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The study of breaking bow waves has significant benefits due to its influence in many aspects. The 

consequences caused by breaking bow waves include, but are not limited to, the increase of 

resistance, increased detectability and damage to port facilities. Analytic studies are not suitable 

for this problem because of over-simplified model. Present experimental studies are costly and not 

robust. This thesis presents a new two-phase flow solver for the analysis and prediction of complex 

ship flows through an investigation of bow breaking waves and builds an air-water boundary layer 

model to overcome the discontinuity over the two-phase interface.  

A combined volume of fluid and immersed boundary method is developed to simulate two-phase 

flows with high density ratio. The problems of discontinuity of density and momentum flux are 

known to be challenging to handle in simulations. In order to overcome the numerical instabilities 

encountered near the interface, an extra velocity field is designed to extend the velocity of the 

heavier phase into the lighter phase and to enforce a new boundary condition near the interface, 

which is similar to non-slip boundary conditions in Fluid-Structure Interaction (FSI) problems. The 

interface is captured using a Volume of Fluid (VOF) method, and a new boundary layer is built on 

the lighter phase side by an immersed boundary method.  

The accuracy of the new method is validated by a wide range of test cases relevant to ship wave 

flows. The results of the new solver are compared with the original VOF solver, analytical solutions 

and single-phase flow solver results. The designed boundary layer helps to reduce the spurious 

velocity caused by the imbalance of dynamic pressure gradient and density gradient and to prevent 

the tearing of the interface due to the tangential velocity between the two phases across the 

interface. It is shown to improve the robustness and stability of two-phase flow simulations, and 

higher accuracy can be obtained on a relatively coarse grid compared to the original VOF method. 

The new solver is used to study bow breaking waves generated by a wedge-shape bow and KRISO 

Container Ship (KCS). The numerical results of velocity components and axial vorticity at different 

locations in the vicinity of the bow show that the new solver can predict well the vortical cross flow 

associated with the overturning bow wave.  
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1 

Chapter 1 Introduction 

1.1 Background  

Breaking bow waves are important to engineers for many reasons. (1) For ship designers, bow 

waves are a source of resistance. For a ship to move forward, it must push tons of water out of its 

way to the sides and thus generate surface waves. (2) The breaking induces splashing and entrains 

air bubbles, resulting in a white-water wake. This wake can be a substantial source of radar 

signature of naval craft. The air bubbles also create noise in the water which is detectable using 

underwater acoustics. Current ships are designed to have such low radar, infra-red and acoustic 

signatures that the breaking waves are often more detectable than the ship itself. (3) Ship waves 

are also a persistent problem for harbours and near-shore ferries as significant damage can be 

produced by large, steep waves. (4) Accurate predictions of the detailed flow field are useful for 

improving the ship’s hull form design and local information on the flow enable the analysis and 

improvement of appendages and propulsive systems. 

Accurate and applicable prediction tools are required to better predict the behaviours of bow 

breaking waves. Analytical studies are over-simplified by simple ship geometry and flow conditions 

and their application is limited to very initial stages of design and primary description for ship wave 

system[1]. Experimental studies are over-specific to ship type. The results can be accurate but the 

time and expense for each observation is large and is not applicable for most general ships. From 

this perspective, reliable numerical simulations are required for developing mathematical models 

to understand and simulate the features of bow waves.  

Ship bow waves exhibit both large and small-scale features. The most notable large-scale 

characteristic is the Kelvin bow wave pattern. Wave systems are often described by potential flow 

theories without taking in to account the influence of viscosity. However, for sufficiently large ship 

speed and depending on the shape of a bow, spilling and/or plunging breaking occurs and induces 

vortices and scars additionally (see Figure 1-1). The most prominent small-scale feature is the thin 

overturning sheets generated from the bow wave crest and the plunging breaking waves. Nonlinear 

potential flow methods are suitable for modelling steep waves up to the point of breaking but have 

a limited ability to capture the spray and bubbles along with the breaking wave processes. 

Therefore, efficient Computational Fluid Dynamics (CFD) methods with turbulence models and 

sharp free surface capturing methods are required to investigate the mechanics of the bow wave 

breaking process. 
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Figure 1-1  Bow breaking waves[2] 

1.2 Problem definition  

A challenge of the simulation of bow breaking waves is the need to resolve the flow of two phases, 

i.e., air and water, and the evolution of the interface between them. Various free surface simulation 

methods are available, but these tools have their own limitations. In surface fitting methods, the 

grid must be deformed to match the shape of the free surface[3]. As a result, topology changes, 

such as in overturning water sheets, cannot be properly handled and the simulation of steep waves 

could be challenging. Although Level set methods can always maintain a sharp interface and can 

capture plunging breakers and flow topology, they suffer a known defect of mass conservation [4]. 

While none of the approaches provide a physically correct model for the wave breaking, the Volume 

of Fluid (VOF) comes closest as it approximates the formation of foam and bubbly regions by zones 

where the volume fraction is dissipation[3]. Numerical dissipation of foam and bubbly regions by 

Overturning sheet 
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zones, while not related to the actual physical dissipation in breaking waves, takes on the same role 

of dissipation energy, as well as keeping the solution stable. Thus, the method is robust and 

reasonably accurate even in presence of strong plunging breakers[1].  

VOF methods allow topologically complex free surfaces to be treated generally by defining a 

volume-based colour-function over a background grid instead of tracking the interface location 

explicitly. However, the volume function and the fields based on it, such as density and viscosity, 

are discontinuous across the interface. This discontinuous form of transport results in the addition 

of jump conditions across the interface which are difficult to implement numerically and unphysical 

characteristics like spurious bubbles or spray may occur.  

The free-surface boundary layer is not resolved in VOF simulations at high Reynolds numbers with 

large density jumps between air and water[5]. A numerical breakdown is associated with the jump 

that occurs in the tangential velocity across the free surface. As a result, unphysical tearing tends 

to occur even with high-order VOF advection schemes. In reality, there is a viscous boundary layer 

that makes the transition from the water velocity slightly beneath the free surface to the air velocity 

slightly above the free surface. Smoothing and/or filtering are required to reduce the jump in the 

tangential velocity that occurs at the free-surface interface. Fu et al.[6] used a density-weighted 

velocity smoother to simply push the water particle velocity into the air. The resulting fields do not 

capture the true jump at the free boundary but show a better comparison with the experimental 

results. A more robust and physics-based solution is required to resemble the viscous boundary 

layer near the air-water interface. 

1.3 Aim and objectives  

The overall purpose of this work is to contribute to the improvement of the modelling and analysis 

of complex ship flow through an investigation of bow breaking waves. A physics-based air-water 

boundary layer model is developed and applied to VOF methods to deal with the discontinuity in 

the fluid properties over the two-phase interface and to offer a better resolution of the free-surface. 

This aim is met through the following objectives: 

(a) Carry out a literature review on the research of air-water interface boundary conditions which 

mainly include the physical mechanics of two-phase boundary and numerical treatments for jumps 

over the interface. 

(b) Summarise the challenges for two-phase flow solvers, define the sources of the spurious 

velocities near the interface. 
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(c) Build a new boundary layer model to transit the water velocity to the air velocity physically 

smoothly and propose a new two-phase flow solver with the new boundary condition.  

(d) Validate the proposed two-phase flow solver with a series of test cases. 

(e) Investigate the detailed process of bow breaking waves for a realistic ship geometry.  

1.4 Novel contributions 

A general contribution of this thesis is the development of novel techniques to solve problems for 

breaking wave with high-density ratio free surface. The techniques were implemented in 

OpenFoam platform using High Performance Computing (HPC). 

In addition, the following original contributions are made: 

 (1) The free-surface boundary layer is not resolved in VOF simulations at high Reynolds’ numbers 

with large density jumps between air and water. This thesis provides a new two-phase solver (IBVOF 

solver) based on VOF to prevent tearing due to a discontinuity in the tangential velocity between 

the air and the water across the free surface. An air-water boundary layer model is built with the 

new solver. The way the air velocity at the interface is driven by the water velocity is studied and 

discussed. The model is also applicable for other two-phase flow solvers with Level set methods or 

Coupled Level Set and Volume of Fluid (CLSVOF) methods. 

(2) The characteristic of the breaking waves, especially for plunging breaking waves, is something 

which, although often mentioned is not widely studied or discussed. The detailed development of 

breaking waves, i.e., deformation, initiation, overturning, merging, air entrainment and change of 

trailing wave form, is given and discussed.  

Several papers have been published, presenting the findings of this thesis to a broader audience. 

Papers authored by Jin et al. relate directly to the methodology presented in this thesis. Other 

papers have also been contributed to as a direct result of the studies presented here. 

1.4.1 Journal papers 

Jin, Q., Hudson, D. A., Temarel, P., & Price, W. G. (2021a). Turbulence and energy dissipation 

mechanisms in steady spilling breaking waves induced by a shallowly submerged hydrofoil, Ocean 

Engineering 229. http://doi.org/10.1016/j.oceaneng.2021.108976 

http://doi.org/10.1016/j.oceaneng.2021.108976
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Jin, Q., Hudson, D. A. & Price, W. G. (2021b). A combined volume of fluid and immersed boundary 

method for modelling of two-phase flows with high density ratio, Journal of Fluids Engineering 

(Accepted). 

Jin, Q., Hudson, D. A., Temarel, P. (2021c). A combined volume of fluid and immersed boundary 

method for free surface simulations induced by solitary waves, Ocean Engineering (Under review). 

1.4.2 Peer reviewed conference papers 

Jin, Q., Hudson, D. A., Temarel, P., & Price, W. G. (2019). Performance of a two-phase flow solver 

for the simulation of breaking waves, in ‘Proceedings of 38th international conference on ocean, 

offshore and arctic engineering, 9th -14th June, Glasgow, UK’.  

Jin, Q., Hudson, D. A., Temarel, P., & Price, W. G. (2020). Numerical simulation of plunging breaking 

waves on a ship bow by a two-phase flow solver, in ‘Proceedings of 30th International Ocean and 

Polar Engineering Conference, 11th -16th June, Shanghai, China’.  

1.4.3 Other conference papers 

Jin, Q., Hudson, D., & Temarel, P. (2018). Simulation of non-breaking and breaking waves with 

OpenFOAM, in ‘Proceedings of the 21st Numerical Towing Tank Symposium, 30th September-2nd 

October, Cortona, Italy’. 

Jin, Q., Hudson, D., & Temarel, P. (2019). Simulation of plunging breaking waves induced by a 

submerged bump, in ‘Proceedings of the 22nd Numerical Towing Tank Symposium, 29th September-

1st October, Tomar, Portugal’. 

1.5 Structure of the report 

This thesis presents a new two-phase flow solver to improve the accuracy and stability of bow 

breaking wave simulation using a velocity extrapolation approach. This method is motivated by the 

realization that the free surface boundary layer has not been resolved in existing two-phase flow 

simulations with large density jumps between air and water. The new solver is presented to reduce 

the unphysical tearing of the free surface. An outline of this Thesis is given below. 

Chapter 2 reviews exiting literature and background information on the bow breaking waves and 

air-water interface modelling and analyses the trends and limitation of existing research results. 
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The ship hydrodynamic tools are required to be improved with more accurate prescription and 

prediction of air-water interface behaviour. 

Chapter 3 gives a description to the fundamental basis and algorithm for the proposed two-phase 

flow solver. The sources of the spurious velocities and shear are analysed based on governing 

equations. In order to achieve stable numerical solution at high density ratios, a boundary layer is 

built on the air phase side by an immersed boundary (IB) method and an extrapolated velocity (EV) 

approach is used to reconstruct the velocity inside the boundary layer. The velocity extrapolation 

from liquid to gas is designed and validated with simple test cases.  

Chapter 4 examines the accuracy and stability of the new solver with two sets of test cases, steady 

stratified flow and convection of a high-density droplet. In the former case, the effects of mesh size, 

time step and density ratio to the spurious velocity generated near the interface are further 

examined.  In the latter case, the effect of the spurious velocities to the captured interface is 

investigated. The results of both test cases with the new solver are compared with the original VOF 

solver, analytical solutions or one-phase flow solver. 

Chapter 5 extends the applications of the IBVOF solver to general flow simulations. Another velocity 

extrapolated method, density-weight smoothing method, is proposed and applied into the new 

solver. The DW method extends the applications of the new solver from 2D simulations with 

uniform mesh to 3D simulations with unstructured mesh. Several test cases are carried out and the 

effects of fluid viscosity and surface tension are investigated. 

In Chapter 6, the performance of the proposed two-phase flow solver is further evaluated through 

two sets of numerical benchmark tests with solitary waves and Stokes waves. In both sets of 

benchmark tests, the fluids are first modelled as inviscid for wave propagation simulations. This 

assumption allows comparisons with the well-controlled potential theory. In the latter cases of 

wave breaking, the influence of fluid viscosity and surface tension are considered, and the 

numerical results are compared with published experimental data. 

In Chapter 7, an assessment of the capability of the IBVOF solver is first performed on a test case 

specifically conceived, plunging breaking waves generated by a sharp wedge-shaped bow. The 

numerical results of the bow wave profile at different locations in the vicinity of the bow are 

compared to experiments to validate the proposed two-phase flow solver. Then, the IBVOF solver 

is used to simulation the wave pattern generated by the KRISO Container Ship (KCS) in forward 

motion. The focuses are put on the hydrodynamic simulation of the whole process of plunging 

breaking waves and the velocity and vorticity field in the region of the bow and in breaking waves.  

Chapter 8 presents the major research findings and suggestions for the future work. 
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Chapter 2 Research on bow breaking waves 

2.1 Introduction  

As with most scientific problems, the development of this bow breaking waves investigation goes 

hand in hand with discovering which phenomena are involved. This chapter will review, by means 

of experimental observations and numerical simulations, how this process has played in the past 

several decades.  

The review is started with a brief introduction to the types of bow breaking waves, the existing 

literature on experimental and numerical studies of the bow wave, and the reasons why the 

simulation of breaking waves is challenging. An in-depth discussion on free surface viscous flow 

solvers is presented by comparison between one-phase flow solvers and two-phase flow solvers. 

Because of their ability to deal with air-water interaction problems, two-phase flow solvers are the 

best choice for bow breaking wave simulation. This chapter serves both to highlight the 

hydrodynamic phenomena involved in bow breaking waves and the problems that the two-phase 

flow solvers face.  

2.2 Literature review of bow breaking wave investigations 

2.2.1 Classification of bow breaking waves  

The bow wave is a feature of the flow generated around the bow of a ship hull. It is worth studying 

for several reasons. An important basic property of a bow wave is that it mainly depends on the 

shape of the ship bow instead of the length of the ship or the hull geometry aft of the bow region 

[7]. This fundamental characteristic allows the bow waves generated by a typical family of ship 

bows to be calculated by defining a set of geometric parameters.  

Another important feature is that the waterline entrance angle and ship speed are thought to have 

a considerable impact on the breaking type of bow waves. Depending on the appearance of stability 

at the crest, the breaking waves can be classified as plunging breaking waves or spilling breaking 

waves, as shown in Figure 2-1 [8]. Fast ships with fine bows tend to produce plunging bow waves 

which are made up of detached thin sheets of water. The water sheets are relatively steady until 

they reach the main free surface and break up and undergo turbulent diffusion. Slow ships with 

blunt bows, on the other hand, tend to produce highly unsteady and turbulent breaking bow waves. 

Noblesse et al. [9] tried to divide the two types of bow breaking waves with a boundary by 
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approximating a simple analytical solution for a wedge-shaped ship without a bulbous bow in clam 

water. This analytical expression was used in Bernoulli’s equation for the bow wave and compared 

with the experimental approximation method. According to Noblesse’s research, the depth-based 

Froude number and the waterline entrance angle are the two major characteristics that impact the 

stability of the bow-wave crest. As a result of this finding, it may be determined that the features 

of the bow wave created by a certain ship may be dynamically modified by the ship's speed or depth.   

 

(a) Spilling breaking 

 

 

(b) Plunging breaking 

Figure 2-1  Classification of the bow wave breaking [8]. 

For both types of breaking waves, the numerical treatment of these highly nonlinear free-surface 

behaviours is usually very difficult and challenging due to the complexity of fully nonlinear free-

surface and body boundary conditions. The free surface eruptions in spilling wave breaking indicate 

that the broken free surface is a result of the strong turbulence generated underneath the free 

surface meeting the free surface[10]. Spilling wave breaking is a vast area of study, which is not yet 

fully understood. The physics of primary interest in spilling breaking is the initiation of breaking, 

change of trailing wave form and the mean and turbulent flow structure in the trailing wake[11]. 

The broken free surface makes the investigation of waves more complex caused by the waves and 

their interaction with boundary layers and vortices, free surface turbulence, and air-water 

interfacial effects such as bubble entrainment and surface tension. Gaining a better understanding 

of the fluid mechanics of the free surface would be of both fundamental and practical interest, 

especially for ship and ocean engineering. 
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Plunging wave breaking is one of the most violent phenomena of air–water interface interactions, 

producing strong turbulence with large amounts of air bubbles, water droplets, jets and sprays. 

These phenomena commonly occur in ship flows and are one of the main sources of the underwater 

sounds and white-water wakes, which are of great importance for signature of ships. The physics 

of primary interest in plunging breaking waves is unsteady development of plunging jets, i.e., 

deformation, initiation, overturning, merging, air entrainment and splash-up. However, the process 

of plunging wave breaking is not well understood and there are few studies that provide a detailed 

quantitative description of breaking waves. It is therefore important to investigate the conditions 

under which breaking appears and the interactions of air and water[12]. 

2.2.2 Experimental observation  

Experimental observations on bow waves mainly focus on the wave height or the velocity fields. 

The University of Tokyo Towing Tank has done many experimental studies on bow waves [13]. Inui 

et al. [14] measure the flow structure of bow waves using surface visualization techniques 

(aluminium powder and tracking particles). Toda et al. [15] measured the wave height and average 

velocity using a capacitance wire and a 5-hole pitot tube for Series 60 and characterized the 

presence of a bow-wave-induced vortex. 

Duncan[16] investigated the surface height profile and vertical distributions of velocity behind an 

constant-speed underwater hydrofoil in a towing tank. According to wake observation, the drag 

associated with wave breaking at a free surface is triple the theoretical maximum drag of a 

nonbreaking wave. Dong et al. [17] and Roth et al. [18] investigated the early stages of bow-wave 

development in flow generated by the DTMB 4817 model with PIV measurements and free-surface 

visualization. The results showed that viscosity and surface tension play a role in inhibiting the bow 

breaking waves formation and evolution. 

Waniewski et al. [19] studied the dynamics and air entrainment mechanisms of ship waves with a 

wedge-shaped bow and demonstrated that the bow wave is a nonlinear phenomenon. The 

structure of bow waves (thin water sheet formation, overturning sheet with surface disturbance, 

fingering and breaking up into spray, plunging and splashing, and air entrainment) are displayed 

and documented with valuable experimental data provided such as wave elevation, extent of wave 

breaking, spray droplets size and number. The experiments are carried out in both a water flume 

and a towing tank with a fixed deflecting plate and a towing wedge model. A thin liquid sheet is 

generated at the leading edge of the wedge, and it continues to ride up on the side wall according 

to the bow wave profile obtained in the towing tank experiment. A large area of splash is crested 

at the wake of the wedge due to wave plunge and air entrainment. Noblesse et al. [9] established 
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a set of simple mathematical relations for a wedge-shaped bow wave based on the experimental 

data and elementary fundamental concepts that characterise the key properties of a ship bow 

(wave height, wave crest location and profile, and flow steadiness or unsteadiness) in terms of ship 

speed, draught and waterline entrance angle.  

Olivieri et al. [20] [2] investigated the velocity field of bow wave breaking generated by a naval 

combatant, INSEAN model 2340 using a 5-hole pitot tube downstream of the bow wave and 

observed a bow and shoulder wake of a model ship in a subsequent study. As shown in mean 

velocity measurements, the breaking waves create a complex vortex structure beneath the free 

surface.  

Karion et al. [21] investigated the size and velocity distribution of the bow breaking waves 

generated by a wedge-shaped bow through high-speed video analysis. Measurements were 

characterized by Froude, Reynolds, and Weber numbers. According to their findings, wave breaks 

occur when the Froude and Reynolds numbers pass a certain level and there is a key Weber number 

for bow wave spraying. The findings are used to examine scaling issues related to bow-wave 

breaking. 

 

 

Figure 2-2  Experimental observation of bow waves by Olivieri et al. [2] 

Maxeiner et al. [22] investigated the characteristics of a bow wave by using a two-dimensional plus 

time (2D+T) approximation method using a flexible wave board designed to simulate one side of 
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bow waves for an advancing ship with a simple bow shape. The height of the bow wave and shape 

of the crest are considered when investigating the characteristics of the bow wave. It is found that 

the wave parameters such as wave velocity and the maximum wave height closely correlate with 

the motion of a wave generator. 

Experimental measurements are the most reliable methods to evaluate the bow wave breaking. 

The hydrodynamical phenomena involved in ship flow are usually discovered from experimental 

observation and then validated and investigated with numerical simulations. However, as analysed 

above, there are lots of limitation with the experimental measurements. The experimental 

measurements highly depend on experimental conditions and involve time consuming procedures 

for test preparation. Due to the high money and time cost, the observation is usually limited to 

benchmarks ships or simple geometries.  

What’s more, it is possible to measure data such as the position of free surface and velocity fields 

near the free surface at pre-breaking stages via experimental observation, but hard to measure 

when wave breaking occurs. The measurement of small-scale phenomena, such as water droplets 

and air bubbles, is a huge challenge in the experiments. Though techniques develop, it is presently 

impossible to obtain velocity information of the air phase.  

2.2.3 Numerical simulations 

A review of numerical research on bow waves is presented. Good solvers are required to investigate 

the complex interaction between bow waves and incident waves. Many technologies have been 

applied to analyse bow waves statistically, and satisfactory progress has been achieved recently. 

For example, many investigation has been conducted on the diffraction of bow waves when the 

ship has a constant advancing speed [23][24][25].  

Dommermuth et al. [26] simulated the flow with spilling breaking around a ship model by using an 

immersive body and volumetric methods. A high-resolution direct numerical simulation (DNS) of 

the Navier-Stokes equation is applied to capture unsteady breaking waves. The findings reveal that 

vorticity and surface tension have a significant effect in wave breaking strength. 

Carrica et al. [27] used the RANS approach to numerically analyse the forward diffraction problem 

using the RANS approach. A mixed turbulence model is used to simulate the turbulent viscosity and 

the level set method is used to describe the free surface. According to the flow analysis, the wave 

force can cause nonlinear behaviour of the free surface. The RANS approach was used by Olivieri et 

al. [2] to analyse the vortices formed by wave breaking. 
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Colagrossi and Landrini [28] and Marrone et al. [29] investigated the wave pattern generated by a 

fast ship with a fine bow by a 2D+t SPH mode. The smoothed particle hydrodynamics (SPH) model 

is used to model the free surface. The 2D+t method simulates the shape of the bow waves by 

approximating the ship motion by a mathematically equivalent set of equations and governing the 

abnormal 2D free-surface flow generated by the deformable body on a vertical plane across the 

ship. RANS or DNS model can be used to realistically model complex processes. Each computation, 

however, takes time. 

In[30], the wave breaking mechanism and small scale features of ship bow waves are numerically 

investigated through the flows around a wedge-shaped bow. Broglia et al.[20] carried out 

simultiaons on breaking wave at the bow of a fast displacement ship model  and compared their 

results with the experimental data [19]. However, the small-scale interface structures were not 

captured, since a single-phase level set method was used for the free surface tracking. The 

mechanism of the liquid sheet disturbance, fingering, pinching off droplets and spray production 

has yet to be fully investigated. The study [19] was selected as test cases to validate the capability 

of the code of CFD Ship-Iowa Version 6 [31][32] for small scale features of ship bow waves. A 

Cartesian grid solver is first used for the two-phase flow simulation with coupled level set and 

volume-of-fluid (CLSVOF) to track the free surface and immersed boundaries methods for fluid-

structure interface. An orthogonal curvilinear grid solver [33] is also proposed in order to increase 

the grid resolutions near the wall. 

2.3 Trends and limitations 

No matter what kind of breaking wave it is, the key point and the challenge of the simulation of 

bow breaking waves is the need to resolve the flow of two phases, i.e. air and water, and the 

evolution of the interface between them. The focus of recent research has been to improve 

hydrodynamic tools. Various free surface simulation methods are available, but these tools have 

their own limitations. The research trends and limitations are analyzed below. 

(a) Interface conditions  

Air-water interface modelling must satisfy kinematic and dynamic constraints[1]. The kinematic 

constraint requires that the particles on the interface to stay on the interface, and the dynamic 

conditions require stress to be applied continuously across the interface. The stress on the interface 

is mainly composed of viscous stresses and surface tension. The latter is usually neglected for many 

ship hydrodynamics applications. 
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(b) Interface representation   

One fundamental question for interface modelling is the indication and description of the interface. 

The SPH [28]method identifies phase information by particles of specified physical properties and 

there is no need to track the interface explicitly. The particle density is therefore used as an 

indicator function to determine the position of interface while specifying surface tension. 

Compared to the SPH method, Lagrangian interface tracking methods such as front tracking method 

or marker point tracking method can give an accurate interface position. However, a field function 

is still required within the flow field to identify the phase information at each location[34]. Eulerian 

methods such as Volume of Fluid (VOF), level set (LS) and phase field methods only provide the 

indicator functions at each point or each cell, while the interface location is implicitly embedded in 

the flow field.  

The treatment of the air-water interface is another key point in air-water interface modelling. The 

interface should be treated as a transition zone with a finite thickness or a sharp interface with zero 

thickness. Different choice leads to different mathematical formulations and the numerical 

strategies for solving the two-phase flow. This choice refers to the variation of physical properties 

such as density and viscosity of the fluids across the interface. The surface tension, on the other 

hand, can also be treated in both sharp and diffusive interface manners, despite the fact that the 

specific treatments are not directly related to the mathematical approximation of jumps in the fluid 

physical properties. Detailed discussion of interface capturing methods is given in the section 2.4. 

(c) Requirements of Free-surface flow solution  

The modelling of viscous free surface flow is a subject that has reached a certain maturity and has 

been used in engineering applications. Many of these methods are being used with success. 

However, for the simulation of bow breaking waves, there are some important requirements for 

numerical solvers.  

Some of the earlier results[18] [20] [11] of free surface flow around ships contained different wave 

profiles from the experimental observations in the predicted wave pattern that exceeded the 

viscous effects on that pattern or dominated the computed scale effects. Even now, several 

methods exist that are unable to reliably forecast these aspects. In particular, the need to function 

properly at full scale, for Reynolds numbers (depending on ship length and speed) up to 5e9, is 

particularly difficult to meet. 

In addition, the solution must be robust with respect to breaking waves. The method should not 

break down when wave breaking occurs, either as plunging breakers appearing at sharp bows or as 
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spilling breakers at blunt bow flow. The importance of these aspects increases for high-speed ships 

with a sharp bow where stronger breaking occurs. 

2.4 Air-water interface modelling  

During the last thirty years, much progress has been made in the development of robust and 

accurate computational algorithms capable to predict two-phase flows with both viscous and 

turbulent effects. While this development continues unabated, the application of these strategies 

to full-complexity real-life problems is entering industrial practice. In ship and ocean engineering, 

the accurate prediction of highly nonlinear free-surface flows and the related impact loads by the 

fluids is very important in various applications including high waves, liquid sloshing, bow/deck 

slamming, or green water. Due to the complexity of fully nonlinear free-surface and body boundary 

conditions, numerical treatment of this type of highly nonlinear free-surface behaviour is usually 

very difficult and challenging. The most challenging task is capturing the free surface in case of 

extremely violent motions, such as overturning, plunging, and splashing. 

The fluids involved in ship hydrodynamic are water and air. In general, they can be treated as 

Newtonian fluids. The bow wave breaking phenomena can also be considered as incompressible 

due to usually very low Mach numbers. Therefore, the governing equations for ship flow are the 

incompressible Navier-Stokes equations. Solvers for ship flows are categorized based on the 

solution methods for the two different fluids involved in as: (1) One-phase flow solvers and (2) Two-

phase flow solvers. In one-phase flow solvers, only the water phase is solved using atmosphere 

pressure boundary condition at the free-surface while in the two-phase flow solvers, both air and 

water phases are solved using one-fluid formulation. 

2.4.1 One-phase flow solvers 

In free-surface flow solvers or one-phase flow solvers, only the water phase is solved while the 

effect of air to water is simplified as atmospheric pressure boundary condition at the free surface. 

Many ship hydrodynamics solvers have adopted this mathematical models, for example, CFDShip-

Iowa version 3[35] and 4 [36] from IIHR, xship [37] from INSEAN, SURF [3] from NMRI, PARNASSO 

[38] from MARIN, ICARE [39] from ECN/HOE, WISDAM [23] from the University of Tokyo, among 

others. These solvers are applicable in a wide range of applications, since the water phase accounts 

for most resistance. However, most of these solvers are not capable of solving problems with wave 

breaking and air entrainment. When a one-phase method is applied to flows with bow wave 

breaking of a blunt ship, it is observed that numerical solutions fail to predict wave breaking 

accurately in some case[40]. 
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In one-phase solvers, surface tracking method are often used cause only the water is considered in 

the computational domain. The position of free surface is defined by massless particles. Marker-

and-Cell method proposed by Harlow and Welch[41] is one of the earliest attempts to employ 

massless particles. In this method, massless particles are distributed all over the computational 

domain, move with the underlying flow and are used to identify each phase as a single fluid. The 

interface is reconstructed based on the position of these particles. More recently, Unverdi and 

Tryggvason[42] have proposed a front-tracking method. Massless particles that are distributed over 

the interface is used to explicitly track the surface. Front tracking methods is proved to be accurate 

in their cases. However, re-gridding algorithm must be employed in order to prevent the clustering 

or the rarefaction of marker particles. Moreover, special care is required when dealing with an 

interface that changes in topology, for instance, in the case of a free surface that breaks and/or 

merges[34].   

Besides surface tracking methods, one of surface capturing method, i.e., single-phase Level Set 

methods is also used in one-phase flow solvers. Foster and Fedkiw [43] simulated the 3D free 

surface flow around simple geometries. Carrica et al. [27][36] applied unsteady single-phase Level 

Set to the study of the forward speed diffraction problem and unsteady viscous free surface flow 

around a combatant ship. In the single Level Set approach, the solution is computed only in the 

liquid phase. The gas phase being computed only for numerical reasons. The single-phase Level Set 

is not suitable neither for problems with air entrainment or bubbles, nor for problems where 

stresses on the free surface due to air play an important role[37]. 

Even though the one-phase solvers fail to describe the evolution of free surface, Rhee and Stern 

[11] proposed a RANS model for spilling breaking waves,  modelling the breaking effects on the 

underlying flow as a whole, therefore renouncing the description of flow details within the foamy 

turbulent mass of fluid.  The dynamic free surface condition is then modified with the C&T models. 

Similar models can also be found in [44][45] for breakers in surf zone. It is was worth to mark that 

these models can only simulate the evolution of waves and the effects on flow beneath the free 

surface to some extent. The investigation for the mechanism of breaking wave is still not clear 

especially for plunging breaking waves. 

The breaking wave phenomenon is a challenging problem for mathematical modelling. It is strongly 

unsteady, is a two-phase flow and air entrainment cannot be neglected. Although larger computer 

resource is required, an accurate description of air-water interface is essential with both air and 

water considered. 
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2.4.2 Two-phase flow solvers 

In the two-phase solvers, both the air and water phase are solved in a coupled manner, which 

requires treatment of density and viscosity jump at the interface[33]. The two-phase flow solvers 

are more common in commercial codes such as FLUENT [46], CFX [47], STAR-CCM+[48] and open-

source CFD platform OpenFOAM [49], as they are more general tools for a wide range of application. 

Compare to one-phase solvers, they are less computational efficient due to high total grid 

resolution requirement for resolving the air flow besides the water flow.  Two-phase flow 

simulations are of interest in many applications, in particular, wind generated waves, breaking 

waves, and bubbly wakes, among others[1].  

Theoretically, it is possible to solve each phase separately and couple the solutions at the interface. 

However, mentioned above, this approach is only practicable for cases with mild, non-breaking free 

surface or a very limited number of non-breaking air bubbles or water droplets. Most two-phase 

flow solvers for practical applications apply a one-field formulation and a single set of governing 

equations is used to describe the fluid motion of both phases. In a one-field formulation, each phase 

needs to be identified using a marker or indicator function. Surface tension at the interface 

becomes a singular field force in the flow field rather than a boundary condition in the phase-

separated solvers. Several numerical methods have been developed over the past decades for the 

air-water interface modelling. Among them, the level set (LS), volume of fluid (VOF) and the coupled 

level set and volume of fluid (CLSVOF) methods have been widely employed for interface capturing 

in ship and ocean engineering. Large distortions and geometrical changes are allowed in the 

simulations with these three methods.  

(a) Level set methods. 

Level set methods is first induced by Osher and Sethian[50]. In LS methods, the interface is implicitly 

represented by the LS function which is defined as a signed distance function. The level set function 

can be considered as a general scalar and its advection equation can be solved using similar 

temporal and spatial discretization schemes to those of the single-phase flow. Geometrical 

information such as interface normal and curvature is easily derived from the continuous and 

smooth distance function[33]. These advantages have boosted its applications in many CFD fields 

including ship and ocean engineering. However, the level set advection equation does not impose 

a volume constraint in course of level set evolution and makes the mass conservation a serious 

concern in level set methods.  

Many schemes have been developed for possible improvements, such as the particle level set 

methods[51] [4], coupled level set and volume of fluid methods[31][52]. Some studies chose 
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different definitions of the level set function, for instance in[53] a smoothed Heaviside function was 

used with value 0–1 across the interface at iso-level 0.5, instead of a signed distance function. 

Although they were named level set techniques since a reinitialization step was still required, they 

are similar to other methods that establish a smoothed transition band between different phases 

such as phase field, constrained interpolated propagation [54], and colour function methods. 

Level set methods represent the surface as the zero contour of a level set function 𝜙：𝑅𝑁 → 𝑅. In 

the domain enclosed by the surface, one has 𝜙 < 0, while outside  𝜙 > 0. Geometric quantities, 

such as normal vectors and curvature, can be obtained from the level set function: �⃗� = ∇𝜙/|∇𝜙| 

and κ = ∇�⃗� . In order to move the surface with a velocity field, the level set function is advected 

according to the partial differential equation: 

              𝜙𝑡 + �⃗� ∙ ∇𝜙 = 0                                                  (2-1) 

The level set function can be defined on a regular grid. High order ENO[55] or WENO[56] schemes 

are commonly used to approximate the equation. 

Gradients and curvatures can be approximated by finite differences. For an accurate and stable 

approximation, it is beneficial if 𝜙 is a signed distance function. 

        |∇𝜙(𝑥)| = 1                                                   (2-2) 

Even if 𝜙  is a distance function initially, it typically ceases to be so due to deformations induced by 

the velocity field. One remedy to this problem is to recover the sign distance function by solving 

the re-initialization equation 

     𝜙𝜏 = sign(𝜙0)(1 − ∇𝜙)                           (2-3) 

(b) Volume of fluid methods. 

The Volume of fluid method was first proposed by Hirt and Nichols [57]. The flow equations are 

volume averaged directly to obtain single set of equations and the interface is tracked using a phase 

indicator function (or colour function or volume fraction). 

In the volume of fluid method, the interface is tracked using a phase indicator function F (F ∈ [0,1]), 

if F=1, control volume is filled with phase 1, if F=0, control volume is filled with phase 2, if 0<F<1, 

interface present). At each time step, the free surface is constructed by geometric solution using 

by the volume ratio and then the volume functions F are obtained by solving the transport equation 

of the volume ratio according to the reconstructed free surface.  

The control differential equation for F is: 
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𝜕𝐹

𝜕𝑡
+ ∇ ∙ (𝐹�⃗� ) = 0                          (2-4) 

The above equation is the transport process of the fluid volume function, and its calculation 

accuracy directly affects the fineness of the free surface. Since F is a step function, the control 

equation is purely a convection equation. If the solution method is not correct, it directly results in 

a larger error or even divergence. Two critical issues with the VOF method are (i) interface 

reconstruction and (ii) Calculation of the volume function and solution of advection transport 

equations. 

 

Figure 2-3  Real free surface of a typical plunging breaking wave 

 

Figure 2-4  Volume fraction 𝛼 distribution with the VOF methods 

In VOF methods, the interface is indirectly represented by a numerical field that describes the 

volume fraction of water within each computational cell. The basic idea of VOF methods is to 

calculate how much water is floating over the faces between adjacent cells within each time step[1]. 

According to the way of reconstruction of interface, the VOF methods can be divided into two parts: 

1) geometric VOF methods, using geometric operations to reconstruct the fluid interface inside a 

cell and to approximate the water fluxes across faces, and 2) algebraic VOF methods, relying on the 

limiter concept to blend first and higher order schemes in order to retain sharpness and 

boundedness of the time advanced VOF field[58]. Geometric VOF schemes are typically much more 
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accurate, but also computationally more expensive, more difficult to implement, and limited to 

particular types of computational meshes, such as hexahedral meshes. Algebraic VOF methods, on 

the other hand, are less precise, but they are usually quicker, simpler to implement, and designed 

for a wider range of mesh types[59]. 

In the geometrical VOF methods, the volume function is directly advected, but a special interface 

reconstruction process is required because of the sharp jump in the marker function across the 

interface. Due to the discontinuous volume function, it is difficult to obtain accurate geometric 

information such as interface normal and curvature. Therefore, VOF methods combined with a level 

set function can be quite useful to solve this problem. Wang et al.[33] proposed a new VOF method 

with a distance function constructed from the VOF function, and greatly expands the applications 

of the VOF method. Further improvements on VOF methods have been investigated through 

tracking additional information such as the material centroids in the moment of fluid method[60]. 

Recently Sussman’s group coupled the level set method with the moment of fluid method[61]. It is 

also possible to couple front tracking methods with the VOF methods such as in [62]. Of course, 

these approaches are more complicated compared with the level set and algebraic VOF methods, 

but they reduce interface position errors than the algebraic VOF methods and improve mass 

conservation properties than the level set methods.  

Compare to the geometric VOF methods, the algebraic VOF methods have a wider application for 

both structured and unstructured mesh. The algebraic VOF schemes implemented in OpenFOAM 

are representative examples. A major problem of these schemes is the blurred interface. Very high 

resolution is required when capturing small-scale air-water interaction phenomena such as water 

droplets and air bubbles. Convection term discrete format is the key to solve the volume fraction 

convection equation. Since the liquid surface separates the gas-liquid two-phase medium, the 

volume fraction flux function is a discontinuous function, and the numerical dissipation will quickly 

mix the two-phase medium which may form a certain thickness of the transition layer around the 

interface, make it difficult to keep the interface sharp and even lead to loss of mass. Higher order 

schemes are unstable and result in numerical oscillations while lower order schemes like the first 

order upwind method tend to smear the interface owing to numerical diffusion. It is necessary to 

derive advection schemes that can maintain the sharpness of interface and provide monotonic 

profiles of the volume function.  

(c) Coupled level set and volume of fluid methods. 

A Coupled Level Set and Volume of Fluid (CLSVOF) method was proposed by Sussman and Puckett 

[52] and explored in [31][63][52]. It applies VOF to calculate the transport-diffusion equation to 

ensure mass conservation and uses a set method to calculate the normal direction, curvature and 
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physical quantities relating to the curvature. The interface is reconstructed via a geometric VOF 

scheme and the interface normal vector which is computed from the LS function. Based on the 

reconstructed interface, the LS functions are re-distanced via a geometric procedure for achieving 

mass conservation. 

Mass is conserved while still maintaining a sharp representation of the interface by representing 

the free surface as volume fractions. However, it is difficult to compute accurate local curvatures 

from volume fractions. Too much smoothing has the effect of making the curvature constant along 

the free surface. In the CLSVOF method, no smoothing of the curvature is done, instead the 

curvature is obtained via finite differences of the level set function which in turn is derived from 

the level set function and volume-of-fluid function at the previous time step.  

2.5 Challenges for two-phase flow solvers 

Bow wave breaking has been a difficult phenomenon to model theoretically because the bow wave 

changes continuously through the interaction of air and water with significant differences in 

properties. It requires accurate simulations owing to ship resistance estimation, wake elimination 

and ship safety. According to the literature review, on the three interface capturing methods 

mentioned above, at least the four factors listed below are critical to the accuracy of two-phase 

flow solvers. 

2.5.1 Accurate interface representation and advection  

The interface location, its normal and curvature are known only implicitly in the framework of 

implicit interface capturing methods, as they are derived from the underlying colour function. In 

the VOF methods, for example, the interface is defined by a discontinuous change in the volume 

fractions. The difficulties related to its advection have been analysed in the literature above. 

Excessive diffusion of the interface is known to occur with VOF methods, which is highly undesirable 

in numerical simulations. Such a diffusion is a result of naïve advection of the underlying, 

discontinuous VOF function for either geometrical or algebraic VOF methods. 

Aside from precise advection of the VOF function, difficulties arise in the estimation of interface 

normal and curvature, due to the discontinuous nature of the volume fraction field, and in this 

regard, several alternatives, including smoothing of the volume fraction field [64] and construction 

of height function [65]. While these methods appear to perform well in mildly behaved test cases, 

several authors [66][67] have indicated that these methods also become error-prone in high-

curvature or poorly resolved regions. 
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2.5.2 Mass conservation  

It is difficult to maintain a sharp and accurate interface with VOF methods. Accurate representation 

of the interfacial quantities can be obtained by the level set methods. This is especially 

advantageous in two-phase flows with surface tension effects. However, a well-known 

disadvantages of this approach has been that mass conservation is not embedded in the level set 

formulation[68]. As a result, high-curvature or poorly resolved regions of the flow are typically 

prone to lose or gain mass during the simulations. Significant improvements have been made in this 

regard through the development of techniques mentioned in section 2.4.2. Another pending issue 

that has yet to be resolved is the loss of signed distance property owing to advection issues. An 

extra re-initialization operation is required[68][69] to restore property of signed distance function. 

This not only increased the computational cost, but also causing an artificial displacement of the 

interface which results in mass loss/gain[4]. 

2.5.3 Spurious currents 

Almost all the implicit interface capturing methods are known to be generate unphysical flow at 

the interface solely due to numerical inadequacies. The inaccurate interface curvature, and the 

discontinuities in material properties, especially in high-density ratio are the two main sources of 

spurious velocities. The first one is related to surface-tension-dominated flow, while the latter 

related to momentum transport equations which is a major issue in inertia-dominated flows. For 

the first source of spurious currents, five kinds of strategies have been employed to mitigate this 

shortcoming. 

(1) Improvements to curvature estimation[70][71]; 

(2) Ensuring a discrete balance between pressure gradient and surface tension[70][72][73]; 

(3) Sharp representation of the interface using ghost fluid approach in conjunction with accurate 

curvature estimation[74][75]; 

(4) Time resolution of capillary flow generated at the stair-stepped interface in an explicit 

implementation of the surface tension[76]; 

(5) Temporally semi-implicit treatment of surface tension[77]. 

The generation of spurious velocity is one of the major issues for surface-tension-dominated flows. 

It poses serious concerns in the computation of capillary flows, which generally affect the small 

liquid structures in hydrodynamic flows involving wave breaking. 
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2.5.4 Handling large density ratios 

Several strategies have been employed to mitigate the errors caused by the surface tension force 

[70][76][78], while less solutions are proposed to handle the discontinuities in the flow with high-

density ratios. Rudman [79] tried to solve this problem by using a VOF density-based flux correction 

scheme to calculate the momentum convection term, and Raessi [80] adopted this strategy for level 

set methods. It is shown to slightly improve the result of numerical simulations, but spurious 

interface deformations still exist [81]. Another potential solution to this density-jump problem is to 

use a Ghost Fluid Method (GFM) [75][82][83][84]. Artificial fluid cells are introduced to implicitly 

capture the jump condition across the interface without any transition thickness between the two 

phases. Two additional distinct velocity fields are defined across the whole domain for the two 

phases separately and reconnected though a pressure jump condition. It is proved that a GFM helps 

to eliminate the spurious oscillation and minimize numerical smearing near the interface. However, 

these additional velocity fields give rise to further problems. Having an interfacial velocity separate 

from the fluid velocity with a velocity jump condition has its own stability problems, and more 

computational resources are required as the complexity of the two-phase flow solver increases [85].  

Apart from the problem of solving continuity and momentum equations, the free-surface boundary 

layer is not resolved in all implicit interface capturing methods at high Reynolds numbers with large 

density jumps between air and water[5]. A numerical breakdown is associated with the jump that 

occurs in the tangential velocity across the free surface. As a result, unphysical tearing tends to 

occur even with high-order advection schemes. In reality, there is a viscous boundary layer that 

makes the transition from the water velocity slightly beneath the free surface to the air velocity 

slightly above the free surface. Smoothing and/or filtering are required to reduce the jump in the 

tangential velocity that occurs at the free-surface interface. Fu et al. [86]used a density weighted 

velocity smoother to simply push the water particle velocity into the air. A more robust and physics-

based solution is required to resemble the viscous boundary layer near the air-water interface. 

2.6 Conclusion 

The existing literature on experimental and numerical studies of the bow wave breaking has been 

reviewed. Bow wave breaking has been a difficult phenomenon to model theoretically because the 

bow wave changes continuously through the interaction of air and water with significant 

differences in properties. It requires accurate simulations owing to ship resistance estimation, wake 

elimination and ship safety. 
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Experimental measurements are the most reliable method to evaluate bow wave breaking. 

However, it is difficult to measure the bow flow for all ships experimentally. Experiments to 

measure bow breaking waves depend on experimental conditions and involve time-consuming 

procedures for test preparation. What’s more, due to the techniques, the experimental 

measurements can be only be done in the water region and the detailed description of the flow in 

the energetic wave breaking region is not available. 

Numerical studies are suitable as alternatives to experimental measurements. With the 

development of computer performance, detailed wave breaking processes and velocity profile can 

be obtained in both water and air phases in CFD simulations, however, the results can be uncertain 

and artificial. The trend of recent research is to improve hydrodynamic tools with accurate 

prescription and prediction of air-water interface behaviour. 

The review also focused on the air-water interface modelling. Various air-water interface 

tracking/capturing methods have been compared and discussed. One-phase flow solvers are more 

efficient since only the water phase is considered in computation. However, the effect of air is 

neglected, and the numerical solution usually fails to predict wave breaking accurately. Two-phase 

solvers solve both the air and water phase in a coupled manner and are more suitable for breaking 

wave simulations. The three most common-used interface capturing methods Level Set, VOF and 

CLSVOF have different ways to represent the interface but share same challenges when dealing 

with the air-water interface conditions as two-phase flow solvers. The free-surface boundary layer 

is not resolved in all implicit interface capturing methods at high Reynolds numbers with large 

density jumps between air and water. As a result, spurious currents and unphysical tearing tends 

to appear near the interface.  

A physics-based viscous air-water boundary layer model is required to be developed and applied to 

VOF methods to deal with the discontinuity in the fluid properties over the two-phase interface and 

to offer a better resolution of the free-surface. The thickness of air-water boundary and how the 

air velocity at the interface driven by the water velocity needs to be studied and discussed. The 

developed the free-surface capturing method helps to improve the accuracy of simulations of 

breaking waves. 
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Chapter 3 Free-surface boundary conditions 

3.1 Introduction  

Despite the popularity of two-phase flow solvers, the three most commonly used interface 

capturing methods have different ways to represent the interface and share similar challenges 

when dealing with two-phase interface conditions. The boundary layer thickness on both phases is 

much smaller than the mesh size that is usually generated near the moving interface. The interface 

boundary layer is not well resolved in all implicit interface capturing methods, and unphysical flow 

tends to be generated at the interface due to the numerical inadequacies. The inaccurate interface 

curvature, and the discontinuities in material properties, especially in high-density ratio are the two 

main sources of spurious velocities. The first one is related to surface-tension-dominated flow, 

while the latter related to momentum transport equations which is a major issue in inertia-

dominated flows. Conventional linear momentum flux interpolation practices can lead to significant 

errors, which cause ‘fake’ momentum and numerical instability when the density ratio increases 

and ultimately results in spurious velocities and spurious shear near the interface [81]. For the two-

phase flow problems with strong gas-liquid interface interactions, such as rain, atomization, ink-jet 

printing and breaking waves in ship and ocean engineering, better strategies are required to deal 

with accurate liquid-gas interface tracking and the discontinuous fluid properties across the 

interface. 

Several strategies have been employed to mitigate the errors caused by the surface tension force 

[70][76][78], while less solutions are proposed to handle the discontinuities in the flow with high-

density ratios. Rudman [79] tried to solve this problem by using a VOF density-based flux correction 

scheme to calculate the momentum convection term and Raessi [80] adopted this strategy for level 

set methods. It is shown to slightly improve the result of numerical simulations, but spurious 

interface deformations still exist [81].  

Another potential solution to this density-jump problem is to use a Ghost Fluid Method (GFM) 

[75][82][83]. Artificial fluid cells are introduced to implicitly capture the jump condition across the 

interface without any transition thickness between the two phases. Two additional distinct velocity 

fields are defined across the whole domain for the two phases separately and reconnected though 

a pressure jump condition. It is proved that a GFM helps to eliminate the spurious oscillation and 

minimize numerical smearing near the interface. However, these additional velocity fields give rise 

to further problems. Having an interfacial velocity separate from the fluid velocity with a velocity 



Chapter 3  

25 

jump condition has its own stability problems and more computational resources are required as 

the complexity of the two-phase flow solver increases [85]. 

In this chapter, a combined volume of fluid and immersed boundary method is proposed to deal 

with high-density ratio flows. This method is developed from the Immersed Boundary (IB) Method 

which is initially introduced to enforce jump/boundary conditions at solid-fluid interfaces when 

simulating flows around moving solid bodies on fixed Cartesian grids [32]. The solid boundary may 

cut through the grids, so the boundary conditions are imposed by modifying the governing 

equations near the interface. A similar strategy is here adopted for a two-phase flow solver and 

combined with a VOF method to improve the robustness and accuracy of high-density ratio two-

phase flow simulations. 

3.2 Navier-Stokes equations 

The governing equations for the two-dimensional (2D) incompressible viscous flow are the Navier-

Stokes equations: 

∇ ∙ 𝐮 = 0,          (3-1) 

𝜕𝜌𝐮

𝜕𝑡
+ ∇ ∙ (𝜌𝐮𝐮) = −∇𝑝 + ∇ ∙ (𝜇𝜌∇𝐮) + 𝐠𝜌,    (3-2) 

where u is the velocity vector with components of the velocity (u, v) in the x-, y-direction, 

respectively, and t, p, 𝜌, 𝜇 and g are the time, the pressure, the density, the dynamic viscosity 

coefficient and gravitational acceleration, respectively. 

A finite volume method (FVM) is used to discretize the Navier-Stokes equations on a fixed Cartesian 

coordinate system on a mesh. All dependent variables are defined at cell centres and a collocated 

variable arrangement is used.  

For spatial discretization, the generalized form of Gauss’s theorem [87] is used throughout the 

discretization procedure: 

(∇ ∙ 𝐚)𝑉𝑝 = ∑ 𝐒 ∙ 𝐚𝑓𝑓 ,             (3-3) 

where 𝑉𝑝 is the volume of the cell, a is a vector variable, the subscript f implies the value of the 

variable in the middle of the face, and 𝐒 is the outward-pointing face area vector. The discretization 

of a convection term of any scalar property 𝜙 is obtained by: 

∫ ∇ ∙ (𝜌𝐮𝜙)
𝑉𝑝

𝑑𝑉 = ∑ 𝐒 ∙ (𝜌𝐮𝜙)𝒇𝑓 = ∑ 𝐒 ∙ (𝜌𝐮)𝒇𝑓 𝜙𝑓.    (3-4) 
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The spatial discretization is defined by specifying the interpolation of face values from averaged 

values stored in the central volumes [88]. The discretization becomes more and more challenging 

as the density ratio increases. These face mass fluxes (𝐹 = 𝐒 ∙ (𝜌𝐮)𝑓 ) are calculated from the 

interpolated values of 𝜌 and 𝐮, which is not straightforward because of the discontinuous gradients 

of both density and velocity. The numerical instabilities could be one of the sources of spurious 

velocities seen near the surface. 

Another cause of the spurious velocity coming from the momentum equation is the imbalance 

between pressure gradient and density gradient [83]. Consider a hydrostatic case and neglect the 

viscous term, the momentum equation can be written as: 

𝜕𝐮

𝜕𝑡
= −

1

𝜌
∇𝑝 + 𝐠.         (3-5)  

This equation becomes ill-conditioned because of the density which changes discontinuously from 

one phase to another with the volume fraction on the right-hand side of the equation [81]. The 

errors causing from the imbalance between pressure gradient and density gradient result in 

spurious velocities near the interface. The spurious velocity is larger in the lighter phase as the 

spurious pressure is the same across the interface. Furthermore, the resulting spurious velocity acts 

as a source of disturbance in velocity fields, and, accumulated over time, generates vorticity, 

especially in the lighter phase and ultimately affect the velocity field in the heavier phase as well.  

3.3 Free surface modelling  

3.3.1 Volume of Fluid method 

Two-phase flows are considered as two incompressible, isothermal and immiscible fluids [49]. An 

algebraic VOF method is used to capture and represent the dynamic behaviours of the interface 

between the two phases. Defining a volume fraction 𝛼 as the relative proportion of water in each 

cell, the position of the interface can be tracked by solving the VOF evolution equation: 

𝜕𝛼

𝜕𝑡
+ ∇ ∙ (𝐮𝛼) = 0.       (3-6) 

If 𝛼 = 1, the cell is full of phase 1 and if 𝛼 = 0, the cell is full of phase 2, and in any other case the 

cell contains the interface between the two phases. The unit normal vector, 𝐧 , and the local 

curvature, 𝜅, are defined as  

𝐧 =
∇𝛼

|∇𝛼|
,         (3-7) 

and  
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𝜅 = ∇ ∙ 𝐧 = ∇ ∙
∇𝛼

|∇𝛼|
.       (3-8) 

In a VOF method, the two immiscible fluids are considered as one effective fluid throughout the 

domain. The physical properties, density and viscosity, are defined by the volume fraction 𝛼:  

     𝜌 = 𝜌1𝛼 + 𝜌2(1 − 𝛼),      (3-9) 

𝜇 = 𝜇1𝛼 + 𝜇2(1 − 𝛼).            (3-10) 

One of the critical issues in numerical simulations of two-phase flows using VOF models is the 

discontinuity of the volume fraction 𝛼 [89]. This discontinuity not only gives rise to the difficulties 

in sharp interfacial shape and geometrical properties such as curvatures, but also results in sharp 

jumps of fluid properties, such as momentum flux and density gradient. Small errors in calculation 

of the volume fraction and related gradient or divergency terms can cause significant errors near 

the interface in simulations, especially for cases with high-density ratios. Special treatment is 

required to resolve the boundary layer near the interface and to eliminate the errors caused by the 

discontinuous volume fraction. 

A Multidimensional universal Limiter of Explicit Solution (MULES) method [49] is used to resolve 

the VOF equation. An artificial term 𝐮𝑟 is added into the VOF evolution equation to limit the amount 

of interface smearing: 

𝜕𝛼

𝜕𝑡
+ ∇ ∙ (𝐮𝛼) − ∇ ∙ (𝐮𝑟𝛼(1 − 𝛼)) = 0,    (3-11) 

𝐮𝑟 = 𝐧𝑓min [𝐶𝛾
|𝐹|

|𝐒𝑓|
, max (

|𝐹|

|𝐒𝑓|
)],     (3-12) 

where 𝐮𝑟 is the artificial compressible velocity that applies only near the interface, 𝐧𝑓 is the normal 

vector of the cell surface, 𝐹 is the mass flux, and 𝐶𝛾 is a constant scalar parameter controlling the 

intensity of the interface compression. In general, this artificial compressibility has no physical 

meaning and is designed to limit the numerical diffusion near the interface and hence sharpen the 

interface. The extent of the artificial compression velocity depends on the value of 𝐶𝛾. If 𝐶𝛾 = 0, 

there is no compression, if 𝐶𝛾=1, there is a conservative compression and if 𝐶𝛾 > 1, there is an 

enhanced compression [59]. 

3.3.2 Surface tension  

The momentum equation is modified to account for the effects of surface tension. The surface 

tension at the liquid-gas interface generates an additional pressure gradient resulting in a force, 

which is evaluated per unit volume using the continuum surface force (CSF) model[71]. 

          𝐟𝑏 = 𝜎𝜅∇𝛾                   (3-13) 
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This equation is only valid for the cases with constant surface tension, as considered here. In the 

case of variable surface tension, e.g., due to nonuniformly distributed temperature, surface tension 

gradients are encountered, generating an additional shear stress at the interface, which should be 

considered. 

Both fluids are considered to be Newtonian and incompressible  ∇ ∙ 𝐔=0, and the rate of strain 

tensor is linearly related to the stress tensor, which is decomposed into a more convenient form 

for discretization, 

       ∇ ∙ 𝐓 = [𝜇∇𝐔 + (∇𝐔)T] = ∇ ∙ (𝜇∇𝐔) + (∇𝐔) ∙ ∇𝜇       (3-14) 

In a single pressure system as considered for the present VOF method, the normal component of 

the pressure gradient at a stationary nonvertical solid wall, with no-slip condition on velocity, must 

be different for each phase due to the hydrostatic component ρg when the phases are separated 

at the wall, i.e., if a contact line exists. In order to simplify the definition of boundary conditions, it 

is common to define a modified pressure as 

           𝑝𝑑 = 𝑝 − 𝜌𝐠 ∙ 𝐱                 (3-15) 

where 𝐱 is the position vector. It can be easily show that the gradient of modified pressure 𝑝𝑑 of 

the static pressure gradient, the body force due to gravity and an additional contribution originating 

from the density gradient. In order to satisfy the momentum equation, the pressure gradient is 

expressed whereas the momentum equation is rearranged: 

𝜕(𝜌𝐔)

𝜕𝑡
+ ∇ ∙ (𝜌𝐔𝐔) − ∇ ∙ (𝜇∇𝐔) − (∇𝐔) ∙ ∇𝜇 = −∇ 𝑝𝑑 − 𝐠 ∙ 𝐱∇𝜌 + 𝜎𝜅∇𝛾     (3-16) 

Body forces due to pressure gradient and gravity are implicitly accounted for by the first two terms 

on the right-hand side. 

3.4 A combined volume of fluid and immersed boundary method  

An IBVOF method is developed in the present study to deal with the spurious velocity near the 

interface caused by the high-density ratio between the two phases. An extra velocity field is 

designed to extend the velocity of the heavier phase onto the lighter phase and to enforce a new 

boundary condition near the interface which is similar to non-slip boundary conditions in Fluid-

Structure interactions problems [90]. In the developed IBVOF method, there are three steps, i) 

identify the position of the interface and the phase state of the grid cells, ii) calculate the velocity 

on the lighter phase side by an extrapolated velocity approach, iii) update the velocity of both sides 

to satisfy the new boundary conditions on the interface. These steps are each described in detail. 

The present two-phase flow solver is developed using a Cartesian mesh. For convenience, the 
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governing equations, the methodology and discretisation scheme are illustrated here in 2D for 

simplicity though it can be extended to 3D simulations. 

3.4.1 Identify the position of the interface  

Accurately locating the position of the interface is a challenge in the algebraic VOF method since 

there is a narrow band of cells containing both two phases with 0 < 𝛼 < 1. This band becomes 

wider when it comes to complex interface behaviours, such as breaking waves with white water. A 

cleaner definition needs to be set to distinguish the two phases. In this study, 𝛼 = 0.5 is used to 

identify the interface and to separate the two phases (see Figure 3-1). If 𝛼 is not fixed, the further 

analysis is needed to identify the certain value for 𝛼 in context of interface identification. 

 

Figure 3-1  Phase state re-identification near the free surface. 

(P1C: Phase 1 cells, BC: Boundary cells, P2C: Phase 2 cells) 

In the present work, the boundary layer is designed only in the low density of the free surface phase 

side to ensure the accurate calculation of the heavier phase, since the lighter phase is more 

sensitive to the numerical instability and larger spurious velocities tend to be observed. Thus, for a 

uniform Cartesian grid system, the phase 1 cells, boundary layer cells and phase 2 cells are identified 

as:  

(1) P1C: if 𝛼(𝑖, 𝑗) ≥ 0.5; 

(2) BC: if 𝛼(𝑖, 𝑗) < 0.5 and (𝛼(𝑖 − 1, 𝑗) ≥ 0.5 or 𝛼(𝑖 + 1, 𝑗) ≥ 0.5 or 𝛼(𝑖, 𝑗 − 1) ≥ 0.5 or 𝛼(𝑖, 𝑗 +

1) ≥ 0.5); 

(3) P2C: if 𝛼(𝑖, 𝑗) < 0.5  and (𝛼(𝑖 − 1, 𝑗) < 0.5  and 𝛼(𝑖 + 1, 𝑗) < 0.5  and 𝛼(𝑖, 𝑗 − 1) < 0.5  and 

𝛼(𝑖, 𝑗 + 1) < 0.5); 
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where (i, j) is the grid node represent the x- and y-direction position of the cell.  

3.4.2 Extrapolated velocity approach  

Once the boundary cells are identified, the next step is to build an extra velocity field for this 

boundary layer through an extrapolated velocity approach. The concept is first proposed by Sussan 

et al. [91] and used in [6] with a Level set method on a staggered grid. An extended version is 

adapted in the present work.  

To initialize the process, the new velocity field 𝐮𝑵(𝑢𝒙
𝑵, 𝑢𝒚

𝑵) is set equal to the momentum-equation-

deduced velocity u. 

𝐮𝑁 = 𝐮        (3-17)  

For the boundary layer cells identified in section 3.4.1, the 𝐮𝑁  is calculated by outwards 

extrapolation along the interface normal from phase 1 to phase 2. For example, the velocity 𝐮𝑁(𝑖, 𝑗) 

at cell P(𝑖, 𝑗) in Figure 3-1 is calculated by the following equation [6]: 

𝜕𝐮𝑖,𝑗
𝑁

𝜕𝜏
+ 𝑛𝑖

𝜕𝐮𝑖,𝑗
𝑁

𝜕𝑥𝑖
= 0       (3-18) 

A forward Euler scheme is used for time discretization for this extrapolation in pseudo-time 𝜏: 

𝐮𝑖,𝑗
𝑁 𝑛+1

−𝐮𝑖,𝑗
𝑁 𝑛

∆𝜏
= −(𝑛𝑥

𝜕𝐮𝑁

𝜕𝑥
)
𝑖,𝑗

𝑛

− (𝑛𝑦
𝜕𝐮𝑁

𝜕𝑦
)
𝑖,𝑗

𝑛

     (3-19) 

where 𝜏  is pseudo time step and is set equal to 0.3min (∆𝑥, ∆𝑦)𝑖,𝑗 , 𝑛𝑥  and 𝑛𝑦  are x- and y-

components of interface normal vector. According to research in Xiao et al. [6], this requires 8 time-

steps to reach steady state. A first order upwind scheme is adapted for spatial discretization: 

(
𝜕𝐮𝑁

𝜕𝑥
)
𝑖,𝑗

= {

𝐮𝑖,𝑗
𝑁 −𝐮𝑖−1,𝑗

𝑁

∆𝑥
          𝑖𝑓 (𝑛𝑥)𝑖,𝑗 > 0

𝐮𝑖+1,𝑗
𝑁 −𝐮𝑖,𝑗

𝑁

∆𝑥
          𝑖𝑓 (𝑛𝑥)𝑖,𝑗 < 0

        (3-20) 

(
𝜕𝐮𝑁

𝜕𝑦
)
𝑖,𝑗

= {

𝐮𝑖,𝑗
𝑁 −𝐮𝑖,𝑗−1

𝑁

∆𝑦
          𝑖𝑓 (𝑛𝑦)𝑖,𝑗 > 0

𝐮𝑖,𝑗+1
𝑁 −𝐮𝑖,𝑗

𝑁

∆𝑦
          𝑖𝑓 (𝑛𝑦)𝑖,𝑗 < 0

        (3-21) 
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3.4.3 Simple tests of the extrapolated liquids velocity approach 

Three test cases are used here to check the velocity extrapolation approach. The initial velocity is 

given and is the only parameter that is modified. The volume function is not updated, and the 

momentum equations are not solved in this section. In case one and case two, shear flow is 

designed to check 1D and 2D performance. The velocity of gas is 10 times as liquid and parallel to 

the interface. In case three, a more general situation is set with a liquid droplet moving in a static 

gas field.  

The initial velocity field are set as Figure 3-2, Figure 3-4 and Figure 3-6. Figure 3-3, Figure 3-5 and 

Figure 3-7 are the resulted velocity fields accordingly in which (a) are original velocity; (b) are 

modified velocity with just one pseudo-time step; (c) are modified velocity with 8 pseudo-time steps. 

As shown in the results, the velocity of one-cell thick layer on the gas side of the interface is 

modified and getting close to the velocity of liquid with the increase of pseudo-time step. 

Case one  

 

Figure 3-2  Initial velocity field for case one. 

 

(a) U=(10, 0, 0)       (b) NewU=(7.3, 0, 0)   (c) NewU=(1.519, 0, 0) 

Figure 3-3 Velocity field of case one. (a) Without modified; (b) Updated once; (c) Updated 8 times. 
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Case two  

 

Figure 3-4  Initial velocity field for case two. 

 

(a) U=(10, 0, 0)   (b) NewU=(3.983, -3.983,0)  (c) NewU=(1.109, -1.109, 0) 

Figure 3-5 Velocity field of case two. 

(a) Without modified;  (b) Updated once; (c) Updated 8 times 

 

Case three  

 

Figure 3-6  Initial velocity field for case three. 
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(a) U=(0, 0, 0)                  (b) NewU≈(0.4, 0.4, 0)        (c) NewU≈(0.96, 0.96, 0) 

Figure 3-7 Velocity field of case three.  

(a) Without modified; (b) Updated once; (c) Updated 8 times 

3.4.4 Direct forcing approach  

A discrete forcing function, 𝑓𝑖, is added into the momentum equation to mimic the effect of the 

modified boundary on the phase 2 field. 

𝜕𝜌𝐮

𝜕𝑡
+ ∇ ∙ (𝜌𝐮𝐮) + ∇𝑝 − ∇ ∙ (𝜇𝜌∇𝐮) − 𝐠𝜌 = 𝑓𝑖    (3-22) 

𝑓𝑖  is a body source in an IB method when imposing the boundary condition in fluid-structure 

interaction problems and now acts as a velocity corrector for the grids inside the identified 

boundary layer. When 𝑓𝑖 = 0 , Eq.3-22. is a normal momentum equation and a momentum-

equation-deduced velocity 𝐮∗  field is obtained. This velocity does not satisfy the boundary 

condition. For a time-stepping scheme, Eq.3-22 can be re-written with 𝐮∗. 

𝐮∗−𝐮𝑛

∆𝑡
= 𝑅𝐻𝑆𝑖(𝐮𝑛) + 𝑓𝑖,       (3-23) 

where 𝐮𝑛 is velocity from the previous time step t=n, and 𝑓𝑖 = 0 at this step, 𝑅𝐻𝑆𝑖(𝐮𝑛) is the sum 

of all the terms in the right hand of the momentum equation.  

Then, the velocity field for the boundary layer cells is reconstructed according to the extrapolated 

velocity approach in section 3.4.2. The velocity corrector 𝑓𝑖
∗ is computed from Eq. 19 by replacing 

the momentum-equation-deduced velocity 𝐮∗  with the extrapolated velocity 𝐮𝑁: 

𝐮𝑁−𝐮𝑛

∆𝑡
= 𝑅𝐻𝑆𝑖(𝐮𝑛) + 𝑓𝑖

∗,      (3-24) 

𝑓𝑖
∗ =

𝐮𝑁−𝐮𝑛

∆𝑡
−

𝐮∗−𝐮𝑛

∆𝑡
=

𝐮𝑁−𝐮∗

∆𝑡
,      (3-25) 

and then applied back to the discretized momentum equations 
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𝐮𝑛𝑒𝑤−𝐮𝑛

∆𝑡
= 𝑅𝐻𝑆𝑖(𝐮𝑛) + 𝑓𝑖

∗.      (3-26) 

The resulting velocity 𝐮𝑛𝑒𝑤 will satisfy the desired boundary conditions on the interface. The new 

velocity field is then used to solve the pressure Poisson equation and the final velocity 𝐮𝑛+1 and 

pressure fields 𝑝𝑛+1 for the next time step t=n+1 are obtained. 

3.5 Velocity and pressure decoupling algorithm 

The solution of the momentum equations shows strong coupling of the velocity and pressure. The 

PIMPLE algorithm that is widely used in the OpenFOAM platform is applied in present solver[49]. It 

is a hybrid of a Pressure Implicit Splitting Operator (PISO) algorithm and a Semi-Implicit Method for 

pressure-Linked Equations (SIMPLE) algorithm [92] and takes benefits from both of them.. The 

momentum equations are generally solved by two iteration loops. The SIMPLE algorithm acts as 

the outer corrector while the PISO algorithm acts as the inner correction loop. Better stability is 

obtained compared to the PISO and SIMPLE algorithms to ensure the convergence of all the 

equations at each time step until the solution is completes. There are three convergence criteria 

within each timestep: the residual falls below the solver tolerance, the ratio of current to initial 

residuals falls below the solver relative tolerance and the number of iterations exceeds a maximum 

number of iterations[49]. Normally, for the cases in this paper, the number of iterations ranges 

from 1 to 400. 

3.6 Solution procedure 

The basic computational process at one time step for the combined volume of fluid and immersed 

boundary method for two-phase flows is as follows. 

(1) Obtain the VOF volume fraction (𝛼), fluid variables (velocity 𝐮𝑛, pressure P𝑛) and the interface 

property (normal vector 𝐧,) at the time step t=n.  

(2) Represent the interface using the iso-surface 𝛼 = 0.5 and identify the phase state of the grid 

cells, phase 1 cells, phase 2 cells and boundary cells. A thin boundary layer is identified, with one- 

or two-cell thickness.  

(3) Compute the momentum-equation-deduced velocity 𝐮∗  by solving the momentum equation 

directly. Spurious velocity exists near the interface in this velocity field. 
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(4) Reconstruct the velocity field 𝐮𝑁 by an extrapolated velocity approach. In the new velocity field 

𝐮𝑁, velocity is the extended from one phase slightly beneath the interface to the other slightly 

above the interface.  

(5) Calculate the velocity corrector 𝑓𝑖
∗. 

(6) Compute 𝐮𝑛𝑒𝑤  from the discretized momentum equations with the velocity corrector. The 

resulting velocity will satisfy the desired boundary conditions on the interface.  

(7) Compute the pressure using the velocity and pressure coupling algorithm. The velocity 𝐮𝑛+1 

and the pressure P𝑛+1 are updated for the next step t=n+1. 

 

Figure 3-8 Flow chart of the IBVOF solver  

3.7 Conclusion  

A two-phase flow solver, IBVOF solver has been developed to simulate multiphase flows with high 

density ratios. The numerical method is presented in detail with the emphasis on the treatment of 

the free surface boundary. The sources of the spurious velocity generated near the interface are 

identified to lie in the interpolation of the momentum flux and the imbalance of the dynamic 

pressure gradient and density gradient because of the density jump across the interface. 

An extrapolated velocity approach is developed to extend the velocity from the denser phase to 

the lighter phase and an immersed boundary method is used to build a thin boundary layer above 

the interface. The designed boundary layer smoothing of the velocity helps to prevent the tearing 
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of the interface due to the tangential velocity between the two phases across the interface. Such 

treatment reduces the spurious velocity caused by the momentum interpolation errors across the 

interface and improve the accuracy and stability of high-density ratio two-phase flow simulations. 
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Chapter 4 Two-phase flow IBVOF solver verification  

4.1 Introduction 

As the mathematical model is exact for two-phase flow simulations having a large density ratio, 

viscous effects and surface tension are not considered in this chapter. Two sets of test cases are 

designed to analyse the causes of spurious velocity and to validate the proposed IBVOF method. 

The first case is a stratified flow composed of two liquids of different densities. Theoretically, the 

interface between the two phases would remain flat unless numerical instability exists. Simulations 

are carried out using fixed uniform Cartesian grids. The effect of mesh size and density ratio on the 

velocity field are investigated to identify the sources of the spurious velocities. The second set of 

test cases considers the effect of the numerical instability on advection of the interface. The new 

IBVOF method is evaluated on a 2D test case of high-density droplet transport [93]. The results of 

both sets of cases are compared with analytical solutions and the original two-phase flow solver in 

OpenFoam 5.0. 

It is important to note that these two causes of spurious velocity do not include surface tension 

effects using Continuous Surface Stress (CSS) model [64]. The surface tension effects are not 

considered in all cases and analysis in this chapter. These simplifications are adopted to estimate 

the influence of numerical viscosity and other spurious effects and enable direct comparison with 

potential theory, which helps to identify the source of problems, highlights the effects of the 

spurious velocities to the interface, and allows quantitative investigation of the effect of mesh size, 

time step and density ratio on the final results. 

4.2 Steady stratified flow 

A set of extreme simplified steady stratified flow cases are designed to check the velocity evolution 

near the interface during numerical simulation. The simulations are conducted in a numerical flume 

on a 2D computation domain of x= [-0.5L, 0.5L] and y= [0, L] where L= 10m is the length of the 

domain. The entire computational domain and the different boundaries applied at inlet, outlet, 

bottom and upper are shown in Figure 4-1. The front and back boundary conditions are set as empty 

since it is a 2D simulation. The empty boundary condition means no solution is required for the 

front and back boundaries. A symmetry boundary condition is assigned to the upper and bottom 

boundaries to avoid generation of vorticity as required by the underlying potential flow theory. 

Cyclic boundary conditions are applied on the left and right boundaries to avoid numerical errors 

generated by inlet or outlet boundaries.  
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The initial velocities and physical parameters of the two phases are listed in Table 4-1. The initial 

interface is set in the middle of the domain with a height of 0.5L. Theoretically, without any viscous 

shear force or surface tension effect, the velocity field in both phases and the interface between 

the two phases should remain the same as for the initial condition.  

 

Figure 4-1  Computation domain for the steady stratified flow case. 

 

Table 4-1  Physical parameters and initial velocities for the steady stratified flow case. 

Test case 𝐔1 (m/s) 𝐔2 (m/s) 𝜌1 (kg/m3) 𝜌2 (kg/m3) 

Case A1 (10,0,0) (1,0,0) 1 1 

Case A2 (10,0,0) (1,0,0) 10 1 

Case A3 (10,0,0) (1,0,0) 100 1 

Case A4 (10,0,0) (1,0,0) 1000 1 

Case B1 (1,0,0) (10,0,0) 1 1 

Case B2 (1,0,0) (10,0,0) 10 1 

Case B3 (1,0,0) (10,0,0) 100 1 

Case B4 (1,0,0) (10,0,0) 1000 1 

 

4.2.1 The effect of mesh size 

Before investigating the effect of density ratio on spurious velocities, numerical settings are 

investigated through a mesh and time refinement study. For all simulations in the following, fixed 

uniform square cells are applied cover the whole computational domain. Four grids are applied in 
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this case, which consecutively increased sizes from grid one 8,193 cells to grid four 131,072 cells. 

The numbers of cells in x direction are 64, 128, 256 and 512, respectively. Adaptive time steps are 

used based on a maximum allowed Courant number, Co= 0.2. The influence of time step is 

investigated in section 4.2.2.  

To investigate the effect of spatial resolution, a density ratio of 1,000:1 is chosen in this section 

since air and water interaction problems are the typical cases in the nature and engineering. Both 

case A4 and case B4 are investigated, with different initial velocities in lighter and denser phases. 

The maximum Co number equals 0.2 in each case. Figure 4-2 illustrates the instantaneous velocity 

magnitude fields at t= 10s of case A4 with both the original two-phase flow solver, interFoam, in 

OpenFoam and the proposed solver, IBVOF. The position of the initial interface is added as a 

reference with a dashed white line. Theoretically, the velocities in both lighter and denser phases 

would remain the same as the initial condition. However, in the simulation results of case A4 with 

interFoam, the velocity of the main part of the lighter phase remains at 10m/s but is decreased 

closer to the interface. A shear flow layer is generated near the interface, which is not reasonable 

in the numerical setup in this case. Compared with the original VOF method in original solver 

interFoam, the present solver with IBVOF have better results in the velocity prediction. The velocity 

fields for both lighter and denser phase remain uniform, as for the initial condition. 

 

(a) InterFoam solver 

 

(b) IBVOF solver 

Figure 4-2  Instantaneous velocity field of case A4 with 256×128 cells at t=10s for the steady 

stratified flow case. 



Chapter 4 

40 

The horizontal velocity profiles at the middle section of the computational domain x= 5m are 

compared for different mesh sizes with the two solvers and shown in Figure 4-3 and Figure 4-4, 

respectively. In each of these figures, the coordinate x shows the velocity magnitude (nominalized 

by the initial relative velocity of the two phases, 𝑈𝑟 = |𝑈1 − 𝑈2|), the coordinate y shows the 

distance of the cell centre to the bottom boundary and the numbers in legend are the mesh 

numbers in x-direction in each case. The theoretical solution is shown with a dashed black line.  

 

(a) Case A4 

 

(b) Case B4 

Figure 4-3  Horizontal velocity profiles on section x= 0m for different mesh sizes with Co=0.2 using 

interFoam solver at t= 10s. 
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(a) Case A4 

 

(b) Case B4 

Figure 4-4  Horizontal velocity profiles on section x= 0m for different mesh sizes with Co=0.2 using 

IBVOF solver at t= 10s. 

Without any treatment on the interface boundary, the numerical instability caused by the large 

jump in the material properties across the interface accumulates over time and eventually leads to 

spurious dynamics characteristics. As shown in Figure 4-3, a large amount of spurious velocity is 

generated near the interface, especially on the lighter phase side. The cells containing less density 

mass are more sensitive to the numerical errors in the pressure. The relative error measure is used 

to quantify the solution quality:  

𝜖𝑈 =
|𝑈𝑡−𝑈𝑖𝑛𝑖|

𝑈𝑟
× 100%       (4-1) 

where U is the horizontal velocity, 𝑈𝑡  is the instantaneous horizontal velocity at time t, 𝑈𝑖𝑛𝑖  is the 

initial velocity in each cell and 𝑈𝑟   is the relative velocity between the two initial velocities, 𝑈𝑟 =

|𝑈1 − 𝑈2|.  
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Figure 4-5 and Figure 4-6 show the relative errors 𝜖𝑈 on section x=5m for different mesh sizes with 

Co=0.2 using the two solvers. The comparison of the relative errors shows that the present IBVOF 

solver is superior at preserving the velocity on all investigated meshes. The relative errors only exist 

on the nearest cell above the interface because of the designed interface boundary condition. The 

original interFoam solver tends to generate a band of layer that transmit the velocity from the 

denser phase to the lighter phase. The thickness of the band seems to decrease with the finer mesh 

but never vanishes. In both case A and case B, the corresponding thickness of the band, where the 

relative errors 𝜖𝑈 are larger than 2%, is approximately 6-8 grids cells on all mesh sizes. 

 

(a) Case A4 

 

(b) Case B4 

Figure 4-5  Relative error 𝜖𝑈 on section x= 0 m for different mesh sizes with Co=0.2 using interFoam 

solver at t= 10s. 
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(a) Case A4 

 

(b) Case B4 

Figure 4-6  Relative error 𝜖𝑈 on section x= 0 m for different mesh sizes with Co=0.2 using IBVOF 

solver at t= 10s. 

Beside the width of the band, the maximum 𝜖𝑈  keeps increasing with the refinement of mesh, 

except the coarsest mesh. This means that refining the mesh is not a solution for the spurious 

velocities. Too refined a mesh may cause other numerical instability problems. The smaller the cell 

is, the less mass the cell contains, making it more sensitive to numerical errors. It is also proved by 

the phenomena that the spurious velocities are mainly generated in the lighter phase and are much 

larger than in the denser phase. 

The spurious velocity eventually results in spurious dynamics of the interface. The errors 𝜖𝛼 of the 

volume fraction 𝛼 are defined by: 

𝜖𝛼 =
|𝛼𝑡−𝛼𝑖𝑛𝑖|

𝛼𝑟
× 100%,       (4-2) 
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where 𝛼𝑡  is the instantaneous value and 𝛼𝑖𝑛𝑖  is the initial setup value, 𝛼𝑟  is the relative initial 

volume fraction between the two phases, 𝛼𝑟 = |𝛼1 − 𝛼2| = 1.  

In Table 4-2, the relative error 𝜖𝛼 in nearest cells just above and beneath the interface at x=0m are 

compared with the two solvers. The IBVOF solver is significantly better than interFoam for all the 

meshes in terms of surface shape preservation. The maximum value of the 𝜖𝛼  using the IBVOF 

solver is smaller than the minimum value using interFoam solver. The results for 𝜖𝛼 also shows that 

the error does not decrease monotonically with the mesh refinement. Simply refining the mesh 

cannot reduce or eliminate the numerical errors caused by the large density ratio. Based on the 

analysis of the velocity and volume fraction, the Mesh 256×128 is chosen as an appropriate 

resolution for the following studies in this work. 

   Table 4-2  Relative error 𝜖𝛼 at x=0m for different mesh sizes with Co=0.2. 

Case Solver 
Above the interface Beneath the interface 

64 128 256 512 64 128 256 512 

A4 
interFoam 4.7 10.7 9.5 0.9 4.0 12.5 32.4 8.7 

IBVOF 3e-3 6e-10 1e-24 0 5e-3 1e-3 1e-3 0 

B4 
interFoam 0.2 5.6 17.1 8.80 0.2 8.5 6.7 8.7 

IBVOF 8e-3 0.02 0.02 0.04 8e-3 0.02 0.02 0.04 

4.2.2 The effect of time steps 

In order to evaluate the influence of the time step, three Co numbers are tested, Co= 0.1, 0.2and 

0.4 based on the selected Mesh 256×128. Again, the relative errors 𝜖𝑈 for different Co numbers 

are calculated and compared. Figure 4-7 shows relative errors 𝜖𝑈 of the interFoam solver. Similar 

results are obtained with interFoam solver with all three Co numbers. For case A4, the three lines 

almost overlap each other and for case B4, the results demonstrate that the region of the spurious 

velocities is decreased slightly through refinement of the time step. A Co=0.2 is thus adopted to 

achieve a necessary condition for time convergence for the interFoam solver. As shown in Figure 

4-8, IBVOF solver has a better performance in time step convergency. The errors remain in a very 

low level (except for the nearest cell above the interface) for the Co number up to 0.4. This means 

that IBVOF solvers would allow accurate simulation with larger time steps. 
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(a) Case A4 

 

(b) Case B4 

Figure 4-7  Relative error 𝜖𝑈 on section x=0m for different Co numbers with Mesh 256×128 using 

interFoam solver at t= 10s. 

 

(a) Case A4 
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(b) Case B4 

Figure 4-8  Relative error 𝜖𝑈 on section x= 0m for different Co numbers with Mesh 256×128 using 

IBVOF solver at t= 10s. 

4.2.3 The effect of density ratio 

In this section, the influence of changes in density ratio on the generation of the spurious velocity 

near the interface is investigated. The density and velocity are initialized as Table 4-1. Four different 

density ratios are designed ranging from 1 to 1000. The cases are divided into two parts, case A and 

case B, with different initial velocities in the two phases. The Mesh 256×128 is used with the 

maximum Co number 0.2 according to the analysis in section 4.2.1 and 4.2.2. Figure 4-9 shows the 

relative error 𝜖𝑈 with different density ratios using interFoam at t = 1 s.  

It is obvious to see that the spurious velocity increases with the density ratio. When the density of 

each phase is equal, the velocity field of each phase remains the same as the initial conditions. The 

spurious velocities start to appear for the cases with density differences across the interface. As 

analysed in section 3.2, it comes from the imbalance between pressure gradient and density 

gradient in the momentum equation. The effect of the numerical error on the lighter phase is much 

greater than on the denser phase since the same stress is generated from the momentum equations. 

If IBVOF solver is used, much better accuracy can be obtained in the calculation of velocity fields 

even for the large density ratio 1000:1 (see Figure 4-10). 
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(a) Case A 

 

(b) Case B 

Figure 4-9  Relative error 𝜖𝑈 on section x= 0m for different density ratios with Mesh 256×128 and 

Co=0.2 using interFoam solver. 

 

(a) Case A 
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(b) Case B 

Figure 4-10  Relative error 𝜖𝑈 on section x= 0 m for different density ratios with Mesh 256×128 and 

Co=0.5 using IBVOF solver at t= 1 s. 

The momentum-equation-deduced velocity is then used in the convection of the volume fraction. 

Numerical errors caused by the jump of density across the interface accumulate over time and 

finally affect the distribution of volume fraction near the interface. The numerical errors act as a 

source of a small disturbance in fluids of different densities moving at different speeds and Kelvin-

Helmholtz instability can occur near the interface. Figure 4-11(a) shows the distribution of volume 

fraction of case A2 at t=2 s with interFoam solver. Typical Kelvin–Helmholtz instability is observed, 

which, however, is not supposed to be generated in this case. In the same numerical setup and 

initial conditions, a much better result is obtained with the IBVOF solver. The spurious velocities 

and interface instabilities are suppressed with the present approach. 

 

(a) InterFoam solver 
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(b) IBVOF solver 

Figure 4-11  Distribution of volume fraction of case A2 with 256×128 cells and Co=0.2 at t=2 s 

4.3 Convection of a high-density droplet 

The droplet test cases have been numerically studied in [81] [93] [94], among others, to check 

numerical stability and robustness of two-phase flow solvers. The computation is conducted for a 

domain of [0 m, 10 m]×[0 m, 5 m] with a uniform grid. A droplet with diameter D=1 m is initially 

placed in the air with its center at (2.5m, 2.5m). The droplet is given a constant horizonal velocity 

𝐔𝑙 = (1,0) m/s whilst the gas is initially at rest. The density of the air is set as 1 kg/m3 while the 

density of the droplet is set as 1,000,000 kg/m3.  

Both viscous effects and surface tension are neglected in this case. Theoretically, the high-density 

droplet is therefore expected to remain perfectly circular when passing through the air, as dashed 

line shown in Figure 4-12. Various meshes are considered, ranging from 128×64, 256×128 to 

512×256, while the maximum Courant number, Co, equals 0.1 for limiting the growth if spurious 

velocities in all these cases.  

 

Figure 4-12  Convection of droplet case setup. 
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4.3.1 Velocity profiles  

The velocity field in the early stages of the simulation, t=0.1s, is first analyzed. At this stage, the 

high-density droplet remains circular with its center moves to x=2.6m. The velocity field of the air 

region, in these conditions, should be similar to the field produced by an air flow around a solid 

cylinder whilst the velocity in the liquid should remain exactly equal to its initial value. Figure 4-13(a) 

shows the results of a one-phase flow solver in OpenFOAM, pimpleFoam. In the one-phase flow 

solver, the cylinder is fixed in a uniform air flow. A slip wall boundary condition is used on the 

surface of the cylinder. Other numerical setup and mesh distribution are set up as similar as the 

two-phase flow solver with 256×128 cells.  

 

(a) One-phase flow solver 

 

(b) InterFoam solver 
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(c) IBVOF solver 

Figure 4-13  Velocity field with 256×128 cells at t=0.1s. The top half shows the colored velocity 

magnitude and the bottom half shows the velocity direction with arrows. 

The velocity field showed in Figure 4-13(a) is the relative velocity to the initial droplet velocity, 𝐔𝑟 =

𝐔𝑙 − 𝐔, where 𝐔 is the air flow velocity obtained from the one-phase flow solver. Even though the 

Reynolds number is infinite, no wake region has yet formed at this early stage. The fields are nearly 

symmetric. For visualization purpose, the figures are divided into two parts. The top half shows the 

colored velocity magnitude and the bottom half shows the velocity directions with arrows. 

However, some deviations from these assumed values are found in two-phase flow solvers near 

the interface especially on the top and bottom sides of the droplet, which we interpret as spurious 

velocities. The shape of the droplet and the velocity field with the two solvers on Mesh 256×128 

at t=0.1s are shown in Figure 4-13(b) and (c). The shape of the droplet is shown with the iso-surface 

𝛼=0.5 in a white line. The velocity inside the droplet keeps its initial value while a large spurious 

velocity is observed in the air region. The maximum value of velocity 𝐔𝑟  in the one-phase flow 

solver simulations is 1.04 m/s while the maximum value in the interFoam solution reaches 1.27 m/s. 

A non-viscous vortex is generated on the upper left region of the droplet since the air velocity 

adapts to the droplet movement to preserve continuity and momentum. The vortex is enlarged by 

the large velocity gradients in the air region as a result of the discontinuous velocity near the 

interface.  

As analyzed in section 4.2.1, since the pressure is the same across the interface, the velocity 

gradient in the air is much higher than in the liquid. Therefore, larger velocity gradients in the air 

tend to be generated when solving the momentum equations. Furthermore, though the value is 

relatively small compared to the air side, the spurious velocity exists on the liquid side as well, 

especially on the upper left part of the droplet. This velocity is then used for volume fraction 
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function convection and hence ultimately distorts the interface. Compared to the interFoam solver, 

the velocity field in the air obtained from the IBVOF solver is closer to the one-phase solver. The 

deviations of the maximum and minimum velocity magnitude near the interface are smaller which 

means the velocity gradient in the air is more reasonable with the IBVOF solver.  

To better understand the issues behind the generation of the spurious velocity, the velocity profiles 

along the vertical cross-section going through the center of the droplet are investigated to compare 

the three solvers. It is an important feature to show the accuracy of the two-phase flow solvers in 

wave propagation [95] [58], and is suitable in the droplet convection problem. The velocity field in 

the air 𝐔𝑟 obtained with the one-phase flow solver and the initial velocity field in the liquid are used 

as a reference to compare the two different two-phase flow solvers (see Figure 4-14). The time is 

chosen again as t = 0.1 s before large interface deformation is generated.  

Differences between the one-phase solver and the two two-phase flow solvers are most visible in 

the air region, while in the main bulk of the liquid the velocities follow the initial value reasonably 

well. In both two-phase solvers, a spurious boundary layer is generated to smooth out the jump of 

the velocity at the interface and acts as a source of the no-viscous vortex on the upper left side of 

the droplet. The width of the layer decreases with the grid refinement, but always exists. For both 

solvers, the magnitude of spurious velocities decreases with the grid refinement and the velocity 

profile converges to the reference resolution. For the coarsest mesh 128×64, the cells are too large 

and fails to capture the steep transition of velocity between the two phases since the values stored 

in the cell centre are averaged by the control volume. However, an increase of velocity is visible in 

the liquid right beneath the interface in the interFoam solver even for the lowest resolution. The 

increase is not a unique result of the coarse mesh since similar phenomena are observed in finer 

mesh 256×128 and 512×256.  

The presence of spurious currents around an interface was also reported in [95] and [58]. As 

analysed in section 4.2.3, the reason for such behaviour lies in the discontinuity of the density of 

the fluids. For IBVOF solver, the profiles below the interface are better than the interFoam solver. 

The boundary layer designed by the extrapolated velocity approach and immersed boundary 

method improves the accuracy in calculation of the velocity of the denser fluid on the one hand 

and reduces the velocity gradient in the lighter fluid near the interface. Though the difference 

between the two solvers might be small as shown in Figure 4-14 at the early stage, the small errors 

in the velocity fields will accumulate with time and affect the volume fraction fields, which will be 

discussed in section 4.3.2. 
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(a) 128×64 

 

(b) 256×128 

 

(c) 512×256 

Figure 4-14  The horizontal velocity profiles along a vertical cross-section going through the centre 

of the droplet at t=0.1s. 

4.3.2 Shape of the interface 

As analysed in section 4.2.3, the momentum-equation-deduced velocity used in the convection of 

the volume fraction ultimately distorts the shape of the interface. Figure 4-15 presents the volume 

fraction 𝛼 fields for different meshes using the interFoam solver, which are the final shapes and 

positions of the droplet at t = 5 s. The theoretical solution is also given in the figures with dashed 
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black lines. Most part of the droplets are located inside the exact circle, whilst large deformations 

are observed in all three meshes. Erroneous transfer of momentum from the liquid to the gas 

results in an unphysical shattering of the drop. The liquid inside of the droplet tends to spread to 

gas cells on the top and bottom sides. The maximum volume fraction 𝛼 for the coarsest mesh is 

only 0.886, which should be 1. The droplet shape monotonically converges towards the exact 

solution. However, large scale interface deformations are still visible. 

 

(a) 128×64     (b) 256×128     (c) 512×256 

Figure 4-15  Volume fraction 𝛼 distribution of high-density droplet with the interFoam solver at t = 

5s. 

 

(a) 128×64     (b) 256×128     (c) 512×256 

Figure 4-16  Volume fraction 𝛼 distribution of high-density droplet with the IBVOF solver at t = 5s. 

 

The results of the IBVOF solver are presented in Figure 4-16. Compared to the interFoam solver, 

better performance is obtained with the IBVOF solver in terms of both droplet position and shape. 

In order to get a quantitative analysis for this case, several error measures [96] are used as follows: 
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(1) Volume conservation, 𝜖𝑉𝐶, is the change in the total volume of liquid at time t in the whole 

domain relative to the initial value at t = 0.  

𝜖𝑉𝐶 =
|∑ 𝛼𝑖(𝑡)𝑉𝑖

𝑁
𝑖 −∑ 𝛼𝑖(0)𝑉𝑖

𝑁
𝑖 |

∑ 𝛼𝑖(0)𝑉𝑖
𝑁
𝑖

,      (4-3) 

where i is serial number of the cell, i = 1,2,3…N, N is the total grid number, V is the volume of the 

cell. 𝜖𝑉𝐶 also represents mass conservation of the simulations.  

(2) Shape preservation, 𝜖𝑆𝑃, is the difference of volume fraction distribution between the numerical 

results and the exact solution. 

𝜖𝑆𝑃 =
∑ 𝑉𝑖|𝛼𝑖(𝑡)−𝛼𝑖

𝑒𝑥𝑎𝑐𝑡(𝑡)|𝑁
𝑖

∑ 𝑉𝑖𝛼𝑖
𝑒𝑥𝑎𝑐𝑡(𝑡)𝑁

𝑖

,      (4-4) 

where 𝛼𝑒𝑥𝑎𝑐𝑡 is the volume fraction of the exact interface. 

(3) Sharpness, 𝜖𝑆, represents the thickness of the interface. For a sharp interface, the width of the 

region where the cell contains both liquid and gas should be similar to, or smaller than the cell size. 

𝜖𝑆 =
∑ 𝛼𝑖𝑠(𝑡)𝑉𝑖𝑠

𝑁
𝑖𝑠

∑ 𝑉𝑖𝛼𝑖
𝑒𝑥𝑎𝑐𝑡(𝑡)𝑛

𝑖

  ,        (4-5) 

where is = 1,2,3…n, n is the total number of the cells with 0.1 < 𝛼𝑖𝑠 < 0.9.  

 

Figure 4-17 shows the comparison of the three error measurements between the interFoam and 

the IBVOF solvers with three different meshes at t = 5 s. Compared to the interFoam solver, the 

IBVOF solver is superior in all the mesh cases for all three error measures. For the volume 

conservation, the VOF method is known to inherently conserve the liquid volume [6] which is also 

proved with the present work. Though fluctuating a little with mesh size, the maximum value of the 

error 𝜖𝑉𝐶  with the interFoam solver is around 0.01%. The IBVOF solver shows an even better 

performance in terms of conservation.  
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(a) Volume conservation, 𝜖𝑉𝐶.     

 

(b) Shape preservation, 𝜖𝑆𝑃. 

 

(c) Sharpness, 𝜖𝑆. 

Figure 4-17  Performance for convection of a high-density droplet with the interFoam and IBVOF 

solvers at t = 5s.  
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In terms of shape preservation, the visual impression from Figure 4-16 is that the IBVOF shows a 

better performance, and Figure 4-2(b) quantifies the large difference between them. The shape 

preservation error 𝜖𝑆𝑃 reaches 0.735 for the interFoam solver over 35% of the liquid drifts from the 

droplet over the interface into the gas cells. Even though the shape of the liquid is similar to a circle, 

the high-density droplet has become a mass of ‘white water’, where the grids contains both liquid 

and air, and would turn into a mist of fog after that. The momentum-equation-deduced velocity is 

used for volume fraction advection and the spurious velocity ultimately leads to the deformation 

of the interface. Better shape preservation is obtained with the IBVOF solver. The value of shape 

preservation error 𝜖𝑆𝑃 with the IBVOF for the coarsest mesh 128×64 is smaller than the interFoam 

with a finer mesh 256×128, and the volume fraction 𝛼 remains close to 1 in most cells near the 

center of the droplet. For both solvers, monotonic convergence is achieved with the uniform grids.  

The comparison of sharpness with the two solvers are similar to the shape preservation. The error 

measurement 𝜖𝑆 is designed to check the width of the interface. It is obvious from the data in Figure 

4-17(c) that the IBVOF solver is better performing in this respect.  

It is interesting to see that the gap between the two solvers also decreases monotonously with the 

mesh. The simulation results of the IBVOF solver are slightly better than the interFoam with the 

finest mesh. This is partly because the accuracy of the interFoam is improved with a finer mesh. 

Another reason could be the width of the designed boundary decreases at the same time. In the 

present work, the width of the interface boundary is set equal to one cell, so the effect of the 

extrapolated velocity approach and the immersed boundary method on the original solver is 

reduced when the grid size is reduced. A more robust and physically based boundary is desired in 

the future. The present work could be extended to viscous two-phase flow simulations, where the 

width and the velocity distribution of the interface boundary layer need to be treated more 

carefully. 

4.4 Influence of the IBVOF boundary condition 

In section 4.2 and 4.3, the proposed IBVOF solver is proved to reduce the physical instabilities in 

the air-water interface. As the air and water interactions are sensitive to the boundary conditions, 

the influence of the designed boundary condition is investigated. In this section, two other solvers, 

IBVOF10 and IBVOFW, are proposed based on the IBVOF solver to quantify this effect. 

In the solver IBVOF10, the main process keeps the same as the basic IBVOF solver in section 3.6, 

while the momentum-equation-deduced velocity 𝐮∗ is replaced by the 𝐮𝑛𝑒𝑤 obtained from the IB 
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condition every 10 timesteps. This operation weakens the effect of the IBVOF boundary condition 

but saves some calculation.  

In the basic solver IBVOF, the extrapolation velocity approach is used to extrapolate the velocity of 

one phase slightly beneath the interface to the other slightly above the interface. The velocities of 

only one or two cells in the air and water phases is modified by the IBVOF boundary condition. In 

the solver IBVOFW, the boundary layer is widened into three to four cells as shown in Figure 4-18. 

Thus, for a uniform Cartesian grid system, the phase 1 cells, boundary layer cells and phase 2 cells 

are identified as:  

 

Figure 4-18  Phase state re-identification for IBVOFW solver. 

(P1C: Phase 1 cells, BC: Boundary cells, P2C: Phase 2 cells) 

(1) P1C: if 𝛼(𝑖, 𝑗) ≥ 0.5; 

(2) BC: if 𝛼(𝑖, 𝑗) < 0.5 and (𝛼(𝑖 − 𝑏, 𝑗) ≥ 0.5 or 𝛼(𝑖 + 𝑏, 𝑗) ≥ 0.5 or 𝛼(𝑖, 𝑗 − 𝑏) ≥ 0.5 or 𝛼(𝑖, 𝑗 +

𝑏) ≥ 0.5), b=1, 2, 3; 

(3) P2C: if 𝛼(𝑖, 𝑗) < 0.5  and (𝛼(𝑖 − 𝑏, 𝑗) < 0.5  and 𝛼(𝑖 + 𝑏, 𝑗) < 0.5  and 𝛼(𝑖, 𝑗 − 𝑏) < 0.5  and 

𝛼(𝑖, 𝑗 + 𝑏) < 0.5), b= 1, 2, 3; 

where (i, j) is the grid node represent the x- and y-direction position of the cell.  

The case, convection of a high-density droplet, is continually used in this section to quantify the 

effect of the IBVOF boundary condition. Figure 4-19 shows the velocity profiles of the three solvers, 

IBVOF10, IBVOF and IBVOFW together with the original interFoam and reference results. In order 

to highlight the differences among the solvers, the vertical slice of velocity field is selected as where 

the maximum velocity occurs in the results of interFoam solver. The position of the slice is slightly 

different with mesh density.  
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(a)Mesh 256×128 at slice x=2.35m   (b) Mesh 512×256 at slice x= 2.4m 

Figure 4-19  The velocity profiles of high-density droplet with three different solvers at t=0.1s. 

As analysed in section 4.3.1, a spurious boundary layer is generated to smooth out the jump of the 

velocity at the interface and acts as a source of the no-viscous vortex in lighter phase. In Figure 4-19, 

for both mesh densities, the interFoam solver shows the largest velocity gradients across the 

interface and spurious velocities are observed in the water phase closed to the interface. The 

IBVOF10 solver reduces the spurious velocities a bit but not as well as the IBVOF solver. Though less 

than the interFoam solver, the spurious velocity and velocity gradients in the denser phase would 

eventually distort the shape of droplet.  

The IBVOFW solver maintains the velocity of the denser phase as the IBVOF solver does. It extends 

the velocity of water phase two- to three- cell layer further away into the lighter phase as shown in 

Figure 4-19 and Figure 4-20.  Adding the thickness of the IBVOF boundary improves the stability of 

the simulation of the denser phase. However, it further ignores the interactions between the two 

phases. The smoothing process, on the one hand, ignores the effect of the lighter phase by 

enforcing the lighter phase with the velocity of denser phase, and on the other hand, weakens the 

effect of the denser phase to the light phase by reducing the velocity gradient in the lighter phase 

closed to the interphase.  

Figure 4-21 shows the velocity fields of high-density droplet with three different solvers with mesh 

256×128 at t = 5s. The white lines are the position of the interface. Compare to the interFoam 

solver in Figure 4-15, all the three solvers obtain quite good shape of the high-density droplet. 

However, large differences are observed in the lighter phase. The larger the thickness of the 

boundary, the weaker the vortex is generated in the lighter phase behind the droplet. Compared 

to the IBVOF10 solver and IBVOFW solver, the IBVOF solver reduces the influence of the lighter 
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phase on the denser enough to gain stability but keeps as much as influence between the two 

phases above one or two cell length.  

     

(a) IBVOF10    (b) IBVOF    (c) IBVOFW 

Figure 4-20  Velocity fields of high-density droplet with three different solvers with mesh 256×128 

at t = 0.1s. 

       

(a) IBVOF10      (b) IBVOF     

 

 (c) IBVOFW 

Figure 4-21  Velocity fields of high-density droplet with three different solvers with mesh 256×128 

at t = 5s. 

The overall purpose of this work is to develop a physics-based air-water boundary layer model 

applied it to VOF methods to deal with the discontinuity in the fluid properties over the two-phase 

interface and to offer a better resolution of the free-surface. The designed IBVOF boundary layer 

model helps to transit the water velocity to the air velocity physically smoothly. With the IBVOF 

solver, we are including the influence of the lighter phase on denser phase above one or two cell 
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length, which allows us to better simulate the behaviour of the denser phase. In contrast, a standard 

2-phase simulation will become unstable, and a single phase fails to simulate complex free surface 

flow when the interface merges or breaks up. 

4.5 Conclusion 

Two sets of test cases are designed to analyse the source of the spurious velocity observed in the 

normal VOF solver and to validate the proposed IBVOF method, steady stratified flow, and 

convection of a high-density droplet. The results of the two solvers are compared with analytical 

solutions or one-phase flow solver results. The source of the problem in the original solver is 

believed to lie in the interpolation of the momentum flux and the imbalance of the dynamic 

pressure gradient and density gradient because of the density jump across the interface. The 

spurious errors in momentum cannot be eliminated with mesh or time refinement and finally 

distort the interface.  

The IBVOF solver presented in this study provides a solution to this problem. The designed 

boundary layer smoothing of the velocity field helps to prevent the tearing of the interface due to 

the tangential velocity between the two phases across the interface. It is shown to improve the 

robustness and stability of two-phase flow simulations and higher accuracy can be obtained on a 

relatively coarse grid compared to the original solver.  
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Chapter 5 Applications of the IBVOF solver to general 

flows 

5.1 Introduction  

With the IBVOF solver well verified by the two sets of test cases, it is now extended to prediction 

of breaking waves in general simulations with unstructured mesh. First, in order to extend the 

application of the proposed IBVOF method, another density-weight smoothing (DW) approach is 

developed in this chapter. The extrapolated velocity (EV) approach extends the velocity of the 

denser phase beneath the interface to the lighter phase above the interface. This approach 

improves the accuracy of the two-phase solver. However, the application is limited on uniform 

Cartesian coordinate system since x- and y- coordinates are used. The DW approach is tested for 

compatibility against the IBVOF solver of Chapter 3 and test cases in Chapter 4 with uniform and 

unstructured mesh. 

Next, the performance of the proposed IBVOF solvers is evaluated through a variety of numerical 

benchmark tests. In section 5.4, the case of a high-density droplet convection is extended to 3-

dimensional (3D) simulation. The effects of fluid viscosity and surface tension are analysed in 

section 5.5 and section 5.6. Finally, a real-life problem of a droplet impact on a thin liquid file at 

short time is investigated to further validate the new two-phase flow solver. 

5.2 Density-weight smoothing method 

After the boundary cell are identified, the next step is to build an extra velocity field for this 

boundary layer. The extrapolated liquid velocity (EV) approach used in Chapter 3 and Chapter 4 is 

proposed by Xiao et al. [6] by extending the velocity of the denser phase beneath the interface to 

the lighter phase above the interface. This approach improves the accuracy of the two-phase solver. 

However, the application is limited on uniform Cartesian coordinate system. In order to extend the 

application of the proposed IBVOF method, another density-weight smoothing (DW) method is 

developed in this section. 

The idea of density-weight smoothing comes from Fu’s research [97]. The complete formulation for 

this smoother is as follows: 

𝑢�̃� =
〈𝜌𝑢𝑖〉

〈𝜌〉
    for α ≥ 0.5,       (5-1) 
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where 𝑢�̃� is the smoothed velocity field, 𝑢𝑖 is the unfiltered velocity field, 𝜌 is the density, α is the 

volume fraction. Brackets denote smoothing. 

In present work, a smoother proposed by Lafaurie et al. [98], namely a Laplacian filter that 

transforms the function into a smoother one: 

〈𝐹(𝑥)〉𝑃 =
∑ (𝐹(𝑥))𝑓𝑆𝑓

𝑛
𝑓=1

∑ 𝑆𝑓
𝑛
𝑓=1

,         (5-2) 

where the subscript P denotes the cell index and f denotes the face index. The interpolated value 

(𝐹(𝑥))𝑓 at the face centre is calculated using linear interpolation. 

Namely: 

〈𝜌〉𝑃 =
∑ (𝜌)𝑓𝑆𝑓

𝑛
𝑓=1

∑ 𝑆𝑓
𝑛
𝑓=1

,      (5-3) 

〈𝜌𝑢𝑖〉𝑃 =
∑ (𝜌𝑢𝑖)𝑓𝑆𝑓

𝑛
𝑓=1

∑ 𝑆𝑓
𝑛
𝑓=1

.     (5-4) 

The formulation of the smoothed velocity keeps the same: 

(𝑢�̃�)𝑝 =
〈𝜌𝑢𝑖〉𝑃

〈𝜌〉𝑃
    for α ≥ 0.5.       (5-5) 

 

Figure 5-1  Air cell (P) and neighbour cells (N) used in density-weighted smoother. 

Compared to the EV approach, the DW approach has advantages in two aspects. Numerically, the 

DW is relatively easy to apply to two-phase flow solvers. No coordinate information is required in 

the smoothing process, which means irregular or unstructured mesh is allowed. It is also easier for 

the DW approach to extend to 3D dimension as well. The DW approach is more reasonable in term 

of physical property. The two phases are considered when smoothing the velocity across the 

interface, while the denser phase has larger effect on the boundary layer. To distinguish the two 

solvers, the IBVOF solver combined with the EV approach is called EV-IBVOF solver, and the one 

with the DW approach is called DW-IBVOF solver.   
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5.3 2D simulations on unstructured mesh  

In this section, the two cases, the steady stratified flow and the convection of a high-density droplet, 

investigated in Chapter 4 are used again to compare the two different approaches. The numerical 

setup for both cases keeps the same as Chapter 4. The differences are the meshes that the solvers 

use. For the EW-IBVOF solver, only uniform structured mesh is allowed while unstructured mesh is 

applied in the simulations of DW-IBVOF solver. In both section 5.3.1 and section 5.3.2, uniform 

structures mesh is firstly used to check the accuracy of the DW-IBVOF solver with comparison of 

the DW-IBVOF solver and the original interFoam solver. Locally refined unstructured mesh is then 

used to validate its robustness.  

5.3.1 Steady stratified flow with DW-IBVOF solver 

In order to check the DW-IBVOF in dealing with the spurious velocities, the case A4 and case B4 in 

Chapter 4 with high density ratios are selected in this section. As shown in Figure 5-2 and Figure 

5-3, two set of meshes are used in the simulations. In the first mesh, uniform square cells are 

applied cover the whole computational domain with the mesh size ∆𝑥 = ∆𝑦 =
5

128
𝑚 . In the 

unstructured mesh, a refinement zone covering the interface is added based on a coarser 

background mesh. The mesh size in the refined interface zone is the same with the first uniform 

mesh.  

Horizontal velocity profiles on section x= 5 m using the three different solvers are compared with 

each other in Figure 5-4. In these very simple test cases, the profiles with the DW-IBVOF solver on 

both meshes are almost the same as the EV-IBVOF solver on the uniform structured mesh.  

As shown in Figure 5-5, the difference between the values of Relative error 𝜖𝑈 obtained from the 

two IBVOF solvers is very small. This means that the DW approach also successfully extrapolate the 

velocity of the denser phase slightly below the interface to the velocity of the lighter phase slightly 

above the interface through the high-density ratio. The spurious velocities are suppressed in the 

DW-IBVOF solver. 
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Figure 5-2  Uniform structured mesh for steady stratified flow 

 

Figure 5-3  Local refined unstructured mesh for steady stratified flow. 

 

 

(a) Case A4 
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(b) Case B4 

Figure 5-4  Horizontal velocity profiles on section x= 5 m using different solvers. 

What’s more, the DW-IBVOF shows its ability on the unstructured mesh. Compared to the uniform 

mesh with 32, 768 cells, the locally refined unstructured mesh contains 18,176 cells, which is much 

less. But the accuracy of the DW-IBVOF solver does not affect by the reduced meshes. In this 

stratified flow problem, the mesh size in the interface zone is the most important parameter in 

numerical simulations. In ship and ocean engineering problems, it is usually impossible to generated 

uniform mesh around complex ships or other offshore structures and refinements are usually 

required in the free surface area in breaking wave problems. It is therefore important for the two-

phase solver to be robust with respect to general mesh systems.  

 

(a) Case A4 
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(b) Case B4 

Figure 5-5  Relative error 𝜖𝑈 on section x=5m using different solvers. 

 

5.3.2 2D simulations of a high-density droplet convection 

Similar to the steady stratified flow cases, the high-density droplet convection case is used in this 

section to further validate the proposed DW-IBVOF solver. The numerical setup keeps the same as 

section 4.3 and the results obtained with the interFoam and the EV-IBVOF solver with uniform 

structured mesh with 128×64, 256×128 to 512×256 square cells are used directly in this section. 

In the simulations with the DW-IBVOF, however, unstructured meshes are used accordingly. The 

mesh type is shown in Figure 5-6. For the coarsest mesh, shown in Figure 5-6 (a),the mesh sizes in 

both x- and y- direction are ∆𝑥 = ∆𝑦 =
5

64
𝑚. The mesh is the same as the coarsest uniform mesh 

128×64. A finer mesh is generated by adding a refinement zone covering the interface region. The 

mesh sizes near the interface are  ∆𝑥 = ∆𝑦 =
5

128
𝑚. In the finest mesh, another refinement zone 

is added on the second mesh and the finest mesh sizes are  ∆𝑥 = ∆𝑦 =
5

256
𝑚. In this case, it is the 

mesh sizes near the interface that really matters in the simulations. The usage of unstructured mesh 

maintains the accuracy of the simulation on the one hand and reduces the calculation amount on 

the other hand. 

Similar to section 4.3,  the velocity profiles at early stage and the final shape of the interface 

obtained with the three two-phase flow solvers are compared with each other. As shown in Figure 

5-7, the velocity profile using the DW-IBVOF solver is very closed to the EV-IBVOF solver at the early 

stage. This is reasonable since the only difference between the two solver is the different operation 

when drive the lighter phase above the interface by the velocity of the denser phase. In the EV 

approach, this aim is achieved through pure mathematical operations while the DW approach is 
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through density weighting. When it comes to the problems with density ratios equals to 10e6, the 

resulting value of the lighter phase with DW approach almost equals to the denser phase next to it. 

 

(a) Square cells 

 

(b) Square cells and one refinement zone 

 

(c) Square cells and two refinement zones 

Figure 5-6  Unstructured mesh used in the simulation with the DW-IBVOF solver 
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Though the velocity field obtained with the two IBVOF solvers are very simlar at the early stage, the 

discrepancies between the two solvers grows with time. Figure 5-8, Figure 5-9 and Figure 5-10 show 

the final shape of the interface with different mesh sizes. In the simulations of the interFoam solver 

and the EV-IBVOF, the uniform structured meshes are used while the unstructured mesh with the 

corresponding minimum mesh sizes are used in the simulations of the DW-IBVOF solver. In terms 

of interface shape conservation, the DW-IBVOF solver provides a best performance. 

 

(a) One phase solver     (b) InterFoam solver 

 

(c) EV-IBVOF solver    (d) DW-IBVOF solver 

Figure 5-7  Velocity field at t=0.1s with mesh size  ∆𝑥 = ∆𝑦 =
5

128
𝑚 near the interface. The top half 

shows the coloured velocity magnitude, and the bottom half shows the velocity 

direction with arrows. 

 



Chapter 5 

70 

 

(a) ∆𝑥 = 5/64   (b) ∆𝑥 = 5/128   (c) ∆𝑥 = 5/256 

Figure 5-8  Volume fraction 𝛼 distribution with the interFoam solver on structured mesh at t = 5s. 

 

 

(a) ∆𝑥 = 5/64   (b) ∆𝑥 = 5/128   (c) ∆𝑥 = 5/256 

Figure 5-9  Volume fraction 𝛼 distribution with the EV-IBVOF solver on structured mesh at t = 5s. 

 

 

(a) min∆𝑥 = 5/64   (b) min∆𝑥 = 5/128   (c) min∆𝑥 = 5/256 

Figure 5-10  Volume fraction 𝛼 distribution with the DW-IBVOF solver on unstructured mesh at t = 

5s. 
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Compared to the results with the interFoam solver, the EV-IBVOF solver indeed suppress sightly the 

unphysical tearing of the interface. However, the discrepancies between numerical results and 

exact solution still exist. The position and shape of the wiggly surface obtained with the EV-IBVOF 

solver are very similar to that with the interFoam solver especially with the finer mesh (see Figure 

5-9). The ability of the proposed EV-IBVOF solver is therefore doubted when it comes to ship 

hydrodynamic problems with long-term simulations. The extrapolated velocity from the denser 

phase to the lighter phase via pure mathematic operation may be not good enough. 

As shown in Figure 5-10, the final shapes of the droplet obtained with the DW-IBVOF solver are 

smoothed and closer to the perfect circle on all the mesh sizes. Major part of the deformation 

generated in the results of the interFoam and EV-IBVOF solvers are eliminated, though a small notch 

is observed on the left side of the droplet on the finest mesh. Even though the effects of the EV-

IBVOF and the DW-IBVOF solvers to the simulation results don’t show big differences in the case of 

steady stratified flow analysed in section 5.3.1, the DW-IBVOF solver shows its advantages in 

dealing with problems with a band of layers that the value of 𝛼 transmit from 0 to 1.  

To demonstrate the differences between the two approaches in velocity reconstruction, a 

simplified test is designed. As shown in Figure 5-12, the value of the volume fraction 𝛼 distribution 

and the momentum equation deduced velocity field for each cell is given the same number. The 

position of the interface is shown with the iso-surface 𝛼=0.5 in a red line. The red line is added to 

divide the two phases for visualization, but in the calculation, a band of layers with 𝛼=0.2 and 𝛼=0.8 

are used. According to the definition of boundary layer cells in section 3.4.1, the velocities of the 

cells with 𝛼=0.2 are required to reconstructed. Take the cell P for example, the reconstructed 

velocity with the two different approach is shown in Figure 5-13. The value of the momentum 

equation deduced velocity of cell P is 0.2. 

In the EV approach, the reconstructed velocity 𝐮𝑁  of cell P should be similar to the closest denser 

phase cell, which is 0.8 in this test, so that the velocity of denser phase extends to the lighter phase. 

It is true that the gradient of velocity across the interface has been reduced in this process. However, 

this operation enlarges gradient of velocity on the lighter phase side. Though not as strong as the 

discontinuous velocity across the interface, the effect of this sudden increase in velocity on the 

lighter phase side on the final velocity field still exist, especially for the cases with a wide band of 

transition layers.  As analysed in section 4.3.1and section 5.3.2, the non-viscous vortex is generated 

due to the large velocity gradients in the lighter phase region and eventually results in spurious 

velocity in the denser phase and distort the interface. 

In the DW approach, even though the velocity of boundary cells with 𝛼=0.2 is required to be 

reconstructed, the denser phase that contains in the cell is considered during the velocity 
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smoothing process.  The value of the smoothed velocity for the boundary cell P is 0.34, which is 

between the original momentum equation deduced velocity 0.2 and the straightforward 

extrapolated velocity 0.8. As shown in Figure 5-12, the gradients of velocity on both phase side are 

smoothed by the density weights. Compared to the EV approach, it is more reasonable for the DW-

IBVOF approach since the effect of the denser phase should not be neglected. The denser phase 

may domain the cell behaviour of the cell due to inertia if the density ratio is large.  

 

Figure 5-11  Volume fraction 𝛼 distribution and velocity field. 

 

Figure 5-12  Momentum equation deduced velocity and constructed velocity with two approaches. 

Similar to the analysis in section 4.3.2, the three error measures, volume conservation, shape 

preservation and sharpness, are calculated to compare the two IBVOF solvers. For volume 

conservation (mass conservation), both solvers perform very well. Though small differences are 

observed in Figure 5-13 (a), the maximum value of the error is less than 8e-05 which is smaller than 

the original interFoam solver.  
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(a) Volume conservation, 𝜖𝑉𝐶. 

 

(b) Shape preservation, 𝜖𝑆𝑃. 

 

(c) Sharpness, 𝜖𝑆. 

Figure 5-13  Performance for high-density droplet with DW- and EV-IBVOF solvers at t = 5s. 
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In terms of shape preservation, the DW-IBVOF solver gives a better performance than the EV-IBVOF 

solver. The error 𝜖𝑆𝑃 of DW-IBVOF solver is 15%-20% smaller than EV-IBVOF. It is therefore evident 

that the density-weight smoothing method is more reasonable than the extrapolated velocity 

approach for the cases with a band of layers with 0<𝛼<1.  

As for the sharpness errors 𝜖𝑆, slightly smaller value is obtained with DW-IBVOF. The sharpness of 

the interface is mainly determined by the mesh size. Both solvers show monotonic space 

convergence.  

It is therefore proved that the DW-IBVOF solver performs better than the EV-IBVOF solver. For the 

same uniform mesh, the DW-IBVOF solver shows higher accuracy in prediction of both velocity 

fields and volume fraction 𝛼 distribution fields. What’s more, unstructured mesh is allowed with 

the DW-IBVOF solver. The local refined mesh reduces the amount of calculation while maintaining 

the accuracy. It is also easier for the DW approach to extend to 3D simulations. In order to provide 

better predictions of two-phase flow simulations, the DW-IBVOF solver is selected as an appropriate 

resolution for all of the future studies in this work.  

 

5.4 3D high-density droplet simulation  

With the DW-IBVOF solver well verified by the 2D test problems, it is now extended to prediction 

of 3D fluid flows. The simple test case, transport of a very-high density fluid sphere, is extended to 

3D simulations to further validate the new solver.  

The computation is conducted for a domain of [0 m, 10 m]×[0 m, 5 m] ×[0 m, 5 m]. A sphere of 

fluid droplet with diameter D=1 m is initially placed in the air with its center at (2.5m, 2.5m, 2.5m). 

The droplet is given a constant horizonal velocity 𝐔𝑙 = (1,0,0) m/s whilst the gas is initially at rest. 

Other numerical setups keep the same as the 2D case investigated in section 4.3 and section 5.3.2. 

Both viscous effects and surface tension are neglected in this case. Theoretically, the high-density 

droplet is expected to remain perfectly circular when passing through the air. 
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(a) Cross section at z= 2.5m      (b) Cross section at x= 5m 

Figure 5-14  Computational mesh including a local refined zone. 

Two sets of mesh are used in this section. The first one is a uniform grid with  ∆𝑥 = ∆𝑦 = ∆𝑧 =

5

64
𝑚. The number of cells in the whole domain is 524,288.  The second set mesh is unstructured 

mesh as shown in Figure 5-14. A refinement zone covering the sphere region is added based on the 

uniform mesh. The minimum mesh size near the interface is  ∆𝑥 = ∆𝑦 = ∆𝑧 =
5

128
𝑚. The number 

of cells for the finer mesh reaches 2,887,168. For both meshes, adaptive time steps are used based 

on a maximum allowed Courant number, Co=0.2. 

Again, the velocity field in the early stages of the simulation, t=0.1s, is first analysed. Figure 5-15 

and Figure 5-16 show the velocity field at section z= 2.5m with the interFoam and the DW-IBVOF 

solvers respectively. In order to highlight the difference of velocity values between the two solvers, 

the velocity range in both figures is set from 0.5 m/s to 1.05 m/s, which is the maximum value of 

velocity obtained from the interFoam solver with the coarse mesh.   

In order to highlight the difference of velocity fields between the interFoam and DW-IBVOF solvers, 

the velocity ranges in Figure 5-15 and Figure 5-16 are set from 0.5 m/s to 1.08m/s. Spurious 

velocities are smaller than that in the 2D simulations but still presents on the left side of the droplet. 

The maximum value of velocity in the interFoam simulations is 1.08 m/s with mesh ∆𝑥 = ∆𝑦 =

∆𝑧 =
5

64
𝑚 and 1.03 m/s with mesh ∆𝑥 = ∆𝑦 = ∆𝑧 =

5

128
𝑚, while 1.02 m/s and 1.01m/s in the DV-

IBVOF solver simulations accordingly. The spurious velocities accumulate with time and eventually 

affect the shape of the interface. 
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(a) ∆𝑥 = ∆𝑦 = ∆𝑧 =
5

64
𝑚                                (b)∆𝑥 = ∆𝑦 = ∆𝑧 =

5

128
𝑚 

Figure 5-15  Velocity field at t= 0.1 s with interFoam solver at cross section z=2.5m near the interface. 

 

(a) ∆𝑥 = ∆𝑦 = ∆𝑧 =
5

64
𝑚                     (b) ∆𝑥 = ∆𝑦 = ∆𝑧 =

5

128
𝑚 

Figure 5-16  Velocity field at t= 0.1 s with DW-IBVOF solver at cross section z=2.5m near the interface. 
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(a) ∆𝑥 = ∆𝑦 = ∆𝑧 =
5

64
𝑚        (b) ∆𝑥 = ∆𝑦 = ∆𝑧 =

5

128
𝑚 

Figure 5-17  3D iso-surface at t=5 s with interFoam solver and velocity field at cross section z=2.5m 

coloured by velocity. 

 

(a) ∆𝑥 = ∆𝑦 = ∆𝑧 =
5

64
𝑚        (b) ∆𝑥 = ∆𝑦 = ∆𝑧 =

5

128
𝑚 

Figure 5-18  Volume fraction 𝛼 distribution at t=5 s with interFoam solver at cross section z=2.5m 

coloured by velocity. 
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(a) ∆𝑥 = ∆𝑦 = ∆𝑧 =
5

64
𝑚       (b) ∆𝑥 = ∆𝑦 = ∆𝑧 =

5

128
𝑚 

Figure 5-19  3D iso-surface at t=5 s with DW-IBVOF solver and velocity field at cross section z=2.5m 

coloured by velocity. 

 

(a) ∆𝑥 = ∆𝑦 = ∆𝑧 =
5

64
𝑚       (b) ∆𝑥 = ∆𝑦 = ∆𝑧 =

5

128
𝑚 

Figure 5-20  Volume fraction 𝛼 distribution at t=5 s with DW-IBVOF solver at cross section z=2.5m 

coloured by velocity. 

 

Figure 5-17 and Figure 5-19 show the final shape and position of the interface at t= 5s with the two 

solvers and the volume fraction 𝛼 distributions at the mid-cross section at z- direction are shown in 

Figure 5-18 and Figure 5-20. The volume fraction distribution at the mid-cross sections obtained 

with interFoam with the coarse mesh is very similar to the 2D results with the same mese size but 

much closer to the theoretical solution. Though the minimum mesh size in each direction in the fine 

mesh is half of the coarse mesh, one cell in the coarse mesh is split into 8 cells.  In the 3D simulations, 
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mesh refinement leads to a substantial increase in the amount of calculation. It is therefore more 

important to improve the accuracy of the two-phase flow solvers. 

5.5 Viscous two-phase Poiseuille Flows  

Besides the density, viscosity is another important parameter in general two-phase flow simulations. 

The basic idea of the DW-IBVOF method in section 3.4 is designed velocity boundary layer similar 

to non-slip boundary conditions in Fluid-Structure interactions problems. In this section, the 

influence of the viscosity to the generation of spurious velocity is investigated.  

The layered Poiseuille flow is classical and simple two-phase benchmark problems. Owing to the 

shear phenomena in the layered flows, the simulations are sensitive to numerical errors and it is 

therefore a good test case for validating the two-phase flow solvers. The configuration of the 

problem is illustrated in Figure 5-21. Two incompressible, immiscible flows flow in the z- direction 

through the horizontal channel with dimensions of [0, 5]×[-1, 1]. Initially, the phase 1 fluid is placed 

in the lower region of −1 ≤ 𝑦 < 0 and the region of  0 ≤ 𝑦 ≤ 1 is filled with phase 2. Gravity and 

the surface tension forces are neglected. The flow is driven by a horizontal pressure gradient. 

 

Figure 5-21  Configuration of the viscous two-phase Poiseuille Flow. 

In this case, the focus is kept on the viscosity so the densities of the two phases are considered 

equally as 𝜌1 = 𝜌2 = 10 𝑘𝑔/𝑚3. Three different sets of viscosity are carried out (as shown in Table 

5-1) to investigate the effect of viscosity ratio on the velocity profile. The pressure difference 

between the left and the right boundary is set as ∆𝑝 =  2 𝑃𝑎. No-slip boundary conditions are 

imposed on the upper and the bottom walls and Neumann conditions are assumed on the velocity 

on the left and the right boundaries while the pressures are fixed. The whole domain is discretised 

using a uniform Cartesian mesh with ∆𝑥 = ∆𝑦 = 0.02 𝑚. 

For long times, a steady solution is obtained for the two-phase Poiseuille flow and the analytical 

solution for the horizontal velocity field[99]: 
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𝑢𝑥,1(𝑦) =
∆𝑝𝑏2

2𝜌𝐿𝜇2
[−(

𝑦

𝑏
)
2
−

𝑦

𝑏
(
𝜇1−𝜇2

𝜇1+𝜇2
) +

2𝜇2

𝜇1+𝜇2
] ,     − 𝑏 ≤ 𝑦 < 0    (5-6) 

𝑢𝑥,2(𝑦) =
∆𝑝𝑏2

2𝜌𝐿𝜇1
[−(

𝑦

𝑏
)
2
−

𝑦

𝑏
(
𝜇1−𝜇2

𝜇1+𝜇2
) +

2𝜇1

𝜇1+𝜇2
] ,     0 ≤ 𝑦 ≤ 𝑏    (5-7) 

where L is the length of the horizontal wall and b is the distance between the interface and the wall 

boundaries. The comparison of the velocity profile between interFoam, DW-BVOF solvers and 

analytical solutions for three different viscosity ratios is present in Figure 5-22. The velocity scale is 

here chosen as �̅�, the average velocity of the channel. Both the two solvers show close agreement 

with the exact solutions even for a relative high viscosity ratio.  

 

Table 5-1  Physical parameters for two-phase Poiseuille flow. 

𝜇1(𝑁𝑠/𝑚2) 𝜇2(𝑁𝑠/𝑚2) 𝜇1/𝜇2 

5 1 5:1 

10 1 10:1 

10 0.1 100:1 

 

To quantitively investigate the effect of viscosity to the velocity field, the following relative error is 

applied: 

𝐸𝑢 =
∑ |𝑢𝑥

𝑛(𝑦)−𝑢𝑥
𝑎(𝑦)|𝑦

∑ |𝑢𝑥
𝑎(𝑦)|𝑦

 ,     (5-8) 

where the subscripts n and a denote the numerical and analytical solutions. The results are listed 

in Table 5-2. It is found that a very small relative error can be derived by both solvers.  The relative 

errors do not grow much with viscosity ratio and no spurious velocity is generated near the interface 

in the simulations of the original interFoam solver.  

As shown in Figure 5-22 and Table 5-2, the differences between the two solvers are extremely slight. 

The designed boundary layer in DW-IBVOF solver does not harm the accuracy of the interFoam 

solver. One of the reasons is that the mesh size is relatively small and the velocities of only one 

layer of mesh above the interface are modified by the DW approach. A more important reason is 

that the densities of the two phases are equal. The two phases have the same weights when 

smoothing the velocity fields.  The smoothed velocity field does not show as much differences as 

section 4.2 with large density ratios.  
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(a) Viscosity ratio 5 

 

(b) Viscosity ratio 10 

 

(c) Viscosity ratio 100 

Figure 5-22  Comparison of the velocity profile between interFoam, DW-BVOF solvers and analytical 

solutions for three different viscosity ratios. 
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Table 5-2  Relative errors of the horizontal velocity in layered Poiseuille flow. 

Viscosity ratio interFoam DW-IBVOF 

5 7.9e-3 8.5e-3 

10 5.9e-3 6.2e-3 

100 9.2e-3 7.8e-3 

 

5.6 Surface tension effect 

Surface tension is another important parameter in the simulations of free surface flows. As 

mentioned in Chapter 2, the VOF methods are widely applied to problems with large interface 

movement and topological changes. Despite the popularity of the VOF methods, there are issues 

when applying them to surface-tension-dominated flows[64]. Parasitic currents are often observed 

around the interface in the numerical results of VOF simulations[59][100][101]. This problem arises 

from the instability of the surface tension algorithm to evaluate a constant interface curvature from 

the discontinuous volume fraction function field is one of the major issues in inertia-dominated 

flow simulations.  

The values of the volume fraction that change over a thin region create errors in calculating the 

normal vectors and the curvature of the interface and eventually results in errors in evaluating the 

interfacial forces. In order to check the performance of the two solvers in simulation of surface-

tension-dominated flows, a benchmark test, a circular droplet in static fluid, is used in this section.  

The computation is conducted for a domain of [0 m, 1 m]×[0 m, 1 m] with a uniform grid. A droplet 

with diameter D=0.5 m is initially placed in the air with its centre at (0.5m, 0.5m). To keep focus on 

effect of surface tension to the velocity field, same density 𝜌1 = 𝜌2 = 1 𝑘𝑔/𝑚3 and viscosity 𝜇1 =

𝜇2 = 1 𝑘𝑔/(𝑚 𝑠) are set for the phases both inside and outside the droplet. Gravity is neglected in 

this case. The surface tension coefficient is 𝜎 = 0.1 𝑁/𝑚 . Periodic boundary conditions are 

imposed for the computational domain. Two sets of uniform mesh are considered, ranging from 

60×60 to 120×120, while the maximum Courant number, Co, equals 0.1 and the maximum time 

step, 1e-4 s for limiting the growth if spurious velocities in both cases. 

Figure 5-23 and Figure 5-24 show snapshots of the parasitic currents after the droplet has relaxed 

to its steady shape with the two solvers. The corresponding errors in velocity on different grid 

resolution are summarised in Table 5-3. Comparing the magnitude of the parasitic currents, the 



Chapter 5  

83 

currents are slightly reduced by the new solver. The refinement of mesh does not help to reduce 

the errors.  It is reasonable in this case. The errors induced non-physical parasitic currents also exist 

in the fluid inside of the droplet due to the numerically computed curvature. The magnitude of 

velocity near the interface in the phase inside of the droplet is slightly smaller than the region 

outside of the droplet. That explains that maximum and average errors in velocity change little 

though the velocity field is smoothed.  

 

(a) ∆𝑥 = ∆𝑦 =
1

60
𝑚                                 (b)∆𝑥 = ∆𝑦 =

1

120
𝑚 

Figure 5-23  Snapshots of interface shape and the parasitic currents with the interFoam solver. 

 

 

(a) ∆𝑥 = ∆𝑦 =
1

60
𝑚                                 (b)∆𝑥 = ∆𝑦 =

1

120
𝑚 

Figure 5-24  Snapshots of interface shape and the parasitic currents with the DW-IBVOF solver. 
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Unfortunately, the proposed DW-IBVOF solver fails to deal with the errors induced by the surface 

tension. These errors mainly be caused by the calculation of normal vectors and the curvature of 

the interface. Parasitic currents can be reduced by using a different, additional fields, such as a level 

set function[52], a height function[102] or a smoothed VOF function[64], that is used only to 

calculate curvature. An in-depth study of this parasitic currents, however, beyond the scope of the 

present discussion.  

 

Table 5-3  Errors in velocity on different grid resolution for the static droplet. 

Mesh size 
interFoam DW-IBVOF 

Max |𝑢| Avg. |𝑢| Max |𝑢| Avg. |𝑢| 

1/60 5.1e-3 6.3e-6 4.5e-3 5.8e-6 

1/120 4.9e-3 6.2e-6 4.3e-3 5.6e-6 

 

5.7 Droplet splashing on thin liquid film 

The dynamics of a droplet impact on a thin liquid file at short time are investigated in order to 

further validate the new two-phase flow solver. This problem is relatively real-life and is a common 

process in nature and industry, such as rain and ink-jet printing, where a robust and accurate flow 

solver is required. In this study, the experimental case with a droplet (diameter D= 4.2 mm) in [103] 

is simulated. The computation is conducted for a domain of [-7.5D, 7.5D] ×[0, 5D] with a uniform 

square grid. The droplet is initially placed in the air with its centre at (0, D) and a thin layer of liquid 

is filled with a height of h= 0.5D just below the droplet. The computational setup is shown in Fig. 

19.  

The droplet is given a constant downward velocity of 𝐔0 = (𝟎, 5.099) m/s while the air and the 

liquid are initially at rest. Different from the test cases in section 4.1 and 4.2, viscosity of both phases 

and surface tension are considered. All the physical parameters of both phases are set the same as 

the experimental condition. The key dimensionless parameters for this problem are 𝑅𝑒 =
𝜌𝑙𝑈0𝐷

𝜇𝑙
=

2010, 𝑊𝑒 =
𝜌𝑙𝑈0

2𝐷

𝜎
= 1168, where 𝜌𝑙 and 𝜇𝑙  are density and dynamic viscosity of the liquid phase 

and 𝜎 is the surface tension coefficient. The density and viscosity ratios of the two phases are 
𝜌𝑙

𝜌𝑔
=

1200  and  
𝜇𝑙

𝜇𝑔
= 1486 . Three meshes are considered, ranging from 300 ×100, 600 ×200 to 
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900× 300, while the maximum Courant number, Co, equals 0.1 for limiting the growth if spurious 

velocities in all these cases. 

 

Figure 5-25  Model of a single droplet impact on a thin liquid film 

The comparison of simulation results with experimental investigations in [103] at t= 0.3 ms, 1 ms 

and 3 ms is presented in Fig. 20. It is found that the numerical results from both solvers are in good 

agreement with the experimental observations. Three stages of droplet impact are captured with 

similar shapes and positions. A pair of liquid jet are generated immediately after impact from the 

neck region where the droplet contacts with the liquid film at t= 0.25 ms. Then the liquid jets move 

outward and transmit into a liquid crown at t= 1 ms. When the crown walls expand upwards, they 

become thinner with time and height. The height of crown wall increases at t= 3 ms. However, slight 

difference is observed between the two solvers at the shape of the thin crown wall and the angle 

between the crown wall and the liquid film. The evolution of the interface between liquid and gas 

and the velocity fields are enlarged and investigated.  

Figure 5-27, Figure 5-28 and Figure 5-29show the velocity fields at the three stages. The fields are 

nearly symmetric. For visualization purpose, the figures are divided into two parts. The left half 

shows the coloured velocity magnitude, and the right half shows the velocity directions with arrows. 

The position of the interface (iso-surface with 𝛼 = 0.5) is shown with a purple line. Unfortunately, 

the velocity field is unavailable from the experiment since the technology limit, so the focus is on 

the difference between the two solvers and to investigate the effect of the designed layer.  

As shown in Figure 5-27, thin liquid jets eject from the connected region between the droplet and 

liquid film surface with relative high velocities. According to theories in [104] and [105], this is 

caused by the large pressure gradient produced in the neck region. Similar jets and velocity increase 

are observed in both solvers, however, the velocity obtained from the interFoam is much higher 

than the IBVOF solver. The maximum value of velocity with the interFoam reaches 20.57 m/s near 

the tips of the jets while the maximum value in the IBVOF solution reaches 14.38 m/s. More 

specifically, the horizontal velocity components are higher while the vertical components are 
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similar. This leads to the different shape of the crown that transform form the jet sheet. What’s 

more, the large velocity gradients generated across the interface finally results in a series of vortex 

especially in the air region as shown in Figure 5-28 (a). 

 

(a) Experimental images [103] 

 

(b) interFoam solver 

 

(c) IBVOF solver 

Figure 5-26  Instantaneous profile of droplet splashing on a thin liquid film with the interFoam solver 

and the DW-IBVOF solver. 

 

In the early stage (t= 0.25 ms) of droplet impact liquid film, it is clear to see that the liquid below 

the droplet moves downwards to the bottom of the domain because of the droplet impact. The 

velocity direction is than changed once the liquid reaches the bottom and radial flow is produced 

(t= 1 ms). The jets that initially generated by the droplet impact is pushed by the radial flow and 

expand upward into thin liquid sheets, which are called crown walls. Compared to the interFoam 

solutions, lower velocity magnitude and less vortexes are generated in the gas phase. The shape 

and position of the interface are similar to each other while the tips of the crown wall in the 

interFoam tends to advance to the horizontal direction, but almost vertical walls are observed with 

the IBVOF solver.  
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When the crown walls expend upwards, their thinness turns thinner and thinner with time and 

height since they meet the surrounding static gas and push it away. The velocities of the liquid keep 

decreasing by gravity at the same time. In the IBVOF solutions, the tips of crown wall turn blunt 

from t= 2.8 ms and break up into a droplet at t= 3ms (shown in Figure 5-29) which is also observed 

in the experimental image. However, the interFoam solver fails to capture the detached droplet. 

The thickness of the interface at the tips of the crown wall, the width of the region where the cell 

contains both liquid and gas, increases with time though the iso-surface with 𝛼 = 0.5 is getting 

shaper. It is therefore evident that the proposed IBVOF improves the accuracy of modelling of two-

phase flows with high density ratio. 

 

(a) InterFoam 

 

(b) IBVOF solver 

Figure 5-27  Velocity field of droplet splashing with the interFoam solver and the DW-IBVOF solver 

at t= 0.3 ms. 
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(a) InterFoam 

 

(b) IBVOF solver 

Figure 5-28 Velocity field of droplet splashing with the interFoam solver and the DW-IBVOF solver 

at t= 1 ms. 
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(a) InterFoam 

 

(b) IBVOF solver 

Figure 5-29  Velocity field of droplet splashing with the interFoam solver and the DW-IBVOF solver 

at t= 3 ms. 

The introduction of surface tension introduces more numerical errors to the case, which are not 

addressed in the present work. This is also the reason why the cases of steady stratified flow and 

convection of a high-density droplet, are designed to separate the two potential sources of 

problems and demonstrate the effect of a high-density ratio on the spurious velocity. Though 

compared to the first two cases, the last case, droplet splashing on thin liquid film, exhibits reduced 

differences between the two solver, the present IBVOF solver does improve the accuracy of 

modelling of two-phase flows with high density ratio, in particular the formation of droplets in the 

flow. 

It is shown from the IBVOF method description that additional steps have to be performed (e.g., 

identification of interface, velocity extrapolation, IBM forcing) by comparison with the original 

interFoam solver. However, in the proposed method, the interface is identified directly from the 

original VOF function. The velocity extrapolation process and pressure update are only carried out 

very close to the interface.  
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5.8 Conclusion  

The DW approach has been implemented to extend the application of the proposed IBVOF solver. 

Compare to the EV approach, more liquid and gas cells are used with the DW approach in the 

smoothing process and the denser has larger effect on the velocity in the designed free surface 

boundary due to the density weight. The DW-IBVOF solver is therefore more reasonable in terms 

of fluid physical property. The performance of the DW-IBVOF solver has been evaluated through 

the steady stratified flow and the 2D high-density droplet convection cases, where the spurious 

velocity generated near the interface has been well reduced.  

What’s more, it is easier of the DW-IBVOF solver to extend its applications to unstructured mesh 

cases and 3D simulations. No coordinate information is required in the smoothing process, which 

means irregular or unstructured mesh is allowed. The computed results of 3D high-density droplet 

simulation are compared with the original interFoam solver, and better performance is obtained in 

terms of shape preservation and sharpness. 

The effect of fluid viscosity is investigated through the viscous two-phase Poiseuille flows. Excellent 

results are obtained by both the original interFoam solver and the proposed IBVOF solver. When 

the density of the two phases keeps the same, the viscosity ratios between the two phases do not 

generate the spurious velocity across the interface as the density ratios do.  

Besides of the discontinuities in material properties, the inaccurate interface curvature is the other 

main source of spurious velocities. The IBVOF solver is also checked by the simulation of surface-

tension-dominated flows, a benchmark test, a circular droplet in static fluid. Unfortunately, the 

proposed solver fails to deal with the parasitic currents raised form the instability of the surface 

tension algorithm. 

The DW-IBVOF solver is finally applied to simulate a real-life problem of a droplet impact on a thin 

liquid file at short time and the computational results are compared with the original interFoam 

and published experimental data. The three stages of droplet impact observed in the experiment 

are well captured by the DW-IBVOF solver. The designed boundary layer smoothing of the velocity 

field helps to prevent the tearing of the interface due to the tangential velocity between the two 

phases across the interface. It is shown to improve the robustness and stability of two-phase flow 

simulations. 
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Chapter 6 Wave propagation and breaking up 

6.1 Introduction  

In two-phase flow simulations, wave propagation and break-up are very common and important 

phenomena that need to be considered in the design of ship and offshore structures. A thorough 

understanding of the physics of the nonlinear flow phenomena is necessary for the better insight 

into the two-phase flow problems and is widely investigated.  

In this chapter, the performance of the proposed DW-IBVOF solver is further evaluated through 

two sets of numerical benchmark tests with solitary waves and Stokes waves. In both sets of 

benchmark tests, the fluids are first modelled as inviscid for wave propagation simulations. This 

assumption allows the comparison with the well-controlled potential theory. In the later cases of 

wave breaking, the influence of fluids viscosity and surface tension are considered, and the 

numerical results are compared with the published experimental data. 

6.2 Solitary waves 

Two benchmark tests, propagation and runup of a solitary wave [95], are firstly conducted to check 

the numerical stability and robustness of the new method for non-linear wave simulations. Viscosity 

and surface tension are neglected. This allows the direct comparison of the new solver and the 

original VOF solver in interface convection. The results of all the test cases are compared with the 

original VOF solver, analytical solutions, or one-phase flow solvers. Then, plunging wave breaking 

on a slope is simulated to demonstrate the capability of the new solver to capture strong air-water 

interactions in real world. The overall wave breaking process, wave surface profile and velocity field 

are investigated, and the results are in good agreement with published experimental data. 

In this section, the new two-phase flow solver validated above is first tested against two benchmark 

problems defined by Pawel A[95]. In the first case, a solitary wave propagated in a numerical wave 

flume with a horizontal flat bottom. In the second one, a solitary wave runs up on a plane beach 

with a slope of 𝜃 = 10°. In both benchmark cases, the fluids are set as inviscid and without surface 

tension. This allows the direct comparison of the two-phase flow solvers against the well-controlled 

potential theory without the influence of viscosity or other spurious effects. Then, a case of 

plunging breaking solitary waves on a slope is preformed to further validated the new solver in the 

application of free surface flow problems in the real world. Both viscosity and surface tension are 

considered in this case and the results are compared with experimental data.  
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Figure 6-1  Numerical setup for the solitary wave cases. 

The numerical setup for the three cases is similar as shown in Figure 6-1 and Table 6-1. The defining 

waves parameters are the water depth, D, wave height, h, and slope of beach, 𝜃. For the first case 

in Section 6.2.1, the flume bottom is horizontal so the slope 𝜃 = 0°. The origin of the coordinate 

system is defined at the bottom left of the corner at the inlet boundary, positive x-axis pointing 

downstream and y-axis pointing upward. 

Table 6-1  Parameters for the solitary wave simulations 

Cases D h/D 𝜃 

S1.  1m 0.3 0° 

S2. 1m 0.3 10° 

S3. 0.205m 0.33 5.2° 

 

6.2.1  Propagation of a solitary wave in a constant depth 

The benchmark test is carried out in a two-dimensional numerical wave tank with L= 72.6 m and 

H=2.7 m. The still water level over the horizonal bottom is D= 1m. A solitary wave is initially placed 

with its crest at x= 15 m and propagates alongside the wave tanks for 9 s. In this test, both phases 

are set as inviscid, so a uniform mesh is used in the whole domain and slip boundary conditions are 

applied on the walls of the wave flume. Theoretically, the solitary wave is expected to remain the 

initial wave height and free surface shape when propagating in the flume under these conditions. 

The results of a one-phase flow solver in OpenFOAM, pimpleFoam, is used as a reference solution 

in this case.  

The numerical setup for the pimpleFoam is similar to section 4.3, where the fixed circle is replaced 

by a wave-profiled bump and the initial velocity is set the same as the celerity of the solitary wave, 

c= 3.56 m/s. In the validated cases in Chapter 4 and in the reference [95], the grid convergence of 
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the two-phase flow solvers has been checked. The finest mesh size with ∆𝑥 = ∆𝑦 = 0.017 m is used 

to compare the new solver with the reference solution and other two-phase flow solvers. The time 

step is controlled by the Courant number condition, Co= 0.5 in this case.  

Figure 6-2 shows the final wave profiles after 10 s of propagation with the interFoam solver and the 

new DW-IBVOF solver. The analytical results according to the solitary wave theory [106] are given 

in dots. Good agreements are obtained with both solvers. The wave height remains the same with 

the theory and almost no visible phase shift is observed. However, in terms of surface presentation, 

better performance is obtained with the DW-IBVOF solver on the left side of the wave crest where 

interFoam solver gives a wiggly surface.  

 

Figure 6-2  Wave profiles after 10s of the solitary wave propagation. 

The velocity fields in this region x= [40m, 48m] with the two solvers are shown in Figure 6-3. The 

position of the free surface is shown with the iso-surface 𝛼=0.5 in a white line. As shown in Figure 

6-3 (a), the velocity below the free surface is similar to theory solution [106] which is close to zero, 

while a large spurious velocity is observed in the air region with the interFoam solver.  

The maximum value of relative velocity 𝐔𝑟 = 𝑐 − 𝐔 in this region getting from in the one-phase 

flow solver simulations is 0.34 m/s while the maximum value in the interFoam solution reaches 

7.504 m/s. The spurious velocity comes from the imbalance between pressure gradient and density 

gradient in the momentum equation and accumulates with time. The effect of the numerical error 

on the air phase is much greater than on the water phase since the same stress is generated from 

the momentum equations. 
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(a) interFoam 

 

(b) DW-IBVOF solver 

Figure 6-3  Velocity field during solitary wave propagation at t= 10 s. The white line represents the 

position free surface with the iso-surface 𝛼 = 0.5. 

A set of non-viscous vortex are generated in the interFoam solution on the upper left region of the 

droplet since the air velocity adapts to the droplet movement to preserve continuity and 

momentum. The vortex is enlarged by the large velocity gradients in the air region as a result of the 

discontinuous velocity across the interface. The spurious velocity is then used in the convection of 

the volume fraction and eventually results in a wiggle surface. 

Compared to the interFoam, the DW-IBVOF solver shows its ability in suppressing the spurious 

velocities. The maximum value of velocity in DW-IBVOF solver is 0.667 m/s. Though double to the 

one-phase flow solver value, it is in the same order of magnitude. The discontinuity in the velocity 

between the air and water across the free surface is smoothed by the built free surface boundary 

layer. The interface instabilities and unphysical tearing of the interface are suppressed. A smoother 

free surface is obtained.  

To better understand the behaviour of the free surface, the horizontal velocity profiles along a 

vertical cross-section going up through the wave crest at t= 10s are investigated. In Figure 6-4, the 

reference result consists of two parts. For the air phase with y> 1.3 m, the reference velocity is the 
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relative velocity 𝐔𝑟 getting from the one-phase flow solver, and for the water phase with y< 1.3 m, 

the reference equals to the solitary wave theory. The two parts are connected with a straight line.  

 

Figure 6-4 The horizontal velocity profiles of the two phases along a vertical cross-section going the 

solitary wave crest at t= 10 s. 

It is evident that the velocity profiles of both the two two-phase flow solvers agree well with the 

reference solutions especially for the main bulk of the water phase. In both two-phase solvers, a 

narrow band is generated to transfer the velocity across the interface from water phase to air phase. 

This jump of the velocity mainly exists in air phase since the air phase is much lighter than the water 

phase. The large velocity gradient acts as the source of the no-viscous vortex on the left side of the 

wave crest and eventually effects the behaviour of water with time as shown in Figure 6-3. Smaller 

velocity gradient is observed in the results with the DW-IBVOF solver. The boundary layer designed 

by the density-weight smoothing method and immersed boundary method smooths the jump of 

the velocity field and reduces the velocity gradient in the lighter fluid near the interface. 

Beside of the large velocity gradient in the air phase, an increase of velocity in water phase close to 

the interface is generated in the results of interFoam solver. The overshooting in the particle 

velocities in the top of the crest is a common feature in other two-phase flow solvers like Thetis as 

shown in Figure 6-5. Truchas shows a very close result as the reference solution but presents 

artificially high velocities at the front of the solitary wave [95]. In simulations with Gerris, a reduced 

gravity approach, with which gravity is applied in a bond around the interface. The approach helps 

to reduce the imbalance of dynamic pressure gradient and density gradient.  
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Figure 6-5  The horizontal velocity profiles of the water phase along a vertical cross-section going 

the solitary wave crest compared with the benchmark results at t= 10 s. The data of 

OpenFoam, Gerris, Thetis and Truchas are obtained from benchmark cases [95]. 

Among all these two-phase solvers, the velocity profiles obtained with DW-IBVOF solver follow the 

reference solution quite well, both in sense of the water phase and air phase. The particle 

kinematics in the wave crest is an important feature in wave propagation simulations [96]. The 

spurious velocity can have an important effect on the advection of the free surface in a long-time 

simulation and the proposed DW-IBVOF solver provides much better accuracy in the two-phase 

flow calculations.   

6.2.2 Run-up of a solitary wave on a slope 

The second benchmark case used in present work is the runup of a solitary wave on a plane slope. 

The numerical test is carries out in a two-dimensional numerical wave tank with L=45 m and H=2.7 

m. The slope starts at x= 30m with an angel of 𝜃 = 10°. The solitary wave (parameters given in 

Table 6-1) is initially placed with its crest at x= 15 m and propagates towards to the slope for 10s.  

Both phases are set as inviscid and the surface tension is neglected to compare the results of the 

two-phase flow solvers with a fully non-linear boundary integral solver based on potential theory 

[107]. Slip boundary conditions are applied on the walls of the wave flume. According to the solitary 

wave and slope parameters, no breaking should occur in this benchmark test. Similar to case S1, 

the highest resolution in reference [95] is used in present work. The maximum Co number equals 

0.5 in each case.  

Figure 6-6 shows the snapshots of volume fraction 𝛼 distribution with the two solvers during wave 

runup process at t= 5.4 s. A wiggly surface is clearly observed close to the wave crest in the results 

of interFoam. Similar to the wiggly surface in case S1, the considerably distorted interface is caused 

by the spurious velocity generated near the interface. Figure 6-7 presents the velocity field at t= 
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5.4s with the two solvers. Artificially high velocities are present in the air phase with a maximum 

value of 11.6 m/s. A strong increase of velocity is also observed in the water phase closed to the 

interface. These spurious velocities directly lead to the unphysical shear of the interface since the 

they are used in the convection of the volume fraction.  

With a higher velocity than the main body of the wave, the water that closed to the interface moves 

in a spurious way and tends to spread to the air region from the tip of the swash tongue as shown 

in Figure 6-6. A mini plunging breaking wave is generated at around x= 35.5m on the slope with 

several separated droplets, which should not happen in this case. This problem is commonly 

present in solutions of Gerris and Thetis [95] and simply refining the mesh cannot remove the 

droplets during the simulation. It is therefore important to reduce the spurious velocity near the 

interface.  

 

(a) InterFoam solver 

 

(b) DW-IBVOF solver 

Figure 6-6  Volume fraction 𝛼 distribution during the solitary wave runup at t= 5.4 s. 

Compare to the interFoam solver, the DW-IBVOF solver is superior in prediction in both interface 

shape and velocity field as shown in Figure 6-6(b) and Figure 6-7(b). The velocity of the water phase 

beneath the interface is extended into the air phase above the interface due to the high-density 

ratio between water and air. The maximum value of the velocity with DW-IBVOF in the same region 

is only 7.7 m/s. A better predicted velocity field improves the accuracy of volume fraction 

convection and a smooth free surface is obtained without any separated droplets from the tip of 

the wave.   
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(a) InterFoam solver 

 

(b) DW-IBVOF solver 

Figure 6-7  Velocity field during solitary wave runup at t=5.4 s. The white line represents the position 

free surface with the iso-surface 𝛼 = 0.5. 

In the benchmark test [95], the evolution of the maximum elevation of the free surface with four 

two-phase flow solvers are collected and compared with potential solutions (shown in Figure 6-8). 

The separated drops are removed from the results and only the largest connected water region is 

taken into account. The results of the original interFoam (with and without the spurious droplets) 

and the DW-IBVOF solvers are added into the Figure 6-8. 

It is surprising to see the large distance between the separated droplets and the main body of the 

wave which is almost equal to the height of the maximum runup elevation of the wave. The 

elevation of the main body with interFoam shares same trend with other solvers. Among all the 

solvers, Gerris and DW-IBVOF solvers give the closest results with the reference. No separated 

droplets are found in these two solvers, which could be the reason. Gerris seems to be the best 

solver from Figure 6-8, but some bubbles are reported that sticked to the slope during the wave 

runup and rundown process, which may eventually damage the flow simulations. The overall good 

performance of the DW-IBVOF proves that the present methods improve the accuracy of two-phase 

flow simulations.  
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Figure 6-8  Evolution of the maximum elevation of free surface compared with the benchmark 

results during solitary wave runup. 

It is interest to see that even for the main water body, the interFoam in present work is better than 

the OpenFoam used in the reference paper [95]. A main issue may the different treatment of the 

solid boundaries. An immersed solid boundary condition is applied on the beach in the benchmark 

test which the authors are unsuccessful in using it. A slip boundary condition is used instead. 

Another reason could be the mesh configuration. Even though the mesh used in present work is 

designed as the same as the benchmark test, the size and shape of the mesh could be slightly 

different, especially in the junction region of horizonal bottom and the slope, because of the 

irregular shape of the wave flume. A discussion of mesh configuration is given in  [95], but is beyond 

the scope of the present work.  

6.2.3 Plunging breaking solitary waves on a slope 

To demonstrate the capability of the proposed solver in the application of free surface simulations 

in the real ocean engineering, numerical simulations for an experimental case are carried out in this 

section. Different to case S1 and S2, both viscosity and surface tension are taken into account and 

the numerical results are compared with the experimental data [108].  

The numerical simulations are carried out in a three-dimensional (3D) numerical wave tank with 

length L=8 m, height H=0.6 m and width W= 0.3m. The numerical setup is similar to case S2 and 

shown in Figure 6-1. The slope with an angle of 𝜃 = 5.1° starts at x= 4m. The still wave depth is D= 

0.205m. A solitary wave with amplitude h/D= 0.33 is initially placed at x= 1.815 m and propagates 

towards to the slope. The simulations end up after the runup process is completed and a plunging 

breaker is generated. All the physical parameters, densities, viscosities, and surface tension are set 

the same as the experiments. No-slip boundary condition is imposed on all the walls of the 

numerical wave tank.  
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A structured mesh is used to discretize the computation domain. The lower edge is aligned with the 

bottom of the domain and the surface of the slope while upper edge is horizonal. The cells at the 

top of the beach become smaller on the right end of the domain. The grids are uniform in the 

spanwise and streamwise direction, ∆𝑥 = ∆𝑧 = 3 𝑚𝑚, but nonuniform in the vertical direction, i.e., 

∆𝑦𝑚𝑎𝑥 = 3 𝑚𝑚 and ∆𝑦𝑚𝑖𝑛 = 0.2 𝑚𝑚. The meshes near the bottom of the wave tank and the 

surface of the slope are smaller to capture better the near-wall turbulent flow. The maximum Co 

number is set to be 0.5, the same as the numerical setup in c. A standard 𝑘 − 𝜀 turbulence model 

along with the Reynolds averages Navier-Stokes equations (RANS) is used to describe the turbulent 

flow in the two phases.  

When the solitary wave travels close to the slope, the characteristics of the wave such as wave 

height and velocities, change due to the water depth. The wave crest becomes steep and generates 

a plunging breaker towards to the slope. Figure 6-9, Figure 6-10 and Figure 6-11present the 

computed free surface profiles compared with the experimental data in the pre-breaking zone; no 

breaking has occurred yet. The numerical solutions with two-phase flow solver Truchas in [108] are 

also given in the comparison as a reference. Overall, the numerical results from the three two-phase 

flow solvers, Truchas, the proposed DW-IBVOF and the original interFoam, fit well with the 

experimental data for the locations and wave profiles.  

At t= 2.525 s, the wave starts shoaling and transforming. In terms of surface shape prediction, the 

interFoam solver gives the steepest wave crest on the wave front among the three solvers. The 

discrepancies between numerical results of interFoam solver and experimental data grow with time. 

At t= 2.64 s, the experimental wave front is almost vertical while in the results of interFoam, the 

plunging breaker have generated and tend to overturn.  

The Truchas solver, on the contrary, shows a much gentler wave profile. At t= 2.525 s, the results 

of Truchas are in good agreement with the laboratory wave front. The differences occur during the 

wave runup process. According to Mo et al’s work [108], the wave overturn predicted by Truchas is 

later than the experimental data and is around 85 mm further away from the inlet boundary, which 

is proved by Figure 6-11 where the Truchas still shows a relatively gradual wave profile with non-

breaking characteristics. This may be caused by the resolution is not fine enough to capture the 

variation of velocity. The finest mesh near the bottom of the computational domain that Mo used 

is 4 mm is larger than the coarsest mesh in the present work. 
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Figure 6-9  Comparison of experimental data and numerical solutions for free surface elevation for 

the plunging breaking solitary waves on a slope at t= 2.525 s. 

 

 

Figure 6-10  Comparison of experimental data and numerical solutions for free surface elevation 

for the plunging breaking solitary waves on a slope at t= 2.57 s. 

 

 

Figure 6-11  Comparison of experimental data and numerical solutions for free surface elevation 

for the plunging breaking solitary waves on a slope at t= 2.64 s. 
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Among the three solvers, the proposed DW-IBVOF solver shows the best agreement with the 

experimental observations. The discrepancies on the wave crest between numerical results of 

interFoam solver and experimental data are corrected by the modified velocity field. Similar to case 

S1 and case S2, artificial high velocities are observed in the air phase and a strong increase of 

velocity occurs in the water phase closed to the interface. To better understand the reasons behind 

the wave front shape, the velocity profiles of water phase is investigated in the next section. 

It is interesting to observe that the positions of the free surface closed to the slope obtained from 

experiment and Truchas in reference [108] are slightly higher than still water level. However, in 

other authors [109][110][111] research and the present work, the water near the slope stays 

undisturbed and the height of water remains initial value until the wave reaches.  

 

(a) Section x= 5.94 m 

 

(b) Section x= 5.98m 

Figure 6-12  Vertical profiles of horizontal velocity for the plunging breaking solitary waves on a 

slope at t= 2.525 s. 
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The horizontal velocity profiles of the water phase are investigated to understand the deformation 

of the wave front. According to the wave profiles, the vertical profiles of horizontal velocity at 

different sections at different times are shown in Figure 6-12, Figure 6-13 and Figure 6-14. It is 

obvious that the values of velocity obtained from the Trucha are 10% -15% lower than the 

experimental data and the other two solvers, even though the shape of velocity profiles compare 

well. These differences directly result in the late overturning of wave crest in the simulations with 

the Truchas.  

 

(a) Section x= 5.94 m 

 

(b) Section x= 5.98m 

Figure 6-13  Vertical profiles of horizontal velocity for the plunging breaking solitary waves on a 

slope at t= 2.57s 
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(a) Section x= 6.094 m 

 

(b) Section x= 6.098m 

Figure 6-14  Vertical profiles of horizontal velocity for the plunging breaking solitary waves on a 

slope at t= 2.64s 

In general, the velocity profiles with the interFoam and the DW-IBVOF solvers in present work 

compare satisfactorily with the experimental observation, both in the magnitude and the shape. 

Similar to case S1 and S2, strong air flows are induced with a series of vortices in both air and water. 

As shown in the figures, the high velocity always presents in the results obtained with the interFoam 

closed to the free surface and gradually decreases alongside the vertical direction. The 

discrepancies between the numerical simulations and experimental date are larger at sections x= 

5.98m and x= 6.098 m which are closed to the wave front, which is the source of the observed 

overturned plunging breaker.  

To accurately predict the behaviours of free surface with strong air-water inactions, it is critical to 

develop a high-fidelity and robust solver that can handle the moving boundaries. The comparison 

between the DW-IBVOF results with the original interFoam further validate the proposed numerical 

method. The spurious velocities are eliminated especially on the tips of the wave front and the 

regions near the free surface, and the gradient of velocity are corrected. 
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6.3 Stokes waves 

The stokes wave is a non-linear and periodic gravity wave that is widely used in the design of ships 

and marine structures. The stokes wave with a relatively small amplitude propagates with constant 

velocity in an inviscid fluid and it is therefore often used in the validation cases of numerical models. 

The behaviour of the stoke is found to change with the increase of its initial steepness (𝜖 = 𝑘𝑎). 

According to Iafrati’s research [112],  the stokes wave keeps steady non-breaking propagation when 

𝜖 < 0.33  and breaking wave is generated with higher steepness, 0.33 ≤ 𝜖 < 0.37  for spilling 

breaking wave and 𝜖 ≥ 0.37.  

The non-breaking wave with 𝜖 = 0.2 is first used to validate the new solver. Both viscosity and 

surface tension are neglected to compare the numerical results and theorical solutions. Then the 

plunging waves with 𝜖 = 0.55 are investigated by increasing the wave amplitude. The viscosity and 

surface tension are included since in short scale, surface tension have effects on shape of wave 

profiles.  

 

Figure 6-15  Initial interface profile of Stokes wave 

 

The numerical setup for the stokes waves is shown in Figure 6-15. The computation is conducted 

for a domain of [-0.5, 0.5]×[-0.5, 0.5] with periodic boundary conditions at the two sides. The origin 

of the coordinate system is defined at the centre of the domain, positive x-axis pointing 

downstream and y-axis pointing upward. A periodic Stokes wave is initially placed in the middle of 

the computational domain. The initial surface profile is assigned as [113]: 
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 𝜂(𝑥, 0) =  
1

2𝜋
(𝜖 cos(2𝜋𝑥) +

1

2
𝜖2 cos(4𝜋𝑥) +

3

8
𝜖2 cos(6𝜋𝑥))       (6-1) 

6.3.1 Validation case of non-breaking waves 

The non-breaking wave case with 𝜖 = 0.2 is first investigated. Three uniform square grids are 

applied in this case, which consecutively increased sizes from 256×256, 384×384 to 512×512. 

Adaptive time steps are used based on a maximum allowed Courant number, Co=0.2. Viscosity and 

surface tension are not included in this case, so that the results can be compared with the theory 

solutions. Both the two solvers, interFoam and DW-IBVOF solver are applied to check their ability 

in stokes wave propagation simulations.  

Figure 6-16, Figure 6-17 and Figure 6-18 show the wave elevation with the two solvers. It is obvious 

that the shape of wave deforms from around t= 8 in the interFoam solutions with the coarsest mesh 

256×256, while superior shape preservation is obtained with the DW-IBVOF solver. Similar 

deformation also happens on finer meshes within shorter time, around t= 1 and t= 0.5, respectively.  

Figure 6-19 shows the distribution of volume fraction with the interFoam solver on mesh 512×512 

at t = 0.5. Similar wiggly surface to section 4.2.3 is observed on the left side of the wave, which is 

caused by numerical errors origins from the high velocity and pressure gradients across the 

interface in this region. The errors accumulate and enlarge with time and eventually ruin the main 

body of the non-breaking wave.  

It is not a surprise that the wiggly interface is more likely to generate with a finer mesh. The smaller 

the cell is, the less mass it contains and the more sensitive it is to the numerical errors. The velocity, 

pressure and density gradients are averaged or smoothed by larges cells, so the imbalance between 

pressure gradient and density gradient are weaken. Another reason is that the coarser mesh fails 

to capture the detailed deformation of interface at the early stage. The effect of the numerical 

errors starts when they are large enough to change the wave profile. Though the start point of the 

deformation in interFoam simulation with the coarser mesh is later, the disparity of the wave 

elevation to the DW-IBVOF solver results is larger.  
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Figure 6-16  Wave elevation of Stokes wave propagation for 𝜖 = 0.2 at x= 0 with mesh 256×256. 

 

 

Figure 6-17  Wave elevation of Stokes wave propagation for 𝜖 = 0.2 at x= 0 with mesh 384×384. 

 

 

Figure 6-18  Wave elevation of Stokes wave propagation for 𝜖 = 0.2 at x= 0 with mesh 512×512. 
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Figure 6-19  Distribution of volume fraction of Stokes wave propagation for 𝜖 = 0.2  with the 

interFoam solver on mesh 512×512 at t = 0.5. 

In terms of surface shape preservation, a much better performance is obtained with the DW-IBVOF 

solver on all three meshes. The wave profiles with the DW-IBVOF solver at t=20 are shown in Figure 

6-20. The numerical results are in excellent agreement with the experiment. The maximum value 

of difference between the numerical results and theory is less than half of the mesh size, which is 

acceptable since the wave surface is presented by iso-surface 𝛼 = 0.5. Even though  a reasonable 

results is obtained by the coarsest mesh for the non-breaking wave case, the finest mesh 512×512 

is chosen for breaking wave cases in the next section since a finer grad is able to capture more 

details of the free surface, such as droplets or air bubbles.  

 

Figure 6-20  Wave profiles of Stokes wave propagation for 𝜖 = 0.2  with the DW-IBVOF solver on 

different meshes at t= 20. 
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6.3.2 Plunging breaking wave case 

The initial wave slope for this case is 𝜖 = 0.55, the same as the parameters in simulation [113]. It is 

steeper than any irrotational and is an unsteady wave that tends to evolve to the plunging breaking 

waves. It is believed to the most powerful breaker in deep and shallow water [113] involving strong 

air-water interactions. In this case, the viscosity and surface tension are taken into account as the 

reference paper. Four dimensionless parameters are used as: 𝑅𝑒 =
𝜌𝑤𝑔

1
2𝜆

3
2

𝜇𝑤
= 10000 , the Bond 

number 𝐵 =
𝜌𝑤𝑔𝜆2

𝜎
= 10000 , the density ratio  �̅� =

𝜌𝑤

𝜌𝑎
= 100  and the viscosity �̅� =

𝜇𝑤

𝜇𝑎
= 2.5.  

The plunging wave breaking process has been characterized by four major phases including steep 

wave formation, jet formation, splash-up and air entrainment. The major events are shown in 

Figure 6-25 with snapshots from both reference paper and DW-IBVOF solver. It is clear to see that 

the predicted wave profiles are in a good agreement with the reference.  

At t= 0, the initial velocity of water is given by the velocity potential and the air is at rest. The wave 

is then driven by gravity and moves from left to right. The symmetry stoke wave becomes more and 

more asymmetric, especially in the crest region. At t= 0.56, the steep wave is generated with an 

approximately vertical front face of the crest. At t= 1.2, a jet of water is formed forward of the crest 

of the water and project downward by the influence of gravity. At t= 1.44, the jet is about to 

touching the smooth tough of the wave and entraps a large amount of air below the jet.  

Once the jet tip touches the trough surface, splash-up initiates and develops at the location where 

the jet impacts. The process is followed by a second jet impinges onto the forward face. The height 

of the second jet is smaller than the first one and entraps a relatively small amount of air. At t= 1.76, 

a third jet is formed as the second jet touches the trough surface and the plunging breaking process 

repeats. The wave system loses both its potential and kinetic energy during a time series of wave 

breaking and splashing no longer occurs after the three jets.  

To better understand the behaviour of the plunging breaking waves, the velocity fields of both 

water and air phases as well as the energy distribution are investigated at the time steps that 

correspond to the four major events. Figure 6-22-Figure 6-27 show the velocity field obtained with 

the DW-IBVOF solver at different time. Air and water are presented separately, for clarification of 

the two-phase flow. All the contour plots are presented in the same dimension vary from 0 to 1.  
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(a) Results from Chen et.al [113]                                 (b) DW-IBVOF solver 

Figure 6-21  Instantaneous free surface profiles of the plunging Stokes wave breaking process for 

𝜖 = 0.55 . 
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The initial velocity is given symmetry with the maximum value 0.53 on the crest and the phase 0.46. 

One of wave breaking criterion is that the breaking occurs when the crest particle velocity exceeds 

the phase speed [114]. As shown in Figure 6-22, the maximum value of velocity on the wave crest 

0.48, which is smaller than the initial velocity because of viscosity, is still larger than the phase 

velocity. The velocity of air phase on the front side is slightly larger than the water phase. A vortex 

is generated around the wave crest when the Stokes wave moves.  

The wave crest keeps moving horizontally from left to right. Once the vertical front face of the crest 

exceeds 180°, the crest is accelerated and changes its direction with the effect of gravity. An 

overturning jet of water is generated and project downward to trough of wave. As shown in Figure 

6-23 and Figure 6-24, the maximum velocity of water phase reaches 0.75 at t= 1.2 and 0.80 at t= 

1.4. High particle accelerations occur on the water jets with the maximum value 3 times larger than 

gravity and approximately towards the centre of curvature of the overturning loop. The air phase 

keeps the similar behaviour as t= 0.56 that mentioned above. Higher velocities and accelerations 

are observed in the region near the jet of water, especially at t= 1.4. This is due to the air entrapped 

beneath the overturing water jet that develops high pressure between the tip of the jet and the 

trough of the wave.  

A comparison of the present solver with a potential-flow theory with a boundary integral formation 

[113] is also conducted in this case. The wave profile and velocities along the interface at t= 1.4 are 

shown in Figure 6-25. The same initial conditions as the two-phase simulation are used in the 

potential flow solvers with and without viscosity and surface tension.  

     

(a) Water phase                                                        (b) Air phase 

Figure 6-22  Velocity fields of steep wave formation of Stokes waves  for 𝜖 = 0.55 at t= 0.56. 
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(a) Water phase                                                        (b) Air phase 

Figure 6-23  Velocity fields of overturning motion of Stokes waves for 𝜖 = 0.55 at t= 1.2. 

 

 

(a) Water phase                                                        (b) Air phase 

Figure 6-24  Velocity fields of overturning motion of Stokes waves for 𝜖 = 0.55 at t= 1.4. 
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(a) DW-IBVOF solver 

 

(b) Potential flow with surface tension and viscosity [113] 

 

(c) Potential flow without surface tension and viscosity [113] 

Figure 6-25  A comparison between the DW-IBVOF solver with potential-flow theory of Stokes 

waves at t=1.4. 
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(a) Water phase                                                        (b) Air phase 

Figure 6-26  Velocity fields of splash-up of Stokes waves for 𝜖 = 0.55 at t= 1.56. 

 

 

(a) Water phase                                                        (b) Air phase 

Figure 6-27  Velocity fields of air entrainment of Stokes waves for 𝜖 = 0.55 at t= 1.76. 
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The predicted wave profiles are in good agreement between the present solver and the potential-

flow computation with similar wave height and position. The main discrepancy lies in the shape of 

water jet and size of the entrapped air. It is clear to see the effect of surface tension on the shape 

of the plunging jet from the comparison between Figure 6-25 (b) and (c). The thickness of tip turns 

thinner and thinner with time when the jet propagates without surface tension, while a rounded 

tip is obtained with surface tension. A similar rounded tip is obtained with the two-phases flow 

solver.  

It is not a surprise that the sizes of water jet and the enclosed air are slightly different with two-

phase flow solver and the potential-flow calculation. In the potential-flow simulation, frictional and 

inertial influences of the air around the jet are not included. This is also the reason why the velocity 

of water with two-phase flow solver is slightly smaller than the potential-flow theory.  

At t= 1.56, the first plunge occurs when the overturning jet impinges onto the free surface of the 

trough. Once the jet tip touches the trough surface, an oblique splash-up initiates and develops at 

the location where the jet impacts. At this stage, the water in the splash-up comes from the 

overturning jet. As shown in Figure 6-26, the trough of wave remains undisturbed in terms of wave 

profile and velocity field. The undisturbed surface acting like a solid surface and the jet bounced of 

the surface. The velocity of the splash-up have similar velocity magnitude as the original water jet 

but have a different direction. Then, the jet penetrates the surface below and pushes up a portion 

of water by its forward motion and downward momentum.  

The splash-up keeps moving forward and downward on the effect of gravity and the second splash-

up is generated when it touches the surface of wave trough. Different from the first splash-up, the 

water of the second splash-up partly comes from the second jet and partly comes from the 

preciously undisturbed wave trough. As shown in Figure 6-27, the water in the region around (0.15, 

-0.05) has large upward velocity that used to be close to zero before the second plunge.   

After the second splash-up, a third water is formed but the velocity and the height of the jet is much 

smaller than the first one and the second one. No more plunger is generated after that. Large 

amount of energy is lost during the whole process of the plunging breaking, the series of jet impacts, 

energy transform between wave kinetic energy and potential energy and energy dissipation by 

vorticities.  

The case of the plunging breaking Stokes waves is used to further investigate the effect of designed 

boundary condition to the behaviour of the interface. The two other solvers mentioned in section 

4.4, IBVOF10 and IBVOFW, are applied again. The mesh size of this case is relatively small, the 
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interface boundary of IBVOFW is further widened from 2 cell layers into 4 cells and the solver is 

renamed as IBVOFW4. The solver IBVOF10 keeps the same as before.  

Figure 6-28 shows the distribution of volume fraction with the three solvers on mesh 512×512 at 

t = 0.16. The wiggly surface observed in the results of interFoam solver is seen in the same area in 

the IBVOF10 solver. The deformation is smaller, however, still there and eventually ruin the main 

body of the wave before it breaks up. This further proves the ability of the designed IBVOF solver 

to reduce the numerical errors across the interface. 

 

(a) interFoam     (b) IBVOF10      (c) IBVOF 

Figure 6-28  Distribution of volume fraction of Stokes wave propagation for 𝜖 = 0.55 with three 

different solvers on mesh 512×512 at t = 0.16. 

A comparison of the IBVOF solver and IBVOFW4 solver is conducted in this case. The wave profiles 

at five stages are shown in Figure 6-29. As shown in Figure 6-29(a) and (b), the profiles of the two 

solvers are very similar to each other. At the early stages, the waves are mainly driven by the water 

phase due to the larger fluid density, viscosity, and surface tension. The divergency between the 

two solvers begins at t=1.4, where the first water jet falls down and close to the free surface below. 

Strong interactions between air and water starts to generate and the differences in the air phase 

between the two solvers are as large to affect the behaviour of water.  

Figure 6-31 and Figure 6-31 show the velocity profiles with IBVOF and IBVOFW4 solvers at t=1.4 

and t= 1.76. The while lines are the position of the interface, the colour shows the magnitude of 

the velocity of air and water in x- direction and the arrows give the velocity magnitude and direction 

of air phase. In IBVOFW4 solver, the velocities of water phase have been extended into the air phase. 

As shown in Figure 6-31 (b) and Figure 6-31(b), the velocity magnitude of air phase is smaller than 

the IBVOF solver, especially in the areas that close to the interface. Compared the results of the 

two solvers, the IBVOFW averages the velocity in a thicker boundary layer and smooths out the 

effect of the air in this layer to the water phase. 
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(a) t= 0.56         (b) t= 1.2 

 

(c) t= 1.4        (d) t= 1.56 

 

(e) t=1.76 

Figure 6-29  A comparison of surface profile between the IBVOF solver and IBVOFW4 solver. 
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(a) IBVOF solver at t=1.4      (b) IBVOFW4 solver at t=1.4 

Figure 6-30  Velocity fields of Stokes waves with IBVOF and IBVOFW4 solvers for 𝜖 = 0.55 at t=1.4. 

 

(a) IBVOF solver at t=1.76     (b) IBVOFW4 solver at t=1.76 

Figure 6-31  Velocity fields of Stokes waves with IBVOF and IBVOFW4 solvers for 𝜖 = 0.55 at t=1.76. 

6.4 Conclusion  

In this chapter, two sets of benchmark cases, solitary waves and stokes waves, are designed for the 

two-phase flow solver IBVOF solver, with focus on applications in ocean and coastal engineering. In 

the simulations of solitary waves, two two-dimensional no-viscous benchmark tests, the 

propagation and the run-up of a solitary wave, have been carried out. The free surface profiles and 



Chapter 6  

119 

velocity fields have been compared with theorical results or one-phase flow solver results, and 

better agreement has been obtained with the proposed DW-IBVOF solver. The investigation of the 

velocity field revealed that spurious currents appearing in the vicinity of the interface, resulting in 

a local increase of the velocity which might have influences the shape of the free surface. The 

proposed density-weight smoothing (DW) method and the designed boundary layer on the 

interface suppress the spurious velocities and improve the accuracy and stability of air-water flow 

simulations. 

Then, the simulations of the new solver have been extended to three-dimensional cases. Viscosities 

of both phases and surface tension are added and RANS turbulent model is used. The case of 

plunging breaking solitary waves on a slope further validated the solver in the applications in the 

real world. The spurious velocity in the water phase near the interface finally results in the fake 

deformation of the interface.  

In the second set of cases, the IBVOF solver is used to simulate the propagation of non-breaking 

Stokes waves and the plunging breaking waves induced by a steep Stokes wave. Similar conclusions 

can be draw from the propagation of the Stokes wave to the solitary wave. Wave breaking of a 

steep Stokes wave is also modelled and the results are very closed to the numerical results available 

in the literature, which further validate the reliable of the proposed IBVOF solver.  
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Chapter 7 Ship bow breaking waves 

7.1 Introduction  

Wave breaking is one of the most violent air-water interaction phenomena. A thorough 

understanding of the physics of this highly unsteady two-phase flow phenomena is important for 

investigating ship bow breaking waves. It is known that the waves produced closest to the bow of 

fine fast ships turn over after leaving the hull, create a jet which impacts the free surface and cause 

evident splashing, droplets, and bubble formation. In this chapter, the proposed two-phase flow 

solver, IBVOF solver, is used to resolve and investigate bow wave breaking waves. 

An assessment of the capability of the IBVOF solver is first performed on a test case specifically 

conceived, plunging breaking waves generated by a sharp wedge-shaped bow. A numerical towing 

tank is constructed with a vertical wedge fixed in the middle of the tank and the incident flow set 

as uniform. The numerical results of the bow wave profile at different locations in the vicinity of 

the bow are compared to experiments to validate the two-phase flow solver. Then, the IBVOF solver 

is used to simulation the wave pattern generated by the KRISO Container Ship (KCS) in forward 

motion. The focuses are put on the hydrodynamic simulation of the whole process of plunging 

breaking waves and the velocity and vorticity field in the region of the bow and in the breaking 

waves. Further numerical analysis is performed for different inlet flow velocity to investigate the 

influence of Froude number on the shape of bow breaking waves. 

7.2 Plunging breaking waves on a wedge-shaped bow 

Plunging wave breaking is one of the most violent air-water interaction phenomena. A thorough 

understanding of the physics of this highly unsteady two-phase flow phenomena is important for 

investigating ship bow breaking waves. To separate the spilling breaking waves with plunging 

breaking waves and keep focus on the latter, a simplified case is required. A good example is the 

wedge flow represented by Waniewski et al.[19], Karion et al. [21] and Noblesse et al.[9] in which 

overturning plunging waves are generated by a sharp wedge-shaped bow. Valuable experimental 

data are provided like wave elevation and extent of wave breaking. Noblesse et al. [9] also proposed 

some simple analytical relations for ship bow waves based on his experiments data and potential 

flow theory. However, even with the simplified case, it is not still possible to achieve a complete 

description of the complicate phenomena by EFD and the analytical expressions[112].  
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In order to test the capacity of the presented DW-IBVOF solver, a simplified case is devised to 

simulate the plunging breaking waves. In this section, the whole process of plunging breaking waves 

generated by a sharp wedge-shaped bow is investigated with the focus on wave profiles, velocity 

and vorticity fields around the wedge. A numerical towing tank is constructed with a vertical wedge 

fixed in the middle of the tank and the incident flow set as uniform. The numerical results of the 

bow wave profile at different locations in the vicinity of the bow are compared to experiments [19] 

and the original solver interFoam to validate the proposed two-phase flow solver, IB-VOF solver. 

Further numerical analysis is performed for different inlet flow velocity to investigate the influence 

of Froude number on the shape of bow breaking waves based on the proposed solver. 

The computational domain and boundaries are shown in Figure 7-1. Since the wedge model is fixed 

in the numerical wave tank, only half domain is used in the simulation with a symmetry boundary 

condition on the front side. Non-slip boundary condition is imposed at the wedge and non-slip 

boundary conditions are used at all the other boundaries. The simulations are conducted on a 3D 

computational domain of x= [-1, 3], y= [0, 2.5], and z= [-0.0745, 0.5]. The uniform water flow comes 

from the inlet boundary and comes out from the outlet boundary. The geometry model is built from 

the wedge shape following the experiment [19]. The side length of the wedge is L=0.75m, and the 

half wedge angle is 𝜃=26°. For the validation case, the water depth is set as d=0.0745m according 

to the experiment. An initial uniform velocity is prescribed to the whole computational domain and 

the velocity imposed at the inlet boundary is fixed with U=2.5m/s. The corresponding Reynolds 

number, 𝑅𝑒 = 𝜌𝑈𝑑/𝜇 =1.64e5, and the Froude number, 𝐹𝑟 = 𝑈/√𝑔𝑑 =2.93.  

The mesh of the blocks consists of conformal non-orthogonal structured elements throughout the 

whole computational domain. A more refined mesh is employed around the wedge and the 

plunging breaking wave area compared to the rest of the domain to capture better the near wall 

turbulent flow and the free surface behaviour. The non-equilibrium wall function is employed for 

the near wall treatment. The distance to the wall is defined with non-dimensional parameter y+ 

and the values of y+ around the wedge are in the range of 5-20. 

The non-equilibrium wall function is employed for the near wall treatment. The estimation of the 

distance to the wall is based on the skin friction coefficient (𝐶𝑓) as follows: 

𝐶𝑓 =
0.026

𝑅𝑒1/7.           (7-1) 

The distance to the wall is defined with the non-dimensional parameter y+ . The values of y+ 

around the hydrofoil and the bottom in the present simulations are in the range 5-10. 
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(a) Plan view 

 

(b) Side view 

Figure 7-1  Computational domain of plunging breaking waves generated by wedge-shaped bow 

with boundaries. 

 

Figure 7-2  Computational mesh around the wedge-shaped bow. 

To check the grid independency of the results, three grids are applied in present work with 

consecutive increased (by a factor √2) sizes from mesh A with 7,256,220 grids to mesh B with 

5,130,800 grids and mesh C with 3,245,730 grids. The spacing of grids in the area of plunging 

breaking waves are 0.019m 0.011m and 0.0063m respectively. The maximum Courant number, Co, 

equals to 0.5 in all these three cases. The wave profiles (𝛼=0.5) obtained by the DW-IBVOF solver 

at x=0.45m for the three grids are shown in Figure 7-3.  
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Figure 7-3  Wave profiles of wedge flow obtained by the DW-IBVOF solver with three different grids 

The overall structures of the water jet on the three grids are very similar. There are some 

fluctuations on the backside of the jet on the coarsest grid mesh A. This is due to the lack of 

sufficient cells per wave height. The result with finer mesh B is much better compared to mesh A. 

The shape of water jet is much smoother. The jet tip is slightly sharper on the finest grid since a 

finer mesh can capture more detailed information of free surface with higher grid resolution. In 

order to capture more detailed wave evolution and the velocity field, the finest mesh is chosen here 

for better understand of the process of the plunging breaking waves. 

7.2.1 Wave profiles compared with the experiment  

The two-phase solver is first validated though the comparison with the experiment. Figure 7-4. 

shows the computed bow wave profile (𝛼=0.5) compared with the EFD photo. As shown in the 

figure, the overall structure of the plunging breaking waves is well prescribed. A thin sheet of water 

is generated alongside the side of wedge. The sheet of water is projected sideward into a 

characteristic overturning motion. The first plunge occurs when the overturning sheet impinges on 

to the free surface of the water tank followed by splashes at the wake.  

   

(a) EFD photo [19] 
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(b) CFD simulation 

Figure 7-4  Wave profiles generated by a wedge-shaped bow. 

The shape of the main body of water is more obvious with a second plunge in CFD simulations 

instead of messy white water in EFD. This is a result that might be related to visualization. The iso-

surface 𝛼=0.5 is usually used to represent the position of free surface. When the droplets are 

smaller than the grid cells, they are not visible in iso-surface 𝛼=0.5. The white water that contains 

both air and water is represented with 𝛼=0.01-0.99. Further grid refinement is required to increase 

the resolution in the wake to effectively capture the droplets and bubble. 

The bow wave profiles, the profiles of the maximum free surface height of the wave alongside x-

direction compared with EFD data[19] are shown in Figure 7-5. The EFD 1 is the experimental results 

done with a wedge model in a towing tank and EFD 2 is the results with an angled plate in a water 

flume. As shown in the figure, the results in the water flume are slightly lower than in the towing 

tank. As explained by Waniewski et al. [19], this could be caused by the camera orientations. This 

indicates that there would be some errors with the observations and the further away from the 

wedge, the larger the errors would be.  

Three profiles with different iso-surface (𝛼=0.01, 𝛼=0.5 and 𝛼=0.99) from CFD simulation are 

shown in the figure. The overall trend of wave profiles is similar with the experiments, especially 

for the near wall area. The heights of wave are lower than the EFD data. The change of mesh seems 

not increase the height of wave but the iso-surface of 𝛼=0.01 is much closer to the EFD results. This 

may be due to there are breakups on the edge of the thin sheet of water.  

Though the wave profile of the iso-surface 𝛼=0.01 is closer to the EFD results, the following parts 

of work is focus on the main body of water and the water phase with 0.5<𝛼 ≤1 to investigate the 

velocity and vorticity fields below the free surface.   

Scar1 

Scar2 

Plunger2 
Plunger1 
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Figure 7-5  Maximum wave height alongside x-direction 

7.2.2 Wave Breaking Process  

Similar with plunging breaking waves generated by a submerged bump [115], the process of bow 

plunging breaking can be characterized by five major phases including highest wave formation, the 

first thin water sheet formation and overturning, the first splash-up, the second water jet and the 

second splash-up. The major processes of the plunging wave breaking are shown in Figure 7-6 with 

the velocity vector fields at various x-directions.  

The bow wave breaking process is initiated by the pressure field generated by the wedge model. At 

section x=0.27m, the wave reaches its maximum height and start to overturn. Although the velocity 

magnitude decreases with the wave height due to the gravity, the y-direction and x-direction 

velocity components increase and extend towards the sideway. At section x=0.48m, the thin sheet 

of water is fully generated and projected toward the undisturbed free surface. This part of water is 

pushed by the side of wedge and accelerated by gravity. The y and z-direction velocity components 

keep increasing towards the tip of jet. The rest parts of the domain remain the initial conditions 

with a uniform velocity field.  

At section around x=0.60m, the first plunge occurs when the overturning jet impingers onto the 

undisturbed free surface. With the overturning jet, a large amount of air below the jet is entrapped 

which forms a big air bubble. This could be one of the major sources of underwater noise and white-

water wake [116]. Another source of air entrainment would be the impact of the water jet on the 

face of water. The resulting splash-up generates the second water jet at around section x=1.02m 

(see Figure 7-6(d)) and the second splash up at section around x=1.2m (see Figure 7-6(e)). The 

second plunger basically repeat the process of the first one with smaller wave height and less wave 

energy. The energy dissipation mechanism during the bow plunging wave breaking need further 

investigations. 
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(a) Max height, x=0.27m. 

 

(b) First jet, x=0.48m. 

 

(c) First splash-up, x=0.65m. 

 

(d) Second jet, x=1.05m. 
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(e) Second splash-up, x=1.2m. 

Figure 7-6  Wave profiles and velocity field alongside x-direction. 

7.2.3 Vorticity Profiles during the wave breaking process 

The investigation of the turbulent flow below the plunging breaking waves are in terms of the 

vorticity fields. The layouts of axial vorticity distributions at various transverse sections are 

presented in Figure 7-7. It is obvious that the vorticity is mainly concentrated near the wall of wedge 

and the free surface. The positive vorticity near wall is generated by the viscous boundary layer due 

to the non-slip boundary condition. This indicates that the turbulent flow is well described by the 

solver with the standard k-𝜔 SST turbulence model. It is also clear that the bow wave breaking 

induces two pair of counter-rotating vortices corresponding to the two plunging breakers. 

 

(a) Max height, x=0.27 m. 

 

(b) First jet, x=0.48 m. 
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(c) First splash-up, x=0.65 m. 

 

(d) Second jet, x=1.23 m. 

 

(e) Second splash-up, x=1.35 m. 

Figure 7-7  Vorticity profiles alongside x-direction. 

Despite the vorticities generated near the non-slip wall, the first region of negative axial vorticity 

V1 appears close to the throat of the plunger at around x=0.60m. The location of the vortex core 

was found near the free surface associated with the small radius of curvature of the overturning 

bow wave. A positive vorticity area is generated on the tip of the water jet. At the section x=0.6m, 

when the tip of the first jet impacts the undisturbed free surface, the free surface is deflected with 

an oblique splash up. The angle and velocity of the second plunger is not only determined by the 

interaction between the two parts of water which follows the momentum theorem but also 

affected by the pair of vortexes i.e. negative vortex V1 and positive vortex V2 at the deflection point. 

This vortex pair leads to the generation of the first scar (scar1) and has a rotating orientation pumps 

fluid upward forming a new water jet. This process repeat itself at the second plunger. The energy 
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of the second plunger is much small than the first one, but it is still clear visible at section x=1.2m 

that the vortexes V3, V4, V5 and the scar2.  

7.2.4 The Effect of Fr Number 

In this section, the influence of change in the inlet flow i.e., the Fr number on the hydrodynamic 

behaviors of bow wave breaking is investigated. The main characteristics of a ship bow wave, more 

specially, the plunging breaking waves, includes the height of the wave, the shape of the bow wave 

(bow wave profile), the distance between the stem and the bow wave crest, the position of scars 

and the angle of the bow wave. Some simple expressions of the relationship have been given in [9] 

based on the experiments and potential flow theory. In present work, a quantitative study is given 

based on the simulations of the two-phase flow solver and a detailed qualitative relationship will 

be investigated in the future work. 

Increasing the incident flow velocity from U=2.5 m/s to U=3.0 m/s and U=3.5 m/s, the 

corresponding Fr number increases from 2.93 to 3.52 and 4.09. Figure 7-8 shows the plan views of 

the bow waves of three cases colored by the height of wave. It is obvious that the bow wave in 

higher ship speed will generated the increase of height of the first plunger. The highest wave crest 

reaches to 33.27 cm for Fr=3.52, which is 1.5 times of that for Fr=4.09.  

Figure 7-9 shows the summary of bow wave profiles results from different Fr number. The 

maximum height of the wave crest shows the similar trend in the two smaller Fr number case. The 

height increases shapely with the first plunger generated by the side of wedge and decrease gently 

while the first plunger impacts into the undisturbed free surface in the region of 0<x<0.8m. For the 

highest velocity runs in the simulation, both the first and the second plunger are less obvious. 

 The first water jet is much thinner than the bow wave shown in Figure 7-4 and the water sheet 

breaks up into droplets before it reaches the undisturbed free surface. Figure 7-10 shows the wave 

profiles for Fr=4.09 visualized by 𝛼=0.5 and 𝛼=0.01. As mentioned above, the iso-surface 𝛼=0.5 

(Figure 7-10(a)) shows the position of the main body of water, while the iso-surface 𝛼=0.01 (Figure 

7-10 (b)) represent the distribution of cells containing droplets that are smaller than half size of the 

grid cell. The iso-surface 𝛼=0.01, however, doesn’t represent the shape and the size of droplets. In 

present work, with the grid spacing 0.75mm near the wedge and 6.3mm in the plunging wave area, 

the smallest droplet can be effectively captured would be around 7mm which is still too large than 

the droplets observed in the experiments.  

Despite the height of bow plunging waves, the Fr number have effect on the position of the scar 

and the angle of wake pattern. As shown in Figure 7-9, P is the start point of the first scar, D is the 
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vertical distance between the scar1 to the side of wedge, 𝜃 is the bow wave angle. It is clear that 

the position of P tends to be further away from the back edge of the wedge, the distance tends to 

be shorter, and the wave angle tend to be smaller with the increase of Fr number. This trend is due 

to the increase of inlet water which is similar to the narrow Kelvin ship waves (Noblesse et al., 2016). 

However, the simple analytical relations of large-scale wake angle are not applicable for the highly 

non-linear viscous flow. The effect of small-scale detailed plunging breaking, spray formation and 

air entrainment to the overall ship bow waves is required quantitatively investigation in the future 

work. 

 

(a) U=2.5 m/s, Fr=2.93, 𝛼=0.5. 

 

(b) U=3.0 m/s, Fr=3.52, 𝛼=0.5. 
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(c) U=3.5 m/s, Fr=4.09, 𝛼=0.5. 

Figure 7-8  Plan views of the waves generated by the wedge-shaped bow at different speeds. 

 

 

Figure 7-9  Wave profiles generated by a wedge-shaped bow with different Fr number. 

 

(a) U=3.5 m/s, Fr=4.09, 𝛼=0.5 



Chapter 7 

132 

 

(b) U=3.5 m/s, Fr=4.09, 𝛼=0.01 

Figure 7-10  Free surface distributions on the wave crest for the wedge-shaped bow case 

The major processes of the plunging wave breaking are well predicted including the highest wave 

formation, the first thin water sheet formation and overturning, the first splash-up, the second 

water jet and the second splash-up. The bow wave breaking process is initiated by the pressure 

field generated by the wedge model and mainly dominated by gravity and inertial force. A large 

amount of air entrapment and droplets are generated near and after the plunger which are 

significant sources of underwater noise and while water wake. In the process of plunging wave 

breaking, the angle and velocity of the second plunger is not only determined by the interaction 

between the two parts of water which follows the momentum theorem but also affected by the 

pair of vortexes. 

7.3 KCS bow breaking waves 

The KRISO Container Ship (KCS) modelled with length of L= 6.0702m is used for the present 

numerical simulations. The KCS ship model is conceived to provide data for CFD validation for a 

modern container ship with bulb bow and stern. A numerical towing tank is constructed with a fixed 

KCS in the middle of the tank.  

7.3.1 Numerical set-up for KCS bow breaking waves 

The main objective of this work is to simulation the bow breaking waves around the KCS ship in 

forward motion. The KCS hull without rudder is selected in present simulation to keep focus on the 

bow area. The geometry model is shown in Figure 7-11 and the principal dimensions are listed in 

Table 7-1. A validation study is first conducted with a lower speed ( 𝐹𝑟 = 𝑈/√𝑔𝐿 =0.26) to check 

the prediction accuracy of the current two-phase flow solver DW-IBVOF solver with experiment 

data. Then, simulations are performed over a range of higher speeds to investigate the local 

behaviours of bow breaking waves and scale effects.  
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The computational domain and boundaries for KCS flow are shown in Figure 7-12. Since the KCS 

model is fixed in the numerical wave tank, only half of the computational domain is used in the 

simulation with a symmetry boundary condition on the front side to save computational costs. Non-

slip boundary condition is imposed at the KCS hull and slip conditions are put on the tank bottom 

and roof. 

 

 

 

Figure 7-11 Geometry of KCS hull model 

 

Table 7-1 Principal dimensions of KCS (full scale and model scale) 

Main particulars Full scale Model scale 

Length between 

perpendiculars 
𝐿𝑝𝑝 (m) 230 6.0702 

Maximum beam of 

waterline 
𝐵𝑊𝐿 (m) 32.2 0.8498 

Draft 𝑇(m) 10.8 0.2850 

Displacement volume ∆ (m3) 52030 0.9565 

Wetted surface area 

(with rudder) 
𝑆0 (m2) 9645 6.7182 

 

The simulations are conducted on a 3D computational domain of x= [-L, 4L], y= [0, 1.5L], and z= [-

1.5L, 0.75L] where L is one ship model length. The uniform water flow comes from the inlet 

boundary and comes out from the outlet boundary. An initial uniform velocity is prescribed to the 

whole computational domain for both water and air phases, and the velocity imposed at the inlet 

boundary is fixed. 
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The 𝑘 − 𝜔 Shear Stress Transport (SST)model is used to achieve good modelling of both near-field 

turbulence used to achieve good modelling of both near-field turbulence (inside boundary layer) 

and far-field turbulence (wake and ambient turbulence.) A small, fixed value corresponding to 3% 

of the fixed inlet velocity is set on the inbound turbulence intensity to model the presence of some 

initial turbulence in the tank. This is in line with commonly used values of 1-5% for towing tank and 

wind tunnel simulations. Furthermore, a value of the specific dissipation rate 𝜔 is given as the inlet 

boundary condition.  

 

Figure 7-12  Computational domain of KCS flow with boundaries. 

7.3.2 Mesh generation and convergence study 

There are several factors need to be considered when generate mesh for the numerical water tank. 

First of all, the mesh sizes in the free surface region are supposed to be small enough to capture 

the evolution of waves generated around the ship. Secondly, mesh density should increase in the 

region around the ship hull to capture the boundary layer. Thirdly, a mesh refinement zone is 

required in the bow region to capture the bow breaking waves. What’s more, it is important to 

minimis total number of cells to speed up calculation time.  

The unstructured mesh is generated based on an original structured background mesh with 

77×23×76 in x, y, z direction within the computational domain. 6 refinement zones are added to 

refine the meshes in three different zones the free surface region, the near-hull region and the bow 

region. The arrangement of the refinement zones is shown in Figure 7-13. Based on the original 

structured mesh, cells are selected and split in horizontal and vertical direction in these zones. The 

extent of the refinement zone is reduced after each refinement level step for smooth transitions 
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between areas of different mesh densities. In the final refinement step, the finest mesh zone exists 

near the hull and free surface. Base on that, several layers are added closed to the ship hull to 

capture the boundary layer.  

 

(a) Global view of refinement zones 

 

(b) Local view of refinement zones 

Figure 7-13 Mesh generation and refinement zones for KCS bow breaking waves  

Discretisation error is the main source of computational errors[117] which arise from numerical 

schemes, mesh style and number used to discretize the equations, etc. The uncertainty relating to 

the mesh resolution is therefore required to be discussed. In this part, mesh-size and time-step 

convergence study is carried out to verify the efficiency and accuracy of the numerical water tank 

and the proposed DW-IBVOF solver.  

To check the grid independency of the results, three grids are applied in present work with 

consecutive increased (by a factor √2) sizes from mesh A with 4,354,625 grids to mesh B with 

5,833,872 grids and mesh C with 4,478,533 grids. The spacing of grids in the area of plunging 

breaking waves are 0.01m 0.008 m and 0.006m respectively. The maximum Courant number, Co, 

equals to 0.5 in all these three cases. 

For validation purposes, a case study with a lower speed U= 2.017 m/s ( 𝐹𝑟 = 𝑈/√𝑔𝑑 =0.26) is first 

conducted. The lower speed case is selected in this part for the reason that the detailed 

experimental data including wave pattern is only available of this case[118].  
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Figure 7-14, Figure 7-15 and Figure 7-16 show the comparison of the free surface profiles at 

different longitudinal section (y/L= 0.0741, 0.1509 and 0.4224) with the three mesh sizes and 

experimental data. Figure 7-17 shows the results of wave profiles on the hull surface. The wave 

height (z) is normalized by the ship length. For the free surface profiles, the numerical results 

obtained from the three grids are very similar and in a good agreement with the experiment data 

both for the near field and far field from the ship hull.  

 

Figure 7-14 Free surface profile at y/L= 0.0741 for Fr= 0.26 on different mesh sizes compared with 

experimental data[118] 

 

Figure 7-15 Free surface profile at y/L= 0.1509 for Fr= 0.26 on different mesh sizes compared with 

experimental data[118] 
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Figure 7-16 Free surface profile at y/L= 0.4224 for Fr= 0.26 on different mesh sizes compared with 

experimental data[118] 

 

Figure 7-17 Wave profile on ship hull surface for Fr= 0.26 on different mesh sizes compared with 

experimental data[118] 

In this work, the analysis of convergence study is performed for the height of the wave crest 

generated by the ship at section y/L = 0.0741. The convergence condition is assessed through the 

convergence ratio (R) which is given by[117]: 

𝑅 =
𝜀12

𝜀23
         (7-2) 

where 𝜀12 is the change in the numerical solution between Mesh A and Mesh B and 𝜀23 is the 

change between the Mesh B and Mesh C. According to definition from Stern et al[119], the 

numerical model is monotonically converging when the convergence ratio R is 0<R<1. The details 

of convergence parameters are illustrated in Table 7-2. 

 

Table 7-2 Convergence statics for height of wave crest at Fr= 0.26 
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Parameters First crest Second crest Third crest 

Mesh A  4.15e-3 7.27e-4 4.76e-3 

Mesh B 4.13e-3 7.12e-4 4.74e-3 

Mesh C 4.12e-3 6.94e-4 4.71e-3 

𝜀𝐵𝐴 1.34e-5 1.52e-5 1.65e-5 

𝜀𝐶𝐵 1.56e-5 1.84e-5 2.78e-5 

R 0.861 0.830 0.592 

 

The wave elevation generated around the ship hull is sensitive to the grid change. According to 

Table 7-2, the change of the wave crest hight decreases slightly through refinement from a coarse 

grid to the fine mesh. This suggests that the convergence has already achieved by Mesh C. All the 

three mesh in the free surface region is fine enough to be able to capture the propagation of surface 

waves for the validation case with Fr= 0.26. The calculated wave profile on ship hull surface in Figure 

7-17 changes slightly with the gird sizes, which reals that the effect of the grids are small for the 

present range of grid size. The mesh near the hull is fine enough to resolve the development of the 

boundary layer. However, in order to provide fine mesh to capture more details for higher Fr cases, 

the Mesh A is selected for the highest resolution though more calculation is required. The overall 

cell count for Mesh A is within appropriate limits for free surface computations for ships.  

7.3.3 Free surface wave field 

In section 7.3.2, the lower speed case Fr= 0.26 is selected to validate the accuracy of the DW-IBVOF 

solver compared with experimental data and analysis the mesh convergence. It is obvious that the 

predicted free surface elevation agrees very well with the experimental measurements both for the 

near and far fields. The accurate prediction for the validation cases lays a good foundation for the 

high-speed ship simulations.  

At Fr= 0.28, the free surface profiles show a relatively smooth topology without large-scale plunging 

breaking, though weak and very small-scale bow wave curling, and spilling breaking is observed 

near the ship bow and shoulder in a closer examination. The bow waves become steeper and higher 

when the ship speed increases. At Fr= 0.35, a strong plunging breaking bow wave is observed in the 

simulation with significant air entrainment. In order to investigate the free surface features of 

breaking waves, the case of Fr= 0.35 is chosen in the following sections. 
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Figure 7-18 shows the comparisons of CFD simulations of wave fields by the two two-phase flow 

solvers. The predicted bow wave, first trough, and shoulder wave structures are in very good 

agreement between the two solvers. The effects of the breaking bow plunger can clearly be seen 

on the wave pattern. The wave pattern is slightly different from a classical Kelvin pattern. Figure 

7-18  (b) provides a close-up perspective view of the predicted breaking bow wave around the ship 

model. The DW-IBVOF solver solution shows two scars that separate the bow waves into three 

waves. The two scars are the position where the plungers hit and rebound on the undisturbed free 

surface. 

 

(a) Global wave contours 

bow wave 

first trough 

shoulder wave 
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(b) Bow wave profiles 

Figure 7-18  Comparison of CFD solutions of the DW-IBVOF solver and the interFoam solver for KCS 

wave contours, Fr= 0.35 

 

(a) Free surface profile at x/L= 0.05                           (b) Free surface profile at x/L= 0.07 

 

scars 
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(c) Free surface profile at x/L= 0.09                           (d) Free surface profile at x/L= 0.11 

 

 

(e) Free surface profile at x/L= 0.13                           (f) Free surface profile at x/L= 0.15 

Figure 7-19 Comparison of CFD solutions of the DW-IBVOF solver and the interFoam solver for KCS 

transverse waves cuts, Fr= 0.35 
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Figure 7-20 Wave profile on ship hull surface for Fr= 0.35 with the DW-IBVOF solver and the 

interFoam solver 

Compare to the IBVOF solver, it seems that the interFoam solver results are more violent and 

unsteady. The plungers tend to break-up before they hit the undisturbed free surface. However, 

the amplitude of waves obtained from the interFoam is slightly smaller than the IBVOF solver. The 

wave height range of the IBVOF solver is from -0.094m to 0.125m while in interFoam solution, the 

range is from -0.086m to 0.123m. The IBVOF solver prediction shows a slightly more steep and 

sharp shoulder wave than the interFoam. 

A more quantitative comparison of the wave field is provided in Figure 7-19 and Figure 7-20. The 

transverse wave cuts (iso-surface  𝛼 = 0.5) from x/L= 0.05 to 0.15 and the wave profile at the hull 

surface are directly compared to illustrate the bow wave elevation and the difference by the two 

solvers.  As shown in Figure 7-19, the breaking wave phenomena, plunger formation, reconnection 

and rebound, are well captured by both solvers, while the IBVOF solver shows larger wave 

amplitude for each section.  

At section x/L= 0.05 and 0.15, the results of two solver are in good agreement. The differences 

occur when the plunger hits the undisturbed free surface. At section x/L= 0.09, with the overturning 

plunger, a large amount of air below the plunger is entrapped which forms a big air bubble. In the 

solutions of the IBVOF solver, the interface between the air bubble and the plunger are clearly 

observed while the interFoam solver fails to capture. This doesn’t mean that no air entrainment 

happens in the interFoam solutions. Figure 7-21 shows the snapshots of volume fraction 𝛼 

distribution with the two solvers at section x/L= 0.09. The white line is the position of the interface 

between air and water represented by iso-surface  𝛼 = 0.5. In the interFoam solution, less air is 

entrapped by the plunger and the cells below the plunger contain both water and air with values 

of water volume fraction around 0.7. The iso-surface  𝛼 = 0.5 fails to represent the air bubble at 

this section.  

Compared to the interFoam solver, the IBVOF solver shows a smoother and sharper interface. At 

the later section x/L= 0.11 and 0.13, although the interFoam and IBVOF bubbles are located at 

almost the same place, the size of the air bubble in IBVOF solver is slightly larger than the interFoam. 

At section x/L= 0.15, the free surface breaks up in the interFoam solution while a second plunger is 

generated in the IBVOF solutions after the first plunger reconnection and rebound from the 

undisturbed free surface. Based on the above evidence, the proposed IBVOF solver is more 

appropriate for the simulation of KCS bow breaking waves and is adopted for the following analysis.  
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(a) InterFoam solver 

 

 

(b) DW-IBVOF solver 

Figure 7-21  Volume fraction 𝛼 distribution for KCS transverse waves cut x/L= 0.09, Fr= 0.35 

 

 

 

7.3.4 KCS bow wave breaking pattern 

The strength of the initial plunging jet which develops at the crest of the overturning bow wave is 

crucial in determining the severity of subsequent splashing and submerged vertical structures[120]. 

In order to give better descriptions of the breaking waves, the initial stages of bow wave breaking 

for the case Fr= 0.35 is analysed.  

Figure 7-22 shows the cross-flow velocity magnitude (𝑈𝑐𝑟𝑜𝑠𝑠 = √𝑈𝑦
2 + 𝑈𝑧

2) with the velocity vector 

fields at six cross-sectional planes (x/L= 0.05, 0.07, 0.11, 0.15, 0.20 and 0.25) through the breaking 

bow waves. The axial vorticity and turbulent kinetic energy are shown in Figure 7-23 and Figure 
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7-24. The major process of the plunging wave breaking by the KCS hull is similar to the wedge-

shaped bow in section 7.2. The water around the hull is pushed away and runs to the side and up 

alongside the ship hull.  

At section x/L= 0.05, a steep bow wave forms and starts to overturn due to the turning of the flow 

at the leading edge of the bow. Although the velocity magnitude is decelerated due to gravity, the 

crossflow velocity magnitude increases and extend towards to the sideway. The higher transverse 

velocity at the top of the steep bow wave forms a pair of vortexes. In the high curvature region of 

the overturning wave, the negative axial vorticity is generated in the process that the initial plunger 

is falling.  Also shown is the lager value of positive vorticity and turbulent kinetic energy k contained 

within the sheet of turbulent boundary layer.  

At section x/L= 0.07, the first plunger has already formed due to the large transvers velocity at the 

crest and is falling towards the free surface below. The crossflow velocity keeps increasing towards 

the tip of the shin sheet of water. The large differences in the cross-plane velocity components in 

the plunger tip and the free surface below is one of the main reasons that the plunging breaking 

waves are formed. Apart from the turbulent boundary layer near the ship hull, very small turbulent 

kinetic energy k is observed in the plunger and the free surface (see Figure 7-24 (b)). The plunger 

that consist of the detached thin sheets of water is mostly steady until it hit the main free surface 

and undergo turbulent breaking up and diffusion. 

At the third section x/L=0.11, the first plunge occurs when the overturning wave impinges onto the 

free surface below. With the overturning jet, a large amount of air is entrapped which forms a big 

air bubble below the overturning wave. Once the first plunger touches the free surface, splash-up 

initiates and develops at the location where it impacts. As shown in Figure 7-22(c), an oblique 

splash-up is generated and a second plunger tends to form.  

Compared to section x/L= 0.07, the maximum value of cross flow velocity at the section x/L=0.11 

decreases due to the impact. The large jump in velocity components across the reconnection part 

of the tip and the free surface generates a counter-rotating vortex pair at the newly formed second 

plunger. This vortex pair has an rotational orientation and is responsible for the formation of the 

second plunger[121] visible at section x/L= 0.15.   

As shown in Figure 7-24(c) and (d), large turbulent energy is observed as soon as the first plunger 

reconnects with the free surface. The plunger impact ends the mostly steady state of the 

overturning water sheet. The interactions of the first plunger and the free surface create a turbulent 

kinetic energy source and the vortex pair intensifies the turbulent flow by accelerating the cross 

flow in a short distance across the reconnection region.  
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The last two sections x/L= 0.2 and x/L= 0.25 show the wave pattern after the bow plunging breaking 

waves. As shown in Figure 7-22 (e) and (f), the differences in the cross-plane velocity components 

in the region closed to the free surface and the water far below is much less than section (b) and 

(c). Though weaker axial vorticity is observed in Figure 7-23 (e) and (f), the relatively high kinetic 

turbulent energy remains in Figure 7-24 (e) and (f). A large amount of energy is dissipated in the 

region of the plunging breaking waves, and a third plunger fails to generate.  

 

 

 

 

 

 

 

 

 

(a) Section x/L= 0.05                                                          (b) Section x/L= 0.07 

 

(c) Section x/L= 0.11                                                          (d) Section x/L= 0.15 
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(e) Section x/L= 0.20                                                          (f) Section x/L= 0.25 

Figure 7-22 Initial bow wave development at six cross-sectional planes, cross flow velocity 

magnitude. 

 

 

(a) Section x/L= 0.05                                                          (b) Section x/L= 0.07 

 

(c) Section x/L= 0.11                                                          (d) Section x/L= 0.15 
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(e) Section x/L= 0.20                                                          (f) Section x/L= 0.25 

Figure 7-23 Initial bow wave development at six cross-sectional planes, axial vorticity distribution. 

 

(a) Section x/L= 0.05                                                          (b) Section x/L= 0.07 

 

(c) Section x/L= 0.11                                                          (d) Section x/L= 0.15 
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(e) Section x/L= 0.20                                                          (f) Section x/L= 0.25 

Figure 7-24 Initial bow wave development at six cross-sectional planes, turbulent kinetic energy. 

 

 

7.3.5 Froude number effects on bow plunging breaking waves 

In this section, the effect of the Froude number on the KCS bow breaking waves is analysed using 

the IBVOF solver. The strength of the initial plunging jet which develops at the crest of the 

overturning bow wave mainly depends on the velocity of the head currents. Figure 7-25 shows the 

wave profiles of the plunging jet for four Froude numbers between 0.35 and 0.40, gradually 

modifying and extending along the Froude number increases.  

The major process of the plunging wave breaking is very similar for the different Fr numbers. A 

steep bow wave forms and starts to overturn due to the turning of the flow at the leading edge of 

the bow. It is obvious that the bow wave in higher ship speed will generated the increase of height 

of the first plunger. At an aft position increasing with Fr number, a lateral wave initiates and moves 

away from the hull forming a jet.  

The jet size, jet velocity and impingement angle are key parameters for modelling air entrainment 

by plunging jets[19]. The location of the first plunge point is shown in Figure 7-26. Figure 7-27 shows 

the geometric parameters of the plunge jet, jet length and impingement angle. As expected, the 

size of the first jet increases almost linearly with Fr while the angles of jet tip inclination at impact 

keep similar at approximately 43° below the horizontal.  

Though the global structure of plunging wave jet is well described, the present simulation fails to 

capture the detailed air entrainment when the jet impinges the free surface and the droplets 
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splashing outward after the impingement. The mesh size is too large for these small-scale 

phenomena. Finer mesh is still required in the future simulation. 

 

 

 

 

 

 

 

 

(a) Froude number Fr= 0.35   

 

(b) Froude number Fr= 0.36   0.54 
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(c) Froude number Fr= 0.38 0.54 

 

(d) Froude number Fr= 0.40    0.6 

Figure 7-25  Slices of the wave profiles alongside x-direction with four Froude numbers 

 

(a) Longitudinal location                                   (b) Transverse location 

Figure 7-26  Location of the plunge point. 
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(a) Jet length        (b) Angle of impact 

Figure 7-27  Geometric parameters of the plunge jet. 

7.4 Conclusion  

In this Chapter, the numerical analysis is focused on breaking bow waves. The proposed IBVOF 

solver is applied for the simulation of the plunging breaking waves generated by a fix sharp wedge-

shaped wedge and a fixed KCS hull in uniform flows. The major processes of the plunging wave 

breaking are well predicted including the highest wave formation, the first thin water sheet 

formation and overturning, the first splash-up, the second water jet and the second splash-up.  

The bow wave breaking process is initiated by the pressure field generated by the ship model and 

mainly dominated by gravity and inertial force. An energetic plunging jet is generated and impact 

onto the underlying free surface, entrapping air and creating circulation and vorticity. A large 

amount of air entrapment and droplets are generated near and after the plunger which are 

significant sources of underwater noise and while water wake. In the process of plunging wave 

breaking, the angle and velocity of the second plunger is not only determined by the interaction 

between the two parts of water which follows the momentum theorem but also affected by the 

pair of vortexes.  
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Chapter 8 Concluding remarks 

8.1 Conclusions  

The study of breaking bow waves has significant benefits due to its influence in many aspects. The 

consequences caused by breaking bow waves include, but are not limited to, the increase of 

resistance, increased detectability and damage to port facilities. Analytic studies are not suitable 

for this problem because of over-simplified model. Present experimental studies are costly and not 

robust. Accurate and appliable numerical simulations are required for developing mathematical 

models to understand the features of bow waves and better predict their behaviours.  

It is a challenge to resolve the flow of the two phases and the evolution of the interface between 

them. Various free surface flow solution methods are available, but all have their own limitation. 

This thesis builds an air-water boundary layer model to overcome the discontinuity over the two-

phase interface and presents a combined volume of fluid and immersed boundary method for 

simulations of ship bow breaking waves. It is shown to improve the robustness and stability of two-

phase flow simulations.  

 Bow wave breaking has been a difficult phenomenon to model theoretically for both spilling and 

plunging breaking waves because the bow wave changes continuously through the interaction of 

air and water with significant differences in properties. Experimental measurements are the most 

reliable methods, but they are costly and not robust. As alternatives to experimental measurements, 

CFD simulations have become a powerful tool to predict detailed wave breaking process and 

velocity profile in both water and air phases. The trend of CFD research is to improve hydrodynamic 

tools with accurate prescription and prediction of air-water interface behaviour.  

The review also carried out a summary of the air-water interface modelling. Various air-water 

interface tracking/capturing methods have been compared and discussed. Among them, two-phase 

flow solvers are more suitable for breaking wave simulations while improvements are required to 

resolve the free-surface boundary layer with large density jump between air and water. The free 

surface boundary layer is not resolved in all implicit interface capturing methods with large density 

jumps between air and water and unphysical flow tends to be generated at the interface due to the 

numerical inadequacies. A physics-based viscous air-water boundary layer model is required to be 

developed and applied to VOF methods to deal with the discontinuity in the fluid properties over 

the two-phase interface and to offer a better resolution of the free-surface. 
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The sources of spurious velocities near the interface are identified based on governing equations. 

The source of the problem in the original solver is believed to lie in the interpolation of the 

momentum flux and the imbalance of the dynamic pressure gradient and density gradient because 

of the density jump across the interface. Conventional linear momentum flux interpolation 

practices can lead to significant errors, which cause ‘fake’ momentum and numerical instability 

when the density ratio increases and ultimately results in spurious velocities and spurious shear 

near the interface. 

A two-phase flow solver, IBVOF solver has been developed to simulate multiphase flows with high 

density ratios. The numerical method is presented in detail with the emphasis on the treatment of 

the interface boundary. An extrapolated velocity (EV) approach is developed to extend the velocity 

from the denser phase to the lighter phase, and an immersed boundary method is used to build a 

thin boundary layer above the interface. Such treatment reduces the spurious velocity caused by 

the momentum interpolation errors across the interface and improve the accuracy and stability of 

high-density ratio two-phase flow simulations. 

Two sets of test cases have been designed to confirm the source of the spurious velocity observed 

in the normal VOF solver and to validate the proposed IBVOF method: steady stratified flow and 

convection of a high-density droplet. The results of the two solvers are compared with analytical 

solutions, single phase flow solver results. The spurious errors in momentum cannot be eliminated 

with mesh or time refinement and finally distort the interface.  

The IBVOF solver presented in this thesis provides a solution to this problem. The designed 

boundary layer smoothing of the velocity field helps to prevent the tearing of the interface due to 

the tangential velocity between the two phases across the interface. It is shown to improve the 

robustness and stability of two-phase flow simulations, and higher accuracy can be obtained on a 

relatively coarse grid compared to the original solver. 

Another velocity extrapolated method, the DW approach, has been implemented to extend the 

application of the proposed IBVOF solver from 2D uniform mesh to unstructured mesh cases and 

3D simulations. Compare to the EV approach, more liquid and gas cells are used with the DW 

approach in the smoothing process and the denser has larger effect on the velocity in the designed 

free surface boundary due to the density weight. The DW-IBVOF solver is therefore more 

reasonable in terms of fluid physical property.  

The effects of fluid viscosity and surface tension are investigated through two benchmark tests, the 

viscous two-phase Poiseuille flows and a circular droplet in static fluid. When the density of the two 

phases keeps the same, excellent results are obtained by both the original interFoam and the 
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proposed IBVOF solver. The viscosity ratios between the two phases do not generate the spurious 

velocity across the interface as the density ratios do. As for the surface tension, unfortunately, the 

proposed solver fails to deal with the parasitic currents raised form the instability of the surface 

tension algorithm. 

The DW-IBVOF solver is applied to simulate a real-life problem of a droplet impact on a thin liquid 

file at short time and the computational results are compared with the original interFoam and 

published experimental data. The surface tension and fluid viscosity are considered. The three 

stages of droplet impact observed in the experiment are well captured by the DW-IBVOF solver. 

The designed boundary layer smoothing of the velocity field helps to prevent the tearing of the 

interface due to the tangential velocity between the two phases across the interface.  

The two-phase flow solver IBVOF solver is then further validated with two sets of benchmark cases, 

the propagation and breaking-up of solitary waves and stokes waves with focus on applications in 

ocean and coastal engineering. The investigation of the velocity field revealed that spurious 

currents appearing in the vicinity of the interface, resulting in a local increase of the velocity which 

might have influences the shape of the free surface. The proposed density-weight smoothing (DW) 

method and the designed boundary layer on the interface suppress the spurious velocities and 

improve the accuracy and stability of air-water flow simulations. 

Finally, the numerical analysis is focused on breaking bow waves. The proposed IBVOF solver is 

applied for the simulation of the plunging breaking waves generated by a fixed sharp wedge-shaped 

wedge and a fixed KCS hull in uniform flows. The major processes of the plunging wave breaking 

are well predicted. The bow wave breaking process is initiated by the pressure field generated by 

the ship model and mainly dominated by gravity and inertial force. The initial plunger is created 

due to the formation and subsequent thickening of the bow wave sheet. The reconnection of the 

first plunger is associated with large cross flow differences between the plunger tip and free surface 

below, generation of large turbulent kinetic energy and the formation of a free surface scar. The 

angle and velocity of the second plunger is affected by the axial vorticity with a rotational 

orientation.  

This research was supported by the University of Southampton, the China Scholarship Council (No. 

201706950085) and National Science Foundation of China (Grant No. 51720105011). 

8.2 Suggestions for future work 

There are still many interesting questions on all fronts of this research. Suggestions for future 

studies that can build from or improve on this work are listed below. 
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The IBVOF method proposed in this thesis has reduced the spurious velocity caused by the 

momentum interpolation errors across the interface and improve the accuracy and stability of high-

density ratio two-phase flow simulation. However, the solver fails to deal with the spurious current 

origins from surface tension force term caused by inaccurate interface curvature in VOF methods. 

Several strategies have been employed to mitigate the errors caused by the surface tension force 

[70][76][78]. Combining one of the strategies with the proposed IBVOF method could further 

improve the accuracy of the two-phase flow solver.  

The IBVOF method proposed in this thesis is designed for VOF method based on the OpenFoam 

platform. The free surface boundary layer is not resolved in all implicit interface capturing methods 

with large density jumps between air and water. The air-water boundary layer model is therefore 

also applicable for other two-phase solvers where there is no slip between the two fluids and could 

be extended to simulations with Level set methods or Coupled Level Set and Velocity of Fluid 

(CLSVOF) methods. 

The simulations in this thesis have been run with fine meshes to ensure accurate representation of 

the flow. The investigation of KCS bow breaking waves has not been fully completed. Though the 

main process of the bow breaking waves has been described, the air bubbles or water droplets are 

unable to captured when the scale is smaller than the grid spacing. The droplets and bubbles in 

breaking waves are estimated by volume fractions with some limitations due to the numerical 

model adopted in the simulations. To well demonstrate the detailed information of droplets, much 

finer mesh is required for further investigation. What’s more, the effect of small-scale detailed 

plunging breaking, spray formation and air entrainment to the overall ship bow waves is required 

quantitatively investigation in the future work.  

The unsteady RANS model tends to predict a breaking bow wave which is more coherent, steady, 

and smooth than that from experiment. Resolution of extremely small-scale unsteady free surfaces 

will probably require increased spatial and temporal resolution or large eddy or detached eddy 

simulation modelling. There are no available experimental flow data to validate the present 

computations results. It is worth conducing towing tank experiments for better understanding of 

the KCS bow breaking waves.   

This thesis has presented a new two-phase flow solver for simulations of ship bow breaking waves. 

In general ship flow simulations, on the other hand, single-phase flow solvers are commonly used 

especially in the industry since they are believed to be more effective and efficient. The 

investigation of bow breaking waves by experiments and two-phase flow solvers helps to build a 

physical based model for dynamic free surface boundary conditions for one-phase flow solvers and 

improve the accuracy and robustness of the one-phase flow solvers.  
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Appendix A Turbulence and energy dissipation 

mechanisms in steady spilling breaking waves induced by 

a shallowly submerged hydrofoil 
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Appendix B Simulation of plunging breaking waves 

induced by a submerged bump  


