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Pulmonary crackles are an important physiological parameter for evaluating lung condition of an
individual and usually determined at auscultation by conventional stethoscope. The presence of
crackles is generally an early indication of the disease and their number per breath cycle can
indicate the severity of the disease. A conventional stethoscope placed on the chest wall can
identify the presence of crackles, but this approach is subjective and the accurate detection of
crackles and the identification of their type (fine or coarse) is highly dependent on clinician
hearing ability and expertise. The misinterpretation of crackles may lead to inappropriate
treatment of the patient. Computer aided lung sound analysis (CALSA) using advanced signal
processing techniques can provide an objective way of analysing recorded lung sounds and hence

can play important role in diagnosing or monitoring pulmonary diseases.

In this study, a novel crackle separation technique: iterative envelope mean fractal dimension
(IEM-FD) filter is developed for automatically separating crackles from normal breath sounds. The
separation of crackles from normal breath sounds is an initial processing stage which can lead to
better estimation of crackle features such as number of crackles and two-cycle deflection. To test
the crackle separation ability of the IEM-FD filter, a dataset was generated. The performance of
the IEM-FD filter was compared with the selected previously published crackle separation
techniques using the developed dataset. The experimental results show the proposed method can
achieve high accuracy for the number of crackles identified with low computational cost, better
quality of crackle separation (less over or underestimation), and good preservation of crackle
morphology and hence it may be useful in a clinical setting for determining number of crackles

and characteristics of crackles in a recorded lung sound.

The proposed IEM-FD filter is applied to two different datasets: (a) longitudinal dataset recorded

from 19 idiopathic pulmonary fibrosis (IPF) patients in 7 visits (every visit in 2 months) over a 1



year time period and (b) Cross-sectional dataset recorded from 55 subjects who were referred for

a high-resolution computed tomography (HRCT) scan of the chest for various clinical indications.

In the longitudinal study application of the IEM-FD filter prior to counting the number of crackles
present, allowed evaluation of the association between number of crackles per breath cycle
(NOC/BC) and reproducible acoustic features directly generated from the original signal. In this
study, it was found that some of these acoustic features were directly associated with NOC/BC

therefore might be useful for monitoring progression of IPF.

In the cross-sectional study, the IEM-FD filter was applied as a first stage of an automatic crackle
counting system which can be used for differentiating idiopathic pulmonary fibrosis patients from
patients with other types of pulmonary pathology based on the average NOC/BC. The diagnosis
given by two radiologists using the HRCT scan was used as a gold standard for classifying IPF and
non-IPF groups. The ability of the automatic system to differentiate IPF patients from non-IPF
patients was compared with the individual and average assessment by two respiratory physicians
based on listening for the presence of Velcro crackles. Velcro crackles are generally considered as
an early clue to the presence of fibrosis. The results show that the automatic system can perform
as well as the expert physicians’ assessments and hence could support the auscultatory findings of

lung sounds in less specialist clinics.

In both the longitudinal and cross-sectional studies, in each recorded lung sound file the number
of breathing cycles was audio-visually marked by the Author with the help of open access
Audacity software. Audio-visual marking is a highly time-consuming process, therefore a new
automatic breath cycle detection method based on the estimation of breathing phases was
developed. The performance of the method was tested using both the longitudinal and cross-
sectional datasets, and a dataset recorded from 10 healthy subjects in 7 visits (each visit in 2
months) over a period of 1 year. The promising results show the possibility of the developed

algorithm as an automatic method for breath cycle detection in lung sound recordings.
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Chapter 1

Chapter 1  Introduction

This thesis presents a novel automatic method for separating pulmonary crackles from normal
breath sounds. When air is drawn into the lungs for the purposes of respiration, normal breath
sounds are generated because of the turbulent airflow in the bronchial tree. Pulmonary crackles
which overlap with normal breath sounds, can be an early first indication of the presence of a

pulmonary disease.

Auscultation is a medical term, which refers to the process of listening to the sounds generated
from inside the body using a stethoscope or any other devices (Pramono et al., 2017).
Auscultation provides a non-invasive way of lung examination and is useful in diagnosing various
pulmonary diseases (Sarkar et al., 2015). In recent years, the advancement in electronic
stethoscopes has opened the field of computer-aided auscultation (Leng et al., 2015). The
electronic stethoscope provides an opportunity to capture, record, playback, and analyse the

recorded lung sounds through advanced digital signal processing techniques (Malik et al., 2017).

Crackles are short duration, non-musical lung sounds, which may occur during inspiration or
expiration (Nath & Capel, 1974). The number of crackles per breath cycle (NOC/BC) and features
related to the shape of the crackle signature in a recorded lung sound can have clinical
significance. The NOC/BC can be used for assessing severity of the disease, whereas initial
deflection width (first deflection of a crackle) and two-cycle deflection (duration of the first 5 zero
crossing of a crackle) can be used for classifying crackle types (fine or coarse); where fine crackles
are generally associated with interstitial lung diseases and coarse crackles are more often related

with obstructive airway diseases (Du et al., 1997).

The existence of normal breath sounds may introduce errors: when estimating the number and
shape of crackles in a recording, which can lead to incorrect assessment of disease type or
severity leading to sub-optimal treatment or management of the condition. Therefore, it can be

advantageous to separate crackles from normal breath sounds before analysing them.

This thesis starts with a brief introduction of lung sounds, different types of pulmonary crackles,
the clinical importance of pulmonary crackles, limitations of crackle analysis using conventional
stethoscope and motivation behind selecting the research topic. Research aim and objectives, an
overview of the thesis, research contributions, and publications from this study will also be

presented in this chapter.
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1.1 Lung Sounds

Lung sounds can provide useful information for assessing and monitoring pulmonary patients
(Marques et al., 2009). Lung sounds are divided into two categories: normal lung sounds (or
normal breath sounds) and adventitious lung sounds. Normal breath sounds are heard in healthy

as well as pathological lungs and result from the flow of air through the airways.

Normal breath sounds are produced due to turbulent airflow along the trachea-bronchial tree
during the respiration process. Turbulent airflow is caused by the high velocity of flow travelling
through a large diameter airway, particularly along an airway with irregular walls, such as the
trachea and bronchi or in the airway with sudden branching. The nature of turbulent airflow is
disorganised and chaotic. On the other hand, the flow in the small airways is laminar and silent in
nature. The mechanism of noise generation due to turbulence involves the collision of air

molecules with the airway wall and with each other (Sarkar et al., 2015).

Adventitious lung sounds are additional sounds, which usually occur with respiratory disorders
(Yeginer & Kahya, 2008; Serbes et al., 2013). The adventitious lung sounds can be continuous
(wheezes) and discontinuous (crackles) (Reichert et al., 2008; Dinis et al., 2012; Jacome &
Marques, 2017). In this context, the word ‘continuous’ refers to a duration of more than 250 ms

rather than a sound that continues throughout the respiratory cycle (Meslier et al., 1995).

The musical sound of wheezes can easily be recognized by simple hearing (Taplidou &
Hadjileontiadis, 2007). Wheezes are generated due to airway limitations caused by the narrowing
of airways (Nagasaka, 2012; Pramono et al., 2019). Wheezes are superimposed on normal breath
sounds and usually louder than the underlying breath sounds. They can appear during the
inspiration or expiration (Polat & Guler, 2004). In some patients, they may be audible at some
distance from the patient (Loudon & Murphy, 1984). Wheezes can be heard in patients with
asthma and chronic obstructive pulmonary disease (Bohadana et al., 2014; Henry & Royston,

2018).

On the other hand, crackles are known as discontinuous adventitious lung sounds (Yeginer &
Kahya, 2005). They are short duration (less than 20 ms); explosive sounds of a non-musical
character (Earis et al., 1992; Loudon & Murphy, 1984; Speranza et al., 2020; Ellington et al., 2012,
Nath & Capel, 1974; Grzywalski et al., 2019). Crackles can be heard on the chest wall in patients
with cardiopulmonary diseases such as cystic fibrosis, pneumonia, fibrosing alveolitis,
bronchiectasis (BE), sarcoidosis, congestive heart failure, and asbestosis (Kiyokawa et al., 2001).

During deep inspiration, crackles may occasionally occur in healthy subjects (Sovijarvi et al.,
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2000a). The frequent occurrence of crackles in a patient is usually an early indication of lung

abnormality.

1.1.1 Different types of pulmonary crackles

The first deflection of a crackle is known as the initial deflection width (IDW) and the time to
complete the first five zero crossing is known as the two cycle deflection (2CD). Pulmonary
crackles may be characterized as either fine or coarse sounds based on IDW and 2CD
(Charbonneau et al., 2000). According to the American Thoracic Society, the average IDW and
2CD of fine crackles are 0.7 ms and 5 ms, and for coarse crackles are 1.5 ms and 10 ms,

respectively (Charbonneau et al., 2000).

Fine crackles are thought to be generated due to the explosive reopening of small airways that
closed during the previous expiration (Munakata et al., 1991). Fine crackles are usually mid- to
late-inspiratory events that follow a similar pattern for each consecutive inhalation. These
crackles can be an indication of pneumonia, congestive heart failure and various pulmonary
fibrotic diseases (Pramono et al., 2017). Fine crackles have a high pitch, greater than 400 Hz

(Vyshedskiy & Murphy, 2012).

On the other hand, coarse crackles are typically early inspiratory and expiratory events. Coarse
crackles may be generated from fluid in small or medium airways and have a popping quality.
These crackles can change pattern after coughing and are a symptom of, for example, chronic
bronchitis, BE and cystic fibrosis (Kraman, 1993). The sound of coarse crackles is low pitched, less
than 400 Hz (Vyshedskiy & Murphy, 2012). The waveform of typical fine and coarse crackles with

their time domain features are shown in Figure 1 (a) and Figure 1(b), respectively.

a 0 5 0 5 10

(a) (b)

Figure 1 Fine and coarse crackles: (a) fine crackle with IDW=0.7 ms and 2CD=5 ms, (b)

coarse crackle with IDW=1.5 ms and 2CD=10 ms.
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1.2 Clinical significance of crackles

Crackles are clinically important for several reasons:

(1) The crackle sounds superimposed on the normal breath sounds can be used for diagnosis
(Speranza et al., 2020). The classification of crackle type has important clinical
significance: the fine crackles are associated with interstitial lung diseases and coarse
crackles are common in obstructive airway diseases (Du et al., 1997). Moreover, crackle
features can be used for differentiating different pulmonary diseases. For example,
Flietstra et al., (2011) showed that based on different crackle features (number of crackles
in inspiratory phase, number of zero-line crossings, and first half period of the crackle)
idiopathic pulmonary fibrosis (IPF) patients can be differentiated from patients with
pneumonia and congestive heart failure.

(2) The NOC/BC may play an important role in early detection or monitoring the prognosis of
interstitial lung disorders. In the initial phase of IPF, crackles are generated in the base of
the lungs and as the disease progresses crackles start to be produced in upper zones of
the lungs (Cottin et al., 2012). Therefore, the NOC/BC is associated with the disease
severity in patients with interstitial lung disorders (Sovijarvi et al., 2000a; Rocha et al.,
2019).

(3) The timing of crackles within the breathing cycle allows the direct estimation of sound
origin (Kompis et al., 2001). Smaller airways have been shown to produce late inspiratory
crackles of high frequency, short duration less than 10 ms (fine crackles) whereas larger
airways tend to produce early (inspiratory/expiratory) crackles with low frequency, longer

duration greater than 10 ms (coarse crackles) (Marques et al., 2009).

1.3 Limitations of crackle analysis using a conventional stethoscope

In 1816, Rene Laennec started the science of auscultation (Alvarado & Arce, 2016; Piirila &
Sovijarvi, 1995). This was the first stethoscope for listening to lung sounds and was made of wood
and paper. It allowed him to assess a patient’s lung condition without touching the patient
(Andres et al., 2018). Since 1800s, significant improvement has been made in the stethoscope
(Andres et al., 2018). The conventional stethoscope is a most popular tool in clinics for assessing
lung condition and can provide a non-invasive way of examining lung diseases. However,
interpretation of the sound is subjective (Jacome & Marques, 2015; Hafke-Dys et al., 2019; Guler
et al., 2005). The ability to differentiate lung sound patterns is highly dependent on expertise and
hearing ability of the observer (Kandaswamy et al., 2004; Oliveira & Marques, 2014).

Furthermore, this method is limited by high inter-observer variability (Gurung et al., 2011; Rao et
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al., 2019; Spieth & Zhang, 2011). If the intensity of the normal breath sounds is very high it can
mask the additive crackle sounds and, in that case, accurate detection of the number of crackles

or their type (fine or coarse) using the convention stethoscope can be very challenging.

The limitations of the human hearing system mean that auscultation in the hospital environment,
when background noise is often very high, can result in crackles whose intensity is low being
missed. Furthermore, auscultation using a conventional stethoscope cannot provide continuous
monitoring (Rocha et al., 2019). The technology has changed much over the years and computer
based lung sound analysis (CALSA) can provide an objective way of analysing lung sounds
(Betiencourt et al., 1994; Pasterkamp et al., 2016). CALSA minimises the inter-observer variability
of standard lung sounds auscultation and can provide an objective and automatic way of

analysing recorded lung sounds (Kaisla et al., 1991; Emmanouilidou et al., 2018).

An automatic crackle separation method using advanced signal processing techniques can assist
with diagnosing lung diseases and in monitoring disease progression. By separating, the normal
breath sounds from the crackles both the large amplitude crackles and the small amplitude
crackles, which are often significantly masked by the breath sounds, may be revealed. This can
provide better estimation of number of crackles present. Furthermore, crackle time domain
features such as IDW and 2CD can be accurately estimated. These can be used for crackle
classification but, due to the background normal breath sounds, their waveform can be distorted
which can mislead about the values of IDW and 2CD (Yeginer & Kahya, 2008). Therefore, for the
better estimation of the crackle features it is important to eliminate normal breath sounds before

analysing the crackle characteristics.

An automatic crackle separation technique with high accuracy for number of crackles identified
which is robust to noise could be used in a clinical environment for analysis of recorded crackle
sounds. Therefore, the large part of this research focuses on developing a novel automatic crackle
separation technique, suitable for use in a clinical setting for recorded lung sounds analysis, which

may be useful to support clinical decision-making.

1.4 Research aim and objectives

14.1 Aim

(1) The aim of this study is to develop a new automatic crackle separation technique, which
can separate crackles from normal breath sounds with high accuracy for number of
crackles identified, low computational complexity, good quality of crackle separation (low

over or under estimation), high noise robustness, preservation of crackle morphology
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14.2

(2)

(3)

(4)

(5)

(6)

(7)

(8)

1.5

after separation, and few requirements to make decisions about process based on the

data (high objectivity).

Objectives

Develop a dataset, which can be used for systematic testing of crackle separation

techniques and published to encourage standardized testing between studies.

Provide systematic comparison between the proposed method and the selected

previously published crackle separation methods using the developed dataset.

Test the new method on real data and explore its potential to identify clinical outcomes.

Explore the association between NOC/BC and global reproducible acoustic features

directly extracted from the original signal (Sgalla, 2017).

Assess the ability of an automatic system to differentiate IPF patients from patients with
other types of pathology who were referred for high resolution computed tomography
(HRCT) scan of the chest for various clinical indications based on the average NOC/BC

calculated using the lung sounds recorded at the lung bases.

Compare the classification performance (IPF or non-IPF) of an automatic system with the
individual and average assessment of two experienced physicians who listened to
recorded lung sound files to classify them as containing Velcro crackles (IPF) or not (Non-

IPF).

Develop an automatic breath cycle detection algorithm based on the estimation of the

breathing phases.

Research contributions and Thesis overview

The review of the literature on different methods used for crackle lung sounds analysis is

presented in Chapter 2.

Contribution 1: A dataset was developed which can be used for systematic testing of different

crackle separation techniques. The dataset not only contains real fine and coarse crackles but also

has simulated fine and coarse crackles with different IDW and 2CD, and real lung sounds with fine

and coarse crackles recorded from a person with IPF and a BE patient. The dataset also provides

the option of two types of background noise: Breath noise and Gaussian white noise.

The detailed description of the dataset is provided in Chapter 3.
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From the literature, three previously published crackle separation techniques were selected with
which to compare the crackle separation performance of the proposed iterative envelope mean
fractal dimension (IEM-FD) filter. The reason for selecting these methods and their detailed

working process is presented in Chapter 4.

Contribution2: A novel automatic crackle separation technique i.e. IEM-FD filter was developed,
which can provide high accuracy for the number of crackles identified with low computational
cost, good quality of crackle separation (less under or over estimation), good preservation of
crackle morphology after separation and high noise robustness. The filter can be used for

analysing real lung sounds recorded in clinical environment.
The detailed working process of the proposed method is provided in Chapter 5.

The crackle separation performance evaluators used in this study for assessing the proposed and
previous methods are presented in Chapter 6. The systematic comparison between the proposed
IEM-FD filter and the selected previously published crackle separation techniques using the test
dataset is made in terms of crackle identification accuracy, quality of crackle separation (over or
underestimation), computational cost and the ability to preserve crackle morphology after

separation. This evaluation is presented in Chapter 7.

Contribution 3: The proposed IEM-FD filter was used in two case studies:

(a) Longitudinal study: In this study, the dataset recorded from 19 IPF patients in 7 visits over
a 1-year time was analysed using the proposed IEM-FD filter. From the analysis, it was
found that the number of fine ‘Velcro’ crackles per breath cycle (NOC/BC) was highly
correlated with the reproducible global acoustic features directly extracted from the
original acoustic signal. Therefore, these reproducible acoustic features might be used for
monitoring IPF. This study makes the first link between those global features and the
underlying crackle sounds.

(b) Cross-sectional study: in this study, a dataset recorded from 55 subjects who were
referred to a specialist pulmonary clinic for a HRCT scan of the chest for various clinical
indications was analysed using the new IEM-FD filter. From this study, it was found that
the average NOC/BC can be used for differentiating IPF patients from patients with other

types of pathology.
The methodology and results of the two case studies are presented in Chapter 8.

Contribution 4: When analysing the datasets in the patient case studies the breath cycles were
audio-visually marked in each lung sound signal. The manual marking of a large number of breath

cycles is highly time consuming. Therefore, an automatic breath cycle detection algorithm based
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on the estimation of the breathing phases was developed. The algorithm was evaluated against
the manually marked data for the longitudinal, cross-sectional studies, and a dataset recorded
from healthy subjects. However, this algorithm was not used in this thesis for analysing the two

case studies.
The detailed description of the algorithm is provided in Chapter 9.

The discussion of the findings of this research with conclusions and future possibilities are

provided in Chapter 10.

1.6 Publications
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separation of crackles from normal breath sounds. Biomedical Signal Processing and

Control, 66, 1-12.
Conference papers

e R.Paland A. Barney. (2020). Pulmonary Crackle Detection using the Hilbert Energy
Envelope, Proc. 8" European Medical and Biological Conf. - EMBES'20, Slovenia, pp. 994-
1003.

e R.Paland A. Barney. (2019). A dataset for systematic testing of crackle separation
techniques, Proc. 41st Annu. Int. Conf. IEEE Eng. Med. Biol. Soc. - EMBS'19, Berlin, pp.
4690-4693.
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Chapter 2  Literature review on crackle lung sounds

analysis

2.1 Introduction

In recent years, lots of work has been done in the field of computer based crackle lung sounds
analysis. Automatic crackle detection and automatic separation of crackles from normal breath
sounds are two areas of significant activity in the computer-based crackle analysis literature.
Automatic separation of crackles from the lung sound signal is a first step in crackle analysis which
can facilitate better estimation of the number of crackles and of their time domain features such,
IDW or 2CD. This chapter will provide a review of the different methods proposed in the literature

for crackle separation and analysis. The topics covered in this chapter are outlined below:

2.2 Different methods for crackle lung sounds analysis

Human hearing is an unreliable way of crackle detection. Kiyokawa et al., (2001) presented a
study to check the human ear’s capability to detect crackles in an auscultation signal. The
audibility of crackles was tested by superimposing simulated crackles (fine, medium and coarse)
with large and small amplitude on recorded breath sounds at 0 L/s (breath hold), 1 L/sand 2 L/s
airflows. They showed that failed detections are more frequent in the following conditions: (1)
crackle amplitude is small, (2) background breath sound is of higher intensity (2 L/s), where 2 L/s

shows volume flow rate, and (3) crackle type is either coarse or medium.

Murphy et al., (1977) proposed time-expanded waveform analysis for visually analysing the
recorded lung sounds. This approach showed that digitally recorded lung sounds waveform can be
analysed by viewing the waveform on a screen and providing the user to control the magnification
of the image. Although visual lung sound analysis can help to differentiate between the normal
breath sounds and crackles, this approach is highly time-consuming and limited by large inter

observer variability (Hadjileontiadis & Panas, 1997).

Use of CALSA with the advanced signal processing techniques may improve reliability. Computer
based crackle counting was compared with visual crackle counts and audible counts in a study by
Murphy et al., (1989). In this study, 100 samples of lung sounds from 41 subjects were recorded
using an electret microphone air coupled to the chest wall. The recorded sounds were examined
by a trained technician using the crackle identification criteria: (i) the crackle waveform has to

cross the baseline between three and sixteen times, (ii) the amplitude of the largest deflection
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width (LDW) has to be two times greater than the amplitude of the background sound (the width
of the largest absolute peak of a crackle is known as LDW), (iii) the beginning of the event had a
sharp deflection in either a positive or a negative direction, and (iv) the baseline crossings after
the initial deflection have to be progressively further apart. After the visual analysis two
physicians separately counted the number of crackles by listening to the recorded sounds. Now,
using the Spearman’s rank correlation computer based crackle counts were compared with visual
counts and auditory counts. The correlation coefficient between the computer counts and the
visual counts was 0.85 (p<0.001) while the correlation coefficient between computer counts and
audible counts was 0.74 (p<0.001). For auditory counting, crackles which are highly masked by
high intensity background sound can be missed (Kiyokawa et al., 2001). In addition, multiple
crackles, occurring in a short interval are difficult to count for humans by listening (Murphy et al.,
1989). On the other hand, the visual analysis is a highly time-consuming approach (Hadjileontiadis
& Panas, 1997). Although, in Murphy’s (1989) study the computer based lung sound crackle
counter was compared with the visual and audible counts, the ability of the computer algorithm
to count crackles in different noisy conditions when crackle morphology is completely hidden by

the background normal breath sounds was not considered.

In another study, a multi-channel lung sound analyser (model STG-1602, Stethographics,
Westborough, Massachusetts) was used to test whether recorded lung sounds differed
significantly between pneumonia patients and subjects who had no clinical evidence of
pneumonia (Murphy et al., 2004). In this method, 14 microphones were used for simultaneously
collecting the lung sounds data and one microphone was used to record tracheal sounds. All the
microphones were incorporated into a soft foam pad which the subject lay supine upon. The STG
system software was used to automatically identify the adventitious sounds in accordance with
published definitions (Murphy et al., 2004) and the visually-based time expanded waveform
analysis was used to verify the automatic analysis. In this study, they selected 100 patients who
were diagnosed by their physicians as having pneumonia and 100 subjects who had no clinical
evidence of pneumonia (control subjects) but were age-matched to those of the pneumonia
group (age>60). All of these 100 subjects were patients who came to an internist for annual
physical examination. After selection of the patients, they divided subjects into two categories: -
learning sample (50 patients from each group) and test sample (remaining 50 patients in each
group). Now for each subject, an acoustic pneumonia score was generated by adding crackle
score and rhonchus score. Rhonchus is a low frequency wheeze which contains a rapidly damping
periodic waveform with a duration of > 100 ms (Sovijarvi et al., 2000b). Crackles and rhonchus
were used for calculating the pneumonia score because their rate per breath cycle is associated

with the higher likelihood of pneumonia. The rhonchus score was estimated using the proportion
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of the breath cycle occupied by rhonchi. A rhonchus rate of 4-5 % was assigned a score of 3, a rate
of 6-10 % was received a score of 5, and a rate of 11-100 % was assigned a score of 6. Crackle
score was calculated using the number of crackles per respiratory phase. The maximum crackle
score was 10 for inspiratory phase and 10 for expiratory phase. The minimum and maximum
pneumonia scores were therefore 0 and 26, respectively. The performance of pneumonia score
was first tested on the learning sample and then examined on the test sample. An average
pneumonia score of 13 in the learning sample and 11 in the test sample of pneumonia patients
was found. An average pneumonia score of 2 in the learning sample and 3 in the test sample of
control subjects was found. Furthermore, by investigation, they found that almost all (91%) of the
subjects had some adventitious sounds and that crackles were the most common finding. Further,
they observed significant differences in lung sounds between pneumonia patients and subjects
who had no clinical evidence of pneumonia. This study proposed that computer based analyses
could be used to quantify the auscultatory abnormalities related to pneumonia and help to

provide important clinical information for diagnosing pneumonia.

Piirila et al., (1991) studied the crackling lung sounds in patients with cryptogenic fibrosing
alveolitis (CFA), BE, chronic obstructive pulmonary disease (COPD) and heart failure (HF). The
waveform, frequency, and timing of crackles in 10 patients with CFA, 10 patients with BE, 10
patients with COPD, and 10 patients with HF were analyzed. The key findings of the study were:
(a) In CFA the upper frequency limit of the inspiratory sounds was higher compared to that in HF
or in COPD, (b) In COPD period of crackling within a respiratory cycle was shorter compared to in
CFA or in BE, (c) In COPD inspiratory crackling terminated significantly earlier in the breath phase
than in CFA, in BE or in HF, (d) The IDW and 2CD were shorter in CFA than in COPD, BE, or HF, (e)
In CFA the LDW was smaller compared to in COPD, BE, or HF. In another study, Baughman et al.,
(1991) found that the crackles are more frequent in fibrosing alveolitis (FA) compared to in
sarcoidosis. Furthermore, Ponte et al., (2013) found that maximum frequency and 2CD of crackles
may allow differentiation between crackles generated by fibrosis from those generated by HF and
pneumonia. Flietstra et al., (2011) demonstrated that crackle features can be used for
differentiating IPF from patients with pneumonia and congestive heart failure. These studies
clearly indicate that the crackles may have different features in different pulmonary diseases.
However, the presence of normal breath sounds may mislead about the number of crackles and
their time domain features such as IDW and 2CD. The incorrect estimation of crackle features due
to the background normal breath sounds may increase the chances for misdiagnosis. Hence,
better estimation of crackling features may help in differentiating different pulmonary diseases.
An automatic crackle separation technique can separate crackles from normal breath sounds and

may help in better estimation of crackle features. In recent years, much effort has been made to
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automate separation of crackles from normal breath sounds. Before talking about published
crackle separation techniques automatic crackle detection methods proposed in the literature are

discussed below.

2.2.1 Automatic crackle detection techniques

Different methods have been proposed in the literature for automatic detection of crackles in
recorded lung sounds. Kaisla et al., (1991) presented an automatic crackle detection technique
based on analysing the spectral stationarity of the lung sound. This method was validated using 10
patients with FA and 10 patients with BE. For patients with FA the method achieved a sensitivity
of 89 % and a positive predictive value of 88 % and for patients with BE the method obtained a
sensitivity of 80 % and positive predictive value of 83 %. The performance of the automatic
method was compared with the number of crackles counted by two observers using time
expended waveform analysis (Murphy et al., 1977). The linear correlation coefficients between
the automatic method and the number of crackles counted by the observers was 0.86 (p<0.001)

and 0.93 (p<0.001) for the patients with FA and BE, respectively.

Vannuccini et al., (1998) proposed an automatic method for detecting and analysing crackles in
respiratory sounds. This method is based on two steps. In the first step, a threshold value is
applied to the first derivative absolute value of the input signal, with the goal to identify the
crackle’s location. In the next step, the identified location can be considered the location of a
crackle if it conforms to certain conditions. The crackle conditions (height of the peaks and their
distance from the starting point of the crackle) are verified within a temporal window. A Savitzky-
Golay (SG) filter is used for finding the first derivative absolute value of the input signal (Savitzky
& Golay, 1964). As a reference, an expert observer scans the recordings and identifies visually
where the crackles are using Murphy’s criteria (Murphy et al., 1989) and by simultaneously
listening to the signal. The algorithm was tested on a sample of 200 inspiratory crackles from 15

patients with CFA and achieved sensitivity of 84 % and specificity of 89 %.

Hadjileontiadis & Rekanos, (2003) proposed a fractal dimension (FD) technique for automatically
detecting crackles in recorded lung sounds. The FD technique is based on the FD of the recorded
lung sounds. The FD evaluates the complexity of the recorded lung sounds in the time domain and
provides a way to track the time location of crackles (Hadjileontiadis & Rekanos, 2003). In the FD
technique, an overlapped temporal window is applied to the input signal for estimating FD. Once
the FD of the signal is estimated, the fractal dimension peak peeling (FDPP) algorithm is applied to
the estimated FD vector for automatically detecting the location and duration of the crackles in

the input signal through FD peaks. The FDPP algorithm is an iterative process, which iteratively
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peels the estimated FD vector. In this way, the FDPP algorithm not only searches for the high
peaks of the estimated FD vector, which may correspond to high amplitude crackles but also looks
for the low peaks of the estimated FD vector, which may correspond to low amplitude crackles.
The detailed working of the FD technique is provided in section 4.3. The algorithm was tested on
54 pulmonary fibrosis and 19 interstitial fibrosis fine crackles, and 41 chronic bronchitis coarse
crackles, and achieved a 100 % accuracy for the number of crackles detected for both fine and

coarse crackles.

Pinho et al., (2015) proposed a technique based on filtering the FD. In this algorithm, firstly a
window of interest of a potential crackle was extracted. A window of interest was estimated using
different signal processing steps: (a) In the first step, SG filter was used for smoothing an input
signal. Smoothing was done for removing the high frequency noise from an input signal. (b) In the
second step, FD of the smoothed signal was calculated using a sliding window. (c) In the third
step, box filtering (average filtering, with a sliding window was used on the estimated FD vector
for calculating the trend (smoothed version of the estimated FD vector). (d) Now the estimated
FD vector was compared to a threshold to identify the window of interest of a potential crackle,
the threshold used is proportional to the smoothed FD. After extraction of a window of interest of
a potential crackle, the probability of the potential crackle is verified using respiratory sound
analysis established criteria and conditions established empirically by Pinho et al., (2015): (i) the
amplitude of the different peaks of the crackles had to be progressively lower than the LDW peak.
(ii) peaks had to be progressively wider after the IDW. (iii) minimum of 5 zero crossings, to
guarantee the calculation of 2CD, and a maximum of 16 zero crossings. (iv) the mean absolute
amplitude of the crackle had to be higher than two times the mean absolute amplitude of the
background noise (v) crackle’s IDW had to be higher than 1/8 of the LDW. The algorithm was
tested on twenty-four 10-second files, acquired in clinical settings, from 10 patients, 6 with
pneumonia and 4 with cystic fibrosis. Here, three-experienced respiratory researchers performed
the manual annotation. All three researchers were experienced in visual-auditory crackle
identification and independently annotated the beginning and end of each crackle in each sound
file using the respiratory sound annotation software V1.1 (Dinis et al., 2012) and a crackle was
considered as present when at least two researchers agreed. The performance of the algorithm
was evaluated by comparing the maximum absolute peak within each identified crackle with the
multi-annotation gold standard obtained from the annotations of the three researchers. The

algorithm achieved a sensitivity of 89 %, positive predictive value of 95 % and F-score of 92 %.

Recently, Reyes et al., (2018) presented an automatic crackle detection algorithm based on time
varying autoregressive (TVAR) modelling. The idea behind the algorithm was that non-stationary

events such as crackles may produce abrupt changes in the coefficients of a TVAR model
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compared to the basal respiratory sounds. In this algorithm, firstly, an input signal was pre-
processed: (a) a 500th order finite impulse response (FIR) band pass filter between 75 Hz and
1000 Hz was used to minimize the presence of heart sounds and other muscular noises, and (b) to
account for different amplitude variations between recordings all filtered signals were normalized
in amplitude in the range [-1, 1]. Secondly, a 4th order TVAR model was used and the TVAR
coefficients were calculated using the recursive least squares algorithm. Now, after estimating the
TVAR coefficients, the derivative of the each TVAR coefficient time series was estimated to
enhance the abrupt changes due to crackles. In the next step, a sliding window of length 4 ms was
used for segmenting each estimated derivative and the standard deviation under each window
was calculated. A threshold value was used inside each window for finding the presence of a
crackle. In each window, if the standard deviation of the all derivative coefficient time series was
above the threshold value, then the absolute values of all derivatives were added together. Now,
in each window, from the added absolute values of derivatives the maximum point was calculated
which indicated the starting point of the detected crackle. The algorithm was tested on: (a)
simulated fine and coarse crackles randomly inserted in the basal lung sounds recorded from 10
healthy subjects with different SNRs, and (b) lung sounds recorded from 9 Diffuse Interstitial
Pneumonia (DIP) patients. In healthy subjects lung sounds were recorded at a posterior left basal
location. On the other hand, for each DIP patient lung sounds were recorded at three pulmonary
zones indicated by the physician. The physician performed a pulmonary auscultation using a
mechanical stethoscope and indicated pulmonary zones in each patient based on the presence of
crackle sounds. The lung sounds were recorded using an electret subminiature microphone (BT-
2159000, Knowles Electronics, Itasca, IL, USA) enclosed in a plastic bell. In the case of lung sounds
recorded from DIP patients, crackles were manually counted by pneumologists via time-expanded
waveform analysis and listening to the signals (Audio-visual marking). Due to cumbersome and
time demanding manual crackle detection by the pneumologists, from each recording only one
breathing cycle was analysed. The algorithm obtained on average, an accuracy ranging from
84.86% to 89.16%, a sensitivity ranging from 93.45 % to 97.65 %, and a specificity ranging from
99.82% to 99.84%, in the inserted simulated fine crackles scenarios. On the other hand, the
algorithm achieved on average, an accuracy ranging from 57.95 % to 85.18 %, a sensitivity ranging
from 64.02% to 94.68%, and a specificity ranging from 99.83 % to 99.85 %, in the inserted
simulated coarse crackles scenarios. However, the performance of the algorithm was drastically
decreased in the real data case (DIP patients lung sound recordings) where on average, accuracy

of 51 % and specificity of 63 % were found.
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2.2.2 Limitations of automatic crackle detection techniques

Automatic crackle detection techniques can detect crackles in the lung sound signal; however,

they are not able to separate crackles from normal breath sounds. As a result:

(a) Detection directly from unprocessed recordings may fail to detect crackles which are deeply
buried in the background normal breath sounds (small amplitude crackles) or may detect false
crackles due to the presence of background normal breath sounds, hence may provide poor

estimation of the number of crackles.

(b) Crackle time-domain characteristics (IDW, 2CD) may be different in different pulmonary
diseases but the presence of background normal breath sounds may distort these measures and
hence may lead to misclassification of crackle types (fine or coarse) and hence, potentially, to

misdiagnosis.

On the other hand, the separation of crackles from normal breath sounds before counting or
characterising can provide better estimates of the number of crackles and their time domain
features. However, an optimal process for crackle separation, useable in a clinical context, should
have: low computational complexity, high accuracy for the number of crackles identified, good
separation quality with neither under- nor over-estimation of the crackle waveform, ability to
preserve crackle morphology after separation, high robustness to noise, and less requirement to
make decisions about process based on the data (high objectivity). Note that the failure to extract
all crackles or loss of some portion of the crackle in the output signal is referred as under-
estimation, and the inclusion of non-crackle components as over-estimation. The published

crackle separation techniques in the literature are discussed below.

2.2.3 Automatic crackle separation techniques

There has been much effort in the field of automatic separation of crackles from normal breath
sounds. The level slicer and high pass filter can separate crackles from normal breath sounds to
some extent but they fail to separate small amplitude crackles, which are deeply buried in the
background normal breath sounds and further can distort the crackle morphology in the process.
To analyse the effect of high pass filtering on the morphology of the crackles, a case study was
presented by Katila et al., (1991). In this study, a digital filter (Kaiser FIR) and an analogue filter
(4th order Butterworth) with seven different cut-off frequencies: 25, 50, 75, 100, 150, 200 and
400 Hz were used to analyse the effect of high pass filtering on the crackle waveform. Lung
sounds with crackles were recorded from one patient with silicoasbestosis. According to the

analysis, it was noticed that the effect of cut-off frequency on the crackle IDW and the duration of
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the crackle was very low up to cut-off frequencies of 100 Hz but at higher cut-offs the IDW and
duration both gradually decreased with increase in cut-off frequency up to the 400 Hz cut-off
level. The duration and IDW of the crackle were more influenced by the analog filter compared to
the digital filter, although the digital filter influenced the polarity of the IDW more. It was
observed from the study not only the high pass filter cut-off frequency but also the filter type
influenced the crackle waveform. If the high pass filter cut-off frequency is too high, crackle
waveforms (especially coarse crackles) can be distorted and for the low cut-off frequency,

background noise will not be eliminated from the crackle (Yeginer & Kahya, 2008).

Ono et al., (1989) presented a nonlinear digital filter for the automatic separation of crackles from
normal breath sounds, which is known as stationary non-stationary (ST-NST) separating filter. This
method used the autoregressive prediction and the coefficients of the autoregressive model were
adaptively updated using the least mean square algorithm (Widrow et al., 1976). However, the
authors note that although the ST-NST filter can be useful for counting the number of crackles
after separating them from normal breath sounds, this method requires empirical setting of many
of its parameters (Hadjileontiadis & Panas, 1996). A requirement of empirical setting of the filter

parameters according to the characteristics of the input signal is not ideal for a clinical setting.

The time duration of crackles is typically in the range of 10 — 20 ms and on this time scale, normal
breath sounds may be considered quasi-stationary and therefore separation of lung sounds into
estimates of the non-stationary and stationary parts generally sends crackle components of the
lung sound signal to the non-stationary signal estimate and the majority of components

associated with normal breath sounds to the stationary signal estimate.

Hadjileontiadis & Panas, (1996) provided a modified version of the ST-NST filter i.e. mST-NST filter
by combining the ST-NST filter with third order statistics. In this method, autoregressive
prediction was performed based on third order statistics. The mST-NST filter provided more
robust results in the noisy case, but as for the ST-NST filter this filtering method requires empirical

setting of the set of its parameters (Hadjileontiadis & Panas, 1996).

In another study, the wavelet transform stationary non-stationary (WTST-NST) filter was proposed
by (Hadjileontiadis & Panas, 1997) for automatically separating crackles from normal breath
sounds. This method is based on an iterative multiresolution decomposition (MRD) and
multiresolution reconstruction (MRR) scheme which separates wavelet transform coefficients
related to the signal of interest from the background normal breath sounds using a threshold
value at each decomposition level. The WTST-NST filter is based on the contention that explosive
peaks have large components over many wavelet scales, but coefficients related to background

normal breath sounds reduce with increasing wavelet scale. Although the WTST-NST algorithm
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showed good results in terms of crackle identification accuracy, due to the non-adaptive
characteristics of the threshold value (hard thresholding) and high computational complexity, it is
still not ideal to use in a clinical environment or for analyzing datasets of recorded crackle lung

sounds where high processing speed is advantageous for decision-making.

Lu & Bahoura, (2008) presented the wavelet packet stationary non-stationary (WPST-NST) filter
for separating crackles from normal breath sounds. In the wavelet packet transform not only the
approximation coefficients vector but also the detail coefficients vector is decomposed into two
parts at each wavelet scale. Similar to the WTST-NST filter, this filtering method is also based on
the fact that explosive peaks have large components over many wavelet scales, while coefficients
related to the background normal breath sounds decreases with increasing wavelet scale. Unlike
the WTST-NST filter, the WPST-NST filter is not an iterative process. The WPST-NST filter uses two
thresholds for separating wavelet transform coefficients corresponding to crackles from
background normal breath sounds. The two thresholds are defined in time domain and frequency
domain respectively. The WPST-NST filter may provide fast crackle separation compared to the
WTST-NST filter, but the non-adaptive characteristics of its two thresholds limits overall

generalization of the algorithm.

In order to overcome the empirical setting of the threshold for separating the wavelet transform
coefficients related to crackles and normal breath sounds in the WTST-NST filter, the wavelet
transform fractal dimension (WT-FD) filter was proposed (Hadjileontiadis, 2005(l), Hadjileontiadis,
2005(11)). In this method the FD technique (Hadjileontiadis & Rekanos, 2003) was used for
thresholding. Firstly, the input signal is decomposed into approximation and detail coefficient
vectors using the wavelet transform, and after decomposing the signal, the FD technique is
applied to separate crackle coefficients from normal breath sounds. The FD of the signal is
estimated within an overlapped window shifted repeatedly by one sample along the signal’s
length. The combination of the WT and the FD can overcome the limitation of the non-adaptive
threshold used in the WTST-NST filter but here also the accurate selection of base wavelet type
and number of WT decomposition scales may be critical for its overall performance
(Hadjileontiadis, 2007). A need to optimize these parameters for any given data set prior to use in

a clinical setting would be less than ideal.

The empirical mode decomposition (EMD) based analysis of real respiratory data and simulated
crackles was presented by (Charleston-Villalobos et al., (2007). Different cases of crackles (fine,
coarse, overlapped crackles, a combination of fine and coarse crackles etc.) were investigated
using the EMD technique (Huang et al., 1998). In this study, the simulated crackles were

generated using the mathematical functions proposed by Kiyokawa et al., (2001). After generation
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of simulated crackles, they were inserted in the normal inspiratory sound (only the inspiratory
phase was used for the analysis) recorded from the posterior right clavicular location of the
healthy subject. Next the input signal was decomposed into different intrinsic mode functions
(IMFs) and a residual signal using the EMD technique. For the next step in EMD, all the IMFs were
visually analysed (qualitative analysis) and crackle information related IMFs were identified. It was
observed that mostly IMF1 to IMF4 contained relevant information about the crackles, and after
IMF4, the respiratory sound became dominant, and it was impossible to identify or extract further
information about crackles from the IMFs. Moreover, it was observed that the EMD technique
does not have the capacity to individually separate the individual crackles that overlap by a large
amount. Further, these analyses were carried out using just a single inspiratory sound from a
single healthy subject and the Influence of pulmonary diseases on the number of IMFs containing

elements related to crackles was not considered.

The EMD technique provides a solution to denoising the explosive lung sounds but is not sufficient
on its own for separating the non-stationary (crackles) and stationary parts (normal breath
sounds) of the input signal. After combining the IMFs obtained from the EMD technique, which
are related to the non-stationary parts of the input signal, some of the noise, (normal breath
sounds) is still present in the reconstructed signal. To overcome this problem, the combination of
FD and EMD based EMD-FD filter was proposed by Hadjileontiadis, (2007) for separating the
stationary and non-stationary parts from the input signal. In this denoising method, the input
signal was first decomposed into different IMFs and the residual component. After
decomposition, a number of IMFs, are selected using an energy criterion, as being related to the
crackles. Next, the FD technique was applied to the selected IMFs for separating out background
normal breath sounds. Once background normal breath sounds is separated from the selected
IMFs, the remaining parts are combined to estimate the explosive lung sounds. The separated
background normal breath sounds, a combination of remaining IMFs and residual component,
provides the overall background normal breath sounds in the input signal. Although this method
gives good separation of crackles from normal breath sounds, the non-adaptive characteristics of
the energy criterion lead to challenges in the selection of how many independent mode functions
contain crackle information. Too many IMFs may lead to overestimation and too few to

underestimation.

Different fuzzy based filters were also tested for their ability to separate crackles and normal
breath sounds. Tolias et al., (1997) presented a fuzzy based stationary non-stationary (FST-NST)
filter. This method is based on training a fuzzy inference system constructed according to the
adaptive-network-based fuzzy inference system (ANFIS) approach (Jang, 1993). In this filtering

method, the ANFI system was trained using the stationary and non-stationary outputs of the
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WTST-NST filter (Hadjileontiadis & Panas, 1997), obtained after applying the WTST-NST filter to
the recorded lung sounds. Furthermore, Tolias et al., (1998) proposed a modified version of the
FST-NST filter i.e. generalized fuzzy rule based stationary-non-stationary (GFST-NST) filter. In this
filtering method, instead of using two ANFIS’s operating in parallel as in the FST-NST filter, a serial
combination of two ANFIS’s is used. As for the FST-NST filter in this method the stationary and
non-stationary outputs of the WTST-NST filter were used for training the fuzzy inference system.
In another study, Mastorocostas et al., (2000) presented an alternative fuzzy model, the
orthogonal least squares based fuzzy filter (OLS-FF). The OLS-FF improved the ANFIS structure
used in the FST-NST filter (Tolias et al., 1997) and the GFST-NST filter (Tolias et al., 1998) by
introducing a more flexible structure, which uses a lower number of rules. The OLS-FF also used
two fuzzy inference systems operating in parallel. Furthermore, unlike the FST-NST filter (Tolias et
al., 1997) and the GFST-NST filter (Tolias et al., 1998) the OLS-FF does not require a training phase
for calculating the optimum model parameters. Recently, the computational intelligence based
filter has been proposed by Kandilogiannakis & Mastorocostas, (2018). This filtering method uses
two dynamic fuzzy neural networks that operate in parallel for separating crackles from normal
breath sounds. In this method, the simulated annealing dynamic resilient propagation algorithm is

used for training the algorithm.

All four fuzzy filters described above can provide separation of crackles from background normal
breath sounds with low computational load, but amongst all four fuzzy filters the GFST-NST filter
provided the best performance in terms of high accuracy of number of crackles identified. The
crackle separation performance of all four fuzzy filters was not tested in terms of noise

robustness.

Recently, Garcia et al., (2020) proposed a methodology for automatic extraction of fine and
coarse crackles by independent component analysis (ICA). The efficiency of three ICA algorithms,
i.e. FastICA, Information maximization (Infomax) and temporal decorrelation source separation
were evaluated using the Amari index, the total relative distortion index, and the signal to
interference ratio. From their analysis, it was found that in simulated, multichannel signal
scenarios, the Infomax algorithm provided the best separation of crackles from normal breath
sounds compared to the other two algorithms. The presence of crackles in the independent
component (IC) obtained from the Infomax algorithm was determined using the skewness and
kurtosis and the spectrogram of the selected IC was used to find the type of crackles. However,
this methodology was only tested on simulated crackles and with breath sounds recorded from
healthy subjects. The real crackle scenario was not tested in this study; the real crackles may have

different temporal morphology compared to simulated crackles used in this study. Moreover, this
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Table 1 Technical characteristics for good crackle separation compared for different

published separation methods.

Methods ACC | UOE | POC | CCX | NRB | OBJ
VTEWA (Murphy et al., 1977) + X X -- -- --
LS & HPFs (Katila et al., 1991) - - - + X +
ST-NST (Ono et al., 1989) - - - X X --
mST-NST (Hadjileontiadis & Panas, 1996) + X X X + --
WTST-NST (Hadjileontiadis & Panas, 1997) + + - - + -
WT-FD (Hadjileontiadis, 2005(1), Hadjileontiadis, 2005(ll)) | ++ | + + + + -
EMD-FD (Hadjileontiadis, 2007) + + + - + -
FST-NST (Tolias et al., 1997) + + - + X -
GFST-NST (Tolias et al., 1998) + + - + X -
OLSF (Mastorocostas et al., 2000) + + - + X -
Neurofuzzy filter (Kandilogiannakis & Mastorocostas,

+ X X + X -
2018)
WPT (Lu & Bahoura, 2008) + X X + + -
ICA (Garcia et al., 2020) + X X X X -

ACC: Accuracy (number of crackles correctly separated); UOE: Under-, over-estimation; POC: Preservation

of crackle morphology; CCX: Analysis speed (computational complexity); NRB: Robustness to

additive/environmental noise; OBJ: Objectivity (need to set hard thresholds and/or make decisions about

process based on the data and/or requirement of training phase for estimation of the optimum model

parameters); ++ = strong attribute; + = acceptable attribute; - = weak attribute; - - = very weak attribute; x =

attribute not reported.

study requires specialist equipment with 25 recording channels and adoption of such bespoke

systems in clinical settings is unlikely.
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2.2.4 Different published separation methods

Despite the various crackle separation techniques proposed in recent years; their use in a clinical
setting has so far been quite limited due to several factors. A summary of the strengths and
weaknesses of each method is given in Table 1. As it can be seen in Table 1, the main limitation
with existing automatic crackle separation methods is the high computation complexity and/or
failure to preserve crackle morphology after separation and/or low objectivity. These factors limit
their utility in the clinical environment. The high computational cost is not advantageous in clinical
setting where fast processing is desirable for decision-making (Tolias et al., 1998; Kandilogiannakis
& Mastorocostas, 2018). On the other hand, failure to preserve crackle morphology after
separation may lead to incorrect estimation of crackle time domain features such as IDW and
2CD. Furthermore, need to set hard thresholds and/or make decisions about process based on the
data and/or the requirement for a training phase for estimation of the optimum model
parameters reduces their objectivity. The above mentioned limitations clearly indicate that there
is need of a new automatic crackle separation technique which can incorporate all the factors of

an optimum process and can be useful in clinical setting for recorded lung sounds analysis.

2.3 Summary

Chapter 2 presented a review of the different methods published in the literature for crackle lung
sound analysis. Automatic crackle detection techniques can identify crackles in the lung sound
signal but they are not able to separate crackles from normal breath sounds. The separation of
crackles from normal breaths sounds as a first step can lead to better estimation of crackle time

domain features such as number of crackles, IDW, 2CD etc.

In this thesis, considering all the points for an optimal process for crackle separation, a novel IEM-
FD filter is presented for automatic crackle separation. The performance of the IEM-FD filter is
compared with three previously published methods (WTST-NST filter, WT-FD filter and EMD-FD
filter) and applied to two different case studies. To compare the crackle separation performance
of the IEM-FD filter with the previously selected methods a dataset was generated. Before
discussing the IEM-FD filter and the reason for selecting the previously published methods for
comparison with their detailed working process; a dataset developed for systematic testing of

crackle separation techniques is presented in Chapter 3.
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Chapter 3  Dataset for systematic testing of crackle

separation techniques

3.1 Introduction

In the last chapter, we saw various different methods proposed in the literature for recoded
crackle lung sounds analysis and considered their limitations. In this chapter, a dataset generated

for systematic testing of crackle separation techniques is described.

3.2 Dataset

Different pulmonary diseases may have different type of crackle (fine or coarse). As Du et al.,
(1997) showed, fine crackles are common in interstitial lung diseases and coarse crackles are
associated with obstructive airway diseases. Therefore, the performance of any crackle separation
technique needs to be evaluated using a dataset containing different types of crackles. It is also
important to test the crackle separation ability of an algorithm when crackles are deeply buried in
background normal breath sounds to test the noise robustness of an algorithm. Due to the
absence of publicly available lung sound datasets, testing of crackle separation of the separation
methods is often fairly limited in terms of range and/or number of test samples. Furthermore,
every research group has used a different dataset for testing their algorithm hence crackle
separation performance of different algorithms published by different research groups can’t be
compared with each other especially when there is a need to make decisions about process based
on the data. Therefore, a dataset is developed in this study, which can be used for systematic
testing of a crackle separation technique. We have published this dataset

(10.1109/EMBC.2019.8857928), which is available at https://doi.org/10.5258/SOTON/D0801 to

encourage more consistency in testing regimes in future. This open access dataset provides a
common platform to all research groups so that they can test their algorithm. The dataset consists
of: (a) simulated fine and coarse crackles, and real fine and coarse crackles with a range of values
for IDW and 2CD, (b) noise with the spectral characteristics of breath noise (referred to here after
as ‘breath noise’) and (c) a real breath sound with fine crackles recorded from a patient with IPF
and a real breath sound with coarse crackles recorded from a patient with BE, these signals were
recorded with an electronic stethoscope and sampled at 44,100 Hz. In this thesis, we have
selected the sampling rate of 44, 100 Hz because it is recommended by Cheetham et al., (2000)

for respiratory sound recordings. The detail description of the dataset is presented below.

The dataset consists of three subsets.
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e Test crackles comprising: (1) simulated fine crackles (SFC), (2) simulated coarse

crackles (SCC), (3) real fine crackles (RFC), and (4) real coarse crackles (RCC).

e Test noise comprising: (1) Gaussian white noise, (2) colored noise with the same long-
term spectral properties matching that of a healthy breath sound recorded at the

posterior right chest location.

e Test samples comprising: (1) real breath sound with fine crackles (RBFC), and (2) real

breath sound with coarse crackles (RBCC).

3.2.1 Simulated fine and coarse crackles

The simulated fine and coarse crackles are generated using the mathematical function defined by

(Kiyokawa et al., 2001), where the crackle waveform x(t) is given by:

x(t) = xo()my(¢) (1)
With

. u _ log (0.25) (2)
Xo(t) = sin(4nt*),a = —log )
my(t) = 0.5(1 + cos [2n(t*> — 0.5)]) (3)

where x,(t) is a progressively wider sinusoidal function with first positive zero interception time
at to and my (t) is a modulating function to shift the power of x,(t) to the beginning of the
crackle waveform. On the basis of IDW and 2CD, three cases of fine and coarse crackles are
generated: (1) American Thoracic Society definition (Charbonneau et al., 2000) with: fine crackle
IDW =0.7 ms an 2CD =5 ms, coarse crackle IDW = 1.5 ms and 2CD = 10 ms; (2) based on Hoevers
(Hoevers & Loudon, 1990) with fine crackle IDW = 0.5 ms and 2CD = 3.3 ms, coarse crackle

IDW =1 ms and 2CD = 5.1 ms and (3) based on Cohen (Cohen, 1990) with fine crackle

IDW = 0.9 ms and 2CD = 6 ms and coarse crackle IDW =1.25 ms and 2CD = 9.5 ms.

The time domain features of all three cases of simulated fine and coarse crackles are shown in
Figure 2 & Figure 3. In the dataset for each simulated crackle case, a set of ten identical crackles

was generated.

3.2.2 Real fine and coarse crackles

We selected 10 RFC from our lung sound database recorded from a patient with IPF and 10 RCC

recorded from a patient with BE. All selected crackles followed at least
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Figure 3 Simulated coarse crackles.

three of the criteria defined by Murphy (Murphy et al., 1989) as characteristic of a pulmonary
crackle following the characteristics outlined in section 2.2. Figure 4 displays the 10 RFC selected

from a patient with IPF and the 10 RCC selected from a patient with BE are presented in Figure 5.

3.2.3 Simulated test signals

Each set of crackles was buried in two types of noise: 1) Gaussian white noise and 2) noise with
the same spectrum as breath noise from a healthy subject measured over the lung bases on the
right-hand side of the back and SNR ranged from -10 to 10 dB in steps of 1 dB. Note that the
interference of heart sounds on the normal breath sounds is minimum at the posterior base
locations so this is the location used for generating the breath noise. Figure 6 shows the normal
breath sound with no crackles recorded from a healthy subject at the location of posterior right,
which was used for generating breath noise. A 10" order autoregressive model is used for
generating a noise signal with the same long-term spectral properties as the input signal. Figure 7

and Figure 8 show the generated noise signal and power spectral density plot, respectively.
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10 Real coarse crackles (RCC1-RCC10) selected from a patient with BE.

Real breath sound with fine and coarse crackles

In addition to the simulated data, two examples of real breath sound, one from a patient with IPF

with predominantly fine late-inspiratory crackles and one from a patient with BE with coarse,

mainly expiratory crackles, are included in the dataset. These sound files can provide useful

comparisons between separation techniques to evaluate their performance in separating crackles

from normal breath sounds in real lung sounds. The real breath sound signals are displayed in

Figure 9 and Figure 10.

Table 2 summarizes the different test cases. Note that the developed dataset provides test cases

of (a) crackles embedded on background Gaussian white noise, (b) crackles buried in background

breath noise, and (c) RBFC recorded from a IPF patient and RBCC recorded from a BE patient.

However, the Gaussian white noise was not used in this study because it is not at all realistic.

Therefore, only test cases with crackles embedded on background breath noise, RBFC recorded

from a patient with IPF, and a RBCC recorded from a patient with BE were used for analyzing the

crackle separation performance of the proposed and previously selected methods.
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Figure 8 Power spectral density of the breath signal and synthetic breath signal.
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Table 2 Summary of the test dataset
Cases NOC D, IDW & 2CD (ms) BN SNR
0.7&5 (Charbonneau et al., 2000) BRy
Wi
0.5&3.3 (Hoevers & Loudon, 1990) BRy
SFC 10 NA Wi
0.9&6 (Cohen, 1990) BRw
Wi
1.5&10 (Charbonneau et al., 2000) BRy
Wi
1&5.1 (Hoevers & Loudon, 1990) BRy -10
scc 10 NA Wa to
1.2589.5 (Cohen, 1990) BRy 10
Wi dB
BRn
RFC 10 IPF ND Wi
BRn
RCC 10 BE ND Wi
RBFC ND IPF ND NBS ND
RBCC ND BE ND NBS ND

SFC: Simulated fine crackles; SCC: Simulated coarse crackles; RFC: Real fine crackles; RCC: Real coarse

crackles; RBFC: Real breath sound with fine crackles; RBCC: Real breath sound with coarse crackles; NOC:

Number of crackles; D, : Diagnosis; BN: Background noise; SNR: Signal to noise ratio; ND: Not defined;

NA=Not applicable; IPF: Idiopathic pulmonary fibrosis; BE: Bronchiectasis; BRn: Breath noise; Wx: Gaussian

white noise; NBS: Normal breath sound.
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Figure 9 Real breath sound recorded from a patient with IPF.
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Figure 10 Real breath sound recorded from a patient with BE.

3.3 Summary

This chapter presented a dataset for systematic testing of crackle separation techniques. The next
chapter will discuss the details of the best of the currently available methods, before an enhanced

scheme is proposed.
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Chapter 4 Previous crackle separation techniques

4.1 Introduction

Three crackle separation techniques: WTST-NST filter (Hadjileontiadis & Panas, 1997), WT-FD filter
(Hadjileontiadis, 2005(1), Hadjileontiadis, 2005(11)), and EMD-FD filter (Hadjileontiadis, 2007) were
selected from the literature for comparing the crackle separation performance of the IEM-FD
filter. This chapter will provide the reason for selecting these three previously published crackle

separation techniques and detail how they work.

4.2 Selection of previous crackle separation techniques for comparison

As discussed in Chapter 2, in the literature, many different crackle separation techniques have
been proposed. From different separation techniques, the WTST-NST filter, the WT-FD filter, and
the EMD-FD filter are selected for comparing the performance of the proposed IEM-FD filter.
Tolias et al., (1998) and Kandilogiannakis & Mastorocostas, (2018), both mentioned that among all
the separation methods presented in the literature, the WTST-NST filter obtains best separation
results. The WT-FD filter and the EMD-FD filter are also selected for comparison because the idea

of the FD is already used in the fields of the wavelet transform and EMD.

The WTST-NST filter separates wavelet transform coefficients corresponding to crackles and
normal breath sounds using a threshold value at each decomposition scale (Hadjileontiadis &
Panas, 1997). The number of wavelet transform scales M = log, (N), where N is the number of
samples in the signal. In the WTST-NST filter appropriate selection of the threshold for separating
WT coefficients related to crackles and normal breath sounds is very important for good results.
Selecting the threshold too low leads to overestimation and a higher value may lead to
underestimation. To overcome the requirement of empirical setting of the WTST-NST filter
threshold, the WT-FD filter was presented (Hadjileontiadis, 2005 (I); Hadjileontiadis, 2005 (lI1)). In
the WT-FD filter, firstly the input signal is decomposed into approximation and detail coefficients
using the wavelet transform MRD process and after decomposition, wavelet transform
coefficients related to crackles and the wavelet transform coefficients corresponding to normal
breath sounds are separated using their FD (Hadjileontiadis & Rekanos, 2003). The idea of FD is
further extended in the field of EMD with the EMD-FD filter (Hadjileontiadis, 2007). In this filtering
method, those IMFs which contain contributions from the crackle part of the signal are selected
using an energy criterion. On the selected IMFs, individually the FD technique is used to separate

the crackle part from the normal breath sounds. The detailed working process of the FD technique

29



Chapter 4

and all three selected crackle separation techniques (WTST-NST filter, WT-FD filter and EMD-FD

filter) are presented below.

4.3 Fractal dimension technique

The FD is a noninteger, fractional dimension, of a geometric object (Esteller et al., 2001). The FD is
a common tool in biomedical signal processing for transient detection (Goh et al., 2005). The FD
of a time varying signal or waveform is calculated directly in the time domain, where the signal is
considered a geometric figure (Esteller et al., 2001), and is a measure of the signal complexity in
the time domain (Esteller et al., 1999). The fractal complexity of a signal in the time domain can
vary hence the FD can be used to track the location of sudden changes in a time series. The FD
technique based on Katz’s definition (Katz, 1988) for detecting crackles in the recorded lung

sound signals was proposed by (Hadjileontiadis & Rekanos, 2003).

The detailed working process of Katz’s definition (Katz, 1988) for estimating the FD of a curve

defined by sequence as follows.

Foo= 10g10 (nstp) (4)
D =

d
logyo I, + log10(Mstp)

where L. represents the total length of the curve defined as the sum of the distances between

successive points and d is the diameter of the curve (Sevcik, 2010):

=

-1 (5)
Lo= Y dist(i,i +1)

i

Il
_

d = max[dist(i, /)]; i #j; i,j € [L,N] (6)

Usually, for the curves that do not cross themselves, the diameter, d, of the waveform is
evaluated as the distance between the first point of the sequence and the point of the sequence

that gives the greatest Euclidean distance (Hadjileontiadis, 2005 (l)):

d = max[dist(1,i)]; i € [2,N ] (7)

where dist(i, j), the Euclidean distance between two points i, j is calculated by

(8)
dist(i,j) = \/(yi - 3’1’)2 + (- nf)z
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with n; and n; the values of the abscissa (i.e. sample numbers) at points i and j, respectively and

yi and y; the values of the ordinate (i.e. signal amplitude) corresponding to n; and nj, respectively.

and ng, the number of steps in the curve, defined as

(9)

Q| &

Ngtp =

where a is the average distance between successive points such that:

L, (10)
N-1

a=

The FD of the signal is estimated using a sliding window, the length of the FD window is
calculated Wrp = int(W X f;), where f; is the sampling frequency of the signal, ‘int’ is the
operator rounding to the nearest integer and W is the duration of the window in seconds. For
signals used in this thesis, the sampling frequency of the input signal is f; = 44,100 Hz and the
duration of the window is 6 ms (Hadjileontiadis & Rekanos, 2003), so Wrp = 264. The effect of

the window length on the performance of the FD technique is discussed in section 4.3.1.

In order to estimate the point-to-point value of the FD, a sliding window is shifted by one sample
at a time along the signal and the estimated value of the FD for each segment of the input signal is
assigned to the midpoint of the sliding window. In this way, we get the FD vector of length N —
Wrep + 1 for an input signal of length N. The difference in length between the input signal and
estimated FD is Wrp — 1, so to make the estimated FD length equal to the length of the input
signal, the first value of the fractal dimension Fj, (1) and last value of the fractal

dimension Fp (N — Wgp + 1) are assigned to the first and last half of the missing value of

length Wrp — 1, respectively. Equation (11) is used to make the minimum value of the Fj always

equal to ‘1’.

FD :FD_mFD‘l'l (11)

where Fj, is the FD estimate of the waveform using Eq. (4) and mFp is the minimum value of Fp.

After estimating the FD of the input signal, the iterative FDPP algorithm (Hadjileontiadis &
Rekanos, 2003) is used to automatically identify the location and duration of the FD peaks. The
iterative FDPP algorithm not only searches for the high peaks of the FD vector, which may
correspond to the high amplitude crackles but also look for the low peaks within the FD vector,
which may correspond to the small amplitude crackles (Hadjileontiadis & Rekanos, 2003). The
working process of the FDPP algorithm is described in the following steps. In this method, first the

standard deviation of the estimated FD is calculated.
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SDl = O-(FDI)' (12)

where [ is the iteration indexi.e. [l = 1,2,3 ... L and SD; is the standard deviation of the FD

estimate at iteration [.

The standard deviation at each iteration, SD; is compared with each coefficient of the Fp, (n) to
estimate the number of peaks related to the sudden occurrence of transient signals such as
crackles. If Fp (n) > 1 + SD;, peak fractal dimension Pgp,(n) = Fp,(n)(valid peaks), else
Pgp,(n) = 1.0 (no peaks). Now the peak peeling process is started in which peak fractal
dimension coefficients are subtracted from FD coefficients and using the residual signal (z;(n))

the stopping criterion is calculated:

zi(n) = Fp,(n) — Ppp,(n) +1 (13)

STC3; = |(z,(W) = (zf (V)] (14)
where (7) denotes the average value, |. | represents the absolute value, and z, = 0.
In the last step, the stopping criterion, STC3, is compared with constant 3 (accuracy level).

If STC3; = B3, fractal dimension Fp,, . (n) = z;(n) until [ = L and end the loop.

L
Fppp(n) = 2 Ppp,(n) —(L—1) (15)
=1

where the accuracy level 3 is between the Oand 1i.e.0< 33 < 1.

For the better understanding of the process, a schematic representation of the FDPP algorithm is
shown in Figure 11 and a worked example of the FD technique is shown in Figure 12. Figure 12 (a)
displays a section of the lung sound signal (0.743 s) with coarse crackles recorded from a BE
patient (Chapter 3, Table 2 case RBCC). The location of the crackles has been audio-visually
identified by an experienced pulmonary acoustics researcher and marked with arrowheads. Note
that this example will be used repeatedly as a typical example. From the Figure 12 (b-c) it is clear
that the FD technique not only tracks the location and time duration of the high amplitude
crackles but also identifies the small amplitude crackles. Although, the FD technique can detect
crackles in the recorded lung sounds, it cannot separate them from normal breath sounds. In the
FD technique, the selection of window length (Wkp) is critical for its overall performance. The

effect of window length on performance is discussed below.
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Figure 11 A schematic diagram of the FDPP algorithm.
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Figure 13 The FD technique response. (a) A time section of 0.743 s lung sound recorded

from a BE patient (Chapter 3, Table 2 case RBCC). When window length is low

i.e. Wgp =26 (Wgp=int(0.0006f;) i.e. 0.6 ms); (b) FD estimated using the Katz’s

definition and (c) output of the FDPP algorithm. When window length is high

i.e. Wgp =2646 (Wgp=int(0.06f;) i.e. 60 ms); (d) FD estimated using the Katz's

definition and (e) output of the FDPP algorithm.
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43.1 Effect of fractal dimension window length

In the FD technique, the selection of the appropriate window length is very important. Figure 13
(a) indicate an input lung sound signal with coarse crackles (marked with arrowheads). Figure 13
(b-c) show the response of the FD technique when window length is low (e.g. Wgp =
int(0.0006f;)=26, i.e. 0.6 ms): (b) estimated FD of the input lung sound signal, (c) output of the
FDPP algorithm; and Figure 13 (d-e) show the result of the FD technique when the window length
is too high (e.g. Wrp = int(0.06f;) =2646, i.e. 60 ms): (d) estimated FD of the input lung sound
signal, (e) output of the FDPP algorithm. In these figures, we can notice that if the window length
is low, too many false FD peaks are generated and for the higher value of the window length the

FD time series is smoothed.

4.4 Wavelet transform stationary non-stationary (WTST-NST) filter

Hadjileontiadis & Panas, (1997) proposed the wavelet transform based crackle separation
technique (WTST-NST) filter. The WTST-NST filtering method separates stationary from non-
stationary parts of a signal and hence can be used to separate crackles from normal breath
sounds. Lung sounds can be divided into stationary and non-stationary parts where normal breath
sounds are generally stationary and crackles non-stationary. The idea behind this filtering method
is that explosive peaks in the time domain (crackles) have large components over many wavelet
scales, but most components related to background noise (normal breath sounds) reduce with
increasing wavelet scale (Hadjileontiadis & Panas, 1997). This fact permits the separation of
wavelet transform coefficients with respect to their amplitude related to crackles and normal
breath sounds at each wavelet scale using some threshold value. At each wavelet scale the
threshold value is based on the standard deviation of the wavelet transform coefficients and an
empirical multiplication factor. In this technique, an iterative MRD-MRR scheme are applied to the
input signal. A schematic diagram of the WTST-NST filter is shown in Figure 14. In this filtering
method firstly, the input signal is decomposed into multiple scales of approximation and detail
coefficient vectors using an MRD scheme. The wavelet transform is calculated using the db4
quadrature mirror filters (QMF’s) of eight coefficients (Daubechies, 1988; Hadjileontiadis & Panas,

1997).
WT* = MRD[y(MW)]mscates; * = 1,2,....N; m=1,..,M,M = log,(N) (16)

Where k is the iteration indexi.e. k = 1,2,3 ... K, mis the WT scale index, N is the number of
samples, and y; (n) is the input signal at iteration k. In the MRD firstly, the input signal is

convolved with the mother wavelet (Daubechies-4 wavelet is taken as the mother wavelet) low
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pass filter and high pass filter coefficients followed by dyadic decimation (down sampling:-keep
the even indexed elements) which gives an approximation coefficients vector and a detail
coefficients vector, respectively. In the next scale, the approximation coefficients vector is further
decomposed in approximation and detail coefficient vectors. In this algorithm, number of samples
N=32,768i.e. M = 15. The length of the low pass and high pass filters is B (for Daubechies-4
wavelet, filter order u=4 and filter length B=2u=8). The low pass and high pass filters in WT are
known as quadrature mirror filters and Eq. (17) shows the relationship between the coefficients
of the MRD low pass filter (h(b)) and high pass filter (g(b)); the correlation between the MRR low
pass filter (h{ (b)) and high pass filter (g4 (b)) is shown in Eq. (18).

g(B—1—b) = (=1)°. h(b) (17)
g:1(b) = (-1)".hy(B— b —1) (18)

where b denotes the filter length indexi.e. b = 0,1, ..., B — 1. In the wavelet transform, only the
approximation coefficients vector is decomposed at every scale and successive detail coefficients

are never reanalyzed. Figure 15 shows the MRD for WT scales.

After decomposition, a threshold value is applied at each scale to separate WT coefficients related

to crackles from the normal breath sounds.

Where SD;"* is the standard deviation of the wavelet transform coefficients at iteration k and
scale m, and Fg4; is the adjusting multiplication factor. Here, F,;; = 3 (Hadjileontiadis & Panas,
1997) is used. The wavelet transform coefficients WT" > Thy* are related to crackles and the
remaining wavelet coefficients are related to normal breath sounds. After separating the
coefficients, using a threshold value, reconstruction of the non-stationary and stationary

parts NSTS; (n) and STS, (n), respectively is made using the MRR scheme. In the MRR scheme,
firstly, approximation and detail coefficients vectors at scale m, are up-sampled (insert zeros at
even indexed elements) and the resulting signals are convolved with the Daubechies-4 wavelet
reconstruction low pass filter and high pass filter. After convolution, the centre part of the
obtained signal with length equal to the length of scale m-1 detail coefficients vector is taken
which provides scale m-1 approximation coefficients vector. In the wavelet transform MRR
process at each scale the approximation coefficients vector and the detail coefficients vector are
used to obtain the previous scale approximation coefficients vector and at last i.e. scale M-(M-1)
approximation coefficients vector and detail coefficients vector provide input signal. Note that

here at each scale wavelet transform coefficients are separated into those related to the crackles
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(WTC') and those related to the normal breath sounds (WTNB}"). MRR is applied to both the
wavelet transform coefficients related to crackles and the wavelet transform coefficients related
to normal breath sounds to create estimates of the non-stationary (NSTS,(n)) and stationary
(STS,(n)) parts of the input signal. Figure 16 shows the MRR for wavelet transform coefficients
related to crackles and the MRR for wavelet transform coefficients related to normal breath

sounds is shown in Figure 17. The iteration procedure stops after satisfying the stopping criterion:

STC2; = |(STSf_1 () = (STSg(M)|< B, 0< B <1 (20)
where 3, is the accuracy level and STS, = 0.

After the last iteration K, STSk provides the stationary part and the summation of estimated
non- stationary parts separated at each iteration gives the total non-stationary part of the signal

NS(n).

K (21)
NS(n) = ) NSTS, (n)
ST(n) = STSx(n) (22)

A worked example of the WTST-NST filter is shown in Figure 18.

Figure 18 (a) shows an input lung sound signal with coarse crackles (marked with arrowheads).
The non-stationary (NS(n)) and stationary (ST (n)) parts after applying the WTST-NST filter are
shown in Figure 18 (b) and (c), respectively. Comparing these results with the input signal we can
notice that all the crackles are separated into the non-stationary part. However, it is important to
notice that the non-stationary part not only consists the crackles but also contains some portion
of the background noise (normal breath sounds) or residue of the normal breath sounds, which
shows overestimation. For any crackle separation technique, it is not only important to separate
crackles in the non-stationary part, but it is also important to minimize the non-crackle
contribution to the non-stationary output. Estimation of the number of crackles and their time
domain features (IDW, LDW, 2CD) can be more accurate following crackle separation with

minimal over or under estimation.
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Result of applying the WTST-NST filter (a) A time section of 0.743 s lung sound
recorded from a BE patient (Chapter 3, Table 2 case RBCC), (b) WTST-NST filter

non-stationary output (c) WTST-NST filter stationary output.
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Figure 19 The WTST-NST filter response. (a) A time section of 0.743 s lung sound recorded

from a BE patient (Chapter 3, Table 2 case RBCC). When low threshold (Fy4; =
0.3); (b) WTST-NST filter non-stationary output (c) WTST-NST filter stationary
output. When high threshold (Fy4; = 8.6); (d) WTST-NST filter non-stationary

output (e) WTST-NST filter stationary output.
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4.4.1 Effect of threshold

The WTST-NST filter is a threshold-based method, and the appropriate selection of the threshold
is very important for good performance by the WTST-NST filter. Figure 19 (a) shows an input lung
sound signal with coarse crackles (marked with arrowheads). From Figure 19 (b-c) it can be
noticed that for a low value of the threshold (in this example F4; = 0.3), the non-stationary part
includes a portion of the normal breath sounds. On the other hand, in Figure 19 (d-e) we can see

if the threshold value is high (F,4; = 8.6), the separation of crackles is not accurate.

4.5 Wavelet transform fractal dimension (WT-FD) filter

To overcome the requirement of empirical setting of a threshold in the WTST-NST filter, the FD
technique (Hadjileontiadis & Rekanos, 2003) is applied to the WT domain for automatically
separating the WT coefficients related to crackles and to normal breath sounds (Hadjileontiadis,
2005(1); Hadjileontiadis, 2005(Il)). In this filtering method firstly, the input signal is decomposed
into an approximation coefficients vector and a detail coefficients vector using the MRD process
similar to the WTST-NST filter using the db4 QMF’s of eight coefficients but here WT scale is used
m = 1 (Hadjileontiadis, 2005(ll)).

WTk} = MRD[x(1)]m scates (23)

After decomposing the input signal, the FD of the wavelet transform coefficients is calculated
using a overlapped sliding window 6 ms duration (Hadjileontiadis, 2005(11)) which is shifted one
sample along the length input signal for estimating the point to point FD. In this work, the

sampling frequency chosen is f; = 44,100 Hz.

FIt = FD[WT] (24)
Then the FDPP algorithm is applied to the estimated FD.

Fppp, = FDPP[Fp] (25)
For detail of the working of the FD technique see section 4.3.

After automatically estimating the FD peaks, two binary thresholds are computed one is related to

crackle sounds NBT Hj, and the other one is related to normal breath sounds SBTHj,.

Lif Fipp, # 1 (26)

m _
NBTHy" = {0 if Fipp, =1
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SBTH* = [1 — NBTH]"] (27)

When both thresholds are constructed they are multiplied by the WT coefficients calculated from
the MRD scheme i.e. WT" (see Figure 20), where k is the iteration index i.e. k = 1,2, ....,K and

mis the WT scale (m = 1).

The result of these two multiplications provides the WT coefficients related to crackles

i.e. WTCJ, and WT coefficients related to normal breath sounds i.e. WTNBJ.

Now by using a MRR procedure section 4.4 a first version of the non-stationary parti.e.
NSTS; (n), and the stationary parti.e. STS;(n) are estimated. The iteration procedure stops

when it satisfies the stopping criterion:

STC2) = |(STSi_1 (1)) = (STSg(m)|< B, 0< Bp <1 (28)
where STS, = 0.

At iteration k = K, the non-stationary and stationary parts of the input signal are calculated using

Eqg. (29) and Eq. (30).

K (29)
NS(n) = Y NSTS, (n)
ST(n) = STSkg(n) (30)

A schematic diagram of the WT-FD filter is shown in Figure 20 and the working example of the
WT-FD filter is displayed in Figure 21. Figure 21 (a) shows an input lung sound signal with coarse
crackles (marked with arrowheads). The non-stationary and stationary parts after applying the
WT-FD filter are illustrated in Figure 21 (b) and (c), respectively. Comparing these results with the
input lung sound signal it can be observed that all the crackles are separated into the non-
stationary part. Here, it is also important to notice that in the stationary output some normal
breath sounds segments are missing at the location of crackles. This indicates that the WT-FD
filter can separate normal breath sounds from non-crackle locations but it is not able to perfectly
separate normal breath sounds at the location of crackles. This effect occurs due to magnitude
domination of WT coefficients related to crackles over the WT coefficients corresponding to
normal breath sounds (Hadjileontiadis, 2005(l1)). For any crackle separation technique it is not
only important to separate normal breath sounds from where crackles are not present but it is
also important to separate normal breath sounds where crackles are present, to reveal the actual

morphology of the crackles.
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recorded from a BE patient (Chapter 3, Table 2 case RBCC), (b) WT-FD filter non-

stationary output (c) WT-FD filter stationary output.
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4.6 Empirical mode decomposition fractal dimension (EMD-FD) filter

The crackle identification ability of the FD technique is further applied in the field of EMD,
Hadjileontiadis (Hadjileontiadis, 2007), proposed the EMD-FD filter for automatically separating
crackles from normal breath sounds. In this section, firstly, the detailed working process of the

EMD method (Huang et al., 1998) is presented and then the EMD-FD filter is discussed.

4.6.1 Empirical mode decomposition (EMD)

Huang (Huang et al., 1998) proposed the EMD method for adaptively decomposing a signal into its
IMFs and a residual component in decreasing order of frequency. Each estimated IMF follows two
conditions: (i) The number of extrema points and the number of zero crossing either be equal or
differ at most by one, (ii) At any point, the mean value of the envelope defined by the local
maxima and the envelope defined by the local minima is zero (Huang et al., 1998; Omitaomu et
al., 2011; Bajaj & Pachori, 2012; Lei et al., 2013; Chauhan et al., 2010; Zhang et. al., 2018) i.e. its
envelopes are symmetric with respect to local zero mean. On the other side, the residual
component contains only one extremum value. The procedure of extracting IMFs from an input

signal using sifting process is explained in following steps.

Step (1):- The decomposition process starts with identifying extrema points i.e. local maxima and

local minima of the input signal.

In the input signal (y(n)), any sample is a maximum if its preceding slope (n-1) is positive and
succeeding slope (n+1) is negative. A sample is a minimum point if its preceding slope is negative

and succeeding slope is positive.

Step (2):- After finding the extrema points of the input signal, all the maxima are connected with
each other to estimate an upper envelope (UP,,,,(n)) and all the minima are connected to each

other to extract a lower envelope (LW,,,,(n)) using cubic spline interpolation.
Step (3):- Once, the upper and lower envelopes are estimated their mean is calculated.

UPeny(n) + LWepy () (31)
2

m(n) =

Step (4):- The difference between the input signal (y(n)) and mean (m(n)) provides the first proto

IMF p; (n).
p1(n) = y(n) —m(n) (32)
Step (5):- Now, the proto-IMF is tested with the IMF conditions using the sifting criterion.
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N
& 1y, () — P, (P 33)
%= Z [ SN

where i; is the number of times the sifting criterion is repeated for searching an IMF. The value of
Sc lies between 0.2-0.3 (Huang et al., 1998). If the proto-IMF satisfies the sifting criterion then it is

considered as an IMF (c; (n)) otherwise steps 1 to 4 are repeated.

Each IMF satisfies two conditions; Figure 22 (a) shows the first condition of the IMF, in which the
number of zero crossings is 14 and the number of extrema (maxima (7) + minima points (6)) is 13
(one less than the number of zero crossings) and Figure 22 (b) shows the second condition of the
IMF in which the mean of the point on the upper and lower envelopes is zeroi.e. (0.0159 + (-

0.0159))/2=0.

Step (6):- Once the first IMF is calculated it is subtracted from the input signal and the resultant

output is used as an input for finding the next IMF.

r(n) =ym) —c;(n) (34)

Step (7):- If the signal contains only one extremum or the signal becomes a monotonic function
from which no more IMFs can be obtained this signal is assigned as a residual component;
otherwise repeat step 1 to 6. Figure 23 shows the residue component which contains only one

extremum.

Step (8):- We can estimate the input signal back by adding together all the IMFs and residue

component.
F (35)
y(n) = Z cr(n) + 1
=1

Where F is the number of IMFs and r is the residue component.

The EMD method can decompose a signal into IMFs and a residual component, but it is not
sufficient on its own for automatic separation of crackles from the normal breath sounds because
the IMFs not only contain the crackle parts but also consist of a portion of the normal breath
sounds, as shown in Figure 24, where an input lung sound signal is decomposed into 19 IMFs and
a residual component. Figure 24 (a) shows an input lung sound signal with coarse crackles
(marked with arrowheads). Figure 24 (b) and (c) show the extracted IMFs (19 IMFs) and a residual

component, respectively.
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4.6.2 Empirical mode decomposition fractal dimension (EMD-FD) filter

Hadjileontiadis, (2007) presented a combination of the EMD method (Huang et al., 1998) with FD
technique (Hadjileontiadis & Rekanos, 2003). The EMD-FD filter adaptively captures the crackles
from the IMFs and successfully extracts them from the normal breath sounds. In this filtering
method firstly, the input signal is decomposed using the EMD method (see section 4.6.1) and after
decomposition, a number of IMFs, V, which are related to crackles are selected using an energy
criterion. Now, the FD technique separates the crackles and normal breath sounds from the
selected IMFs. Once the normal breath sounds is separated from the selected IMFs, the remaining
parts are combined to estimate the crackles. The separated normal breath sounds, a combination
of remaining IMFs and a residual component, provides the overall normal breath sounds in the

input signal. The working process of the EMD-FD method is described in the following steps:-

Step (1):- First of all, the input signal is decomposed into different IMFs and a residual

i.e. ¢s(n) and rx(n) using EMD (Huang et al., 1998).

Step (2):- Now, from the F estimated IMFs the first IV IMFs are selected using the energy criterion.

V=min{f:|(y/)| > p &|(vfs1)| <P &YV >0}, f =12,..,F (36)
_, z b=1(c12, () (37)
S VAN e)

where y]'c and y}’ are a first and second derivatives of the y¢, with respect to f. p is a small

threshold value (p=0.05 (Hadjileontiadis, 2007)).

Step (3):- Now the FD technique (see section 4.3) is applied to all V selected IMFs and two binary
thresholds i.e. NBTH,,(n) and SBTH,,(n) are calculated wherev =1, ....,V:

1if Fppp,(n) # 1 (38)

NBTH,(n) = {0 if FDPP,,(n) =1

SBTH,(n) = [1 — NBTH,(n)] (39)

where Fppp is the FDPP algorithm which is used within the FD technique for estimating FD peaks

which may correspond to crackles.

After that by multiplying the threshold NBTH,,(n), with the corresponding IMFs, the part of the
IMFs related to crackles cS7@ktes(n), v =1, ....,V; n =1, ....,N is obtained and in the same way
by multiplying the threshold SBT H,,(n) with the corresponding IMFs, the portions related to

normal breath sounds c¥85(n),v =1, ...,V; n=1,....,N, are kept.

52



Chapter 4
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Figure 24 Result of applying the EMD method (a) A time section of 0.743 s lung sound

recorded from a BE patient (Chapter 3, Table 2 case RBCC), (b) Estimated IMFs

(c) Estimated residual component.
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Step (4):- Now the nonstationary and stationary parts of the signal are calculated using Eq. (40)

and Eq. (41), respectively.

v (40)
NSTS(n) = Z cgrackles (nyn =1,2,...,N
v=1

14 F (41)
STS(n) = Z cNBS (n) + Z ) 1Cu1 () +rr(n)
uy=V+

v=1
If the crackles are not a good estimate of the expected crackle signal, the EMD-FD filter can be
further extended to an iterative EMD-FD filter based on the stationary otput (STS(n)) (see Figure
25).

Step (5):- In the iterative process to stop the iteration a stopping criterion using Eq. (42) is

calculated.

STC2. = |(STSE_4()) — (STSF()| (42)
where k is the iteration indexi.e. k = 1,2, ....,K and STS, = 0.

Step (6):- In this step a computed stopping criterion i.e. STC2 is compared with the constant value

Ba.

If STC2;,>=f, , input signal Y41 = STS,(n) and repeat the step 1 to 5 else k = K and end the

iterative loop.

where [5, is the accuracy level whose value lie between 0 to 1. Here value of the (3, is selected

32:0.1.

Step (7):- In the final step, that nonstationary and stationary parts of the signal are calculated.

K (43)
NS(n) = » NSTSy (n)
ST(n) = STSx(n),n=1,2,..,N (44)

For better understanding of the EMD-FD filter a flow chart is presented in Figure 25 and a worked
example of the EMD-FD filter is shown in Figure 26. Figure 26 (a) shows an input lung sound signal
with coarse crackles (marked with arrowheads). The non-stationary and stationary outputs after
applying the EMD-FD filter are shown in Figure 26 (b) and (c), respectively. Comparing these

results with the input lung sound signal it can be observed that all the crackles are separated into
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Figure 25 A schematic diagram of the EMD-FD filter.
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Figure 27 The estimated yy, parameter, corresponding to 19 IMFs.

the non-stationary output and normal breath sounds in the stationary output. However, in the
EMD-FD filter the selection of how many independent mode functions contain crackle information
is very challenging. A larger or smaller number of IMFs may lead to overestimation or
underestimation, respectively. As can be observed in Figure 26 (b), the non-stationary output not
only contains the crackles but also some portion of the normal breath sounds (overestimation),
which is probably due to selecting to many IMFs using the criterion discribed in step 2. The
estimated yy, parameter, corresponding to 19 IMFs is shown in Figure 27. The selected V IMFs

using Eq. (36) is marked in Figure 27.

4.7 Summary

Chapter 4 provided the detailed working process of the FD technique and three different
previously published crackle separation techniques: the WTST-NST filter, the WT-FD filter and the
EMD-FD filter. Automatic separation of crackles from normal breath sounds can lead to better
estimation of crackle features and hence can play an important role in early diagnosis or
monitoring of different cardio pulmonary diseases. Separation can reveal not only the large
amplitude crackles but also the small amplitude crackles, which are often significantly masked by
the normal breath sounds. In the next chapter, a new method for automatic separation of

crackles from normal breath sounds is presented.

57



Chapter 5
Chapter 5 Proposed iterative envelope mean fractal

dimension (IEM-FD) filter

5.1 Introduction

In the last chapter, the detailed working process of some previously published crackle separation
techniques was presented. This chapter will provide the detailed working process of the proposed
IEM-FD filter for automatically separating crackles from normal breath sounds which is the

primary contribution of this study.

5.2 Iterative envelope mean fractal dimension (IEM-FD) filter

The IEM-FD filter comprises two techniques: (a) Iterative envelope mean (IEM) method and (b) FD
technique (Hadjileontiadis & Rekanos, 2003). The FD technique is already used with the wavelet
transform (WT-FD filter: Hadjileontiadis, 2005(1); Hadjileontiadis, 2005 (1)) and with empirical
mode decomposition (EMD-FD filter: Hadjileontiadis, 2007) for crackle separation (Chapter 4).
Here the use of the FD technique is paired with a new separation method: IEM. The IEM method
separates the stationary and non-stationary parts of the lung sound signal and, the FD technique
is then applied to the non-stationary output of the IEM method to refine the separation further.
Lung sounds are a combination of normal breath sounds and aided sounds such as crackles. As
with previously published techniques IEM relies on the relative stationarity of the short-duration

crackles sounds as compared with the breath sounds.

5.2.1 Iterative envelope mean method

The IEM method is a new method for estimating stationary and non-stationary parts of the lung
sound signal. In the IEM method, firstly we estimated the upper and lower envelopes of the
smoothed lung sound signal. The upper and lower envelopes are estimated using the local
maximum and local minimum locations respectively of the first derivative of the smoothed lung
sound signal, next the envelope mean value is estimated using the average of the upper and
lower envelopes of the smoothed lung sound signal. The idea behind the IEM method is to
subtract the envelope mean value from the original lung sound signal and to use the resulting
signal as the input for a subsequent iteration. After a number of iterations, Q, the IEM method will
provide an estimate of the non-stationary part of the lung sound signal oscillating around the
horizontal axis and the summation of the envelope mean at each iteration will give the stationary

part of the lung sound signal.
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The detailed working of the IEM method is described below.

In the first step, the lung sound signal is smoothed and its first and second derivatives are
calculated using a filter from the SG family. The SG filter parameters are selected according to the
guidelines proposed by Vannuccini et al., (1998): degree of fitting polynomial p; = 4 and number
of coefficients n. equal to approximately one or two times the half-width of the shortest-
duration feature of interest in the signal. In the case of crackles, the first deflection (IDW) is
considered the shortest cycle of the crackle. The IDW of the crackle is generally less than 2 ms and
in our data, where the sampling frequency of the lung sound signal is 44,100 Hz, the half width is
less than 88 samples. The SG filter parameters used here are therefore py = 4, n. = 89 and order
of derivation d, =0, 1 and 2 for smoothing the lung sound signal, and estimating first and second

derivatives of the smoothed lung sound signal, respectively.

Once the smoothed lung sound signal and its first and second derivatives are calculated using the
SG filter, all the local maxima and minima of the first derivative (ys(n)) are identified and

classified using sign changes of the second derivative (y;’'(n)) of the smoothed lung sound signal

(ys(n)).

The coordinates of the smoothed lung sound signal at the location of each of the first derivative
local maxima and minima are then calculated. A cubic spline interpolation is used to connect the
maxima in the smoothed lung sound signal to define the upper envelope (UP,,, (1)), and
correspondingly, the local minima are connected with each other to extract the lower envelope
(LW, (n)). The envelope mean value is then calculated using the estimated upper and lower

envelopes of the smoothed lung sound signal:

UPog (1) + LWy, (1) (45)
2

mgq ) =

where g is the iteration index where g=1, 2,..., Q. The envelope mean value is then subtracted

from the lung sound signal to get an estimate of the non-stationary signal R, (n):

Rq(n) = ya(n) —mq(n) (46)

where y, (n) is the lung sound signal at iteration g. Note that the envelope mean value is

calculated using the smoothed lung sound signal (ysq (n)), first derivative (ys’q (n)) and second
derivative (ys’; (n)) and once the envelope mean value is calculated the envelope mean value is

subtracted from the un-smoothed lung sound signal y,(n) at iteration g.

In order to end the IEM method iterative process, a stopping criterion is estimated:

59



Chapter 5

STC1, = [(RZ_1(n)) — (RE ()| (47)
where Ry = 0.

The stopping criterion (STC1) is compared with accuracy level §1: {0 < B; < 1}. In this study the
value of the f3; is empirically set equal to 0.01. Note that the value of the accuracy level too close
to 0 may increase the total number of iterations Q, with the increasing number of iterations, the
elements of normal breath sounds in the non-stationary output of the IEM method may reduce
but at the cost of high computational complexity. On the other hand, the value of the accuracy
level too close to 1 minimize the total number of iterations hence reduce the computational
complexity of the method but may be at the cost of overestimation which means some portion of

the normal breath sounds may still remain in the non-stationary output of the IEM method.

If STC1, = By, a new input signal y4.,1(n) = R, (n) is defined and the process is repeated

(usually one or two iterations are sufficient, see Chapter 7 Table 4).

When the stopping criterion is met, the estimates of the non-stationary and stationary parts of

the lung sound signal are calculated:

NSTS(n) = Ry(n) (48)
Q

STS(n) = Z mgy (n) (49)
q=1

Note that in the IEM method the stopping criterion is defined in a same way it was used in
(Hadjileontiadis & Panas, 1997), (Hadjileontiadis & Rekanos 2003), (Hadjileontiadis, 2005 (l)),

(Hadjileontiadis, 2007) for stopping the iteration process.

As mentioned earlier, it is the first derivative local maxima and minima locations on the smoothed
lung sound signal which are used for estimating the upper and lower envelopes if the upper and
lower envelopes, using local maxima and minima of the smoothed lung sound signal itself are
used, an inefficiency arises. The upper and lower envelopes can have large separation for regions
with infrequently occurring extrema points (low frequency variation), which may require a large
number of iterations for separating the lung sound signal. Using instead the upper and lower
envelopes derived from the local maxima and minima of the first derivative reduces this

inefficiency and consequently the number of iterations needed.

As an example, Figure 28 shows a section of duration 0.075 s of a lung sound signal recorded from
a patient with IPF where the location of the crackles has been audio-visually identified by an

experienced pulmonary acoustics researcher and marked with arrowheads. Figure 28 (a) displays
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Figure 28 [llustration of the iterative envelope mean method applied to a section of

0.075 s of lung sound data recorded from a patient with IPF (Chapter 3, Table 2
Case RBFC); (a) estimation of the upper, lower and mean envelopes and the non-
stationary signal estimate after one iteration using extrema points of the
smoothed lung sound signal; (b) estimation of the upper, lower and mean
envelopes and the non-stationary signal estimate after one iteration using

extrema locations of the first derivative on the smoothed lung sound signal.

the non-stationary output of the IEM process after the 1 iteration, the upper and lower
envelopes and the envelope mean value where upper and lower envelopes are estimated using
directly the smoothed lung sound signal extrema points. It can be observed that between 0.055 s

and 0.075 s, the separation between the upper and lower envelopes is large. As a result when the
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envelope mean value is subtracted from the lung sound signal that region changes its shape but
the non-stationary output not only contains the crackles but also consists of a large portion of
normal breath sounds after the first iteration. On the other hand, in Figure 28 (b) where upper
and lower envelopes are estimated using the first derivative local maxima and minima locations,
we observe that the envelope mean is a closer fit to the lung sound signal and when it is
subtracted, the amount of normal breath sounds in the non-stationary part is very much less, with
crackles oscillating closely around the horizontal axis after only one iteration. Note that the lung
sound signal is smoothed using SG filter prior to calculating the upper and lower envelopes to
remove the high frequency peaks corresponding to the unwanted ripples in the signal without

affecting the crackle waveform.

Huang (Huang et al., 1998) proposed the EMD technique for adaptively decomposing a signal into
its IMFs and a residual component in decreasing order of frequency. Although the IEM method is
superficially similar to the EMD technique in that processing of each iteration begins with an
estimation of the upper and lower envelopes of a signal based on the local extrema which is then
subtracted from the input signal, there are distinct differences between the two methods. In the
EMD method, the input signal is not smoothed before calculating the upper and lower envelopes
and the signal resulting from subtraction of the envelope is compared with a sifting criterion that
checks whether the output meets the criteria for being an IMF (see section 4.6.1). On the other
hand, in the IEM method the upper and lower envelopes are calculated from the smoothed lung
sound signal and its derivatives. The envelope average is then subtracted from the original lung
sound signal and the resulting signal is compared with a stopping criterion Eq. (47) to determine

when to stop processing.

5.2.2 Fractal dimension technique

The IEM method makes a reasonable estimate of the stationary and non-stationary parts of the
lung sound signal, however it is not usually sufficient by itself to extract only the crackles alone. To
minimise the remaining elements of normal breath sounds in the non-stationary estimate
(NSTS(n)) as shown in Figure 29 (b), the FD technique is applied (Hadjileontiadis & Rekanos,

2003). The detailed working process of the FD technique is discussed in section 4.3.

5.2.3 Iterative envelope mean fractal dimension filter

The IEM-FD filter is implemented using a combination of the IEM method and the FD technique
(Hadjileontiadis & Rekanos, 2003). Two iteration loops are used in the IEM-FD filter: (i) an

iteration loop related to IEM method g = 1,2, ..., Q, and (ii) an iteration loop for the combination
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Figure 29 Result of applying the proposed IEM-FD filter: (a) A time section of 0.075 s lung

sound data recorded from a patient with IPF (y(t)), where location of the
crackles is marked with arrowheads; (b) Non-stationary output of the IEM
method (NSTS,(t)); (c) The FD of the IEM method non-stationary output
(Fp,(£)) and the FDPP algorithm for estimating FD valid peaks (Fppp, (t)); (d)
The non-stationary binary threshold (NBTH,(t)); (e) The stationary binary
threshold (SBTH,(t)); (f) The non-stationary output of the IEM-FD filter
(NS(t)); (g) The stationary output of the IEM-FD filter (ST (t)).

of the IEM-FD filter k = 1,2, ..., K. The IEM-FD filter working process is described below-

After the IEM method has estimated the non-stationary (NSTS(n)) and stationary (STS(n)) parts
of the lung sound signal, point-to-point FD values of the estimated non-stationary output
(NSTS(n)) are calculated. The FDPP algorithm (Hadjileontiadis & Rekanos, 2003) is now applied
within the FD technique to automatically detect those peaks of the estimated Fj(n) signal, as
shown in Figure 29 (c), which may correspond to the crackles of the lung sound signal. Now using

the estimated F,pp(n) sequence, two binary thresholds are calculated: the non-stationary binary

threshold:

NETH () = {0 if Fopp(n) = 1

and the stationary binary threshold
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SBTHy(n) =[1-NBTH; (n)] (51)
as displayed in Figure 29 (d) and Figure 29 (e), respectively.

The estimated non-stationary output of the IEM method (NSTS(n)) is multiplied by the non-
stationary binary threshold (NBTH (n)) to get the refined non-stationary estimate NST(n) and
the non-stationary eétimate of the IEM method (NSTS(n)) is multiplied by the stationary binary
threshold (SBTH(n)) to obtain the remaining normal breath sounds SSR(n) signal from the
NSTS(n):

NST,(n) = NSTS,, (n)NBTH,(n) (52)
SSRy(n) = NSTS,(n)SBTH,(n) (53)

Equation (52) gives the estimate of the non-stationary output, NST, (n) and the summation of the
Eq. (49) and Eq. (53) gives the estimate of the stationary output, SSF; (n) of the IEM-FD filter at

iteration k.

To end the IEM-FD filter, a stopping criterion on the basis of stationary output can be calculated

and compared with accuracy level (£55).

The stopping criteria is calculated:

STC2y, = |(SSFZ_,(n)) — (SSFE(n))| (55)

where SSF, = 0, and is compared with accuracy level ,, where 0 < B, < 1.If STC2;, = f3,,
input signal vy +1(n) = SSF,(n), otherwise k = K and the iterative loop ends. Here the value of
the 3, is empirically set equal to 0.1 and, K represents the maximum iteration level. In the final
step, the non-stationary and stationary parts of the signal are calculated, as shown in Figure 29 (f)

and Figure 29 (g), respectively using Eq. (56) and Eq. (57) when k=K.

K (56)
NS(n) = NSTy, (n)
ST(n) = SSFy(n) (57)

To provide better understanding a block diagram of the IEM-FD filter is shown in Figure 30 and a
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66



Chapter 5

Input lung sound signal (y(t))
T T l

0.25

Amplitude

4

Il Tl

-0.25 ‘ '
0.1 0.2 0.3 0.4 0.5 0.6 0.7
Time (s)
(a)
0.25 ‘ | IEM-FD nPn-stationarPf output (NSI(t)) | ‘
' 1 { 1 1 1 \
01F i
W
i
= ol 1 | i e
g ]
<
0.1 F .
-0.25 I I I I |
0 0.1 0.2 0.3 0.4 05 0.6 0.7
Time (s)
(b)
0.25 ‘ | IEM-FDI stationary (I)utput (ST(t‘)) : ‘
' 14 1 X 1 1 \:
0.1F 4
)
=
£
Z o MM\/\/\M\/\/\N\A/\NWM
g
<
0.1+ .
-0.25 I I I 1 |
0 0.1 0.2 0.3 0.4 0.5 06 0.7
Time (s)
(c)
Figure 31 Result of applying the IEM-FD filter (a) A time section of 0.743 s lung sound

recorded from a BE patient (Chapter 3, Table 2 case RBCC), (b) IEM-FD filter non-

stationary output (c) IEM-FD filter stationary output.
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working example of the IEM-FD filter is shown in Figure 31. Figure 31 (a) shows an input lung
sound signal with coarse crackles (marked with arrowheads). The non-stationary and stationary
outputs after applying the IEM-FD filter are shown in Figure 31 (b) and (c), respectively. From the
graphs it can be observed that not only are all the crackles separated into the non-stationary
output with their time duration and morphology preserved, but also the normal breath sounds

were retained with their proper shape and amplitude in the stationary output.

5.3 Summary

This chapter presented the detailed working process of the proposed IEM-FD filter. The crackle
separation performance of the proposed IEM-FD filter will be compared with the selected
previously published crackle separation techniques: the WTST-NST filter, WT-FD filter, and EMD-
FD filter (see Chapter 4), using the dataset described in Chapter 3. The dataset, performance
evaluators and filter parameters used for evaluating the crackle separation performance are

discussed next.
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Chapter 6 Dataset, quantitative evaluators and filter

parameters

6.1 Introduction

In the last chapter we saw the detailed working process of the proposed IEM-FD filter. The
dataset, different performance evaluators and filter parameters used for evaluating the crackle
separation performance of the IEM-FD filter and of the selected previously published algorithms

(WTST-NST filter, WT-FD filter and the EMD-FD filter) are discussed in this chapter.

6.2 Dataset and test samples

The dataset used for systematic testing of crackle separation techniques was described in Chapter
3. To explore the robustness of the separation process to noise, test samples were generated by
burying 10 simulated or 10 real crackles within a simulated breath noise sample (BRy). Average
SNR was varied from -10 to 10 dB in steps of 1 dB. The local SNR for any given crackle in a test
signal varies randomly, which may affect separation performance, therefore for each set of
crackles and each average SNR, 501 test samples were generated, each with its own sample of
BRn. The use of 501 test samples at each SNR is justified in section 6.4.1. All test signals are
sampled at 44,100 Hz.

6.3 Quantitative evaluators

Any successful crackle separation method must meet three criteria: extracting all the embedded
crackles, minimizing the inclusion of non-crackle components and preserving crackle morphology
after separation. As mentioned in Chapter 2, the failure to extract all crackles or loss of some
portion of the crackle in the output signal is called under-estimation, and the inclusion of non-

crackle components is over-estimation.

Using the test dataset (see Chapter 3, Table 2) the performance of the IEM-FD filter was evaluated
against reference test signals and against the performance of the WTS-NST filter (Hadjileontiadis
& Panas, 1997), WT-FD filter (Hadjileontiadis, 2005(1), Hadjileontiadis, 2005(l1)) and EMD-FD filter
(Hadjileontiadis, 2007). For the synthesized test signals, the time series of the crackles in the
absence of breath noise was used as a reference signal. In the test samples measured in patients
(RBFC and RBCC), the location of the crackles was audio visually marked by an experienced

pulmonary acoustics researcher.
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Separation performance was evaluated using several different metrics to assess its quality: To
measure the similarity between the estimated non-stationary output of the each separation
process and the crackle reference signal, the cross-correlation index (CCl) was used (except in the
case of the EMD-FD filter, see section 7.2.1); Accuracy of crackle separation was assessed by two
quantitative evaluators proposed by Hadjileontiadis & Panas, (1997): Rate of Detectability (Dr),
and Total performance (TDg); To quantify over- or under-estimation in the separation, the quality
factors (QFs) proposed by Hadjileontiadis & Panas, (1997) were adapted to benefit from the
existence, for our test data, of the reference signals; To evaluate the ability of the separation

process to preserve crackle morphology, the 2CD percentage error (PE,cp) was calculated.

The process for calculating each metric is as follows:

6.3.1 Cross Correlation Index (CCl)

The CCl indicates the associate between two signals. Therefore, CCl is used to show how well an

algorithm separates crackles. The CCl was calculated using Pearson’s correlation coefficient:

n=1(Rc(m) — Rc)(NS(n) — NS) (58)

CCI = — —— x100 %
VEN_1(Rc(m) — R)?/IN_(NS(n) — NS)?

where R (n) is the crackle reference signal, NS(n) is the non-stationary output of the separation
method and R and NS are the average values of the crackle reference signal and non-stationary

output, respectively.

6.3.2 Rate of Detectability (Dg)

The rate of detectability (Dg) measures the ability of an algorithm to separate crackles into their

non-stationary outputs. Dz was calculated using Eq. (59).

N
Dp=—=x100 % (59)
Ng

where Nf is the number of crackles in the non-stationary output of a separation algorithm and Np

is the number of crackles in the input signal.

In the case of SFC, RFC, SCC and RCC where crackle reference signal is available, the number of
separated crackles in the non-stationary output is calculated by correlating each crackle in the
reference signal with the portion of a non-stationary output within the same time frame of the
reference crackle. Note that each reference signal contains 10 crackles, see Chapter 3, Table 2.

Therefore, this process will provide us 10 different values of the CCl corresponding to the each
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reference crackle i.e. CCI, where e is the crackle index, e = 1,2, ... ... ... 10. Note that
corresponding to any reference crackle time frame if the complete portion of the non-stationary
output is zero within that time frame, the CCI, corresponding to that reference crackle will be
undefined, in that case the value is set to zero. Now, out of 10 CCl values CCI, 2 0.5, where the

cut-off CCl value was empirically selected, were counted as contributing to Ng.

For RBFC and RBCC where crackle reference signals do not exist, the number of detected crackles
in the output was counted manually by comparing their location with the marked crackles in the
input signal. Dy was calculated for each test sample of the all test signals. The mean value and
standard deviation of the rate of detectability over all test samples of each test signal are

reported (see Chapter 7, Table 4).

6.3.3 Total Performance

The total performance also measures accuracy in terms of separation of crackles in the non-
stationary output by the proposed and previously selected methods. The total performance is

calculated for each type of crackle (fine and coarse).
TDEX = DE* % (60)
SDF%, = a(DFX) % (61)

where o is the standard deviation, Dy, is the rate of detectability, and XX stands for FC for fine

crackles and CC for coarse crackles.

In the case of fine crackles the total performance (TDEC, SD15 ) is calculated by taking the mean
and standard deviation of the rate of detectability over all test samples of fine crackles: simulated
(1,503 test samples, 501 test samples in each simulated case), real (501 test samples) and one test
sample of RBFC (Chapter 7, Table 4, Cases SFC, RFC and RBFC). Correspondingly, the total
performance in the case of coarse crackles (TD£¢, SD£5 ) is estimated by taking the mean and
standard deviation of the rate of detectability over all test samples of coarse crackles: simulated
(1,503 test samples, 501 test samples in each simulated case), real (501 test samples) and one test

sample of RBCC (Chapter 7, Table 4, Cases SCC, RCC and RBCC).

6.3.4 Quality Factors (QFs)

Quality Factors measure over- and under-estimation in the non-stationary output signal.
Hadjileontiadis & Panas, (1997) proposed QFs for assessing over-and under-estimation. However,

the test data set here provides us with reference signals not available for Hadjileontiadis et al.’s
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test signals, therefore in this study, four quality factors: a reference quality factor (Ryf,,) for
under-estimation, an estimated quality factor (Eyp,,) for under-estimation, a reference quality
factor (Ryr, ) for over-estimation and an estimated quality factor (E¢p, ) for over-estimation are

defined. To calculate the QFs, firstly two thresholds are defined:

_ (1ifRc(n) # 0} (62)
TH,(n) = {o if Rp(n) = 0
TH,(n) =[1-TH(n)] (63)
where R (n) is the crackle reference signal and n is the sample index withn = 1,2 ... ... N.

Secondly, the input signal y(n), is multiplied by the threshold TH,(n) to calculate a background

noise reference signal Rgy (n).

Rgy(n) = y(n)THy(n) (64)

Thirdly, the non-stationary output NS(n) of a separation algorithm is divided into two parts: non-
stationary signal with only crackle portion (NS;(n)) and remaining non-stationary part (NSz (n)),

according to:
NS-(n)= NS(n) TH,(n) (65)
NSg(n) = NS(n) TH,(n) (66)

Now QFs for under-estimation are calculated using the area under the input signal y(n), area
under the crackle reference signal R-(n) and area under the crackle portion of the non-stationary
signal NS (n). Similarly, the two quality factors for over-estimation are evaluated using the area
under the input signal y(n), area under the background noise reference signal Rgy (1) and area

under the remaining non-stationary part NSg(n):

p 2ilym|An — VIR (m)| An (67)
CFu Y¥lym)| An

e _ZilymlAn — ZYINSc(m)| An (68)
eru YNy ()| an

R :2’1V|y(n)|An- YYIRpy ()| An (69)
ero Yy (n)l An

¢ 2yl An — SYINS ()| An (70)
ero” YNyl an
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where An is the sample period in seconds. The maximum value of area under |NS.-(n)| was set
equal to the area under|R;(n)|. Egry inthe range Ryp, < Egr, < 1represents under-estimation
and a value close to 1 indicates high under-estimation. Similarly Eyr,in the range Ror, < Egr, <
1 represents over-estimation and a value close to Ryr, shows high over-estimation. Hence, a
value of Egf,, close to Ry, with a value of Egr, near to 1 represents good quality crackle

separation without either high under- or high over-estimation.

6.3.5 2CD percentage error (PE;¢p)

The 2CD percentage error assesses the ability of an algorithm to preserve crackle morphology
after separation from background noise. The percentage error in 2CD following separation is

calculated using:

ACyep — EC 1
PEycp = —ZCZCZCD 2€D1 100 % (71)

where AC,cp is the actual crackle 2CD calculated from the crackle reference signal R;(n) and
EC,cp is the estimated crackle 2CD calculated from the non-stationary filter output (NS(n)). The

2CD was calculated using first five zero crossings of the crackle.

For the RBFC and the RBCC signals, where a crackle reference signal does not exist, the crackle

separation performance of the separation filters was not evaluated using the QFs or the PE,.p.

6.4 Filter Parameters

The parameters used for the IEM-FD filter and the previously published WTST-NST filter
(Hadjileontiadis & Panas, 1997), WT-FD filter (Hadjileontiadis, 2005(1); Hadjileontiadis, 2005(l1))
and EMD-FD filter (Hadjileontiadis, 2007) are shown in Table 3.

6.4.1 Selection of number of test samples

As mentioned earlier (section 6.2), 501 test samples are generated for each simulated test signal
to account for the effect of random variation of the local SNR around any given crackle. For each
SNR, the same 10 crackles embedded in 501 unique noise signal samples are passed through an
algorithm (except in the case of the EMD-FD filter) and the resulting CCls are averaged to get one
CCl value for each SNR value for the IEM-FD filter, WTST-NST filter and the WT-FD filter (as shown
in Chapter 7, Figure 33).

To justify the choice to use 501 test samples, Figure 32 shows the average CCl for the IEM-FD filter

73



Chapter 6

Table 3 Parameters used for different separating methods.
Parameters IEM-FD WTST-NST WT-FD EMD-FD
Number of samples (N) 32,768 32,768 32,768 32,768
Number of decomposition levels
NA M =logy(N)=15 | M=1orm=1 | NA
(M)
Type of wavelet NA db4 db4 NA
Sampling frequency (f;) 44,100 Hz 44,100 Hz 44,100 Hz 44,100 Hz
B, | 0.01 NA NA NA
Accuracy level (S) B, | 0.1 0.1 0.1 0.1
ps | 0.01 NA 0.01 0.01
Duration of the window in seconds | W=0.006s | NA W=0.006 s W=0.006 s
Threshold NA Fadi =3 NA p=0.05

NA: not applicable; db4: Daubechies quadrature mirror filters (QMFs) of eight coefficients; M: Number of
WT decomposition levels; in the IEM-FD filter window length is taken from Hadjileontiadis & Rekanos, 2003;
in the WTST-NST filter type of wavelet and threshold (Faq) are taken from Hadjileontiadis & Panas, 1997; in
the WT-FD filter number of decomposition levels, type of wavelet, accuracy level (£5), and window length
are taken from Hadjileontiadis, 2005(Il); in the EMD-FD filter accuracy level (f3), window length, and
threshold (p) are taken from Hadjileontiadis, 2007; S;: Accuracy level for the IEM method; f,: Accuracy

level for desired stationary and non-stationary outputs; fS3: Accuracy level for the FDPP algorithm.

1 T H T T T
0-95 Case RFC at -1 dB Nl
— = CaseRCCatldB
S P Selected number of test samples=501 | |
S o
5™ E e s omm o : —————————————————————
0.85 -
08 | ; 1 1 1 | |
201 501 801 1001 1201 1501 1801 2001
Number of test samples
Figure 32 Selection of number of test samples to eliminate random variation on the IEM-

FD filter crackle separation performance at local SNR using RFC case at -1 dB and

RCC case at 1 dB.
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in the case of RFC at an SNR of -1 dB and RCC at an SNR of 1 dB when the number of test samples
is increased from 1 to 2001 in steps of 1. We note that for more than 501 samples, the increase in

CCl is negligible in both cases. The selected number of 501 test samples is marked on Figure 32.

6.5 Summary

This chapter introduced the performance evaluators and filter parameters used for analyzing the
crackle separation performance of the new and previously published crackle separation
techniques. In the next chapter experimental results of the systematic comparison between the
proposed and previously published crackle separation methods obtained using the test dataset

(Chapter 3, Table 2) and above-mentioned quantitative evaluators are presented.
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Chapter 7 Experimental results

7.1 Introduction

This chapter presents the results obtained using the IEM-FD filter and provides systematic
comparison with the WTST-NST filter (Hadjileontiadis & Panas, 1997), the WT-FD filter
(Hadjileontiadis, 2005(1), Hadjileontiadis, 2005(I1)), and the EMD-FD filter (Hadjileontiadis, 2007).
All the separation techniques are implemented using the Matlab (R2019a) programming

language.
7.2 Experimental results

7.2.1 Performance of the IEM-FD filter

Figure 33 shows plots of CCl averaged over all 501 test signals against SNR using i) the IEM-FD
filter, ii) the WTST-NST filter, and iii) the WT-FD filter for the separation. Plots labelled (a) show
curves for SFC with three different values of IDW/2CD and RFC; plots labelled (b) show curves for
SCC with three different values of IDW/2CD, and RCC.

Taking CCl >= 0.8 to indicate strong correlation between the separated signal and the test signal,
strong correlation occurs for all fine crackle test signals with SNR greater than -1 dB except for SFC
with 2CD = 6 ms for IEM-FD and WT-FD. For SFC with 2CD = 6 ms the CCl is just below 0.8 at

SNR =-1 dB but is above at SNR = 0 dB. For coarse crackles strong correlation occurs for SNR>=1
dB except for WTST-NST filter in the case of RCC, SCC with 2CD=9.5 ms and SCC with 2CD=10 ms
where performance is slightly low compared to the proposed IEM-FD filter and the WT-FD filter.
For WTST-NST filter for RCC, SCC with 2CD=9.5 ms and SCC with 2CD=10 ms the CCl is low at
SNR=1dB but gradually start to improve for SNR greater than 1dB. The plots therefore suggest two
threshold SNRs above which good performance can be achieved by all three filters: SNR =-1 dB
for fine crackles and SNR = 1 dB for coarse crackles. From the results, we can see that the
proposed IEM-FD filter performance is quite similar to, or better than, the WTST-NST filter and
the WT-FD filter for SNRs greater than our selected thresholds but the WTST-NST filter has slightly
better performance for SNRs less than our thresholds. Note that in this study the crackle
separation performance of the EMD-FD filter using CCl plots was not tested in the range of -10 to

10 dB SNRs due to its tendency to fail to converge on some of the 501 test signals in each case.

Comparative evaluation of the IEM-FD filter and previously published methods was made using

the synthesized signals at these threshold SNR values supplemented by the RBFC and RBCC using
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Figure 33

(a) (b)
(iii)

CCl plots for breath noise cases with a signal to noise ratio in the range of -10 to
10 dB (Chapter 3, Table 2). (i) The IEM-FD filter, (a) RFC and SFC cases; (b) RCC
and SCC cases. (ii) The WTST-NST filter, (a) RFC and SFC cases; (b) RCC and SCC
cases. (iii) The WT-FD filter, (a) RFC and SFC cases; (b) RCC and SCC cases.

the quantitative evaluators described in sections 6.3.2 to 6.3.5.

Separation by the IEM-FD filter into non-stationary and stationary estimates for test signals using

two, randomly selected, real crackle cases at the threshold SNRs, one for fine and one for coarse
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Figure 34 (i): (a) Input signal with RFC (Table 4, Case RFC); (b) IEM-FD filter non-stationary

output; (c) IEM-FD filter stationary output. (ii): (a) Input signal with RCC (Table
4, Case RCC); (b) IEM-FD filter non-stationary output; (c) IEM-FD filter stationary
output.
crackles (Table 4, cases RFC and RCC) are shown in Figure 34-i (a-c) and Figure 34-ii (a-c),
respectively. The location of the crackles inserted into the background noise is marked with
arrowheads. Figure 34 (a) displays the input signals. The non-stationary and stationary signal
estimates after applying the IEM-FD filter are shown in Figure 34 (b) and (c), respectively.

Comparing these with the input signal, we can clearly see that for both fine and coarse crackle
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samples, all the fine and coarse crackles are separated from breath noise into the non-stationary
signal estimate with their time duration and morphology preserved. For both fine and coarse
crackles, the breath noise is retained in the stationary estimate with its proper shape and

amplitude.

Now the comparison results of the proposed IEM-FD filter with the previously published methods

is divided into two sections: the first part provides the comparison results of the IEM-FD filter with
the WTST-NST filter and the WT-FD filter, and second part provides the comparison of the IEM-FD

filter with the EMD-FD filter.

7.2.2 Comparison of the IEM-FD filter with the WTST-NST filter and the WT-FD filter
7.2.2.1 Rate of detectability and total performance

Table 4, Table 5, and Table 6 show the performance analysis of the IEM-FD filter, the WTST-NST
filter and the WT-FD filter in terms of rate of detectability and total performance, respectively.
The crackle separation performance of the IEM-FD filter, the WTST-NST filter and the WT-FD filter
are evaluated using 501 test samples at SNR = -1 dB for real and simulated fine crackles, and 501
test samples at SNR = 1 dB for real and simulated coarse crackles, and on a RBFC and a RBCC. We
note that the separation performance of all three methods in terms of rate of detectability is
quite similar with slightly better performance by the WTST-NST filter in the case of RBFC.
However, in terms of total performance the IEM-FD outperforms both WTST-NST and WT-FD in
the case of coarse crackles (SCC, RCC and RBCC) and achieves the same performance as the WTST-
NST and slightly better than the WT-FD in the case of fine crackles (SFC, RFC and RBFC). In the
case of RBFC the performance of the IEM-FD filter and the WT-FD filter is slightly low due to the
crackles remaining in the stationary output. However, the missing crackles of the IEM-FD filter
and the WT-FD filter can be recovered either by changing the FDPP algorithm accuracy level ( 3)
or by changing the accuracy level ( ;) for desired stationary and non- stationary outputs at the

cost of increasing overestimation.

7.2.2.2 Quality of crackle separation (over or under estimation)

Tables 7 and 8 show the quality of crackle separation of the IEM-FD filter, the WTST-NST filter,
and the WT-FD filter in terms of under- and over-estimation, respectively. Here we notice that
(Table 7) in all three crackle separation techniques the average estimated under-estimation
quality factor (E‘QFU) is either very close or equal to the average reference under-estimation
quality factor (ﬁQFU) indicating there is very little under-estimation. On the other hand, in terms

of over-estimation (Table 8), we can see that the average estimated over-estimation quality factor
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Table 4 Performance of proposed IEM-FD filter in the case of fine and coarse crackles.
IEM-FD
Cases BN D, | SNR | Np | NOTS K Q Ng Dr(SD)
(dB) (min-max) | (min-max) | (min-max) (%)
-1
Ar | BRy NA 10 501 11 2-2 10-10 100 (0)
-1
SFC | He | BRw NA -1 10 501 1-1 1-2 10-10 100(0)
-1
Cr | BRwy NA 10 | 501 1-1 2-2 10-10 100 (0)
RFC BRn IPF 10 501 1-1 1-1 10-10 100 (0)
RBFC NBS IPF ND 32 1 1 1 21 65.625
Ac | BRy NA 1 10 501 11 2-2 10-10 100 (0)
SCC | Hc | BRw NA 1 10 501 1-1 1-2 10-10 100 (0)
Cc | BRw NA 1 10 501 1-1 2-2 10-10 100 (0)
RCC BRn BE 1 10 501 1-1 1-1 9-10 99.18 (2.74)
RBCC NBS BE ND 6 1 1 1 6 100
Fine crackles (SFC, RFC and TDEC = 99.98 %,
Total performance | RBFC) SD1g, = 0.77 %
(TDE, SD7p,
Coarse crackles (SCC, RCC TDSC = 99.80 %,
and RBCC) SD{p, = 1.42 %

SFC: Simulated fine crackles; Ar: IDW=0.7 ms & 2CD=5 ms (Charbonneau et al., 2000); Hr: IDW= 0.5 ms &
2CD= 3.3 ms (Hoevers & Loudon, 1990); Cr : IDW=0.9 ms & 2CD=6 ms (Cohen, 1990); RFC: Real fine
crackles; SCC: Simulated coarse crackles; Ac: IDW= 1.5 ms & 2CD=10 ms (Charbonneau et al., 2000); Hc:
IDW=1 ms & 2CD= 5.1 ms (Hoevers & Loudon, 1990); Cc: IDW=1.25 ms & 2CD=9.5 ms (Cohen, 1990); RCC:
Real coarse crackles; RBFC: Real breath sound with fine crackles; RBCC: Real breath sound with coarse
crackles; BN: Background noise; BRn: Breath noise; IPF: Idiopathic pulmonary fibrosis; BE: Bronchiectasis; Dg:
Diagnosis; SNR: Signal to noise ratio; NOTS: number of test samples; ER: Mean of rate of detectability; SD:
Standard deviation; NA: Not applicable; ND: Not defined; Ng: Real number of crackles; Ng: Separated
crackles; TDX: Total performance; SD77, : Standard deviation; XX stands FC for fine crackles and CC for
coarse crackles; K and Q : number of iterations; min: Minimum value; max: Maximum value; In all

cases number of samples N=32,768.
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Table 5 Performance of WTST-NST filter in the case of fine and coarse crackles.
WTST-NST
Cases BN | D, SNR Ny NOTS K Ng Dg(SD)
(dB) (min-max) (min-max) | (%)

Ar | BRy NA -1 10 501 1-1 10-10 100 (0)
SFC | He | BRw NA -1 10 501 1-1 10-10 100 (0)

Ce | BRw NA -1 10 501 1-1 10-10 100 (0)
RFC BRn IPF -1 10 501 1-1 9-10 99.92 (0.89)
RBFC NBS IPF ND 32 1 1 32 100 (0)

Ac | BRy NA 1 10 501 1-1 10-10 100 (0)
SCC | Hc | BRw NA 1 10 501 1-1 10-10 100 (0)

Cc | BRw NA 1 10 501 1-1 10-10 100 (0)
RCC BRw BE 1 10 501 1-1 8-10 96.13 (5.38)
RBCC NBS BE ND 6 1 1 6 100 (0)

Total performance

(TDE¥, SDFX)

Fine crackles (SFC, RFC and RBFC)

TDEC = 99.98 %,

SDp, = 0.45 %

Coarse crackles (SCC, RCC and RBCC)

TDEC = 99.32 %,

SDfg, = 3.17 %

See Table 4 footnote for the caption for Table 5.

(EQFO) of the IEM-FD filter is much closer to the ‘1’ compared to the WTST-NST filter

(Hadjileontiadis & Panas, 1997) and the WT-FD filter (Hadjileontiadis, 2005(1); Hadjileontiadis,

2005(11)) in all cases of fine and coarse crackles, which indicates less over-estimation in the IEM-FD

filter compared to the WTST-NST filter and the WT-FD filter. Furthermore, the performance

comparison between the IEM-FD filter, the WTST-NST filter and the WT-FD filter in the case of

RBCC is shown in Figure 35. The location of the crackles was audio-visually identified by an

experienced pulmonary acoustics researcher and marked with arrowheads, so that the
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Table 6 Performance of WT-FD filter in the case of fine and coarse crackles.
WT-FD
Cases BN D, SNR Ny | NOTS K Ng Dg(SD)
(dB) (min-max) (min-max) | (%)
A: | BRy NA -1 10 501 1-1 10-10 100 (0)
SFC | He | BRw NA -1 10 501 1-1 10-10 100 (0)
Ce BRn NA -1 10 501 11 10-10 100 (00
RFC BRw IPF -1 10 501 1-1 9-10 99.48 (2.22)
RBFC NBS IPF ND 32 1 1 20 62.500
Ac | BRw NA 1 10 501 1-1 10-10 100 (0)
SCC | Hc | BRy NA 1 10 501 1-1 10-10 100 (0)
Cc | BRw NA 1 10 501 1-1 10-10 100 (0)
RCC BRw BE 1 10 501 1-1 8-10 96.73 (5.18)
RBCC NBS BE ND 6 1 1 6 100

Total performance

(TDE¥, SDFX)

Fine crackles (SFC, RFC and RBFC)

TDEC = 99.85 %,

SDip, = 1.41%

Coarse crackles (SCC, RCC and RBCC)

TDEC = 99.18 %,

SDfg, = 2.95 %

See Table 4 footnote for the caption for Table 6.

automatically separated crackles in the non-stationary part can be compared with the input signal

crackles.

Figure 35-i displays a 0.743-second section of samples of RBCC recorded from a patient with BE

(Table 4, case RBCC). The non-stationary and stationary parts after applying the IEM-FD filter are

shown in Figure 35-ii (a) and (b), respectively. Comparing these results with the input signal, we

can clearly see that not only are all the coarse crackles correctly separated with their morphology
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Table 7 Performance of IEM-FD filter, WTST-NST filter and WT-FD filter in terms of
underestimation.
IEM-FD WTST-NST WT-FD

Cases BN |D; |SNR | NOTS Ror, Egr, Egr, Egr,

(dB) (SD) (SD) (SD) (SD)
Ar | BRw | NA | -1 501 | 0.817(0.004) | 0.817 (0.004) | 0.817 (0.004) | 0.817 (0.004)
SFC | He | BRw | NA | -1 501 0.848 (0.003) | 0.848 (0.003) | 0.848 (0.003) | 0.848 (0.003)
Cc |BRv | NA |1 501 0.801 (0.004) | 0.801 (0.004) | 0.801 (0.004) | 0.801 (0.004)
RFC BRy | IPF | -1 501 0.828 (0.003) | 0.839 (0.003) | 0.830(0.004) | 0.829 (0.003)
Ac | BRy |NA |1 501 | 0.704 (0.006) | 0.705 (0.006) | 0.726 (0.024) | 0.704 (0.006)
SCC | Hc | BRw | NA |1 501 0.777 (0.004) | 0.779 (0.005) | 0.776(0.004) | 0.776 (0.004)
Cc |BRw | NA |1 501 0.710 (0.005) | 0.711 (0.006) | 0.736 (0.026) | 0.710 (0.005)
RCC BRy |BE |1 501 0.731 (0.006) | 0.747 (0.008) | 0.735(0.018) | 0.732 (0.006)

ﬁQFU: Mean of reference underestimation quality factor; E'QFU: Mean of estimated underestimation quality

factor. See Table 4 footnote for the remaining caption for Table 7.

and time location preserved, but also the normal breath sound is retained in the stationary

estimate with its proper shape and amplitude. The non-stationary and stationary outputs of the

WTST-NST filter for the same input signal are displayed in Figure 35-iii (a) and (b), respectively.

Here we can observe that the non-stationary output (Figure 35-iii (a)) of the WTST-NST filter not
only contains the crackles but also consists of a large part of the normal breath sounds, which
represents over-estimation. The non-stationary and stationary outputs of the WT-FD filter in the
case of the same input are shown in Figure 35-iv (a) and (b), respectively. From the results we can
see that the non-stationary output (Figure 35-iv (b)) not only contains crackles but also a portion
of the normal breath sounds due to over-estimation. However, in the stationary output (Figure
35-iv (b)) it can be observed that at the location of crackles, normal breath sounds segments are
missing. As is mentioned earlier (section 4.5) for any crackle separation technique it is not only
important to separate normal breath sounds from non- crackle location, but it is also important to
separate normal breath sounds from crackle locations, to reveal the actual morphology of the

crackles.
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Table 8 Performance of IEM-FD filter, WTST-NST filter and WT-FD filter in terms of
overestimation.
IEM-FD WTST-NST WT-FD

Cases BN | D | SNR | NOTS Ror, Eor, Eor, Eor,

(dB) (SD) (SD) (SD) (SD)
Ar | BRv | NA | -1 501 0.198 (0.005) | 0.888 (0.032) | 0.657 (0.156) | 0.729 (0.036)
SFC | He | BRv | NA | -1 501 0.161 (0.004) | 0.958 (0.015) | 0.647 (0.172) | 0.847 (0.032)
Cc |BRv |NA |1 501 0.218 (0.006) | 0.828 (0.036) | 0.662 (0.159) | 0.664 (0.033)
RFC BRy | IPF | -1 501 0.177 (0.005) | 0.959 (0.008) | 0.651 (0.161) | 0.872 (0.014)
Ac |BRy | NA |4 501 0.325 (0.011) | 0.770 (0.036) | 0.538 (0.199) | 0.650 (0.038)
SCC | Hec |BRv | NA |4 501 0.236 (0.005) | 0.932 (0.025) | 0.671 (0.149) | 0.854 (0.032)
Cc |BRv | NA |4 501 0.316 (0.010) | 0.790 (0.033) | 0.543(0.203) | 0.653 (0.036)
RCC BRy | BE | 4 501 0.292 (0.010) | 0.871(0.033) | 0.324 (0.079) | 0.803 (0.041)

ﬁQFO: Mean of reference overestimation quality factor; EQFO: Mean of estimated overestimation quality

factor. See Table 4 footnote for the remaining caption for Table 8.

7.2.2.3

2CD percentage error

Table 9, Table 10, and Table 11 show the performance of the IEM-FD filter, WTST-NST filter and

the WT-FD filter in terms of 2CD percentage error, respectively. In the IEM-FD filter (Table 9), the

average 2CD percentage error is no more than 26.50 % for fine crackles (SFC and RFC) and less

than 11 % for coarse crackles cases (SCC and RCC). On the other hand, in the WTST-NST filter

(Table 10) the average 2CD percentage error is between 40 % to 122 % for fine crackles cases (SFC

and RFC) and between 22 % to 54 % for coarse crackles (SCC and RCC) and in the WT-FD filter

(Table 11) the average 2CD percentage error lies between 46 % and 88 % for fine crackles cases

(SFC and RFC) and between 19 % and 59 % for coarse crackles (SCC and RCC). These results clearly
indicate that the average 2CD percentage error is much less in the IEM-FD filter compared to the
WTST-NST filter and the WT-FD filter in both fine and coarse crackles cases, which shows the IEM-
FD filter better preserves the crackle morphology after separation compared to either of the

other filters.

84



0.25

Chapter 7

Bronchicetasis patient lung sound data with coarse crackles (v(£)

1 1 41 1 1
;
4 + 4 4 4 + 4 11 1

Amplitude
a
I

025

o

Amplitude

Amplitude

Figure 35

P —
e
=<
N —
Amplitude
=

[]IA 0.4
4 4+ 4 4 4 + 4 + 1 4
E
- -0.2
T © (s) Time ()
4 04 4 4 + 4 41 4 +
B
- -0.2!

Comparison between crackle separation performance of the proposed IEM-FD
filter, WTST-NST filter and the WT-FD filter; (i) Time section of 0.743 s of RBCC
(Table 4, Case RBCC) recorded from a patient with BE. (ii) (a) IEM-FD filter non-
stationary output; (b) IEM-FD filter stationary output. (iii): (a) WTST-NST filter
non-stationary output; (b) WTST-NST filter stationary output. (iv): (a) WT-FD

filter non-stationary output; (b) WT-FD filter stationary output.
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Table 9 Performance of IEM-FD filter in terms of 2CD percentage error.
IEM-FD
Cases BN [Dg |SNR | NOTS | NOC | AC,cp(SD) | ECycp(SD) | PE,cp(SD)
(dB) (ms) (ms) (%)
Ar | BRv | NA | -1 501 5010 | 5 (0) 5.58 (0.51) | 12 (10.06)
SFC | He | BRw | NA | -1 501 5010 | 3.3 (0) 4.16 (0.61) | 26.50 (18.60)
Cc | BRv |NA | -1 501 5010 | 6 (0) 6.42 (0.40) | 7.91(5.94)
RFC BRy | IPF | -1 501 5010 | 3.52(0.10) | 3.45(0.09) | 2.37(0.87)
Ac | BRv | NA |1 501 5010 | 10 (0) 9.30(0.51) | 7.82(3.31)
SCC |Hec | BRw | NA |1 501 5010 | 5.1 (0) 5.59(0.51) | 10.16 (10.05)
Cc |BRv | NA |1 501 5010 | 9.5 (0) 8.91(0.39) | 6.75(2.83)
RCC BRy | BE |1 501 5010 | 8.41(1.53) | 8.32(1.43) | 10.07 (7.70)

NOC: Number of crackles (10 crackles in each test sample); AC,cp: Mean of actual crackles 2CD; EC,cp:
Mean of estimated crackles 2CD; PE,p: Mean of 2CD percentage error. See Table 4 footnote for the

remaining caption for Table 9.

7.2.24 Computational cost

The computational cost for the FD technique is 2(N — Wgp + D[2(Wpp + L) + 1] +4L + 1
additions and 2(N — Wgp + 1)(Wgp + L + 2) + 8L multiplications (Hadjileontiadis & Rekanos,
2003), where, N is the number of samples in the input signal, Wxp is the fractal dimension
window length and L is the maximum number of peeling levels in the FDPP algorithm. The MRD-
MRR procedure requires O(N log N) operations (Hadjileontiadis, 2005(11)): hence for the number
of iterations K and the signal length of N, the MRD-MRR procedure will take O(KN log N)
operations in both the WTST-NST filter and the WT-FD filter. On the other hand, the IEM method
requires only O(QN) operations for the number of iterations Q and the signal length of N. This

low computational cost of the IEM-FD filter can easily be achieved by an ordinary computer.

7.23 Comparison of the proposed IEM-FD filter with the EMD-FD filter

This section provides the performance comparison between the IEM-FD filter and the EMD-FD
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Table 10 Performance of WTST-NST filter in terms of 2CD percentage error.
WTST-NST
Cases BN [Dg; [SNR | NOTS | NOC | AC,cp(SD) | ECycp(SD) | PE,cp(SD)
(dB) (ms) (ms) (%)
Ar | BRy | NA | -1 501 5010 | 5(0) 7.79 (5.45) | 57.07(108.82)
SFC | He | BRw | NA | -1 501 5010 | 3.3(0) 7.13(8.93) | 121.43(269.67)
Cc | BRv | NA | -1 501 5010 | 6 (0) 8.35(6.38) | 40.83 (106.06)
RFC BRy | IPF | -1 501 5010 | 3.52(0.10) | 5.14(6.30) | 48.85(178.56)
Ac | BRw [ NA |1 501 5010 | 10 (0) 10.96 (4.07) | 22.90 (35.14)
SCC |He | BRw | NA |1 501 5010 | 5.1 (0) 7.72(7.46) 53.89 (146.21)
Cc |BRv|NA |1 501 5010 | 9.5 (0) 10.19 (3.43) | 23.50(28.55)
RCC BRy | BE |1 501 5010 | 8.41(1.53) | 12.28(4.50) | 52.94 (51.72)

NOC: Number of crackles (10 crackles in each test sample). See Table 4 footnote and Table 9 footnote for

the remaining caption for Table 10.

filter. Due to the EMD-FD filter’s tendency to fail to converge on some of the 501 test samples in
each case, one test sample was selected from 501 test samples at an SNR of -1 dB for RFC and
each SFC case. Correspondingly, one test sample was selected from 501 test samples at an SNR of
1 dB for RCC and each SCC case. The crackle separation performance between the proposed IEM-
FD filter and the EMD-FD filter was compared using these selected test samples supplemented by
the RBCC and RBFC in terms of rate of detectability (D), total performance (TDE¥, SD#5.),
quality of crackle separation (over- or under-estimation), 2CD percentage error (PE,.p) and

separation time (S7).

7.23.1 Rate of detectability and total performance

From the results in Table 12 it can be observed that the separation performance of the proposed
IEM-FD filter and the EMD-FD filter (Hadjileontiadis, 2007) is quite similar in terms of rate of
detectability except for a slightly lower performance of the IEM-FD filter in the case of RBFC. In

terms of total performance, the proposed IEM-FD filter outperforms the EMD-FD filter in the case
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Table 11 Performance of WT-FD filter in terms of 2CD percentage error.
WT-FD
Cases BN [Dg |SNR | NOTS | NOC | AC,cp(SD) | ECycp(SD) | PE,cp(SD)
(dB) (ms) (ms) (%)
Ar | BRv | NA | -1 501 5010 | 5(0) 7.41(2.25) | 58.09 (31.97)
SFC | Hf | BRw | NA | -1 501 5010 | 3.3 (0) 5.87 (2.75) | 87.68(73.92)
Cc | BRv |NA | -1 501 5010 | 6 (0) 8.43(1.88) | 46.73 (21.60)
RFC BRy | IPF | -1 501 5010 | 3.52(0.10) | 5.64(2.56) | 63.85(69.72)
Ac | BRv | NA |1 501 5010 | 10 (0) 11.43 (2.60) | 21.08 (21.12)
SCC |Hec | BRw | NA |1 501 5010 | 5.1 (0) 7.72(2.10) | 58.95(30.45)
Cc |BRv | NA |1 501 5010 | 9.5 (0) 10.87 (2.35) | 19.55 (21.15)
RCC BRy | BE |1 501 5010 | 8.41(1.53) | 11.11(2.68) | 36.71(32.68)

NOC: Number of crackles (10 crackles in each test sample). See Table 4 footnote and Table 9 footnote for

the remaining caption for Table 11.

of coarse crackles (SCC, RCC and RBCC) and achieves quite similar performance to the EMD-FD

filter in the case of fine crackles (SFC, RFC and RBFC).

7.2.3.2 Quality of crackle separation (over or under estimation)

Table 13 shows the crackle separation comparison results of the proposed IEM-FD filter and the
EMD-FD filter in terms of under-estimation and over-estimation, respectively. In terms of under-
estimation, it can be noticed that the estimated under-estimation quality factor of the IEM-FD
filter and the EMD-FD filter is either very close or equal to the reference under-estimation quality
factor, which shows very low under-estimation. On the other hand, in terms of over-estimation, it
can be noticed that the estimated over-estimation quality factor of the IEM-FD filter is very close
to 1 compared to the EMD-FD filter, which indicates less over-estimation by the IEM-FD filter
compared to the EMD-FD filter. Moreover, the performance comparison between the IEM-FD
filter and the EMD-FD filter in the case of RFC (Table 12, case RFC) is shown in Figure 36. The
location of the crackles before inserting into the background noise is marked with arrowheads, so

that the automatically separated crackles in the non-stationary part can be compared with the

88



Chapter 7

Table 12 Performance comparison of IEM-FD filter and EMD-FD filter in terms of rate of
detectability and total performance.
IEM-FD EMD-FD
Cases BN Dg SNR NR NOTS Q K NE DR K NE DR
(dB) (%) (%)
Ar | BRy | NA | -1 10 1 2 1 |10 | 100 1 10 | 100
SFC | Hf | BRw | NA | -1 10 1 2 1 |10 | 100 1 10 | 100
Cs | BRy | NA | -1 10 1 2 1 |10 100 1 10 100
RFC BRy | IPF | -1 10 1 1 1 |10 | 100 1 10 | 100
RBFC NBS | IPF | ND 32 1 1 1 |21 656 |1 29 90.6
Ac |BRy | NA |1 10 1 2 1 |10 | 100 1 10 | 100
SCC |Hc |BRw | NA |1 10 1 2 1 |10 100 1 10 100
Cc |BRv | NA |1 10 1 2 1 |10 | 100 1 10 | 100
RCC BRy |BE |1 10 1 1 1 |10 100 1 8 80
RBCC NBS |BE [ ND |6 1 1 1 |10 | 100 1 10 | 100
Total Fine crackles (SFC, RFC TDEC = 93.13 %, TDEC = 98.12%,
performance and RBFC)
SDf5, = 15.37 % SD15, = 4.20%
(TDEY, SDF5,)
Coarse crackles (SCC, RCC | TDEC = 100%, TD§C =96 %,
and RBCC)
SD%R =0 SD%R =894 %

See Table 4 footnote for the caption for Table 12.

input signal crackles. Figure 36-i displays the input signal with embedded RFC in breath noise. The

non-stationary and stationary parts after applying the IEM-FD filter are shown in Figure 36-ii (a)

and (b), respectively. Comparing these with the input signal, we can clearly see that not only are

all the fine crackles separated from breath noise into the non-stationary signal estimate with their

time duration and morphology preserved, but also the breath noise is retained in the stationary

estimate with its proper shape and amplitude. On the other hand, the non-stationary and
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Table 13 Performance comparison of IEM-FD filter and EMD-FD filter in terms of

underestimation and overestimation.

IEM-FD EMD-FD
Cases BN | D; | SNR | NOTS Ror, Ryr, Egry Egr, Egry Egr,
(dB)
Ar | BRv | NA | -1 1 0.808 | 0.205 | 0.808 |0.832 | 0.808 | 0.620
SFC | Hf | BRv | NA | -1 1 0.849 | 0.159 |0.849 | 0.967 |0.849 | 0.322
Ce | BRv | NA | -1 1 0.804 | 0.206 | 0.804 |0.851 | 0.842 | 0.689
RFC BRy | IPF | -1 1 0.857 | 0.147 | 0.862 |0.970 | 0.858 | 0.379
Ac | BRv | NA |1 1 0.716 |0.326 |0.716 |0.771 | 0.716 | 0.439
SCC | Hc | BRv | NA |1 1 0.782 | 0.233 | 0.785 |0.944 |0.786 | 0.400
Cc |BRv | NA |1 1 0.710 |0.308 |0.710 |0.761 | 0.751 | 0.436
RCC BRy | BE |1 1 0.725 | 0.300 |0.743 |0.943 |0.822 |0.738

Ryp,: Reference underestimation quality factor; Ryr,,: Reference overestimation quality factor; Eqgg,,
Estimated underestimation quality factor; Eyr,,: Estimated overestimation quality factor. See Table 4

footnote for the remaining caption for Table 13.

stationary outputs of the EMD-FD filter are displayed in Figure 36-iii (a) and (b), respectively. Here
we can observe that the non-stationary output (Fig. 36-iii (a)) of the EMD-FD filter not only
contains the crackles but also consists of a large portion of the breath noise due to over-
estimation. These results clearly indicate that the IEM-FD filter provides better quality of crackle

separation (less over-estimation) compared to the EMD-FD filter.

7.23.3 2CD percentage error

Table 14 and Table 15 show the performance comparison of the IEM-FD filter and the EMD-FD
filter (Hadjileontiadis, 2007) in terms of 2CD percentage error, respectively. From the results it can
be observed that in the IEM-FD filter the average 2CD percentage error is very much less than the
average 2CD percentage error in the EMD-FD filter for both fine (SFC and RFC) and coarse (SCC
and RCC) crackles. These results clearly indicate that the IEM-FD filter can better preserve the

crackle morphology after separation compared to the EMD-FD filter.
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Figure 36 Comparison between crackle separation performance of the IEM-FD filter and

the EMD-FD filter; (i) RFC (Table 12, Case RFC); (ii) (a) IEM-FD filter non-
stationary output; (b) IEM-FD filter stationary output. (iii): (a) EMD-FD filter non-

stationary output; (b) EMD-FD filter stationary output.
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Table 14 Performance of IEM-FD filter in terms of 2CD percentage error.
IEM-FD
Cases BN [Dg; |[SNR | NOTS | NOC | AC,cp(SD) | ECycp(SD) | PE,cp(SD)
(dB) (ms) (ms) (%)
Ar | BRv | NA | -1 1 10 5(0) 5.76 (0.55) | 15.82(10.62)
SFC | Hf | BRy | NA | -1 1 10 3.3(0) 3.79(0.40) | 15.31(12.00)
Cc |BRv |NA | -1 1 10 6 (0) 6.54 (0.42) | 9.74 (6.37)
RFC BRy | IPF | -1 1 10 3.52(0.10) | 3.44(0.09) | 2.57(0.65)
Ac | BRv | NA |1 1 10 10 (0) 9.34(0.32) | 6.61(2.64)
SCC | Hec | BRv | NA |1 1 10 5.1(0) 5.59(0.53) | 10.05(10.38)
Cc |BRv | NA |1 1 10 9.5(0) 8.80(0.15) | 7.13(1.53)
RCC BRy |BE |1 1 10 8.41(1.53) | 8.31(1.34) | 12.24(9.48)
Table 15 Performance of EMD-FD filter in terms of 2CD percentage error.
EMD-FD
Cases BN |D; |SNR | NOTS | NOC | ACcp(SD) | ECocp(SD) | PEycp(SD)
(dB) (ms) (ms) (%)
Ar | BRv | NA | -1 1 10 5 (0) 5.51(1.05) | 17.86(14.59)
SFC | Hr | BRw | NA | -1 1 10 3.3(0) 5.44 (2.85) | 76.07 (76.31)
Cc | BRw | NA | -1 1 10 6 (0) 5.43(0.88) | 16.44(3.41)
RFC BRy | IPF | -1 1 10 3.52(0.10) | 3.84(0.59) | 10.10(15.78)
Ac | BRv |NA |1 1 10 10 (0) 12.10(2.30) | 25.41 (17.85)
SCC [Hc | BRw | NA |1 1 10 5.1(0) 5.94 (1.47) | 23.88(22.91)
Cc |BRw |NA |1 1 10 9.5 (0) 9.01(1.61) | 14.57(8.92)
RCC BRy |BE |1 1 10 8.41(1.53) | 7.65(2.74) | 21.04 (18.21)

NOC: Number of crackles (10 crackles in each test sample). See Table 4 footnote and Table 9 footnote for

the remaining caption for Table 14 and Table 15.
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Table 16 Performance comparison of IEM-FD filter and EMD-FD filter in terms of separation

time.
IEM-FD | EMD-FD
Cases BN D; | SNR(dB) | NOTS | Sr(s) Sr(s)
Ar | BRy | NA | -1 1 0.57 215.42
SFC |[He | BRv | NA | -1 1 0.56 189.63
Cr BRn NA | -1 1 0.57 201.27
RFC BRy | IPF | -1 1 0.49 42.38
RBFC NBS IPF | ND 1 0.43 45.29
Ac BRn NA |1 1 0.58 149.98
SCC | Hc BRn NA |1 1 0.61 276.76
Cc BRn NA |1 1 0.55 261.95
RCC BRn BE 1 1 0.55 38.44
RBCC NBS BE ND 1 0.48 39.33
Average (St (s)) 0.54 146.05

RBFC: Real breath sound with fine crackles; RBCC: Real breath sound with coarse crackles; Sr: Separation

time; s: Second; NBS: Normal breath sound. See Table 4 footnote for the remaining caption for Table 16.

7.2.3.4 Separation time

As mentioned earlier (section 7.2.2.4), the low computational cost of the IEM-FD filter can easily
be achieved. In this section, the crackle separation performance of the IEM-FD filter was tested in
terms of separation time and compared with the EMD-FD filter. From Table 16 it can be noticed
that in all the cases of fine and coarse crackles, the separation time of the IEM-FD filter is less
than 1 second. By comparing the average crackle separation time of the IEM-FD filter (0.54 s) with

the EMD-FD filter (146.05 s) it is clear that the IEM-FD filter is much faster than the EMD-FD filter.

7.3 Summary

Chapter 7 has presented test results for the proposed IEM-FD filter and a systematic comparison
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with three previously published crackle separation techniques (WTST-NST filter, WT-FD filter and
EMD-FD filter). It is clear that the IEM-FD filter can achieve the high rate of crackle identification
accuracy with low computational cost. The comparative results indicate that the IEM-FD filter can
provide a better quality of crackle separation (less over-estimation) and better preserved crackle
morphology after separation compared to the previously published crackle separation techniques.
Next the IEM-FD filter is applied to real data from two different datasets to explore its potential to
for use on clinical sound recordings. Chapter 8 presents the detailed analysis of two different

datasets using the IEM-FD filter.
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Chapter 8 Two case studies

8.1 Introduction

This chapter will present the findings of two different case studies: one based on a year-long
longitudinal study of patients with a diagnosis of IPF and the other a cross-sectional study of
subjects who were referred for a HRCT scan of the chest for various clinical indications including
suspected IPF. Both datasets were analysed using the IEM-FD filter. This chapter is divided into
three main sections. Section 8.2 presents a brief introduction of IPF and the importance of Velcro
crackles in IPF diagnosis or monitoring. The longitudinal study and the cross-sectional study are

presented as case studies in section 8.3 and 8.5, respectively.

8.2 Idiopathic pulmonary fibrosis

IPF is the most common and the most life threatening idiopathic interstitial pneumonia (Bois,
2012), with a median survival time of only 3-5 years from the time of diagnosis (Oldham & Noth,
2014). The risk of IPF increases with age and is most common in the age group of 55-75 years with
median diagnosis age of 66 years (King Jr et al., 2011). The main symptoms of IPF are chronic dry
cough and exercise induced breathlessness (Meltzer & Noble, 2008). As mentioned in Lamas et
al,, (2011) the common median delay from symptom onset to diagnosis is 2.2 years. IPF is a hon-
curable disease (Wuyts et al., 2019); the only curative treatment available is lung transplantation
(Purokivi et al., 2017), and the delay in IPF diagnosis may increase the rate of mortality or lower
the survival rate regardless of disease severity (Lamas et al., 2011). Therefore, the early detection
of IPF is more important especially with the more recent availability of the disease progression

delaying drugs i.e. pirfenidone and nintedanib (Richeldi, 2016).

Velcro type crackles are considered as an early sign of IPF (Sellares et al., 2016). They are high
pitched, discontinuous adventitious sounds, which can be heard in IPF patients in lung
auscultation during slow and deep breathing. They consist of bursts of, sometimes overlapping,
fine crackles which are non-musical and transient in nature and considered to be generated due
to sudden opening of abnormally closed small airways (Cottin & Cordier, 2012). The sound of
Velcro crackles is similar to the sound produced when strip of Velcro is gently detached from a
blood pressure cuff (Cordier & Cottin, 2013; Aiello et al., 2017). Velcro crackles mostly appear in
the mid to late inspiratory phase and are sometimes associated with the presence expiratory

crackles (Sellares et al., 2016). They appear in the basal lung in the early stages of IPF and as the
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disease progresses they start also to be generated in higher zones of the lung (Cottin & Cordier,

2012).

Chest HRCT is the most common clinical test for initial diagnosis of IPF, and surgical lung biopsy is
used to confirm IPF diagnosis in patients with suspected IPF where HRCT presentation is not very
promising for diagnosis (Cottin & Richeldi, 2014). However, in an ageing population lung biopsy is
difficult to perform and without a biopsy the patient is left with suspected IPF (Cottin & Richeldi,
2014). Cottin & Cordier, (2012) suggested that on lung auscultation the assessment of Velcro
crackles may provide a practical way to improve the earlier diagnosis of IPF. Although IPF is the
most common interstitial lung disease and it is classed as a rare disease (defined as less than 1
case per 2000 people in the general population) so there can be a need for accessible indicators

to use in diagnosis by GPs to ensure early referral.

Physicians can identify Velcro crackles in lung auscultation by listening to the lung sounds using a
conventional stethoscope, but this method is very challenging especially in poor listening
conditions (Chen et al., 2014). Moreover, the overlap of Velcro crackles with normal breath
sounds makes it difficult to separate them from background normal breath sounds just by
listening. Therefore, the accurate detection of Velcro crackles is highly dependent on a physician’s
expertise and hearing ability, which can lead to inter observer disagreement on crackle detection
or to misdiagnosis (Chen et al., 2014). On the other hand, separation of crackles from normal
breath sounds using an automatic crackle separation method may provide a better way of
estimating number of crackles and their time domain features such as 2CD (as discussed in section
1.3). Therefore, in this chapter two different datasets are analysed using the IEM-FD filter and

results obtained from both case studies are described below.

8.3 Longitudinal dataset analysis

Recently, Sgalla et al., (2019) showed that a set of acoustic features extracted from lung sounds
recorded in IPF patients were a reproducible and valid metric for assessing disease severity and
progression in patients with IPF. In this study, the lung sounds dataset recorded from 19 patients
diagnosed with IPF was used for the analysis. For each patient, the lung sounds were recorded
over a total of 7 visits (every 2 months) over a 1 year period. At each visit, the lung sounds were
recorded at 10 chest locations (shown in Figure 37), identified using the guidelines of the
computerized respiratory sound analysis (CORSA) study (Sovijarvi et al., 2000c), using a digital

stethoscope. For each lung sound signal, a set of 481 acoustic features was estimated.

The original acoustic signal was preprocessed using a high pass filter with a cut-off frequency of

75 Hz. After preprocessing, the acoustic features were calculated using the MIR toolbox (Lartillot
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& Toiviainen, 2007) from the filtered lung sound signal as a whole, from different IMFs, from the
EMD ‘crackle component’ (first 3 or first 4 IMFs), and from the EMD ‘respiratory component’ (the
sum of remaining IMFs). The IMFs were calculated using the EMD technique (described in section
4.6.1). Since for each sound file the number of IMFs was different, only the first 10 IMFs were
used for the analysis (Sgalla, 2017). The features were generated from the energy content, from
the statistical properties of the signal and its components (such as skewness and kurtosis), and
from isolated frequency bands (such as cepstral features). Out of 481 acoustic features, a set 19
reproducible acoustic features were identified using intra subject reliability analysis. The intra
subject reliability analysis was applied to three repeated recordings obtained during visit 1 from 4
IPF patients, and acoustic features with intra rater correlation coefficient (ICC) values greater than
0.5 were considered to have acceptable repeatability. Note that 6 of the 19 features were
calculated from the sum of the first 3 or 4 IMFs estimated using the EMD technique, which the
reference identifies as being associated with the crackle component of a lung sound when
crackles are known to be present. The remaining 13 features were calculated from original

acoustic signal which would include any crackle sounds present.

Out of 19 reproducible acoustic features, 6 features were found to significantly change between
baseline and end of study measurements. These 6 features were then correlated with several
clinically established parameters of disease progression such as forced vital capacity (FVC), and
visual and computer-based evaluation of HRCT scans. Using multivariate regression analysis, it
was found that the set of 6 features was significantly associated with the clinically established
parameters of disease progression. Sgalla et al., (2019) concluded that acoustic features
generated from lung sounds are a reproducible and valid measure for assessing disease severity in
patients with IPF and suggested that quantitative analysis of lung sounds may provide a

noninvasive clinical biomarker in IPF.

Although, Sgalla et al., (2019) looked at changes in the acoustic characteristics of the recorded
lung sound, the acoustic features they selected were global features of the whole recorded signal,
or of summed subsets of IMFs, which comprised both breath sound and any added sounds. They
were not able to make a direct connection between the features they selected and the presence
or characteristics of Velcro crackles. In our study, we extended the Sgalla et al., (2019) work to
explore whether the reproducible acoustic features they identified were associate with a change
in the NOC/BC over consecutive visits. Sovijarvi et al., (2000a) note that in interstitial lung
diseases, the NOC/BC is associated with severity of the disease. Therefore, we investigated the
relationship between the global acoustic features identified by Sgalla, (2017) and the NOC/BC

extracted from the same set of lung sound data.
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In the EMD technique, the selection of number of IMFs for crackle component and for respiratory
component is very challenging because for every lung sound signal data dependent decision
making is needed. Moreover, the EMD technique is a slow process and, in many cases, fails to
converge so that the IMFs cannot be extracted, hence it is not ideal for a clinical setting where
fast processing is desirable for decision making. Due to these limitations, we have only
investigated the relationship between the 13 reproducible acoustic features generated from the
whole signal after preprocessing and the NOC/BC. The process of calculating the NOC/BC is

discussed below and the reproducible acoustic features are presented in section 8.3.7.

The aim of our study was to investigate the relationship between the NOC/BC with the

reproducible acoustic features directly generated from the original lung sound signal after

preprocessing.

Figure 37 10 lung sounds recording sites (L1-L10), in this study lung sounds recorded from
6 posterior locations (L1-L6) are selected and these 6 posterior locations are

shown in green.

Pre-processing: {a) 6" order Separation of crackles: IEM-
Input Lung sound signal »| Butterworth high pass filter with »| FO filter for separating
cut off frequency 75 Hz crackles from normal breath
{b) Filtering using 5G family filter sounds
b
Mumber of crackles/breath cycle | Crackle verification and counting

Figure 38 Steps used for analysing longitudinal dataset.
8.3.1 Audio-visual marking of breathing cycles

In each lung sound file the number of breathing cycles was audio-visually marked by the Author
with the help of open access Audacity software. Only full breathing cycles were taken for the

analysis as shown in Figure 39. Only lung sounds recorded from the 6 posterior locations: (as
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shown in Figure 37 in green: L1-L6) were selected for further analysis. As mentioned in Cottin &
Cordier, (2012) in the early course of IPF crackles appears in the basal areas of the lungs and as
the disease progresses, they start to generate in upper zones therefore all 6 posterior locations
were used for the analysis. Three patients died during the observation period and two patients
withdrew from the study due to poor health. One patient completed the total 7 visits but missed
one lung sound recording at location L1 (see Figure 37) in one of the 7 visits. Therefore, in total

689 lung sound files available from 19 patients were marked.

8.3.2 Pre-processing

Figure. 38 shows the number of steps used for analysing the IPF dataset. Each lung sound signal
was pre-processed using a 6™ order Butterworth high pass filter with cut off frequency 75 Hz (as
used by Sgalla et al., 2019) and filtered using a SG filter to eliminating the high frequency peaks
corresponding to the unwanted ripples in the signal. The SG filter parameters are: degree of
fitting polynomial ps = 4, number of coefficients n, = 89, and order of derivation d,, = 0. Input
lung sound signal and the pre-processed lung sound signal are shown in Figure 39 (a) and (b),

respectively.

8.3.3 Crackle separation

After completing the pre-processing step, the IEM-FD filter is applied to each lung sound signal for
separating crackles from normal breath sounds. Figure 39 (c) and (d) show an example of the

stationary and non-stationary output of the IEM-FD filter (Chapter 5), respectively.

8.34 Crackle verification and counting

Once the crackles are separated from normal breath sounds, the absolute value of the non-
stationary output is calculated (as shown in Figure 39 (e)). Now, a moving window of variable
length containing 6 peaks of the absolute non-stationary (ANST) output (to guarantee the
calculation of crackle 2CD, 5 zero crossings) is applied to verify and count crackles. Note that the
process starts with the first 6 peaks of the ANST output. Inside a moving window, if all the 5
valleys between the 6 peaks represent the corresponding zero crossing of the non-stationary
output of the IEM-FD filter, that window is considered as a potential crackle window (PCW) with
location of the first peak as the beginning and location of the sixth peak as the ending of the PCW.
The valley after the first peak of the PCW is considered the starting point of a potential crackle
(PC). An example is shown in Figure 40 where all the valleys inside the 6 peaks (P1-P6) represent

the corresponding zero crossing of the non-stationary output of the IEM-FD filter, hence, that
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window is considered as PCW. On the other hand, inside a moving window, if all the 5 valleys
between the 6 peaks do not represent the corresponding zero crossing of the non-stationary
output of the IEM-FD filter, a new set of 6 peaks of the ANST output is calculated in the forward
direction from the previous second peak of the moving window and the distance between new
estimated first peak and sixth peak represents the new length of a moving window containing a
new set of estimated peaks of the ANST output which will used to look for a PCW. Note that the
presence of high frequency peaks corresponding to the unwanted ripples in the input lung sound
signal may generate false peaks and valleys therefore in the pre-processing step the high
frequency peaks corresponding to the unwanted ripples was minimised in the input lung sound

signal using the SG filter.

After estimating a potential crackle window, two windows are calculated: before window (BW)
and after window (AW). As shown in Figure 41 before and after windows are calculated, using 5
valleys just before and after the PCW and including first and last valley of the PCW, respectively.
Note that in the case when before the potential crackle the number of valleys was less than 5, the
value of the BW mean was considered equal to zero as shown in Figure. 41, where before window
(BW1) mean for the first crackle (C1) is zero. Similarly, after the potential crackle when number of
valleys was less than 5, the value of the after-window mean was considered zero. The reason for
selecting only 5 valleys of the ANST output for the BW and AW is to make the length of BW and
AW as close as possible to the PCW, which also contains 5 valleys of the ANST output. The idea
behind this is to minimize the chances of identifying false crackles without losing true crackles. For
a longer BW and AW, we may lose true crackles and for shorter BW and AW we may increase
false crackle detection. Now, each potential crackle is verified using the criteria defined by
Murphy et al., (1989) and Pinho et al., (2015), and additional conditions empirically generated by
the Author:

Pre-existed criteria:

(1) The beginning of the event had a sharp deflection in either a negative or a positive

direction (Murphy et al., 1989; Kaisla et al., 1991).

(2) Afterthe IDW, the baseline crossings of all other peaks have to be progressively wider
(Murphy et al., 1989; Kaisla et al., 1991). As mentioned by Pinho et al., (2015), not all
crackles follow the standard rules, therefore + 50 % deviation of width of the peaks is

empirically selected to verify this condition.

(3) The IDW of the potential crackle must be 1/8 times greater than the LDW (Pinho et al.,
(2015).
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Empirically established conditions generated by the author:

(4) The amplitude of the LDW peak of the crackle has to be greater than all other peaks of a

crackle.
(5) The PCW mean has to be greater than 1.2 times the BW mean.

(6) The PCW mean has to be greater than the AW mean. Note that the condition (4) and (5)
not only help to count temporally overlapping crackles but also make sure that any

crackle with more than 5 zero crossings is not considered for more than once.

(7) The amplitude of the IDW peak and LDW peak of the potential crackle must be greater
than one peak before the IDW peak (amplitude of the first peak of the PCW).

(8) The 2CD of the potential crackle has to be less than 20 ms.
(9) The IDW of the potential crackle has to be less than 3 ms.

Note that if crackle failed to follow any of the above conditions the PC was not counted as a true
crackle. A new set of 6 peaks of the ANST output is identified in the forward direction from the
second peak of the failed PCW. The distance between the new estimated first peak and sixth peak
represent the new length of a moving window containing a new set of estimated 6 peaks of the
ANST output which are used to look for a new PCW. On the other hand, if PC meets all the
conditions the PC is considered as a true crackle. The process is then repeated starting in the
forward direction from the first peak after the old PCW. Note that the length of the moving

window varies according to the location of the new estimated 6 peaks of the ANST output.

8.3.5 Number of crackles/breath cycle

Figure 42 (a) shows a lung sound signal with identified true crackles. The non-stationary output of
the IEM-FD filter and its absolute value are shown in Figure 42 (b) and 42 (c), respectively. To get a
better visualization of the automatically detected crackles, the fourth breath cycle (BC4) in Figure

42 is shown separately in Figure 43.

Note that in this study the crackle detection method is not validated in terms of sensitivity or
positive predictive value because of the unavailability of a reference signal to compare with.
Therefore, it may be possible that some of the true crackles are missed and that some false
crackles are detected. This may be due to true crackles occurring which do not meet established
crackle verification conditions or because the IEM-FD filter fails to separate all the crackles from

the input lung sound signal. However, it is important to notice that: (a) the crackle detection
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value of the IEM-FD filter non-stationary output. Note that here BC: Breath

cycle.
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A PCW with PC and six estimated peaks (P1-P6), where it is shown that all the

valleys inside the six peaks of the potential crackle window are corresponding to

the zero crossing of the IEM-FD filter non-stationary output.
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Figure 41 Absolute value of the IEM-FD non-stationary output with PCW, BW and AW.

Note that here BW1: Before window of the first crackle (C1); PCW1: Potential
crackle window of the first crackle (C1); AW1: After window of the first crackle
(C1); C1: First crackle; BW2: Before window of the second crackle (C2); PCW2:
Potential crackle window of the second crackle (C2); AW2: After window of the
second crackle (C2); and C2: Second crackle. All the valleys shown in the
absolute value of the IEM-FD non-stationary output were corresponding to the

zero crossing of the IEM-FD filter non-stationary output.

method is not directly applied to the input lung sound signal rather it is applied to the absolute
non-stationary output of the IEM-FD filter after separating background normal breath sounds
from it, which reduces the chances of detecting false crackles; and (b) most of the crackle
verification conditions used here were already tested in previous studies (Kaisla et al., 1991; Pinho

et al. 2015; Murphy et al., 1989).

After automatically extracting crackles from the IPF dataset, in each lung sound signal the NOC/BC
was calculated. Next the change in extracted NOC/BC over the 7 visits (12 months follow up, visit
every 2 months) was analysed. Finally, the estimated NOC/BC was correlated with the 13
reproducible acoustic features directly estimated from the original signal after pre-processing. All
the analyses were made using SPSS (IBM SPSS Statistics 26) and MATLAB (R2019a). For all the

statistical analysis, statistical significance was set at p < 0.05.

8.3.6 Number of crackles/breath cycle

At each visit the number of observations was different because of patient drop-out. Therefore,
the analysis was performed using 13 available observations across all 7 visits. The estimated mean
NOC/BC averaged over all 13 available subjects and all locations for each of the 7 visits to clinic is
reported in Table 17. Note that at each visit the NOC/BC calculated from all six posterior locations

was used for the analysis.

104



Amplitude

Amplitude

Amplitude

Figure 42

o

o
o

o

o
[0

0.5

o

o
&

o
N
N
[«)]
®

Chapter 8

) _ Input lung sound signal
<« BC1— e BC2— >« BC3  DieC —BC4— o« —BC5 >« —BC6— >

‘ — - - - Crackles

[0} 2 4 6 8 10 12

Time (s)
(a)

TEM-FD non-stationary output .
<— BC1— >« —BC2——>:= BC3—>»i<«< BC4—> <«  BC5 —>»=  BC6— >

e

?

-- - - - Crackles

10 12
Time (s)

(b)

Absolute value of the IEM-FD non-stationary output
«— BC1—>»iC—BC2—>»«C —BC3—>« —BC4—>» '« BC5 — > BC6— >

2

‘ | ‘ | H J -- - - - Crackles

0 2 4 6 8 10 12

Time (s)

(c)

(a) Input lung sound signal with detected crackles; (b) IEM-FD filter non-
stationary output with detected crackle; (c) Absolute value of the IEM-FD filter

non-stationary output with detected crackles. Here BC: Breath cycle.
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Figure 43 One breathing cycle of the lung sound signal (a) Input lung sound signal with

detected crackles; (b) IEM-FD filter non-stationary output with detected crackle;
(c) Absolute value of the IEM-FD filter non-stationary output with detected

crackles.

The normality of the data over 7 visits was tested using Shapiro-Wilk test; the complete results
obtained are shown in Table 18 and for visual analysis of the data samples distribution the
histogram plots are reported in Appendix A (Al). Due to the non-normal distribution of the data
samples in all the visits, non-parametric tests were selected here for the statistical analysis. The
Friedman test was used to test whether the mean NOC/BC for different visits are all the same
(within statistical limits) or not and the Wilcoxon signed-rank test was used to compare the
difference between pairs of visits; a Bonferroni correction was used for correcting the statistical

significance level where multiple statistical tests were made.
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Table 17 Estimated NOC/BC using 13 available observations across 7 visits in the IPF dataset.

Data presented as mean, standard deviation, maximum and minimum values.

Visits Parameter | Subjects | Minimum | Maximum | Mean Std. Deviation
Visit 1 NOC/BC 13 1.67 76.50 29.19 18.86
Visit 2 NOC/BC 13 1.33 75.33 26.56 18.57
Visit 3 NOC/BC 13 0.83 67.00 24.80 15.60
Visit 4 NOC/BC 13 0.14 86.50 28.38 20.83
Visit 5 NOC/BC 13 0.57 65.75 22.27 15.24
Visit 6 NOC/BC 13 0.60 71.67 20.62 15.56
Visit 7 NOC/BC 13 0.75 84.00 24.09 17.09

The change in the mean NOC/BC over the complete 12 months follow up study was significant
(Chi-Square=19.060, p=0.004) under the Friedman test. The pairwise comparison between visit 1
and visit 6 was found to be significant (Z=3.481, p=0.021) under the Wilcoxon signed-rank test.
The full pairwise comparison over 7 visits using the Wilcoxon signed-rank test is reported in

Appendix A (A2).

Table 18 Shapiro-Wilk test for normality of the distribution of the NOC/BC across 7 visits using

13 available observations in the IPF group.

Visits Parameter Subjects Statistic p value
Visit 1 NOC/BC 13 0.950 0.004
Visit 2 NOC/BC 13 0.939 0.001
Visit 3 NOC/BC 13 0.953 0.006
Visit 4 NOC/BC 13 0.935 0.001
Visit 5 NOC/BC 13 0.944 0.002
Visit 6 NOC/BC 13 0.924 0.000
Visit 7 NOC/BC 13 0.924 0.000
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8.3.7 Reproducible acoustic features in IPF dataset

Table 19 shows the 19 reproducible acoustic features (Sgalla, 2017; Sgalla et al., 2019). In these 19

features, 13 features were directly estimated from the original acoustic signal after pre-processing

and the remaining 6 features were calculated from first 3 or 4 IMFs. The data in terms of mean,

standard deviation, maximum value, and minimum values of all 19 reproducible acoustic features

from sound files recorded at 6 posterior locations over complete study of 1 year in the IPF dataset

(Sgalla, 2017) is reported in Appendix A (A3).

Table 19  Aset of 19 reproducible acoustic features (Sgalla, 2017).

A set 19 reproducible acoustic

features

Description

C3 EW_200_500 Hz

Crackle component (number of IMFs=3) energy weight

(EW) in the frequency range of 200-500 Hz

C4 EW_75_200 Hz

Crackle component (number of IMFs=4) energy weight

(EW) in the frequency range of 75-200 Hz

C4 EW_200_500 Hz

Crackle component (number of IMFs=4) energy weight

(EW) in the frequency range of 200-500 Hz

sig_zerocross

Zero-cross of the original signal

sig_mfcc02

Mel Frequency Cepstral Coefficient (MFCC) of the original

signal

sig_75_200 Hz_zerocross

Zero-cross of the original signal in the frequency range of

75-200 Hz

sig_75_200 Hz_centroid

Centroid of the original signal in the frequency range of

75-200 Hz

sig_200_500 Hz_rms

RMS of the original signal in the frequency range of 200-
500 Hz

sig 200 500 Hz_lowenergy

Low Energy of the original signal in the frequency range of

200-500 Hz

sig 200 _500 Hz_lowenergyASR

Average silence ratio of the original signal in the

frequency range of 200-500 Hz
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sig 200 500 Hz_zerocross Zero-cross of the original signal in the frequency range of
200-500 Hz
sig_200_500 Hz_std_meanframes Mean of the frames of the original signal in the frequency

range of 200-500 Hz

sig_200_500 Hz_std_medianframes Median of the frames of the original signal in the

frequency range of 200-500 Hz

sig_500_1000 Hz_zerocross Zero-cross of the original signal in the frequency range of
500-1000 Hz
sig_500_1000 Hz_rolloff85 Roll-off (threshold=85 %) of the original signal in the

frequency range of 500-1000 Hz

sig_500_1000 Hz_centroid Centroid of the original signal in the frequency range of
500-1000 Hz
C3_mfcc02 Mel Frequency Cepstral Coefficient (MFCC) of the crackle

component (number of IMFs=3)

C4_zerocross Zero-cross of the crackle component (number of IMFs=4)

in the specified frequency range

C4_mfcc02 Mel Frequency Cepstral Coefficient (MFCC) of the crackle

component (number of IMFs=4)

8.3.8 Correlation of NOC/BC and 13 reproducible acoustic features generated from

original signal

In this section, the estimated NOC/BC was correlated with the 13 reproducible acoustic features
estimated directly from the original signal after pre-processing. Note that in this study the
NOC/BC and the acoustic features measured at 6 posterior recording locations over 7 visits in the
IPF dataset were used for the analysis. The NOC/BC showed significant correlation with 11

acoustic features out of 13 in the univariate analysis as shown in Table 20.

After the univariate analysis, simple linear regression was also performed for all the reproducible
acoustic features that showed significant correlation with NOC/BC. The R? values of the linear
regression model are reported in Table 21. The R? values show the amount of variation in the

dependent acoustic features that can be explained by the NOC/BC. In the regression model, the
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Table 20 Univariate correlation analysis between NOC/BC and acoustic features measured at 6

posterior locations over 7 visits in the IPF dataset.

Number of crackles per breath cycle

13 reproducible Acoustic features Pearson correlation coefficient p value
generated from original signal

sig_zerocross 0.628™ 0.000
sig_mfcc02 0.185™ 0.000
sig_75_200 Hz_zerocross 0.214™ 0.000
sig_75_200 Hz_centroid 0.151" 0.000
sig_200_500 Hz_rms 0.300" 0.000
sig_200_500 Hz_lowenergy -0.373™ 0.000
sig_200_500 Hz_lowenergyASR -0.430™ 0.000
sig_200_500 Hz_zerocross 0.590™ 0.000
sig_200_500 Hz_std_meanframes 0.242™ 0.000
sig_200_500 Hz_std_medianframes | 0.347"" 0.000
sig_500_1000 Hz_zerocross -0.103" 0.007
sig_500_1000 Hz_rolloff85 0.026 0.487
sig_500_1000 Hz_centroid -0.050 0.194

** = correlation was significant at the 0.01 level.

strongest relationship of the NOC/BC were found with sig_zerocross and
sig_200_500 Hz_zerocross, which account for 39.4 % and 34.8 % variability of the features,

respectively.

8.4 Discussion

In clinical practice, FVC via spirometry is used as a feasible and reliable tool for assessing
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Table 21 R? values of linear regression models for NOC/BC showing significant correlation with

the acoustic features generated from original signal.

Independent Reproducible Acoustic features generated R?value

variable from original signal (Dependent variables)
sig_zerocross 0.394
sig_mfcc02 0.034
sig_75_200 Hz_zerocross 0.046
sig_75_200 Hz_centroid 0.023
sig_200_500 Hz_rms 0.090

NOC/BC sig_200_500 Hz_lowenergy 0.140
sig 200 500 Hz_lowenergyASR 0.185
sig_200_500 Hz_zerocross 0.348
sig 200 500 Hz_std_meanframes 0.059
sig_200_500 Hz_std_medianframes 0.121
sig_500_1000 Hz_zerocross 0.011

deterioration in IPF patients (Sgalla et al., 2019). Sgalla, (2017) in his study presented longitudinal
measurements of % predicted FVC to determine whether the sample population experienced
disease progression over the duration of study. Sgalla, (2017) found statistically significant
evidence of disease progression, which showed at decline in % predicted FVC over the study
period. However, the mean change in % predicted FVC was not statistically significant in any
pairwise comparison between visits. Furthermore, Sgalla, (2017) considered the longitudinal
change in reproducible acoustic features in IPF to see which reproducible features might be useful
for assessing progression of the disease. He found that out of 19 reproducible acoustic features 15
reproducible features underwent the significant change over the period of the 12-month study.
Moreover, out of these 15 reproducible acoustic features 6 showed significant change between
baseline and end of study, 3 features showed significant change between baseline and visit 6, and
one feature showed significant change between baseline and visit 5. Additionally, when these 15
reproducible acoustic features were correlated with the % predicted FVC; 9 reproducible acoustic

features were significantly correlated with the % predicted FVC, 6 at the 0.01 significant level and
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3 at the 0.05 significant level. However, the correlation was negligible (Pearson correlation
coefficient: 0 to 0.3 or 0 to -0.3), indicating that the reproducible acoustic features were poorly

responsive to change in % predicted FVC.

In our study, we extended the Sgalla et al., 2019 work. Firstly, we calculated the NOC/BC from
each lung sound file in the longitudinal dataset (see sections 8.3.1-8.3.5). After calculating
NOC/BC, the change in NOC/BC over the 12 months of study period was examined because, as
mentioned in Sovijarvi et al. (2000a) the NOC/BC is associated with disease severity in patients
with interstitial lung diseases. A statistically significant change in mean NOC/BC was found over
the study period. This change may be due to disease progression, however, the pairwise
comparisons between visits were not found to have a statistically significant differences. This is
may be because two-thirds of the IPF patients were taking disease-modifying treatments (either
pirfenidone or nintedanib) over the course of the study. Nevertheless, a significant mean change

in NOC/BC was observed between baseline and visit 6.

Secondly, this study found a relationship between reproducible acoustic features generated from
original signal and NOC/BC. Out of 13 reproducible acoustic features generated from original
signal, 11-showed significant correlation with the NOC/BC at p = 0.01 significance level. However,
most of these features showed either negligible (Pearson correlation coefficient: 0 to 0.3 or 0 to -
0.3) or low (Pearson correlation coefficient: 0.3 to 0.5 or -0.3 to -0.5) correlation with the NOC/BC.
Nevertheless, 2 features: zero-cross of the original signal (sig_zerocross) and zero-cross of the
original signal in the frequency range of 200-500 Hz (sig_200_500 Hz_zerocross) were moderately
correlated (Pearson correlation coefficient: 0.5 to 0.7 or -0.5 to -0.7) with the NOC/BC indicating
the properties of these two acoustic features were more responsive to the change in NOC/BC
compared to the other acoustic features considered. These findings were further supported by
linear regression analysis, which showed a high predictive power for these two acoustic features
(sig_zerocross and sig_200_500 Hz_zerocross) towards change in NOC/BC compared to the other
reproducible acoustic features. Interestingly, these two acoustic features also underwent a
significant change over the 12 months of study duration and showed significant correlation with
the % predicted FVC at the 0.01 significant level (Sgalla et al., 2019). Note that the Pearson

correlation coefficient was interpreted using the guidelines provided by Mukaka, (2012).

The purpose of this study was to investigate whether the acoustic features generated from the
original signal were related to the NOC/BC. This study shown that two specific reproducible

acoustic features directly generated from the original lung sound signal correlate with NOC/BC.

In clinics, lung sounds can easily be recorded using an electronic stethoscope and the estimation

of these acoustic features after preprocessing of the recorded lung sounds may provide an
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efficient tool for assessing disease severity in IPF patients and, together with other established
measures of disease severity, they can help in clinical decision making. The results of this analysis
support the Sgalla et al., (2019) finding that the reproducible acoustic features can be used for

assessing disease severity in patients with IPF.

It is important notice that, in our study we only focused on reproducible acoustic features
generated from original signal and did not consider the sub-signals generated by combining IMFs,
for the reasons given in section 8.3. In addition, this analysis was made using a single centre
dataset collected from a small population, therefore future research should explore the link
between the NOC/BC and the global acoustic features of the signal on larger multicenter IPF

dataset.

8.5 Cross sectional dataset analysis

The aim of this study was to develop an automatic system, which can be able to differentiate IPF
patients from patients with other types of lung pathology. Sgalla et al., (2018) showed that the
presence of Velcro crackles is directly correlated with the extent of distinct radiologic features of
pulmonary fibrosis on HRCT and suggested that auscultation for Velcro crackles may help in early
detection of fibrotic lung disease. In this study, 254 subjects who were referred for HRCT scan of
the chest for various clinical indications were considered. Just before the participants underwent
HRCT, lung sounds were recorded using an electronic stethoscope (3M Littmann 3200) at 6
posterior chest locations (as shown in Figure 44) based on the guidelines of CORSA (Sovijarvi et
al., 2000c). Two radiologists reviewed the imaging data for the presence and the extent of fibrotic
abnormalities in the lungs. 76 participants were identified as having fibrosis on the HRCT and from
the remaining participants 72 age and sex matched subjects indicating no signs of fibrosis on the
HRCT were selected. Therefore, in the final study population 148 participants were enrolled. The
recorded lung sounds were assessed by two expert interstitial lung disease physicians for the
presence of Velcro crackles and in the case of disagreement, the lung sound file was marked as
having Velcro crackles present. The assessment of the Velcro crackles was then correlated with
different radiologic features of pulmonary fibrosis at HRCT scans. Sgalla et al., (2018) concluded
that Velcro crackles not only predict the presence of fibrotic interstitial lung disease patterns at
HRCT but also closely correlate with the extent of different radiological features of pulmonary

fibrosis.

The above-mentioned study showed that the Velcro crackles in the recorded lung sounds may
facilitate the early detection of fibrotic lung disease (Sgalla et al., (2018)). Furthermore, as

mentioned in Chapter 1, computer based lung sound analysis may provide an objective way of

113



Chapter 8

analysing recorded lung sounds. Therefore, in our study, we developed an automatic system,
which can be used for differentiating IPF patients from patients with other types of pathology
based on the average NOC/BC. The automatic system was tested on the cross sectional dataset
used in Sgalla et al.’s, (2018) study and compared with the assessment of the expert physicians.
Note that in our study, the dataset recorded from 55 available participants was used for the
analysis and only lung sounds recorded from the 4 lung bases: (as shown in Figure 44 in green: L2,
L3, L5 and L6) were used for further analysis. As mentioned in (Cottin & Cordier, 2012) at the early
stage of IPF crackles appear in the lower lung bases. The dataset consists 28 patients diagnosed
with IPF and 27 patients with non-IPF. The full HRCT images marked for the presence or absence
of pulmonary by the two expert radiologists from the (Sgalla et al., 2018) study were used as the

ground truth for our study.

The main aim of the study was to investigate whether automatic system performs as well as
expert assessment for differentiating IPF patients from patients with other types of pulmonary

pathology.

As for the longitudinal study, in this analysis the author audio-visually marked the breath cycles in
each lung sound file with the help of open access Audacity software. Only full breathing cycles
were taken for the analysis. Due to inaudibility of breath cycles, 4 patients from the IPF group and
3 patients from the non-IPF group was excluded from further analysis. Since the Author was not
able to mark number of breath cycles in these recordings. Therefore, in total 185 available lung
sounds recorded from 24 fibrosis and 24 non-fibrosis groups were analysed. Table 22 shows the
age and sex of the subjects in the fibrosis and the non-fibrosis groups. In the fibrosis group the
mean age of the patients was 69.83 with 15 males and 9 females. In the non-fibrosis group, the
mean age of the patients was 69.79 with 15 males and 9 females. Males were predominant in
both fibrosis and non-fibrosis groups and the fibrosis and non-fibrosis groups were age and sex

matched.

Table 22 Characteristics of the fibrosis and non-fibrosis groups. Data are presented as the

mean (standard deviation) and counts (%).

Fibrosis Non fibrosis
(No. of patients=24) (No. of patients=24)
Age, years 69.83 (9.24) 69.79 (10.54)
Male 15 (62.5%) 15 (62.5%)
Sex (%) Female 9(37.5%) 9 (37.5%)
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8.5.1 Estimation of average number of crackles per breath cycle

In this study, the same steps were used for calculating the NOC/BC from each lung sound signal
(see Figure 38) as in longitudinal study (section 8.3). Using the NOC/BC for all available lung sound
files, the average NOC/BC was estimated for each patient by taking the mean of NOC/BC over all 4

lower lung base recording locations.

Note that if one or more of the 4 lower lung base recordings was not present for any patient, the
average NOC/BC was calculated by taking the mean of NOC/BC over those lung sound recordings
which were available for that patient. Box and Whisker plots of the estimated average NOC/BC in
the fibrosis and non-fibrosis groups are displayed in Figure 45. The average NOC/BC for each
patient in the fibrosis and non-fibrosis groups with their age and sex is reported in Appendix A

(A4).

Figure 44 6 lung sounds recording sites (L1-L6), in this study lung sounds recorded from 4
posterior base locations (L2, L3, L5 and L6) are selected and these 4 posterior base locations are

shown in green.
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Figure 45 Estimated Box and Whisker plots of average NOC/BC in fibrosis and non-fibrosis

group.
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The Shapiro-Wilk test was used for analysing the distribution of average NOC/BC for each group
and for visual analysis the histogram plots of the distribution of average NOC/BC are reported in
Appendix A (A5). The normality test was non-significant for the fibrosis group (p =0.236) and for
the non- fibrosis group (p = 0.320) hence the parametric, independent sample t-test was used for
comparing the difference of average NOC/BC between the two groups. The difference in average
NOC/BC between two groups was significantly different (t=4.94, p<0.001) at the independent

sample t-test, as shown in Table 23.

Table 23 Independent sample t-test for average NOC/BC at fibrosis and non-fibrosis groups.

t-test for Equality of Means

95% Confidence

Interval of the

t df Sig. (2- |Mean std. Error | Difference

tailed) |Difference |Difference || ower Upper

Average |Equal variances 8.903 21.192
NOC/BC |not assumed 4.938|43.202 |0.000 15.047 3.047

8.5.2 Receiver operating characteristic curve

A receiver operating characteristic (ROC) curve is a plot of a test’s sensitivity (plotted on the
vertical axis), versus its false positive rate or 1-specificity (plotted on the horizontal axis)
(Obuchowski, 2005). Sensitivity evaluates the proportion of positives correctly classified;
specificity calculates the proportion of negatives correctly classified, and false positive rate is one
minus specificity (Flach, 2010). In our study, to see the potential of the average NOC/BC to
differentiate two groups (fibrosis or non-fibrosis) a ROC curve was generated, as shown in Figure
46. The estimated ROC curve is reported in Table 24. The cut-off value for average NOC/BC, 18.62
(AUC=0.845; sensitivity=91.7; specificity=59.3) was taken to differentiate two groups. The crackles
in IPF patients are usually generated in the inspiratory phase and Flietstra et al., (2011) shown
that the mean (standard deviation) number of crackles in the inspiratory phase in IPF patients was

18 (14), which supports the selection of 18.62 as a cut off average NOC/BC.

8.5.3 Velcro crackles assessment

In Sgalla, (2017) study, two physicians independently listened to each recorded lung sound file

using open access Audacity software and over-ear-headphones (Sennheiser HD201 closed
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Table 24 ROC curve for the average NOC/BC. Data presented as area under the curve with 95%

confidence interval and p-value.

95% ClI
Area under the curve (AUC) p-value Lower bound Upper bound
0.845 0.000 0.739 0.952
‘o ROC Curve
:E' 06
§ 0.4
17- Specificity
Figure 46 ROC curve for the average NOC/BC.

dynamic stereo) and marked for Velcro crackles (“1= Velcro crackles”, “O=no Velcro crackles”). In
case of disagreement, a file was marked as Velcro crackles. Where at least one physician
identified Velcro crackles as present in at least one recording site for a given lung base (left or
right) that lobe was identified as having Velcro crackles present. If at least one lung base had
Velcro crackles, the patient was classified as having unilateral Velcro crackles. Patients with no
Velcro crackles identified in either lobe were placed in the no unilateral Velcro crackles category.

The physician assessment was then compared to the evidence from the HRCT scans.
Out of 48 patients, physician 1 heard unilateral Velcro crackles at lung sounds recorded from 30

Table 25 Patients with unilateral Velcro crackles assessed by two physicians. Data presented in

counts and percentages (%).

Physician 1 Physician 2

No unilateral Velcro crackles 18 (37.5%) 17 (35.42%)

Unilateral Velcro crackles 30 (62.5%) 31 (64.58%)
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Table 26 Cross tabulation for inter rater agreement of evaluation of unilateral Velcro crackles

at recorded lung sounds for individual patients. Data are expressed as counts.

Physician 2

No unilateral Unilateral Total

Velcro crackles Velcro crackles

No unilateral Velcro crackles 12 6 18
Physician 1 | Unilateral Velcro crackles 5 25 30
Total 17 31 48

patients and physician 2 reported unilateral Velcro crackles in the lung sounds recorded from 31
patients, as presented in Table 25. The inter-rater reliability of assessment of unilateral Velcro
crackles between two physicians was moderate (Cohen’s kappa= 0.446, p=0.001), as shown in

cross tabulation in Table 26.

8.6 Results and Discussion

The performance of physician 1 and physician 2 in the differentiation of patients with fibrosis and
non-fibrosis based on their evaluation of the presence of unilateral Velcro crackles is reported
using cross tabulation in Table 27 and Table 28, respectively. The results in terms of sensitivity
and specificity are shown in Table 29. Both physicians had equal sensitivity (83.3 %), which
showed their ability to identify the presence of Velcro crackles matched well to the diagnosis of
IPF via the gold standard of HRCT. On the other hand, specificity was 58.3 % and 54.2 % for
physician 1 and physician 2, respectively. When we compare the average or individual
performance of each physicians with the average NOC/BC at the selected 18.65 cut-off value it
can be noticed that the average NOC/BC achieved higher sensitivity (91.7 %) and specificity (59.3
%) compared to average for either physician individually or for both on average, as shown in Table

29.

The aim of the study was to develop an automatic system, which can be able to differentiate IPF
patients from patients with other types of pathology. The results indicate that the automatic
system presented here can perform as well as the assessment of expert physicians in terms of
differentiating patients with IPF from patients with other types of pathology based on the
presence of Velcro crackles. Moreover, the developed system has shown strong potential for
diagnostic support, especially for assisting non-expert clinicians in their auscultatory assessment

of lung sounds.
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Velcro crackles assessment. Data are expressed as counts.

Chapter 8

Cross tabulation for physician 1 in the recognition of fibrosis based on unilateral

No fibrosis Fibrosis Total
No unilateral Velcro crackles 14 4 18
Physician 1 Unilateral Velcro crackles 10 20 30
Total 24 24 48
Table 28 Cross tabulation for physician 2 in the recognition of fibrosis based on unilateral

Velcro crackles assessment. Data are expressed as counts.

No fibrosis Fibrosis Total
No unilateral Velcro crackles 13 4 17
Physician 2 Unilateral Velcro crackles 11 20 31
Total 24 24 48
Table 29 Performance of two physicians in the identification of fibrosis at HRCT scan using

assessment of unilateral Velcro crackles in recorded lung sounds and their comparison with

selected average NOC/BC cut-off value using sensitivity and specificity. Data presented as

percentages (%).

Method Sensitivity (%) Specificity (%)
Physician 1 83.3 58.3
Physician 2 83.3 54.2

Average 83.3 56.25
Average NOC/BC (18.65) 91.7 59.3

8.7 Summary

In this chapter, two case studies: a longitudinal study and a cross sectional study of patients with
lung pathologies are presented. Both studies were analyzed using an automated crackle detection

process with separation by the IEM-FD filter as a first step.
In the longitudinal study, the extracted NOC/BC were correlated with global acoustic features
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directly extracted from the original acoustic signal and it was found that some (but not all) of
these features were directly associated with NOC/BC, hence might be useful for monitoring

progression of IPF.

In the cross-sectional study, the IEM-FD filter formed the basis of an automatic system based on
the average NOC/BC calculated from posterior base locations of a set of patients. Average
NOC/BC so detected was shown to match the specificity and exceed the sensitivity of the
individual and average performance of two expert physicians in terms of differentiating IPF
patients from non-IPF patients when compared the gold standard HRCT. Hence, the automated

system may assist physician’s in evaluating their auscultatory findings of lung sounds in clinics.

In the next Chapter, the detailed working process of a new automatic breath cycle detection

algorithm is presented.
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Chapter 9  An automatic breath cycle detection method

based on the estimation of the breathing phases

9.1 Introduction

In the previous chapter we saw the results of two case studies analysed using the IEM-FD filter. In
both studies the breath cycles were audio-visually marked by the author in each lung sound file.
The manual marking of breath cycles is highly time consuming, therefore an automatic breath
cycle detection method was developed based on the estimation of the breathing phases. Each
breath cycle contains two phases: inspiratory phase and expiratory phase. First the algorithm
estimates the location of the breathing phases and then the estimated breathing phases are used
for calculating the number of breath cycles. The rest of the chapter is organized as follows:
Section 9.2 discuss why there is a need of a new algorithm for estimating the breathing phases.
Section 9.3 presents the detailed working process of the new automatic method. The dataset and
the quantitative evaluators used for performance analysis are discussed in section 9.4 and 9.5,
respectively. The experimental results are shown in section 9.6 and evaluation of the method is

discussed in section 9.7.

9.2 Why there is a need of a new algorithm for estimating breathing

phases

The detection of breathing phases or breathing cycles is essential for the analysis of lung sounds
in relation to cardiorespiratory diseases. As mentioned in Piirila & Sovijarvi, (1995) and Sovijarvi et
al., (2000a) the timing of crackles in the breathing cycle (early/mid/late inspiratory or expiratory)
may have clinical significance for the differential diagnosis of cardiorespiratory disorders.
Moreover, in patients with interstitial lung disorders the NOC/BC is associated with the severity of
the disease (Sovijarvi et al., 2000a; Epler et al., 1978). Generally, direct airflow measurement using
a pneumotachograph is used for estimating breathing phases (Tarrant et al., 1997). The
simultaneously measured airflow may be combined with counted crackles on recorded lung
sounds for estimating timing of crackles in breathing phases. However, this approach demands a
complex set up, and hence is not suitable for use in clinical practice (Jacome et al., 2019). On the
other hand, the audio-visual marking of breath cycles on each recorded lung sound file (as was
done for the two case studies described in Chapter 8) is very time consuming and subjective.

Therefore, automatic detection of breathing phases (inspiration and expiration) may provide a
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more efficient way of estimating breathing phases which may in turn help in counting the number

of breath cycles.

In recent years, researchers have proposed several methods to detect breathing phases directly
from recorded lung sounds such as: automatic breathing phase detection using acoustical means
(Chuah & Moussavi, 2000), trachea breath sounds based acoustic breath phase detection method
(Hug & Moussavi, 2012), and automatic breath phase classification using smartphones (Reyes et
al., 2016). The breath phase detection accuracy of these methods lies in the range of 93 % to 100
%. These methods had high accuracy for breath phase detection but were very depended on
tracheal sound. At the trachea, sounds are easily heard during both inspiratory and expiratory
phases (Bohadana et al., 2014). On the other hand, breath sounds measured on the chest wall are
more audible in the inspiratory phase and almost silent in the expiratory phase. However,
tracheal auscultation is not typically performed to monitor cardiorespiratory diseases. It is mainly
used to display the status of the upper airways (Bohadana et al., 2014). Furthermore, these
methods were validated using lung sounds recorded from healthy subjects and the breathing
phase detection accuracy of these methods was not tested on lung sounds recorded from
patients with respiratory diseases. It is known that the breathing pattern and lung sounds change
in the presence of respiratory diseases (Dellweg et al., 2008; Todd et al., 2018). Therefore, it is
possible that these methods may not perform as well as reported in the literature when applied

to lung sounds recorded from patients with respiratory diseases (Jacome et al., 2019).

Recently, Jacome et al., (2019) proposed a convolutional neural network with a spectrogram-
based method for breathing phase detection in lung sounds to address some of the limitations
mentioned above. This method was tested on lung sounds recorded from subjects both with and
without respiratory disease. The lung sounds were recorded at six posterior chest locations. This
method showed average sensitivity of 97 % and an average specificity of 84 % in identifying the
breathing phases. However, the three subsets (two subsets for training the algorithm and one
subset for evaluation) used in this study came from the same dataset- the Tromso 7 lung sound
dataset. A common problem with machine learning methods is that they often work well with a
generated dataset with samples recorded in an identical manner for both training and testing sets
but may not perform as well when applied to new unseen datasets. Training an algorithm with
large datasets recorded in different conditions may overcome this problem, but it is always
challenging to get a large amount of data, which can limit overall generalization of a machine

learning algorithm.

The estimated breathing phases in a recorded lung sound can be used for calculating the number

of breath cycles. As mentioned earlier, a breath cycle consists of two phases one inspiratory phase
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and one expiratory phase. Therefore, a new automatic breath cycle detection algorithm based on
estimating the location of the breathing phases is proposed. The algorithm is validated using the
longitudinal dataset, cross-sectional dataset, and the small dataset recorded from healthy
subjects. The description of the datasets is provided later in this Chapter. A detailed working

process of the algorithm is provided in the next section.

9.3 An automatic algorithm for breath cycle detection based on the

estimation of the breathing phases

The algorithm is based on several steps:

9.3.1 Estimation of second derivative

In the first step, the second derivative of the input signal is calculated using SG filter (Savitzky &

Golay, 1964). The SG filter parameters are degree of fitting polynomial p; = 4; number of
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coefficients n, = 89; order of derivation d, =0, 1 and 2 for smoothing the lung sound signal, and
estimating first and second derivative of the smoothed lung sound signal respectively. The SG
filter is used calculating the second derivative because generates the second derivative from a
smoothed version of the input signal. The reason for estimating the second derivative is that the
coefficients corresponding to a higher intensity part of an input lung sound signal will remain in its
second derivative with large amplitude but only the residue of coefficients related to quieter parts
will remain, which may help to reveal the breathing phases. As an example: two cases are shown
in Figure 47 (i) and Figure 47 (ii) in which inspiratory phases, expiratory phases, and breath cycles
are audio visually marked by the author using open access Audacity software. Figure 47 (i-a)
shows an input lung sound signal in which inspiratory phases are of high intensity and expiratory
phases are quieter. From its second derivative as shown in Figure 47 (i-b) it can be seen that the
coefficients related to high intensity inspiratory phases still have large amplitude. On the other
hand, the coefficients corresponding to quieter, expiratory phases are smaller in amplitude. In
another example, Figure 47 (ii-a) shows an input lung sound signal in which both inspiratory and
expiratory phases are of high intensity. From its second derivative as shown in Figure 47 (ii-b), it is
clear that when both inspiratory and expiratory phases are of high intensity the coefficients

related to both phases have large amplitude in the second derivative signal.

The second derivative of an input lung sound signal estimated using SG filter may more clearly
reveal inspiratory and expiratory phases but there is a still need for automatically identifying
inspiratory and expiratory phases or automatic counting of the number of breath cycles from the

estimated second derivative. Therefore, several further steps are used which are described below.

9.3.2 Estimation of absolute value of second derivative and normalised absolute value of

second derivative

After estimating the second derivative of the input lung sound signal, its absolute value is
calculated. Input lung sound signal, its second derivative, and absolute value of the second
derivative are shown in Figure 48 (a), Figure 48 (b), and Figure 48 (c), respectively, with the
inspiratory phases, expiratory phases, and breath cycles were marked by arrows. The absolute
value of the second derivative may vary significantly, therefore, its value is normalized to an

amplitude range of 0 to 1 using Eq. 72.

ASD(n) — ASDim (72)

ASD =
norm (n) ASDmax _ ASDmm

where ASD(n) is the absolute second derivative, n is the sample index, ASD,,,;,, is the minimum
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value of the absolute second derivative, ASD,,,,, is it's the maximum value and ASD,,ym (1) is
the normalized absolute second derivative. The normalized absolute second derivative is shown in

Figure 48 (d).

9.33 Clipping large amplitude peaks from the normalized absolute second derivative

The large amplitude peaks present (due to adventitious sounds such as crackles, movement
artefact, heart sounds etc.) in the input lung sound signal may confuse the automated detection
about the breathing phases. Therefore, once the normalized absolute second derivative is
calculated, the large amplitude peaks are clipped using a threshold value estimated from the
frequency histogram plot of the normalized absolute second derivative. The threshold is taken as
the value having, on its left, 80 % of total area. The cut off of 80 % is selected based on Vannuccini
et al., (1998). The frequency histogram plot of the normalized absolute second derivative is shown
in Figure 48 (e). Figure 48 (f) shows the normalized absolute second derivative after clipping the

large amplitude peaks.

9.34 Low pass filter

Next the clipped normalized absolute second derivative is passed through the 3rd order
Butterworth low pass filter with cut off frequency 1.2 Hz or 1 Hz. Usually, a patient with
cardiorespiratory disease breathes faster than a healthy subject. Therefore, the higher cut off
frequency: 1.2 Hz, is selected for the longitudinal and cross sectional IPF datasets and the lower
cut-off frequency: 1 Hz, is selected for healthy subjects. Here, the cut off frequencies 1.2 Hz and

1 Hz are empirically selected. Figure 48 (g) shows the output of the low pass filter.

9.35 Estimation of potential breathing phases and their onsets

In this step, peaks and valleys of the low pass filter output are used for calculating the potential
breathing phases and breath onsets, respectively. Figure 48 (h) shows all possible peaks and
valleys of the low pass filter output, where peaks are shown using black stars and valleys are

displayed using green stars. This step is divided into several sub steps:

(i) Firstly, peaks of the low pass filter output which are 0.5 standard deviations above the

mean of the low pass filter output are identified (see Figure 48 (i)).

(ii) Secondly, valleys of the low pass filter output which are less than the mean of the low

pass filter output are identified, as shown in Figure 48 (j).

(iii) Now, from the valleys in sub step (ii) only valleys which are just before and after the
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(iv)

(v)

(vi)

(vii)

(viii)

PeakTH =

estimated peaks are considered. This may include the first sample in the signal (if
there is no valley before the first estimated peak) and the last point of the signal (see

Figure 48 (k)).

As mentioned by Chuah & Moussavi, (2000) typically the average duration of a
breathing phase is approximately 1 s. Therefore, the distance between an estimated
peak and the potential onset of its associated breathing phase is expected to be about
500 ms and the distance between any two potential onsets is expected to be of the
order of 1s. However, breath cycle duration may change from breath to breath, hence
any potential onsets (or valleys) which are closer than 200 ms to any estimated peaks

are discarded.

Additionally, if any potential onset is less than 500 ms from a previous onset it is
excluded from the analysis. As an example, see Figure 48 (l), where the potential
onset just after 2 sec in Figure 48 (k) is excluded. Note that once any potential onset is

excluded then it is not used for comparing with other onsets.

Now, if more than one estimated peak exists between two potential onsets, only the

maximum peak amongst them is considered, as shown in Figure 48 (m).

In the next step, average and standard deviation of the estimated peaks remaining

after sub step (vi) are calculated.

Now, a peak threshold is estimated using the average and standard deviation

calculated in the previous sub step:

Peakavg (73)

> + Peakgq

where Peak,, 4 and Peakgq are the average and standard deviation of the remaining estimated

peaks after sub step (vi), respectively.

(ix)

9.3.6

Finally, estimated potential breath onsets are connected with each other using
alternating positive and negative rectangles (starting with a positive rectangle) where
positive rectangles show potential inspiratory phases and negative rectangles

represent potential expiratory phases, as shown in Figure 48 (n).

Estimating breathing phases

Usually, in lung sounds recorded from posterior chest locations, the intensity of the inspiratory

phases is expected to be high compared to the expiratory phases (Kompis et al., 1997; Moussavi
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et al., 1998). Therefore, as a last step, potential inspiratory phases are verified using the

calculated peak threshold (Eq. 73).

The process starts with the first potential inspiratory phase:

If the first potential inspiratory phase consists of an estimated peak of greater than the peak
threshold, the potential inspiratory phase is considered as a true inspiratory phase and the next
potential inspiratory phase is verified. During the verification process if any potential inspiratory
phase (including the first potential inspiratory phase) without or with an estimated peak of
amplitude less than or equal to the peak threshold occurs, the first potential onset point of that
potential inspiratory phase is eliminated from the process. Now, the remaining potential onsets
are reconnected with each other using alternating positive and negative rectangles (starting with
positive rectangle) where any positive rectangles before the eliminated potential onset point
show the inspiratory phases (because they are already verified) and after the eliminated onset
point indicate potential inspiratory phases which still need to verify. Moreover, any negative
rectangle between the two verified inspiratory phases represents an expiratory phase and any
negative rectangle before or after an unverified potential inspiratory phase shows a potential

expiratory phase.

The verification process again starts with the new assigned potential inspiratory phases starting
from the new first potential inspiratory phase. This verification process ends when all positive
rectangles consist of an estimated peak with amplitude greater than the peak threshold. Hence,
at the end of the process all positive rectangles with estimated peaks greater than the peak
threshold are considered as inspiratory phases and all negative rectangles with or without

estimated peaks are considered as expiratory phases.

Based on the estimated breathing phases the number of breath cycles is calculated. The
combination of two phases one estimated inspiratory phase and one estimated expiratory phase
(starting with an inspiratory phase because the process of breathing is considered to start with an
inspiration phase) makes up one breath cycle and the total of all such combinations represents

the number of breath cycles.

After applying the verification process the estimated inspiratory and expiratory phases are shown
in Figure 48 (0) using positive and negative rectangles, respectively. The breath cycles marked
from audio-visual analysis of the signals are also indicated in Figure 48 (o). Moreover, the
estimated inspiratory and expiratory phases with calculated breath cycles are displayed in the
second derivative of the input lung sound signal in Figure 48 (p), where positive rectangles show

the estimated inspiratory phases, negative rectangles indicate the estimated expiratory phases,
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Figure 48

(a) Input lung sound signal; (b) Second derivative of the input lung sound signal;

(c) Absolute value of the second derivative; (d) Normalized absolute second

derivative; (e) Frequency histogram of the normalized absolute second

derivative; (f) Clipped normalized absolute second derivative; (g) Low pass filter

output; (h-m) Low pass filter output with different conditions of the section
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9.3.5; (n) Low pass filter output with potential inspiratory phases and expiratory
phases; (0) Low pass filter output with estimated breathing phases and
breathing cycles; (p) Second derivative of the input lung sound signal with
estimated breathing phases and breath cycles. I: Inspiratory phase; E: Expiratory

phase; BC: Breath cycle.

and a combination of two phases one inspiratory and one expiratory represents a breath cycle.
When we compare the automatic detection results (Figure 48 (p)) with the audio-visual marking
(Figure 48 (a)) it is clear that all the true inspiratory phases, expiratory phases and breath cycles in

this example have been detected.

9.4 Datasets and audio-visual marking of breathing phases and breath

cycles

9.4.1 Dataset

The algorithm is validated using three different lung sound datasets: (a) Longitudinal dataset
recorded from 19 IPF patients, (b) Cross-sectional dataset recorded from 55 patients who were
referred for HRCT scan of the chest for various clinical indications, and (c) a dataset recorded from
10 healthy subjects. The complete description of the longitudinal and cross-sectional datasets is
provided in Chapter 8. The healthy subjects’ lung sounds dataset was recorded from 10 healthy
subjects and, as for the longitudinal dataset, in this dataset each participant attended a total of 7
visits (every visit approximately in 2 months) over a 1 year period (Sgalla, 2017). In all three
datasets the lung sounds recorded from 6 posterior locations using a digital stethoscope are
analysed. See Chapter 8, Figure 37 for the 6 posterior locations (in green: L1-L6) in the case of
longitudinal and healthy subjects datasets, and Figure 44 for the 6 posterior locations (L1-L6) in

the case of cross-sectional dataset.

9.4.2 Audio-visual marking of breathing cycles, inspiratory phases and expiratory phases

In all three datasets each lung sound file was audio-visually marked for the number of breathing
cycles, number of inspiratory phases, and number of expiratory phases by the author. In each lung
sound file only the full breathing cycles (one inspiratory phase followed by one expiratory phase)
were considered for the analysis. In the longitudinal dataset out of 19 IPF patients 13 patients
completed the total 7 visits with lung sound recordings at all 6 posterior locations. 2 patients
withdrew from the study due to poor health and 3 patients died during the observation period

(Sgalla, 2017). One patient completed the total 7 visits but missed one lung sound recording at
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location L1 (see Chapter 8, Figure 37) in one of the 7 visits. Therefore, in the longitudinal dataset,
in total 689 lung sound files (546 lung sounds recorded from 13 patient’sx6 recording sitesx7
visits, 41 lung sounds recorded from: 1 patientx6 recording sitesx6 visits and 1 patientx5
recording sitesx1 visit, 60 lung sounds recorded from 2 patient’sx6 recording sitesx5 visits, 24
lung sounds recorded from 2 patient’sx6 recording sitesx2 visits, 18 lung sounds recorded from 1
patientx6 recording sitesx3 visits) were analysed. In the case of healthy subjects dataset, out of 10
subjects 7 subjects completed the study. 3 subjects withdrew from the study at some point due to
personal or otherwise non-specified reasons (Sgalla, 2017). From 7 subjects, 6 completed the total
7 visits and one patient skipped a visit during the observation period. Therefore, in the healthy
subjects dataset, out of 336 lung sound files (252 lung sounds recorded from 6 patient’sx6
recording sitesx7 visits, 36 lung sounds recorded from 1 patientx6 recording sitesx6 visits, 30 lung
sounds recorded from 1 patientx6 recording sitesx5 visits, 12 lung sounds recorded from 1
patientx6 recording sitesx2 visits, 6 lung sounds recorded from 1 patientx6 recording sitesx1
visits), 282 lung sound files were analysed. 54 lung sound files were excluded from the study due
to inaudibility of breathing phases or breath cycles. In the cross-sectional dataset out of 55
patients, lung sounds recorded from 48 patients were used for the analysis. 5 patients were
excluded from the analysis due to inaudibility of breathing phases or breath cycles in their
recorded lung sounds. In the excluded lung sound files, due to very quiet breathing the author
was not able to mark either breathing phases or breath cycles. Therefore, out of 262 available
lung sound files recorded from 48 patients, 258 lung sound files were analysed. With 4 lung sound
files excluded from the study due to inaudibility of breathing phases or breath cycles. The
different lung sound datasets used for evaluating the performance of the developed algorithm are

shown in Table 30.

Table 30 Different lung sound datasets are used for evaluating the algorithm.

Datasets Number of Number of Number of Number of
lung sound inspiratory expiratory breath cycles
files phases phases

Longitudinal dataset 689 2416 2416 2416

Cross-sectional dataset | 258 741 741 741

Healthy subjects 282 905 905 905

dataset
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9.5 Performance evaluators

Three parameters are used for evaluating the breath cycle detection performance of the

algorithm: sensitivity (SE), positive predictive value (PPV), and F-score (Fy).

TP (74)
SE = TP +FN
_ (75)
PPV = TP + FP
SE x PPV (76)
= X —
fr=2 SE + PPV

Where TP, FN and FP are true positive (Number of breath cycles audio-visually counted), false
negative (number of counted breath cycles which are not detected) and false positive (number of
detected breath cycles which were not counted), respectively. The ability of the algorithm to
identify the inspiratory and expiratory phases is also evaluated using the above mentioned
parameters (Equations 74-76), where true positive is number of inspiratory or expiratory phases
audio-visually counted, false negative is number of inspiratory or expiratory phases are not
detected, and false positive is number of incorrectly detected inspiratory or expiratory phases.

The obtained experimental results are presented in the next section.

9.6 Experimental Results

To show the ability of the algorithm to automatically estimate the breathing phases one example
from each of the three datasets is shown in Figure 49, Figure 50, and Figure 51, respectively.
Figure 49 Indicates one example from longitudinal dataset, Figure 50 shows one example from
cross-sectional dataset, and Figure 51 illustrates one example from healthy subjects dataset. Plots
labelled (a) show curves for input lung sound signals where breathing cycles and breathing phases
are audio-visually marked by the author, plots labelled (b) show curves for the normalized
absolute second derivative signals, plots labelled (c) show curves for the low pass filter outputs,
plots labelled (d) show curves for the second derivative of the input lung sound signals with
estimated breathing cycles and breathing phases where positive rectangles show the estimated
inspiratory phases, negative rectangles display the estimated expiratory phases, and the
combination of one inspiratory phase and one expiratory phase represents a breath cycle. Note
that the complete process of the algorithm is discussed in section 9.3. By comparing the
estimated breathing cycles or breathing phases using the algorithm (plots labelled (d)) with the
audio-visually marked on the input lung sound signal (plots labelled (a)) it can be notice that all

the breathing cycles and breathing phases are correctly detected by the algorithm.
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Table 31 Sensitivity, Positive predictive value and F-score for number of breath cycles.

Dataset SE PPV F-score
Longitudinal dataset 94.41 93.25 93.83
Cross-sectional dataset 97.37 94.76 96.05
Healthy subjects dataset 88.81 93.01 90.86
Average 93.53 93.67 93.58

Table 32 Sensitivity, Positive predictive value and F-score for inspiratory phases.

Dataset SE PPV F-score
Longitudinal dataset 91.14 88.95 90.03
Cross-sectional dataset 94.52 89.28 91.83
Healthy subjects dataset 86.35 88.04 87.19
Average 90.67 88.76 89.68

Table 33 Sensitivity, Positive predictive value and F-score for expiratory phases.

Dataset SE PPV F-score
Longitudinal dataset 90.96 89.68 90.32
Cross-sectional dataset 93.56 90.92 92.22
Healthy subjects dataset 85.62 89.52 87.53
Average 90.05 90.04 90.02

In all three datasets the values of SE, PPV, and F-score of the algorithm in estimating the number
of breath cycles are presented in Table 31. On average, the algorithm achieved a SE of 93.53 %, a

PPV of 93.67 %, and F-score of 93.58 %.

As mentioned earlier, the breathing cycles are calculated based on the estimation of the
inspiratory and expiratory phases. Hence, in all three datasets the values of SE, PPV, and F-score
of the algorithm in identifying inspiratory phases are presented in Table 32 and identifying
expiratory phases are shown in Table 33. In terms of the estimation of the inspiratory phases the

algorithm obtained on average, SE of 90.67 %, PPV of 88.76 %, and F-score of 89.68 %. On the
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other hand, in the case of estimation of the expiratory phases, the algorithm achieved SE of 90.05

%, PPV of 90.04 %, and F-score of 90.02 %.

9.7 Discussion

The algorithm is not only tested on lung sounds recorded from healthy subjects but also evaluated
using the lung sounds recorded from cardiorespiratory patients such as IPF patients in order to
show its potential to calculate the number of breath cycles in different breathing patterns. The
individual breath phase estimation performance of the proposed algorithm was on average, SE of
90 %, PPV of 88 %, and F-score of 89 % in case of inspiratory phases and on average, SE of 90 %,
PPV of 90 %, and F-score of 90 % in case of expiratory phases. However, the algorithm has shown
slightly low, on averaged sensitivity for breath phase estimation compared to previously
developed algorithms (Hug & Moussavi, (2012); Jacome et al., (2019)). Nevertheless, it is
important to notice that the primary aim of the algorithm was to calculate the number of breath
cycles. In terms of calculating the number of breath cycles the algorithm achieved on average SE
of 93 %, PPV of 93 %, and F-score of 93 %. The main advantage of the proposed algorithm is its
low computational cost which makes it an ideal candidate for the clinical setting where fast
processing may be helpful in decision-making. To our knowledge, this is the first study to calculate
the number of breath cycles based on the estimation of breathing phases using the second

derivative of the input lung sound signal.

The method showed good results in terms of calculating the breath cycles, but the limitation of
the algorithm is its dependency on the non-adaptive cut-off frequency of the low pass filter. The
higher cut-off frequency may generate too many false peaks and valleys which may increase the
chances of identifying false breathing phases. On the other hand, the lower cut-off frequency may
smooth out the true peaks and valleys of the breathing phases (especially in the case of fast
breathing) which may increase the chances of losing some of the true breathing phases.
Therefore, it is important to notice that in our analysis we used two cut-off frequencies: 1.2 Hz
and 1 Hz. As mentioned earlier, a patient with cardiorespiratory disease generally breathe faster
than a healthy subject therefore the 1.2 Hz cut off frequency was used for the longitudinal and
cross-sectional datasets and 1 Hz cut-off frequency was used for the healthy subjects dataset. The
future research to automatically select the low pass filter cut-off frequency according to the

breathing pattern may enhance the breath cycle detection potential of the proposed algorithm.

Furthermore, the algorithm was evaluated against the audio-visual assessment made by the
author. As mentioned by Pinho et al., (2015), human assessment is associated with high levels of

subjectivity. Therefore, future research should consider comparing the performance of the
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algorithm against a multi-annotators gold standard. Moreover, future research will focus on
evaluating the performance of the algorithm with lung sounds recorded from different

populations: children, young adults, old subjects with or without pulmonary diseases.

9.8 Summary

Chapter 9 described a new automatic breath cycle detection algorithm based on the estimation of
breathing phases. From the experimental results it can be notice that the proposed algorithm can
estimate breathing phases from the recorded lung sounds and estimated breathing phases may
be used for calculating the number of breath cycles. However, the individual breathing phase
(inspiratory phase or expiratory phase) identification performance of the algorithm is slightly less
good when compared to the estimation of the number of breath cycles. Nevertheless, the primary
aim of the algorithm was to estimate the number of breath cycles. The estimated number of
breath cycles can be used in calculating the NOC/BC as we have seen in two case studies in
Chapter 8. Furthermore, the combination of the IEM-FD filter, crackle verification and counting
criteria (see section 8.3.4), and a new breathing cycle detection method can provide a fully
automatic way of estimating the NOC/BC. The next chapter will discuss the findings of this

research including the limitations of this study, conclusions and future possibilities.
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Chapter 10 Discussion, conclusions, and future work

10.1 Introduction

The overall aim of this research was to develop a new crackle separation technique, the IEM-FD
filter, which can be used in clinical setting for recorded lung sounds analysis. The crackle
separation potential of the IEM-FD filter was evaluated using a developed dataset and compared
with three previously published crackle separation techniques. The IEM-FD filter was then applied
to two datasets recorded in clinical settings: a longitudinal dataset recorded in patients with IPF
and a cross-sectional dataset recorded from patents referred for an HRCT of the lungs. Finally, a
new automatic breath cycle detection method based on the estimation of breathing phases was

developed.

This chapter will start by discussing a dataset generated for systematic testing of crackle
separation techniques. This will be followed by discussing the separation performance of the new
IEM-FD filter. The chapter will then discuss the two case studies (longitudinal study and cross
sectional study). An algorithm developed for automatic detection of number of breath cycles from
the recorded lung sounds is also discussed. The limitations of the study are then discussed. This
chapter finishes by presenting the conclusions of the research its main findings and some future

possibilities.

10.2 Generated dataset

To provide an open platform to researchers so that they can evaluate and compare their crackle
separation and detection methods, an open access dataset is presented in this study. This dataset
contains real and simulated fine and coarse crackles with different IDW/2CD and real lung sounds
with fine and coarse crackles recorded from an IPF patient and a BE patient, respectively, Addition
of more real lung sounds with fine or coarse crackles recorded from different cardiopulmonary
diseases will provide more test cases for evaluating crackle separation performance of new
algorithms in future. The detailed description of the generated dataset is provided in Chapter 3

and a paper published on the development of the dataset can be found in Appendix A (A6).

10.3 Proposed IEM-FD filter for separating crackles from normal breath

sounds

As mentioned in section 2.2.3, in recent years many automatic crackle separation techniques have
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been proposed for separating crackles from the normal breath sounds. However, the existing
crackle separation methods either suffer from high computation complexity and/or fail to
preserve crackle morphology after separation and/or have low objectivity etc. (see section 2.2.4.).
Therefore, in this study, a new IEM-FD filter was proposed for automatically separating crackles

from normal breath sounds. See Chapter 5 for the detailed working process of the IEM-FD filter.

As mentioned in section 1.2, the crackle time features such as number of crackles in inspiratory
phase, number of zero line crossings, first half period of the crackles etc. can be used for
differentiating IPF patients from patients with pneumonia and congestive heart failure (Flietstra
et al., 2011). However, the presence of normal breath sounds may introduce errors when
calculating crackle time features. For example, Munakata et al., (1991), identified that baseline
drift over the duration of a crackle (a consequence of over-estimation) may introduce errors when
calculating IDW and 2CD leading to incorrect classification of crackle type (fine or coarse) and
increasing the potential for misdiagnosis. Therefore, for any automatic crackle separation
technique it is not only important to separate crackles from normal breath sounds with high rate
of detectability but it is also important to separate crackles with high separation quality (less over
or underestimation). The separation of crackles from normal breath sounds with high quality can
lead to extraction of accurate crackle time domain features, which can help to differentiate
between cardiopulmonary diseases with high sensitivity and specificity and reduce the chances of

medication error or mistreatment.

The performance of the IEM-FD filter with low computational load, high rate of detectability, low
over or under estimation and ability to preserve crackle morphology after separation shows its
potential for automatic crackle separation. Separation of crackles from normal breath sounds is
an initial processing stage towards better estimation of number of crackles and their time domain
features. In comparison with the established WTST-NST filter (Hadjileontiadis & Panas, 1997), WT-
FD filter (Hadjileontiadis, 2005 (l); Hadjileontiadis, 2005 (I1)) and EMD-FD filter (Hadjileontiadis,
2007) the IEM-FD filter has an equally high Rate of Detectability and total performance for both
fine and coarse crackles (see Chapter 7). Further the IEM-FD filter has fewer data-dependent
optimization parameters compared to the WTST-NST filter, WT-FD filter, and the EMD-FD filter
making it generally applicable to signals recorded from cardiopulmonary patients with different
diagnoses without the need for data dependent customization to optimize its performance. The
separation performance of the IEM-FD filter and its systematic comparison with the selected

methods is presented in Chapter 7.

The IEM-FD filter showed good results in terms of separating crackles from normal breath sounds.

However, the IEM-FD filter, has several limitations: First, the selection of the SG filter parameters
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in the IEM method is not adaptive which may affect its performance when, due to high
frequency background noise, the envelope mean value is not properly estimated; Second, the
dependency of the IEM-FD filter stopping criteria on the three non-adaptive accuracy levelsi.e. 51
for the IEM method, 3, for the IEM-FD filter and S5 for the FDPP algorithm may limit its overall

performance.

The automatic separation of crackles from lung sounds using the IEM-FD filter not only provides
an objective way of analyzing recorded lung sounds but also shows the future possibilities of
computer based lung sounds for pulmonary disease diagnosis or monitoring. A paper published

on the IEM-FD filter can be found in Appendix A (A7).

10.4 Two case studies

The IEM-FD filter was then applied to two case studies: longitudinal dataset and cross-sectional
dataset. In both studies, NOC/BC was calculated with the separation by the IEM-FD filter the
fundamental first step in processing the signals. The process of estimating NOC/BC was discussed

in Chapter 8.

The longitudinal study showed that reproducible acoustic features generated from original signal
(11 out of 13) significantly correlate with the NOC/BC, but only 2 reproducible acoustic features:
zero-cross of the original signal (sig_zerocross) (r=0.628, p<0.001) and zero-cross of the original
signal in the frequency range of 200-500 Hz (sig_200_500 Hz_zerocross) (r=0.590, p<0.001)
indicated moderate correlation at the 0.01 significance level with the NOC/BC. Hence, these may
be the most relevant features for monitoring IPF patients. However, it is important to notice that
this study was tested on a small population of longitudinal data collected from IPF patients, larger
IPF longitudinal datasets are required to further investigate the potential for monitoring disease
severity in IPF patients. The more detailed discussion on the longitudinal study is provided in

section 8.4.

In the cross-sectional study the developed automatic system showed the potential to differentiate
IPF patients from non-IPF patients based on the average NOC/BC, it should be noted that, the
automatic system was tested on a small population and a larger dataset will be needed for further
investigation of its potential for differentiating IPF patients from patients with other pathologies.

The more detailed discussion of the cross-sectional study is provided in section 8.6.
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10.5 An algorithm for automatic detection of number of breath cycles

based on the estimation of breathing phases

Although, in terms of estimating the number of breath cycles the algorithm achieved, on average
SE of 93 %, PPV of 93 %, and F-score of 93 % (see Chapter 9). There are several points which
should be noted: (1) the selected SG filter parameters used for estimating the second derivative
of the input signal worked well in our datasets in terms of revealing breathing phases (except in
some cases where breathing is very quiet). However, the selection of these parameters is not
adaptive in our study hence it is possible that these selected parameters may not work as well as
they performed in our datasets when applied to a new dataset with different breathing pattern.
Therefore, the future research should explore the performance of these parameters on a larger
dataset recorded from different age populations to see their ability to reveal breathing phases in
different breathing pattern; especially when breathing is very quiet; (2) the non-adaptive
selection of the low pass filter frequency may affect the overall performance of the algorithm
therefore an adaptive approach is needed for selecting low pass filter cut-off frequency according
to breathing pattern in future work and; (3) there are several methods available in the literature
for automatically estimating breathing phases (Chuah & Moussavi, (2000); Huq & Moussavi,
(2012); Reyes et al., 2016; Jacome et al., 2019), which may be used for calculating number of
breath cycles in the input lung sound signal. These methods were not explored in our study but
might be compared with the developed method in future work. A more detailed discussion of the

developed method is provided in section 9.7.

10.6 Limitations

This study has several limitations:

Firstly, the IEM-FD filter was tested using a dataset (Chapter 3, Table 2) largely consisting of
simulated signals, but then applied to the real signals, of the longitudinal and cross sectional
datasets (see Chapter 8), It is important to notice that the test dataset only contains two real lung
sounds samples (RBFC and RBCC) hence in this study the IEM-FD filter was only tested on a very
limited number of real lung sounds samples before applying to the real signals. Therefore, future
research needs to validate the performance of the IEM-FD filter on larger set of real lung sounds
signals recorded at different locations (posterior, anterior, and lateral) from different
cardiopulmonary diseases which can further evaluate the crackle separation performance of the
IEM-FD filter and provide better support to the IEM-FD filter for using in real lung sound

recordings.
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Secondly, both the: IEM-FD filter and the automatic breath cycle detection method depend on
empirical setting of parameters: accuracy levels (S84, 82, and 3) in the IEM-FD filter and setting a
low pass filter cut-off frequency (1.2 Hz or 1 Hz) in the breath cycle detection method. Therefore,
future research should focus on making these parameters data driven which will increase the

objectivity of these methods.

10.7 Conclusions and future work

This study proposed an automatic method for separating pulmonary crackles from normal breath
sounds i.e. IEM-FD filter. The performance of the IEM-FD filter was evaluated using the developed
dataset for systematic testing of crackle separation techniques and compared with the three
previously published methods. Key findings of this research were: (1) The IEM-FD filter can
achieve high accuracy for the number of crackles identified with 99.98 % of fine crackles and
99.80 % of coarse crackles identified in our test samples; (2) The IEM-FD filter has low
computational cost/separation time compared to the established WTST-NST filter, WT-FD filter,
and EMD-FD filter; (3) The IEM-FD filter can provide crackle separation with less over-estimation
compared to the WTST-NST filter, WT-FD filter, and EMD-FD filter and (4) The IEM-FD filter can
better preserve crackle morphology after separation compared to the WTST-NST filter, WT-FD
filter, and EMD-FD filter in both fine and coarse crackle test signals. We concluded that the IEM-
FD filter would be suitable for use in a clinical context for estimating number of crackles or as a
first step in classifying crackles (fine or coarse) on the basis of their time domain features. Future
research will focus on developing filter parameters that are fully adaptive and on evaluating the
operation of the IEM-FD on a more diverse dataset recorded from cardiopulmonary patients,

which can further test its ability to identify crackles in different pulmonary conditions.

To test the potential of the IEM-FD filter on real data it was applied to two case studies:
longitudinal study and cross sectional study. The main finding of the longitudinal study was that
reproducible acoustic features calculated from original lung sound signals correlate with the
NOC/BC. This shows these reproducible can be used in clinics for assessing disease severity in IPF
patients. The future research should consider larger longitudinal IPF datasets which can further
investigate the potential of the reproducible acoustic features generated from original signal to

monitor disease severity in IPF patients.

The main finding of the cross sectional study was that an automatic system based on the average
NOC/BC calculated from the recorded lung sounds at lung bases can be used for differentiating
IPF patients from non-IPF patients. Experimental results indicated that the automatic system can

match the performance of the individual or average assessment of expert physicians in terms of
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separating IPF patients from patients with other lung pathology. Although, assessment of HRCT
scans should remain the gold standard for differentiating IPF patients from non IPF patients, it can
be noted that the automatic system may have potential to help less expert clinicians to interpret
their auscultatory findings of lung sounds. The performance evaluation of the automatic system
on larger populations may further explore its usefulness in clinical environment. Note that both
case studies were analyzed using the IEM-FD filter therefore these findings indicated that the
IEM-FD filter has the potential to work on real data hence may play an important role in clinical

findings.

Finally, an automatic breath cycle detection algorithm was developed based on the estimation of
the breathing phases. The algorithm was evaluated using the longitudinal dataset, cross sectional
dataset, and a dataset recorded from healthy subjects. The key finding was that the automatic
breath cycle detection algorithm can achieve a sensitivity ranging from 88.81 % to 97.37 %, a
positive predictive value ranging from 93.01 % to 94.76 %, and F-score ranging from 90.86 % to
96.05 %. These results indicated the ability of the automatic breath cycle detection algorithm to
automatically detect and count the number of breath cycles in recorded lung sounds. The future
research should focus on evaluating the performance of the algorithm on datasets recorded from
different populations (children, young, old) with or without cardiopulmonary diseases, which will

further investigate the effect of different breathing patterns on the algorithm.
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Appendix A

A.1 Histogram plots of the distribution of NOC/BC across 7 visits
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Visit5
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Visit 7
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Figure Al Histogram plots of the distribution of NOC/BC across 7 visits. The black line

shows normal distribution.
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A.2 Wilcoxon signed-rank test for NOC/BC across 7 visits

Table A1 Pairwise comparison over 7 visits using the Wilcoxon signed-rank test.

Pairwise comparison Z p value p value after the Bonferroni correction
Visit 2 - Visit 1 -1.376° 0.169 1.000
Visit 3 - Visit 1 -1.910° 0.056 1.000
Visit 4 - Visit 1 -.194° 0.846 1.000
Visit 5 - Visit 1 -2.697° 0.007 0.147
Visit 6 - Visit 1 -3.481° 0.001 0.021
Visit 7 - Visit 1 -2.670° 0.008 0.168
Visit 3 - Visit 2 -.981° 0.327 1.000
Visit 4 - Visit 2 -.483°¢ 0.629 1.000
Visit 5 - Visit 2 -1.302° 0.193 1.000
Visit 6 - Visit 2 -2.668° 0.008 0.168
Visit 7 - Visit 2 -1.389° 0.165 1.000
Visit 4 - Visit 3 -1.375°¢ 0.169 1.000
Visit 5 - Visit 3 -1.243 0.214 1.000
Visit 6 - Visit 3 -2.147° 0.032 0.672
Visit 7 - Visit 3 -.868° 0.385 1.000
Visit 5 - Visit 4 -2.306° 0.021 0.441
Visit 6 - Visit 4 -2.917° 0.004 0.084
Visit 7 - Visit 4 -1.905° 0.057 1.000
Visit 6 - Visit 5 -.324° 0.746 1.000
Visit 7 - Visit 5 -.416° 0.677 1.000
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Visit 7 - Visit 6

-1.382°¢ 0.167

1.000

b. Based on positive ranks.

c. Based on negative ranks.

*= Significant at p < 0.05
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Appendix A

19 reproducible acoustic features from sound files recorded at 6

posterior locations over complete study of 1 year in the IPF dataset

Table A2

The data in terms of mean, standard deviation, maximum, and minimum values of all

19 reproducible acoustic features from sound files recorded at 6 posterior locations

over complete study of 1 year in the IPF dataset (Sgalla, 2017).

Repeatable acoustic features | No. of Minimum | Maximum | Mean Std.
patients Deviation
C3 EW_200_500 Hz 19 0.000 0.594 0.226 0.107
C4 EW_75_200 Hz 19 0.000 0.789 0.573 0.105
C4 EW_200_500 Hz 19 0.000 0.487 0.164 0.095
sig_zerocross 19 0.012 0.077 0.038 0.009
sig_mfcc02 19 -12.280 -8.768 -10.158 0.576
sig_75_200 Hz_zerocross 19 0.023 0.031 0.027 0.001
sig_75_200 Hz_centroid 19 103.710 143.597 122.083 5.252
sig_200_500 Hz_rms 19 0.043 0.575 0.246 0.091
sig_200_500 Hz_lowenergy 19 0.461 0.928 0.692 0.077
sig_200_500 19 0.288 0.970 0.726 0.125
Hz_lowenergyASR
sig_200_500 Hz_zerocross 19 0.056 0.096 0.076 0.006
sig_200_500 19 0.002 0.058 0.012 0.007
Hz_std_meanframes
sig_200_500 19 0.000 0.015 0.003 0.002
Hz_std_medianframes
sig_500_1000 Hz_zerocross 19 0.140 0.160 0.148 0.002
sig_500_1000 Hz_rolloff85 19 635.193 847.290 750.090 34.009
sig_500_1000 Hz_centroid 19 572.324 699.717 630.687 17.062
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C3_mfcc02 19 -12.304 -8.770 -10.164 0.578
C4_zerocross 19 0.012 0.083 0.040 0.010
C4_mfcc02 19 -12.281 -8.767 -10.157 0.576
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A.4 Average NOC/BC at each patient in fibrosis and non-fibrosis groups

Table A3

Average NOC/BC at each patient in fibrosis and non-fibrosis groups.

Fibrosis group

Non fibrosis group

Patient |Patient |Patient |Average |Patient |Patient |Patient |Average
Number |Gender |age NOC/BC |[Number |Gender |age NOC/BC
1 M 65 44.00 1 M 88 15.08

2 M 71 45.17 2 M 75 23.83

3 M 73 45.50 3 M 48 23.00

4 M 76 28.80 4 M 71 0.67

5) M 72 55.80 5} M 77 29.63

6 M 68 27.71 6 M 74 17.88

7 M 74 48.33 7 M 56 7.96

8 F 69 20.00 8 M 55 25.00

9 F 83 21.00 9 M 71 22.00

10 M 75 35.23 10 M 63 11.13

11 F 79 13.98 11 M 74 26.70
12 F o4 19.38 12 M 66 17.43

13 M 53 26.74 13 M 75 25.17

14 M 73 12.36 14 F 66 11.00

15 F 73 42.75 15 F 57 5.25

16 F 67 19.92 16 F 53 7.42
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17 62 24.29 17 91 22.83
18 87 24.77 18 76 9.25
19 74 35.50 19 65 8.88
20 68 43.25 20 78 4.79
21 72 27.00 21 74 8.78
22 79 271.22 22 71 24.00
23 48 25.46 23 73 11.71
24 61 41.21 24 78 34.88
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A.5 Histogram plots of the distribution of average NOC/BC at fibrosis

group and non-fibrosis group
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Figure A2 Histogram plots of the distribution of average NOC/BC at (a) fibrosis group, and

(b) non-fibrosis group. The black line shows normal distribution.
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A dataset for systematic testing of crackle separation techniques

A dataset for systematic testing of crackle separation techniques

R. Pal and A. Barney

Abstract—Pulmonary crackles are indicative of lung
pathology and may be used for diagnosis and monitoring of
disease. Many algorithms have been proposed to separate the
crackle sounds from the breath noise, but a lack of
standardized processes for evaluating their performance makes
comparisons difficult. In this paper we propose a standard data
set to be used for systematic comparative testing.

I. INTRODUCTION

Sounds that come from the lungs can provide non-
invasive diagnosis of pulmonary diseases. Lung sounds are
divided into two categories: breath sounds and adventitious
lung sounds. Breath sounds are heard in healthy as well as
pathological lungs and result from the flow of air through the
airways. Adventitious lung sounds are superimposed on
breath sounds and can be an indication of pulmonary disorder
[1]. Based on time domain characteristics, adventitious lung
sounds can be further categorized into two classes:
continuous and discontinuous. Continuous adventitious
sounds with longer time duration (250 ms), are known as
‘wheezes’ [2]. Discontinuous adventitious sounds are called
crackles and have a broadband frequency content ranging
from 50 to 2000 Hz. The time duration of crackles is
relatively short (less than 20 ms) [3] and they may be further
characterized as either fine (high pitched) or coarse (low-
pitched) sounds based on initial deflection width IDW) two
cycle deflection (2CD) and, occasionally, total deflection
width (TDW) [4].

According to the American Thoracic Society, the average
IDW and 2CD of fine crackles are 0.7 ms and S ms, and for
coarse crackles are 1.5 ms and 10 ms, respectively [4].
According to Hoevers et al. [5] fine crackles have on average
IDW = 0.5 ms, 2CD = 3.3 ms and total deflection width
TDW = 4 ms, whereas coarse crackles have on average
IDW = 1.0 ms, 2CD = 5.1 ms and TDW = 6.7 ms. According
to Cohen et al. [6], fine crackles have average IDW = 0.9 ms
and 2CD = 6.0 ms, and coarse crackles have average
IDW =125 ms and 2CD = 9.50 ms. Fine crackles are
thought to be generated due to the explosive reopening of
small airways that closed during the previous expiration [7].
Fine crackles are usually mid- to late-inspiratory events that
follow a similar pattern for each consecutive inhalation. Fine
crackles can be an indication of pneumonia, congestive heart
failure and various pulmonary fibrotic diseases [8]. Coarse
crackles are typically early inspiratory and expiratory events.
Coarse crackles may be generated from fluid in small or
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medium airways and have a popping quality. These crackles
can change pattern after coughing and are a symptom of, for
example, chronic bronchitis, bronchiectasis and cystic
fibrosis [9].

Much research effort has been expended in recent years in
the automatic detection of crackles and their classification
into inspiratory/expiratory, fine/coarse for the purpose of
diagnosis or disease progression monitoring. Separation of
crackles from normal breath sounds, as an initial processing
stage can lead to better crackle characterization. Many
methods have been proposed for this purpose including: the
wavelet transform stationary non-stationary (WTST-NST)
filter [2], the non-linear stationary non-stationary (ST-NST)
filter [10], the wavelet packet transform (WPT) [11], the
wavelet transform fractal dimension (WT-FD) [12,13], and
the empirical mode decomposition fractal dimension (EMD-
FD) filter [14].

Clearly, validation of algorithms is critical to their
application in a clinical context, but a limitation in the field to
date is that every study uses its own data and methodology
for testing and therefore comparison of the relative strengths
of different approaches under different conditions is limited.
In this paper, we propose a standard data set for testing the
performance of crackle separation techniques.

II. DATASET
Our dataset consists of three subsets.

e Test crackles comprising: (1) simulated fine crackles,
(2) simulated coarse crackles, (3) real fine crackles,
and (4) real coarse crackles.

e Test noise comprising: (1) white Gaussian noise, (2)
colored noise with a spectrum matching that of a
healthy breath sound recorded at the posterior right
chest location.

e Test samples comprising: (1) real lung sounds with
fine crackles, and (2) real lung sounds with coarse
crackles.

A. Simulated fine and coarse crackles

The simulated fine and coarse crackles are generated
using the mathematical function defined by Kiyokawa et al.
[15], where the crackle waveform y(t) is given by:

y(O=yo®Om(®) @
wi
log(0.25
Yo (D)= sin(4mt*) , o= % @
m(t)=0.5(1+cos[2z(*-0.5)]) @3)

On the basis of IDW and 2CD, three cases of fine and
coarse crackles are generated: (1) American Thoracic Society
definition [4] with: fine crackle IDW =0.7ms and
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2CD = 5 ms, coarse crackle IDW = 1.5 ms and 2CD = 10 ms;
(2) based on Hoevers et al. [5] with fine crackle
IDW = 0.5 ms and 2CD = 3.3 ms, coarse crackle IDW = 1 ms
and 2CD =5.1ms and (3) based on Cohen [6] with fine
crackle IDW =09 ms and 2CD =6 ms and coarse crackle
IDW=1.25ms and 2CD=9.5ms. For each simulated
crackle case, a set of ten identical crackles was generated.

B. Real fine and coarse crackles

We selected 10 real fine crackles from our lung sound
database recorded from a patient with Idiopathic Pulmonary
Fibrosis (IPF) and 10 real coarse crackles recorded from a
patient with Bronchiectasis (B;). All selected crackles
followed at least three of the criteria defined by Murphy et al.
[16] as characteristic of a pulmonary crackle.

C. Simulated test signals

Each set of crackles was buried in two types of noise: 1)
white Gaussian noise and 2) noise with the same spectrum as
breath noise from a healthy subject measured over the lung
bases on the right-hand side of the back. Signal to noise ratio
ranged from -10 to 10 dB in steps of 1 dB and for each SNR,
201 test signals were generated each containing 10 crackles.

D. Real lung sounds with fine and coarse crackles

In addition to the simulated data, two examples of real
lung sounds, one from a patient with Idiopathic Pulmonary
Fibrosis (IPF) with predominantly fine late-inspiratory
crackles and one from a patient with Bronchiectasis (B;) with
coarse, mainly expiratory crackles, are included in the
dataset. The precise location of each crackle in these sound
samples has not been clinically verified; nevertheless, they
can provide useful comparisons between separation
techniques to evaluate their performance in separating the
stationary from the non-stationary parts of the lung sound.

Table 1 summarizes the different test cases.

TABLEI. SUMMARY OF THE TEST DATASET
IDW&
Cases Ne Diagnosis 2CD BN SNR
(ms)
0.7&5 BRu
(4] Wy
Simulated fine 0.5& BRy
crackles 10 RA 33[5] Wy
0.9&6 BRy
[6] Wy
1.5&10 | BRy
[4] Wy | -10to
Simulated coarse 10 NA 1&5.1 BRy | 10dB
crackles [5] Wy
1.25& BRu
95[6] [ Wy
Real fine crackles 10 IPF ND BRy
Wy
Real coarse BRy;
crackles 10 B ND Wy
Real breath sound
with fine crackles ND PR ND MBS D
Real breath sound
with coarse ND B, ND NBS ND
crackles

Ne: Number of crackles; ND: Not defined, NA=Not applicable, IPF: Idicpathic pulmonary fibrosis,
By Bronchiectasis, BN: Background noise, BRy: Breath noise, Wy White Gaussian noise, NBS
Normal breath scund
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As a case study we have analyzed the crackle separation
performance of the wavelet transform stationary non-
stationary filter (WTST-NST) [2], and the wavelet transform
fractal dimension filter (WT-FD) [12,13] and we present here
the results of that part of the analysis using the simulated fine
and coarse crackles, and the real fine and coarse crackles
buried in noise with the spectrum of breath noise. For the
detailed working process of the WTST-NST filter and the
WT-FD filter we refer readers to [2], [12,13].

III. METHODS

The WTST-NST and the WT-FD filters separate the
signal into non-stationary and stationary parts. In a successful
separation, crackles would appear only in the non-stationary
part of the signal and the normal breath sounds, which are
considered to be wide sense stationary, within the stationary
part of the signal. The WT is computed using the
Daubechies-4 wavelet [13]. The sound files are sampled at
44100 Hz and the separation algorithms are implemented
using the MATLAB programming language. Table II. Shows
the parameters used for implementing the WTST-NST and
the WT-FD filters.

The WTST-NST [2] is an iterative multi-resolution
decomposition and multi-resolution reconstruction (MRD-
MRR) scheme which provides separation of WT coefficients
related to a signal of interest from the background noise at
each level using some threshold value (Threshold= Fqj . SD,
where Fog is a multiplication factor and SD is the standard
deviation of the waveform).

The WT-FD filter [12,13] overcomes the need for
empirical setting of a multiplication factor (F.g) in the
WTST-NST filter and provides automatic separation of WT
coefficients related to signal of interest and background noise
using the fractal dimension technique. The fractal dimension
of a signal is estimated using a sliding window of
length Wrp=int(kfy), where ‘int’ indicates rounding to integer
value, f; is the sampling frequency and k is a multiplication
factor.

TABLE II. PARAMETERS USED FOR THE WTST-NST AND THE WT-FD
METHODS
Parameters WTST-NST WT-FD
Number of samples (N) 32,768 32,768
Number of decomposition levels - . _
an M=log:(N)=15 M=1[13]
pling frequency (fs) 44,100 Hz
Accuracy level () 0.1 0.1
Number of i ions (L) 1 1
Multiplication factor Fagi=3[2] k=0.006 [13]

We propose a measure of the quality of separation using
the average power of the non-stationary signal estimated
from the separation algorithm compared to the average power
of the crackle signal before insertion into the noise.

The average power for each test signal is calculated using
Eq. (4).

Average power=

N 2
I(zn=1|;(n)l )] @
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TABLE III. PERFORMANCE OF THE WTST-NST FILTER

WTST-NST
Ovrgg Unrgg
Cases BN Ror (SD) Egr (SD) @ Ror>Egrp) | (fRor <Eqr)
%0¥T5y %Unrgy
[3 S 5 8* 5 §* s | 8

Simulated fine BRy 0.7367 {0.1384) 0.2393 (0.1201) 0.5744 (0.1036) 0.1995 (0.1001) 22.0 | 166
crackles BRy 0.7368 (0.1383) 0.2396 (0.1201) 0.6057 (0.1324) 0.1902 (0.0958) 17.7 20.6
BRy 0.7367 (0.1386) 0.2399 (0.1199) 0.5774 (0.0993) 0.2002 (0.0995) 21.6 | 16.5

Simulated coarse BRy 0.7368 (0.1384) 0.2393 (0.1200) 0.4929 (0.1357) 0.1230 (0.1057) 331 | 486 NA
crackles BRy 0.7369 (0.1383) 0.2395 (0.1202) 0.5667 (0.1128) 0.1928 (0.0971) 23.0 | 194
BRy 0.7370 (0.1381) 0.2406 (0.1204) 0.5256 (0.1239) 0.1258 (0.0980) | 28.6 | 47.7
Real fine crackles BRy 0.7369 (0.1383) 0.2396 (0.1202) 0.5949 (0.1295) 0.1907 (0.0918) 19.2 | 204
Real coarse crackles | BRy 0.7371 {0.1383) 0.2398 (0.1204) 0.4722 (0.2337) 0.0415 (0.0074) 359 | 826

BN Background noise, BRy: Breath noise, Rop: mean of the reference quality factor, Eqy: mean of the estimated quality factor, SD: Standard deviation, S+ Signal to noise ratio from -10 to 0 dB, S*: Signal to
neise ratio from 1to 10 dB, Ovres: Overestimation, Unres Underestimation, NA: Net applicable.

TABLEIV. PERFORMANCE OF THE WT-FD FILTER

WT-FD
Ovrey Unrggy
Cases BN Rer (SD) Eqe (SD) W Ror>Egp) | Ror=<Eogp) |
%OV gt %Unreg
S s* S s S s* s [ §F
Simulated fine BRy | 0.7368(0.1383) 0.2396 (0.1203 0.2110 (0.0586) 0.1849 (0.0850) | 713 | 228
crackles BRy | 0.7368(0.1384) 0.2395 (01200, 0.3156 (0.0930) 0.1948 (0.0977) | 57.1 | 18:6
BRy | 0.7368(0.1383) 0.2394 {0.1200 0.1700 (0.0479) 0.1748 (0.0730) | 76.9 | 26.9
Simulated coarse | BRu | 0.7372 (0.1381) 0.2393 (0.1189 0.0828 (0.0360) 0.1235 (0.0285) | 887 | 483 NA
crackles BRy | 0.7368 0.1383) 0.2394 (0.1202) 0.2176 (0.0683) 0.1868 (0.0881) | 70.4 | 21.9
BRy | 0.7369(0.1382) 0.2394 (0.1196) 0.0899 (0.0368) 0.1267 (0.0305) | 87.8 | 47.0
Real fine crackles | BRy | 0.7370 (0.1382) 0.2394 (0.1200) 0.3884 (0.1008) 0.1944 (0.0975) | 47.2 | 18.7
Real coarse crackles | BRy | 0.7369 (0.1382) 0.2404 (0.1201) 0.1343 (0.0645) 0.1713 (0.0685) | 81.7 | 28.7

BN Background noise, BRy: Breath noise; Rop: mean of the reference quality factor, Eqr- mean of the estmated quality factor, SD: Standard deviation, S Signal to noise ratio from -10to 0 dB; * Signalto
noise ratio from 1to 10 dB; Ovre,y: Overestimation, Unres: Underestimation; NA: Not applicable

Where |Y(n)| is the absolute value of the test signal and Where the mean is calculated over each SNR value in the

N =32.768 is the number of samples. ranges -10 to 0 dB and 1 to 10 dB.
For each SNR the 201 test signals are passed through each
algorithm, the average power is calculated and the mean over IV. RESULTS

all test signals is taken.

Two quality factors are then calculated at each SNR: (1)
reference quality factor (Ror) using Eq. (5), and (2) estimated
quality factor (Eqr) using Eq. (6):

Input signal average power, estimates of non-stationary
signal average power & stationary signal average power and
reference average power for one typical set of test signals

22102

Lo (W)-Raya(W) o T
RQF= AVGI (\;{\)IG (5) Al WT y signal por
AVG z i
5 Java(W)-NS 1y (W)
F T T, W) © i

Where Iavg is the average power of the test signals, Rava
represents the reference power calculated from the crackle
signal before inserting into the noise and NSave is the R e
average power of the non-stationary signal estimate. (a)

If Eqr<Ror for a given SNR then the non-stationary signal
is considered overestimated and likewise for Eqr>Ror the

— Input signal power
T-FID non-stationary signal power
VT-FD stationary signal power

non-stationary signal is considered under-estimated. The z el s kP
percentage of overestimation (%Ovrey) and underestimation i
(%Unrgs) are calculated using the Eq. (7) and Eq. (8), %
respectively. H
mean ) - mean(Eqg)
%Ovr]:‘stz (IR;::;“( )QFX]OO (7) “% o & 7 6543 2101 23 4 6 7 8 910
RQF Signal to Noise Ratio (dB)
% Unre.= mean(RQF) N mean(EQF) %100 Figure 1. Average power plots for real fine crackles, (a) WTST-NST filter
¢ T Est 1 - mean(R ) (8)  (Table 111, Case Real finc crackles), and (b) WT-FD filter (Table IV, Case

Real fine crackles).
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(Table I1I and Table IV, Case Real fine crackles) are shown
in Fig. 1. The standard deviation at each SNR for the input
signal average power was between 0.49 and 0.92% of the
signal power and for the non-stationary signal estimate was
between 0.63 and 98.82% of the signal power.

Reference quality factor and estimated quality factor for
one typical set of test signals (Table IIT and Table IV, Case
Real fine crackles) are shown in Fig. 2. The standard
deviation at each SNR for the reference quality factor was
between 0.05 and 5.18% of the quality factor and for the
estimated quality factor was between 3.97 and 39.72% of the
quality factor.

——Reference Quality Factor
= =WTST-NST Estimated Quality Factor |

Quality Factor

09 8 7 6 5 4 3 2 3 456 7 8 8 10
Signal to Noise Ratio (dB)

(a)

= Reference Quality Factor
= = WI-FD Estimated Quality Factor |

Quality Factor
\
'

9 L P— " s
09 8 7 6 5 4324 01 23 45267 8 9 10
Signal to Noise Ratio (dB)

Figure 2. Reference quality factor and estimated quality factor for real fine
crackles, (a) WTST-NST filter (Table ITI, Case Real fine crackles), and (b)
WT-FD filter (Table IV, Case Real fine crackles).

From Table III and Table IV, and Figs 1 & 2, it can be
seen that neither the WTST-NST nor the WT-FD
underestimates the non-stationary signal at any SNR.
Generally, for noise with the spectrum of a real breath
sound, WTST-NST overestimates by no more than 49% over
the whole range -10 dB to 10 dB (except in the case of real
coarse crackles in the range 1 to 10 dB where overestimation
is much greater). WT-FD produces far higher over estimates

Appendix A

subjects with different pathological conditions could provide
additional information on algorithm performance.

V. CONCLUSION

We conclude that our data set and quality criteria can
provide a useful comparative performance analysis of
different crackle separation algorithms. We offer this as a
standard data set for testing separation algorithms which is
available at https://doi.org/10.5258/SOTON/DO801. A future
extension to the quality criteria will allow the comparative
performance of crackle identification (number of crackles
detected) and characterization (performance as an estimator

of IDW, 2CD) algorithms to be similarly evaluated.
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Abstract. This paper presents a method for automatic pulmonary crackle
detection based on the Hilbert energy envelope (HEE). Automatic detection of
crackles in lung sounds offers a non-invasive way of monitoring or diagnosing
cardiopulmonary diseases. The algorithm is divided into four main steps:
(a) preprocessing, (b) estimation of HEE, (c) thresholding, and (d) applying time
width conditions based on crackle two-cycle deflection and initial deflection
width. Its performance is tested using a publicly available lung sound dataset of
fine and coarse crackles and evaluated by the sensitivity (95.7%), positive
predictive value (89.5%), and F-score (91.7%) for crackle detection. The good
detection performance indicates the potential of the HEE-based algorithm as an
automatic method for crackle detection in lung sound recordings.

Keywords: Pulmonary crackle - Automatic pulmonary crackle detection -
Hilbert Energy Envelope (HEE) Algorithm

1 Introduction

In this paper we present, a method for automatic pulmonary crackle detection based on
the Hilbert energy envelope (HEE).

Pulmonary crackles are short-lived, explosive lung sounds which are superimposed
on normal breath sounds in some pathological lung conditions [1]. Crackles can pro-
vide valuable diagnostic information regarding different cardiopulmonary diseases
including cystic fibrosis, pneumonia, fibrosing alveolitis, bronchiectasis, sarcoidosis,
congestive heart failure, and asbestosis [2].

A traditional stethoscope offers a non-invasive way of examining the lung condition
by listening to lung sounds through the chest wall, however the interpretation of the
sound is highly subjective and depends on the expertise and hearing ability of the
physician [3]. Visual detection of crackle sounds through analysis of a recording of the
acoustic lung sound signal made with an electronic stethoscope [4], can also be very
dependent on the expertise of the analyst. Computerized detection of crackles can,
however, overcome these limitations and providing an objective way to detect crackle
sounds [5].

In recent years, several automatic methods have been proposed for detecting
crackles in lung sounds: time-varying autoregressive algorithm [3], fractal dimension
and box filtering algorithm [5], first derivative absolute value (FDAV) based time

© Springer Nature Switzerland AG 2021
T. Jarm et al. (Eds.): EMBEC 2020, IFMBE Proceedings 80, pp. 994-1003, 2021.
https://doi.org/10.1007/978-3-030-64610-3_111
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domain analysis [6], and fractal dimension detector (FDD) [7]. These methods show
good crackle detection ability for high quality sound recordings, but as mentioned in
[5] have not been widely tested with recordings made in clinical settings where
movement artefacts and environmental noise are commonplace. A crackle detector for
a clinical setting needs high crackle detection accuracy and robustness to noise, further,
low computational complexity can be advantageous for rapid processing to support
clinical decision-making.

Figure 1 displays the waveform of a typical crackle. Crackles can be characterized in
the time domain by their initial deflection width (IDW) and their two-cycle deflection
width (2CD) and may be divided into fine crackles (mean IDW = 0.7 ms; mean
2CD = 5 ms) and coarse crackles (mean IDW = 1.5 ms; mean 2CD = 10 ms) [8].

05 H Al T T Al T
: : 2CD :

Amplitude

Time (ms)

Fig. 1. The waveform of a typical crackle showing the characteristic time domain features:
initial deflection width (IDW) and two-cycle deflection width (2CD).

The next section of this paper presents the HEE algorithm for crackle detection.
Test data and the quantitative evaluators used for performance analysis are discussed in
Sect. 3. Section 4 contains the results and discussion with conclusions presented in
Sect s,

2 Hilbert Energy Envelope Algorithm

The Hilbert energy envelope (HEE) constructs an energy envelope for a signal using
the Hilbert transform to determine its instantaneous characteristics. Sharma et al. [9]
presented an algorithm based on the HEE for heart rate extraction from acoustic
recordings at the neck. Here the concept is adapted for automatic crackle detection. The
process is shown schematically in Fig. 2. The HEE algorithm was developed using
Matlab (R2019a) programming language.

Figure 3 shows a worked example for a 0.137 s section of a lung sound signal
recorded from a patient with idiopathic pulmonary fibrosis (Fig. 3(a)). The location of
each crackle has been audio-visually identified by an experienced pulmonary acoustics
researcher and marked with an arrowhead.
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Input lung sound signal —7 Pre-processing » Estimate HEE Apply threshold T

Time width conditions

Distace: bstwmen sbarbing poitx 4—{ Estimated peak time width>1.1 ms
of two estimated peaks>7.5 ms

Fig. 2. Block diagram of the HEE algorithm for crackle detection.

The steps of the algorithm are as follows:

2.1 Pre-processing

The lung sound signal (cy[n]) is pre-processed using a 6th order Butterworth high pass
filter with cut off frequency 75 Hz, (Fig. 3(b)).

2.2 Estimation of Hilbert Energy Envelope

The instantaneous characteristics of the preprocessed signal (y,[n]) are calculated using
the analytical function z[n] [9].

2ln] = yln] + ixfn] (1)

Where, y,[n] is the preprocessed input signal, x[n| is the Hilbert transform of the

preprocessed input signal and i = +/—1.
Using the analytical function in (1), the instantaneous amplitude (a[n]) and the
instantaneous frequency {wn]) are estimated.

aln) =/ (vg[n))* + (x[n))? (2)
o[n] = tan~! (%) (3)

The energy envelope H (yq[n]) is then calculated using (4) and is illustrated in
Fig. 3(c):

H(y,ln]) = la[n]’= (vgln))” + (fn])%, 1<n<N )

where N is the total number of samples in the input signal.
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Fig. 3. Worked example of the HEE algorithm based on crackles time domain features. (a) A
time section of 0.137 s lung sound data recorded from a patient with idiopathic pulmonary
fibrosis (location of the crackles is marked with black arrowheads); (b) Pre-processed signal;
(c) Estimated Hilbert energy envelope of the pre-processed signal; (d) Output after thresholding;
(e) Removal of unwanted envelope peaks using first time width condition; (f) Eliminating
remaining unwanted peaks using the second time width condition.
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2.3 Thresholding

An energy threshold T is calculated using the estimated energy envelope H (yq [n])
T =my Xmax{H(yq[n])}, 1<n<N (5)

where my is a multiplication factor We have selected the value of the multiplication
factor to be my = 0.025. This choice is justified in Sect. (3.4). Threshold 7 is applied to
the energy envelope (H (yq [n]) and only values greater than 7 are kept. The estimated
envelope signal after thresholding is displayed in Fig. 3(d) where the peaks related to
crackles are shown using the black arrowheads and the peaks not related to crackles are
marked using red arrowheads.

2.4 Time Width Conditions

To reduce the number of false crackle detections, two conditions are empirically
selected based on typical values for the crackle time domain features: IDW and
2CD [8]:

(1) HEE peaks with time width less than 1.1 ms (i.e. the average of the mean IDW for
fine and coarse crackles respectively) are discarded, (Fig. 3(e)).

(2) To prevent multiple detections of the same crackle and to eliminate any remaining
false peaks after applying the first time width condition, the distance between the
starting points of two envelope peaks is considered. If the distance between those
starting points is greater than 7.5 ms (i.e. the average of the mean 2CD for fine
and coarse crackles respectively), both peaks are considered to be crackles;
otherwise only the peak with longer duration is considered to be a crackle and the
other is discarded. The output, after applying this condition, is shown in Fig. 3(f),
where it can be seen that all false peaks have been eliminated.

3 Dataset and Performance Evaluators

3.1 Dataset

The HEE algorithm was tested using a publicly available data set [10] of simulated and
real fine and coarse crackles which can be embedded in two types of background noise:
breath noise, and Gaussian white noise. The dataset also contains a sample of a real
lung sound with fine crackles recorded from a patient with idiopathic pulmonary
fibrosis and a sample of a real lung sound with coarse crackles recorded from a patient
with bronchiectasis. The real lung sound files were recorded using an electronic
stethoscope and all files in the dataset are sampled at 44100 Hz. Table 1 shows the
cases selected from the dataset for performance analysis, SNRs tested ranged from O to
10 dB because for SNR levels less than O dB either a large number of false crackles
were detected or estimated peaks, which may correspond to crackles, started to com-
bine with each other due to background noise. Note that although the data set also
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provides the option of embedding the crackles in Gaussian white noise, performance in
that condition was not tested in this study.

Table 1. Cases generated from the test dataset [10].

Cases IDW & 2CD (ms) | N |D, | BN | SNR
Simulated fine crackles 0.7 & 5 [8] 10 |INA|BRy |0 to 10 dB
0.5 & 3.3 [11] 10 |NA|BRy
0.9 & 6 [12] 10 |NA|BRy
Simulated coarse crackles 1.5 & 10 [8] 10 |NA |BRy
1 &5.1[11] 10 |NA|BRy
1.25 & 9.5 [12] 10 |NA |BRy
Real fine crackles ND 10 |IPF | BRy
Real coarse crackles ND 10 |B, |BRy
Real breath sound with fine crackles ND ND |IPF | NBS | ND
Real breath sound with coarse crackles | ND ND | B, |NBS|ND

N¢: Number of crackles; Dg: Diagnosis; ND: Not defined; NA = Not applicable; IPF:
Idiopathic pulmonary fibrosis; Br: Bronchiectasis; BN: Background noise; BRy: Breath
noise; NBS: Normal breath sound; SNR: Signal to noise ratio.

3.2 Performance Evaluators

Three parameters were used to evaluate the crackle detection performance of the
algorithm: sensitivity (SE), positive predictive value (PPV), and F-score (F;) [13]
where:

SE X PPV

Fi =2 X ———
SE+ PPV

(6)

For each SNR tested, 501 test samples were generated (see Sect. 3.3). The SE, PPV
and F; were calculated for each sample and the average over all test samples was
generated. Note that the case of temporally overlapped crackles was not considered and
if more than one crackle lay under a single HEE peak, or if, due to background noise,
two or more peaks were connected with each other, then they were considered as one
crackle.

3.3 Selection of the Number of Test Samples

Figure 4, shows the average F, of the HEE algorithm in the cases of real fine crackles
(RFC) and real coarse crackles (RCC) at 5 dB SNR as the number of test samples is
increased from 1 to 2001 in steps of 1. We note that average F-score is approximately
independent of the number of samples when the number of samples exceeds 500. The
blue vertical dotted line indicates the selected number of samples for all tests reported
here.
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Fig. 4. Selection of number of test samples to eliminate random variation in the HEE algorithm
crackle detection performance using real fine crackles case and real coarse crackles case at an
SNR of 5 dB.

3.4 Selection of Multiplication Factor (my)

As mentioned in Sect. 2.3, those HEE peaks, which are likely to correspond to
crackles, are selected using a threshold, 7. The threshold value is calculated (Eq. (5))
using a multiplication factor my.

Figure 5 shows the performance of the HEE algorithm in terms of SE and PPV in
the case of real fine crackles and real coarse crackles at an SNR of 5 dB as the
multiplication factor ranges from 0.01 to 0.03, in steps of 0.001. We observe that, for
my > 0.025 the SE drastically decreases and for my < 0.025 the PPV gradually starts to
decrease. The selected multiplication factor my = 0.025 is marked on Fig. 5 and is
chosen to avoid both these regions.

| Real fine crackles SE

| —©—Rcal finc crackles PPV

= = Real coarse crackles SE

O  Real coarsc crackles PPV A

; ........ Selected multiplication factor m 70025

1

5(())‘01 0.015 0.02 0.025 0.03

Multiplication factor (ml)

Performance (%)
0O

Fig. 5. Selection of multiplication factor m using real fine and coarse crackles cases (Table 1)
at 5 dB SNR.

4 Results and Discussion

Figures 6(a) and (b) show the F-score plots for the HEE algorithm for fine (real and
simulated) and coarse (real and simulated) crackles, respectively in the SNR range of 0
to 10 dB. It can be observed that for SNR > 5 dB the F-score plots start to converge to
100% in both cases, with generally faster convergence fine crackles. The performance
of the HEE algorithm in terms of SE, PPV and F; on the whole test data with
SNR = 5 dB, is shown in Table 2.
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Fig. 6. The HEE algorithm F-score (F;) plots for breath noise cases with a signal to noise ratio
in the range of 0 o 10 dB (Table 1). (a) Real fine crackles and simulated fine crackles cases;
(b) Real coarse crackles and simulated coarse crackles cases.

Table 2. Crackle detection performance.

Cases N¢.|SNR | NS | HEE
SE(SD)  |PPV(SD) |Fi(SD) Dy (SD)
§

SFC | Ag | 10 501 99.4 (2.2)| 91.6 (7.3) | 95.2 (4.3)|0.72 (0.03)
Hg |10 [5dB[501| 99.9 (0.9)| 99.1 (2.8) | 99.5 (1.7) | 0.75 (0.04)
Cp | 10|5dB|501| 99.7 (1.7)| 87.3 (7.9) | 92.9 (4.7)|0.79 (0.04)
SCC [Ac |10 [5dB|501| 99.7 (1.6) | 67.6 (9.2) | 80.2 (6.5)|0.78 (0.04)
Hc |10 |5 dB|501| 99.8 (1.4)| 91.1(7.2) | 95.1 (4.1)|0.72 (0.04)
Cc  10|5dB|501| 99.9 (1.1)| 69.5(8.6) | 81.7 (5.9)|0.77 (0.04)
REC 10 |5 dB|501| 93.9 (4.2)| 99.0 (3.1) | 96.3 (2.7)|0.75 (0.05)
RCC 10 |5 dB|501| 93.9(5.9)| 98.0 (4.1) | 95.8 (3.6)|0.72 (0.02)

u:
=%
=

RBFC 32 IND L| 11 91.4 80.0 0.24
RBCC 6 |ND 1100 100 100 0.25
Overall performance 95.7 (9.0)| 89.5 (11.8)| 91.7 (7.9) | 0.65 (0.21)

SFC: Simulated fine crackles; Ag: IDW =0.7 ms & 2CD =5 ms [8]; Hg:
IDW =05 ms & 2CD =33 ms |11]; Cg: IDW = 0.9 ms & 2CD = 6 ms [12];
SCC: Simulated coarse crackles; Ac: IDW = 1.5 ms & 2CD = 10 ms [8]; Hc:
IDW =1 ms & 2CD = 5.1 ms [11]; Cc: IDW = 1.25 ms & 2CD = 9.5 ms [12];
REC: Real fine crackles; RCC: Real coarse crackles; RBFC: Real breath sound
with fine crackles; RBCC: Real breath sound with coarse crackles; N¢o: Number
of crackles; SNR: Signal to noise ratio; NS: Number of test samples; SE: Mean of
sensitivity; PPV: Mean of positive predictive value; Fy: Mean of F-score; Dr:
Average detection time; s: Second; ND: Not defined; SD: Standard deviation; In
all cases number of samples (N) = 32,768.
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The overall performance of the HEE algorithm in terms of SE (95.7%),
PPV (89.5%), and Fy (91.7%) is equivalent to or better than that reported for other
detection methods reported in the literature (e.g. [5, 6, 14]). Moreover, the average
detection time (D7) for the algorithm to finish is less than 1 s. The main advantage of
the proposed HEE algorithm is its structural simplicity, lower computational cost
(detection time) and the ability to perform in low SNRs for both fine and coarse
crackles.

Although the favorable results show the potential of the HEE algorithm for auto-
matic crackle detection, this study has some limitations. First, the overall performance
of the algorithm is dependent on a suitable choice of the non-adaptive multiplication
factor for calculating the threshold, 7. Second, though the method works well to
determine the location of the start of the crackle, its ability to extract the full duration of
each crackle signal has not been examined, so it remains to be determined whether the
method can be recommended where characterization of the temporal morphology of
crackles is important.

5 Conclusion

In this paper a new HEE algorithm for automatic crackle detection based on crackle
time domain features (IDW and 2CD) has been presented. The results suggest that the
proposed method is fast (Dy < 1 s) and offers high detection performance (SE 95.7%,
PPV 89.5%, and F; 91.7%) even when signal to noise ratio is low.

Future research will focus on evaluating performance on a larger dataset recorded
from a range of cardio pulmonary patients with different diagnoses.
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Keywords:

“This paper presents a new method of separating pulmonary evackles from notnal bieath sownds: e iterative
envelope mean fractal dimension (IEM-FD) filter. Crackles are an important physiological parameter for eval-
uating lung condition of an individual and their automatic separation from normal breath sounds can provide an
objective way of diagnosing or monitoring different cardiopulmonary diseases, The filter combines the new
iterative envelope mean (IEM) method with the established fractal dimension (TD) technique. The IEM method
estimates the non-stationary and stationary parts of the lung sound sigual and then the FD technique is applied to
the estimated y antpnt of the IEM method for furthe g the separation process. The TEM-FD)
filter is tested using a publicly available dataset and, compared with an established crackle separation technique.
“The IEM-FD achieves high aceonacy for erackle deteetion in the presence of noise with SNR = -1 d8 for fine
crackles and SNR > +1 dB for coarse crackles, and has low computational cost, with minimal under- or over
estimation and good preservation of crackle morphology. The method is shown to have an overall performance
suicable for automated analysis to determine accuately tie smmber and characteristies of pulmonary csackles in
a recorded lung sound.

(IEM-FD) filter

width (LDW) [5]. According to the American Thoracic Society, fine
crackles have on average IDW — 0.7 ms and 2CD — 5 ms, whereas coarse
crackles have on average IDW = 1.5 ms and 2CD = 10 ms [5]. Fine

1. Introduction

In this paper, we present a new method for separating pulmonary

172

erackles from nonual reatl sounds

During breathing, turbulence in the large airways induces vibrations
in the irway walls which are trausuitted through the lung tissue aud
chest wall. These sounds are referred to as normal breath sounds and
include bronchial sounds, bronchovesicular sounds and vesicular
sounds. Crackles are discontinuous, non-harmonic lung sounds, super
imposed ou the norual breath sounds, whicli cau be s indication of
lung abnormality or pulmonary disease [11. Crackles are thought ta be
generared by the sudden apening or closing of airways [2,3]. Normal
breath sounds and crackles are both audible through a stethoscope
placed against the wall of the thorax.

Crackles are generally described as explosive sounds, being of short
time duration, typically 20 ms or less, and having broad frequency
content ranging from 100 to 2000 Hz or even higher [4]. They may be
characterized iuto fine (high pitched) aud course Qow pitchied) based ou
their time domain features including their initial deflection width
(IDW), rwo cycle deflection (2CD) and, occasionally, largest deflection

“ Comesponding authar.
Email address: 1.pal@so

n.acik (R. Pal).

nips://dof.o1g/10.1016/].spe. 2021102454

crackles are usully heard iu e mid (o late inspiratory breath pliase and
are thought to be generated by the explosive opening of small airways
T6]. Course crackles are hought 1o be generated due (o air bubbling
through spurum in larger airways and can be heard in the early inspi-
ratory and also the expirarory breath phase (7]

Fine crackles may be related to congestive heart failure, lung fibrosis
and puewmnonia whereas coarse crackles are associated with chronic
obstructive pulmonary disease, chronic bronchitis and bronchiectasis.
The timing, number and place of generation of pulmonary crackles has
been shown to vary with the underlying disease and with its severity
Crackle charscteristics can (herefore be used in diaguosis aud in moni
toring of disease progression [8].

with a fonal stethoscope placed against the
exterior chest wall can be used to identify the presence of crackles, but
Uis approsch is subjective aud assessment of the mumber of crackles
present and identification of their type (fine or coarse) is highly
dependent on clinician hearing ability and expertise. More recently,
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electronic stethoscopes have offered the facility to record lung sounds
and many methods far auromaric processing have been developed [9].

As an initial processing stage, automatic separation of crackles from
nonual breath ds lead to better crackl cterization. On the
timescale of a crackle (typically 10-20 ws) normal breath sounds may
be considered quasi-starionary and therefore separation inro estimares
of the non- stationary and stationary elements of a lung sound signal
generally sends crackle components to the non stationary signal esti
mate and the majority of components associated with normal breath
sotinds fo the stationary signal estimare. Separation can reveal not only
large amplitude crackles but also suall amplitude crackles, which ure
often significantly wasked by the normal breath sounds. Many recent
studies have reported development and testing of such separation
methods.

Visual Time Expanded Waveforni analysis (VIEWA) [10] can be used
1o identify crackles from the time domain lung sound signal, but this
approach is subjective, time consuming and has high inter- observer
variabiliry [11], and therefore automated techniques are preferred.

Level slicers and high pass filters (LS & HPFs) can separate crackles
from normal breath sounds to some extent, but these methods are
insufficient for separating out small amplitude crackles and further, can
distort the crackle signal in the process. Katila et al. [12] presented a
case study of the effect of high pass filtering on the morphology of
crackles. It was observed that both the high pass filter cut off frequency
and the filter type influenced the crackle waveforn.

Hadjileontiadis et al. [13] proposed the waveler transform starionary
non- stationary (WTST-NST) filter. This method is based on an iterative

§ » s e 2 G 5

(MRD-MRR) schente, which separates the stationary and non-stationary
parts of a signal. The WTST-NST filfer can he used fa separate crackles
from breath sounds on the basis that explosive events in the time
dowain, such as crackles, have large components at many wavelet scales
whereas the components due to relatively stationary signals, such as
brearh saunds, reduce with increasing waveler scale. This allows sepa-
ration, through their amplitude, of wavelet transform coefficients
related to crackles from those related to normal breath sounds at each
wavelet scale using some threshold value. At each wavelet scale, the
threshold value is based on the standard deviation of the wavelet
transform coefficients and an empirical multiplication factor. This
methad can achieve separation with all crackle signals directed fa the
non-stationary output in most cases, but the morphology of the crackles
is not generally well preserved. Further, its computational complexity
makes the WTST-NST unsuitable for clinical applications where high
processing speed is advantageous [11,14].

The wavelet transform fractal dimension (WT-FD) filter [15,16] has
comparable outcomes to the WIST NST filter for locating the crackle

Biomedical Signal Processing and Control 66 (2021) 102454

comparably © WIFD, but with the advantage that, since, unlike
WT-FD, EMD has no underlying assumption of orthogonality, it can be
applied to both linear and non-linear data. Further, as a data driven
process the nuuber of a priori parameter choices is winimized whereas
for the WI-FD filter the choice of wavelet and number of scales must be
made in advance of processing. Tn addition, EMD-FD was shown to be
robust against the presence of extraneous environmental noise. How-
ever, the selection of the number of independent mode functions con

taining crackle information requires the setting of an empirical

threshold. Use of foo many TMFs may add companents of normal breath
sound (o the separated signal (over estimation) whereas (oo few may
result in crackles missing from the separated signal (under estiniation)
orin distorted crackle morphology. We note also that EMD is, in general,
& rather slower analysis method that WT due to its relatively high
computational complexity.

Other automared methads such as the stationary non-stationary (ST-
NST) filter (201, mST-NST filter [21], fuzzy stationary non-stationary
(PST-NST) filter [22], gencralized fuzzy stationary non-starionary
(GFST-NST)) filter [11), orthogonal least square fuzzy (OLSF) filter
[23], the wavelet packet transform (WPT) filter [241, neurofuzzy filter
1141, and Independent component analysis (ICA) [25] have also ll been
propased for autamarie crackle separation. Although, these merhods can
provide crackle separation with low compurational cost, they do so with
reduced sensitivity or lower quality in the reconstruction of the crackle
morphology. A summary of the strengihs and weakuesses of each
merhod is given in Table 1.

Latterly, separation has received less emphasis as machine learning
systems have been tested for classification of lung sounds without this
pre-processing step (e.g. [26]). However, such systems might have their
ability fo classify accurately enhanced by using separation as a
pre-processing step.

Auscultation of pulmonary crackles has been used in clinical
assessnient of patients for diagnosis and for monitoring of disease pro-
gression for many years. For diagnosis, an initial consideration may be
the presence or absence of an unusual number of crackles [27,28). This

may be by the increased of crackles
with age in the healthy population [29]. Further, low amplitude crackles
may frequently be masked by the breath noise leading to an underesti
mate of the true number. Thus, an accurate assessment of the number of
crackles presenr can assist with the diagnostic decision. Tn a clinical
environment, background noise may also be a problem in aural assess-
ment of crackles [30 32] so a system robust to added noise is also

‘Table 1
Technical characteristics for good crackle separation compared for different
published separation methods.

peaks, but is somewhat better at preserving the of the
extracted crackles [16]. Tn applying the WT-FD filrer, firstly, the inpur
signal is decomposed into approximation and detail coefficient vectors
using the WT and then the FD technique [17] is applied to the approx
imation and detail coefficient vectors 1o separate the W' coefficients
related ro crackles from those relared ro normal breath sounds. Although
this method separates both fine and coarse crackles into the
non stationary output with high sensitivity [16], the choice of base
wavelet and number of W1 decomposition scales is critical to its success
in separaring the crackles [18]. A need ro oprimize these paramerers for
any given data set prior to use in a clinical setting would be less than
ideal.

More recently, Hadjileontiadis [18] proposed the empirical mode
decomposition fracral dimension (FMD-FD) filter. Tn this method, firstly
the input signal is adaptively decomposed into multiple intrinsic mode
functions (IMTs) and a residual component using the TMD rechnique
[19). Next, an energy-based threshold is used for selecting the number of

N ining significant el £ crackl d and then, on those
selected IMFs, the ED technique [1/]1 is applied to further refine the
separation to leave just the crackles. EMD-FD was shown to perform

Mrihods ACC  UOE  POG  CGX  NRE ORI

VTEWA [10] v x x -
15 & 1P [12]

SENST [20] x
mST-NST 211
WIST-NST [13]
WT-FD [15,16]
EMD-FD [18]
FST-NST [22)

GFST NST [11]
OLSE [24]
Neurofuzzy filter [14]
W [24]

1A [25]

+
Npe—

x
x

VO g 7S
v
+
0

x
x x x x

ACC: Accuracy (number of crackles correctly separated); UOE: Under , over
estimation; POC: Preservation of crackle morphology; CCX: Analysis speed
ity); NRB: i i noise;
OBJ: Objectivity (need to set hard thresholds and/or make decisions about
process based on the data and/on toquisement of taiing phase for estimation of
the aptimum model parameters); ++ = suong attribute; + = acceptable ateri-
bute;  weakateribute;  very weak attribute; X attribute not reported.
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preferred. New methods may be more readily adopted clinically when
they adapr traditional auscultation methods [33], especially if they can
be carried out at the same time as traditional auscultation or with
limited additional time commitment [34]. Differential diagnosis be
(ween lung conditions may U iti facilitated by ification of
the crackles info fine and coarse or by inspection of the crackle
morphology in the recorded sound signal [35,36). This requires an
analysis process which gives a representation of the crackle with mini
mal distortion to allow its temporal cliaracleristics o be accurately
measured. For monitoring, number, classification as coarse or fine and
crackle morphology are again critical parsueters [37,381. An optinial
process for crackle separation should therefore have high accuracy for
the number of crackles detected, high robustness to noise, low compui-
tational complexity (high processing speed), separation without signif
icant under- or over-estimation of the crackle waveform and the ability
1o preserve erackle morphalogy after separation.

Respiratory monitoring remains a current clinical interest 139,40].
Building on a concept initially developed by Murphy et al. [41], many
recent studies (e.g [42].) have considered multi- channel recordings and
analysis to idewtify the presence of abnoral lung sounds. Garcia et al.
[25] have recently used Independent Component Analysis (ICA) on a 25
channel recording system fa separate crackles from normal breath
sounds. However, the specialist equi required for a multi

‘Biomedical Signal Processing and Control 66 (2021) 102454

teans from each iteration, wi estimate of its stationary part,

In detail, the TEM method proceeds as follows: Tn the first step, a
smoothed version of the lung sound signal is generated and its first and
second derivatives are caleulated using a flter from the Savizky Golay
($G) family. The SG filter parameters are selected according (o the
guidelines proposed by Vannuceini et al. [43] with degree of firting
polynomial py = 4 and number of coefficients . equal to approximately
one 1o two times the half width of the shortest duration feature of in
terest in the signal. In the case of crackles, the first cycle of the crackle is
the shortest cycle and generally has a duration of less than 2 ms. In onr
dats, where (e sampling frequency of the lung sound signal is 44,100
Hz, Whe half widdh is less than 88 samples. The SG filter parameters used
here are therefore p; — 4, n. = 89 and order of derivation (d,) =0, 1 and
2 for smoothing the lung sound signal, and for estimating first and
second derivative of that smoothed signal, respectively.

Next all the local extrema of the first derivative (y, (n)) are identificd
and classified as maxima or minima using sign changes over the second
derivative (v, (1)) of the smoothed lung sound signal (v, (n)).

The coordinates of the smoothed lung sound signal at the location of
each of the first derivative local maxima and winima are then caleu
lated. A cubic spline interpolation is used to connect the maxima in the
smoothed lung sound signal o define the upper envelope (7P, (1)), and

approach differs substantially from the traditional stethoscope, ubiqui
tous in & clinical setting, leading 1o poor uptake of such devices in
practice. The simplicity of processes thar align with well-cstablished
auscultation techniques are therefore to be preferred.

Iu this paper, we present & new automatic single channel crackle
separation technique known as the iterative envelope mean fractal
dimension (TEM-FD) filrer. The irerative envelope mean (IFM) method
divides a signal into initial estimates of its stationary and non-stationary
parts. The FD technique [17], applied to the non stationary signal es
timate, removes further elements related (o normal breath sounds to
refine the separarion. To evaluate our new method, we compare it wirh,
the WT-FD filter [15,16). The WT-FD filter was used for comparison due
to its high accuracy for the number of crackles detected, shown in [16]
10 be 100 % in both fine and coarse crackles, and good ability to meer the
other advantageous criteria.

The rest of the paper is arranged as follows. Section 2 describes the
TEM-FD filter. Section 3 presents the test daraser and the quantirarive
evaluators used to assess the outcome and Section 4 derails the param-
eters selected for the separation filters. The experimental results are
presented in Section b where a comparison is made with WI-FD per
formance on the same dataser. Section 6 presents the discussion of re-
sults and Section 7 the conclusions.

2. Tterative envelope mean fractal dimension filter

The IEM-FD filter combines two techniques: the new IEM method
and the more established FD rechnique [17]. The TEM method estimares
the stationary and non-stationary parts of the lung sound signal and, the
FD rechnique is then applied fo the nan-stationary outpnt of the TEM
method to refine the separation process further.

2.1, Irerative envelope mean method

The lung sound signal is a combination of normal breath sounds and
any added sounds, such as crackles, and is typically recorded over be

tween three and twenty breath cycles depending on respiratory rate and
recording duration. The IEM method subtracts the envelope mean value
of the smoothed lung sound signal from the original lung sound signal.
The envelope mean signal is the mean of the upper and lower envelopes
of the smoothied lung sound signal. The resulting signal can then be used
as the input for a subsequent iteration. After a number of iterations, Q.
the IEM method will provide an estimate of the non-stationary part of
the lung sound sigual and also, trough the summation of tie envelope

the local minima are connected with each other to
extract tie lower envelope (Lwan(n)). The envelope mean value is then
caleulated using the estimated upper and lower envelopes of the
smoathed lung sound signal:

m

my(n)

[Py (1) + LWoryy (1)
2

where n is the sample index in the inpur signal i.e.n — 1,2, ..Nand g is
the iteration number where g=1, 2,..., Q. The envelope mean value is
e subtracted frou the hung sound signal 1o get an estimate of the non
stationary signal Rg(n):

Ry} = y,(m) - m () @

where yg(n) is the lung sound signal at iteration q. Note that for each
iteration, g, the envelope mean value is calculated using the smoothed
Tung sound signal (v, (1)), aud its derivatives, whicl is then subtracted
from the un smoothed lung sound signal y, (n).

To end the iterative process, a stopping criterion STC1, is caleulated:

st = |E{R ,n) } - e{®m } &)

where E{.} is the expected value and hias an initial value of Ry, = 0.

The stopping eriterion (STC1,) is compared with accuracy level g1:
{1 > p1 > 0}. In this study the value of #1 is empirically set equal to
0.01.

If STC1, > 1, & new input lung sound signal y.1(n) = Ry(n) Is
defined and the process is repeated (usually one or two iterations are
sufficient (see Table ), Note that for the [EM method the stopping cri-
rerion is the same as that defined in [13,15,17,18]).

When the stopping criterion is met, the estimates of the non-
stationary and stationary parts of e lung sound sigual are caleulated
using Eqs. (4) and (5) , respectively where Q is the total number of it-
erations made:

NSTS(n) = Ry(n) “@
o

STS(n) ) mln) )
=1

Nore thar the first derivarive local maxima and minima locations on
the smoothed lung sound signal are used for estimating the upper and
lower envelopes rather than usiug local maxing and miniwa points
directly from the smaothed lung sound signal. Tf the upper and lower
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envelopes, using local maxima and minina of the smoothed lung sound
signal irself are used, an inefficiency arises. The upper and lower envi
lopes can have large separation for regions with infrequently occurring
extrema points (low frequency variation), which may require a large
nwuiber of iterations for sepurating the lung sound signal. Using instead
the upper and lower envelopes derived from the local maxima and
‘minima of the first derivative of the smoothed lung sound signal reduces
s inefficiency and consequently the number of iterations needed.

As an example, Fig. 1 shows & section of duration 0.075 s of & lung
sound signal recorded from a parient with idiopathic pulmonary fibrosis
(lable 2, Case RBFC) where the location of the crackles has been audio
visually identified by an experienced pulmonary acoustics researcher
and marked with arrowheads. Fig. 1(a) displays the non-stationary
output of the IEM process after the 1st iteration, the upper and lower
envelopes and the envelope mean value where upper and lower enve
lopes are estimated using directly the smoothed lung sound signal
extrema points. It can be observed that between 0.055 s and 0.075 s, the
separation berween the upper and lower envelapes is large. As a resul,
when the envelope mean value is subtracted from the lung sound signal
that region changes its shape but the non stationary output not only
contains the crackles but also consists of & large portion of normal breath
sound after the first ieration. On the other hand, in Fig. 1(h) where
upper and lower envelopes are estimated using the first derivative local
maxima and minima locations on the smoothed lung sound signal, we
observe that the envelope mean is a closer fit (o the lung sound signal
and when it is subtracted, the contribution of normal breath sound ro the
non-stationary estimate is very much less. Note that the lung sound
signal is smoothed using the SG filter prior to calculating the upper and
Tower envelopes (o remove the impulsive spikes without affecting the
erackle waveform.

Huang et al. [19) proposed the EMD technique for adaptively
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“Table 2
Summany of the test dataset.
Cases  Nc  Diagnosls  IDW& BN SNR
2cD
(ns)
SFC 10 NA 0.7&5 (5] BRx.
05433 (45]  BRy
0.9&6 [46] BRy
s 10 NA 15810(5] bRy ’
1851 (45] BRy ;;om 10 dB in steps of 1
105888
6] BRy
RFC 10 IPF ND BRy
RCC 10 B ND BR,
RBFC  ND  IPF ND NBS  ND
wec N, iy NS ND

diopathic pulmonary fbrosis;
Breath noise; NBS: Notmal breath sound.

decomposing a signal into its IMFs and a residual component in
decreasing order of frequency. Although the TEM method is superficially
similar to the EMD method in that processing of each iteration begins
witls an estimation of the upper and lower envelopes of & sigual based on
the local extrema, which is then subtracted from the input signal, there
are distincr differences berween the rwo methods. Tn particular, the EMD
method continues each iteration until the output meets the strict criteria
that define au IMF [19] whereas the IEM metiod ceases when the
stopping criterion (3) reduces to the required precision.

2.2. Fractal dimension technique

The IEM method makes a good estimate of the starionary and non-
stationary parts of the hung sound signal as can be seen from Fig. 2(b),
however it is not usually sufficient by itself to ensure optimal separation.
To minimise the remaining elements of normal breath sounds in the non-
stationary signal estimate (NSTS(n)) the FD technique is applied
following te same steps as described [171. For our study the sampling
frequency of the non-stationary signal estimate is f; = 44,100 Hz and
using a multiplication factor ni; — 0.006 following [17], the length of the
fractal dimension window Wyp = 264 samples.

2.3. Terative envelope mean fractal dimension filter

“The IEM FD filter is implemented using the IEM method followed by
the FD technique. Two iteration loops are used in the I[EM-FD filter: &
laap related to TRM method q — 1, 2,..., Q, and a loap for the combi-
nation of the IEM- and FD processes k = 1, 2,..., K.

The TEM-FD filter working process is shown in Fig. 2. First the TRM
method estimates the non-stationary (NSTS(n)) (see Fig. 2(b)) and sta-
tonary (STS(1)) parts of the lung sound signal. Next point (o point FD
values of the estimated non-stationary output are caleulated and the
fractal dimension peak peeling (FDPP) algorithm (17] is applied to
automatically detect those peaks of the estimated FD(n) which may
to crackles (Fig. 2(c)). Then, using the estimated FDPP

2
o oo o015 ooz o038 Ooes 0o Ooes  oors

Fig. 1. Nustration of the iterative envelope mean method applied to a section
of 0.075 s of lung sound data recorded from a patient with idiopathic pulmo-
nary (ibrosis; (a) estimation of the upper, lower and mean envelopes and the
non-stationary signal estimate after one iteration using extiema points of the
smoathed hing sound sigal; (1) estimation of the wpper, lower and
velapes and the non-stationany signal estimate after one iteration using extrema
locations of the first derivative of the smoothed lung sound signal.

sequence, (wo binary dresholds are caleulated: the non-stationary bi-
nary threshold:

. 1if FDPP*(n) # 1
NBTII (n) — { Wikl @
and the stationary binary (hreshold:
SBIH(n) = [1 = NBTH!(n) | @

as displayed in Fig. 2(d) and (e), respectively,
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Table 3
Evaluation of scparation of IEM-FD filter in ihe case of fine and coarse crackles.
IEMCFD WEFD
Cases BY D SN N NOTS K Q & (s}
(dB) (minmax) (micmex)  (minmax) (minmax)  (minmex) (%)
Ay -1 10 501 1-1 2-2 10-10 100 (0) -1 10-10 100 {0)
SFC H 110 sm 11 12 1010 100 (©) 11 10-10 100 (0)
C -1 0 50l -1 2-2 10-10 100 (©) -1 10-10 100 (0)
RFC BRy  IPF 1 10 501 1-1 1-1 10-10 100 (0) 1-1 9-10 99.48 (2.22)
e Nrs ow 1 1 7 6563 1 20 62.50
Ac By 1w so 11 22 1010 100 (©) 11 1010 100 (0)
SCC  Hc BRy 1 1 501 1-1 2-2 10-10 100 (0) 1-1 10-10 100 (0)
Cc BRy  NA 1 o 501 -1 2-2 10-10 100 (0) -1 10-10 100 (0)
RCC BRy B, 1 10 501 11 1-1 9-10 99.18(274) 1-1 810 96.73 (5.18)
RBCC NBS B, ND 6 1 1 1 [ 100 1 6 100
T — 99.98 %, TDE — 99,85 %.
Fine crackles (SFC, RFC and RBFC) ey B e
i Peefurmaner (10}, SO, —077% SO, 1nw
SDED 5~ 99.80%, TDE - 99.18 %,
Conrse erackles (SGC, RGC and RRCC) 2. , e
g, 1429 S0E, ~242%

SFC: Simulated fine erackles; As: IDW = 0.7 ms & 2CD = 5 mis [5); He: IDW = 0.5 x ws [45]; Ce: IDW = 0.9 ms & 2CD
crackles; SCC: Simulated coarse crackles; Ac: IDW — 1.5 ms & 2CD — 10 ms [5]; He: TDW — 1 ms & 2CD — 5.1 ms [45); Ce: IDW — 1,25 ms & 2CD -~ 9.5ms |
Real coarse crackles; RBFC: Real breath sound with fine crackles; RBCC: Real breath sound with BN: BRy,: Breath noise; NBS: Normal
breath sound; IPF: Idiopathic pulmonary fibrosis; B;: Bronchiectasis; Dy: Diagnosis; SNR: Signal to noise ratio; NOTS: number of test samples; Dn :Mean of Rate of
Detectability; SD: Standard deviation; NA: Not applicable; ND: Not defined; Ng: Real number of crackles; Ns: Separated crackles; TDY: Total Performance; SDF :
Standard deviation; XX stands FC for fine crackles and CC for coarse crackles; K and Q: number of iterations; min: Minimum value; max; Maximum value; In all cases

> ms [46]; RFC: Real fine
RCC:

number of samples (N) - 32,768.

The non-stationary output of the TEM method is multiplied by non-
stationary binary threshold NBTH(nt) to get the refined nou stationary
estimate NST(n) and the non stationary estimate of the IEM method is
wulplied by SBTH(n) 10 obtain the remaining normal breath sound
signal SSR(n) from the NSTS(n):

The summarion of the STS (5) and the SSR gives the estimate of the
stationary outpur, SSF(n) of the IEM FD filter at iteration k.

To end the IEM-FD filter, a stopping criterion based on the stationary
output can be calculated and compared with accuracy level (52).

‘Ihe stopping criterion:

(SFC) and coarse (SCC) crackles for which the IDW and 2CD may be
selected; real fine (RFC) and coarse (RCC) crackles with  variety of IDW
and 2CD values extracted from recorded lung sound signals; noise
simulated (o have the spectral characteristics of breatl noise (referred (o
hereafter as ‘breath naise’) (BRy) twa real lung sound signals, ane with
predominantly fine erackles (RBFC) from a patient with idiopathic
pulmonary fibrosis (IPF) and one with mostly coarse crackles (RBCC)
from & patient with Bronchiectasis (8r), both recorded with an electronic
stethascope. Further defails of the dataser may be found in [44] and the
data used here is summarized in Table 2.

‘To explore the robustness of the separation process to noise, test

stex = |e{ (ssr )i } - E{ (557 }| (8)  samples were generated by buryiug 10 simulated o 10 real crackles
within a simulated breath noise sample (BRy). Average SNR was varied

where E {} is the expected value and the initial value of SS/! =0,  from -10 to 10 dB in steps of | dB.

STC2" is compared with accuracy level 2, where, 1 = 2 = 0, If ‘The local SNR for any given crackle in a test signal varies randomly,

STC2* > p2, input signal y**!(n) = SSF*(n), otherwise k = K and the
iterative loop ends. Here the value of the f2 is empirically set equal o
0.1 and K represents the maximum iteration level, In the final step, the
non-stationary and stationary parts of the signal are ealenlated when k —
K, using:

whiicli may affect the separation, terefore for eacl set of crackles and
each average SNR, 501 test samples were gancrared cach with its own
sample of BRy. The use of 501 test samples at each SNR is justified in
section 4.1, All test signals are sampled at 44,100 Hz.

3.2. Quantitative evaluators

©
NS(n) ZNST,(n) ©)

= Successful separation must meet tiree criteria: extracting all the

embedded crackles, minimizing the inclusion of Kle compo-

ST(n) = SSFaix(n) (10)  nents and preserving erackle morphology after separation. We refer to

The non-stationary and stationary outputs of the IEM-FD method are
shown i Fig. 2(6) aud () respectively.

3. Analysis
Tn this section, the test data set is described and quanritative mea-

sures for evaluating how well each algorithm separates the crackles from
the breath sounds are discussed.

3.1. Dataset and test samples

A previously published test dataset (Table 2) [44] is used for eval-
uating the crackle separation. The dataset consists of: simulated fine

the failure to extract all crackles or loss of some portion of the crackle in
the output signal as under estimation, and the inclusion of non crackle
COMPOnENts as over-estimation.

The separation of the TRM-FD) was evaluated against reference rost
signals and against the separation of the WT-FD filter [15,16], chosen for
its excellent accuracy in separating both fine and coarse crackles [16].
For the synthesized test signals, the tine series of the crackles in the
absence of breath noise was used as a reference signal. In the test sam-
ples measured in patients (RBFC and RBCC), an experienced pulmonary
acoustics rescarcher had previously marked the lacation of cach erackle.

Separation was evaluated using several different metrics: To measure
the similarity between the estimated non stationary output of the IEM
FD separation process and the crackle reference signal, the cross-
correlation index (CCI) was used; the outcome of crackle separation
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3.2.1. Cross correlation index (CCI)

The cross-carrelation index (CCT) indicates the abiliry of the TEM-FD
and the WT-FD filters p: all th kles into the tati y
signal estimate for a given SNR. The CCI was calculated using Pearson's

x 100% an

+.N), and

Ry Ty ams oea o Seem nors correlation coefficient:
Time
(a) . PO (mn) —Re ) (quu) N )
i i el -
. T B
14 =t (retar ey (st - 55)
TR S r— where Re(n) is the crackle reference signal, NS(n) is the non stationary

':’;"’ output of the separation method, 1 is the sample index (r
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Fig. 2. A worked example of the proposed IEM ID filter: (a) A time section of
0.075 s lung sound data recorded from a patient with idiopathic pulmonary
fibrosis (y(r) ), where location of the etackles ed with annowheads; ()
Non-stationary output of the IEM method (NSTS' {¢)); () The FD of the IEM
methiod non-stationary output (FD' (1)) and the KDPP algorithn for estimating
FD valid peaks (FDPP' (t)); (d) The non-stationary binary thueshold (NBTH: (1));
() The stationary bivary thicshold (SETH' (¢]); () The non-statiouary output of
the IEM-FD filter (NS(t)}: (g) The stationary output of the IEM-FD filter (STir)).

was dby proposed by
et al. [13]: Rate of Detectability (Dy), and Totl Performance (1D); To
quantify over- or under-estimation in the separation, the Quality Factors
(QFs) proposed by Hadjileontiadis et al. | 13] were adapred to benefit
from the existence in our test data of the reference signals; To evaluate
the abiliry of the separation process o preserve crackle morphology the
2CD percentage error (PE;cp) was calculated.
The process for caleulating each wetric is as follows:

Rc and NS are th ge values of the igmal and non
stationary output, respectively.

3.2.2. Rate of detectability

The Rare of Dercctability (D) measures the abiliry of the TRM-FD and
WT-FD filters to separate the correct number of crackles at the correct
locations into their non stationary outputs. Dy was calculated using
a2).

Dy = ’,‘\’7: 100 % a2
where N is the number of crackles in the non-stationary output of a
scparation algorithm and N is the number of crackles in the npur
signal. For test signals: SFC, RFC, SCC and RCC, where a reference signal
exists, exch (e non stationary output was correlated with e reference
signal and only those crackles with CCI > 0.5, where the cut-off GCI
value was empirically selected, were counted as contributing to Ne. Tor
RBFC and RBCC where crackle reference signals do not exist, the number
of crackles in the outpul was counted manually by comparing their
location with the marked cracKles in the input signal. Dy was calculated
for each tost signal. The mean value and standard deviation over all rests
are reported.

.23, Total performance (D)

The Total Performance (TDg) also measures accuracy in terms of
number and temporal location of crackles in the non-stationary output
by e LEM D wid tie W'D filters. 7Dy is the Dy calculated separately
for all fine and for all coarse crackles (TDE and TDEC). As for Dy the
mean and standard deviation over all rest signals (SFC, RFC and RBFC
for fine crackles and SCC, RCC and RBCC for coarse crackles) is reported.

3.2.4. Quality factors (QFs)

Quality Tactors measure over- and under-estimation in the non-
stationary output signal. Building on [13,16] but noting that our test
data sel provides us willh reference signals, we define four Quality
Factors: a Reference Quality Factor (Rog,) for under-estimation, an
Estimated Quality Factor (Fy.) for under-cstimation, a Reference
Quality Factor (Rgp,) for over-estimation and an Estimated Quality
Factor (Egr,) for over estimation. To caleulate the QFs, firsdly two
thresholds are defined:

TH(n) = {;:}ﬁi_‘&f%} as)
TH(n) = [I — TH(n)] an

where Re(n) is the crackle reference signal and n is the sample index
withn = 1,2......N. Secondly, the threshold T¥T, (n} is multiplied by the
input signal y(n), to calculate u background noise reference sigual
Rexin).

Thirdly, the non-stationary outpur of the chosen separarion filfer
Nsin) is divided into rwo parts: non-stationary signal with only crackle
portion (NS¢(n)) and remaining non stationary part (NSp(n)), according
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10 (15) and (16).

NSe(n) — NS(n) T () 15)

NSgin) = NS(n) THy(n) o)

Next QFs for under estimation are calculated using the area under
e input signal y(n), area under the crackle reference signal Re(n) and
area under the crackle portion of the non-stationary signal NSc(n).
Similarly, the two Quality Factors for over-estimation are evaluated
using the area under the inpur signal y(n), arca under the background
noise reference signal Raw(n) and area under the remaining non
stationary part NSa(n).

S ban— 32 Reln)an

Ry T an
Y )l — S-INSc(n)]an
Son, = 1 (18)
e =N blan
i
Y I5(n)|An - 3 Ry (m) An
Rty = ———r a9
B, = 0)

b

where || represents the absolute value and An is the sample period in
seconds. The maxiunun value of ares under [NSc ()| was set equal 1 the
area under [Re(n)]. Fas, in the range Reg, < Fas, < 1 represents under-
estimation and & value close w0 1 indicates high under estimation.
Similary Far, in the range Rar, < Fqr, < 1 represents over-estimation
and a value close to Reg, shows high over-estimation. Hence, a value
of Egp, close to Rgz, with a value of Eqr, near to 1 represents crackle
separation without either high under or high over estiamation.

(n)an

3.2.5. 2CD percentage error (PEcp)

The 2CD percentage error assesses the ability of an algorithm to
preserve cruckle morphology after separation fron background noise,
The percentage error in 2CD following separarion is caleulated usin:

(21)

where || represents the absolute valiie, AGey is the actual crackle 20D
calculated from the crackle reference signal Re(n) and ECyep is the
estimated crackle 2CD caleulated from the non stationsry filter output
(NS(n)). The 2CD was caleulated using the first five zero crossings of the
crackle.

For the RBFC and the RBCC signals, where a crackle reference signal
does not exist, the crackle separation of the two filters was not evaluated
using the QFs or the PEscp.

4. Filter parameters

The parameters used for the new IEM-FD filter and the previously
published W' FD filter [15,16] are shown iu Table 1.

4.1, Selection of number of test samples

As mentioned in Section 3.1, 501 test samples are generated for each
sinulated test signal o account for the effect of raudom variation of the
local SNR around any given crackle,

For exch SNR, (e sawe 10 crackles embedded in 501 unique noise

‘Biomedical Signal Processing and Control 66 (2021) 102454

Table 4
Parameters used for different separating methods.
Perameters 1EMFD WEFD
Nunber of samples (N) 32768 32,768
Number of decomposition levels (M) NA M=1016]
Type of wavelet Na DB4 1161
Sampling requency () 46,100 44,100 B
B 001 Na
Accurscy level (5) o1 oL
A 001 1171 001 116]
Multiplication factor myp 0006 (1] my — 0006 [16]

: my « Multiplication factor;
nmethod; 2 Acenracy level
for desired stationary and nonstationary outputs; fs; Accuracy level for the
fractal dimension peak peeling algorithm.

signal samples are passed through cach scpararion filter and the
resulting CCls are averaged to get one CCI value for each SNR point for
each filter.

Fig. 3 shows the average CCI for the IEM-ED filter for real fine
crackles (RFC) at an SNR of 1 dB and real course crackles (RCC) at an
SNR of 1 dB when the number of test samples is increased from 1 to 2001
instepsof 1.

The choice of SNR for these plots is discussed in section 5. We note
that for more than 501 samples, the CCL is approximately constant in
both cases. The selected number of 501 test samples is marked on Fig. 3.

5. Experimental results

This section presents the results obtained using the [EM-FD filter and
provides systematic comparison with the WT FD filter [15,161. Both the
separation techniques are implemented using the Matlab (R2019a)
programming language.

5.1 Separation by the IPM-FD filter

Fig. 4 shows plots of CCL averaged over 41l 501 test signals against
SNR using i) the [EM-FD filter and if) the WT-FD filter for the separation.
Plors labelled (a) show curves for simulated fine crackles with three
different values of IDW/2CD and real fine crackles; plots labelled (b)
show curves for simulated coarse crackles with (iree different values of
IDW/2CD, and real coarse crackles.

Taking CCT > — 0.8 fo indicare strong correlation between the
separated signal and the test signal, strong correlation occurs for all fine
crackle test signals with SNR greater than 1 dB except for SFC with 2CD
= 6ms for both IEM-FD and WT-FD. For SFC with 2CD = 6 ms the CCl is
just helow 0.8 ar SNR — - 1 dB but is abave ar SNR — 0 dB. Far coarse
crackles strong correlation occurs for SNR > = 1 dB. The plots therefore

™

g oor
s aades
ogs+
08
m P w1 oo 0 1501 w200
Number of rest samples

Fig. 3. Scleetion of wumber of test samples to climinate random variation of the
IEMFD filter crackle separation due to variations in local SNR using real fine
crackles (RFC) case at | dB and real coarse crackles (RCC) case at 1 dB.
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Fig. 4. Cross correlation index (CCI) plots for breath noise cases with a signal to noise ratio in the range of -10 to 10 dB (Table 2). (i) The IEM-FD filter, (a) RFC (real
fine crackles) and SFC (simulated fine crackles) cases; (b) RCC (real coarse crackles) and SCC (simulated coarse crackles) cases. (if) The WT FD filter, (a) RFC (real
fine crackles) and SFC (simulated fine crackles) cases; (b) RCC (1eal coarse crackles) and SCC (simulated coaise crackles) cases.

suggest two threshold SNRs above which good separation can be ach-
ieved by both filters: SNR — 1 dB for fine crackles and SNR — 1 dB for
coarse crackles,

Compararive evaluarion of the IRM-FD filter and the WT-FD filrer
[15,16] was made using the synthesized signals at these threshold SNR
values supplemented by the real breath sound with fine crackles (RBFC)
and the real breath sound with coarse crackles (RBCC) using the quan:
titative evaluators described in section 3.2.2 0 3.2.5.

Separation by the IEM-ED filter into non-stationary and stationary
estimares for fest signals using rwo randomly selected, real crackle cases
at the threshold SNRs, one for fine and one for coarse crackles (Table 3,
cases RFC and RCC) are shown in Fig. 5 i (a ) and ii (a ¢), respectively.
‘The location of the crackles before inserting into the background noise is
marked with arrowheads. Tig. 5 (a) displays the inpur signals. The non-
stationary and stationary signal estimates after applying the IEM-FD
filter are shown in Fig. 5 (b) and (c), respectively. Comparing these
with the input signal, we can clearly see that for both fine and coarse
crackle samples, all the fine and coarse erackles are separated from
breath noise into the non-stationary signal estimate with their time
duration and morphology preserved. For botl fine and course crackles,
the breath noise is retained in the stationary estimate with its proper
shape and amplirude.

5.2, Comparison of the LEM FD filrer with the WT ED filter

The scparation of the IEM-FD filter was compared with the previ-
ously published WT-FD filter [15,16] in terms of Rate of Detectability
(Dy), Total Performamce (10}), Quality Factors for of crackle separy
tion (over- or under- estimation), 2CD percentage error (PEscp) and
computational complexity.

5.2.1. Rate of detectability (Dg) and Total Performance CIDF")

Table 3 shows the Rate of Detectability (Dx) aud the Total Perfor
mance (7D3*) for the IEM-FD filter and the WT-ED filter for test samples
At SNR — 1 dB for real and simulated fine crackles, and at SNR — 1 dB
for real and simulated coarse crackles and for a real breath sound with
fine erackles and a real breath sound with coarse erackles. We nore thar
for both methods (Dg) is the same except for RFC, RCC and RBFC where
the IEM FD give higher values than the WT FD leading to an overall
higher (TD¥) for the IEM-FD. For RBFC both filters show a lower Dy
than for other signals and this is due o crackles remaining in the sta-
tionary signal. This can be rectified either by changing the FDPP algo-
rithm aceuracy level (4;) or by changing the accurscy level () for
stopping iteration of the IEM-FD, but only ar the cost of increasing over-
estimation.

5.2.2. Quality factors

T'able 5 shows the Quality Factors for crackle separation of the IEM-
D filter and the WT-ID filter in terms of over- or under-estimation. We
observe that the average under-estimation Quality Factor (Egs, ) for bath
filkers is cither very close or equal to the average reference under-
estimation Quality Factor (Rgr,) indicating that there is very little
under-estimation. For over-estimation, we observe that the average
over- estimation Quality Facror (Fe,) of the IEM-FD filter is generally
much closer to 1 compared to that for the WT-FD filrer in all cases of fine
and coarse crackles, indicating less over estimation in the proposed IEM
FD filter compared to the WT-FD filter. A comparison berween the
outputs of the two filters is shown in Fig. 6 for a 0.743 second section of
the RBCC signal. The location of the crackles was audio visually iden
tified by an experienced pulmonary acoustics researcher and marked
with arrowheads. The non-stationary and stationary parts after applying
the IEMFD filter are shown in Fig. 6.ii (a) and (b), respectively.
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(@) Input signal with real coarse etackles (Vabile 3, Case RCC one sample out of 501); (b) IEM-FD filter non-stationary output; (¢) IEM-FD filter sta-

Table 5
Quality Factor for crackle separation by the IEM FD filter.
TEM-FD WT-FD
G BN Do SNE O NOTS  Ry,sn) Ts (5) — Toars (50) T (1) Tape (1)
(as)
Ay BRy NA -1 501 0.817 (0.004) 0.198 (0.003) 0.817 (0.004) 0.888 (0.032) 0.817 (0.004) 0.729 (0.036)
SFC He BRy NA i 4 501 0.848 (0.003) 0.161 (0.004) 0.848 (0.003) 0.958 (0.015) 0.848 (0.003) 0.847 (0.032)
Cr BRx NA -1 501 0.801 (0.004) 0.217 (0.006) 0.801 {0.004) 0.828 (0.036) 0.801 (0.004) 0.664 (0.033}
RFC BRx IPF -1 501 0.828 (0.003) 0.177 (0.005) 0.839 (0.003) 0.959 (0.008) 0.829 (0.003) 0.872 (0.014}
Ac BRy NA 1 S0 0.704 (0.006) 0.325 (0.012) 0.705 (0.006) 0.770 (0.036) 0.704 (0.006) 0.650 (0.038)
neoo B NA 1 s 0777 OOV) 060005 0/9(0005)  OMIZ(O025) L7/ OO0)  UsSE(O08)
Ce BRy NA 1 501 0.710 (0.005) 0.316 (0.010) 0.711 (0.006) 0.790 (0.033) 0.710 (0.005) 0.653 (0.036)
s Bily [ 1 an 0.7 (0.006) 0.992 (0.010) 0.747 {0.008) 0871 (0.013) 0.732 (0.006) 0805 (0.041)

SFC: Simulated fine crackles; Agt IDW = 0.7 ms & 2CD =5 ms [5]; Hz! IDW = 0.5 ms & 2CD =
10 ms [5]; 1i: DW

crackles; SCC: Simulared coarse crackles; A IDW 1.5 ms & 2CD

.3 ms [45];
1ms&2CD 5.0 ms [15); Ct IDW

7 IDW = 0.9 ms & 2CD = 6 ms [46]; RFC: Real fine
1.25ms &2CD 9.5 ms [16]; RCC:

number of test samples; Ry, : Mean of reference under estimation Quality Factor; Ly, : Mean of estimated under estimation Quality Factor; Ry, : Mean of reference

imation Quality Factor; Eqs,: Mean of
=32,/68.

Comparing trese results with the iuput sigual, we note tat sl tie cosrse

ity Factor; SD: Standard ds

; NA: Not applicable; In all cases number of samples (N)

Dresth souud seguents re wissiug. This oceurs due 1o dowination in
of WT coefficients related to crackles over the WT co-

crackles are separated from normal breath sound into the y
signal estimare with their fime duration and morphology preserved, and
that the normal breath sound is retained in the stationary estimate with
its proper shape and amplitude. L'or the same input signal, the non-
stationary and stationary outputs of the WT-FD filter are displayed in
Fig. © iii () and (b), respectively. Here we see thut the nou statiousry
ourput (Fig. 6-ifi (a)) of the WT-FD filter contains the crackles bur also
a part of the normal breath sound duc to over-cstimation. Morcover, in
the stationary output (Fig. 6-iii (b)) at the location of crackles, normal

180

efficients corresponding fo normal breath sounds [16). Although
over-estimation does not alter the number of crackles in the
non-stationary signal, it can affect the morphology of the erackles and
therefore is not ideal if crackle characteristics (IDW, 2CD), rather than
Jjust iunber, are important.

5.2.3. 2CD perceniage error (PTyc.)
‘Table 6 shows the separation outcomes of the IEM-FD and the WT-FD
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Fig. 6. Comparison berween crackle separation of the IEM-FD filter and the WT-FD filter; (i) Time section of 0.743 s of real breath sound with coarse crackles

(Table 3, Case RBCC) recorded from a patient with bronchiectasis, (i
lter nowstatiouary output; (b) WI-D filer statiouary output.

: (a) IEM FD filter non stationary output; (b) IEM FD filter stationary output. (iii): (a) WT ID

Table 6
Evaluaton of IEM-FD filter sepatation its terms of 20D peteentage cizor.
EMFD WIED
Cases BN Dy SNR NOTS Noc ACacp(SD) ECaco(SD) PEyco(SD) ECacp(SD) PExcp(SD)
(@) (ms) (ms) ) ims) %)
Ar BRy  NA 1 501 5010 500 5580 (0.510)  12(10.058) 7.410 (2254) 58,088 (31.972)
SFC H.  BRx  NA -l 33(0) 4159 (0.612) 26496 (18.601)  5:871(2748) £7.678 (73.919)
G BRy  NA -1 6419(0.404)  7.910(5.940) 8.427 (1.883) 46,733 (21,604)
wiC BRy IPF 1 35190103 5446 (M085) 2375 (0.865) 5.637 (2.535) 63,653 (69.716)
Ac BRy  NA 1 10 (0) 9297 (0.508)  7.524 (3.308) 11425 (2,602 21.078 (21.120)
scc  He  BRy  NA 1 5.1(0) 5504 (0512)  10.160(10051) 7719 (z nvs) 58,953 (30.445)
G omy  NA 1 95 () KO0 (05H)  6./21 (2.825) X 19552 (21.153)
ReC BRy B 1 £.406(1.532)  8.316(1.427)  10.068 (7.702) 11107 [2 682) 36707 (32.675)

SKC: Sinmlated fine ¢
crackles; SC¢

ckles; Ag: IDW
imulated coarse crackl

3.3 ms [4
ns & 2CD = 5.1 ms [45]

0.9 s & 20D = 6 ms [46]; RF

A 20D
Real coarse crackles; BN: Background noise; BR.\ Bieath noise; IPF: Ieiopathic wlw)nm) brosis. i Dronchieersi D,: Diagnosis; SNR: Signal to noise ratio; NOTS:
aumber of cest samples; NOC: Number of crackles (10 exackles in each test sample); A

filters in terms of 2CD percentage error. For the 1EM FD filter, the
average 2CD percentage error is no more than 27 % for fine crackles
(SFC and RFC) and less thau 11 % for coarse crackles (SCC and RCC). For
the WT-ED filter, the average 2CD percentage error is berwween 46 % and
88 9 for fine crackles (STC and RFC) and berween 19 % and 59 % for
coarse crackles (SCC and RCC). The increased error in the output from
the WI'FD filter relates W uncertainties inroduced by tie over
estimartion.

0

Kles 2CD; ECacn: 2CD; PEseo:
M of 21 perccntage crror; $D: Standard deiation; NA: Not applicable; In all cases munber of sanplos () =

4. Computational cost

The computational cost for the FD technique is 2(N — Wep +1)
[2(Wrp +L1) + 1] +4L1 + | additions and 2(N — Wep + 1)(Wrp + L1 +
2) + 811 multiplication [16,17], where, N is the number of samples in
the inpur signal, Wi, is the fractal dimension window length and L1 is
the maximum number of peeling levels in the FDPP algorithm, The IEM
method requires at least O (QN) operations for munber of ilerations Q
and signal length of N. On the other hand, the MRD-MRR procedure in

ms [46]; RCC:
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the WI-FD filter requires O (KN log N) [16] operations for the number of
iterations K and signal length of N. Tn our analysis for number of samples
N =32,768 and maximum number of iterations Qua: =2 the IEM
wetliod requires O (65,536) operations, whereas for the same number of
sumples and for maxinum nunber of iterations Kne = 1. the WT in the
WT-FD filter requires O (147,962) operations.

6. Discussion

Separation of crackles from normal breath sounds is an initial pro-
cessing stage towards good estimation of number of crackles and their
time domain features. The separation of crackles from normal breath

‘Biomedical Signal Processing and Control 66 (2021) 102454

filter can achieve high accuracy for the number of crackles detected
with 99.98 % of fine crackles and 99.80 % of coarse crackles detected in
our test samples; (2) The TEM-FD filter has low computational cost
compared to the established WT FD filter; (3) The IEM FD filter can
provide crackle separation with less over-estimation compared to the
WT-FD filter and (4) The TEM-FD filter can better preserve crackle
morphology after separation compared to the WT-FD filter in both fine
and coarse crackle test signals.

We concluded that the IEM-FD filter would be suitable for use in a
clinical context for estimating number of crackles or as a first step in
classifying crackles (fine or coarse) on the basis of their time domain
features, This in turn can assist with diagnosing lug diseases and in

itoring disease ion. Future research will focus on devel-

sounds with low over- or imation aids accurate

of erackle time domain fearures which can help to differentiate berween
cardio- pulmonary diseases with high sensitivity and specificity. For
example, Flietstra et al. [35] showed that based on heir different crackle
features (number of crackles in inspiratory phase, number of zero-line
crossings, and first half period of the crackle) idiopathic pulmonary
fibrosis patients can be differentiated from patients with ia and

oping filter parameters that are fully adaptive and on evaluating the
operation of the IEM-FD on & more diverse dataset recorded from car
diopulmaonary patients, which can further test its ability to detecr
crackles in different pulmonary conditions.

congestive heart failure. Mimakara er al. [6] idenrified that baseline drift
over the duration of a crackle (a consequence of over-estimation) may
introduce errors when caleulating IDW and 2CD leading to incorrect
classification of crackle type (fine or coarse) and increasing the potential
for misdiagnosis.

The automatic separation of crackles from lung sounds using the
IEM FD filter shows good potential for & single chamnel, computer based
separation of crackles from breath sounds with low over- and under-
estimarion, high Rate of Detecrabiliry, good robustness o noise above
SNRs of -1 dB for fine crackles and 1 dB for coarse crackles, well pre-
served morphology and high processing speed.

In comparison with the established WT-FD filter, [15,10] the IEM-FD
filter has an equally high Rate of Detecrability for both fine and coarse
crackles except for test signals RFC, RCC and RBFC where the IEM
outperformus WT FD leading to a significantly better Total Performance
for both fine ((8016) = 5.12, p < 0.000) and coarse crackles (1(8016) =
11.99, p = 0.000). In addition, the TEM-FD had less over-estimation, a
Jower 2CD percentage error and lower computational complexity.
Further, the IEM FD filter has fewer data dependent optimization pa
rameters than the WT-FD filter making it generally applicable to signals
recorded from cardiopulmonary patients with different diagnoses
without the need for data dependent customization to optiniize the
separarion.

Recently Garcia et al. [25] have showed that ICA coupled with a
statistical measure offers & prowmising crackle separation technique and,
coupled with spectral analysis, allows the number of crackles present (o
be identified. However, TCA requires simulrancons measurements from
at least as many separate recording channels as there are independent
sound generation mechanisms, and therefore requires a bespoke
recording systen, whereas our analysis can be carried out on a single
recording channel for example from an electronic stethascape.

However, the IEM-FD filter, has several limitations: First, the selec-
tion of the smoothing filter (Savizky Golay) parameters in the IEM
method is not adaptive which may mean thay, in the presence of high
frequency background noise, the envelope mean valie is not properly
estimated; Second, the dependency of the IEM-FD filter stopping criteria
on three non adaptive accuracy levels : g, for the IEM method, 4, for the
IEM-FD filter and f, for the FDPP algorithm may affect whether all
crackles are separated and wherher there is over- or under-estimarion.

7. Conclusions

This paper presented an automaric rechnique for separaring pulmo-
nary crackles from breath sounds: the IEM-FD filter. The IEM-FD filter
was evaluated using s publicly available dataset for systematic testing of
crackle separation techniques and compared with the previously pub-
lished W FD filter. Key findiugs of this study were: (1) The 1EM FD
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