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Coupled map lattices (CMLs) are prototypical dynamical systems on networks/graphs. They exhibit
complex patterns generated via the interplay of diffusive/Laplacian coupling and nonlinear reactions
modelled by a single iterated map at each node; the maps are often taken as unimodal, e.g., logistic or
tent maps. In this letter, we propose a class of higher-order coupled dynamical systems involving the
hypergraph Laplacian, which we call coupled hypergraph maps (CHMs). By combining linearized
(in-)stability analysis of synchronized states, hypergraph spectral theory, and numerical methods, we
detect robust regions of chaotic cluster synchronization occurring in parameter space upon varying
coupling strength and the main bifurcation parameter of the unimodal map. Furthermore, we
find key differences between Laplacian and hypergraph Laplacian coupling and detect various other
classes of periodic and quasi-periodic patterns. The results show the high complexity of coupled
graph maps and indicate that they might be an excellent universal model class to understand the
similarities and differences between dynamics on classical graphs and dynamics on hypergraphs.

INTRODUCTION

There are many processes, which can be modeled el-
egantly using network dynamical systems. For exam-
ple, this includes epidemic spreading @], opinion for-
mation [2], neural networks [3], synchronization [4], and
game theory ﬂﬂ], just to name a few. The standard mod-
eling approach for network dynamics is that each ver-
tex (or node) has one or more suitable state variables
while edges (or links) provide the interaction between
the vertices. Yet, in many applications, just considering
a standard graph model is insufficient and it is necessary
to consider higher-order interactions, which can be mod-
elled via hypergraphs. For example, higher-order cou-
pling is of crucial importance in neuroscience ﬂa], where
it can encode co-firing of neurons, the joint activation
of several brain areas as well as more general functional
relationships between neurons or brain regions. In epi-
demiology ﬂ], higher-order interactions can model the
different epidemiological interaction patterns for group
dynamics. Similarly to epidemiology, contact processes
in opinion formation ﬂé] clearly benefit from the inclu-
sion of group dynamics. In cell biology ﬂﬂ], classical graph
structures can also fall short to correctly represent the in-
teractions between proteins, metabolites, or genes, where
chemical mechanisms actually dictate that certain bind-
ing or catalysis patterns only form, when more than two
biological components react. Historically, the need to
model higher-order interactions was observed very early
within ecology ﬂm, |ﬁ|], where the interaction between
more than two species is very common in predator-prey
systems due to intertwining of various competitive, mu-
tualistic, or parasitic effects. Hence, higher-order inter-
actions have recently become a common physical mod-

elling principle and we refer to ﬂﬂ] for a detailed survey
of the area, which displays a high level of recent activ-
ity ﬂE—Iﬂ] in the context of dynamics. In this work,
we are interested in the effect that higher-order coupling
between nodes can have on the interactions between cou-
pled maps. Coupled map lattices (CMLs) are a very
classical simplified /universal class, which are quite well-
studied on graphs. Yet, to the best of your knowledge,
intertwining the dynamical properties of CMLs in the
context of hypergraphs has not been considered. Here
we propose a very general extension to chemical hyper-
graphs, which includes classical hypergraphs as a special
case. While classical hypergraphs are made by vertices
that are joined together by hyperedges, chemical hyper-
graphs have the additional structure that each vertex—
hyperedge incidence is given either a plus sign, a minus
sign, or both. They were introduced in HE] as a model for
chemical reaction networks, in which vertices represent
chemical elements and hyperedges represent chemical re-
actions. The signs allow to distinguish reactants, prod-
ucts and catalysts within a chemical reaction. Moreover,
in HE], also a normalized Laplace operator for chemical
hypergraphs was introduced. Such a operator is a natu-
ral generalization of the normalized Laplacian for graphs
that was introduced by Fan Chung HE], and its spectrum,
as in the graph case, encodes many qualitative properties
of the hypergraph to which it is associated. Conceptually,
there are two possible approaches for constructing hyper-
graph Laplacians. The first approach considers a random
walk or a diffusion between the vertices of a hypergraph
and identifies a Laplacian as the generator of such a pro-
cess. Thus, one looks at transition probabilities between
vertices. Since these are pairwise relations, however, they
can be encoded as the weights of some ordinary graph.
The resulting Laplacian can then be represented as the
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Laplacian of that underlying effective graph. Thus, we
would be back to graph theory. The second approach,
the one that we are adopting here, considers relations
between sets of vertices, for instance between the inputs
and the outputs of reactions. Mathematically, one can
define a boundary operator representing such relations,
and when endowing the vertex and the hyperedge set
with suitable scalar products, construct the correspond-
ing Laplacian. Such a Laplacian, in contrast to the first
approach, cannot be reduced to a graph Laplacian, but
rather genuinely represents and reflects the higher order
relations encoded by the hypergraph. The essential point
is that the operator compares the total input of an ori-
ented hyperedge to its total output, but this still allows
the individual contributions of the input nodes to vary,
and the same holds for the output nodes. When nodes are
contained in several hyperedges, they then are subjected
to the constraints coming from each of these hyperedges,
but it turns out that for many hypergraphs, there is still
enough freedom to make genuinely new dynamical phe-
nomena possible.

In this work, we employ that hypergraph Laplacian to
focus our study of the new class of coupled hypergraph
maps (CHMs) on chaotic dynamics and synchronization
as these two phenomena are cornerstones in the study of
more classical CMLs. Our work is structured as follows:
First, we recall and develop the main mathematical tools
we need for classical CMLs. Then we introduce CHMs
defined via iterated maps at each node and hypergraph
Laplacian coupling between nodes. In the main dynamics
part, we study synchronization and chaos for the paradig-
matic example of hyperflowers as well as some further
interesting hypergraphs. Last, we give a brief conclusion
and an outlook to future work.

COUPLED MAP LATTICES

To study dynamical systems induced by iterating cou-
pled maps on networks is an established paradigm in non-
linear dynamics originally termed coupled map lattices
(CMLs) [20]. Each node/vertex i € {1,2,...,d} of a
connected network/graph G evolves according to a time-
discrete map f. Typical examples are the logistic map
f(x) = px(l—2) or the tent map f(x) = § min{z,1 -z}
each with parameter p € [0,4]. The dynamics of the
state z,,(7) € R at node i at time n € N is defined via

Tni1(i) = f2n(i)) — e(Ag f)(@n (i), (1)

where € € R is a parameter controlling the diffusive cou-
pling, and the normalized Laplacian Ag is defined as

(Bou)(a () = u(e) = 1= S, (@)

J~i

where i ~ j when 7, j are connected by a link/edge, and
we call them neighbors in that case, and deg is the num-

ber of neighbors of i. Classically, one has considered lat-
tices G = L(dy,dz) (d1,2 € N) with dyds nodes, or com-
plete graphs G = K (d € N) on d nodes; both classes al-
ready display very surprising phenomena. Subsequently,
triggered by the rise of network science, it was discovered
that new effects may arise in CMLs when the graph is not
complete or a lattice ]. A commonly encountered
theme in all classes of CMLs is synchronization ﬂﬂ] Dy-
namics is called synchronized if x,(i) = x,(j) for all
i,7 and all times n > ng for some ng € N. Impor-
tantly, synchronized dynamics need not be constant in
n, but could, for instance, show itself chaotic behavior.
In such a case, one speaks of the (complete) synchroniza-
tion of chaos [25]; we refer to @] for the discovery of
the general effect of chaotic synchronization in coupled
oscillators. An important object is the (complete) syn-
chronization manifold M := {z(1) = z(2) = --- = z(d)},
and one is interested in the transverse stability of M.
Consider an orbit ¥ = {Z,}>2; of the given map f. If
the CML is uncoupled (¢ = 0), then the homogeneous
solution v = {x,(j) = Z,} for all j is synchronized and
remains in M. Then one may linearize around =, de-
rive a variational equation, and link stability for ¢ > 0
to the Lyapunov exponent of f and the eigenvalues of
Ag. As shown in [21], (complete) synchronization on M
is transversally linearly stable for () if

leho(1—eXg)| <1 Vke{2,...,d}, (3)

where
1 N—-1
— i - /(=
po = Jim ;logv (zn)]

is the Lyapunov exponent of f and A are the nonzero
eigenvalues of the Laplacian (2), which can be ordered as

0= <A << Mg

The eigenvalue 0 is simple because we assumed that G
is connected. Obviously, it suffices to check ([B]) for the
eigenvalues Ao and A\g. Thus, in favorable cases, there
is a certain range of values of the coupling parameter e
for which (@) is satisfied. Note that the eigenfunctions
for the simple eigenvalue A\; = 0 are the constants corre-
sponding to the tangential direction of the synchroniza-
tion manifold. If we assume temporal instability with
1o > 0, then (@) is not satisfied for Ay = 0. Thus, when
@) is satisfied for all other eigenvalues, the constants
are the only unstable directions at a synchronized state,
and this precisely means that M is linearly transversally
stable. The concept of chaotic synchronization can be
combined with the idea of cluster synchronization, i.e.,
different subsets/clusters of nodes synchronizing among
themselves, but not across clusters m, @]



COUPLED HYPERGRAPH MAPS

A hypergraph consists of vertices connected by hyper-
edges, which can couple more than two vertices. For
chemical hypergraphs HE], we also additionally label ver-
tices of each hyperedge as inputs and outputs; note that
these classes need not be disjoint. The (chemical) hyper-
graph Laplace operator is then given by

Apqu(x(i)) :=

Zhin:i input (Zz/ input of hjy, “(z(i,))*Zj/ output of hj, “(I(J,)))
hypdeg

_|_

Zh,out:i output <Z:L input of hgyut u(z(z))izj output of hgyut u(z(g)))

hypdeg ¢
with

hypdeg i := Y (|h| = 1),
h,i€h

where |h| is the number of vertices contained in the hy-
peredge h. Here, the first sum in the definition of Ay
runs over {hi, : 4 input}, which is the set of all hyper-
edges hiy, in which the ith node is classified as an input
node. For a given hi,, the set {i’ input of h;,} consists
of all nodes which are an input of h;, and the other sum-
mations can be explained analogously. The hypergraph
Laplacian Ay is a natural generalization of the classical
normalized Laplacian for graphs in ([@2). Observe that,
given a function u, the graph Laplacian in (2]) gives the
difference between the value of u at z(i) and the aver-
age of the values of u at the x(j)’s, where the j’s are
the neighbors of the node i. The hypergraph Laplacian
has a similar, but more complex, interpretation. In fact,
the contribution of u(z(j)) in Ayu(z(i)) depends on how
many hyperedges the nodes ¢ and j have in common, as
well as on the orientations that ¢ and j have on these hy-
peredges. For example, if two nodes 7 and j are contained
in exactly two common hyperedges hy and hs, and they
have the same orientation in h; while they have oppo-
site orientations in hg, then u(x(j)) does not appear in
Ayu(x(i)), because the terms that correspond to h; and
ho cancel each other. In order to give a more practical
interpretation, we equivalenty re-write the hypergraph
Laplace operator as follows. Given a node ¢ and an hy-
peredge h, let

1 if ¢ € h is an input
if ¢ € h is an output
0 otherwise.

)

Agu(z(i)) = W ( > F, h)>,

h:i€h

where

F(i,h) = Z

i'€h:
o(i’,h)=o(i,h)

w(e@) = Y ().

j'€h:
o(j',h)=—o(i,h)

Hence, if we see u(z(k)) as the amount of a given quan-
tity at node k, and if a given node 7 is an input for a
hyperedge h, then F(i,h) is the difference between the
total amount of that quantity at the inputs of h, and
the total amount of that quantity at the outputs of h.
The closer F(i, h) is to zero, the more the total amount
of input balances the total amount of output of A. But
the individual input nodes can contribute quite differ-
ently, as only their sum enters into the balance, and the
same is true for the individual output nodes. This is the
source of new phenomena for dynamics on hypergraphs
governed by the Laplacian compared to what we can see
on ordinary graphs.
The definition of Ay is modified from [1§], in order to
ensure an appropriate normalization for our dynamics.
The hypergraph Laplacian Ay again has real spectrum.
Analogously to (), we want to couple the dynamics on
a hypergraph via Ay for a given map f : [0,1] — [0, 1]
at each node. The hypergraph Laplacian may fail to sat-
isfy the maximum principle; this is the case when it has
non-constant eigenfunctions for the eigenvalue 0. While
it is easy to see that the iterated map (dl) on graphs
leaves the unit cube [0,1]¢ invariant if € € [0,1], the
nonexistence of a maximum principle for the hypergraph
Laplacian causes the unit cube [0, 1]¢ not to be invariant
anymore when directly replacing Ag in () by Ay, even
if € € [0,1]. Therefore, we define a periodic triangular
function

{x—Qk if @ € [2k, 2k + 1]

o(x) = .
20k+1)—a ifxe2k+1,2k+ 2

for k € Z and put

Tni1(i) = o (f(zn(i) — e(Apf) (i), (4)

which makes the unit cube [0, 1]¢ invariant under the dy-
namics and does not influence important properties of the
dynamics, such as synchronization and chaotic behavior,
that we will consider below.

HYPERGRAPH DYNAMICS

The spectral properties of Ay, are richer than those of
Ag HE] In particular, Ay can possess the eigenvalue
0 with multiplicity > 1, and none of the eigenfunctions
need to be constants. An example is the hyperflower
He,t,¢ defined via three parameters ¢, ¢t and ¢ @] It is
a generalization of the star graph. There is a set of ¢
central vertices and ¢ sets each consisting of ¢ peripheral



vertices. Each set containing peripheral vertices is called
a leaf. Central vertices are contained in all hyperedges,
but each hyperedge additionally includes only peripheral
nodes from one leaf, so in total there are ¢ hyperedges.
By convention we classify central vertices as inputs and
peripheral nodes as outputs. An example for the dy-
namics of (@) in Figure [[l shows complex chaotic cluster
synchronization.
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FIG. 1. Numerical Integration of () for f(z) = px(1 —x) on
a hyperflower with c =t =7 and £ = 3 for p = 1.4 and € = 8.
Plotted iterations are 5000 < n < 5200. The values of x, ()
are alternately plotted in red, cyan, green and purple upon
increasing n.

To understand synchronization patterns, the results
for CMLs on graphs motivate us to consider the eigen-
value/eigenfunction structure of hyperflowers H. ¢ ¢. The
function which equals —1 on central nodes and +1 on
peripheral nodes is an eigenfunction for the eigenvalue
(¢c+1t)/(c+t—1). Next, we have functions that are +1
on one leaf, —1 one on another and 0 elsewhere, corre-
sponding to the second largest eigenvalue t/(c +t — 1).
There are £ — 1 such linearly independent eigenfunctions.
The remaining eigenfunctions have eigenvalue 0. There is
one eigenfunction, which attains the value 1/c on central
nodes and 1/t on peripheral nodes. Furthermore, every
function that is +1 on one node, —1 on another of the
same component (the center or a leaf) and 0 elsewhere is
an eigenfunction; there are ¢ — 1 + £(t — 1) such linearly
independent functions. Altogether, we have generated
¢ + t¢ linearly independent eigenfunctions, which is the
required number.

We start by analyzing linear stability of the synchro-
nized solution on H, ¢, which follows a similar pattern
as for graphs as we just have to replace Ag by Ay. First
note, that for a synchronized solution to exist, we need
to require ¢ = t. Then, a necessary condition to retain at
least partial synchronization (z(i) = z(j) for some i # j)
is stability in the direction of eigenfunctions, which are
+1 on one vertex —1 on another vertex in the same com-

ponent and 0 everywhere else. As this is an eigenfunction
corresponding to the eigenvalue 0, @) is equivalent to

o < 0. (5)

This is in clear contrast to the assumption pg > 0 for
CMLs on graphs. In fact, on graphs the instability in
direction of a spatially constant perturbation, which was
caused by pop > 0, was necessary to have non-stationary
dynamics of a synchronized solution. Given the condition
1o < 0 on hyperflowers, the constant eigenfunction can
no longer generate non-stationary dynamics. However,
in contrast to Ag, the hypergraph Laplace on the hy-
perflower has further eigenfunctions, which are constant
on certain components of the hyperflower. By requir-
ing instability of the synchronized solution with respect
to perturbations in direction of these eigenfunctions, we
may still hope to retain non-stationary dynamics of par-
tially synchronized solutions. In other words, the eigen-
functions that are constant on each of the components
and thus corresponding to positive eigenvalues are taking
over the job of the constant eigenfunction corresponding
to the eigenvalue 0 on graphs. Instability in direction of
the positive eigenvalue A = (¢+t)/(c+t—1), which is re-
sponsible for differences between central and peripheral
nodes, and A = t/(c +t — 1), that governs differences
across the leafs, directly translates into the conditions

lefo (1 —eX)| > 1, (6)
leho(1 — e))| > 1. (7)

Even though one actually needs to find additional stabil-
ity conditions around a partially synchronized solution,
our numerical simulations reveal that the instability con-
ditions around the completely synchronized solution do
already provide great insight about the existence of non-
stationary partially synchronized solutions. Especially, if

f is given by the tent map
1
- = 8
= ®

this makes sense, as f is piecewise linear and thus stabil-
ity conditions derived from a linearization of f(z) are to
some extent independent of the particular state x. For
the tent, the Lyapunov coefficient can explicitly be given
by no = In(p/2). This allows us to further investigate
which pairs (u, €) fulfill the stability conditions (&), ()
and (). In particular, we marked areas in which the
conditions are fulfilled by diagonal lines seen in Figure
Further, a numerical integration of the system (), start-
ing from a slight perturbation of a completely synchro-
nized state, yields areas in which one has non-stationary
partial synchronization with different dynamics in each of
the components of the underlying hyperflower (see green
regions in Figure As seen in Figure [Il a closer look

f(x)_%(l—Z




Stability Region for the Tent Map
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FIG. 2. The diagonal lines represent areas in which (&), (@]
and (7)) are satisfied for the tent map. The green region de-
picts (u, €) values for which numerical simulations revealed
non-stationary partial synchronization with different dynam-
ics on each components.
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FIG. 3. Numerical Integration of (@) for f(z) given by the
tent map () on a hyperflower with ¢ =¢ =7 and £ = 3 for
p = 1.8 and € = 3. Plotted iterations are 5000 < n < 5200.
The values of x,(2) are alternately plotted in red, cyan, green
and purple upon increasing n.

at the dynamics for parameter values in the green re-
gion shows chaotic dynamics on each component of the
hyperflower. We observe several interesting phenomena.

First, the results suggest that (&) is sufficient for par-
tial synchronization. Second, cluster synchronization of
chaos only appears when the conditions (&), (@) and (7))
are satisfied and third, chaotic dynamics can appear for
values of < 2 for which the tent map alone exhibits
no chaotic dynamics, but here a sufficiently positive or
negative coupling induces chaos.

By neglecting the requirement of stability condition
(@), i.e. allowing perturbations that are —1 on one leaf,
41 on another leaf and 0 elsewhere to decay, we addi-

22 24 26 28 3 32 34 36
I

FIG. 4. Numerical simulations of ) for f(z) = uz(1 — x)
on a hyperflower with ¢ = 10, ¢ = 5 and ¢t = 3 revealed
cluster synchronization of chaos in yellow regions. Doubly
synchronized chaos occurs for all parameter values (u,e€) in
the yellow regions.

tionally observe parameter regions, in which all periph-
eral nodes synchronize among themselves and so do the
central nodes but the two groups show different dynam-
ics. For instance (p, €) = (1.8, 3) satisfies (&) and (@) but
not (). The resulting dynamics can be seen in Figure

Even though our analytical derivations of stability con-
ditions require assumptions about the hyperflower, nu-
merical simulations can of course be performed for the
cases not covered by our analytical derivations. Specif-
ically, we consider simulations on a hyperflower with
¢ =10, ¢ =5 and t = 3. For a given parameter pair
(1, €), we numerically infer synchronization of the central
nodes if the standard deviation over i = 1,..., ¢ of x, (%)
drops below a certain threshold (~ 107°) as n — oo.
Similarly, we infer chaos in the center of the hyperflower
if the leading Lyapunov coefficient is positive on the cen-
tral nodes. In the same way we deduce synchronization
and chaotic behavior of nodes in the first leaf of the hy-
perflower. Based on those four criteria this allows us
to classify the dynamical behavior for given parameter
values and initial conditions. In particular, we say that
the dynamics shows doubly synchronized chaos if both of
the leading Lyapunov coefficients for the two clusters are
positive and the values of x,, synchronize within the two
clusters (but not necessarily across the clusters). Now,
we conduct numerical simulations for different parame-
ter values of ;1 and e but with the same initial condition
for each simulation and investigate for each parameter
pair (u, €) the occurrence of doubly synchronized chaos.
The yellow regions in Figured depict such areas, whereas
there is no doubly synchronized chaos in the blue region.

On hyperflowers, we have detected a variety of other
patterns, including steady and periodic synchronization
patters, as well as chaotic cluster patterns, where a sin-
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5000 < n < 5200. The values of x, (i) are alternately plotted
in red, cyan, green and purple upon increasing n.

gle cluster chaotically forces clusters. Yet, above we have
only shown the most complex interaction, where clusters
are chaotically synchronized yet not correlated. Further-
more, we have considered less symmetric hypergraphs,
e.g., the cyclic hypergraphs Z. ¢ s, which is a class de-
fined by four parameters e, £, m,s. One can view Zc ¢ s
as a set of es nodes, which are arranged in a circle. There
are e edges each encompassing ¢ neighbors. These edges
are distributed uniformly around the circle such that if
one edge starts at a node ¢ on the circle, the next edge
starts at node that is s nodes away from ¢. If one goes
around the circle, the first m nodes of each edge are spec-
ified as input nodes, whereas the remaining ones are out-
put nodes. While for some parameters, this class of hy-
pergraphs has symmetries under permutation of nodes,
it does not for others. If we consider, for example, the
cyclic hypergraph with e = 10 edges, { = 6, m = 1
and s = 2, there is no symmetric subgroup that leaves
the hypergraph Laplace operator Ay, invariant. Permut-
ing two nodes would either cause edges to be spanned
over non-neighboring nodes or edges not to start with
nodes specified as input, both contradicting with a pos-
sible invariance of the hypergraph Laplacian. However, a
numerical simulation starting from a completely synchro-
nized initial condition with small perturbation, see Fig-
ure [B] shows that both even and odd nodes form a clus-
ter within which the dynamics synchronizes and shows
chaotic behavior but there is no synchronization across
the two clusters.

CONCLUSION & OUTLOOK

Although coupled map lattices (CMLs) have been a
prototypical dynamical system studied on usual graphs
for quite some time, so far no natural generalization to
hypergraphs has been available. Here we provide this
extension, which has been triggered by the requirement
to model physical processes beyond pair-wise coupling.
Classical CMLs show highly complex patterns due to the
intertwining of Laplacian coupling and nonlinear iterated
maps. Replacing the regular Laplacian by a hypergraph
Laplacian led to new challenges. We used linearized
stability analysis for synchronized states in combination
with hypergraph spectral theory, and numerical methods,
to detect robust regions of chaotic cluster synchronization
for coupled hypergraph maps (CHMs). Chaotic cluster
synchronization occurs in parameter space upon varying
coupling strength and the main bifurcation parameter in
the unimodal map at each node. We found key differences
between Laplacian and hypergraph Laplacian coupling
and detected also various other classes of periodic and
quasi-periodic patterns. The results show the high com-
plexity of CHMs. We expect that the generic nature of
using a unimodal maps at each node and a generalization
of the Laplacian should turn CHMs into an excellent uni-
versal model class for many concrete physical phenomena
and to understand differences graph dynamics and hy-
pergraph dynamics. For example, natural continuations
of our work could aim to relate higher-order geometric
structures induced by hypergraphs to generic dynamical
phenomena, which is a line of research that has been
very successful for studying CMLs and dynamics on net-
works more broadly. In addition, we anticipate that find-
ing novel coarse-graining and mean-field methods will be
needed to effectively carry out this research program for
hypergraphs. CHMs are a natural starting point, since
one can often build upon well-known and complete re-
sults for the individual nonlinear iterated maps at each
node in low dimension as well as on studying the dif-
ferences between more classical and hypergraph Laplace
operators.
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