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In dynamical systems, it is advantageous to be able to identify separate regions of qual-

itatively different flow. Lagrangian Coherent Structures have been introduced to obtain

separatrices between regions of qualitatively different flow in three-dimensional dynami-

cal systems with arbitrary time-dependence. However, the numerical method to compute

them requires obtaining derivatives associated with the system, often performed through

the approximation of divided differences, which leads to significant numerical error and

numerical noise. In this paper, we introduce a novel method for the numerical calculation

of hyperbolic Lagrangian Coherent Structures using Differential Algebra called DA-LCS.

As a form of automatic forward differentiation, it allows direct computation of the Taylor

expansion of the flow, its derivatives, and its eigenvectors, with all derivatives obtained

algebraically and to machine precision. It does so without a priori information about the

system, such as variational equations or explicit derivatives. We demonstrate that this

provides significant improvements in the accuracy of the Lagrangian Coherent Structures

identified compared to finite-differencing methods in a series of test cases drawn from

the literature. We also show how DA-LCS uncovers additional dynamical behaviour in a

real-world example drawn from astrodynamics.
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Lagrangian Coherent Structures are a generalisation of the concept of the invariant mani-

fold to time-dependent systems, and allow the profiling of three-dimensional dynamical sys-

tems with arbitrary time-dependence. However, the numerical method to compute these

requires the gradient of the leading eigenvector of the strain tensor for the flow, which is typ-

ically achieved using the approximation of divided differences. The grid size for this process

must be chosen without a priori knowledge to effectively capture the desired dynamical be-

haviour, and is susceptible to significant numerical noise and numerical error. In this paper,

we present DA-LCS, an improved numerical method for determining hyperbolic Lagrangian

Coherent Structures in three-dimensional systems. DA-LCS uses Differential Algebra, a set

of operations which allows the storage and manipulation of polynomials in a computer envi-

ronment, to directly construct a Taylor expansion of the flow. Through a novel application

of power law iteration using a matrix of DA objects, we are also able to obtain polynomial

expansions of the leading eigenvector of the strain tensor for the flow, providing access to

derivatives of the leading eigenvector to machine precision. We show that this yields more

accurate Lagrangian Coherent Structures based solely on the dynamics of the system. DA-

LCS is first shown to reproduce ‘toy’ problems commonly found in the literature to higher

accuracy. Then, we exhibit the performance of DA-LCS on a test case from astrodynamics,

in which DA-LCS is able to generate usable insight where divided differences fails to produce

any.

I. INTRODUCTION

In dynamical systems, it is often useful to identify surfaces which promote or inhibit transport,

as these separate regions of qualitatively different flow. For time-independent systems, one often

determines the geometric location of the invariant manifolds, which partition phase space and are

found by studying the system’s behaviour over infinite time scales1. However, in time-dependent

flows, the theory of invariant manifolds does not apply and there are no stable or unstable hyper-

bolic invariant manifolds. Instead, the behaviour of these systems is typically studied over fixed

time-scales chosen to match some practical period of interest2,3.

To overcome this problem, several methods for identifying barriers to transport in temporally

aperiodic systems have been suggested. For example, one may study a number of heuristic flow
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diagnostics4, but many of these methods are only effective for simple flows and are dependent on

the reference frame2. Being heuristic, they also often lack a proper theoretical foundation as to

exactly what they are indicating.

Lagrangian Coherent Structures (LCS) – a generalisation of the concept of invariant manifolds

to unsteady flows – have emerged in the literature to solve this problem5. LCS are locally the

most repulsive or attractive surfaces in a given flow, and dominate the nearby behaviour of the

system. Several definitions of LCS have arisen in the literature (for a review, see Hadjighasem

et al. 6). A LCS was originally defined specifically for two-dimensional flows with respect to

the Finite-Time Lyapunov Exponent (FTLE)7–9, which measures the separation of particles which

begin infinitesimally close. Under certain conditions, one can rigorously relate ridges of the FTLE

field to repelling and attractive transport barriers10–12.

A global, objective approach to the construction of Lagrangian Coherent Structures was pre-

sented in Blazevski and Haller 13 . The authors provide both the theoretical underpinning and a

practical algorithm to directly construct transport barriers as parameterised surfaces by growing

material surfaces which impose locally extreme deformation on nearby sets of initial conditions.

These surfaces are shown to be necessarily orthogonal to certain eigendirections of the Cauchy-

Green strain tensor of the flow, CT
t0 , which quantifies the deformation of a flow. This approach is

valid for three-dimensional flows with general time-dependence and over arbitrarily-chosen time

periods of observation.

However, there are several computational complexities associated with computing LCS using

this global, objective approach11, such as the need to account for degenerate points and orien-

tal discontinuities in the eigenvector field of CT
t0 . More importantly, the eigenvectors of CT

t0 must

be computed precisely, yet are very sensitive to numerical errors. These errors are particularly

troublesome near regions of intense attraction or repulsion, since large errors in CT
t0 can quickly

accumulate, yet these are also the exact regions where one would expect a LCS. The approxima-

tion of the derivatives of a flow using finite differencing is often used2,14–16, but this method is

particularly sensitive to the grid-size chosen, which must be carefully selected to account for flow

behaviour over different spatial scales, and is generally difficult to determine a priori. Other such

methods for approximating derivatives exist, such as the use of variational equations, where one

manually derives and implements a set of adjoint differential equations that are propagated along

with a reference trajectory17. While this approach yields derivatives as accurate as the propaga-

tion along the reference trajectory, it requires the derivation, implementation and integration of
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n2 additional equations for the first derivatives of an n dimensional flow, and another n2(n+1)/2

equations for the second flow derivatives.

Separately, Differential Algebra (DA) was originally introduced to compute high-order trans-

fer maps for particle accelerator systems18. This approach constructs a Taylor series represen-

tation of an arbitrary map in a dynamical system, and has since seen widespread use in the

study of non-linearities19–21, the management of uncertainties22–25, and as a tool for automatic

differentiation26,27 in a wide variety of fields. Crucially, the derivatives found using DA are accu-

rate to machine precision, unlike other numerical methods such as divided differences, and there

is no need to derive or implement any additional equations beyond the system itself.

3 1
32R

32F 0.333 . . .

+1 /3

+1 /3

= = ≈

(a) Evaluation of (2+1)/3 in the field of real

numbers R (top) and in the floating-point

approximation to R, F (bottom). Each operation in

R has a corresponding operation in F.

x+1 1
x+1xCk (0)

x+1xDA 1− x+ x2

+1 1/

+1 1/

= = ≈

(b) Evaluation of 1/(x+1) in the k−times

differentiable functions Ck (top) and truncated

polynomials of order 2 represented by DA (bottom).

Each operation in Ck(0) has a corresponding

operation in DA, approximating the resulting

function in Ck(0) by its Taylor expansion around 0.

FIG. 1: Comparison between the field of real numbers R and function space Ck, and their

respective computer representations. The subfigures are taken from Wittig 28 .

In this paper we introduce DA-LCS, which uses DA to improve the numerical method presented

in Blazevski and Haller 13 for determining hyperbolic LCS. First, in Section III A we briefly reca-

pitulate how polynomial expansions of arbitrary flows of an ordinary differential equation (ODE)

can be calculated, with applications to obtaining flow derivatives of arbitrary systems to machine

precision. Next, in Section III B we introduce a novel use of DA to construct algebraic expansions
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of the leading eigenvector of a matrix of polynomials. Both of these techniques are then combined

to form the DA-LCS algorithm for computing LCS in three-dimensional flows. In Section V, we

demonstrate that this method works well in reproducing results for commonly-used ‘toy’ problems

from the literature. Lastly, in Section VI we present the application of DA-LCS to a more complex

system from astrodynamics where the traditional method fails to produce usable results.

II. MATHEMATICAL BACKGROUND AND NOTATION

We study the behaviour of a dynamical system

ẋ= f (x, t) ,x ∈ D⊂ Rn, t ∈ [t0, t0 +T ] (1)

where f is a smooth vector field considered over some time T starting at time t0. Denoting a

trajectory of the dynamical system starting at position x0 at time t0 as x(t0, x0; T ), the flow map

of Equation 1 is given by

F T
t0 :

D→ D

x0 7→ x(t0, x0; T )
(2)

which is assumed to be at least k-times continuously differentiable. The Jacobian of this flow

map, ∇FT
t0 , defines the right Cauchy-Green Strain Tensor (CGST) CT

t0 , which describes the local

deformation of the flow at the end of a given trajectory.

CT
t0 =

(
∇F T

t0

)> (
∇F T

t0

)
(3)

with > denoting the matrix transpose. CT
t0 is positive-definite and symmetric, with real eigenvalues

λ1 ≤ λ2 ≤ ·· · ≤ λn and associated real eigenvectors ζ1,ζ2, . . . ,ζn.

The dominant eigenvalue λn can be used to calculate the finite-time Lyapunov exponent

(FTLE), a measure of maximum separation of two particles advected forward under Equation

1 that start out infinitesimally close to each other:

σ
T
t0 =

1
2

logλn

T
. (4)

Many previous studies have leveraged the FTLE field as a heuristic indication of high regions of

separation in the flow. While the FTLE has been shown to be insufficient to indicate LCS alone11,

the FTLE is a commonly-used metric and is thus used in this paper to preliminarily highlight

system behaviour and identify possible locations of high stretch or strain.
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III. DIFFERENTIAL ALGEBRA

In the following, we give a very brief introduction to Differential Algebra. For a comprehensive

treatment, the reader is referred to the literature29.

Differential Algebra can be used as a tool to compute the derivatives of functions within a com-

puter environment29,30. Similar to how computers represent the field of real numbers as floating-

point numbers, DA allows the representation and manipulation of functions in a computer31.

Consider two real numbers a and b ∈ R. The approximation to a and b in a computational

environment is their floating-point representation ā, b̄ ∈ F, which essentially stores a set number

of digits of its binary expansion. Any operation defined in R, �, has a corresponding operation in

F,�, defined such that the result is another floating-point approximation of the operation on the

real numbers a and b, i.e. ā× b̄ commutes with the floating-point representation of a×b, a×b.

Similarly, now consider two functions, c and d, which are sufficiently smooth, k−differentiable

functions of n variables: c, d : Rn→ R. In the DA framework, a computer operates on the multi-

variate Taylor expansion of c and d, [c] and [d], with corresponding operations to those defined in

the real function space, such that the operation of [c] · [d] commutes with the DA representation of

the product [c ·d].

An example to demonstrate how real numbers are approximated in a computer environment

is provided in Figure 1a for the evaluation of the expression 1/(x+1) for x = 2 in F and R. In

Figure 1a, we begin with x = 2, perform the operation +1 to obtain three, and then perform the

operation 1/ to compute the final expression. In R, we obtain the solution 1/3, and in F we obtain

the solution 0.333 . . . up to the limit of precision of the type. The final result of the evaluation in

floating-point arithmetic is an approximation of the real computation.

In Figure 1b, we evaluate the same expression comparing the evaluation in the space Ck (0) of

real functions, and the DA arithmetic of one variable and expansion order 2. We begin with the

function c(x) = x, and perform the operation +1 followed by the operation 1/, yielding 1/(x+1)

in the real function space, and 1− x+ x2 in the DA arithmetic. The result of the DA arithmetic is

the Taylor expansion of 1/(x+1) which represents the function exactly at x= 0, and approximates

the function locally near x = 0 with an error of O
(
x3).

Under the term Differential Algebra we subsume a full set of elementary operations to effi-

ciently operate on these multivariate expansions, including operations for common intrinsic func-

tions such as division, square roots, trigonometric functions, and exponentials, as well as oper-
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FIG. 2: Relative error across all polynomial orders in successive applications of
[
CT

t0

]
to an initial

guess containing only the floating-point dominant eigenvector at the expansion point as the

constant part. Higher expansion orders (black) can all be seen converging at around the expected

convergence rate λn/λn−1 (dashed red) towards the floating-point floor.

ations for differentiation and integration. Some traditional floating-point algorithms have also

been made available in DA23. An important application of DA widely used in both the literature

and this paper is the high-order expansion of the solution of an ODE as a function of the initial

conditions23,25, which is discussed in more detail in Subsection III A. In this paper, we use the

Differential Algebra Computational Engine26 (DACE) to operate on polynomial expansions (‘DA

objects’ or ‘DAs’).

A. Flow expansions to arbitrary order using Differential Algebra

A key advantage in using DA is the ability to compute the derivatives of a flow completely

algebraically and to machine precision, without the need to derive, implement and compute the

variational equations for the system, or approximate derivatives using divided differences.

To demonstrate this, consider as an example the initial value problem (IVP) given byẋ= f (x, t)

x(ti) = xi.
(5)

This type of ODE is commonly solved numerically using Runge-Kutta schemes. As these schemes
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are merely a sequence of operations, they can also be evaluated in DA.

As an example, suppose we solve this IVP using the forward Euler scheme, the simplest of the

Runge-Kutta family. A single step in this scheme is given explicitly by the expression

xi = xi−1 +∆t f (xi−1) . (6)

To change this into a DA method, we take an initial floating-point representation of the initial

condition x(t0), and substitute the initial value with the DA identity, [x(t0)] = x(t0) + δx, in

which x(t0) is the reference point for the expansion. Evaluating the Euler scheme and the right

hand side f with DA operations, we obtain the time-step

[x1] = [x0]+∆t f ([x0]) . (7)

Repeating this time step until the final step
[
x f
]
, the final output of the Euler scheme will be a k-th

order expansion of the flow [F (t0, [x0] ; t)] at the final time T with respect to the initial condition.

The forward Euler method is of course merely for demonstration and not used in practice.

Following the same procedure, however, most explicit ODE integration schemes can be readily

modified to support DA. In this work, we rely on the templated Boost C++ library’s 7/8 Dormand-

Prince numerical integration scheme to perform numerical integration.

Since Boost is templated, its numerical integrators can be adapted to support DA with only few

changes. The first is the replacement of floating-point operations with their corresponding DA

operations; this is straightforward since Boost supports operator overloading. The main change

is how norms are calculated for error estimation in the integrator when using DA. Evaluating

the usual L2 norm of a vector |x| =
√

∑
n
i=0 x2

i in DA yields another DA object representing a

polynomial. As there is no ordering on the space of polynomials, this cannot be directly compared

to some tolerance. Instead, we have to define the norm of a DA object which maps it into the

non-negative real numbers. In this application, the norm of a DA object is taken to be the largest

absolute value of any coefficient of the expansion in any order. Considering all orders in the norm

allows the usual step-size control algorithms of embedded Runge-Kutta methods to control the

error in all orders of the expansion, rather than just the constant part.

B. Polynomial expansions of leading eigenvectors of CT
t0 to arbitrary order

From the DA expansion of the final condition with respect to the initial condition obtained

previously, DA makes it particularly easy to assemble an expansion of CT
t0 . Since derivatives of
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polynomials are straight forward to compute, DA provides built-in operators for differentiation in

the i-th independent variable ∂i. This means we can directly evaluate the Jacobian as

[
∇F T

t0

]
i j = ∂ j [x]

T
t0, i (8)

from which a polynomial expansion of CT
t0 can be assembled yielding

[
CT

t0

]
=
[
∇F T

t0

]> [
∇F T

t0

]
. (9)

Note that the constant part of
[
CT

t0

]
is the CGST at the expansion point accurate to machine preci-

sion, that is it is the same as would be approximated with via divided differences. The remaining

higher order terms represent an expansion of the CGST in the neighbourhood around the expansion

point.

To compute the LCS, the derivatives of the leading eigenvector of the Cauchy-Green strain

tensor with respect to position are required. While divided differences can in principle again be

used to obtain these derivatives, the method is susceptible to numerical noise and it is difficult

to determine the most appropriate grid sizes to use. Moreover, eigenvectors are only defined up

to a sign, and thus care must be taken when taking the derivatives that nearby eigenvectors have

‘smooth’ changes in orientation.

Instead, we use a novel application of DA to obtain an expansion of the leading eigenvector of

a matrix of DAs, which then can once again be differentiated directly in DA. To do this, we first

have to obtain the DA representation of the leading eigenvector. We simply use power (von Mises)

iteration32 performed in DA, which in its floating-point variant is a well-established algorithm33.

Power iteration performs the repeated evaluation of an arbitrary starting vector b through a ma-

trix A to obtain an approximation to its dominant unit eigenvector through the recurrence relation

bm+1 =
Abm

||Abm||
(10)

where |·| represents a vector norm, here taken to be the L2 norm, the vector b0 is an arbitrary

initial vector, and m is the number of iterations. The vector b will converge provided that the

starting vector b0 has a nonzero component in the direction of the dominant eigenvector, and A

has a unique largest eigenvalue by absolute value. The theoretical convergence rate of the method

between successive iterations is |λn/λn−1|. Practically, the recurrence relation is iterated until the

stopping condition ||bm+1−bm|| ≤ δ is first valid, where δ > 0 is a pre-set tolerance and the norm

is again taken to be an L2 norm.

9
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Converting this algorithm to DA, let A now be a DA matrix with DA objects in each entry, [A].

Iterating it on a DA vector [b0] for a sufficiently large number of iterations m yields a DA vector

[b] corresponding to the dominant eigenvector of [A] with a polynomial expansion in each entry,

that is

[ζn]m+1 =
[A] [b0]m
||[A] [b0]m||

(11)

where ζn is the dominant eigenvector. Note that here the norm in the denominator is simply a DA

evaluation of the L2 (Euclidean) norm |x|=
√

∑
n
i=0 x2

i . We generalise the stopping condition from

floating-point computation such that we iterate until there is no change in any order in any entry

of
(
[b]m+1− [b]m

)
above a pre-set tolerance δ > 0. We set δ to be 10−12 in this paper.

To speed up convergence, and because eigenvector solvers for floating-point computations are

readily available and highly efficient, we set the initial guess for [b0] to have a constant part equal

to the dominant eigenvector of the constant part of [A], since we know by construction that this

will be the constant part of [ζn].

An example of the convergence of this method is illustrated in Figure 2, which shows the

maximum relative change of coefficients in [b] separated by their expansion order over repeated

application of
[
CT

t0

]
to the initial guess of the dominant eigenvector of a trajectory in the periodic

ABC flow (Section V B). The theoretically expected rate of convergence λn/λn−1 can clearly be

seen in the plot as a dashed red line. While all orders converge at approximately the expected

rate, the floating-point portion of the expression converges instantly as it was already set to the

double-precision representation of the leading eigenvector.

Once the eigenvector [ζn] is expanded to at least first order, the curl ∇×ζn of the eigenvector

field, which is used in the calculation of the helicity during LCS construction, can be computed by

simply applying the DA derivative operator again.

In order to obtain the value of ∇×ζn at the expansion point, the flow mapF T
t0 must be computed

at least to order 2. This is because one derivative is taken in the construction of CT
t0 (Subsection

III A), and another is then taken in ∇×ζn, both of which reduce the order of the expansion by one.

IV. LAGRANGIAN COHERENT STRUCTURES

In this section we briefly review the method for computing LCS in three-dimensional systems

given in Blazevski and Haller 13 . For a more in-depth discussion, the reader is directed to the

original paper. Once the mathematical formulation is introduced, we show how the method is

10
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computed numerically and outline the changes made from the literature in DA-LCS.

The full, three-dimensional LCS, which is defined as a surface that is locally maximally re-

pulsive or attractive over a given time interval [t0, T ], is constructed from its intersections with a

family of hyperplanes S . These intersections are called reduced strainlines and reduced stretch-

lines13.

In the following, we show the mathematical formulation for repulsive LCS, whose structure

is derived from the dominant eigenvector ζn and whose intersections with S are the reduced

strainlines. A similar procedure applies to ζ1 (reduced stretchlines) to obtain attracting LCS.

Once the mathematical formulation is introduced, we show a practical numerical implementation

to compute approximations of the LCS and outline the changes made from the literature in DA-

LCS.

At any point s on the hyperplane, we define the reduced strainline through that point as follows:

using Equation 1, the point is propagated from time t0 to time T , and CT
t0 and its eigenvectors are

computed. The tangent of the reduced strainline at s is orthogonal to the leading eigenvector ζn

of CT
t0 and of course also lies within the hyperplane. This is true for any point on the strainline,

allowing their parameterisation to be described by the ODE:

s′ = n̂S ×ζn (12)

where n̂S is the unit normal to the surface at s. Since the eigenvector is only defined up to

the sign, we integrate the strainline in both directions corresponding to ±ζn to capture the entire

strainline structure.

Strainlines which have zero helicity Hζn

Hζn = 〈∇×ζn, ζn〉, (13)

where 〈·, ·〉 is the inner product, are the intersections of the LCS with the reference hyperplane.

The strainlines that form part of the LCS are identified by starting the integration of Equation 12

at initial points with zero helicity.

This analysis is repeated for each of the hyperplanes in S . The strainlines forming part of the

LCS on each hyperplane are then interpolated to produce the full 3D structure of the LCS.

To numerically implement the above procedure, we first sample points on each hyperplane in

S on a uniformly-spaced grid and compute the helicity Hζn at each point. The ODE in Equation

12 is then rewritten in discretised form as

s′i = sign(ζi,n ·ζi−1,n) n̂S ×ζi,n (14)

11
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where si is the i−th point on the strainline and the term ζi,n · ζi−1,n is introduced to enforce

continuity in the vector field by selecting the direction most closely aligned with the previous

tangent vector. The selection of zero-helicity initial grid points is relaxed by allowing points

where the helicity Hζn is below some tolerance α > 0. The numerical integration of the ODE

along the strainline continues until the sum of the helicity at each si divided by the number of

steps performed (i) rises above α .

In previous literature, divided differences was used to numerically approximate CT
t0 and ∇×ζn

required for this procedure13,15, which can lead to significant numerical error. Divided differences

can either be applied on the same grid on which points are sampled, or on a finer grid used solely

for the purpose of approximating the derivatives. In DA-LCS, we instead use the flow expan-

sion described in Section III A to compute CT
t0 , and the eigenvector expansion in Section III B to

compute ∇×ζn to high accuracy and without the need to alter grid sizes through trial-and-error.

The trajectories obtained through either method are segments of strainlines forming the LCS.

However, since different initial points can belong to the same strainline, the trajectories often

overlap. They must, therefore, be filtered to provide a single, continuous curve. Given a suitable

metric dF of how close two strainline segments are, the shorter of the two strainlines is discarded

whenever dF is below some threshold.

In Blazevski and Haller 13 , this metric was the Hausdorff distance, a measure of similarity

between two curves. We find that we obtain qualitatively better strainlines when using the Fréchet

distance as a metric, which is recognised as a better measure of similarity than the Hausdorff

distance in trajectory clustering problems34,35.

It is defined as follows34: given two curves A and B that are continuous mappings from [0, 1] to

Rn, define a re-parameterisation of each curve as an injective function Π : [0, 1] 7→ [0, 1], such that

Π(0) = 0 and Π(1) = 1. The Fréchet distance dF between A and B is then defined with respect to

their respective re-parameterisations Π and Λ such that

dF = inf
Π, Λ

max
m∈[0, 1]

{dE (A(Π(m)) , B(Λ(m)))} (15)

where dE is the Euclidean distance.

V. ARNOLD-BELTRAMI-CHILDRESS FLOWS

We now apply the standard approach of divided differences and the DA-LCS method to several

variations of the Arnold-Beltrami-Childress (ABC) flow, as studied in Blazevski and Haller 13 . For

12
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FIG. 3: Poincaré section (return map) for the steady ABC flow on the z = 0 plane; generated

using a 15×15 grid of initial points with integration time T = 1500.

each example, we present the equations of motion, the FTLE field, the helicity field, and the result-

ing strainlines. The results obtained using divided differences each use the manually determined

optimal grid size that produces the qualitatively ‘best’ results, to allow for a fair comparison. No

such adjustments are needed when using DA-LCS.

A. Steady Arnold-Beltrami-Childress flow

We first consider the steady Arnold-Beltrami-Childress flow, as presented in Blazevski and

Haller 13 . The ABC flow is an exact solution to Euler’s equation, and its equations of motion in

13
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(a) FTLE field obtained using DA-LCS.

(b) FTLE field obtained using divided differences

with auxiliary grid spacing of 0.05 of the nominal

grid spacing in all directions.

FIG. 4: Finite-time Lyapunov field for the steady ABC flow from t = 0 to T = 3 using DA-LCS

and divided differences. The fields strongly agree, suggesting that computing C3
0 using divided

differences is not a major source of error in this example.

(a) Helicity field obtained using DA-LCS.

(b) Helicity field obtained using divided

differences with auxiliary grid spacing of 0.05 of

the nominal grid spacing in both x and y. The same

grid is used in computing both C3
0 and ∇×ζn.

FIG. 5: − logHζ3
for the steady ABC flow from t0 = 0 to T = 3 using DA-LCS and divided

differences. Again both strongly agree, showing that DA-LCS is working. The DA-LCS structure

is a little smoother along the main ridge on the right compared to divided differences, making

integrating the strainline along the ridge more robust.
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FIG. 6: Final, filtered strainlines for the steady ABC flow on the z = 0 plane computed using

DA-LCS. The structure is formed of approximately 240 strainline segments.

Cartesian coordinates are

ẋ = Asinz+C cosy (16)

ẏ = Bsinx+Acosz (17)

ż =C siny+Bcosx (18)

and parameter values A =
√

3, B =
√

2,C = 1.0 as in Blazevski and Haller 13 . To illustrate the

behaviour of this system, the Poincaré section in the x-y plane is shown in Figure 3, computed

from a regular 15×15 grid of initial points and an integration time of T = 1500.

For the LCS computation, matching previous literature the set of reference planes are taken to

be

S = {(x ,y ,z) ∈ [0, 2π]3 : z ∈ {0,0.005,0.01 . . . ,0.1}},
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that is the x-y plane evenly spaced along the z axis. However, within each plane we alter the grid

size used. Blazevski and Haller 13 use a 500×500 grid on which to compute the underlying helicity

field, and then sample seed points for the ODE in Equation 12 on a reduced grid of 600×10. To

simplify analysis and ensure we capture all of the flow’s behaviour we perform all stages of the

analysis on a 1000×1000 grid defined for each hyperplane in S .

The system defined by Equations 16-18 is integrated forward for 3 non-dimensional time units

using the DA-compatible numerical integrator introduced previously, with an integration tolerance

of 10−13. A helicity tolerance of α = 10−4 is applied to determine seed points and terminate the

numerical integration. A minimum distance of dF = 0.04 is used in the strainline segment filtering.

Both of these parameters are chosen from visual examination of the helicity field and resulting

strainline structure for all of the examples in this paper.

The FTLE fields on the z = 0 plane for this flow, computed using DA-LCS and divided differ-

ences, are shown in Figures 4a and 4b, respectively. The two FTLE fields are very similar, which

suggests that the computation of C3
0 and its dominant eigenvalue agrees across the two methods.

In the DA-LCS and divided difference helicity fields on the z = 0 plane, shown in Figures 5a

and 5b respectively, some first differences can be seen. While the two methods qualitatively agree

on the structure of the field, the DA-LCS method produces smoother peaks and ridges in the field

for the primary features in the flow. This is particularly visible on the main ridge in the bottom

right corner around X = 4 and Y = 1. The smoother ridges provide a more well-defined path for

the ODE in Equation 12 to track.

The resulting strainlines on the z = 0 plane for this flow are shown in Figure 6, and follow

the expected structure from the helicity field presented in Figure 5a. The strainline integration is

approximately 50% quicker using DA-LCS than using divided differences, since it requires only

one DA integration of second order per point, while divided differences requires 42 floating-point

integrations. This corresponds to determining ∇×ζn using six adjacent grid points plus the eigen-

vector itself, each of which requires a further six integrations for the respective CT
t0 approximation.

The overhead associated with computing the second order flow expansion in DA in this case are

lower than performing 42 integrations in double-precision.

We note the existence of several ‘loops’ in the helicity field, particularly in the left-hand side of

the field. The strainline segments at these points grow transverse to the ridges at certain points, and

do not track along the ridge as would be expected. This behaviour is also present when computing

LCS with divided differences. These small strainline segments are not present in Blazevski and
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Haller 13 due to being missed by the largely reduced 600×10 grid resolution used there. This ex-

plains their omission from the literature, and we do not investigate this issue further here, although

we note the existence of similar structure in Palmerius, Cooper, and Ynnerman 36 .

The total strainline structure in Figure 6 for this test case is formed of approximately 240

individual strainline segments. We remark that the distribution of the number of strainlines with

respect to their length is largely bimodal. The ‘loops’ discussed previously contain lots of short

segments, while the main wishbone-like structures are formed from only several long strainlines.

This distribution of the number of strainline segments with respect to their length is similar across

all test cases studied here that are variations of the ABC flow.

(a) Computed using DA-LCS.

(b) FTLE field obtained using divided differences

with auxiliary grid spacing of 0.05 of the nominal

grid spacing in all directions.

FIG. 7: Finite-time Lyapunov exponent field for the periodic ABC flow from t0 = 0 to T = 4.0,

obtained using DA-LCS and divided differences. Again, the FTLE field agrees between divided

differences and DA-LCS, suggesting divided differences on the correct auxiliary grid in this case

accurately approximates C4
0 .
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(a) Computed using DA-LCS.

(b) Helicity field obtained using divided

differences with auxiliary grid spacing of 0.05 of

the nominal grid spacing in all directions. The

same grid is used in computing both C4
0 and ∇×ζn.

FIG. 8: − logHζ3
for the periodic ABC flow computed using DA-LCS and divided differences

from t0 = 0 to T = 4.0. Here DA-LCS highlights in particular the main ridge on the right more

clearly and smoothly than divided differences.

B. Periodic Arnold-Beltrami-Childress Flow

We now consider a time-periodic version of the Arnold-Beltrami-Childress flow with equations

of motion

ẋ = (A+0.1sin t)sinz+C cosy (19)

ẏ = Bsinx+(A+0.1sin t)cosz (20)

ż =C siny+Bcosx. (21)

The hyperplanes S and grids are the same as in the case of the steady ABC flow, but now with

integration times t0 = 0 and T = 4. A helicity tolerance of α = 5×10−5 is used, with a distance

threshold dF = 0.02.

Mirroring the analysis in the steady case, the FTLE fields for both DA-LCS and divided dif-

ferences are shown in Figures 7a and 7b, respectively. Again, there is little qualitative difference

between the two fields. The differences in smoothness in the helicity fields are, however, more

pronounced between Figures 8a and 8b. The main wishbone-like structure is particularly ‘spiky’

when using divided differences, which conceptually requires the strainline integration to track a

numerically noisy ridge. With DA-LCS, there is a smooth, well-defined ridge of consistently low
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FIG. 9: Final strainlines for the periodic ABC flow on the z = 0 plane computed using DA-LCS,

after filtering. The strainline structure is composed of approximately 250 strainline segments.

helicity for the algorithm to track with much lower numerical noise; in fact, our helicity threshold

is approximately two orders of magnitude lower than used in literature but recovers qualitatively

similar structures.

Finally, the strainlines on the z = 0 plane for this system computed using DA-LCS are shown

in Figure 9. Approximately 250 strainline segments determine the full strainline structure on the

z = 0 plane for this example. As with the steady ABC flow, the distribution of the number of

strainlines with respect to their length is largely bimodal, and the majority of these segments are

found in the ‘loops’ in the strainline structure.
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(a) Computed using DA-LCS.

(b) FTLE field obtained using divided differences

with auxiliary grid spacing of 0.1 of the nominal

grid spacing in all directions.

FIG. 10: Finite-time Lyapunov exponent field for the chaotically-forced ABC flow and an

integration time from t0 = 0 to T = 5.0. The fields still strongly agree, suggesting that again the

computation of C5
0 on the optimal auxiliary grid is not a major source of error for this example.

C. Chaotically-forced Arnold-Beltrami-Childress flow

Following Blazevski and Haller 13 , we now demonstrate that DA-LCS is robust under pertur-

bations from a chaotic forcing function g(t). The motion is forced by a chaotic Duffing oscillator,

with equations of motion given by

ẋ = (A+0.1sin t)sinz+C cosy (22)

ẏ = Bsinx+(A+0.1g(t))cosz (23)

ż =C siny+Bcosx (24)

where g(t) is the x−coordinate of the solution to the Duffing equation

ẍ =−δ ẋ−βx−αx3 + γ cos(ωt) . (25)

with parameters α = 1, β =−1, γ = 0.3, δ = 0.2, ω = 1.

The computational grid is again the same as for the previous test cases involving the ABC flow,

including the hyperplanes S = {(x ,y ,z) ∈ [0, 2π]3 : z = s1},s1 = 0.0,0.005,0.01, . . . ,0.1, but

a longer integration time of T = 5 is used to match the literature. Again, a helicity tolerance of

α = 5×10−5 is used with a filtering distance of dF = 0.05.

The FTLE fields computed using DA-LCS and divided differences are again shown in Figure

10a and Figure 10b, respectively. The helicity fields are shown in Figures 11a and 11b, respec-
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(a) Computed using DA-LCS.

(b) Helicity field obtained using divided

differences with auxiliary grid spacing of 0.1 of the

nominal grid spacing in all directions. The same

grid is used for computing both C5
0 and ∇×ζn.

FIG. 11: − logHζn for the chaotically-forced ABC flow from t0 = 0 to T = 5.0. DA-LCS

produces visibly better-defined ridges on which the strainline integration is performed, making

integration along the strainline more robust.

tively. The helicity field in particular now exhibits a significant difference compared to the two

previous cases. Using DA-LCS, we are able to resolve a relatively smooth ridge, whereas the use

of divided differences leads to noticeable numerical noise throughout the field as well as an overall

much higher helicity.

The strainlines for this system on the z = 0 plane computed using DA-LCS are presented in

Figure 12. A total of 160 strainline segments give the full structure on the z = 0 plane.

VI. THE ELLIPTIC-RESTRICTED THREE-BODY PROBLEM

We now demonstrate the numerical out-performance of DA-LCS compared to standard ap-

proaches on a test problem from astrodynamics. The system presented in this Section is the

Elliptic-Restricted Three-body Problem (ER3BP), which studies the motion of a small mass m3

under the motion of two far larger masses m1 and m2 such that m1 > m2 � m3. The system is

parameterised by the mass parameter µ = m2/(m1 +m2).

In an inertial coordinate system, m2 and m1 orbit their centre of mass on an ellipse of fixed

eccentricity ep, which is the second system parameter. The angle of m2 with respect to the +x-axis

of the inertial coordinate system is the true anomaly ν .
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FIG. 12: Final strainline structure on the z = 0 plane for the chaotically-forced ABC flow

computed using DA-LCS. The structure is formed of 160 individual strainline segments.

For the special case of ep = 0, one recovers an autonomous dynamical system for which fixed

points and invariant manifolds exist17; for the more general ep > 0, such structures do not exist.

LCS have thus been suggested to analyse the behaviour for the cases of ep > 0. In this example, we

analyse the interesting dynamical phenomena around m2. For small differences in initial position

and velocity, orbits can vary from being bound entirely around m2, being only temporarily captured

around m2, or escaping entirely37. Profiling these regions is of high importance in the design of

space missions38.

Since the ER3BP lives in a phase space defined in R6, but the algorithm above functions for

a CGST that is 3×3 in dimension and represents a system with three-dimensional dynamics, we

embed a three-dimensional submanifold in the six-dimensional phase space on which we compute

the LCS. We parameterise the manifold in the three spatial directions to represent position around
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FIG. 13: The parameterisation of the space around m2 using spherical coordinates relative to the

inertial coordinate frame. By careful choice of the ranges of ρ , θ and φ , the reference

hyperplanes can encapsulate regions of ‘interesting’ dynamics about m2.

m2 using spherical coordinates Ψ=(ρ,θ ,φ) (Figure 13). We complete the embedding by uniquely

associating a velocity v with each point in space to complete the full phase space.

Given the Cartesian position x= (x, y, z)> corresponding to Ψ

x = ρ cosθ sinφ (26)

y = ρ sinθ sinφ (27)

z = ρ cosφ (28)

the velocity at this point v (x) is chosen to be

v (x) =

√
Gm2

(1+ e)
ρ3




x

y

z

×


0

0

1


 , (29)

where the problem parameters Gm2 and e are the gravitational parameter of m2 and an orbital

eccentricity, respectively. Conceptually, this fixes the velocity direction tangential to a cylinder

around the z-axis, while the magnitude corresponds to a Keplerian orbit of eccentricity e around

m2. Together, this choice of velocity vector reveals the ‘dynamically interesting’ behaviour intro-

duced previously.

Rather than using the inertial coordinate system about m2 to propagate the initial condition,

it is beneficial to use a rotating-pulsating Cartesian coordinate system centred on the barycentre

of m1 and m2. In this system, m1 and m2 are fixed, and the true anomaly ν replaces time as the
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independent variable. The transformation of the initial condition into this coordinate system is

shown in Appendix A. In this system the equations of motion are given by

x′′ = 2y+
∂Ω

∂x
(30)

y′′ =−2x+
∂Ω

∂y
(31)

z′′ =
∂Ω

∂ z
(32)

where

Ω =
1

1+ ep cosν

[(
x2 + y2 + z2)+ µ

r1
+

1−µ

r2

]
(33)

and

r1 =

√
(x−µ)2 + y2 + z2 (34)

r2 =

√
(x+1−µ)2 + y2 + z2. (35)

After propagation under the equations of motion, the transformation into the rotating coordinate

system is inverted, and the final position is projected back into spherical coordinates. Another

big advantage of DA-LCS is that, provided the intermediate transformations are coded as DA

operations, the derivatives of this process are computed fully automatically and there is no need to

derive further equations for the coordinate transformations.

For this example, we choose m1 to be the Sun and m2 to be Mars, with the system parameters

as given in Table I. The set of reference hyperplanes is defined as

S = {Ψ ∈ [r,rs]× [0,2π]× [5◦, 15◦, . . . ,175◦]} .

The variables r and rs here are the radius and the Hill sphere of Mars, respectively; the latter is

the maximum distance from Mars at which it still dominates gravitational attraction. Together, the

reference planes cover the ‘dynamically interesting’ region around m2. The initial integration time

is set equal to t0 = ν0 = 0 and the final time is T = ν = 2π . The helicity tolerance α used is 10−5.

1. Results

The FTLE fields computed using DA-LCS and divided differences on the θ = 115◦ plane is

presented in Figures 14a and 14b, respectively. The structure found using DA-LCS agrees with
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(a) Computed using DA-LCS.

(b) FTLE field obtained using divided differences

with auxiliary grid spacing of 0.05 of the nominal

grid spacing in r and φ and the nominal grid

spacing in θ .

FIG. 14: Finite-time Lyapunov exponent field for the Elliptic-Restricted Three-body Problem on

the θ = 115◦ plane from t0 = ν0 = 0 to T = ν = 2π . While the structure is qualitatively the same,

the ridges in the FTLE field are more well-defined with DA-LCS.

(a) Computed using DA-LCS.

(b) Helicity field obtained using divided

differences with auxiliary grid spacing of 0.05 of

the nominal grid spacing in r and φ and the

nominal grid spacing in θ . The same grid is used

for computing both C2π
0 and ∇×ζn.

FIG. 15: − logHζn for the Elliptic-Restricted Three-body Problem on the θ = 115◦ plane from

t0 = ν0 = 0 to T = ν = 2π . No defined ridges of low helicity are visible with divided differences,

but with DA-LCS we can extract well-defined ridges on which the strainline integration can track.
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Parameter Description Value

ep Eccentricity of the orbit of m2 about m1 0.0935

µ Mass parameter 3.227154×10−7

e Eccentricity of the orbit of m3 about m2 0.9

Gm2 Standard gravitational parameter of m2 1.50499×10−14

r Planetary radius of m2 1.641×10−5

rs Hill sphere of m2 0.00513

TABLE I: Parameter values used in the ER3BP investigation where m1 is arbitrarily chosen to be

the Sun and m2 arbitrarily chosen to be Mars. All values are given in non-dimensional units and

valid at ν = 2nπ, n ∈ Z.

what would be expected from previous literature, with the structures in the two ‘arms’ being con-

sistent with the transition between orbits that escape and are permanently or temporarily captured

about m2
37. Similar performance, albeit with poorer definition of the FTLE ridges, can be obtained

using divided differences after tuning the grid sizes used to generate the derivatives. We note that

the ER3BP does admit variational equations that can be integrated with the equations of motion

which may improve the quality of the derivatives used to compute CT
t0 .

Importantly, these variational equations cannot be used to compute ∇×ζn, which must still be

approximated using divided differences and appear to produce the majority of the error for this test

case. This is to be expected, as the estimation of second derivatives using divided differences is

numerically difficult. Figure 15a presents the helicity field on the θ = 115◦ plane for the ER3BP

computed using DA-LCS, which like the FTLE field highlights the ‘arms’ as being influential

portions of flow. Qualitative inspection of the trajectories in this region reveals the low-helicity

portions of the field to separate regions of different dynamical behaviour. However, using divided

differences to compute the helicity, given in Figure 15b, produces no meaningful insight into the

helicity field even after tuning the grid-sizes used; the numerical noise in the determination of the

helicity reveals no distinct ridges along which the numerical integration of the strainline can be

performed. The use of DA-LCS, therefore, actually enables the analysis of this system using the

algorithm presented in Blazevski and Haller 13 where it was previously too numerically noisy to

generate insight. Moreover, this numerical improvement comes completely automatically, without

the need to tune grid-sizes and thus functions without any a priori knowledge.
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FIG. 16: Strainlines on the θ = 115◦ plane for the Elliptic-Restricted Three-Body Problem

computed using DA-LCS. We are unable to generate any strainlines when using divided

differences, but with DA-LCS we can deduce the structure of the LCS readily and with only 8

strainlines.

The final strainlines for this flow computed using DA-LCS on the θ = 115◦ plane are shown

in Figure 16, and largely follow from the helicity field given earlier. We were not able to generate

any meaningful strainlines using divided differences, a phenomenon that has also been present in

several earlier attempts at the problem by other authors39,40. A representative rendering of the full

3D LCS for this test case is shown in Figure 17.

VII. CONCLUSION

This paper has introduced DA-LCS, an improved numerical method for determining hyperbolic

Lagrangian Coherent Structures in time-dependent dynamical systems. We showed how Differen-
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(a) Full 3D structure of the LCS over the entire set

of reference planes.

(b) A zoomed-in section of the full LCS

highlighting the interior structure.

FIG. 17: A set of representative renders of the 3D LCS for the ER3BP test case. The left figure is

the full 3D LCS over all hyperplanes in S . On the right is a zoomed-in portion of the centre of

the LCS, with the right half removed to highlight the internal structure.

tial Algebra can be used to directly construct high-order Taylor expansions of the flow, its deriva-

tives and a field of leading eigenvectors of the flow’s strain tensor, accurate to machine precision.

We have shown that with this information we can construct a highly-accurate LCS based solely

on the underlying dynamics of the system, even in highly complex flows. We demonstrated the

effectiveness of the method through applications to common variations of the Arnold-Beltrami-

Childress flow from the literature, as well as introducing a new and particularly challenging test

problem from astrodynamics where the classical methods fail to produce usable results. DA-LCS

also constructs the LCS automatically and without any a priori information, requiring no addi-

tional implementation beyond the dynamics of the system.
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FIG. 18: Schematic of the inertial frame (subscript I) and the rotating-pulsating frame (subscript

ER3BP) for use in Appendix A. The transformation between the inertial and rotating-pulsating

frame is a composite translation, rotation and normalisation.

Appendix A: Transformation into the rotating-pulsating frame of the Elliptic-Restricted

Three-body Problem

As previously introduced, the Elliptic-Restricted Three-body Problem (ER3BP) models the

motion of a small object m3 under the influence of two far larger masses m1 and m2, such that

m1 > m2� m3. The object m3 is sufficiently small compared to m1 and m2 that it is considered

massless. The system is parameterised by the mass parameter µ = m2/(m1 +m2), and in an

inertial coordinate system m1 and m2 orbit their center of mass on an ellipse with fixed eccentricity

ep.

In Section VI, we chose the parameterisation of the sub-manifold to represent initial position

around m2 in the inertial frame using spherical coordinates, and the embedding to represent the

initial velocity of the point in the inertial frame. This was done to simplify the problem set-up and
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more easily define the regions of ‘interesting’ dynamical behaviour. However, in the literature41

the ER3BP is integrated in a rotating coordinate system where m1 and m2 are fixed on the x−axis

at (−µ,0,0) and (1−µ,0,0), respectively, and the distance between them is normalised to unity.

In this frame, the independent variable in the motion of m3 is the true anomaly ν . To simplify the

test case, the transformation that follows is valid only for values of ν that are scalar multiples of

2π; for an in-depth derivation of the general case of this transformation, the reader is directed to

Szebehely and Jefferys 41 .

With reference to Figure 18, the transformation of the position from the m2-centred inertial

frame to the rotating-pulsating frame formed of a translation to move the centre of the system to

the centre of mass of m1 and m2, a rotation to align the +x axis to the line joining m1 and m2, and

a scaling to normalise the distance between m1 and m2 to unity.

We perform the translation first. Define the Cartesian position of m3 about m2 in the inertial

frame as xm2 , such that the translated position around the barycentre (centre of mass) of m1 and

m2, xBC, is

xBC = xm2 +d (1−µ)


cosν

sinν

0

 (A1)

where d is the full distance between m1 and m2, and (1−µ) gives the proportion of the distance d

between m2 and the centre of mass. The distance d can be retrieved from the orbit equation (more

generally known as the ellipse equation)

d (ν) =
a
(
1− e2

p
)

1+ ep cosν
(A2)

with a the semi-major axis of m2 about m1. For the case of m1 being the Sun and m2 being Mars

studied in this paper, at scalar multiples of 2π the semi-major axis a = 1.10314.

The coordinate axes must now be rotated such that m1 and m2 lie on the +x-axis. This is a

clockwise rotation about +z of an angle ν . We apply the standard Euler rotation matrix to xBC to

find its equivalent state in the rotated coordinate system xrot

xrot = Rz (ν)xBC =


cosν sinν 0

−sinν cosν 0

0 0 1

xBC. (A3)

Finally, the distance between m1 and m2 is normalised to 1 by scaling the length unit of the

31



An Improved Numerical Method for Three-dimensional Hyperbolic Lagrangian Coherent Structures using Differential Algebra

system by d. This yields the final ER3BP position xER3BP

xER3BP =
xrot

d
. (A4)

The composite transformation can be combined into a single equation for brevity:

xER3BP =
Rz (ν)

d (ν)

xm2 +d (1−µ)


cosν

sinν

0


 (A5)

=
Rz (ν)

d (ν)
xm2 +(1−µ)


1

0

0

 . (A6)

The equation above completes the transformation of the position from the inertial coordinate sys-

tem around m2 to the rotating coordinate system of the ER3BP. However, integrating the ER3BP

equations of motion also requires the initial velocity of m3 in the rotating coordinate system. Thus,

the velocity in the inertial frame about m2 with respect to time given by the embedding introduced

in the main text, v, must also be transformed into the ER3BP coordinate frame.

To do this, Equation A6 is differentiated with respect to the true anomaly ν , which is the

independent variable in the ER3BP. In the following, �′ denotes derivatives with respect to ν

(as in the ER3BP coordinate system), and �̇ denotes derivatives with respect to time (the inertial

coordinate system.) Via the chain rule, the derivative of Equation A6 is

x′ER3BP =
Rz (ν)

′

d (ν)
xm2 +

Rz (ν)

d (ν)
x′m2

(A7)

since the quantity (1/d (ν))′ is zero in the case of ν being a scalar multiple of 2π . The quantity

Rz (ν)
′ is trivial to infer from its use previously

R′z (ν) =


−sinν cosν 0

−cosν −sinν 0

0 0 0

 . (A8)

The velocity with respect to time in the inertial frame v represents ẋm2 . To obtain x′m2
, we use

dxm2

dν
=

dxm2

dt
dt
dν

= v/ν̇ (A9)

where ν̇ is given by considering the angular momentum of m2 about m1

ν̇ =
Gm

1
2
1 (1+ ep)

2

a
3
2
(
1− e2

p
) 3

2
(A10)
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which completes the transformation of a position in the inertial frame about m2 to the rotating

coordinate system of the ER3BP for use in Section VI.

Since we are computing the LCS on a submanifold that represents the spatial dimensions about

m2, the inverse transformation need only consider the position. Equation A6 is inverted to give

xm2 and then converted back into spherical coordinates for use in computing the LCS.
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matic domain splitting technique to propagate uncertainties in highly nonlinear orbital dynam-

ics,” Advances in the Astronautical Sciences 152, 1923–1941 (2014).
23A. Wittig, P. Di Lizia, R. Armellin, K. Makino, F. Bernelli-Zazzera, and M. Berz, “Propagation

of large uncertainty sets in orbital dynamics by automatic domain splitting,” Celestial Mechanics

and Dynamical Astronomy 122, 239–261 (2015).
24M. Massari, P. Di Lizia, and M. Rasotto, “Nonlinear Uncertainty Propagation in Astrodynamics

Using Differential Algebra and Graphics Processing Units,” Journal of Aerospace Information

Systems 14, 493–503 (2017).
25R. Armellin, P. Di Lizia, F. Bernelli-Zazzera, and M. Berz, “Asteroid close encounters charac-

terization using differential algebra: The case of Apophis,” Celestial Mechanics and Dynamical

Astronomy 107, 451–470 (2010).
26M. Massari, P. Di Lizia, F. Cavenago, and A. Wittig, “Differential Algebra software library with

automatic code generation for space embedded applications,” (2018), 10.2514/6.2018-0398.
27A. Haro, “Automatic differentiation methods,” (2011).

35

http://dx.doi.org/10.1007/s10569-015-9617-4
http://dx.doi.org/10.1007/s10569-015-9617-4
http://dx.doi.org/10.1093/mnras/staa199
http://dx.doi.org/10.1093/mnras/staa199
http://www.gg.caltech.edu/~mwl/publications/papers/dynamicalThreeBody.pdf
http://www.gg.caltech.edu/~mwl/publications/papers/dynamicalThreeBody.pdf
http://dx.doi.org/10.1016/0168-9002(87)90927-2
http://dx.doi.org/10.1016/0168-9002(87)90927-2
http://www.bt.pa.msu.edu/pub/papers/makinophd/makinophd.ps
http://dx.doi.org/ 10.2514/1.g000842
http://dx.doi.org/ 10.2514/1.g000842
http://dx.doi.org/ 10.1007/s10569-015-9618-3
http://dx.doi.org/ 10.1007/s10569-015-9618-3
http://dx.doi.org/10.2514/1.i010535
http://dx.doi.org/10.2514/1.i010535
http://dx.doi.org/10.1007/s10569-010-9283-5
http://dx.doi.org/10.1007/s10569-010-9283-5
http://dx.doi.org/10.2514/6.2018-0398
http://www.maia.ub.es/~alex/ima/ima1.pdf


An Improved Numerical Method for Three-dimensional Hyperbolic Lagrangian Coherent Structures using Differential Algebra

28A. Wittig, Rigorous High-Precision Enclosures of Fixed Points and their Invariant Manifolds,

Ph.D. thesis, Michigan State University (2012).
29M. Berz, Advances in Imaging and Electron Physics, Vol. 108 (1999) pp. 1–318.
30F. Cavenago, P. Di Lizia, M. Massari, and A. Wittig, “On-board DA-based state estimation

algorithm for spacecraft relative navigation,” 7th European conference for aeronautics and space

sciences (EUCASS) , 1–14 (2017).
31A. Wittig, C. Colombo, and R. Armellin, “Long-term density evolution through semi-analytical

and differential algebra techniques,” Celestial Mechanics and Dynamical Astronomy 128, 435–

452 (2017).
32E. V. Haynsworth and A. S. Householder, “The Theory of Matrices in Numerical Analysis.” The

American Mathematical Monthly 73 (1966), 10.2307/2314680.
33R. H. Chan, Y. Qiu, and G. Yin, “Iterative Methods for Eigenvalues/Eigenvectors,” in Encyclo-

pedia of Social Network Analysis and Mining (2018).
34T. Devogele, M. Esnault, L. Etienne, and F. Lardy, “Optimized Discrete Fréchet Distance be-

tween trajectories,” BigSpatial 2017 - Proceedings of the 6th ACM SIGSPATIAL International

Workshop on Analytics for Big Geospatial Data , 11–19 (2017).
35A. Driemel, A. Krivosija, and C. Sohler, “Clustering time series under the Fréchet distance,”

Proceedings of the Annual ACM-SIAM Symposium on Discrete Algorithms 2, 766–785 (2016).
36K. L. Palmerius, M. Cooper, and A. Ynnerman, “Flow field visualization using vector field per-

pendicular surfaces,” Proceedings - SCCG 2009: 25th Spring Conference on Computer Graphics

, 27–34 (2009).
37Z. F. Luo and F. Topputo, “Analysis of ballistic capture in Sun-planet models,” Advances in

Space Research (2015), 10.1016/j.asr.2015.05.042.
38E. A. Belbruno, “Lunar capture orbits, a method of constructing earth moon trajectories

and the lunar cas mission,” 19th International Electric Propulsion Conference, 1987 (1987),

10.2514/6.1987-1054.
39X. Ros Roca, Computation of Lagrangian Coherent Structures with Application to Weak Stability

Boundaries, Master’s thesis, Politecnico di Milano (2015).
40A. S. Parkash, Application of Lagrangian Coherent Structures to the computation and under-

standing of ballistic capture trajectories, Master’s thesis, Delft University of Technology (2019).
41V. Szebehely and W. H. Jefferys, “Theory of Orbits: The Restricted Problem of Three Bodies,”

American Journal of Physics 36, 375–375 (1968).

36

http://bt.pa.msu.edu/cgi-bin/display.pl?name=AIEP108book
http://dx.doi.org/ 10.13009/EUCASS2017-607
http://dx.doi.org/ 10.13009/EUCASS2017-607
http://dx.doi.org/10.2307/2314680
http://dx.doi.org/10.2307/2314680
http://dx.doi.org/ 10.1007/978-1-4939-7131-2{_}148
http://dx.doi.org/ 10.1007/978-1-4939-7131-2{_}148
http://dx.doi.org/10.1145/3150919.3150924
http://dx.doi.org/10.1145/3150919.3150924
http://dx.doi.org/ 10.1137/1.9781611974331.ch55
http://dx.doi.org/ 10.1145/1980462.1980471
http://dx.doi.org/ 10.1145/1980462.1980471
http://dx.doi.org/10.1016/j.asr.2015.05.042
http://dx.doi.org/10.1016/j.asr.2015.05.042
http://dx.doi.org/10.2514/6.1987-1054
http://dx.doi.org/10.2514/6.1987-1054
http://dx.doi.org/ 10.1119/1.1974535

	An Improved Numerical Method for Three-dimensional Hyperbolic Lagrangian Coherent Structures using Differential Algebra
	Abstract
	I Introduction
	II Mathematical background and notation
	III Differential Algebra
	A Flow expansions to arbitrary order using Differential Algebra
	B Polynomial expansions of leading eigenvectors of CTt0 to arbitrary order

	IV Lagrangian Coherent Structures
	V Arnold-Beltrami-Childress Flows
	A Steady Arnold-Beltrami-Childress flow
	B Periodic Arnold-Beltrami-Childress Flow
	C Chaotically-forced Arnold-Beltrami-Childress flow

	VI The Elliptic-Restricted Three-Body Problem
	1 Results

	VII Conclusion
	 Acknowledgments
	 Data availability statement
	A Transformation into the rotating-pulsating frame of the Elliptic-Restricted Three-body Problem
	 References


