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Abstract. A region-based convolutional neural network image segmentation approach (Mask R-
CNN) was applied to identification of flat rooftops from satellite imagery in the city of Jeddah 
in Saudi Arabia. The model was trained on a small sample of rooftops (202) digitized from a 
0.5 m resolution image (covering 0.21 km2) and then was applied to an independent area 4.5 km 
away. The precision and recall of the model were 0.98 and 0.96 respectively in terms of 
identifying rooftops in the independent area. A spatially stratified sample of rooftops was drawn 
from those identified by the model and the median roof area of the sample was not significantly 
different from the area as a whole. The results, although at a small scale, demonstrate the 
effectiveness of this approach for selecting buildings with appropriate rooftops for solar 
photovoltaic (PV) installation, in the context of closely spaced flat-roofed buildings, without 
requiring cadastral mapping or LIDAR datasets.      

1.  Introduction 
In hot, humid areas such as the city of Jeddah on the Red Sea coast of the Kingdom of Saudi Arabia 
(KSA), demand for electricity for air conditioning is very high, driven in part by low historic electricity 
prices. Despite an abundance of solar resource there is an extremely low level of penetration of rooftop-
mounted photovoltaic (PV) electricity generation, with its potential benefits of reducing consumer 
electricity bills in addition to reducing carbon dioxide emissions. In addition, KSA has an ambitious 
programme to diversify its economy from fossil fuel production and install 58.7 GW of renewable 
energy generation capacity (including 40 GW of PV) by 2030, starting from a base of almost exclusively 
oil- and gas-based electricity generation [1].  

The work presented in this paper is part of a study in Jeddah, KSA, aimed at evaluating the 
effectiveness of installing rooftop PV arrays, with or without energy storage, at reducing air-
conditioning electrical demand at the household level, known to make up around 70% of household 
electrical demand in KSA [2]. In the study, a number of buildings will have PV arrays installed (the 
‘intervention’ group) and a similar number will simply be monitored for energy demand (the ‘control’ 
group). The relative change in electrical demand of the two groups will compared over a period of 
approximately two years or more.. Previous studies have indicated that rooftop PV could make a 
significant contribution to domestic loads [3,4], the former based on aggregate data at the national level 
and the latter, a detailed case study of a single villa in Jeddah. 
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In order to select buildings for the study, a probability-based sample will be drawn from the 
population of residential buildings in the city (in the wider city region, comprised by housing unit, 
approximately 57% apartments, 8% villas, 32% traditional homes and 3% other types [3]) and the 
building/rooftop owners will be approached to take part in the study. It is expected that the performance 
and utilization of rooftop PV systems will vary according to location in the city, partly due to 
unmeasured socio-economic variables and partly due to physical variables such as the urban heat island 
effects and differences in dust accumulation depending on exposure to prevailing winds [5–7]. To ensure 
that the sample is spatially balanced, a spatially stratified approach will be used i.e. spatial units will be 
used as a variable to stratify the sample [8]. The advantages of this approach are that possible effects of 
spatial autocorrelation are avoided when compared to systematic (grid-based) sampling; and that there 
is no possibility of large unsampled areas, compared to simple random sampling from a list.  

The challenge in this case is that LIDAR or detailed cadastral mapping datasets are not publicly 
available in this location (unlike in e.g. [9]) and therefore it is necessary to infer the presence of domestic 
buildings (and suitable rooftops for PV installation) directly from satellite imagery. An additional 
requirement is that the roof area is automatically evaluated during the sampling process. To efficiently 
carry out this task at scale and to enhance the reproducibility of the work, the process should be 
automated.   

A previous study in KSA [10] used a manual selection process investigating individual buildings to 
consider shading effect of rooftop furniture such as HVAC units, plant rooms, and satellite antennae on 
PV modules. They then used a GIS approach to extent the analysis to the scale of city of Al-Khobar. 
They covered the residential part of the city investigating 33,000 residential units. They conducted a 
field survey to confirm the available PV rooftop areas estimated from a high (0.5 m) spatial resolution 
GeoEye image. A regression model based on a sample of 70 households was produced in order to 
identify the area available for rooftop-mounted PV. Finally, PVSOL software was used to evaluate the 
impact of shading on the final areas selected. They concluded that up to 28% of rooftops in the city were 
available for PV application. They claimed that due to the similarities in structural and architectural 
features in the region, their model is applicable to the Gulf Co-operation Council (GCC) countries. Also 
highlighted was the importance of Utilization Factor, i.e. the proportion of roof area available for 
mounting PV modules when all access requirements, structural and shading restrictions have been 
applied. 

For the present work we aim to automate the process of rooftop identification using the latest 
development in region-based convolution neural networks for segmentation of images, the 
Mask R-CNN model [11]. This model has previously been used to identify building footprints in USA, 
China, France and Sudan [12,13] and was found to perform well in situations where buildings are closely 
spaced from or joined to (or overlapping) other buildings. Note that we are employing an existing model 
to a new location and our contribution is limited to training the model, examining the results and using 
them to select a spatially balanced sample of rooftops from those identified by the model. We have not 
addressed the Rooftop Utilization Factor in the present work which is limited to identifying rooftop 
outlines.  

2.  Methods 
To train the Mask R-CNN model, a block measuring 630 m by 340 m (0.21 km2) in postal code area 
23462 of Jeddah was chosen at random and the flat areas of rooftops manually digitized from a 
WorldView® 02 image. The pixel size was 0.5 m and only the red channel was used in order to reduce 
processing requirements, given that the blue and green channels did not improve contrast between 
rooftops and other features, when compared to the red channel (Figure 1). In this present work, the 
rooftops were always digitized as rectangles, regardless of more complex rooftop layouts. More accurate 
digitization and segmentation of rooftops will be the subject of further work. In total, 202 rooftops were 
digitized (Figure 2), with a pseudo-median roof area of 376 m2, CI95{365,386} m2. The digitized 
rectangles were converted to a raster with 0.5 m resolution, which was split into 128 by 128 pixel chips 
for training purposes (with X and Y strides of 64 pixels) and the rooftop areas were coded as 1 with all 
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other areas coded as 0. All processing was carried out using ESRI ArcGIS Pro® 2.7.1 using the Spatial 
Analyst and Image Analyst toolboxes. The preparation for the training step was carried out in the 
projected map space (UTM 37N, WGS84 and units of m) and the original raster cell resolution of 0.5 m 
was used. 

The Mask-RCNN model was trained using the ESRI ArcGIS arcgis.learn python module which 
depends on the PyTorch and fast.ai libraries [14,15].  The model contains the pre-trained Resnet50 CNN 
model (which allows layers to be skipped to ensure better training), in addition to the part trained on the 
input dataset [16]. The number of epochs used to train the model was 40, after which the optimal learning 
rate was automatically determined by the model to be in the range of 6×10-6 to 6×10-5. 

 

 

Figure 1. RGB channels of training 
image with γ=0.4, indicating little 
difference in contrast of rooftops 
between the channels 
 

Figure 2. Training image in postal code area 23436 of Jeddah 
with rooftops digitized as rectangles (red). 

3.  Results 

3.1.  Model validation 
Ten percent of the input image chips were used for within-sample validation (Figure 3), giving an 
average precision score of 0.77 during the training process. Figure 4 indicates that the training and 
validation losses decreased and converged over the subsequent epochs of training, with the validation 
loss slightly greater than the training loss, indicating a well-behaved model without excessive variance. 
Note that the ‘loss’ function in this context is the sum of the binary cross-entropy (negative of log 
probability) of various model components [17]. 
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3.2.   Application to an independent area 
The trained model was then applied to an area within another postal code area in Jeddah, 23345 (4.5 km 
from the training area in area 23462, see Figure 5 below). 

 
Figure 5. Map of part of the city of Jeddah, with the northern highlighted area (red) indicating the 
training area (postal code 23436) and the southern highlighted area (purple, postal area 23345) 
indicating the independent area for testing the model. 
   
The result of applying the model to the new area are shown in Figure 6. The model correctly detected 
128 distinct rooftop footprints with pseudo-median plan area of 436 m2 CI95{425,447} m2 (one sample 
Wilcoxon rank sum test). For these rooftops, the polygon generated by the model intersected more than 
half of the true area of the rootop (‘Intersection over Area’ or IOU > 0.5). On inspection of the imagery 
and also street level photographs, there are three rooftop footprints that have not been identified by the 
model (false negatives, magenta arrows in Figure 6). In addition, there are two rooftops that have been 
incorrectly identified as separate when they are in fact part of one roof. These are indicated by cyan 
arrows – here counted as false negatives as IOU ≤ 0.5. Note that although this work is focused mainly 
on domestic buildings, the model training did not attempt to segment between different building types 
and part of the roof of a mosque (two false positives - yellow arrow) has been identified; a next step in 
the analysis will be to distinguish between building types.  

 

 
Figure 3. Image chips in validation set (a) as 
digitized (b) as detected by the model 

Figure 4. Values of Mask R-CNN model loss 
function versus epoch. 
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Therefore for this simple binary case and small sample, the model identified 121 true positives, the 
precision was 121/(121+2) = 0.98 and the recall was 121/(121+5) = 0.96. 

3.3.  Spatial sampling 
In order to test the method for sampling buildings, a spatially stratified sample of ten buildings was 
generated from the rooftops identified in the previous section. The centroids of the rooftops were 
extracted as points, which were in turn used to generate polygons which each contained approximately 
N/n = 128/10 ≈ 13 rooftop centroids (with 13±1 centroid per polygon allowed). This was carried out 
automatically using ESRI ArcGIS Pro® 2.7.1 Geostatistical Analyst toolbox.  One centroid was then 
randomly selected from each polygon to give the final sample of ten rooftops (see Figure 7). The 
distribution of the sampled rooftop areas is given in Figure 8 and was not significantly different from 
the population (Wilcoxon rank sum test p=0.36). 

 

 
 

Figure 7. Spatial stratification of identified 
rooftops, with automatically generated 
balanced polygons (blue lines). Randomly 
selected rooftops indicated by solid black 
triangles. 

Figure 8. Comparison of distributions of area of 
rooftops (left: training set, as digitized; centre: 
independent set n=128; right: sample from 
independent set n=10)  

 

 
Figure 6. Image in postal code area 23345 of Jeddah with identified rooftops indicated by yellow 
shaded areas bounded by purple lines. ‘False negative’ rooftops indicated by magenta arrows; 
improperly segmented - blue arrows; parts of mosque - yellow arrow 



CISBAT 2021
Journal of Physics: Conference Series 2042 (2021) 012014

IOP Publishing
doi:10.1088/1742-6596/2042/1/012014

6

 
 
 
 
 
 

4.  Conclusion and further work 
The Mask-RCNN model has been shown to be appropriate for identifying rooftop areas in the context 
of closely spaced, flat-roofed buildings in Jeddah, KSA. This facilitates spatially stratified random 
sampling in a context where a cadastral map is not available, and also provides an estimate of roof area 
and hence potential PV capacity of the rooftops. Future work will train models using more accurately 
digitized rooftop footprints, accounting for shading from obstacles on the roofs, and different building 
types in order to improve the accuracy of estimates of rooftop Utilization Factor for PV installations. 

 
Acknowledgments 
This work is part of the activities of the Energy and Climate Change Division and the Sustainable Energy 
Research Group in the Faculty of Engineering and Applied Sciences at the University of Southampton 
(www.energy.soton.ac.uk), UK and the Department of Electrical and Computer Engineering, King 
Abdulaziz University (KAU), Saudi Arabia. This work was funded by the Deputyship for Research & 
Innovation, Ministry of Education in the Kingdom of Saudi Arabia under project number 714. 

References 
 [1] Climate Analytics, New Climate. Saudi Arabia Country Summary [Internet]. Climate Action Tracker. 2020. 

Available from: https://climateactiontracker.org/countries/saudi-arabia/ 
 [2] Abdul Mujeebu M, Alshamrani OS. Prospects of energy conservation and management in buildings – The 

Saudi Arabian scenario versus global trends. Renew Sustain Energy Rev [Internet]. 2016;58:1647–63. 
Available from: https://www.sciencedirect.com/science/article/pii/S1364032115017104 

 [3] Khan MMA, Asif M, Stach E. Rooftop PV Potential in the Residential Sector of the Kingdom of Saudi 
Arabia. Vol. 7, Buildings . 2017.  

 [4] Alghamdi AS. Potential for Rooftop-Mounted PV Power Generation to Meet Domestic Electrical Demand 
in Saudi Arabia: Case Study of a Villa in Jeddah. Vol. 12, Energies . 2019.  

 [5] UN Habitat, Ministry of Municipal and Rural Affairs. Jeddah: City profile [Internet]. 2019. Available from: 
https://unhabitat.org/sites/default/files/2020/04/jeddah.pdf 

 [6] Bourikas L, James PAB, Bahaj AS, Jentsch MF, Shen T, Chow DHC, et al. Transforming typical hourly 
simulation weather data files to represent urban locations by using a 3D urban unit representation with 
micro-climate simulations. Futur Cities Environ [Internet]. 2016;2:7. Available from: 
http://dx.doi.org/10.1186/s40984-016-0020-4 

 [7] Alghamdi AS, Bahaj AS, Blunden LS, Wu Y. Dust removal from solar PV modules by automated cleaning 
systems. Energies. 2019;12(15).  

 [8] Rogerson PA. Spatial Sampling. In: Kempf-Leonard KBT-E of SM, editor. New York: Elsevier; 2005. p. 
633–8. Available from: https://www.sciencedirect.com/science/article/pii/B0123693985003467 

 [9] Wu Y, Blunden LS, Bahaj AS. City-wide building height determination using light detection and ranging 
data. Environ Plan B Urban Anal City Sci. 2019;46(9).  

 [10] Dehwah AHA, Asif M, Rahman MT. Prospects of PV application in unregulated building rooftops in 
developing countries: A perspective from Saudi Arabia. Energy Build [Internet]. 2018;171:76–87. 
Available from: https://www.sciencedirect.com/science/article/pii/S037877881733253X 

 [11] He K, Gkioxari G, Dollár P, Girshick R. Mask R-CNN. In: 2017 IEEE International Conference on 
Computer Vision (ICCV). 2017. p. 2980–8.  

 [12] Zhao K, Kang J, Jung J, Sohn G. Building Extraction from Satellite Images Using Mask R-CNN with 
Building Boundary Regularization. In: 2018 IEEE/CVF Conference on Computer Vision and Pattern 
Recognition Workshops (CVPRW). 2018. p. 242–2424.  

 [13] Li Y, Xu W, Chen H, Jiang J, Li X. A Novel Framework Based on Mask R-CNN and Histogram 
Thresholding for Scalable Segmentation of New and Old Rural Buildings. Vol. 13, Remote Sensing . 2021.  

 [14] Ketkar N. Introduction to PyTorch BT  - Deep Learning with Python: A Hands-on Introduction. In: Ketkar 
N, editor. Berkeley, CA: Apress; 2017. p. 195–208. Available from: https://doi.org/10.1007/978-1-4842-
2766-4_12 

 [15] Howard J, Gugger S. Fastai: A Layered API for Deep Learning. Vol. 11, Information . 2020.  
 [16] He K, Zhang X, Ren S, Sun J. Deep Residual Learning for Image Recognition. In: 2016 IEEE Conference 

on Computer Vision and Pattern Recognition (CVPR). 2016. p. 770–8.  
 [17] Jadon S. A survey of loss functions for semantic segmentation. In: 2020 IEEE Conference on 

Computational Intelligence in Bioinformatics and Computational Biology (CIBCB). 2020. p. 1–7.  
 

http://www.energy.soton.ac.uk/

	3.1.   Model validation
	3.2.    Application to an independent area
	3.3.   Spatial sampling

