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The gradient expansion is the fundamental organising principle underlying relativistic hydrody-
namics, yet understanding its convergence properties for general nonlinear flows has posed a major
challenge. We introduce a simple method to address this question in a class of fluids modelled
by Israel-Stewart–type relaxation equations. We apply it to (1+1)-dimensional flows and provide
numerical evidence for factorially divergent gradient expansions. This generalises results previously
only obtained for (0+1)-dimensional comoving flows, notably Bjorken flow. We also demonstrate that
the only known nontrivial case of a convergent hydrodynamic gradient expansion at the nonlinear
level relies on Bjorken flow symmetries and becomes factorially divergent as soon as these are relaxed.
Finally, we show that factorial divergence can be removed using a momentum space cutoff, which
generalises a result obtained earlier in the context of linear response.

Introduction– Hydrodynamics plays a pivotal role in
the description of nonequilibrium phenomena, with ap-
plications ranging from condensed matter systems [1] to
scenarios in astrophysics [2–4] or nuclear physics [5, 6].
The reason is that hydrodynamics captures the infrared
behavior of any medium endowed with conserved quanti-
ties. For a given set of conserved currents, the expression
of hydrodynamic behaviour rests on the derivative ex-
pansion in the spirit of an effective field theory [7–11].
For a neutral relativistic fluid, the natural choice of dy-
namical variables are the energy density E(x) and the
unit-normalized fluid velocity U(x) = Uµ(x)∂µ, with the
conserved currents, Tµν , given by the constitutive relation

Tµν = E UµUν + P (E)(gµν + UµUν) + Πµν . (1)

Here, the first two terms describe ideal flow with g being
the Minkowski metric and Πµν captures dissipative effects
organised as

Πµν =

∞∑

n=1

εnΠ(n)
µν [E , U ], (2)

where Π
(n)
µν contains n spacetime derivatives of E , U and

we have introduced ε as a formal derivative-counting pa-
rameter. The gradient expansion in Eq. (2) is defined up
to redundancies associated with frame choice and current
conservation ∇µTµν = 0.

Understanding the character of the expansion (2) con-
stitutes a fundamental open problem. Is it convergent, in
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such a way that subsequent truncations are progressively
more accurate? If not, how does its divergent nature
relate to the empirical success of low-order truncations?

Studies of comoving flows in Refs. [12–31], in which all
fluid flow lines can be mapped to each other under sym-
metry transformations, rendering the problem effectively
(0+1)-dimensional, have been instrumental in advancing
our understanding of the hydrodynamic expansion (2).
Among these, Bjorken flow [32] in conformally invariant
theories is the most thoroughly explored example due to
its role in studies of quark-gluon plasma. In these cases a
particular strategy to solve the dynamical equations is an
expansion in the Knudsen number, 1/w [33]. It is possible
to compute a sufficient number of terms to assess that
these expansions are factorially divergent. The expan-
sion in ε defined in Eq. (2) encapsulates the expansion in
1/w, as we review in the Supplemental Material. Another
well-studied example of a comoving flow is the Gubser
flow which is reached by Weyl transformation from a
(0 + 1)-flow on dS3 × R [34, 35].

Outside the realm of comoving flows, the only generic re-
sult on (2) was restricted to the linear response regime [36].
It showed that depending on how the momentum space
support kmax of E and Uµ compares to an intrinsic scale
of the underlying microscopic theory k∗ [37], the gradient-
expanded constitutive relations could either be convergent
(kmax < k∗), geometrically divergent (k∗ < kmax <∞) or
factorially divergent (kmax →∞).

In this Letter, we break free both from the symme-
try constraints of comoving flows and the conveniences
of linearisation to address, for the first time, the large-
order behavior of the hydrodynamic gradient expansion
beyond comoving flows at the fully nonlinear level. Specif-
ically, we ask the following question: Given a generic
nonequilibrium, nonlinear configuration of E , Uµ arising
on-shell, what is nature of the expansion in ε (2) when
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evaluated on this solution? We answer this question by
introducing a simple method that allows one to calcu-
late Eq. (2) up to high order on a desktop computer. In
this Letter we illustrate it in two examples. The first
is the model put forward by Baier, Romatchske, Son,
Starinets and Stephanov (BRSSS) in Ref. [38], while the
second is the model originally introduced by Denicol and
Noronha (DN) in Ref. [27]. Both theories are representa-
tive examples within a broad class of models employing
the Israel-Stewart approach to embed hydrodynamics in a
framework compatible with relativistic causality [39, 40].
Our method applies to any member of this class, such
as [41], and covers also equations with more than one
derivative of Πµν , such as [42–44]. Each member of this
class generally gives rise to infinitely many transport co-
efficients in the gradient expansion (2) that are specific
to it.

Results in the BRSSS model– In this Letter, we con-
sider the restriction of the BRSSS model to conformal
fluids in d spacetime dimensions (d = 4 in our numerics).
We work in the Landau frame and take ΠµνU

ν = 0. The
model is defined by promoting Πµν to a set of independent
degrees of freedom subject to a relaxation equation,

Πµν = −2ηD〈µuν〉 − τΠUαDαΠµν +
λ1

η2
Π
〈µ
λ Πν〉λ, (3)

where we neglected terms not relevant to the flow we
consider. Dµ is the Weyl-covariant derivative [45], and
the angle brackets instruct one to take the symmetric,
transverse and traceless part of the tensor they act upon.
The relaxation time τΠ, the shear viscosity η, and λ1

are transport coefficients. Conformal invariance demands
that these quantities depend on the local temperature T ,
defined by the relation E = E0T d, as

η = Cη
4 E
3T

, τΠ =
CτΠ
T

, λ1 = Cλ1

η

T
(4)

where Cη and CτΠ > 0. The equations of motion of
BRSSS theory are given by (3) and the conservation
equation ∇µTµν = 0, where the energy-momentum tensor
is specified in terms of E , U and Πµν as in (1).

The fluid flows we focus on are characterised as follows.
We separate the spatial coordinates into one longitudinal
direction, x, and d−2 transverse directions, x1, . . . , xd−2,
demanding isotropy and translational invariance in the
transverse hyperplane spanned by xi. Hence, the nontriv-
ial dynamics is confined to the longitudinal plane spanned
by t and x, and our fluid flows are (1+1)-dimensional. We
refer to these fluid flows as longitudinal. At the linearized
level such flows would correspond to sound wave propaga-
tion. See, e.g., Ref. [46] for a study of longitudinal flows
in a quark-gluon plasma context.[47]

The most general fluid velocity for a longitudinal flow
is parameterised by a single degree of freedom, u, as

U = Uµ∂µ = coshu ∂t + sinhu ∂x. (5)

Furthermore, any tensor which is symmetric, transverse
to Uµ and traceless is described in terms of a single
additional degree of freedom that we pick as

Πµν = (2− d) Π?Σ
µν (6)

where Σµν ≡ gµν + UµUν − d−1
d−2P

µν
T and Π? =

1
d−2P

µν
T Πµν , with PµνT being the projector in the trans-

verse directions.
We now consider the expansion (2) applied to the con-

formal BRSSS model for longitudinal flows. This is fa-
cilitated by a numerical algorithm which makes a com-
putation of (2) to large orders tractable. Since ε counts
derivatives it can be introduced by taking (3) and re-
placing ∇µ → ε∇µ together with positing a perturbative
ansatz for Π?, as follows,

Dα → εDα, Π? →
∞∑

n=1

Π
(n)
? εn. (7)

This leads to the following recursion relation

Π
(1)
? = − 2

d−2
η PµνT D〈µUν〉, (8a)

Π
(n+1)
? = −τΠ(U · ∂)Π

(n)
? − d(∂ · U)

d−1
τΠΠ

(n)
?

− (d−3)
λ1

η2

n∑

m=1

Π
(m)
? Π

(n+1−m)
? , n > 1. (8b)

Here, E and U are not expanded in ε. Therefore to pro-
ceed to evaluate (8) we must first find E and U for a given
choice of flow. These (as well as the exact Π?) can be
obtained by numerically solving the BRSSS equations of
motion as an initial value problem without invoking an ε
expansion. Once E and U are known, the recursion rela-
tion (8) can be efficiently evaluated numerically to high
orders. Careful consideration of resolution and precision
is required, as this procedure involves high numbers of
successive derivatives of the background solution E and U .
This is further discussed in the Supplemental Material,
where we show that our numerical results are convergent.
Our approach applies to the whole class of theories which
build on the Israel-Stewart approach.

Note that solving the recursion relation (8) analytically
is prohibitively expensive due to the fast growth in the
number of terms contributing at each order. In particular,
for the case λ1 = 0 we observed an exponential growth
of the number of individual contributions at each order.
Our method circumvents this difficulty.

We have applied our approach in the BRSSS model
across a wide variety of initial conditions, transport coef-
ficients and spacetime points. We find factorial growth
in all cases considered. We illustrate this in Fig. 1 with
one representative example in which we consider a strong
Gaussian overdensity for our initial conditions and adopt
a periodic compactification of the spatial direction. The
left panel shows T and flow lines of U and highlights
three spacetime point samples. The right panel root plot



3

0.0 0.2 0.4 0.6 0.8

x

0.0

0.2

0.4

0.6

0.8

t

0 20 40 60 80 100 120

n

0

10

20

30

40

50

60

70

80

90

∣ ∣ ∣Π
(n

)
∗
∣ ∣ ∣1 n

FIG. 1. Left panel: Solution to an initial value problem in BRSSS. Colour shows the temperature profile T (t, x), and the black
solid lines are flow lines of velocity U . Here t, x are obtained from standard Minkowski coordinates by periodically identifying
x ∼ x+ 1. Initial conditions were provided at t = 0 corresponding to a strong Gaussian overdensity. The colour scale ranges
from minT = 0.76 (violet) to maxT = 1.76 (red). Also included are three marked points (disk, plus, open diamond). Right
panel: Root plot for the hydrodynamic expansion of the constitutive relation (2) for BRSSS, evaluated using the recursion
relation (8) for the solution shown in the left panel, at each of the marked points with matching marker shapes. To guide

the eye, in red we show straight lines fit to the range n ∈ [20, 130], which correspond to Π
(n)
? ∼ Γ(n) at large n. Numerical

convergence of our results is demonstrated in the Supplemental Material.

demonstrates factorial growth at these sampled points.
Further details are provided in the Supplemental Material.

Momentum cutoff– In previous work [36] we showed
that a momentum-space cutoff gives at most a geometri-
cally divergent hydrodynamic expansion for linear devia-
tions from equilibrium. This result naturally extends to
strongly nonlinear scenarios, as we now demonstrate. So
far in this Letter we have used a numerical grid simply as
a tool to approximate the continuum, but we now push
beyond the continuum picture and re-evaluate the grid in
a new role as a physical lattice which naturally enforces
a momentum-space cutoff. In the BRSSS model, when
λ1 = 0 the recursion relation (8) can be written as

Π
(n+1)
? =MΠ

(n)
? n > 1 (9)

where M = −τΠ(U · ∂)− d(∂·U)
d−1 is a differential operator

independent of n, depending only on the background solu-

tion E , U . For a grid of dimensions Nx×Nt, each Π
(j)
? can

be written as a NxNt-sized vector, and M accordingly
as a NxNt × NxNt square matrix. Thus, on a lattice
the expansion is ultimately only geometrically growing at
a rate set by the largest eigenvalue of M, which scales

with the inverse lattice spacing. In Fig. 2 this is demon-
strated by utilising a deliberately low resolution lattice
to allow for evaluating the hydrodynamic expansion to
order n = 8000. It shows the transition from factorial
growth where the continuum approximation holds, to the
geometrically divergent asymptotic behaviour governed
by the aforementioned eigenvalue. We have also verified
numerically that this result holds at λ1 6= 0, with the
definition of M as given.

Resolving the DN model tension– Bjorken flow is a
boost-invariant longitudinal flow such that the dynam-
ics depends on the proper time τ =

√
t2 − x2 only. In

Ref. [27] the authors analysed a Knudsen number expan-
sion for an ultrarelativistic gas of hard spheres undergoing
Bjorken flow. While in all the other models such expan-
sions have been observed to be factorially divergent, in
Ref. [27] the terms grow only geometrically, with con-
vergence ensuing for a Knudsen number smaller than a
critical value. Our objective is to re-analyse this physical
scenario using the expansion in ε. For Bjorken flow we
find analogous results, namely geometric growth; however,
our method allows us to explore what happens when these
symmetries are relaxed.
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FIG. 2. Working on a lattice gives a window of factorial growth–
where it successfully approximates the continuum–before yield-
ing to a geometrically growing hydrodynamic expansion regu-
lated by the lattice. The asymptotic value reached is governed
by the lattice spacing as discussed in the text. Black disks
are those from Fig. 1 corresponding to the disk spacetime
marker point. Red circles are the same simulation and space-
time point, but on a coarse numerical grid and evaluated to
hydrodynamic order n = 8000. This plot serves also as an
indication of a convergence of our approach.

We work in d = 4. As in the conformal BRSSS model,
the energy-momentum tensor in the DN model is trace-
less and decomposed as in Eq. (1), with Πµν still obeying
Eq. (3) with λ1 = 0. Hence, the recursion relations giving

Π
(n)
? still take the form (8), again with zero λ1. The

differences start with the inclusion of a conserved current
Jµ = ρUµ, where ρ is the particle density. Furthermore,
τΠ and η are not fixed purely in terms of the local tem-
perature T , but rather obey

E = 3ρ T, η =
a

σT
T, τΠ =

a b

4σT

1

ρ
, (10)

where σT is the total cross section and a, b are positive
dimensionless constants.

For Bjorken flow, the conservation of the particle cur-
rent Jµ entails that the particle density ρ decouples from
the energy-momentum tensor. One has that

ρ(τ) =
ρ0 τ0
τ

, (11)

where ρ0 = ρ(τ0) is the initial particle density. Hence,

τΠ =
1

4
a bKn τ, (12)

where Kn = 1/(ρ0τ0σT ) is the Knudsen number. In the
DN model for Bjorken flow it is time independent.

To assess the large-order behavior of the expansion in
ε, Eq. (2), we first note that one can find a closed-form

expression for Π
(n)
? ,

Π
(n)
? (τ) =

2

3
aKn ρ0

(τ0
τ

) 4
3

(
−abKn

4

)n−1

×

× (τ∂τ )n−1

((
τ

τ0

) 1
3

T (τ)

)
, (13)

a fact that relies crucially on Eq. (12). Second, we recall
that T can also be determined exactly [27]

T (τ) = T0,+

(τ0
τ

)α+

+ T0,−
(τ0
τ

)α−
, (14)

where T0,± depend on initial conditions and α± on a, b,

and Kn. Together, Eqs. (13) and (14) entail that Π
(n)
? can-

not grow factorially with n at fixed τ , since the repeated
action of the differential operator τ∂τ on terms of the
form (τ/τ0)

1
3−α± only grows geometrically. Furthermore,

Eqs. (13) and (14) also imply that Π
(1)
? (and therefore all

Π
(n>1)
? ) is a linear combination of eigenfunctions of the

differential operator M defined as in Eq. (9), providing
another perspective on why the gradient expansion grows
geometrically in this case. We refer the reader to the
Supplemental Material for further details.

The analysis above relies crucially on the symmetry
restrictions of Bjorken flow. Empirically, when relaxing
these symmetry restrictions in all cases studied we find
that the large-order geometric growth is destroyed and
the factorial divergence is restored. We illustrate this in
Fig. 3 for a longitudinal flow corresponding to a small
perturbation of Bjorken flow.

Summary and outlook– Understanding the behaviour
of the hydrodynamic gradient expansion at large orders
is a challenging question in the foundations of relativistic
hydrodynamics. We have proposed a method to compute
such series in a large class of models. Applying this to
nonlinear longitudinal flows reveals factorially divergent
series which we have illustrated with a number of examples.
This shows that previously observed instances of factorial
growth were not reliant on Bjorken symmetries.

It is natural to ask what are the generic conditions
that lead to factorial growth. We have here established
that the ability of a system to support arbitrarily large
momentum is important; ways around this include work-
ing on a lattice, and appropriate restriction of initial
data in the linearised case [36], both of which naturally
lead to geometric growth. Second, as our analysis of the
DN model shows, imposing special symmetries such as
boost invariance can also lead to geometric rather than
factorial growth. It would be interesting to explore this
question further including other natural momentum cut-
offs such as microscopic physics and turbulent cascades.
For models with recursion relations of the form (9), it
may be possible to engineer further examples where the

underlying equations of motion give rise to Π
(n)
? which are
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Bjorken flow in the DN model evaluated at τ = 1, where we
have chosen initial conditions given by ρ(τ0) = 4, T (τ0) = 2
and Π?(τ0)/(ρ(τ0)T (τ0)) = 0.436461 at τ0 = 0.1. Crosses

represent |Π(n)
? |

1
n at τ = 1 and zero rapidity for a longitudinal

flow in the DN model which obeys the same initial conditions
as Bjorken flow, but with a rapidity-even Gaussian overdensity
in ρ of amplitude 0.1 and unit width. We have set a = 0.5,
b = 10 and σT = 1. The Bjorken flow coefficients have been
obtained from the analytic solution, while the non-Bjorken
flow ones from a simulation discussed in the Supplemental
Material.

eigenfunctions ofM such that the hydrodynamic gradient
expansion grows geometrically. This could form the basis

of a rigorous mathematical formulation for investigating
the genericity of factorial growth.

The picture that is emerging from this work and results
in linear response [36] is that the origin of factorial growth
at large n in the hydrodynamic gradient expansion is the
successive action of n derivatives on the hydrodynamic
variables E , U . This is intimately connected with support
of a solution in momentum space. It suggests that having
a factorial growth in the number of transport coefficients
at each order is not necessary.

The factorial divergence of asymptotic series is not an
impediment to their practical utility: such series typically
provide excellent approximations as long as one does not
exceed the so-called order of optimal truncation. Our
work makes such investigations possible for a much wider
set of flows than previously tractable.
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P. Witaszczyk, Coupling hydrodynamics to
nonequilibrium degrees of freedom in strongly interacting
quark-gluon plasma, Phys.Rev.Lett. 113 (2014), no. 26
261601 [arXiv:1409.5087].

[45] R. Loganayagam, Entropy Current in Conformal
Hydrodynamics, JHEP 0805 (2008) 087
[arXiv:0801.3701].

[46] W. Florkowski, R. Ryblewski, M. Strickland and
L. Tinti, Non-boost-invariant dissipative hydrodynamics,
Phys. Rev. C 94 (2016), no. 6 064903 [arXiv:1609.06293].

[47] Note that longitudinal flows are in general distinct from
comoving flows such as Bjorken and Gubser flow. While
Bjorken flow can be found as a special case of a
longitudinal flow, Gubser flow cannot since it features
transverse dynamics as dictated by symmetries.

http://dx.doi.org/10.1007/JHEP03(2019)146
http://arXiv.org/abs/1805.06756
http://dx.doi.org/10.1007/JHEP03(2018)037
http://arXiv.org/abs/1801.06165
http://dx.doi.org/10.1007/JHEP02(2019)073
http://arXiv.org/abs/1810.07130
http://dx.doi.org/10.1103/PhysRevLett.115.072501
http://arXiv.org/abs/1503.07514
http://dx.doi.org/10.1103/PhysRevD.92.125011
http://arXiv.org/abs/1509.05046
http://dx.doi.org/10.1103/PhysRevD.93.085008
http://arXiv.org/abs/1511.06358
http://arXiv.org/abs/1608.07869
http://dx.doi.org/10.1103/PhysRevD.94.114025
http://arXiv.org/abs/1608.07558
http://dx.doi.org/10.1103/PhysRevD.97.091503
http://arXiv.org/abs/1609.04803
http://arXiv.org/abs/1711.01657
http://dx.doi.org/10.1103/PhysRevD.98.054016
http://dx.doi.org/10.1103/PhysRevD.98.054016
http://arXiv.org/abs/1802.08225
http://dx.doi.org/10.1016/j.aop.2019.167993
http://dx.doi.org/10.1016/j.aop.2019.167993
http://arXiv.org/abs/1904.08677
http://dx.doi.org/10.1103/PhysRevLett.124.152301
http://dx.doi.org/10.1103/PhysRevLett.124.152301
http://arXiv.org/abs/1908.09957
http://dx.doi.org/10.1103/PhysRevD.97.044041
http://arXiv.org/abs/1711.01745
http://dx.doi.org/10.1103/PhysRevD.99.116004
http://arXiv.org/abs/1804.04771
http://dx.doi.org/10.1007/JHEP07(2020)226
http://arXiv.org/abs/1911.06406
http://dx.doi.org/10.1103/PhysRevD.104.056022
http://arXiv.org/abs/2104.12534
http://dx.doi.org/10.1103/PhysRevD.27.140
http://dx.doi.org/10.1103/PhysRevLett.108.201602
http://arXiv.org/abs/1103.3452
http://dx.doi.org/10.1103/PhysRevD.82.085027
http://arXiv.org/abs/1006.0006
http://dx.doi.org/10.1016/j.nuclphysb.2011.01.012
http://arXiv.org/abs/1012.1314
http://dx.doi.org/10.1103/PhysRevD.104.066002
http://arXiv.org/abs/2007.05524
http://dx.doi.org/10.1007/JHEP06(2018)059
http://arXiv.org/abs/1803.08058
http://dx.doi.org/10.1088/1126-6708/2008/04/100
http://arXiv.org/abs/0712.2451
http://dx.doi.org/10.1016/0003-4916(79)90130-1
http://dx.doi.org/10.1103/PhysRevD.85.114047
http://arXiv.org/abs/1202.4551
http://dx.doi.org/10.1103/PhysRevC.88.021903
http://arXiv.org/abs/1305.3480
http://arXiv.org/abs/1104.2415
http://dx.doi.org/10.1103/PhysRevLett.113.261601
http://arXiv.org/abs/1409.5087
http://dx.doi.org/10.1088/1126-6708/2008/05/087
http://arXiv.org/abs/0801.3701
http://dx.doi.org/10.1103/PhysRevC.94.064903
http://arXiv.org/abs/1609.06293


1

Supplemental Material

Appendix A: The expansions in ε and 1/w in
Bjorken flow

In the studies of conformal Bjorken flow in the past
decade, an important role was played by the following
dimensionless clock variable [33]

w ≡ τ T (τ), (A1)

where τ is the proper time and T (τ) is the local temper-
ature as defined in the main text. The purpose of this
Appendix is to review the known relation between the
expansion in the Knudsen number in conformal Bjorken
flow – the 1/w-expansion mentioned in the Introduction –
and the gradient expansion of hydrodynamic constitutive
relations as given by Eq. (2) in the main text.

While this relation is general, i.e. it applies to any
conformally invariant model, we will present it in the
context of the BRSSS model captured by Eq. (3) in the
main text in four spacetime dimensions. For Bjorken flow
Eq. (3) reduces to

Π′?(τ) +

(
4

3τ
+
T (τ)

CτΠ

)
Π?(τ)− 3Cλ1

4CηCτΠE0T (τ)3
Π?(τ)2

− 8CηE0T (τ)4

9CτΠτ
= 0. (A2)

whereas the conservation equation always (in all theories)
reads

T ′(τ) +
T (τ)

3τ
− Π?(τ)

2E0τT (τ)3
= 0. (A3)

Note that it is convenient to replace Π? by a dimensionless
quantity by taking its ratio with the energy density E .
This is simply related to the pressure anisotropy A mea-
suring deviations from local thermal equilibrium in the
following way

A =
PT − PL
E/3 = 9

Π?

E . (A4)

The 1/w-expansion has been primarily discussed for the
this quantity and up to second order it takes the form

A =
8Cη
w

+
16Cη(CτΠ − Cλ1

)

3w2
+O

(
1

w3

)
. (A5)

Using the expansion in ε of Π? at low orders we obtain
the following expression for A

A =
8Cη
τT

ε−8Cη ((CτΠ+2Cλ1
)T+9CτΠτT

′)
3τ2T 3

ε2+O(ε3),

(A6)

where T = T (τ). One can now use the conservation
equation to replace derivatives of T (τ) at each order in

terms of powers of w, which directly leads to (A5). This
shows that knowing Π? in the expansion in ε to order n
allows one to generate the expansion of A in 1/w up to
and including terms O(1/wn). Note however, that the
n-th order of the expansion in 1/w contains in principle
contributions from the orders 2 to n of the expansion in ε.
A key difference between the two expansions is that the
functional expansion of Π? in derivatives of E , U counted
by ε as in Eq. (2) does not explicitly require invoking con-
servation laws (beyond the stated redundancies), whereas
the 1/w-expansion necessarily utilizes the conservation
equation. Finally, note again that the discussion above
applies to conformal Bjorken flow, while in Appendix C
we discuss a particular non-conformal version of Bjorken
flow.

Appendix B: Further details on numerics and
convergence

For the BRSSS simulations shown in Fig. 1 we use initial
data u = 1

4f , T = 1 + f , Π∗ = 0 where

f(x) = e
− cos(πx)2

2π2γ2 − e−
1

4π2γ2 I0

(
1

4π2γ2

)
(B1)

on a unit spatial circle (x ∼ x + 1). f was chosen to
locally reproduce a Gaussian of width γ near x = 1/2,
respect the spatial periodicity, and the additive constant
chosen so that f has no homogeneous component in a
cosine expansion. We used E = T 4, CτΠ = 1/4, Cη =
1/(4π), λ1 = 0, γ2 = 1/60. The initial value problem is
solved using RK4 on a uniform spatial grid with Nx =
1600 points for a total of Nt = 3200 timesteps to reach
the arbitrary choice of end time t = 1, working with 300
digits of precision. The differential operator for ∂x used
periodic fourth-order finite differences, and second-order
finite differences for ∂t one-sided at t = 0 and t = 1.

Due to the large numbers of successive applications

of derivative operators used in evaluating Π
(n)
? we have

placed particular importance on testing convergence of
our results, both in the resolution of the numerical grid
Nx, Nt and in the number of digits of precision used.

Tests confirming convergence of |Π(n)
? | 1n are shown in

Fig. 4. For a given resolution and precision, when the
window of factorial growth ends it can be extended by
increasing one, the other, or both.

The results in the DN model had been obtained working
in a curvilinear coordinate system in which the Minkowski
metric reads

ds2 = −e2α(τ,x)dτ2 + e2β(τ,x)dx2 + d~x2
⊥, (B2)

and the fluid velocity is U = e−α∂τ , in such a way that a
line of constant x, ~x⊥ corresponds to a flow line. Besides
the conservation equations and the relaxation equation
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FIG. 4. Both precision and numerical resolution are important
factors in extracting the correct growth of the hydrodynamic
expansion using our technique. Here we show convergence

of |Π(n)
? |

1
n for the BRSSS simulations of Fig. 1 at the point

marked with ‘+’. Upper panel: Convergence to the con-
tinuum with increasing resolution at fixed precision. Lower
panel: Convergence with increasing precision at fixed resolu-
tion.

obeyed by Π?, the evolution equations include one extra
equation enforcing that the metric (B2) is flat. When per-
forming numerical simulations, we worked with a compact-
ified spatial coordinate ζ ∈ [−1, 1] instead of x. Both co-
ordinates are related as x = γ−1 tanh−1(ζ), with γ ∈ R+.
Spatial derivatives were discretized with fourth-order cen-
tered finite-difference stencils, while the time evolution
was performed with an explicit RK4 method. For the
numerical results displayed in Fig. 3, we employed a spa-
tial grid of spacing dζ = 1/1800, a time step dτ = 0.5dζ,
and worked with precision 300. The time derivatives
appearing in the recursion relation were computed with
fourth-order finite-difference stencils.

Appendix C: Further perspectives on geometric
growth in the DN model

We start by noting that the DN model, as originally
defined in Ref. [27], features an additional term in the
relaxation equation obeyed by Πµν . This term is linear
in Πµν and, in this work, we have set to zero the trans-
port coefficient associated to it since this restriction does
not modify our main conclusions regarding Bjorken flow.
Hence, in the formulation of the DN model we have con-
sidered, the gradient expansion (2) for Bjorken flow is

given by the following recursion relations,

Π
(1)
? =

2a

3σT

T

τ
, (C1a)

Π
(n+1)
? =−abKn

3
Π

(n)
? −

abKn

4
τ∂τΠ

(n)
? . (C1b)

The closed-form expression (13) can be shown to be a
solution of the recursion relations (C1) by induction. The
parameters appearing in Eq. (14) are

T0,+ =
c0E0

3n0(1 + c0)
= c0T0,−, (C2a)

α± =
1

3
+

2

abKn
± 2

3

√
4

b
+

9

a2b2Kn2 , (C2b)

where E0 is the energy density at τ = τ0. Combining
Eq. (13) with Eq. (14), one finds the final form of the
gradient expansion coefficients,

Π
(n)
? =

∑

i=+,−
Π

(n)
?,i =

∑

i=+,−
Ai

(τ0
τ

)4
abKn+3γi

3abKn

γni , (C3a)

A± = − 8T0,±
bτ0σTKn(1− 3α±)

, (C3b)

γ± =
1

2
± 1

6

√
9 + 4a2bKn2. (C3c)

According to Eq. (C3), Π
(n)
? is given by the sum of two

contributions which only grow geometrically at rates γ±.
No large-order factorially growing behavior is present.

For illustrative purposes, let us focus on the c0 = 0 so-
lution. This choice of initial conditions corresponds to the
attractor solution for the normalized pressure anisotropy,
which played a prominent role in the original analysis of
Ref. [27]. In this case, the terms in Eq. (C3) labeled by a
+ vanish and the gradient expansion converges provided
that

Kn < Kn∗ ≡ 3
√

2

a
√
b
. (C4)

This existence of a critical Knudsen number is qualitative
agreement with the findings of Ref. [27]. The quantitative
difference in the value of Kn∗ reported here and the one
originally quoted in Ref. [27] is explained by the fact that
our gradient expansion is different from the one considered
there.

We conclude this Appendix by arguing in two different
ways that the large-order geometric growth displayed by

Π
(n)
? can be understood as a fine-tuned phenomenon.
The first way starts from the realisation that, had one

chosen to write the closed-form solution (13) in terms of



3

an expansion in the longitudinal derivative ∂τ instead of
τ∂τ , one would had gotten an expression of the form

Π
(n)
? =

n−1∑

k=0

cn,kτ
k−1∂kτ T (τ), (C5)

where, in particular,

cn,n−1 =

(
−1

4
abKn

)n−1
2a

3σT
. (C6)

For a T (τ) given by a linear combination of power-laws
τ−λ, the contribution to the gradient expansion of the
form

Π? ⊃
∞∑

n=1

cn,n−1τ
n−2∂n−1

τ T (τ), (C7)

is a factorially divergent asymptotic series when evaluated
at a given time since according to Eq. (C6) the coefficients
cn,n−1 grow geometrically and

∂kτ τ
−λ = (−1)kτ−λ−k

Γ(λ+ k)

Γ(λ)
. (C8)

The fact that the whole gradient expansion only grows
geometrically when adding the remaining contributions is
indicative of a very delicate cancellation between different
factorially growing subsectors.

The second way builds upon an observation already

performed in the main text: Π
(1)
? is a linear superposition

of eigenfunctions of the differential operator M. Let us
elaborate on this. According to the definition (9) and the
recursion relation (C1b),

M = −abKn

3
−abKn

4
τ∂τ , (C9)

in such that a way that its eigenfunctions ψi,Mψi = ξiψi,
are given by

ψi = τ−
4
3− 4

abKn ξi . (C10)

For a Π
(1)
? corresponding to a finite linear superposition

of eigenfunctions,

Π
(1)
? =

∑

i

ciψi, (C11)

the gradient expansions grows geometrically with rates
given by ξi,

Π
(n+1)
? =MnΠ

(1)
? =

∑

i

ξni ciψi. (C12)

Eqs. (C11) and (C1a) imply that

T =
3

2aρ0τ0Kn

∑

i

ciτ
− 1

3− 4
abKn ξi . (C13)

Inserting the expression above in the conservation equa-
tion fixes Π?,

Π? = − 9

a2bKn2

∑

i

ciξiτ
− 4

3− 4
abKn ξi . (C14)

Finally, for the whole procedure to be self-consistent, the
Π? given by Eq. (C14) has to solve the relaxation equation.
This can only be achieved provided that the linear su-
perposition (C14) is restricted to two contributions with
eigenvalues

ξ1,2 =
1

2
± 1

6

√
9 + 4a2bKn2. (C15)

The eigenvalues ξ1,2 agree with the growth rates quoted
in Eq. (C3c) and, when introduced in Eq. (C13) (resp.
Eq. (C14)), match the exponents appearing in Eq. (C2b)
(resp. Eq. (C3a)).

In a generic model with a recursion relation of the form
(9) M depends nontrivially on the hydrodynamic fields.

In this situation, while a Π
(1)
? given by a finite superpo-

sition of eigenfunctions would result in a geometrically
growing gradient expansion, demanding that the on-shell

hydrodynamic fields conspire to produce precisely a Π
(1)
?

of this form is a tall order. It is natural to expect that
this is not the case for a generic flow, providing another
sense in which the geometric growth of the gradient ex-
pansion for Bjorken flow in the DN model is a fine-tuned
phenomenon.
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