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Abstract

This paper describes Georeference Contrastive Learning of visual Represen-

tation (GeoCLR) for efficient training of deep-learning Convolutional Neural

Networks (CNNs). The method leverages georeference information by generat-

ing a similar image pair using images taken of nearby locations, and contrasting

these with an image pair that is far apart. The underlying assumption is that

images gathered within a close distance are more likely to have similar visual

appearance, where this can be reasonably satisfied in seafloor robotic imaging

applications where image footprints are limited to edge lengths of a few metres

and are taken so that they overlap along a vehicle’s trajectory, whereas seafloor

substrates and habitats have patch sizes that are far larger. A key advantage

of this method is that it is self-supervised and does not require any human

input for CNN training. The method is computationally efficient, where re-

sults can be generated between dives during multi-day AUV missions using

computational resources that would be accessible during most oceanic field

trials. We apply GeoCLR to habitat classification on a dataset that consists

of ~86k images gathered using an Autonomous Underwater Vehicle (AUV).

We demonstrate how the latent representations generated by GeoCLR can be

used to efficiently guide human annotation efforts, where the semi-supervised

framework improves classification accuracy by an average of 10.2% compared

to the state-of-the-art SimCLR using the same CNN and equivalent number

of human annotations for training.
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1 Introduction

Robotic imaging surveys can enable regional scale understanding of seafloor substrate and

habitat distributions. Since visual images are limited to edge lengths of a few metres in

water due to the strong attenuation of light, multiple overlapping georeferenced images need

to be gathered to describe larger scale patterns that exist on the seafloor. Camera equipped

Autonomous Underwater Vehicles (AUVs) achieve this by gathering tens of thousands of

images during their dives at close and near-constant altitudes, with most AUV expeditions

lasting many weeks and consisting of several deployments. However, taking advantage of the

growing repositories of seafloor images is a challenge because our ability to interpret images

cannot keep up with the influx of data.

Modern machine learning techniques have demonstrated robust, automated image interpreta-

tion. Much of the progress in this area has been driven by the availability of generic datasets

consisting of over a million human labelled images to supervise the training of deep-learning

convolutional neural networks (CNNs). In domains with high learning transferability, this

allows deep-learning to be used in applications where the large amount of human effort re-

quired to generate labelled training data would be unjustified. However, the appearance of

an underwater image is highly sensitive to the environment (e.g. seawater attenuation prop-

erties and turbidity), observation variables (e.g. range to target) and hardware choices (e.g.

lighting and camera configurations), and these factors limit transferability of learning across

datasets. This has so far limited large scale generic training datasets from being developed

in this domain, and even if these were developed, it is still an open question as to whether

these would be as effective as those used in terrestrial applications.

To address this issue, we investigate self-supervision techniques for deep-learning CNNs.

Self-supervision is a subset of unsupervised learning, which generates optimised feature de-

scriptors without using human annotations. Self-supervision aims to improve the quality of
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the image representation by using additional non-image, or image derived data that can be

automatically associated with each image to constrain learning. A key advantage of these

methods are that they can generate low-dimensional feature vectors on a per dataset basis,

making them effective in domains where there is limited transferability of learning across

datasets. Once the representations are obtained, various machine learning techniques such

as clustering, content retrieval and few-shot learning can be efficiently applied. Contrastive

learning is a form of self-supervision that has demonstrated robust performance gains across

many application areas in the image representation learning domain (Chen et al., 2020; Jing

and Tian, 2020; Le-Khac et al., 2020). It works by giving similar and dissimilar image pairs

to a CNN, optimising the representation that gets generated by mapping similar image pairs

within a close distance in the latent representation space, and dissimilar image pairs so that

they are separated in this space. To ensure images are similar without relying on human

input, most contrastive learning techniques use data augmentation, i.e, applying random

transformation to the same image to obtain similar but not identical pairs of images. In

this work, we develop a novel method of Georeference enhanced Contrastive Learning for

image Representation (GeoCLR), that leverages the 3D location information attached to

each image to identify similar pairs of images in target dataset, making the assumption that

physically close images are more likely to be similar in appearance than images taken at a

larger spatial interval. This assumption is reasonable for the application considered in this

work since AUV imagery is taken at close, often overlapping spatial intervals, and when

describing substrates and habitats, the features of interest span or recur over spatial scales

larger than the footprint of an individual image frame.

The contributions of this work are:

• Development of GeoCLR, a novel contrastive representation learning technique for

georeferenced seafloor imagery, leveraging an assumption that a pair of images taken

physically close to each other are more likely to have similar appearance than a
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random pair when identifying similar and dissimilar image pairs in a dataset.

• Development of an efficient method to use self-supervised learning outputs to guide

human labelling effort to improve the accuracy of low-shot classification.

• Experimental verification of the proposed method’s effectiveness through comparison

with current state-of-the-art transfer learning and augmentation based contrastive

learning, or SimCLR, techniques using a seafloor image dataset consisting of ~86k

AUV images gathered over 12 dives with over ~5k human labels.

2 Background

2.1 Representation Learning for Seafloor Imagery

Visual images of the seafloor contain useful information for mapping substrate and habitat

distribution. However, the high-dimensionality and redundant information in raw images

is a challenge for classification. Therefore, most algorithmic interpretations first convert

images to lower-dimensional representations, or feature spaces, that can be more efficiently

analysed. Several types of feature descriptor have been investigated for seafloor image repre-

sentations (Steinberg et al., 2011; Beijbom et al., 2012; Bewley et al., 2015; Kaeli and Singh,

2015; Rao et al., 2017; Neettiyath et al., 2020). In (Beijbom et al., 2012; Neettiyath et al.,

2020), colour descriptors are designed to target known targets of scientific interest, such as

corals (Beijbom et al., 2012) and mineral deposits (Neettiyath et al., 2020). Generic feature

descriptors such as Local Binary Patterns (LBP) (Ojala et al., 2002) and Sparse Coding

Spatial Pyramid Matching (ScSPM) (Yang et al., 2009) have also been applied to capture

multi-scale spatially invariant patterns in seafloor images (Bewley et al., 2015; Rao et al.,

2017). In (Kaeli and Singh, 2015), histograms of oriented gradients from image keypoints

are applied for clustering and anomaly detection. These approaches share common steps of

selecting effective descriptors and parameter tuning, or feature engineering, that can be time
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consuming and require knowledge of how targets of interest are expected to appear in the

images.

CNNs avoid the need for feature engineering by learning the representations needed to de-

scribe the datasets they are trained on. In supervised learning, this is achieved using human

annotated examples in a training dataset, where the latent representations and class bound-

aries to best describe the patterns of interest are simultaneously optimised. In (Mahmood

et al., 2018), the deep-learning CNN ResNet (He et al., 2016) is trained to classify nine

different types of coral in a seafloor image dataset, demonstrating higher classification res-

olution and accuracy than traditional feature engineering methods. However, the need for

large volumes of annotated images limits wide scale use in marine applications as generic

training methods and datasets do not currently exist in this domain.

2.2 Self-supervised learning for Seafloor Imagery

An alternative approach to train CNNs is self-supervised learning using properties of the

data that can be leveraged without the need for direct human supervision. Unlike state-

of-the-art supervised training methods such transfer learning, where CNNs are pre-trained

with large annotated datasets such as ImageNet (Deng et al., 2009), self-supervised meth-

ods train CNNs on the target dataset itself and so are effective in domains where there

is a limited transferability of learning between the target dataset and those available for

pre-training. In (Yamada et al., 2021), a deep-learning convolutional autoencoder based

on AlexNet (Krizhevsky et al., 2012) is used for representation learning of seafloor images.

Autoencoders consist of an encoder and decoder pair, where the encoder maps the original

data into low-dimensional latent representations. Next, the decoder reconstructs the original

data from the low-dimensional latent representation, where both the encoder and decoder

networks are optimised to make the reconstructed data as similar to the original input data

as possible. This dimensional reduction attempts to remove redundant information in the
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raw inputs, retaining only the most important information in compact latent representa-

tions at the encoder output. In (Yamada et al., 2021), the authors developed a Location

Guided Autoencoder (LGA) that uses horizontal location information to regularise learning

by leveraging the assumption that images captured at nearby locations are more likely to

look similar than images that are far apart since seafloor habitats and substrates exhibit

patterns larger than the footprint of a single image frame. The method significantly out-

performed standard convolutional autoencoders without location regularisation, achieving a

factor of 2 improvement in normalised mutual information when applied to clustering and

content-based retrieval tasks. In (yam, a), the LGA is extended to leverage other types of

metadata, such as depth information, where the continuity in measurements have potential

correlation with image appearance, where it was demonstrated that these terms can be in-

cluded without risk of performance degradation through the design of a robust regularisation

process.

2.3 Contrastive Learning Concepts for Image Representation

The recent development of contrastive learning concepts have demonstrated significant per-

formance gains in self-supervised representation learning (Jing and Tian, 2020; Le-Khac

et al., 2020). The main idea behind contrastive concepts is to simultaneously provide similar

and dissimilar image pairs during training, where similar pairs are mapped close to each

other in the representation space, and dissimilar pairs are mapped far apart. These concepts

require a binary prior that describes whether the image pairs provided during training are

expected to be similar or not.

In (Chen et al., 2020), a method to generate similar and dissimilar pairs without any direct

human input is developed using data augmentation. The proposed Simple framework for

Contrastive Learning of visual Representations (SimCLR) applies random data augmenta-

tions to artificially generate similar image pairs, which are then contrasted with dissimilar

7



pairs where different images are used. The method demonstrated significant gains in perfor-

mance compared to supervised training using transfer learning approach (Tan et al., 2018).

3 Contrastive Representation Learning Leveraging

Georeference Information

The use of location information to regularise autoencoder training can enhance the perfor-

mance of seafloor image representation (Yamada et al., 2021; yam, a). Here, we investigate

whether georeference information can also be leveraged to improve the latent representa-

tions generated in contrastive learning (Chen et al., 2020). Unlike the modified autoencoder

loss functions used in our previous work where location information can be used to loosely

regularise learning, the binary similarity condition that is imposed in contrastive learning

forces a much stronger constraint on the latent representations that get generated. In order

to validate this similarity assumption, we take advantage of the fact that AUVs capture

images that often overlap and have footprints that are generally smaller than the patch size

of habitats and substrates on the seafloor.

The following subsections give an overview of state-of-the-art modern contrastive learning

approaches such as SimCLR (Chen et al., 2020), and introduce a novel Georeference Con-

trastive Learning of visual Representation (GeoCLR) method for efficient representation of

spatially contiguous georeferenced imagery.
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(a) SimCLR (b) GeoCLR

Figure 1: Overview of SimCLR and the proposed GeoCLR. The two methods apply different
conditions to generat similar pairs of images to implement contrastive learning. In SimCLR
(a), similar image pairs [x̃i, x̃j] are generated by applying different random augmentations

to the same image x. The proposed GeoCLR (b) generates similar pairs [x̃i, x̃
′
j] using

different images that were taken from physically nearby locations, x and x′. The large range
of variability captured in the generated similar pairs allows for robust CNN training.

3.1 SimCLR

SimCLR learns representations by maximising agreement between differently augmented

images generated from the same original image. The learning framework, illustrated in

Figure 1a, consists of four parts; data augmentation, base encoder f(·), projection head g(·)

and a contrastive loss function. Data augmentation transforms each image x in the target

9



dataset randomly to artificially generate two correlated images, x̃i and x̃j, where random

cropping, colour distortions and Gaussian blur augmentations are applied in this order. The

base encoder f(·) is a CNN that extracts representation vectors from the augmented images.

The method allows any CNN to be used for f(·), where (Chen et al., 2020) found this

approach to be most effective on deeper and wider ResNet (He et al., 2016) architectures.

hi ∈ Rd is a feature vector extracted from x̃i by the base encoder (hi = f (x̃i)). The

projection head g(·) is a two layer multilayer perceptron (MLP) to obtain zi ∈ Rd′ (zi =

g(hi)). The dimension d′ of the MLP output are smaller than the dimension d of the base

encoder since the contrastive losses defined in lower-dimensional spaces are more efficient for

representation learning. A minibatch of N original images are taken into consideration at

each iteration, so 2N augmented images including N similar pairs are sampled. For a similar

pair, other 2(N − 1) augmented images (ỹn in Figure 1a) can be regarded as dissimilar

examples within the minibatch. The Normalised Temperature-scaled Cross Entropy loss

function (NT-Xent) (Sohn, 2016; Wu et al., 2018; Oord et al., 2018) between the similar

pair x̃i and x̃j is defined as

ℓi,j = − log
exp (sim (zi, zj) /τ)∑2N

k=1 1[k ̸=i] exp (sim (zi, zk) /τ)
, (1)

where sim() denotes cosine similarity, 1[k ̸=i] ∈ {0, 1} is the indicator function which is 1 if

k ̸= i, and τ is the temperature parameter. The total minibatch loss can be written as,

L =
1

2N

N∑
k=1

[ℓ(2k − 1, 2k) + ℓ(2k, 2k − 1)]. (2)

The parameters of the base encoder f(·) and the projection head g(·) are updated by a

stochastic gradient descent (SGD) optimiser with linear rate scaling (Goyal et al., 2017).

SimCLR can efficiently train CNNs using large unannotated image datasets, where the latent
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representations derived from the original images x were shown to outperform other state-

of-the-art methods in the benchmark classification tasks. It was further shown that fine-

tuning of SimCLR trained CNNs can achieve more accurate classification with two orders of

magnitude fewer labels than conventional supervised training methods.

3.2 GeoCLR

A limitation of SimCLR is that the variety of possible image appearances is limited by the

types of augmentation used, and only features intrinsic to each image can be efficiently

extracted. However, when applied to practical semantic interpretation, we are typically in-

terested in correlating images that show a greater degree of variability than can be described

by algorithmic augmentation alone. We predict that the performance of downstream in-

terpretation tasks will benefit if a greater variety of appearances can be integrated into the

similar pairs during CNN training. The GeoCLR method proposed in this paper allows great

variability to be introduced into the similar image pairs by leveraging the georeference in-

formation associated with each image. We argue that the level of variability between images

taken nearby will exhibit a level of variability that is more representative of that seen across

similar habitats or substrates than augmentation alone.

Figure 1b shows the overview of GeoCLR. In GeoCLR, each similar image pair [x̃i, x̃
′
j] is

generated from two different images, where x̃i and x̃′
j are generated from x′, which is a

different image to x but is taken of a physically nearby location. For each image x captured

at the 3D georeference of (geast, gnorth, gdepth), x
′ is randomly selected at each iteration from

the images which satisfy the following criteria:

√
(g′east − geast)2 + (g′north − gnorth)2 + λ(g′depth − gdepth)2 ≤ r, (3)

where (g′east, g
′
north, g

′
depth) is the 3D georeference of x′, λ is the scaling factor for depth
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direction. Introducing λ > 1 allows the depth difference between images to be weighted

so that the nearby images with large depth gap are not selected, where values of λ < 1

tend to ignore differences in depth. This flexibility is introduced because the relative impact

depth has on image appearance can vary across different application, where for example

shallow water application typically have a stronger correlation due to the variable influence

of sunlight reaching the seafloor than deep-sea applications. To identify an image pair,

the distance r needs to be larger than the distance between adjacent images taking into

account variability in the acquisition interval, and smaller than the patch size of substrates

and habitats so that paired images are likely to be similar in appearance. In practise, a

small value is advantageous since the similarity assumption is likely to be violated near

patch boundaries as r increases. The lower limit for r should also be conservatively set

since restricting pairs to only its nearest neighbour means that the same pairing is more

likely to be selected multiple times during training, which does not generate any additional

information compared to the original SimCLR.

Once x′ is selected, the same types of random data augmentation used in SimCLR are

applied to each image to obtain the similar pair [x̃i, x̃
′
j].

4 Experiment

The proposed GeoCLR is applied to a dataset consisting of 86,772 georeferenced seafloor

images obtained off the coast of Tasmania. The CNN is first trained on all images in the

dataset to generate latent representations. Next, classification tasks are given to the trained

CNN and the extracted features by the CNN, so that the performance can be evaluated

based on classification accuracy. A variety of methods are used to train these classifiers,

including the use of the latent representations to guide human annotation effort for efficient

low-shot semi-supervised learning. The performance of the proposed GeoCLR, is evaluated
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through comparison with SimCLR and transfer learning under the equivalent conditions.

4.1 Dataset

Figure 2: Map of the surveyed area (east coast of Tasmania). The images were gathered
through 12 AUV deployments. The start points of each deployment are shown as green dots.
The pie charts show the class distributions according to human expert annotations. The same
colour scheme is used as in Figure 3, which shows example images of each class. The survey
paths of Dives 01, 03 and 08 are shown with the human annotated class distributions on the
right.

Label A B C D E F

Count 531 (9.9%) 1,084 (20.2%) 903 (16.8 %) 598 (11.1 %) 1,568 (29.2 %) 685 (12.8%)

Figure 3: Class example images together with the number expert human annotations in each
class: A - Kelp, B - High Relief Reef, C - Low Relief Reef, D - Reef & Sand, E - Screw Shell
Rubble, F - Sand.
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Table 1: Tasmania dataset description

Vehicle Sirius AUV
Camera Resolution 1,360 × 1,024

Camera FoV 42 × 34 deg
Frame Rate 1Hz

Year 2008
Location East Coast of Tasmania, Australia

Coordinate 43.08◦S, 147.97◦E
Depth 28 - 96m
Altitude 1.0 - 3.0m

Ave. Velocity 0.5m/s
No. of Images 86,772

No. of Annotations 5,369
No. of Classes 6 (See Figure 3)
No. of Dives 12

The Tasmania dataset used for evaluating the proposed GeoCLR (Williams et al., 2012)

is shown in Figure 2 and described in Table 1. The dataset consists of 86,772 seafloor

images taken by the Australian Centre for Field Robotics’ Sirius AUV from a target altitude

of 2m. The dataset contains habitat and substrate distributions as shown in Figure 3,

including kelp (A), a registered essential ocean variable, and rocky reefs (B,C,D), which can

form habitats for various conservation targets such as coral and sponges (Moltmann et al.,

2019). 5,369 randomly selected images are annotated by human experts into 6 classes, as

shown in Figure 3. 50 images randomly selected from each 6 classes (total of 300 images)

are used for validation and M=[40, 100, 200, 400, 1000] images selected from the remaining

5,069 annotated images are used for training, following the evaluation protocol described

in subsection 4.3. The georeference information of each image is determined based on the

stereo SLAM pipeline described in (Mahon et al., 2008; Johnson-Roberson et al., 2010).

The original resolution of the images is 1,360 × 1,024, where the average distance between

adjacent images is approximately 0.5 m, so some images partly overlap each other. Prior to

analysis, each image in the dataset is re-scaled to a resolution of 2mm/pixel based on the

imaging altitude. Randomly cropped 224 × 224 regions of the images are used for training,

where validation is performed on the the same sized regions cropped from the centre of the
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images.

4.2 GeoCLR Training Configuration

GeoCLR can by used to train any type of CNN. Here we use the well established

ResNet18 (He et al., 2016) for benchmarking. The latent representation h and z dimen-

sions are set to d=512 and d′=128, respectively. A minibatch size of N=256, learning rate

of 3.0 × 10−4, weight decay of 1.0 × 10−4, temperature τ=0.07 in equation(1) was used for

all experiments. The threshold of closeness and depth scaling factor in equation 3 were

set to r=1.0m and λ=1.0, respectively. The value for r is conservative compared to the

expected substrate and habitat patch size in the surveyed region, and was chosen to yield

2 to 4 nearby images based on the average distance between images (see Table 1). This

minimises the probability of non-similar image pairs being selected near patch boundaries

and the likelihood of duplicate pairs being selected during training. Results on the sensitiv-

ity of learning performance to a range of r=0, 1.0, 3.0, 5.0, 10.0m included in the Appendix

demonstrate this trend, with no benefit seen beyond r = 3.0m for the dataset analysed in

this paper. As expected, a small value of r is advantageous, with the limit of sufficiently

nearby images being unavailable if it is set too small. The mean range between best and

worst performing conditions is 3.7% for equivalent M and λ numbers. The value of λ was

chosen to evenly treat horizontal and vertical displacement between images. Analysis in the

Appendix for λ=0, 0.5, 1.0, 3.0, 5.0, 10.0 shows that the performance sensitivity small. The

mean range between best and worst performing conditions is 1.7% for equivalent M and r

numbers. The sensitivity and optimum value for λ is likely to be dataset dependent, and

more significant in datasets that have high rugosity.

Other than the method for generating similar image pairs, identical parameters were used for

GeoCLR and SimCLR to allow for comparison. Both method are trained on the all 86,772

images in the dataset. We also benchmark the performance of the proposed method against
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conventional supervised transfer learning using ResNet18 that was pre-trained on ImageNet.

Though deeper CNN architectures, larger minibatch sizes and epoch are known to provide

accuracy gains for SimCLR, these above parameters are set considering the computational

power that can be reasonably deployed in the field, where access to high-performance com-

puters networks is limited. The workstation used for experiments in this paper used a single

NVIDIA TITAN RTX with 24 GB VRAM. The GeoCLR training and fine tuning with

pseudo-labelling carried out in this work each took approximately a day (26 hours for Geo-

CLR training and a few minutes for fine-tuning) for the dataset of ~86k images gathered in

24 hours of bottom time over multiple AUV dives. This indicates that the results could be

made available in timeframes relevant to assist planning and interpretation between dives

during multi-day field expeditions.

4.3 Evaluation Protocol

CNNs trained using three different approaches (ImageNet, SimCLR, GeoCLR) are evaluated

following the protocol used by (Chen et al., 2020). Once the CNNs are trained, the latent

representations they generated are analysed using different classifiers; a linear logistic regres-

sion, a non-linear Support Vector Machine with a Radial Basis Function kernel (SVM with

RBF), and a fine-tuned CNN classifier. The logistic regression and SVM with RBF are both

trained on the latent representation space output h of ResNet18 after CNN training. For

fine-tuning, a minibatch size of 256, Adam optimiser with learning rate of 3.0× 10−4 and no

weight decay. The macro averaged f1 score over 6 classes determined from the independent

validation set is used to compare the classification accuracy of each training method. All

experiments are repeated ten times in each configuration, where the standard deviation (SD)

of scores is shown alongside the mean value to describe variability.

We perform experiments to evaluate classification performance using

M=[40, 100, 200, 400, 1000] training examples selected using the following sampling
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strategies:

• Balanced : M annotated images are selected so that all classes are equally represented.

• Random: M annotated images are randomly selected without any constraint.

• H-kmeans : M annotated images are selected using hierarchical kmeans to evenly

represent different regions of the latent representation space learned through self-

supervised training.

Class-balanced training examples can be considered ideal for supervised learning in appli-

cations where all classes are of equal importance. However, this requires significant human

effort to determine the relevant classes and identify images corresponding to each class, which

is not practical for most field survey scenarios. The random method is relevant for most sur-

vey scenarios, and can make the effort in annotation more manageable in situations where

the class distribution in the target dataset is not known. However, the method suffers when

the number of images in each class is not balanced, since classes are represented in proportion

to their relative abundance, those with small populations tend to exhibit poor performance.

The hierarchical kmeans clustering (Nister and Stewenius, 2006), or H-kmeans, method al-

lows for balanced representation of the variety of images present in a dataset without the

need for additional human effort, and was shown to be effective for guiding human labelling

effort in (yam, b). In this method, kmeans clustering is first applied to latent representations

with k=m to find representative clusters of images in the dataset. An appropriate value for

m can be automatically determined for each dataset using the elbow method (Satopaa et al.,

2011), where a value of m=10 was found to be appropriate for the dataset used in this ex-

periment. Next, each cluster is further subdivided using kmeans clustering where k=M/m,

to identify images closest to the centroid of each subdivided cluster, which is prioritised

for human annotation. If the latent representations describe original images appropriately,

the cluster boundaries found in the first kmeans clustering are expected to approximate
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the class boundaries, allowing the class imbalance problem in random selection to be eased

by selecting the same number of images from each cluster. The second kmeans clustering

avoids selecting similar samples from within each cluster, so that the full variety of images

in the dataset can be represented by a small number of annotations. This H-kmeans selec-

tion was shown to outperform random selection when appropriate latent representations are

generated (yam, b). The same work also demonstrated the use of pseudo-labels, generated

from the predictions of classical classifiers applied to the latent representations, for CNN

fine-tuning, which is also examined in this work.

Two sets of experiments are performed. First, we assess the performance of CNNs using

the balanced selection strategy. Although this is not realistic for practical field scenarios,

the results represent the expected upper bound of performances, and allows the fundamen-

tal performance of the three latent representation learning strategies (ImageNet, SimCLR,

GeoCLR) to be compared. The second set of experiments compares the performance us-

ing random and H-kmeans based selection strategies, including the use of pseudo labelling

with linear logistic regression (PL-linear), a non-linear SVM with RBF (PL-SVM) for CNN

fine-tuning. The sampling strategies can both realistically be implemented in field survey

scenarios since they do not assume any prior knowledge of the datasets, and the images that

require annotation can be rapidly identified in a fully unsupervised manner.

4.4 Result

4.4.1 Class-balanced training evaluation

Table 2 shows the macro averaged f1 scores of each CNN training and classifier configuration

on the class-balanced subsets of the annotated images. The results show that GeoCLR has

the best performance for all values of M , with the linear classifier (C1) showing the best

performance for M=40, and the SVM classifier (C2) best for all other M values. The latent
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representations generated using GeoCLR achieves an average 7.4% and 5.2% increase in

performance compared to the best performing ImageNet and SimCLR trained configurations.

Among the ImageNet pre-trained CNN (A∗), the CNN fine-tuned using M images (A3)

achieves the highest accuracy for all M with an average performance gain of 6.6%. This is

owed to the capacity of CNNs to simultaneously optimise feature extraction and classification

during training. In A1 and A2, the lower level feature extractor optimised on ImageNet is not

updated. The inferior performance compared to A3 indicates that the latent representations

generated using ImageNet are suboptimal for the seafloor images used in this work, failing

to describe their useful distinguishing features.

In contrast, for SimCLR and GeoCLR trained CNNs (B∗ and C∗) the fine-tuned scores for

the ResNet18 classifier are lower than the scores of linear and SVM classifier. This shows

that the constraining effect of contrastive learning in SimCLR or GeoCLR training generates

highly optimised latent representations. Since conventional fine-tuning does not maintain

this constraining effect, it degrades performance, achieving a similar level of accuracy as

fine-tuning of ImageNet pre-trained CNN in A3 for larger values if M . This finding is

in contrast to the results of (Chen et al., 2020), where fine-tuning of CNNs trained using

SimCLR significantly outperform linear classifiers applied to latent representation space for

generic terrestrial image datasets analysed. Possible reasons for the difference in behaviour

is the relatively high dimensionality of h (d=512) compared to the small number of classes

(6) in the dataset considered in this paper, combined with the continuous transition of image

appearance across the class boundaries, both of which are different to terrestrial benchmark

datasets, which typically have a larger number of classes with discrete boundaries, both

of which can make the latent representation more sensitive to the constraining effect of

contrastive learning.

Figure 5a shows representative configurations from Table 2. The proposed GeoCLR with a

SVM classifier (C2) outperforms all other configurations except for B2 when M=40. Having
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Table 2: CNN training method comparison on class balanced training subset

Config.
Label

CNN
Training

Classifier
Number of Annotations (M)

40 100 200 400 1000
A1 ImageNet linear 54.9±4.7 61.6±2.8 63.0±2.2 67.5±2.2 67.4±2.1
A2 ImageNet SVM 47.0±4.9 55.3±4.9 60.2±2.3 66.2±1.1 69.7±1.1
A3 ImageNet Res18 58.9±2.6 65.5±2.7 68.2±2.5 71.2±1.7 73.8±1.3
B1 SimCLR linear 62.5±2.7 65.2±2.8 67.1±1.2 69.2±2.2 71.8±1.0
B2 SimCLR SVM 62.4±2.7 66.9±1.8 69.2±1.8 71.8±1.4 74.1±1.0
B3 SimCLR Res18 53.4±4.4 61.3±2.2 65.5±2.0 68.9±2.7 72.4±0.9
C1 GeoCLR linear 63.8±2.9 67.8±2.4 71.4±1.4 72.9±1.8 74.9±1.0
C2 GeoCLR SVM 61.7±2.5 70.1±2.4 74.5±1.4 75.8±1.4 78.3±1.1
C3 GeoCLR Res18 53.6±5.3 62.8±2.2 66.2±2.9 69.5±1.9 73.2±1.3

The CNNs are trained using three different method (Supervised Learning by ImageNet,
SimCLR and GeoCLR). The latent representations (h) extracted from the M annotated
images by each CNN are used for logistic regression classification (linear) and SVM (with
RBF) training. Also the CNNs are fine-tuned on the same subsets of images. The M
images are selected so that all 6 classes in the dataset are evenly described. The classifiers
are trained 10 times with different random seed, and mean and SD values of f1 scores
(macro averaged) are shown. The best score for each M is shown as bold.

said this, the best performance for M=40 is achieved by the GeoCLR with a linear classifier

(C1) as can be seen in Table 2. When the CNNs are fine-tuned, transfer learning with

ImageNet (A3) outperforms fine-tuned SimCLR and GeoCLR (B3 and C3).

4.4.2 Data selection method comparison

The performance using the random and H-kmeans training data selection strategies, both

of which do not need prior human input to understand the datasets, are shown in Table 3

for different values of M .

The different CNN training methods shows the same trend as the previous results with bal-

anced training data selection (Table 2). When the classifiers are trained on the latent repre-

sentations, GeoCLR outperforms SimCLR and ImageNet pre-training, achieving and average

performance gains of 6.3% and 20.0%, respectively across all M . As previously observed,

fine-tuning SimCLR and GeoCLR trained CNNs degrades their performance. However, the
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pseudo-labelling introduced in (E7, E8, F7, F8) mitigates this effect by using a larger number

of images for fine-tuning, which avoids the problem of overfitting that can occur when only

a small number of images are used in fine tuning. This effect is strongest for small values

of M=40, 100, where performance gains of 13.1% and 8.0% are achieved for both GeoCLR

and SimCLR compared to equivalent configurations that do not use PL.

Figure 5b shows representative configurations in Table 3. The configurations with the Geo-

CLR (F∗) outperform their counterparts with the SimCLR (E∗) except for the case where

M=40 where E4 performs better than F4. In general, the use of H-kmeans improves per-

formance compared to equivalent random configurations, achieving performance gains of

13.1% and 5.7% respectively for M=40, 100. Although the gain in performance reduces

for larger M , for GeoCLR H-kmeans selection always improves performance compared to

equivalent random configurations for all values of M . An important observation is that the

proposed GeoCLR achieved the best performance for all values of M for both the balanced

and H-kmeans selection strategies.

A comparison between Table 2 and Table 3 shows that GeoCLR with H-kmeans performs

better than with the balanced selection strategy for all values of M , with gains of 3.1% and

2.7% for small values of M=40, 100, and averaging a performance gain of 1.6%.

The results indicates that it is more valuable and informative to provide training data that

evenly describes the latent representation space generated during self-supervised training,

than it is to provide training data that evenly describes the targets that are of final interest

to humans. Figure 4 shows the representative images selected by (a) Balanced, (b) Random

and (c) H-kmeans strategies based on their location in the GeoCLR latent representations

embedded by t-SNE(Maaten and Hinton, 2008). In this figure, M=30 images are shown for

ease of visualisation, where the background points show the image representations that are

not selected. The colour of the points and selected image borders illustrate the human class

annotation of each annotated image using the same colour key as Figure 3. The visualisation
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shows that random selection strategy fails to select images from the central region of the

latent representation space that is relatively sparsely populated. On the other hand, H-

kmeans selects images evenly from the different regions of the latent representation. When

compared to the balanced selection strategy, it can be seen that there are several regions of

the latent representation space that are not sampled. This is because they are mapped to

different regions of the latent space as more densely populated regions that have the same

class. These undersampled regions of the latent space can be easily confused by a classifier,

where the final assigned class will depend on the distribution of nearby training samples.

(a) Balanced (b) Random (c) H-kmeans

Figure 4: Comparison of training data sampling strategy. M = 30 images are selected by
(a) Balanced, (b) Random and (c) H-kmeans strategy. The selected images are shown on
t-SNE visualisation of latent representations obtained by GeoCLR. While Random sampling
fails to select from the centre area, H-kmeans successfully select the images in the relatively
sparse areas so that a more informative training dataset is gained. Similarly, balanced fails
to sample regions of the latent space where there are more densely populated regions of the
same class. In these situations, class assigned by the classifier will depend on the class of
training examples that happen to be nearby. The same colour scheme as Figure 3 is applied.

From a practical perspective, the proposed GeoCLR with M=100 H-kmeans machine priori-

tised annotations and the SVM-RBF classifier (F4), and PL-SVM fine tuning (F7) achieves

the same accuracy as state-of-the-art transfer learning (i.e. D5 M=1000) using an order

of magnitude fewer human annotations. The method also achieves the same accuracy as

state-of-the-art contrastive learning approaches (i.e. E3 M=400) using a quarter of the an-
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notations, where prior works rely on random data annotations and do not propose a data

selection strategy. We consider being able to perform accurate classification with a relatively

small number of labels (i.e. 0.1% of the entire dataset) an important development since pro-

viding 100 annotations represents a level of human effort that can be justified for most

application in the field. We also show that for applications that can justify a larger amount

of human effort (i.e. M = 1000), the proposed GeoCLR outperforms conventional transfer

learning (D5) and contrastive learning (E3) by 8.5% and 7.5% respectively. In addition to

the demonstrated performance gains, the use of GeoCLR consistently improves performance

over alternative configurations for all conditions tested in this work, and machine guided an-

notation H-kmeans benefits performance for all configurations where M<400, and although

the performance gains diminish for larger M , it never leads to significant performance re-

duction. The results indicate that these approaches can robustly improve the performance

of CNNs for seafloor image interpretation.
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Table 3: Data selection method comparison

Config.
Label

CNN
Training

Classifier
Data

Selection
Number of Annotations (M)

40 100 200 400 1000
D1 ImageNet linear random 45.4±5.8 57.0±3.2 61.3±2.8 63.3±2.9 67.5±2.2
D2 ImageNet linear H-kmeans 49.5±5.6 58.0±4.7 64.4±3.4 66.5±2.6 68.8±1.8
D3 ImageNet SVM random 35.5±4.4 50.2±3.7 58.4±3.3 63.7±1.4 67.9±1.0
D4 ImageNet SVM H-kmeans 43.0±3.4 57.5±2.8 63.7±1.0 67.0±1.4 69.7±1.3
D5 ImageNet Res18 random 55.5±3.1 63.2±3.2 67.0±2.0 69.7±2.4 72.8±2.3
D6 ImageNet Res18 H-kmeans 51.8±5.7 64.1±2.0 67.6±2.7 73.1±1.3 74.1±1.7
D7 ImageNet Res18 PL-linear 51.9±5.7 62.2±4.5 68.6±1.8 70.9±2.0 71.9±2.3
D8 ImageNet Res18 PL-SVM 46.4±5.4 58.9±3.4 67.1±1.6 69.9±1.7 72.6±2.1
E1 SimCLR linear random 55.0±4.0 63.8±3.0 66.3±2.1 67.7±3.2 71.2±1.1
E2 SimCLR linear H-kmeans 61.9±2.6 66.5±1.6 68.2±1.4 69.3±2.7 69.5±1.9
E3 SimCLR SVM random 47.2±5.5 64.5±2.4 68.8±1.6 72.0±2.2 73.5±0.7
E4 SimCLR SVM H-kmeans 58.0±2.0 67.6±1.5 70.9±1.3 71.7±1.8 73.7±1.5
E5 SimCLR Res18 random 49.5±7.5 60.3±2.2 64.5±2.4 67.7±1.8 71.5±2.3
E6 SimCLR Res18 H-kmeans 56.4±3.3 65.2±2.2 66.2±1.7 69.3±2.0 70.1±1.2
E7 SimCLR Res18 PL-linear 64.3±2.2 68.8±1.4 69.5±1.7 70.5±1.7 72.8±1.3
E8 SimCLR Res18 PL-SVM 63.1±2.8 69.8±1.8 70.6±1.1 72.7±1.1 72.9±0.8
F1 GeoCLR linear random 58.9±5.0 67.8±2.7 70.8±1.7 72.7±2.5 75.1±1.4
F2 GeoCLR linear H-kmeans 65.8±2.9 70.5±1.7 72.8±2.0 73.0±2.1 74.6±2.5
F3 GeoCLR SVM random 53.2±5.9 68.8±3.1 72.9±2.2 75.5±1.0 77.5±1.2
F4 GeoCLR SVM H-kmeans 55.3±4.2 71.8±1.6 74.6±1.5 76.6±1.2 79.0±1.0
F5 GeoCLR Res18 random 49.5±7.9 60.3±3.8 65.2±1.7 69.0±3.0 73.2±1.9
F6 GeoCLR Res18 H-kmeans 56.5±3.4 65.5±1.4 66.8±1.9 70.9±1.3 73.9±1.7
F7 GeoCLR Res18 PL-linear 64.2±2.5 71.7±2.3 72.7±1.6 73.5±1.4 75.7±1.6
F8 GeoCLR Res18 PL-SVM 63.7±2.1 72.0±2.1 72.5±1.5 74.3±1.0 75.2±1.3

The same CNNs as Table 2 where different data selection strategies (random and
H-kmeans are used in the downstream classification task. In contrast to the balanced
selection strategy shown in Table 2, these selection strategies do not require prior analysis
by humans and so are available for analysis of data as it get collected in the field. The
same classifiers (linear, SVM, fine-tuned ResNet18) are investigated. For fine-tuning the
CNNs, pseudo-labels generated by linear classifier (∗-7) or SVM (∗-8) are used. The
classifiers are trained 10 times with different random seed, and mean and SD values of f1
scores (macro averaged) are shown. The best score for each M is shown as bold.

4.5 Applications

Determining seafloor habitat class distributions is a fundamental task for marine monitoring

and conservation. Here we apply the proposed GeoCLR method to estimate the relative

proportion of habitat classes and map their physical distribution.
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(a) CNN training method comparison for class-
balanced training (Table 2)

(b) Data selection method comparison for Sim-
CLR and GeoCLR (Table 3)

Figure 5: Representative Configurations from (a) Table 2 and (b) Table 3. (a) When the
CNNs are trained on the class-balanced subsets, GeoCLR with a SVM classifier (C2) outper-
forms all other configurations except for B2 when M=40. The best performance for M=40
is achieved by GeoCLR with a linear classifier (C1). (b) In general, the use of H-kmeans
improves performance compared to equivalent random configurations, and GeoCLR outper-
form their counterparts with the SimCLR except for {M=40, E4}.

4.5.1 Estimating relative habitat class proportion

Figure 6 shows the relative proportion of different habitat classes estimated for

M=[40, 100, 200, 400, 1000] machine prioritised annotations for each of the 12 dives in the

Tasmania dataset. These are compared to the relative proportions for each dive where all
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human annotations have been used (i.e. average 450 annotations per dive) which we con-

sider to be the ground truth here. The equivalent number of annotations per dive for the

proposed method average approximately 3 annotations per dive for M=40 to approximately

83 per dive for M=1000. The results show that the estimated proportions approach the

ground truth distributions for all dives, with the expected result that performance increases

as a larger number of annotations are used for classifier training. The estimated proportions

are poor for several of the dives with M=40 when using the F4 SVM classifier (Figure 6a),

whereas the F8 fine-tuned with pseudo-labels generated by the SVM is generally more robust,

approximating the ground truth class proportions better for the same number of training

examples (Figure 6b). This indicates that the SVM classifier (F4) may be overfitting the

latent representation space generated by GeoCLR when the number of annotations available

is small, where this effect is mitigated by providing a larger number of training examples

through pseudo-labels. However, there are some exception (Dives 06 and 07) to this and so

the outputs with M=40 should be treated with caution where validation data is not avail-

able. On the other hand, for M≥100 both methods (i.e. F4 and F8) perform robustly for all

dives, with F4 outperforming F8 and providing more stable estimates for different values of

M . This is due to the fact that the latent representation space remains the same regardless

of M as no CNN re-training takes place.
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(a) F4 in Table 2 (SVM on latent representation h)

(b) F8 in Table 2 (fine-tuned on pseudo-labels generated by SVM)

Figure 6: Class distribution estimated for each dive based on the proposed GeoCLR. The
same colour scheme is used as in Figure 3. The estimated distributions approaches the
ground truths when larger number of annotations are used for classifier training. The use of
pseudo-labels is generally favourable for a small number of annotations (i.e. M=40, though
this is not always the case. For M>100, F4 performs better than F8 and provides more
stable estimates of class distribution as the same latent representation space is used for all
M . 27



4.5.2 Habitat mapping

The physical distribution of habitats is important for conservation since it influences the

distribution of organisms near the seafloor. It is also important for understanding ecosystem

health as benthic habitats such as kelp (seen here) and coral are classified as essential ocean

variables.

The proposed method allows efficient estimation of habitat maps based on the 3D location

where each classified image was taken. Here, we show the horizontal distributions of the

classes, the depth profiles vs. image index, and the class vs. depth distributions are shown

in Figures 7, 8 and 9 for three dives (01,03 and 08) which were chosen as representative cases.

The figures show habitat maps generated using GeoCLR for {M=100,F8}, {M=1000,F4}

in Table 3 and the ground truth labels.

The results show that both {M=100,F8} and {M=1000,F4} configurations closely approx-

imate the ground truth horizontal and vertical habitat class distributions, capturing the

continuous spatial transitions between Kelp (A), Low Relief Reef (C), High Relief Reef (B)

to Screw Shell Rubble (E) or Sand (F). The class vs depth distributions show that the larger

values of M provide a better approximation of vertical class distribution, which is an ex-

pected result. However, for classes that exist in a limited depth band (e.g. Kelp (A), Screw

Shell Rubble (E)) both values of M capture this trend.
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(a) Horizontal distribution (b) Depth profile vs. image index

(c) Class vs. Depth

Figure 7: Class distribution of Dive-01 withM=100 annotations by F8,M=1000 annotations
by F4 in Table 3 and ground truth. The same colour scheme as Figure 3 is applied.
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(a) Horizontal distribution (b) Depth profile vs. image index

(c) Class vs. Depth

Figure 8: Class distribution of Dive-03 withM=100 annotations by F8,M=1000 annotations
by F4 in Table 3 and ground truth. The same colour scheme as Figure 3 is applied.
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(a) Horizontal distribution (b) Depth profile vs. image index

(c) Class vs. Depth

Figure 9: Class distribution of Dive-08 withM=100 annotations by F8,M=1000 annotations
by F4 in Table 3 and ground truth. The same colour scheme as Figure 3 is applied.
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5 Conclusion

The paper has developed a method to leverage georeferenced information in contrastive

learning for efficient training of deep-learning CNNs. The proposed Georeference Contrastive

Learning for seafloor image Representation (GeoCLR) method is effective for datasets where

the targets of interest for semantic interpretation are distributed over spatial scales larger

that the footprint of a single image frame. The underlying assumption is that images gath-

ered within a close distance are more likely to have similar visual appearance than images

that are taken far apart. This assumption can be reasonably satisfied in seafloor robotic

imaging applications, where 1) images are acquired at close and regular intervals along a

vehicle’s trajectory, and 2) the targets for interpretation are substrates and habitats which

typically have extents much greater than the image footprint. The method can be deployed

on any CNN, and performance gains can be achieved without any prior human input to in-

terpret the dataset. We demonstrate the performance of the proposed training method using

a CNN architecture that can be deployed on computers that can be reasonably expected to

be available during a field survey, without relying on network access to supercomputers, and

can generate results in timeframes that are relevant for on-going field expeditions. Experi-

ments on a robotically obtained seafloor image dataset that includes more than ~86k images

and ~5k annotations show that:

• The proposed GeoCLR method outperforms existing state-of-the-art contrastive

learning (SimCLR) and transfer learning for downstream supervised classification

tasks using an equivalent CNN architecture (ResNet18). On an ideal, class balanced

training dataset, the SVM with RBF kernel trained on the features extracted by the

GeoCLR trained CNN shows an average of 5.2 % and maximum of 7.7 % improvement

compared to the accuracy scores of SimCLR for M=[40, 100, 200, 400, 1000] annota-

tions. Compared to ResNet18 trained by transfer learning, an average improvement

of 7.4 %, a maximum of 9.2 % is achieved.
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• The representations extracted by the GeoCLR are useful for identifying representa-

tive images for prioritised human annotation in a fully unsupervised manner. This

can improve the performance and efficiency of human effort for classification, where

selecting a prioritised training dataset using H-k means clustering increases the classi-

fication accuracy by an average of 4.9 % and maximum of 14.1 % compared to random

selection, where the performance gains are more significant for small numbers of M .

Compared with SimCLR, GeoCLR latent representations shows 7.1 % better score on

average with randomly annotated M=[40, 100, 200, 400, 1000] training datasets. Pri-

oritised annotating by H-kmeans allows score improvements for all M values, leading

to 10.2 % increase in total.

• Selecting representative images for prioritised labelling based on their distribution in

the GeoCLR latent representation space results in better performance than providing

class-balanced annotated examples. The machine driven H-kmeans selection strategy

achieves an average of 1.6% and maximum of 3.1% increase in accuracy compared to

the class-balanced selection strategy for an equivalent number of annotations, where

greater gains are achieved for small numbers of annotations. This indicates that it is

more informative to provide training data that evenly describes the latent represen-

tation space generated during self-supervised training, than it is to provide training

data that evenly describes the targets that are of final interest to humans.

• The combination of GeoCLR and H-kmeans achieves the same accuracy as state-

of-the-art transfer learning using an order of magnitude fewer human annotations,

and state-of-the-art contrastive learning approaches using a quarter of the labels.

This allows the proportion of habitat classes and their spatial distribution to be

accurately estimated (> 70%) annotating only 0.1 % of the images in the dataset.

This is significant as providing approximately 100 annotations represents a level of

human effort that can be justified for most field application. For applications where
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a greater level of human effort is available, we show that with 1000 annotations,

the proposed GeoCLR outperforms conventional transfer learning and contrastive

learning by 8.5% and 7.5% respectively, achieving a classification accuracy of 79%.

The combination of GeoCLR and H-kmeans never degraded performance compared

to equivalent alternative configurations in the experiments described in this paper.
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Appendix

GeoCLR: Georeference Contrastive Learning

for Efficient Seafloor Image Interpretation

A Sensitivity to hyperparameters

The main contribution of the GeoCLR method is that selecting similar image pairs that are

physically close to each other will provide a better representation of variability in contrastive

learning than traditional data augmentation.

The conditions for a pair of images to be physically close enough is determined by the

following equation (eq. (3) in the main text):

√
(g′east − geast)2 + (g′north − gnorth)2 + λ(g′depth − gdepth)2 ≤ r, (3)

where (geast, gnorth, gdepth) is the 3D georeference of image x. Eq. (3) includes two hyperpa-

rameters: r, which corresponds to a 3D distance threshold where images captured within this

range are regarded as similar, and λ, which is a weight for the depth difference between im-

ages. These hyperparameters relate to the physical characteristics of observed seafloor habi-

tats and substrates, and so their optimised values are considered to be dataset dependent.

This appendix investigates the sensitivity of learning performance to these hyperparameters



for the Tasmania dataset considered in this work.

Table A1: Performance sensitivity to hyperparameter r (in metres) when validated on class
balanced training subsets

r
Number of Annotations (M)

40 100 200 400 1000
0.0 (SimCLR) 62.5±2.7 65.2±2.8 67.1±1.2 69.2±2.2 71.8±1.0

1.0 63.8±2.9 67.8±2.4 71.4±1.4 72.9±1.8 74.9±1.0
3.0 59.7±2.7 64.4±2.4 69.2±3.4 70.8±2.1 72.8±1.4
5.0 61.1±2.2 65.9±2.4 68.4±1.6 71.1±1.8 71.9±2.3
10.0 60.5±2.5 66.1±3.0 68.5±2.5 70.5±3.1 72.9±1.7

r = 0.0 is equivalent to SimCLR (B1 in Table 2).

Table A1 shows the f1 scores of linear classifiers trained on the obtained latent representations

for different r values (r=0.0, 1.0, 3.0, 5.0, 10.0m) for fixed λ=1.0. Class balanced training

datasets with different numbers of images (M=40, 100, 200, 400, 1000) have been used to

train the classifier, which is the same configuration as B1 (for r=0.0m) or C1 (others) in

Table 2 of the main paper. The best performance is using r=1.0m for all M , showing that

it is optimal for this dataset. Since the AUV travelled at 0.5m/s with image acquisition at

1 fps, r=1.0m is the smallest value where most images will have at least two nearby images

to form a similar pair for contrastive learning. Larger r values will have more images to

chose from for the similar pair, but as the distances between the pair increases, we expect

their appearances to become less similar. If r is too small, there will be no nearby images to

select from, and so only augmentation on the same image can be performed (i.e., the same as

SimCLR). The latent representations obtained with the larger r values (r=3.0, 5.0, 10.0m)

show poorer performance scores than r=1.0m for all M . However, they still perform better

than the original SimCLR (r=0.0m) except for a few cases with M=40, 100. It can be

assumed that the optimal r value depends on the habitat and substrate patch sizes in the

observed area. Even if the size of these semantic patches is not known, we can expect smaller

r values to perform robustly since similar appearance image pairs are likely to be sampled,

compared with larger r, under the assumption that semantic patches of interest for habitat
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and substrate mapping occur on spatial scales larger than the footprint of a single image

frame.

Table A2: Performance sensitivity to hyperparameter λ when validated on class balanced
training subsets

λ
Number of Annotations (M)

40 100 200 400 1000
0.0 63.8±3.3 69.2±2.9 72.5±1.7 74.0±1.9 75.6±1.3
0.5 63.7±4.7 68.4±3.1 71.8±2.0 74.0±1.9 76.6±2.1
1.0 63.8±2.9 67.8±2.4 71.4±1.4 72.9±1.8 74.9±1.0
3.0 65.3±4.6 70.2±2.9 72.7±2.9 74.4±1.7 75.9±1.3
5.0 63.8±2.6 69.6±3.4 72.3±2.3 74.2±1.7 75.3±1.7
10.0 64.0±3.7 68.7±3.3 72.9±2.0 74.3±2.5 76.0±1.6

Table A2 shows the f1 scores trained latent representations obtained using the optimal r value

(r=1.0m) with the different λ values (λ=0.0, 0.5, 3.0, 5.0, 10.0) for the Tasmania dataset.

Increasing λ increases sensitivity to depth differences, making it more likely for a potential

similar pair to be rejected if there is a difference in their depths. Though the scores differ

slightly depending on the λ values, their standard deviation values show these differences

within the margin of error. The reason why λ is less sensitive to the performance than r can

be considered that rugosity and slope in the Tasmania dataset are relatively small. For the

datasets with more drastic depth changes we expect greater sensitivity to λ values.
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