
University of Southampton Research Repository

Copyright © and Moral Rights for this thesis and, where applicable, any accompanying data are retained by
the author and/or other copyright owners. A copy can be downloaded for personal non-commercial research
or study, without prior permission or charge. This thesis and the accompanying data cannot be reproduced
or quoted extensively from without first obtaining permission in writing from the copyright holder/s. The
content of the thesis and accompanying research data (where applicable) must not be changed in any way or
sold commercially in any format or medium without the formal permission of the copyright holder/s.

When referring to this thesis and any accompanying data, full bibliographic details must be given, e.g.

Thesis: Author (Year of Submission) ”Full thesis title”, University of Southampton, name of the University
Faculty or School or Department, PhD Thesis, pagination.

Data: Author (Year) Title. URI [dataset]

University of Southampton

Faculty of Engineering and Physical Science
School of Electronics and Computer Science

Defining Partial Orders on Graphical Models of
Concurrent Systems

by
Joshua Holland

A thesis for the degree of
Master of Philosophy

November 2021

University of Southampton

Abstract

Faculty of Engineering and Physical Sciences
School of Electronics and Computer Science

Master of Philosophy

Defining Partial Orders on Graphical Models of Concurrent Systems

by Joshua Holland

Our interest is in models of concurrency, and their theoretical axiomatisation and analysis. We build
on a rich thread of research [BSZ14, FSR16, BSZ17a] interpreting models such as Petri nets as so-called
string diagrams, a notation for morphisms of symmetric monoidal categories. From there, we can use
structure-preserving mappings between the model and a semantic domain. The main contribution of the
thesis is the definition of a symmetric monoidal inequality theory, which extends the standard tool used in this
field to handle inequalities. Armed with this, we answer more questions about systems than just whether
they have the same behaviours, such as describing specifications which leave open ambiguity or choices for
implementors, proofs that systems satisfy such a specification (or not), and demonstrations that one system
exhibits some (but not necessarily all) behaviours of another.

Contents

1 Introduction

2 Background and previous work
2.1 Categories .
2.2 String diagrams and symmetric monoidal theories .
2.3 Bicategories .

3 Handling inequalities
3.1 Symmetric monoidal inequality theories .

4 Signal flow graphs
4.1 Zero-initialised SFGs .
4.2 Arbitrary initialisation .

5 Petri nets
5.1 Additive relations .
5.2 Completeness of additive relations .
5.3 Petri nets as string diagrams .

6 Conclusions and Future Work

Declaration of Authorship
I declare that this thesis and the work presented in it is my own and has been generated by me as the result
of my own original research.

I confirm that:

1. This work was done wholly or mainly while in candidature for a research degree at this University;

2. Where any part of this thesis has previously been submitted for a degree or any other qualification at
this University or any other institution, this has been clearly stated;

3. Where I have consulted the published work of others, this is always clearly attributed;

CONTENTS CONTENTS

4. Where I have quoted from the work of others, the source is always given. With the exception of such
quotations, this thesis is entirely my own work;

5. I have acknowledged all main sources of help;

6. Where the thesis is based on work done by myself jointly with others, I have made clear exactly what
was done by others and what I have contributed myself;

7. Parts of this work have been published as:

• Filippo Bonchi, Joshua Holland, Robin Piedeleu, Paweł Sobociński, and Fabio Zanasi. Dia-
grammatic algebra: From linear to concurrent systems. In 46th ACM SIGPLAN Symposium on
Principles of Programming Languages (POPL 2019), 2019

• Filippo Bonchi, Joshua Holland, Dusko Pavlovic, and Paweł Sobociński. Refinement for signal
flow graphs. In Roland Meyer and Uwe Nestmann, editors, 28th International Conference
on Concurrency Theory (CONCUR 2017), volume 85 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 24:1–24:16, Dagstuhl, Germany, 2017. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik

Signed:.. Date:..................

Chapter 1

Introduction

In the world of concurrent systems, various graphical languages are used to design and specify required
behaviour. One formalism that has seen some success is the use of categories and relations as semantics
[BSZ14, FSR16, BSZ17a]. Central to this theory is viewing systems compositionally: understanding them
as being built up (or composed) from simple parts. To that end, the starting point for these theories is a
collection of extremely simple generators, together with some basic equations which impose relationships
among them. However, this paradigm can only talk about equality, and answer questions about whether
two systems have the same behaviour or not.

One of the key features of relations is inclusion, but so far in the treatment of graphical languages, there
is no accounting for this. It is testament to the importance of inclusion to working with relations that it is
perhaps more common to prove that relations are equal by mutual inclusion than directly. However, until
now, there was no way to replicate that proof technique for the graphical languages. This thesis addresses
that deficiency, and applies our new tools to signal flow graphs and Petri nets.

We start by going over basics of general category theory, then focus on the specific categories which
we will use: symmetric monoidal categories and props. A vanilla category has just one (associative and
unital) operation, composition. It is common to use this to represent the passing of data from the output of
one process as the input to the next, but we are interested in systems where we can also compose systems
in parallel. To model this, we move to symmetric monoidal categories, which have an additional operation
which represents the parallel composition we want. In fact, we restrict ourselves to an especially narrow
form of symmetric monoidal category, called the prop. A prop is a particularly simple kind of symmetric
monoidal category, which contains the structure we need to represent our concurrent systems and no extra
baggage. We demonstrate that props are sufficient for our purposes by defining all of the props we will use
for semantics: various different kinds of relations.

The use of relations (subsets of the Cartesian product) rather than the functions is an important point.
Functions are everywhere in mathematics and computer science. Why do we choose to depart from such a
successful model of computation as ‘every possible input is mapped to a unique output’? For one, this is
not so much a departure as a generalisation: every function can be viewed as a relation1. But also, more
importantly, this is a viewpoint that often cannot be sustained in the world of concurrent systems. Perhaps
a system can become deadlocked and unable to accept any input; it may enter a state where not all the
possible inputs are allowed; one input may have multiple potential outputs (non-determinism); or indeed
any combination of these is possible. These are real-world situations which the functional perspective
cannot capture but relational models can.

The other hallmark of this vein of research is the usage of string diagrams. This is the graphical part
of the thesis, and we will use them at every opportunity. Formally, they are a notation for morphisms of

1by considering its graph: the collection of pairs (𝑥, 𝑓(𝑥)).

Chapter 1. Introduction

props2; for our purposes, they are a uniform mathematical language for specifying, defining and proving
properties of concurrent systems.

String diagrams are well-suited to the compositional approach for several reasons: they are already
graphically similar to the languages of concurrency we are examining; they naturally encode the laws of
symmetric monoidal categories; and they are intuitive to work with. We hope to justify the last of these
throughout the thesis, and we will give a brief overview of the former two points now.

To do this, obviously it is necessary to show what a string diagram actually looks like: indeed, we are
already on Page of a thesis entitled Defining Partial Orders on Graphical Models of Concurrent Systems and
we have not yet shown anything graphical! We’ll begin with Figure 1.1, a reproduction of Figure 1 from
Peterson’s survey article on Petri nets [Pet77], which predates even the definition of string diagrams, let
alone their application to this field.

Figure 1.1: A Petri net, as construed in the late 1970s

In the notation defined in Chapter 5, this takes the form of Figure 1.2, which really is just a morphism in
a particular prop, and is therefore amenable to the full suite of compositional analysis.

Figure 1.2: The string diagram corresponding to the Petri net in Figure 1.1

We will fully describe the notation in the sequel, but the round places are clearly visible, and the
transitions 𝑡1 to 𝑡6 are discernible as connected clusters of (zero or more) black nodes separated by the
large white places and one smaller white ‘choice’ node. Some of the arrows have been erased: this is an
important philosophical distinction, related to the move from function to relations, where we step away
from enforcing causality and instead consider behaviours.

Defining algebraic structures by means of a presentation consisting of generators and equations is common
in, say, group theory: ⟨𝑥 ∣ 𝑥𝑛 = 1⟩ and ⟨𝑥, 𝑦 ∣ 𝑥2 = 𝑦2 = (𝑥𝑦)2 = 1⟩ are well-known as the presentations of

2though in fact, they are rather more generally applicable

Chapter 1. Introduction

the cyclic group of order 𝑛 and the Klein four-group respectively. The equivalent tool for string diagrams is
called a symmetric monoidal theory (SMT), and fits the graphical approach particularly well.

For an example, we will introduce a SMT which will be a sub-theory running throughout the thesis,
and which will hopefully draw on some familiar concepts. It is called the theory of commutative monoids,
and the prop it generates is isomorphic to the prop of functions between finite sets. We will sketch out the
nature of the isomorphism, but leave full details to Chapter 2. This theory has two generators, written as

(the multiplication) and (the unit). Each generator has associated a type, the domain and codomain
of the morphism it will stand for. Types are always clear from the number of dangling wires on the left and
right side of the diagram: has type 2 → 1 and type 0 → 1. The three equations encode the three
laws of communtative monoids: the unit law, associativity, and commutativity.

=

=

=

The correspondence to the prop of functions is harder to describe in words than to understand visually.
Numbering the dangling wires on each side starting from 0 at the top, the diagram corresponding to the
function 𝑓 ∶ 𝑚 → 𝑛 connects the 𝑥th wire on the left to the 𝑦th on the right if and only if 𝑓(𝑥) = 𝑦. It’s
intuitively obvious that the shapes of our generators ensure that every member of the domain has a unique
image in the codomain, and that none of the axioms change the meaning of a diagram. With a proof of this
fact, this gives an isomorphism between the prop of diagrams and the prop of functions. We use exactly the
same procedure in all the other examples: give a collection of generators and equations, and then show an
isomorphism between the generated theory and some prop representing semantics.

The centrepiece of the collection of SMTs that we investigate is 𝕀ℍ𝖱, the prop of interacting Hopf algebras.
It contains the white monoid structure above, interpreted as addition in some principal ideal domain 𝖱,
along with a parallel black structure to copy ring elements. The generated prop is isomorphic to the linear
relations over 𝗄, the field of fractions of 𝖱: a morphism𝑚 → 𝑛 is a linear subspace of 𝗄𝑚 × 𝗄𝑛. 𝕀ℍ𝖱 gives us
a graphical notation for all of linear algebra, and thus a language to talk about any linear system we wish to
analyse.

But, like any prop of relations, the linear relations have an intrinsic notion of containment which the
setting of props and SMTs is unable to handle. To resolve this, we must upgrade our props to ordered props,
and to do that we must introduce the last piece of background theory: the bicategory. We define what an
ordered prop is, and then handle the other half of the extension to orderings, by augmenting the definition
of SMT to give the main contribution: the symmetric monoidal inequality theory, or SMIT.

A SMIT, just like a SMT, has some generators, along with equations relating them, but it also contains
some inequalities, to enforce further relations between the diagrams, allowing us to capture the inclusions
which were previously unaccounted for. For example, we will define a number of theories depending on a
field 𝗄, and define generators representing the trivial linear subspace {0} and the whole 1-dimensional
linear space 𝗄. Then, our SMITs will contain the self-evident inequality ≤ , i.e. {0} ⊆ 𝗄.

The first task, after defining the process to get an ordered prop from a SMIT, is to verify that the
examples of Chapter 2 may be translated into the new world (partial) order while maintaining an appropriate
notion of isomorphism with the semantic categories.

Having thereby set up the theoretical background, we move on to our first application: the signal flow
graphs (SFGs) of Shannon and Mason, ubiquitous in the world of signal processing and understanding
feedback. We build on previous results interpreting SFGs as string diagrams, explaining what a signal flow
graph is and giving a variety of different semantics to them: a denotational semantics, and two different
operational semantics, corresponding to initialising the registers with either zero or non-zero values. We

Chapter 1. Introduction

extend the existing SMTs to SMITs, and verify that the isomorphisms and theory are all preserved, in both
the zero and non-zero cases.

An important new technique enabled by the use of SMITs and ordered props stems from the fact that
the collection of diagrams representing SFGs is not all possible diagrams—there are diagrams which do not
correspond to any ‘real’ SFG, but which nonetheless do correspond to a linear relation, which we consider
as a collection of permissible behaviours, i.e. a specification. We can then prove diagrammatically that some
diagram which does correspond to a SFG is a valid implementation of the specification.

The final chapter parallels the previous one, applying the theory of SMITs to a model of concurrency,
this time considering Petri nets. This requires some more theoretical machinery: because the number of
tokens in a Petri net place cannot be negative, we must move away from linear theories and switch to additive
relations. This amounts to a surprisingly small amount of change to our theories, and we can then show
results to before: that props representing Petri nets as string diagrams are isomorphic to props representing
their behaviours, and that we can use diagrammatic reasoning to demonstrate equality and inclusion of
behaviours.

Chapter 2

Background and previous work

This chapter reviews previous work and theoretical background which is the foundation for the remainder
of the thesis. We begin by covering basic notions of general category theory, such as functors, epi-, mono-
and isomorphisms, products and coproducts, and full and faithful functors. We also give details of props,
the particular class of categories that we focus on. We provide numerous examples of props, many of
which will be of use as we further develop our theory in later chapters. Most importantly, string diagrams
and symmetric monoidal theories (SMTs) are introduced. These are the main notation we use for props
and the chief means of specification, but they are more significant than mere notation and nuts-and-bolts
infrastructure. They are a way of thinking that inform all the results and proofs in this thesis. After many
examples of and results about SMTs, the chapter concludes by giving the definitions of bicategories and in
particular locally posetal bicategories, which are the framework for axiomatising the notions of inclusion
and refinement.

2.1 Categories

We work in the language of category theory, dating back to Eilenberg and Mac Lane [EML45]. Categories
can be used as a language for processes with a domain and codomain, along with composition. Classically,
categories were thought of as abstracting algebraic structures with structure-preserving mappings; so-called
concrete categories like Set,Grp and Top were among the first to be studied. However, the definition of a
category has proved to be extremely versatile, and many other examples have been investigated, including
purely abstract finite categories and the relational theories underpinning this work.

In this paradigm, we distinguish two primitive kinds: objects, which we will use to keep track of inputs
and outputs, typically relegated to the background, and morphisms which are the main focus. The first piece
of evidence for the primacy of morphisms is that the key operation of composition combines two morphisms
to produce another one. In summary, a category has the following definition:

Definition 2.1. A category is a collection of objects (typicallywritten𝑋, 𝑌, 𝑍,…) and a collection ofmorphisms
(𝑓, 𝑔, ℎ,…) such that

(i) every morphism is associated with a (unique) pair of objects called its domain and codomain. If a
morphism 𝑓 has domain 𝑋 and codomain 𝑌, we succinctly write this as 𝑓 ∶ 𝑋 → 𝑌 and speak of 𝑓 as
being ‘from 𝑋 to 𝑌’

(ii) for all objects 𝑋, 𝑌, 𝑍 and every pair of morphisms 𝑓 ∶ 𝑋 → 𝑌 and 𝑔 ∶ 𝑌 → 𝑍 there is a unique
morphism 𝑓; 𝑔 ∶ 𝑋 → 𝑍, their composite1

1Some write composition from right to left: 𝑔 ∘ 𝑓, or even 𝑔𝑓. We will only ever write composition from left to right as 𝑓; 𝑔, and

Chapter 2. Background and previous
work 2.1. Categories

(iii) if 𝑓 ∶ 𝑊 → 𝑋, 𝑔 ∶ 𝑋 → 𝑌 and ℎ ∶ 𝑌 → 𝑍 then (𝑓; 𝑔); ℎ = 𝑓; (𝑔; ℎ) (composition is associative)

(iv) for every object 𝑋 there is an identity morphism id𝑋 ∶ 𝑋 → 𝑋 such that, if 𝑓 ∶ 𝑋 → 𝑌 and
𝑔 ∶ 𝑊 → 𝑋, then id𝑋; 𝑓 = 𝑓 and 𝑔; id𝑋 = 𝑔

In a category 𝒞, the class of all morphisms with domain 𝑋 and codomain 𝑌 is called an hom-set2 and is
written 𝒞(𝑋, 𝑌).

For arbitrary categories, we write 𝒞,𝒟. The prototypical category is Set, where the objects are sets and
themorphisms are functions between them. Composition and identities are the normal function composition
and identity functions. Similarly, restricting objects to groups and morphisms to group homomorphisms
gives the categoryGrp, and taking for objects the topological spaces and for morphisms continuous maps
gives the category Top. We could try to form a category Cat whose objects are categories3, but then what
should morphisms be? InGrp andTop, the morphisms are mappings which preserve the relevant structure.
It is the same in Cat; such morphisms are known as functors.

Definition 2.2. Given categories 𝒞 and 𝒟, a functor 𝐹 ∶ 𝒞 → 𝒟 is a mapping of objects of 𝒞 to those of
𝒟 together with a mapping 𝒞(𝑋, 𝑌) → 𝒟(𝐹𝑋, 𝐹𝑌) for each pair of objects 𝑋, 𝑌 such that, for all objects
𝑋, 𝑌, 𝑍 of 𝒞 and all morphisms 𝑓 ∶ 𝑋 → 𝑌, 𝑔 ∶ 𝑌 → 𝑍,

(i) 𝐹(id𝑋) = id𝐹𝑋

(ii) 𝐹(𝑓; 𝑔) = 𝐹𝑓; 𝐹𝑔

The identity functor acts by the identity mapping on both objects and morphisms, and functors are
composed by composing the comprised maps.

One important way to construct new categories from old is simply by formally ‘turning around’ all the
morphisms. Despite its seeming triviality, we will frequently use it in our development.

Definition 2.3. If 𝒞 is a category, then the opposite category 𝒞op has the same objects and morphisms as 𝒞,
but the directions are reversed. If 𝑓 ∶ 𝑋 → 𝑌 in 𝒞, then 𝑓 ∶ 𝑌 → 𝑋 in 𝒞op (we will sometimes write this
corresponding morphism as 𝑓op to avoid confusion), and if 𝑓 ∶ 𝑋 → 𝑌 and 𝑔 ∶ 𝑌 → 𝑍 are morphisms in
𝒞op (that is, morphisms 𝑓 ∶ 𝑌 → 𝑋 and 𝑔 ∶ 𝑍 → 𝑌 in 𝒞) then their composite in 𝒞op is given by

𝑓;𝒞op 𝑔 = 𝑔;𝒞 𝑓

Many notions of category theory which we will use are inspired by set theory, simply rephrased to
avoid talking about specific members of sets since in general morphisms in a category need not bear any
resemblance to functions. Three important examples of this are the equivalents of injective, surjective and
bijective functions.

Definition 2.4. Amorphism 𝑓 ∶ 𝑋 → 𝑌 in some category is

(i) monic (or a monomorphism) iff for all morphisms 𝑔, 𝑔′ ∶ 𝑊 → 𝑋

𝑔; 𝑓 = 𝑔′; 𝑓 ⟹ 𝑔 = 𝑔′

(ii) epic (or an epimorphism) iff for all morphisms ℎ, ℎ′ ∶ 𝑌 → 𝑍

𝑓; ℎ = 𝑓; ℎ′ ⟹ ℎ = ℎ′

never drop the semicolon.
2We will only consider locally small categories where all hom-sets are indeed sets.
3with some restriction on size, if one is concerned about well-foundedness, though for our purposes we may ignore such issues.

2.1. Categories
Chapter 2. Background and previous

work

(iii) an isomorphism (or invertible) iff it has a two-sided inverse, some 𝑓−1 ∶ 𝑌 → 𝑋 such that 𝑓; 𝑓−1 = id𝑋
and 𝑓−1; 𝑓 = id𝑌.

We say that two objects are isomorphic if there is an isomorphism between them.

It’s an easy lemma to justify the notation 𝑓−1 by showing that inverses are unique.

Lemma 2.5. If 𝑔 and ℎ are both two-sided inverses of 𝑓, then 𝑔 = ℎ.

Proof.
𝑔 = 𝑔; id𝑋 = 𝑔; (𝑓; ℎ) = (𝑔; 𝑓); ℎ = id𝑌; ℎ = ℎ

Note that in general, unlike in Set, being both monic and epic does not guarantee being an isomorphism.
Another important idea in category theory inspired by a set-theoretic construction is the categorical product,
generalising the Cartesian product, and its cousin the coproduct, which corresponds to taking disjoint
unions.

To make these definitions, we use an ubiquitous tool of category theory, the commutative diagram. A
commutative diagram shows some objects and morphisms in a category and asserts that any two com-
posites formed by following paths through the diagram which begin and end at the same place are equal4.
Commutative diagrams may be ‘pasted’ together along shared borders, as we will see in the next lemma.

Definition 2.6. Given two objects 𝑋, 𝑌 in a category, their (binary) product consists of an object 𝑋 × 𝑌 and
morphisms 𝜋𝑋 ∶ 𝑋 × 𝑌 → 𝑋 and 𝜋𝑌 ∶ 𝑋 × 𝑌 → 𝑌 such that for any morphisms 𝑓 ∶ 𝑍 → 𝑋, 𝑔 ∶ 𝑍 → 𝑌
there is a unique ⟨𝑓, 𝑔⟩ ∶ 𝑍 → 𝑋 × 𝑌 with

𝑍

𝑋 𝑋 × 𝑌 𝑌

𝑓 𝑔

⟨𝑓, 𝑔⟩

𝜋𝑋 𝜋𝑌

Their (binary) coproduct on the other hand consists of an object 𝑋 +𝑌 with morphisms 𝜄𝑋 ∶ 𝑋 → 𝑋 +𝑌
and 𝜄𝑌 ∶ 𝑌 → 𝑋 + 𝑌 such that for any morphisms 𝑓 ∶ 𝑋 → 𝑍 and 𝑔 ∶ 𝑌 → 𝑍 there is a unique
[𝑓, 𝑔] ∶ 𝑋 + 𝑌 → 𝑍 such that

𝑍

𝑋 𝑋 + 𝑌 𝑌

𝑓 𝑔

[𝑓, 𝑔]
𝜄𝑋 𝜄𝑌

Note that products and coproducts need not exist. Similarly to our definitions of identities and inverses,
our language and notation suggest that the product and coproduct of a pair of objects (if they exist at all)
are unique, despite no such assertion being part of the definition. In fact they are typically not unique, but,
as is common throughout category theory, they are unique up to a unique isomorphism, and this is almost
always close enough. As an example, we give the proof that products are essentially unique.

4Some authors will state this condition separately each time as ‘the diagram commutes’, but we will simply never draw a non-
commutative diagram.

Chapter 2. Background and previous
work 2.1. Categories

Lemma 2.7. If (𝑃, 𝜋𝑋, 𝜋𝑌) and (𝑃′, 𝜋′𝑋, 𝜋
′
𝑌) are both products of some objects 𝑋, 𝑌, then there is a unique

isomorphism 𝜑 ∶ 𝑃 → 𝑃′ with

𝑃

𝑋 𝑌

𝑃′

𝜋𝑋 𝜋𝑌

𝜋′𝑋 𝜋′𝑦

𝜑

Proof. Since (𝑃, 𝜋𝑋, 𝜋𝑌) and (𝑃′, 𝜋′𝑋, 𝜋
′
𝑌) are both products, there are unique morphisms ⟨𝜋𝑥.𝜋𝑌⟩′ and

⟨𝜋′𝑋, 𝜋
′
𝑌⟩ such that

𝑃

𝑋 𝑌

𝑃′

𝜋𝑋 𝜋𝑌

⟨𝜋𝑋, 𝜋𝑌⟩′

𝜋′𝑋 𝜋′𝑌

and

𝑃′

𝑋 𝑌

𝑃

𝜋′𝑋 𝜋′𝑌

⟨𝜋′𝑋, 𝜋
′
𝑌⟩

𝜋𝑋 𝜋𝑌

Pasting these together we see that

𝑃

𝑋 𝑃′ 𝑌

𝑃

⟨𝜋𝑋, 𝜋𝑌⟩′

⟨𝜋′𝑋, 𝜋
′
𝑌⟩

𝜋𝑋 𝜋𝑌

𝜋′𝑋 𝜋′𝑌

𝜋𝑋 𝜋𝑌

But of course id𝑃 also fits in this diagram, so by uniqueness id𝑃 = ⟨𝜋𝑋, 𝜋𝑌⟩′; ⟨𝜋′𝑋, 𝜋
′
𝑌⟩. Pasting the opposite

way shows that id𝑃′ = ⟨𝜋′𝑋, 𝜋
′
𝑌⟩; ⟨𝜋𝑋, 𝜋𝑌⟩

′, and so these are inverse to each other.

SinceCat is itself a category, the definitions for monic and epic could be applied to functors. In practice,
weaker notions are easier to prove and are often good enough to prove useful theorems.

2.1. Categories
Chapter 2. Background and previous

work

Definition 2.8. A functor 𝐹 ∶ 𝒞 → 𝒟 is faithful iff for every pair of objects 𝑋, 𝑌 in 𝒞, its action on the
hom-set 𝒞(𝑋, 𝑌) → 𝒟(𝐹𝑋, 𝐹𝑌) is injective. It is full if it is always surjective on hom-sets. If 𝐹 is both full
and faithful, we say that it is fully faithful.

The first example of fullness and faithfulness being enough to show a fairly strong result is the next
lemma. We will use it constantly later on, when we focus on functors which are not just bijections on objects,
but actually identities.

Lemma 2.9. If 𝐹 ∶ 𝒞 → 𝒟 is a fully faithful functor which is bijective on objects, then 𝐹 is an isomorphism of
categories.

Proof. We need to construct an inverse functor 𝐹−1 ∶ 𝒟 → 𝒞. Its action on objects is obvious by hypothesis.
Take an arbitrary morphism 𝑓 ∶ 𝐹𝑋 → 𝐹𝑌 in 𝒟. Since 𝐹 is fully faithful, it is injective and surjective,

hence a bijection between the hom-sets 𝒞(𝑋, 𝑌) and 𝒟(𝐹𝑋, 𝐹𝑌), and therefore there is a unique 𝐹−1𝑓 ∶
𝑋 → 𝑌 such that 𝐹(𝐹−1𝑓) = 𝑓. So by construction 𝐹−1; 𝐹 = id𝒟 (note the reversed order!), and we need
only check 𝐹−1; 𝐹 = id𝒞. But this is immediate since everything is a bijection.

Our final elementary concept for categories should also be a familiar concept generalised from set theory
and abstract algebra: a subcategory.

Definition 2.10. A subcategory of a category 𝒞 is a category whose objects and morphisms are subclasses of
those of 𝒞 and where composition and identities agree with those of 𝒞. A full subcategory is a subcategory
where the evident inclusion functor is full.

Categories have been so successful in so many different disciplines because their definition is very
simple and easy to satisfy. However, from now on, we will add some more axioms and restrict our attention
to a special kind of category called a prop [ML65]. In a prop, the objects are the natural numbers, and
have no purpose other than keeping track of the ‘type’ of the morphisms. In addition to our fundamental
categorical operation of composition, props are equipped with a tensor product, or monoidal product, which
can be used to model processes running in parallel. Suppose 𝑓 ∶ 𝑚 → 𝑛 is a process with𝑚 inputs and 𝑛
outputs, and 𝑓′ ∶ 𝑚′ → 𝑛′ is another, then running them in parallel is 𝑓 ⊕ 𝑓′ ∶ 𝑚 + 𝑚′ → 𝑛 + 𝑛′. Of
course, we will require this⊕ operation to be sufficiently well-behaved, and also have some ‘plumbing’ to
rearrange inputs and outputs as necessary.

Definition 2.11 ([ML65]). A prop is a category whose objects are the natural numbers equipped with an
operation⊕ called the tensor product on pairs of morphisms and, for each𝑚, 𝑛, a distinguished morphism
(called the symmetry) 𝜎𝑚,𝑛 ∶ 𝑚 + 𝑛 → 𝑛 +𝑚, such that, for all morphisms 𝑓, 𝑓′, 𝑔, 𝑔′, ℎ and all naturals
𝑙, 𝑚,𝑚′, 𝑛, 𝑛′,

(i) if 𝑓 ∶ 𝑚 → 𝑛 and 𝑓′ ∶ 𝑚′ → 𝑛′, then 𝑓 ⊕ 𝑓′ ∶ 𝑚 +𝑚′ → 𝑛 + 𝑛′

(ii) id𝑚 ⊕ id𝑛 = id𝑚+𝑛

(iii) whenever the composites are defined, (𝑓; 𝑔) ⊕ (𝑓′; 𝑔′) = (𝑓 ⊕ 𝑓′); (𝑔 ⊕ 𝑔′)

(iv) (𝑓 ⊕ 𝑔) ⊕ ℎ = 𝑓 ⊕ (𝑔 ⊕ ℎ)

(v) 𝑓 ⊕ id0 = id0 ⊕ 𝑓 = 𝑓

(vi) if 𝑓 ∶ 𝑚 → 𝑛 then (𝑓 ⊕ id𝑙); 𝜎𝑛,𝑙 = 𝜎𝑚,𝑙; (id𝑙 ⊕ 𝑓)

(vii) 𝜎𝑚,𝑛; 𝜎𝑛,𝑚 = id𝑚+𝑛

Chapter 2. Background and previous
work 2.1. Categories

Remark 2.12. These axioms are those for a strict symmetric monoidal category where the monoidal
product on objects is addition. (i)–(iii) encode functoriality of⊕, (iv) and (v) record its (strict) associativity
and unit laws, and (vi) and (vii) enforce naturality and invertibility of 𝜎𝑚,𝑛.

Mac Lane’s cited definition is phrased differently but equivalently. The requirement that every permu-
tation is included follows from the standard result of group theory that every permutation is a composition
of adjacent transpositions, which correspond to the morphisms id𝑘 ⊕ 𝜎1,1 ⊕ id𝑙 for some 𝑘, 𝑙.

One of the simplest examples of props that we will be working with is the prop version of the classical
category Set: the finite sets FinSet. We will also work with the finite relations FinRel, which is analogous
to Rel, and the equivalence relations EqRel. When defining a prop, we do not need to specify the objects,
since they are always the natural numbers.

Example 2.13. In the prop of finite sets FinSet, we associate each natural number 𝑛 with the finite ordinal
𝑛 = {0, 1,… , 𝑛 − 1}. The morphisms 𝑚 → 𝑛 in this prop are the functions 𝑚 → 𝑛. Composition
and identities are as usual for functions, and the monoidal product of 𝑓 ∶ 𝑚 → 𝑛 and 𝑔 ∶ 𝑚′ → 𝑛′ is
𝑓 ⊕ 𝑔 ∶ 𝑚 +𝑚′ → 𝑛 + 𝑛′ given by

(𝑓 ⊕ 𝑔)(𝑝) = {
𝑓(𝑝) if 0 ≤ 𝑝 < 𝑚
𝑔(𝑝 − 𝑚) if𝑚 ≤ 𝑝 < 𝑚+𝑚′

By identifying a function with its graph, FinSet embeds into the prop of finite relations FinRel, where a
morphism𝑚 → 𝑛 is a subset of𝑚× 𝑛, composition of 𝑅 ⊆ 𝑙 ×𝑚 and 𝑆 ⊆ 𝑚× 𝑛 is the standard relational
notion:

𝑅; 𝑆 = {(𝑝, 𝑞) ∈ 𝑙 × 𝑛 ∣ there is 𝑞 ∈ 𝑚 such that (𝑝, 𝑟) ∈ 𝑅 and (𝑟, 𝑞) ∈ 𝑆}

and the monoidal product of 𝑅 ⊆ 𝑚× 𝑛 and 𝑅′ ⊆ 𝑚′ × 𝑛′ is the obvious relation putting 𝑅 and 𝑅′ ‘next to
each other’ on𝑚+𝑚′ × 𝑛 + 𝑛′:

(𝑝, 𝑞) ∈ 𝑅 ⊕ 𝑅′ iff {
0 ≤ 𝑝 < 𝑚, 0 ≤ 𝑞 < 𝑛 and (𝑝, 𝑞) ∈ 𝑅, or
𝑚 ≤ 𝑝 < 𝑚+𝑚′, 𝑛 ≤ 𝑞 < 𝑛 + 𝑛′ and (𝑝 − 𝑚, 𝑞 − 𝑛) ∈ 𝑅′

In the prop of equivalence relations EqRel, a morphism𝑚 → 𝑛 is an equivalence relation (equivalently a
partition) on the disjoint union𝑚+ 𝑛. The composite of 𝛼 ∶ 𝑙 → 𝑚 and 𝛽 ∶ 𝑚 → 𝑛 is the restriction to
𝑙 + 𝑛 of the finest partition of 𝑙 + 𝑚 + 𝑛 which is coarser than 𝛼 and 𝛽 when restricted to 𝑙 + 𝑚 and𝑚+ 𝑛
respectively. The identity at 𝑛 is {(𝑝, 𝑝) ∣ 𝑝 ∈ 𝑛}, and the tensor product 𝛼 ⊕ 𝛼′ ∶ 𝑚 +𝑚′ → 𝑛 + 𝑛′ is a
similar placement ‘side-by-side’:

𝑝 is 𝛼 ⊕ 𝛼′-related to 𝑞 iff {
𝑝, 𝑞 ∈ 𝑚 + 𝑛 and 𝑝 is 𝛼-related to 𝑞, or
𝑝 −𝑚, 𝑞 − 𝑛 ∈ 𝑚′ + 𝑛′ and 𝑝 −𝑚 is 𝛼′-related to 𝑞 − 𝑛

While the above definition of composition in EqRel seems complicated, it is in fact an intuitive operation
of merging equivalence classes along the common interface, best understood by drawing diagrams. Below
we illustrate the composition of an equivalence relation 4 → 5 with another 5 → 3 to obtain a composite
4 → 3. Coloured areas indicate equivalence classes.

; = =

We can start from an arbitrary set and build a prop of relations over that, rather than just the finite ones.

2.1. Categories
Chapter 2. Background and previous

work

Example 2.14. For any set 𝑋, Rel𝑋 is the prop where the morphisms𝑚 → 𝑛 are the subsets of 𝑋𝑚 × 𝑋𝑛.
Composition is the relational one defined as in FinRel, and the monoidal product of 𝑅 ⊆ 𝑋𝑚 × 𝑋𝑛 and
𝑅′ ⊆ 𝑋𝑚′

× 𝑋𝑛′ is

𝑅 ⊕ 𝑆 = {((𝐱𝐱′) , (
𝐲
𝐲′)) ∣ (𝐱, 𝐲) ∈ 𝑅 and (𝐱′, 𝐲′) ∈ 𝑅′}

Two more examples of props that we will return to frequently are the matrices over a ring and the linear
relations over a field. They are sub-props of some Rel𝑋, and are related to each other in a similar way to
FinSet and FinRel.

Example 2.15. If 𝖱 is a ring5, then the𝑚 → 𝑛morphisms of the prop of matrices over 𝖱, denotedMat𝖱,
are the 𝑛 × 𝑚matrices with entries in 𝖱. If 𝐴 ∶ 𝑙 → 𝑚 and 𝐵 ∶ 𝑚 → 𝑛, then the composite 𝐴; 𝐵 is the
matrix product 𝐵𝐴. The identities are the usual identity matrices, and the tensor product of 𝐴 and 𝐵 is the

block matrix (𝐴 0
0 𝐵). 𝜎𝑚,𝑛 is defined by the block matrix (0 𝐼𝑚

𝐼𝑛 0) where as usual 𝐼𝑛 is the 𝑛 × 𝑛 identity

matrix.
If 𝗄 is a field, then LinRel𝗄, the prop of linear relations over 𝗄, has as its morphisms𝑚 → 𝑛 all linear

subspaces of 𝗄𝑚 × 𝗄𝑛 (here × is direct product of vector spaces). The composite of 𝑅 ⊆ 𝗄𝑙 × 𝗄𝑚 and
𝑆 ⊆ 𝗄𝑚 × 𝗄𝑛 is the relation

𝑅; 𝑆 = {(𝐮,𝐰) ∈ 𝗄𝑙 × 𝗄𝑛 ∣ ∃𝐯 ∈ 𝗄𝑚 such that (𝐮, 𝐯) ∈ 𝗄𝑙 × 𝗄𝑚 and (𝐯,𝐰) ∈ 𝗄𝑚 × 𝗄𝑛}

and the identity at 𝑛 is {(𝐯, 𝐯) ∈ 𝗄𝑛 × 𝗄𝑛 ∣ 𝐯 ∈ 𝗄𝑛}; these are the usual definitions of composition and
identity in a category of relations. The tensor product of 𝑅 ⊆ 𝗄𝑚 × 𝗄𝑛 and 𝑅′ ⊆ 𝗄𝑚

′
× 𝗄𝑛

′
is

𝑅 ⊕ 𝑆 = {((𝐮𝐮′) , (
𝐯
𝐯′)) ∣ (𝐮, 𝐯) ∈ 𝑅 and (𝐮′, 𝐯′) ∈ 𝑅′}

and finally the symmetry is

𝜎𝑚,𝑛 = {((𝐮𝐯) , (
𝐯
𝐮)) ∣ 𝐮 ∈ 𝗄𝑚, 𝐯 ∈ 𝗄𝑛}

When 𝖱 is a subring of 𝗄,Mat𝖱 embeds into LinRel𝗄 by sending an 𝑛×𝑚matrix𝐴 to its graph {(𝐯, 𝐴𝐯) ∣
𝐯 ∈ 𝗄𝑚}. The embeddings Mat𝖱 ↪ LinRel𝗄 and FinSet ↪ FinRel are not only functors, but satisfy the
stronger requirements of being prop morphisms.

Definition 2.16. A prop morphism between props 𝕊 and 𝕋 is a functor 𝐹 ∶ 𝕊 → 𝕋 which is the identity on
objects such that6

(i) for all morphisms 𝑓, 𝑔 of 𝕊, 𝐹𝑓 ⊕ 𝐹𝑔 = 𝐹(𝑓 ⊕ 𝑔)

(ii) for all natural numbers𝑚, 𝑛, 𝐹(𝜎𝕊𝑚,𝑛) = 𝜎𝕋𝑚,𝑛

We can easily show that composing prop morphisms (as functors) gives a prop morphism, the identity
functor on a prop is a prop morphism, and if a functor is the inverse of a prop morphism, then it is a prop
morphism itself. This means that the category of props PROP is a subcategory of Cat whose isomorphisms
are exactly the propmorphisms which are invertible functors. Every propmorphism is by definition bijective
on objects, so Lemma 2.9 always applies.

Lemma 2.17. Let 𝕊, 𝕋, 𝕌 be props, and 𝐹 ∶ 𝕊 → 𝕋,𝐺 ∶ 𝕋 → 𝕌 prop morphisms. Then

5We assume all rings are commutative and unital.
6In the language of monoidal categories, a prop morphism is a strict symmetric functor which is the identity on objects.

Chapter 2. Background and previous
work

2.2. String diagrams and symmetric
monoidal theories

(i) 𝐹;𝐺 (composing as functors) is a prop morphism

(ii) the identity functor is a prop morphism

(iii) if 𝐹 has an inverse functor 𝐹−1 then 𝐹−1 is a prop morphism

Proof. (i) Composing two identities is still an identity, so𝐹;𝐺 is identity on objects. If 𝑓, 𝑔 aremorphisms
of 𝕊, then

(𝐹; 𝐺)(𝑓 ⊕ 𝑔) = 𝐺(𝐹(𝑓 ⊕ 𝑔)) = 𝐺(𝐹𝑓 ⊕ 𝐹𝑔) = 𝐺(𝐹𝑓) ⊕ 𝐺(𝐹𝑔) = (𝐹; 𝐺)𝑓 ⊕ (𝐹; 𝐺)𝑔

and similarly
𝐹;𝐺(𝜎𝕊𝑚,𝑛) = 𝐺(𝐹(𝜎𝕊𝑚,𝑛)) = 𝐺(𝜎𝕋𝑚,𝑛) = 𝜎𝕌𝑚,𝑛

(ii) This is immediate.

(iii) Let 𝑓, 𝑔 be morphisms in 𝕋. Then there are 𝑓′, 𝑔′ morphisms of 𝕊 with 𝑓 = 𝐹𝑓′ and 𝑔 = 𝐹𝑔′. So

𝐹−1(𝑓 ⊕ 𝑔) = 𝐹−1(𝐹𝑓′ ⊕ 𝐹𝑔′) = 𝐹−1(𝐹(𝑓′ ⊕ 𝑔′)) = 𝑓′ ⊕ 𝑔′ = 𝐹𝑓 ⊕ 𝐹𝑔

and
𝐹−1(𝜎𝕋𝑚,𝑛) = 𝐹−1(𝐹(𝜎𝕊𝑚,𝑛)) = 𝜎𝕊𝑚,𝑛

2.2 String diagrams and symmetric monoidal theories

If we are to use props to model processes, we will need a way to take a basic set of primitives and produce
the category containing all possible combinations. When we do this, we will also often need to impose
equations representing relations between our primitives. For example, we might have a process which
simply duplicates its input, and another process which discards it. We might then want to require that
copying an input and then discarding one of the copies is the same as doing nothing at all. The tool which
allows us to do both of these is the symmetric monoidal theory or SMT.

In any category, the objects are of secondary importance compared to the morphisms. A prop takes
this to the extreme, and accordingly the morphisms take the spotlight even more. In parallel with SMTs,
we will introduce string diagrams [JS91, Sel11], the graphical notation for morphisms of props that we will
almost exclusively use in the remainder of this thesis.

The domain and codomain of a morphism are encoded in a string diagram by ‘dangling wires’ on the left
and right respectively. One can therefore immediately see when composition of (morphisms represented
by) string diagrams is possible: when they have a ‘compatible interface’. Taking this metaphor further, if
𝑓 and 𝑔 represent some 𝑓 ∶ 2 → 3 and 𝑔 ∶ 3 → 1 respectively, then the composite 𝑓; 𝑔 ∶ 2 → 1

may be drawn as 𝑓 𝑔 simply connecting corresponding wires. If instead we wished to depict the tensor
product 𝑓 ⊕ 𝑔 ∶ 2 + 3 → 3 + 1 then we would stack the diagrams above each other, like so:

𝑓

𝑔

Note that when composing or tensoring multiple morphisms, there is no way to distinguish (𝑓; 𝑔); ℎ
and 𝑓; (𝑔; ℎ) or (𝑓 ⊕ 𝑔) ⊕ ℎ and 𝑓 ⊕ (𝑔 ⊕ ℎ). In other words, they implicitly encode the associativity of
the ; and⊕ operations. If, in accordance with prop law (ii), we draw id𝑛 as a stack of 𝑛 wires (so that id2 is

), then the unit laws for ; and⊕ at 𝑓 become

𝑓 = 𝑓 = 𝑓

2.2. String diagrams and symmetric
monoidal theories

Chapter 2. Background and previous
work

and
𝑓

= 𝑓 =
𝑓

drawing an empty dotted box around the otherwise invisible stack of zero wires representing id0. The
second equation appears to be almost completely trivial, and the first could be summarised as saying that
wires may stretch.

In equations involving string diagrams, we often use a shorthand to avoid having to draw an excessive
number of wires, or needing ellipses when we talk about an arbitrary morphism. We simply draw a bunch
of wires which start and end in the same place as if they are a single wire, sometimes labelling them by a
number for additional clarity if necessary. For example, the last notation used for the string diagrams of
every prop, representing the symmetry 𝜎𝑚,𝑛 ∶ 𝑚 + 𝑛 → 𝑛 +𝑚. These are drawn as and then the laws
of Definition 2.11 (vi) and (vii) translate as

𝑓
=

𝑓

and
=

These also have pithy interpretations: ‘morphisms slide over symmetries’ and ‘wires don’t tangle’.
For our purposes, this simple intuitive definition of string diagrams will suffice. The more sceptical

reader may find more formal definitions, as well as proofs of soundness and completeness of proofs by
string diagrams, in the original paper by Joyal and Street [JS91] or in the survey by Selinger [Sel11].

As an example of the expressive power of string diagrams, we will give the next definition using both
traditional notation and string diagrams.

Definition 2.18 ([KL80]). (a) A prop is (self-dual) compact closed iff for every𝑛 there are twomorphisms
𝜀𝑛 ∶ 𝑛 + 𝑛 → 0 and 𝜂𝑛 ∶ 0 → 𝑛 + 𝑛 such that for every𝑚, 𝑛

(i) (𝜂𝑛 ⊕ id𝑛); (id𝑛 ⊕ 𝜀𝑛) = id𝑛 = (id𝑛 ⊕ 𝜂𝑛); (𝜀𝑛 ⊕ id𝑛)

(ii) (id𝑚 ⊕ 𝜎𝑚,𝑛 ⊕ id𝑛); (𝜀𝑚 ⊕ 𝜀𝑛) = 𝜀𝑚+𝑛

(iii) (𝜂𝑚 ⊕ 𝜂𝑛); (id𝑚 ⊕ 𝜎𝑚,𝑛 ⊕ id𝑛) = 𝜂𝑚+𝑛

(b) A prop is (self-dual) compact closed iff for every 𝑛 there are morphisms
𝑛

𝑛 and
𝑛

𝑛 such that for
every𝑚, 𝑛

(i)

𝑛

𝑛

𝑛
= 𝑛 =

𝑛

𝑛

𝑛

(ii)

𝑚

𝑚

𝑛

𝑛

=
𝑚+𝑛

𝑚+ 𝑛

(iii)

𝑚

𝑚

𝑛

𝑛

=
𝑚+𝑛

𝑚+ 𝑛

Chapter 2. Background and previous
work

2.2. String diagrams and symmetric
monoidal theories

It is a useful exercise to verify the translation between these two definitions. We can immediately see
several advantages to definition (b) over definition (a). For a start, an intuitive sense of the intendedmeaning
of the morphisms 𝜀𝑛 and 𝜂𝑛 is clear just from the shape of the diagrams representing them. Also, it takes
some time even to verify that the equations in part (a) are well-typed, while in (b) it’s a simple at-a-glance
matter of following the wires. Finally, finding proofs is often easier as parts of string diagrams can rapidly
be recognised as instances of axioms.

So far we have thought of string diagrams as a notation for morphisms in some pre-existing prop, but
we can go the other way and define props whose morphisms are themselves string diagrams. We specify
some initial morphisms and equations, and then build the morphisms as all possible string diagrams freely
generated by the generators, along with identities and symmetries, and then impose the laws by taking
quotients. We use this process to find a presentation for some prop we wish to work in, by finding a prop
isomorphism from our target prop to some prop arising in the way described. The data to generate a prop
from string diagrams comprises a symmetric monoidal theory (SMT).

Definition 2.19. A symmetric monoidal theory (SMT) consists of a set Σ of generators, which are diagrams
with dangling wires on the left and right, and a set 𝐸 of equations (or laws), which are pairs of string diagrams
freely generated as below with the same type.

A string diagram is freely generated from Σ if

(i) it is the empty diagram , the identity or the symmetry

(ii) it is a member of Σ

(iii) it is of the form (𝐴𝑚 𝑛 ⊕ 𝐵𝑚′ 𝑛′), henceforth depicted as
𝑚 𝑛𝐴
𝑚′ 𝑛′𝐵

, where 𝑚 𝑛𝐴 and

𝑚′ 𝑛′𝐵 freely generated from Σ

(iv) it is of the form (𝐴𝑙 𝑚 ; 𝐵𝑚 𝑛), henceforth depicted as 𝑙 𝑚 𝑛𝐴 𝐵 , where 𝑙 𝑚𝐴 and
𝑚 𝑛𝐵 freely generated from Σ

From 𝐸 we define an equivalence relation ∼𝐸 on string diagrams generated from Σ inductively by the
following (omitting labels on wires):

𝐸0 = 𝐸 ∪ {(𝐴 , 𝐴) ∣ 𝐴 is any string diagram over Σ} (2.1)

∪ {(𝐴 , 𝐵) ∣ 𝐴 = B is an instance of a prop axiom} (2.2)

𝐸𝑛+1 = 𝐸𝑛 ∪ {(𝐵 , 𝐴) ∣ (𝐴 , 𝐵) ∈ 𝐸𝑛} (2.3)

∪ {(𝐴 , 𝐶) ∣ ∃ 𝐵 such that (𝐴 , 𝐵), (𝐵 , 𝐶) ∈ 𝐸𝑛}
(2.4)

∪ {(𝐴 𝐵 , 𝐴′ 𝐵′) ∣ (𝐴 , 𝐴′), (𝐵 , 𝐵′) ∈ 𝐸𝑛} (2.5)

∪ {(
𝐴

𝐵
,

𝐴′

𝐵′) ∣ (𝐴 , 𝐴′), (𝐵 , 𝐵) ∈ 𝐸𝑛} (2.6)

and finally ∼𝐸= ⋃∞
𝑛=0 𝐸𝑛. Observe that if 𝐴 ∼𝐸 𝐵 then they have the same domain and

codomain.
Then the prop generated from (Σ, 𝐸), denoted 𝕋(Σ,𝐸), has as morphisms𝑚 → 𝑛 string diagrams of

that type freely generated from Σ modulo7 the equivalence relation ∼𝐸. The composite of 𝐴 and

7As usual, we will typically abuse notation to write a representative of an equivalence class instead of the class itself.

2.2. String diagrams and symmetric
monoidal theories

Chapter 2. Background and previous
work

𝐵 is 𝐴 𝐵 , their tensor product is
𝐴

𝐵
and the identities are 𝑛 . These are all well-defined by

the conditions we put on ∼𝐸.
We say that a SMT (Σ, 𝐸) is a presentation for a prop 𝕋 iff 𝕋(Σ,𝐸) is isomorphic (as a prop) to 𝕋.

Remark 2.20. In principle, one should be careful about associativity and stretching of wires. For example,
(;) = looks very similar to simply , especially when imprecisely drawn by hand.

Also, could be read as an instance of either (iii) or (iv), requiring dotted lines or brackets or some

other way to disambiguate. In all such cases, however, a prop axiom included in 𝐸0 via (2.2) ensures that,
as morphisms (equivalence classes under 𝐸) they are equal; in the first case, the unit law for composition
(Definition 2.1(iv)) and in the second interchange law for props (Definition 2.11(iii)).

In any case, throughout this thesis, we always deal with string diagrams as members of their equivalence
classes at least up to the laws of props, and are justified in doing so by Joyal and Street [JS91].

Often we will be lazy with language and refer to the prop generated from a SMT simply as a SMT.
One reason that we focus so much on SMTs in this thesis is because they enable the powerful proof

technique of structural induction. Closely related to structural induction is defining prop morphisms by
recursion, similarly to how we defined the equivalence relation ∼𝐸 above. However, we need structural
induction to show that recursive definitions are well-defined.

Proposition 2.21. Suppose 𝑃 is a property of morphisms in a prop 𝕋(Σ,𝐸) generated by a SMT (Σ, 𝐸). If

(i) 𝑃(),𝑃() and 𝑃() all hold

(ii) 𝑃(𝜍) holds for every generator 𝜍 ∈ Σ

(iii) for all morphisms 𝐴 and 𝐵 ,𝑃(𝐴) and 𝑃(𝐵) together imply 𝑃(𝐴 𝐵)

(iv) for all morphisms 𝐴 and 𝐵 ,𝑃(A) and 𝑃(B) together imply 𝑃 (
𝐴

𝐵
)

then 𝑃 is true for every morphism of 𝕋(Σ,𝐸).

Proof. Define the size of a string diagram to be the total number of components in it, so the size of is 0,

or have size 1, and the size of 𝐴 𝐵 or
𝐴

𝐵
is the sum of the sizes of 𝐴 and 𝐵 . The

size of a prop morphism (an equivalence class of string diagrams) is the minimal size of all string diagrams
in the equivalence class. We will show that 𝑃 is true for all morphisms by strong induction on the size of a
morphism.

Let 𝐴 be a morphism of size 𝑛 and consider a representative witnessing this size. Then there are
three cases:

(i) the representative is one of , , or a member of Σ. Then by hypothesis (i) or (ii) 𝑃(𝐴)
holds.

(ii) the representative is 𝐵 𝐶 for string diagrams 𝐵 and 𝐶 . Each of these must have size
at most 𝑛 − 1 and so this is an upper bound on the sizes of the equivalence classes they represent. By
the inductive hypothesis, 𝑃(𝐵) and 𝑃(𝐶). But then by assumption 𝑃(𝐵 𝐶) holds,
that is, 𝑃(𝐴) is true.

Chapter 2. Background and previous
work

2.2. String diagrams and symmetric
monoidal theories

(iii) the representative is
𝐵

𝐶
for string diagrams 𝐵 and 𝐶 . But similarly to case (ii) the

sizes of 𝐵 and 𝐶 are strictly less, and the same combination of induction hypothesis and
assumption gives us 𝑃(𝐴).

Therefore 𝑃 holds for morphisms of every size, that is every morphism of 𝕋(Σ,𝐸).

When we want to show that a SMT generates a prop, we need to give an isomorphism between the prop
generated by that SMT and the given prop. In general, if we wish to define a prop morphism out of a prop
generated from a SMT, it is enough to specify where each generator goes, since the requirement that a prop
morphism preserve composites, tensor products, identities and symmetries rigidly defines the image of all
the non-generator morphisms.

That is, for any SMT (Σ, 𝐸) and any prop 𝕋, if 𝐹 ∶ 𝕋(Σ,𝐸) → 𝕋 is to be a prop morphism, we must have

𝐹(𝑛) = id𝑛 𝐹() = 𝜎𝑚,𝑛 (2.7)

for all𝑚, 𝑛. Similarly, once the images of the generators are fixed, we have all the necessary data to define
the action of 𝐹 on any morphism of 𝑇(Σ,𝐸). 𝐹(𝐴 𝐵) can be defined recursively by composing in 𝕋 as

𝐹(𝐴); 𝐹(𝐵), and similarly 𝐹 (
𝐴

𝐵
) as 𝐹(𝐴) ⊕ 𝐹(𝐵). Of course, since morphisms

of 𝕋(Σ,𝐸) are really equivalence classes, we need to check that this gives a well-defined prop morphism; in
fact, adherence to the laws of 𝐸 is both necessary and sufficient.

Proposition 2.22. Let (Σ, 𝐸) be a SMT and 𝕋 any prop. Suppose 𝐹maps each generator 𝜍𝑚 𝑛 to an𝑚 → 𝑛
morphism in 𝕋. Then 𝐹 extends uniquely to a (well-defined) prop morphism 𝕋(Σ,𝐸) → 𝕋 iff for every pair
(𝐴 , 𝐵) ∈ 𝐸,𝐹(𝐴) = 𝐹(𝐵) (using the above recursive definition for 𝐹).

Proof. ⟹: This is immediate: if 𝐴 = 𝐵 in 𝕋(Σ,𝐸) and 𝐹 is well-defined as a prop morphism,
then 𝐹(𝐴) = 𝐹(𝐵).

⟸: Uniqueness is automatic, as discussed in the preamble to the proposition, and 𝐹 is explicitly
defined to be a prop morphism. Therefore we only need to confirm that it is well-defined. We proceed by
induction on 𝑛, with reference to the 𝐸𝑛 from Definition 2.19, on the statement ‘if (𝐴 , 𝐵) ∈ 𝐸𝑛
then 𝐹(𝐴) = 𝐹(𝐵)’.

The base case follows from the assumption or from the fact that the prop laws hold in𝕋. For the inductive
step, suppose that (𝐴 , 𝐵) ∈ 𝐸𝑛+1, for 𝑛 ≥ 0. Then there are five cases, corresponding to the
five members of the union defining 𝐸𝑛+1. It is obvious that each case the induction hypothesis and the
definition of 𝐹 combine together just as needed to show the result.

We will now introduce a suite of SMTs which will come to underpin the developments of later chapters.
They can be combined together as the building blocks of more complex theories.

Example 2.23. (i) (commutative monoids) Classically, a monoid is a set together with an associative
binary operation which has a unit element. We can define a SMT (Σ𝑀, 𝐸𝑀) based on this structure.
Σ𝑀 contains representatives for the multiplication and unit { , } and 𝐸𝑀 contains equations
encoding the unit law, associativity and commutativity:

=

=

=

2.2. String diagrams and symmetric
monoidal theories

Chapter 2. Background and previous
work

(ii) (commutative comonoids) There is no particular reason (other than convention) that we should
write the monoid operations the way round we have in Σ𝑀. We could also flip them horizontally; to
distinguish this from the previousmonoid structure, we colour these in black rather than white. In line
with decades of category theory tradition of prefixing ‘co-’ to the opposite version, this SMT is known
as that of (commutative8) comonoids, consisting of comultiplication and counit Σ𝐶 = { , } with
equations 𝐸𝐶

=

=

=

(iii) (bimonoids) We said before that we intended to combine theories like building blocks, and now we
have our first example. We simply take all the generators for monoids and comonoids, Σ𝐵 = Σ𝑀∪Σ𝐶,
all the equations we have already seen, 𝐸𝑀 ∪ 𝐸𝐶, and add some compatibility between the generators
with

= =

= =

(iv) (Hopf algebras over a PID 𝖱) In the above theory of bimonoids, each equation (including those
inherited from the theories of monoids and bimonoids) preserves the number of paths from a given
‘entrance’ on the left to an ‘exit’ on the right. We can build on this intuition by writing 1

for and 2 for , and more generally recursively defining 𝑛 + 1 as
𝑛

With these definitions, addition can be defined analogously to the inductive step, and multiply by
composition: this can be seen by counting paths from left to right.

We can extend this analogy to any principal ideal domain by adding a generator for each element of
the ring, and imposing equations so that the definitions in the prop agree with the ring operations.
Thus Σℍ𝔸𝖱 = Σ𝐵 ∪ { 𝑥 ∣ 𝑥 ∈ 𝖱} and 𝐸ℍ𝔸𝖱 is 𝐸𝐵 together with

𝑥 𝑦 = 𝑥𝑦 = 1

𝑥

𝑦
= 𝑥 + 𝑦 = 0

𝑥

𝑥
= 𝑥 = 𝑥

𝑥 =
𝑥

𝑥
𝑥 =

(v) (Frobenius monoids) Bimonoids and Hopf algebras emphasise counting the number of connections
between ports. If, on the other hand, we only wish to track a binary connected or not state, we can
combine monoids and comonoids in a different way. To avoid confusion withℍ𝔸𝖱, we will colour the
generators in grey instead of black and white. ΣFrob = Σ𝑀 ∪ Σ𝐶 and 𝐸Frob consists of the equations of

8sadly not ‘mmutative’

Chapter 2. Background and previous
work

2.2. String diagrams and symmetric
monoidal theories

𝐸𝑀 ∪ 𝐸𝐶 plus

= =

=

=

These theories generate some familiar props.

Proposition 2.24. (i) (Σ𝑀, 𝐸𝑀) presents FinSet, the prop of functions between finite sets.

(ii) (Σℍ𝔸𝖱, 𝐸ℍ𝔸𝖱) presents Mat𝖱, the prop of matrices over the PID 𝖱.

The proofs are prototypical for such presentation claims: we recursively define a prop morphism (via
Proposition 2.22), then show that it is full and faithful. Then, by Lemma 2.9, we may conclude that it is an
isomorphism. We give details for case (i), but only the definition of the isomorphism in part (ii); the full
proof may be found in [Zan15].

Proof. (i) Define 𝒮FinSet recursively by sending ∶ 2 → 1 and ∶ 0 → 1 to the unique functions
of those types in FinSet. For this to be well-defined, we need to check that it respects the laws of 𝐸𝑀.
This is immediate however, as 1 is final in FinSet and each law is between morphisms with codomain
1. So 𝒮FinSet is a well-defined prop morphism, and we need to show that it is full and faithful. This is
the same as being bijective on hom-sets, so it is enough to find an inverse function to the action of
𝒮FinSet on each hom-set and show that these inverses define a prop morphism.

For each 𝑛, we define this inverse assignment on hom-sets by recursion on𝑚, the domain of the
function. The base case is mapping the empty function 0 → 𝑛 to the 𝑛-fold monoidal sum ()⊕𝑛.
If we have defined the mapping for all functions𝑚− 1 → 𝑛, and we wish to define the string diagram
corresponding to some 𝑓 ∶ 𝑚 → 𝑛, first let 𝑓′ ∶ 𝑚 − 1 → 𝑛 be given by 𝑓′(𝑖) = 𝑓(𝑖 + 1). Then
define the diagram for 𝑓 as

⋮
⋮

⋮
𝑓′

connecting the spare wire at the top to the 𝑓(0)th wire coming out of the diagram for 𝑓′ (which exists
by recursion).

We need to check that it is functorial, that is, it preserves identities and compositions, and also that it
respects tensor products and symmetries. We can do all of this simultaneously by demonstrating
the intuitive property that, in the diagram corresponding to 𝑓, the 𝑖th port on the left is connected
to the 𝑗th port on the right iff 𝑗 = 𝑓(𝑖). This is a straightforward induction, reflecting the recursive
definition. The base case of the empty function is immediate, and it is easy to see that the recursive
step preserves this property, as do all the equations of 𝐸𝑀.

Then using this property, it is obvious that this proposed inverse is a prop morphism, and that it is
inverse to 𝒮FinSet.

(ii) 𝒮ℍ𝔸𝖱 is defined by

𝑥 ↦ (𝑥) ↦! (2.8)

↦ (1 1) ↦ ¡ (2.9)

↦ (11) (2.10)

2.2. String diagrams and symmetric
monoidal theories

Chapter 2. Background and previous
work

writing ! and ¡ for the unique 0 × 1 and 1 × 0matrices.

Note that the black comonoid structure of ℍ𝔸𝖱 ends up meaning ‘copying’ and the white monoid
‘adding’. If one imaginesmembers of R travelling along thewires, then each generator ofℍ𝔸𝖱 has an intuitive
interpretiation in this way, which is compatible with the isomorphism 𝒮ℍ𝔸𝖱: inputting the components of
a vector v onto the left of the string diagram representing a matrix 𝐴 and composing the interpretations
of the generators will eventually output the components of the vector 𝐴v on the right. always outputs
0, discards its input, and 𝑥 multiplies its input by 𝑥. Following these rules one can always work
from left to right in a string diagram of ℍ𝔸𝖱. If we give up this determinism, we can (perhaps surprisingly)
arrive at another prop we introduced earlier: LinRelk, where k is the field of fractions of R. We do this by
combiningℍ𝔸𝖱 with its opposite, which we obtain by horizontally reflecting all its generators and equations,
and then adding some compatibility conditions. Because we now have two Hopf algebras which are allowed
to interact via these additional equations, the theory is known as the the prop of interacting Hopf algebras 𝕀ℍ𝖱.
The following schematic illustrates how the generators fit together:

{ , } Frobenius { , }

Hopf Hopf

{ , } Frobenius { , }

Definition 2.25. The prop 𝕀ℍ𝖱 has as its generators, for all 𝑥 ∈ R,

𝑥

𝑥

and as equations those of 𝐸ℍ𝔸𝖱, their mirror images, the following laws for (black and white) Frobenius
monoids:

= =

=

=

and

= =

=

=

There are also three equations, two of which govern the interaction between the black and white
structure, and the third provides multiplicative inverses:

−1
=

−1
= 𝑝 𝑝 = = 𝑝 𝑝

where 𝑝 ranges over every non-zero member of 𝖱.

Chapter 2. Background and previous
work 2.3. Bicategories

As for ℍ𝔸𝖱, we leave the details of the isomorphism 𝒮𝕀ℍ𝖱
∶ 𝕀ℍ𝖱 → LinRelk to Zanasi [Zan15], but we

will give its definition (on generators):

↦ {((𝑥𝑦) , 𝑥 + 𝑦) ∣ 𝑥, 𝑦 ∈ k} ↦ {(𝑥, (𝑥 𝑥)) ∣ 𝑥 ∈ k}

↦ {(∗, 0)} ↦ {(𝑥, ∗) ∣ 𝑥 ∈ k}
𝑥 ↦ {(𝑦, 𝑥𝑦) ∣ 𝑦 ∈ k}

Note that this definition is compatible with 𝒮ℍ𝔸𝖱 (and the self-evident 𝒮ℍ𝔸op
𝖱
∶ ℍ𝔸op

𝖱 → Matop𝖱). To

explain what we mean by ‘compatible’, first observe that all the generators and equations for ℍ𝔸𝖱 and ℍ𝔸op
𝖱

are in 𝕀ℍ𝖱. This means that there is an obvious pair of embeddings ℍ𝔸𝖱 ↪ 𝕀ℍ𝖱 ↩ ℍ𝔸op
𝖱 . SimilarlyMat𝖱

and Mat𝖱 may be embedded in LinRelk, by sending the 𝑛 × 𝑚 matrix 𝐴 to its graph {(v, 𝐴v) ∣ v ∈ k𝑚}
forMat𝖱 and to the converse {(𝐴v, v) ∣ v ∈ k𝑚} forMatop𝖱 . Then ‘compatibiity’ means that the following
commutes in PROP:

ℍ𝔸𝖱 𝕀ℍ𝖱 ℍ𝔸op
𝖱

Mat𝖱 LinRelR Matop𝖱

𝒮ℍ𝔸𝖱 𝒮𝕀ℍ𝖱 𝒮HA
op
R

(2.11)

In ℍ𝔸𝖱 (and ℍ𝔸op
𝖱) the black and white structure are easily distinguished. However, the combined

theory 𝕀ℍ𝖱 is completely symmetric with respect to colour—we could define 𝒮′𝕀ℍ𝖱
by

↦ {((𝑥𝑦) , 𝑥 + 𝑦) ∣ 𝑥, 𝑦 ∈ k} ↦ {(𝑥, (𝑥 𝑥)) ∣ 𝑥 ∈ k} etc.

and this would also give an isomorphism to LinRelk. With the same changes made to 𝒮ℍ𝔸𝖱 and 𝒮ℍ𝔸op
𝖱
, (2.11)

will still commute! We will resolve this mystery in Chapter 3.
We conclude this section by observing that 𝕀ℍ𝖱 is compact closed (Definition 2.18), via the black

structure.

Lemma 2.26. 𝕀ℍ𝖱 is compact closed.

Proof. Define 𝜀1 ∶ 1 + 1 → 0 as , 𝜂1 as and use requirements (ii) and (iii) of the definition of
compact closure to inductively generalise them to all 𝑛. The Frobenius axioms ensure that condition (i)
holds.

2.3 Bicategories

The final theoretical ingredient needed for this thesis is a way to talk about relationships betweenmorphisms.
There are several ways to do this, including bicategories and enriched categories. Locally posetal bicategories
are the same as categories enriched in Poset and locally posetal 2-categories. We use bicategories because
they permit economical notation and axiomatisation, and because they are the standard in this area of
research (see for example [BPS17]). In the case of posets and partially ordered sets, there is little practical
difference between the various approaches.

Just as categories generalise sets and functions between them, bicategories generalise categories, functors
and natural transformations. In full generality, bicategories can be rather awkward, but we will only need
the (rather more tractable) locally posetal ones.

Informally speaking, a locally posetal bicategory is a category in which one may compare morphisms
in the same hom-set, in a way compatible with the composition. That is, every hom-set should have the

2.3. Bicategories
Chapter 2. Background and previous

work

extra structure of a partial order≤ (a reflexive and transitive binary relation) and for any 𝑓, 𝑓′ ∶ 𝑋 → 𝑌 and
𝑔, 𝑔′ ∶ 𝑌 → 𝑍, if 𝑓 ≤ 𝑓′ and 𝑔 ≤ 𝑔′ then 𝑓; 𝑔 ≤ 𝑓′; 𝑔′. We will also consider examples where we only have
a preorder, which omits this last antisymmetry requirement.

Any category is trivially a locally posetal bicategory, by means of the discrete ordering where 𝑓 ≤ 𝑓′ iff
𝑓 = 𝑓′, but many of the examples we have met already admit a more interesting posetal structure. As we
deal mostly with props, we will also define ordered and preordered props, which are locally (pre)ordered
bicategories which are further props with 𝑓 ≤ 𝑓′ and 𝑔 ≤ 𝑔′ implying 𝑓 ⊕ 𝑔 ≤ 𝑓′ ⊕ 𝑔′. The prototypical
examples of locally posetal bicategories are the relational categories we have already defined, where the
partial order is subset inclusion.

Definition 2.27. A locally posetal bicategory is a category with a partial order on morphisms ≤ such that if
𝑓 ≤ 𝑓′ then 𝑓 and 𝑓′ have the same domain and the same codomain, and whenever 𝑓, 𝑓′ ∶ 𝑋 → 𝑌, 𝑔, 𝑔′ ∶
𝑌 → 𝑍 if 𝑓 ≤ 𝑓′ and 𝑔 ≤ 𝑔′ then 𝑓; 𝑔 ≤ 𝑓′; 𝑔′.

Often we will use the same name to refer both to a locally posetal bicategory and the category with the
same objects and morphisms. For example, we might define the following:

Definition 2.28. The locally posetal bicategory of linear relations over a field k, denoted LinRelk, has as
objects the natural numbers, and as morphisms𝑚 → 𝑛 the linear subspaces of k𝑚 × k𝑛 as before. 𝑅 ≤ 𝑆 if
and only if 𝑅 ⊆ 𝑆 as subspaces (i.e. as sets).

It is normally clear from context whether we are considering categories or locally posetal bicategories.
If there is any chance of confusion, we will explicitly say which we are dealing with, so this conflation of
notation will not cause any problems.

Chapter 3

Handling inequalities

This chapter provides the main theoretical definitions and results to allow our diagrammatic techniques to
be used to reason about inclusion and inequalities. Our first step is to reinterpret the definition of locally
posetal bicategory into a suitable version for props. Next, we define the symmetric monoidal inequality theory
(SMIT), the version of SMT appropriate for generating ordered props. After establishing the relationship
between SMTs and SMITs, we extend the presentation claims from Chapter 2 to the corresponding results
for SMITs and ordered props, culminating in an equivalence 𝕀ℍ𝖱 ≅ LinRel𝗄.

Often the interpretation of a prop of string diagrams is relational. In contrast to functions, relations
offer a more general picture, allowing for non-totality and non-uniqueness. Additionally, they support a
natural notion of inclusion, and it is the aim of this section to extend the notion of SMT to capture this
concept. First, we need to define two different versions of ordered prop.

Definition 3.1. An ordered prop is a prop equipped with a partial order on each hom-set, and a preordered
prop is a prop with a preorder on each hom-set. We abuse notation to write all of these orders as inequality
≤ disambiguated by the type of the morphisms on either side (since those types must be the same). Fur-
thermore, these orderings must be compatible with each other and the other operations of the prop, so for all
morphisms 𝑓, 𝑓′, 𝑔, 𝑔′

if 𝑓 ≤ 𝑓′ and 𝑔 ≤ 𝑔′ then 𝑓; 𝑔 ≤ 𝑓′; 𝑔′ (3.1)

if 𝑓 ≤ 𝑓′ and 𝑔 ≤ 𝑔′ then 𝑓 ⊕ 𝑔 ≤ 𝑓′ ⊕ 𝑔′. (3.2)

whenever the composites exist. Together with (pre)ordered prop morphisms (prop morphisms which
are monotone on every hom-set) there are categories of preordered props POrdPROP and ordered props
OrdPROP.

Note that (pre)ordered props are locally posetal bicategories. Any prop can trivially be made into an
ordered prop with the discrete order (where 𝑓 ≤ 𝑓′ iff 𝑓 = 𝑓′; see Remark 3.3 below) but more interestingly
Rel𝑋 and LinRel𝗄 have the richer structure of subset inclusion, and this is what we wish to capture in our
graphical theories.

3.1 Symmetric monoidal inequality theories

To bring the notion of ordering into the graphical notation, we need an analogue of SMT which allows the
axiomatision of order structure in these theories. Just as a preordered prop is a prop with the addition of a
preorder on each hom-set, a symmetric monoidal inequality theory is a SMT with the addition of some

3.1. Symmetric monoidal inequality
theories Chapter 3. Handling inequalities

axiomatic inequalities, which we will use to generate the full structure of a preordering on the hom-sets. In
most cases of interest to us, the axioms for the ordering, together with the given equations, are enough to
ensure that the preorder is a partial order1; for this reason, we do not have separate processes to convert a
SMIT into a preordered prop and an ordered prop.

Definition 3.2. A symmetric monoidal inequality theory (SMIT) consists of a triple (Σ, 𝐸, 𝐼) where (Σ, 𝐸) is
a SMT, and 𝐼 is a set of inequalities, which, similarly to equations, are pairs (𝑐, 𝑐′) of Σ-terms with the same
sort.

From (Σ, 𝐸, 𝐼) we can generate a preordered prop 𝕋(Σ,𝐸,𝐼). The starting point is the prop 𝕋(Σ,𝐸), to each
hom-set of which we must add a preorder based on 𝐼 satisfying Equations (3.1) and (3.2). In fact, we will
define a preorder≤𝐼 on⋃𝑛,𝑚 𝕋(Σ,𝐸)(𝑛,𝑚) such that 𝐴 ≤𝐼 𝐵 implies that 𝐴 and 𝐵

are in the same hom-set. We use a similar approach as when defining ∼𝐸 in Definition 2.19, by letting

≤0= 𝐼 ∪ {(𝐴 , 𝐴) ∣ 𝐴 is any morphism of 𝕋(Σ,𝐸)} (3.3)

≤𝑛+1=≤𝑛 ∪ {(𝐴 , 𝐶) ∣ ∃ 𝐵 such that (𝐴 , 𝐵), (𝐵 , 𝐶) ∈≤𝑛}
(3.4)

∪ {(𝐴 𝐵 , 𝐴′ 𝐵′) ∣ (𝐴 , 𝐴′), (𝐵 , 𝐵′) ∈≤𝑛} (3.5)

∪ {(
𝐴

𝐵
,

𝐴′

𝐵′) ∣ (𝐴 , 𝐴′), (𝐵 , 𝐵) ∈≤𝑛} (3.6)

and ≤𝐼 = ⋃∞
𝑛=0 ≤𝑛. Then, for each hom-set, the restriction of ≤𝐼 is clearly a preorder, contains 𝐼, satisfies

Equations (3.1) and (3.2), and so defines a preordered prop structure on 𝕋(Σ,𝐸).

This definition allows us to reason inequationally in exactly the same way as we could use equations in a
SMT—each step of reasoning is by applying an axiom to a subsection of a string diagram until the desired
result is achieved.

Remark 3.3. SMITs generalise SMTs. Any prop can be made into a discrete preordered prop by adding
identity 2-cells. At the level of presentations, this corresponds to mapping (Σ, 𝐸) to (Σ, 𝐸,∅): the union
defining ≤0 clearly corresponds to adding these identities, and since 𝐼 itself is empty it’s obvious that
≤𝑛+1=≤𝑛 for all 𝑛. This gives an embedding (of categories) 𝐷 ∶ PROP ↪ POrdPROP such that
𝐷(𝕋(Σ,𝐸)) = 𝕋(Σ,𝐸,∅).

Moreover, 𝐷 is left adjoint to the forgetful functor 𝑈 ∶ POrdPROP → PROP. To see this, we must
show that for any prop 𝕋 and any preordered prop 𝕌 there is a natural bijection between the hom-sets
POrdPROP(𝐷𝕋, 𝕌) and PROP(𝕋, 𝑈𝕌). But that is obvious, because any preordered prop morphism
whose domain is discrete has no restriction beyond simply being a prop morphism, since the requirement
of being monotone is always vacuously true. Similarly, every prop morphism 𝕋 → 𝑈𝕌 always lifts to a
preordered prop morphism 𝐷𝕋 → 𝕌.

Using SMITs, we can now capture the orderings of LinRel𝗄 and FinRel. Our proofs use a characterisation
of relations as spans. By the universal property of the product, any relation 𝑅 ⊆ 𝑋 × 𝑌 can be split into two
parts 𝑋 ← 𝑅 → 𝑌. If a category is sufficiently well-behaved, we can define relations over that category as a
class of spans.

Definition 3.4 ([Bé67]). Let 𝒞 be a category with finite products, pullbacks and an epi-mono factorisation
system. A span from an object 𝐴 to another object 𝐵 is some object 𝑋 and a pair of morphisms in the shape

1That is, 𝑓 ≤ 𝑓′ and 𝑓′ ≤ 𝑓 together imply that 𝑓 and 𝑓′ are equal, or, in more category-theoretic terminology, isomorphic
morphisms are equal.

Chapter 3. Handling inequalities
3.1. Symmetric monoidal inequality

theories

𝐴 ← 𝑋 → 𝐵. A span morphism from 𝐴 ← 𝑋 → 𝐵 to 𝐴 ← 𝑋 ′ → 𝐵 is a morphism 𝑋 → 𝑋 ′ in 𝒞 making
commute

𝑋

𝑋 ′

𝐴 𝐵

The bicategory of relations over 𝒞 Rel(𝒞) has the same objects as 𝒞. An morphism 𝐴 → 𝐵 is an isomor-
phism class (with respect to spanmorphisms) of jointlymonic spans from𝐴 to𝐵, i.e. some𝐴 ← 𝑋 → 𝐵 such
that the induced 𝑋 → 𝐴 × 𝐵 is monic. The identity morphism at 𝐴 is (the isomorphism class containing)

the identity span 𝐴
id
←− 𝐴

id
−→ 𝐴. Composition is by pullback followed by restriction to the monic part of the

factorisation, and the 2-cells are span morphisms. By monicity, there is at most one 2-cell between two
relations, so Rel(𝒞) is always locally posetal.

Dually, if 𝒞 has finite coproducts and pushouts, the bicategory of corelations consists of jointly epic
cospans 𝐴 → 𝑋 ← 𝐵, and composition is by pushout followed by restriction to the epic part. Note that the
sense of the order is not reversed: 𝐴 → 𝑋 ← 𝐵 ≤ 𝐴 → 𝑋 ′ ← 𝐵 iff there is a suitable morphism 𝑋 → 𝑋 ′.

We begin with the relatively straightforward treatment of finite relations, first by noting that the above
notion of relation agrees with the direct definition.

Proposition 3.5 (folklore). Rel(FinSet) ≅ FinRel as props.

An immediate question is whether Corel(FinSet) similarly corresponds to some natural construction on
finite sets. The answer is affirmative: corelations are the equivalence relations EqRel. The ordering is by
coarseness: 𝛼 ≤ 𝛽 iff (𝑖, 𝑗) ∈ 𝛼 implies (𝑖, 𝑗) ∈ 𝛽 for all (𝑖, 𝑗).

Proposition 3.6 (folklore). Corel(FinSet) ≅ EqRel as props.

Coya and Fong [CF17] give axiomatisations of Rel(FinSet) and Corel(FinSet) as SMTs. Rel(FinSet) is
presented by 𝐵 from Example 2.23(iii) with one additional equation, the so-called special equation, seen
already (although coloured differently) as part of the Frobenius SMT:

=

Writing 𝐵′ for the result of augmenting 𝐵 with this equation, the isomorphism 𝒮 ∶ Rel(FinSet) → 𝐵′ acts
similarly to the one FinSet→ 𝑀: the 𝑖th port on the left is connected to the 𝑗th port on the right iff (𝑖, 𝑗) is
in the relation. The special equation serves to remove redundant paths. Corel(FinSet) is presented by the
Frobenius monoids from Example 2.23(v).

Both 𝐵 and 𝐵′ may be constructed as a composition of props [Lac04]; for this reason, both of them
enjoy a useful factorisation property. Every morphismmay be written so that all of the comonoid generators
are to the left of the monoid generators. 𝒮 is well-behaved with respect to this factorisation, in the sense
that it restricts to isomorphisms FinSet→ 𝑀 and FinSetop → 𝐶. We abuse the notation for scalars to write
the image of a FinSetmorphism 𝑓 as 𝑓 and of a FinSetop one as 𝑓 .

We extend Propositions 3.5 and 3.6 to the level of SMITs and ordered props.

Theorem 3.7. (a) The ordered prop generated by the SMIT consisting of the SMT of bimonoids from Exam-
ple 2.23(iii) together with the special equation and the inequality ≤ is isomorphic (as an ordered
prop) to Rel(FinSet).

(b) The ordered prop generated from the SMIT which is the SMT for special Frobenius monoids of Example 2.23(v)
along with the inequality ≤ is isomorphic (as an ordered prop) to Corel(FinSet).

3.1. Symmetric monoidal inequality
theories Chapter 3. Handling inequalities

Proof. For part (a), we extend 𝒮 to an isomorphism of ordered props. It is enough to check that the new
inequality is sound (that is, the image of every inequality under 𝒮 is true) and complete for the order in
FinRel. It is clearly sound; the image of the left hand side is the empty relation∅ ⊆ 1 × 1, and the right
hand side is the full relation.

For completeness, suppose we have relations 𝑅 ⊆ 𝑅′ ∶ 𝑚 → 𝑛. Then they are jointly mono spans over

FinSet𝑚
𝑓
←− 𝑧

𝑔
−→ 𝑛 and𝑚

𝑓′
←− 𝑧′

𝑔′
−→ 𝑛 with some ℎ ∶ 𝑧 → 𝑧′ making the following commute

𝑧

𝑧′

𝑚 𝑛

𝑓 𝑔

ℎ

𝑓′ 𝑔′

Diagrammatically,

𝑓 = ℎ 𝑓′ 𝑔 = ℎ 𝑔′

and by functoriality of 𝒮 we may write

𝒮𝑅 = 𝑓 𝑔 = 𝑓′ ℎ ℎ 𝑔′

So to show completeness, it is enough to show that for any FinSet-morphism ℎ

ℎ ℎ ≤ (3.7)

We use induction on the structure of a term in𝑀. If ℎ = ℎ1; ℎ2 where ℎ1 and ℎ2 each satisfy (3.7), then

ℎ ℎ = ℎ2 ℎ1 ℎ1 ℎ2 since 𝒮 is a functor

≤ ℎ2 ℎ2 by inductive hypothesis and (3.1)

≤ by inductive hypothesis

The inductive step for⊕ is similar, using (3.2) instead.
For the base case, there are two generators to check. For the multiplication ∶ 2 → 1, we in fact

have = as an axiom. The other case are the units, where we have explicitly added the required
inequality ≤ .

For part (b), analogously to part (a), we need only show that for any FinSet-morphism ℎ,

≤ ℎ ℎ

The induction step is the same as before, the case of units is the axiom = , and the case of
multiplication is the exact inequality we added to the SMIT.

It is worth explaining the relationship of 𝒮𝕀ℍ with the isomorphism 𝒮ℍ𝔸 from Proposition 2.24(ii).
Observe that any string diagram of 𝕀ℍ𝖱 built out of the generators { , , , , 𝑥 } is also a

string diagram in ℍ𝔸𝖱 (for such a diagram 𝐴 ∶ 𝑘 → 𝑙 we further abuse scalar notation to write 𝐴𝑘 𝑙)

and, similarly, any diagram built of the opposite generators (𝐴𝑘 𝑙) is a string diagram in ℍ𝔸op
𝖱 . This

means that we have two embeddings of props ℍ𝔸𝖱 → 𝕀ℍ𝖱 ← ℍ𝔸op
𝖱 . Similarly, we have two embeddings

Mat𝖱 → LinRel𝗄 ← Matop𝖱 mapping every matrix to its (opposite) graph. In [BSZ17b], it shown that the

Chapter 3. Handling inequalities
3.1. Symmetric monoidal inequality

theories

following diagram commutes.

ℍ𝔸𝖱 𝕀ℍ𝖱 ℍ𝔸op
𝖱

Mat𝖱 LinRel𝗄 Matop𝖱

𝒮ℍ𝔸 𝒮𝕀ℍ 𝒮ℍ𝔸op (3.8)

Intuitively, this means that any diagram 𝐴𝑚 𝑛 corresponds (via𝒮𝕀ℍ) to a functional linear relation (matrix)

and 𝐴𝑚 𝑛 to a cofunctional linear relation (reversed matrix). The following result informs us that every
morphism of 𝕀ℍ𝖱 can be written in both span form and cospan form.

Lemma 3.8 ([BSZ17b]). For all 𝐴𝑚 𝑛 in 𝕀ℍ𝖱 there exist 𝑘, 𝑘′ ∈ ℕ, 𝐴1
𝑚 𝑘 , 𝐴2

𝑘 𝑛 , 𝐴′
1

𝑚 𝑘′ and

𝐴′
2

𝑘′ 𝑛 such that

𝐴′
1 𝐴′

2
𝑚 𝑘′ 𝑛 = 𝐴𝑚 𝑛 = 𝐴1 𝐴2

𝑚 𝑘 𝑛

Moreover, the following property of ℍ𝔸𝖱 also holds in 𝕀ℍ𝖱.

Lemma 3.9 ([BSZ17b]). For all 𝐴𝑚 𝑛 , 𝑚 𝐴 𝑛 = 𝑚 and 𝑚 𝐴 𝑛 = 𝑛 .

We show that it is possible to extend the SMT 𝕀ℍ𝖱 to a SMIT, in a way compatible with the isomorphism
𝒮𝕀ℍ ∶ 𝕀ℍ𝖱 → LinRel𝗄. In other words, we give an inequational characterisation of the subset order of linear
relations. The symmetry under (−)• discussed earlier is broken by moving to the ordered setting. Indeed,
to get from the SMT to a SMIT we add just one inequality:

≤ (3.9)

Interpreted as linear relations (via 𝒮𝕀ℍ), (3.9) means simply that the unique 0-dimensional subspace {0}
of 𝗄 is included in the unique 1-dimensional subspace, 𝗄 itself.

Theorem 3.10. 𝕀ℍ𝖱 ≅ LinRel𝗄 as ordered props.

For the proof we need to recall some elementary linear algebra. Regarding an 𝑚 × 𝑛 matrix 𝐴 as a
list of its column vectors 𝐚1, 𝐚2, … , 𝐚𝑛, recall that Sp(𝐴), the span of 𝐴, is the linear subspace of 𝗄𝑚 with
elements linear combinations 𝜆1𝐚1 + 𝜆2𝐚2 +⋯+ 𝜆𝑛𝐚𝑛, for 𝜆𝑖 ∈ 𝗄; this is easily generalised to multiple
matrices with the same number of rows by considering linear combinations of all columns together. The
following is a well-known fact of linear algebra.

Lemma 3.11 (e.g. [Axl97, Proposition 2.13]). Let 𝑉 be a vector space over a field 𝗄 with a linear subspace𝑈.
Suppose that for some𝑚× 𝑛 𝗄-matrix 𝐴 we have Sp(𝐴) ⊆ 𝑈. Then there exist some 𝑛′ and an𝑚× 𝑛′ matrix 𝐶
such that𝑈 = Sp(𝐴, 𝐶).

Proof of Theorem 3.10. The inequality (3.9) is clearly sound, we thus only have to show completeness: that
(3.9) suffices to account for any inclusion between arbitrary linear relations.

Let therefore 𝐴, 𝐵 ∶ 𝑚 → 𝑛 be morphisms of 𝕀ℍ𝖱 such that 𝒮(𝐴) ⊆ 𝒮(𝐵) ⊆ 𝗄𝑚 × 𝗄𝑛. Now 𝗄𝑚 × 𝗄𝑛 ≅
𝗄𝑚+𝑛 × 𝗄0 ≅ 𝗄𝑚+𝑛; this, diagrammatically, corresponds to the manipulation

Ω ∶ 𝑚 𝐴 𝑛 ↦
𝑚 𝐴 𝑛

𝑛
𝑛

3.1. Symmetric monoidal inequality
theories Chapter 3. Handling inequalities

In fact, because of this ‘rewiring’ argument, we may assume, without loss of generality, that 𝐴, 𝐵 ∶
𝑚 → 0. If the theorem holds for all such diagrams, then for arbitrary 𝐴′, 𝐵′ ∶ 𝑚 → 𝑛 with 𝒮(𝐴′) ⊆ 𝒮(𝐵′),
we also have 𝒮(Ω𝐴′) ⊆ 𝒮(Ω𝐵′). So by assumptionΩ𝐴′ ≤ Ω𝐵′, but then we can reason

𝐴′ =
𝐴′

≤
𝐵′

= 𝐵′

Further, using Lemma 3.8 and Lemma 3.9, we may show = = . Therefore we
can further assume that 𝐴, 𝐵 consist only of generators of ℍ𝔸op

𝖱 . It is thus harmless to consider 𝐴 and 𝐵 as
(reflected) matrices, and our initial assumption means that Sp(𝐴) ⊆ Sp(𝐵), since clearly 𝒮(𝐴) = Sp(𝐴).

By the conclusion of Lemma 3.11, there exists 𝐶 such that Sp(𝐵) = Sp(𝐴, 𝐶). Diagrammatically (via
𝒮𝕀ℍ), this joint span is the following, where for readability we omit decorating the wires:

𝐵 =
𝐴

𝐶

But we have

𝐴 =
𝐴

=
𝐴

𝐶
≤

𝐴

𝐶
= 𝐵

showing that the inequality 𝐴 ≤ 𝐵 is derivable from (3.9).

We also show that 𝕀ℍ𝖱 enjoys a particularly nice form of order, namely that of a bicategory of relations,
in the sense of Carboni and Walters [CW87].

Definition 3.12. A bicategory of relations is a locally posetal monoidal bicategory where

1. for every object 𝑎 there is a commutative comonoid structure, that is, a pair of morphisms (
𝑎

𝑎
𝑎 ∶

1 → 2, 𝑎 ∶ 1 → 0), along with right adjoints
𝑎

𝑎
𝑎 ⊣

𝑎

𝑎
𝑎 , 𝑎 ⊣ 𝑎 . Adjointness means to the

following, here and onwards often omitting the labelling on the wires for clarity:

≤ , ≤ , ≤ id𝐼, ≤ ; (3.10)

2. (
𝑎

𝑎
𝑎 ,

𝑎) and right adjoints satisfy the Frobenius equations:

= = , (3.11)

3. every morphism 𝐴𝑎 𝑏 is a lax (,)-comonoid homomorphism, that is,

𝑎 𝐴 𝑏
𝑏

𝑏 ≤ 𝑎
𝑎 𝐴 𝑏

𝑎 𝐴 𝑏 ,
𝑎 𝐴 𝑏 ≤ 𝑎 (3.12)

Theorem 3.13. The ordered prop 𝕀ℍ𝖱 is a bicategory of relations.

Chapter 3. Handling inequalities
3.1. Symmetric monoidal inequality

theories

Proof. For each object 𝑛 ∈ ℕ, comonoid structures are defined inductively with the base case for 𝑛 = 0 as
the empty diagram and

𝑛 + 1
𝑛 + 1

𝑛 + 1 = 𝑛
𝑛

𝑛

A straightforward induction generalises the comonoid equations for all 𝑛.
We first tackle the case of the black units (the second pair of inequalities in (3.10)). First we must check

that ≤ and these terms are equated by the definition of 𝕀ℍ𝖱. Conversely, for 𝑛 = 1:

= ≤ = =

The above argument easily generalises to all 𝑛.
Showing adjointness for the black comultiplication (the first pair of inequalities of (3.10)) amounts

to demonstrating that ≤ and ≤ . The second is the black special equation in
Definition 2.25. The first follows easily from the adjointness of the unit and counit:

= ≤ =

Now, to show that all morphisms are lax comonoid homomorphisms, it is enough to check that each of
the generators obeys the conditions of (3.12). Several of these are in fact equalities. The derivations for the
two interesting cases are given below:

≤ =

≤ = =

We now tackle the more complicated task of axiomatising the order in Rel(Mat𝖱) and Corel(Mat𝖱). The
latter has a non-theoretical application we explore later, although similarly to the case for Rel(FinSet) and
Corel(FinSet) we get both results for free by duality. While the situation is more involved, essentially the
same proof technique as the one for Theorem 3.7 may be used.

We first give the definitions of the SMTs presenting Rel(Mat𝖱) and Corel(Mat𝖱) as one-dimensional
props. They are constructed by quotienting a coproduct, as we have seen before.

Definition 3.14. 𝕀ℍRel
𝖱 is the quotient of ℍ𝔸𝖱 +ℍ𝔸op

𝖱 by the following equations, where 𝑘 is any element of
𝖱 and 𝑙 ranges over non-zero elements of 𝖱.

= = = = =

𝑙 𝑙 = =
−1

=
−1

𝑘
=

𝑘
𝑘

𝑘
=

𝑘
𝑘 =

3.1. Symmetric monoidal inequality
theories Chapter 3. Handling inequalities

𝕀ℍCor
𝖱 is similarly a quotient of ℍ𝔸𝖱 + ℍ𝔸op

𝖱 by these “photographic negative” versions of the above
equations, where 𝑘 and 𝑙 are as before.

= = = = =

𝑙 𝑙 = =
−1

=
−1

𝑘
=

𝑘
𝑘

𝑘
=

𝑘
𝑘 =

Note that unlike the case of FinSet, we must be careful to keep track of the colours of our generators, as
there are now two different pairs of monoid and comonoid structure.

A fuller exploration of the origins of these laws can be found elsewhere [Zan15, FSR16, FZ17]. We
simply note that the results of Fong, Rapisarda and Sobociński [FSR16] for the case where 𝖱 = 𝗄[𝑠, 𝑠−1]
generalise to show that these are presentations of the props of interest.

Proposition 3.15. 𝕀ℍRel
𝖱 ≅ Rel(Mat𝖱) and 𝕀ℍCor

𝖱 ≅ Corel(Mat𝖱).

We now ask what extra inequalities must be added to the presentations of 𝕀ℍRel
𝖱 and 𝕀ℍCor

𝖱 to capture the
2-categorical structure present in the more concrete categories they axiomatise. It turns out that we must
work slightly harder than for 𝕀ℍ𝖱 in these weaker theories.

The argument from the previous section can be reused as follows. Suppose we have (jointly monic)

spans 𝖱𝑚
𝐴
←− 𝖱𝑟

𝐵
−→ 𝖱𝑛 ≤ 𝖱𝑚

𝐶
←− 𝖱𝑟

′ 𝐷
−→ 𝖱𝑛 in Rel(Mat𝖱). Then there is an 𝑟′ × 𝑟 matrix 𝑈 such that

𝐴 = 𝐶𝑈 and 𝐵 = 𝐷𝑈. Diagrammatically, this means

𝐴 = 𝑈 𝐶 𝐵 = 𝑈 𝐷

in ℍ𝔸𝖱, carefully noting the reversed order of composition. Thus our span is

𝐴 𝐵 = 𝐶 𝑈 𝑈 𝐷

and so to show completeness of any proposed presentation, it is enough to show that for any 𝑈,

𝑈 𝑈 ≤ (3.13)

We will re-use the hopefully by now familiar inequality (3.9). However, without all the equations of
𝕀ℍ𝖱, we also need to add inequalities between some of the diagrams which are equated there.

Proposition 3.16. The order of Rel(Mat𝖱) is presented by adding the following inequalities to the SMIT derived
from the SMT of 𝕀ℍRel

𝖱 :

≤ ≤ 𝑘 𝑘 ≤

where 𝑘 ranges over every (non-zero) element of 𝖱.

Proof. Soundness is straightforward to check.
For completeness, by the observation above, it is enough to show that (3.13) holds for every 𝑈. We

proceed by induction on the structure of 𝑈, noting that the induction steps for composition and monoidal
product are both trivial. We need therefore only consider the 5 cases in which𝑈 consists of a single generator
of ℍ𝔸𝖱. An axiom of 𝕀ℍRel

𝖱 ensures that = , and two of the imposed inequalities take care of the
cases when 𝑈 is and . The first axiom covers the remaining two cases:

= = ≤ =

Chapter 3. Handling inequalities
3.1. Symmetric monoidal inequality

theories

= ≤ =

where in the second derivation we use the result (easily shown by reversing the colours and sense of the
equality from the first) that ≤ .

The situation in 𝕀ℍCor
𝖱 is dual, as we record in the below corollary.

Corollary 3.17. The order of Corel(Mat𝖱) is presented by adding the following inequalities to the SMIT derived
from the SMT of 𝕀ℍCor

𝖱 :

≤ ≤ ≤ 𝑘 𝑘

where 𝑘 ranges over every (non-zero) element of 𝖱.

These results are interesting in that they give slightly stronger relationships between the generators that
are identified in 𝕀ℍ𝖱 but not the weaker theories. Also, the proof method is rather different to that used for
𝕀ℍ𝖱, since we do not have access to all the machinery of linear algebra that is central to that proof. Notice
further that we do not need to include the 𝑘 = 0 case, since we have both“bone” equations available to us,
and the axiom of ℍ𝔸𝖱 that 0 = allows us to infer that result.

Chapter 4

Signal flow graphs

This chapter examines our first application of orderings, to signal flow graphs (SFGs). They date back to
Shannon [Sha42], were popularised and studied in detail byMason [Mas52], and have been used since then
as an abstraction for many different systems, ranging from control theory and signal processing [Lat98] to
modelling cardiac output [GLK55]: wherever feedback plays an important role.

Mason’s interest was in creating a general theory for electronic systems involving feedback, although
other than his motivating examples there is nothing specific to electronics:

There remains… a need for development at the working level so that engineers may find
the feedback approach more useful…The flow graph provides a visual presentation of the
relationships entering an analysis problem and facilitates certain manipulations leading to the
solution. [Mas52]

These manipulations are, in fact, special cases of the general system of reasoning in SMTs and SMITs that
we have been building throughout this thesis.

The first example analysed by Mason begins with translates the following electronic circuit to a signal
flow graph and then to the equivalent system of equations.

𝜇

𝛽

𝑣0 𝑣1

𝑣2

𝑣3

Following the laws of circuit theory, we can establish relations between the (colour-coded) voltages 𝑣𝑖
corresponding to the flow graph

𝑣0 𝑣1 𝜇 𝑣3

𝛽𝑣2

(4.1)

Each node has as its value the sum of the values of the nodes on the ends of incoming arrows, possibly
multiplied by a factor (here 𝜇 or 𝛽); 𝑣0 has no dependencies on other nodes and may therefore have any

Chapter 4. Signal flow graphs

arbitrary value. Thus the graph translates into the system

𝑣0 = any given input

𝑣1 = 𝑣0 + 𝑣2
𝑣2 = 𝛽𝑣3
𝑣3 = 𝜇𝑣1

and that may be readily solved using conventional techniques to give 𝑣3 =
𝜇

1−𝜇𝛽𝑣0. Our signal flow graph
defines a transformation from an input voltage 𝑣0 to an output 𝑣3 via a feedback loop passing through 𝑣2
and 𝑣1. Moreover, it is straightforward to go the other way, and turn a linear system of equations back into a
signal flow graph.

We deviate somewhat from the notation of signal flow graphs as they were first examined in the middle
of the 20th century, and draw (and indeed define) them in a format more amenable to analysis using the
ideas of SMTs and SMITs. We redraw the graph of (4.1) as

𝜇

𝛽

The individual nodes 𝑣𝑖 have been turned into stretches of wire, where 𝑣0 is the lower left open ‘input’
wire leading into the adder, 𝑣1 is the short part from the output of the addition to the 𝜇 generator, 𝑣2 is the
upper left part from the output of the 𝛽 generator round to the upper side of the adder, and 𝑣3 is the whole
right-hand half, including the trailing ‘output’ loose end.

We will also move away from the continuous world of electronics to a more discrete view. Our input
is not some constant voltage that we assume has settled to an equilibrium state, but a (possibly infinite)
stream of values that are fed in one by one.

Synopsis

We build on previous results [BSZ14, BSZ15, BSZ17a] axiomatising SFGs as string diagrams inside props,
and show that the isomorphisms extend to the level of ordered props. To do this, we recall the definitions
of formal Laurent and power series, as well as polynomial rings. We also give the definition of a prop of
signal flow graphs as a sub-prop of 𝕀ℍ𝗄[𝑥], where our base PID is now the ring of polynomials over a field.

We define specifications as string diagrams, and explain what it means for a SFG to implement a
specification. We cover ways of defining semantics either denotationally or operationally, and extend the
existing results about their compatibility to show that they still agree in the framework of ordered props. To
do this, we explore notions around deadlock and initialisation.

After the above exposition, which is all focused on having delays always start containing a value of zero,
we examine the situation where any field member is allowed, and show similar compatibility results.

The key results in this section are

• Theorem 4.5, establishing that inclusion of behaviours according to the denotational semantics is the
same as syntactic inclusion according to the SMIT;

• Theorem 4.8, showing that, for diagrams which do not exhibit certain degenerate behaviours, the
operational semantics also corresponds to the inclusion in the SMIT; and

• Proposition 4.12, showing that, when we allow delays to be initialised with non-zero values, extending
traces backwards in time does not harm the correspondence between semantics and syntax.

4.1. Zero-initialised SFGs Chapter 4. Signal flow graphs

4.1 Zero-initialised SFGs

Throughout this chapter, we conflate a signal flow graph as historically defined with the version re-cast into
a notation which fits within our string diagrams, and indeed we can use the theories of SMTs and SMITs to
reason about SFGs.

An example of a signal flow graph is below, modelling rabbits which breed according to the well-known
(though perhaps biologically implausible) rules of Fibonacci: each month, every mature pair of rabbits gives
birth to an immature pair which will mature and start breeding the next month.

fFib =
𝑥

𝑥
(4.2)

We interpret 𝑥 gates as delays, or registers, which we assume to be initialised with zero, justifying
their different appearance to members of 𝗄 which simply act as amplifiers. An important element is the
feedback loop passing through a delay. Given the sequence of inputs 1; 0; 0; 0; 0; 0;…, the output is the
Fibonacci sequence 1; 2; 3; 5; 8; 13;…. We illustrate the first steps of the computation below: the state of
each delay is shown by the number above it, and the remaining numbers keep track of the value on each
wire at each iteration.

𝑥

𝑥
0

0

1
1 1

11
1

𝑥

𝑥
1

1

0
1 2

21
2

𝑥

𝑥
1

2

0
2 3

32
3

For the remainder of this chapter, we fix a field 𝗄. Our first step is to define some 𝗄-algebras we will use
as our domains of behaviours of SFGs, in the spirit of generating functions.

Definition 4.1. A formal Laurent series is a function 𝜎 ∶ ℤ → 𝗄 such that there is some 𝑖 ∈ ℤ for which
𝜎(𝑗) = 0 for all 𝑗 < 𝑖. The least 𝑑 ∈ ℤ with 𝜎(𝑑) ≠ 0 is the order of 𝜎.

We will often write a formal Laurent series as a formal sum ∑∞
𝑖=𝑑 𝜎(𝑖)𝑥

𝑖. Sum and product of 𝜎 =
∑∞

𝑖=𝑑 𝜎(𝑖)𝑥
𝑖 and 𝜏 = ∑∞

𝑖=𝑒 𝜏(𝑖)𝑥
𝑖 are defined in the normal way:

𝜎 + 𝜏 =
∞
∑

𝑖=min(𝑑,𝑒)
(𝜎(𝑖) + 𝜏(𝑖)) 𝑥𝑖

𝜎 ⋅ 𝜏 =
∞
∑

𝑖=min(𝑑,𝑒)
(∑
𝑘+𝑗=𝑖

𝜎(𝑗) ⋅ 𝜏(𝑘)) 𝑥𝑖

and if 𝜎 is non-zero, then it has inverse 𝜎−1 given by

𝜎−1(𝑖) =
⎧

⎨
⎩

0 if 𝑖 < −𝑑
𝜎(𝑑)−1 if 𝑖 = −𝑑
∑𝑛

𝑖=1(𝜍(𝑑+𝑖)⋅𝜍
−1(−𝑑+𝑛−𝑖))

−𝜍(𝑑) if 𝑖 = −𝑑 + 𝑛 for 𝑛 ≠ 0

With these operations, formal Laurent series form a field denoted by 𝗄((𝑥)). Important sub-𝗄-algebras are
the formal power series, the formal Laurent series of order ≥ 0, written 𝗄[[𝑥]], and the polynomials 𝗄[𝑥].

Chapter 4. Signal flow graphs 4.1. Zero-initialised SFGs

We identify the prop SF consisting of signal flow graphs, which allow a well-defined, mechanistic,
left-to-right execution, in contrast to general string diagrams, where the non-functional generators such as

and mean that this is impossible. Note that signal flow graphs as defined here are only equated
up to the laws of props, not all the equations of 𝕀ℍ𝗄[𝑥]. We will also consider the image of SF under what
is effectively the quotient map 𝑞 ∶ SF → 𝕀ℍ𝗄[𝑥], but for the purposes of cleanly defining the operational
semantics, it is important not to introduce arbitrary polynomials as generators. Note that we use this
roman font to emphasise the distinction, as opposed to the blackboard bold one for our theories with more
equations imposed. Indeed, we will also use the notation IH for the prop with all the generators of 𝕀ℍ𝗄 along
with 𝑥 and 𝑥 but no equations.

Definition 4.2. The prop of signal flow graphs SF consists of diagrams matching the syntax

𝑐, 𝑑 ∶∶= ∣ ∣ 𝑘 ∣ 𝑥 ∣ ∣ ∣ ∣ ∣ 𝑐 ⊕ 𝑑 ∣ 𝑐; 𝑑 ∣ 𝑇𝑟(𝑐)

where 𝑘 ranges over 𝗄, we allow only well-defined composition in the sense of 𝕀ℍ𝗄[𝑥] and by 𝑇𝑟(𝑐) we have
abbreviated the following“guarded feedback” operation mapping 1 + 𝑚 → 1 + 𝑛 diagrams to the𝑚 → 𝑛
ones

𝑇𝑟(𝑐) = 𝑐𝑚 𝑛𝑥

taken up to the laws of props (as in Definition 2.11). Since every generator of SF is also a generator of 𝕀ℍ𝗄[𝑥]
and we have imposed no additional equations beyond the prop axioms, we immediately get a prop morphism
𝑞 ∶ SF→ 𝕀ℍ𝗄[𝑥]. Indeed, viewing SF as a discrete ordered prop, 𝑞 is also a morphism of ordered props.

Note that a priori the image 𝑞(SF) is very far from being all of 𝕀ℍ𝗄[𝑥]. General string diagrams can be
thought of as specifications and SFGs in SF as implementations. We say that a specification 𝐴 (a morphism of
𝕀ℍ𝗄[𝑥]) refines a specification 𝐵whenever𝐴 ≤ 𝐵 and we say that a diagram 𝑐 ∈ SF implements a specification
𝐴 whenever 𝑞(𝑐) refines 𝐴, that is, 𝑞(𝑐) ≤ 𝐴.

We define operational semantics on augmented diagrams via the rules shown in Figure 4.1. An augmented
diagram is obtained from a diagram of IH by replacing delays 𝑥 with labelled versions 𝑥 𝑘, for

some 𝑘 ∈ 𝗄. Intuitively, 𝑠
𝐯
−→
𝐰

𝑡means that 𝑠 can become 𝑡 in one step whenever it inputs 𝐯 on the𝑚 ports
on the left and outputs𝐰 on the 𝑛 ports on the right. Operational semantics are defined for every diagram of
IH, but those of SF are special in that they admit a deterministic execution associating a stream of inputs on
the left with a stream of outputs on the right. Each diagram 𝑐 then yields a transition system with the initial
state 𝑠0 of 𝑐 obtained by replacing delays in 𝑐 with 𝑥 0; this means that we only consider executions
where the registers are initialised with 0. For a SFG in some state 𝑠, every choice 𝐯 uniquely determines a𝐰
and 𝑡 such that there is 𝑠

𝐯
−→
𝐰

𝑡, but this may not be true for an arbitrary string diagram. Different semantics
are considered in [FSR16] and below in Section 4.2, where registers can be initialised with arbitrary values.

A computation of a diagram 𝑐 is a (possibly infinite) path 𝑠0
𝐮0−−→
𝐯0

𝑠1
𝐮1−→
𝐯1

… in the transition system of 𝑐,
starting from its initial state 𝑠0. When 𝑐 has type𝑚 → 𝑛, each𝐮𝑖 and 𝐯𝑖 are strings over 𝗄, say 𝑘𝑖1…𝑘𝑖𝑚 and

𝑙𝑖1…𝑙𝑖𝑛, respectively. The trace, also called trajectory, of this computation is then a pair of vectors 𝜶 = (
𝛼1
⋮

𝛼𝑚
),

𝜷 = (
𝛽1
⋮
𝛽𝑛
) where 𝛼𝑗 = 𝑘0𝑗𝑘1𝑗… and 𝛽𝑗 = 𝑙0𝑗𝑙1𝑗…. In a finite computation, all 𝛼𝑗 and 𝛽𝑗 have the same length,

and in an infinite computation they are all infinite. We denote by 𝑓𝑡(𝑐) the set of all finite trajectories of a
diagram 𝑐, and by 𝑖𝑡(𝑐) the set of all its infinite ones. The observable behaviour ⟨𝑐⟩ of a diagram 𝑐 is the pair
(𝑓𝑡(𝑐), 𝑖𝑡(𝑐)). We can encode a finite trajectory as a pair of vectors of polynomials in 𝗄[𝑥] and an infinite
one as a pair of vectors of formal power series in 𝗄[[𝑥]].

We have the following guarantee of compositionality for ⟨−⟩.

Proposition 4.3. ⟨−⟩ ∶ SF→ LinRel𝗄[𝑥] × LinRel𝗄[[𝑥]] is a morphism of ordered props.

4.1. Zero-initialised SFGs Chapter 4. Signal flow graphs

()
𝑘

−−→
(𝑘𝑘)

() ()
𝑘
−→ () ()

(𝑘𝑙)−−→
𝑘+𝑙

() () −→
0
()

()
𝑘+𝑙
−−→
(𝑘𝑙)

() ()
0
−→ () ()

(𝑘𝑘)−−→
𝑘

() () −→
𝑘
()

(𝑘)
𝑙
−→
𝑘𝑙

(𝑘) (𝑥 𝑙)
𝑘
−→
𝑙
(𝑥 𝑘)

(𝑘)
𝑘𝑙
−→
𝑙
(𝑘) (𝑥 𝑙)

𝑙
−→
𝑘
(𝑥 𝑘)

()
𝑘
−→
𝑘
() ()

(𝑘𝑙)−−→
(𝑙𝑘)

()

𝑐
𝐮
−→
𝐯
𝑐′ 𝑑

𝐯
−→
𝐰

𝑑′

𝑐; 𝑑
𝐮
−→
𝐰

𝑐′; 𝑑′

𝑐
𝐮1−→
𝐯1

𝑐′ 𝑑
𝐮2−→
𝐯2

𝑑′

𝑐 ⊕ 𝑑
(𝐮1𝐮2)−−−→
(𝐯1𝐯2)

𝑐′ ⊕ 𝑑′

Figure 4.1: Structural rules for operational semantics, with 𝑘, 𝑙 ranging over 𝗄 and 𝐮, 𝐯, 𝐰 vectors of
elements of 𝗄 of the appropriate size.

Proof. Since SF has no equations or inequalities, it is enough to note that the identities and composition are
compatible with those in the codomain.

We now show that the notion of inclusion of behaviours tightly corresponds to this syntactic notion of
refinement. Before we can state the precise result, we must explore the ideas of deadlock and initialisation.

We begin by establishing denotational semantics and the various domains of interpretation we will be
using throughout this section.

Our domain of denotation for diagrams is LinRel𝗄((𝑥)).

Definition 4.4. The semantics take the form of a prop morphism J−K ∶ IH → LinRel𝗄((𝑥)), inductively
defined by:

J K = {(𝜎, (𝜎𝜎)) ∣ 𝜎 ∈ 𝗄((𝑥))} J K = {(𝜎, ∗) ∣ 𝜎 ∈ 𝗄((𝑥))}

J K = {((𝜎𝜏) , 𝜎 + 𝜏) ∣ 𝜎, 𝜏 ∈ 𝗄((𝑥))} J K = {(∗, 0)}

J 𝑘 K = {(𝜎, 𝑘 ⋅ 𝜎) ∣ 𝜎 ∈ 𝗄((𝑥))} J 𝑥 K = {(𝜎, 𝑥 ⋅ 𝜎) ∣ 𝜎 ∈ 𝗄((𝑥))}

where 0, 𝑘, and 𝑥 refer to formal Laurent series, and the action on opposite generators is defined as the
relational converse.

We extend from [BSZ14, BSZ15] the guarantee that these semantics are compatible with the equational
theory to the level of inequalities.

Theorem 4.5. For any diagrams 𝑐, 𝑑 in SF, J𝑐K ⊆ J𝑑K iff 𝑞(𝑐) ≤ 𝑞(𝑑) in 𝕀ℍ𝗄[𝑥].

Chapter 4. Signal flow graphs 4.1. Zero-initialised SFGs

Proof. The⇐ direction is easy. For the converse, we know from Theorem 3.10 that 𝕀ℍ𝗄[𝑥] ≅ LinRel𝗄(𝑥).
J−K is the composition 𝒮𝕀ℍ𝗄[𝑥]

; [−̃], where [−̃] is the faithful ordered prop morphism taking the subspace 𝑅
in LinRel𝗄(𝑥) to the corresponding one in LinRel𝗄((𝑥)) generated by every member of 𝑅 viewed as a Laurent
series. But the composite of faithful morphisms is still faithful.

We now show that the notion of inclusion of behaviours tightly corresponds to this syntactic notion of
refinement. Before we can state the precise result, we must explore the ideas of deadlock and initialisation.

These areways inwhich the operational anddenotational semantics for a diagrammaydisagree. Deadlock
leads to the operational semantics having toomany behaviours compared to the denotation, and initialisation
is a situation with too few. This suggests a duality between the two problems which is visible in a structural
classification of diagrams displaying them.

An example of a diagram which displays deadlock behaviour is

𝑥 𝑥

It may reach a state from which no further transitions are possible, as in the following computation, where
we make a transition labelled by 𝑘 ≠ 𝑙 at the first step.

𝑥 0; 𝑥 0 𝑘
−→
𝑙

𝑥 𝑘; 𝑥 𝑙 ↛

But from the denotational point of view, we cannot distinguish between this diagram and the identity
, as these semantics can be thought of as only considering infinite traces, which by definition do not

deadlock. This should be expected seeing that, equationally, 𝑥 𝑥 = .
Informally speaking, the problem with the above diagram and others which display deadlocking is that

the signal is flowing from the outsides to the centre: that is, they are in cospan form. Accordingly, a diagram
in span form is deadlock-free: no computation reaches a state from which no transition is possible.

However, putting every diagram into span form (as Lemma 3.8 guarantees we may) will not solve all our
problems. Diagrams in span form, where the signal flows from the middle outwards towards the boundaries,
do not suffer from deadlock, but are susceptible to initialisation.

Our example for this case is
𝑥 𝑥

Every computation of this diagram must begin with (0, 0) before it continues with the same behaviour as

. Formally, we can say that a diagram is initialisation-free if 𝑠0
0…0
−−−→
0…0

𝑠1 implies 𝑠0 = 𝑠1, where 𝑠0 is its
starting state with all the registers initialised to 0. Again, intuitively, the problem derives from the shape of
the diagram.

The key result is that the denotational and operational semantics coincide for diagrams which are both
deadlock- and initialisation-free; hereafter we refer to such diagrams as well-behaved. We can sum up this
discussion with the following statement.

Proposition 4.6 ([BSZ15]). Diagrams in span form are deadlock-free,while those in cospan form are initialisation-
free. For well-behaved diagrams 𝑐, 𝑑, J𝑐K = J𝑑K iff ⟨𝑐⟩ = ⟨𝑑⟩.

Proof. We sketch out only the proof of the second part, since we will make use of the definitions later on.
We define two dual mappingsℱ and𝒰which relate our denotational and observational domains: formal

Laurent series, formal power series and polynomial traces.
First, we say that a trace (𝛼, 𝛽) ∈ 𝗄[[𝑥]]𝑚 × 𝗄[[𝑥]]𝑛 generates (𝜎, 𝜏) ∈ 𝗄((𝑥))𝑚 × 𝗄((𝑥))𝑛 if there is

some 𝑧 ∈ ℤ such that

1. 𝛼𝑗(𝑖) = 𝜎𝑗(𝑖 + 𝑧) and 𝛽𝑘(𝑖) = 𝜏𝑘(𝑖 + 𝑧) for all 𝑖 ∈ ℕ, 1 ≤ 𝑗 ≤ 𝑚 and 1 ≤ 𝑘 ≤ 𝑛.

4.1. Zero-initialised SFGs Chapter 4. Signal flow graphs

2. 𝑧 is less than or equal to any order of 𝜎1,… , 𝜎𝑛 and 𝜏1,… , 𝜏𝑚.

The first condition means that the Laurent series should be the same as the power series, except possibly
shifted, and the second ensures that the shift does not cause any non-zero terms to be shifted to a negative
position and thereby ignored by the first clause only considering 𝑖 ∈ ℕ.

A finite trace (𝛼, 𝛽) ∈ 𝗄[𝑥]𝑚×𝗄[𝑥]𝑛 of length 𝑧 is a prefix of (𝜎, 𝜏) ∈ 𝗄[[𝑥]]𝑚×𝗄[[𝑥]]𝑛 iff 𝛼𝑗(𝑖) = 𝜎𝑗(𝑖)
and 𝛽ℎ(𝑖) = 𝜏ℎ(𝑖) for all 0 ≤ 𝑖 ≤ 𝑧, 1 ≤ 𝑗 ≤ 𝑚 and 1 ≤ ℎ ≤ 𝑛.

Now, if (𝑓, 𝑔) is a morphism of LinRel𝗄[𝑥] × LinRel𝗄[[𝑥]], we define ℱ(𝑓, 𝑔) as the following morphism
of LinRel𝗄((𝑥)):

{(𝜎, 𝜏) ∣ there is a trace (𝛼, 𝛽) ∈ 𝑔 generating (𝜎, 𝜏)}

That is, the finite traces are ignored, and every possible pair of Laurent series generated by an infinite trace
in 𝑔 is included.

Conversely, for a morphism 𝑆 of LinRel𝗄((𝑥)),𝒰(𝑆) is (𝑓, 𝑔) where 𝑔 is given by

{(𝛼, 𝛽) ∣ there exists (𝜎, 𝜏) ∈ 𝑆 generated by (𝛼, 𝛽)}

and 𝑓 is the set of all prefixes of the traces in 𝑔.
It then follows that, for any (not necessarily well-behaved) diagram 𝑐:

1. ℱ⟨𝑐⟩ = J𝑐K

2. If 𝑐 is deadlock-free, then ⟨𝑐⟩ ⊆ ℱ;𝒰⟨𝑐⟩

3. If 𝑐 is initialisation-free, then ⟨𝑐⟩ ⊇ ℱ;𝒰⟨𝑐⟩

The first of these means that whenever ⟨𝑐⟩ = ⟨𝑑⟩, J𝑐K = ℱ⟨𝑐⟩ = ℱ⟨𝑑⟩ = J𝑑K. The second and third
together give the equivalence when 𝑐 and 𝑑 are well-behaved: J𝑐K = J𝑑K implies that ⟨𝑐⟩ = 𝒰(ℱ⟨𝑐⟩) =
𝒰J𝑐K = 𝒰J𝑑K = 𝒰(ℱ⟨𝑑⟩) = ⟨𝑑⟩.

Now, by observing that ℱ and 𝒰 are monotone, we may infer that the equivalence of the semantics
holds also in the case of inclusion, as in:

Corollary 4.7. If 𝑐, 𝑑 are well-behaved diagrams, then J𝑐K ⊆ J𝑑K iff ⟨𝑐⟩ ⊆ ⟨𝑑⟩.

Then, by Theorem 4.5, we have the main result of this section: the correspondence between syntactic
refinement and inclusion of behaviours.

Theorem 4.8. For any well-behaved diagrams 𝑐, 𝑑, ⟨𝑐⟩ ⊆ ⟨𝑑⟩ iff 𝑐 ≤ 𝑑 in 𝕀ℍ𝗄[𝑥].

This result allows us to show that our rabbit breeding SFG fFib has an inverse rFib .

rFib ∶=

−1

𝑥 −1

𝑥

(4.3)

Reflection in a vertical axis corresponds to relational converse. If both relations are actually functions, then
that corresponds to the functional inverse. So to show they are inverse, it is enough to show that fFib is

Chapter 4. Signal flow graphs 4.2. Arbitrary initialisation

equal to the ‘mirror image’ version of rFib , as every diagram of SF is guaranteed to be a function. The
reasoning that they are inverse proceeds as follows:

fFib =
𝑥

𝑥
=

𝑥

𝑥

=

𝑥

−1 𝑥

−1
=

𝑥

−1 𝑥

−1
= rFib (4.4)

where we use the reflected notation to illustrate that the string diagram as a whole is reflected. This inverse
gives a recipe for the number of animals our hypothetical rabbit breeder should buy or sell to maintain a
stable rabbit population.

However, not all SFGs admit an inverse. To illustrate this point, we introduce the SFG for guinea pigs,
which (for our purposes) breed similarly to rabbits except that they require two months to reach maturity.
The SFG representing this is

fGui =
𝑥

𝑥

𝑥 𝑥

𝑥

Individually we can invert this; we denote the inverse as rGui .
Now if we have a farm consisting of both rabbits and guinea pigs, the total number of pairs of animals is

modelled by the following:

comb =
fGui

fFib
(4.5)

which is not invertible. However, there are still strategies our rabbit breeder can use to control the population,
such as keeping the same number of rabbits and guinea pigs, using each inverse individually:

sol =
rGui

rFib

1
2

1
2

(4.6)

Having added an ordering to 𝕀ℍ𝗄[𝑥], we can formalise the relationship between (4.5) and (4.6).
To prove that SFG sol from (4.6) is an inverse to comb of (4.5), we should show that it im-

plements comb †, namely we should check that sol ≤ comb †. It follows from the general fact
shown below; taking 𝜆 = 1

2 gives the claimed solution.

𝜆

1 − 𝜆
≤

𝜆

1 − 𝜆
= 1 =

4.2 Arbitrary initialisation

We now consider the case where the registers are allowed to be initialised with arbitrary values. Perhaps
surprisingly, 𝕀ℍ𝗄[𝑥] is no longer sound in this generalisation. For example, the following is valid in 𝕀ℍ𝗄[𝑥]:

4.2. Arbitrary initialisation Chapter 4. Signal flow graphs

𝑥
−1 𝑥 = 𝑥

𝑥

=
𝑥 𝑥

= 1 + 𝑥 1 + 𝑥 =

But if we view the original diagram as a SFG and initialise the left-hand register with, say, 2 and the
right with −1, then with the operational semantics above, we can observe the following behaviour:

𝑥
−1 𝑥

−1
2

1
2

2

−11

𝑥
−1 𝑥

1
−1

0
−2

−2

2−2

𝑥
−1 𝑥

−1
1

0
2

2

−22

That is, an input of −1; 1; −1; 1; −1 … gives an output of 2; −2; 2; −2; 2 … which is not a possible
behaviour for . For this reason, we have to change our equational system.

We build on the work of [FSR16], which shows that 𝕀ℍCor
𝗄[𝑥,𝑥−1], defined as in Definition 3.14, is a sound

and complete proof system for linear time-invariant (LTI) systems, where 𝗄[𝑥, 𝑥−1] is the PIDof polynomials
in a variable and its formal inverse over a field 𝗄. In this section, we show that our notion of inequality as
defined by the SMIT above is compatible with the idea of passing to a sub-behaviour.

First, we should clarify precisely what is meant by linear time-invariant system. In control theory, an LTI
behaviour has a domain (𝗄ℤ)𝑚, a codomain (𝗄ℤ)𝑛 (where𝑚, 𝑛 are natural numbers) and is a linear subspace
of trajectories ℬ ⊆ (𝗄ℤ)𝑚 × (𝗄ℤ)𝑛. ℬmust satisfy two further conditions. The first is time-invariance: for
every trajectory 𝑤 ∈ ℬ and fixed 𝑖 ∈ ℤ, the trajectory whose value at time 𝑡 is 𝑤(𝑡 + 𝑖) is also inℬ. The
other is known as completeness. If 𝑡0 ≤ 𝑡1 are integers, write 𝑤|[𝑡0,𝑡1] for the restriction of a behaviour
𝑤 ∈ ℬ to the set [𝑡0, 𝑡1] = {𝑡0, 𝑡0 + 1,… , 𝑡1}, andℬ|[𝑡0,𝑡1] for the set of all restricted behaviours. Thenℬ is
complete iff whenever 𝑤|[𝑡0,𝑡1] ∈ ℬ|[𝑡0,𝑡1] for all 𝑡0, 𝑡1, 𝑤 ∈ ℬ.

Since we are now allowing trajectories to go arbitrarily far back in time, we can no longer use Laurent
series as the denotational domain, but instead switch to Rel𝗄ℤ. We therefore inductively define ⦅−⦆ ∶ IH→
LTI by

↦ {(𝜏, ∗) ∣ 𝜏 ∈ 𝗄ℤ} ↦ {(∗, 0)}

↦ {(𝜎, (𝜎𝜎)) ∣ 𝜎 ∈ 𝗄ℤ} ↦ {((𝜎𝜏) , 𝜎 + 𝜏) ∣ 𝜎, 𝜏 ∈ 𝗄ℤ}

𝑎 ↦ {(𝜎, 𝑎𝜎) ∣ 𝜎 ∈ 𝗄ℤ} 𝑥 ↦ {(𝜎, 𝑥𝜎) ∣ 𝜎 ∈ 𝗄ℤ}

where the addition and scalar multiplication act pointwise, and 𝑥 acts on a biinfinite stream by delaying it by
one step, so that 𝑥𝜎(𝑡) = 𝜎(𝑡 − 1). As usual, the map on the other generators is the relational converse of
the mirror images.

Chapter 4. Signal flow graphs 4.2. Arbitrary initialisation

Definition 4.9. The prop LTI is the sub-prop of Rel𝗄ℤ whose morphisms𝑚 → 𝑛 are those behaviours with
domain (𝗄ℤ)𝑚 and codomain (𝗄ℤ)𝑛.

There is a full and faithful functorΦ ∶ Corel(Mat𝖱) → LTI, defined by 𝖱𝑚
𝐴
−→ 𝖱𝑧

𝐵
←− 𝖱𝑛 ↦ ker[𝐴 −𝐵].

A result of systems theory fromWillems [Wil86] is key.

Theorem 4.10 (Willems). If 𝑀,𝑁 are matrices over 𝗄[𝑥, 𝑥−1], then ker𝑀 ⊆ ker𝑁 iff there is a matrix 𝑋 such
that 𝑋𝑀 = 𝑁.

We use this to show that the isomorphism of [FSR16] also extends to an ordered prop isomorphism.

Soundness is again trivial. Given corelations
𝐴
−→

𝐵
←−≤

𝐶
−→

𝐷
←−, there is some matrix 𝑈 such that 𝐶 = 𝑈𝐴 and

𝐷 = 𝑈𝐵. By the theorem, ker𝐴 ⊆ ker𝐶 and ker𝐵 ⊆ ker𝐷, and then it is simple algebra to show that

Φ(
𝐴
−→

𝐵
←−) = ker[𝐴 −𝐵] ⊆ ker[𝐶 −𝐷] = Φ(

𝐶
−→

𝐷
←−).

Let’s now return to the earlier example, a signal flow graph equal to the following string diagram.

𝑥 𝑥

Unlike the simple case of 𝕀ℍ𝗄[𝑥] this is not equal to the identity . We can, however, prove that the
identity behaviour is contained in its behaviours:

𝑥 𝑥
≥

𝑥 𝑥

≥ ≥

Similarly to before, we can define operational semantics on SFGs. In fact, the rules are again those from
Fig. 4.1, but we introduce two new ideas: register assignments and reverse computations. A register assignment
is simply what one would expect, associating to each string diagram 𝑐 a state as above, where each delay
component has some (arbitrary) value of 𝗄 associated with it. A reverse computation is one where we use
the same rules as before, but we swap the left and right sides of the rule for delay:

(𝑥 𝑘)
𝑘
−→
𝑙
(𝑥 𝑙)

We can now define a biinfinite trajectory to complement our notions of finite and infinite trajectory.

Definition 4.11. Given a SFG 𝑐 ∶ 𝑚 → 𝑛, a biinfinite trajectory consists of 𝑤 ∈ (𝗄𝑚)ℤ × (𝗄𝑛)ℤ, along with
a register assignment 𝜎, infinite forward and backward trajectories (𝜶, 𝜷) and (𝜶′, 𝜷′) respectively, each
initialised at 𝜎, such that

𝑤(𝑡) = {
(𝜶(𝑡), 𝜷(𝑡)) 𝑡 ≥ 0
(𝜶′(−𝑡), 𝜷′(−𝑡)) 𝑡 ≤ 0

The collection of all such trajectories of 𝑐 is written as 𝑏𝑡(𝑐).

A straightforward structural induction gives the following; in particular, SFGs represent LTI behaviours.

Proposition 4.12. For any SFG 𝑐, ⦅𝑐⦆ = 𝑏𝑡(𝑐).

Proof. The check is routine for each generator; for example, it’s clear that any biinfinite stream is admissible
as input into and that the behaviour of addition matches up between the denotation defined by ⦅−⦆
and the operational semantics of Figure 4.1 and Definition 4.11. It is also obvious that both notions of
composition defined in the operational semantics are the same as the relational ones arising from the
inductive definition of ⦅−⦆.

Just like before, string diagrams 𝕀ℍCor
𝗄[𝑥,𝑥−1] can be thought of as specifications, and SFGs as implement-

ations. Once again, by Theorem 4.5, we can use refinement as a definition of correct implementation.

Chapter 5

Petri nets

This chapter parallels Chapter 4 in taking a model of concurrent systems and turning instances into string
diagrams of a SMIT in a way which allows inequational reasoning which respects behaviour. That model is
the Petri net1, an invention of Carl Adam Petri2, who wished to describe chemical processes. They are now
used in diverse fields such as business process modelling, concurrent programming, manufacturing systems
analysis and web services.

First, we give a formal definition of a Petri net, and explain the intuition it captures. We then have
to take a theoretical diversion, since our semantic domain shifts from linear relations to additive relations,
replacing the arbitrary PID with the semiringℕ. This requires some changes to the SMITs we consider, and
we show examples of diagrams which must be handled carefully to recover the distinctive properties of ℕ.

Having established the necessary facts about AddRel, we give the definition of the SMIT we will use to
embed a representation of Petri nets. Themain contribution from this chapter is extending the isomorphism
between syntactic propℝℂ and AddRel for traditional (non-ordered) props to cover inequalities for ordered
props.

Definition 5.1. A Petri net 𝒫 = (𝑃, 𝑇, ∘−,−∘) consists of a finite set of places 𝑃, a finite set of transitions
𝑇, and functions ∘−,−∘ ∶ 𝑇 → ℕ𝑃. Given markings a, b ∈ ℕ𝑃, we write a → b if there exists t ∈ 𝑇 such
that ∘t ≤ a (pointwise) and b = a − ∘t + t∘. The (step) operational semantics of 𝒫 consist of the relation
J𝒫K = {(a, b) ∣ a → b} ⊆ ℕ𝑃 × ℕ𝑃.

Intuitively speaking, a Petri net consists of places, each of which may contain some number of tokens
summarised by the marking from ℕ𝑃, and transitions, which have pre- and post-sets labelled by ∘− and −∘

respectively. If the relation a → b holds, then it is possible, starting with tokens as in a, for the transition
witnessing the relation to ‘fire’ and leave the net with tokens as in b.

Example 5.2. Below is displayed amarked Petri net with the traditional graphical notation: circles represent
places, squares transitions, and dots the number of tokens present at a place. We adopt for simplicity of
drawing the convention that unlabelled arrows mean that the multiplicity of the transition is 1 at that place.

𝑝1

𝑝2

𝑝3

𝑝4

𝑡1 𝑡2
2

𝑡3 𝑡4
2

1Wemean the notion also referred to in the literature as P/T (Place/Transition) net.
2allegedly in 1939, at the age of 13

Chapter 5. Petri nets 5.1. Additive relations

Starting from the illustrated marking with one token at each of 𝑝1 and 𝑝2, and no tokens anywhere else,
𝑡2 may fire, consuming the token at 𝑝2 and creating new ones at 𝑝1 and 𝑝4:

𝑝1

𝑝2

𝑝3

𝑝4

𝑡1 𝑡2
2

𝑡3 𝑡4
2

With this new marking, only 𝑡1 may fire, since no other transition has the tokens required by its pre-set.

Since negative and fractional tokens do not make sense, we need to shift our attention from abstract
rings and fields to the semiring of natural numbers: from linear relations to additive relations.

5.1 Additive relations

Definition 5.3. An additive relation (over ℕ) of type 𝑘 → 𝑙 is a subset 𝑅 ⊆ ℕ𝑘 × ℕ𝑙 such that

• (𝟎, 𝟎) ∈ 𝑅

• if (𝐚, 𝐛), (𝐚′, 𝐛′) ∈ 𝑅 then (𝐚 + 𝐚′, 𝐛 + 𝐛′) ∈ 𝑅

If 𝑅, 𝑅′ ∶ 𝑘 → 𝑙 are additive relations of the same type, then both the intersection 𝑅 ∩ 𝑅′ and the
Minkowski sum 𝑅+𝑅′ = {(𝐚 + 𝐚′, 𝐛 + 𝐛′) ∣ (𝐚, 𝐛) ∈ 𝑅 and (𝐚′, 𝐛′) ∈ 𝑅′} are additive relations. Every pair
(𝐚, 𝐛) ∈ ℕ𝑘 × ℕ𝑙 generates an additive relation ⟨(𝐚, 𝐛)⟩ = {(𝑝𝐚, 𝑝𝐛) ∣ 𝑝 ∈ ℕ}. More generally, for a finite
set 𝐺 = {(𝐚1, 𝐛1),… , (𝐚𝑝, 𝐛𝑝)} of points in ℕ𝑘 × ℕ𝑙, we use a shorthand notation for the Minkowski sum

⟨𝐺⟩ = ⟨(𝐚1, 𝐛1),… , (𝐚𝑝, 𝐛𝑝)⟩ = ⟨(𝐚1, 𝐛1)⟩ +⋯ + ⟨(𝐚𝑝, 𝐛𝑝)⟩

We are interested only in those additive relations which can be written in the above form.

Definition 5.4. An additive relation 𝑅 ∶ 𝑘 → 𝑙 is finitely generated finitely generated if there exists a finite
set of vectors 𝐺 such that 𝑅 = ⟨𝐺⟩. 𝐺 is called a generating set for 𝑅.

Unlike linear relations, additive relations cannot all be expressed as sets of linear combinations of a
finite number of vectors: not all are finitely generated, for example {(𝑚, 𝑛) ∈ ℕ2 ∣ 𝑚 > 𝑛} ∪ {(0, 0)}.
Henceforward, whenever we say ‘additive relation’, we always mean a finitely generated additive relation.

It is useful to think of additive relations as forming a sub-prop AddRel of Relℕ (Example 2.14). For this
to make sense, we need to verify that the property of being finitely generated is closed under composition
and monoidal product. The monoidal product is straightforward: if 𝑅 ∶ 𝑘 → 𝑙 and 𝑅′ ∶ 𝑘′ → 𝑙′ are
finitely generated additive relations with generating sets {(𝐚1, 𝐛1),⋯ , (𝐚𝑝, 𝐛𝑝)} and {(𝐚′1, 𝐛

′
1),⋯ , (𝐚′𝑞, 𝐛′𝑞)}

respectively,𝑅⊕𝑅′ has generating set {((
𝐚𝑖
𝐚′𝑗
) , (

𝐛𝑖
𝐛′𝑗
)) ∣ 1 ≤ 𝑖 ≤ 𝑝 and 1 ≤ 𝑗 ≤ 𝑞}. The case of composition

also goes through, but it is non-trivial: other semirings, like the tropical semiring, do not have this closure
property.

Proposition 5.5. The composition of two finitely generated additive relations is finitely generated.

Proof. Suppose that finitely generated additive relations 𝑅 ∶ 𝑘 → 𝑙 and 𝑆 ∶ 𝑙 → 𝑚 have respective
generating sets {(𝐚1, 𝐛1),… , (𝐚𝑝, 𝐛𝑝)} and {(𝐜1, 𝐝1),… , (𝐜𝑞, 𝐝𝑞)}. We find a generating set for 𝑅; 𝑆. Let

𝑈 = (𝑈𝑘𝑈𝑙
) and 𝑉 = (𝑉𝑙𝑉𝑚

) be the (𝑘 + 𝑙) × 𝑝 and (𝑙 + 𝑚) × 𝑞matrices whose columns are the generating

5.1. Additive relations Chapter 5. Petri nets

vectors of 𝑅 and 𝑆, respectively. By Dickson’s lemma [Dic13], the set {(𝐞, 𝐟) ∈ ℕ𝑝 × ℕ𝑞 ∣ 𝑈𝑙𝐞 = 𝑉𝑙𝐟}
has finitely many minimal elements (𝐞1, 𝐟1),… , (𝐞𝑑, 𝐟𝑑). Then {(𝑈𝑘𝐞1, 𝑉𝑚𝐟1),… , (𝑈𝑘𝐞𝑑, 𝑉𝑚𝐟𝑑)} generates
𝑅; 𝑆.

We will also need some notion of bases of additive relations, appropriately adapted from the concept in
linear algebra.

Definition 5.6. A collection of vectors in ℕ𝑑 is dependent if it contains an element which is expressible as a
linear combination (with natural number coefficients) of the others, and independent otherwise. A basis of
an additive relation is an independent generating set.

We have the following divergence from the situation in linear algebra.

Proposition 5.7 ([Sch98]). Every additive relation has a unique basis, called its Hilbert basis.

Proof. Let 𝑅 ⊆ ℕ𝑑 be an additive relation, and put 𝑅∗ = 𝑅 ⧵ {𝟎}. We will show that𝐻 = 𝑅∗ ⧵ (𝑅∗ + 𝑅∗),
the set of irreducible elements, is a basis for 𝑅. By definition, it is independent since no irreducible vector is a
sum of other vectors.

We prove that𝐻 is a generating set for 𝑅. If 𝑅 is empty, then so is𝐻 and the proposition holds trivially.
Suppose 𝐚 ∈ 𝑅. If 𝐚 is zero or a member of𝐻, then clearly 𝐚 ∈ ⟨𝐻⟩, so assume 𝐚 ∈ 𝑅∗ + 𝑅∗. Then there
are 𝐛, 𝐜 ∈ 𝑅∗ such that 𝐚 = 𝐛 + 𝐜. Writing |𝐚| for the 𝐿1 norm of 𝐚, we must have |𝐚| > |𝐛| and |𝐚| > |𝐜|.
Now, either 𝐛 and 𝐜 are both irreducible, or at least one of them may be further decomposed into other
elements with decreased norm. There is no infinite decreasing sequence in ℕ𝑑, so this decomposition
process must terminate to give the element 𝐚 as a sum of irreducibles from𝐻.

Finally for uniqueness, any generating set must contain𝐻 because there is no way to write an irreducible
element as a sum.

To present AddRel with a SMT (and indeed a SMIT), we will use the generators

{ , , , , , , , } (5.1)

to generate a prop ℝℂ (for resource calculus) with the same interpretation of adding and copying as in 𝕀ℍ.
To be formal, we will use the map 𝒮ℝℂ ∶ ℝℂ → AddRel defined inductively exactly as 𝒮𝕀ℍ was:

𝒮ℝℂ() = {((𝑎𝑏) , 𝑎 + 𝑏) ∣ 𝑎, 𝑏 ∈ ℕ} 𝒮ℝℂ() = {(∗, 0)}

𝒮ℝℂ() = {(𝑎, (𝑎𝑎)) ∣ 𝑎 ∈ ℕ} 𝒮ℝℂ() = {(𝑎, ∗) ∣ 𝑎 ∈ ℕ}

along with the relational converse for the mirror image generators. One may wonder why we have not
included the scalar generators 𝑎 and 𝑎 . In fact, since we are working over the natural numbers,
we can inductively define ‘syntactic sugar’ diagrams which serve the same purpose as follows:

0 = 𝑛 + 1 =
𝑛

and the mirror image versions for 𝑛 . Showing that these sugars satisfy the usual addition and multipli-
cation rules for natural numbers amounts to showing that the corresponding equations in 𝕀ℍ𝖱 are sound
when applied to the image of the naturals in 𝖱.

Example 5.8. There are two examples worth highlighting which play an important role in the axiomatisation
given below. First,

Chapter 5. Petri nets 5.1. Additive relations

which 𝒮ℝℂ maps to

{((𝑎𝑏) , (
𝑐
𝑑)) ∣ 𝑎 = 𝑐 and 𝑎 + 𝑏 = 𝑐 + 𝑑} .

Substituting 𝑎 for 𝑐 and using the cancellativity of ℕ, 𝑎 + 𝑏 = 𝑎 + 𝑑 implies 𝑏 = 𝑑. So this relation is equal
to the identity relation on ℕ2. In other words, we should have

=

This is a form of ‘controlled subtraction’ analogous to the Peano axiom 𝑆𝑚 = 𝑆𝑛 ⟹ 𝑚 = 𝑛.
Unrestricted subtraction is impossible in the naturals, without negative numbers, but this equation allows
subtraction when we can supply ‘evidence’ that the result is non-negative.

Next, we have

whose image is {(𝑎, 𝑏) ∣ there exist 𝑐, 𝑑 such that 𝑎+𝑐 = 𝑏+𝑑}. Clearly, any pair of naturals has (infinitely
many) natural numbers greater or equal to both. It follows that the relation is total; we therefore desire

= . This encodes the Archimedean property of the naturals: given any two natural
numbers, there exists another one larger than both of them.

Definition 5.9. The prop ℝℂ (or resource calculus) is that corresponding to the SMIT with the generators
of (5.1) and the equations and inequality of Figure 5.1.

ℝℂ deviates from the theory of linear relations: the white monoid-comonoid pair forms a special
bimonoid, not a Frobenius monoid. Here, the Frobenius structure—if present—would play the role of
assuming the presence of additive inverses [CPV12, BPS17]. Consider the diagrams appearing Frobenius
equation itself, shown below with some annotations3:

ᵆ1
𝑥 𝑣2

𝑣1

ᵆ2

ᵆ1
ᵆ2

𝑦
𝑣1
𝑣2 ᵆ2

𝑧
𝑣1

𝑣2

ᵆ1

Diagrams are interpreted as relations of vectors, and the white structure represents addition. Therefore,
putting this together with our definition for composition, we can translate the left hand ‘S’-shaped diagram

into the relation {((𝑢1𝑢2
) , (𝑢1𝑢2

)) ∣ there is 𝑥 ∈ ℕ such that 𝑢1 = 𝑣1 + 𝑥 and 𝑥 + 𝑢2 = 𝑣2}. Themiddle‘X’-

shaped diagram gives us the single equation (eliminating 𝑦) 𝑢1+𝑢2 = 𝑣1+𝑣2, and the right-hand‘Z’-shaped
one gives 𝑢1 + 𝑧 = 𝑣1 and 𝑢2 = 𝑧 + 𝑣2. It’s tempting to automatically rearrange and solve, but remember
that we are working over the natural numbers, and therefore negative numbers are not allowed. Indeed,
consider assigning 𝑢1 = 𝑣2 = 1 and 𝑢2 = 𝑣1 = 0. Clearly, this satisfies the conditions for the middle
diagram, and putting 𝑥 = 1 satisfies the left one too. However, the only way to solve the right equations
would be to have 𝑧 = −1 but this is not a natural number. Swapping over the assignment shows that we
can’t even have an inequality: these diagrams are all just incomparable as relations, and there is no hope of
recovering any kind of Frobenius structure.

On the other hand, the bimonoid laws include

= and =

3These annotations are not wire counts as they have been previously.

5.1. Additive relations Chapter 5. Petri nets

= = =

= = =

= = =

= = =

= = = =

= = = =

= = = =

= = =

= =

= =

𝑛 𝑛 =

≤

Figure 5.1: Axioms of the resource calculus. 𝑛 ranges over non-zero natural numbers.

Chapter 5. Petri nets 5.2. Completeness of additive relations

which reflect non-negativity of the natural numbers: 𝑎 + 𝑏 = 0 ⟹ 𝑎 = 𝑏 = 0. The other bimonoid law
is a little more involved:

ᵆ1
𝑝

𝑣1
𝑞

𝑣2ᵆ2
𝑟

𝑠

This translates into requiring the existence of 𝑝, 𝑞, 𝑟, 𝑠 ∈ ℕ satisfying four equations:

𝑢1 = 𝑝 + 𝑞 𝑣1 = 𝑝 + 𝑠
𝑢2 = 𝑠 + 𝑟 𝑣2 = 𝑞 + 𝑟

This should be equivalent to the ‘X’-shaped equation in the centre above. One direction is obvious: if we
have such 𝑝, 𝑞, 𝑟, 𝑠 then we can just put 𝑦 = 𝑝 + 𝑞 + 𝑟 + 𝑠. On the other hand, if 𝑢1 + 𝑢2 = 𝑣1 + 𝑣2, then it
is easy to see that when 𝑢2 ≥ 𝑣2 then setting 𝑝 = 𝑢1, 𝑞 = 0, 𝑟 = 𝑣2, and 𝑠 = 𝑢2 − 𝑣2 satisfies the equations.
If 𝑣2 ≥ 𝑢2 then we can symmetrically put 𝑝 = 𝑣1, 𝑞 = 𝑣2 − 𝑢2, 𝑟 = 𝑢2, and 𝑠 = 0.

The last equation is an axiom scheme, parameterised over 𝑛 ∈ ℕ. It uses the syntactic sugar for naturals
we defined earlier, along with the obvious mirror image versions, to represent the additive relations of
the form ⟨(1, 𝑛)⟩ and ⟨(𝑛, 1)⟩. We again diverge from the case of linear relations in omitting its symmetric
variant since it is not sound for AddRel and relies on the ability to divide by non-zero scalars.

Proposition 5.10. 𝒮ℝℂ ∶ ℝℂ → AddRel is a morphism of ordered props.

Proof. We must verify that the equations and the single inequality of Figure 5.1 are sound. Those involving
only the black structure go through exactly as for 𝕀ℍ, as do the laws for the black-white bimonoids (since they
encode statements like ‘copying then adding is the same as adding then copying’). The only one remaining
not accounted for in Example 5.8 and the above discussion is 𝑛 𝑛 = . But, for a positive natural 𝑛,

𝒮ℝℂ(𝑛 𝑛) = {(𝑥, 𝑦) ∣ 𝑛𝑥 = 𝑛𝑦}

which is identity because 𝑛 ≠ 0.
Just as in 𝕀ℍ, 𝒮ℝℂ() = {0} ⊆ ℕ = 𝒮ℝℂ().

5.2 Completeness of additive relations

We can go further and show that 𝒮ℝℂ is actually an isomorphism of ordered props. In other words, Figure 5.1
constitutes a sound and fully complete axiomatisation of additive relations. We begin with stating the result
proved in a paper at POPL:

Theorem 5.11 ([BHP+19]). 𝒮ℝℂ ∶ ℝℂ → AddRel is an isomorphism of props.

The proof, omitted here, establishes as a normal form 𝑁𝐴 the diagram

𝐴
𝑙

𝑘

𝑘
𝑘

𝑝

where 𝐴 is the generating matrix of an additive relation. Informally speaking, the black counit on the left
‘universally quantifies’ over elements of ℕ𝑝 and we use the compact closed structure to bend the wire
around to the left.

With the prop isomorphism established, we may now consider the ordering and show the full theorem:

5.2. Completeness of additive relations Chapter 5. Petri nets

Theorem 5.12. ℝℂ ≅ AddRel (as ordered props).

Proof. First, we show that ℝℂ (abusing notation to refer to both the prop and the ordered prop by the
same name) is a bicategory of relations (Definition 3.12). We do not need to prove every single one of the
conditions; many of them are directly implied by equations of the SMIT, such as (3.11) and the first and
third inequalities in (3.10). Moreover, for the third condition (3.12), it is enough by induction to check that
each generator is a lax homomorphism, and many of these are equated in the SMIT.

We begin with showing the various adjointness conditions. The first case of interest we tackle is
≤ , which we may see via the following argument:

= ≤ =

We can now use this to show the other non-trivial inequality for adjointness:

= ≤ =

It’s also useful to establish some similar adjunctions for the white structure, namely that ⊣
and ⊣ . Again, the latter is key to proving the former, and only two cases are not equalities from the
theory.

= ≥ = =

and then

= ≥ =

We now have all the tools we need to finish the proof thatℝℂ is a bicategory of relations. The interesting
cases for (3.12) are

≤ = ,

≤ = .

Now, to show completeness of the ordering with respect to AddRel, noting that soundness of ≤
is trivial, we will use the normal form. Suppose 𝑅 ⊆ 𝑆 ∶ 𝑚 → 𝑛 are additive relations, generated by
𝖱𝑚+𝑛-vectors {𝑟1,… , 𝑟𝑘}, {𝑠1,… , 𝑠𝑙} respectively. Now there are 𝛼𝑖𝑗 ∈ 𝖱 such that for all 1 ≤ 𝑗 ≤ 𝑘, 𝑟𝑗 =
∑𝑙

𝑖=1 𝛼𝑖𝑗𝑠𝑖. In other words, writing 𝐴, 𝐵 for the matrices whose column vectors are the 𝑟𝑖 and 𝑠𝑗 respectively,
there is some ‘change of basis’ matrix 𝑃 (whose elements are 𝛼𝑖𝑗) such that 𝐴 = 𝐵𝑃. Diagrammatically

𝐴 = 𝑃 𝐵 . Now, in ℝℂ, reasoning diagrammatically on the normal forms corresponding to 𝑅
and 𝑆, we have (omitting types on wires)

𝐴 = 𝑃 𝐵 ≤ 𝐵

where the final inequality follows from the definition of bicategory of relations, specifically equation (3.12).

Chapter 5. Petri nets 5.3. Petri nets as string diagrams

5.3 Petri nets as string diagrams

To encode Petri nets as string diagrams, we add a new generator ∶ 1 → 1 to ℝℂ. This represents a
Petri net place (with a single input and output). Analogously to 𝑥 from SFGs, we label with
a natural number (the number of tokens currently at that place) and assign this augmented generator the
semantics

𝑜 ≤ 𝑚

(𝑚)
𝑖
−→
𝑜
(𝑚−𝑜+𝑖)

where 𝑖 tokens arrive on the left and 𝑜 are passed on to the right. We also use a mirrored image version
to abbreviate the reflection with the black compact closed structure. The resulting prop, the quotient

of this augmented syntax by the laws of ℝℂ, is denoted Petri.

For example, the Petri net of Example 5.2 is encoded as

2

2

Multiple inputs and outputs of a place are represented by the 𝑛-ary generalisations of and , and
transitions are represented by black ‘spiders’.

Formally, we assign to each Petri net 𝒫 = (𝑃, 𝑇, ∘−,−∘) a diagram 𝑑𝒫 in Petri[0, 0]. Choosing orderings
on places and transitions, the pre- and post-set assignments ∘−,−∘ ∶ 𝑇 → ℕ𝑃 can be viewed as |𝑃| ×
|𝑇| matrices over ℕ 𝐴 and 𝐵 respectively, which, by virtue of Theorem 5.11, correspond to diagrams

𝐴 , 𝐵 in ℝℂ. 𝑑𝒫 is then defined to be

𝐴

𝐵

omitting (as usual) the multiplicities of the wires and similarly abbreviating ()⊕|𝑃| as .

Proposition 5.13. For every Petri net 𝒫 = (𝑃, 𝑇, ∘−,−∘), 𝑑𝒫 is well defined and 𝒮ℝℂ(𝑑𝒫) = J𝒫K.

Proof. We must show that 𝑑𝒫 is independent of the choices of ordering on places and transitions. If

5.3. Petri nets as string diagrams Chapter 5. Petri nets

𝜎 ∶ |𝑃| → |𝑃| and 𝜏 ∶ |𝑇| → |𝑇| are permutations, then

𝐴

𝐵
=

𝐴

𝐵 𝜎 𝜎−1

=
𝐴

𝐵 𝜎 𝜎−1

=
𝐴

𝐵 𝜎

𝜎

=
𝐴

𝐵 𝜎

𝜎

𝜏𝜏−1

=
𝐴

𝐵 𝜎

𝜎

𝜏

𝜏

so any ordering of places gives the same diagram.
For the equivalence of semantics, note that by the definitions of Petri net semantics and of 𝐴 and 𝐵

we have (𝐚, 𝐛) ∈ J𝒫K iff there is 𝐟 ∈ ℕ|𝑇| such that 𝐴𝐟 ≤ 𝐚 and 𝐛 = 𝐚 − 𝐴𝐟 + 𝐵𝐟. But 𝒮ℝℂ (𝐴 𝐵) =
{((𝐴𝐟, 𝐵𝐟) ∣ 𝐟 ∈ ℕ|𝑇|}, and it is then straightforward to calculate 𝒮ℝℂ(𝑑𝒫) as equal to J𝒫K via the equality

𝐴

𝐵
=

𝐴 𝐵

Conversely, for every diagram 𝑑0 ∈ Petri[0, 0], we can construct a Petri net 𝒫𝑑0. This procedure relies
on a trace canonical form, described in the below lemma.

Lemma 5.14. For any diagram 𝑑 ∈ Petri[𝑚, 𝑛], there are a natural number 𝑠 and 𝑑′ ∈ ℝℂ[𝑚+ 𝑠, 𝑛 + 𝑠] such
that

𝑑 =

𝑠

𝑑′ (5.2)

Proof. We use a straightforward structural induction on morphisms of Petri. The base cases fall into two
classes: every generator of ℝℂ is already in trace canonical form (with 𝑠 = 0), and for we reason

= =

As usual, we must consider two inductive cases, according to whether 𝑑 = 𝑎; 𝑏 or 𝑑 = 𝑎 ⊕ 𝑏. In either

Chapter 5. Petri nets 5.3. Petri nets as string diagrams

case, we may use the inductive hypothesis to find 𝑎′ and 𝑏′ in ℝℂ as in (5.2). For composition:

𝑑 = 𝑎 𝑏 =

𝑠

𝑎′

𝑡

𝑏′

=

𝑡

𝑠

𝑎′ 𝑏′

and the contents of the dotted rectangle are the required 𝑑′ ∈ ℝℂ. The case for 𝑑 = 𝑎 ⊕ 𝑏 is similar:

𝑑 =
𝑎

𝑏
=

𝑠

𝑎′

𝑡

𝑏′

=

𝑠
𝑡

𝑎′

𝑏′

and again the dotted rectangle gives anℝℂ diagram to show that we have reached trace canonical form.

Applying this to some 𝑑 ∈ ℝℂ[0, 0], we obtain some 𝑑′ ∈ ℝℂ[𝑝, 𝑝]. By the isomorphism of Theo-
rem 5.11, this corresponds to some additive relation, which has a Hilbert basis, say of length 𝑡. We may

represent this basis as a (𝑝 + 𝑝) × 𝑡matrix 𝐴 = (𝐴1
𝐴2
) where 𝐴1, 𝐴2 are both 𝑝× 𝑡matrices. We then define

𝒫𝑑0 = (𝑝, 𝑡, 𝐴2, 𝐴1).

Proposition 5.15. For every diagram 𝑑 ∈ Petri[0, 0], J𝒫𝑑K = 𝒮ℝℂ(𝑑).

Proof. By construction, (𝐚′, 𝐛′) ∈ 𝒮ℝℂ(𝑑′) iff there is 𝐟 ∈ ℕ𝑡 with 𝐴1𝐟 = 𝐚′ and 𝐴2𝐟 = 𝐛′.

Finally, we may combine Propositions 5.13 and 5.15 to conclude this section with a statement that string
diagrams may be used to reason about Petri nets while preserving behaviour.

Theorem 5.16. Petri nets (up to equivalence of behaviour) are in one-one correspondence with 0 → 0morphisms
of Petri.

Chapter 6

Conclusions and Future Work

We began by exploring the landscape of symmetric monoidal theories, string diagrams, and props as
applied to the analysis of concurrent systems, building up from elementary category theory to introduce the
cornerstone theory of interacting Hopf algebras 𝕀ℍ, via a number of intermediate ‘building block’ theories.
We also defined the more concrete props of relations which we use to represent semantics, and gave the
definitions of the isomorphisms between the SMTs and their respective semantic domains.

The next chapter gave the core contribution of this thesis: the definition of the symmetric monoidal
inequality theory, allowing string diagrammatic reasoning about inclusions of behaviours. We extended
isomorphisms between SMTs and props to ones between SMITs and ordered props, and, along the way,
solved one interesting mystery about distinguishing the black and white structure of 𝕀ℍ.

Having established our theories accounting for inclusion, we moved on to applying them. We used the
SMITs and isomorphisms to axiomatise inclusions of behaviours for signal flow graphs, in the zero- and
non-zero-initialised cases, and (one class of) Petri nets, and gave an example to show the power of proving
that a signal flow graph validly implements a specification. In the case of Petri nets, since negative tokens
are not allowed, we had to abandon linearity and switch to additive relations. While initially this seems like
a major deviation, it turned out to require only a simple modification of our axioms; changing the white
structure from a Frobenius monoid to a bimonoid and adding two extra equations was enough to maintain
our isomorphisms.

However, all this barely scratches the surface of the potential of SMITs. SMTs and SMITs have the
potential to be as ubiquitous as the group presentation, and their natural fit with concurrent computation
is of key importance with the rise of distributed computing and the Internet of Things. For a start, it is a
relatively small jump to other classes of Petri net, such as those where each place may only have a bounded
number of tokens, or other semantics, such as the banking semantics where places may spend tokens that are
arriving on the same tick. Developments building on 𝕀ℍ such as ‘Graphical Affine Algebra’ [BPSZ19] are
ripe for augmentation by inequalities.

Bibliography

[Axl97] Sheldon Axler. Linear Algebra Done Right. Undergraduate Texts in Mathematics. Springer New
York, New York, NY, 1997.

[BHP+19] Filippo Bonchi, Joshua Holland, Robin Piedeleu, Paweł Sobociński, and Fabio Zanasi. Dia-
grammatic algebra: From linear to concurrent systems. In 46th ACM SIGPLAN Symposium on
Principles of Programming Languages (POPL 2019), 2019.

[BHPS17] Filippo Bonchi, Joshua Holland, Dusko Pavlovic, and Paweł Sobociński. Refinement for signal
flow graphs. In Roland Meyer and Uwe Nestmann, editors, 28th International Conference
on Concurrency Theory (CONCUR 2017), volume 85 of Leibniz International Proceedings in
Informatics (LIPIcs), pages 24:1–24:16, Dagstuhl, Germany, 2017. Schloss Dagstuhl–Leibniz-
Zentrum fuer Informatik.

[BPS17] Filippo Bonchi, Dusko Pavlovic, and Paweł Sobociński. Functorial semantics for relational
theories. arXiv preprint, 2017. arXiv:1711.08699.

[BPSZ19] Filippo Bonchi, Robin Piedeleu, Paweł Sobociński, and Fabio Zanasi. Graphical affine algebra.
In 2019 34th Annual ACM/IEEE Symposium on Logic in Computer Science (LICS), pages 1–12,
2019.

[BSZ14] Filippo Bonchi, Paweł Sobociński, and Fabio Zanasi. A categorical semantics of signal flow
graphs. In Paolo Baldan and Daniele Gorla, editors, CONCUR 2014 – Concurrency Theory,
pages 435–450, Berlin, Heidelberg, 2014. Springer Berlin Heidelberg.

[BSZ15] Filippo Bonchi, Paweł Sobociński, and Fabio Zanasi. Full abstraction for signal flow graphs. In
Proceedings of the 42nd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages, POPL ’15, pages 515–526, New York, New York, USA, 2015. ACM Press.

[BSZ17a] Filippo Bonchi, Paweł Sobociński, and Fabio Zanasi. The calculus of signal flow graphs I: Linear
relations on streams. Information and Computation, 252:2–29, February 2017.

[BSZ17b] Filippo Bonchi, Paweł Sobociński, and Fabio Zanasi. Interacting Hopf algebras. Journal of Pure
and Applied Algebra, 221(1):144–184, March 2017.

[Bé67] JeanBénabou. Introduction to bicategories. InReports of theMidwestCategorySeminar, volume47,
pages 1–77, Berlin, Heidelberg, 1967. Springer Berlin Heidelberg.

[CF17] Brandon Coya and Brendan Fong. Corelations are the prop for extraspecial commutative
Frobenius monoids. Theory and Applications of Categories, 32(11):380–395, November 2017.

[CPV12] Bob Coecke, Dusko Pavlovic, and Jamie Vicary. A new description of orthogonal bases. Mathe-
matical Structures in Computer Science, 23(3):557–567, 2012.

BIBLIOGRAPHY BIBLIOGRAPHY

[CW87] Aurelio Carboni and Robert Walters. Cartesian bicategories I. Journal of Pure and Applied
Algebra, 49(1–2):11–32, November 1987.

[Dic13] Leonard Dickson. Finiteness of the odd perfect and primitive abundant numbers with n distinct
prime factors. American Journal of Mathematics, 35(4):413–422, 1913.

[EML45] Samuel Eilenberg and SaundersMac Lane. General theory of natural equivalences. Transactions
of the American Mathematical Society, 58(2):231–294, 1945.

[FSR16] Brendan Fong, Paweł Sobociński, and Paolo Rapisarda. A categorical approach to open and
interconnected dynamical systems. In Proceedings of the 31st Annual ACM/IEEE Symposium on
Logic in Computer Science, LICS ’16, page 495–504, New York, NY, USA, 2016. Association for
Computing Machinery.

[FZ17] Brendan Fong and Fabio Zanasi. A universal construction for (co)relations. In Filippo Bonchi
and Barbara König, editors, 7th Conference onAlgebra and Coalgebra in Computer Science (CALCO
2017), volume 72 of Leibniz International Proceedings in Informatics (LIPIcs), pages 12:1–12:16,
Dagstuhl, Germany, 2017. Schloss Dagstuhl–Leibniz-Zentrum für Informatik.

[GLK55] Arthur Guyton, Arthur Lindsey, and Berwind Kaufmann. Effect of mean circulatory filling pres-
sure and other peripheral circulatory factors on cardiac output. American Journal of Physiology,
180(3):463–468, 1955.

[JS91] André Joyal and Ross Street. The geometry of tensor calculus, I. Advances in Mathematics,
88(1):55–112, July 1991.

[KL80] Max Kelly and Miguel Laplaza. Coherence for compact closed categories. Journal of Pure and
Applied Algebra, 19:193–213, December 1980.

[Lac04] Stephen Lack. Composing PROPs. Theory and Applications of Categories, 13(9):147–163, 2004.

[Lat98] B. P. Lathi. Signal Processing & Linear Systems. Oxford University Press, 1998.

[Mas52] Samuel Mason. On the logic of feedback. PhD thesis, Massachusetts Institute of Technology,
1952.

[ML65] Saunders Mac Lane. Categorical algebra. Bulletin of the American Mathematical Society,
71:40–106, 1965.

[Pet77] James L. Peterson. Petri nets. ACM Comput. Surv., 9(3):223–252, September 1977.

[Sch98] Alexander Schrijver. Theory of linear and integer programming. John Wiley & Sons, 1998.

[Sel11] Peter Selinger. A survey of graphical languages for monoidal categories. In Bob Coecke, editor,
New Structures for Physics, pages 289–355. Springer Berlin Heidelberg, 2011.

[Sha42] Claude Shannon. The theory and design of linear differential equation machines. Technical
Report 411, National Defence Research Council, January 1942.

[Wil86] JanWillems. From time series to linear system—Part I. Finite dimensional linear time invariant
systems. Automatica, 22(5):561–580, 1986.

[Zan15] Fabio Zanasi. Interacting Hopf Algebras: the theory of linear systems. PhD thesis, École Normale
Supérieure de Lyon, 2015.

	Introduction
	Background and previous work
	Categories
	String diagrams and symmetric monoidal theories
	Bicategories

	Handling inequalities
	Symmetric monoidal inequality theories

	Signal flow graphs
	Zero-initialised SFGs
	Arbitrary initialisation

	Petri nets
	Additive relations
	Completeness of additive relations
	Petri nets as string diagrams

	Conclusions and Future Work

