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Abstract: As important parameters in the characterization of aerobic granulation, the shape and
average diameter were related to substrates. The previous studies disclosed that the morphology
change in aerobic granules was the result of growth and the relatively strong hydrodynamic shear
force. No further exploration of the size distribution of the aerobic granules has been conducted. To
better understand the impact of toxic compounds on aerobic granules’ growth during their formation,
the properties of aerobic granules were traced over 81 days in 3 sequencing batch reactors fed with
acetate and berberine wastewater, especially the particle size and size distribution. The results
showed that the aerobic granules were cultivated by the simulated acetate wastewater (R1), simulated
berberine wastewater (R2), and effluent from an anaerobic baffled reactor (ABR) reactor which
was fed with industrial berberine wastewater (R3). The reactors exhibited different COD removal
efficiencies, and the MLSS and MLVSS values affected by the different substrates which were in an
order of R1 > R2 > R3. However, the SVI and SOUR, which were affected by several factors, showed
more complicated results. The aerobic granules had the lowest microbial activity (SOUR), while the
aerobic granules in R3 had the lowest settling ability among the three kinds of granules. For the three
reactors with different influent compositions, the aerobic granulation process displayed a three-stage
process separately. Compared with the granules fed with berberine wastewater, the granules fed
with acetate in a stable operation period showed more independence from other periods.The size
distribution was affected by substrates. The aerobic granules with a range of 0.3–1.0 µm occupied
77.0%, 67.0%, and 35.7% of the volume for R1, R2, and R3, respectively. The biomass less than 0.3 µm
occupied 59.1% volume in R3. The components of the substrate had a great influence on the growth
of aerobic granules, not only on the diameter but also on the size distribution.

Keywords: aerobic granules; particle size; distribution; berberine; wastewater treatment

1. Introduction

Aerobic granulation, a new form of cell immobilization for exploitation in biological
wastewater treatment, is a promising technology in future wastewater treatment [1–3].
Starting in the late 1990s, extensive studies have been carried out on these technologies,
especially the aerobic granulation process [2,4–6]. The characteristics of sequencing batch
reactor (SBR), such as the operation cycle and its periods, settling time, the liquid vol-
ume exchange ratio, pH and influent COD concentration of substrate, the composition
of influent, and the organic loading rate (OLR) have been studied since they are related
to the mechanism behind granule formation [7–11]. Several hypotheses to explain the
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aerobic granule formation mechanism were suggested based on these studies [12–14]. For
instance, Liu and Tay [15] suggested three major steps for granule formation. Physical
movement is an initial step for microbial self-aggregation. In the second step, the attractive
forces helped the microbial cells to stabilize to be microbial aggregations. Then, mature
granules are formed under the mixed forces from extracellular polymeric substances (EPS)
synthesis, growth of immobilized cells, and hydrodynamic forces. Barr et al. [2] have
suggested that aerobic granules formed from a single colony of microorganisms or many
independent colonies of microorganisms. Wu et al. [16] thought that a high organic loading
rate and a high selection pressure are two crucial factors for aerobic granules formation in a
continuous flow reactor. However, these hypotheses have not been certified by convincing
experimental evidence. Further study needs to be carried out to disclose what happened in
the aerobic granulation process.

In our study, the simulated acetate wastewater, simulated berberine wastewater,
and industrial berberine wastewater were used as substrates for aerobic granules forma-
tion. Berberine (C20H18NO4, BBR in short), produced by extraction from herbal plants
or synthesized by chemical means, is a traditional Chinese medicine with a broad an-
tibacterial spectrum [17–19]. In addition to being an anti-inflammatory, berberine was
applied to be medicine for its antitumor, anti-oxidation, anti-Alzheimer’s disease, and
anti-hyperglycemic activities [20,21], which led to the extensive production and use of
berberine. Inevitably, a large quantity of BBR-containing wastewaters was released into the
environment. Since the discharge of BBR poses a risk to the ecosystem, it is necessary to
treat it before it enters the environment [22,23]. In this study, the change in aerobic granules
was observed in the granulation process. The characteristics of aerobic granules, such as
suspended solids (SS), volatile suspended solids (VSS), sludge volume index (SVI), specific
oxygen utilization rates (SOUR), and COD removal efficiency, were tested. Furthermore,
the analysis of results tested by Malvern Mastersizer 2000 gave a new version of the aerobic
granulation process.

2. Materials and Methods
2.1. Inoculum

The inoculum of R1 and R2 were collected from the municipal wastewater plant. The
inoculum of R3 was collected from a pharmaceutical wastewater treatment plant. The
characteristics of the inoculum were listed in Table S1.

2.2. Experiment Design and Set-Up

Experiments were performed in 3 column-type sequence batch reactors (SBR) with
a working volume of 2.8 L and a diameter of 6 cm (Figure S1). Reactors were operated
sequentially in 4-h cycles (4 min of influent filling, 225 min of aeration, 5 min of settling, and
5 min of effluent withdrawal) with a hydraulic retention time (HRT) of 8 h. The effluent was
discharged with a volumetric exchange ratio of 50%. The aeration was supplied through a
dispenser at the reactor bottom at an airflow rate of 4.0 L min−1. The operation parameters
are shown in Table S2.

2.3. Medium

R1 was fed with acetate synthetic wastewater. R2 was fed with synthetic wastewater
with the components of acetate and berberine, and the effluent from an anaerobic baffled
reactor (ABR), which was fed with industrial berberine wastewater, was pumped into
R3 as an influent. The industrial berberine wastewater was collected from the separation
process during berberine production with a COD concentration of 4166 ± 102 mg/L and
berberine of 900 ± 100 mg/L. The components of the media feed into the three reactors
were shown in Table S3. All of the reactors were cultivated with an organic loading rate of
3 kg COD m−3d−1.
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2.4. Analytical Methods

SS, VSS, and SVI were measured periodically according to the standard methods [24].
SOUR was measured followed the previous studies [25,26]. Granule morphology was
observed by Leica microscope (Leica DM5000 B, Wetzlar, Germany). The sizes were
measured by a laser particle size analysis system (Malvern Mastersizer 2000, Malvern,
UK) and analyzed by an image analysis system (Image-Pro Plus 5.0). A microscopic study
of aerobic granular samples was conducted with a scanning electron microscope (SEM)
(SU-70, Hitachi, Tokyo, Japan), as described previously [27]. The relationships between
the samples collected at different times in R1, R2, and R3 were analyzed by systematic
clustering using SPSS 26 statistical software. All samples were tested in triplicate.

3. Results
3.1. Biological Treatment Performance during Aerobic Granulation in R1, R2, and R3

The aerobic granules were cultivated in R1, R2, and R3 fed with the substrate at the
COD average concentrations of 2080.9 ± 64.0 mg/L, 2067.0 ± 76.6 mg/L, 1784.3 ± 76.3 mg/L,
respectively. The operation and characteristics are shown in Figures 1 and 2, respectively.
Although the components were different, the COD removal efficiency of the three reactors
were kept higher than 90% from day 4 to 81. In the steady period, the average COD removal
efficiencies of R1, R2, and R3 were 94.63 ± 4.69%, 94.45 ± 3.77%, and 91.63 ± 3.74%,
respectively, which indicated the steady operation of the three reactors. It seems that the
COD removal efficiency of R3 was lower than R1 and R2.
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The variations in MLSS, MLVSS, settleability (SVI), and microbial activity (SOUR)
during aerobic granules’ formation process in R1, R2, and R3 are shown in Figure 2. The
mixed liquor suspended solids (MLSS) in R1, R2, and R3 started from 2147.5 ± 85.9 mg/L,
2362.5 ± 82.7 mg/L, and 2350 ± 117.5 mg/L. The amount of biomass increased with
the operation. At the steady state, the MLSS of R1, R2, and R3 was maintained at
20,355 ± 367 mg/L, 17,813 ± 362 mg/L, and 14,810 ± 863 mg/L, respectively. Thus, the
amount of biomass in R1 was higher than that of R2 and R3. The SVI decreased with
operation time. At a steady state, the average SVI of R1, R2, and R3 was 24.64 ± 0.99 mL/g,
21.92 ± 0.86 mL/g, and 30.20 ± 1.09 mL/g, respectively, which indicated the aerobic gran-
ules in R1 and R2 possessed better settling ability than that of R3. The mixed liquor volatile
suspended solids (MLVSS) of R1, R2, and R3 have similar trends to that of MLSS.

High SOUR indicates the high microbial activity of microorganisms. On the first day,
the SOURs of R1, R2, and R3 were 294.45 ± 10.31 mg/g VSS.h, 257.1 ± 3.86 mg/g VSS.h,
and 115.5 ± 5.78 mg/g VSS.h, respectively. The seed sludge of R3 from the pharmaceu-
tical wastewater treatment plant showed a low activity with low SOUR. After granula-
tion, SOURs decreased to be 27.67 ± 1.38 mg/g VSS.h, 53.62 ± 2.68 mg/g VSS.h, and
48.22 ± 2.41 mg/g VSS.h for R1, R2, and R3, respectively. This is mainly due to a balance
between the compact of the biomass and substrate inhibition. For R1, the microbial activity
decreased because of the compact structure formation during granulation. For R2 and R3,
the microbial activity was decided by the total effects of substrate inhibition and compact
structure formation.
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3.2. Effects of Berberine Wastewater on the Morphology of Aerobic Granules

The biomass grew gradually when the reactors were fed with a substrate. The change
in the granules’ diameters is shown in Figure 3. D[4,3] means the volume average particle
size, which refers to the average diameter of the granules in previous studies [28,29].
d(0.5) refers to medial granularity and means the diameter corresponding to 50% of the
cumulative particle size distribution (0 to 100%) [30,31].
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In this study, the biomass sizes in R1, R2, and R3 started from 62.84 ± 3.12 µm,
60.12 ± 3.14 µm, and 51.64 ± 2.58 µm, respectively. They were increased with the operation
time. On day 51, the size of the biomass in R1, R2, and R3 increased to 382.56 ± 19.12 µm,
400.96 ± 20.95 µm, and 341.61 ± 17.08 µm, respectively. At the steady state, the average
sizes of aerobic granules in R1, R2, and R3 were 469.42 ± 46.43 µm, 493.48 ± 61.08 µm, and
482.59 ± 85.05 µm, respectively. The d(0.5) of R1, R2, and R3 have similar trends to that
of D[4,3].

The diameter distance indicates the measurement width distribution. The smaller the
value, the narrower the distribution. The average diameter distance of R1 was 1.75 ± 0.34.
For R2, the average diameter distance was 1.93 ± 0.56. The average diameter distance of
R3 was 2.08 ± 0.75. Thus, granules in R1 had the smallest difference from each other when
the reactor reached a steady state.
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Consistency indicates the proximity between D[4,3] and d(0.5). The smaller the
consistence value, the closer the D[4,3] and d(0.5), and the better the granules similar to a
ball. At the steady state, the average consistency of R1 was 0.54 ± 0.11. For R2, the average
consistency was 0.59 ± 0.17. The average consistency of R3 was 0.64 ± 0.23. The shape of
granules in R1 was more similar to a ball.

Clustering is a technology to find an internal structure between data. Data in the
same cluster are the same as each other. The further analysis of the size characteristics of
aerobic granules in R1, R2, and R3 using systematic clustering (Figure 4, Tables S3–S5), the
results showed that the aerobic granulation process could be divided into three stages. The
samples from day 57 to day 74 in the 3 reactors were in the same cluster, which was called
the stable operation period. For R1, the group including the samples from day 13 to 36 was
close to the group from day 1 to day 20 and day 40 and day 43, while the group including
the samples from day 51 to 74 was relatively independent of the whole operation. For R2,
the group including the samples from day 51 to 74 was close to that from day 1 to 11 and
day 33 to 43, then both of them were close to that from day 13 to 24. For R3, the group
including the samples from day 51 to 74 was close to that from day 4 to 20 and day 40 to 43,
then both of them were close to the group from 18 to 36. Interestingly, the granules fed
with acetate in a stable operation period showed more independence from other periods,
compared with the granules fed with berberine wastewater.
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3.3. The Size Distribution of R1, R2, and R3

The aerobic granules grew under the pressure of decreased settling time and the
substrate components. Figure 5 shows the size distribution of biomass in R1, R2, and R3.
On day 1, the settling time was 30 min., all of the biomass in R1 and R2 was smaller than
0.3 mm, and 0.54% of the biomass was higher than 0.3 mm. From day 4 to 18, the settling
time was 10 min. under the selection pressure, and R1, R2, and R3 showed almost the same
size distribution. Then, the biomass grew in the sequence of R1, R2, and R3. The largest
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biomass size in R1 is 1.2–1.5 mm, while the largest biomass size in R2 is 1.0–1.2 mm, and
the largest biomass size in R3 is 0.8–1.0 mm. On day 20, the decreased settling time (5 min)
almost had no impact on the size distribution except for the biomass lower than 0.3 mm
was washed out of the reactor. On day 51, the start of stable operation, the biomass with the
size of 0.3–0.8 mm accounted for more than 50% volume. On day 81, granules with a size
of 1.2–1.5 mm appeared in all three reactors. For R1, the biomass less than 0.3 mm occupied
around 14.8% of volume, while the biomass less than 0.3 mm occupied 59.1% of volume in
R3. Maybe the non-easy degradable substrate, industrial berberine wastewater, could not
provide enough substance and energy for the microbial organisms to grow largely [32].
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3.4. The Change in the Shape Observation of Granules

The shape change in the aerobic granule was shown in Figure 6. The biomass in
R1 grew quickly compared with the other two reactors. After 7 days of operation of the
R1 reactor, aerobic granular sludge began to appear, but the reactor was still dominated
by flocculent sludge. When the reactor was run for 21 days, flocculent sludge has been
replaced by granular sludge. Maintaining the operating conditions of the reactors, it was
observed that the particle size of granular sludge in the R1 reactor was gradually increasing,
and the average particle size of the aerobic granular sludge was 600 µm after 80 days
of operation, with a yellow, dense structure and smooth appearance. The biomass in R2
showed a heterogeneous appearance during the growth process. Finally, the color of aerobic
granules completely changed to yellow. The aerobic granules in R2 had different sizes, and
the average particle size is about 700 µm with good settling ability. A certain number of
metazoans (rotifers, bell worms, etc.) on the surface of mature aerobic granular sludge were
observed. The inoculated sludge of R3 was from a pharmaceutical wastewater treatment
plant, with a loose structure and irregular shape. Aerobic granules appeared on day 15
with an average size of 200 µm. On day 40, the aerobic granules dominated in R3. In the
steady state, the aerobic granules with different sizes coexisted in R3.
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The SEM observations of the matured aerobic granules in R1, R2, and R3 are shown in
Figure 7. The granular sludge in R1 had a clear ellipsoid outer surface, and there is a certain
amount of void structure for oxygen and organic matter transmission. The particle surface
is mainly occupied by Cocci and Brevibacterium. On the surface of granular sludge in R2,
the EPS was observed, which makes Cocci and Brevibacterium on the surface granular
sludge closely bonded together. Compared with granular sludge in R1, the structure in
R2 was more compact. This dense flora arrangement structure gave sludge good settling
capability, biological activity, and impact resistance. The granular sludge in R3 was mainly
composed of filamentous bacteria, which formed a loose granular sludge skeleton.
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4. Discussion

Aerobic granules have been successfully cultivated with a variety of substrates, in-
cluding the easy degrading substrates, such as glucose [33] and acetate [34]; recalcitrant
substrates, such as trichloroethylene [35]; textile wastewater [36]; toxic substrates, such as
phenol [37]; and berberine [23]. In addition, aerobic granules could be developed on in-
dustrial wastewater, such as pharmaceutical wastewater [38] and brewery wastewater [39].
The type of substrates that provided the carbon source and nutrient affected the properties
of aerobic granules. The granule size, microstructure and species diversity are related
to the components of substrates [15]. Generally, the studies disclosed the shape of the
granules, the average diameter of aerobic granules, which were the results of growth, and
the relatively strong hydrodynamic shear force in aerobic reactors. No further exploration
on the size distribution of the aerobic granules has been conducted.

Berberine is a kind of quaternary ammonium salt with anti-inflammatory properties
which is related to the quaternary ammonium on the number C benzene ring [40]. The
berberine with high concentration exerted toxicity effects on microbial organisms because
the cytoplasmic membrane and deactivating enzymes of microbial cells are damaged.

Thus, in our studies, the aerobic granules R2 and R3 were cultivated with the mixture
of BBR and acetate, and the effluent from ABR was fed with industrial berberine wastewater,
which indicated more complicated components. For R1, acetate provided favorable food to
the microbial organisms, the aerobic granules grew in a good state. For R2, the microbial
organisms need to exhaust more energy to deal with the toxic food, but they obtained
the compensation from acetate. For R3, the microbial organisms need to exhaust more
energy to deal with the toxic food without compensation. That was why the COD removal
efficiency of MLSS and MLVSS showed the order of R1 > R2 > R3.

The growth of the aerobic granules showed complicated phenomena. On one hand,
the granules in R1 grew up more easily; on the other hand, it was easier to obtain a compact
structure (Figure 7). For R3, the toxic food made them grow smaller and fluffy, which led
to the loose structure of granules. So, the size of R1 < R2, R1 < R3, and R3 < R2. If we make
a detailed observation of the 3 kinds of granules, the size of lower than 0.3 µm granules
occupied 59.1% of total granules, although the average size of R1 was lower than that of R3.
Combined with the diameter distance and consistency, the aerobic granules fed with an
easily degradable substrate showed more even morphology and closer to a ball. SOUR and
SVI also showed complicated results affected by several factors.

5. Conclusions

In this study, the aerobic granules were cultivated by the simulated acetate wastewater
(R1), simulated berberine wastewater (R2), and effluent from the ABR reactor which was fed
with industrial berberine wastewater (R3). The reactors exhibited different COD removal
efficiencies, and MLSS and MLVSS values were affected by the different substrates which
were in an order of R1 > R2 > R3. However, the SVI and SOUR, which were affected by
several factors, showed more complicated results. The aerobic granules had the lowest
microbial activity (SOUR), while the aerobic granules in R3 had the lowest settling ability
(SVI) among the three kinds of granules. For the three reactors with different influent
compositions, the aerobic granulation process displayed a three-stage process separately.

Compared with the granules fed with berberine wastewater, the granules fed with
acetate in a stable operation period showed more independence from other periods. The size
distribution analysis showed that the components of substrate impacted aerobic granules’
size distribution. The aerobic granules with a range of 0.3–1.0 µm occupied 77.0%, 67.0%,
and 35.7% volume for R1, R2, and R3, respectively. The biomass less than 0.3 µm occupied
59.1% volume in R3. The substrate had a great influence on the growth of aerobic granules.
In conclusion, as a medicine with a toxic effect on microorganisms, berberine showed a
great effect on the formation of aerobic granules. The further analysis of particle size data
provided new insight into granule size dynamics during the aerobic granulation process.
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