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Chapter 1

INTRODUCTION

1.1 Active Structural Acoustic Control

Over past decades noise and vibration effects on human beings have been regarded as signifi-
cant problems and the regulations for the maximum acoustic and vibration levels have become
more and more stringent. Especially for both land and air transportation vehicles, the con-
trol of vibration and sound transmission through lightly damped panels is an important issue,
since it might result in discomfort.

In general, vibration and sound radiation control is achieved with passive treatments,
which offer efficient results at high audio frequencies. However, passive approaches tend to
have limited performance at low audio frequencies and require relatively bulky and heavy
treatments[1]. Alternatively, at low audio frequencies, active vibration control techniques
can be employed to reduce the sound radiation through thin structures. The low frequency
response of lightly damped thin structures is characterized by well separated and sharp
resonances. In the vicinity of resonance frequencies active damping control tends to be
effective[1],[2]. Direct velocity feedback (DVFB) control is a simple way to implement ac-
tive damping control[1],[3]. As schematically shown in Figure 1.1, when DVFB control is
implemented, the control actuator exerts a control action directly proportional to the oppo-
site of the velocity at the error sensor, thus it generates active damping.

Figure 1.1: Smart panel with a piezoelectric patch actuator and a velocity sensor at its center
for the implementation of a direct velocity feedback control loop that generates active damping

The principal issue of feedback control systems is stability, which is guaranteed if the sensor
and actuator are collocated and dual. In this case the open loop sensor-actuator Frequency
Response Function (FRF) is bound to be positive real and therefore the feedback control loop
is unconditionally stable[1],[2], [4]-[6]. Thus large control gains could be implemented, which,
in the case of velocity feedback, produce high levels of damping that reduces the response of
the structure of sharp resonances at low frequency[1],[2], [4].
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Elliott et al.[7] have proposed to use arrays of decentralized single channel velocity feedback
control systems to generate active damping in panels. Their studies have shown that arrays
of direct velocity feedback control systems can be efficiently operated to reduce both the low
frequency vibration of the panel and its sound radiation or transmission. The use of control
units with small piezoelectric patch actuators and accelerometer sensors at their centers has
been considered in order to obtain compact and lightweight panels[8]-[10]. The velocity sensor
detects the transverse vibration and the piezoelectric patch actuator exerts line moments
along the edges[11], so that this control unit is neither collocated nor dual[5]. Thus, the
plant responses of the decentralized control units are not guaranteed to be positive real at all
frequencies[6]. As a result, the decentralized control loops are stable only for a limited range
of control gains[2], [6]. This limits the generation of active damping on the structure and thus
the vibration reduction and sound transmission[8]-[10]. It is therefore crucial to improve the
collocation and duality properties of the velocity sensor and the piezoelectric patch actuator
pair in order to develop more stable and robust feedback control loops, which produce the
desired levels of active damping on smart panels.

1.2 Scope and Objectives

This report presents simulations and experimental results regarding the modeling of a smart
panel, which consists of a rectangular panel with the dimensions lx × ly = 414mm × 314mm
and a single control unit. This control unit is composed of three main components: (1) an
accelerometer sensor that detects out-of-plane acceleration, (2) a piezoelectric patch actuator
that acts as the secondary controlling source, and (3) an analogue constant gain feedback
controller, that connect the accelerometer sensor to the piezoelectric patch actuator. The
piezoelectric transducer is bound on one sides of the panel, while the accelerometer sensor is
attached on the other side in correspondence to the center of the actuator. The smart panel
is mounted on a rigid frame positioned on the top open side of a rectangular cavity with thick
rigid walls.

The three main objectives of this report are:

1. to build a mathematical model of smart panel, which separate the various effects of the
local response of the sensor-actuator unit;

2. to validate the model by experiments;

3. to investigate the configuration of the control unit, which maximize the stability and
performance of the control system.

In order to investigate the effects of the piezoelectric actuator and seismic accelerometer
sensor transducers on the stability and control performance, practical detailed models are pro-
posed instead of the standard simplified model with the ideal massless actuator and the ideal
velocity sensor. In particular two fully coupled models are derived, which take into account:
a) the passive mass and stiffness loading effects of the piezoelectric patch and b) the dynamic
response and operational output signal of the accelerometer sensor in addition to the passive
actuator effects. The open loop sensor-actuator FRF obtained with these two models are
tested against experimental measurements in order to show the validity of the mathematical
models. By using these two validated fully coupled models, an extensive parametric study is
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carried out in order to achieve the thirdobjective listed above. Both the Bode and the Nyquist
plots of the open loop sensor-actuator FRFs are used to investigate the stability of the feed-
back loop, which is assessed with reference to Nyquist stability criterion. The performance
of the control unit is investigated in term of the maximum vibration reduction at first few
resonances. A simple formula is proposed, which gives these maximum vibration reductions
at resonance frequencies from the Nyquist plot of the open loop sensor-actuator FRFs.

1.3 Structure of the Report

This report is divided into five chapters. Chapter 2 of this report briefly introduces the concept
of smart panel with single sensor-actuator pair. Further on, the direct velocity feedback
control (DVFB) method and the implementation of active damping on the smart panel are
explained. The stability and control performance concepts are revised, and a simple formula
for the calculus of the maximum vibration reduction at the error sensor with a stable loop
is derived. Chapter 3 presents the formulation of the analytical models used to predict the
response of the fully coupled plate and the piezoelectric patch. The predicted response of the
plate with actuator and practical/ideal sensor is briefly introduced. The simulated results are
compared with measured ones, and the validity of the numerical model is discussed. Chapter
4 presents a parametric study that highlights the effects of the size, thickness and bounding
offset of the piezoelectric patch actuator on stability and control performance. This study
verifies that stability properties can be significantly improved by modifying the geometric
parameters of the actuator patch. Conclusions are given in Chapter 5.
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Chapter 2

ACTIVE CONTROL AND

STABILITY

The study presented in this report considers a rectangular thin aluminium panel with dimen-
sions 414mm x 314mm and 1mm thickness. As shown in Figure 2.1, the panel is mounted
on a rigid frame, which is positioned on the top open side of a rectangular cavity with rigid
walls. This test rig has been designed in such a way to get sound radiation into the open
space only from the top side of the panel. The plate is driven into motion by a shaker that
generate point force fp at the position (xp, yp) = (62.1mm, 138.2mm). It is assumed that the
radiated acoustic sound pressure has no effect on the vibration of the panel. The geometry
and physical properties of the plate are given in Table 2.1.

The panel is equipped with one feedback control unit that consists of a closely located
accelerometer sensor and a square piezoelectric actuator. The piezoelectric actuator has a
dimension of 25mm x 25mm x 0.5mm and is fixed on the inner side of the panel by a thin
bonding layer of glue. The center position of the piezoelectric patch, where the error sensor
is also located, is situated at (xc, yc) = (136.6mm, 222.9mm). The physical properties and
geometry of the piezoelectric patch considered in this study are summarized in Table 2.2.

Table 2.1: Geometric and physical properties of the smart panel
parameter value
Dimensions lx x ly = 414mm x 314mm
Thickness hs = 1mm
Density ρs=2700 kg/m3

Young’s Module Es=7.2x109 N/m2

Poisson’s Ration νs=0.33
Loss Factor ηs=0.02
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Figure 2.1: Physical arrangement of test rigs, which consist of an acoustic cavity with rigid
walls and a baffled clamped smart panel, excited by a transverse point force generated by a
shaker

Table 2.2: Geometric and physical properties of the the piezoelectric patch actuator
parameter value
Dimensions ax x ay = 25mm x 25mm
Thickness hpzt = 0.5mm

Center Position xc x yc = 0.33lx x 0.71ly
Density ρpzt=7600 kg/m3

Young’s Module Epzt=6.1x109N/m2

Poisson’s Ration νpzt=0.31
Strain Constant d31=268x10−12 m/V

Actuation Constant cα=1.226x10−3 N/V
Max. Operating Voltage cm=235x103 V/m
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2.1 DVFB Control

When the panel is excited by the primary excitation fp and the control momentsmc, generated
by an ideal massless piezoelectric actuator, the phasor of the velocity in z-direction at the
sensor position ẇc can be written using the following mobility expression:

ẇc = Ycpfp + Y p
ccmc, (2.1)

where Ycp is the mobility function between the primary excitation and the velocity at the
control sensor, and Y p

cc is a 4-element row vector with the mobility functions between the
control moments along the edges of the actuator and the control velocity:

Y p
cc = ⌊ Ycx1 Ycx2 Ycy1 Ycy2 ⌋. (2.2)

The derivation of the mobility functions is given in Appendix A, and the formula for the
mobility functions used in thsi chapter are given in section 1 of Appendix B. In Eq.(2.1), mc

denotes a 4-element column vector with the control moments generated by the piezoelectric
patch along the four edges:

mc =
[
mcx1 mcx2 mcy1 mcy2

]T

= mc

[
−1 1 1 −1

]T
(2.3)

= mcd,

where mcx1, mcx2, mcy1, and mcy2 are respectively the control moment along y = yc1 between
x = (xc1, xc2), and y = yc2 between x = (xc1, xc2), x = xc1 between y = (yc1, yc2), and x = xc2

between y = (yc1, yc2), as shown in Figure 2.2. mc denotes the magnitude of the effective
bending moment per unit length, which is induced by the piezoelectric patch actuator to the
panel. The effective moment mc is proportional to the applied voltage across the piezoelectric
actuator Vc,

mc = cαVc, (2.4)

where cα is the piezoelectric constant given in Eq.(C.17). The details regarding the formula-
tion of the effective actuation moments is presented in Appendix C.

The response at the error sensor generated by the primary excitation and the Direct
Velocity FeedBack (DVFB) control loop can be formulated in terms of the classic disturbance
rejection block diagram as shown in Figure 2.3. In this figure H denotes a constant feedback
gain, and Vc denotes the input voltage signal to the piezoelectric actuator. When the DVFB
control loop is implemented, the control voltage Vc is defined as follows:

Vc = −Hẇc. (2.5)

Thus, the actuator induced moment mc is given by:

mc = cαVc = −cαHẇc. (2.6)

Therefore, the velocity at the sensor location ẇc can be calculated as:

ẇc =
Ycpfp

1 +GsH
, (2.7)

where Gs denotes the transfer function between the error sensor and the piezoelectric actuator:

Gs = cαY p
ccd. (2.8)
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Figure 2.2: Moments excitation generated by a piezoelectric patch that is bonded on the
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2.2 Open Loop Frequency Response Function

In feedback control loops, the control performance is strongly linked to the stability of the
control loop. In principle, if the control loop is unconditionally stable, very high control gains
can be implemented, such that a perfect cancelation can be generated at the control point.
In contrast, when the system is only conditionally stable, a limited range of control gains can
be implemented, which may lead to modest vibration reductions at the sensing position.

The stability of a control system is commonly assessed by the open loop sensor-actuator
FRF, Gc, between the output signal from the velocity sensor ẇc and the input signal to the
controller:

Gc = GsH. (2.9)

For proportional feedback control, the control function H is set to unity, H = 1. In this case,
the open loop FRF is given by:

Gc = Gs = cαY p
ccd. (2.10)

Figure 2.4 shows the Bode plot (left) and the Nyquist plot (right) of the predicted sensor-
actuator open loop FRF Gc, assuming that the panel is simply supported along four edges.
For the practical damping of the test rig considered in this study, the boundary condition can
not be considered neither clamped or simply supported. At lower frequencies up to around
500Hz, the boundary condition is almost clamped on all four edges, and at higher frequencies
from around 1kHz, the boundary condition is close to simply supported on all four edges.
Therefore, since the stability analysis requires the analysis of the sensor-actuator open loop
FRF up to very high frequencies, which means up to 50kHz in this study, the modeling has
been carried out considering simply supported boundary condition.

The Bode plot in Figure 2.4 indicates that the amplitude of the sensor-actuator FRF grows
when the frequency rises. This is a typical feature of moment-type excitation that is normally
encountered with strain actuators[12]. The phase plot indicates that the phase is confined
between ±90deg up to about 10kHz, and then a phase lag takes place. This effect is due to
the non perfect collocation between the position of the error signal detection at the center
of the piezoelectric patch and the bending control excitation at the edges of the piezoelectric
patch.

The Nyquist plot in Figure 2.4 is characterized by a series of circles, which are determined
by the resonant response of the modes of the plate. In low frequencies the locus starts from
vicinity of the origin and moves in the right hand side quadrants. As the frequency rises, the
locus tends to drift away from the origin. This is due to the residual effect from the resonant
response of neighbor resonances. At low frequencies the modal density is low, so that the
residual effect of the neighbor modes is negligible. As the plate modal overlap increases
with frequency, the residual effect from the resonant response of neighbor resonances on the
resonant response becomes more pronounced, and this effect shifts the locus away from the
origin. At higher frequencies the locus enters and goes through the left hand side quadrants
in a clockwise rotation. This drifting effect is caused by the phase lag generated by the
non-perfect collocation between the sensor and the actuator pair.

The phase lag of the flexural waves Φ is given as the product of the circular frequency ω
and the time delay tb [12] it takes the bending waves, generated at the edges of the piezoelectric
patch, to travel to its center position, at the error sensor location:

Φ = ωtd =
ωds

cb
, (2.11)
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where cb denotes the propagation speed of the flexural wave, and ds denotes the distance
between the error sensor and the edge of the patch actuator. As the sensor is situated at the
center of the square patch, the distance is given as half of the patch length a:

ds =
a

2
. (2.12)

Assuming a single sine wave, the phase velocity of the flexural waves cb is given by the following
formula[13][14]:

cb = 4

√
Ds

ρshs

√
ω, (2.13)

where ρs is the density, and hs is the thickness of the panel. Ds denotes the bending stiffnes,
which is given as the product of the module of elasticity Es and the area moment of inertia
per unit width, Is:

Is =
h3

s

12
. (2.14)

Thus, using Eq.(2.13), the phase lag Φ can be expressed as follows:

Φ =
a

2

√
ω 4

√
ρshs

Ds

. (2.15)

This equation indicates that the phase lag monotonically increases with reference to the square
root of the circular frequency. The progressive phase lag of the open loop FRF brings the
control system to a positive feedback velocity loop, rather than negative, so that the system
becomes unstable.

Considering that the open loop FRF Gc is defined as the ratio between the velocity and
the applied excitation, not between the the displacement and the excitation, the simulated
phase of Gc is 90deg larger than the predicted phase lag given in Eq.(2.15), thus:

Φc =
a

2

√
ω 4

√
ρshs

Ds

− π

2
. (2.16)

The predicted phase lag is plotted in Figure 2.4 by the dashed line, which follows the rough
outline of the phase lag of the sensor-actuator open loop FRF.

As a summary, Figure 2.4 highlights the following conclusions.

1. A piezoelectric patch actuator efficiently excites higher frequency resonant modes.

2. As frequencies rises, the locus drifts away from the origin due to the residual effect from
the resonant response of neighbor resonances.

3. The sensor-actuator open loop FRF is bound to be positive real only at low frequencies
due to the phase lag, which is generated by the non-perfect collocation between the
actuation moment along the perimeter of the actuator and the velocity sensing at the
center of the actuator.

Thus, when large control gains are implemented there is a potential stability problem. There-
fore it is likely that only a limited range of control gains can be implemented and thus rather
small control effects are produced in practical systems with a closely located error sensor and
the piezoelectric patch with direct velocity feedback control.
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Figure 2.4: The Bode plot (left) and the Nyquist plot(right) of the open loop FRF of a closely
located velocity sensor and a square piezoelectric actuator(solid line), and the predicted phase
lag (dashed line)

2.3 Control Performance

As discussed in the introduction chapter of this report, the aim of velocity feedback is to
generate active damping, which is particularly effective at resonance frequencies, where in fact
the response of the structure is principally controlled by damping. The control performance
of the feedback system at the kth resonance frequency ωk can be assessed in terms of a factor
ρk, which is given by the ratio between absolute value of the the velocity phasor at the error
sensor without control and with the maximum control gainHmax that guarantees the stability:

ρk =
|ẇ(ωk)max control|
|ẇ(ωk)no control|

=

∣∣∣∣∣
Ycp(ωk)fp

1 +HmaxGc(ωk)

∣∣∣∣∣
1

|Ycp(ωk)fp|
(2.17)

=
1

|1 +HmaxGc(ωk)|
.

According to Nyquist stability criterion, the maximum control gain Hmax is given by the
reciprocal of δ0:

Hmax =
1

δ0
, (2.18)

where δ0 denotes the absolute distance between the origin and the FRF, when the locus of the
open loop sensor-actuator FRF crosses the real negative axis at the frequency ω0, as shown
in the Nyquist plot in Figure 2.5:

δ0 = |Gc(ω0)| (2.19)

= −Re(Gc(ω0)).

As discussed above, for low frequency resonances the locus-circles start from the origin
and are aligned along the real positive axis. In this case, the amplitude of the FRF at ωk can
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be approximated by the amplitude δrk, where the kth resonance circle crosses the real axis.
Therefore, Eq.(2.17) can be simplified into the following formula:

ρk
∼= 1

1 +
|Gc(ωk)|
|Gc(ω0)|

=
1

1 +
δrk

δ0

(2.20)

=
1

1 + δ0k

,

where δ0k = δrk

δ0
denotes the ratio between the amplitude of the kth resonance circle δrk and

the maximum control gain δ0 in the Nyquist plot of the open loop sensor-actuator FRF. The
index of the maximum vibration reduction Rk that can be generated by the control loop is
defined by the reciprocal of the indicator ρk in the unit of decibel:

Rk = 20 log10

1

ρk

= 20 log10(1 + δ0k). (2.21)

This equation gives the approximate index of the maximum vibration reduction Rk on the
sensor location at the kth resonance frequency. This formulation provides a simple approach
to derive the control effectiveness at low frequency resonances based on either the predicted
or measured open loop sensor-actuator FRF of the feedback control system. The index of the
maximum vibration reduction Rk is plotted in Figure 2.6 for a range of ratios δ0k from 0 to 3.
This plot suggests that it is sufficient to have a ratio of 2 in order to obtain a 10 dB reduction
of vibration at the error sensor position. This graph is of great importance since it can be used
in combination with the Nyquist plot of the sensor-actuator FRF to assess both the stability
and the control performance of a velocity feedback loop at resonance frequencies. In fact, it
is sufficient to estimate the ratio δ0k from the Nyquist plot of the open loop sensor-actuator
FRF and then convert it into the maximum reduction index Rk using the plot in Figure 2.6.
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Chapter 3

MODEL PROBLEM

The mobility model considered in the previous chapter neglected several features of the control
system, which can be summarized in the following points:

1. physical passive effects of the actuator and the sensor (mass and stiffness of the actuator,
and mass of the sensor)

2. dynamic effects of the sensor (fundamental axial resonance)

3. offset effect due to the mounting method of the piezoelectric patch actuator

Intuitively, the compact and lightweight control system justifies these simplifications. How-
ever, it is crucial to investigate the effects of these physical properties on the stability in order
to design a feasible actuator-sensor pair with good stability properties. In order to study
and assess each effect independently, several models are considered in this chapter. Two fully
coupled models are introduced, and these models are experimentally verified.

3.1 Actuator Mass Effect

In this section, the inertia effect of the piezoelectric patch actuator mass is modeled and
analyzed. A simple model of this mass effect can be formulated by considering that the mass
of the piezoelectric patch is concentrated at its center, where the control sensor is attached.
Due to the linearity of the system, the phasor of the velocity at the error sensor ẇc can be
expressed as follows:

ẇc = Ycpfp + Y p
ccmc + Ycmfm, (3.1)

where Ycm is the mobility function between the force generated by the inertia effect of the
actuator fm and the velocity at the error sensor. This force is derived from Newton’s second
law:

fm = −mpztẅc

= −jωmpztẇc, (3.2)

where mpzt denotes the mass of the piezoelectric actuator. Using Eq.(3.2), Eq.(3.1) can be
written as:

ẇc = Ycpfp + Y p
ccmc − jωmpztẇcYcm
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=
Ycp

1 + jωmpztYcm

fp +
1

1 + jωmpztYcm

Y p
ccmc (3.3)

= Ỹcpfp + Ỹ
p

ccmc.

Since the patch actuator is uniformly bonded to the panel, the single lumped mass model
can not properly estimate the distributed inertia effect of actuator mass, especially at higher
frequencies where the wavelength becomes closer to the patch side dimension. Therefore,
instead of a single lumped mass model, a multiple lumped mass model is introduced. The
actuator is modeled by a grid of rectangular elements as illustrated in Figure 3.1. The size
of these elements has been chosen to be shorter than a quarter of the flexural wavelength
at the maximum frequency considered in this study. According to the reference[13], the
smallest flexural wavelength is λmin=13.8mm at a maximum frequency of 50kHz. Therefore,
the actuator, with the dimension of 25mm x 25mm, has been subdivided into a grid of 8 x 8
elements, with the dimension 3.125mm x 3.125mm.

me

fpzt

i,j

Figure 3.1: Schematic representation of distributed mass model

When inertia effect of the actuator mass is modeled by the multiple elements, the velocity
at the sensor position ẇc is given as follows:

ẇc = Ycpfp + Y p
ccmc + Y cmfm, (3.4)

where Y cm is a n2
m-element row vector with the mobility functions between the forces gen-

erated by the inertia effects of elemental masses and the control velocity. nm is the number
of the elements in x- and y-directions. fm is a n2

m-element column vector with the forces
generated by inertia effects of lumped masses:

fm =
[
f 1,1

m f 1,2
m · · · f i,j

m · · · fnm,nm
m

]T

= −jωmmẇm, (3.5)

where f i,j
m represents the force due to inertia effect of ith, jth element, and mm denotes the

mass of each element. Assuming that the thickness of the patch is constant, and each element
has the same dimension, the mass of each element is given by:

mm =
mpzt

n2
m

. (3.6)

In Eq.(3.5), ẇm is a n2
m-element column vector with the phasor of the velocities at the centers

of the lumped masses:

ẇm =
[
ẇ1,1

m ẇ1,2
m · · · ẇi,j

m · · · ẇnm,nm
m

]T

= Y mpfp + Y mcmc + Y mmfm, (3.7)
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where ẇi,j
m represents the phasor of the velocity of ith, jth element. Y mp is a n2

m-element
column vector with the mobility functions between the primary excitation and the velocities
at center of the elements. Y mc is a n2

m× 4 matrix with the mobility functions between the
control moments along the edges of the square patch actuator and the velocities at center
of the element. Y mm is a n2

m × n2
m matrix with the mobility functions between the forces

generated by the inertia effect of the lumped masses and the velocities at the centers of the
elements. Substituting Eq.(3.7) into Eq.(3.5), the force vector fm is given by:

fm = −jωmm (Y mpfp + Y mcmc + Y mmfm)

= −jωmm[I + jωmmY mm]−1 (Y mpfp + Y mcmc) , (3.8)

where I denote a n2
m × n2

m identity matrix. Substituting Eq.(3.8) into Eq.(3.4), the control
velocity ẇc can be expressed as:

ẇc = Ỹcpfp + Ỹ
p

ccmc, (3.9)

where Ỹcp and Ỹ
p

cc are given below:

Ỹcp = Ycp − jωmmY cm[I + jωmmY mm]−1Y mp (3.10)

Ỹ
p

cc = Y p
cc − jωmmY cm[I + jωmmY mm]−1Y mc. (3.11)

Further details regarding the mobility functions used in this section are given in section 2 of
Appendix B.

Figure 3.2 compares the simulated open loop FRF between the ideal sensor and the ideal
massless piezoelectric actuator with the simulated open loop FRF between the ideal sensor
and the lightweight piezoelectric actuator, in which case, Gc is given by:

Gc = cαỸ
p

ccd. (3.12)

The Bode plot in Figure 3.2 indicates that the mass effect becomes important at high fre-
quencies. When the frequency is higher than 5kHz, the phase lag of the FRF with mass
effect becomes bigger than phase lag of the FRF without mass effect. At frequencies higher
than 10kHz, the difference in phase lag between the two FRFs is almost constant, that is
approximately given by 90deg. The inertia effect tends to pull down the amplitude of the
FRF in proportion to ω. Therefore, when the mass effect of the patch actuator is considered,
the amplitude of the FRF is smaller than that of the open loop FRF between an ideal sensor
and ideal actuator, particularly at high frequencies, where the open loop FRF enters the left
half of the Nyquist plot. As a result, the Nyquist plot of the sensor-actuator open loop FRF
is more squeezed towards the imaginary axis, as shown in Figure 3.2. Therefore, the stability
is improved and hence the control system can be operated with a larger control gain. In
conclusion, inertia brings a beneficial effect that improves the stability of a feedback control
loop.
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Figure 3.2: The Bode plot (top) and the Nyquist plot (bottom 1 by 2 array) of the open loop
FRF between the ideal velocity sensor and either the massless piezoelectric actuator (faint
line, left), or the lightweight piezoelectric actuator (dotted line, right)
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3.2 Actuator Stiffness Effect

When the actuator is bonded to the panel, the patch locally increases the stiffness of the
structure. In this section the passive elastic effect of the piezoelectric patch actuator is
modeled and analyzed. At first, in order to simply assess this passive effect of the actuator,
the patch actuator is modeled by a single pair of linear springs, as shown in Figure 3.3. Due
to the linearity, when the stiffness of the patch actuator is taken into account, the phasor of
the velocity at the error sensor can be expressed as:

ẇc = Ycpfp + Y cMM t, (3.13)

where Y cM denotes a 4-element row vector with the mobility functions between the moments
acting on the edges of the patch actuator and the control velocity. M t denotes a 4-element
column vector with the moments generated by the piezoelectric actuation and the elastic
effect of the lumped springs:

M t =
[
Mx1 Mx2 My1 My2

]T
, (3.14)

where Mx1, Mx2, My1, and My2 are the total moments generated along y = yc1 between
x = (xc1, xc2), and y = yc2 between x = (xc1, xc2), x = xc1 between y = (yc1, yc2), and x = xc2

between y = (yc1, yc2), respectively. When the piezoelectric patch actuator is modeled by a

single pair of springs, the total line moments along the edges are concentrated at
(

xc1+xc2

2
, yc1

)
,(

xc1+xc2

2
, yc2

)
,
(
xc1,

yc1+yc2

2

)
, and

(
xc2,

yc1+yc2

2

)
, respectively.

The discretized total moment acting on the panel M t is defined as the summation of the
discretized effective control actuation moment M c and discretized passive moment generated
by the elastic effect of the actuator patch M k:

M t = M c + M k, (3.15)

where M c is a 4-element column vector:

M c = mc

[
−ax ax ay −ay

]T
, (3.16)

where ax and ay are respectively the length of the actuator in x- and y-directions. Considering
the coordinate system defined in Figure 3.4, the vector M k with the passive moment on the

ax

ay

hpzt

Ax My1

My2

Mx1

Mx2

x

y
z

Figure 3.3: Schematic representation of the actuator stiffness model with single pair of springs
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panel is given by the following formula:

M k = −M k
pzt =





ax

∫
−

hs
2

−
hs
2
−hpzt

σk
pzt,y1zdz

ax

∫ −hs
2

−
hs
2
−hpzt

σk
pzt,y2zdz

−ay

∫
−

hs
2

−
hs
2
−hpzt

σk
pzt,x1zdz

−ax

∫
−

hs
2

−
hs
2
−hpzt

σk
pzt,x2zdz





(3.17)

where hs and hpzt are respectively the thickness of the panel and the piezoelectric patch.
σk

pzt,y1, σ
k
pzt,y2, σ

k
pzt,x1, and σk

pzt,x2 are respectively the stress within the piezoelectric patch
along y = yc1 between x = (xc1, xc2), and y = yc2 between x = (xc1, xc2), x = xc1 between
y = (yc1, yc2), and x = xc2 between y = (yc1, yc2), which is generated by the passive elastic
effect of the actuator. Since a stress is defined as the force perpendicular to the cross section
divided by the cross sectional area, the applied moment can be given by using the force
applied on the piezoelectric actuator along the edge of the patch, as shown Figure 3.4. Thus,
Eq.(3.17) is rewritten as follows:

M k =





ax

Apy

∫
−

hs
2

−
hs
2
−hpzt

Fky1zdz

ax

Apy

∫
−

hs
2

−
hs
2
−hpzt

Fky2zdz

− ay

Apx

∫
−

hs
2

−
hs
2
−hpzt

Fkx1zdz

− ay

Apx

∫
−

hs
2

−
hs
2
−hpzt

Fkx2zdz





, (3.18)

where Fk1 and Fk2 are give by:

Fk1 = kpzt(s1 − s2)

Fk2 = kpzt(s2 − s1), (3.19)

where kpzt denote the axial stiffness of the piezoelectric patch. When the elastic effect of the
piezoelectric patch is modeled by one pair of springs, the spring coefficient kpzt is given as:

kx
pzt =

EpztApx

ax

(3.20)

k
y
pzt =

EpztApy

ay

, (3.21)

where Epzt denotes the elastic module of the piezoelectric patch, and Apx and Apy denote the
section area of the actuator normal to x- and y-directions, as shown in Figure 3.3:

Apx = ayhpzt (3.22)

Apy = axhpzt, (3.23)
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In Eq.(3.19), s1 and s2 denote the displacement along the edge of the patch. Considering
the coordinate and sign notation defined in Figure 3.4, these terms can be expressed with
reference to the rotation angles of the plate and the distance between the middle plane of the
panel and that of the patch, represented by z:

sx1 = z tan θy1

sx2 = z tan θy2 (3.24)

sy1 = −z tan θx1

sy2 = −z tan θx2.

Assuming that the rotation angles are small, the above formulas can be simplified as follows:

sx1 = zθy1

sx2 = zθy2 (3.25)

sy1 = −zθx1

sy2 = −zθx2,

in which case, the force Fk is given as follows:

Fkx1 = zkx
pzt(θy1 − θy2)

Fkx2 = zkx
pzt(θy2 − θy1) (3.26)

Fky1 = −zky
pzt(θx1 − θx2)

Fky2 = −zky
pzt(θx2 − θx1).

After integration of Eq.(3.18), the vector with discretized total moment M t can be ex-
pressed:

M t = −Ckθ̇ + M c, (3.27)

where Ck is a 4 × 4 matrix with the stiffness coefficients:

Ck =




ckx −ckx 0 0
−ckx ckx 0 0

0 0 cky −cky

0 0 −cky cky


 , (3.28)

and ckx and cky are stiffness coefficients regarding the elastic effect of the patch in x- and
y-directions:

ckx =
k

y
pzt

12jω
(4h2

pzt + 6hshpzt + 3h2
s) (3.29)

cky =
kx

pzt

12jω
(4h2

pzt + 6hshpzt + 3h2
s). (3.30)

In Eq.(3.27), θ̇ represents a 4-element column vector with the angular velocities along the
edges of the patch actuator:

θ̇ =
[
θ̇x1 θ̇x2 θ̇y1 θ̇y2

]T

= Y θpfp + Y θMM t, (3.31)
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where θ̇x1, θ̇x2, θ̇y1, and θ̇y2 are the angular velocities at
(

xc1+xc2

2
, yc1

)
,
(

xc1+xc2

2
, yc2

)
,
(
xc1,

yc1+yc2

2

)
,

and
(
xc2,

yc1+yc2

2

)
, respectively. Y θp is a 4-element row vector with the mobility functions be-

tween the primary excitation at (xp, yp) and the angular velocities at the edges of the patch
actuator. Y θM represents a 4 × 4 matrix with the mobility functions between the discretized
total moments and the angular velocities at the edges of the patch actuator. Substituting
Eq.(3.31) into Eq.(3.27), the discretized total moment vector M t is given by:

M t = − [I + CkY θM ]−1
CkY θpfp + [I + CkY θM ]−1

M c. (3.32)

Substituting Eq.(3.32) into Eq.(3.13), the complex velocity at the control position ẇc is ex-
pressed as:

ẇc = Ỹcpfp + Ỹ cMM c, (3.33)

where Ỹcp and Ỹ cM are defined below:

Ỹcp = Ycp − Y cM [I + CkY θM ]−1
CkY θp (3.34)

Ỹ cM = Y cM [I + CkY θM ]−1
. (3.35)

Since the patch is in practice a distributed system, a single pair of springs is not sufficient to
model the actuator induced bending moment. Therefore, instead of single pair of springs, the
actuator has been modeled with nk pairs of springs as shown in Figure 3.5. When the elastic
effect of the patch actuator is modeled by nk pairs of springs, the phasor of the control velocity
ẇc is given by the same formula as Eq.(3.13), however in this case Y cM is a 4nk-element row
vector with the mobility functions between the elemental moments and the control velocity.
The discretized total moment vector M t is defined by a similar formula as Eq.(3.27):

M t = [ M x1 Mx2 M y2 M y1 ]T

= −Ckθ̇ + M c, (3.36)

where in this case Ck is a 4nk × 4nk matrix:

Ck =




ckx

nk

I −ckx

nk

I 0 0

−ckx

nk

I
ckx

nk

I 0 0

0 0
cky

nk

I −cky

nk

I

0 0 −cky

nk

I
cky

nk

I




, (3.37)

where I is a nk × nk identity matrix, and ckx and cky are stiffness coefficients, defined in
Eq.(3.29) and Eq.(3.30). M c is a 4nk-element row vector with the control moments:

M c =
mc

nk

[
−axK axK ayK −ayK

]T

=
mc

nk

Da, (3.38)

where K is a nk dimension row vector consisting of 1:

K =
⌊

1 1 · · · 1
⌋
. (3.39)
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In Eq.(3.36), θ̇ denotes a 4nk-element column vector with the angular velocities along the
edges of the patch. The formula for θ̇ is already given in Eq.(3.13), however in this case Y θp is a
4nk-element row vector with the mobility functions between the primary excitation at (xp, yp)
and the angular velocity of the elements at the edges of the patch actuator. Y θM represents a
4nk × 4nk matrix with the mobility functions between the discretized total moments and the
angular velocities of the elements at the edges of the patch. According to Eq.(3.13), Eq.(3.36),
and Eq.(3.31), when the multiple pairs of springs are taken into account, the control velocity
ẇc is given by the same formula as the single pair of springs is considered, as given in Eq.(3.33).
Details regarding the mobility functions used in this section are given in section 3 of Appendix
B.

Figure 3.6 compares the simulated open loop FRF between the ideal sensor and the ideal
actuator with the simulated open loop FRF between the ideal sensor and the elastic actuator,
in which case Gc is given by:

Gc =
cα

nk

Ỹ cMDa. (3.40)

Figure 3.6 highlights that the amplitude of sensor-actuator FRF using the stiffness-coupled
model is slightly lower than that of the ideal model at low frequencies. This is due to the
fact that the distributed elastic effect of the patch locally increases the stiffness of the smart
panel at low frequencies. Although this plot shows the passive stiffness effect of the actuator
is small, Eq.(3.29) and Eq.(3.30) indicate that the stiffness coefficient cs is proportional to the
thickness cubed, so that the passive moment generated by the stiffness effect of the actuator
effectively increases as the thickness of the actuator increases. Thus, it is expected that the
difference between the two FRFs increases as the thickness of the actuator grows. However,
the magnitude of the actuation moment mc, given in Eq.(C.17), is also a function of actuator
thickness hpzt. Therefore, it is important to compare the magnitude of the active moment
with that of the passive moment, with reference to the actuator thickness in order to design
an actuator that can generate a stronger control moment.

Figure 3.7 compares the actuation moment with the total moment at 1st resonant fre-
quency, around 39Hz. The left hand side plot shows the moment per unit length, per unit
voltage. This plot highlights that the actuation moment mc increases with reference to the
thickness up to hpzt ≃ 0.4mm, and then starts decreasing. This is due to the fact that the
static actuation strength of the piezoelectric actuator decreases because of its static stiffness
effect. Similarly, the total moment mt increases with reference to the thickness up to hpzt ≃
0.2mm, beyond which the total moment also starts decreasing. Furthermore, while the actu-
ator is thin, the total moment is just slightly smaller that the active moment. However, as
the thickness of the actuator increases, the difference between the two moments grows. This
indicates that the passive moment generated by the stiffness of the patch actuator increases,
as thickness rises.

The right hand side plot in Figure 3.7 shows the moment per unit length with the maximum
operating voltage Vmax, which can be applied to the actuator without impairing piezoelectric
functionality. This term is given as a product of a constant cm and the thickness of the
actuator:

Vmax = cmhpzt. (3.41)

This plot highlights that, when the maximum operating voltage is considered, the total mo-
ment generated by the active and passive effects of the piezoelectric patch actuator increase
with reference to the thickness up to hpzt = 0.86mm. In this case the maximum operating
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Figure 3.4: Schematic representation of the lumped spring model of the actuator patch with
the notation of the forces and displacements at the connecting points between the lumped
spring and the smart panel in x-direction (top) and y-direction(bottom)
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Figure 3.5: Schematic representation of the actuator stiffness model with multiple pairs of
springs
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voltage is Vmax ≃ 200V, which is in the range of standard voltages to operate the piezoelectric
patch actuator. If the feedback control system allows a large feedback gain, which implies
a high control signal close to the maximum operating voltage of the piezoelectric actuator,
the maximum operating voltage must be considered to define the desired thickness of the
actuator.

In conclusion, the increase of the actuator thickness brings beneficial effects only up to
a certain limit. Excessive increase beyond that limit results in decreasing the total induced
moment.
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Figure 3.6: The Bode plot (top) and the Nyquist plot (bottom 1 by 2 array) of the open loop
FRF of the ideal velocity sensor and the piezoelectric actuator without (faint line, left) and
with (dotted line, right) stiffness effect of the piezoelectric actuator
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3.3 Actuator-Panel Fully Coupled Model

In this section a fully coupled model of the panel and the actuator is considered. This model
includes both the mass effect and elastic effect of the piezoelectric patch actuator considered
in the previous two sections. In this case the velocity at the sensing position ẇc is given as
a function of the primary excitation fp, the inertia effect of the actuator mass fm, and the
induced moment generated by the piezoelectric and elastic effects of the patch actuator M t.
Thus the velocity can be formulated by the following mobility matrix expression:

ẇc = Ycpfp + Y cmfm + Y cMM t, (3.42)

where Y cm is a n2
m-element row vector with the mobility functions between the forces gener-

ated by the inertia effects of the elemental masses and the control velocity, given in Eq.(B.11).
Y cM is a 4nk-element row vector with the mobility functions between the discretized moment
and the control velocity, given in Eq.(B.25). fm is a n2

m-element column vector with the
force generated by the inertia effects of the actuator, given in Eq.(3.8), and M t denotes a
4nk-elements row vector with the discretized total moments produced along the four edges of
the piezoelectric patch actuator, given in Eq.(3.36)

The angular velocities of the plate in correspondence to the actuator springs are grouped
into the 4nk-element row vector θ̇, and the velocities of the plate in correspondence to the
centers of the actuator mass elements are grouped into the n2

m-element row vector ẇm. These
two vectors are defined as a function of the primary excitation fp, the force vector generated
by the inertia effect of the actuator mass, represented by fm, and the discretized total moment
vector induced by the control actuation and the elastic effect of the actuator, represented by
M t:

θ̇ = Y θpfp + Y θmfm + Y θMM t (3.43)

ẇm = Y mpfp + Y mmfm + Y mMM t, (3.44)

where Y θp is a 4nk-element row vector with the mobility functions between the primary
excitation and the angular velocities in correspondence to the actuator springs, given in
Eq.(B.31). Y mp is a n2

m-element column vector with the mobility functions between the
primary excitation and the velocities at the center of the mass elements, given in Eq.(B.15).
Y mm is a n2

m × n2
m matrix with the mobility functions between the forces generated by the

inertia effect of the lumped masses and the velocities at the center of the mass elements, given
in Eq.(B.22). Y θM is a 4nk × 4nk matrix with the mobility functions between the discretized
total moments and the angular velocities along the edges of the patch in correspondence
to the actuator springs, given in Eq.(B.36). Y θm is a 4nk × n2

m matrix with the mobility
functions between the discretized angular velocities in correspondence to the actuator springs
and the forces generated by the inertia effect of the lumped masses, and Y mM is a n2

m × 4nk

matrix with the mobility functions between the elemental velocities and the discretized total
moments in correspondence to the actuator springs. Further details regarding Y θm and Y mM

are given in section 4 of Appendix B. After some algebraic manipulation, the control velocity
ẇc can be expressed as follows:

ẇc = Ỹcpfp + Ỹ cMM c. (3.45)

where Ỹcp and Ỹ cM are given in Appendix B.
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Figure 3.8 compares the open loop FRF between the ideal sensor and actuator with the
open loop FRF between the ideal sensor and lightweight elastic actuator, in which case Gc is
given by:

Gc = cαỸ cMDa. (3.46)

At low frequencies, the amplitude of the open loop FRF predicted using the fully coupled
model is slightly lower than that of the FRF predicted using ideal sensor actuator model, due
to the actuator stiffness effect. At higher frequencies, the inertia effect of actuator mass tends
to pull down the amplitude and increases the phase lag of the open loop FRF predicted using
the fully coupled model.
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Figure 3.8: The Bode plot (top) and the Nyquist plot (bottom 1 by 2 array) of the open loop
FRF between the ideal velocity sensor and the piezoelectric actuator without (faint line, left)
and with (dotted line, right) inertia and elastic effects of the piezoelectric actuator
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3.4 Sensor-Actuator Fully Coupled Model

The stability analysis presented in the previous sections considered a practical actuator with
an ideal sensor. In this section the passive dynamic effect of a practical accelerometer sen-
sor is taken into account. Accelerometers are sensing transducers, which provide an output
proportional to acceleration, vibration, and shock. Piezoelectric accelerometers are one of
the most popular sensing transducers, as piezoelectric materials have the ability to output an
electrical signal proportional to the applied stress. In this study, tri-shear mode accelerome-
ters, shown in Figure 3.9, are considered. A tri-shear accelerometer consists of seismic masses,
base, piezoelectric material, preloaded ring, and a center post. Shear mode accelerometers
sandwich the sensing material between a center post and the seismic mass. A compression
ring or stud applies a preload force to create a rigid linear structure. Under acceleration, the
mass applies a shear stress to the sensing material. The result is an electrical output that is
collected by the electrodes and transmitted by lightweight lead wires to the built-in signal con-
ditioning circuitry. By isolating the sensing crystals from the base and housing, shear mode
accelerometers excel in rejecting thermal transient and base-strain effects. Furthermore, the
shear geometry’s small size promotes high-frequency response while minimizing mass loading
effects on the test structure.

Figure 3.9: Internal structure of tri-shear piezoelectric sensing accelerometer 352C67

3.4.1 Sensor dynamics

When a shear accelerometer is considered, as a first approximation the piezoelectric elements
act as a spring with a stiffness ka and dashpot ca, and connect the base of the accelerometer
to the seismic masses. The sensor operates on Newton’s second law of motion: F = maa.
An input at the base of the accelerometer creates a force, F , on the piezoelectric material
proportional to the applied acceleration, a, and size of the seismic mass, ma. The frequency
response of the sensor is determined by the resonant frequency, which can be modeled as
a simple single-degree-of-freedom system, as shown in Figure 3.10, where ka represents the
stiffness constant, and ca represents the damping coefficient of the piezoelectric element. As
the piezoelectric element is made out of high density material, the mass of the spring is not
negligible. ma denotes the summation of the seismic mass and part of the piezoelectric element
mass. The mass of the other components of the accelerometer is collectively represented by
the housing mass mh.
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Figure 3.10: Schematic representation of the piezoelectric accelerometer transducer, which is
modeled as a single degree-of-freedom system

Under the base motion, the sensor generates a voltage signal va, which is proportion to
the relative displacement between the seismic mass and the base mass:

va = cσ(wc − wa), (3.47)

where cσ is the detection constant of the piezoelectric elastic element, and wa and wc are
the time harmonic displacement of the seismic mass and base mass, respectively. Since the
accelerometer is firmly fixed to the smart panel, the base of the accelerometer, illustrated in
Figure 3.10, has the vibratory displacement of the plate.

According to Newton’s second low, the equation of motion for this single degree of freedom
system is given by the following expression:

maẅa = ca(ẇc − ẇa) + ka(wc − wa), (3.48)

or
(ẅc − ẅa) + 2ζaωωa(ẇc − ẇa) + ω2

a(wc − wa) = −ẅc, (3.49)

where ωa is the natural frequency of the single degree of freedom system, and ζa represents
the viscous damping factor:

ωa =

√
ka

ma

(3.50)

ζav =
ca

2
√
kama

. (3.51)

Normally, the natural frequency of seismic actuators varies between 35kHz and 50kHz. In
this study, the possible highest natural frequency, 50kHz, is used as a representative value.

The given data sheet of the accelerometer used in the experiments presented in this report
does not cover all the required information in order to model the accelerometer as a single-
degree-of-freedom mass-damper system . The following parameters are not listed in the given
data sheet; 1) viscous damping factor ζa, 2) damping factor ca, and 3) spring coefficient ka.
In order to calculate these parameters, it is sufficient to determine viscous damping ratio ζa,
as these three parameters are dependent on each other according to the following formulas:

k2
a = m2

aωa, (3.52)

ca = 2ωamaζa. (3.53)

34



According to the manufacturer, the seismic mass is approximately 0.6g. Considering the
given structure schematics, the mass of the piezoelectric element can not be larger than 0.3g.
Assuming that one third of spring mass contributes to the proof mass [22], the inertia mass
ma is set to be 0.7g. The viscous damping factor ζa is set to be 0.05, which is in the range of
standard values for piezoelectric elements. When the variables discussed above are given, the
spring coefficient ka and damping factor ca can be calculated. The physical properties of the
single degree of freedom system are shown in Table 3.1.

Assuming a harmonic excitation, the following equation is derived from Eq.(3.49):

(−ω2 + jζaωωa + ω2
a)(wc − wa) = ω2wc. (3.54)

According to Eq.(3.47) and Eq.(3.54), the transfer function between the complex acceleration
of the plate ẅc(ω) and the signal output from the sensor va(ω) is given by:

va

ẅc

=
cσ(wc − wa)

−ω2wc

= cσ
− 1

ω2
a

1 − ω2

ω2
a

+ 2jζa
ω
ωa

. (3.55)

When the harmonic frequency ω is much smaller than the natural frequency ωa, the module
of the transfer function is approximately constant, and the phase angle is approximately zero.
Therefore, as shown in Figure 3.11, while the frequency of the harmonic excitation is below
the resonance frequency of the accelerometer, the output voltage of the accelerometer sensor
va is proportional to the opposite of the acceleration at its base:

va
∼= − cσ

ω2
a

ẅc. (3.56)

Eq.(3.56) shows that the output signal is proportional to the reciprocal of the squared natural
frequency. It indicates that if the frequency range of the operation rises, i.e. the resonance
frequency of the accelerometer sensor rises, the sensitivity of the sensor is reduced.

In order to implement Direct Velocity Feedback (DVFB) in the control loop, an integrator
is used which provides the velocity as the error signal to the controller. With time harmonic
excitation, the integration can be expressed by the reciprocal of jω, so that the accelerometer
with integrator provides the following control voltage v̂a:

v̂a =
cσ

jω
(wc − wa). (3.57)

Eq.(3.57) can be grouped into the following matrix form:

v̂a =
cσ

jω
dcw

= − cσ

ω2
dcẇ, (3.58)

where ẇ is a 2-element column vector with the velocity of the plate at the control position
ẇc and that of the inertia mass in the accelerometer sensor ẇa:

ẇ =

{
ẇc

ẇa

}
. (3.59)
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dc is a 2-element row vector given below:

dc = [ 1 −1 ]. (3.60)
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Figure 3.11: Transfer function between the acceleration of the panel at the sensor position
and the voltage signal output of the accelerometer

3.4.2 Fully coupled model

In this section the open loop FRF is derived by taking into account the response of an
accelerometer sensor modeled as a suspended mass with spring and dashpot. In this case, the
velocity at sensor location ẇc is given by the following matrix expression:

ẇc = Ycpfp + Y cmfm + Y cMM t + Ycc(fa1 + fh), (3.61)

where Ycc is the mobility function between the collocated point force and the velocity at
the control position, where the accelerometer is fixed. fh represents the inertia effect of
the housing mass of the accelerometer, and fa1 is the reaction force of the seismic mass of
the accelerometer, transmitted via the elastic piezoelectric elements. fh and fa1 are simply
modeled as a single lumped mass acting at (xc, yc). Figure 3.12 illustrates details regarding
the displacement and forces acting on the elements of the accelerometer, which is mounted on
the plate at the center of the piezoelectric patch actuator. Since the displacement of housing
mass is corresponding to that of the plate, the force generated by inertia effect of the housing
mass fh is given as:

fh = −jωmhẇc. (3.62)

In Eq.(3.61), the force generated by the inertia effect of the actuator fm is given in Eq.(3.8)
as a function of the velocity at the centers of lumped elements. M t is given in Eq.(3.32) as a
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Figure 3.12: Schematic representation of a piezoelectric accelerometer transducer, and the
notation of the forces and displacement at the connecting points between the elements of the
accelerometer and the smart panel

function of the angular velocity along the edges of the patch in correspondence to the spring
elements θ̇.

When the dynamics effect of the sensor is taken into account, the vectors of the elemental
velocities ẇe and the angular velocities θ̇ are given by:

ẇm = Y mpfp + Y mmfm + Y mMM t + Y mc(fa1 + fh), (3.63)

θ̇ = Y θpfp + Y θmfm + Y θMM t + Y θc(fa1 + fh), (3.64)

where Y mc is a n2
m-element column vector with the mobility functions between the point force

on the plate generated by the dynamics effect of the accelerometer acting at the sensing point
and the velocities at the center of the actuator mass elements. Y θc is a 4nk-element column
vector with the mobility functions between the point force generated by the dynamics effect
of the accelerometer acting at the sensing point and the angular velocities along the edges of
the patch in correspondence to the actuator springs. Details regarding the mobility functions
Y mc and Y θc are given in section 5 of Appendix B. After some algebraic manipulations,
the velocity of the plate at sensor’s position ẇc can be written as a function of the primary
excitation fp, reaction force of the accelerometer sensor fa1 and the control moment M c:

ẇc = Ỹcpfp + Ỹ cMM c + Ỹccfa1. (3.65)

where Ỹcp, ỸcM and Ỹcc are given in Appendix B.
The reaction force of the accelerometer fa1 is identical to the force applied on the inertia

mass fa2 with opposite sign:
fa1 = −fa2. (3.66)

The force applied to the inertia mass fa2 was already given in Eq.(3.48):

fa2 = maẅa

= ca(ẇc − ẇa) +
ka

jω
(ẇc − ẇa) (3.67)

=

(
ca +

ka

jω

)
(ẇc − ẇa).
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The velocity of the seismic mass ẇa is given using the mobility term:

ẇa =
1

jωma

fa2 = Yaafa2. (3.68)

Eq.(3.65) and Eq.(3.68) can be grouped in a matrix form as follows:
{
ẇc

ẇa

}
= ẇ = Y af a + Y pfp + Y MM c, (3.69)

where the 2 × 2 matrix Y a, the 2-element column vector Y p, and the 2 ×4nk matrix Y M

are given as follows:

Y a =

[
Ỹcc 0
0 Yaa

]
(3.70)

Y p =

[
Ỹcp

0

]
(3.71)

Y M =

[
Ỹ cM

0

]
, (3.72)

and f a is a 2-element column vector that consists of the forces acting on the seismic mass
and base mass:

fa =

[
fa1

fa2

]
. (3.73)

Using Eq.(3.66) and Eq.(3.67), the force vector fa is derived in terms of the following
impedance relation:

f a = Zaẇ, (3.74)

where the impedance matrix Za is given as:

Za =

[
ka

jω
+ ca − ka

jω
− ca

− ka

jω
− ca

ka

jω
+ ca

]
. (3.75)

Substituting Eq.(3.74) into Eq.(3.69), and solving the equation with respect to ẇ leads to the
following result:

ẇ = [I + Y aZa]
−1(Y pfp + Y MM c)

= Ỹ pfp + Ỹ MM c, (3.76)

where I denote a 2 × 2 identity matrix, and Ỹ p and Ỹ M are given by:

Ỹ p = [I + Y aZa]
−1Y p (3.77)

Ỹ M = [I + Y aZa]
−1Y M (3.78)

Substituting Eq.(3.76) and Eq.(3.38)into Eq.(3.58), the open loop sensor-actuator FRF
Gc between the integrated output signal voltage from the accelerometer sensor v̂a and the
input signal voltage to the piezoelectric actuator Vc is given as:

Gc =
v̂a

Vc

= − cα

nk

cσ

ω2
dcỸ MDa. (3.79)
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Figure 3.13 shows the Bode plot of the open loop sensor-actuator FRF using the actuator-
plate (solid line) and actuator-plate-sensor (dotted line) fully coupled models. At low fre-
quencies, below about 8kHz, the sensor-actuator FRF derived with the actuator-plate-sensor
fully coupled model is very similar to that of the actuator-plate model. In fact, up to 3kHz,
the FRFs are characterized by an alternating sequence of resonances and anti-resonances, so
that the phase is constrained between 90deg. Above 3kHz the modal density of the plate is so
high that the FRFs are characterized by a smoother curve. The mean value of the FRF tends
to raise with the frequency. This is a typical feature of strain actuators, which is due to the
fact that the piezoelectric patch generates bending moments on the plate along the four edges
of the patch itself and thus better excites the plate as the flexural wavelength approaches or
becomes smaller than the size of the actuator, i.e. at higher frequencies. The FRFs are also
characterised by a constant phase lag, which is due to the non perfect collocation between the
position of the error signal detection at the centre of the piezoelectric patch and the bending
control excitation at the edges of the piezoelectric patch [15].

At high frequencies, above 10kHz, the FRF of the actuator-plate-sensor coupled model is
characterized by a constant amplitude roll off and additional phase lag followed by a wide
frequency band peak with a 180deg phase lag. The amplitude roll off is due to the mass
effect introduced by the accelerometer. Also, the extra peak and 180deg phase lag are caused
by the resonance of the accelerometer which, according to the given parameter of the sensor
considered here, has been calculated at about 50kHz. The simulated FRF shows this resonance
peak at 54.8kHz due to the fully coupled response of the plate and accelerometer sensor.

Table 3.1: Geometric and physical properties of the accelerometer
Parameter value
Total mass mta = 2.0 [g]
Inertia mass ma = 0.6(0.7) [g]

Stiffness ka = 59.22 ×106 [N/m]
Viscous damping ζa = 0.05

Damping ca = 18.85 [Nsec/m]
Natural frequency ωa= 50 [kHz]
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Figure 3.13: The Bode plot (top) and the Nyquist plot (bottom, 1 by 2 array) of the open
loop FRF between the ideal accelerometer sensor and the practical piezoelectric actuator
(faint line), the open loop FRF between the integrated signal from the accelerometer sensor
and the practical piezoelectric actuator (dotted line, right)
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3.5 Models Validation

In this section the two simulated open loop frequency response functions using

1. actuator-plate fully coupled model, discussed in section 3.3, and

2. actuator-plate-accelerometer fully coupled model, discussed in section 3.4

are compared with experimental measured open loop FRFs, which are obtained by either using
a remote sensing system (laser vibrometer), or an accelerometer. For the measurements, the
panel is clamped on a rigid frame, which is placed on the top of a rectangular wooden box with
thick rigid walls. The accelerometer sensor is positioned at the center of the square actuator
on the opposite side of the panel. When the sensor-actuator FRF is measured by the laser
vibrometer, the accelerometer is removed from the panel in order to isolate the physical effect
produced by the accelerometer itself.

Figure 3.14 shows that the solid line, which represents the simulated open loop sensor-
actuator FRF of the actuator-plate fully coupled model, agrees well with the dotted line for
the measured FRF using a laser vibrometer. This result confirms the accuracy of the proposed
model for the mass and stiffness loading effects of the piezoelectric patch on the panel. Of
particular importance is the offset feature, which enables the modeling of the effect produced
by the bonding layer. Compared to the predicted one, the measured FRF is characterized by
a larger number resonances. These are probably acoustic resonances of the cavity under the
panel.

Figure 3.15 shows that the simulated (solid line) open loop sensor-actuator FRF of the
actuator-plate-accelerometer fully coupled model is also in quite good agreement with the co-
respective measured FRF (dotted line). Above about 8kHz, the amplitude of the measured
FRF is slightly larger than that of the simulated one. Also, above about 6kHz the measured
FRF is characterized by a larger phase lag than that of the simulated one. Finally, above
the actuator resonance frequency, the measured FRF shows a sudden drop of the amplitude,
which leads to an anti-resonance.

These differences between simulated and measured FRFs can be ascribed to two problems:
first, the exact estimate of the case/seismic masses and transducer stiffness of the accelerom-
eter, second the detailed modeling of the accelerometer and its mounting on the panel. It is
likely that the anti-resonance at about 52kHz is the result of a much complicated dynamic
response of the accelerometer than that simulated with a mass-spring-mass model. Also, the
accelerometer has a certain contact area with the panel, which is not taken into account by
the single lumped mass model. In this way the inertia effect of the accelerometer is over
estimated, so that the amplitude of the simulated FRF decreases and phase lag effects of the
simulated FRF are more pronounced than the measured ones.

This chapter has represented advanced mathematical models of a rectangular panel with a
feedback control system, which consists of a small square piezoelectric patch actuator with an
accelerometer sensor at its center. First, full details regarding the coupled models have been
introduced, which consider loading and elastic effects of the actuator, and mounting effect, and
the transfer function of the sensor. The piezoelectric patch actuator loading effect has been
modeled by a grid of small lumped masses, and the stiffness effect has been modeled by arrays
of lumped springs oriented in directions parallel to the lateral edges. The mounting offset
effect is modeled as the increase of the moment arm length of the piezoelectric elastic effects.
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The accelerometer has been modeled by a case and seismic lumped masses connected via a
transducer lumped spring and dash-pot in parallel. The analyzes of the response obtained
with these models have highlighted each physical effect of the actuator and sensor:

1. Inertia effect of actuator and sensor: Generate a constant amplitude roll off and phase
lag effects in the higher frequency range

2. Stiffness: Locally increases the stiffness of the smart panel, and thus lowers the ampli-
tude of the FRF in low frequencies

3. Offset: Globally rises the amplitude of the FRF at all frequencies, but more efficiently
in higher frequencies.

4. Dynamic response of the accelerometer: Introduce an extra peak at relatively high
frequency

Two fully coupled models has been derived, which consider the response of the plate and
the piezoelectric actuator, and the response of the plate and both piezoelectric patch actuator
and accelerometer sensor. The predicted responses of these two fully coupled model have been
compared with two measurements taken on a panel with the piezoelectric patch actuator using
either a laser vibrometer or an accelerometer sensor. The two measured responses confirm
quite well the validity of the actuator and sensor models. The actuator-plate-accelerometer
fully coupled model does not exactly match the corresponding measurements at relatively
higher frequencies around the fundamental resonance of the accelerometer. This has been
associated to the lack of details in the model of the accelerometer and transverse vibration of
the piezoelectric patch.
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open loop FRF using the plate-actuator fully coupled model (solid line, left), and measured
open loop FRF between the input signal to the piezoelectric actuator and the output signal
obtained by laser vibrometer (dotted line, right)
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Chapter 4

PARAMETRIC STUDY OF

PIEZOELECTRIC PATCH

ACTUATOR

In the previous chapter, two fully coupled mathematical models are introduced and experi-
mentally validated. Using these two models, parametric studies are carried out in this section
with reference to:

1. size;

2. thickness;

3. combined size-thickness;

4. offset length.

For the third parametric study, the size and the thickness are modified in such a way as that
the volume, and hence the weight, of the actuator is kept constant. For the forth parametric
study, the bonding of the actuator patch, that is the thickness of the bonding layer, varies.

The aim of this parametric study is to provide general guidelines for the design of a
feasible actuator with good stability properties allowing high feedback gains in order to obtain
good control performance and thus high active damping effects. All parametric studies have
been carried out with reference to the Bode plot of the open loop sensor-actuator FRF and
the maximum reduction index Rk for the 1st, 4th, 8th, and 11th resonances which occur
respectively at approximately 39Hz, 134Hz, 322Hz and 446Hz.

4.1 Size

Figure 4.1 shows the four open loop FRFs between the ideal velocity sensor and the input
signal to the practical piezoelectric patch actuator, and Figure 4.2 shows the four open loop
FRFs between the integrated signal from the piezoceramic tri-shear accelerometer sensor and
the input signal to the practical piezoelectric patch actuator. The four lines in the bode plots
correspond to four patch actuators with different size. The parameters of the actuator are
shown in Table 4.1.
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The Bode plot in Figure 4.2 shows that the accelerometer introduces the additional peak
at high frequency due to the accelerometer’s resonance as discussed in section 3.4. Except for
the additional peak, the two Bode plots in Figures 4.1 and Figures 4.2 are quite similar.

The Bode plots in Figures 4.1 and Figure 4.2 highlight that, at low frequency up to about
450Hz, the bigger is the actuator the larger tends to be the amplitude of the FRF. At higher
frequencies this effect becomes less important, so that above about 5kHz the amplitudes of
the FRF obtained for the four sizes are quite close to each other. This effect is caused by two
factors. The first factor is a mass effect; this effect rolls off the amplitude of the FRF at high
frequency. The increase of size results in a increase of the weight, so that at high frequency
the amplitude of the FRF using the bigger actuator is more efficiently rolled off. The second
factor is the ratio between the bending wavelength and the size of the actuator; the smaller is
the ratio between the flexural wavelength and the size of the piezoelectric patch, the greater
is the flexural actuation effect. Thus the flexural actuation generated by a piezoelectric patch
rises monotonically with frequency and with the size of the patch. This trend is valid up to
the frequencies, where the flexural wavelength is equal to the size of the patch[16]. According
to Figure 4.3, with 20x20mm, 30x30mm, 40x40mm, and 50x50mm square piezoelectric patch
actuators, this cut-off frequency is given as approximately 20kHz, 9kHz, 5kHz, and 3kHz,
respectively. Therefore, the amplitude of the FRF using smaller actuator keeps increasing up
to higher frequencies. As a result, at high frequencies the amplitudes of the FRF for various
size of the actuators become similar. Thus at higher frequencies the actuation strength levels
to a maximum value.

The Bode plots also show that, the bigger is the actuator the lower is the frequency, where
the constant phase lag of the open loop sensor-actuator FRF starts. As discussed in section
2.3, this phase lag is due to the non-perfect collocation between the actuation around the
perimeter of the piezoelectric patch and the sensing at the centre of the patch. Thus the
phase lag occurs between the moment actuation at the four edges of the piezoelectric patch
and the velocity detection at the centre of the piezoelectric patch.

In summary increasing the size of the actuator brings a beneficial effect in terms of control
performance, since the low frequency the amplitude of the open loop sensor-actuator FRF
is bigger, and therefore the direct velocity feedback loop produces higher damping effects.
However, it also reduces the cut off frequency where the open loop sensor-actuator FRF is
not anymore minimum phase and thus may bring to instabilities. The combination of these
two effects can be assessed by looking to Figure 4.4 with the maximum reduction index
Rk for the 1st, 4th, 8th, and 11th resonances. The right hand side plot shows the result
with plate-actuator fully coupled model, and left hand side plot shows the result with plate-
actuator-accelerometer fully coupled model.

Both plots in Figure 4.4 show that the maximum vibration reduction is globally increasing
with small oscillation, as the size of the actuator rises. This oscillation is caused by the fact
that the value δ0, where the FRF crosses the real negative axis, does not monotonically
increase. Even if the part of locus of the FRF in negative quadrants becomes smaller, the
crossing value over the real negative axis is strongly dependent on whether it occurs at either
resonance or anti-resonance. Nevertheless, this plot clearly indicates the maximum vibration
reduction at the control point for 1st, 4th, 8th, and 11th resonances increases as size grows.
Therefore, it can be concluded that the bigger is the size, the bigger is the maximum vibration
reduction at the control point at least up to 11th resonances.
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Figure 4.1: The Bode plot (top) and the Nyquist plot (bottom 2 x 2 array) of the open loop
FRF between the ideal velocity sensor and various size actuators; Case 1: 20x20mm (faint
line, left top), Case 2: 30x30mm (dotted line, right top), Case 3: 40x40mm (dash-dotted line,
left down), Case 4: 50x50mm (dashed line, right down)
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Figure 4.2: The Bode plot (top) and the Nyquist plot (bottom 2 x 2 array) of the open loop
FRF between the integrated signal of the accelerometer sensor and various size actuators;
Case 1: 20x20mm (faint line, left top), Case 2: 30x30mm (dotted line, right top), Case 3:
40x40mm (dash-dotted line, left down), Case 4: 50x50mm (dashed line, right down)
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Table 4.1: Geometric parameter of the piezoelectric patch actuator considered in the para-
metric study regarding the actuator size

simulation Size thickness weight
case1 20x20mm 0.5mm 1.530g
case2 30x30mm 0.5mm 3.443g
case3 40x40mm 0.5mm 6.120g
case4 50x50mm 0.5mm 9.563g
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Figure 4.3: Flexural wavelength with reference to frequency
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Figure 4.4: Maximum vibration reduction at 1st(blue solid line), 4th (black dotted line),
8th (red dot dashed line), and 11th resonance (green dashed line) with reference to the size
length, using the ideal velocity sensor-actuator pair (left) or accelerometer sensor-actuator
pair (right)
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4.2 Thickness

Figures 4.5 shows the four open loop FRFs between the ideal velocity sensor and the input
signal to the practical piezoelectric patch actuator, and Figures 4.6 shows the four open loop
FRFs between the integrated signal from the piezocelamic tri-shear accelerometer sensor and
the input signal to the practical piezoelectric patch actuator. The four lines in the bode plots
correspond to four patch actuators with different thickness. The parameters of the actuator
are shown in Table 4.2.

The Bode plots in Figures 4.5 and 4.6 indicate that, at low frequencies the thicker is the
actuator the larger is the amplitude of the sensor-actuator open loop FRF. In contrast, at
higher frequencies, the amplitude of the FRF goes down as thickness increases. These results
are due to the fact that the increase of thickness results in two effects: a) increase of weight
and b) increase of the moment arm. Increase of weight results in more attenuation of the
amplitude of the FRF at high frequencies. Increasing moment arm subsequently causes a)
increase of the stiffness effect of the patch actuator b) increase of actuation induced moment.
The first effect attenuates the amplitude of the FRF at low frequencies, and the second one
makes the overall amplitude of the FRF go up. The increase effect produced by the actuation
induced moment is slightly bigger than the attenuation effect produced by the stiffness of the
piezoelectric patch, so that the overall effect results in a small increment of the amplitude
at low resonance frequency. In contrast the mass effect produces a clear reduction of the
amplitude of the FRF at higher frequencies.

In summary thicker patches result in better control performance, since at low frequency
the amplitude of the open loop sensor-actuator FRF is bigger, and therefore the direct velocity
feedback loop produces higher damping effects. However it also reduces the cut off frequency
where the open loop sensor-actuator FRF is not anymore minimum phase and thus may
bring to instabilities. The combination of the stiffness, mass and moment actuation effects
can be assessed by looking at the maximum reduction index Rk for the 1st, 4th, 8th, and
11th resonances shown in Figure 4.7. The left hand plot is obtained by using the plate-
actuator-ideal sensor fully coupled model, and the right hand side plot is obtained by using
plate-actuator-accelerometer sensor fully coupled model. Both plots clearly indicate that, the
thicker is the actuator, the higher is the maximum vibration reduction at the control point
that can be obtained with a stable system. However, this increasing trend is relatively smaller
than that obtained by increasing the size of the actuator. For instance, even if the thickness is
doubled, the maximum vibration reduction for the first resonance R1 is approximately 0.5 dB
bigger than that of the reference setting. In contrast doubling the size produces an increase
of about 4 dB of the maximum vibration reduction. It is important to note that the greater is
the thickness of the piezoelectric patch actuator the greater is the maximum driving voltage
that can be applied to it. This feature has not been taken into account in this study. However
it could be of great importance when large control gains are implemented.
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Figure 4.5: The Bode plot (top) and the Nyquist plot (bottom 2 x 2 array) of the open loop
FRF between the ideal velocity sensor and various thickness actuators; Case 1: 0.001mm
(faint line, left top), Case 2: 0.25mm (dotted line, right top), Case 3: 0.5mm (dash-dotted
line, left down), Case 4: 1.0mm (dashed line, right down)
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Figure 4.6: The Bode plot (top) and the Nyquist plot (bottom 2 x 2 array) of the open
loop FRF between the integrated signal of the accelerometer sensor and various thickness
actuators; Case 1: 0.001mm (faint line, left top), Case 2: 0.25mm (dotted line, right top),
Case 3: 0.5mm (dash-dotted line, left down), Case 4: 1.0mm (dashed line, right down)
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Table 4.2: Geometric parameter of the piezoelectric patch actuator considered in the para-
metric study regarding the actuator thickness

simulation Size thickness weight
case1 30x30mm 0.0001mm 0.000g
case2 30x30mm 0.25mm 1.721g
case3 30x30mm 0.50mm 3.443g
case4 30x30mm 1.00mm 6.885g
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Figure 4.7: Maximum vibration reduction at 1st(blue solid line), 4th (black dotted line), 8th
(red dot dashed line) ,and 11th resonances (green dashed line) with reference to the thickness
of the actuator using the ideal velocity sensor-actuator pair (left) or using accelerometer
sensor-actuator pair (right)
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4.3 Combined Size and Thickness with Constant Vol-

ume

Figures 4.8 shows the four open loop FRFs between the ideal velocity sensor and the input
signal to the practical piezoelectric patch actuator, and Figures 4.9 shows the four open loop
FRFs between the integrated signal from the piezocelamic tri-shear accelerometer sensor and
the input signal to the practical piezoelectric patch actuator. The four lines in the bode plots
correspond to four patch actuators with different size and thickness, while the volume is kept
constant. The parameters of the actuator are shown in Table 4.3.

The Bode plots in Figure 4.8 and Figure 4.9 indicate that, at low frequency up to about the
11th resonance, the thinner but bigger is the actuator, the larger tends to be the amplitude of
the open loop sensor-actuator FRF. At higher frequencies, this trend becomes small so that
the amplitudes of the FRF obtained for the four sizes are quite close to each other. However, as
the actuator gets bigger and thinner, the cut off frequency where the phase lag exceeds -90deg
is brought down and thus greater phase lags are generated at higher frequencies. This result
is quite similar to that of the parametric study with reference to the size shown in Figures
4.1 and 4.2. This fact indicates that the improvement of the maximum vibration reduction
at the control position achieved by enlarging the size, is greater than the degradation of the
control performance caused by the decrease of the thickness.

In summary, assuming constant volume, thinner but bigger actuator brings a beneficial
effect in terms of control performance, since at low frequency the amplitude of the open
loop sensor-actuator FRF is bigger, and therefore the direct velocity feedback loop produces
higher damping effects. However, it also reduces the cut off frequency, where the open loop
sensor-actuator FRF is not anymore minimum phase and thus may bring to instabilities.
The combination of these two effects can be assessed by looking two plots in Figure 4.10
with the maximum reduction index Rk for the 1st, 4th, 8th, and 11th resonances using
either ideal velocity sensor (left) or piezoceramic accelerometer sensor (right). The two plots
clearly indicate that, the thinner but bigger actuator is, the bigger is the maximum vibration
reduction at the control point that can be obtained with a stable system. Comparing this
plot with that in Figures 4.4 and 4.7, it is preferable to select a thin piezoelectric patch and
increase the size as much as practical construction constraints allow. However, it should be
noted that as the thickness of the piezoelectric patch decreases, the maximum input voltage
goes down.
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Figure 4.8: The Bode plot (top) and the Nyquist plot (bottom 2 x 2 array) of the open
loop FRF between the ideal velocity sensor and various size and thickness actuators; Case 1:
20x20mm 1.125mm (faint line, left top), Case 2: 30x30mm 0.5mm (dotted line, right top),
Case 3: 40x40mm 0.28mm (dash-dotted line, left down), Case 4: 50x50mm 0.18mm (dashed
line, right down)
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Figure 4.9: The Bode plot (top) and the Nyquist plot (bottom 2 x 2 array) of the open loop
FRF between the integrated signal of the accelerometer sensor and various size and thickness
actuators; Case 1: 20x20mm 1.125mm (faint line, left top), Case 2: 30x30mm 0.5mm (dotted
line, right top), Case 3: 40x40mm 0.28mm (dash-dotted line, left down), Case 4: 50x50mm
0.18mm (dashed line, right down)
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Table 4.3: Parameter of the actuator considered in the parametric study regarding the actu-
ator size and thickness

simulation Size thickness weight
case1 20x20mm 1.125mm 3.443g
case2 30x30mm 0.500mm 3.443g
case3 40x40mm 0.2813mm 3.443g
case4 50x50mm 0.1800mm 3.443g
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Figure 4.10: Maximum vibration reduction at 1st(blue solid line), 4th (black dotted line),
8th (red dot dashed line), and 11th resonance (green dashed line) with reference to the size
of the actuator using the ideal velocity sensor-actuator pair (left) or using accelerometer
sensor-actuator pair (right)
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4.4 Offset Length

In the previous cases, the piezoelectric patch actuator was always directly attached on the
surface of the panel. Figures 4.11 shows the four open loop FRFs between the ideal velocity
sensor and the input signal to the practical piezoelectric patch actuator that is bonded on the
plate via a bonding layer, which generates offset between the surface of the plate and of the
piezoelectric patch. Figures 4.12 shows the four open loop FRFs between the integrated signal
from the piezocelamic tri-shear accelerometer sensor and the input signal to the practical
piezoelectric patch actuator that is bonded on the plate via a bonding layer. The four lines
in the bode plots correspond to four different offset, raised from 0mm, i.e. ideal bonding,
to +1mm. The thickness of the bonding layer is called bonding offset in this section. The
parameters of the actuator are shown in Table 4.4.

The Bode plots in Figure 4.11 and Figure 4.12 indicate that as the bonding offset increases,
the amplitude of the sensor-actuator open loop FRF tends to rise at all frequencies although
it is much bigger at higher frequencies. This result is due to the fact that the increase of the
bonding offset results in increase of the moment actuation effects of the piezoelectric patch
and of the passive stiffness effect. The increase of moment actuation tends to increase the
amplitude of the FRF in the entire frequency range. In contrast, the increase of stiffness tends
to reduce the amplitude of the FRF particularly at low frequency. The first effect is much
greater than the second one so that there is a mean increase of amplitude of the FRF as the
offset raises. However, there is also a relative increase of the amplitudes at high frequencies.
This effect reduces the maximum control gain that guarantees stability, because the phase
lag remains almost the same as the offset increases. The overall result indicates that, it is
preferable to bond the piezoelectric path on the panel using thinner glue.

In summary bounding the actuator on the panel via a thick bonding layer results in a
decrease of the stability, since the open loop FRF is bigger at high frequencies, where the
open loop FRF is located in the left half of the Nyquist plot. As a result, smaller control
gains can be implemented and thus the direct velocity feedback loop produces lower damping
effects. However, it also improve the amplitude of the FRF in the low frequency so that higher
control effects are obtained for a given control gain. The combination of these two effects can
be assessed by looking the two plots in Figure 4.13 with the maximum reduction index Rk for
the 1st, 4th, 8th, and 11th resonances. The right hand side plot shows the simulation results
using the ideal velocity sensor with the patch actuator, and left plot shows the result using the
accelerometer sensor instead. Both plots clearly indicate that the thickness of the bonding
layer reduces the maximum reduction vibration at the control point that can be obtained
with a stable system.

58



10
1

10
2

10
3

10
4

−140

−120

−100

−80

−60

Frequency [Hz]

|G
| [

dB
]

10
1

10
2

10
3

10
4

−400

−300

−200

−100

0

100

Frequency [Hz]

P
ha

se
 [d

eg
]

−3 −2 −1 0 1 2 3

x 10
−4

−3

−2

−1

0

1

2

3

x 10
−4

−4 −2 0 2 4

x 10
−4

−4

−3

−2

−1

0

1

2

3

4

x 10
−4

−5 0 5

x 10
−4

−5

−4

−3

−2

−1

0

1

2

3

4

5
x 10

−4

−5 0 5

x 10
−4

−5

−4

−3

−2

−1

0

1

2

3

4

5

x 10
−4

Figure 4.11: The Bode plot (top) and the Nyquist plot (bottom 2 x 2 array) of the open loop
FRF between the ideal velocity sensor and the actuator with various offset length; Case 1:
no offset (faint line, left top), Case 2: 0.25mm offset(dotted line, right top), Case 3: 0.5mm
offset (dash-dotted line, left down), Case 4: 1.0mm offset(dashed line, right down)
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Figure 4.12: The Bode plot (top) and the Nyquist plot (bottom 2 x 2 array) of the open loop
FRF between the ideal velocity sensor and the actuator with various offset length; Case 1:
no offset (faint line, left top), Case 2: 0.25mm offset(dotted line, right top), Case 3: 0.5mm
offset (dash-dotted line, left down), Case 4: 1.0mm offset(dashed line, right down)

60



Table 4.4: Geometric parameter of the piezoelectric patch actuator considered in the para-
metric study regarding the offset length

simulation Size thickness weight offset length
case1 25x25mm 0.500mm 3.443g 0mm
case2 25x25mm 0.500mm 3.443g 0.25mm
case3 25x25mm 0.500mm 3.443g 0.50mm
case4 25x25mm 0.500mm 3.443g 1.0mm
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Figure 4.13: Maximum vibration reduction at 1st(blue solid line), 4th (black dotted line),
8th (red dot dashed line), and 11th resonance (green dashed line) with reference to the
offset length, using the ideal velocity sensor-actuator pair (left) or using accelerometer sensor-
actuator pair (right)
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Chapter 5

CONCLUSION

This report describes the simulation study of a smart panel with closely located accelerometer
sensor and square piezoelectric actuator feedback control system. The study presents the
effect of the piezoelectric patch actuator on the control effectiveness and stability issues of
the velocity feedback control loop. The stability and control performance analysis has been
carried out with reference to the Bode and the Nyquist plots of the open loop sensor-actuator
FRF. In particular a simple formula has been derived which gives the maximum vibration
reduction at the error sensor position for the low frequency resonances with reference to the
ratio between real parts of the locus at the resonance frequency and at the cross over frequency
to the real negative axis.

This report presents the fully coupled model between a rectangular panel and a feed-
back control system, which consists of a small square piezoelectric patch actuator with an
accelerometer sensor at its centre. Chapter 3 describes the detailed description of two fully
coupled models, which consider the fully coupled response of the plate and the piezoelectric
actuator, and the fully coupled response of the plate and both piezoelectric patch actuator
and accelerometer sensor. The first model, plate actuator fully coupled model, is used to
simulate the mass and stiffness effects produced by the piezoelectric patch actuator, and the
offset effect due to the bonding layer of glue. The piezoelectric patch actuator loading effect
has been modeled by a grid of small lumped masses and arrays of lumped springs oriented
in directions parallel to the lateral edges. For the second model, the accelerometer has been
modeled by a case and seismic lumped masses connected via a transducer lumped spring
and dash-pot in parallel. The analyses of the response obtained with the two models have
highlighted that the dynamic response of the accelerometer introduces an extra peak at rela-
tively high frequency. Furthermore, due to the inertia effect of the accelerometer, a constant
amplitude roll off and phase lag effects are generated in the higher frequency range.

The predicted FRFs have been compared with two measurements taken on a panel with
the piezoelectric patch actuator using either a laser vibrometer or an accelerometer sensor.
The two measured responses confirm quite well the validity of the two mathematical models.
The actuator-plate-accelerometer fully coupled model does not exactly match the correspond-
ing measurements at relatively higher frequencies around the fundamental resonance of the
accelerometer. This has been associated to the lack of details in the model of the accelerometer
and transverse vibration of the piezoelectric patch.

Using these verified models, a parametric study has then been carried out in order to
assess the stability and control performance effects produced by: a) the size, b) the thickness,
and c) the combined size and thickness with constant mass. The principal effects produced by
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these parameters can be classified into three categories: first, a low frequency stiffness effect
that tends to reduce the amplitude of the open loop sensor-actuator FRF; second, a bending
moment actuation effect that tends to increase the amplitude of the open loop sensor-actuator
FRF and third, a high frequency mass effect that tends to reduce the amplitude and increases
the phase lag effects of the open loop sensor-actuator FRF. The weight of these three effects
varies in different ways for the four parameters considered in the study. As a result, it has been
found that the increase of size produces the significant improvement on control performance.
In contrast, the thickness of the piezoelectric patch seems to have comparatively little effects
to the other parameters although the simulations indicate that thicker patches are preferable.
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Appendix A

Classical thin plate theory

A.1 Equation of Motion

This chapter presents the theory of a thin plate. The equation of motion of a thin plate with
an external force excitation is given as follows [1]:

Ds

(
∂4w

∂x4
+ 2

∂4w

∂x2∂y2
+
∂4w

∂y4

)
+ ρshs

∂2w

∂t2
= fpδ

p, (A.1)

where hs represents the thickness of the plate, ρs denotes the density of the plate, and w is the
displacement normal to the plane. fp is the primary point excitation, performed on (xp, yp).
δp represents the Dirac delta function defined as:

δp = δ(x− xp)δ(y − yp). (A.2)

Ds is the flexural rigidity of the plate, given below:

Ds =
Es

1 − ν2
s

∫ hs
2

−
hs
2

z2dz =
Esh

3
s

12(1 − ν2
s )
, (A.3)

where Es is the elastic module, and νs is the Poisson ratio of the panel.
Assuming a time-harmonic vibration, the out-plate transverse displacement in (m,n)th

natural mode wmn can be written as:

wmn(x, y, ω, t) = w̃mn(x, y, ω)eiωt, (A.4)

where ω represents the circular frequency, and the phasor w̃ is given as follows:

w̃mn(x, y, ω) = φmn(x, y)qp
mn(ω), (A.5)

where φmn represents the mode shape function of the (m,n)th natural mode of the plate,
and qp

mn is the corresponding modal amplitude excited by the primary excitation. The mode
function of the plate can be written as the product of two beam functions which has the same
boundary condition as the plate:

φmn = φx
mφ

y
n. (A.6)
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For a simply supported plate, the beam function is given in the following formula:

φx
m = sin

(
mπx

lx

)
(A.7)

φy
n = sin

(
nπy

ly

)
, (A.8)

where lx is the x-direction length of the plate, and ly is the y-direction length. For a clamped
plate, the beam function is given below:

φx
m = cosh

(
λmx

lx

)
− cos

(
λmx

lx

)
− σm

{
sinh

(
λmx

lx

)
− sin

(
λmx

lx

)}
(A.9)

φy
n = cosh

(
λny

ly

)
− cos

(
λny

ly

)
− σn

{
sinh

(
λny

ly

)
− sin

(
λny

ly

)}
. (A.10)

σm and σn can be defined as follows:

σk =
coshλk − cos λk

sinhλk − sin λk

, (A.11)

where λk denotes the wavelength, and it can be obtained by numerically solving the following
equation:

tan
λi

2
+ tanh

λi

2
= 0 , i =

k + 1

2
(A.12)

tan
λj

2
− tanh

λj

2
= 0 , j =

k

2
. (A.13)

After substituting Eq.(A.4) into Eq.(A.1), multiplying it with the (p, q)th mode shape
function φpq(x, y) and taking the integral over the area, the following formula results:

Ds

∫ lx

0

∫ ly

0
φpqq

p
mne

iωt

(
∂4φmn

∂x4
+ 2

∂4φmn

∂x2∂y2
+
∂4φmn

∂y4

)
dxdy

+
∫ lx

0

∫ ly

0
φpqq

p
mnρshsφmn

∂2eiωt

∂t2
dxdy

=
∫ lx

0

∫ ly

0
fp(ω, t)δ

pφpqdxdy. (A.14)

When (p, q) 6= (m,n), the above equation is equal to zero due to orthogonality. When
(p, q) = (m,n), the first term of the left hand-side formula is given as[1]:

Ds

∫ lx

0

∫ ly

0
φmnq

p
mne

iωt

(
∂4φmn

∂x4
+ 2

∂4φmn

∂x2∂y2
+
∂4φmn

∂y4

)
dxdy = Λω2

mnq
p
mne

iωt, (A.15)

where Λ is the modal mass calculated as follows:
∫ lx

0

∫ ly

0
ρshsφ

2
mndxdy =

ρshslxly

4

=
ms

4
(A.16)

= Λ,
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where ms denotes the mass of the plate, and ωmn is the (m,n)th mode natural frequency of
the plate, expressed below:

ωmn =

√
Ds

ρshs

π2Fmn. (A.17)

Fmn from the above equation is defined below:

Fmn =

√√√√G4
x(m)

l4x
+
G4

y(n)

l4y
+

2Hx(m)Hy(n)

l2xl
2
y

. (A.18)

The constants Gx, Hx and Gy, Hy for simple supported, clamped plates are given in Table
A.1.

The second term of the left hand-side Eq.(A.14) can be written as:

∫ lx

0

∫ ly

0
ρshsq

p
mnφmnφmn

∂2eiωt

∂t2
dxdy = −ω2qp

mne
iωt
∫ lx

0

∫ ly

0
ρshsφ

2
mndxdy

= −ω2Λqp
mne

iωt. (A.19)

Due to the delta function δ(x, y), the right hand-side term of Eq.(A.14) can be expressed as:

∫ lx

0

∫ ly

0
fp(ω, t)δ

pφmn(x, y)dxdy = fp(ω, t)φ
p
mn, (A.20)

where φp
mn is defines as the shape function at (xp, yp) on the plate:

φp
mn = φmn(xp, yp). (A.21)

The primary excitation fp can be expressed using the phasor f̃p(ω) as follows:

fp(ω, t) = f̃p(ω)eiωt. (A.22)

Substituting Eq.(A.15), Eq.(A.19) and Eq.(A.20) into Eq.(A.14), and dividing the equa-
tion by eiωt leads to the following formula:

Λ(ω2
mnq

p
mn − ω2qp

mn) = f̃pφ
p
mn. (A.23)

Therefore, qp
mn is given as:

qp
mn =

f̃pφ
p
mn

Λ(ω2
mn − ω2)

. (A.24)

Considering the structural loss factor ηs, the previous equation can be modified as:

qp
mn =

f̃pφ
p
mn

Λ(ω2
mn(1 + jηs) − ω2)

. (A.25)

Due to linearity, the velocity of the panel is given as the summation of all resonant modes:

w̃(x, y, ω) =
∞∑

m=1

∞∑

n=1

φmnq
p
mn. (A.26)
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By substituting Eq.(A.25) into Eq.(A.26) the phasor of the velocity for a thin plate with
external point force excitation can be calculated:

w̃(x, y, ω) =
∞∑

m=1

∞∑

n=1

φmnφ
p
mn

Λ(ω2
mn(1 + jηs) − ω2)

f̃p. (A.27)

With harmonic excitation, the phasor of the transverse velocity ˙̃w is given by multiplying
the vertical displacement jω, i.e.:

˙̃w(x, y, ω) = jωw̃. (A.28)

Using the concept of mobility, the previous equation is modified as follows:

˙̃w = Yspfp, (A.29)

where the mobility Ysp is defined as the ratio between the velocity of the plate and the primary
excitation:

Ysp = Yẇ,fp
=

˙̃w

fp

= jω
∞∑

m=1

∞∑

n=1

φmnφ
p
mn

Λ(ω2
mn(1 + jηs) − ω2)

. (A.30)

Table A.1: Values for the constants Gx and Hx

Boundary conditions m Gx Hx

Simply supported 1,2,3,... m m2

Clamped 1 1.506 1.248

2,3,4,... m+ 1
2

(
m+ 1

2

)2 [
1 − 4

(2m+1)π

]

A.2 Force Actuator

When a second point force is added to the system as a secondary excitation, the law of
superposition can be applied due to linearity. Therefore, the equation of motion can be
modified as follows:

Ds

(
∂4w

∂x4
+ 2

∂4w

∂x2∂y2
+
∂4w

∂y4

)
+ ρshs

∂2w

∂t2
= fpδ

p + fcδ
c, (A.31)

where fc is the secondary point force, and δc is the Dirac delta function defined below:

δc = δ(x− xc)δ(y − yc), (A.32)

where (xc, yc) are the coordinates of the point, where the secondary point force is acting on
the plate. The displacement of the plate can be given as the summation of the displacement
excited by the primary excitation and the displacement excited by the control force. Therefore,
Eq.(A.5) can be written as:

w̃mn(x, y, ω) = φmn(x, y)qp
mn(ω) + φmn(x, y)qc

mn(ω), (A.33)
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where qp
mn is already given in Eq.(A.25), and qc

mn can be obtained by replacing φp
mn with φc

mn,
and f̃p with f̃c in Eq.(A.25):

qc
mn =

f̃cφ
c
mn

Λ(ω2
mn(1 + jηs) − ω2)

. (A.34)

Therefore, the displacement at an arbitral point of the plate w̃ is given as follows:

w̃(x, y, ω) =
∞∑

m=1

∞∑

n=1

φmnφ
p
mn

Λ(ω2
mn(1 + jηs) − ω2)

f̃p +
∞∑

m=1

∞∑

n=1

φmnφ
c
mn

Λ(ω2
mn(1 + jηs) − ω2)

f̃c. (A.35)

Using the mobility term, the transverse velocity of the plate is simply given by:

w̃ = Yspf̃p + Y F
sc f̃c, (A.36)

where Y F
sc is the mobility between the secondary point force and the out-plate velocity:

Y F
sc = Yẇ,fc

=
˙̃w

fc

= jω
∞∑

m=1

∞∑

n=1

φmnφ
c
mn

Λ(ω2
mn(1 + jηs) − ω2)

. (A.37)

The velocity at the secondary excitation point w̃c is given by:

ẇc = Ycpfp + Y F
cc fc. (A.38)

The two mobility terms Ycp and Y F
cc are given below:

Ycp = jω
∞∑

m=1

∞∑

n=1

φc
mnφ

p
mn

Λ(ω2
mn(1 + jηs) − ω2)

(A.39)

Y F
cc = jω

∞∑

m=1

∞∑

n=1

φc
mnφ

c
mn

Λ(ω2
mn(1 + jηs) − ω2)

. (A.40)

A.3 Strain Actuator

It is assumed that the piezoelectric actuator induces internal moments in both x and y direc-
tions, which are only present under the piezoelectric patch extent. Therefore, the excitation
of the piezoelectric patch actuator can be approximated by four line moments, all with equal
magnitude acting along the edges of the patch. Thus, the equation of motion can be modified
as:

Ds

(
∂4w

∂x4
+ 2

∂4w

∂x2∂y2
+
∂4w

∂y4

)
+ ρshs

∂2w

∂t2
= fpδ

p +mcx(δ
′

x1 − δ′x2)(Hy1 −Hy2)

+ mcy(Hx1 −Hx2)(δ
′

y1 − δ′y2), (A.41)

where mcx and mcy represent the actuator induced bending moment per unit length along the
x- and y-axis, respectively. H is the unit Heaviside step function defined as:

H(x) =

{
1, x > 0
0, x < 0

(A.42)

68



The terms of the Heaviside function in Eq.(A.31) are defined below:

Hx1 = H(x− xc1)

Hx2 = H(x− xc2)

Hy1 = H(y − yc1) (A.43)

Hy2 = H(y − yc2),

where (xc1, yc1) and (xc2, yc2) are the coordinates of the square, along which the line moment
is exerted. δ′ represents the first derivative of the Dirac delta function with reference to its
argument:

δ′x1 =
∂

∂x
δ(x− xc1)

δ′x2 =
∂

∂x
δ(x− xc2)

δ′y1 =
∂

∂y
δ(y − yc1) (A.44)

δ′y2 =
∂

∂y
δ(y − yc2).

Using the mobility term, the transverse velocity of the plate is given below:

w̃ = Yspf̃p + Y P
sc m̃c, (A.45)

where m̃c is the phasor of the line moments given as:

mc = m̃ce
jωt. (A.46)

Y P
sc is the mobility between the secondary line moments andthe out-plate velocity:

Y P
sc = Yẇ,mc

=
˙̃w

mc

= jω
∞∑

m=1

∞∑

n=1

φmnψ
c
mn

Λ(ω2
mn(1 + jηs) − ω2)

. (A.47)

ψc
mn is the (m,n)th bending natural mode, defined as follows:

ψc
mn =

∫ xc2

xc1

ψy
mn(xc, yc1) − ψy

mn(xc, yc2)dxc +
∫ yc2

yc1

ψy
mn(xc1, yc) − ψx

mn(xc2, yc)dyc, (A.48)

where ψx
mn and ψy

mn are the first derivatives of φmn(x, y) with reference to x and y, respectively:

ψx
mn =

∂φmn

∂x
=
∂φm

x

∂x
φy

n (A.49)

ψy
mn =

∂φmn

∂y
= φx

m

∂φn
y

∂y
. (A.50)

When a simply supported plate is considered, the (m,n)th bending natural mode ψc
mn is given

as follows:

ψmn =

(
n

m

lx

ly
+
m

n

ly

lx

)(
cos

(
mπxc1

lx

)
− cos

(
mπxc2

lx

))(
cos

(
nπyc1

ly

)
− cos

(
nπyc2

ly

))
.

(A.51)
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The velocity at the secondary excitation point w̃c is given by:

ẇc = Ycpfp + Y P
ccmc. (A.52)

The mobility due to the line moments excitation is defined below:

Y P
cc = jω

∞∑

m=1

∞∑

n=1

φc
mnψ

c
mn

Λ(ω2
mn(1 + jηs) − ω2)

. (A.53)
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Appendix B

Mobility

In this chapter, the formulas for the mobility functions discussed in Chapter 3 are given.

B.1 Ideal Sensor and Ideal Actuator

When the panel is excited by the primary excitation fp and the control moment mc that is
generated by the ideal piezoelectric actuator, the phasor of the velocity in z-direction at the
sensor position ẇc can be written using the following mobility expression:

ẇc = Ycpfp + Y p
ccmc, (B.1)

where Ycp is given by:

Ycp = jω
∞∑

m=1

∞∑

n=1

φc
mnφ

p
mn

Λ[ω2
mn(1 + jηs) − ω2]

. (B.2)

Y p
cc is a 4-element row vector:

Y p
cc =
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Ycy2
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∞∑
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∞∑
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∞∑

n=1

φc
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Λ[ω2
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∞∑

m=1

∞∑

n=1

φc
mnψy1

Λ[ω2
mn(1 + jηs) − ω2]

jω
∞∑

m=1
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n=1

φc
mnψy2

Λ[ω2
mn(1 + jηs) − ω2]





T

, (B.3)

where

ψx1 = −
∫ xc2

xc1

ψy
mn(x, yc1)dx (B.4)

ψx2 = −
∫ xc2

xc1

ψy
mn(x, yc2)dx (B.5)

ψy1 =
∫ yc2

yc1

ψy
mn(xc1, y)dy (B.6)

ψy2 =
∫ yc2

yc1

ψx
mn(xc2, y)dy, (B.7)
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where ψx
mn and ψy

mn are the first derivatives of φmn(x, y) with reference to x and y, respectively:

ψx
mn =

∂φmn

∂x
=
∂φm

x

∂x
φy

n (B.8)

ψy
mn =

∂φmn

∂y
= φx

m

∂φn
y

∂y
. (B.9)

B.2 Ideal Sensor and Lightweight Actuator

When the panel is excited by the primary excitation fp and the control moment mc that
is generated by the lightweight elastic piezoelectric actuator, the phasor of the velocity in
z-direction at the sensor position ẇc can be written using the following mobility expression:

ẇc = Ycpfp + Y p
ccmc + Y cmfm, (B.10)

where Ycp is given in Eq.(B.2), and Y p
cc is given in Eq.(B.3). Y cm is a n2

m-element row vector:

Y cm =
⌊
Y 1,1

cm Y 1,2
cm · · · Y h,k

cm · · · Y nm,nm
cm

⌋
. (B.11)

hth, kth element of the row vector Y cm is given by:

Y h,k
cm = jω

∞∑

m=1

∞∑

n=1

φc
mnφ

h,k
mn

Λ(ω2
mn(1 + jηs) − ω2)

, (B.12)

where φh,k
mn is a mode shape function at (xh, yk)

φh,k
mn = φm(xh)φn(yk) (B.13)

The complex velocities at the centers of the lumped masses are given in the vector form:

ẇm = Y mpfp + Y mcmc + Y mmfm, (B.14)

where Y mp is a n2
m-element column vector:

Y mp =
[
Y 1,1

mp Y 1,2
mp · · · Y h,k

mp · · · Y nm,nm
mp

]T
(B.15)

where hth, kth element of the column vector Y mp is given by:

Y h,k
mp = jω

∞∑

m=1

∞∑

n=1

φp
mnφ

h,k
mn

Λ(ω2
mn(1 + jηs) − ω2)

. (B.16)

In Eq.(B.14), Y mc is a n2
m× 4 matrix, which consists of 4 arrays of n2

m-element column vectors,
Y mcx1

, Y mcx2
, Y mcy1

, and Y mcy2
.

Y mc =
[

Y mcx1
Y mcx2

Y mcy1
Y mcy2

]
(B.17)
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where gth element of each vector is given by:

Y g
mcx1

= jω
∞∑

m=1

∞∑

n=1

ψx1φ
h,k
mn

Λ(ω2
mn(1 + jηs) − ω2)

(B.18)

Y g
mcx2

= jω
∞∑

m=1

∞∑

n=1

ψx2φ
h,k
mn

Λ(ω2
mn(1 + jηs) − ω2)

(B.19)

Y g
mcy1

= jω
∞∑

m=1

∞∑

n=1

ψy1φ
h,k
mn

Λ(ω2
mn(1 + jηs) − ω2)

(B.20)

Y g
mcy2

= jω
∞∑

m=1

∞∑

n=1

ψy2φ
h,k
mn

Λ(ω2
mn(1 + jηs) − ω2)

, (B.21)

where g = (nsh + k).
In Eq.(B.14), Y mm is a n2

m × n2
m matrix:

Y mm =




Y 1,1
mm Y 1,2

mm · · · Y 1,n2
m

mm

Y 2,1
mm

. . .
...

Y n2
m,1

mm Y n2
m,n2

m
mm



, (B.22)

where gth, uth element of Y g,u
mm are given by:

Y g,u
mm = jω

∞∑

m=1

∞∑

n=1

φh,k
mnφ

s,t
mn

Λ(ω2
mn(1 + jηs) − ω2)

, (B.23)

where u = (nst+ s).

B.3 Ideal Sensor and Elastic Actuator

When the panel is excited by the primary excitation fp and the control moment mc that is
generated by the elastic piezoelectric actuator, the phasor of the velocity in z-direction at the
sensor position ẇc can be written using the following mobility expression:

ẇc = Ycpfp + Y cMM t, (B.24)

where Ycp is already given in Eq.(B.2). Y cM is a 4nk-element row vector, which consists of 4
arrays of nk-element row vectors, Y cMx1

, Y cMx2
, Y cMy1

, and Y cMy2
:

Y cM =
⌊

Y cMx1
Y cMx2

Y cMy1
Y cMy2

⌋
, (B.25)

where ath element of each vector is given by:

Y a
cMx1

= −jω
∞∑

m=1

∞∑

n=1

φc
mn

∂φ

∂y

∣∣∣
xa,yc1

Λ(ω2
mn(1 + jηs) − ω2)

(B.26)

Y a
cMx2

= −jω
∞∑

m=1

∞∑

n=1

φc
mn

∂φ

∂y

∣∣∣
xa,yc2

Λ(ω2
mn(1 + jηs) − ω2)

(B.27)
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Y a
cMy1

= jω
∞∑

m=1

∞∑

n=1

φc
mn

∂φ

∂x

∣∣∣
xc1,ya

Λ(ω2
mn(1 + jηs) − ω2)

(B.28)

Y a
cMy2

= jω
∞∑

m=1

∞∑

n=1

φc
mn

∂φ

∂x

∣∣∣
xc2,ya

Λ(ω2
mn(1 + jηs) − ω2)

. (B.29)

The complex angular velocities along the edges of the patch actuator are given in the
vector form:

θ̇ = Y θpfp + Y θMM t, (B.30)

where Y θp is a 4nk-element row vector, which consists of 4 arrays of nk-element row vectors,
Y θx1p, Y θx2p, Y θy1p, and Y θy2p:

Y θp =
[

Y θx1p Y θx2p Y θy1p Y θy2p

]T
, (B.31)

where ath element of each vector in Y θp, is given by:

Y a
θx1p = −jω

∞∑

m=1

∞∑

n=1

φp
mn

∂φ

∂y

∣∣∣
xa,yc1

Λ(ω2
mn(1 + jηs) − ω2)

(B.32)

Y a
θx2p = −jω

∞∑

m=1

∞∑

n=1

φp
mn

∂φ

∂y

∣∣∣
xa,yc2

Λ(ω2
mn(1 + jηs) − ω2)

(B.33)

Y a
θy1p = jω

∞∑

m=1

∞∑

n=1

φp
mn

∂φ

∂x

∣∣∣
xc1,ya

Λ(ω2
mn(1 + jηs) − ω2)

(B.34)

Y a
θy2p = jω

∞∑

m=1

∞∑

n=1

φp
mn

∂φ

∂x

∣∣∣
xc2,ya

Λ(ω2
mn(1 + jηs) − ω2)

. (B.35)

In Eq.(B.30), Y θM is a 4nk × 4nk matrix, which consists of 4 × 4 arrays of matrices with
nk × nk element:

Y θM =




Y θx1Mx1
Y θx1Mx2

Y θx1My1
Y θx1My2

Y θx2Mx1
Y θx2Mx2

Y θx2My1
Y θx2My2

Y θy1Mx1
Y θy1Mx2

Y θy1My1
Y θy1My2

Y θy2Mx1
Y θy2Mx2

Y θy2My1
Y θy2My2


 , (B.36)

where ath, bth element of each matrix in Y θM are given below:

Y
a,b
θx1,Mx1

= jω
∞∑

m=1

∞∑

n=1

∂φ

∂y

∣∣∣
xa,yc1

∂φ

∂y

∣∣∣
xb,yc1

Λ(ω2
mn(1 + jηs) − ω2)

(B.37)

Y
a,b
θx1,Mx2

= jω
∞∑

m=1

∞∑

n=1

∂φ

∂y

∣∣∣
xa,yc2

∂φ

∂y

∣∣∣
xb,yc1

Λ(ω2
mn(1 + jηs) − ω2)

(B.38)

Y
a,b
θx2,Mx1

= jω
∞∑

m=1

∞∑

n=1

∂φ

∂y

∣∣∣
xa,yc1

∂φ

∂y

∣∣∣
xb,yc2

Λ(ω2
mn(1 + jηs) − ω2)

(B.39)
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Y
a,b
θx2,Mx2

= jω
∞∑

m=1

∞∑

n=1

∂φ

∂y

∣∣∣
xa,yc2

∂φ

∂y

∣∣∣
xb,yc2

Λ(ω2
mn(1 + jηs) − ω2)

(B.40)

Y
a,b
θx1,My1

= −jω
∞∑

m=1

∞∑

n=1

∂φ

∂x

∣∣∣
xc1,ya

∂φ

∂y

∣∣∣
xb,yc1

Λ(ω2
mn(1 + jηs) − ω2)

(B.41)

Y
a,b
θx1,My2

= −jω
∞∑

m=1

∞∑

n=1

∂φ

∂x

∣∣∣
xc2,ya

∂φ

∂y

∣∣∣
xb,yc1

Λ(ω2
mn(1 + jηs) − ω2)

(B.42)

Y
a,b
θx2,My1

= −jω
∞∑

m=1

∞∑

n=1

∂φ

∂x

∣∣∣
xc1,ya

∂φ

∂y

∣∣∣
xb,yc2

Λ(ω2
mn(1 + jηs) − ω2)

(B.43)

Y
a,b
θx2,My2

= −jω
∞∑

m=1

∞∑

n=1

∂φ

∂x

∣∣∣
xc2,ya

∂φ

∂y

∣∣∣
xb,yc2

Λ(ω2
mn(1 + jηs) − ω2)

(B.44)

Y
a,b
θy1,Mx1

= −jω
∞∑

m=1

∞∑

n=1

∂φ

∂y

∣∣∣
xa,yc1

∂φ

∂x

∣∣∣
xc1,yb

Λ(ω2
mn(1 + jηs) − ω2)

(B.45)

Y
a,b
θy1,Mx2

= −jω
∞∑

m=1

∞∑

n=1

∂φ

∂y

∣∣∣
xa,yc2

∂φ

∂x

∣∣∣
xc1,yb

Λ(ω2
mn(1 + jηs) − ω2)

(B.46)

Y
a,b
θy2,Mx1

= −jω
∞∑

m=1

∞∑

n=1

∂φ

∂y

∣∣∣
xa,yc1

∂φ

∂x

∣∣∣
xc2,yb

Λ(ω2
mn(1 + jηs) − ω2)

(B.47)

Y
a,b
θy2,Mx2

= −jω
∞∑

m=1

∞∑

n=1

∂φ

∂y

∣∣∣
xa,yc2

∂φ

∂x

∣∣∣
xc2,yb

Λ(ω2
mn(1 + jηs) − ω2)

(B.48)

Y
a,b
θy1,My1

= jω
∞∑

m=1

∞∑

n=1

∂φ

∂x

∣∣∣
xc1,ya

∂φ

∂x

∣∣∣
xc1,yb

Λ(ω2
mn(1 + jηs) − ω2)

(B.49)

Y
a,b
θy1,My2

= jω
∞∑

m=1

∞∑

n=1

∂φ

∂x

∣∣∣
xc2,ya

∂φ

∂x

∣∣∣
xc1,yb

Λ(ω2
mn(1 + jηs) − ω2)

(B.50)

Y
a,b
θy2,My1

= jω
∞∑

m=1

∞∑

n=1

∂φ

∂x

∣∣∣
xc1,ya

∂φ

∂x

∣∣∣
xc2,yb

Λ(ω2
mn(1 + jηs) − ω2)

(B.51)

Y
a,b
θy2,My2

= jω
∞∑

m=1

∞∑

n=1

∂φ

∂x

∣∣∣
xc2,ya

∂φ

∂x

∣∣∣
xc2,yb

Λ(ω2
mn(1 + jηs) − ω2)

(B.52)

B.4 Actuator-Plate Fully Coupled Model

When the panel is excited by the primary excitation fp and the control moment mc that
is generated by the lightweight elastic piezoelectric actuator, the phasor of the velocity in
z-direction at the sensor position ẇc can be written using the following mobility expression:

ẇc = Ycpfp + Y cmfm + Y cMM t, (B.53)

where Ycp is given in Eq.(B.2), Y cm is given in Eq.(B.11), and Y cM is given in Eq.(B.25).
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The complex velocities at the centers of the lumped masses are given in the vector form:

ẇm = Y mpfp + Y mmfm + Y mMM t, (B.54)

where Y mp is given in Eq.(B.15), and Y mm is given in Eq.(B.22). Y mM is a n2
m×4nk matrix,

which consists of 4 arrays of matrices with n2
m × nk elements, Y mMx1

, Y mMx2
, Y mMy1

, and
Y mMy2

:

Y mM =
[

Y mMx1
Y mMx2

Y mMy1
Y mMy2

]
, (B.55)

where gth, ath element of each matrix is given below:

Y
g,a
mMx1

= −jω
∞∑

m=1

∞∑

n=1

φh,k
mn

∂φ

∂y

∣∣∣
xa,yc1

Λ(ω2
mn(1 + jηs) − ω2)

(B.56)

Y
g,a
mMx2

= −jω
∞∑

m=1

∞∑

n=1

φh,k
mn

∂φ

∂y

∣∣∣
xa,yc2

Λ(ω2
mn(1 + jηs) − ω2)

(B.57)

Y
g,a
mMy1

= jω
∞∑

m=1

∞∑

n=1

φh,k
mn

∂φ

∂x

∣∣∣
xc1,ya

Λ(ω2
mn(1 + jηs) − ω2)

(B.58)

Y
g,a
mMy2

= jω
∞∑

m=1

∞∑

n=1

φh,k
mn

∂φ

∂x

∣∣∣
xc2,ya

Λ(ω2
mn(1 + jηs) − ω2)

. (B.59)

The complex angular velocities along the edges of the patch actuator are given in the
vector form:

θ̇ = Y θpfp + Y θmfm + Y θMM t, (B.60)

where Y θp is given in Eq.(B.31), Y θM is given in Eq.(B.36). Y θm is a 4nk×n2
m matrix, which

consists of 4 arrays of nk × n2
m matrices, Y θx1m, Y θx2m, Y θy1m, and Y θy2m:

Y θm =
[

Y θx1m Y θx2m Y θy1m Y θy2m

]
, (B.61)

where ath, gth element of each matrix is given below:

Y
a,g
θx1m = −jω

∞∑

m=1

∞∑

n=1

φh,k
mn

∂φ

∂y

∣∣∣
xa,yc1

Λ(ω2
mn(1 + jηs) − ω2)

(B.62)

Y
a,g
θx2m = −jω

∞∑

m=1

∞∑

n=1

φh,k
mn

∂φ

∂y

∣∣∣
xa,yc2

Λ(ω2
mn(1 + jηs) − ω2)

(B.63)

Y
a,g
θy1m = jω

∞∑

m=1

∞∑

n=1

φh,k
mn

∂φ

∂x

∣∣∣
xc1,ya

Λ(ω2
mn(1 + jηs) − ω2)

(B.64)

Y
a,g
θx1m = jω

∞∑

m=1

∞∑

n=1

φh,k
mn

∂φ

∂x

∣∣∣
xc2,ya

Λ(ω2
mn(1 + jηs) − ω2)

. (B.65)
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B.5 Actuator-Sensor-Plate Fully Coupled Model

When the panel is excited by the primary excitation fp, and the control moment mc generated
by the lightweight elastic piezoelectric actuator, the phasor of the velocity in z-direction at
the sensor position ẇc can be written using the following mobility expression:

ẇc = Ycpfp + Y cmfm + Y cMM t + Ycc(fa1 + fh), (B.66)

where Ycp is given in Eq.(B.2), Y cm is given in Eq.(B.11), and Y cM is given in Eq.(B.25). Ycc

is given below:

Ycc = jω
∞∑

m=1

∞∑

n=1

φc
mnφ

c
mn

Λ(ω2
mn(1 + jηs) − ω2)

. (B.67)

The complex velocities at the centers of the lumped masses are given in the vector form:

ẇm = Y mpfp + Y mmfm + Y mMM t + Y mc(fa1 + fh), (B.68)

where Y mp is given in Eq.(B.15), Y mm is given in Eq.(B.22), and Y mM is given in Eq.(B.55).
Y mc is n2

m-element column vector:

Y mc =
[
Y 1,1

mc Y 1,2
mc · · · Y h,k

mc · · · Y nm,nm
mc

]T
, (B.69)

where hth, kth element of column matrix Y mc is given below:

Y h,k
mc = jω

∞∑

m=1

∞∑

n=1

φc
mnφ

h,k
mn

Λ(ω2
mn(1 + jηs) − ω2)

. (B.70)

The complex angular velocities along the edges of the patch actuator are given in the
vector form:

θ̇ = Y θpfp + Y θmfm + Y θMM t + Y θc(fa1 + fh), (B.71)

where Y θM is given in Eq.(B.36), Y θp is given in Eq.(B.31), and Y θm is given in Eq.(B.61).
Y θc is a 4nk-element column vector, which consists of 4 arrays of nk-element column vectors,
Y θx1c, Y θx2c, Y θy1c, and Y θy2c:

Y θc =
[

Y θx1c Y θx2c Y θy1c Y θy2c

]T
, (B.72)

where ath element of each vector is given below:

Y a
θxc = −jω

∞∑

m=1

∞∑

n=1

φc
mn

∂φ

∂y

∣∣∣
xa,yc1

Λ(ω2
mn(1 + jηs) − ω2)

(B.73)

Y a
θyc = −jω

∞∑

m=1

∞∑

n=1

φc
mn

∂φ

∂y
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xa,yc2

Λ(ω2
mn(1 + jηs) − ω2)

(B.74)

Y a
θxc = jω

∞∑

m=1

∞∑

n=1

φc
mn

∂φ

∂x

∣∣∣
xc1,ya

Λ(ω2
mn(1 + jηs) − ω2)
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Y a
θyc = jω

∞∑

m=1

∞∑

n=1

φc
mn

∂φ

∂x

∣∣∣
xc2,ya

Λ(ω2
mn(1 + jηs) − ω2)

. (B.76)
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Appendix C

Piezoelectric Actuator Induced

Moment

This appendix introduces the formulation of the effective actuation moments induced by the
piezoelectric patch actuator to the supporting structure. Clawley et al.[17] have investigated
the behavior of a pair of piezoelectric patches bonded on both surfaces of a beam, and derived
the formulation of the actuation moment induced in the beam. Dimitriadis et al.[18] have
developed the similar formulation for a two-dimensional problem as an extension of Clawley’s
work. Fuller et al.[19] complemented these works by adding the formulation of the actuation
moment induced by the single piezoelectric patch bonded on one surfaces of the beam. In this
report, the actuation moment induced by a single two-dimensional rectangular piezoelectric
actuator bonded on single surface of a flat panel, is discussed. The method of formulation
used in this report follows the above mentioned previous works.

In the model formulation, the following assumptions were made:

1. A two-dimensional piezoelectric actuator has the same properties in the 1- and 2- di-
rections.

2. The piezoelectric actuator patch is perfectly bonded to the surface of a plate[17].

When an unconstrained piezoelectric patch actuator is activated by applying a voltage,
the piezoelectric patch develops strain, as shown in Figure C.1-(a). The magnitude of the
induced strains of an unconstrained patch ǫpzt can be expressed by:

ǫpzt =
d31Vc

hpzt

, (C.1)

where d31 denotes the piezoelectric strain constant, Vc is the applied control voltage, and hpzt

is the thickness of the patch.
When a bonded piezoelectric patch actuator is activated by a voltage, the piezoelectric

patch develops strain, which however is constrained due to the stiffness of the supporting
structure. As a result of Kirchhoff’s hypothesis of Classic Laminate Plate Theory (CLPT)[20],
the strain distribution is assumed linear. Furthermore, the assumption of perfect bonding
between the actuator patch and the plate implies that strain is continuous at the interface.
Due to the geometric asymmetry of the structure, the generated strain within the panel is
asymmetric with reference to the middle plane of the panel, as shown in Figure C.1-(b).
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Therefore, the formulas of the strain distribution in the x- and y- directions can be expressed
as:

ǫx = Cxz + ǫx0, (C.2)

ǫy = Cyz + ǫy0, (C.3)

where Cx and Cy are the slopes of the strain distribution, and ǫx0 and ǫy0 denote the z-intercept
for the x-z and y-z planes, respectively.

(a) Unconstrained piezpelectric patch

x, y

z

ePZT

(b) Bonded piezpelectric patch

x, y

z

ex,y

Figure C.1: Strain distribution; (a)unconstrained piezoelectric actuator(Top) and (b) bonded
piezoelectric actuator on the panel (bottm)

According to Hook’s low, the stress distribution within the panel is given by:

σx
s =

Es

1 − ν2
s

(ǫx + νsǫy), (C.4)

σy
s =

Es

1 − ν2
s

(ǫy + νsǫx), (C.5)

where Es and νs respectively denote the elastic module and poisson ration of the panel. The
stress distribution within the patch actuator is given as a result of superposing the passive
stress σk

pzt due to external plate strains at the interface, and the active stress σa
pzt due to

unconstrained piezoelectric patch strain, as shown in Figure C.2:

σx
pzt =

Epzt

1 − ν2
pzt

{(ǫx + νpztǫy) − (1 + νpzt)ǫpzt}, (C.6)

σ
y
pzt =

Epzt

1 − ν2
pzt

{(ǫy + νpztǫx) − (1 + νpzt)ǫpzt}, (C.7)

where Epzt and νpzt respectively denote the elastic module and poisson ratio of the piezoelectric
patch actuator.
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Figure C.2: Stress distribution (top) and its decomposition into passive (bottom left) and
active stress (bottom right)

Applying force and moment equilibriums about the middle plane of the panel in the x-
and y-directions produce the following relations:

∫ hs
2

−
hs
2

σx
s dz +

∫
−

hs
2

−
hs
2
−hpzt

σx
pztdz = 0,

∫ hs
2

−
hs
2

σy
sdz +

∫
−

hs
2

−
hs
2
−hpzt

σ
y
pztdz = 0, (C.8)

∫ hs
2

−
hs
2

σx
s zdz +

∫
−

hs
2

−
hs
2
−hpzt

σx
pztzdz = 0,

∫ hs
2

−
hs
2

σy
szdz +

∫
−

hs
2

−
hs
2
−hpzt

σ
y
pztzdz = 0, (C.9)

where hs denotes the thicknesses of the panel. After integration, Eq.(C.8) and Eq.(C.9) can
be solved for unknowns Cx, Cy, ǫx, and ǫy, which are given by:

C = Cx = Cy = Kf ǫpzt, (C.10)

ǫ0 = ǫx0 = ǫy0 = KLǫpzt, (C.11)

where material-geometric constant Kf and KL are given by:

Kf =
6ĒsĒpzthshpzt(hs + hpzt)

Ē2
sh

4
s + 2ĒsĒpzt(2h3

shpzt + 3h2
sh

2
pzt + 2hsh

3
pzt) + Ē2

pzth
4
pzt

, (C.12)

KL =
Ēpzthpzt(Ēsh

3
s + Ēpzth

3
pzt)

Ē2
sh

4
s + 2ĒsĒpzt(2h3

shpzt + 3h2
sh

2
pzt + 2hsh

3
pzt) + Ē2

pzth
4
pzt

, (C.13)

where

Ēs =
Es

1 − νs

, (C.14)

Ēpzt =
Epzt

1 − νpzt

. (C.15)
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Thus, the effective bending moment applied to the plate induced by a piezoelectric patch mc

can be expressed as follows:

mc =
∫ hs

2

−
hs
2

σszdz,

=
Ēsh

3
s

12

d31

hpzt

KfVc, (C.16)

= cαVc.

Additionally, the effective inplane force applied to the plate induced by a piezoelectric patch
fu can be expressed as follows:

fu =
∫ hs

2

−
hs
2

σsdz,

= ĒsKLhs

d31

hpzt

Vc, (C.17)

= cβVc.
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