipetting,
microfluidics or FACS sorting (Svensson et al., 2017; Ramskold et al., 2012;
Picelli et al., 2013; Hagemann-Jensen et al., 2020). Droplet-based methods (e.g.
Drop-seq or inDrop) capture cells directly in microfluidic droplets (Macosko
et al., 2015; Klein et al., 2015).
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Droplet-based approaches offer massive parallelization, able to isolate ten to a
thousand times more cells than plate-based approaches; in contrast,
plate-approaches have much greater sequencing depth, with more transcripts
measured (10-20% of transcripts measured versus 3-10% for droplet-based
methods), and fewer restrictions on the size and type of cells that can be
isolated (Ziegenhain et al., 2017; Papalexi and Satija, 2018). The preferred
approach depends on what is required: deep sequencing of a few cells or an
unbiased screen of as many cells as possible. Note that with both types of
platforms, multiple cells can be captured in the same well or droplet, an error
known as doublets or multiplets (McGinnis et al., 2019).

Library Construction

Within each well or droplet, cellular membranes are broken down, and
intracellular mRNA is released. The released mRNA is reversed transcribed
into cDNA (complementary DNA) using a poly-T primer (the majority of
single-cell RNA-sequencing technologies only measure polyadenylated
mRNA). The primer contains up to three additional sequences: a cellular
barcode, a Unique Molecular Identifier (UMI) and a priming sequencing for
amplification (Ziegenhain et al., 2017). The cellular barcode is unique to each
plate or droplet, mapping each RNA to its cell of origin (except in the case of
doublets or multiplets, where multiple cells will share a single barcode).

The UMI is unique to every mRNA molecule: the UMI preserves the identity
of the mRNA molecule through the cDNA amplification required for
sequencing; UMIs provide a direct measure of the number of transcripts in a
cell and eliminates most bias introduced by preferential amplification (Kivioja
et al., 2012; Islam et al., 2014; Svensson et al., 2017).

Not all technologies use UMIs: the use of UMIs extends the length of nucleic
acid to be sequenced, restricting sequencing to the 3’ end of the mRNA
molecule, preventing full-length sequencing as in SMART-seq v1-v2
(Ziegenhain et al., 2017). A single gene can produce multiple types of mRNA
through alternative splicing of exons: full-length sequencing is required to
distinguish between different splice isoforms of a given gene (Wilkinson et al.,
2020). The third iteration of SMART-seq enables both UMIs and sequencing of
internal segments of the mRNA for mapping of splice isoforms
(Hagemann-Jensen et al., 2020).
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Sequencing

High-throughput short-read sequencing requires many copies of cDNA,
requiring amplification of the sequence mediated through the priming
sequence (Goodwin et al., 2016). The sequencing libraries from each
well/droplet are pooled together for a single sequencing run, a technique
known as multiplexing. Each cell is demultiplexed post-sequencing based on
the cellular barcode, with sequencing reads mapped to the genome of the
relevant species. If UMIs were used, mapped transcript reads are collapsed
down into digital transcript counts. The final result of the sequencing process
is a cell by gene count (or read) matrix where each element encodes the
number of transcripts (or reads) of each gene measured in each cell.

In the main text of this thesis we solely consider data sets produced by
droplet-based sequencing with UMIs. This combination has emerged as the
most popular approach to sequencing: UMIs minimise a source of noise —
variation in amplification efficacy — while losing information on splicing that is
only of interest in specific studies. Moreover, UMIs directly represent the
number of transcript molecules in a cell, rather than a first-order
approximation: models of transcript counts represent direct, physical models
of gene expression.

Droplet-based approaches allow for orders of magnitude more cells to be
sequenced in a single experiment, increasing the chances of sampling rarer cell
types, which are more likely to have been missed in low-throughput
taxonomic identification. Many plate-based experiments would have to be run
in parallel to achieve similar amounts, introducing the potential for batch
effects between different plates. Droplet-based UMI data provides the greatest
number of cells with the least noise, albeit at relatively shallow sequencing
depths per cell.
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Appendix B

Further Methods for Single-cell
Analysis

In this appendix, we detail the methods involved in clustering analysis that are
peripheral to unsupervised clustering itself. These methods are vital to the
process of cellular classification, but are largely technical in detail, so are
included here.

In the first section of this appendix, we discuss the methods used to prepare
single-cell sequencing count data for unsupervised clustering. In the second
section, we discuss how count data, and the results of clustering, are visualised
through non-linear dimension reduction.

Clustering Pre-processing

The goal of unsupervised clustering with respect to dingle-cell
RNA-sequencing data is the grouping of cells into type. However, this task is
not trivial, and is particularly prone to error when there are substantive
sources of heterogeneity other than differential gene expression between
clusters.

The goal of pre-processing is to minimise the effect of these alternative sourced
of heterogeneity with respect to gene expression. In this section, we discuss the
various methods involved in pre-processing. We begin by discussing
normalisation, which minimises the effect of technical noise. We then discuss
feature selection, which selects a priori those genes most likely to be
differentially expressed. Finally, we discuss linear dimension reduction, which
transforms the data to emphasise the coordinated aspects of heterogeneity.
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FIGURE B.1: Mean-Variance Relationship of Count Data. The log mean and log vari-

ance of gene transcript counts from data in (Svensson et al., 2017). Variance increases

quadratically with increasing mean expression. To use variance as a measure of hetero-

geneity, it must be normalised by mean expression, otherwise only highly expressed
genes will be selected.

Normalisation

Normalisation is the first step once the final gene expression count matrix has
been determined. The purpose of normalisation is twofold: 1) to minimise any
noise introduced by the sequencing experiment itself, thus isolating the
biological component of gene expression heterogeneity, and 2) to transform the
data so that it is more amenable to subsequent data analytic processes,
specifically by stabilising the variance of the gene expression distribution of
each gene (Vallejos et al., 2017; Hafemeister and Satija, 2019; Ahlmann-Eltze
and Huber, 2020).

Single-cell sequencing is a count process, counting the number of transcripts in
each cell. For a transcript to be counted, it must first bind to a barcode, then be
successfully amplified (see Appendix A). Failure at either stage leads to the
transcript being ‘missed’. The probability of a given transcript being measured
is low, with the total fraction of transcripts successively measured estimated at
3 to 10% (Papalexi and Satija, 2018).

This low probability of success has numerous knock-on effects. Firstly, the
count matrix is sparse. Many genes will have few transcripts present in any
given cell, whereas others will have orders of magnitude more transcript
molecules. When the number of transcripts measured is substantially lower
than the number of transcripts present in the cell, highly expressed genes can
crowd out lowly expressed genes. This leads to many zero values in the count
matrix, a phenomenon known as sparsity. Secondly, the total number of
transcripts sequenced in a given cell (the count depth) can vary greatly.
Variation in count depth can be biological, as cells will vary in how many
transcripts they have, e.g. if they actively going through the cell cycle.
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However, the effect is predominantly technical, with a variable number of
missed transcripts per cell. The result is substantial variation in the count
depth of measured cells (Dillies et al., 2013).

Various methods have been suggested to deal with both sparsity and count
depth variation. Initially, normalisation methods were imported from analysis
of bulk RN A-sequencing, an older technology where cell were not isolated for
sequencing. In bulk-like normalisation, the expression vector of each cell is
normalised by the count depth of the cell (or some other estimate of the ‘size’
of the cell) (Dillies et al., 2013). The normalised count values are then
log-transformed to remove the observed dependence of the variance on the
mean, see Fig B.1 (Vallejos et al., 2017; Lause et al., 2020; Ahlmann-Eltze and
Huber, 2020).

However, the extreme sparsity of single-cell sequencing data undermines these
traditional approaches to RNA-sequencing noise: the size effect factors cannot
be stably estimated on severely sparse data. Moreover, zero values cannot be
log-transformed, so a pseudo-count is added to every gene-cell element. This
log(x + 1) transformation of the data fails to stabilise the variance of lowly
expressed genes, as well as introducing the false appearance of zero-inflation
from the pseudo-count(Lun et al., 2016; Lun, 2018; Townes et al., 2019; Sparta
et al., 2021). These difficulties have required the development of normalisation
method specific to single-cell data, not imported from the analysis of bulk data.

Statistical modelling approaches have been developed to deal with the
problem of sparsity which seek to leverage distributional models of the data to
isolate that part of heterogeneity that is due to differential expression. The goal
of these modelling approaches is to fit some error model to the distribution of
transcript counts. The error model estimates the amount of variance we expect
to see from purely technical effects. This excess variance can then be regressed,
leaving only the heterogeneity due to biological effects.

The most common model used is the negative binomial distribution. The
negative binomial is an extension of the Poisson distribution, the archetypal
distribution for count processes (Haight, 1967). The Poisson distribution
models the number of counts expected from a process in a set time/space,
e.g. the cell, and is parameterised solely by the distribution mean, A. The
Poisson distribution is statistically elegant, with the variance of the
distribution equalling the mean, mathematically o2 = p.

However, while statistically simple and archetypal for count processes, the
Poisson distribution is an inadequate model of single-cell RNA-sequencing
data (Brennecke et al., 2013; Griin et al., 2014; Love et al., 2014; Townes et al.,
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2019; Cameron and Trivedi, 2013). Single-cell sequencing counts are
overdispersed, having an excess of variance compared to that predicted by the
Poisson, where variance is fixed by the mean. This excess variance is thought
to arise from a range of sources, including from biological variability between
samples/cells and from both biological and technical noise (Love et al., 2014;
Griin et al., 2014; Brennecke et al., 2013; Raj et al., 2006).

The negative binomial is an overdispersed Poisson distribution, where mean
and variance are related as, 0> = p + ¢ - u?, where ¢ is the variance, y is the
mean and ¢ is the overdispersion coefficient (Svensson, 2020). The
overdispersion parameter can be adjusted to cope with a range of excess
variance; however, this introduces a free parameter into the model - the
negative binomial distribution must be fit separately for each data-set, and in
some procedures, fit separately for each gene.

Assuming one takes the maximum likelihood estimate of the mean (which all
discussed methods do with the exception of Breda et al. (2021), which instead
adopts a Bayesian approach to parameter estimation), overdispersion is the
only parameter to ‘fit’ for negative binomial gene-expression models.
Accordingly, there is much debate about how to model overdispersion and
over what the biological or technical sources of the overdispersion are.

The popular Seurat software package takes a maximally flexible approach to
overdispersion, fitting the overdispersion of each gene separately (Hafemeister
and Satija, 2019). This data-driven approach makes minimal assumptions
about the source and nature of overdispersion. However, to avoid over-fitting,
Hafemeister and Satija (2019) regularises the gene-wise estimates of
overdispersion using a kernel smoothing routine. The regression does admit
some commonality in the source of overdispersion between genes, despite
titting an individual overdispersion term for each gene.

Townes et al. (2019), in contrast, builds a null model of gene expression from
statistical first principles. They consider single-cell RNA-sequencing as a
multinomial process, where there are N trials (total number of transcripts
measured in a given cell) and where each gene has some probability of being
measured (ideally equal to the proportion of transcripts belonging to that
gene). Overdispersion is introduced through the use of a
Dirichlet-multinomial distribution, which following the same assumptions as
above, can be approximated as a series of negative binomial distributions
when probabilities are sufficiently low and the number of trials sufficiently
large (both valid assumptions in single-cell sequencing, where the large
number of genes ensures that no single gene has a high probability of being
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sequenced). Townes et al. (2019) explicitly states that this overdispersion is
biological in origin but does not provide specific guidance on fitting the
overdispersion parameters, gene-wise or otherwise.

Lause et al. (2020) provides specific guidance for fitting overdispersion in the
Townes et al. (2019) framework. Lause et al. (2020), shows that the Seurat
approach is a rank-1 approximation of the Townes et al. (2019) framework and
that Seurat overfits overdispersion. Instead, they suggest a single
overdispersion parameter for all genes (a similar suggestion was made in
Svensson (2020)). Moreover, they find that if count depth variation is regressed
as an offset term of the model, that the estimated overdispersion parameter for
technical control data is consistently small. Outside of count depth variation,
which we can explicitly model, Lause et al. (2020) suggests overdispersion is
primarily biological in origin. However, the authors of Seurat rebut this claim
in Choudhary and Satija (2021).

Feature Selection

While the goal of normalisation is to minimise the technical noise component
of gene expression heterogeneity, the goal of feature selection is to maximise
the heterogeneity attributable to differential expression. Feature selection
achieves this by selecting only those genes likely to be differentially expressed
for inclusion in clustering (Yip et al., 2019; Luecken and Theis, 2019).

Furthermore, feature selection reduces the dimensionality of the data and
improves the algorithmic run-time of downstream analyses (Saeys et al., 2007).
Feature selection methods substantially reduce the dimensionality of the data,
with typically 500-5000 genes selected. Note that while the number of genes
chosen is arbitrary, downstream analysis is largely robust to the exact number
of genes chosen (Klein et al., 2015; Luecken and Theis, 2019). This reduction in
dimensionality is essential when downstream clustering depends on the
Euclidean distance: when measured over a large number of genes, the
small-scale noise of each gene adds up, inflating the total distance between
cells. Over a sufficient number of genes, the Euclidean distance become
effectively ‘meaningless’ in discriminating how close cells are (Beyer et al.,
1999), a general feature of working in high dimensions known as the ‘curse of
dimensionality” (Beyer et al., 1999).

Feature selection also improves the statistical power of downstream analyses
(Saeys et al., 2007). Post-clustering, the genes that are differentially expressed
between clusters are identified through statistical testing. Due to the large
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number of genes involved, multiple-test corrections must be employed,
lowering the power of any given test and increasing the type II error rate
(Benjamini and Hochberg, 1995; Ascension et al., 2021). By using only a
reduced number of genes, the stringency of the multiple-test correction can be
reduced, decreasing the type II error rate and increasing the number of
differentially expressed genes identified correctly.

The disadvantage with feature selection is that it can be a self-fulfilling
prophecy. Unsupervised clustering will cluster in the absence of any genuine
structure, leveraging random, non-functional noise in gene expression to
separate cells into clusters. Therefore, unsupervised clustering will tend to
return the inputted genes as differentially expressed, even if they are not (Gao
et al., 2020). Accordingly, a large number of genes are typically selected to
ensure those genes genuinely differentially expressing will be included.

We will now introduce a selection of single-cell feature selection methods,
grouping the methods into two main classes : model-based and model-free.
The model-based approaches measure how well the observed count
distribution holds to some statistical null model of gene expression —
specifically those used in normalisation — and consist themselves of two
further sub-classes: variance-based and drop-out based. Model-free
approaches utilise some other measure of sequencing data without reference to
the statistical null models used in normalisation.

Model-based

In the normalisation section, we discussed the use of statistical modelling in
quantifying the fraction of heterogeneity due to noise. For example, we
discussed how the negative binomial (the typical distribution for measuring
count processes with greater than expected variance when compared with
Poisson distribution) provides an appropriate error model for single-cell
sequencing (Brennecke et al., 2013; Griin et al., 2014). Model-based feature
selection methods utilise these error models as null models of gene expression,
testing whether the observed gene expression matches that predicted from the
null. If a gene matches the null, then that gene’s expression distribution can be
explained as resulting from noise; if not, it suggests that the gene is involved in
some biological process. Model-based approaches select those genes with the
least explainable expression distributions.

Model-based approaches vary in both the assumed null model and how
deviation from the null is measured. There are various ways to quantify
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deviation, but the most popular in single-cell analysis are variance and
drop-out (percent of zero counts). Both measures are mathematically simple
and easy to compute, so they are useful for sorting through the deviation of
thousands of genes quickly.

Note that model-based methods do not employ formal hypothesis testing
against the error model. Feature selection is inherently limited, as differential
expression cannot be measured pre-clustering; instead, only a gross estimate
can be made. This limitation means that more exact approaches to estimating
deviation from the null, e.g. hypothesis testing, are unnecessary, and faster
simpler alternatives can be used.

Variance. The statistical models presented in normalisation, and specifically
the negative binomial, predict genes to have a certain amount of variance
based on their mean (Svensson, 2020). Variance-based approaches compare the
observed and expected variance (while controlling for mean expression) to
identify those genes that deviate from the null. The genes identified by
variance approaches are referred to as HVGs — highly variable genes
(Brennecke et al., 2013; Yip et al., 2019).

The simplest approach to variance selection is to compare the observed
variance to the expected, both normalised by mean expression. This is the
approach taken in Brennecke et al. (2013), which assumes expression data to
follow a negative binomial distribution. However, this simple approach has
been found to over-inflate the heterogeneity of lowly expressed genes and only
marginally improve downstream analyses compared to a random selection of
genes (Andrews and Hemberg, 2019; Townes et al., 2019; Kiselev et al., 2018).

Both Hafemeister and Satija (2019) & Townes et al. (2019) take a more
sophisticated approach, measuring the variance of the normalised expression
data (the Pearson residuals from the model). The approaches use slightly
different null models but take the same approach to variance; in each, the top
X genes by variance of normalised counts are selected as highly variable. Both
approaches benefit from the enhanced variance stabilisation offered by
normalisation; the highly variable genes approach employed by Brennecke

et al. (2013) only normalised the variance, not the individual count values.

Drop-out. The second type of model-based feature selection method exploits
the sparsity of single-cell data. Where variance-based methods measure
deviation from the error model as the increase in variance, drop-out methods
measure deviation as the increase in zero values compared with expected. The
number of zeroes is quicker to estimate in sparse data than variance, and
drop-out more directly assess the potential for differential gene expression -
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broadly, differential expression will result in genes that are effectively ‘on” in
one cluster and ‘off” in the remaining (Sparta et al., 2021). The “off” clusters,
even if they have mostly low but non-zero expression, will cause, due to
sparsity, a large increase in zero values compared to that expected from the
mean expression of the gene, which is set from the average of ‘on” and “off’
clusters.

Drop-out methods differ in the assumed statistical null model of the data,

e.g. Andrews and Hemberg (2019) presents two drop-out models, one based
on Michaelis-Menten kinetics and the other on the negative binomial. The
drop-out rate is easier to compute than the expected variance and does not
require a full specification of the null model, only the expected number of zero
values, so drop-out methods have access to a greater variety of practicable null
models. For instance, Townes et al. (2019) developed a drop-out approach
based on the less computationally tractable but more theoretically robust
multinomial distribution (multinomial is more theoretical robust, as it models
the competition of genes with each other to be sequenced, see above).

Sparta et al. (2021) argues against the use of the multinomial in drop-out based
feature selection, asserting that the multinomial model assumes saturation in
sequencing. Instead, Sparta et al. (2021) assume every transcript has an equal
probability of being sequenced, p.. The number of transcripts of a given gene
in each cell is then the mean count value normalised by p,; this establishes the
null hypothesis that every cell expresses each gene equally. From this Sparta

et al. (2021) develops a binomial distribution to obtain the probability of X
number of cells with zero expression for a given gene. Sparta et al. (2021) has
the advantage of producing a p-value, so standard significance testing can be
used; the other methods produce an ordered set of genes, from which the top
X is selected. However, given the blunt nature of feature selection, the need for
this additional specificity is questionable.

Model-free

Model-free feature selection methods do not utilise error models of gene
expression. Instead of testing whether a gene’s expression distribution can be
explained by noise, each method attempts to directly infer a gene’s
involvement in differential expression between cell types. Each method
assumes a gene’s expression distribution being not solely attributable to noise
is insufficient criteria for assessing a gene’s likeliness of being differentially
expressed.
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Ranjan et al. (2021) introduces DUBStepR, which identifies sets of highly
correlated genes. DUBStepR assumes that differentially expressed genes will
correlate strongly with each but not with other genes, whereas more
ubiquitously expressed genes will have a uniform level of correlation.

Jiang et al. (2016) builds off the fact that differential expression restricts gene
expression — for a given number of measured transcripts, differential
expression involves distributing transcript counts to fewer and fewer cells.
This restriction is analogous to the restriction in wealth associated with income
equality: Jiang et al. (2016) proposes using a measure of income inequality, the
Gini coefficient, to measure restriction in expression. Liu et al. (2020) proposes
using entropy, another measure of wealth inequality, in a similar fashion.

Triku, introduced in Ascension et al. (2021), measures how similar the
expression of each gene is between each cell and its k-nearest-neighbours.
Triku then compares the measured similarity to groupings of each cell with k
random cells. The approach is equivalent to forming many small clusters and
asking how coherently they express each gene; Triku identifies the genes that
are likely to be expressed at similar levels within each cluster, abiding by the
intra-cluster homogeneity sought by both clustering methods discussed above.

Linear Dimensions Reduction

Biology is intrinsically lower-dimensional than the total number of genes — the
expression of each gene is dependent on the expression of the rest (Huang

et al., 2005). In particular, involvement in biological processes, e.g. cell type,
induces substantial correlation between genes, and the corresponding
expression heterogeneity, reducing the effective dimensionality of the data.
Dimension reduction techniques exploit these dependencies between genes,
projecting the gene expression vectors of cells onto a lower number of
dimensions.

The most popular linear dimension reduction technique is principal
component analysis (PCA) (Luecken and Theis, 2019; Hotelling, 1933). Linear
dimension reduction techniques project the data onto a linear subspace of the
original space — each dimension of the reduced space is a linear combination of
dimensions in the non-reduced space.

Principal component analysis changes the basis of the data so that the first
principal component (dimension) captures the greatest variation possible, the
second principal component the second most, and so on, under the constraint
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of orthogonality (Hotelling, 1933). Only the top d principal components are
kept, with the value of d chosen either by default (commonly 50, or
heuristically by an elbow analysis).

Each principal component is then a linear combination of genes, where each
gene has some weight or loading, making principal component analysis highly
interpretable. PCA removes much of the uncoordinated variability from a data
set and identifies tranches of linearly co-dependent genes. As differential
expression is one of the major sources of coordination in gene expression, these
linearly co-dependent genes likely represent sets of deferentially expressing
genes. Therefore, PCA represents a form of fuzzy feature selection, where
genes are included in analysis with differing weights.

By capturing the linear dependencies between genes, PCA is able to reduce the
dimension of the data substantially, typically down to 5 to 50 principal
components (Stuart et al., 2019). Distances between cells calculated in this
low-dimensional space are then used in clustering, either in totality for
traditional unsupervised clustering or only a subset of the smallest distances in
graphical clustering. Note that this reduction in dimensionality also serves to
avoid the ‘curse of dimensionality’, discussed in reference to feature selection.

Visualisation

Biology is an inherently visual field; biologists require “proof by visualisation’
(Fox Keller, 2002). However, to visualise data, we need to map it onto a
2-dimensional plane (or 3-dimensional) and given the non-linear nature of
multivariate gene expression (see Section 1.2.3), non-linear dimension
reduction methods are required.

Non-linear dimension reduction methods exploit the non-linear dependencies
between genes to generate a low-dimensional embedding of the data for
visualisation. The most popular reduction techniques are tSNE (t-distributed
Stochastic Neighbourhood Embedding) and UMAP (Uniform Manifold
Approximation and Projection) (Mclnnes et al., 2018; Hinton and Roweis, 2003;
van der Maaten and Hinton, 2008). Both UMAP and tSNE operates on the
same principle and foundation as the Louvain method for graphical clustering
— that we want to prioritise smaller distances between cells, and that we can
achieve this through a k-nearest-neighbours graphical representation of the
data.
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UMAP, in particular, has become ubiquitous in single-cell analysis (Luecken
and Theis, 2019). In brief, UMAP projects a transformed version of the kNN
graph of the data onto two dimensions. This transformed version has
additional topological guarantees on how well it captures the ‘shape’ of the
data, compared to the untransformed version (see Nerve Theorem,
(Zomorodian, 2005)), at the cost of the introduction of further
hyperparameters.

UMAP maps the kNN onto low dimensions by constructing another graph,
constrained to fit on a 2-dimensional Euclidean plane. UMAP then adjusts the
low dimensional graph to minimise the divergence with the high dimensional
kNN. The resulting low dimensional graph is visualised as a point cloud of
cells, where cells that are close together on the UMAP projection are close
together in the full-dimensional gene space. Accordingly, the low-dimensional
embedding to can be used assess a proposed clustering — cells of the same type
should have similar expression, so colouring cells by type on the visualisation
should reveal contiguous groupings of cells.

Dimension reduction by tSNE operates along similar principles to UMAP
(Becht et al., 2019). However, instead of maximising the similarity between
kNN graphs constructed in high and low-dimensions, tSNE maximises the
similarity between probability distributions in high and low-dimensions
(Hinton and Roweis, 2003). The distributions encode the probability that cells
are ‘similar” or are ‘neighbours’ in high and low-dimensions respectively,

i.e. are close by Euclidean distance. The low-dimension distributions have a
longer tail of probability, prioritising the preservation of smaller distances
through the projection onto lower dimensions. Informally, tSNE is a
continuous analogue of the discrete UMAP.

UMAP and tSNE have proven remarkably successful at visualising single-cell
data (for examples, see (Becht et al., 2019)). Both methods operate on the same
principle as graphical clustering — small distances are more reliable than large
ones. This preserves the neighbourhood structure of the data, with cells that
are close in high dimensions being close in low-dimensions, but means that
larger distances cannot be directly interpreted on a UMAP or tSNE
visualisation (unlike PCA, see Section 1.2.4). Thus, the results of clusterings
can be qualitatively assessed — cells assigned to the same cluster should be
close together on the projection. Note however, that UMAP and tSNE preserve
only small scales distances; the relative size of larger distances between cells
on the low-dimensional embedding cannot be interpreted.
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Appendix C

Supplementary Code

This appendix includes the code developed for Chapters 2 & 3. The code is
available as an R package on GitHub https://github.com/mjcasy/scEC.

Normalisation

The below code is for the calculation of the James-Stein-type shrinkage
estimate of the frequency of transcripts expressed in each cell. The first
function, GetFreqShrink, estimates the frequency for a single gene. The
second function, GetFreq, applies GetFreqShrink to all genes, returning a gene
by cell matrix of James-Stein estimator frequencies. Note that neither function
is exported for use; both are used within other functions.

#’ James-Stein Frequency Estimator

#)

#’ @param transposeCounts Transposed sparse count matrix

#’ @param ind Integer indicating chosen gene (row number in count matrix)
#’ @param N N Number of cells

#’> @param Total Total Integer of total counts per cell

#7

#’ @return Numeric vector of shrinkage cell frequencies

#}

GetFreqShrink <- function(transposeCounts, ind, N, Total){

tk <- rep(1/N, N)
tkadj <- tk

count <- transposeCounts@x[(transposeCounts@p[ind]+1) : transposeCounts@p[ind+1]]

elements <- transposeCounts@i[(transposeCounts@p[ind]+1) : transposeCounts@p[ind+1]]+1

freq <- count / Total[ind]

num <- 1 - sum(freq~2)
tkadj[elements] <- tkadjl[elements] - freq
den <- (sum(count) - 1)*sum(tkadj~2)

lambda <- num/den
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lambda[lambda > 1] <- 1

freqshrink <- lambdax*tk
freqshrink[elements] <- freqgshrink[elements] + (1 - lambda)x*freq

fregshrink

#’> Normalise Frequencies

#7

#’ @param CountsMatrix Feature x cell sparse counts matrix of class dgCMatrix
#)

#’ Q@return Feature x cell dense matrix of frequencies

#)

GetFreq <- function(CountsMatrix){

Total <- Matrix::rowSums (CountsMatrix)
transposeCounts <- Matrix::t(CountsMatrix)
Indices <- length(transposeCounts@p)-1

N <- dim(CountsMatrix) [2]

freq <- matrix(NA, nrow = nrow(CountsMatrix), ncol = N)

for (ind in 1:Indices) {

freq[ind,] <- GetFreqShrink(transposeCounts, ind, N, Total)

freq

Feature Selection

Functions for the calculation of population heterogeneity and subsequent
feature selection based on population heterogeneity. The function Population
calculates gene-wise population heterogeneities. The intended use of
Population is for plotting I(g) against mean expression, of the type seen in Fig
2.13. The function FeatureSelection returns the names of the top nGenes by
population heterogeneity that have at least minCounts total transcripts.

#’ Population Heterogeneity

#}

#’ O@param CountsMatrix Feature x cell sparse counts matrix of class dgCMatrix
#)

#’ @return Numeric vector of gene-wise population heterogeneities

#’ Qexport

#}

#’ Qexamples

Population <- function(CountsMatrix) {

Total <- Matrix::rowSums (CountsMatrix)

N <- ncol(CountsMatrix)

transposeCounts <- Matrix::t(CountsMatrix)



143

Indices <- length(transposeCounts@p)-1

Pop <- vector ("numeric", length(Indices))

for (ind in 1:Indices) {
freqshrink <- GetFreqShrink(transposeCounts, ind, N, Total)
LogNfreq <- log(N*freqshrink)
LogNfreq[LogNfreq == -Inf] <- 0O
Pop[ind] <- t(freqshrink) %x*% LogNfreq

Popl[is.infinite(Pop)] <- O
names (Pop) <- colnames (transposeCounts)

Pop

#’ Feature Selection by Population Heterogeneity

#}

#’> Oparam CountsMatrix Feature x cell sparse counts matrix of class dgCMatrix
#’ G@param minCounts Minimum number of transcripts per gene

#’ @param nGenes Number of genes selected

#)

#’ Q@return Vector of top genes by population heterogeneity

#’ Qexport

#)

#’ Qexamples

FeatureSelection <- function(CountsMatrix, minCounts = 100, nGenes = 500){
Exp <- rownames (CountsMatrix)[Matrix::rowSums (CountsMatrix) >= minCounts]

Div <- Population(CountsMatrix [Exp,])

GOI <- names(sort(Div, decreasing = T)[1:nGenes])

GOI

Unsupervised Clustering

Function for unsupervised clustering. For efficiency, numerical optimisation is
carried out in Python3 instead of R, with the Python3 code detailed below. The
Cluster function does not carry out feature selection, allowing alternative
feature selection methods to that introduced above to be used.

The Cluster function carries out clustering for and up to numClus clusters. The
function allows for mutlistart, and has an option to set a seed. Note the seed
must be set internally in the function, as opposed to using the standard R
function set . seed, as the standard function will fail to set the seed for the
Python3 code.

#’ Single-Cell Entropic Clustering
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#}

#’ @param CountsMatrix Feature x cell sparse counts matrix of class dgCMatrix
#’ @param numClus Number of clusters (or maximum number of clusters for greedy)
#’ Q@param Multistart Number of restarts at each step

#’ @param Greedy Boolean. Should greedy algorithm be used.

#’ @param Seed Seed

#}

#’ Q@return When Greedy = F, vector of integer identities. When Greedy =T,

#’ matrix where each column is a vector of integer identities. The Nth column
#’ encodes N clusters.

#’ Qexport

#

#’ Qexamples

Cluster <- function(CountsMatrix, numClus, Multistart = 5, Seed){
if (!missing(Seed)){

set.seed (Seed)

reticulate::py_set_seed(seed = Seed)
G <- dim(CountsMatrix) [1]
N <- dim(CountsMatrix) [2]
FullFreq <- GetFreq(CountsMatrix)
mu <- PyFunc$multiStartClusterCells(freq = FullFreq, numClusters = numClus,
multistart = Multistart)

Ident <- apply(mu, 1, which.max) - 1

Ident

Below is detailed the Python3 code for use in clustering. Note this code is not
exported, serving solely as background for the Cluster function.

import numpy as np

from scipy import optimize

def ident2mu(ident):

N = ident.size
C = np.unique (ident).size
mu = np.zeros ((N,C), ’int’)

for i in range(C):

mu[ident == i, i] = 1

return mu

def pop(freq):

freq = np.array(freq)

N = freq.shape[1]

popG = np.sum(freq * np.log(N * freq), 1)
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return popG

def intercluster (freq, ident):

ident = np.array(ident).astype(int)
freq = np.array(freq)

mu = ident2mu(ident)
y = freq @ mu
N = ident.size

Nk = np.sum(mu, O0)
logNk = np.log(Nk)

interclusterG = np.sum(y * (np.log(N * y) - logNk),

return interclusterG

def funcCost(wVec, freq, tfreq):

N = freq.shape[1]
C = int((wVec.size / N))

wVecar = np.array(wVec)
W = wVecar.reshape(N, C)
M = np.sum(np.exp(W), 1)
mu = np.exp(W) / M[:,Nomne]

y = freq @ mu

Nj = np.sum(mu, O)
logNj = np.log(Nj)

Is = -1*np.sum(y * (np.log(N * y) - logNj))

return Is

def gradCost(wVec, freq, tfreq):

N = freq.shape[1]
C = int(wVec.size / N)

wVecar = np.array(wVec)
W = wVecar.reshape (N, C)
M = np.sum(np.exp(W), 1)
mu = np.exp(W) / M[:,Nonel

y = freq @ mu

Nj = np.sum(mu, 0)
yNj =y / Nj

terml = np.log(yNj) + np.log(N) + 1
dIsdu = tfreq @ terml

term2 = -1*np.sum(yNj, 0)

dIsdu = dIsdu + term2

dIsdw = dIsdu * mu * (1 - mu)

1)
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iterC = np.arange(C)

for j in iterC:
ind = iterC[iterC!=j]
term2 = np.transpose(-1 * np.transpose(mul:,ind]) * mul:,j])
dIsdw[:,j] = dIsdwl[:,j] + np.sum(dIsdul:,ind] * term2, 1)

dIsdwVec = -1 % dIsdw.reshape((dIsdw.size,))

return dIsdwVec

def clusterCells(freq, numClusters):
freq = np.array(freq)
numClusters = int (numClusters)

N = freq.shape[1]
tfreq = freq.T
wVec = np.random.uniform(low = -0.5, high = 0.5, size = (numClusters*N,))

bounding = 3

Bounds=optimize.Bounds (lb=-bounding, ub=bounding)

Out = optimize.minimize (funcCost,
x0 = wVec,
args = (freq, tfreq),
method = ’L-BFGS-B’,
jac=gradCost,

bounds=Bounds)

W = Out.x.reshape(N, numClusters)
M
mu = np.exp(W) / M[:,Nomnel

np.sum(np.exp(W), 1)

return mu

def multiStartClusterCells (freq, numClusters, multistart):

freq = np.array(freq)

numClusters = int (numClusters)
multistart = int(multistart)
maxScore = 0

for i in range(multistart):

tempMu = clusterCells(freq, numClusters)
newldent = tempMu.argmax (1)
Score = intercluster (freq, newIdent).sum()

if Score > maxScore:
maxmu = tempMu

maxScore = Score

return maxmu
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Semi-supervised Classification

Functions for the semi-supervised classification of a data set based on another.
As with clustering, underlying optimisation carried out in Python3.
MapFeatureSelection selects genes with high Hs(g) in reference data set; note
that it is not exported. Map carries out the semi-supervised classification.

#’ Feature Selection by Inter-cluster Heterogeneity

#)

#’ G@param ReferenceCountsMatrix Reference count matrix; feature x cell sparse counts matrix of c¢
#’ Q@param ReferenceID Factor of reference cell identities

#’ @param minCounts Minimum number of transcripts per gene

#’ @param nGenes Number of genes selected

#}

#’ Q@return Vector of top genes by inter-cluster heterogeneity

#7

#’ Qexamples

MapFeatureSelection <- function(ReferenceCountsMatrix, ReferenceID, minCounts, nGenes){

Exp <- rownames (ReferenceCountsMatrix) [Matrix::rowSums (ReferenceCountsMatrix) >= minCounts]

Div <- DifferentialExpression(ReferenceCountsMatrix[Exp,], ReferencelID)

GOI <- names(sort(Div, decreasing = T)[1:nGenes])

GOI

#’ Mapping of Cells Onto Reference Cell Identities

#7

#’ @param MapCountsMatrix Count matrix of cells to be mapped
#’ @param ReferenceCountsMatrix Count matrix of cells with known identities
#’ Oparam ReferenceID Factor of reference cell identities

#’ @param minCounts Minimum number of transcripts per gene
#’ G@param nGenes Number of genes selected

#’ @param Seed Seed set for both R and Python components

#7

#’ Q@return Mapped cellular identities

#’ Qexport

#)

#’ Qexamples

Map <- function(MapCountsMatrix, ReferenceCountsMatrix, ReferenceID, minCounts = 100, nGenes = 1

if (!'missing(Seed)){
set.seed (Seed)

reticulate::py_set_seed(seed = Seed)

RefN <- ncol(ReferenceCountsMatrix)
MapN <- ncol(MapCountsMatrix)
N <- RefN + MapN

GOI <- MapFeatureSelection(ReferenceCountsMatrix, ReferenceID, minCounts = minCounts, nGenes =
ReferenceCountsMatrix <- ReferenceCountsMatrix[GOI,]

MapCountsMatrix <- MapCountsMatrix [GOI,]

RefFreq <- GetFreq(ReferenceCountsMatrix)
MapFreq <- GetFreq(MapCountsMatrix)
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FullFreq <- cbind ((RefN/N) * RefFreq, (MapN/N) * MapFreq)
RefID <- as.numeric(ReferenceID)-1

mu <- PyFunc$meld(freq = FullFreq, refID = RefID)
Ident <- apply(mu, 1, which.max) - 1

levels (ReferenceID) [Ident+1]

Python3 background functions semi-supervised classification.

def funcCostMeld (wVec, freq, tfreq, refW):
N = freq.shape[1]
mapN = N - refW.shape [0]
C = int ((wVec.size / mapN))

wVecar = np.array(wVec)

mapW = wVecar.reshape (mapN, C)
W = np.concatenate ((refW, mapW))

M
mu = np.exp(W) / M[:,Nonel

np.sum(np.exp (W), 1)

y = freq @ mu

Nj = np.sum(mu, O)
logNj = np.log(Nj)

Is = -1*np.sum(y * (np.log(N * y) - logNj))
return Is

def gradCostMeld(wVec, freq, tfreq, refW):
N = freq.shape[1]

mapN = N - refW.shape[0]
C = int ((wVec.size / mapN))

wVecar = np.array(wVec)
mapW = wVecar.reshape (mapN, C)
W = np.concatenate ((refW, mapW))

M
mu = np.exp(W) / M[:,Nonel

np.sum(np.exp(W), 1)

y = freq @ mu

Nj = np.sum(mu, O)
yNj =y / Nj

terml = np.log(yNj) + np.log(N) + 1
dIsdu = tfreq @ terml

term2 = -1%np.sum(yNj, 0)

dIsdu = dIsdu + term2
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M = np.sum(np.exp(mapW), 1)
mu = np.exp(mapW) / M[:,Nonel

dIsdw = dIsdu * mu * (1 - mu)

iterC np.arange (C)

for j in iterC:
ind = iterC[iterC!=j]
term2 = np.transpose(-1 * np.transpose(mul[:,ind]) * mul:,j])
dIsdwl[:,j] = dIsdwl:,j] + np.sum(dIsdul:,ind] * term2, 1)

dIsdwVec = -1 * dIsdw.reshape((dIsdw.size,))

return dIsdwVec

def meld(freq, reflID):
freq = np.array(freq)
N = freq.shape[1]

refID = np.array(refID).astype(int)
refN = refID.size

C = np.unique(refID).size

refW = np.ones(shape = (refN,C))
refW = -10*xrefW
refW[np.arange (refN),refID] = 10

mapN = N - refN
wVec = np.random.uniform(low = -0.5, high = 0.5, size = (CxmapN,))

wVec = np.zeros(shape = (C*mapN,))

rangeN = np.arange(start = refN, stop = N)

tfreq = freql[:,rangeN].T

bounding = 3
Bounds=optimize.Bounds (lb=-bounding, ub=bounding)

Out = optimize.minimize (funcCostMeld,
x0 = wVec,
args = (freq, tfreq, refW),
method = ’L-BFGS-B’,
jac=gradCostMeld,

bounds=Bounds)

=
]

Out .x.reshape (mapN, C)
M
mu = np.exp(W) / M[:,Nonel

np.sum(np.exp (W), 1)

return mu

Differential Gene Expression

The function DifferentialExpression returns the inter-type heterogeneity of
each gene based on the discrete clustering Identity. Differentially expressed
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genes are the chosen manually on the basis of the returned values or through
randomisation and exact testing as in Chapter 2.

#’ Differential Expression by Inter-Type Heterogeneity

#}

#’ @param CountsMatrix Feature x cell sparse counts matrix of class dgCMatrix
#’ G@param Identity Factor of cell identities

#7

#’ @return Numeric vector of gene-wise inter-type heterogeneities

#’ Qexport

#}

#’ Qexamples

DifferentialExpression <- function(CountsMatrix, Identity) {
if (length(Identity) != ncol(CountsMatrix)){

stop("Inconsistent number of cells between objects:\n\tlength(Identity) !=
ncol (CountsMatrix)")

Total <- Matrix::rowSums (CountsMatrix)

N <- ncol(CountsMatrix)

Ng <- as.vector(table(Identity))
transposeCounts <- Matrix::t(CountsMatrix)

Indices <- length(transposeCounts@p)-1

InterType <- vector ("numeric", length(Indices))
for (ind in 1:Indices) {
freqshrink <- GetFreqShrink(transposeCounts, ind, N, Total)
groupedfreqshrink <- tapply(freqshrink, Identity, sum)
NonZero <- which(groupedfreqshrink != 0)
InterType[ind] <- t(groupedfreqshrink[NonZerol) %*), log(N*groupedfreqshrink[NonZerol /
Ng[NonZerol)
InterType[is.infinite(InterType)] <- 0

names (InterType) <- rownames (CountsMatrix)

InterType
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