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Abstract
Pollengrainsdehydrateduring theirdevelopment and following their departure fromthehost stigma. Since
the size and shapeof apollengrain canbedependentonenvironmental conditions, being able topredict both
of these factors forhydratedpollengrains fromtheir dehydrated state couldbebeneficial in thefieldsof
climate science, agriculture, andpalynology.Here,weusedeep learning to transform imagesofdehydrated
Ranunculuspollengrains into imagesofhydratedRanunculuspollengrains.Wealso thenuse adeep learning
neuralnetwork thatwas trainedonexperimental imagesofdifferent generaofpollengrains to identify the
hydratedpollengrains fromthegenerated transformed images, to test the accuracyof the imagegeneration
neuralnetwork.Thispilotworkdemonstrates thefirst stepsneeded towards creating ageneral deep learning-
based rehydrationmodel that couldbeuseful inunderstanding andpredictingpollenmorphology.

1. Introduction

Understanding the distribution, size and shape of pollen grains can be a useful tool in palynology for areas such
as climate change [1, 2], insectmigration [3] and crop health [4]. Themorphology of pollen grains vary
depending on the genera [5], as well as the developmental stage [6] and hydration state [7], both of which can be
influenced by their environment [8]. Since themorphology of dehydrated pollen grains can differ compared
with their corresponding hydrated state, the ability to determine a pollen grain’s hydrated size and shape from
images of its dehydrated state could be useful in inferring developmental or environmental conditions. For
example, understanding infolding during dehydration could assist in understanding the design of pollen
apertures [9], as well as the critical stages of pollen development [8].

Owing to the vast array of genera, sizes and shapes of pollen grains,which also vary depending onhydration level,
developing a genericmodel using traditional biological physics-basedmodelling to essentially rehydrate a pollen
grain (be it a 2D image [10]or3Drendered structure [11]) collected in apollen trap for example,wouldbe extremely
challenging.Deep learning, has been shown tobeuseful for acceleratingdata-drivenbiological physics-basedmodels,
whichwould otherwise be very time consuming and labour intensive, owing to their complexity [12, 13].Hence, as
an initial step,weuse deep learning to generate images of pollen grains in a simulatedhydrated state, from images of
dehydratedpollen grains of a single genus, namelyRanunculus (seefigure 1). In addition, deep learning is alsouseful
for categorizing large amounts of data, such as images [14, 15] and, relevant to thiswork, the identificationof pollen
grains in images [16, 17].We therefore use deep learning to identify the genera of pollen grainpresent in the generated
images (images of pollen in a simulatedhydrated state)using amodel thatwas trainedon experiential images of
pollen grains from10different genera, to aid inproving the success of the image generationneural network.

2. Experimentalmethods

2.1. Sample preparation
For generation of hydrated images of pollen grains, we usedRanunculus. In this work, when theRanunculus
pollen grains were collected, theywere already in a hydrated state on the flowers, thus negating the need for a
laboratory rehydration process. For testing the accuracy of the generated images, a total of 10 genera of freshly
pickedflowers (Arnica,Asphodelus,Bellis perennis, Fuchsia,Kalanchoe, Lilium,Penstemon,Ranunculus, Salvia
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andTaraxacum) from a local convenience store orUniversity groundswere used in this work. The picked
flowerswere kept with their stems inwater with the aimofmaintaining a level of hydration for as long as
possible. Pollen grains were deposited for imaging by brushing the anthers of the flower (with laboratory grade
cotton buds) close to the surface of a glassmicroscope slide.

2.2. Image acquisition
All pollen grainswere imagedusing aNikonEclipsemicroscopewith a 20×objective (Nikon, LEPlan,NA=0.4,
working distance=3.5mm) and aThorlabsDCC1645CCMOSCamera,whichhad a 1280×1024-pixel sized
colour sensor. To ensure consistency across allmicroscope images, for eachpollen grain, the focal plane of the
microscopewas set so the top of the pollen grainwas in focus.Ranunculuspollen grains are spherical in their
hydrated state and becomenon-spherical and smaller as they dehydrate. Figure 2 shows examples of images
(resized and cropped to 128×128pixels)ofRanunculuspollen grains in (a) their initial hydrated state and (b)
subsequent dehydrated state in an air-conditioned laboratory (maintained at 22 °C) 30min later. This timewindow
was chosen since after this time therewas no visiblenoticeable change in the size and shapeof the pollen grain. Since
theRanunculuspollen grains underwent visibly significantmorphological changewithin approximately 30 min, as
soonas hydratedpollen grainswere depositedonto the glass slide, a 24-bit 1024×1280-pixel sizedRGB imagewas
taken every 30 s for 30min, tomonitor the dehydration process and ensure pollen graindehydrationhad occurred.
Once one set of pollen grain imageswas recorded, the glass slidewas cleaned, andnewhydratedpollen grainswere
deposited onto the same glass slide for subsequent imaging.The variation in the background colour and intensity is
due to the lighting of themicroscope and the position of thepollen grainwithin thefield of view,with the darker
blue colour occurring towards the edges of thefieldof view.

For each pollen genera used in the categorisation experiment, an imagewas taken immediately after
deposition tominimise any dehydration thatmay occur once detached from the flower. Images of
approximately 20 separate pollen grains were taken for each genus. Example images of pollen grains for the 10
different genera, which includes hydratedRanunculus, are shown infigure 3.

Figure 1.Concept: The neural network takes an image of a pollen grain’s dehydrated state and uses this to generate an image that
simulates its hydrated state.

Figure 2.Examples of experimentally obtainedmicrographs of (a)hydratedRanunculus pollen grains and (b) their corresponding
dehydrated state. The scale bar is the same size in all images and represents a length of 15μm.
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2.3. Neural networks
Twoneural networkswere used in this work. Thefirst was for generating images of hydrated pollen grains from
images of dehydrated pollen grains, and the secondwas for identifying the pollen grains in the generated images.

2.3.1. Image generation
For the generation of images of hydratedRanunculus pollen grains, we employed a neural networkwith a
generative adversarial-based architecture [18], namely Pix2Pix [19]. Such an architecture has been used for a
variety of image-to-image based transformations in science, and also, of particular relevance to this work, pollen
grain image generation from scattering patterns [20] and low resolution images [21]. Images ofRanunculus
pollen grains taken at the end of the 30-minute image acquisition sequence (frame 60)were used as the input
(dehydrated state), and images of hydrated pollen grains taken at the start (frame 1)were used as the target. Both
the input and target imageswere resized and cropped to 128×128 pixels, to reduce the amount of ‘empty
space’ in the images so that the network could obtain higher accuracy. In total, just 80 sets of images were used in
training of the neural network and so, to increase the variability of the data, the data were augmented during
training, via reflection, rotation, and translation in X andYdirections, with the aimof improving the neural
network’s training accuracy [22]. The neural networkwas trained for 5000 epochs using aminibatch size of 4 on
anNvidia TitanXp graphics processing unit (GPU), taking approximately 8 h.

2.3.2. Pollen identification
Aconvolutional neural network (CNN) [23]was trained to recognise the 10different genera of pollen grains listed
in section 2.1 (with trainingdata consisting of approximately 20 images for each genera). In the case ofRanunculus,
additionalmicrographs of its hydrated statewere recorded in order to avoid reusing images that had previously
beenused to train the image generationnetwork. Such image reuse couldpotentially have introduced bias into the
pollen identificationnetwork,making it easier for it to characterise images from the image generationnetwork as
Ranunculus. Again, imageswere cropped and resized to 128×128pixels prior to training.The neural networkwas
trained for 500 epochsusing anNvidiaGeForceRTX2070GPU,with training parameters consisting of aminibatch
size of 32 and a learn rate of 0.0002, taking 40min to trainuntilminibatch accuracywas 100%.

3. Results and discussion

Figure 4 shows images of 5 different pollen grains, in rows (a) to (e). As seen in the figure and corresponding
labels, irrespective of the size and shape of the pollen grain in the input image, the neural networkwas able to
generate images of hydrated pollen grains whose areawerewithin∼4%of that calculated from the actual
experimentally obtained images of hydrated pollen grains. The areaswere calculated via initially binarizing each
image to obtain the overall shape of the pollen (setting pixels of the image’s blue channel with intensity above
55% to 0, and any intensity below 55% to 1), then by setting all pixels within the pollen’s identified perimeter to
1, to allow for summing up all the pixels to calculate the area, where 1 pixel∼0.1μm2. Positional offsets of the
pollen grains in the generated images seen in column 4 as crescents of background colour aremost likely due to

Figure 3.Experimentally obtainedmicrographs of 10 different pollen grain genera, which includes hydratedRanunculus. The scale
bar is the same size in all images and represents a length of 15μm.
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movement of the pollen grain during dehydration. Additional error in the generated images could be the result
of the initial hydrated state varying between the pollen grains used in both training and testing data.

Table 1 displays the calculated Structural Similarity IndexMeasurement (SSIM), which evaluates the
luminance, structure, and contrast between the generated and the actual experimentally collected images. It
should be noted that the closer the SSIMvalue is to themaximumvalue of 1, the greater the similarity. As shown
in the table, themost accurately generated imagewas figure 4(e)with a SSIMof 0.647. Themean SSIMof all the
generated images was 0.615±0.086. The neural networkwas able to calculate the correct hydrated pollen grain
size increase, with amean increase from the dehydrated state of 13.4% for actual and 13.9% for generated, as
shown in table 1. Indeed, there is clear correlation between the actual and generated percentage increase, with an
R-squared value of 0.83, showing that the neural network takes into consideration the initial size and appearance
when calculating the predicted increase.

Figure 4.Thefirst column (input) showsexperimentalmicroscopeobservationsof thedehydrated state.The secondcolumn (actual image)
showsexperimentalmicroscopeobservationsof thehydrated state.The thirdcolumn (generated image) showsan imageof the simulated
hydrated state (as generatedby theneuralnetwork, fromthe image shown in the input column). The fourth column (error) shows the
differencebetween the experimental imageof thehydrated state (actual image) and theNNgenerated image (generated image). For the images
in the fourth column, thedarker thepixels, themore accurate the generation. Inset purple text in the images is the areaof eachpollengrain.
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As shown in the confusionmatrix offigure 5(a), the identification neural networkwas 100%accurate for
categorizing the experimental images of pollen grains. This gave us confidence to test the categorization network
with generated images of hydrated pollen grains. The neural networkwas also 100%accurate in identifying the
generated images asRanunculus pollen. As shown infigure 5(b), the categorization probabilities (averaged over
all generated images) predictedRanunculuswith∼95% confidence. The next nearest probability was Lilium
with∼5%, perhaps due to similarity in colour, as observed infigure 3.

More trainingdata andhigherfidelity imageswill perhaps allow for greater accuracy in the image generationand
image identificationneuralnetworks. Furthermore, sincepollengrains vary in threedimensions, imagingmethods such
x-ray imaging [11] and tomography [24],wouldprovideneuralnetworkswithadditional information inunderstanding
thedehydrationprocess, andallow for image transformationof a varietyof spherical andnon-sphericalpollen grains.
Additionally, to enable larger collectionofdata fromavarietyofpollengenera that includes collecteddehydratedpollen
grains, a laboratory rehydrationprocedure shouldbe employed.Amoregeneral biologicalmodel couldbe createdby
expanding thedataset even further tootherbiological cell transformations, suchas for redbloodcells [25].

4. Conclusion

Wehave shown the ability to use deep learning to transform images of dehydratedRanunculus pollen grains into
images of hydrated pollen grains. The average error between the actual and generated hydrated images,

Figure 5. (a)Confusionmatrix of predicted genus and actual genus for the identification neural network of experimental images of
pollen grains and generated images of hydratedRanunculus pollen grains. (b)Meanprobability of predictions (maximumpossible
value of 1) of the 5 generated images of hydratedRanunculus pollen grains shown infigure 4.

Table 1.The Structural Similarity IndexMeasurement (SSIM) between the generated images and actual
images infigure 4, and the percentage pollen grain size increase from their initial size in the dehydrated
state.

Image SSIM Initial size (μm2) Actual increase (%) Generated increase (%)

(a) 0.608 476 10.1 14.5

(b) 0.541 614 10.6 9.9

(c) 0.544 615 10.4 9.4

(d) 0.493 656 13.3 11.6

(e) 0.647 386 22.5 23.8

Mean 0.615±0.086 549.4±113.9 13.4±5.3 13.9±5.9
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determined via SSIM calculations was 0.615±0.086.We have also used deep learning to correctly identify
Ranunculus pollen grains from their generated hydrated images, with∼95% confidence. Futurework could
explore using the deep learning techniques described here for rehydration ofmultiple genera, whichwould likely
require several orders ofmagnitudemore data and perhaps higher resolution images. Futurework could explore
in greater detail the process of pollen dehydration and provide greater understanding of the underlying
biological physics. In addition, the ability to create images of pollen grains in different hydrated states could
allow the creation of large volumes of training data for a neural network used in sensing different genera of
pollenwith different levels of hydration, without the need for experimentally obtaining large volumes of
microscope image data, whichwould be very time consuming.
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