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Pulmonary crackles are an important physiological parameter for evaluating lung condition of an 

individual and usually determined at auscultation by conventional stethoscope. The presence of 

crackles is generally an early indication of the disease and their number per breath cycle can 

indicate the severity of the disease. A conventional stethoscope placed on the chest wall can 

identify the presence of crackles, but this approach is subjective and the accurate detection of 

crackles and the identification of their type (fine or coarse) is highly dependent on clinician 

hearing ability and expertise. The misinterpretation of crackles may lead to inappropriate 

treatment of the patient. Computer aided lung sound analysis (CALSA) using advanced signal 

processing techniques can provide an objective way of analysing recorded lung sounds and hence 

can play important role in diagnosing or monitoring pulmonary diseases.  

In this study, a novel crackle separation technique: iterative envelope mean fractal dimension 

(IEM-FD) filter is developed for automatically separating crackles from normal breath sounds. The 

separation of crackles from normal breath sounds is an initial processing stage which can lead to 

better estimation of crackle features such as number of crackles and two-cycle deflection. To test 

the crackle separation ability of the IEM-FD filter, a dataset was generated. The performance of 

the IEM-FD filter was compared with the selected previously published crackle separation 

techniques using the developed dataset. The experimental results show the proposed method can 

achieve high accuracy for the number of crackles identified with low computational cost, better 

quality of crackle separation (less over or underestimation), and good preservation of crackle 

morphology and hence it may be useful in a clinical setting for determining number of crackles 

and characteristics of crackles in a recorded lung sound. 

The proposed IEM-FD filter is applied to two different datasets: (a) longitudinal dataset recorded 

from 19 idiopathic pulmonary fibrosis (IPF) patients in 7 visits (every visit in 2 months) over a 1 



year time period and (b) Cross-sectional dataset recorded from 55 subjects who were referred for 

a high-resolution computed tomography (HRCT) scan of the chest for various clinical indications.  

In the longitudinal study application of the IEM-FD filter prior to counting the number of crackles 

present, allowed evaluation of the association between number of crackles per breath cycle 

(NOC/BC) and reproducible acoustic features directly generated from the original signal. In this 

study, it was found that some of these acoustic features were directly associated with NOC/BC 

therefore might be useful for monitoring progression of IPF.  

In the cross-sectional study, the IEM-FD filter was applied as a first stage of an automatic crackle 

counting system which can be used for differentiating idiopathic pulmonary fibrosis patients from 

patients with other types of pulmonary pathology based on the average NOC/BC. The diagnosis 

given by two radiologists using the HRCT scan was used as a gold standard for classifying IPF and 

non-IPF groups. The ability of the automatic system to differentiate IPF patients from non-IPF 

patients was compared with the individual and average assessment by two respiratory physicians 

based on listening for the presence of Velcro crackles. Velcro crackles are generally considered as 

an early clue to the presence of fibrosis. The results show that the automatic system can perform 

as well as the expert physicians’ assessments and hence could support the auscultatory findings of 

lung sounds in less specialist clinics.   

In both the longitudinal and cross-sectional studies, in each recorded lung sound file the number 

of breathing cycles was audio-visually marked by the Author with the help of open access 

Audacity software. Audio-visual marking is a highly time-consuming process, therefore a new 

automatic breath cycle detection method based on the estimation of breathing phases was 

developed. The performance of the method was tested using both the longitudinal and cross-

sectional datasets, and a dataset recorded from 10 healthy subjects in 7 visits (each visit in 2 

months) over a period of 1 year. The promising results show the possibility of the developed 

algorithm as an automatic method for breath cycle detection in lung sound recordings.  
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Chapter 1 Introduction 

This thesis presents a novel automatic method for separating pulmonary crackles from normal 

breath sounds. When air is drawn into the lungs for the purposes of respiration, normal breath 

sounds are generated because of the turbulent airflow in the bronchial tree. Pulmonary crackles 

which overlap with normal breath sounds, can be an early first indication of the presence of a 

pulmonary disease.  

Auscultation is a medical term, which refers to the process of listening to the sounds generated 

from inside the body using a stethoscope or any other devices (Pramono et al., 2017). 

Auscultation provides a non-invasive way of lung examination and is useful in diagnosing various 

pulmonary diseases (Sarkar et al., 2015). In recent years, the advancement in electronic 

stethoscopes has opened the field of computer-aided auscultation (Leng et al., 2015). The 

electronic stethoscope provides an opportunity to capture, record, playback, and analyse the 

recorded lung sounds through advanced digital signal processing techniques (Malik et al., 2017).  

Crackles are short duration, non-musical lung sounds, which may occur during inspiration or 

expiration (Nath & Capel, 1974). The number of crackles per breath cycle (NOC/BC) and features 

related to the shape of the crackle signature in a recorded lung sound can have clinical 

significance. The NOC/BC can be used for assessing severity of the disease, whereas initial 

deflection width (first deflection of a crackle) and two-cycle deflection (duration of the first 5 zero 

crossing of a crackle) can be used for classifying crackle types (fine or coarse); where fine crackles 

are generally associated with interstitial lung diseases and coarse crackles are more often related 

with obstructive airway diseases (Du et al., 1997).  

The existence of normal breath sounds may introduce errors: when estimating the number and 

shape of crackles in a recording, which can lead to incorrect assessment of disease type or 

severity leading to sub-optimal treatment or management of the condition. Therefore, it can be 

advantageous to separate crackles from normal breath sounds before analysing them. 

This thesis starts with a brief introduction of lung sounds, different types of pulmonary crackles, 

the clinical importance of pulmonary crackles, limitations of crackle analysis using conventional 

stethoscope and motivation behind selecting the research topic. Research aim and objectives, an 

overview of the thesis, research contributions, and publications from this study will also be 

presented in this chapter.  
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1.1 Lung Sounds 

Lung sounds can provide useful information for assessing and monitoring pulmonary patients 

(Marques et al., 2009). Lung sounds are divided into two categories: normal lung sounds (or 

normal breath sounds) and adventitious lung sounds. Normal breath sounds are heard in healthy 

as well as pathological lungs and result from the flow of air through the airways.  

Normal breath sounds are produced due to turbulent airflow along the trachea-bronchial tree 

during the respiration process. Turbulent airflow is caused by the high velocity of flow travelling 

through a large diameter airway, particularly along an airway with irregular walls, such as the 

trachea and bronchi or in the airway with sudden branching. The nature of turbulent airflow is 

disorganised and chaotic. On the other hand, the flow in the small airways is laminar and silent in 

nature. The mechanism of noise generation due to turbulence involves the collision of air 

molecules with the airway wall and with each other (Sarkar et al., 2015). 

Adventitious lung sounds are additional sounds, which usually occur with respiratory disorders 

(Yeginer & Kahya, 2008; Serbes et al., 2013). The adventitious lung sounds can be continuous 

(wheezes) and discontinuous (crackles) (Reichert et al., 2008; Dinis et al., 2012; Jacome & 

Marques, 2017). In this context, the word ‘continuous’ refers to a duration of more than 250 ms 

rather than a sound that continues throughout the respiratory cycle (Meslier et al., 1995).  

The musical sound of wheezes can easily be recognized by simple hearing (Taplidou & 

Hadjileontiadis, 2007). Wheezes are generated due to airway limitations caused by the narrowing 

of airways (Nagasaka, 2012; Pramono et al., 2019). Wheezes are superimposed on normal breath 

sounds and usually louder than the underlying breath sounds. They can appear during the 

inspiration or expiration (Polat & Guler, 2004). In some patients, they may be audible at some 

distance from the patient (Loudon & Murphy, 1984). Wheezes can be heard in patients with 

asthma and chronic obstructive pulmonary disease (Bohadana et al., 2014; Henry & Royston, 

2018).  

On the other hand, crackles are known as discontinuous adventitious lung sounds (Yeginer & 

Kahya, 2005). They are short duration (less than 20 ms); explosive sounds of a non-musical 

character (Earis et al., 1992; Loudon & Murphy, 1984; Speranza et al., 2020; Ellington et al., 2012, 

Nath & Capel, 1974; Grzywalski et al., 2019). Crackles can be heard on the chest wall in patients 

with cardiopulmonary diseases such as cystic fibrosis, pneumonia, fibrosing alveolitis, 

bronchiectasis (BE), sarcoidosis, congestive heart failure, and asbestosis (Kiyokawa et al., 2001). 

During deep inspiration, crackles may occasionally occur in healthy subjects (Sovijarvi et al., 
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2000a). The frequent occurrence of crackles in a patient is usually an early indication of lung 

abnormality.  

1.1.1 Different types of pulmonary crackles 

The first deflection of a crackle is known as the initial deflection width (IDW) and the time to 

complete the first five zero crossing is known as the two cycle deflection (2CD). Pulmonary 

crackles may be characterized as either fine or coarse sounds based on IDW and 2CD 

(Charbonneau et al., 2000).  According to the American Thoracic Society, the average IDW and 

2CD of fine crackles are 0.7 ms and 5 ms, and for coarse crackles are 1.5 ms and 10 ms, 

respectively (Charbonneau et al., 2000).  

Fine crackles are thought to be generated due to the explosive reopening of small airways that 

closed during the previous expiration (Munakata et al., 1991). Fine crackles are usually mid- to 

late-inspiratory events that follow a similar pattern for each consecutive inhalation. These 

crackles can be an indication of pneumonia, congestive heart failure and various pulmonary 

fibrotic diseases (Pramono et al., 2017). Fine crackles have a high pitch, greater than 400 Hz 

(Vyshedskiy & Murphy, 2012).   

On the other hand, coarse crackles are typically early inspiratory and expiratory events. Coarse 

crackles may be generated from fluid in small or medium airways and have a popping quality. 

These crackles can change pattern after coughing and are a symptom of, for example, chronic 

bronchitis, BE and cystic fibrosis (Kraman, 1993). The sound of coarse crackles is low pitched, less 

than 400 Hz (Vyshedskiy & Murphy, 2012). The waveform of typical fine and coarse crackles with 

their time domain features are shown in Figure 1 (a) and Figure 1(b), respectively.   

 

 (a) 

 

(b) 

Figure 1                 Fine and coarse crackles: (a) fine crackle with IDW=0.7 ms and 2CD= 5 ms, (b)                   

coarse crackle with IDW=1.5 ms and 2CD=10 ms. 
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1.2 Clinical significance of crackles 

Crackles are clinically important for several reasons: 

(1) The crackle sounds superimposed on the normal breath sounds can be used for diagnosis 

(Speranza et al., 2020). The classification of crackle type has important clinical 

significance: the fine crackles are associated with interstitial lung diseases and coarse 

crackles are common in obstructive airway diseases (Du et al., 1997). Moreover, crackle 

features can be used for differentiating different pulmonary diseases. For example, 

Flietstra et al., (2011) showed that based on different crackle features (number of crackles 

in inspiratory phase, number of zero-line crossings, and first half period of the crackle) 

idiopathic pulmonary fibrosis (IPF) patients can be differentiated from patients with 

pneumonia and congestive heart failure. 

(2) The NOC/BC may play an important role in early detection or monitoring the prognosis of 

interstitial lung disorders. In the initial phase of IPF, crackles are generated in the base of 

the lungs and as the disease progresses crackles start to be produced in upper zones of 

the lungs (Cottin et al., 2012). Therefore, the NOC/BC is associated with the disease 

severity in patients with interstitial lung disorders (Sovijarvi et al., 2000a; Rocha et al., 

2019).   

(3) The timing of crackles within the breathing cycle allows the direct estimation of sound 

origin (Kompis et al., 2001). Smaller airways have been shown to produce late inspiratory 

crackles of high frequency, short duration less than 10 ms (fine crackles) whereas larger 

airways tend to produce early (inspiratory/expiratory) crackles with low frequency, longer 

duration greater than 10 ms (coarse crackles) (Marques et al., 2009).  

1.3 Limitations of crackle analysis using a conventional stethoscope 

In 1816, Rene Laennec started the science of auscultation (Alvarado & Arce, 2016; Piirila & 

Sovijarvi, 1995). This was the first stethoscope for listening to lung sounds and was made of wood 

and paper. It allowed him to assess a patient’s lung condition without touching the patient 

(Andres et al., 2018). Since 1800s, significant improvement has been made in the stethoscope 

(Andres et al., 2018). The conventional stethoscope is a most popular tool in clinics for assessing 

lung condition and can provide a non-invasive way of examining lung diseases. However, 

interpretation of the sound is subjective (Jacome & Marques, 2015; Hafke-Dys et al., 2019; Guler 

et al., 2005). The ability to differentiate lung sound patterns is highly dependent on expertise and 

hearing ability of the observer (Kandaswamy et al., 2004; Oliveira & Marques, 2014). 

Furthermore, this method is limited by high inter-observer variability (Gurung et al., 2011; Rao et 

https://pubmed.ncbi.nlm.nih.gov/?term=Marques+A&cauthor_id=24491278
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al., 2019; Spieth & Zhang, 2011). If the intensity of the normal breath sounds is very high it can 

mask the additive crackle sounds and, in that case, accurate detection of the number of crackles 

or their type (fine or coarse) using the convention stethoscope can be very challenging.  

The limitations of the human hearing system mean that auscultation in the hospital environment, 

when background noise is often very high, can result in crackles whose intensity is low being 

missed. Furthermore, auscultation using a conventional stethoscope cannot provide continuous 

monitoring (Rocha et al., 2019).  The technology has changed much over the years and computer 

based lung sound analysis (CALSA) can provide an objective way of analysing lung sounds 

(Betiencourt et al., 1994; Pasterkamp et al., 2016). CALSA minimises the inter-observer variability 

of standard lung sounds auscultation and can provide an objective and automatic way of 

analysing recorded lung sounds (Kaisla et al., 1991; Emmanouilidou et al., 2018). 

An automatic crackle separation method using advanced signal processing techniques can assist 

with diagnosing lung diseases and in monitoring disease progression. By separating, the normal 

breath sounds from the crackles both the large amplitude crackles and the small amplitude 

crackles, which are often significantly masked by the breath sounds, may be revealed. This can 

provide better estimation of number of crackles present. Furthermore, crackle time domain 

features such as IDW and 2CD can be accurately estimated. These can be used for crackle 

classification but, due to the background normal breath sounds, their waveform can be distorted 

which can mislead about the values of IDW and 2CD (Yeginer & Kahya, 2008). Therefore, for the 

better estimation of the crackle features it is important to eliminate normal breath sounds before 

analysing the crackle characteristics.  

An automatic crackle separation technique with high accuracy for number of crackles identified 

which is robust to noise could be used in a clinical environment for analysis of recorded crackle 

sounds. Therefore, the large part of this research focuses on developing a novel automatic crackle 

separation technique, suitable for use in a clinical setting for recorded lung sounds analysis, which 

may be useful to support clinical decision-making.  

1.4 Research aim and objectives 

1.4.1 Aim 

(1) The aim of this study is to develop a new automatic crackle separation technique, which 

can separate crackles from normal breath sounds with high accuracy for number of 

crackles identified, low computational complexity, good quality of crackle separation (low 

over or under estimation), high noise robustness, preservation of crackle morphology 
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after separation, and few requirements to make decisions about process based on the 

data (high objectivity).  

1.4.2 Objectives 

(2) Develop a dataset, which can be used for systematic testing of crackle separation 

techniques and published to encourage standardized testing between studies. 

(3) Provide systematic comparison between the proposed method and the selected 

previously published crackle separation methods using the developed dataset. 

(4) Test the new method on real data and explore its potential to identify clinical outcomes. 

(5) Explore the association between NOC/BC and global reproducible acoustic features 

directly extracted from the original signal (Sgalla, 2017).   

(6) Assess the ability of an automatic system to differentiate IPF patients from patients with 

other types of pathology who were referred for high resolution computed tomography 

(HRCT) scan of the chest for various clinical indications based on the average NOC/BC 

calculated using the lung sounds recorded at the lung bases. 

(7) Compare the classification performance (IPF or non-IPF) of an automatic system with the 

individual and average assessment of two experienced physicians who listened to 

recorded lung sound files to classify them as containing Velcro crackles (IPF) or not (Non-

IPF). 

(8) Develop an automatic breath cycle detection algorithm based on the estimation of the 

breathing phases.  

1.5 Research contributions and Thesis overview 

The review of the literature on different methods used for crackle lung sounds analysis is 

presented in Chapter 2.  

Contribution 1: A dataset was developed which can be used for systematic testing of different 

crackle separation techniques. The dataset not only contains real fine and coarse crackles but also 

has simulated fine and coarse crackles with different IDW and 2CD, and real lung sounds with fine 

and coarse crackles recorded from a person with IPF and a BE patient. The dataset also provides 

the option of two types of background noise: Breath noise and Gaussian white noise.  

The detailed description of the dataset is provided in Chapter 3.  
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From the literature, three previously published crackle separation techniques were selected with 

which to compare the crackle separation performance of the proposed iterative envelope mean 

fractal dimension (IEM-FD) filter. The reason for selecting these methods and their detailed 

working process is presented in Chapter 4. 

Contribution2: A novel automatic crackle separation technique i.e. IEM-FD filter was developed, 

which can provide high accuracy for the number of crackles identified with low computational 

cost, good quality of crackle separation (less under or over estimation), good preservation of 

crackle morphology after separation and high noise robustness. The filter can be used for 

analysing real lung sounds recorded in clinical environment.  

The detailed working process of the proposed method is provided in Chapter 5. 

The crackle separation performance evaluators used in this study for assessing the proposed and 

previous methods are presented in Chapter 6. The systematic comparison between the proposed 

IEM-FD filter and the selected previously published crackle separation techniques using the test 

dataset is made in terms of crackle identification accuracy, quality of crackle separation (over or 

underestimation), computational cost and the ability to preserve crackle morphology after 

separation. This evaluation is presented in Chapter 7. 

Contribution 3: The proposed IEM-FD filter was used in two case studies:  

(a) Longitudinal study: In this study, the dataset recorded from 19 IPF patients in 7 visits over 

a 1-year time was analysed using the proposed IEM-FD filter. From the analysis, it was 

found that the number of fine ‘Velcro’ crackles per breath cycle (NOC/BC) was highly 

correlated with the reproducible global acoustic features directly extracted from the 

original acoustic signal. Therefore, these reproducible acoustic features might be used for 

monitoring IPF. This study makes the first link between those global features and the 

underlying crackle sounds.  

(b) Cross-sectional study: in this study, a dataset recorded from 55 subjects who were 

referred to a specialist pulmonary clinic for a HRCT scan of the chest for various clinical 

indications was analysed using the new IEM-FD filter. From this study, it was found that 

the average NOC/BC can be used for differentiating IPF patients from patients with other 

types of pathology.  

The methodology and results of the two case studies are presented in Chapter 8.  

Contribution 4:  When analysing the datasets in the patient case studies the breath cycles were 

audio-visually marked in each lung sound signal. The manual marking of a large number of breath 

cycles is highly time consuming. Therefore, an automatic breath cycle detection algorithm based 
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on the estimation of the breathing phases was developed. The algorithm was evaluated against 

the manually marked data for the longitudinal, cross-sectional studies, and a dataset recorded 

from healthy subjects. However, this algorithm was not used in this thesis for analysing the two 

case studies.  

The detailed description of the algorithm is provided in Chapter 9.   

The discussion of the findings of this research with conclusions and future possibilities are 

provided in Chapter 10.  

1.6 Publications 

Journal publications 

• R. Pal and A. Barney. (2021). Iterative envelope mean fractal dimension filter for the 

separation of crackles from normal breath sounds. Biomedical Signal Processing and 

Control, 66, 1–12.  

Conference papers 

• R. Pal and A. Barney. (2020). Pulmonary Crackle Detection using the Hilbert Energy 

Envelope, Proc. 8th European Medical and Biological  Conf. - EMBES'20, Slovenia, pp. 994-

1003. 

• R. Pal and A. Barney. (2019). A dataset for systematic testing of crackle separation 

techniques, Proc. 41st Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. - EMBS'19, Berlin, pp. 

4690–4693.
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Chapter 2 Literature review on crackle lung sounds 

analysis 

2.1 Introduction 

In recent years, lots of work has been done in the field of computer based crackle lung sounds 

analysis. Automatic crackle detection and automatic separation of crackles from normal breath 

sounds are two areas of significant activity in the computer-based crackle analysis literature. 

Automatic separation of crackles from the lung sound signal is a first step in crackle analysis which 

can facilitate better estimation of the number of crackles and of their time domain features such, 

IDW or 2CD. This chapter will provide a review of the different methods proposed in the literature 

for crackle separation and analysis. The topics covered in this chapter are outlined below: 

2.2  Different methods for crackle lung sounds analysis 

Human hearing is an unreliable way of crackle detection. Kiyokawa et al., (2001) presented a 

study to check the human ear’s capability to detect crackles in an auscultation signal. The 

audibility of crackles was tested by superimposing simulated crackles (fine, medium and coarse) 

with large and small amplitude on recorded breath sounds at 0 L/s (breath hold), 1 L/s and 2 L/s  

airflows. They showed that failed detections are more frequent in the following conditions: (1) 

crackle amplitude is small, (2) background breath sound is of higher intensity (2 L/s), where 2 L/s 

shows volume flow rate, and (3) crackle type is either coarse or medium.  

Murphy et al., (1977) proposed time-expanded waveform analysis for visually analysing the 

recorded lung sounds. This approach showed that digitally recorded lung sounds waveform can be 

analysed by viewing the waveform on a screen and providing the user to control the magnification 

of the image. Although visual lung sound analysis can help to differentiate between the normal 

breath sounds and crackles, this approach is highly time-consuming and limited by large inter 

observer variability (Hadjileontiadis & Panas, 1997).  

Use of CALSA with the advanced signal processing techniques may improve reliability. Computer 

based crackle counting was compared with visual crackle counts and audible counts in a study by 

Murphy et al., (1989). In this study, 100 samples of lung sounds from 41 subjects were recorded 

using an electret microphone air coupled to the chest wall. The recorded sounds were examined 

by a trained technician using the crackle identification criteria: (i) the crackle waveform has to 

cross the baseline between three and sixteen times, (ii) the amplitude of the largest deflection 
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width (LDW) has to be two times greater than the amplitude of the background sound (the width 

of the largest absolute peak of a crackle is known as LDW), (iii) the beginning of the event had a 

sharp deflection in either a positive or a negative direction, and (iv) the baseline crossings after 

the initial deflection have to be progressively further apart. After the visual analysis two 

physicians separately counted the number of crackles by listening to the recorded sounds. Now, 

using the Spearman’s rank correlation computer based crackle counts were compared with visual 

counts and auditory counts. The correlation coefficient between the computer counts and the 

visual counts was 0.85 (p<0.001) while the correlation coefficient between computer counts and 

audible counts was 0.74 (p<0.001). For auditory counting, crackles which are highly masked by 

high intensity background sound can be missed (Kiyokawa et al., 2001). In addition, multiple 

crackles, occurring in a short interval are difficult to count for humans by listening (Murphy et al., 

1989). On the other hand, the visual analysis is a highly time-consuming approach (Hadjileontiadis 

& Panas, 1997). Although, in Murphy’s (1989) study the computer based lung sound crackle 

counter was compared with the visual and audible counts, the ability of the computer algorithm 

to count crackles in different noisy conditions when crackle morphology is completely hidden by 

the background normal breath sounds was not considered.  

In another study, a multi-channel lung sound analyser (model STG-1602, Stethographics, 

Westborough, Massachusetts) was used to test whether recorded lung sounds differed 

significantly between pneumonia patients and subjects who had no clinical evidence of 

pneumonia (Murphy et al., 2004). In this method, 14 microphones were used for simultaneously 

collecting the lung sounds data and one microphone was used to record tracheal sounds. All the 

microphones were incorporated into a soft foam pad which the subject lay supine upon. The STG 

system software was used to automatically identify the adventitious sounds in accordance with 

published definitions (Murphy et al., 2004) and the visually-based time expanded waveform 

analysis was used to verify the automatic analysis. In this study, they selected 100 patients who 

were diagnosed by their physicians as having pneumonia and 100 subjects who had no clinical 

evidence of pneumonia (control subjects) but were age-matched to those of the pneumonia 

group (age>60). All of these 100 subjects were patients who came to an internist for annual 

physical examination. After selection of the patients, they divided subjects into two categories: - 

learning sample (50 patients from each group) and test sample (remaining 50 patients in each 

group). Now for each subject, an acoustic pneumonia score was generated by adding crackle 

score and rhonchus score. Rhonchus is a low frequency wheeze which contains a rapidly damping 

periodic waveform with a duration of > 100 ms (Sovijarvi et al., 2000b). Crackles and rhonchus 

were used for calculating the pneumonia score because their rate per breath cycle is associated 

with the higher likelihood of pneumonia. The rhonchus score was estimated using the proportion 
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of the breath cycle occupied by rhonchi. A rhonchus rate of 4-5 % was assigned a score of 3, a rate 

of 6-10 % was received a score of 5, and a rate of 11-100 % was assigned a score of 6. Crackle 

score was calculated using the number of crackles per respiratory phase. The maximum crackle 

score was 10 for inspiratory phase and 10 for expiratory phase. The minimum and maximum 

pneumonia scores were therefore 0 and 26, respectively. The performance of pneumonia score 

was first tested on the learning sample and then examined on the test sample. An average 

pneumonia score of 13 in the learning sample and 11 in the test sample of pneumonia patients 

was found. An average pneumonia score of 2 in the learning sample and 3 in the test sample of 

control subjects was found. Furthermore, by investigation, they found that almost all (91%) of the 

subjects had some adventitious sounds and that crackles were the most common finding. Further, 

they observed significant differences in lung sounds between pneumonia patients and subjects 

who had no clinical evidence of pneumonia. This study proposed that computer based analyses 

could be used to quantify the auscultatory abnormalities related to pneumonia and help to 

provide important clinical information for diagnosing pneumonia.  

Piirila et al., (1991) studied the crackling lung sounds in patients with cryptogenic fibrosing 

alveolitis (CFA), BE, chronic obstructive pulmonary disease (COPD) and heart failure (HF). The 

waveform, frequency, and timing of crackles in 10 patients with CFA, 10 patients with BE, 10 

patients with COPD, and 10 patients with HF were analyzed. The key findings of the study were: 

(a) In CFA the upper frequency limit of the inspiratory sounds was higher compared to that in HF 

or in COPD, (b) In COPD period of crackling within a respiratory cycle was shorter compared to in 

CFA or in BE, (c) In COPD inspiratory crackling terminated significantly earlier in the breath phase 

than in CFA, in BE or in HF, (d) The IDW and 2CD were shorter in CFA than in COPD,  BE, or  HF, (e) 

In CFA the LDW was smaller compared to in COPD, BE, or HF. In another study, Baughman et al., 

(1991) found that the crackles are more frequent in fibrosing alveolitis (FA) compared to in 

sarcoidosis. Furthermore, Ponte et al., (2013) found that maximum frequency and 2CD of crackles 

may allow differentiation between crackles generated by fibrosis from those generated by HF and 

pneumonia. Flietstra et al., (2011) demonstrated that crackle features can be used for 

differentiating IPF from patients with pneumonia and congestive heart failure.  These studies 

clearly indicate that the crackles may have different features in different pulmonary diseases. 

However, the presence of normal breath sounds may mislead about the number of crackles and 

their time domain features such as IDW and 2CD. The incorrect estimation of crackle features due 

to the background normal breath sounds may increase the chances for misdiagnosis. Hence, 

better estimation of crackling features may help in differentiating different pulmonary diseases. 

An automatic crackle separation technique can separate crackles from normal breath sounds and 

may help in better estimation of crackle features. In recent years, much effort has been made to 
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automate separation of crackles from normal breath sounds. Before talking about published 

crackle separation techniques automatic crackle detection methods proposed in the literature are 

discussed below. 

2.2.1 Automatic crackle detection techniques 

Different methods have been proposed in the literature for automatic detection of crackles in 

recorded lung sounds. Kaisla et al., (1991) presented an automatic crackle detection technique 

based on analysing the spectral stationarity of the lung sound. This method was validated using 10 

patients with FA and 10 patients with BE. For patients with FA the method achieved a sensitivity 

of 89 % and a positive predictive value of 88 % and for patients with BE the method obtained a 

sensitivity of 80 % and positive predictive value of 83 %. The performance of the automatic 

method was compared with the number of crackles counted by two observers using time 

expended waveform analysis (Murphy et al., 1977). The linear correlation coefficients between 

the automatic method and the number of crackles counted by the observers was 0.86 (p<0.001) 

and 0.93 (p<0.001) for the patients with FA and BE, respectively.  

Vannuccini et al., (1998) proposed an automatic method for detecting and analysing crackles in 

respiratory sounds. This method is based on two steps. In the first step, a threshold value is 

applied to the first derivative absolute value of the input signal, with the goal to identify the 

crackle’s location. In the next step, the identified location can be considered the location of a 

crackle if it conforms to certain conditions. The crackle conditions (height of the peaks and their 

distance from the starting point of the crackle) are verified within a temporal window. A Savitzky-

Golay (SG) filter is used for finding the first derivative absolute value of the input signal (Savitzky 

& Golay, 1964). As a reference, an expert observer scans the recordings and identifies visually 

where the crackles are using Murphy’s criteria (Murphy et al., 1989) and by simultaneously 

listening to the signal. The algorithm was tested on a sample of 200 inspiratory crackles from 15 

patients with CFA and achieved sensitivity of 84 % and specificity of 89 %.  

Hadjileontiadis & Rekanos, (2003) proposed a fractal dimension (FD) technique for automatically 

detecting crackles in recorded lung sounds. The FD technique is based on the FD of the recorded 

lung sounds. The FD evaluates the complexity of the recorded lung sounds in the time domain and 

provides a way to track the time location of crackles (Hadjileontiadis & Rekanos, 2003). In the FD 

technique, an overlapped temporal window is applied to the input signal for estimating FD. Once 

the FD of the signal is estimated, the fractal dimension peak peeling (FDPP) algorithm is applied to 

the estimated FD vector for automatically detecting the location and duration of the crackles in 

the input signal through FD peaks. The FDPP algorithm is an iterative process, which iteratively 
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peels the estimated FD vector. In this way, the FDPP algorithm not only searches for the high 

peaks of the estimated FD vector, which may correspond to high amplitude crackles but also looks 

for the low peaks of the estimated FD vector, which may correspond to low amplitude crackles. 

The detailed working of the FD technique is provided in section 4.3. The algorithm was tested on 

54 pulmonary fibrosis and 19 interstitial fibrosis fine crackles, and 41 chronic bronchitis coarse 

crackles, and achieved a 100 % accuracy for the number of crackles detected for both fine and 

coarse crackles. 

Pinho et al., (2015) proposed a technique based on filtering the FD. In this algorithm, firstly a 

window of interest of a potential crackle was extracted. A window of interest was estimated using 

different signal processing steps: (a) In the first step, SG filter was used for smoothing an input 

signal. Smoothing was done for removing the high frequency noise from an input signal. (b) In the 

second step, FD of the smoothed signal was calculated using a sliding window. (c) In the third 

step, box filtering (average filtering, with a sliding window was used on the estimated FD vector 

for calculating the trend (smoothed version of the estimated FD vector). (d) Now the estimated 

FD vector was compared to a threshold to identify the window of interest of a potential crackle, 

the threshold used is proportional to the smoothed FD. After extraction of a window of interest of 

a potential crackle, the probability of the potential crackle is verified using respiratory sound 

analysis established criteria and conditions established empirically by Pinho et al., (2015):  (i) the 

amplitude of the different peaks of the crackles had to be progressively lower than the LDW peak. 

(ii) peaks had to be progressively wider after the IDW. (iii) minimum of 5 zero crossings, to 

guarantee the calculation of 2CD, and a maximum of 16 zero crossings. (iv) the mean absolute 

amplitude of the crackle had to be higher than two times the mean absolute amplitude of the 

background noise (v) crackle’s IDW had to be higher than 1/8 of the LDW. The algorithm was 

tested on twenty-four 10-second files, acquired in clinical settings, from 10 patients, 6 with 

pneumonia and 4 with cystic fibrosis. Here, three-experienced respiratory researchers performed 

the manual annotation. All three researchers were experienced in visual-auditory crackle 

identification and independently annotated the beginning and end of each crackle in each sound 

file using the respiratory sound annotation software V1.1 (Dinis et al., 2012) and a crackle was 

considered as present when at least two researchers agreed. The performance of the algorithm 

was evaluated by comparing the maximum absolute peak within each identified crackle with the 

multi-annotation gold standard obtained from the annotations of the three researchers. The 

algorithm achieved a sensitivity of 89 %, positive predictive value of 95 % and F-score of 92 %. 

Recently, Reyes et al., (2018) presented an automatic crackle detection algorithm based on time 

varying autoregressive (TVAR) modelling. The idea behind the algorithm was that non-stationary 

events such as crackles may produce abrupt changes in the coefficients of a TVAR model 
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compared to the basal respiratory sounds. In this algorithm, firstly, an input signal was pre-

processed: (a) a 500th order finite impulse response (FIR) band pass filter between 75 Hz and 

1000 Hz was used to minimize the presence of heart sounds and other muscular noises, and (b) to 

account for different amplitude variations between recordings all filtered signals were normalized 

in amplitude in the range [-1, 1]. Secondly, a 4th order TVAR model was used and the TVAR 

coefficients were calculated using the recursive least squares algorithm. Now, after estimating the 

TVAR coefficients, the derivative of the each TVAR coefficient time series was estimated to 

enhance the abrupt changes due to crackles. In the next step, a sliding window of length 4 ms was 

used for segmenting each estimated derivative and the standard deviation under each window 

was calculated. A threshold value was used inside each window for finding the presence of a 

crackle. In each window, if the standard deviation of the all derivative coefficient time series was 

above the threshold value, then the absolute values of all derivatives were added together. Now, 

in each window, from the added absolute values of derivatives the maximum point was calculated 

which indicated the starting point of the detected crackle. The algorithm was tested on: (a) 

simulated fine and coarse crackles randomly inserted in the basal lung sounds recorded from 10 

healthy subjects with different SNRs, and (b) lung sounds recorded from 9 Diffuse Interstitial 

Pneumonia (DIP) patients. In healthy subjects lung sounds were recorded at a posterior left basal 

location. On the other hand, for each DIP patient lung sounds were recorded at three pulmonary 

zones indicated by the physician. The physician performed a pulmonary auscultation using a 

mechanical stethoscope and indicated pulmonary zones in each patient based on the presence of 

crackle sounds. The lung sounds were recorded using an electret subminiature microphone (BT-

2159000, Knowles Electronics, Itasca, IL, USA) enclosed in a plastic bell. In the case of lung sounds 

recorded from DIP patients, crackles were manually counted by pneumologists via time-expanded 

waveform analysis and listening to the signals (Audio-visual marking). Due to cumbersome and 

time demanding manual crackle detection by the pneumologists, from each recording only one 

breathing cycle was analysed. The algorithm obtained on average, an accuracy ranging from 

84.86% to 89.16%, a sensitivity ranging from 93.45 % to 97.65 %, and a specificity ranging from 

99.82% to 99.84%, in the inserted simulated fine crackles scenarios. On the other hand, the 

algorithm achieved on average, an accuracy ranging from 57.95 % to 85.18 %, a sensitivity ranging 

from 64.02% to 94.68%, and a specificity ranging from 99.83 % to 99.85 %, in the inserted 

simulated coarse crackles scenarios. However, the performance of the algorithm was drastically 

decreased in the real data case (DIP patients lung sound recordings) where on average, accuracy 

of 51 % and specificity of 63 % were found. 
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2.2.2 Limitations of automatic crackle detection techniques 

Automatic crackle detection techniques can detect crackles in the lung sound signal; however, 

they are not able to separate crackles from normal breath sounds. As a result: 

 (a) Detection directly from unprocessed recordings may fail to detect crackles which are deeply 

buried in the background normal breath sounds (small amplitude crackles) or may detect false 

crackles due to the presence of background normal breath sounds, hence may provide poor 

estimation of the number of crackles. 

(b) Crackle time-domain characteristics (IDW, 2CD) may be different in different pulmonary 

diseases but the presence of background normal breath sounds may distort these measures and 

hence may lead to misclassification of crackle types (fine or coarse) and hence, potentially, to 

misdiagnosis.  

On the other hand, the separation of crackles from normal breath sounds before counting or 

characterising can provide better estimates of the number of crackles and their time domain 

features.  However, an optimal process for crackle separation, useable in a clinical context, should 

have: low computational complexity, high accuracy for the number of crackles identified, good 

separation quality with neither under- nor over-estimation of the crackle waveform, ability to 

preserve crackle morphology after separation, high robustness to noise, and less requirement to 

make decisions about process based on the data (high objectivity). Note that the failure to extract 

all crackles or loss of some portion of the crackle in the output signal is referred as under-

estimation, and the inclusion of non-crackle components as over-estimation. The published 

crackle separation techniques in the literature are discussed below. 

2.2.3 Automatic crackle separation techniques 

There has been much effort in the field of automatic separation of crackles from normal breath 

sounds. The level slicer and high pass filter can separate crackles from normal breath sounds to 

some extent but they fail to separate small amplitude crackles, which are deeply buried in the 

background normal breath sounds and further can distort the crackle morphology in the process. 

To analyse the effect of high pass filtering on the morphology of the crackles, a case study was 

presented by Katila et al., (1991). In this study, a digital filter (Kaiser FIR) and an analogue filter 

(4th order Butterworth) with seven different cut-off frequencies: 25, 50, 75, 100, 150, 200 and 

400 Hz were used to analyse the effect of high pass filtering on the crackle waveform. Lung 

sounds with crackles were recorded from one patient with silicoasbestosis. According to the 

analysis, it was noticed that the effect of cut-off frequency on the crackle IDW and the duration of 
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the crackle was very low up to cut-off frequencies of 100 Hz but at higher cut-offs the IDW and 

duration both gradually decreased with increase in cut-off frequency up to the 400 Hz cut-off 

level. The duration and IDW of the crackle were more influenced by the analog filter compared to 

the digital filter, although the digital filter influenced the polarity of the IDW more. It was 

observed from the study not only the high pass filter cut-off frequency but also the filter type 

influenced the crackle waveform. If the high pass filter cut-off frequency is too high, crackle 

waveforms (especially coarse crackles) can be distorted and for the low cut-off frequency, 

background noise will not be eliminated from the crackle (Yeginer & Kahya, 2008).  

Ono et al., (1989) presented a nonlinear digital filter for the automatic separation of crackles from 

normal breath sounds, which is known as stationary non-stationary (ST-NST) separating filter. This 

method used the autoregressive prediction and the coefficients of the autoregressive model were 

adaptively updated using the least mean square algorithm (Widrow et al., 1976). However, the 

authors note that although the ST-NST filter can be useful for counting the number of crackles 

after separating them from normal breath sounds, this method requires empirical setting of many 

of its parameters (Hadjileontiadis & Panas, 1996). A requirement of empirical setting of the filter 

parameters according to the characteristics of the input signal is not ideal for a clinical setting.  

The time duration of crackles is typically in the range of 10 – 20 ms and on this time scale, normal 

breath sounds may be considered quasi-stationary and therefore separation of lung sounds into 

estimates of the non-stationary and stationary parts generally sends crackle components of the 

lung sound signal to the non-stationary signal estimate and the majority of components 

associated with normal breath sounds to the stationary signal estimate. 

Hadjileontiadis & Panas, (1996) provided a modified version of the ST-NST filter i.e. mST-NST filter 

by combining the ST-NST filter with third order statistics. In this method, autoregressive 

prediction was performed based on third order statistics. The mST-NST filter provided more 

robust results in the noisy case, but as for the ST-NST filter this filtering method requires empirical 

setting of the set of its parameters (Hadjileontiadis & Panas, 1996).   

In another study, the wavelet transform stationary non-stationary (WTST-NST) filter was proposed 

by (Hadjileontiadis & Panas, 1997) for automatically separating crackles from normal breath 

sounds. This method is based on an iterative multiresolution decomposition (MRD) and 

multiresolution reconstruction (MRR) scheme which separates wavelet transform coefficients 

related to the signal of interest from the background normal breath sounds using a threshold 

value at each decomposition level. The WTST-NST filter is based on the contention that explosive 

peaks have large components over many wavelet scales, but coefficients related to background 

normal breath sounds reduce with increasing wavelet scale. Although the WTST-NST algorithm 
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showed good results in terms of crackle identification accuracy, due to the non-adaptive 

characteristics of the threshold value (hard thresholding) and high computational complexity, it is 

still not ideal to use in a clinical environment or for analyzing datasets of recorded crackle lung 

sounds where high processing speed is advantageous for decision-making.  

Lu & Bahoura, (2008) presented the wavelet packet stationary non-stationary (WPST-NST) filter 

for separating crackles from normal breath sounds. In the wavelet packet transform not only the 

approximation coefficients vector but also the detail coefficients vector is decomposed into two 

parts at each wavelet scale. Similar to the WTST-NST filter, this filtering method is also based on 

the fact that explosive peaks have large components over many wavelet scales, while coefficients 

related to the background normal breath sounds decreases with increasing wavelet scale. Unlike 

the WTST-NST filter, the WPST-NST filter is not an iterative process. The WPST-NST filter uses two 

thresholds for separating wavelet transform coefficients corresponding to crackles from 

background normal breath sounds. The two thresholds are defined in time domain and frequency 

domain respectively. The WPST-NST filter may provide fast crackle separation compared to the 

WTST-NST filter, but the non-adaptive characteristics of its two thresholds limits overall 

generalization of the algorithm.  

In order to overcome the empirical setting of the threshold for separating the wavelet transform 

coefficients related to crackles and normal breath sounds in the WTST-NST filter, the wavelet 

transform fractal dimension (WT-FD) filter was proposed (Hadjileontiadis, 2005(I), Hadjileontiadis, 

2005(II)). In this method the FD technique (Hadjileontiadis & Rekanos, 2003) was used for 

thresholding. Firstly, the input signal is decomposed into approximation and detail coefficient 

vectors using the wavelet transform, and after decomposing the signal, the FD technique is 

applied to separate crackle coefficients from normal breath sounds. The FD of the signal is 

estimated within an overlapped window shifted repeatedly by one sample along the signal’s 

length. The combination of the WT and the FD can overcome the limitation of the non-adaptive 

threshold used in the WTST-NST filter but here also the accurate selection of base wavelet type 

and number of WT decomposition scales may be critical for its overall performance 

(Hadjileontiadis, 2007). A need to optimize these parameters for any given data set prior to use in 

a clinical setting would be less than ideal.   

The empirical mode decomposition (EMD) based analysis of real respiratory data and simulated 

crackles was presented by (Charleston-Villalobos et al., (2007). Different cases of crackles (fine, 

coarse, overlapped crackles, a combination of fine and coarse crackles etc.) were investigated 

using the EMD technique (Huang et al., 1998). In this study, the simulated crackles were 

generated using the mathematical functions proposed by Kiyokawa et al., (2001). After generation 
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of simulated crackles, they were inserted in the normal inspiratory sound (only the inspiratory 

phase was used for the analysis) recorded from the posterior right clavicular location of the 

healthy subject. Next the input signal was decomposed into different intrinsic mode functions 

(IMFs) and a residual signal using the EMD technique. For the next step in EMD, all the IMFs were 

visually analysed (qualitative analysis) and crackle information related IMFs were identified. It was 

observed that mostly IMF1 to IMF4 contained relevant information about the crackles, and after 

IMF4, the respiratory sound became dominant, and it was impossible to identify or extract further 

information about crackles from the IMFs. Moreover, it was observed that the EMD technique 

does not have the capacity to individually separate the individual crackles that overlap by a large 

amount. Further, these analyses were carried out using just a single inspiratory sound from a 

single healthy subject and the Influence of pulmonary diseases on the number of IMFs containing 

elements related to crackles was not considered.  

The EMD technique provides a solution to denoising the explosive lung sounds but is not sufficient 

on its own for separating the non-stationary (crackles) and stationary parts (normal breath 

sounds) of the input signal. After combining the IMFs obtained from the EMD technique, which 

are related to the non-stationary parts of the input signal, some of the noise, (normal breath 

sounds) is still present in the reconstructed signal. To overcome this problem, the combination of 

FD and EMD based EMD-FD filter was proposed by Hadjileontiadis, (2007) for separating the 

stationary and non-stationary parts from the input signal. In this denoising method, the input 

signal was first decomposed into different IMFs and the residual component. After 

decomposition, a number of IMFs, are selected using an energy criterion, as being related to the 

crackles. Next, the FD technique was applied to the selected IMFs for separating out background 

normal breath sounds. Once background normal breath sounds is separated from the selected 

IMFs, the remaining parts are combined to estimate the explosive lung sounds. The separated 

background normal breath sounds, a combination of remaining IMFs and residual component, 

provides the overall background normal breath sounds in the input signal. Although this method 

gives good separation of crackles from normal breath sounds, the non-adaptive characteristics of 

the energy criterion lead to challenges in the selection of how many independent mode functions 

contain crackle information. Too many IMFs may lead to overestimation and too few to 

underestimation.  

Different fuzzy based filters were also tested for their ability to separate crackles and normal 

breath sounds. Tolias et al., (1997) presented a fuzzy based stationary non-stationary (FST-NST) 

filter. This method is based on training a fuzzy inference system constructed according to the 

adaptive-network-based fuzzy inference system (ANFIS) approach (Jang, 1993). In this filtering 

method, the ANFI system was trained using the stationary and non-stationary outputs of the 
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WTST-NST filter (Hadjileontiadis & Panas, 1997), obtained after applying the WTST-NST filter to 

the recorded lung sounds. Furthermore, Tolias et al., (1998) proposed a modified version of the 

FST-NST filter i.e. generalized fuzzy rule based stationary-non-stationary (GFST-NST) filter. In this 

filtering method, instead of using two ANFIS’s operating in parallel as in the FST-NST filter, a serial 

combination of two ANFIS’s is used. As for the FST-NST filter in this method the stationary and 

non-stationary outputs of the WTST-NST filter were used for training the fuzzy inference system. 

In another study, Mastorocostas et al., (2000) presented an alternative fuzzy model, the 

orthogonal least squares based fuzzy filter (OLS-FF). The OLS-FF improved the ANFIS structure 

used in the FST-NST filter (Tolias et al., 1997) and the GFST-NST filter (Tolias et al., 1998) by 

introducing a more flexible structure, which uses a lower number of rules. The OLS-FF also used 

two fuzzy inference systems operating in parallel. Furthermore, unlike the FST-NST filter (Tolias et 

al., 1997) and the GFST-NST filter (Tolias et al., 1998) the OLS-FF does not require a training phase 

for calculating the optimum model parameters. Recently, the computational intelligence based 

filter has been proposed by Kandilogiannakis & Mastorocostas, (2018). This filtering method uses 

two dynamic fuzzy neural networks that operate in parallel for separating crackles from normal 

breath sounds. In this method, the simulated annealing dynamic resilient propagation algorithm is 

used for training the algorithm. 

All four fuzzy filters described above can provide separation of crackles from background normal 

breath sounds with low computational load, but amongst all four fuzzy filters the GFST-NST filter 

provided the best performance in terms of high accuracy of number of crackles identified. The 

crackle separation performance of all four fuzzy filters was not tested in terms of noise 

robustness.  

Recently, Garcia et al., (2020) proposed a methodology for automatic extraction of fine and 

coarse crackles by independent component analysis (ICA). The efficiency of three ICA algorithms, 

i.e.  FastICA, Information maximization (Infomax) and temporal decorrelation source separation 

were evaluated using the Amari index, the total relative distortion index, and the signal to 

interference ratio. From their analysis, it was found that in simulated, multichannel signal 

scenarios, the Infomax algorithm provided the best separation of crackles from normal breath 

sounds compared to the other two algorithms. The presence of crackles in the independent 

component (IC) obtained from the Infomax algorithm was determined using the skewness and 

kurtosis and the spectrogram of the selected IC was used to find the type of crackles. However, 

this methodology was only tested on simulated crackles and with breath sounds recorded from 

healthy subjects. The real crackle scenario was not tested in this study; the real crackles may have 

different temporal morphology compared to simulated crackles used in this study. Moreover, this  
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Table 1 Technical characteristics for good crackle separation compared for different 

published separation methods. 

Methods ACC UOE POC CCX NRB OBJ 

VTEWA (Murphy et al., 1977) + x x -- -- -- 

LS & HPFs (Katila et al., 1991) - - -- + x + 

ST-NST (Ono et al., 1989) - - - x x -- 

mST-NST (Hadjileontiadis & Panas, 1996) + x x x + -- 

WTST-NST (Hadjileontiadis & Panas, 1997) + + - - + - 

WT-FD (Hadjileontiadis, 2005(I), Hadjileontiadis, 2005(II)) ++ + + + + - 

EMD-FD (Hadjileontiadis, 2007) + + + -- + -- 

FST-NST (Tolias et al., 1997) + + - + x - 

GFST-NST (Tolias et al., 1998) + + - + x - 

OLSF (Mastorocostas et al., 2000) + + - + x - 

Neurofuzzy filter (Kandilogiannakis & Mastorocostas, 

2018) 
+ x x + x - 

WPT (Lu & Bahoura, 2008) + x x + + - 

ICA (Garcia et al., 2020) + x x x x - 

ACC: Accuracy (number of crackles correctly separated); UOE: Under-, over-estimation; POC: Preservation 

of crackle morphology; CCX: Analysis speed (computational complexity); NRB: Robustness to 

additive/environmental noise; OBJ: Objectivity (need to set hard thresholds and/or make decisions about 

process based on the data  and/or requirement of training phase for estimation of the optimum model 

parameters); ++ = strong attribute; + = acceptable attribute; - = weak attribute; - - = very weak attribute; x = 

attribute not reported. 

study requires specialist equipment with 25 recording channels and adoption of such bespoke 

systems in clinical settings is unlikely. 
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2.2.4 Different published separation methods 

Despite the various crackle separation techniques proposed in recent years; their use in a clinical 

setting has so far been quite limited due to several factors. A summary of the strengths and 

weaknesses of each method is given in Table 1. As it can be seen in Table 1, the main limitation 

with existing automatic crackle separation methods is the high computation complexity and/or 

failure to preserve crackle morphology after separation and/or low objectivity. These factors limit 

their utility in the clinical environment. The high computational cost is not advantageous in clinical 

setting where fast processing is desirable for decision-making (Tolias et al., 1998; Kandilogiannakis 

& Mastorocostas, 2018). On the other hand, failure to preserve crackle morphology after 

separation may lead to incorrect estimation of crackle time domain features such as IDW and 

2CD. Furthermore, need to set hard thresholds and/or make decisions about process based on the 

data and/or the requirement for a training phase for estimation of the optimum model 

parameters reduces their objectivity. The above mentioned limitations clearly indicate that there 

is need of a new automatic crackle separation technique which can incorporate all the factors of 

an optimum process and can be useful in clinical setting for recorded lung sounds analysis. 

2.3 Summary 

Chapter 2 presented a review of the different methods published in the literature for crackle lung 

sound analysis. Automatic crackle detection techniques can identify crackles in the lung sound 

signal but they are not able to separate crackles from normal breath sounds. The separation of 

crackles from normal breaths sounds as a first step can lead to better estimation of crackle time 

domain features such as number of crackles, IDW, 2CD etc.   

In this thesis, considering all the points for an optimal process for crackle separation, a novel IEM-

FD filter is presented for automatic crackle separation. The performance of the IEM-FD filter is 

compared with three previously published methods (WTST-NST filter, WT-FD filter and EMD-FD 

filter) and applied to two different case studies. To compare the crackle separation performance 

of the IEM-FD filter with the previously selected methods a dataset was generated. Before 

discussing the IEM-FD filter and the reason for selecting the previously published methods for 

comparison with their detailed working process; a dataset developed for systematic testing of 

crackle separation techniques is presented in Chapter 3. 
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Chapter 3 Dataset for systematic testing of crackle 

separation techniques 

3.1  Introduction 

In the last chapter, we saw various different methods proposed in the literature for recoded 

crackle lung sounds analysis and considered their limitations. In this chapter, a dataset generated 

for systematic testing of crackle separation techniques is described. 

3.2 Dataset 

Different pulmonary diseases may have different type of crackle (fine or coarse). As Du et al., 

(1997) showed, fine crackles are common in interstitial lung diseases and coarse crackles are 

associated with obstructive airway diseases. Therefore, the performance of any crackle separation 

technique needs to be evaluated using a dataset containing different types of crackles. It is also 

important to test the crackle separation ability of an algorithm when crackles are deeply buried in 

background normal breath sounds to test the noise robustness of an algorithm. Due to the 

absence of publicly available lung sound datasets, testing of crackle separation of the separation 

methods is often fairly limited in terms of range and/or number of test samples. Furthermore, 

every research group has used a different dataset for testing their algorithm hence crackle 

separation performance of different algorithms published by different research groups can’t be 

compared with each other especially when there is a need to make decisions about process based 

on the data. Therefore, a dataset is developed in this study, which can be used for systematic 

testing of a crackle separation technique. We have published this dataset 

(10.1109/EMBC.2019.8857928), which is available at https://doi.org/10.5258/SOTON/D0801 to 

encourage more consistency in testing regimes in future. This open access dataset provides a 

common platform to all research groups so that they can test their algorithm. The dataset consists 

of: (a) simulated fine and coarse crackles, and real fine and coarse crackles with a range of values 

for IDW and 2CD, (b) noise with the spectral characteristics of breath noise (referred to here after 

as ‘breath noise’) and (c) a real breath sound with fine crackles recorded from a patient with IPF 

and a real breath sound with coarse crackles recorded from a patient with BE, these signals were 

recorded with an electronic stethoscope and sampled at 44,100 Hz. In this thesis, we have 

selected the sampling rate of 44, 100 Hz because it is recommended by Cheetham et al., (2000) 

for respiratory sound recordings. The detail description of the dataset is presented below.   

The dataset consists of three subsets.  

https://doi.org/10.1109/EMBC.2019.8857928
https://doi.org/10.5258/SOTON/D0801
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• Test crackles comprising: (1) simulated fine crackles (SFC), (2) simulated coarse 

crackles (SCC), (3) real fine crackles (RFC), and (4) real coarse crackles (RCC).  

• Test noise comprising: (1) Gaussian white noise, (2) colored noise with the same long-

term spectral properties matching that of a healthy breath sound recorded at the 

posterior right chest location.  

• Test samples comprising: (1) real breath sound with fine crackles (RBFC), and (2) real 

breath sound with coarse crackles (RBCC).  

3.2.1 Simulated fine and coarse crackles 

The simulated fine and coarse crackles are generated using the mathematical function defined by 

(Kiyokawa et al., 2001), where the crackle waveform 𝑥(𝑡) is given by:  

𝑥(𝑡) = 𝑥0(𝑡)𝑚1(𝑡) (1) 

With 

𝑥0(𝑡) = 𝑠𝑖𝑛(4𝜋𝑡𝛼) , 𝛼 =
𝑙𝑜𝑔 (0.25)

𝑙𝑜𝑔 (𝑡0)
 

(2) 

𝑚1(𝑡) = 0.5(1 + 𝑐𝑜𝑠 [2𝜋(𝑡0.5 − 0.5)]) (3) 

where 𝑥0(𝑡) is a progressively wider sinusoidal function with first positive zero interception time 

at 𝑡0 and 𝑚1(𝑡) is a modulating function to shift the power of 𝑥0(𝑡) to the beginning of the 

crackle waveform. On the basis of IDW and 2CD, three cases of fine and coarse crackles are 

generated: (1) American Thoracic Society definition (Charbonneau et al., 2000) with: fine crackle 

IDW = 0.7 ms an 2CD = 5 ms, coarse crackle IDW = 1.5 ms and 2CD = 10 ms; (2) based on Hoevers 

(Hoevers & Loudon, 1990) with fine crackle IDW = 0.5 ms and 2CD = 3.3 ms, coarse crackle 

IDW = 1 ms and 2CD = 5.1 ms and (3) based on Cohen (Cohen, 1990) with fine crackle 

IDW = 0.9 ms and 2CD = 6 ms and coarse crackle IDW = 1.25 ms and 2CD = 9.5 ms.  

The time domain features of all three cases of simulated fine and coarse crackles are shown in 

Figure 2 & Figure 3. In the dataset for each simulated crackle case, a set of ten identical crackles 

was generated. 

3.2.2 Real fine and coarse crackles 

We selected 10 RFC from our lung sound database recorded from a patient with IPF and 10 RCC 

recorded from a patient with BE. All selected crackles followed at least  
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Figure 2                 Simulated fine crackles. 

 

Figure 3                Simulated coarse crackles.   

three of the criteria defined by Murphy (Murphy et al., 1989) as characteristic of a pulmonary 

crackle following the characteristics outlined in section 2.2. Figure 4 displays the 10 RFC selected 

from a patient with IPF and the 10 RCC selected from a patient with BE are presented in Figure 5. 

3.2.3 Simulated test signals 

Each set of crackles was buried in two types of noise: 1) Gaussian white noise and 2) noise with 

the same spectrum as breath noise from a healthy subject measured over the lung bases on the 

right-hand side of the back and SNR ranged from -10 to 10 dB in steps of 1 dB. Note that the 

interference of heart sounds on the normal breath sounds is minimum at the posterior base 

locations so this is the location used for generating the breath noise. Figure 6 shows the normal 

breath sound with no crackles recorded from a healthy subject at the location of posterior right, 

which was used for generating breath noise. A 10th order autoregressive model is used for 

generating a noise signal with the same long-term spectral properties as the input signal. Figure 7 

and Figure 8 show the generated noise signal and power spectral density plot, respectively. 
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Figure 4                 10 Real fine crackles (RFC1-RFC10) selected from a patient with IPF. 

 

Figure 5                 10 Real coarse crackles (RCC1-RCC10) selected from a patient with BE. 

3.2.4 Real breath sound with fine and coarse crackles 

In addition to the simulated data, two examples of real breath sound, one from a patient with IPF 

with predominantly fine late-inspiratory crackles and one from a patient with BE with coarse, 

mainly expiratory crackles, are included in the dataset. These sound files can provide useful 

comparisons between separation techniques to evaluate their performance in separating crackles 

from normal breath sounds in real lung sounds. The real breath sound signals are displayed in 

Figure 9 and Figure 10. 

Table 2 summarizes the different test cases. Note that the developed dataset provides test cases 

of (a) crackles embedded on background Gaussian white noise, (b) crackles buried in background 

breath noise, and (c) RBFC recorded from a IPF patient and RBCC recorded from a BE patient. 

However, the Gaussian white noise was not used in this study because it is not at all realistic. 

Therefore, only test cases with crackles embedded on background breath noise, RBFC recorded 

from a patient with IPF, and a RBCC recorded from a patient with BE were used for analyzing the 

crackle separation performance of the proposed and previously selected methods.  
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Figure 6                Breath signal used for generating breath noise in the range of -10 to 10 dB signal 

to noise ratio. 

 

Figure 7                 Time series of the synthetic breath signal with same long-term spectrum as 

breath signal. 

 

Figure 8                 Power spectral density of the breath signal and synthetic breath signal. 
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Table 2 Summary of the test dataset 

Cases NOC 𝑫𝒈 IDW & 2CD (ms) BN SNR 

 

 

 

 SFC 

 

 

 

10 

 

 

 

NA 

0.7&5 (Charbonneau et al., 2000) BRN  

 

 

 

 

 

 

 

-10  

to  

10  

dB 

WN 

0.5&3.3 (Hoevers & Loudon, 1990) BRN 

WN 

0.9&6 (Cohen, 1990) BRN 

WN 

 

 

 

 SCC 

 

 

 

10 

 

 

 

NA 

1.5&10 (Charbonneau et al., 2000) BRN 

WN 

1&5.1 (Hoevers & Loudon, 1990) BRN 

WN 

1.25&9.5 (Cohen, 1990) BRN 

WN 

 

RFC 

 

10 

 

IPF 

 

ND 

BRN 

WN 

 

RCC 

 

10 

 

BE 

 

ND 

BRN 

WN 

RBFC ND IPF ND NBS ND 

RBCC ND BE ND NBS ND 

SFC: Simulated fine crackles; SCC: Simulated coarse crackles; RFC: Real fine crackles; RCC: Real coarse 

crackles; RBFC: Real breath sound with fine crackles; RBCC: Real breath sound with coarse crackles; NOC: 

Number of crackles; 𝐷𝑔: Diagnosis; BN: Background noise; SNR: Signal to noise ratio; ND: Not defined; 

NA=Not applicable; IPF: Idiopathic pulmonary fibrosis; BE: Bronchiectasis; BRN: Breath noise; WN: Gaussian 

white noise; NBS: Normal breath sound. 
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Figure 9                Real breath sound recorded from a patient with IPF. 

 

Figure 10               Real breath sound recorded from a patient with BE. 

3.3 Summary 

This chapter presented a dataset for systematic testing of crackle separation techniques. The next 

chapter will discuss the details of the best of the currently available methods, before an enhanced 

scheme is proposed. 
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Chapter 4 Previous crackle separation techniques 

4.1  Introduction 

Three crackle separation techniques: WTST-NST filter (Hadjileontiadis & Panas, 1997), WT-FD filter 

(Hadjileontiadis, 2005(I), Hadjileontiadis, 2005(II)), and EMD-FD filter (Hadjileontiadis, 2007) were 

selected from the literature for comparing the crackle separation performance of the IEM-FD 

filter. This chapter will provide the reason for selecting these three previously published crackle 

separation techniques and detail how they work.  

4.2 Selection of previous crackle separation techniques for comparison 

As discussed in Chapter 2, in the literature, many different crackle separation techniques have 

been proposed. From different separation techniques, the WTST-NST filter, the WT-FD filter, and 

the EMD-FD filter are selected for comparing the performance of the proposed IEM-FD filter. 

Tolias et al., (1998) and Kandilogiannakis & Mastorocostas, (2018), both mentioned that among all 

the separation methods presented in the literature, the WTST-NST filter obtains best separation 

results. The WT-FD filter and the EMD-FD filter are also selected for comparison because the idea 

of the FD is already used in the fields of the wavelet transform and EMD.  

The WTST-NST filter separates wavelet transform coefficients corresponding to crackles and 

normal breath sounds using a threshold value at each decomposition scale (Hadjileontiadis & 

Panas, 1997). The number of wavelet transform scales 𝑀 = 𝑙𝑜𝑔2(𝑁), where N is the number of 

samples in the signal. In the WTST-NST filter appropriate selection of the threshold for separating 

WT coefficients related to crackles and normal breath sounds is very important for good results. 

Selecting the threshold too low leads to overestimation and a higher value may lead to 

underestimation. To overcome the requirement of empirical setting of the WTST-NST filter 

threshold, the WT-FD filter was presented (Hadjileontiadis, 2005 (I); Hadjileontiadis, 2005 (II)). In 

the WT-FD filter, firstly the input signal is decomposed into approximation and detail coefficients 

using the wavelet transform MRD process and after decomposition, wavelet transform 

coefficients related to crackles and the wavelet transform coefficients corresponding to normal 

breath sounds are separated using their FD (Hadjileontiadis & Rekanos, 2003). The idea of FD is 

further extended in the field of EMD with the EMD-FD filter (Hadjileontiadis, 2007). In this filtering 

method, those IMFs which contain contributions from the crackle part of the signal are selected 

using an energy criterion. On the selected IMFs, individually the FD technique is used to separate 

the crackle part from the normal breath sounds. The detailed working process of the FD technique 
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and all three selected crackle separation techniques (WTST-NST filter, WT-FD filter and EMD-FD 

filter) are presented below.   

4.3 Fractal dimension technique 

The FD is a noninteger, fractional dimension, of a geometric object (Esteller et al., 2001). The FD is 

a common tool in biomedical signal processing for transient detection (Goh et al., 2005). The FD 

of a time varying signal or waveform is calculated directly in the time domain, where the signal is 

considered a geometric figure (Esteller et al., 2001), and is a measure of the signal complexity in 

the time domain (Esteller et al., 1999). The fractal complexity of a signal in the time domain can 

vary hence the FD can be used to track the location of sudden changes in a time series. The FD 

technique based on Katz’s definition (Katz, 1988) for detecting crackles in the recorded lung 

sound signals was proposed by (Hadjileontiadis & Rekanos, 2003).  

The detailed working process of Katz’s definition (Katz, 1988) for estimating the FD of a curve 

defined by sequence as follows.  

𝐹𝐷 =
log10(𝑛𝑠𝑡𝑝)

log10
𝑑
𝐿𝑐

+ log10(𝑛𝑠𝑡𝑝)
 

(4) 

where 𝐿𝑐  represents the total length of the curve defined as the sum of the distances between 

successive points and 𝑑 is the diameter of the curve (Sevcik, 2010):  

𝐿𝑐 = ∑ 𝑑𝑖𝑠𝑡(𝑖, 𝑖 + 1)

𝑁−1

𝑖=1

 
(5) 

𝑑 = max[𝑑𝑖𝑠𝑡(𝑖, 𝑗)] ;  𝑖 ≠ 𝑗;  𝑖, 𝑗 ∈ [1, 𝑁 ] (6) 

Usually, for the curves that do not cross themselves, the diameter, d, of the waveform is 

evaluated as the distance between the first point of the sequence and the point of the sequence 

that gives the greatest Euclidean distance (Hadjileontiadis, 2005 (I)): 

𝑑 = max[𝑑𝑖𝑠𝑡(1, 𝑖)] ;  𝑖 ∈ [2, 𝑁 ] (7) 

where 𝑑𝑖𝑠𝑡(𝑖, 𝑗), the Euclidean distance between two points 𝑖, 𝑗 is calculated by 

𝑑𝑖𝑠𝑡(𝑖, 𝑗) = √(𝑦𝑖 −  𝑦𝑗)
2

+ (𝑛𝑖 − 𝑛𝑗)
2

 
(8) 
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with 𝑛𝑖 and 𝑛𝑗 the values of the abscissa (i.e. sample numbers) at points i and j, respectively and 

𝑦𝑖  and 𝑦𝑗 the values of the ordinate (i.e. signal amplitude) corresponding to ni and nj, respectively. 

and 𝑛𝑠𝑡𝑝 the number of steps in the curve, defined as  

𝑛𝑠𝑡𝑝 =
𝐿𝑐

𝑎̅
 

(9) 

where 𝑎̅ is the average distance between successive points such that:  

𝑎̅ =
𝐿𝑐

𝑁 − 1
 

(10) 

The FD of the signal is estimated using a sliding window, the length of the FD window is 

calculated 𝑊𝐹𝐷 = 𝑖𝑛𝑡(𝑊 × 𝑓𝑠), where 𝑓𝑠 is the sampling frequency of the signal, ‘𝑖𝑛𝑡’ is the 

operator rounding to the nearest integer and 𝑊 is the duration of the window in seconds. For 

signals used in this thesis, the sampling frequency of the input signal is 𝑓𝑠 = 44,100 𝐻𝑧 and the 

duration of the window is 6 ms (Hadjileontiadis & Rekanos, 2003), so 𝑊𝐹𝐷 =  264. The effect of 

the window length on the performance of the FD technique is discussed in section 4.3.1. 

In order to estimate the point-to-point value of the FD, a sliding window is shifted by one sample 

at a time along the signal and the estimated value of the FD for each segment of the input signal is 

assigned to the midpoint of the sliding window. In this way, we get the FD vector of length 𝑁 −

𝑊𝐹𝐷 + 1 for an input signal of length 𝑁. The difference in length between the input signal and 

estimated FD is 𝑊𝐹𝐷 − 1, so to make the estimated FD length equal to the length of the input 

signal, the first value of the fractal dimension 𝐹𝐷(1) and last value of the fractal 

dimension 𝐹𝐷(𝑁 − 𝑊𝐹𝐷 + 1) are assigned to the first and last half of the missing value of 

length 𝑊𝐹𝐷 − 1, respectively. Equation (11) is used to make the minimum value of the 𝐹𝐷 always 

equal to ‘1’.  

𝐹𝐷 = 𝐹𝐷 − 𝑚𝐹𝐷 + 1 (11) 

where 𝐹𝐷 is the FD estimate of the waveform using Eq. (4) and 𝑚𝐹𝐷 is the minimum value of 𝐹𝐷 .  

After estimating the FD of the input signal, the iterative FDPP algorithm (Hadjileontiadis & 

Rekanos, 2003) is used to automatically identify the location and duration of the FD peaks. The 

iterative FDPP algorithm not only searches for the high peaks of the FD vector, which may 

correspond to the high amplitude crackles but also look for the low peaks within the FD vector, 

which may correspond to the small amplitude crackles (Hadjileontiadis & Rekanos, 2003). The 

working process of the FDPP algorithm is described in the following steps. In this method, first the 

standard deviation of the estimated FD is calculated.   
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𝑆𝐷𝑙 = 𝜎(𝐹𝐷𝑙
),     (12) 

where 𝑙 is the iteration index i.e. 𝑙 = 1,2,3 … 𝐿 and 𝑆𝐷𝑙  is the standard deviation of the FD 

estimate at iteration 𝑙. 

The standard deviation at each iteration, 𝑆𝐷𝑙  is compared with each coefficient of the 𝐹𝐷𝑙
(𝑛) to 

estimate the number of peaks related to the sudden occurrence of transient signals such as 

crackles. If 𝐹𝐷𝑙
(𝑛) > 1 + 𝑆𝐷𝑙, peak fractal dimension 𝑃𝐹𝐷𝑙

(𝑛) = 𝐹𝐷𝑙
(𝑛)(valid peaks), else 

𝑃𝐹𝐷𝑙
(𝑛) = 1.0 (no peaks). Now the peak peeling process is started in which peak fractal 

dimension coefficients are subtracted from FD coefficients and using the residual signal (𝑧𝑙(𝑛)) 

the stopping criterion is calculated: 

𝑧𝑙(𝑛) = 𝐹𝐷𝑙
(𝑛) − 𝑃𝐹𝐷𝑙

(𝑛) + 1 (13) 

𝑆𝑇𝐶3𝑙 = |(𝑧𝑙−1
2 (𝑛))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ − (𝑧𝑙

2(𝑛))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ | (14) 

where ( . ̅) denotes the average value, |. | represents the absolute value, and 𝑧0 = 0. 

In the last step, the stopping criterion, 𝑆𝑇𝐶3, is compared with constant 𝛽3 (accuracy level).  

If 𝑆𝑇𝐶3𝑙 ≥ 𝛽3, fractal dimension 𝐹𝐷𝑙+1
(𝑛) = 𝑧𝑙(𝑛) until 𝑙 = 𝐿 and end the loop. 

𝐹𝐷𝑃𝑃(𝑛) = ∑ 𝑃𝐹𝐷𝑙
(𝑛)

𝐿

𝑙=1

− (𝐿 − 1) 

 

(15) 

where the accuracy level 𝛽3 is between the 0 and 1 i.e. 0 < 𝛽3 < 1. 

For the better understanding of the process, a schematic representation of the FDPP algorithm is 

shown in Figure 11 and a worked example of the FD technique is shown in Figure 12. Figure 12 (a) 

displays a section of the lung sound signal (0.743 s) with coarse crackles recorded from a BE 

patient (Chapter 3, Table 2 case RBCC). The location of the crackles has been audio-visually 

identified by an experienced pulmonary acoustics researcher and marked with arrowheads. Note 

that this example will be used repeatedly as a typical example. From the Figure 12 (b-c) it is clear 

that the FD technique not only tracks the location and time duration of the high amplitude 

crackles but also identifies the small amplitude crackles. Although, the FD technique can detect 

crackles in the recorded lung sounds, it cannot separate them from normal breath sounds. In the 

FD technique, the selection of window length (WFD) is critical for its overall performance. The 

effect of window length on performance is discussed below. 
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Figure 11               A schematic diagram of the FDPP algorithm.   
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(a) 

 

(b) 

 

(c) 

Figure 12               Result of applying the FD technique (a) A time section of 0.743 s lung sound 

recorded from a BE patient (Chapter 3, Table 2 case RBCC), (b) FD estimated 

using the Katz’s definition (c) output of the FDPP algorithm.   
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(a) 

 

(b) 

 

(d) 

 

(c) 

 

(e) 

Figure 13               The FD technique response. (a) A time section of  0.743 s lung sound recorded 

from a BE patient (Chapter 3, Table 2 case RBCC). When window length is low 

i.e. 𝑊𝐹𝐷 = 26 (𝑊𝐹𝐷=int(0.0006𝑓𝑠) i.e. 0.6 ms); (b) FD estimated using the Katz’s 

definition and (c) output of the FDPP algorithm. When window length is high 

i.e. 𝑊𝐹𝐷 = 2646 (𝑊𝐹𝐷=int(0.06𝑓𝑠) i.e. 60 ms); (d) FD estimated using the Katz’s 

definition and (e) output of the FDPP algorithm.   
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4.3.1 Effect of fractal dimension window length  

In the FD technique, the selection of the appropriate window length is very important. Figure 13 

(a) indicate an input lung sound signal with coarse crackles (marked with arrowheads). Figure 13 

(b-c) show the response of the FD technique when window length is low (e.g. 𝑊𝐹𝐷 =

𝑖𝑛𝑡(0.0006𝑓𝑠)=26, i.e. 0.6 ms): (b) estimated FD of the input lung sound signal, (c) output of the 

FDPP algorithm; and Figure 13 (d-e) show the result of the FD technique when the window length 

is too high (e.g. 𝑊𝐹𝐷 = 𝑖𝑛𝑡(0.06𝑓𝑠) =2646, i.e. 60 ms): (d) estimated FD of the input lung sound 

signal, (e) output of the FDPP algorithm. In these figures, we can notice that if the window length 

is low, too many false FD peaks are generated and for the higher value of the window length the 

FD time series is smoothed. 

4.4 Wavelet transform stationary non-stationary (WTST-NST) filter 

Hadjileontiadis & Panas, (1997) proposed the wavelet transform based crackle separation 

technique (WTST-NST) filter. The WTST-NST filtering method separates stationary from non-

stationary parts of a signal and hence can be used to separate crackles from normal breath 

sounds. Lung sounds can be divided into stationary and non-stationary parts where normal breath 

sounds are generally stationary and crackles non-stationary. The idea behind this filtering method 

is that explosive peaks in the time domain (crackles) have large components over many wavelet 

scales, but most components related to background noise (normal breath sounds) reduce with 

increasing wavelet scale (Hadjileontiadis & Panas, 1997). This fact permits the separation of 

wavelet transform coefficients with respect to their amplitude related to crackles and normal 

breath sounds at each wavelet scale using some threshold value. At each wavelet scale the 

threshold value is based on the standard deviation of the wavelet transform coefficients and an 

empirical multiplication factor. In this technique, an iterative MRD-MRR scheme are applied to the 

input signal. A schematic diagram of the WTST-NST filter is shown in Figure 14. In this filtering 

method firstly, the input signal is decomposed into multiple scales of approximation and detail 

coefficient vectors using an MRD scheme. The wavelet transform is calculated using the db4 

quadrature mirror filters (QMF’s) of eight coefficients (Daubechies, 1988; Hadjileontiadis & Panas, 

1997). 

𝑊𝑇𝑘
𝑚 = 𝑀𝑅𝐷[𝑦𝑘(𝑛)]𝑚 𝑠𝑐𝑎𝑙𝑒𝑠  ;  𝑛 = 1,2, … . 𝑁;      𝑚 = 1, … , 𝑀, 𝑀 = 𝑙𝑜𝑔2(𝑁) (16) 

Where 𝑘 is the iteration index i.e. 𝑘 = 1,2,3 … 𝐾, 𝑚 is the WT scale index, 𝑁 is the number of 

samples, and 𝑦𝑘(𝑛) is the input signal at iteration 𝑘. In the MRD firstly, the input signal is 

convolved with the mother wavelet (Daubechies-4 wavelet is taken as the mother wavelet) low 
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pass filter and high pass filter coefficients followed by dyadic decimation (down sampling:-keep 

the even indexed elements) which gives an approximation coefficients vector and a detail 

coefficients vector, respectively. In the next scale, the approximation coefficients vector is further 

decomposed in approximation and detail coefficient vectors. In this algorithm, number of samples 

N= 32,768 i.e. 𝑀 = 15. The length of the low pass and high pass filters is B (for Daubechies-4 

wavelet, filter order u=4 and filter length B=2u=8). The low pass and high pass filters in WT are 

known as quadrature mirror filters and Eq. (17) shows the relationship between the coefficients 

of the MRD low pass filter (h(b)) and high pass filter (g(b)); the correlation between the MRR low 

pass filter (ℎ1(𝑏)) and high pass filter (𝑔1(𝑏)) is shown in Eq. (18). 

𝑔(𝐵 − 1 − 𝑏) = (−1)𝑏. ℎ(𝑏) (17) 

𝑔1(𝑏) = (−1)𝑏 . ℎ1(𝐵 − 𝑏 − 1) (18) 

where 𝑏 denotes the filter length index i.e. 𝑏 = 0,1, … , 𝐵 − 1. In the wavelet transform, only the 

approximation coefficients vector is decomposed at every scale and successive detail coefficients 

are never reanalyzed. Figure 15 shows the MRD for WT scales. 

After decomposition, a threshold value is applied at each scale to separate WT coefficients related 

to crackles from the normal breath sounds. 

𝑇ℎ𝑘
𝑚 = 𝑆𝐷𝑘

𝑚𝐹𝑎𝑑𝑗 (19) 

Where 𝑆𝐷𝑘
𝑚 is the standard deviation of the wavelet transform coefficients at iteration k and 

scale m, and 𝐹𝑎𝑑𝑗 is the adjusting multiplication factor. Here, 𝐹𝑎𝑑𝑗 = 3 (Hadjileontiadis & Panas, 

1997) is used. The wavelet transform coefficients 𝑊𝑇𝑘
𝑚 > 𝑇ℎ𝑘

𝑚 are related to crackles and the 

remaining wavelet coefficients are related to normal breath sounds. After separating the 

coefficients, using a threshold value, reconstruction of the non-stationary and stationary 

parts 𝑁𝑆𝑇𝑆𝑘(𝑛) and 𝑆𝑇𝑆𝑘(𝑛), respectively is made using the MRR scheme. In the MRR scheme, 

firstly, approximation and detail coefficients vectors at scale m, are up-sampled (insert zeros at 

even indexed elements) and the resulting signals are convolved with the Daubechies-4 wavelet 

reconstruction low pass filter and high pass filter. After convolution, the centre part of the 

obtained signal with length equal to the length of scale m-1 detail coefficients vector is taken 

which provides scale m-1 approximation coefficients vector. In the wavelet transform MRR 

process at each scale the approximation coefficients vector and the detail coefficients vector are 

used to obtain the previous scale approximation coefficients vector and at last i.e. scale M-(M-1) 

approximation coefficients vector and detail coefficients vector provide input signal. Note that 

here at each scale wavelet transform coefficients are separated into those related to the crackles 
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(𝑊𝑇𝐶𝑘
𝑚) and those related to the normal breath sounds (𝑊𝑇𝑁𝐵𝑘

𝑚). MRR is applied to both the 

wavelet transform coefficients related to crackles and the wavelet transform coefficients related 

to normal breath sounds to create estimates of the non-stationary (𝑁𝑆𝑇𝑆𝑘(𝑛)) and stationary 

(𝑆𝑇𝑆𝑘(𝑛)) parts of the input signal. Figure 16 shows the MRR for wavelet transform coefficients 

related to crackles and the MRR for wavelet transform coefficients related to normal breath 

sounds is shown in Figure 17. The iteration procedure stops after satisfying the stopping criterion: 

𝑆𝑇𝐶2𝑘 = |(𝑆𝑇𝑆𝑘−1
2 (𝑛))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ − (𝑆𝑇𝑆𝑘

2(𝑛))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅|< 𝛽2,    0 < 𝛽2 < 1 (20) 

where 𝛽2 is the accuracy level and 𝑆𝑇𝑆0 = 0.  

After the last iteration 𝐾,  𝑆𝑇𝑆𝐾 provides the stationary part and the summation of estimated 

non- stationary parts separated at each iteration gives the total non-stationary part of the signal 

𝑁𝑆(𝑛). 

𝑁𝑆(𝑛) = ∑ 𝑁𝑆𝑇𝑆𝑘

𝐾

𝑘=1

(𝑛) 
(21) 

𝑆𝑇(𝑛) = 𝑆𝑇𝑆𝐾(𝑛) (22) 

A worked example of the WTST-NST filter is shown in Figure 18.  

Figure 18 (a) shows an input lung sound signal with coarse crackles (marked with arrowheads). 

The non-stationary (𝑁𝑆(𝑛)) and stationary (𝑆𝑇(𝑛)) parts after applying the WTST-NST filter are 

shown in Figure 18 (b) and (c), respectively. Comparing these results with the input signal we can 

notice that all the crackles are separated into the non-stationary part. However, it is important to 

notice that the non-stationary part not only consists the crackles but also contains some portion 

of the background noise (normal breath sounds) or residue of the normal breath sounds, which 

shows overestimation. For any crackle separation technique, it is not only important to separate 

crackles in the non-stationary part, but it is also important to minimize the non-crackle 

contribution to the non-stationary output. Estimation of the number of crackles and their time 

domain features (IDW, LDW, 2CD) can be more accurate following crackle separation with 

minimal over or under estimation. 
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Figure 14               A schematic diagram of the WTST-NST filter.  
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Figure 15               Wavelet transform MRD of scale 𝑚 = 1,2, … , 𝑀, 𝑀 = 15.   
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Figure 16               MRR for wavelet transform coefficients related to crackles (𝑊𝑇𝐶𝑘
𝑚) scales 𝑚 =

1,2, … , 𝑀, 𝑀 = 15.   
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Figure 17               MRR for wavelet transform coefficients related to normal breath sounds 

(𝑊𝑇𝑁𝐵𝑘
𝑚) scales 𝑚 = 1,2, … , 𝑀, 𝑀 = 15.   
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(a) 

 

(b) 

 

(c) 

Figure 18               Result of applying the WTST-NST filter (a) A time section of  0.743 s lung sound 

recorded from a BE patient (Chapter 3, Table 2 case RBCC), (b) WTST-NST filter 

non-stationary output (c) WTST-NST filter stationary output.   



Chapter 4 

44 

 

(a) 

 

(b) 

 

(d) 

 

(c) 

 

(e) 

Figure 19              The WTST-NST filter response. (a) A time section of 0.743 s lung sound recorded 

from a BE patient (Chapter 3, Table 2 case RBCC). When low threshold (𝐹𝑎𝑑𝑗 =

0.3); (b) WTST-NST filter non-stationary output (c) WTST-NST filter stationary 

output. When high threshold (𝐹𝑎𝑑𝑗 = 8.6); (d) WTST-NST filter non-stationary 

output (e) WTST-NST filter stationary output.    
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4.4.1 Effect of threshold 

The WTST-NST filter is a threshold-based method, and the appropriate selection of the threshold 

is very important for good performance by the WTST-NST filter. Figure 19 (a) shows an input lung 

sound signal with coarse crackles (marked with arrowheads). From Figure 19 (b-c) it can be 

noticed that for a low value of the threshold (in this example 𝐹𝑎𝑑𝑗 = 0.3), the non-stationary part 

includes a portion of the normal breath sounds. On the other hand, in Figure 19 (d-e) we can see 

if the threshold value is high (𝐹𝑎𝑑𝑗 = 8.6), the separation of crackles is not accurate. 

4.5  Wavelet transform fractal dimension (WT-FD) filter 

To overcome the requirement of empirical setting of a threshold in the WTST-NST filter, the FD 

technique (Hadjileontiadis & Rekanos, 2003) is applied to the WT domain for automatically 

separating the WT coefficients related to crackles and to normal breath sounds (Hadjileontiadis, 

2005(I); Hadjileontiadis, 2005(II)). In this filtering method firstly, the input signal is decomposed 

into an approximation coefficients vector and a detail coefficients vector using the MRD process 

similar to the WTST-NST filter using the db4 QMF’s of eight coefficients but here WT scale is used 

𝑚 = 1 (Hadjileontiadis, 2005(II)). 

𝑊𝑇𝑘
1 = 𝑀𝑅𝐷[𝑥(𝑛)]𝑚 𝑠𝑐𝑎𝑙𝑒𝑠   (23) 

After decomposing the input signal, the FD of the wavelet transform coefficients is calculated 

using a overlapped sliding window 6 ms duration (Hadjileontiadis, 2005(II)) which is shifted one 

sample along the length input signal for estimating the point to point FD. In this work, the 

sampling frequency chosen is 𝑓𝑠 = 44,100 Hz. 

𝐹𝐷𝑘
𝑚 = 𝐹𝐷[𝑊𝑇𝑘

𝑚] (24) 

Then the FDPP algorithm is applied to the estimated FD.  

𝐹𝐷𝑃𝑃𝑘
𝑚 = 𝐹𝐷𝑃𝑃[𝐹𝐷𝑘

𝑚 ] (25) 

For detail of the working of the FD technique see section 4.3. 

After automatically estimating the FD peaks, two binary thresholds are computed one is related to 

crackle sounds 𝑁𝐵𝑇𝐻𝑘  and the other one is related to normal breath sounds 𝑆𝐵𝑇𝐻𝑘. 

𝑁𝐵𝑇𝐻𝑘
𝑚 = {

1 𝑖𝑓 𝐹𝐷𝑃𝑃𝑘
𝑚 ≠ 1

0 𝑖𝑓 𝐹𝐷𝑃𝑃𝑘
𝑚 = 1

 
(26) 
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𝑆𝐵𝑇𝐻𝑘
𝑚 = [1 − 𝑁𝐵𝑇𝐻𝑘

𝑚] (27) 

When both thresholds are constructed they are multiplied by the WT coefficients calculated from 

the MRD scheme i.e. 𝑊𝑇𝑘
𝑚 (see Figure 20), where 𝑘 is the iteration index i.e. 𝑘 = 1,2, … . , 𝐾 and 

𝑚 is the WT scale (𝑚 = 1). 

The result of these two multiplications provides the WT coefficients related to crackles 

i.e. 𝑊𝑇𝐶𝑘
𝑚, and WT coefficients related to normal breath sounds i.e. 𝑊𝑇𝑁𝐵𝑘

𝑚. 

Now by using a MRR procedure section 4.4 a first version of the non-stationary part i.e. 

𝑁𝑆𝑇𝑆𝑘(𝑛), and the stationary part i.e. 𝑆𝑇𝑆𝑘(𝑛) are estimated. The iteration procedure stops 

when it satisfies the stopping criterion: 

𝑆𝑇𝐶2𝑘 = |(𝑆𝑇𝑆𝑘−1
2 (𝑛))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ − (𝑆𝑇𝑆𝑘

2(𝑛))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅|< 𝛽2,    0 <  𝛽2 < 1 (28) 

where 𝑆𝑇𝑆0 = 0.  

At iteration 𝑘 = 𝐾, the non-stationary and stationary parts of the input signal are calculated using 

Eq. (29) and Eq. (30). 

𝑁𝑆(𝑛) = ∑ 𝑁𝑆𝑇𝑆𝑘

𝐾

𝑘=1

(𝑛) 
(29) 

𝑆𝑇(𝑛) = 𝑆𝑇𝑆𝐾(𝑛) (30) 

A schematic diagram of the WT-FD filter is shown in Figure 20 and the working example of the 

WT-FD filter is displayed in Figure 21. Figure 21 (a) shows an input lung sound signal with coarse 

crackles (marked with arrowheads). The non-stationary and stationary parts after applying the 

WT-FD filter are illustrated in Figure 21 (b) and  (c), respectively. Comparing these results with the 

input lung sound signal it can be observed that all the crackles are separated into the non-

stationary part. Here, it is also important to notice that in the stationary output some normal 

breath sounds segments are missing at the location of crackles. This indicates that the WT-FD 

filter can separate normal breath sounds from non-crackle locations but it is not able to perfectly 

separate normal breath sounds at the location of crackles. This effect occurs due to magnitude 

domination of WT coefficients related to crackles over the WT coefficients corresponding to 

normal breath sounds (Hadjileontiadis, 2005(II)). For any crackle separation technique it is not 

only important to separate normal breath sounds from where crackles are not present but it is 

also important to separate normal breath sounds where crackles are present, to reveal the actual 

morphology of the crackles. 
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Figure 20               A schematic diagram of the WT-FD filter.   
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(a) 

 

(b) 

 

(c) 

Figure 21               Result of applying the WT-FD filter (a) A time section of 0.743 s lung sound 

recorded from a BE patient (Chapter 3, Table 2 case RBCC), (b) WT-FD filter non-

stationary output (c) WT-FD filter stationary output. 
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4.6 Empirical mode decomposition fractal dimension (EMD-FD) filter 

The crackle identification ability of the FD technique is further applied in the field of EMD, 

Hadjileontiadis (Hadjileontiadis, 2007), proposed the EMD-FD filter for automatically separating 

crackles from normal breath sounds. In this section, firstly, the detailed working process of the 

EMD method (Huang et al., 1998) is presented and then the EMD-FD filter is discussed. 

4.6.1 Empirical mode decomposition (EMD) 

Huang (Huang et al., 1998) proposed the EMD method for adaptively decomposing a signal into its 

IMFs and a residual component in decreasing order of frequency. Each estimated IMF follows two 

conditions: (i) The number of extrema points and the number of zero crossing either be equal or 

differ at most by one, (ii) At any point, the mean value of the envelope defined by the local 

maxima and the envelope defined by the local minima is zero (Huang et al., 1998; Omitaomu et 

al., 2011; Bajaj & Pachori, 2012; Lei et al., 2013; Chauhan et al., 2010; Zhang et. al., 2018) i.e. its 

envelopes are symmetric with respect to local zero mean. On the other side, the residual 

component contains only one extremum value. The procedure of extracting IMFs from an input 

signal using sifting process is explained in following steps. 

Step (1):- The decomposition process starts with identifying extrema points i.e. local maxima and 

local minima of the input signal. 

In the input signal (y(n)), any sample is a maximum if its preceding slope (n-1) is positive and 

succeeding slope (n+1) is negative. A sample is a minimum point if its preceding slope is negative 

and succeeding slope is positive.  

Step (2):- After finding the extrema points of the input signal, all the maxima are connected with 

each other to estimate an upper envelope (𝑈𝑃𝑒𝑛𝑣(𝑛)) and all the minima are connected to each 

other to extract a lower envelope (𝐿𝑊𝑒𝑛𝑣(𝑛)) using cubic spline interpolation.  

Step (3):- Once, the upper and lower envelopes are estimated their mean is calculated. 

𝑚(𝑛) =
𝑈𝑃𝑒𝑛𝑣(𝑛) + 𝐿𝑊𝑒𝑛𝑣(𝑛)

2
 

(31) 

Step (4):- The difference between the input signal (y(n)) and mean (m(n)) provides the first proto 

IMF 𝑝1(𝑛). 

𝑝1(𝑛) = 𝑦(𝑛) − 𝑚(𝑛) (32) 

Step (5):- Now, the proto-IMF is tested with the IMF conditions using the sifting criterion.  
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𝑆𝐶 = ∑ [
|(𝑝1𝑖1−1

(𝑛) − 𝑝1𝑖1
(𝑛))|2

𝑝1𝑖1−1
2 (𝑛)

]

𝑁

𝑛=1

 
(33) 

where 𝑖1 is the number of times the sifting criterion is repeated for searching an IMF. The value of  

𝑆𝐶  lies between 0.2-0.3 (Huang et al., 1998). If the proto-IMF satisfies the sifting criterion then it is 

considered as an IMF (𝑐1(𝑛)) otherwise steps 1 to 4 are repeated. 

Each IMF satisfies two conditions; Figure 22 (a) shows the first condition of the IMF, in which the 

number of zero crossings is 14 and the number of extrema (maxima (7) + minima points (6)) is 13 

(one less than the number of zero crossings) and Figure 22 (b) shows the second condition of the 

IMF in which the mean of the point on the upper and lower envelopes is zero i.e.  (0.0159 + (-

0.0159))/2=0. 

Step (6):- Once the first IMF is calculated it is subtracted from the input signal and the resultant 

output is used as an input for finding the next IMF. 

𝑟1(𝑛) = 𝑦(𝑛) − 𝑐1(𝑛) (34) 

Step (7):- If the signal contains only one extremum or the signal becomes a monotonic function 

from which no more IMFs can be obtained this signal is assigned as a residual component; 

otherwise repeat step 1 to 6. Figure 23 shows the residue component which contains only one 

extremum. 

Step (8):- We can estimate the input signal back by adding together all the IMFs and residue 

component. 

𝑦(𝑛) = ∑ 𝑐𝑓(𝑛)

𝐹

𝑓=1

+ 𝑟𝐹 
(35) 

Where 𝐹 is the number of IMFs and 𝑟 is the residue component. 

The EMD method can decompose a signal into IMFs and a residual component, but it is not 

sufficient on its own for automatic separation of crackles from the normal breath sounds because 

the IMFs not only contain the crackle parts but also consist of a portion of the normal breath 

sounds, as shown in Figure 24, where an input lung sound signal is decomposed into 19 IMFs and 

a residual component. Figure 24 (a) shows an input lung sound signal with coarse crackles 

(marked with arrowheads). Figure 24 (b) and (c) show the extracted IMFs (19 IMFs) and a residual 

component, respectively.    
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(a) 

 

(b) 

Figure 22                IMF conditions: (a) IMF first condition (b) IMF second condition.  

 

Figure 23               Residue component.  
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4.6.2 Empirical mode decomposition fractal dimension (EMD-FD) filter 

Hadjileontiadis, (2007) presented a combination of the EMD method (Huang et al., 1998) with FD 

technique (Hadjileontiadis & Rekanos, 2003). The EMD-FD filter adaptively captures the crackles 

from the IMFs and successfully extracts them from the normal breath sounds. In this filtering 

method firstly, the input signal is decomposed using the EMD method (see section 4.6.1) and after 

decomposition, a number of IMFs, 𝑉, which are related to crackles are selected using an energy 

criterion. Now, the FD technique separates the crackles and normal breath sounds from the 

selected IMFs. Once the normal breath sounds is separated from the selected IMFs, the remaining 

parts are combined to estimate the crackles. The separated normal breath sounds, a combination 

of remaining IMFs and a residual component, provides the overall normal breath sounds in the 

input signal. The working process of the EMD-FD method is described in the following steps:-  

Step (1):- First of all, the input signal is decomposed into different IMFs and a residual  

i.e. 𝑐𝑓(𝑛) and 𝑟𝐹(𝑛) using EMD (Huang et al., 1998).  

Step (2):- Now, from the F estimated IMFs the first 𝑉 IMFs are selected using the energy criterion. 

𝑉 = min{𝑓: |(𝛾𝑓
′)| > 𝑝 &|(𝛾𝑓+1

′ )| ≤ 𝑝 & 𝛾𝑓
′′ > 0} , 𝑓 = 1,2, . . , 𝐹 (36) 

𝛾𝑓 = 1 −
∑ (𝑐1𝑎1

2 (𝑛))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅𝑓
𝑎1=1

∑ (𝑐1𝑎1
2 (𝑛))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅𝐹

𝑎1=1

 
(37) 

where 𝛾𝑓
′  and 𝛾𝑓

′′ are a first and second derivatives of the 𝛾𝑓, with respect to 𝑓. 𝑝 is a small 

threshold value (𝑝=0.05 (Hadjileontiadis, 2007)). 

Step (3):- Now the FD technique (see section 4.3) is applied to all V selected IMFs and two binary 

thresholds i.e. 𝑁𝐵𝑇𝐻𝑣(𝑛) and 𝑆𝐵𝑇𝐻𝑣(𝑛) are calculated where 𝑣 = 1, … . , 𝑉: 

𝑁𝐵𝑇𝐻𝑣(𝑛) = {
1 𝑖𝑓 𝐹𝐷𝑃𝑃𝑣

(𝑛) ≠ 1

0 𝑖𝑓 𝐹𝐷𝑃𝑃𝑣
(𝑛) = 1

 
(38) 

𝑆𝐵𝑇𝐻𝑣(𝑛) = [1 − 𝑁𝐵𝑇𝐻𝑣(𝑛)] (39) 

where 𝐹𝐷𝑃𝑃 is the FDPP algorithm which is used within the FD technique for estimating FD peaks 

which may correspond to crackles. 

After that by multiplying the threshold 𝑁𝐵𝑇𝐻𝑣(𝑛), with the corresponding IMFs, the part of the 

IMFs related to crackles  𝑐𝑣
𝐶𝑟𝑎𝑐𝑘𝑙𝑒𝑠(𝑛), 𝑣 = 1, … . , 𝑉;  𝑛 = 1, … . , 𝑁 is obtained and in the same way 

by multiplying the threshold 𝑆𝐵𝑇𝐻𝑣(𝑛) with the corresponding IMFs, the portions related to 

normal breath sounds 𝑐𝑣
𝑁𝐵𝑆(𝑛), 𝑣 = 1, … . , 𝑉;  𝑛 = 1, … . , 𝑁, are kept. 
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(a) 

 

 

(b) 

 

(c) 

Figure 24               Result of applying the EMD method (a) A time section of 0.743 s lung sound 

recorded from a BE patient (Chapter 3, Table 2 case RBCC), (b) Estimated IMFs 

(c) Estimated residual component.  
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Step (4):- Now the nonstationary and stationary parts of the signal are calculated using Eq. (40) 

and Eq. (41), respectively. 

𝑁𝑆𝑇𝑆(𝑛) = ∑ 𝑐𝑣
𝐶𝑟𝑎𝑐𝑘𝑙𝑒𝑠

𝑉

𝑣=1

(𝑛), 𝑛 = 1,2, . . . , 𝑁 
(40) 

𝑆𝑇𝑆(𝑛) = ∑ 𝑐𝑣
𝑁𝐵𝑆

𝑉

𝑣=1

(𝑛) + ∑ 𝑐𝑢1

𝐹

𝑢1=𝑉+1
(𝑛) + 𝑟𝐹(𝑛) 

(41) 

If the crackles are not a good estimate of the expected crackle signal, the EMD-FD filter can be 

further extended to an iterative EMD-FD filter based on the stationary otput (𝑆𝑇𝑆(𝑛)) (see Figure 

25).  

Step (5):- In the iterative process to stop the iteration a stopping criterion using Eq. (42) is 

calculated. 

𝑆𝑇𝐶2𝑘 = |(𝑆𝑇𝑆𝑘−1
2 (𝑛))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ − (𝑆𝑇𝑆𝑘

2(𝑛))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅| (42) 

where 𝑘 is the iteration index i.e. 𝑘 = 1,2, … . , 𝐾 and  𝑆𝑇𝑆0 = 0. 

Step (6):- In this step a computed stopping criterion i.e. STC2 is compared with the constant value 

𝛽2. 

If 𝑆𝑇𝐶2𝑘>=𝛽2 , input signal 𝑦𝑘+1 = 𝑆𝑇𝑆𝑘(𝑛) and repeat the step 1 to 5 else k = K and end the 

iterative loop.  

where 𝛽2 is the accuracy level whose value lie between 0 to 1. Here value of the 𝛽2 is selected 

𝛽2=0.1. 

Step (7):- In the final step, that nonstationary and stationary parts of the signal are calculated.  

𝑁𝑆(𝑛) = ∑ 𝑁𝑆𝑇𝑆𝑘

𝐾

𝑘=1

(𝑛) 
(43) 

𝑆𝑇(𝑛) = 𝑆𝑇𝑆𝐾(𝑛), 𝑛 = 1,2, … , 𝑁 (44) 

For better understanding of the EMD-FD filter a flow chart is presented in Figure 25 and a worked 

example of the EMD-FD filter is shown in Figure 26. Figure 26 (a) shows an input lung sound signal 

with coarse crackles (marked with arrowheads). The non-stationary and stationary outputs after 

applying the EMD-FD filter are shown in Figure 26 (b) and (c), respectively. Comparing these 

results with the input lung sound signal it can be observed that all the crackles are separated into  



Chapter 4 

55 

 

Figure 25               A schematic diagram of the EMD-FD filter.  
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(a) 

 

(b) 

 

(c) 

Figure 26               Result of applying the EMD-FD filter (a) A time section of 0.743 s lung sound 

recorded from a BE patient (Chapter 2, Table 3 case RBCC), (b) EMD-FD filter 

non-stationary output (c) EMD-FD filter stationary output.   
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Figure 27               The estimated 𝛾𝑓, parameter, corresponding to 19 IMFs.   

the non-stationary output and normal breath sounds in the stationary output. However, in the 

EMD-FD filter the selection of how many independent mode functions contain crackle information 

is very challenging. A larger or smaller number of IMFs may lead to overestimation or 

underestimation, respectively. As can be observed in Figure 26 (b), the non-stationary output not 

only contains the crackles but also some portion of the normal breath sounds (overestimation), 

which is probably due to selecting to many IMFs using the criterion discribed in step 2. The 

estimated 𝛾𝑓, parameter, corresponding to 19 IMFs is shown in Figure 27. The selected 𝑉 IMFs 

using Eq. (36) is marked in Figure 27. 

4.7 Summary 

Chapter 4 provided the detailed working process of the FD technique and three different 

previously published crackle separation techniques: the WTST-NST filter, the WT-FD filter and the 

EMD-FD filter. Automatic separation of crackles from normal breath sounds can lead to better 

estimation of crackle features and hence can play an important role in early diagnosis or 

monitoring of different cardio pulmonary diseases. Separation can reveal not only the large 

amplitude crackles but also the small amplitude crackles, which are often significantly masked by 

the normal breath sounds. In the next chapter, a new method for automatic separation of 

crackles from normal breath sounds is presented.  
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Chapter 5 Proposed iterative envelope mean fractal 

dimension (IEM-FD) filter 

5.1  Introduction 

In the last chapter, the detailed working process of some previously published crackle separation 

techniques was presented. This chapter will provide the detailed working process of the proposed 

IEM-FD filter for automatically separating crackles from normal breath sounds which is the 

primary contribution of this study. 

5.2 Iterative envelope mean fractal dimension (IEM-FD) filter 

The IEM-FD filter comprises two techniques: (a) Iterative envelope mean (IEM) method and (b) FD 

technique (Hadjileontiadis & Rekanos, 2003). The FD technique is already used with the wavelet 

transform (WT-FD filter: Hadjileontiadis, 2005(I); Hadjileontiadis, 2005 (II)) and with empirical 

mode decomposition (EMD-FD filter: Hadjileontiadis, 2007) for crackle separation (Chapter 4). 

Here the use of the FD technique is paired with a new separation method: IEM. The IEM method 

separates the stationary and non-stationary parts of the lung sound signal and, the FD technique 

is then applied to the non-stationary output of the IEM method to refine the separation further. 

Lung sounds are a combination of normal breath sounds and aided sounds such as crackles. As 

with previously published techniques IEM relies on the relative stationarity of the short-duration 

crackles sounds as compared with the breath sounds. 

5.2.1 Iterative envelope mean method  

The IEM method is a new method for estimating stationary and non-stationary parts of the lung 

sound signal. In the IEM method, firstly we estimated the upper and lower envelopes of the 

smoothed lung sound signal. The upper and lower envelopes are estimated using the local 

maximum and local minimum locations respectively of the first derivative of the smoothed lung 

sound signal, next the envelope mean value is estimated using the average of the upper and 

lower envelopes of the smoothed lung sound signal. The idea behind the IEM method is to 

subtract the envelope mean value from the original lung sound signal and to use the resulting 

signal as the input for a subsequent iteration. After a number of iterations, Q, the IEM method will 

provide an estimate of the non-stationary part of the lung sound signal oscillating around the 

horizontal axis and the summation of the envelope mean at each iteration will give the stationary 

part of the lung sound signal.  
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The detailed working of the IEM method is described below. 

In the first step, the lung sound signal is smoothed and its first and second derivatives are 

calculated using a filter from the SG family. The SG filter parameters are selected according to the 

guidelines proposed by Vannuccini et al., (1998):  degree of fitting polynomial 𝑝𝑓 = 4 and number 

of coefficients  𝑛𝑐 equal to approximately one or two times the half-width of the shortest-

duration feature of interest in the signal. In the case of crackles, the first deflection (IDW) is 

considered the shortest cycle of the crackle. The IDW of the crackle is generally less than 2 ms and 

in our data, where the sampling frequency of the lung sound signal is 44,100 Hz, the half width is 

less than 88 samples. The SG filter parameters used here are therefore 𝑝𝑓 = 4, 𝑛𝑐 = 89 and order 

of derivation 𝑑𝑜 = 0, 1 and 2 for smoothing the lung sound signal, and estimating first and second 

derivatives of the smoothed lung sound signal, respectively.  

Once the smoothed lung sound signal and its first and second derivatives are calculated using the 

SG filter, all the local maxima and minima of the first derivative (𝑦𝑠
′(𝑛)) are identified and 

classified using sign changes of the second derivative (𝑦𝑠
′′(𝑛)) of the smoothed lung sound signal 

(𝑦𝑠(𝑛)).  

The coordinates of the smoothed lung sound signal at the location of each of the first derivative 

local maxima and minima are then calculated. A cubic spline interpolation is used to connect the 

maxima in the smoothed lung sound signal to define the upper envelope (𝑈𝑃𝑒𝑛𝑣(𝑛)), and 

correspondingly, the local minima are connected with each other to extract the lower envelope 

(𝐿𝑊𝑒𝑛𝑣(𝑛)). The envelope mean value is then calculated using the estimated upper and lower 

envelopes of the smoothed lung sound signal: 

𝑚𝑞(𝑛) =
𝑈𝑃𝑒𝑛𝑣𝑞

(𝑛) + 𝐿𝑊𝑒𝑛𝑣 𝑞(𝑛)

2
 

(45) 

where q is the iteration index where q=1, 2,…, Q. The envelope mean value is then subtracted 

from the lung sound signal to get an estimate of the non-stationary signal 𝑅𝑞(𝑛): 

𝑅𝑞(𝑛) = 𝑦𝑞(𝑛) − 𝑚𝑞(𝑛) (46) 

where 𝑦𝑞(𝑛) is the lung sound signal at iteration q. Note that the envelope mean value is 

calculated using the smoothed lung sound signal (𝑦𝑠𝑞
(𝑛)), first derivative (𝑦𝑠𝑞

′ (𝑛)) and second 

derivative (𝑦𝑠𝑞
′′ (𝑛)) and once the envelope mean value is calculated the envelope mean value is 

subtracted from the un-smoothed lung sound signal 𝑦𝑞(𝑛) at iteration q. 

In order to end the IEM method iterative process, a stopping criterion is estimated: 



Chapter 5 

60 

𝑆𝑇𝐶1𝑞 = |(𝑅𝑞−1
2 (𝑛))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅ − (𝑅𝑞

2(𝑛))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ | (47) 

where 𝑅0 =  0. 

The stopping criterion (𝑆𝑇𝐶1) is compared with accuracy level 𝛽1: {0 <  𝛽1 < 1}. In this study the 

value of the 𝛽1 is empirically set equal to 0.01. Note that the value of the accuracy level too close 

to 0 may increase the total number of iterations Q, with the increasing number of iterations, the 

elements of normal breath sounds in the non-stationary output of the IEM method may reduce 

but at the cost of high computational complexity. On the other hand, the value of the accuracy 

level too close to 1 minimize the total number of iterations hence reduce the computational 

complexity of the method but may be at the cost of overestimation which means some portion of 

the normal breath sounds may still remain in the non-stationary output of the IEM method. 

If 𝑆𝑇𝐶1𝑞 ≥ 𝛽1, a new input signal 𝑦𝑞+1(𝑛) = 𝑅𝑞(𝑛) is defined and the process is repeated 

(usually one or two iterations are sufficient, see Chapter 7 Table 4).  

When the stopping criterion is met, the estimates of the non-stationary and stationary parts of 

the lung sound signal are calculated:  

𝑁𝑆𝑇𝑆(𝑛) =  𝑅𝑄(𝑛) (48) 

𝑆𝑇𝑆(𝑛) = ∑ 𝑚𝑞

𝑄

𝑞=1

(𝑛) 

 

(49) 

Note that in the IEM method the stopping criterion is defined in a same way it was used in 

(Hadjileontiadis & Panas, 1997), (Hadjileontiadis & Rekanos 2003), (Hadjileontiadis, 2005 (I)), 

(Hadjileontiadis, 2007) for stopping the iteration process. 

As mentioned earlier, it is the first derivative local maxima and minima locations on the smoothed 

lung sound signal which are used for estimating the upper and lower envelopes if the upper and 

lower envelopes, using local maxima and minima of the smoothed lung sound signal itself are 

used, an inefficiency arises. The upper and lower envelopes can have large separation for regions 

with infrequently occurring extrema points (low frequency variation), which may require a large 

number of iterations for separating the lung sound signal. Using instead the upper and lower 

envelopes derived from the local maxima and minima of the first derivative reduces this 

inefficiency and consequently the number of iterations needed. 

As an example, Figure 28 shows a section of duration 0.075 s of a lung sound signal recorded from 

a patient with IPF where the location of the crackles has been audio-visually identified by an 

experienced pulmonary acoustics researcher and marked with arrowheads. Figure 28 (a) displays  
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(a) 

 

(b) 

Figure 28               Illustration of the iterative envelope mean method applied to a section of 

0.075 s of lung sound data recorded from a patient with IPF (Chapter 3, Table 2 

Case RBFC); (a) estimation of the upper, lower and mean envelopes and the non-

stationary signal estimate after one iteration using extrema points of the 

smoothed lung sound signal; (b) estimation of the upper, lower and mean 

envelopes and the non-stationary signal estimate after one iteration using 

extrema locations of the first derivative on the smoothed lung sound signal.   

the non-stationary output of the IEM process after the 1st iteration, the upper and lower 

envelopes and the envelope mean value where upper and lower envelopes are estimated using 

directly the smoothed lung sound signal extrema points. It can be observed that between 0.055 s 

and 0.075 s, the separation between the upper and lower envelopes is large. As a result when the 
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envelope mean value is subtracted from the lung sound signal that region changes its shape but 

the non-stationary output not only contains the crackles but also consists of a large portion of 

normal breath sounds after the first iteration. On the other hand, in Figure 28 (b) where upper 

and lower envelopes are estimated using the first derivative local maxima and minima locations, 

we observe that the envelope mean is a closer fit to the lung sound signal and when it is 

subtracted, the amount of normal breath sounds in the non-stationary part is very much less, with 

crackles oscillating closely around the horizontal axis after only one iteration. Note that the lung 

sound signal is smoothed using SG filter prior to calculating the upper and lower envelopes to 

remove the high frequency peaks corresponding to the unwanted ripples in the signal without 

affecting the crackle waveform. 

Huang (Huang et al., 1998) proposed the EMD technique for adaptively decomposing a signal into 

its IMFs and a residual component in decreasing order of frequency. Although the IEM method is 

superficially similar to the EMD technique in that processing of each iteration begins with an 

estimation of the upper and lower envelopes of a signal based on the local extrema which is then 

subtracted from the input signal, there are distinct differences between the two methods. In the 

EMD method, the input signal is not smoothed before calculating the upper and lower envelopes 

and the signal resulting from subtraction of the envelope is compared with a sifting criterion that 

checks whether the output meets the criteria for being an IMF (see section 4.6.1). On the other 

hand, in the IEM method the upper and lower envelopes are calculated from the smoothed lung 

sound signal and its derivatives. The envelope average is then subtracted from the original lung 

sound signal and the resulting signal is compared with a stopping criterion Eq. (47) to determine 

when to stop processing. 

5.2.2 Fractal dimension technique 

The IEM method makes a reasonable estimate of the stationary and non-stationary parts of the 

lung sound signal, however it is not usually sufficient by itself to extract only the crackles alone. To 

minimise the remaining elements of normal breath sounds in the non-stationary estimate 

(𝑁𝑆𝑇𝑆(𝑛)) as shown in Figure 29 (b), the FD technique is applied (Hadjileontiadis & Rekanos, 

2003). The detailed working process of the FD technique is discussed in section 4.3. 

5.2.3 Iterative envelope mean fractal dimension filter 

The IEM-FD filter is implemented using a combination of the IEM method and the FD technique 

(Hadjileontiadis & Rekanos, 2003). Two iteration loops are used in the IEM-FD filter: (i) an 

iteration loop related to IEM method 𝑞 = 1,2, … , 𝑄, and (ii) an iteration loop for the combination  
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(a) 

 

(b) 

 

(c) 

 

(d) 

 

(e) 
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(f) 

 

(g) 

Figure 29               Result of applying the proposed IEM-FD filter: (a) A time section of 0.075 s lung 

sound data recorded from a patient with IPF (𝑦(𝑡)), where location of the 

crackles is marked with arrowheads; (b) Non-stationary output of the IEM 

method (𝑁𝑆𝑇𝑆1(𝑡)); (c) The FD of the IEM method non-stationary output 

(𝐹𝐷1
(𝑡)) and the FDPP algorithm for estimating  FD valid peaks (𝐹𝐷𝑃𝑃1

(𝑡)); (d) 

The non-stationary binary threshold (𝑁𝐵𝑇𝐻1(𝑡)); (e) The stationary binary 

threshold (𝑆𝐵𝑇𝐻1(𝑡)); (f) The non-stationary output of the IEM-FD filter 

(𝑁𝑆(𝑡)); (g) The stationary output of the IEM-FD filter (𝑆𝑇(𝑡)).   

of the IEM-FD filter 𝑘 = 1,2, … , 𝐾. The IEM-FD filter working process is described below- 

After the IEM method has estimated the non-stationary (𝑁𝑆𝑇𝑆(𝑛)) and stationary (𝑆𝑇𝑆(𝑛)) parts 

of the lung sound signal, point-to-point FD values of the estimated non-stationary output 

(𝑁𝑆𝑇𝑆(𝑛)) are calculated. The FDPP algorithm (Hadjileontiadis & Rekanos, 2003) is now applied 

within the FD technique to automatically detect those peaks of the estimated 𝐹𝐷(𝑛) signal, as 

shown in Figure 29 (c), which may correspond to the crackles of the lung sound signal. Now using 

the estimated 𝐹𝐷𝑃𝑃(𝑛) sequence, two binary thresholds are calculated: the non-stationary binary 

threshold: 

𝑁𝐵𝑇𝐻𝑘(𝑛) = {
1 𝑖𝑓 𝐹𝐷𝑃𝑃𝑘

(𝑛) ≠ 1

0 𝑖𝑓 𝐹𝐷𝑃𝑃𝑘
(𝑛) = 1

} 
(50) 

and the stationary binary threshold  
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𝑆𝐵𝑇𝐻𝑘(𝑛) = [1-𝑁𝐵𝑇𝐻𝑘(𝑛)] (51) 

as displayed in Figure 29 (d) and Figure 29 (e), respectively.  

The estimated non-stationary output of the IEM method (𝑁𝑆𝑇𝑆(𝑛)) is multiplied by the non-

stationary binary threshold (𝑁𝐵𝑇𝐻(𝑛)) to get the refined non-stationary estimate  𝑁𝑆𝑇(𝑛) and 

the non-stationary estimate of the IEM method (𝑁𝑆𝑇𝑆(𝑛)) is multiplied by the stationary binary 

threshold (𝑆𝐵𝑇𝐻(𝑛)) to obtain the remaining normal breath sounds 𝑆𝑆𝑅(𝑛) signal from the 

𝑁𝑆𝑇𝑆(𝑛): 

𝑁𝑆𝑇𝑘(𝑛) = 𝑁𝑆𝑇𝑆𝑘(𝑛)𝑁𝐵𝑇𝐻𝑘(𝑛) (52) 

𝑆𝑆𝑅𝑘(𝑛) = 𝑁𝑆𝑇𝑆𝑘(𝑛)𝑆𝐵𝑇𝐻𝑘(𝑛) (53) 

Equation (52) gives the estimate of the non-stationary output, 𝑁𝑆𝑇𝑘(𝑛) and the summation of the 

Eq. (49) and Eq. (53) gives the estimate of the stationary output, 𝑆𝑆𝐹𝑘(𝑛) of the IEM-FD filter at 

iteration k.   

𝑆𝑆𝐹𝑘(𝑛) = 𝑆𝑇𝑆𝑘(𝑛) + 𝑆𝑆𝑅𝑘(𝑛) (54) 

To end the IEM-FD filter, a stopping criterion on the basis of stationary output can be calculated 

and compared with accuracy level (𝛽2).   

The stopping criteria is calculated:  

𝑆𝑇𝐶2𝑘 = |(𝑆𝑆𝐹𝑘−1
2 (𝑛))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ − (𝑆𝑆𝐹𝑘

2(𝑛))̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅| (55) 

where 𝑆𝑆𝐹0 = 0, and is compared with accuracy level  𝛽2, where 0 <  𝛽2 < 1. If 𝑆𝑇𝐶2𝑘 ≥  𝛽2, 

input signal 𝑦𝑘+1(𝑛) = 𝑆𝑆𝐹𝑘(𝑛), otherwise 𝑘 = 𝐾 and the iterative loop ends. Here the value of 

the 𝛽2 is empirically set equal to 0.1 and, 𝐾 represents the maximum iteration level. In the final 

step, the non-stationary and stationary parts of the signal are calculated, as shown in Figure 29 (f) 

and Figure 29 (g), respectively using Eq. (56) and Eq. (57) when k=K. 

𝑁𝑆(𝑛) = ∑ 𝑁𝑆𝑇𝑘

𝐾

𝑘=1

(𝑛) 
(56) 

𝑆𝑇(𝑛) =  𝑆𝑆𝐹𝐾(𝑛) (57) 

To provide better understanding a block diagram of the IEM-FD filter is shown in Figure 30 and a  
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Figure 30               A schematic diagram of the IEM-FD filter.   
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(a) 

 

(b) 

 

(c) 

Figure 31               Result of applying the IEM-FD filter (a) A time section of  0.743 s lung sound 

recorded from a BE patient (Chapter 3, Table 2 case RBCC), (b) IEM-FD filter non-

stationary output (c) IEM-FD filter stationary output.   
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working example of the IEM-FD filter is shown in Figure 31. Figure 31 (a) shows an input lung 

sound signal with coarse crackles (marked with arrowheads). The non-stationary and stationary 

outputs after applying the IEM-FD filter are shown in Figure 31 (b) and (c), respectively. From the 

graphs it can be observed that not only are all the crackles separated into the non-stationary 

output with their time duration and morphology preserved, but also the normal breath sounds 

were retained with their proper shape and amplitude in the stationary output. 

5.3 Summary 

This chapter presented the detailed working process of the proposed IEM-FD filter. The crackle 

separation performance of the proposed IEM-FD filter will be compared with the selected 

previously published crackle separation techniques:  the WTST-NST filter, WT-FD filter, and EMD-

FD filter (see Chapter 4), using the dataset described in Chapter 3. The dataset, performance 

evaluators and filter parameters used for evaluating the crackle separation performance are 

discussed next. 
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Chapter 6 Dataset, quantitative evaluators and filter 

parameters 

6.1  Introduction 

In the last chapter we saw the detailed working process of the proposed IEM-FD filter. The 

dataset, different performance evaluators and filter parameters used for evaluating the crackle 

separation performance of the IEM-FD filter and of the selected previously published algorithms 

(WTST-NST filter, WT-FD filter and the EMD-FD filter) are discussed in this chapter.  

6.2 Dataset and test samples 

The dataset used for systematic testing of crackle separation techniques was described in Chapter 

3. To explore the robustness of the separation process to noise, test samples were generated by 

burying 10 simulated or 10 real crackles within a simulated breath noise sample (BRN). Average 

SNR was varied from -10 to 10 dB in steps of 1 dB. The local SNR for any given crackle in a test 

signal varies randomly, which may affect separation performance, therefore for each set of 

crackles and each average SNR, 501 test samples were generated, each with its own sample of 

BRN. The use of 501 test samples at each SNR is justified in section 6.4.1. All test signals are 

sampled at 44,100 Hz. 

6.3 Quantitative evaluators 

Any successful crackle separation method must meet three criteria: extracting all the embedded 

crackles, minimizing the inclusion of non-crackle components and preserving crackle morphology 

after separation. As mentioned in Chapter 2, the failure to extract all crackles or loss of some 

portion of the crackle in the output signal is called under-estimation, and the inclusion of non-

crackle components is over-estimation.  

Using the test dataset (see Chapter 3, Table 2) the performance of the IEM-FD filter was evaluated 

against reference test signals and against the performance of the WTS-NST filter (Hadjileontiadis 

& Panas, 1997), WT-FD filter (Hadjileontiadis, 2005(I), Hadjileontiadis, 2005(II)) and EMD-FD filter 

(Hadjileontiadis, 2007). For the synthesized test signals, the time series of the crackles in the 

absence of breath noise was used as a reference signal. In the test samples measured in patients 

(RBFC and RBCC), the location of the crackles was audio visually marked by an experienced 

pulmonary acoustics researcher.  
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Separation performance was evaluated using several different metrics to assess its quality: To 

measure the similarity between the estimated non-stationary output of the each separation 

process and the crackle reference signal, the cross-correlation index (CCI) was used (except in the 

case of the EMD-FD filter, see section 7.2.1); Accuracy of crackle separation was assessed by two 

quantitative evaluators proposed by Hadjileontiadis & Panas, (1997): Rate of Detectability (DR), 

and Total performance (TDR); To quantify over- or under-estimation in the separation, the quality 

factors (QFs) proposed by Hadjileontiadis & Panas, (1997) were adapted to benefit from the 

existence, for our test data, of the reference signals; To evaluate the ability of the separation 

process to preserve crackle morphology, the 2CD percentage error (𝑃𝐸2𝐶𝐷) was calculated. 

The process for calculating each metric is as follows:  

6.3.1 Cross Correlation Index (CCI) 

The CCI indicates the associate between two signals. Therefore, CCI is used to show how well an 

algorithm separates crackles. The CCI was calculated using Pearson’s correlation coefficient: 

𝐶𝐶𝐼 =
∑ (𝑅𝐶(𝑛) − 𝑅̅𝐶

𝑁
𝑛=1 )(𝑁𝑆(𝑛) − 𝑁𝑆̅̅ ̅̅ )

√∑ (𝑅𝐶(𝑛) − 𝑅̅𝐶)2𝑁
𝑛=1 √∑ (𝑁𝑆(𝑛) − 𝑁𝑆̅̅ ̅̅ )2𝑁

𝑛=1

× 100 % 
(58) 

where 𝑅𝐶(𝑛) is the crackle reference signal, 𝑁𝑆(𝑛) is the non-stationary output of the separation 

method and 𝑅̅𝐶  and 𝑁𝑆̅̅ ̅̅  are the average values of the crackle reference signal and non-stationary 

output, respectively.  

6.3.2 Rate of Detectability (𝑫𝑹) 

The rate of detectability (𝐷𝑅) measures the ability of an algorithm to separate crackles into their 

non-stationary outputs. DR was calculated using Eq. (59). 

𝐷𝑅=
𝑁𝐸

𝑁𝑅
×100 % 

(59) 

where 𝑁𝐸  is the number of crackles in the non-stationary output of a separation algorithm and 𝑁𝑅  

is the number of crackles in the input signal.  

In the case of SFC, RFC, SCC and RCC where crackle reference signal is available, the number of 

separated crackles in the non-stationary output is calculated by correlating each crackle in the 

reference signal with the portion of a non-stationary output within the same time frame of the 

reference crackle. Note that each reference signal contains 10 crackles, see Chapter 3, Table 2. 

Therefore, this process will provide us 10 different values of the CCI corresponding to the each 
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reference crackle i.e. 𝐶𝐶𝐼𝑒 where e is the crackle index, 𝑒 = 1,2, … … … 10. Note that 

corresponding to any reference crackle time frame if the complete portion of the non-stationary 

output is zero within that time frame, the 𝐶𝐶𝐼𝑒 corresponding to that reference crackle will be 

undefined, in that case the value is set to zero. Now, out of 10 CCI values 𝐶𝐶𝐼𝑒 ≥ 0.5, where the 

cut-off CCI value was empirically selected, were counted as contributing to 𝑁𝐸 .  

For RBFC and RBCC where crackle reference signals do not exist, the number of detected crackles 

in the output was counted manually by comparing their location with the marked crackles in the 

input signal. 𝐷𝑅 was calculated for each test sample of the all test signals. The mean value and 

standard deviation of the rate of detectability over all test samples of each test signal are 

reported (see Chapter 7, Table 4).  

6.3.3 Total Performance  

The total performance also measures accuracy in terms of separation of crackles in the non-

stationary output by the proposed and previously selected methods. The total performance is 

calculated for each type of crackle (fine and coarse).  

𝑇𝐷𝑅
𝑋𝑋 = 𝐷̅𝑅

𝑋𝑋 % (60) 

𝑆𝐷𝑇𝐷𝑅
𝑋𝑋 = 𝜎(𝐷𝑅

𝑋𝑋) % (61) 

where σ is the standard deviation, 𝐷𝑅  is the rate of detectability, and 𝑋𝑋 stands for 𝐹𝐶 for fine 

crackles and 𝐶𝐶 for coarse crackles.  

In the case of fine crackles the total performance (𝑇𝐷𝑅
𝐹𝐶 , 𝑆𝐷𝑇𝐷𝑅

𝐹𝐶 ) is calculated by taking the mean 

and standard deviation of the rate of detectability over all test samples of fine crackles: simulated 

(1,503 test samples, 501 test samples in each simulated case), real (501 test samples) and one test 

sample of RBFC (Chapter 7, Table 4, Cases SFC, RFC and RBFC). Correspondingly, the total 

performance in the case of coarse crackles (𝑇𝐷𝑅
𝐶𝐶 , 𝑆𝐷𝑇𝐷𝑅

𝐶𝐶 ) is estimated by taking the mean and 

standard deviation of the rate of detectability over all test samples of coarse crackles: simulated 

(1,503 test samples, 501 test samples in each simulated case), real (501 test samples) and one test 

sample of RBCC (Chapter 7, Table 4, Cases SCC, RCC and RBCC). 

6.3.4 Quality Factors (QFs) 

Quality Factors measure over- and under-estimation in the non-stationary output signal. 

Hadjileontiadis & Panas, (1997) proposed QFs for assessing over-and under-estimation. However, 

the test data set here provides us with reference signals not available for Hadjileontiadis et al.’s 
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test signals, therefore in this study, four quality factors: a reference quality factor (R𝑄𝐹𝑈
) for 

under-estimation, an estimated quality factor (E𝑄𝐹𝑈
) for under-estimation, a reference quality 

factor (R𝑄𝐹𝑂
) for over-estimation and an estimated quality factor (E𝑄𝐹𝑂

) for over-estimation are 

defined. To calculate the QFs, firstly two thresholds are defined: 

𝑇𝐻1(𝑛) = {
1 𝑖𝑓𝑅𝐶(𝑛) ≠ 0

0 𝑖𝑓 𝑅𝐶(𝑛) = 0
} 

(62) 

𝑇𝐻2(𝑛) =[1 - 𝑇𝐻1(n)] (63) 

where 𝑅𝐶(𝑛) is the crackle reference signal and n is the sample index with 𝑛 = 1,2 … … 𝑁. 

Secondly, the input signal 𝑦(𝑛), is multiplied by the threshold  𝑇𝐻2(𝑛) to calculate a background 

noise reference signal 𝑅𝐵𝑁(𝑛). 

𝑅𝐵𝑁(𝑛) = 𝑦(𝑛)𝑇𝐻2(𝑛) (64) 

Thirdly, the non-stationary output 𝑁𝑆(𝑛) of a separation algorithm is divided into two parts: non-

stationary signal with only crackle portion (𝑁𝑆𝐶(𝑛)) and remaining non-stationary part (𝑁𝑆𝑅(𝑛)), 

according to:   

𝑁𝑆𝐶(𝑛)= 𝑁𝑆(𝑛) 𝑇𝐻1(𝑛) (65) 

𝑁𝑆𝑅(𝑛) = 𝑁𝑆(𝑛) 𝑇𝐻2(𝑛) (66) 

Now QFs for under-estimation are calculated using the area under the input signal 𝑦(𝑛), area 

under the crackle reference signal 𝑅𝐶(𝑛) and area under the crackle portion of the non-stationary 

signal 𝑁𝑆𝐶(𝑛). Similarly, the two quality factors for over-estimation are evaluated using the area 

under the input signal 𝑦(𝑛), area under the background noise reference signal 𝑅𝐵𝑁(𝑛) and area 

under the remaining non-stationary part 𝑁𝑆𝑅(𝑛): 

R𝑄𝐹𝑈
=

∑ |𝑦(𝑛)|𝑁
1 ∆𝑛 − ∑ |𝑅𝐶(𝑛)|𝑁

1 ∆𝑛 

∑ |𝑦(𝑛)|𝑁
1 ∆𝑛

 
(67) 

E𝑄𝐹𝑈
=

∑ |𝑦(𝑛)|𝑁
1 ∆𝑛 − ∑ |𝑁𝑆𝐶(𝑛)|𝑁

1 ∆𝑛 

∑ |𝑦(𝑛)|𝑁
1 ∆𝑛

 
(68) 

R𝑄𝐹𝑂
=

∑ |𝑦(𝑛)|𝑁
1 ∆𝑛 - ∑ |𝑅𝐵𝑁(𝑛)|𝑁

1 ∆𝑛 

∑ |𝑦(𝑛)|𝑁
1 ∆𝑛

 
(69) 

E𝑄𝐹𝑂
=

∑ |𝑦(𝑛)|𝑁
1 ∆𝑛 − ∑ |𝑁𝑆𝑅(𝑛)|𝑁

1 ∆𝑛 

∑ |𝑦(𝑛)|𝑁
1 ∆𝑛

 
(70) 
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where Δn is the sample period in seconds. The maximum value of area under |𝑁𝑆𝐶(𝑛)| was set 

equal to the area under|𝑅𝐶(𝑛)|. E𝑄𝐹𝑈
 in the range R𝑄𝐹𝑈

< E𝑄𝐹𝑈
≤ 1 represents under-estimation 

and a value close to 1 indicates high under-estimation. Similarly E𝑄𝐹𝑂
in the range R𝑄𝐹𝑂

≤ E𝑄𝐹𝑂
<

1 represents over-estimation and a value close to R𝑄𝐹𝑂
 shows high over-estimation. Hence, a 

value of E𝑄𝐹𝑈
 close to R𝑄𝐹𝑈

 with a value of E𝑄𝐹𝑂
 near to 1 represents good quality crackle 

separation without either high under- or high over-estimation. 

6.3.5 2CD percentage error (𝑷𝑬𝟐𝑪𝑫) 

The 2CD percentage error assesses the ability of an algorithm to preserve crackle morphology 

after separation from background noise. The percentage error in 2CD following separation is 

calculated using:  

𝑃𝐸2𝐶𝐷 = |
𝐴𝐶2𝐶𝐷 − 𝐸𝐶2𝐶𝐷

𝐴𝐶2𝐶𝐷
| × 100 % 

(71) 

where  𝐴𝐶2𝐶𝐷 is the actual crackle 2CD calculated from the crackle reference signal 𝑅𝐶(𝑛) and 

𝐸𝐶2𝐶𝐷 is the estimated crackle 2CD calculated from the non-stationary filter output (𝑁𝑆(𝑛)). The 

2CD was calculated using first five zero crossings of the crackle. 

For the RBFC and the RBCC signals, where a crackle reference signal does not exist, the crackle 

separation performance of the separation filters was not evaluated using the QFs or the 𝑃𝐸2𝐶𝐷 .  

6.4 Filter Parameters 

The parameters used for the IEM-FD filter and the previously published WTST-NST filter 

(Hadjileontiadis & Panas, 1997), WT-FD filter (Hadjileontiadis, 2005(I); Hadjileontiadis, 2005(II)) 

and EMD-FD filter (Hadjileontiadis, 2007) are shown in Table 3. 

6.4.1 Selection of number of test samples 

As mentioned earlier (section 6.2), 501 test samples are generated for each simulated test signal 

to account for the effect of random variation of the local SNR around any given crackle. For each 

SNR, the same 10 crackles embedded in 501 unique noise signal samples are passed through an 

algorithm (except in the case of the EMD-FD filter) and the resulting CCIs are averaged to get one 

CCI value for each SNR value for the IEM-FD filter, WTST-NST filter and the WT-FD filter (as shown 

in Chapter 7, Figure 33).  

To justify the choice to use 501 test samples, Figure 32 shows the average CCI for the IEM-FD filter  



Chapter 6 

74 

Table 3 Parameters used for different separating methods. 

Parameters IEM-FD WTST-NST WT-FD EMD-FD 

Number of samples (N) 32,768 32,768 32,768 32,768 

Number of decomposition levels 

(M) 
NA M =log2(N)=15  M =1 or m=1 NA 

Type of wavelet NA db4  db4  NA 

Sampling frequency (𝑓𝑠) 44,100 Hz 44,100 Hz 44,100 Hz 44,100 Hz 

Accuracy level (𝛽) 

𝛽1 0.01 NA NA NA 

𝛽2 0.1 0.1 0.1 0.1 

𝛽3 0.01 NA 0.01  0.01  

Duration of the window in seconds 𝑊= 0.006 s  NA 𝑊= 0.006 s  𝑊= 0.006 s  

Threshold  NA Fadj =3  NA p= 0.05  

NA: not applicable; db4: Daubechies quadrature mirror filters (QMFs) of eight coefficients; M: Number of 

WT decomposition levels; in the IEM-FD filter window length is taken from Hadjileontiadis & Rekanos, 2003; 

in the WTST-NST filter type of wavelet and threshold (Fadj) are taken from Hadjileontiadis & Panas, 1997; in 

the WT-FD filter number of decomposition levels, type of wavelet, accuracy level (𝛽3), and window length 

are taken from Hadjileontiadis, 2005(II); in the EMD-FD filter accuracy level (𝛽3), window length, and 

threshold (p) are taken from Hadjileontiadis, 2007;  𝛽1: Accuracy level for the IEM method;  𝛽2: Accuracy 

level for desired stationary and non-stationary outputs;  𝛽3: Accuracy level for the FDPP algorithm. 

 

Figure 32               Selection of number of test samples to eliminate random variation on the IEM-

FD filter crackle separation performance at local SNR using RFC case at -1 dB and 

RCC case at 1 dB.   
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in the case of RFC at an SNR of -1 dB and RCC at an SNR of 1 dB when the number of test samples 

is increased from 1 to 2001 in steps of 1. We note that for more than 501 samples, the increase in 

CCI is negligible in both cases. The selected number of 501 test samples is marked on Figure 32. 

6.5 Summary 

This chapter introduced the performance evaluators and filter parameters used for analyzing the 

crackle separation performance of the new and previously published crackle separation 

techniques. In the next chapter experimental results of the systematic comparison between the 

proposed and previously published crackle separation methods obtained using the test dataset 

(Chapter 3, Table 2) and above-mentioned quantitative evaluators are presented.   
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Chapter 7 Experimental results 

7.1 Introduction 

This chapter presents the results obtained using the IEM-FD filter and provides systematic 

comparison with the WTST-NST filter (Hadjileontiadis & Panas, 1997), the WT-FD filter 

(Hadjileontiadis, 2005(I), Hadjileontiadis, 2005(II)), and the EMD-FD filter (Hadjileontiadis, 2007). 

All the separation techniques are implemented using the Matlab (R2019a) programming 

language.  

7.2 Experimental results 

7.2.1 Performance of the IEM-FD filter  

Figure 33 shows plots of CCI averaged over all 501 test signals against SNR using i) the IEM-FD 

filter, ii) the WTST-NST filter, and iii) the WT-FD filter for the separation. Plots labelled (a) show 

curves for SFC with three different values of IDW/2CD and RFC; plots labelled (b) show curves for 

SCC with three different values of IDW/2CD, and RCC. 

Taking CCI >= 0.8 to indicate strong correlation between the separated signal and the test signal, 

strong correlation occurs for all fine crackle test signals with SNR greater than -1 dB except for SFC 

with 2CD = 6 ms for IEM-FD and WT-FD. For SFC with 2CD = 6 ms the CCI is just below 0.8 at 

SNR = - 1 dB but is above at SNR = 0 dB. For coarse crackles strong correlation occurs for SNR >= 1 

dB except for WTST-NST filter in the case of RCC, SCC with 2CD=9.5 ms and SCC with 2CD=10 ms 

where performance is slightly low compared to the proposed IEM-FD filter and the WT-FD filter. 

For WTST-NST filter for RCC, SCC with 2CD=9.5 ms and SCC with 2CD=10 ms the CCI is low at 

SNR=1dB but gradually start to improve for SNR greater than 1dB. The plots therefore suggest two 

threshold SNRs above which good performance can be achieved by all three filters: SNR = - 1 dB 

for fine crackles and SNR = 1 dB for coarse crackles. From the results, we can see that the 

proposed IEM-FD filter performance is quite similar to, or better than, the WTST-NST filter and 

the WT-FD filter for SNRs greater than our selected thresholds but the WTST-NST filter has slightly 

better performance for SNRs less than our thresholds. Note that in this study the crackle 

separation performance of the EMD-FD filter using CCI plots was not tested in the range of -10 to 

10 dB SNRs due to its tendency to fail to converge on some of the 501 test signals in each case. 

Comparative evaluation of the IEM-FD filter and previously published methods was made using 

the synthesized signals at these threshold SNR values supplemented by the RBFC and RBCC using  
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(a) 

 

 

(b) 

(i) 

 

(a) 

 

 

(b) 

(ii) 

 

(a) 

 

 

(b) 

(iii) 

Figure 33               CCI plots for breath noise cases with a signal to noise ratio in the range of -10 to 

10 dB (Chapter 3, Table 2). (i) The IEM-FD filter, (a) RFC and SFC cases; (b) RCC 

and SCC cases. (ii) The WTST-NST filter, (a) RFC and SFC cases; (b) RCC and SCC 

cases. (iii) The WT-FD filter, (a) RFC and SFC cases; (b) RCC and SCC cases.   

the quantitative evaluators described in sections 6.3.2 to 6.3.5. 

Separation by the IEM-FD filter into non-stationary and stationary estimates for test signals using 

two, randomly selected, real crackle cases at the threshold SNRs, one for fine and one for coarse  
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(a) 

 

(a) 

 

(b) 

 

(b) 

 

(c) 

(i) 

 

(c) 

(ii) 

 

Figure 34               (i): (a) Input signal with RFC (Table 4, Case RFC); (b) IEM-FD filter non-stationary 

output; (c) IEM-FD filter stationary output. (ii): (a) Input signal with  RCC (Table 

4, Case RCC); (b) IEM-FD filter non-stationary output; (c) IEM-FD filter stationary 

output.   

crackles (Table 4, cases RFC and RCC) are shown in Figure 34-i (a-c) and Figure 34-ii (a-c), 

respectively. The location of the crackles inserted into the background noise is marked with 

arrowheads. Figure 34 (a) displays the input signals. The non-stationary and stationary signal 

estimates after applying the IEM-FD filter are shown in Figure 34 (b) and (c), respectively. 

Comparing these with the input signal, we can clearly see that for both fine and coarse crackle 
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samples, all the fine and coarse crackles are separated from breath noise into the non-stationary 

signal estimate with their time duration and morphology preserved. For both fine and coarse 

crackles, the breath noise is retained in the stationary estimate with its proper shape and 

amplitude.  

Now the comparison results of the proposed IEM-FD filter with the previously published methods 

is divided into two sections: the first part provides the comparison results of the IEM-FD filter with 

the WTST-NST filter and the WT-FD filter, and second part provides the comparison of the IEM-FD 

filter with the EMD-FD filter. 

7.2.2 Comparison of the IEM-FD filter with the WTST-NST filter and the WT-FD filter  

7.2.2.1 Rate of detectability and total performance  

Table 4, Table 5, and Table 6 show the performance analysis of the IEM-FD filter, the WTST-NST 

filter and the WT-FD filter in terms of rate of detectability and total performance, respectively. 

The crackle separation performance of the IEM-FD filter, the WTST-NST filter and the WT-FD filter 

are evaluated using 501 test samples at SNR = -1 dB for real and simulated fine crackles, and 501 

test samples at SNR = 1 dB for real and simulated coarse crackles, and on a RBFC and a RBCC. We 

note that the separation performance of all three methods in terms of rate of detectability is 

quite similar with slightly better performance by the WTST-NST filter in the case of RBFC. 

However, in terms of total performance the IEM-FD outperforms both WTST-NST and WT-FD in 

the case of coarse crackles (SCC, RCC and RBCC) and achieves the same performance as the WTST-

NST and slightly better than the WT-FD in the case of fine crackles (SFC, RFC and RBFC). In the 

case of RBFC the performance of the IEM-FD filter and the WT-FD filter is slightly low due to the 

crackles remaining in the stationary output. However, the missing crackles of the IEM-FD filter 

and the WT-FD filter can be recovered either by changing the FDPP algorithm accuracy level ( 𝛽3) 

or by changing the accuracy level ( 𝛽2) for desired stationary and non- stationary outputs at the 

cost of increasing overestimation. 

7.2.2.2 Quality of crackle separation (over or under estimation) 

Tables 7 and 8 show the quality of crackle separation of the IEM-FD filter, the WTST-NST filter, 

and the WT-FD filter in terms of under- and over-estimation, respectively. Here we notice that 

(Table 7) in all three crackle separation techniques the average estimated under-estimation 

quality factor (𝐸̅𝑄𝐹𝑈
) is either very close or equal to the average reference under-estimation 

quality factor (𝑅̅𝑄𝐹𝑈
) indicating there is very little under-estimation. On the other hand, in terms 

of over-estimation (Table 8), we can see that the average estimated over-estimation quality factor 
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Table 4 Performance of proposed IEM-FD filter in the case of fine and coarse crackles. 

IEM-FD 

Cases BN Dg SNR 

(dB) 

𝑵𝑹 NOTS 𝑲 

(min-max) 

𝑸 

(min-max) 

𝑵𝑬 

(min-max) 

𝑫̅𝑹(𝑺𝑫) 

(%) 

 

SFC 

AF BRN NA 
-1 

-1 

-1 

-1 

 

10 501 1-1 2-2 10-10 100 (0) 

HF BRN NA 10 501 1-1 1-2 10-10 100(0) 

CF BRN NA 10 501 1-1 2-2 10-10 100 (0) 

RFC BRN IPF 10 501 1-1 1-1 10-10 100 (0) 

RBFC NBS IPF ND 32 1 1 1 21 65.625 

 

SCC 

AC BRN NA 1 

1 

1 

1 

10 501 1-1 2-2 10-10 100 (0) 

HC BRN NA 10 501 1-1 1-2 10-10 100 (0) 

CC BRN NA 10 501 1-1 2-2 10-10 100 (0) 

RCC BRN BE 10 501 1-1 1-1 9-10 99.18 (2.74) 

RBCC NBS BE ND 6 1 1 1 6 100 

 

Total performance 

(𝑇𝐷𝑅
𝑋𝑋, 𝑆𝐷𝑇𝐷𝑅

𝑋𝑋 ) 

Fine crackles (SFC, RFC and 

RBFC) 

𝑇𝐷𝑅
𝐹𝐶 = 99.98 %, 

𝑆𝐷𝑇𝐷𝑅
𝐹𝐶 = 0.77  % 

Coarse crackles (SCC, RCC 

and RBCC) 

𝑇𝐷𝑅
𝐶𝐶 = 99.80 %, 

𝑆𝐷𝑇𝐷𝑅
𝐶𝐶 = 1.42 % 

SFC: Simulated fine crackles; AF: IDW=0.7 ms  & 2CD=5 ms (Charbonneau et al., 2000); HF: IDW= 0.5 ms & 

2CD= 3.3 ms (Hoevers & Loudon, 1990); CF : IDW=0.9 ms & 2CD=6 ms (Cohen, 1990);  RFC: Real fine 

crackles; SCC: Simulated coarse crackles; AC: IDW= 1.5 ms & 2CD=10 ms (Charbonneau et al., 2000); HC: 

IDW=1 ms & 2CD= 5.1 ms (Hoevers & Loudon, 1990); CC: IDW=1.25  ms & 2CD=9.5 ms (Cohen, 1990); RCC: 

Real coarse crackles; RBFC: Real breath sound with fine crackles; RBCC: Real breath sound with coarse 

crackles; BN: Background noise; BRN: Breath noise; IPF: Idiopathic pulmonary fibrosis; BE: Bronchiectasis; Dg: 

Diagnosis; SNR: Signal to noise ratio; NOTS: number of test samples; 𝐷̅𝑅: Mean of rate of detectability; 𝑆𝐷: 

Standard deviation; NA: Not applicable; ND: Not defined; 𝑁𝑅: Real number of crackles; 𝑁𝐸: Separated 

crackles; 𝑇𝐷𝑅
𝑋𝑋: Total performance; 𝑆𝐷𝑇𝐷𝑅

𝑋𝑋  : Standard deviation; 𝑋𝑋 stands 𝐹𝐶 for fine crackles and 𝐶𝐶 for 

coarse crackles; K and Q : number of iterations; min: Minimum value; max: Maximum value; In all 

cases number of samples N=32,768. 
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Table 5 Performance of WTST-NST filter in the case of fine and coarse crackles. 

WTST-NST 

Cases BN Dg SNR 

(dB) 

𝑵𝑹 NOTS 𝑲 

(min-max) 

𝑵𝑬 

(min-max) 

𝑫̅𝑹(𝑺𝑫) 

(%) 

 

SFC 

AF BRN NA -1 

-1 

-1 

-1 

10 501 1-1 10-10 100 (0) 

HF BRN NA 10 501 1-1 10-10 100 (0) 

CF BRN NA 10 501 1-1 10-10 100 (0) 

RFC BRN IPF 10 501 1-1 9-10 99.92 (0.89) 

RBFC NBS IPF ND 32 1 1 32 100 (0) 

 

SCC 

AC BRN NA 1 

1 

1 

1 

10 501 1-1 10-10 100 (0) 

HC BRN NA 10 501 1-1 10-10 100 (0) 

CC BRN NA 10 501 1-1 10-10 100 (0) 

RCC BRN BE 10 501 1-1 8-10 96.13 (5.38) 

RBCC NBS BE ND 6 1 1 6 100 (0) 

 

Total performance 

(𝑇𝐷𝑅
𝑋𝑋, 𝑆𝐷𝑇𝐷𝑅

𝑋𝑋 ) 

Fine crackles (SFC, RFC and RBFC) 𝑇𝐷𝑅
𝐹𝐶 = 99.98  %, 

𝑆𝐷𝑇𝐷𝑅
𝐹𝐶 = 0.45 % 

Coarse crackles (SCC, RCC and RBCC) 𝑇𝐷𝑅
𝐶𝐶 =  99.32 %, 

𝑆𝐷𝑇𝐷𝑅
𝐶𝐶 = 3.17 % 

See Table 4 footnote for the caption for Table 5. 

 (𝐸̅𝑄𝐹𝑂
) of the IEM-FD filter is much closer to the ‘1’ compared to the WTST-NST filter 

(Hadjileontiadis & Panas, 1997) and the WT-FD filter (Hadjileontiadis, 2005(I); Hadjileontiadis, 

2005(II)) in all cases of fine and coarse crackles, which indicates less over-estimation in the IEM-FD 

filter compared to the WTST-NST filter and the WT-FD filter. Furthermore, the performance 

comparison between the IEM-FD filter, the WTST-NST filter and the WT-FD filter in the case of 

RBCC is shown in Figure 35. The location of the crackles was audio-visually identified by an 

experienced pulmonary acoustics researcher and marked with arrowheads, so that the 
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Table 6 Performance of WT-FD filter in the case of fine and coarse crackles. 

WT-FD 

Cases BN Dg SNR 

(dB) 

𝑵𝑹 NOTS 𝑲 

(min-max) 

𝑵𝑬 

(min-max) 

𝑫̅𝑹(𝑺𝑫) 

(%) 

 

SFC 

AF BRN NA -1 

-1 

-1 

-1 

10 501 1-1 10-10 100 (0) 

HF BRN NA 10 501 1-1 10-10 100 (0) 

CF BRN NA 10 501 1-1 10-10 100 (00 

RFC BRN IPF 10 501 1-1 9-10 99.48 (2.22) 

RBFC NBS IPF ND 32 1 1 20 62.500 

 

SCC 

AC BRN NA 1 

1 

1 

1 

10 501 1-1 10-10 100 (0) 

HC BRN NA 10 501 1-1 10-10 100 (0) 

CC BRN NA 10 501 1-1 10-10 100 (0) 

RCC BRN BE 10 501 1-1 8-10 96.73 (5.18) 

RBCC NBS BE ND 6 1 1 6 100 

 

Total performance 

(𝑇𝐷𝑅
𝑋𝑋, 𝑆𝐷𝑇𝐷𝑅

𝑋𝑋 ) 

Fine crackles (SFC, RFC and RBFC) 𝑇𝐷𝑅
𝐹𝐶 = 99.85 %, 

𝑆𝐷𝑇𝐷𝑅
𝐹𝐶 = 1.41 % 

Coarse crackles (SCC, RCC and RBCC) 𝑇𝐷𝑅
𝐶𝐶 = 99.18 %, 

𝑆𝐷𝑇𝐷𝑅
𝐶𝐶 = 2.95 % 

See Table 4 footnote for the caption for Table 6. 

automatically separated crackles in the non-stationary part can be compared with the input signal 

crackles.  

Figure 35-i displays a 0.743-second section of samples of RBCC recorded from a patient with BE 

(Table 4, case RBCC). The non-stationary and stationary parts after applying the IEM-FD filter are 

shown in Figure 35-ii (a) and (b), respectively. Comparing these results with the input signal, we 

can clearly see that not only are all the coarse crackles correctly separated with their morphology  
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Table 7 Performance of IEM-FD filter, WTST-NST filter and WT-FD filter in terms of 

underestimation. 

 IEM-FD WTST-NST WT-FD 

Cases BN Dg SNR 

(dB) 

NOTS 𝑹̅𝑸𝑭𝑼
 

(𝑺𝑫) 

𝑬̅𝑸𝑭𝑼
 

(𝑺𝑫) 

𝑬̅𝑸𝑭𝑼
 

(𝑺𝑫) 

𝑬̅𝑸𝑭𝑼
 

(𝑺𝑫) 

 

SFC 

AF BRN NA -1 501 0.817 (0.004) 0.817 (0.004) 0.817 (0.004) 0.817 (0.004) 

HF BRN NA -1 501 0.848 (0.003) 0.848 (0.003) 0.848 (0.003) 0.848 (0.003) 

CF BRN NA -1 501 0.801 (0.004) 0.801 (0.004) 0.801 (0.004) 0.801 (0.004) 

RFC BRN IPF -1 501 0.828 (0.003) 0.839 (0.003) 0.830 (0.004) 0.829 (0.003) 

 

SCC 

AC BRN NA 1 501 0.704 (0.006) 0.705 (0.006) 0.726 (0.024) 0.704 (0.006) 

HC BRN NA 1 501 0.777 (0.004) 0.779 (0.005)  0.776 (0.004) 0.776 (0.004) 

CC BRN NA 1 501 0.710 (0.005) 0.711 (0.006) 0.736 (0.026) 0.710 (0.005) 

RCC BRN BE 1 501 0.731 (0.006) 0.747 (0.008) 0.735 (0.018) 0.732 (0.006) 

𝑅̅𝑄𝐹𝑈
: Mean of reference underestimation quality factor; 𝐸̅𝑄𝐹𝑈

: Mean of estimated underestimation quality 

factor. See Table 4 footnote for the remaining caption for Table 7. 

and time location preserved, but also the normal breath sound is retained in the stationary 

estimate with its proper shape and amplitude. The non-stationary and stationary outputs of the 

WTST-NST filter for the same input signal are displayed in Figure 35-iii (a) and (b), respectively. 

Here we can observe that the non-stationary output (Figure 35-iii (a)) of the WTST-NST filter not 

only contains the crackles but also consists of a large part of the normal breath sounds, which 

represents over-estimation. The non-stationary and stationary outputs of the WT-FD filter in the 

case of the same input are shown in Figure 35-iv (a) and (b), respectively. From the results we can 

see that the non-stationary output (Figure 35-iv (b)) not only contains crackles but also a portion 

of the normal breath sounds due to over-estimation. However, in the stationary output (Figure 

35-iv (b)) it can be observed that at the location of crackles, normal breath sounds segments are 

missing. As is mentioned earlier (section 4.5) for any crackle separation technique it is not only 

important to separate normal breath sounds from non- crackle location, but it is also important to 

separate normal breath sounds from crackle locations, to reveal the actual morphology of the 

crackles. 
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Table 8 Performance of IEM-FD filter, WTST-NST filter and WT-FD filter in terms of 

overestimation. 

 IEM-FD WTST-NST WT-FD 

Cases BN Dg SNR 

(dB) 

NOTS 𝑹̅𝑸𝑭𝑶
 

(𝑺𝑫) 

𝑬̅𝑸𝑭𝑶
 

(𝑺𝑫) 

𝑬̅𝑸𝑭𝑶
 

(𝑺𝑫) 

𝑬̅𝑸𝑭𝑶
 

(𝑺𝑫) 

 

SFC 

AF BRN NA -1 501 0.198 (0.005) 0.888 (0.032) 0.657 (0.156) 0.729 (0.036) 

HF BRN NA -1 501 0.161 (0.004) 0.958 (0.015) 0.647 (0.172) 0.847 (0.032) 

CF BRN NA -1 501 0.218 (0.006) 0.828 (0.036) 0.662 (0.159) 0.664 (0.033) 

RFC BRN IPF -1 501 0.177 (0.005) 0.959 (0.008) 0.651 (0.161) 0.872 (0.014) 

 

SCC 

AC BRN NA 4 501 0.325 (0.011) 0.770 (0.036) 0.538 (0.199) 0.650 (0.038) 

HC BRN NA 4 501 0.236 (0.005) 0.932 (0.025) 0.671 (0.149) 0.854 (0.032) 

CC BRN NA 4 501 0.316 (0.010) 0.790 (0.033) 0.543 (0.203) 0.653 (0.036) 

RCC BRN BE 4 501 0.292 (0.010) 0.871 (0.033) 0.324 (0.079) 0.803 (0.041) 

𝑅̅𝑄𝐹𝑂
: Mean of reference overestimation quality factor; 𝐸̅𝑄𝐹𝑂

: Mean of estimated overestimation quality 

factor. See Table 4 footnote for the remaining caption for Table 8. 

7.2.2.3 2CD percentage error  

Table 9, Table 10, and Table 11 show the performance of the IEM-FD filter, WTST-NST filter and 

the WT-FD filter in terms of 2CD percentage error, respectively. In the IEM-FD filter (Table 9), the 

average 2CD percentage error is no more than 26.50 % for fine crackles (SFC and RFC) and less 

than 11 % for coarse crackles cases (SCC and RCC). On the other hand, in the WTST-NST filter 

(Table 10) the average 2CD percentage error is between 40 % to 122 % for fine crackles cases (SFC 

and RFC) and between 22 % to 54 % for coarse crackles (SCC and RCC) and in the WT-FD filter 

(Table 11) the average 2CD percentage error lies between 46 % and 88 % for fine crackles cases 

(SFC and RFC) and between 19 % and 59 % for coarse crackles (SCC and RCC). These results clearly 

indicate that the average 2CD percentage error is much less in the IEM-FD filter compared to the 

WTST-NST filter and the WT-FD filter in both fine and coarse crackles cases, which shows the IEM-

FD filter better preserves the crackle morphology after separation compared to either of the 

other filters. 
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(i) 

 

(a) 

(ii) 

 

(b) 

 

 

(a) 

(iii) 

 

(b) 

 

 

(a) 

(iv) 

 

(b) 

 

Figure 35               Comparison between crackle separation performance of the proposed IEM-FD 

filter, WTST-NST filter and the WT-FD filter; (i) Time section of 0.743 s of RBCC 

(Table 4, Case RBCC) recorded from a patient with BE. (ii) (a) IEM-FD filter non-

stationary output; (b) IEM-FD filter stationary output. (iii): (a) WTST-NST filter 

non-stationary output; (b) WTST-NST filter stationary output. (iv): (a) WT-FD 

filter non-stationary output; (b) WT-FD filter stationary output.   
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Table 9 Performance of IEM-FD filter in terms of 2CD percentage error. 

IEM-FD 

Cases BN Dg SNR 

(dB) 

NOTS NOC 

 

𝑨𝑪̅̅ ̅̅
𝟐𝑪𝑫(𝑺𝑫) 

(ms) 

𝑬𝑪̅̅ ̅̅
𝟐𝑪𝑫(𝑺𝑫) 

(ms) 

𝑷𝑬̅̅ ̅̅
𝟐𝑪𝑫(𝑺𝑫) 

(%) 

 

SFC 

AF BRN NA -1 

-1 

-1 

-1 

501 5010 5 (0) 5.58 (0.51) 12 (10.06) 

HF BRN NA 501 5010 3.3 (0) 4.16 (0.61) 26.50 (18.60) 

CF BRN NA 501 5010 6 (0) 6.42 (0.40) 7.91 (5.94) 

RFC BRN IPF 501 5010 3.52 (0.10) 3.45 (0.09) 2.37 (0.87) 

 

SCC 

AC BRN NA 1 

1 

1 

1 

501 5010 10 (0) 9.30 (0.51) 7.82 (3.31) 

HC BRN NA 501 5010 5.1 (0) 5.59 (0.51) 10.16 (10.05) 

CC BRN NA 501 5010 9.5 (0) 8.91 (0.39) 6.75 (2.83) 

RCC BRN BE 501 5010 8.41 (1.53) 8.32 (1.43) 10.07 (7.70) 

NOC: Number of crackles (10 crackles in each test sample); 𝐴𝐶̅̅ ̅̅
2𝐶𝐷: Mean of actual crackles 2CD; 𝐸𝐶̅̅̅̅

2𝐶𝐷: 

Mean of estimated crackles 2CD; 𝑃𝐸̅̅ ̅̅
2𝐶𝐷 : Mean of 2CD percentage error. See Table 4 footnote for the 

remaining caption for Table 9. 

7.2.2.4 Computational cost 

The computational cost for the FD technique is 2(𝑁 − 𝑊𝐹𝐷 + 1)[2(𝑊𝐹𝐷 + 𝐿) + 1] + 4𝐿 + 1 

additions and 2(𝑁 − 𝑊𝐹𝐷 + 1)(𝑊𝐹𝐷 + 𝐿 + 2) + 8𝐿 multiplications (Hadjileontiadis & Rekanos, 

2003), where, 𝑁 is the number of samples in the input signal, 𝑊𝐹𝐷 is the fractal dimension 

window length and 𝐿 is the maximum number of peeling levels in the FDPP algorithm. The MRD-

MRR procedure requires O(𝑁 𝑙𝑜𝑔 𝑁) operations (Hadjileontiadis, 2005(II)): hence for the number 

of iterations K and the signal length of 𝑁, the MRD-MRR procedure will take O(𝐾𝑁 𝑙𝑜𝑔 𝑁)  

operations in both the WTST-NST filter and the WT-FD filter. On the other hand, the IEM method 

requires only O(𝑄𝑁) operations for the number of iterations Q and the signal length of 𝑁. This 

low computational cost of the IEM-FD filter can easily be achieved by an ordinary computer. 

7.2.3 Comparison of the proposed IEM-FD filter with the EMD-FD filter  

This section provides the performance comparison between the IEM-FD filter and the EMD-FD  
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Table 10 Performance of WTST-NST filter in terms of 2CD percentage error. 

WTST-NST 

Cases BN Dg SNR 

(dB) 

NOTS NOC 

 

𝑨𝑪̅̅ ̅̅
𝟐𝑪𝑫(𝑺𝑫) 

(ms) 

𝑬𝑪̅̅ ̅̅
𝟐𝑪𝑫(𝑺𝑫) 

(ms) 

𝑷𝑬̅̅ ̅̅
𝟐𝑪𝑫(𝑺𝑫) 

 (%) 

 

SFC 

AF BRN NA -1 

-1 

-1 

-1 

501 5010 5 (0) 7.79 (5.45) 57.07(108.82) 

HF BRN NA 501 5010 3.3 (0) 7.13 (8.93) 121.43(269.67) 

CF BRN NA 501 5010 6 (0) 8.35 (6.38) 40.83 (106.06) 

RFC BRN IPF 501 5010 3.52 (0.10) 5.14 (6.30) 48.85 (178.56) 

 

SCC 

AC BRN NA 1 

1 

1 

1 

501 5010 10 (0) 10.96 (4.07) 22.90 (35.14) 

HC BRN NA 501 5010 5.1 (0) 7.72(7.46) 53.89 (146.21) 

CC BRN NA 501 5010 9.5 (0) 10.19 (3.43) 23.50 (28.55) 

RCC BRN BE 501 5010 8.41 (1.53) 12.28 (4.50) 52.94 (51.72) 

NOC: Number of crackles (10 crackles in each test sample). See Table 4 footnote and Table 9 footnote for 

the remaining caption for Table 10. 

filter. Due to the EMD-FD filter’s tendency to fail to converge on some of the 501 test samples in 

each case, one test sample was selected from 501 test samples at an SNR of -1 dB for RFC and 

each SFC case. Correspondingly, one test sample was selected from 501 test samples at an SNR of 

1 dB for RCC and each SCC case. The crackle separation performance between the proposed IEM-

FD filter and the EMD-FD filter was compared using these selected test samples supplemented by 

the RBCC and RBFC in terms of rate of detectability (𝐷𝑅), total performance  (𝑇𝐷𝑅
𝑋𝑋, 𝑆𝐷𝑇𝐷𝑅

𝑋𝑋 ), 

quality of crackle separation (over- or under-estimation), 2CD percentage error (𝑃𝐸2𝐶𝐷) and 

separation time (𝑆𝑇). 

7.2.3.1      Rate of detectability and total performance  

From the results in Table 12 it can be observed that the separation performance of the proposed 

IEM-FD filter and the EMD-FD filter (Hadjileontiadis, 2007) is quite similar in terms of rate of 

detectability except for a slightly lower performance of the IEM-FD filter in the case of RBFC. In 

terms of total performance, the proposed IEM-FD filter outperforms the EMD-FD filter in the case         
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Table 11 Performance of WT-FD filter in terms of 2CD percentage error. 

WT-FD 

Cases BN Dg SNR 

(dB) 

NOTS NOC 

 

𝑨𝑪̅̅ ̅̅
𝟐𝑪𝑫(𝑺𝑫) 

(ms) 

𝑬𝑪̅̅ ̅̅
𝟐𝑪𝑫(𝑺𝑫) 

(ms) 

𝑷𝑬̅̅ ̅̅
𝟐𝑪𝑫(𝑺𝑫) 

 (%) 

 

SFC 

AF BRN NA -1 

-1 

-1 

-1 

501 5010 5 (0) 7.41 (2.25) 58.09 (31.97) 

HF BRN NA 501 5010 3.3 (0) 5.87 (2.75) 87.68 (73.92) 

CF BRN NA 501 5010 6 (0) 8.43 (1.88) 46.73 (21.60) 

RFC BRN IPF 501 5010 3.52 (0.10) 5.64 (2.56) 63.85 (69.72) 

 

SCC 

AC BRN NA 1 

1 

1 

1 

501 5010 10 (0) 11.43 (2.60) 21.08 (21.12) 

HC BRN NA 501 5010 5.1 (0) 7.72 (2.10) 58.95 (30.45) 

CC BRN NA 501 5010 9.5 (0) 10.87 (2.35) 19.55 (21.15) 

RCC BRN BE 501 5010 8.41 (1.53) 11.11 (2.68) 36.71 (32.68) 

NOC: Number of crackles (10 crackles in each test sample). See Table 4 footnote and Table 9 footnote for 

the remaining caption for Table 11. 

of coarse crackles (SCC, RCC and RBCC) and achieves quite similar performance to the EMD-FD 

filter in the case of fine crackles (SFC, RFC and RBFC). 

7.2.3.2   Quality of crackle separation (over or under estimation) 

Table 13 shows the crackle separation comparison results of the proposed IEM-FD filter and the 

EMD-FD filter in terms of under-estimation and over-estimation, respectively. In terms of under-

estimation, it can be noticed that the estimated under-estimation quality factor of the IEM-FD 

filter and the EMD-FD filter is either very close or equal to the reference under-estimation quality 

factor, which shows very low under-estimation. On the other hand, in terms of over-estimation, it 

can be noticed that the estimated over-estimation quality factor of the IEM-FD filter is very close 

to 1 compared to the EMD-FD filter, which indicates less over-estimation by the IEM-FD filter 

compared to the EMD-FD filter. Moreover, the performance comparison between the IEM-FD 

filter and the EMD-FD filter in the case of RFC (Table 12, case RFC) is shown in Figure 36. The 

location of the crackles before inserting into the background noise is marked with arrowheads, so 

that the automatically separated crackles in the non-stationary part can be compared with the 
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Table 12 Performance comparison of IEM-FD filter and EMD-FD filter in terms of rate of 

detectability and total performance. 

 IEM-FD EMD-FD 

Cases BN Dg SNR 

(dB) 

𝑵𝑹 NOTS 𝑸 

 

𝑲 

 

𝑵𝑬 

 

𝑫𝑹 

(%) 

𝑲 

 

𝑵𝑬 

 

𝑫𝑹 

(%) 

 

SFC 

AF BRN NA -1 

-1 

-1 

-1 

10 1 2 1 10 100 1 10 100 

HF BRN NA 10 1 2 1 10 100 1 10 100 

CF BRN NA 10 1 2 1 10 100 1 10 100 

RFC BRN IPF 10 1 1 1 10 100 1 10 100 

RBFC NBS IPF ND 32 1 1 1 21 65.6 1 29 90.6 

 

SCC 

AC BRN NA 1 

1 

1 

1 

10 1 2 1 10 100 1 10 100 

HC BRN NA 10 1 2 1 10 100 1 10 100 

CC BRN NA 10 1 2 1 10 100 1 10 100 

RCC BRN BE 10 1 1 1 10 100 1 8 80 

RBCC NBS BE ND 6 1 1 1 10 100 1 10 100 

Total 

performance 

(𝑇𝐷𝑅
𝑋𝑋, 𝑆𝐷𝑇𝐷𝑅

𝑋𝑋 ) 

Fine crackles (SFC, RFC 

and RBFC) 

𝑇𝐷𝑅
𝐹𝐶 = 93.13 %, 

𝑆𝐷𝑇𝐷𝑅
𝐹𝐶 = 15.37 % 

𝑇𝐷𝑅
𝐹𝐶 = 98.12%, 

𝑆𝐷𝑇𝐷𝑅
𝐹𝐶 = 4.20% 

Coarse crackles (SCC, RCC 

and RBCC) 

𝑇𝐷𝑅
𝐶𝐶 = 100%, 

𝑆𝐷𝑇𝐷𝑅
𝐶𝐶 = 0 

𝑇𝐷𝑅
𝐶𝐶 = 96 %, 

𝑆𝐷𝑇𝐷𝑅
𝐶𝐶 = 8.94 % 

See Table 4 footnote for the caption for Table 12. 

input signal crackles. Figure 36-i displays the input signal with embedded RFC in breath noise. The 

non-stationary and stationary parts after applying the IEM-FD filter are shown in Figure 36-ii (a) 

and (b), respectively. Comparing these with the input signal, we can clearly see that not only are 

all the fine crackles separated from breath noise into the non-stationary signal estimate with their 

time duration and morphology preserved, but also the breath noise is retained in the stationary 

estimate with its proper shape and amplitude. On the other hand, the non-stationary and  
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Table 13 Performance comparison of IEM-FD filter and EMD-FD filter in terms of 

underestimation and overestimation. 

 IEM-FD EMD-FD 

Cases BN Dg SNR 

(dB) 

NOTS 𝑹𝑸𝑭𝑼
 𝑹𝑸𝑭𝑶

 𝑬𝑸𝑭𝑼
 𝑬𝑸𝑭𝑶

 𝑬𝑸𝑭𝑼
 𝑬𝑸𝑭𝑶

 

 

SFC 

AF BRN NA -1 1 0.808 0.205 0.808 0.832 0.808 0.620 

HF BRN NA -1 1 0.849 0.159 0.849 0.967 0.849 0.322 

CF BRN NA -1 1 0.804 0.206 0.804 0.851 0.842 0.689 

RFC BRN IPF -1 1 0.857 0.147 0.862 0.970 0.858 0.379 

 

SCC 

AC BRN NA 1 1 0.716 0.326 0.716 0.771 0.716 0.439 

HC BRN NA 1 1 0.782 0.233 0.785 0.944 0.786 0.400 

CC BRN NA 1 1 0.710 0.308 0.710 0.761 0.751 0.436 

RCC BRN BE 1 1 0.725 0.300 0.743 0.943 0.822 0.738 

𝑅𝑄𝐹𝑈
: Reference underestimation quality factor; 𝑅𝑄𝐹𝑂

: Reference overestimation quality factor; 𝐸𝑄𝐹𝑈
: 

Estimated underestimation quality factor; 𝐸𝑄𝐹𝑂
: Estimated overestimation quality factor. See Table 4 

footnote for the remaining caption for Table 13. 

stationary outputs of the EMD-FD filter are displayed in Figure 36-iii (a) and (b), respectively. Here 

we can observe that the non-stationary output (Fig. 36-iii (a)) of the EMD-FD filter not only 

contains the crackles but also consists of a large portion of the breath noise due to over- 

estimation. These results clearly indicate that the IEM-FD filter provides better quality of crackle 

separation (less over-estimation) compared to the EMD-FD filter. 

7.2.3.3 2CD percentage error  

Table 14 and Table 15 show the performance comparison of the IEM-FD filter and the EMD-FD 

filter (Hadjileontiadis, 2007) in terms of 2CD percentage error, respectively. From the results it can 

be observed that in the IEM-FD filter the average 2CD percentage error is very much less than the 

average 2CD percentage error in the EMD-FD filter for both fine (SFC and RFC) and coarse (SCC 

and RCC) crackles. These results clearly indicate that the IEM-FD filter can better preserve the 

crackle morphology after separation compared to the EMD-FD filter. 
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(i) 

 

(a) 

 

(a) 

 

(b) 

(ii) 

 

(b) 

(iii) 

Figure 36               Comparison between crackle separation performance of the IEM-FD filter and 

the EMD-FD filter; (i) RFC (Table 12, Case RFC); (ii) (a) IEM-FD filter non-

stationary output; (b) IEM-FD filter stationary output. (iii): (a) EMD-FD filter non-

stationary output; (b) EMD-FD filter stationary output.   
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Table 14 Performance of IEM-FD filter in terms of 2CD percentage error. 

 IEM-FD 

Cases BN Dg SNR 

(dB) 

NOTS NOC 

 

𝑨𝑪̅̅ ̅̅
𝟐𝑪𝑫(𝑺𝑫) 

(ms) 

𝑬𝑪̅̅ ̅̅
𝟐𝑪𝑫(𝑺𝑫) 

(ms) 

𝑷𝑬̅̅ ̅̅
𝟐𝑪𝑫(𝑺𝑫) 

(%) 

 

SFC 

AF BRN NA -1 

-1 

-1 

-1 

1 10 5 (0) 5.76 (0.55) 15.82 (10.62) 

HF BRN NA 1 10 3.3 (0) 3.79 (0.40) 15.31 (12.00) 

CF BRN NA 1 10 6 (0) 6.54 (0.42) 9.74 (6.37) 

RFC BRN IPF 1 10 3.52 (0.10) 3.44 (0.09) 2.57 (0.65) 

 

SCC 

AC BRN NA 1 

1 

1 

1 

1 10 10 (0) 9.34 (0.32) 6.61 (2.64) 

HC BRN NA 1 10 5.1 (0) 5.59 (0.53) 10.05 (10.38) 

CC BRN NA 1 10 9.5 (0) 8.80 (0.15) 7.13 (1.53) 

RCC BRN BE 1 10 8.41 (1.53) 8.31 (1.34) 12.24 (9.48) 

Table 15 Performance of EMD-FD filter in terms of 2CD percentage error. 

 EMD-FD 

Cases BN Dg SNR 

(dB) 

NOTS NOC 

 

𝑨𝑪̅̅ ̅̅
𝟐𝑪𝑫(𝑺𝑫) 

(ms) 

𝑬𝑪̅̅ ̅̅
𝟐𝑪𝑫(𝑺𝑫) 

(ms) 

𝑷𝑬̅̅ ̅̅
𝟐𝑪𝑫(𝑺𝑫) 

 (%) 

 

SFC 

AF BRN NA -1 

-1 

-1 

-1 

1 10 5 (0) 5.51 (1.05) 17.86 (14.59) 

HF BRN NA 1 10 3.3 (0) 5.44 (2.85) 76.07 (76.31) 

CF BRN NA 1 10 6 (0) 5.43 (0.88) 16.44 (3.41) 

RFC BRN IPF 1 10 3.52 (0.10) 3.84 (0.59) 10.10 (15.78) 

 

SCC 

AC BRN NA 1 

1 

1 

1 

1 10 10 (0) 12.10(2.30) 25.41 (17.85) 

HC BRN NA 1 10 5.1 (0) 5.94 (1.47) 23.88 (22.91) 

CC BRN NA 1 10 9.5 (0) 9.01 (1.61) 14.57 (8.92) 

RCC BRN BE 1 10 8.41 (1.53) 7.65 (2.74) 21.04 (18.21) 

NOC: Number of crackles (10 crackles in each test sample). See Table 4 footnote and Table 9 footnote for 

the remaining caption for Table 14 and Table 15. 
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Table 16 Performance comparison of IEM-FD filter and EMD-FD filter in terms of separation 

time. 

 IEM-FD EMD-FD 

Cases BN Dg SNR (dB) NOTS ST (s) ST (s) 

 

SFC 

AF BRN NA -1 1 0.57 215.42 

HF BRN NA -1 1 0.56 189.63 

CF BRN NA -1 1 0.57 201.27 

RFC BRN IPF -1 1 0.49 42.38 

RBFC NBS IPF ND 1 0.43 45.29 

 

SCC 

AC BRN NA 1 1 0.58 149.98 

HC BRN NA 1 1 0.61 276.76 

CC BRN NA 1 1 0.55 261.95 

RCC BRN BE 1 1 0.55 38.44 

RBCC NBS BE ND 1 0.48 39.33 

Average (ST (s)) 0.54 146.05 

RBFC: Real breath sound with fine crackles; RBCC: Real breath sound with coarse crackles; ST: Separation 

time; s: Second; NBS: Normal breath sound. See Table 4 footnote for the remaining caption for Table 16. 

7.2.3.4   Separation time  

As mentioned earlier (section 7.2.2.4), the low computational cost of the IEM-FD filter can easily 

be achieved. In this section, the crackle separation performance of the IEM-FD filter was tested in 

terms of separation time and compared with the EMD-FD filter. From Table 16 it can be noticed 

that in all the cases of fine and coarse crackles, the separation time of the IEM-FD filter is less 

than 1 second. By comparing the average crackle separation time of the IEM-FD filter (0.54 s) with 

the EMD-FD filter (146.05 s) it is clear that the IEM-FD filter is much faster than the EMD-FD filter. 

7.3 Summary 

Chapter 7 has presented test results for the proposed IEM-FD filter and a systematic comparison 
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with three previously published crackle separation techniques (WTST-NST filter, WT-FD filter and 

EMD-FD filter). It is clear that the IEM-FD filter can achieve the high rate of crackle identification 

accuracy with low computational cost. The comparative results indicate that the IEM-FD filter can 

provide a better quality of crackle separation (less over-estimation) and better preserved crackle 

morphology after separation compared to the previously published crackle separation techniques. 

Next the IEM-FD filter is applied to real data from two different datasets to explore its potential to 

for use on clinical sound recordings. Chapter 8 presents the detailed analysis of two different 

datasets using the IEM-FD filter. 
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Chapter 8 Two case studies 

8.1 Introduction 

This chapter will present the findings of two different case studies: one based on a year-long 

longitudinal study of patients with a diagnosis of IPF and the other a cross-sectional study of 

subjects who were referred for a HRCT scan of the chest for various clinical indications including 

suspected IPF. Both datasets were analysed using the IEM-FD filter. This chapter is divided into 

three main sections. Section 8.2 presents a brief introduction of IPF and the importance of Velcro 

crackles in IPF diagnosis or monitoring. The longitudinal study and the cross-sectional study are 

presented as case studies in section 8.3 and 8.5, respectively. 

8.2 Idiopathic pulmonary fibrosis 

IPF is the most common and the most life threatening idiopathic interstitial pneumonia (Bois, 

2012), with a median survival time of only 3-5 years from the time of diagnosis (Oldham & Noth, 

2014). The risk of IPF increases with age and is most common in the age group of 55-75 years with 

median diagnosis age of 66 years (King Jr et al., 2011). The main symptoms of IPF are chronic dry 

cough and exercise induced breathlessness (Meltzer & Noble, 2008). As mentioned in Lamas et 

al., (2011) the common median delay from symptom onset to diagnosis is 2.2 years. IPF is a non-

curable disease (Wuyts et al., 2019); the only curative treatment available is lung transplantation 

(Purokivi et al., 2017), and the delay in IPF diagnosis may increase the rate of mortality or lower 

the survival rate regardless of disease severity (Lamas et al., 2011). Therefore, the early detection 

of IPF is more important especially with the more recent availability of the disease progression 

delaying drugs i.e. pirfenidone and nintedanib (Richeldi, 2016).  

Velcro type crackles are considered as an early sign of IPF (Sellares et al., 2016). They are high 

pitched, discontinuous adventitious sounds, which can be heard in IPF patients in lung 

auscultation during slow and deep breathing. They consist of bursts of, sometimes overlapping, 

fine crackles which are non-musical and transient in nature and considered to be generated due 

to sudden opening of abnormally closed small airways (Cottin & Cordier, 2012). The sound of 

Velcro crackles is similar to the sound produced when strip of Velcro is gently detached from a 

blood pressure cuff (Cordier & Cottin, 2013; Aiello et al., 2017). Velcro crackles mostly appear in 

the mid to late inspiratory phase and are sometimes associated with the presence expiratory 

crackles (Sellares et al., 2016). They appear in the basal lung in the early stages of IPF and as the  
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disease progresses they start also to be generated in higher zones of the lung (Cottin & Cordier, 

2012).    

Chest HRCT is the most common clinical test for initial diagnosis of IPF, and surgical lung biopsy is 

used to confirm IPF diagnosis in patients with suspected IPF where HRCT presentation is not very 

promising for diagnosis (Cottin & Richeldi, 2014). However, in an ageing population lung biopsy is 

difficult to perform and without a biopsy the patient is left with suspected IPF (Cottin & Richeldi, 

2014). Cottin & Cordier, (2012) suggested that on lung auscultation the assessment of Velcro 

crackles may provide a practical way to improve the earlier diagnosis of IPF. Although IPF is the 

most common interstitial lung disease and it is classed as a rare disease (defined as less than 1 

case per 2000 people in the general population) so there can be a need for accessible indicators 

to use in diagnosis by GPs to ensure early referral. 

Physicians can identify Velcro crackles in lung auscultation by listening to the lung sounds using a 

conventional stethoscope, but this method is very challenging especially in poor listening 

conditions (Chen et al., 2014). Moreover, the overlap of Velcro crackles with normal breath 

sounds makes it difficult to separate them from background normal breath sounds just by 

listening. Therefore, the accurate detection of Velcro crackles is highly dependent on a physician’s 

expertise and hearing ability, which can lead to inter observer disagreement on crackle detection 

or to misdiagnosis (Chen et al., 2014). On the other hand, separation of crackles from normal 

breath sounds using an automatic crackle separation method may provide a better way of 

estimating number of crackles and their time domain features such as 2CD (as discussed in section 

1.3). Therefore, in this chapter two different datasets are analysed using the IEM-FD filter and 

results obtained from both case studies are described below.  

8.3 Longitudinal dataset analysis 

Recently, Sgalla et al., (2019) showed that a set of acoustic features extracted from lung sounds 

recorded in IPF patients were a reproducible and valid metric for assessing disease severity and 

progression in patients with IPF. In this study, the lung sounds dataset recorded from 19 patients 

diagnosed with IPF was used for the analysis. For each patient, the lung sounds were recorded 

over a total of 7 visits (every 2 months) over a 1 year period. At each visit, the lung sounds were 

recorded at 10 chest locations (shown in Figure 37), identified using the guidelines of the 

computerized respiratory sound analysis (CORSA) study (Sovijarvi et al., 2000c), using a digital 

stethoscope. For each lung sound signal, a set of 481 acoustic features was estimated.  

The original acoustic signal was preprocessed using a high pass filter with a cut-off frequency of 

75 Hz. After preprocessing, the acoustic features were calculated using the MIR toolbox (Lartillot 
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& Toiviainen, 2007) from the filtered lung sound signal as a whole, from different IMFs, from the 

EMD ‘crackle component’ (first 3 or first 4 IMFs), and from the EMD ‘respiratory component’ (the 

sum of remaining IMFs). The IMFs were calculated using the EMD technique (described in section 

4.6.1). Since for each sound file the number of IMFs was different, only the first 10 IMFs were 

used for the analysis (Sgalla, 2017). The features were generated from the energy content, from 

the statistical properties of the signal and its components (such as skewness and kurtosis), and 

from isolated frequency bands (such as cepstral features). Out of 481 acoustic features, a set 19 

reproducible acoustic features were identified using intra subject reliability analysis. The intra 

subject reliability analysis was applied to three repeated recordings obtained during visit 1 from 4 

IPF patients, and acoustic features with intra rater correlation coefficient (ICC) values greater than 

0.5 were considered to have acceptable repeatability.  Note that 6 of the 19 features were 

calculated from the sum of the first 3 or 4 IMFs estimated using the EMD technique, which the 

reference identifies as being associated with the crackle component of a lung sound when 

crackles are known to be present. The remaining 13 features were calculated from original 

acoustic signal which would include any crackle sounds present.  

Out of 19 reproducible acoustic features, 6 features were found to significantly change between 

baseline and end of study measurements. These 6 features were then correlated with several 

clinically established parameters of disease progression such as forced vital capacity (FVC), and 

visual and computer-based evaluation of HRCT scans. Using multivariate regression analysis, it 

was found that the set of 6 features was significantly associated with the clinically established 

parameters of disease progression. Sgalla et al., (2019) concluded that acoustic features 

generated from lung sounds are a reproducible and valid measure for assessing disease severity in 

patients with IPF and suggested that quantitative analysis of lung sounds may provide a 

noninvasive clinical biomarker in IPF.  

Although, Sgalla et al., (2019) looked at changes in the acoustic characteristics of the recorded 

lung sound, the acoustic features they selected were global features of the whole recorded signal, 

or of summed subsets of IMFs, which comprised both breath sound and any added sounds. They 

were not able to make a direct connection between the features they selected and the presence 

or characteristics of Velcro crackles. In our study, we extended the Sgalla et al., (2019) work to 

explore whether the reproducible acoustic features they identified were associate with a change 

in the NOC/BC over consecutive visits. Sovijarvi et al., (2000a) note that in interstitial lung 

diseases, the NOC/BC is associated with severity of the disease. Therefore, we investigated the 

relationship between the global acoustic features identified by Sgalla, (2017) and the NOC/BC 

extracted from the same set of lung sound data.   
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In the EMD technique, the selection of number of IMFs for crackle component and for respiratory 

component is very challenging because for every lung sound signal data dependent decision 

making is needed. Moreover, the EMD technique is a slow process and, in many cases, fails to 

converge so that the IMFs cannot be extracted, hence it is not ideal for a clinical setting where 

fast processing is desirable for decision making. Due to these limitations, we have only 

investigated the relationship between the 13 reproducible acoustic features generated from the 

whole signal after preprocessing and the NOC/BC. The process of calculating the NOC/BC is 

discussed below and the reproducible acoustic features are presented in section 8.3.7. 

The aim of our study was to investigate the relationship between the NOC/BC with the 

reproducible acoustic features directly generated from the original lung sound signal after 

preprocessing.   

 

Figure 37               10 lung sounds recording sites (L1-L10), in this study lung sounds recorded from 

6 posterior locations (L1-L6) are selected and these 6 posterior locations are 

shown in green.   

 

Figure 38               Steps used for analysing longitudinal dataset.   

8.3.1 Audio-visual marking of breathing cycles   

In each lung sound file the number of breathing cycles was audio-visually marked by the Author 

with the help of open access Audacity software. Only full breathing cycles were taken for the 

analysis as shown in Figure 39. Only lung sounds recorded from the 6 posterior locations: (as 
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shown in Figure 37 in green: L1-L6) were selected for further analysis. As mentioned in Cottin & 

Cordier, (2012) in the early course of IPF crackles appears in the basal areas of the lungs and as 

the disease progresses, they start to generate in upper zones therefore all 6 posterior locations 

were used for the analysis. Three patients died during the observation period and two patients 

withdrew from the study due to poor health. One patient completed the total 7 visits but missed 

one lung sound recording at location L1 (see Figure 37) in one of the 7 visits. Therefore, in total 

689 lung sound files available from 19 patients were marked.  

8.3.2 Pre-processing 

Figure. 38 shows the number of steps used for analysing the IPF dataset. Each lung sound signal 

was pre-processed using a 6th order Butterworth high pass filter with cut off frequency 75 Hz (as 

used by Sgalla et al., 2019) and filtered using a SG filter to eliminating the high frequency peaks 

corresponding to the unwanted ripples in the signal. The SG filter parameters are: degree of 

fitting polynomial 𝑝𝑓 = 4, number of coefficients 𝑛𝑐 = 89, and order of derivation 𝑑𝑜 = 0. Input 

lung sound signal and the pre-processed lung sound signal are shown in Figure 39 (a) and (b), 

respectively.  

8.3.3 Crackle separation 

After completing the pre-processing step, the IEM-FD filter is applied to each lung sound signal for 

separating crackles from normal breath sounds. Figure 39 (c) and (d) show an example of the 

stationary and non-stationary output of the IEM-FD filter (Chapter 5), respectively. 

8.3.4 Crackle verification and counting 

Once the crackles are separated from normal breath sounds, the absolute value of the non-

stationary output is calculated (as shown in Figure 39 (e)). Now, a moving window of variable 

length containing 6 peaks of the absolute non-stationary (ANST) output (to guarantee the 

calculation of crackle 2CD, 5 zero crossings) is applied to verify and count crackles. Note that the 

process starts with the first 6 peaks of the ANST output. Inside a moving window, if all the 5 

valleys between the 6 peaks represent the corresponding zero crossing of the non-stationary 

output of the IEM-FD filter, that window is considered as a potential crackle window (PCW) with 

location of the first peak as the beginning and location of the sixth peak as the ending of the PCW. 

The valley after the first peak of the PCW is considered the starting point of a potential crackle 

(PC). An example is shown in Figure 40 where all the valleys inside the 6 peaks (P1-P6) represent 

the corresponding zero crossing of the non-stationary output of the IEM-FD filter, hence, that 
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window is considered as PCW. On the other hand, inside a moving window, if all the 5 valleys 

between the 6 peaks do not represent the corresponding zero crossing of the non-stationary 

output of the IEM-FD filter, a new set of 6 peaks of the ANST output is calculated in the forward 

direction from the previous second peak of the moving window and the distance between new 

estimated first peak and sixth peak represents the new length of a moving window containing a 

new set of estimated  peaks of the ANST output which will used to look for a PCW. Note that the 

presence of high frequency peaks corresponding to the unwanted ripples in the input lung sound 

signal may generate false peaks and valleys therefore in the pre-processing step the high 

frequency peaks corresponding to the unwanted ripples was minimised in the input lung sound 

signal using the SG filter.  

After estimating a potential crackle window, two windows are calculated: before window (BW) 

and after window (AW). As shown in Figure 41 before and after windows are calculated, using 5 

valleys just before and after the PCW and including first and last valley of the PCW, respectively. 

Note that in the case when before the potential crackle the number of valleys was less than 5, the 

value of the BW mean was considered equal to zero as shown in Figure. 41, where before window 

(BW1) mean for the first crackle (C1) is zero. Similarly, after the potential crackle when number of 

valleys was less than 5, the value of the after-window mean was considered zero. The reason for 

selecting only 5 valleys of the ANST output for the BW and AW is to make the length of BW and 

AW as close as possible to the PCW, which also contains 5 valleys of the ANST output. The idea 

behind this is to minimize the chances of identifying false crackles without losing true crackles. For 

a longer BW and AW, we may lose true crackles and for shorter BW and AW we may increase 

false crackle detection. Now, each potential crackle is verified using the criteria defined by 

Murphy et al., (1989) and Pinho et al., (2015), and additional conditions empirically generated by 

the Author: 

Pre-existed criteria: 

(1) The beginning of the event had a sharp deflection in either a negative or a positive 

direction (Murphy et al., 1989; Kaisla et al., 1991). 

(2) After the IDW, the baseline crossings of all other peaks have to be progressively wider 

(Murphy et al., 1989; Kaisla et al., 1991). As mentioned by Pinho et al., (2015), not all 

crackles follow the standard rules, therefore ± 50 % deviation of width of the peaks is 

empirically selected to verify this condition. 

(3) The IDW of the potential crackle must be 1/8 times greater than the LDW (Pinho et al., 

(2015). 
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Empirically established conditions generated by the author: 

(4) The amplitude of the LDW peak of the crackle has to be greater than all other peaks of a 

crackle. 

(5) The PCW mean has to be greater than 1.2 times the BW mean. 

(6) The PCW mean has to be greater than the AW mean. Note that the condition (4) and (5) 

not only help to count temporally overlapping crackles but also make sure that any 

crackle with more than 5 zero crossings is not considered for more than once.  

(7) The amplitude of the IDW peak and LDW peak of the potential crackle must be greater 

than one peak before the IDW peak (amplitude of the first peak of the PCW). 

(8) The 2CD of the potential crackle has to be less than 20 ms. 

(9) The IDW of the potential crackle has to be less than 3 ms. 

Note that if crackle failed to follow any of the above conditions the PC was not counted as a true 

crackle. A new set of 6 peaks of the ANST output is identified in the forward direction from the 

second peak of the failed PCW. The distance between the new estimated first peak and sixth peak 

represent the new length of a moving window containing a new set of estimated 6 peaks of the 

ANST output which are used to look for a new PCW. On the other hand, if PC meets all the 

conditions the PC is considered as a true crackle. The process is then repeated starting in the 

forward direction from the first peak after the old PCW. Note that the length of the moving 

window varies according to the location of the new estimated 6 peaks of the ANST output.  

8.3.5 Number of crackles/breath cycle  

Figure 42 (a) shows a lung sound signal with identified true crackles. The non-stationary output of 

the IEM-FD filter and its absolute value are shown in Figure 42 (b) and 42 (c), respectively. To get a 

better visualization of the automatically detected crackles, the fourth breath cycle (BC4) in Figure 

42 is shown separately in Figure 43.  

Note that in this study the crackle detection method is not validated in terms of sensitivity or 

positive predictive value because of the unavailability of a reference signal to compare with. 

Therefore, it may be possible that some of the true crackles are missed and that some false 

crackles are detected. This may be due to true crackles occurring which do not meet established 

crackle verification conditions or because the IEM-FD filter fails to separate all the crackles from 

the input lung sound signal. However, it is important to notice that: (a) the crackle detection  
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(a) 

 

(b) 

 

(c) 

 

(d) 
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(e) 

Figure 39               (a) Input lung sound signal; (b) Pre-processed input lung sound signal; (c) IEM-FD 

filter stationary output; (d) IEM-FD filter non-stationary output; (e) Absolute 

value of the IEM-FD filter non-stationary output. Note that here BC: Breath 

cycle.   

 

Figure 40               A PCW with PC and six estimated peaks (P1-P6), where it is shown that all the 

valleys inside the six peaks of the potential crackle window are corresponding to 

the zero crossing of the IEM-FD filter non-stationary output.   
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Figure 41               Absolute value of the IEM-FD non-stationary output with PCW, BW and AW. 

Note that here BW1: Before window of the first crackle (C1); PCW1: Potential 

crackle window of the first crackle (C1); AW1: After window of the first crackle 

(C1); C1: First crackle; BW2: Before window of the second crackle (C2); PCW2: 

Potential crackle window of the second crackle (C2); AW2: After window of the 

second crackle (C2); and C2: Second crackle. All the valleys shown in the 

absolute value of the IEM-FD non-stationary output were corresponding to the 

zero crossing of the IEM-FD filter non-stationary output.   

method is not directly applied to the input lung sound signal rather it is applied to the absolute 

non-stationary output of the IEM-FD filter after separating background normal breath sounds 

from it, which reduces the chances of detecting false crackles; and (b) most of the crackle 

verification conditions used here were already tested in previous studies (Kaisla et al., 1991; Pinho 

et al. 2015; Murphy et al., 1989).  

After automatically extracting crackles from the IPF dataset, in each lung sound signal the NOC/BC 

was calculated. Next the change in extracted NOC/BC over the 7 visits (12 months follow up, visit 

every 2 months) was analysed. Finally, the estimated NOC/BC was correlated with the 13 

reproducible acoustic features directly estimated from the original signal after pre-processing. All 

the analyses were made using SPSS (IBM SPSS Statistics 26) and MATLAB (R2019a). For all the 

statistical analysis, statistical significance was set at p < 0.05.  

8.3.6 Number of crackles/breath cycle  

At each visit the number of observations was different because of patient drop-out. Therefore, 

the analysis was performed using 13 available observations across all 7 visits. The estimated mean 

NOC/BC averaged over all 13 available subjects and all locations for each of the 7 visits to clinic is 

reported in Table 17. Note that at each visit the NOC/BC calculated from all six posterior locations 

was used for the analysis.  
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(a) 

 

(b) 

 

(c) 

Figure 42               (a) Input lung sound signal with detected crackles; (b) IEM-FD filter non-

stationary output with detected crackle; (c) Absolute value of the IEM-FD filter 

non-stationary output with detected crackles. Here BC: Breath cycle.   
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(b) 

 

 

 

(c) 

Figure 43               One breathing cycle of the lung sound signal (a) Input lung sound signal with 

detected crackles; (b) IEM-FD filter non-stationary output with detected crackle; 

(c) Absolute value of the IEM-FD filter non-stationary output with detected 

crackles.   

The normality of the data over 7 visits was tested using Shapiro-Wilk test; the complete results 

obtained are shown in Table 18 and for visual analysis of the data samples distribution the 

histogram plots are reported in Appendix A (A1). Due to the non-normal distribution of the data 

samples in all the visits, non-parametric tests were selected here for the statistical analysis. The 

Friedman test was used to test whether the mean NOC/BC for different visits are all the same 

(within statistical limits) or not and the Wilcoxon signed-rank test was used to compare the 

difference between pairs of visits; a Bonferroni correction was used for correcting the statistical 

significance level where multiple statistical tests were made. 
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Table 17 Estimated NOC/BC using 13 available observations across 7 visits in the IPF dataset. 

Data presented as mean, standard deviation, maximum and minimum values. 

Visits Parameter Subjects Minimum Maximum Mean Std. Deviation 

Visit 1 NOC/BC 13 1.67 76.50 29.19 18.86 

Visit 2 NOC/BC 13 1.33 75.33 26.56 18.57 

Visit 3 NOC/BC 13 0.83 67.00 24.80 15.60 

Visit 4 NOC/BC 13 0.14 86.50 28.38 20.83 

Visit 5 NOC/BC 13 0.57 65.75 22.27 15.24 

Visit 6 NOC/BC 13 0.60 71.67 20.62 15.56 

Visit 7 NOC/BC 13 0.75 84.00 24.09 17.09 

The change in the mean NOC/BC over the complete 12 months follow up study was significant 

(Chi-Square=19.060, p=0.004) under the Friedman test. The pairwise comparison between visit 1 

and visit 6 was found to be significant (Z=3.481, p=0.021) under the Wilcoxon signed-rank test. 

The full pairwise comparison over 7 visits using the Wilcoxon signed-rank test is reported in 

Appendix A (A2). 

Table 18 Shapiro-Wilk test for normality of the distribution of the NOC/BC across 7 visits using 

13 available observations in the IPF group. 

Visits Parameter Subjects Statistic p value 

Visit 1 NOC/BC 13 0.950 0.004 

Visit 2 NOC/BC 13 0.939 0.001 

Visit 3 NOC/BC 13 0.953 0.006 

Visit 4 NOC/BC 13 0.935 0.001 

Visit 5 NOC/BC 13 0.944 0.002 

Visit 6 NOC/BC 13 0.924 0.000 

Visit 7 NOC/BC 13 0.924 0.000 
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8.3.7 Reproducible acoustic features in IPF dataset 

Table 19 shows the 19 reproducible acoustic features (Sgalla, 2017; Sgalla et al., 2019). In these 19 

features, 13 features were directly estimated from the original acoustic signal after pre-processing 

and the remaining 6 features were calculated from first 3 or 4 IMFs. The data in terms of mean, 

standard deviation, maximum value, and minimum values of all 19 reproducible acoustic features 

from sound files recorded at 6 posterior locations over complete study of 1 year in the IPF dataset 

(Sgalla, 2017) is reported in Appendix A (A3).  

Table 19 A set of 19 reproducible acoustic features (Sgalla, 2017). 

A set 19 reproducible acoustic 

features 

Description 

C3 EW_200_500 Hz Crackle component (number of IMFs=3) energy weight 

(EW) in the frequency range of 200-500 Hz 

C4 EW_75_200 Hz Crackle component (number of IMFs=4) energy weight 

(EW) in the frequency range of 75-200 Hz 

C4 EW_200_500 Hz Crackle component (number of IMFs=4) energy weight 

(EW) in the frequency range of 200-500 Hz 

sig_zerocross Zero-cross of the original signal 

sig_mfcc02 Mel Frequency Cepstral Coefficient (MFCC) of the original 

signal 

sig_75_200 Hz_zerocross Zero-cross of the original signal in the frequency range of 

75-200 Hz 

sig_75_200 Hz_centroid Centroid of the original signal in the frequency range of 

75-200 Hz 

sig_200_500 Hz_rms RMS of the original signal in the frequency range of 200-

500 Hz 

sig_200_500 Hz_lowenergy Low Energy of the original signal in the frequency range of 

200-500 Hz 

sig_200_500 Hz_lowenergyASR Average silence ratio of the original signal in the 

frequency range of 200-500 Hz 
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sig_200_500 Hz_zerocross Zero-cross of the original signal in the frequency range of 

200-500 Hz 

sig_200_500 Hz_std_meanframes Mean of the frames of the original signal in the frequency 

range of 200-500 Hz 

sig_200_500 Hz_std_medianframes Median of the frames of the original signal in the 

frequency range of 200-500 Hz 

sig_500_1000 Hz_zerocross Zero-cross of the original signal in the frequency range of 

500-1000 Hz 

sig_500_1000 Hz_rolloff85 Roll-off (threshold=85 %) of the original signal in the 

frequency range of 500-1000 Hz 

sig_500_1000 Hz_centroid Centroid of the original signal in the frequency range of 

500-1000 Hz 

C3_mfcc02 Mel Frequency Cepstral Coefficient (MFCC) of the crackle 

component (number of IMFs=3) 

C4_zerocross Zero-cross of the crackle component (number of IMFs=4) 

in the specified frequency range 

C4_mfcc02 Mel Frequency Cepstral Coefficient (MFCC) of the crackle 

component (number of IMFs=4) 

8.3.8 Correlation of NOC/BC and 13 reproducible acoustic features generated from 

original signal 

In this section, the estimated NOC/BC was correlated with the 13 reproducible acoustic features 

estimated directly from the original signal after pre-processing. Note that in this study the 

NOC/BC and the acoustic features measured at 6 posterior recording locations over 7 visits in the 

IPF dataset were used for the analysis. The NOC/BC showed significant correlation with 11 

acoustic features out of 13 in the univariate analysis as shown in Table 20.  

After the univariate analysis, simple linear regression was also performed for all the reproducible 

acoustic features that showed significant correlation with NOC/BC. The R2 values of the linear 

regression model are reported in Table 21. The R2 values show the amount of variation in the 

dependent acoustic features that can be explained by the NOC/BC. In the regression model, the  
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Table 20 Univariate correlation analysis between NOC/BC and acoustic features measured at 6 

posterior locations over 7 visits in the IPF dataset. 

 Number of crackles per breath cycle 

 

13 reproducible Acoustic features 

generated from original signal 

Pearson correlation coefficient p value 

sig_zerocross 0.628** 0.000 

sig_mfcc02 0.185** 0.000 

sig_75_200 Hz_zerocross 0.214** 0.000 

sig_75_200 Hz_centroid 0.151** 0.000 

sig_200_500 Hz_rms 0.300** 0.000 

sig_200_500 Hz_lowenergy -0.373** 0.000 

sig_200_500 Hz_lowenergyASR -0.430** 0.000 

sig_200_500 Hz_zerocross 0.590** 0.000 

sig_200_500 Hz_std_meanframes 0.242** 0.000 

sig_200_500 Hz_std_medianframes 0.347** 0.000 

sig_500_1000 Hz_zerocross -0.103** 0.007 

sig_500_1000 Hz_rolloff85 0.026 0.487 

sig_500_1000 Hz_centroid -0.050 0.194 

** = correlation was significant at the 0.01 level. 

strongest relationship of the NOC/BC were found with sig_zerocross and 

sig_200_500  Hz_zerocross, which  account for 39.4 % and 34.8 % variability of the features, 

respectively. 

8.4 Discussion 

In clinical practice, FVC via spirometry is used as a feasible and reliable tool for assessing 
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Table 21 R2 values of linear regression models for NOC/BC showing significant correlation with 

the acoustic features generated from original signal. 

Independent 

variable 

Reproducible Acoustic features generated 

from original signal (Dependent variables) 

R2 value 

 

 

 

 

 

NOC/BC 

 

 

 

 

 

sig_zerocross 0.394 

sig_mfcc02 0.034 

sig_75_200 Hz_zerocross 0.046 

sig_75_200 Hz_centroid 0.023 

sig_200_500 Hz_rms 0.090 

sig_200_500 Hz_lowenergy 0.140 

sig_200_500 Hz_lowenergyASR 0.185 

sig_200_500 Hz_zerocross 0.348 

sig_200_500 Hz_std_meanframes 0.059 

sig_200_500 Hz_std_medianframes 0.121 

sig_500_1000 Hz_zerocross 0.011 

deterioration in IPF patients (Sgalla et al., 2019). Sgalla, (2017) in his study presented longitudinal 

measurements of % predicted FVC to determine whether the sample population experienced 

disease progression over the duration of study. Sgalla, (2017) found statistically significant 

evidence of disease progression, which showed at decline in % predicted FVC over the study 

period. However, the mean change in % predicted FVC was not statistically significant in any 

pairwise comparison between visits. Furthermore, Sgalla, (2017) considered the longitudinal 

change in reproducible acoustic features in IPF to see which reproducible features might be useful 

for assessing progression of the disease. He found that out of 19 reproducible acoustic features 15 

reproducible features underwent the significant change over the period of the 12-month study. 

Moreover, out of these 15 reproducible acoustic features 6 showed significant change between 

baseline and end of study, 3 features showed significant change between baseline and visit 6, and 

one feature showed significant change between baseline and visit 5. Additionally, when these 15 

reproducible acoustic features were correlated with the % predicted FVC; 9 reproducible acoustic 

features were significantly correlated with the % predicted FVC, 6 at the 0.01 significant level and 
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3 at the 0.05 significant level. However, the correlation was negligible (Pearson correlation 

coefficient: 0 to 0.3 or 0 to -0.3), indicating that the reproducible acoustic features were poorly 

responsive to change in % predicted FVC.  

In our study, we extended the Sgalla et al., 2019 work. Firstly, we calculated the NOC/BC from 

each lung sound file in the longitudinal dataset (see sections 8.3.1-8.3.5). After calculating 

NOC/BC, the change in NOC/BC over the 12 months of study period was examined because, as 

mentioned in Sovijarvi et al.  (2000a) the NOC/BC is associated with disease severity in patients 

with interstitial lung diseases. A statistically significant change in mean NOC/BC was found over 

the study period. This change may be due to disease progression, however, the pairwise 

comparisons between visits were not found to have a statistically significant differences. This is 

may be because two-thirds of the IPF patients were taking disease-modifying treatments (either 

pirfenidone or nintedanib) over the course of the study. Nevertheless, a significant mean change 

in NOC/BC was observed between baseline and visit 6. 

Secondly, this study found a relationship between reproducible acoustic features generated from 

original signal and NOC/BC. Out of 13 reproducible acoustic features generated from original 

signal, 11-showed significant correlation with the NOC/BC at p = 0.01 significance level. However, 

most of these features showed either negligible (Pearson correlation coefficient: 0 to 0.3 or 0 to -

0.3) or low (Pearson correlation coefficient: 0.3 to 0.5 or -0.3 to -0.5) correlation with the NOC/BC. 

Nevertheless, 2 features: zero-cross of the original signal (sig_zerocross) and zero-cross of the 

original signal in the frequency range of 200-500 Hz (sig_200_500 Hz_zerocross) were moderately 

correlated (Pearson correlation coefficient: 0.5 to 0.7 or -0.5 to -0.7) with the NOC/BC indicating 

the properties of these two acoustic features were more responsive to the change in NOC/BC 

compared to the other acoustic features considered. These findings were further supported by 

linear regression analysis, which showed a high predictive power for these two acoustic features 

(sig_zerocross and sig_200_500 Hz_zerocross) towards change in NOC/BC compared to the other 

reproducible acoustic features. Interestingly, these two acoustic features also underwent a 

significant change over the 12 months of study duration and showed significant correlation with 

the % predicted FVC at the 0.01 significant level (Sgalla et al., 2019). Note that the Pearson 

correlation coefficient was interpreted using the guidelines provided by Mukaka, (2012). 

The purpose of this study was to investigate whether the acoustic features generated from the 

original signal were related to the NOC/BC. This study shown that two specific reproducible 

acoustic features directly generated from the original lung sound signal correlate with NOC/BC.  

In clinics, lung sounds can easily be recorded using an electronic stethoscope and the estimation 

of these acoustic features after preprocessing of the recorded lung sounds may provide an 
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efficient tool for assessing disease severity in IPF patients and, together with other established 

measures of disease severity, they can help in clinical decision making. The results of this analysis 

support the Sgalla et al., (2019) finding that the reproducible acoustic features can be used for 

assessing disease severity in patients with IPF.  

It is important notice that, in our study we only focused on reproducible acoustic features 

generated from original signal and did not consider the sub-signals generated by combining IMFs, 

for the reasons given in section 8.3. In addition, this analysis was made using a single centre 

dataset collected from a small population, therefore future research should explore the link 

between the NOC/BC and the global acoustic features of the signal on larger multicenter IPF 

dataset.  

8.5 Cross sectional dataset analysis 

The aim of this study was to develop an automatic system, which can be able to differentiate IPF 

patients from patients with other types of lung pathology. Sgalla et al., (2018) showed that the 

presence of Velcro crackles is directly correlated with the extent of distinct radiologic features of 

pulmonary fibrosis on HRCT and suggested that auscultation for Velcro crackles may help in early 

detection of fibrotic lung disease. In this study, 254 subjects who were referred for HRCT scan of 

the chest for various clinical indications were considered. Just before the participants underwent 

HRCT, lung sounds were recorded using an electronic stethoscope (3M Littmann 3200) at 6 

posterior chest locations (as shown in Figure 44) based on the guidelines of CORSA (Sovijarvi et 

al., 2000c). Two radiologists reviewed the imaging data for the presence and the extent of fibrotic 

abnormalities in the lungs. 76 participants were identified as having fibrosis on the HRCT and from 

the remaining participants 72 age and sex matched subjects indicating no signs of fibrosis on the 

HRCT were selected. Therefore, in the final study population 148 participants were enrolled. The 

recorded lung sounds were assessed by two expert interstitial lung disease physicians for the 

presence of Velcro crackles and in the case of disagreement, the lung sound file was marked as 

having Velcro crackles present. The assessment of the Velcro crackles was then correlated with 

different radiologic features of pulmonary fibrosis at HRCT scans. Sgalla et al., (2018) concluded 

that Velcro crackles not only predict the presence of fibrotic interstitial lung disease patterns at 

HRCT but also closely correlate with the extent of different radiological features of pulmonary 

fibrosis.  

The above-mentioned study showed that the Velcro crackles in the recorded lung sounds may 

facilitate the early detection of fibrotic lung disease (Sgalla et al., (2018)). Furthermore, as 

mentioned in Chapter 1, computer based lung sound analysis may provide an objective way of 
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analysing recorded lung sounds. Therefore, in our study, we developed an automatic system, 

which can be used for differentiating IPF patients from patients with other types of pathology 

based on the average NOC/BC. The automatic system was tested on the cross sectional dataset 

used in Sgalla et al.’s, (2018) study and compared with the assessment of the expert physicians. 

Note that in our study, the dataset recorded from 55 available participants was used for the 

analysis and only lung sounds recorded from the 4 lung bases: (as shown in Figure 44 in green: L2, 

L3, L5 and L6) were used for further analysis. As mentioned in (Cottin & Cordier, 2012) at the early 

stage of IPF crackles appear in the lower lung bases. The dataset consists 28 patients diagnosed 

with IPF and 27 patients with non-IPF. The full HRCT images marked for the presence or absence 

of pulmonary by the two expert radiologists from the (Sgalla et al., 2018) study were used as the 

ground truth for our study.  

The main aim of the study was to investigate whether automatic system performs as well as 

expert assessment for differentiating IPF patients from patients with other types of pulmonary 

pathology. 

As for the longitudinal study, in this analysis the author audio-visually marked the breath cycles in 

each lung sound file with the help of open access Audacity software. Only full breathing cycles 

were taken for the analysis. Due to inaudibility of breath cycles, 4 patients from the IPF group and 

3 patients from the non-IPF group was excluded from further analysis. Since the Author was not 

able to mark number of breath cycles in these recordings. Therefore, in total 185 available lung 

sounds recorded from 24 fibrosis and 24 non-fibrosis groups were analysed. Table 22 shows the 

age and sex of the subjects in the fibrosis and the non-fibrosis groups. In the fibrosis group the 

mean age of the patients was 69.83 with 15 males and 9 females. In the non-fibrosis group, the 

mean age of the patients was 69.79 with 15 males and 9 females. Males were predominant in 

both fibrosis and non-fibrosis groups and the fibrosis and non-fibrosis groups were age and sex 

matched. 

Table 22 Characteristics of the fibrosis and non-fibrosis groups. Data are presented as the 

mean (standard deviation) and counts (%). 

 Fibrosis 

(No. of patients=24) 

Non fibrosis 

(No. of patients=24) 

Age, years 69.83 (9.24) 69.79 (10.54) 

 

Sex (%) 

Male 15 (62.5%) 15 (62.5%) 

Female 9 (37.5%) 9 (37.5%) 
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8.5.1 Estimation of average number of crackles per breath cycle  

In this study, the same steps were used for calculating the NOC/BC from each lung sound signal 

(see Figure 38) as in longitudinal study (section 8.3). Using the NOC/BC for all available lung sound 

files, the average NOC/BC was estimated for each patient by taking the mean of NOC/BC over all 4 

lower lung base recording locations.  

Note that if one or more of the 4 lower lung base recordings was not present for any patient, the 

average NOC/BC was calculated by taking the mean of NOC/BC over those lung sound recordings 

which were available for that patient. Box and Whisker plots of the estimated average NOC/BC in 

the fibrosis and non-fibrosis groups are displayed in Figure 45. The average NOC/BC for each 

patient in the fibrosis and non-fibrosis groups with their age and sex is reported in Appendix A 

(A4). 

 

Figure 44               6 lung sounds recording sites (L1-L6), in this study lung sounds recorded from 4 

posterior base locations (L2, L3, L5 and L6) are selected and these 4 posterior base locations are 

shown in green.   

 

Figure 45               Estimated Box and Whisker plots of average NOC/BC in fibrosis and non-fibrosis 

group.   
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The Shapiro-Wilk test was used for analysing the distribution of average NOC/BC for each group 

and for visual analysis the histogram plots of the distribution of average NOC/BC are reported in 

Appendix A (A5). The normality test was non-significant for the fibrosis group (p =0.236) and for 

the non- fibrosis group (p = 0.320) hence the parametric, independent sample t-test was used for 

comparing the difference of average NOC/BC between the two groups. The difference in average 

NOC/BC between two groups was significantly different (t=4.94, p<0.001) at the independent 

sample t-test, as shown in Table 23. 

Table 23 Independent sample t-test for average NOC/BC at fibrosis and non-fibrosis groups. 

 t-test for Equality of Means 

 

 

t 

 

 

df 

 

 

Sig. (2-

tailed) 

 

 

Mean 

Difference 

 

 

Std. Error 

Difference 

95% Confidence 

Interval of the 

Difference 

Lower Upper 

Average 

NOC/BC 

Equal variances 

not assumed 4.938 43.202 0.000 15.047 3.047 

8.903 21.192 

8.5.2 Receiver operating characteristic curve  

A receiver operating characteristic (ROC) curve is a plot of a test’s sensitivity (plotted on the 

vertical axis), versus its false positive rate or 1-specificity (plotted on the horizontal axis) 

(Obuchowski, 2005). Sensitivity evaluates the proportion of positives correctly classified; 

specificity calculates the proportion of negatives correctly classified, and false positive rate is one 

minus specificity (Flach, 2010). In our study, to see the potential of the average NOC/BC to 

differentiate two groups (fibrosis or non-fibrosis) a ROC curve was generated, as shown in Figure 

46. The estimated ROC curve is reported in Table 24. The cut-off value for average NOC/BC, 18.62 

(AUC=0.845; sensitivity=91.7; specificity=59.3) was taken to differentiate two groups. The crackles 

in IPF patients are usually generated in the inspiratory phase and Flietstra et al., (2011) shown 

that the mean (standard deviation) number of crackles in the inspiratory phase in IPF patients was 

18 (14), which supports the selection of 18.62 as a cut off average NOC/BC.  

8.5.3 Velcro crackles assessment 

In Sgalla, (2017) study, two physicians independently listened to each recorded lung sound file 

using open access Audacity software and over-ear-headphones (Sennheiser HD201 closed 
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Table 24 ROC curve for the average NOC/BC. Data presented as area under the curve with 95% 

confidence interval and p-value. 

  95% CI 

Area under the curve (AUC) p-value Lower bound Upper bound 

0.845 0.000 0.739 0.952 

 

 

Figure 46               ROC curve for the average NOC/BC.   

dynamic stereo) and marked for Velcro crackles (“1= Velcro crackles”, “0=no Velcro crackles”). In 

case of disagreement, a file was marked as Velcro crackles. Where at least one physician 

identified Velcro crackles as present in at least one recording site for a given lung base (left or 

right) that lobe was identified as having Velcro crackles present. If at least one lung base had 

Velcro crackles, the patient was classified as having unilateral Velcro crackles. Patients with no 

Velcro crackles identified in either lobe were placed in the no unilateral Velcro crackles category. 

The physician assessment was then compared to the evidence from the HRCT scans.  

Out of 48 patients, physician 1 heard unilateral Velcro crackles at lung sounds recorded from 30  

Table 25 Patients with unilateral Velcro crackles assessed by two physicians. Data presented in 

counts and percentages (%). 

 Physician 1 Physician 2 

No unilateral Velcro crackles 18 (37.5%) 17 (35.42%) 

Unilateral Velcro crackles 30 (62.5%) 31 (64.58%) 
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Table 26 Cross tabulation for inter rater agreement of evaluation of unilateral Velcro crackles 

at recorded lung sounds for individual patients. Data are expressed as counts. 

  Physician 2  

  No unilateral 

Velcro crackles 

Unilateral 

Velcro crackles 

Total 

 

Physician 1 

No unilateral Velcro crackles 12 6 18 

Unilateral Velcro crackles 5 25 30 

Total  17 31 48 

patients and physician 2 reported unilateral Velcro crackles in the lung sounds recorded from 31 

patients, as presented in Table 25. The inter-rater reliability of assessment of unilateral Velcro 

crackles between two physicians was moderate (Cohen’s kappa= 0.446, p=0.001), as shown in 

cross tabulation in Table 26.  

8.6 Results and Discussion 

The performance of physician 1 and physician 2 in the differentiation of patients with fibrosis and 

non-fibrosis based on their evaluation of the presence of unilateral Velcro crackles is reported 

using cross tabulation in Table 27 and Table 28, respectively. The results in terms of sensitivity 

and specificity are shown in Table 29. Both physicians had equal sensitivity (83.3 %), which 

showed their ability to identify the presence of Velcro crackles matched well to the diagnosis of 

IPF via the gold standard of HRCT. On the other hand, specificity was 58.3 % and 54.2 % for 

physician 1 and physician 2, respectively. When we compare the average or individual 

performance of each physicians with the average NOC/BC at the selected 18.65 cut-off value it 

can be noticed that the average NOC/BC achieved higher sensitivity (91.7 %) and specificity (59.3 

%) compared to average for either physician individually or for both on average, as shown in Table 

29.  

The aim of the study was to develop an automatic system, which can be able to differentiate IPF 

patients from patients with other types of pathology. The results indicate that the automatic 

system presented here can perform as well as the assessment of expert physicians in terms of 

differentiating patients with IPF from patients with other types of pathology based on the 

presence of Velcro crackles. Moreover, the developed system has shown strong potential for 

diagnostic support, especially for assisting non-expert clinicians in their auscultatory assessment 

of lung sounds.     
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Table 27 Cross tabulation for physician 1 in the recognition of fibrosis based on unilateral 

Velcro crackles assessment. Data are expressed as counts. 

  No fibrosis Fibrosis Total 

 

Physician 1 

No unilateral Velcro crackles 14 4 18 

Unilateral Velcro crackles 10 20 30 

 Total 24 24 48 

Table 28 Cross tabulation for physician 2 in the recognition of fibrosis based on unilateral 

Velcro crackles assessment. Data are expressed as counts. 

  No fibrosis Fibrosis Total 

 

Physician 2 

No unilateral Velcro crackles 13 4 17 

Unilateral Velcro crackles 11 20 31 

 Total 24 24 48 

Table 29 Performance of two physicians in the identification of fibrosis at HRCT scan using 

assessment of unilateral Velcro crackles in recorded lung sounds and their comparison with 

selected average NOC/BC cut-off value using sensitivity and specificity. Data presented as 

percentages (%). 

Method Sensitivity (%) Specificity (%) 

Physician 1 83.3 58.3 

Physician 2 83.3 54.2 

Average  83.3 56.25 

Average NOC/BC (18.65) 91.7 59.3 

8.7 Summary 

In this chapter, two case studies: a longitudinal study and a cross sectional study of patients with 

lung pathologies are presented. Both studies were analyzed using an automated crackle detection 

process with separation by the IEM-FD filter as a first step.  

In the longitudinal study, the extracted NOC/BC were correlated with global acoustic features 
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directly extracted from the original acoustic signal and it was found that some (but not all) of 

these features were directly associated with NOC/BC, hence might be useful for monitoring 

progression of IPF.  

In the cross-sectional study, the IEM-FD filter formed the basis of an automatic system based on 

the average NOC/BC calculated from posterior base locations of a set of patients. Average 

NOC/BC so detected was shown to match the specificity and exceed the sensitivity of the 

individual and average performance of two expert physicians in terms of differentiating IPF 

patients from non-IPF patients when compared the gold standard HRCT. Hence, the automated 

system may assist physician’s in evaluating their auscultatory findings of lung sounds in clinics.  

In the next Chapter, the detailed working process of a new automatic breath cycle detection 

algorithm is presented.   
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Chapter 9 An automatic breath cycle detection method 

based on the estimation of the breathing phases 

9.1 Introduction 

In the previous chapter we saw the results of two case studies analysed using the IEM-FD filter. In 

both studies the breath cycles were audio-visually marked by the author in each lung sound file. 

The manual marking of breath cycles is highly time consuming, therefore an automatic breath 

cycle detection method was developed based on the estimation of the breathing phases. Each 

breath cycle contains two phases: inspiratory phase and expiratory phase. First the algorithm 

estimates the location of the breathing phases and then the estimated breathing phases are used 

for calculating the number of breath cycles. The rest of the chapter is organized as follows: 

Section 9.2 discuss why there is a need of a new algorithm for estimating the breathing phases. 

Section 9.3 presents the detailed working process of the new automatic method. The dataset and 

the quantitative evaluators used for performance analysis are discussed in section 9.4 and 9.5, 

respectively. The experimental results are shown in section 9.6 and evaluation of the method is 

discussed in section 9.7. 

9.2 Why there is a need of a new algorithm for estimating breathing 

phases  

The detection of breathing phases or breathing cycles is essential for the analysis of lung sounds 

in relation to cardiorespiratory diseases. As mentioned in Piirila & Sovijarvi, (1995) and Sovijarvi et 

al., (2000a) the timing of crackles in the breathing cycle (early/mid/late inspiratory or expiratory) 

may have clinical significance for the differential diagnosis of cardiorespiratory disorders. 

Moreover, in patients with interstitial lung disorders the NOC/BC is associated with the severity of 

the disease (Sovijarvi et al., 2000a; Epler et al., 1978). Generally, direct airflow measurement using 

a pneumotachograph is used for estimating breathing phases (Tarrant et al., 1997). The 

simultaneously measured airflow may be combined with counted crackles on recorded lung 

sounds for estimating timing of crackles in breathing phases. However, this approach demands a 

complex set up, and hence is not suitable for use in clinical practice (Jacome et al., 2019). On the 

other hand, the audio-visual marking of breath cycles on each recorded lung sound file (as was 

done for the two case studies described in Chapter 8) is very time consuming and subjective. 

Therefore, automatic detection of breathing phases (inspiration and expiration) may provide a 
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more efficient way of estimating breathing phases which may in turn help in counting the number 

of breath cycles.  

In recent years, researchers have proposed several methods to detect breathing phases directly 

from recorded lung sounds such as: automatic breathing phase detection using acoustical means 

(Chuah & Moussavi, 2000), trachea breath sounds based acoustic breath phase detection method 

(Huq & Moussavi, 2012), and automatic breath phase classification using smartphones (Reyes et 

al., 2016). The breath phase detection accuracy of these methods lies in the range of 93 % to 100 

%. These methods had high accuracy for breath phase detection but were very depended on 

tracheal sound. At the trachea, sounds are easily heard during both inspiratory and expiratory 

phases (Bohadana et al., 2014). On the other hand, breath sounds measured on the chest wall are 

more audible in the inspiratory phase and almost silent in the expiratory phase. However, 

tracheal auscultation is not typically performed to monitor cardiorespiratory diseases. It is mainly 

used to display the status of the upper airways (Bohadana et al., 2014). Furthermore, these 

methods were validated using lung sounds recorded from healthy subjects and the breathing 

phase detection accuracy of these methods was not tested on lung sounds recorded from 

patients with respiratory diseases. It is known that the breathing pattern and lung sounds change 

in the presence of respiratory diseases (Dellweg et al., 2008; Todd et al., 2018). Therefore, it is 

possible that these methods may not perform as well as reported in the literature when applied 

to lung sounds recorded from patients with respiratory diseases (Jacome et al., 2019). 

Recently, Jacome et al., (2019) proposed a convolutional neural network with a spectrogram-

based method for breathing phase detection in lung sounds to address some of the limitations 

mentioned above. This method was tested on lung sounds recorded from subjects both with and 

without respiratory disease. The lung sounds were recorded at six posterior chest locations. This 

method showed average sensitivity of 97 % and an average specificity of 84 % in identifying the 

breathing phases. However, the three subsets (two subsets for training the algorithm and one 

subset for evaluation) used in this study came from the same dataset- the Tromso 7 lung sound 

dataset. A common problem with machine learning methods is that they often work well with a 

generated dataset with samples recorded in an identical manner for both training and testing sets 

but may not perform as well when applied to new unseen datasets. Training an algorithm with 

large datasets recorded in different conditions may overcome this problem, but it is always 

challenging to get a large amount of data, which can limit overall generalization of a machine 

learning algorithm.     

The estimated breathing phases in a recorded lung sound can be used for calculating the number 

of breath cycles. As mentioned earlier, a breath cycle consists of two phases one inspiratory phase 
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and one expiratory phase. Therefore, a new automatic breath cycle detection algorithm based on 

estimating the location of the breathing phases is proposed. The algorithm is validated using the 

longitudinal dataset, cross-sectional dataset, and the small dataset recorded from healthy 

subjects. The description of the datasets is provided later in this Chapter. A detailed working 

process of the algorithm is provided in the next section.  

9.3 An automatic algorithm for breath cycle detection based on the 

estimation of the breathing phases 

The algorithm is based on several steps: 

9.3.1 Estimation of second derivative 

In the first step, the second derivative of the input signal is calculated using SG filter (Savitzky & 

Golay, 1964). The SG filter parameters are degree of fitting polynomial 𝑝𝑓 = 4; number of  

 

(a) 

 

(a) 

 

(b) 

(i) 

 

(b) 

(ii) 

Figure 47               (i) :- (a) Input lung sound signal (b) Estimated second derivative of the input lung 

sound signal. (ii) :- (a) Input lung sound signal (b) Estimated second derivative of 

the input lung sound signal. I: Inspiratory phase; E: Expiratory phase; BC: Breath 

cycle.   
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coefficients 𝑛𝑐 = 89;  order of derivation 𝑑𝑜 = 0, 1 and 2 for smoothing the lung sound signal, and 

estimating first and second derivative of the smoothed lung sound signal respectively. The SG 

filter is used calculating the second derivative because generates the second derivative from a 

smoothed version of the input signal. The reason for estimating the second derivative is that the 

coefficients corresponding to a higher intensity part of an input lung sound signal will remain in its 

second derivative with large amplitude but only the residue of coefficients related to quieter parts 

will remain, which may help to reveal the breathing phases. As an example: two cases are shown 

in Figure 47 (i) and Figure 47 (ii) in which inspiratory phases, expiratory phases, and breath cycles 

are audio visually marked by the author using open access Audacity software. Figure 47 (i-a) 

shows an input lung sound signal in which inspiratory phases are of high intensity and expiratory 

phases are quieter. From its second derivative as shown in Figure 47 (i-b) it can be seen that the 

coefficients related to high intensity inspiratory phases still have large amplitude. On the other 

hand, the coefficients corresponding to quieter, expiratory phases are smaller in amplitude. In 

another example, Figure 47 (ii-a) shows an input lung sound signal in which both inspiratory and 

expiratory phases are of high intensity. From its second derivative as shown in Figure 47 (ii-b), it is 

clear that when both inspiratory and expiratory phases are of high intensity the coefficients 

related to both phases have large amplitude in the second derivative signal.  

The second derivative of an input lung sound signal estimated using SG filter may more clearly 

reveal inspiratory and expiratory phases but there is a still need for automatically identifying 

inspiratory and expiratory phases or automatic counting of the number of breath cycles from the 

estimated second derivative. Therefore, several further steps are used which are described below. 

9.3.2 Estimation of absolute value of second derivative and normalised absolute value of 

second derivative 

After estimating the second derivative of the input lung sound signal, its absolute value is 

calculated. Input lung sound signal, its second derivative, and absolute value of the second 

derivative are shown in Figure 48 (a), Figure 48 (b), and Figure 48 (c), respectively, with the 

inspiratory phases, expiratory phases, and breath cycles were marked by arrows. The absolute 

value of the second derivative may vary significantly, therefore, its value is normalized to an 

amplitude range of 0 to 1 using Eq. 72.  

𝐴𝑆𝐷𝑛𝑜𝑟𝑚(𝑛) =
𝐴𝑆𝐷(𝑛) − 𝐴𝑆𝐷𝑚𝑖𝑛

𝐴𝑆𝐷𝑚𝑎𝑥 − 𝐴𝑆𝐷𝑚𝑖𝑛
 

(72) 

where 𝐴𝑆𝐷(𝑛) is the absolute second derivative, 𝑛 is the sample index, 𝐴𝑆𝐷𝑚𝑖𝑛 is the minimum  
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value of the absolute second derivative, 𝐴𝑆𝐷𝑚𝑎𝑥 is it’s the maximum value and 𝐴𝑆𝐷𝑛𝑜𝑟𝑚(𝑛) is 

the normalized absolute second derivative. The normalized absolute second derivative is shown in 

Figure 48 (d). 

9.3.3 Clipping large amplitude peaks from the normalized absolute second derivative  

The large amplitude peaks present (due to adventitious sounds such as crackles, movement 

artefact, heart sounds etc.) in the input lung sound signal may confuse the automated detection 

about the breathing phases. Therefore, once the normalized absolute second derivative is 

calculated, the large amplitude peaks are clipped using a threshold value estimated from the 

frequency histogram plot of the normalized absolute second derivative. The threshold is taken as 

the value having, on its left, 80 % of total area. The cut off of 80 % is selected based on Vannuccini 

et al., (1998). The frequency histogram plot of the normalized absolute second derivative is shown 

in Figure 48 (e). Figure 48 (f) shows the normalized absolute second derivative after clipping the 

large amplitude peaks.  

9.3.4 Low pass filter 

Next the clipped normalized absolute second derivative is passed through the 3rd order 

Butterworth low pass filter with cut off frequency 1.2 Hz or 1 Hz. Usually, a patient with 

cardiorespiratory disease breathes faster than a healthy subject. Therefore, the higher cut off 

frequency: 1.2 Hz, is selected for the longitudinal and cross sectional IPF datasets and the lower 

cut-off frequency: 1 Hz, is selected for healthy subjects. Here, the cut off frequencies 1.2 Hz and 

1 Hz are empirically selected. Figure 48 (g) shows the output of the low pass filter. 

9.3.5 Estimation of potential breathing phases and their onsets 

In this step, peaks and valleys of the low pass filter output are used for calculating the potential 

breathing phases and breath onsets, respectively. Figure 48 (h) shows all possible peaks and 

valleys of the low pass filter output, where peaks are shown using black stars and valleys are 

displayed using green stars. This step is divided into several sub steps:   

(i) Firstly, peaks of the low pass filter output which are 0.5 standard deviations above the 

mean of the low pass filter output are identified (see Figure 48 (i)).  

(ii) Secondly, valleys of the low pass filter output which are less than the mean of the low 

pass filter output are identified, as shown in Figure 48 (j).   

(iii) Now, from the valleys in sub step (ii) only valleys which are just before and after the 
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estimated peaks are considered. This may include the first sample in the signal (if 

there is no valley before the first estimated peak) and the last point of the signal (see 

Figure 48 (k)).  

(iv) As mentioned by Chuah & Moussavi, (2000) typically the average duration of a 

breathing phase is approximately 1 s. Therefore, the distance between an estimated 

peak and the potential onset of its associated breathing phase is expected to be about 

500 ms and the distance between any two potential onsets is expected to be of the 

order of 1s. However, breath cycle duration may change from breath to breath, hence 

any potential onsets (or valleys) which are closer than 200 ms to any estimated peaks 

are discarded. 

(v) Additionally, if any potential onset is less than 500 ms from a previous onset it is 

excluded from the analysis. As an example, see Figure 48 (l), where the potential 

onset just after 2 sec in Figure 48 (k) is excluded. Note that once any potential onset is 

excluded then it is not used for comparing with other onsets.  

(vi) Now, if more than one estimated peak exists between two potential onsets, only the 

maximum peak amongst them is considered, as shown in Figure 48 (m). 

(vii) In the next step, average and standard deviation of the estimated peaks remaining 

after sub step (vi) are calculated.  

(viii) Now, a peak threshold is estimated using the average and standard deviation 

calculated in the previous sub step: 

𝑃𝑒𝑎𝑘𝑇𝐻 =
𝑃𝑒𝑎𝑘𝑎𝑣𝑔

2
+ 𝑃𝑒𝑎𝑘𝑠𝑡𝑑 

(73) 

where 𝑃𝑒𝑎𝑘𝑎𝑣𝑔 and 𝑃𝑒𝑎𝑘𝑠𝑡𝑑 are the average and standard deviation of the remaining estimated 

peaks after sub step (vi), respectively. 

(ix) Finally, estimated potential breath onsets are connected with each other using 

alternating positive and negative rectangles (starting with a positive rectangle) where 

positive rectangles show potential inspiratory phases and negative rectangles 

represent potential expiratory phases, as shown in Figure 48 (n). 

9.3.6 Estimating breathing phases  

Usually, in lung sounds recorded from posterior chest locations, the intensity of the inspiratory 

phases is expected to be high compared to the expiratory phases (Kompis et al., 1997; Moussavi 
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et al., 1998). Therefore, as a last step, potential inspiratory phases are verified using the 

calculated peak threshold (Eq. 73).  

The process starts with the first potential inspiratory phase: 

If the first potential inspiratory phase consists of an estimated peak of greater than the peak 

threshold, the potential inspiratory phase is considered as a true inspiratory phase and the next 

potential inspiratory phase is verified. During the verification process if any potential inspiratory 

phase (including the first potential inspiratory phase) without or with an estimated peak of 

amplitude less than or equal to the peak threshold occurs, the first potential onset point of that 

potential inspiratory phase is eliminated from the process. Now, the remaining potential onsets 

are reconnected with each other using alternating positive and negative rectangles (starting with 

positive rectangle) where any positive rectangles before the eliminated potential onset point 

show the inspiratory phases (because they are already verified) and after the eliminated onset 

point indicate potential inspiratory phases which still need to verify. Moreover, any negative 

rectangle between the two verified inspiratory phases represents an expiratory phase and any 

negative rectangle before or after an unverified potential inspiratory phase shows a potential 

expiratory phase.  

The verification process again starts with the new assigned potential inspiratory phases starting 

from the new first potential inspiratory phase. This verification process ends when all positive 

rectangles consist of an estimated peak with amplitude greater than the peak threshold. Hence, 

at the end of the process all positive rectangles with estimated peaks greater than the peak 

threshold are considered as inspiratory phases and all negative rectangles with or without 

estimated peaks are considered as expiratory phases.  

Based on the estimated breathing phases the number of breath cycles is calculated. The 

combination of two phases one estimated inspiratory phase and one estimated expiratory phase 

(starting with an inspiratory phase because the process of breathing is considered to start with an 

inspiration phase) makes up one breath cycle and the total of all such combinations represents 

the number of breath cycles. 

After applying the verification process the estimated inspiratory and expiratory phases are shown 

in Figure 48 (o) using positive and negative rectangles, respectively. The breath cycles marked 

from audio-visual analysis of the signals are also indicated in Figure 48 (o). Moreover, the 

estimated inspiratory and expiratory phases with calculated breath cycles are displayed in the 

second derivative of the input lung sound signal in Figure 48 (p), where positive rectangles show 

the estimated inspiratory phases, negative rectangles indicate the estimated expiratory phases,  



Chapter 9 

128 

 

(a) 

 

(b) 

 

(c) 

 

(d) 



Chapter 9 

129 

 

(e) 

 

(f) 

 

(g) 

 

(h) 



Chapter 9 

130 

 

(i) 

 

(j) 

 

(k) 

 

(l) 



Chapter 9 

131 

 

(m) 

 

(n) 

 

(o) 

 

(p) 

Figure 48               (a) Input lung sound signal; (b) Second derivative of the input lung sound signal; 

(c) Absolute value of the second derivative; (d) Normalized absolute second 

derivative; (e) Frequency histogram of the normalized absolute second 

derivative; (f) Clipped normalized absolute second derivative; (g) Low pass filter 

output; (h-m) Low pass filter output with different conditions of the section 



Chapter 9 

132 

9.3.5; (n) Low pass filter output with potential inspiratory phases and expiratory 

phases; (o) Low pass filter output with estimated breathing phases and 

breathing cycles; (p) Second derivative of the input lung sound signal with 

estimated breathing phases and breath cycles. I: Inspiratory phase; E: Expiratory 

phase; BC: Breath cycle.   

and a combination of two phases one inspiratory and one expiratory represents a breath cycle. 

When we compare the automatic detection results (Figure 48 (p)) with the audio-visual marking 

(Figure 48 (a)) it is clear that all the true inspiratory phases, expiratory phases and breath cycles in 

this example have been detected. 

9.4 Datasets and audio-visual marking of breathing phases and breath 

cycles 

9.4.1 Dataset 

The algorithm is validated using three different lung sound datasets: (a) Longitudinal dataset 

recorded from 19 IPF patients, (b) Cross-sectional dataset recorded from 55 patients who were 

referred for HRCT scan of the chest for various clinical indications, and (c) a dataset recorded from 

10 healthy subjects. The complete description of the longitudinal and cross-sectional datasets is 

provided in Chapter 8. The healthy subjects’ lung sounds dataset was recorded from 10 healthy 

subjects and, as for the longitudinal dataset, in this dataset each participant attended a total of 7 

visits (every visit approximately in 2 months) over a 1 year period (Sgalla, 2017). In all three 

datasets the lung sounds recorded from 6 posterior locations using a digital stethoscope are 

analysed. See Chapter 8, Figure 37 for the 6 posterior locations (in green: L1-L6) in the case of 

longitudinal and healthy subjects datasets, and Figure 44 for the 6 posterior locations (L1-L6) in 

the case of cross-sectional dataset.  

9.4.2 Audio-visual marking of breathing cycles, inspiratory phases and expiratory phases 

In all three datasets each lung sound file was audio-visually marked for the number of breathing 

cycles, number of inspiratory phases, and number of expiratory phases by the author. In each lung 

sound file only the full breathing cycles (one inspiratory phase followed by one expiratory phase) 

were considered for the analysis. In the longitudinal dataset out of 19 IPF patients 13 patients 

completed the total 7 visits with lung sound recordings at all 6 posterior locations. 2 patients 

withdrew from the study due to poor health and 3 patients died during the observation period 

(Sgalla, 2017). One patient completed the total 7 visits but missed one lung sound recording at 
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location L1 (see Chapter 8, Figure 37) in one of the 7 visits. Therefore, in the longitudinal dataset, 

in total 689 lung sound files (546 lung sounds recorded from 13 patient’s×6 recording sites×7 

visits, 41 lung sounds recorded from: 1 patient×6 recording sites×6 visits and 1 patient×5 

recording sites×1 visit, 60 lung sounds recorded from 2 patient’s×6 recording sites×5 visits, 24 

lung sounds recorded from 2 patient’s×6 recording sites×2 visits, 18 lung sounds recorded from 1 

patient×6 recording sites×3 visits) were analysed. In the case of healthy subjects dataset, out of 10 

subjects 7 subjects completed the study. 3 subjects withdrew from the study at some point due to 

personal or otherwise non-specified reasons (Sgalla, 2017). From 7 subjects, 6 completed the total 

7 visits and one patient skipped a visit during the observation period. Therefore, in the healthy 

subjects dataset, out of 336 lung sound files (252 lung sounds recorded from 6 patient’s×6 

recording sites×7 visits, 36 lung sounds recorded from 1 patient×6 recording sites×6 visits, 30 lung 

sounds recorded from 1 patient×6 recording sites×5 visits, 12 lung sounds recorded from 1 

patient×6 recording sites×2 visits, 6 lung sounds recorded from 1 patient×6 recording sites×1 

visits), 282 lung sound files were analysed. 54 lung sound files were excluded from the study due 

to inaudibility of breathing phases or breath cycles. In the cross-sectional dataset out of 55 

patients, lung sounds recorded from 48 patients were used for the analysis. 5 patients were 

excluded from the analysis due to inaudibility of breathing phases or breath cycles in their 

recorded lung sounds. In the excluded lung sound files, due to very quiet breathing the author 

was not able to mark either breathing phases or breath cycles. Therefore, out of 262 available 

lung sound files recorded from 48 patients, 258 lung sound files were analysed. With 4 lung sound 

files excluded from the study due to inaudibility of breathing phases or breath cycles. The 

different lung sound datasets used for evaluating the performance of the developed algorithm are 

shown in Table 30. 

Table 30 Different lung sound datasets are used for evaluating the algorithm. 

Datasets Number of 

lung sound 

files 

Number of 

inspiratory 

phases 

Number of 

expiratory 

phases 

Number of 

breath cycles 

Longitudinal dataset 689 2416 2416 2416 

Cross-sectional dataset  258 741 741 741 

Healthy subjects 

dataset 

282 905 905 905 
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 49               (a) Input lung sound signal selected from the longitudinal dataset; (b) 

Normalized absolute second derivative; (c) Low pass filter output; (d) Second 

derivative of the input lung sound signal with estimated breathing phases and 

breath cycles. I: Inspiratory phase; E: Expiratory phase; BC: Breath cycle.   
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 50               (a) Input lung sound signal selected from the cross-sectional dataset; (b) 

Normalized absolute second derivative; (c) Low pass filter output; (d) Second 

derivative of the input lung sound signal with estimated breathing phases and 

breath cycles. I: Inspiratory phase; E: Expiratory phase; BC: Breath cycle.   
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(a) 

 

(b) 

 

(c) 

 

(d) 

Figure 51               (a) Input lung sound signal selected from the healthy subjects dataset; (b) 

Normalized absolute second derivative; (c) Low pass filter output; (d) Second 

derivative of the input lung sound signal with estimated breathing phases and 

breath cycles. I: Inspiratory phase; E: Expiratory phase; BC: Breath cycle.   
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9.5 Performance evaluators 

Three parameters are used for evaluating the breath cycle detection performance of the 

algorithm: sensitivity (SE), positive predictive value (PPV), and F-score (𝐹1). 

𝑆𝐸 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

(74) 

𝑃𝑃𝑉 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

(75) 

𝐹1 = 2 ×
𝑆𝐸 × 𝑃𝑃𝑉

𝑆𝐸 + 𝑃𝑃𝑉
 

(76) 

Where TP, FN and FP are true positive (Number of breath cycles audio-visually counted), false 

negative (number of counted breath cycles which are not detected) and false positive (number of 

detected breath cycles which were not counted), respectively. The ability of the algorithm to 

identify the inspiratory and expiratory phases is also evaluated using the above mentioned 

parameters (Equations 74-76), where true positive is number of inspiratory or expiratory phases 

audio-visually counted, false negative is number of inspiratory or expiratory phases are not 

detected, and false positive is number of incorrectly detected inspiratory or expiratory phases. 

The obtained experimental results are presented in the next section. 

9.6 Experimental Results 

To show the ability of the algorithm to automatically estimate the breathing phases one example 

from each of the three datasets is shown in Figure 49, Figure 50, and Figure 51, respectively. 

Figure 49 Indicates one example from longitudinal dataset, Figure 50 shows one example from 

cross-sectional dataset, and Figure 51 illustrates one example from healthy subjects dataset. Plots 

labelled (a) show curves for input lung sound signals where breathing cycles and breathing phases 

are audio-visually marked by the author, plots labelled (b) show curves for the normalized 

absolute second derivative signals, plots labelled (c) show curves for the low pass filter outputs, 

plots labelled (d) show curves for the second derivative of the input lung sound signals with 

estimated breathing cycles and breathing phases where positive rectangles show the estimated 

inspiratory phases, negative rectangles display the estimated expiratory phases, and the 

combination of one inspiratory phase and one expiratory phase represents a breath cycle. Note 

that the complete process of the algorithm is discussed in section 9.3. By comparing the 

estimated breathing cycles or breathing phases using the algorithm (plots labelled (d)) with the 

audio-visually marked on the input lung sound signal (plots labelled (a)) it can be notice that all 

the breathing cycles and breathing phases are correctly detected by the algorithm.  
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Table 31 Sensitivity, Positive predictive value and F-score for number of breath cycles. 

Dataset SE PPV F-score 

Longitudinal dataset 94.41 93.25 93.83 

Cross-sectional dataset 97.37 94.76 96.05 

Healthy subjects dataset 88.81 93.01 90.86 

Average 93.53 93.67 93.58 

Table 32 Sensitivity, Positive predictive value and F-score for inspiratory phases. 

Dataset SE PPV F-score 

Longitudinal dataset 91.14 88.95 90.03 

Cross-sectional dataset 94.52 89.28 91.83 

Healthy subjects dataset 86.35 88.04 87.19 

Average 90.67 88.76 89.68 

Table 33 Sensitivity, Positive predictive value and F-score for expiratory phases. 

Dataset SE PPV F-score 

Longitudinal dataset 90.96 89.68 90.32 

Cross-sectional dataset 93.56 90.92 92.22 

Healthy subjects dataset 85.62 89.52 87.53 

Average 90.05 90.04 90.02 

In all three datasets the values of SE, PPV, and F-score of the algorithm in estimating the number 

of breath cycles are presented in Table 31. On average, the algorithm achieved a SE of 93.53 %, a 

PPV of 93.67 %, and F-score of 93.58 %. 

As mentioned earlier, the breathing cycles are calculated based on the estimation of the 

inspiratory and expiratory phases. Hence, in all three datasets the values of SE, PPV, and F-score 

of the algorithm in identifying inspiratory phases are presented in Table 32 and identifying 

expiratory phases are shown in Table 33. In terms of the estimation of the inspiratory phases the 

algorithm obtained on average, SE of 90.67 %, PPV of 88.76 %, and F-score of 89.68 %. On the 
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other hand, in the case of estimation of the expiratory phases, the algorithm achieved SE of 90.05 

%, PPV of 90.04 %, and F-score of 90.02 %. 

9.7 Discussion 

The algorithm is not only tested on lung sounds recorded from healthy subjects but also evaluated 

using the lung sounds recorded from cardiorespiratory patients such as IPF patients in order to 

show its potential to calculate the number of breath cycles in different breathing patterns. The 

individual breath phase estimation performance of the proposed algorithm was on average, SE of 

90 %, PPV of 88 %, and F-score of 89 % in case of inspiratory phases and on average, SE of 90 %, 

PPV of 90 %, and F-score of 90 % in case of expiratory phases. However, the algorithm has shown 

slightly low, on averaged sensitivity for breath phase estimation compared to previously 

developed algorithms (Huq & Moussavi, (2012); Jacome et al., (2019)). Nevertheless, it is 

important to notice that the primary aim of the algorithm was to calculate the number of breath 

cycles. In terms of calculating the number of breath cycles the algorithm achieved on average SE 

of 93 %, PPV of 93 %, and F-score of 93 %. The main advantage of the proposed algorithm is its 

low computational cost which makes it an ideal candidate for the clinical setting where fast 

processing may be helpful in decision-making. To our knowledge, this is the first study to calculate 

the number of breath cycles based on the estimation of breathing phases using the second 

derivative of the input lung sound signal.  

The method showed good results in terms of calculating the breath cycles, but the limitation of 

the algorithm is its dependency on the non-adaptive cut-off frequency of the low pass filter. The 

higher cut-off frequency may generate too many false peaks and valleys which may increase the 

chances of identifying false breathing phases. On the other hand, the lower cut-off frequency may 

smooth out the true peaks and valleys of the breathing phases (especially in the case of fast 

breathing) which may increase the chances of losing some of the true breathing phases. 

Therefore, it is important to notice that in our analysis we used two cut-off frequencies: 1.2 Hz 

and 1 Hz. As mentioned earlier, a patient with cardiorespiratory disease generally breathe faster 

than a healthy subject therefore the 1.2 Hz cut off frequency was used for the longitudinal and 

cross-sectional datasets and 1 Hz cut-off frequency was used for the healthy subjects dataset. The 

future research to automatically select the low pass filter cut-off frequency according to the 

breathing pattern may enhance the breath cycle detection potential of the proposed algorithm.  

Furthermore, the algorithm was evaluated against the audio-visual assessment made by the 

author. As mentioned by Pinho et al., (2015), human assessment is associated with high levels of 

subjectivity. Therefore, future research should consider comparing the performance of the  
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algorithm against a multi-annotators gold standard. Moreover, future research will focus on 

evaluating the performance of the algorithm with lung sounds recorded from different 

populations: children, young adults, old subjects with or without pulmonary diseases.  

9.8 Summary 

Chapter 9 described a new automatic breath cycle detection algorithm based on the estimation of 

breathing phases. From the experimental results it can be notice that the proposed algorithm can 

estimate breathing phases from the recorded lung sounds and estimated breathing phases may 

be used for calculating the number of breath cycles. However, the individual breathing phase 

(inspiratory phase or expiratory phase) identification performance of the algorithm is slightly less 

good when compared to the estimation of the number of breath cycles. Nevertheless, the primary 

aim of the algorithm was to estimate the number of breath cycles. The estimated number of 

breath cycles can be used in calculating the NOC/BC as we have seen in two case studies in 

Chapter 8. Furthermore, the combination of the IEM-FD filter, crackle verification and counting 

criteria (see section 8.3.4), and a new breathing cycle detection method can provide a fully 

automatic way of estimating the NOC/BC. The next chapter will discuss the findings of this 

research including the limitations of this study, conclusions and future possibilities. 
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Chapter 10 Discussion, conclusions, and future work 

10.1 Introduction 

The overall aim of this research was to develop a new crackle separation technique, the IEM-FD 

filter, which can be used in clinical setting for recorded lung sounds analysis. The crackle 

separation potential of the IEM-FD filter was evaluated using a developed dataset and compared 

with three previously published crackle separation techniques. The IEM-FD filter was then applied 

to two datasets recorded in clinical settings: a longitudinal dataset recorded in patients with IPF 

and a cross-sectional dataset recorded from patents referred for an HRCT of the lungs. Finally, a 

new automatic breath cycle detection method based on the estimation of breathing phases was 

developed.  

This chapter will start by discussing a dataset generated for systematic testing of crackle 

separation techniques. This will be followed by discussing the separation performance of the new 

IEM-FD filter. The chapter will then discuss the two case studies (longitudinal study and cross 

sectional study). An algorithm developed for automatic detection of number of breath cycles from 

the recorded lung sounds is also discussed. The limitations of the study are then discussed. This 

chapter finishes by presenting the conclusions of the research its main findings and some future 

possibilities. 

10.2 Generated dataset  

To provide an open platform to researchers so that they can evaluate and compare their crackle 

separation and detection methods, an open access dataset is presented in this study. This dataset 

contains real and simulated fine and coarse crackles with different IDW/2CD and real lung sounds 

with fine and coarse crackles recorded from an IPF patient and a BE patient, respectively, Addition 

of more real lung sounds with fine or coarse crackles recorded from different cardiopulmonary 

diseases will provide more test cases for evaluating crackle separation performance of new 

algorithms in future. The detailed description of the generated dataset is provided in Chapter 3 

and a paper published on the development of the dataset can be found in Appendix A (A6).  

10.3 Proposed IEM-FD filter for separating crackles from normal breath 

sounds  

As mentioned in section 2.2.3, in recent years many automatic crackle separation techniques have 
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been proposed for separating crackles from the normal breath sounds. However, the existing 

crackle separation methods either suffer from high computation complexity and/or fail to 

preserve crackle morphology after separation and/or have low objectivity etc. (see section 2.2.4.). 

Therefore, in this study, a new IEM-FD filter was proposed for automatically separating crackles 

from normal breath sounds. See Chapter 5 for the detailed working process of the IEM-FD filter.  

As mentioned in section 1.2, the crackle time features such as number of crackles in inspiratory 

phase, number of zero line crossings, first half period of the crackles etc. can be used for 

differentiating IPF patients from patients with pneumonia and congestive heart failure (Flietstra 

et al., 2011). However, the presence of normal breath sounds may introduce errors when 

calculating crackle time features. For example, Munakata et al., (1991), identified that baseline 

drift over the duration of a crackle (a consequence of over-estimation) may introduce errors when 

calculating IDW and 2CD leading to incorrect classification of crackle type (fine or coarse) and 

increasing the potential for misdiagnosis. Therefore, for any automatic crackle separation 

technique it is not only important to separate crackles from normal breath sounds with high rate 

of detectability but it is also important to separate crackles with high separation quality (less over 

or underestimation). The separation of crackles from normal breath sounds with high quality can 

lead to extraction of accurate crackle time domain features, which can help to differentiate 

between cardiopulmonary diseases with high sensitivity and specificity and reduce the chances of 

medication error or mistreatment. 

The performance of the IEM-FD filter with low computational load, high rate of detectability, low 

over or under estimation and ability to preserve crackle morphology after separation shows its 

potential for automatic crackle separation. Separation of crackles from normal breath sounds is 

an initial processing stage towards better estimation of number of crackles and their time domain 

features. In comparison with the established WTST-NST filter (Hadjileontiadis & Panas, 1997), WT-

FD filter (Hadjileontiadis, 2005 (I); Hadjileontiadis, 2005 (II)) and EMD-FD filter (Hadjileontiadis, 

2007) the IEM-FD filter has an equally high Rate of Detectability and total performance for both 

fine and coarse crackles (see Chapter 7). Further the IEM-FD filter has fewer data-dependent 

optimization parameters compared to the WTST-NST filter, WT-FD filter, and the EMD-FD filter 

making it generally applicable to signals recorded from cardiopulmonary patients with different 

diagnoses without the need for data dependent customization to optimize its performance. The 

separation performance of the IEM-FD filter and its systematic comparison with the selected 

methods is presented in Chapter 7. 

The IEM-FD filter showed good results in terms of separating crackles from normal breath sounds. 

However, the IEM-FD filter, has several limitations: First, the selection of the SG filter parameters 
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in the IEM method is not adaptive which may affect its  performance  when, due to high 

frequency background noise, the envelope mean value is not properly estimated; Second, the 

dependency of the IEM-FD filter stopping criteria on the three non-adaptive accuracy levels i.e. 𝛽1 

for the IEM method, 𝛽2 for the IEM-FD filter and 𝛽3 for the FDPP algorithm may limit its overall 

performance. 

The automatic separation of crackles from lung sounds using the IEM-FD filter not only provides 

an objective way of analyzing recorded lung sounds but also shows the future possibilities of 

computer based lung sounds for pulmonary disease diagnosis or monitoring. A paper published 

on the IEM-FD filter can be found in Appendix A (A7).  

10.4 Two case studies 

The IEM-FD filter was then applied to two case studies: longitudinal dataset and cross-sectional 

dataset. In both studies, NOC/BC was calculated with the separation by the IEM-FD filter the 

fundamental first step in processing the signals. The process of estimating NOC/BC was discussed 

in Chapter 8.  

The longitudinal study showed that reproducible acoustic features generated from original signal 

(11 out of 13) significantly correlate with the NOC/BC, but only 2 reproducible acoustic features: 

zero-cross of the original signal (sig_zerocross) (r=0.628, p<0.001) and zero-cross of the original 

signal in the frequency range of 200-500 Hz (sig_200_500 Hz_zerocross) (r=0.590, p<0.001) 

indicated moderate correlation at the 0.01 significance level with the NOC/BC. Hence, these may 

be the most relevant features for monitoring IPF patients. However, it is important to notice that 

this study was tested on a small population of longitudinal data collected from IPF patients, larger 

IPF longitudinal datasets are required to further investigate the potential for monitoring disease 

severity in IPF patients. The more detailed discussion on the longitudinal study is provided in 

section 8.4. 

In the cross-sectional study the developed automatic system showed the potential to differentiate 

IPF patients from non-IPF patients based on the average NOC/BC, it should be noted that, the 

automatic system was tested on a small population and a larger dataset will be needed for further 

investigation of its potential for differentiating IPF patients from patients with other pathologies. 

The more detailed discussion of the cross-sectional study is provided in section 8.6. 
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10.5 An algorithm for automatic detection of number of breath cycles 

based on the estimation of breathing phases 

Although, in terms of estimating the number of breath cycles the algorithm achieved, on average 

SE of 93 %, PPV of 93 %, and F-score of 93 % (see Chapter 9). There are several points which 

should be noted: (1) the selected SG filter parameters used for estimating the second derivative 

of the input signal worked well in our datasets in terms of revealing breathing phases (except in 

some cases where breathing is very quiet). However, the selection of these parameters is not 

adaptive in our study hence it is possible that these selected parameters may not work as well as 

they performed in our datasets when applied to a new dataset with different breathing pattern. 

Therefore, the future research should explore the performance of these parameters on a larger 

dataset recorded from different age populations to see their ability to reveal breathing phases in 

different breathing pattern; especially when breathing is very quiet; (2) the non-adaptive 

selection of the low pass filter frequency may affect the overall performance of the algorithm 

therefore an adaptive approach is needed for selecting low pass filter cut-off frequency according 

to breathing pattern in future work and; (3) there are several methods available in the literature 

for automatically estimating breathing phases (Chuah & Moussavi, (2000); Huq & Moussavi, 

(2012); Reyes et al., 2016; Jacome et al., 2019), which may be used for calculating number of 

breath cycles in the input lung sound signal. These methods were not explored in our study but 

might be compared with the developed method in future work. A more detailed discussion of the 

developed method is provided in section 9.7. 

10.6 Limitations 

This study has several limitations:  

Firstly, the IEM-FD filter was tested using a dataset (Chapter 3, Table 2) largely consisting of 

simulated signals, but then applied to  the real signals, of the longitudinal and cross sectional 

datasets (see Chapter 8), It is important to notice that the test dataset only contains two real lung 

sounds samples (RBFC and RBCC) hence in this study the IEM-FD filter was only tested on a very 

limited number of real lung sounds samples before applying to the real signals. Therefore, future 

research needs to validate the performance of the IEM-FD filter on larger set of real lung sounds 

signals recorded at different locations (posterior, anterior, and lateral) from different 

cardiopulmonary diseases which can further evaluate the crackle separation performance of the 

IEM-FD filter and provide better support to the IEM-FD filter for using in real lung sound 

recordings.  
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Secondly, both the: IEM-FD filter and the automatic breath cycle detection method depend on 

empirical setting of parameters: accuracy levels (𝛽1, 𝛽2, and 𝛽3) in the IEM-FD filter and setting a 

low pass filter cut-off frequency (1.2 Hz or 1 Hz) in the breath cycle detection method. Therefore, 

future research should focus on making these parameters data driven which will increase the 

objectivity of these methods.  

10.7 Conclusions and future work 

This study proposed an automatic method for separating pulmonary crackles from normal breath 

sounds i.e. IEM-FD filter. The performance of the IEM-FD filter was evaluated using the developed 

dataset for systematic testing of crackle separation techniques and compared with the three 

previously published methods. Key findings of this research were: (1) The IEM-FD filter can 

achieve high accuracy for the number of crackles identified with 99.98 % of fine crackles and 

99.80 % of coarse crackles identified in our test samples; (2) The IEM-FD filter has low 

computational cost/separation time compared to the established WTST-NST filter, WT-FD filter, 

and EMD-FD filter; (3) The IEM-FD filter can provide crackle separation with less over-estimation 

compared to the WTST-NST filter, WT-FD filter, and EMD-FD filter and (4) The IEM-FD filter can 

better preserve crackle morphology after separation compared to the WTST-NST filter, WT-FD 

filter, and EMD-FD filter in both fine and coarse crackle test signals. We concluded that the IEM-

FD filter would be suitable for use in a clinical context for estimating number of crackles or as a 

first step in classifying crackles (fine or coarse) on the basis of their time domain features. Future 

research will focus on developing filter parameters that are fully adaptive and on evaluating the 

operation of the IEM-FD on a more diverse dataset recorded from cardiopulmonary patients, 

which can further test its ability to identify crackles in different pulmonary conditions. 

To test the potential of the IEM-FD filter on real data it was applied to two case studies: 

longitudinal study and cross sectional study. The main finding of the longitudinal study was that 

reproducible acoustic features calculated from original lung sound signals correlate with the 

NOC/BC. This shows these reproducible can be used in clinics for assessing disease severity in IPF 

patients. The future research should consider larger longitudinal IPF datasets which can further 

investigate the potential of the reproducible acoustic features generated from original signal to 

monitor disease severity in IPF patients.    

The main finding of the cross sectional study was that an automatic system based on the average 

NOC/BC calculated from the recorded lung sounds at lung bases can be used for differentiating 

IPF patients from non-IPF patients. Experimental results indicated that the automatic system can 

match the performance of the individual or average assessment of expert physicians in terms of 
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separating IPF patients from patients with other lung pathology. Although, assessment of HRCT 

scans should remain the gold standard for differentiating IPF patients from non IPF patients, it can 

be noted that the automatic system may have potential to help less expert clinicians to interpret 

their auscultatory findings of lung sounds. The performance evaluation of the automatic system 

on larger populations may further explore its usefulness in clinical environment. Note that both 

case studies were analyzed using the IEM-FD filter therefore these findings indicated that the 

IEM-FD filter has the potential to work on real data hence may play an important role in clinical 

findings. 

Finally, an automatic breath cycle detection algorithm was developed based on the estimation of 

the breathing phases. The algorithm was evaluated using the longitudinal dataset, cross sectional 

dataset, and a dataset recorded from healthy subjects. The key finding was that the automatic 

breath cycle detection algorithm can achieve a sensitivity ranging from 88.81 % to 97.37 %, a 

positive predictive value ranging from 93.01 % to 94.76 %, and F-score ranging from 90.86 % to 

96.05 %. These results indicated the ability of the automatic breath cycle detection algorithm to 

automatically detect and count the number of breath cycles in recorded lung sounds. The future 

research should focus on evaluating the performance of the algorithm on datasets recorded from 

different populations (children, young, old) with or without cardiopulmonary diseases, which will 

further investigate the effect of different breathing patterns on the algorithm.  
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Appendix A  

A.1 Histogram plots of the distribution of NOC/BC across 7 visits 
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Figure A1               Histogram plots of the distribution of NOC/BC across 7 visits. The black line 

shows normal distribution.  
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A.2 Wilcoxon signed-rank test for NOC/BC across 7 visits 

Table A1 Pairwise comparison over 7 visits using the Wilcoxon signed-rank test. 

Pairwise comparison Z p value p value after the Bonferroni correction 

Visit 2 - Visit 1 -1.376b 0.169 1.000 

Visit 3 - Visit 1 -1.910b 0.056 1.000 

Visit 4 - Visit 1 -.194b 0.846 1.000 

Visit 5 - Visit 1 -2.697b 0.007 0.147 

Visit 6 - Visit 1 -3.481b 0.001 0.021* 

Visit 7 - Visit 1 -2.670b 0.008 0.168 

Visit 3 - Visit 2 -.981b 0.327 1.000 

Visit 4 - Visit 2 -.483c 0.629 1.000 

Visit 5 - Visit 2 -1.302b 0.193 1.000 

Visit 6 - Visit 2 -2.668b 0.008 0.168 

Visit 7 - Visit 2 -1.389b 0.165 1.000 

Visit 4 - Visit 3 -1.375c 0.169 1.000 

Visit 5 - Visit 3 -1.243b 0.214 1.000 

Visit 6 - Visit 3 -2.147b 0.032 0.672 

Visit 7 - Visit 3 -.868b 0.385 1.000 

Visit 5 - Visit 4 -2.306b 0.021 0.441 

Visit 6 - Visit 4 -2.917b 0.004 0.084 

Visit 7 - Visit 4 -1.905b 0.057 1.000 

Visit 6 - Visit 5 -.324b 0.746 1.000 

Visit 7 - Visit 5 -.416c 0.677 1.000 
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Visit 7 - Visit 6 -1.382c 0.167 1.000 

 b. Based on positive ranks. 

c. Based on negative ranks. 

*= Significant at p < 0.05 
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A.3 19 reproducible acoustic features from sound files recorded at 6 

posterior locations over complete study of 1 year in the IPF dataset 

Table A2 The data in terms of mean, standard deviation, maximum, and minimum values of all 

19 reproducible acoustic features from sound files recorded at 6 posterior locations 

over complete study of 1 year in the IPF dataset (Sgalla, 2017). 

Repeatable acoustic features No. of 

patients 

Minimum Maximum Mean Std. 

Deviation 

C3 EW_200_500 Hz 19 0.000 0.594 0.226 0.107 

C4 EW_75_200 Hz 19 0.000 0.789 0.573 0.105 

C4 EW_200_500 Hz 19 0.000 0.487 0.164 0.095 

sig_zerocross 19 0.012 0.077 0.038 0.009 

sig_mfcc02 19 -12.280 -8.768 -10.158 0.576 

sig_75_200 Hz_zerocross 19 0.023 0.031 0.027 0.001 

sig_75_200 Hz_centroid 19 103.710 143.597 122.083 5.252 

sig_200_500 Hz_rms 19 0.043 0.575 0.246 0.091 

sig_200_500 Hz_lowenergy 19 0.461 0.928 0.692 0.077 

sig_200_500 

Hz_lowenergyASR 

19 0.288 0.970 0.726 0.125 

sig_200_500 Hz_zerocross 19 0.056 0.096 0.076 0.006 

sig_200_500 

Hz_std_meanframes 

19 0.002 0.058 0.012 0.007 

sig_200_500 

Hz_std_medianframes 

19 0.000 0.015 0.003 0.002 

sig_500_1000 Hz_zerocross 19 0.140 0.160 0.148 0.002 

sig_500_1000 Hz_rolloff85 19 635.193 847.290 750.090 34.009 

sig_500_1000 Hz_centroid 19 572.324 699.717 630.687 17.062 
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C3_mfcc02 19 -12.304 -8.770 -10.164 0.578 

C4_zerocross 19 0.012 0.083 0.040 0.010 

C4_mfcc02 19 -12.281 -8.767 -10.157 0.576 
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A.4 Average NOC/BC at each patient in fibrosis and non-fibrosis groups 

Table A3 Average NOC/BC at each patient in fibrosis and non-fibrosis groups. 

Fibrosis group Non fibrosis group 

Patient 

Number 

Patient 

Gender 

Patient 

age 

Average 

NOC/BC 

Patient 

Number 

Patient 

Gender 

Patient 

age 

Average 

NOC/BC 

 

1 M 65 44.00 1 M 88 15.08 

2 M 71 45.17 2 M 75 23.83 

3 M 73 45.50 3 M 48 23.00 

4 M 76 28.80 4 M 71 0.67 

5 M 72 55.80 5 M 77 29.63 

6 M 68 27.71 6 M 74 17.88 

7 M 74 48.33 7 M 56 7.96 

8 F 69 20.00 8 M 55 25.00 

9 F 83 21.00 9 M 71 22.00 

10 M 75 35.23 10 M 63 11.13 

11 F 79 13.98 11 M 74 26.70 

12 F 54 19.38 12 M 66 17.43 

13 M 53 26.74 13 M 75 25.17 

14 M 73 12.36 14 F 66 11.00 

15 F 73 42.75 15 F 57 5.25 

16 F 67 19.92 16 F 53 7.42 
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17 M 62 24.29 17 F 91 22.83 

18 M 87 24.77 18 F 76 9.25 

19 M 74 35.50 19 M 65 8.88 

20 F 68 43.25 20 F 78 4.79 

21 M 72 27.00 21 F 74 8.78 

22 F 79 27.22 22 M 71 24.00 

23 M 48 25.46 23 F 73 11.71 

24 F 61 41.21 24 F 78 34.88 
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A.5 Histogram plots of the distribution of average NOC/BC at fibrosis 

group and non-fibrosis group 

 

(a) 

 

(b) 

Figure A2              Histogram plots of the distribution of average NOC/BC at (a) fibrosis group, and 

(b) non-fibrosis group. The black line shows normal distribution.  
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A.6 Published conference papers 

A.6.1 A dataset for systematic testing of crackle separation techniques 
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A.6.2 Pulmonary Crackle Detection Using the Hilbert Energy Envelope 
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A.7 Published journal paper 

A.7.1 Iterative envelope mean fractal dimension filter for the separation of 

crackles from normal breath sounds 
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