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1. Introduction

1.1. Free-by-cyclic groups

Given a finite rank free group Fn and an automorphism ϕ ∈ Aut(Fn), we can define a 
free-by-cyclic group G = Fn �ϕ 〈t〉 = 〈x1, . . . xn, t|t−1xit = xiϕ〉 (so conjugating by the 
stable letter t acts on Fn as the automorphism ϕ). The properties of this free-by-cyclic 
group depend only on the automorphism ϕ, and in fact only on the conjugacy class of 
its image in the outer automorphism group, Φ [6, Lemma 2.1].

Various properties of G follow from ϕ and indeed from Φ: for example, G is hyperbolic 
if and only if ϕ is atoroidal (no power of ϕ fixes the conjugacy class of an element in 
Fn) [7], and is relatively hyperbolic if and only if the length of some word in Fn grows 
exponentially under iteration of ϕ [14,15,13]. Both of these properties are properties of 
the outer class as a whole.

In this paper we study the actions of free-by-cyclic groups on trees, and through 
this their automorphisms. Even in rank 1 (the two cyclic-by-cyclic groups) it is hard to 
say anything very general about their automorphisms: for Z2, the outer automorphism 
group is GL(2, Z), whereas for the fundamental group of the Klein bottle it has only 
four elements.

There are groups which can be expressed as free-by-cyclic groups with more that one 
possibility for the rank of Fn. However, there are some things which these presentations 
will have in common: for example, the growth rate of the outer automorphism Φ will 
be the same [26]. An automorphism is polynomially growing (with degree d) if, as it is 
iterated, the conjugacy length of a word is bounded by a polynomial (of degree d), and 
(by a Theorem of [5] – see Subsection 2.5) exponentially growing otherwise. We split our 
investigation by growth rate.

Levitt’s work on Generalised Baumslag-Solitar groups [22] includes (after checking 
some hypotheses) that if the defining (outer) automorphism is finite order (in which case 
the free-by-cyclic group G is virtually Fn � Z) then Out(G) is VF, and so in particular 
finitely generated.

We extend finite generation to all cases where the defining outer automorphism has 
linear growth:

Theorem 1.1.1. Suppose G ∼= Fn�ϕZ, and ϕ is linearly growing. Then Out(G) is finitely 
generated.

Also [6], studies the case when the underlying free group has rank 2. There Out(G) is 
calculated up to finite index for all defining automorphisms, and this classification shows 
that Out(G) is finitely generated.

We extend the finite generation result to all cases where the underlying free group 
has rank 3 (in which case the growth is either at most quadratic or exponential):
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Theorem 1.1.2. Suppose G ∼= F3 � Z. Then Out(G) is finitely generated.

We understand the automorphism groups through studying certain actions of G on 
trees. Since they are defined as HNN extensions, all free-by-cyclic groups have a transla-
tion action on the real line. But they also admit actions on more complicated trees. These 
actions are equivalent to alternative presentations which can provide more information 
about the group. To understand the automorphisms, we use particular trees which are 
in some sense invariant under all – or sometimes only most – automorphisms.

The details are different in the exponentially growing and polynomially growing cases. 
With exponential growth, G is one-ended relatively hyperbolic, and so it has a canonical 
JSJ decomposition by [18]. These decompositions are particularly useful and well under-
stood, and there is a description of the outer automorphism group arising from them. We 
describe the canonical tree and for the low rank cases carry out the calculations needed 
for the automorphism group in Section 4.

Using Guirardel and Levitt’s tree of cylinders construction [16], we construct canon-
ical trees when the defining automorphism is unipotent polynomially growing (UPG) 
and either linear or, in low rank, quadratic. These trees arise from fixed points on the 
boundary of Culler-Vogtmann outer space for the defining (outer) automorphism and 
restricting the action to Fn will give an action in the same deformation space as such a 
tree. Every polynomially growing automorphism has a power which is UPG (in fact, the 
power can be taken to depend only on the rank of the free group – see Definition 2.6.1). 
This implies the existence of a normal finite index subgroup which is again free-by-cyclic, 
this time with a UPG defining automorphism.

Understanding the automorphisms of a finite index subgroup does not necessarily 
provide insight into those of the larger group: the fundamental group of a Klein bottle 
(with only four outer automorphisms) contains Z2 as an index 2 subgroup. A key part of 
our proof is that we can use the existence of a canonical splitting of a normal finite index 
subgroup to find a splitting of the larger group which is “nearly canonical” – invariant 
under at least a finite index subgroup of automorphisms, see Definition 3.1.2.

The result is:

Proposition 3.1.4. Let G be a finitely generated group, G0 a normal finite index subgroup 
of G, and suppose that T is a canonical G0-tree. Then

(i) G acts on T , and this action restricts to the canonical G0-action.
(ii) With this action, T is nearly canonical as a G-tree.

By this result, we have an action of G on a tree, and we can consider the outer auto-
morphisms preserving this action, which is finite index in the full outer automorphism 
group. Understanding this group depends on understanding the vertex and edge groups, 
their automorphisms, and how those automorphisms interact. In particular, we need to 
calculate “McCool groups”, for vertex groups with respect to adjacent edge groups: the 
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outer automorphisms having representatives that restrict to the identity on each of a 
family of subgroups.

As part of our proof, we carry this calculation out for free-by-cyclic groups defined 
by a periodic automorphism, with respect to a limited class of subgroups, and when the 
underlying free group has rank 2.

We note that there appear to be two main obstacles to extending this result further: 
constructing actions on trees which are (nearly) canonical, and understanding the Mc-
Cool groups arising from these trees. In the exponential case, the canonical trees exist 
and the obstruction is only the McCool groups, which are generally required to be with 
respect to fairly complex subgroups. In the polynomially growing case(s) passing to a 
(UPG) power should lead to actions arising from limit points of CVn, and with quadratic 
growth these are even unique – see [25]. But it is not obvious that the deformation spaces 
these define are canonical. If canonical trees can be found, the McCool groups are likely 
to be needed relative only to infinite cyclic subgroups, which may be more manageable.
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2. Background

2.1. Notation, actions on trees and Bass-Serre theory

We record here some notation for actions on trees and various subgroups of (outer) 
automorphisms used throughout the paper.

We recall enough of Bass-Serre theory to set notation; see [32] amongst others for a 
fuller exposition. Following Serre, the edges of a graph come in pairs denoted e and e, 
and ι(e) and τ(e) denote the initial and terminal vertices. An orientation, O, is a choice 
of one edge from each pair {e, e}.

Let a group G act on a tree T . We let Gv and Ge denote the stabiliser of a vertex v
or edge e respectively; from the perspective of graphs of groups we use them for vertex 
and edge groups, and use αe to denote the monomorphism Ge → Gι(e). Often we simply 
identify Ge with its image αe(Ge) in Gι(e). An action on a tree is called minimal if it 
does not admit a G-invariant subtree; most of our actions will be assumed to be minimal. 
An action on a tree is irreducible if it does not fix a point, line, or end of the tree; to 
guarantee this it is sufficient that the action has two hyperbolic axes whose intersection 
is at most finite length.

We use NG(H), CG(H) and Z(H) for the normaliser of H in G, the centraliser of H
in G, and the centre of H. To save space and subscripts in the context of an action on 
a tree, we let Ne = NGι(e)(Ge) and Ce = CGι(e)(Ge).
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As usual, Aut(G) denotes the automorphisms of G, and Out(G) = Aut(G)/ Inn(G)
the outer automorphisms. We use lower case Greek letters (ϕ) for automorphisms, and 
upper case (Φ) for outer automorphisms. If the image of ϕ in Out(G) is Φ, we say ϕ
represents Φ, or ϕ ∈ Φ (viewing Φ as a coset of Inn(G)).

Given an automorphism ϕ of G, we can define the cyclic extension of G by ϕ as

G �ϕ Z = 〈X, t : R, t−1xt = xϕ〉

(taking 〈X : R〉 to be a presentation of G). Automorphisms representing the same 
outer automorphism define isomorphic extensions, as can be seen by introducing a new 
generator t′ = tg. For this reason, we will sometimes use the notation G �Φ Z to refer to 
the isomorphism class of cyclic extensions defined by any automorphism representing Φ.

For g ∈ G, we write Ad(g) for the inner automorphism of G induced by g.
If G normalises H, let Ad(G, H) denote the automorphisms of H induced by conju-

gating by elements of G. If H is clear, it may be omitted; in particular (and assuming an 
action on a tree) Ad(Ne) always means the automorphisms of Ge induced by conjugating 
by Ne, its normaliser in Gι(e). Notice that since Ne contains Ge, the subgroup Ad(Ne)
descends to a subgroup of Out(Ge).

We identify certain “relative” subgroups of Out(G):

Definition 2.1.1. Given a family of subgroups {Gi} of G, we define

• the subgroup Out(G; {Gi}) to be those outer automorphisms of G where for each 
subgroup Gi there is a representative that restricts to an automorphism of Gi;

• the subgroup Mc(G; {Gi}) to be those outer automorphisms of G where for each 
subgroup Gi there is a representative that restricts to the identity on Gi.

Note that these are subgroups of outer automorphisms; any given representative will 
not usually have the correct restriction for every subgroup Gi.

Throughout the paper we consider actions of Fn�ϕZ on trees. Dahmani (in Section 2.2 
of [12]) gives some useful results about such an action. The following lemma is specialised 
to free-by-cyclic groups; Dahmani gives it more generally for semidirect products with 
Z (suspensions, in the terminology of that paper) of any finitely generated group.

Lemma 2.1.2. Suppose G ∼= Fn � 〈t〉 acts minimally and irreducibly on a tree. Then

(1) Fn acts on the same tree with finite quotient graph.
(2) The stabilisers in any action of G on a tree are again free-by-cyclic; the free part is 

the Fn-stabiliser, and the generator of the cyclic factor has the form tkw.
(3) In particular, all edge stabilisers are at least infinite cyclic, and G is one ended.
(4) If all incident edges at some vertex are cyclically stabilised, its stabiliser cannot be 

finitely generated and infinitely ended.
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The hypotheses given here differ slightly from Dahmani’s: we demand an irreducible 
action while Dahmani uses “reduced”. In fact a sufficient condition is that Fn acts non-
trivially, which is guaranteed by either of these conditions.

Note that the last point is not immediately obvious: the free part at a vertex could be 
infinitely generated, and free by cyclic groups of this form can be infinitely ended, and 
even free. It implies that in any splitting of this kind there cannot be a “quadratically 
hanging” vertex group, for these have exactly the combination of properties ruled out 
here (see Section 4).

The crucial observation is that since Fn is a normal subgroup, it also acts minimally 
on the whole tree. Then finite generation ensures the quotient under this action is finite. 
To recover the free-by-cyclic structure on the stabilisers, consider the action of 〈t〉 on the 
quotient graph, and lift the stabilisers back to the whole group. This kind of argument 
enables us to analyse the splitting of G by considering the induced splitting of Fn.

To see the last point, in this case, note that this could only occur if the free part of 
the relevant vertex stabiliser was not finitely generated. Contract all other edges and 
consider the induced free splitting of Fn: this expresses Fn as a free product where one 
free factor is not finitely generated, which is impossible.

(More generally, the free part of a vertex may only be infinitely generated if the same 
is true of at least one incident edge group; control over the edge groups provides some 
control over the vertex groups.)

2.2. Length functions and twisting actions by automorphisms

Since we will usually be working with simplicial metric trees, an action of G on a tree 
T will be equivalent to a map G → Isom(T ).

Any action of G on a tree T defines a translation length function on G, by considering 
the minimum displacement of points in the tree for each element. That is, given an isomet-
ric action of G on T , we can define the function, lT : G → R by lT (g) = minx∈T dT (x, xg)
(and this minimum is always realised). Note that lT is constant on conjugacy classes.

We recall a well-known Theorem of Culler and Morgan:

Theorem 2.2.1 ([11, Theorem 3.7]). Let G be a finitely generated group and let T1, T2
be two R-trees equipped with isometric G actions which are minimal and irreducible. 
Then lT1 = lT2 if and only if T1 and T2 are equivariantly isometric. Moreover, such an 
equivariant isometry is unique if it exists.

Remark 2.2.2. This result says that, in many cases, the translation length function de-
termines the action.

The action of G on T defines a deformation space, by considering all simplicial actions 
of G on a tree with the same elliptic subgroups (this is an equivalence relation on G-
trees); the elliptic subgroups are those subgroups of G which fix a point in the tree. Note 
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that there can still be vertices with stabilisers that are not conjugate to a stabiliser in 
the original action. (For example, consider representing a free product of three groups 
as a graph of groups where the underlying graph is a line versus a tripod: these are 
in the same deformation space, despite the extra trivially stabilised vertex.) Trees in 
the same deformation space dominate each other; that is, there are equivariant maps 
between them.

Definition 2.2.3. Given an isometric action of a group G on a tree, T , a new ‘twisted’ 
action of G on T can be defined by pre-composing with any automorphism of G. That 
is, if ϕ ∈ Aut(G), then x ·ϕ g = x · (gϕ)

In terms of length functions, this means that lϕT (g) = lT (gϕ). (Here ϕT is the “twisted 
tree”, isometric to T but with the new action defined above.)

Given a deformation space of trees, this defines an action of Aut(G) on that space.

Remark 2.2.4. Note that there is a switch from left to right; if the automorphisms of G
act on elements on the right then the action on trees by pre-composing is on the left and 
vice versa.

In most cases this changes the length function; we let

AutT (G) = {ϕ ∈ Aut(G) : lϕT = lT }

denote the subgroup of Aut(G) which leaves it unchanged. Notice that this is true of all 
inner automorphisms, so these are a subgroup of AutT (G). By Theorem 2.2.1 such an 
automorphism induces an equivariant isometry of T , and assuming the action is minimal 
and does not fix an end this is unique and extends to an action of AutT (G). This action 
is compatible with the original action in at least two senses: G � AutT (G) (with the 
usual action of AutT (G) on G) acts on T , restricting to the original action of G and the 
induced action of AutT (G), and the action of G on T factors through the map sending 
each element to the inner automorphism it induces.

This is asserting the existence of a commuting diagram (see [1] for how to use Theo-
rem 2.2.1 to produce this diagram):

AutT (G) Isom(T )

G

g �→Ad(g) ·

Recall (from Section 2.1) that Ad(g) is the inner automorphism induced by g.
In fact, such a diagram is also sufficient to recover the definition in terms of length 

functions since for any ϕ ∈ AutT (G),

lT (g) = lT (Ad(g)) = lT (Ad(g)ϕ) = lT (Ad(gϕ)) = lT (gϕ),
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(where we are moving between the G action and the AutT (G) action using the commu-
tative diagram).

We will consider OutT (G) = AutT (G)/ Inn(G), the subgroup of outer automorphisms 
which preserves the length function. By the correspondence theorem, many properties 
of AutT (G), such as finite index or normality, are inherited by OutT (G).

2.3. Trees of cylinders

Guirardel and Levitt in [16] define a tree of cylinders for a deformation space. The 
input is any tree in the deformation space, and an equivalence relation on the edges; the 
output is a tree where the induced splitting is preserved by all (outer) automorphisms 
which preserve the deformation space. They are our main tool for producing trees which 
allow us to analyse outer automorphisms by considering trees.

We start the construction by defining a family E of subgroups of G. It should be 
closed under conjugation, but not under taking subgroups. We then define an admissible 
equivalence relation on E [16, Definition 3.1]. This must satisfy

(1) if A ∼ B then Ag ∼ Bg for all g ∈ G;
(2) if A ≤ B then A ∼ B;
(3) Suppose G acts on a tree with stabilisers in E . If A ∼ B, v ∈ Fix(A) and w ∈ Fix(B), 

then the stabiliser of any edge lying in [v, w] is equivalent to A (and B)

To show (3) it is sufficient to show that 〈A, B〉 is elliptic [16, Lemma 3.2]
Now suppose that G acts on T with edge stabilisers in E . Define an equivalence relation 

on the edges of T by saying e ∼ e′ if Ge ∼ Ge′ . A cylinder consists of an equivalence 
class of edges; the conditions on an admissible equivalence relation ensure that cylinders 
are connected, and that two cylinders may intersect in at most one vertex.

To construct the tree of cylinders Tc, replace each cylinder with the cone on its bound-
ary [16, Definition 4.3]. That is, there is a vertex Y for every cylinder, together with 
surviving vertices x lying on the boundary of two (or more) cylinders. Edges show inclu-
sion of a boundary vertex x into a cylinder Y . The stabilisers of boundary vertices are 
unchanged; the stabiliser of a cylinder vertex is the (setwise) stabiliser of the cylinder. 
Edge stabilisers are the intersection of the relevant vertex stabilisers.

The tree of cylinders Tc depends only on the deformation space of T , in the sense 
that given two minimal, non-trivial trees T, T ′ in the same deformation space, there is a 
canonical equivariant isomorphism between Tc and T ′

c [16, Corollary 4.10]. In particular 
this means that this tree of cylinders is fixed by any automorphism which preserves the 
deformation space, and so can be used to study these (outer) automorphisms.

It is always true that T dominates Tc, but cylinder stabilisers may not be elliptic in T . 
The deformation space of the tree of cylinders depends on the size of the cylinders: if all 
cylinders are bounded, or equivalently contain no hyperbolic axis, then the cylinder sta-
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bilisers are elliptic in T and so Tc lies in the same deformation space, and conversely [16, 
Proposition 5.2].

Edge stabilisers may not be in E ; in this case the collapsed tree of cylinders T ∗
c is 

defined by collapsing all edges of Tc with stabilisers not in E [16, Definition 4.5]. Assuming 
that E is sandwich closed (if A ≤ B ≤ C are subgroups of G, and A and C are in E , then 
so is B), the construction is stable in the sense that (T ∗

c )∗c = T ∗
c [16, Corollary 5.8]. If 

T and T ′ are in the same deformation space then there is a unique equivariant isometry 
between T ∗

c and (T ′)∗c [16, Corollary 5.6] and again this action is canonical.
In general, there may be more restrictions put on the trees: sometimes we require that 

a certain collection of subgroups is elliptic. In this case the deformation space and tree 
of cylinders is canonical relative to the automorphisms which preserve this collection.

2.4. Automorphisms of free groups

We recall some of the results we will use about automorphisms of free groups. Here 
Aut(Fn) denotes the automorphism group of the free group of rank n and Out(Fn) =
Aut(Fn)/ Inn(Fn), the group of outer automorphisms, which is the quotient by the in-
ner automorphisms. Thus an outer automorphism is a coset of inner automorphisms, 
and there is an equivalence relation on this set of automorphisms called isogredience. 
Formally,

Definition 2.4.1. Two automorphisms ϕ, ψ ∈ Aut(Fn) are said to be isogredient if they 
are conjugate by an inner automorphism. This is an equivalence relation when restricted 
to any coset of Inn(Fn), that is an element of Out(Fn).

Theorem 2.4.2 (Bestvina-Handel Theorem, [5]). Let Φ ∈ Out(Fn). Then,
∑

max{Rank (Fix ϕ) − 1, 0} ≤ n− 1,

where the sum is taken over representatives, ϕ, of isogredience classes in Φ.

Note that isogredient automorphisms have conjugate fixed subgroups, so the ranks of 
the fixed subgroups do not depend on the representatives chosen.

2.5. Growth rate

If we fix a basis, B, of Fn then we set ‖g‖B to be the length of the shortest conjugacy 
class of g with respect to B, for any g ∈ Fn. We simply write this as ‖g‖ if B is 
understood.

Given a Φ ∈ Out(Fn) it is then clear that there exists a λ such that,

‖Φk(g)‖ ≤ λk,
‖g‖
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as we can simply take λ to be the maximum conjugacy length of the image of any element 
of B. (Also note that since these are conjugacy lengths, we can apply any automorphism 
in the same outer automorphism class and get the same result. Thus we are effectively 
applying an outer automorphism.)

One of the results of [5] is that the growth of elements in this sense is either exponential 
or polynomial. That is, for any g ∈ Fn, we either get that, for some μ < λ,

μk ≤ ‖Φk(g)‖
‖g‖ ≤ λk,

or there exist constants 0 < A < B such that

Akd ≤ ‖Φk(g)‖
‖g‖ ≤ Bkd,

where d ∈ {0, 1, . . . , n − 1}.
See [23, Theorem 6.2] for a precise description of the growth types of elements of Fn.
Accordingly, we say that

Definition 2.5.1. Φ ∈ Out(Fn) has exponential growth if there is some element g whose 
conjugacy length grows exponentially. And we say that Φ has polynomial growth of de-
gree d if the conjugacy length of every element grows polynomially and d is the maximum 
degree of these polynomials.

Note that in our usage “polynomial growth of degree d” implies that d is the smallest 
degree bounding the growth of every element: so for example for an automorphism of 
quadratic growth there will be an element whose conjugacy length grows quadratically.

We note that the property of having exponential or polynomial growth (and the degree 
of polynomial growth) are independent of the basis, B. Also, the growth type (although 
not the exponential growth rate) of an automorphism is the same as that of its powers. 
(This includes negative powers, though this is a harder fact to verify.)

2.6. UPG automorphisms

We shall look at (outer) automorphisms of polynomial growth and consider a subclass 
of these, called the UPG automorphisms.

Definition 2.6.1. (see [3], Corollary 5.7.6) We say that Φ ∈ Out(Fn) is Unipotent Poly-
nomially Growing, or UPG, if it has polynomial growth and it has unipotent image in 
GLn(Z). This is guaranteed if the automorphism induces the trivial map on the homology 
group of Fn with Z3 coefficients.

Hence, any polynomially growing automorphism has a power which is UPG. Moreover, 
this power can be taken to be uniform (given n).
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In the subsequent arguments we will have need to refer to a particular type of free 
group automorphism called a Dehn Twist. These were defined in terms of certain maps 
via a graph of groups – multi-twists of a graph of groups with maximal cyclic edge 
groups. Namely, one takes a splitting of the free group with infinite cyclic edge groups 
and looks at a map defined by “twisting” along the edges. For our purposes, we shall 
define them as linear growth UPG automorphisms.

Definition 2.6.2. Let Φ ∈ Out(Fn). Then Φ is called a Dehn Twist automorphism of Fn

if it is UPG and has linear growth.

However, this definition is equivalent to that of a multi-twist.

Theorem 2.6.3. (see [10], [20], [5] and [3]) Multi-twist automorphisms of free groups, as 
defined in [9] and [10], are precisely the linear growth UPG automorphisms. Thus, these 
are both Dehn Twists.

Remark 2.6.4. As commented in [20], Theorem 2.6.3 is not proved explicitly in the papers 
cited, but is well known to experts. The idea is that a UPG automorphism has a ‘layered’ 
improved relative train track representative by [3]. The fact that it has linear growth 
will imply that there are no attracting fixed points on the boundary, and from there 
is it relatively straightforward to produce a graph-of-groups description in terms of the 
‘twistors’ of [10]. The arguments in [27] show how to go from the relative train track 
map to the graph of groups description explicitly.

There is also another characterisation of Dehn Twists, as given by [27].

Theorem 2.6.5 (Theorem 4.2 of [27] and Corollary 7.7 of [10]). Let Φ ∈ Out(Fn) be an 
outer automorphism of the free group of rank n. Then Φ is a Dehn Twist if (and only if)

∑
max{Rank (Fix ϕ) − 1, 0} = n− 1,

where the sum is taken over representatives, ϕ, of isogredience classes in Φ. That is, the 
inequality in Theorem 2.4.2 is an equality.

A crucial Theorem about Dehn Twists is the Parabolic Orbits Theorem, which requires 
a little notation to set up. The context is Culler-Vogtmann space, CVn, which is the space 
of free, simplicial actions of Fn on metric trees. In this formulation, two points – actions 
on trees – are said to be equivalent if there is an equivariant homothety between them. 
There is a compactification of this space, CVn, which turns out to be the space of very 
small actions of Fn on R-trees. The precise definition is not necessary here, but it is 
worth noting that the compactification includes points which are actions on trees that 
are not simplicial R-trees.
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There is a natural action of Out(Fn) on CVn and CVn, as in Definition 2.2.3, obtained 
by pre-composing the action by automorphisms.

Theorem 2.6.6 (Parabolic Orbits Theorem – see [9] and [10]). Let Φ ∈ Out(Fn) be a Dehn 
Twist. Then for any X ∈ CVn, limk→∞ Φk(X) = T ∈ CVn exists, is a simplicial tree 
and lies in the same simplex – any two such limit trees are equivariantly homeomorphic 
– independently of X. Moreover, T is a simplicial Fn-tree with the following properties.

(i) Edge stabilisers are maximal infinite cyclic.
(ii) Vertex stabilisers are precisely the subgroups Fix ϕ, where ϕ ∈ Φ has a fixed subgroup 

of rank at least 2.

Since inner automorphisms only fix infinite cyclic groups, and as any vertex sta-
biliser, H, has rank at least 2, then the corresponding automorphism ϕ ∈ Φ, such that 
H = Fix ϕ, is uniquely defined.

Note that if we take two vertices of T in the same orbit, then their stabilisers are 
conjugate, and the corresponding automorphisms are isogredient. (In general, having 
conjugate fixed subgroups is not enough to imply isogredience, but it is when the fixed 
subgroup has rank at least 2.) Conversely, if two vertices are in different orbits then the 
corresponding automorphisms are not isogredient, since edge stabilisers are cyclic.

Given a Dehn Twist, Φ and a ϕ ∈ Φ, one can construct the free-by-cyclic group, 
G = Fn �ϕ 〈s〉 (one can do this for any free-by-cyclic group, and the group does not 
depend on the choice of ϕ). Using the parabolic orbits Theorem, one gets that G acts 
on T , with the following properties,

(i) The induced action of s on the quotient of T by Fn is trivial.
(ii) The G edge stabilisers are maximal Z2.
(iii) The G vertex stabilisers are Fk × Z, for k ≥ 2.
(iv) The element sg fixes a vertex of T if and only if ϕ Ad(g) has a fixed subgroup of 

rank at least 2 (equivalently, if sg has non-abelian centraliser).

3. Extending actions to the automorphism group

3.1. Canonical actions and nearly canonical actions

Since outer automorphisms of free groups often have a power that is better understood 
(for us, usually a UPG power of a polynomially growing outer automorphism) it can be 
easier to work with the free-by-cyclic group defined by this power, which is a finite index 
subgroup of G. However, this means understanding how the automorphisms of a group 
and a finite index subgroup relate. In general this is hard: recall that the Klein bottle 
group has a finite outer automorphism group, but contains Z2 as a finite index subgroup.
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Recall that, by Theorem 2.2.1, the action of G on a tree, T , is encoded by its translation 
length function, lT . Our strategy is to show that AutT (G), the subgroup of automor-
phisms preserving the tree (or, equivalently, length function) is finitely generated. Thus 
we need to find a tree T , such that AutT (G) is either equal to Aut(G) or is a finite index 
subgroup of it.

However, the proof of one of our key Lemmas (Lemma 3.1.4) requires us to work with 
the actions directly rather than via length functions. Therefore we make the following 
definitions:

Definition 3.1.1. An action of a group G on a tree, T , is called canonical if there exists 
a commuting diagram:

Aut(G) Isom(T )

G.

g �→Ad(g) ·

In the case where G is finitely generated and the G-action is minimal and does not 
preserve an end, this is equivalent – by Theorem 2.2.1 – to translation length function 
being preserved by all of Aut(G), that is AutT (G) = Aut(G) (and OutT (G) = Out(G)).

Definition 3.1.2. We say that an action of G on a tree, T , is called nearly canonical if 
there is a finite index subgroup, Inn(G) ≤ A ≤ Aut(G) such that the following diagram 
commutes:

A Isom(T )

G.

g �→Ad(g) ·

In the case where G is finitely generated and the G-action is minimal and does not 
preserve an end, this is equivalent to the translation length function being preserved by 
a finite index subgroup of automorphisms; that is AutT (G) is a finite index subgroup of 
Aut(G).

Remark 3.1.3. We are not aware of this last definition in the literature, but it is clearly 
useful. Also, we have avoided calling this virtually canonical since it would raise the 
confusion between what we mean, and canonical for a finite index subgroup of G. (See 
Proposition 3.1.4.)

We are able to extend a canonical action of a normal finite index subgroup to a nearly 
canonical action of the whole group, as shown in the following proposition.

Proposition 3.1.4. Let G be a finitely generated group, G0 a normal finite index subgroup 
of G, and suppose that T is a canonical G0-tree. Then
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(i) G acts on T , and this action restricts to the canonical G0-action.
(ii) With this action, T is nearly canonical as a G-tree.

Proof. The hypotheses tell us that the action of G0 on T factors through an action of 
Aut(G0) on T :

Aut(G0) Isom(T )

G0

g �→Ad(g) ·

We let A denote the subgroup of Aut(G) which preserves G0 setwise. The restriction 
map (which in general is neither injective nor surjective) gives us a homomorphism from 
A to Aut(G0), and so A acts on T via this map (and the previous action of Aut(G0)).

A Aut(G0) Isom(T )res

Since G0 is normal, Inn(G) is a subgroup of A, and so this action defines an action of 
G on T .

A Aut(G0) Isom(T )

G

g �→Ad(g)

In particular, with respect to this action, A ≤ AutT (G). Moreover, since G0 is finite 
index in G, A is a finite index subgroup of Aut(G) and hence the action of G on T is 
nearly canonical.

Finally, this action of G on T extends the original action of G0 since the following 
diagram commutes (the left two maps from G0 are just the maps sending a group element 
to the inner automorphism it defines, and the rightmost map is the one given by the 
original action of G0):

A Aut(G0) Isom(T )

G0

· �

Remark 3.1.5. One can clearly weaken the hypothesis in the Proposition above so that T
is only nearly G0 canonical, and essentially the same proof works. However, the normality 
of G0 seems essential to get a G-action. If G0 were not normal, one could pass to a further 
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finite index subgroup, H, of G0 which would be normal in G. But then the action of H
on T has no reason to be canonical or nearly canonical. The example of Z2 in the Klein 
bottle group shows that passing to a finite index subgroup is not a benign process from 
this point of view.

3.2. Automorphisms which preserve a splitting, and a theorem of Bass–Jiang

Our proof strategy is to use trees of cylinders to produce a tree where enough of 
the (outer) automorphisms act, and then to analyse that subgroup. (There are some 
shortcuts when the defining automorphism is exponentially growing, and we do not have 
to do all the work ourselves.)

There is a thorough discussion of the structure of the group OutT (G) of outer auto-
morphisms that preserve an action on a tree in [2].

We recall below the main structural theorem of that paper. Note though that to save 
on notation we do not state the result in full. (To be precise, their result allows for a 
centre, although the filtration becomes a step longer. Also, they give a precise description 
of the quotients at (4) and (5).)

Theorem 3.2.1 ([2, Theorem 8.1]). Suppose a centreless group G acts on a tree T , min-
imally and irreducibly. Write Γ for the quotient graph, and O for a (fixed) choice of 
orientation of the edges of Γ. Suppose OutT (G) is the subgroup of Out(G) which acts 
on T – that is, preserves the length function of the action. Then there is a filtration of 
OutT (G),

OutT (G) � OutT0 (G) � T + � T � K � 1

The quotients at each stage are as follows:

OutT (G)/OutT0 (G) ≤ Aut(Γ) (1)

OutT0 (G)/T + ∼=
∏

v∈V (Γ)

′
Out(Gv; {Ge}ι(e)=v) (2)

T +/T ∼=
∏

e∈O

Ad(Ne) ∩ Ad(Ne)
Inn(Ge)

(3)

T /K is a quotient of
∏

e∈E(Γ)

CGι(e)(Ge) (4)

K is a quotient of
∏

e∈O
Z(Ge) (5)

The “prime” on the product at (2) indicates that it is restricted to elements where 
for every incident edge e0 the induced outer automorphism of Ge0 is also induced by an 
element in Out(Gτ(e0); {Ge}ι(e)=τ(e0).
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This property is characterised by the following commutative diagram. Suppose (Θv), 
with v ranging through the vertices of Γ, is an element of the product

∏

v∈V (Γ)

Out(Gv; {Ge}ι(e)=v).

Then (Θv) is an element of the restricted product if and only if for every edge e, with 
v = ι(e) and w = τ(e) there are representatives θv and θw of the relevant outer automor-
phisms (of Gv and Gw), and an automorphism ψ of Ge so that both squares commute.

Gv Ge Gw

Gv Ge Gw

θv

αe αe

ψ θw

αe αe

There is another exposition in [21], from where we have borrowed some notation (for 
example, T + is Levitt’s bi-Twists).

Example 3.2.2. Let us explain the quotients in Theorem 3.2.1, and illustrate them with 
an example.

Use the notation as above, and let Φ ∈ OutT (G). Then this (outer) automorphism 
falls into some term of the filtration, and each term has a geometric meaning in terms 
of the action of Φ on T .

(1) Φ is non-trivial in the first term if it induces a non-trivial automorphism of the 
quotient graph, Γ = T/G.

(2) If Φ is trivial in the first term, then it induces an (outer) automorphism at ev-
ery vertex group (with some extra compatibility conditions). It is then non-trivial 
in the second term if it induces a non-trivial outer automorphism at some vertex 
group.

(3) The third term consists of bi-Twists. These are trivial in the first and second terms, 
but induce automorphisms of the edge groups which are non-trivial outer automor-
phisms.

(4) The fourth term consists of Twists. The subgroup T appearing in Theorem 3.2.1 is 
the same subgroup as the T of Theorem 4.1.4. These are trivial in the preceding 
terms, inducing the trivial outer automorphism on both vertex and edge groups. 
However, to be non-trivial in the quotient T /K, the conjugations induced cannot 
be realised by elements of the centre of the edge group.

(5) Finally, we get the Dehn Twists (this matches our terminology for free groups, when 
the tree is an Fn tree with maximal cyclic edge stabilisers). These are induced by 
conjugations by elements of the centres of the edge groups.
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In many situations, various of these terms may be avoided by passing to a finite index 
subgroup of OutT (G). This is the case in Theorem 4.1.4, where the subgroup Out1(G; P)
is a finite index subgroup which induces trivial graph automorphisms and so that bi-
Twists are all, in fact, Twists. The subgroup, T is then the group of twists.

Let us illustrate this with example where we can find non-trivial automorphisms in all 
the terms above. We will take an amalgamated free product of two Klein bottles, glued 
together over an infinite cyclic group which is not maximal.

Concretely,

K1 = 〈a1, t1 : at11 = a−1
1 〉

K2 = 〈a2, t2 : at22 = a−1
2 〉

G = K1 ∗〈a2
1=a2

2〉 K2.

We then realise G as the fundamental group of a graph of groups with one edge 
(whose edge group is 〈a2

1〉 = 〈a2
2〉 ∼= Z) and two vertices (whose vertex groups are K1

and K2 respectively). Let T be the corresponding Bass-Serre tree. Consider the following 
automorphisms of G.

Φ1

a1 �→ a2

t1 �→ t2

a2 �→ a1

t2 �→ t1

Φ2

a1 �→ a1

t1 �→ t−1
1

a2 �→ a2

t2 �→ t2

Φ3

a1 �→ at11 = a−1
1

t1 �→ tt11 = t1

a2 �→ at22 = a−1
2

t2 �→ tt22 = t2

Φ4
a1 �→ aa1

1 = a1
t1 �→ ta1

1 = t1a
2
1

a2 �→ a2
t2 �→ t2

Φ5

a1 �→ a
a2
1

1 = a1

t1 �→ t
a2
1

1 = t1a
4
1

a2 �→ a2
t2 �→ t2

Each Φi is an element of OutT (G) which is non-trivial in the ith term of the filtration.
The automorphism Φ1 swaps K1 and K2, so inverts the edge in T/G and is non-trivial 

in the first term of the filtration. Φ2 induces a non-trivial outer automorphism of K1, so 
is non-trivial in the second term. Φ3 is inner (a trivial outer automorphism) on both K1

and K2 but induces a non-trivial outer automorphism of the edge group, so is a bi-Twist. 
Φ4 is a Twist, as it is inner on vertex and edge groups, but the conjugation on K1 cannot 
be realised as conjugation by an element of the centre of the edge group, and finally Φ5

is a Dehn Twist.
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Our common strategy for the polynomially growing case is to construct a canonical 
tree – possibly only truly canonical for a finite index subgroup – as a tree of cylinders, 
and then use this theorem to analyse the automorphisms which preserve it.

By Lemma 2.1.2 the quotient graph for the action must be finite, and so the quotient 
at (1) will be finite in every case. The quotient at (2) contains the McCool groups, which 
are generally easier to analyse.

The following lemma relates the restricted product at (2) in Theorem 3.2.1 to the 
McCool groups (see Definition 2.1.1) for the vertex groups with respect to their incident 
edge groups. It is analogous to part of Proposition 2.3 of [21] which deals with the case 
where Out(Ge) is finite.

Lemma 3.2.3. The product 
∏

v∈V (Γ) Mc(Gv; {Ge}ι(e)=v) is a normal subgroup of the re-
stricted product 

∏
v∈V (Γ)

′ Out(Gv; {Ge}ι(e)=v).
The quotient is isomorphic to a subgroup of 

∏
e∈E(Γ) Ae/ Ad(Ne), where Ae is a sub-

group of Aut(Ge), every element of which is induced by an automorphism of Gv. Further, 
Ae = Ae for all edge pairs {e, e}.

Proof. For each edge at a vertex v there is a map from Out(Gv; {Ge}ι(e)=v) to 
Aut(Ge)/ Ad(Ne) (note that this is a quotient of Out(Ge)). Assembling them, we get 
a map to their product, and the kernel of this map consists of those elements induced 
by conjugations at every vertex; precisely the McCool group Mc(Gv; {Ge}ι(e)=v). The 
conditions on the initial restricted product amount to requiring that an element induces 
the same automorphisms on the stabiliser of an edge and its inverse: that is, the auto-
morphisms Ae of Ge and Ae of Ge will be the same. (Though note that the quotient 
Aut(Ge)/ Ad(Ne) depends also on the vertex group, and so there is no reason to expect 
these will be the same for both an edge and its opposite.) �

Our strategy is to prove that the McCool groups are finitely generated, and that the 
quotient is too, usually by showing that this is true of every subgroup of this product. 
The details vary and appear in the relevant case.

In most of our cases, the edge groups are virtually abelian (that is, their free part has 
rank at most 1). In this case, we can understand the quotient at (3) as well.

Proposition 3.2.4. Suppose G is free by cyclic, and H ≤ G is free-by-cyclic and virtually 
abelian. Then NG(H) induces a finite subgroup of Out(H). (That is, Ad(G, H)/ Inn(H)
is finite.)

Proof. The hypotheses give us that H must be trivial, Z, Z2 or the fundamental group 
of a Klein bottle. In every case except for Z2, the outer automorphism group is finite 
and so there is nothing to prove. So suppose H = Z2. The kernel of the map to Out(H)
contains H, so it is enough to show that H is finite index in NG(H). H ∩ Fn must be 
infinite cyclic, and we have that H ∩ Fn ≤ NG(H) ∩ Fn ≤ NFn

(H ∩ Fn). (Recall that 
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conjugating cannot change the exponent of the stable letter.) Since the leftmost group 
is finite index in the rightmost group, it is also finite index in the middle group.

In the quotient, both H and NG(H) have non-trivial image. So the image of H is 
finite index in the image of NG(H). The index of H in NG(H) is the product of these 
two indices, and is therefore finite too. �

To show that the quotient at (4) is finitely generated, we will show that the centralisers 
(and therefore any quotient of their product) are finitely generated. The splittings we 
define for the polynomial case all have edge and vertex groups with finitely generated 
free part, so we will use the following lemma.

Lemma 3.2.5. Suppose H ≤ G are (finitely generated free)-by-cyclic. Then CG(H) is 
finitely generated.

Proof. Let Fn be the “free part” of G, the kernel of the given map to Z. If H ∩ Fn is 
rank at least two, then CG(H) ∩ Fn is trivial, and so CG(H) is either trivial or Z. If 
H ∩ Fn is Z, then so is CG(H) ∩ Fn, and CG(H) may be Z or Z2. If H ∩ Fn is trivial, 
then CG(H) ∩Fn consists of those elements in G ∩Fn which are fixed by conjugating by 
H. As the fixed subgroup of an automorphism of a free group, this is finitely generated 
(by Theorem 2.4.2). The full centraliser has an additional generator which is a root of 
the generator of H. �

The centre of a free-by-cyclic group G is isomorphic to Z2 if and only if G is; Z if G
is virtually free-times-cyclic and not Z2, and trivial otherwise. So the group given at (5) 
is a finitely generated abelian group, as are all its quotients.

In the exponential case, G is a one-ended relatively hyperbolic group. We are able 
to use previous work in the literature ([18]) on canonical JSJ decompositions and the 
automorphisms that preserve them.

4. Exponential growth

4.1. Relative hyperbolicity

In this section, we assume that ϕ is exponentially growing. Then we have access to a 
very useful fact: the group G ∼= Fn �ϕ Z is relatively hyperbolic (see [14,15,13]). Several 
definitions of relative hyperbolicity, together with proofs of their equivalence, can be 
found in [19], for instance; we do not include one here since we do not work directly with 
the definition.

Given a free group outer automorphism Φ, say a subgroup P is polynomially growing
(for Φ) if there is a power m and a representative α of Φm so that Pα = P and the 
restriction of α to P is polynomially growing.



470 N. Andrew, A. Martino / Journal of Algebra 604 (2022) 451–495
Proposition 4.1.1 ([23, Proposition 1.4]). Every non-trivial polynomially growing sub-
group is contained in a unique maximal polynomially growing subgroup. Maximal poly-
nomially growing subgroups have finite rank, are malnormal, and there are only finitely 
many conjugacy classes of them.

These maximal polynomially growing subgroups are a key ingredient in the relatively 
hyperbolic structure of a free-by-cyclic group:

Theorem 4.1.2 ([14,15,13]). If ϕ is an automorphism of Fn with at least one exponentially 
growing element, the semidirect product Fn �ϕ Z is relatively hyperbolic with respect to 
subgroups of the form H �ϕmγ Z, where H is a maximal polynomially growing subgroup, 
m is the minimum (positive) power of ϕ which carries it to a conjugate, and γ is the 
inner automorphism so ϕmγ preserves H.

(This collection is sometimes referred to as the “mapping torus” of the collection of 
maximal polynomially growing subgroups. For each H, that such an m exists is guar-
anteed since there are only finitely many conjugacy classes of maximal polynomially 
growing subgroups, and since ϕm sends H to a conjugate, there is an inner automor-
phism so that the composition preserves H.)

Recall that Lemma 2.1.2 gives that Fn�Z is one ended, and so it is one ended relative 
to any collection of subgroups.

Now we have access to a wide range of technology used in the study of relatively 
hyperbolic groups. In [18] there is a careful examination of the subgroup Out(G; P) for 
relatively hyperbolic groups which are one ended relative to their parabolic subgroups, 
using JSJ theory and analysing the subgroup of automorphisms which preserves a split-
ting. We recall enough of their work to make the statements which follow self contained 
(although the proofs will not be).

There is a JSJ decomposition space over elementary (parabolic and virtually cyclic) 
subgroups relative to P, which is invariant under Out(G; P). It contains a canonical JSJ 
tree, the tree of cylinders of the deformation space, which again is Out(G; P)-invariant. 
There are four possibilities for vertex stabilisers:

Maximal loxodromic: stabilised by a maximal virtually infinite cyclic group
Maximal parabolic: stabilised by a maximal parabolic subgroup
Rigid: non-elementary and elliptic in every splitting with elementary edge groups and 

where P are elliptic
Flexible QH with finite fiber: none of the above, in which case they are “quadratically 

hanging with finite fibre”

Since the groups we consider are torsion free, the maximal loxodromic subgroups are 
infinite cyclic and there can be no “Flexible QH with finite fibre” vertex stabilisers. In 
general, these groups map with finite kernel onto an orbifold group, and the incident edge 
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groups are virtually cyclic (and their images are in boundary subgroups). Since we are 
considering groups which are torsion free, the structure is actually much simpler here. 
First, the kernel must be trivial, so the group itself is an orbifold group. By [12, Lemma 
2.4] this is (virtually) free and hence infinitely ended, and therefore cannot occur as a 
vertex group with the required (virtually) cyclic incident edge groups by Lemma 2.1.2.

The tree is bipartite: one class of vertices is those stabilised by a maximal elementary 
group, and the other is the rigid vertices. Edge groups are maximal elementary subgroups 
of the rigid vertex group they embed in.

As Guirardel and Levitt point out, Lemma 3.2 of [31] tells us that when the groups in 
P are not themselves relatively hyperbolic, every automorphism permutes the conjugacy 
classes of the Pi. This is true in our case. Theorem 4.1.4 below concerns Out(G; P); since 
this consists of those (outer) automorphisms which preserve each of these conjugacy 
classes, it is a finite index subgroup of Out(G).

Before we state the theorem, we define the group of twists, a subgroup of automor-
phisms of G. (See Section 2 of [21] or Subsection 2.6 of [18].)

Definition 4.1.3. Let e be an edge of a graph of groups, and g an element of Ce (the 
centraliser of Ge in Gι(e)). Define the twist by g around e to be the automorphism that:

• if e is separating, so G = A ∗Ge
B, conjugates A by g and fixes B (with B corresponds 

to the factor containing Gι(e));
• if e is non-separating, so G = A∗Ge

, fixes A and sends the stable letter t to tg.

The group of twists, T , is the group generated by all twists.

The group of twists T is a quotient of the direct product of all Ce, the centralisers of 
edge groups in adjacent vertex groups. Also, recall that McCool groups are defined in 
Definition 2.1.1.

Theorem 4.1.4 ([18, Theorem 4.3]). Let G be hyperbolic relative to P = {P1, . . . , Pn}, 
with Pi infinite and finitely generated, and assume that G is one-ended relative to P. 
Then there is a finite index subgroup Out1(G; P) of Out(G, P) which fits into the exact 
sequence

1 → T → Out1(G;P) →
p∏

i=1
MCG0

Tcan
(Σi) ×

∏

j

Mc(Pj ; Inc(Pj)) → 1

where Tcan is the canonical JSJ decomposition relative to P, T is its group of twists; 
MCG0

Tcan
(Σi) relate to flexible vertex groups; and Mc(Pj ; Inc(Pj)) is the McCool group 

of Pj with respect to the incident edge groups. (The product is taken only over those 
parabolic subgroups which appear as vertex stabilisers in Tcan.)
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(Theorem 4.1.4 is derived from Levitt’s discussion in [21], together with some analysis 
of the bitwists, showing that they are all twists, and extended McCool groups that can 
appear, to deduce that there is a finite index subgroup fitting into this short exact 
sequence. Compared to the Bass-Jiang approach, they show that the second normal 
subgroup is just T and that the first quotient has a finite index subgroup isomorphic to 
right hand term above.

We also note that the subgroup T is the group of ‘Twists’, as appears in term (4) 
of the Bass-Jiang filtration, Theorem 3.2.1 - see Example 3.2.2 for an explanation and 
example of this.)

In our case there are no flexible vertex groups, so that term does not appear. We 
will use this theorem to prove finite generation for Out1(G; P), which will give us finite 
generation of Out(G). This will follow from showing that the group of twists and the 
McCool groups which can appear are finitely generated.

Levitt in [23] provides several inequalities relating invariants of an outer automor-
phism. Theorem 4.1 of that paper concerns the ranks of conjugacy classes of maximal 
polynomially growing subgroups for an automorphism of Fn and gives that it is at most 
n − 1 when the automorphism is exponentially growing (since there is at least one expo-
nentially growing stratum in this case).

Proposition 4.1.5. The group of twists is finitely generated.

Proof. The group of twists is a quotient of the direct product of the centralisers of the 
edge groups in the vertex groups so it is enough to show that all of these are finitely 
generated. The edge and vertex groups have the structure of a free-by-cyclic group: 
say the vertex group is V = F � 〈tkg〉, and the edge group is E = H � 〈t	h〉, where 
H = E∩F . (Note that H and F are not necessarily finitely generated but are subgroups 
of the defining free group, which is.) If H has rank at least two, then its centraliser in F
is trivial, and so the centraliser of E in V is at most infinite cyclic. If H is infinite cyclic, 
then so is its centraliser in F ; then the whole centraliser is either Z or Z2.

The final case is where H is trivial, so we are interested only in the centraliser of 
t	h. Again, it will be sufficient to show that the centraliser in F is finitely generated, 
since there is at most one more generator contributed from the “cyclic part” to the full 
centraliser. The argument is different at rigid and maximal elementary vertex groups.

First consider rigid vertex groups. Since conjugating by t	h induces the automorphism 
ϕ	 Ad(h), any w in F that commutes with t	h is fixed by ϕ	 Ad(h). In particular, it is 
polynomially growing for the outer automorphism Φ. This implies that 〈w, t	h〉 is an 
elementary subgroup. Since edge groups are maximal elementary in rigid vertex groups, 
this cannot happen and so there is no such w. (For the same reason, there is no root of 
t	h.)

At maximal elementary vertices, the free part of the centraliser is the fixed subgroup 
for the automorphism of F induced by conjugating by t	h (again, conjugation induces the 
automorphism ϕ	 Ad(h), so any element of F that commutes is fixed by this automor-
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phism). Since F is finitely generated (as a maximal polynomially growing subgroup), so 
is this fixed subgroup (in fact the rank is bounded by the rank of F ; Theorem 2.4.2). �

Thus far what we have said is true for any finitely generated free group; but we do not 
(yet) have the tools to understand McCool groups of free-by-cyclic groups in general. So 
we specialise to F3, for the sake of Theorem 1.1.2.

In this case, the bounds on polynomially growing subgroups mean they can have rank 
at most 2. Here we can analyse the McCool groups, since there is a good classification of 
the outer automorphism groups for rank 2 in [6], and rank 1 is fairly easy to understand.

Proposition 4.1.6. Suppose G = Fn � Z, with n = 1, 2. Let H be a finite collection of 
finitely generated subgroups of G. Then Mc(G; H) is finitely generated.

Proof. In rank 1 the outer automorphism groups are GL2(Z) or finite, and in both cases 
this subgroup must be finitely generated. (For Z2 notice that elements are their own 
conjugacy classes, and if g is fixed, so is its root, and so after changing basis the only 
matrices in the subgroup are triangular, and so it is virtually cyclic.)

In rank 2, we refer to [6, Theorem 1.1] for their outer automorphism groups. Most cases 
are either finite or virtually cyclic: so any subgroup is finitely generated. The remaining 
cases are G = F2 × Z, and G = F2 �−I2 Z.

In the first of these, we have that Out(G) = (Z2
�C2) � GL2(Z) [6, Theorem 1.1(i)]. 

Since GL2(Z) preserves each of the first two factors, we may pass to a finite index 
subgroup that is Z2

�GL2(Z). (An element u ∈ Z2 acts by sending tkg → tk+u·gabg, and 
GL2(Z) on the free part as you might expect.) Now consider a set of finitely generated 
subgroups H.

Since t is central, its exponent cannot be changed by inner automorphisms. So any 
element of the McCool group must fix the t-exponent in each generator: this will give 
a subgroup of Z2 (orthogonal to the abelianised free parts of the generators) which is 
therefore finitely generated. So our McCool group is finitely generated if and only if its 
intersection with Out(Fn) is. In fact, this intersection is exactly the McCool group for 
the free part: since t is central, it cannot identify any conjugacy classes of Fn. These 
are finitely generated by [29], which completes the proof. Note that McCool proves the 
result for elements; however in the free group case and more generally for toral relatively 
hyperbolic groups [17, Corollary 1.6] the McCool group for a finite set of subgroups is 
equal to the McCool group for some finite set of elements.

For F2 �−I2 Z, the outer automorphism group is PGL2(Z) ×C2 [6, Theorem 1.1(ii)]. 
Again, we can just consider the finite index subgroup PGL2(Z), which only acts on 
the free part. We can consider the McCool group for the free group (as a subgroup of 
GL2(Z)). Its image in PGL2(Z) is a finite index subgroup of the subgroup we want, 
which is therefore finitely generated. �

We now summarise this case in a theorem.
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Theorem 4.1.7. Suppose G ∼= F3 �ϕ Z, and ϕ is exponentially growing. Then Out(G) is 
finitely generated.

Proof. Use the canonical tree and the analysis of the outer automorphisms derived from 
it in Theorem 4.1.4. Propositions 4.1.5 and 4.1.6 show that the outside groups in the 
short exact sequence are finitely generated, and therefore so is Out1(G; P) which is a 
finite index subgroup of Out(G). �
5. Linear growth

5.1. Strategy

Our strategy for showing that the automorphism group of a free-by-cyclic group, in 
the case of linear growth, is as follows.

• Start with a free-by-cyclic group, G = Fn �Φ Z, where Φ has linear growth.
• Consider a finite index subgroup, G0 = Fn �Φr Z, so that Φr is UPG, and hence a 

Dehn Twist.
• Use the parabolic orbits Theorem to find a tree whose deformation space is invariant.
• Deduce that the tree of cylinders, T = Tc, of this space is G0-canonical.
• Use Proposition 3.1.4 to deduce that T is nearly G-canonical.
• Show that OutT (G) is finitely generated if certain McCool groups for free-by-finite 

groups are.
• Carry out the calculation of the relevant McCool groups, to conclude that OutT (G)

is finitely generated.

5.2. Constructing a tree

First we record a useful lemma on normalisers in free-by-cyclic groups.

Lemma 5.2.1. Suppose Fn � 〈s〉 is a free-by-cyclic group, and w ∈ Fn is not a proper 
power and commutes with s. Then 〈w, s〉 is its own normaliser.

Proof. Suppose skg ∈ Fn � 〈s〉 so that 〈w, s〉skg = 〈w, s〉. This gives that 〈wg, sg〉 =
〈w, s〉. Taking intersections with Fn, we must have that wg ∈ 〈w〉. But this means that 
g ∈ 〈w〉 so skg ∈ 〈w, s〉 as required. �

In the following Proposition, we take a Dehn Twist and use the Parabolic Orbits 
Theorem 2.6.6 to get a tree on which the corresponding free-by-cyclic group acts. We 
would like, at this stage, to say that the resulting action is canonical for the free-by-cyclic 
group. Although this seems plausible, our proof goes via the tree of cylinders construction 
which is guaranteed to be canonical and – as we prove in this case – remains in the same 
deformation space.
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Proposition 5.2.2. Suppose ϕ is a UPG and linear automorphism of Fn. Then there is a 
canonical action of G0 = Fn �ϕ Z on a tree, where

(1) Edge stabilisers are maximal Z2;
(2) Vertex stabilisers are either maximal Z2, or maximal Fm × Z with n ≥ m ≥ 2.

Proof. The initial input for the construction is the Dehn twist, ϕ. By Theorem 2.6.6, 
there is a unique simplicial Fn-tree (defining a simplex in the boundary of CVn) that is 
preserved by ϕ. This tree gives a splitting of Fn, where the vertex stabilisers are fixed 
subgroups (of rank at least two) corresponding to different representatives of the outer 
automorphism, and the edge groups are maximal infinite cyclic. By Theorem 2.4.2 there 
are only finitely many conjugacy classes of these subgroups, and their ranks are bounded 
by n.

Since it is fixed by ϕ, the same tree provides a splitting for G0. The vertex groups 
are now free times cyclic, and the edge groups are maximal Z2. (They are generated 
by the original edge group generator g, together with an element sw in either adjacent 
edge group which commutes with g. They must be maximal since otherwise there would 
be another element skh commuting with g (and sw); writing this element as (sw)kh′

implies that h′ commutes with g. Since g generated a maximal infinite cyclic subgroup 
of Fn, h′ is a power of g, and so (sw)kh′ is contained in 〈g, sw〉.)

This tree defines a deformation space which is preserved by automorphisms, since 
the vertex stabilisers can be specified algebraically: they are precisely the centralisers 
of some sw, corresponding to an automorphism in the outer automorphism class of ϕ
with fixed subgroup having rank at least 2. (Equivalently, they are the centralisers that 
contain a copy of F2 ×Z.) So they will be permuted by automorphisms of Fn �ϕ Z and 
the deformation space must be preserved.

We now have most of the tools to start constructing a tree of cylinders for this de-
formation space: it remains to specify the family E of allowed edge stabilisers, and the 
admissible equivalence relation. We will take E to be maximal Z2, and the equivalence 
relation to be equality. (It is easy to check this is admissible, since if A ≤ B are both 
maximal Z2 then we must have A = B.)

Now we can calculate the cylinders. First, note that a cylinder may contain at most 
one edge from each edge orbit. If two edges in the same orbit have the same stabiliser, 
then there is an element outside the stabiliser which normalises it. However, Lemma 5.2.1
shows that there is no such element.

This also means that a cylinder stabiliser must actually stabilise it pointwise: since it 
is a subgroup of G0, it cannot permute edges in different orbits. So cylinder stabilisers 
are precisely the stabiliser of any (and every) edge in that cylinder. Every vertex is in 
multiple cylinders, so is also in the tree of cylinders.

Cylinders are finite, and in particular bounded, so the tree of cylinders will lie in 
the same deformation space. It is already collapsed, since the edge stabilisers are still 
(maximal) Z2. �
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Remark 5.2.3. Note that an alternative construction of this canonical tree involves sub-
dividing every edge and folding – the effect of constructing the tree of cylinders is to 
change to original tree so that each vertex has at most one adjacent edge with a given 
stabiliser. There are examples where the tree of cylinders is not very small – it has tripod 
stabilisers, so the construction has done something.

However, the (finite index) subgroup of automorphisms which does not permute the 
underlying graph of groups does act on the original limiting tree, since we can recover it 
by equivariantly collapsing some edges. This means that in our terminology the action 
on the limiting tree was itself nearly canonical, though it is not clear how to find a direct 
proof of this fact.

If a cylinder had only one edge, then it will have been subdivided – allowing (if the 
endpoints are isomorphic) for the possibility of inversions. (If not, or if the endpoints are 
not isomorphic, no inversions are possible.)

We now equip ourselves with a nearly canonical action for a general linearly growing 
automorphism, using this tree of cylinders.

Proposition 5.2.4. Suppose G = Fn �Φ Z is a free-by-cyclic group, and Φ is linearly 
growing. Then G has a nearly canonical action on a tree T , where

(1) Edge stabilisers are virtually Z2 (and therefore either Z2 or the fundamental group 
of a Klein bottle).

(2) Vertex stabilisers are Fm �ϕ Z where Fm is a subgroup of Fn, the rank m is at most 
n, and ϕ is a representative of Φ, which restricts to and is periodic on Fm. (They 
are virtually free-times-cyclic.)

Proof. Since Φ has a power which is UPG, and therefore a Dehn twist, we pass to the 
normal finite index subgroup G0 this suggests and use Proposition 5.2.2 to construct 
a canonical tree T . We then use Proposition 3.1.4 to extend this action to a nearly 
canonical action for G. Edge and vertex stabilisers in G will contain edge and vertex 
stabilisers in G0 as finite index subgroups, and must themselves be free-by-cyclic by 
Lemma 2.1.2. Combining these properties gives the conclusions in (i) and (ii). �
5.3. Reducing to free-by-finite groups

We consider the subgroup OutT (G) of outer automorphisms which preserves this 
tree, and apply Theorem 3.2.1 to understand it. The quotients at parts (1) and (3-5) of 
the theorem are finitely generated by the observations following the theorem; the main 
difficulty is in understanding the quotient at (2).

First, we reduce to the case where we can consider McCool groups; we will then 
show that the result we want is implied by a similar result in the free-by-finite group 
obtained by quotienting by the centre, and in the next section prove the result there. 
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(The arguments involved in the reduction and the following section are easier for the 
larger groups Out(Gv; {Ge}ι(e)=v) at least when the edge groups all contain the centre 
of the vertex group as in our case. However, it does not seem possible to take account of 
the edge compatibility relations through this process, so we do need to pass to McCool 
groups.)

We begin with a straightforward structural result about free-by-cyclic groups defined 
by periodic outer automorphisms;

Lemma 5.3.1 ([24, Proposition 4.1]). Suppose G is a free-by-cyclic group which is virtu-
ally free-times-cyclic and not virtually Z2. Then G has an infinite cyclic centre, and is 
the fundamental group of a graph of groups with all edge and vertex groups isomorphic 
to Z.

Such a group is known as a Generalised Baumslag-Solitar (GBS) group, and having 
a non-trivial centre is equivalent to having trivial modulus, in the language of [22]. The 
free-by-(finite cyclic) groups we will consider are obtained by taking a group of this kind 
and quotienting by the centre.

We now study the group appearing as a quotient at (2) in Theorem 3.2.1, beginning 
by considering automorphisms of edge groups that can be induced here.

Lemma 5.3.2. Suppose G is a free-by-cyclic group that is virtually free-times-cyclic, and 
Hi is a collection of subgroups isomorphic either to Z2 or to the fundamental group of a 
Klein bottle. Then Out(G; {Hi}) induces a virtually cyclic subgroup of Aut(Hi).

Proof. If Hi is the fundamental group of a Klein bottle, Out(Hi) is finite, and Inn(Hi)
is virtually cyclic. Therefore Aut(Hi) is again virtually cyclic, and so is the subgroup 
induced by Out(G; {Hi}).

If Hi is Z2, it contains a finite index subgroup of the infinite cyclic centre of G. Let δ
generate this subgroup. We can choose a basis {x1, x2} for Hi so that δ = xk

1 with k > 0; 
roots are unique in Z2, so x1 is as uniquely defined as δ: it is unique up to inverses. 
Any automorphism of G will preserve the centre; in particular it must send δ to itself or 
its inverse. So any automorphism restricting to Ge will likewise send x1 to itself or its 
inverse. Viewing elements of GL(2, Z) as matrices, this implies that we can only induce 
automorphisms represented by triangular matrices. This subgroup is virtually cyclic. �

We use this to characterise the subgroup generated when we quotient by the product of 
McCool groups, which will mean it is sufficient to prove that those are finitely generated.

Proposition 5.3.3. Suppose G is a free-by-cyclic group where the defining outer auto-
morphism is linearly growing. Let T be the tree constructed in Proposition 5.2.4, with 
a nearly canonical action of G (where edge stabilisers are virtually Z2, and vertex sta-
bilisers are either virtually Z2 or virtually Fm × Z with m ≥ 2). Then the quotient of 
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∏
v∈V (Γ)

′ Out(Gv; {Ge}ι(e)=v) (from Theorem 3.2.1 (2)) by 
∏

v∈V (Γ) Mc(Gv; {Ge}ι(e)=v)
(as described in Lemma 3.2.3) is finitely generated.

Proof. We consider the projection to each factor Ae/ Ad(Ne). The subgroup we are inter-
ested in is contained in the product of these projections, which we will show is Noetherian 
(every subgroup is finitely generated) and from there deduce that our subgroup must be 
finitely generated.

First, we consider the vertices where the stabiliser contains a rank 2 free group. In 
this case, by Lemma 5.3.2 each of these vertex groups can only induce a virtually cyclic 
subgroup of automorphisms of each edge group. This is a property closed under subgroups 
and quotients, so for every edge e with ι(e) a vertex of this type the projection to 
Ae/ Ad(Ne) is virtually cyclic.

The remaining vertices arose as cylinders, and their vertex groups are either the 
fundamental group of a Klein bottle or Z2 (as are the incident edge groups). If Gv is 
a Klein bottle, then it has finite outer automorphism group. So Out(Gv; {Ge}ι(e)=v)
is finite, and Ad(Ne) must therefore be finite index in Ae for each edge group. So the 
projection to Ae/ Ad(Ne) for edges starting at these vertices is finite.

If Gv is Z2, we need to use the structure of the tree. The quotient graph inherits the 
bipartite structure of the tree of cylinders constructed in Proposition 5.2.2 – every edge 
joins a cylinder vertex to a vertex with larger stabiliser. By Lemma 3.2.3 the induced 
automorphisms Ae and Ae of the stabilisers of an edge and its inverse are the same. 
By Lemma 5.3.2 this is virtually cyclic, and so the same is true of the projection to 
Ae/ Ad(Ne) in this case.

Assembling these projections we get a group that is virtually finitely generated abelian, 
and in particular is Noetherian. So any subgroup – including the quotient of

∏

v∈V (Γ)

′
Out(Gv; {Ge}ι(e)=v)

by the product of McCool groups – is again finitely generated. �
In the Klein bottle case, the McCool group (as with any subgroup of the outer auto-

morphism group) is finite, and in particular finitely generated. In the Z2 case the McCool 
group is trivial since elements of GL2(Z) are uniquely characterised by their action on 
a finite index subgroup of Z2: as soon as an edge group is fixed, so is the whole vertex 
group. Therefore the remainder of the work is at the vertices stabilised by some Fm �Z, 
with m ≥ 2.

This reduces the problem to calculating the McCool groups at each vertex. We use 
Levitt’s work in [22] to further reduce the problem to McCool groups of free-by-(finite 
cyclic) groups.

By Lemma 5.3.1, the larger vertex groups Gv are Generalised Baumslag-Solitar groups 
with trivial modulus. Levitt proves this theorem, which we use to enable us to understand 
Out(G) in terms of the outer automorphisms of a free-by-finite group.
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Theorem 5.3.4 (see [22, Theorem 4.4]). Suppose G is a GBS group with trivial modulus, 
and let H be the quotient of G by its centre. Then there is a finite index subgroup Out0(G)
of Out(G) fitting into a split exact sequence

1 → Zk → Out0(G) → Out0(H) → 1

where k is the rank of the underlying graph, and Out0(H) is a finite index subgroup of 
Out(H). The section of Out0(H) fixes the centre of G.

The Zk subgroup should be thought of as Hom(π1(Γ), Z(G)): it acts by multiplying 
every “HNN-like generator” by an element of the centre. In fact, it is generated by 
Dehn Twists – the last term in Theorem 3.2.1. The subgroup Out0(H) consists of (outer 
classes of) automorphisms which preserve the conjugacy classes of elliptic elements, and 
the image of a certain map τ to some finite cyclic group.

The map τ is initially defined as a map, τ : G → Isom+(R) (translations of R) and 
we then observe that the image is discrete, and therefore τ : G → Z.

Following [22], define τ on a generator of a vertex group, xv, as the translation by 
1/nv, where xnv

v = δ for some nv ∈ Z and where δ is a generator of the centre of G. Such 
an nv always exists since if a group acts on a tree without fixing an end, its centre lies in 
the kernel of the action. In particular, δ is contained in every vertex group. (So τ(δ) is 
translation by 1.) On generators arising from edges, τ is defined to be the identity. This 
is enough to define τ on the whole group. Since the image of every element is translation 
by a multiple of 1/�, where � is the least common multiple of the nv, it follows that the 
image is discrete and hence τ : G → Z.

Further define τ by taking a quotient by the group generated by τ(δ). That is, τ is 
the natural map, τ : G → G

ker τ ·〈δ〉 .
This definition does not apply to the “elementary” GBS groups, Z2 and the fundamen-

tal group of a Klein bottle. These are distinguished among free-by-cyclic groups as being 
virtually Z2, and this property cannot occur in a free-by-cyclic group with underlying 
free group having rank at least 2. Since the groups we consider here (corresponding to 
non-cylinder vertices in the nearly canonical tree) do, this definition (and the following 
arguments) apply in sufficient generality for our use.

In some sense, τ is a “better” map to Z than the one arising from the presentation of 
G as a free-by-cyclic group. First consider its kernel:

Lemma 5.3.5. The kernel of the map τ is a finitely generated free group.

This follows from the computation of the relevant BNS invariants in [8, Corollary 3.2], 
but can be proved by more elementary methods as follows:

Proof. Consider the action of the kernel on the GBS tree T . This action is free – non-
trivial elements of vertex stabilisers are not in the kernel of τ – and so the kernel is a 
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free group. It remains to show it is finitely generated. To do this consider τ , defined by 
passing to the quotient by τ(δ).

Note that ker(τ) = ker(τ) · 〈δ〉, where τ : G → Z and δ /∈ ker(τ). Hence, G/ ker(τ) · 〈δ〉
is a finite cyclic group, and hence ker(τ) · 〈δ〉 is a finite index subgroup of G, and hence 
is finitely generated.

Moreover, since δ has non-trivial (and infinite order) image under τ , the intersection of 
ker(τ) and 〈δ〉 is trivial, and hence ker(τ) · 〈δ〉 is actually the direct product, ker(τ) ×〈δ〉.

Since ker(τ) is a quotient of the finitely generated group, ker(τ) ×〈δ〉, it too is finitely 
generated. �

This lemma shows that the map τ fibres: it gives us another way to write G as a free-
by-cyclic group. Note that the rank of the free group may have changed, but since there 
is still a centre, the defining outer automorphism must still be periodic. (Sometimes, 
though not always it becomes periodic as an automorphism – for example, using this 
construction it becomes apparent that the rank three free-by-cyclic group defined using 
the automorphism a �→ b−1c, b �→ a−1c, c �→ c is isomorphic to F2 × Z.)

By design, this new presentation as a free-by-cyclic group is very well behaved when 
applying τ : the image under τ of any element is the exponent of the (new) stable letter. 
This exponent is preserved by conjugation, and (by considering the stable letter as a 
root of δ) by the section of Out0(H). So if an automorphism whose outer class is an 
element of Out0(G) does not preserve the exponent on the stable letter, writing it in 
the normal form for a semidirect product will involve a non-trivial element of the Zk

subgroup given in the decomposition of Theorem 5.3.4. Note that since the exponent is 
preserved by conjugation, this effect is constant across an outer class.

Proposition 5.3.6. Suppose that G is a free-by-cyclic group that is virtually free-times-
cyclic, and {Gi} is a family of subgroups. Write H for the quotient of G by its centre, 
and let Hi be the image of the subgroup Gi under this quotient map. Let s be the section 
of Theorem 5.3.4. Then

Out0(G) ∩ Mc(G, {Gi}) = (Zk ∩ Mc(G, {Gi})) · s(Out0(H) ∩ Mc(H, {Hi})).

In particular, it is finitely generated if and only if (Out0(H) ∩ Mc(H, {Hi})) is.

Proof. Consider the split short exact sequence of Theorem 5.3.4. The kernel of the 
quotient map applied to Out0(G) ∩ Mc(G, {Gi}) will be (Zk ∩ Mc(G, {Gi})), a finitely 
generated abelian group. The image of Out0(G) ∩Mc(G, {Gi}) in Out0(H) is contained in 
Mc(H, {Hi}), since subgroups which are conjugate in G have conjugate images in H. To 
complete the proof, we must show that this accounts for all of (Out0(H) ∩Mc(H, {Hi})). 
To do this consider the section: we need to show that every element lifts to an element 
of Out0(G) ∩ Mc(G, {Gi}).

For an element of (Out0(H) ∩Mc(H, {Hi})) consider the collection of representatives 
αi, each fixing the subgroup Hi. Lemma 4.1 of [22] constructs the equivalent section for 
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automorphism groups; one of the properties of the lift α of α is that applying α first does 
not alter τ . So if αi fixes h, and g is any preimage of h, αi must send g to gδk. However, 
since τ must be unaltered, in fact k = 0 and g is fixed. So each αi fixes the subgroup Gi. 
The last thing to check is that they all represent the same outer automorphism. This 
is the case since inner automorphisms lift to inner automorphisms (by any preimage of 
the conjugator, as they differ by a central element). So any (indeed every) αi represents 
an element of Mc(G, {Gi}), which is contained in Out0(G) since it is the image of the 
section of Theorem 5.3.4. �

So to show that the McCool groups we are interested in are finitely generated, we 
need to show the same for the relevant McCool groups of free-by-finite groups. In our 
situation the edge groups are virtually Z2, and a power of a generator is central in the 
vertex group, so in H the image of each edge group becomes virtually infinite cyclic. In 
this case, we can understand the McCool groups.

5.4. McCool groups for free-by-finite groups

The purpose of this section is to study the groups Mc(H, {Hi}), which will complete 
our proof in the linear growth case.

Proposition 5.4.1. Suppose H is virtually free and {Hi} is a finite collection of virtually 
infinite cyclic subgroups. Then Mc(H, {Hi}) is finitely generated.

First we use a result which allows us to understand the outer automorphisms of the 
extension by considering the centraliser of the finite cyclic subgroup.

Proposition 5.4.2. Let H be a group, and F a normal subgroup of H with trivial centre. 
Let Ad(h) represent the automorphism of F induced by conjugating by h. Let AutH(F )
be the subgroup of Aut(F ) that commutes with Ad(H) up to inner automorphisms. That, 
is the subgroup defined by

{α ∈ Aut(F )|[Ad(h), α] ∈ Inn(F ) ∀h ∈ H}.

Further, let N be the subgroup of Aut(H) which preserves F and all its cosets (that is, 
it acts trivially on the quotient H/F ).

Then the restriction to F sends N isomorphically to AutH(F ).

Proof. First we consider the image of the restriction map. Suppose α is an element 
of N , and consider its restriction to F . For all f ∈ F , and h ∈ H, f(Ad(h)α) =
(fh)α = (fα)(hα) = f(αAd(hα)). This gives that, as automorphisms of F , Ad(hα) =
α−1 Ad(h)α. Since α preserves cosets of F , h−1(hα) = f , for some f ∈ F . But then 
Ad(f) = Ad(h−1(hα)) = Ad(h)−1α−1 Ad(h)α: the restriction of α to F satisfies the 



482 N. Andrew, A. Martino / Journal of Algebra 604 (2022) 451–495
commutator property defining AutH(F ), and so the image in Aut(F ) lies in this sub-
group.

Next we show that the restriction map is a surjection to AutH(F ). To do this, we 
construct an automorphism of H with a given image in AutH(F ). For any α ∈ AutH(F ), 
we have α−1 Ad(h)α = Ad(h) Ad(fh,α) by the defining commutator property, where fh,α
is an element of F depending on both h and α. Since F is centreless, it has a unique 
element inducing any inner automorphism – fh,α is well defined. Extend α to a function 
α defined on all of H by setting hα to be hfh,α. (On F , since α−1 Ad(h)α = Ad(hα)
for inner automorphisms, hα = hfh,α, so the restriction is indeed α.) To see α is an 
endomorphism, we need to check that hkfhk,α = hfh,αkfk,α.

Consider the following diagram: the squares all commute by the definition of AutH(F ), 
the left hand triangle is a consequence of Ad being a homomorphism, and we are 
interested in the right hand triangle, whose commutativity follows from chasing the 
diagram (noting that the top map is an isomorphism). This gives that Ad(hkfhk,α) =
Ad(hfh,αkfk,α), and by normality of F this is equal to Ad(hkfk

h,αfk,α). That is, we have 
that the unique element of F inducing the correct inner automorphism is fhk,α = fk

h,αfk, 
with which we get that hkfhk,α = hfh,αkfk,α.

F F

F F

F F

Ad(h)

α

Ad(hk)

Ad(hfh,α)

Ad(hkfhk,α)

Ad(k)

α

Ad(kfk,α)

α

To see α is surjective, note that it is surjective on F , and for general h, we have 
h = (h(f−1

h,αα
−1))α. To see injectivity, suppose hα = 1, so hfh,α = 1. In particular, this 

means h is an element of F ; but on F α agrees with α, which is an automorphism. So 
h = 1, and α is an element of Aut(H), restricting to α on F as claimed.

Finally, we show that the restriction map N → AutH(F ) is injective. Denote by K
the kernel of the map Ad : H → Aut(F ). Since F has no centre, K ∩ F is trivial.

Suppose α lies in the kernel of the restriction map, so it fixes every element of F . 
Then for all f ∈ F, h ∈ H, we have that fh ∈ F , so fhα = (fα)hα = (fh)α = fh. So the 
actions of hα and h on F are the same: that is, hα and h lie in the same K-coset.

So for all elements h ∈ H we have that (hα)−1h lies in K. Since both automorphisms 
preserve cosets of F , in fact (hα)−1h lies in F ∩K. But these groups intersect trivially, 
so hα = h for all elements h, α must be the identity, and so the restriction map has 
trivial kernel. �

We now specialise this general result to our current case of virtually free groups.
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Corollary 5.4.3. Let H be a finitely generated virtually free group, that is not virtually 
cyclic, and F a normal finite index subgroup (with rank at least 2) of H. Then the 
subgroup AutH(F ) of Aut(F ) is isomorphic to a finite index subgroup of Aut(H) which 
preserves F , and where the isomorphism is given by the restriction map.

(This Corollary is similar in spirit to [28], which deals with centralisers in Aut(F ); 
ours looks at the preimage of centralisers in Out(F ), and deals simultaneously with the 
splitting and non-splitting cases.)

Proof. By Proposition 5.4.2, the subgroup AutH(F ) of Aut(F ) is isomorphic to the 
subgroup N of Aut(H). This subgroup preserves F and all its cosets, and the restriction 
to F provides the isomorphism, as required. To finish the proof, notice that since H is 
finitely generated and F is a finite index subgroup, N must be finite index in Aut(H). �

We want not just the outer automorphism group but the McCool group. The relevant 
result about Out(Fn) is the following theorem of Bestvina, Feighn and Handel.

Theorem 5.4.4 ([4, Theorem 1.2(3)]). Suppose Q is a finite subgroup of Out(Fn), and 
OutQ(Fn) is its centraliser. Let K1, . . .Kn be a collection of conjugacy classes of finitely 
generated subgroups of Fn. Then the subgroup of OutQ(Fn) fixing each Ki is VF (in 
particular, is finitely presented).

Note that the conclusion we want is stronger: we want the action on a representative 
of Ki to be by conjugation, not just sending it to a conjugate. However, as the relevant 
subgroups are infinite cyclic this is only a matter of passing to a finite index subgroup.

These theorems allow us understand the subgroup of outer automorphisms conjugat-
ing an element that lies in the finite index free subgroup; to extend the result to the full 
subgroups Hi, we need the following lemmas.

Lemma 5.4.5. Suppose A is a virtually cyclic group. Then Out(A) is finite.

See, for instance, [30, Lemma 6.6] for a proof. The key fact from this lemma is that 
the inner automorphisms are finite index, so ‘most’ automorphisms of a virtually cyclic 
group are conjugations.

Lemma 5.4.6. Suppose H is virtually free (of rank at least 2), and let h be a non-trivial 
element of a finite index free subgroup F . Then 〈h〉 has finite index in its normaliser, 
which in particular is virtually cyclic.

Proof. First consider the intersection NH(〈h〉) ∩ F : this is an infinite cyclic group, gen-
erated by the root of h (which we denote ĥ). This contains 〈h〉 with finite index. But 
NH(〈h〉) ∩ F itself is a finite index subgroup of NH(〈h〉), which must again contain 〈h〉
with finite index. �
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We now combine these results to prove Proposition 5.4.1.

Proof of Proposition 5.4.1. Let F be a finite index normal subgroup of H. By Corol-
lary 5.4.3, it will suffice to show that the subgroup of N (the isomorphic image of 
AutH(F ) in Aut(H)) that acts as conjugation on each subgroup Hi is finitely generated. 
We use A for this subgroup of N .

Each subgroup Hi is virtually Z; in particular its intersection with F is generated by 
a single element hi. This intersection is preserved under conjugation by elements of Hi

(since F is a normal subgroup of H): in particular Hi is a subgroup of NH(〈hi〉). By 
Lemma 5.4.6, since it contains hi, it is finite index in this normaliser.

Let Q = Ad(H)/ Inn(F ) ∼= H/FK be the subgroup of Out(F ) induced by H, and 
denote by OutQ(F ) the centraliser of Q in Out(F ). This is the projection of AutH(F )
to Out(F ). By Theorem 5.4.4, the subgroup OutQ(F ) preserving the conjugacy class of 
each 〈hi〉 is finitely generated, so this is also true of the subgroup A of N Normalisers 
must be sent to normalisers, so A sends NH(〈hi〉) to a conjugate of itself too.

This normaliser is virtually cyclic, so by Lemma 5.4.5 it has finitely many outer auto-
morphisms. After composing with an inner automorphism we induce an automorphism 
of NH(〈hi〉), and we may restrict to those which induce an inner automorphism. This re-
striction gives a finite index subgroup of A, which acts as a conjugation on NH(〈hi〉), and 
in particular on the subgroup Hi. Repeating this for each subgroup Hi (there are only 
finitely many) still defines a finite index subgroup, which is itself finitely generated. �
Remark 5.4.7. Notice that the ad-hoc arguments given in Proposition 4.1.6 for the two 
cases that are not virtually cyclic can be viewed as a special case of the arguments 
used here for general periodic automorphisms. (Observe that PGL2(Z) ∼= Out(C2 ∗C2 ∗
C2), though the Out0 considered above would be a finite index subgroup isomorphic to 
C2 ∗ C2 ∗ C2.) There the problem can be reduced to understanding McCool groups of 
free groups, allowing more complicated incident edge groups to appear while leaving the 
problem tractable.

We are now in a position to prove one of our main theorems.

Theorem 1.1.1. Suppose G ∼= Fn�ϕZ, and ϕ is linearly growing. Then Out(G) is finitely 
generated.

Proof. The defining automorphism ϕ has a power that is UPG and linearly growing, 
so it is a Dehn twist. Taking this power to define a normal subgroup G0 of G, by 
Proposition 5.2.2, G0 has a canonical action on a tree T . Then by Proposition 3.1.4, G
has a nearly canonical action on the same tree. The vertex stabilisers are free-by-cyclic 
groups which are virtually free-times-cyclic; edge stabilisers are free-by-cyclic groups that 
are virtually Z2 (see Proposition 5.2.4).

Analyse this action using Theorem 3.2.1. The quotient at (1) is finite since by 
Lemma 2.1.2 the quotient graph is. The quotient at (2) is also finitely generated. By 
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Proposition 5.3.3, this will be finitely generated if and only if the relevant McCool groups 
are. After passing to a finite index subgroup, Proposition 5.3.6 describes these McCool 
groups (up to finite index) by considering McCool groups of virtually free groups, aris-
ing by quotienting by the centre. Since the edge groups contain the centre of the vertex 
groups, their image under this quotient map is virtually infinite cyclic. Finally, Propo-
sition 5.4.1 gives finite generation for these McCool groups, completing this part of the 
proof.

The edge groups are virtually Z2, and in particular virtually abelian, so by Propo-
sition 3.2.4 the quotient at (3) is finitely generated. Edge and vertex groups are both 
(finitely generated free)-by-cyclic, so by Lemma 3.2.5 the centralisers are finitely gener-
ated groups, and so is their quotient at (4). Finally, the quotient at (5) is a quotient of 
a finitely generated abelian group, so is itself finitely generated.

Putting this together, we see that Out(G) admits a finite index subgroup which is 
finitely generated, and so Out(G) itself is finitely generated, as claimed. �

6. Quadratic growth

6.1. Strategy

The strategy of the proof of this section is much like the last:

• Start with a free-by-cyclic group, G = F3 �Φ Z, where Φ has quadratic growth.
• Consider a finite index subgroup, G0 = F3 �Φr Z, so that Φr is UPG.
• Find a good basis of F3 for Φr and use this to construct a tree whose deformation 

space is left invariant by any automorphism of G0.
• Deduce that the (reduced) tree of cylinders, T = T ∗

c , of this space is G0-canonical.
• Use Proposition 3.1.4 to deduce that T is nearly G-canonical.
• Show that AutT (G) is finitely generated, using Theorem 3.2.1, and conclude that 

Aut(G) is finitely generated.

We establish some notation. Given a group, G, a subgroup H of G and elements g, h
of G we set:

(i) We write g ∼ h to denote that g and h are conjugate in G, and
(ii) We write g ∼H h to denote that g and h are conjugate by an element of H (even if 

g, h might not themselves be elements of H)

6.2. Normal forms and a tree to act on

First we equip ourselves with a useful representative of a UPG automorphism.



486 N. Andrew, A. Martino / Journal of Algebra 604 (2022) 451–495
Proposition 6.2.1. Suppose Φ is a UPG element of Out(F3) of quadratic growth. Then 
there is a representative ϕ ∈ Φ and a basis {a, b, c} of F3 so that

ϕ

a −→ a

b −→ ba−k

c −→ hcg−1,

where k is non-zero and h and g are in 〈a, b〉.

This is close to [8, Proposition 5.9]; we have more control over the images of the first 
two generators in exchange for less control over the final generator.

Proof. By Theorem 5.1.8 of [3], any UPG automorphism is represented by a homotopy 
equivalence on a graph, G, such that G consists of edges, E1, . . . , Ek and the homotopy 
equivalence maps Ei to Eiui−1, where the ui−1 are closed paths involving only the edges 
E1, . . . , Ei−1 (ui−1 may be the trivial path).

In particular, this implies that any UPG automorphism of F2 has a representative, 
such that with respect to some basis, {a, b}, the automorphism fixes a and sends b to 
ba−k for some k.

(Briefly, if the top edge, Ek, were separating, then the components on removing this 
edge would both be homotopic to circles, and then it is easy to see that the map is 
homotopic to the identity relative to the initial vertex of Ek. If Ek is not separating, 
then removing Ek leaves a graph, homotopic to a circle, on which the map is homotopic 
to the identity – giving us the a – and the Ek edge becomes the b basis element. Note 
that the layered description, which is a consequence of the UPG property, does not allow 
“inversions” of these various invariant circles.)

Now, if we are given a UPG automorphism, Φ, of F3, the above description implies 
that some rank 2 free factor is left invariant, up to conjugacy – again, remove the top 
edge Ek. Each component of the complement is invariant under the map, and there must 
be one of rank 2. Moreover, the restriction of Φ to this invariant free factor is also UPG 
– in fact the restriction of the map has a layered form as above.

This implies that there is a basis, {a, b, c} of F3 and a representative ϕ ∈ Φ such that

ϕ

a −→ a

b −→ ba−k

But now, since the images of a, b, c must also be a basis for F3, the only possibility 
for the image of c is hc±1g−1 for some g, h ∈ 〈a, b〉. The fact that Φ is UPG (or using 
the description of the map) means that the image must be hcg−1.

Finally, note that if k were to be zero, then Φ would have linear growth, hence we 
may conclude that k �= 0. �
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Fig. 1. T0, as described in Corollary 6.2.2.

Corollary 6.2.2. Let G = F3 �ΦZ be a free-by-cyclic group where Φ has quadratic growth. 
Then G has a normal finite index subgroup G0 = F3 �Φr Z with presentation:

G0 = 〈a, b, c, s : as = a, bs = ba−k, cs = hcg−1〉

= 〈H, c : (sh)c = sg〉, where H = 〈a, b, s〉

where g, h ∈ 〈a, b〉 and k �= 0.
Moreover, G0 acts on a tree, T0, with one orbit of vertices, and one orbit of edges such 

that the vertex stabilisers are conjugates of H = 〈a, b, s〉 and edge groups are conjugates 
of 〈sg〉 = 〈sh〉c. (See Fig. 1.)

Proof. Every polynomially growing automorphism has a power which is UPG, and 
Proposition 6.2.1 provides a good generating set and the corresponding presentation. 
The final relations in both presentations are equivalent, realising G0 as an HNN exten-
sion of 〈a, b, s〉 with stable letter c, and T0 is the corresponding Bass-Serre tree. �
6.3. Invariance of the tree

Proposition 6.3.1. Any automorphism of G0 fixes the conjugacy class of 〈a, b, s〉. That 
is, the deformation space defined by the tree, T0 from Corollary 6.2.2 is invariant under 
the automorphisms of G0.

Proof. Let ψ denote the automorphism of 〈a, b, c〉 induced by conjugation by s and Ψ
the corresponding outer automorphism; as in Corollary 6.2.2, we have that:

ψ

a −→ a

b −→ ba−k

c −→ hcg−1,

.

Note that since Ψ has quadratic growth (and does not have linear growth) it is there-
fore not a Dehn Twist as per Definition 2.6.2. Hence, by Theorem 2.6.5, the inequality in 
the Bestvina-Handel Theorem, Theorem 2.4.2, is strict for Ψ. (One can make the same 
deduction from the inequalities provided by Proposition 4.2 of [23].)
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To summarise, for our Ψ we have that:

∑
max{Rank (Fix ψi) − 1, 0} ≤ 1 < 2 = Rank (F3) − 1,

where the sum is taken over the isogredience classes in Ψ.
Moreover, if we take ψ0 = ψ, then we know that ψ fixes 〈a, bab−1〉 and so

∑
max{Rank (Fix ψi) − 1, 0} = 1,

and therefore this sum has exactly one non-zero term. In particular, this means that 
any automorphism, ψAd(w) which has a fixed subgroup that is not cyclic, is isogredient 
to ψ. The same conclusion holds if we replace ψ (and Ψ) with ψ	 (and Ψ	) for some 
0 �= � ∈ Z.

Now let χ be an automorphism of G0. First we will see that χ(s) is a conjugate of 
s±1, and then we prove that in the case it is fixed or inverted, the subgroup 〈a, b, s〉 is 
preserved.

We start by observing that χ(s) /∈ 〈a, b, c〉. This is because the subgroup 〈a, bab−1, s〉 ∼=
F2 × Z is the centraliser of s and so χ(〈a, bab−1, s〉) is the centraliser of χ(s). But the 
centraliser of any element of 〈a, b, c〉 is either cyclic or virtually Z2, so cannot contain a 
free subgroup of rank 2. Hence χ(s) = s	w for some 0 �= � and w ∈ 〈a, b, c〉.

Since χ(〈a, bab−1, s〉) ∼= F2×Z, we cannot have that χ(〈a, bab−1, s〉) ∩〈a, b, c〉 is cyclic 
(or trivial). However, χ(〈a, bab−1, s〉) is the centraliser of s	w and so χ(〈a, bab−1, s〉) ∩
〈a, b, c〉 is exactly the fixed subgroup of ψ	 Ad(w). Hence, by the discussion above, 
ψ	 Ad(w) and ψ	 are isogredient. This implies that s	w and s	 are conjugate in G0
(since the centraliser of 〈a, b, c〉 in G0 is trivial). Thus χ(s) is conjugate to s	, which 
implies that � = ±1, as s has no roots. Thus we conclude that χ(s) is conjugate to s±1

and so 〈a, bab−1, s〉 is sent to a conjugate by χ.
Therefore, up to composing χ with an inner automorphism of G0, we may assume 

that s is fixed or inverted by χ, and we consider the images of a and b. We write u for 
the image of a and snv for the image of b, where u, v are elements of 〈a, b, c〉. (Notice 
that the relation bs = ba−k implies that the image of a lies in this free group.)

The image of bab−1 is vuv−1, so 〈u, vuv−1〉 = 〈a, bab−1〉. In particular, this shows 
that u and v (by malnormality of free factors) are contained in 〈a, b〉.

To see the other inclusion, notice that we also know that 〈u, v〉 contains 〈a, bab−1〉. 
By considering the Stallings graphs (see [33]) of both subgroups, this means it contains 
either 〈a, bab−1〉 or 〈a, b〉 as a free factor.

That is, the subgroup inclusion gives a graph morphism from the Stallings graph of 
〈a, bab−1〉 to that of 〈u, v〉 with respect to the basis {a, b}. If this map is injective, then 
the Stallings graph of 〈a, bab−1〉 is a subgraph and therefore 〈a, bab−1〉 is a free factor 
of 〈u, v〉. If not, then the two vertices of the Stallings graph of 〈a, bab−1〉 are identified, 
and we must get that 〈a, b〉 is a free factor of, and hence must be equal to, 〈u, v〉. This 
is an easy version of the arguments in [34], Theorem 1.7.
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Since it has rank 2, this actually says 〈u, v〉 is equal to either 〈a, bab−1〉 or 〈a, b〉; 
the first is impossible since it would imply that 〈u, v〉 = 〈a, bab−1〉 = 〈u, vuv−1〉, which 
cannot happen since the last subgroup does not contain v.

Hence, 〈u, v〉 = 〈a, b〉 and 〈u, v, s〉 = 〈a, b, s〉. �
Corollary 6.3.2. The (collapsed) tree of cylinders, T ∗

c , of T0 is G0-canonical and hence 
nearly G-canonical.

Proof. The fact that the deformation space of T0 is invariant, gives us that the (collapsed) 
tree of cylinders, T ∗

c is canonical, see Subsection 2.3.
Then Proposition 3.1.4 gives us the second statement. �

6.4. Calculating the tree of cylinders, Tc

Our goal now is to calculate Tc. In order to do this, we actually modify the basis given 
by Proposition 6.2.1. The tree, T0 from Proposition 6.2.2 remains the same, but these 
modifications aid the calculation.

Throughout this subsection, we are working with the subgroup

G0 = 〈a, b, c, s : as = a, bs = ba−k, cs = hcg−1〉.

First we observe that we can modify the elements g, h from Proposition 6.2.1, and 
thus in the description of G0.

Lemma 6.4.1. The choices of g and h in the statement of Proposition 6.2.1 are not unique. 
In particular, if sh ∼〈a,b〉 sh

′ and sg ∼〈a,b〉 sg
′, then there exist x, y ∈ 〈a, b〉 such that if 

c′ = x−1cy, then the image of c′ under ϕ is h′c′g′ −1.

Proof. We will work in the corresponding free-by-cyclic group, G0 from Proposition 6.2.2
and its presentation.

Recall that G0 = 〈a, b, c, s : as = a, bs = ba−k, cs = hcg−1〉. It will be sufficient to 
show that s−1c′s = h′c′g′ −1.

Suppose (sh)x = sh′, and (sg)y = sg′, where x and y are elements of 〈a, b〉. Then put 
c′ = x−1cy.

We get that,

s−1c′s = (x−1cy)s

= x−shcg−1ys

= (x−shx)c′(y−1g−1ys)

= s−1(sh)xc′(sg)−ys

= h′c′g′ −1. �
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Note that each of sh and sg normalise 〈a, b〉. Moreover, they induce the same outer 
automorphism, and this is a Dehn Twist of 〈a, b〉. However, while sh and sg are conjugate 
in G0 – and so induce isogredient automorphisms of 〈a, b, c〉 – they might not induce 
isogredient automorphisms of 〈a, b〉.

One key point is that:

Lemma 6.4.2. The following are equivalent:

(i) sh and sg induce isogredient automorphisms on 〈a, b〉.
(ii) sh ∼〈a,b〉 sg.
(iii) sh ∼〈a,b,s〉 sg.

Proof. The first two are clearly equivalent, and notice that 〈a, b, sh〉 = 〈a, b, s〉 =
〈a, b, sg〉, which makes the second and third equivalent since we can choose the new 
generator so it centralises the conjugated element. �

We will use the following result, to help us modify g and h as above.

Corollary 6.4.3 ([27, Corollary 3.10]). Let Ψ ∈ Out(Fn), n ≥ 2, be a Dehn Twist outer 
automorphism fixing a conjugacy class. Then there is a ψ ∈ Ψ with fixed subgroup of 
rank at least two fixing an element of that conjugacy class.

Lemma 6.4.4. In G0, the centraliser C〈a,b〉(sh) has rank 0,1 or 2. If the rank is at least 
1, then sh ∼〈a,b〉 sh

′ for some h′ ∈ C〈a,b〉(s) = 〈a, bab−1〉. The same is true for g.
Moreover, one of C〈a,b〉(sh) and C〈a,b〉(sg) has rank 0 (is the trivial group).

Proof. The first statement follows from the Bestvina-Handel Theorem, Theorem 2.4.2.
For the second statement, we invoke Corollary 6.4.3, to say that if C〈a,b〉(sh) is non-

trivial, then there exists a non-trivial w ∈ 〈a, b〉 and an x ∈ 〈a, b〉 such that:

(wx)sh = wx

ws = w.

Here we are using Theorem 2.4.2 to say that since the underlying free group has rank 2, 
there is exactly one isogredience class with fixed subgroup of rank at least 2, and hence 
the ψ from Corollary 6.4.3 is, without loss of generality, the automorphism induced by 
conjugation by s (on 〈a, b〉). (It is more convenient for the following argument to write 
wx for the element fixed by the automorphism induced by sh.)

But these equations imply that,

ws−1x(sh)x−1
= wx(sh)x−1

= (wx)(sh)x−1
= (wx)x

−1
= w.

Hence, as w is non-trivial and both w and s−1x(sh)x−1 are elements of 〈a, b〉, we get 
that s−1x(sh)x−1 ∈ 〈w〉 ≤ C〈a,b〉(s), and hence sh ∼〈a,b〉 sw

m, for some m ∈ Z (without 
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loss of generality, we can assume w is not a proper power, and so generates its own 
centraliser in 〈a, b〉). The same calculation gives the result for g.

Finally, notice that if both h, g ∈ C〈a,b(s), then Φ has linear growth. Thus, via 
Lemma 6.4.1, we deduce that one of C〈a,b〉(sh) and C〈a,b〉(sg) has rank 0. �
Remark 6.4.5. Given this result, we shall henceforth assume that C〈a,b〉(sg) is the trivial 
group. (Note that h and g can be interchanged by replacing c with c−1 so there is no 
loss of generality in assuming this.)

We also record that,

Lemma 6.4.6. Let G be a free-by-cyclic group, with stable letter s. Any subgroup 〈smw〉, 
with m �= 0, has centraliser and normaliser equal.

Proof. Notice that conjugation by any element of the normaliser induces an automor-
phism of 〈smw〉, and in particular either preserves the generator (in which case it is an 
element of the centraliser) or inverts it. However, conjugating cannot affect the exponent 
sum of the stable letter s, and so this last case does not arise. �

Since there is only one orbit of edges, we can understand the cylinders by understand-
ing the normaliser of any edge stabiliser. Since the edges are stabilised by infinite cyclic 
groups of the kind discussed in Lemma 6.4.6, this is equivalent to understanding their 
centralisers.

Theorem 6.4.7. Let G0 = 〈a, b, c, s : as = a, bs = ba−k, cs = hcg−1〉, and T0 be the Bass-
Serre tree on which G0 acts via the HNN decomposition, G0 = 〈H, c : (sh)c = sg〉, 
where H = 〈a, b, s〉.

Moreover, assume that C〈a,b〉(sg) is the trivial group, as in Remark 6.4.5.
We form the tree of cylinders, Tc, and collapsed tree of cylinders T ∗

c taking maximal 
infinite cyclic groups to be the family E and equality to be the admissible equivalence 
relation.

• If sh �〈a,b〉 sg, then T ∗
c = T0, or Tc = T ∗

c is simply a subdivision of T0.
• If sh ∼〈a,b〉 sg, then Tc = T ∗

c has one edge orbit, with infinite cyclic stabilisers, 
conjugates of 〈sh〉, and two vertex orbits, with stabilisers conjugates of 〈a, b, s〉 and 
C(sh) ∼= Z2.

Proof. Since T0 has one orbit of edges and one orbit of vertices, the tree of cylinders of 
T0 will have two orbits of vertices – one for the cylinders, and one for the T0-vertices.

Since our relation is equality, edge stabilisers in T0 are conjugate to sh, and we have 
Lemma 6.4.6, we deduce that a cylinder is the orbit of an edge under the action of the 
centraliser of the edge stabiliser (in G0).
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As G0 acts without inversions on T0, we may equivariantly orient the edges of T0. 
A vertex stabiliser in T0 acts on the incident edges with two orbits – one orbit for the 
incoming edges, and one for the outgoing edges.

Choose this orientation so that at the vertex stabilised by 〈a, b, s〉, the incoming edges 
have stabiliser conjugate (in 〈a, b, s〉) to 〈sg〉 and for the outgoing edges it is conjugate 
to 〈sh〉.

The fact that C〈a,b〉(sg) is the trivial group implies that C〈a,b,s〉(sg) = 〈sg〉 and hence 
that no cylinder may contain two incoming edges at a vertex.

Suppose sh �〈a,b〉 sg:
If a cylinder contained both incoming and outgoing edges at a vertex, then (moving 

back to the vertex stabilised by 〈a, b, s〉) we would have sh ∼〈a,b,s〉 sg, since acting on the 
edges conjugates the stabilisers. So if sh �〈a,b〉 sg (which is equivalent to sh �〈a,b,s〉 sg), 
then no cylinder may contain both incoming and outgoing edges at a vertex.

Thus if sh �〈a,b〉 sg, all cylinders consist of a collection of outgoing edges from a 
vertex. More concretely, if we take the edge with stabiliser 〈sh〉, then the corresponding 
cylinder consists of edges starting from the vertex with stabiliser 〈a, b, s〉, and are thus 
all in the same 〈a, b, s〉-orbit. In particular, this implies that C(sh) = C〈a,b,s〉(sh) =
C〈a,b〉(sh) × 〈sh〉.

The cylinder stabiliser acts with two orbits on its vertices – the central vertex and 
all the rest, and hence the tree of cylinders of T0 has two edge orbits corresponding to 
these different inclusions. One of these edges has stabilisers equal to the edge stabilisers 
of the original tree (this is where we have the vertex being one of the ‘outside’ vertices 
of the cylinder), whereas the other edge group is equal to the stabiliser of the cylinder, 
(conjugates of) C(sh).

If C(sh) is not cyclic, then the collapsed tree of cylinders will collapse the correspond-
ing edge, and we will return to the original tree.

If C(sh) is cyclic, then the tree of cylinders is just a subdivision of T0 – we have 
subdivided an edge, and given the new vertex the same stabiliser as the edge it is part 
of.

Suppose sh ∼〈a,b〉 sg:
If sh ∼〈a,b〉 sg, then we orient the edges of T0 as before and now we get that both 

C〈a,b〉(sh) and C〈a,b〉(sg) are trivial (since they are conjugate). Therefore, C〈a,b,s〉(sh) =
〈sh〉 and C〈a,b,s〉(sg) = 〈sg〉.

This means that a cylinder cannot contain either two outgoing or two incoming edges 
at any vertex. However, each cylinder does contain both an outgoing and incoming 
edge at each vertex. Hence the cylinder is a line and it is straightforward to verify 
that C(sh) ∼= Z2. (Since sh ∼〈a,b〉 sg, we may assume that h = g, and in this case, 
C(sh) = 〈c, sh〉 – c is acting as a translation, and therefore transitively on the vertices 
and edges of this line.)
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In this case, there are again two orbits of vertices in the tree of cylinders – one for 
the cylinders, one for the vertices of T0 – with stabilisers (conjugates of) 〈a, b, s〉 and 
C(sh) ∼= Z2.

Since the cylinder stabiliser acts transitively on its vertices, there is only one edge, 
whose stabiliser is (the conjugates of) 〈sh〉. �
Remark 6.4.8. The tree of cylinders produced by this theorem realises a maximal pre-
served free factor system for the automorphism induced by s: it is an interesting question 
if this is true more generally (say, in higher rank or higher polynomial growth).

We now use Theorem 6.4.7 to provide a nearly canonical tree for the general (not just 
UPG) case.

Corollary 6.4.9. Let G ∼= F3 �Φ Z, and Φ is quadratically growing. Then G admits an 
action on a nearly canonical tree, T , such that:

(i) The action is co-compact (equivalently, co-finite).
(ii) Edge stabilisers are infinite cyclic.
(iii) Vertex stabilisers are of the form Fr � Z, where r = 0, 1, 2.

Proof. We simply apply Proposition 3.1.4 to the collapsed tree of cylinders for G0 above, 
Theorem 6.4.7, to get a nearly canonical action on the same tree. The fact that the G
action extends the G0 action tells us about the stabilisers. (For example, edge stabilisers 
in G must be infinite cyclic since their intersection with F3 is trivial.) �

We now use this to prove the following theorem, which is part of Theorem 1.1.2.

Theorem 6.4.10. Suppose G ∼= F3 �ϕ Z, and ϕ is quadratically growing. Then Out(G) is 
finitely generated.

Proof. We use the tree constructed above, and we calculate the quotients of OutT (G)
described in Theorem 3.2.1. The quotient graphs are finite, and therefore so is the quo-
tient at (1). For the quotient at (2), the edge groups are all infinite cyclic, and therefore 
have finite outer automorphism group. So by Lemma 3.2.3, we only need to check the 
McCool groups of vertex groups. Since vertex groups are free by cyclic groups of rank 0, 
1 or 2, these are finitely generated by Proposition 4.1.6.

Since the edge groups are infinite cyclic, we may apply Proposition 3.2.4 to see that 
the quotient at (3) is finite. The quotient at (4) is finitely generated by Lemma 3.2.5 and 
that at (5) as a quotient of a finitely generated abelian group. �

Our other main theorem is proved by combining Theorem 1.1.1 (restricted to rank 3) 
for the linear growth case, Theorem 6.4.10 for the quadratic growth case, Theorem 4.1.7
for the exponential case and [22] for the periodic case.
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Theorem 1.1.2. Suppose G ∼= F3 � Z. Then Out(G) is finitely generated.
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