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Electricity demand is increasing because of global decarbonisation efforts to reduce emissions that 

have an impact on climate change. Climate change also impacts the operation of electrical networks 

due to increasing ambient temperatures and extreme weather conditions. It is therefore a challenging 

time for power system owners to operate their assets as efficiently as possible. Power transformers 

are key components in the transmission systems and expensive assets. Due to economic and technical 

aspects, there has been much research studied to maximize their life expectancy while maintaining 

the reliability and stability. 

The two key aims of this thesis are to develop accurate transformer thermal models, utilising a range 

of operational data, and to assess the thermal performance of aged units. A top-oil thermal model is 

developed using thermal-electrical analogy and heat transfer principles that captures thermal influ-

ence of prevailing winds and solar radiation. The key improvements of the proposed thermal model 

are calculating the heat transfer coefficient of the radiator on the air side using the heat transfer co-

efficient of combined forced and natural convection and including the solar radiation as an addition 

heat source. The proposed model is validated against operational measurements. The results are also 

compared with the predictions based on the IEEE-Annex G model. The proposed model is generally 

more accurate in all periods, especially windy and sunny periods as expected.  

Condition monitoring of power transformers, which are key components in the systems, is essential 

to identify incipient faults and avoid catastrophic failures. Machine learning algorithms, i.e. nonlinear 

autoregressive neural networks with external inputs and support vector machine for regression are 

used to capture dependency of the transformer temperature on loading and weather conditions for 

purpose of monitoring. These thermal models are trained using historical measurements. The results 

are validated against field measurements and it clearly demonstrated that the alternative algorithms 

surpass the IEEE Annex G thermal model. An incipient thermal fault identification algorithm is then 

proposed and successfully used to identify an issue using measurements taken in the field. This al-

gorithm could be used to alert the operator and plan interventions accordingly. 
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𝜃H The hot-spot temperature [°C] 

𝜃A Ambient temperature [°C] 

𝜃O  The top-oil temperature [°C] 

𝜃W The wall temperature [°C] 

𝐻 Hot-spot factor 

𝑔R Average winding gradient at rated load [K] 

ℎ The convective heat transfer coefficient [W/(m2K)] 

𝑄Fe Core losses or no-load losses, [kW] 

𝑄Cu Copper losses or load losses, [kW] 

𝑄Solar The total received solar radiation [W] 

𝐶O Thermal capacitance of top oil, [J/K] 

𝑅O Thermal resistance of top oil, [K/W] 

𝐾 The ratio of current load to rated load, per unit 

∆𝜃O,R  The top-oil temperature rise at rated load [K] 

𝜏O,R Oil time constant [s] 

𝜇pu The relative oil viscosity 

𝑛 Oil circulation exponent 

𝑅M,A thermal resistance due to forced and natural convection of 

the air [K/W] 

𝑅R thermal resistance due to radiative heat transfer of the radi-

ator wall [K/W] 

𝑅MR,A the thermal resistance between the exterior of the radiator 

and ambient comprised of the forced and natural convec-

tion due to the air (𝑅M,A) and the radiation from the wall 

(𝑅R) [K/W] 

𝑅N,O thermal resistance between the oil and the interior of the ra-

diator which considers the natural convection of the oil 

[K/W] 

𝐴C Cooling area due to convection [m2] 

𝑁𝑢̅̅ ̅̅  the Nusselt number 

𝑘 thermal conductivity of the fluid [W/(m·K)] 

𝑃𝑟 the Prandtl number 

𝑅𝑒𝐿 the Reynold number 

𝑢 wind speed [m/s] 

𝐿F characteristic length for forced convection [m] 

𝜌 density of the fluid [kg/m3] 

𝜇 dynamic viscosity of the fluid [kg/(m·s)] 



Nomenclature and Abbreviation 

x 

𝛼 thermal diffusivity of the fluid [m2/s] 

𝑅𝑎𝐿 the Rayleigh number 

g gravitational constant [m/s2] 

𝛽 thermal expansion coefficient of the fluid [1/K] 

𝑐𝑝 specific heat of the fluid [W·s/(kg·K)] 

𝐿N characteristic length for natural convection [m] 

ℎF,A heat transfer coefficient of forced convection of air 

[W/(K·m2)] 

ℎN,A heat transfer coefficient of natural convection of air 

[W/(K·m2)] 

ℎM,A heat transfer coefficient of mixed convection of air 

[W/(K·m2)] 

𝐴R radiating area [m2] 

𝜀 emissivity 

𝜎 Stefan-Boltzmann constant [W/(m2·K4)] 

𝑞global the global solar radiation of a tilted surface [W/m2] 

𝑞dir the direct radiation on a horizontal surface [W/m2] 

𝑞indir the indirect radiation on a horizontal surface [W/m2] 

𝑅𝑏 the ratio of the direct radiation on the tilted surface to that 

on a horizontal surface 

𝑝𝑔𝑟 albedo factor 

∅ tilted angle with respect to the ground [rad] 

𝑍𝑁 zenith angle [rad] 

𝐴𝑍 azimuth angle [rad] 

𝜗 the surface azimuth rotation angle [rad] 

𝑘̅indir the monthly-averaged ratio of the indirect to global radia-

tion 

𝑘𝑡̅ the monthly-averaged clearness index 

𝑟𝑠 the ratio of the shadow to the total area 

𝛼solar the solar radiation absorption 

ONAN Oil-Natural-Air-Natural Transformer 

OFAF Oil-Forced-Air-Forced Transformer 

ODAF Oil-Directed-Air-Forced Transformer 

WTI Winding Temperature Indicator 

WTI temperature The winding hot-spot temperature read by WTIs 

ANN Artificial neural network  

SVM Support vector machine 

MLR Multi linear regression 
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Introduction 

1.1 Background 

Electricity demands are increasing because of global decarbonization efforts to reduce emissions that 

have an impact on climate change [1]. Climate change also impacts the operation of electrical net-

works due to increasing ambient temperatures and extreme weather conditions [2, 3]. It is therefore 

a challenging time for power system owners to operate their assets because maximum capacity of 

power transformers is reduced with increasing ambient temperature. Due to economic and technical 

issues, research areas regarding the management and operation of power transformers, which are 

expensive assets in power systems, are of interest to many researchers and industry. 

Power transformers are key apparatus used to transfer electricity from power plants to the transmis-

sion system, and from the transmission system to the distribution system, see Figure 1.1 for a photo-

graph of a large power transformer. The reliability and robustness of these transformers is highly 

important [4]. They are designed to withstand a high electrical and thermal stresses over a long period 

of time, typically 20 – 30 years. However, transformers are inevitably subject to ageing processes, a 

key factor is the use of organic compounds in insulating material such as Kraft paper and mineral oil 

[5]. It is well known that the deterioration rate of such cellulosic electrical insulation is exponentially 

dependent on the operating temperature [6].  

Power transformers consist of a tank containing a magnetic core with metal coils wound around it. 

Current passing through the windings causes Joule heating, and the changing magnetic flux causes 

hysteresis and eddy current losses within the core. The transformers are usually filled with refined 

mineral oil, which aids heat transfer and acts as an electrical insulator. Hot oil from the tank is passed 

via pipes to cooler banks, transferring the heat generated by the transformer to surrounding environ-

ment. Cold oil from the bottom of the cooler banks is then transferred back to the tank. The temper-

ature distribution inside the transformer tank is important factor for safe operation, because, as pre-

vious discussed, insulation degradation increases with temperature. Therefore, a transformer thermal 

model is necessary for predicting the temperature inside the transformer tank to avoid overheating 

issues which can eventually shorten the transformer’s lifetime [6]. 
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 Figure 1.1 A large power transformer, used with permission from National Grid Electricity Trans-

mission  

Conventionally, power transformers are type tested to guarantee that a temperature rise between the 

peak transformer winding temperature and ambient temperature must not exceed 78°C at their name-

plate power rating [7]. In a type test, a transformer is subjected to its maximum current by a short-

circuit method to replicate heat losses generated by the transformer at nameplate power rating. There 

are several temperature measurements recorded during the test, such as the oil temperature at the top 

of the tank and average winding temperature [7]. 

In a normal situation, transmission transformers are expected to operate below their nameplate power 

rating because of contingency plans. Nevertheless, any transmission transformer could be temporar-

ily subject to a higher current than the nameplate capacity due to an outage of another transformer. 

To calculate to what extent a transformer could be overloaded safely, a transformer thermal model is 

required. Transformer thermal models are usually semi-empirical [8, 9]. This means that a governing 

equation of the thermal model is based on heat transfer principles, but thermal constants of the gov-

erning equation are experimentally derived from a type test. Transformers are also protected from 

overheating by sensors, often an oil temperature indicator (OTI) and a winding temperature indicator 

(WTI). These are used to measure transformer temperature, control cooling systems and protect 

transformers from overheating issues [10]. They have been used for many decades to monitor the 

transformer temperature. They can be set to alert the operator and trip the transformer at specific 

temperature levels. 

The transformer temperature is also affected by environmental conditions. A higher ambient temper-

ature in summer may decrease maximum power rating of the transformer by reducing the thermal 

headroom. Typically, the maximum hot-spot temperature for design and testing is calculated using 

the monthly average temperature of the warmest month. However, it is preferrable to use real-time 

ambient temperatures for the thermal calculations in terms of monitoring and short-time emergency 
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loading [9]. In addition to ambient temperature, solar radiation and prevailing wind could also affect 

the transformer temperature and the maximum power rating. 

To improve cooling performance of transformer, which determines the maximum capacity, there are 

fans and pumps installed at the cooler banks to increase air flow and raise oil flow, respectively. For 

example, the maximum power rating of transformers considered in this thesis is double when the 

cooling system is in operation. Transformers can still work even when pumps and fans are out of 

order. However, any reduction in their cooling performance can lead to overheating issues, until the 

fault has been detected [11, 12]. Pumps and fans which are not operating at all are easily detected by 

checking the current drawn. A more minor fault in the system may be less obvious while still reduc-

ing cooling efficiency. It is necessary for the operators to detect such issues to avoid overloading 

transformers. 

Due to ageing processes, the transformer thermal performance could be gradually degrading over a 

long period of operation. For example, degradation of the transformer oil causes oil sludge that could 

block cooling ducts in the winding and pipes between the transformer tank and the radiators. There-

fore, it is necessary to ensure that the parameters within a thermal model are still representative of 

current thermal performance to avoid miscalculation. In theory, these parameters could be updated 

by doing a heat run test again, but this is expensive and difficult because a tested transformer has to 

be disconnected from the system [13]. 

1.2 Research Motivation and Objectives 

To operate transformers effectively, an accurate transformer thermal model is essential. It can be 

used to aid transformer rating calculations and thermal condition monitoring. Traditionally, a trans-

former thermal model is building on thermal constants derived from a type test that is carried out at 

commissioning. Due to ageing process, it cannot be guaranteed that the cooling performance is un-

affected unless thermal behaviour of transformer is re-evaluated. The two key aims of this thesis are 

to develop accurate transformer thermal models, utilising a range of operational data, and to assess 

the thermal performance of aged units so that aged transformers with anomalous thermal behaviour 

could be identified. An accurate transformer thermal model will aid the operators to identify trans-

formers that have anomalous thermal behaviour by comparing measurements of the transformer tem-

perature with the predictions made by the model. If a significant reduction in cooling performance 

of transformers is detected, proper intervention could be undertaken.     

As transformers are usually equipped with either OTI or WTI or both, and load profiles are regularly 

recorded, it is feasible to develop a method that leverage those thermal and load measurements in 

terms of condition monitoring. It should be note that all of units considered in this thesis only have 

WTIs.   
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Besides, influences of weather factors, prevailing wind and solar radiation will be considered in a 

transformer thermal model. As most power transformers are outdoor units, ignoring weather influ-

ences may lead to misunderstand that changes in the transformer temperature that are indeed caused 

by the environmental conditions were caused by a fault instead. This will also benefit thermal con-

dition monitoring.   

The objectives of the thesis are as follows: 

1. Identifying faulty WTIs using the load profile and WTI measurements. 

2. Developing a thermal model for power transformers that consider weather factors based on 

heat transfer principles. 

3. Developing an alternative thermal model for power transformers using machine learning 

techniques. 

4. Exploiting the thermal model in term of condition monitoring, especially thermal issues such 

as changes in the cooling performance. 

To meet these objectives, it will be necessary to leverage the load profile and winding temperature 

indicator (WTI) measurement to facilitate operate and manage power transformers. In addition, 

weather data is also required to develop a transformer thermal model. Summary of data used in this 

thesis is proved in Appendix A. 

1.3 Contributions 

There are three significant contributions made by this thesis to the area of the thermal modelling and 

condition monitoring for power transformers. Firstly, an algorithm to identify faulty WTIs using time 

series decomposition is proposed and tested against field measurements, which addresses the first 

objective. The algorithm is able to identify WTIs, which exhibited load and ambient temperature 

independency. This is important to ensure that measurement collected by WTIs are reasonable be-

cause WTIs are primary sources of thermal data for further analysis.  

Secondly, a thermal model for power transformers considering wind speed and solar radiation is 

introduced and validated against field measurements, which fulfils the second objective. To be able 

to predict the transformer temperature more accurately, it is necessary to estimate influences of the 

weather factors, wind speed and solar radiation because power transformers are usually outdoor units. 

A more accurate thermal model improves calculation of the cumulative loss of insulation life and 

ratings. 

The third contribution is development of alternative algorithm to model transformer thermal behav-

iour using machine learning, which addresses the third objective. A comprehensive analysis of the 
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ability of the data-driven model to predict the transformer temperature over various loading condi-

tions and an analysis of sensitivity on the model accuracy to inputs are undertaken. It was found that 

the root mean squared errors of the prediction made by alternative algorithm is only 1.5°C while the 

root mean squared errors of the prediction made by a traditional thermal model is 2.5°C. Furthermore, 

an algorithm for incipient thermal anomaly identification is proposed using the data-driven model, 

which fulfils the fourth objective. It helps to alert the operator it is likely that there is a presence of 

an incipient thermal fault so that proper intervention could be planned accordingly. 

1.4 Thesis Structure 

Chapter 1 presents a short introduction of the subject and provides details about the motivation for 

the research and the aims and objectives of the project. 

Chapter 2 provides a summary of traditional and modern condition monitoring techniques for power 

transformers. A summary of thermal network models for power transformers and their limitations 

are also discussed. 

Chapter 3 presents a time series analysis of operational measurements associated with the transform-

ers. The measurements consist of load profile, the winding temperature indicator (WTI) temperature 

and ambient temperature. Time series of load profile and the WTI temperature rise above ambient 

temperature are decomposed into distinct components. Cycle patterns of the time series illustrated 

by the seasonal components are discussed. An algorithm to identify faulty WTIs using the time series 

decomposition is proposed. In addition, dependency of the WTI temperature on wind speed and solar 

radiation are identified. This does motivate us to develop a transformer thermal that considers the 

weather factors, which is discussed in the next chapter. 

Chapter 4 presents a thermal model for power transformers considering environmental factors. Many 

traditional transformer thermal models do not include wind or solar radiation [9, 14, 15]. As large 

power transformers are usually outdoor units, they could be subjected to substantial prevailing wind 

and solar radiation. This could have significant effects on the transformer temperature. The wind 

could be considered as external forced convection. For solar radiation, it could be considered as an 

additional heat source. The model is based on electrical-thermal analogy and principles of heat trans-

fer. An equivalent circuit and a governing equation of the thermal model are proposed and tested 

against field measurements across numerous units. The prediction made by the proposed algorithm 

is similar to the prediction made by a traditional thermal model for normal weather conditions, but 

the prediction is significantly more accurate on windy and sunny periods.    

Chapter 5 provides a discussion of development of data driven thermal model for power transformers. 

The following are the candidates of the data-driven algorithms that are implemented: 1) Artificial 

neural networks (ANN), 2) Support vector machine for regression (SVM) and 3) Multiple linear 
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regression (MLR). Input data are comprised of load profile, WTI measurement, ambient temperature, 

wind speed, wind direction and solar radiation. The sensitivity of input data to the model performance 

is also investigated. The performance of the model over different loading conditions is analysed. 

Chapter 6 presents applications of the data driven thermal model in terms of condition monitoring. 

The thermal models could be used to estimate the cumulative loss of insulation life given loading 

conditions. Thermal anomaly of an ageing transformer among transformer family could be identified 

using the thermal model. Furthermore, an algorithm to identify incipient thermal faults using the 

thermal models developed in the previous chapter. The algorithm could help the maintenance team 

to target faulty transformers for repair based on their conditions. 

Chapter 7 presents a conclusion and highlights key findings of this report. 
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Transformer Condition Monitoring Techniques and 

Thermal Network Models  

Power transformers must be able to withstand a high level of thermal stress. The temperature of oil-

filled transformer is mainly limited by maximum operating temperature and ageing rate of the cellu-

losic insulation and the mineral oil [8]. The heat inside transformers is mainly generated by the core 

and winding losses. The temperature rise of cooling medium (mineral oil) occurs due to the heat 

transfer between the heat sources (windings and core) and the heat sink (ambient air) [16]. There are 

two key thermal indicators inside a transformer that are measured, i.e. the oil temperature at the top 

of the tank, namely called top-oil temperature, and the hottest temperature of the winding in proxim-

ity to insulating materials, namely hot-spot winding temperature [9]. There has been much research 

on how to improve top-oil models and hot-spot models [14, 17, 18]. In this section, a review of the 

top-oil and the hot-spot thermal network models and condition monitoring techniques for power 

transformers is provided. 

2.1 Introduction 

According to IEC 60076-1 2011 [19], a power transformer is defined as “a static piece of apparatus 

with two or more windings which, by electromagnetic induction, transforms a system of alternating 

voltage and current into another system of voltage and current usually of different values and at the 

same frequency for the purpose of transmitting electrical power”. They are used to increase effec-

tiveness of transmitting electrical power from power plants, which are usually in remote areas, to end 

users by stepping up a voltage from a power plant before connecting to the transmission system in 

order to minimise losses. Clearly, there are power transformers at other points of the transmission 

system to step down the voltage to a range that customers can safely use. Power transformers could 

be classified by capacity, electrical insulation type and winding configuration. This work focuses on 

180 – 1000 MVA mineral oil-immersed power transformers in transmission systems and therefore 

the discussion will be limited to these cases. 
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2.2 Transformer Failure 

The life expectancy of typical transformers is approximately 20-35 years. Reliability of large power 

transformers are considerably high with a general failure rate of 2% per annum [20]. An international 

survey conducted by the international council on large electric systems (CIGRÉ) in 1983 revealed 

that for the transformers with an on-load tap changer (OLTC), 41.4% of the total failure were caused 

by OLTC, 19.2% were due to the windings, 12.9% were accounted by failure of the tank and insu-

lating fluid, 12.3% were caused by bushing, 11.6% were due to accessories and 7.6% were due to 

the magnetic circuit [20]. In terms of failure modes, mechanical, dielectric and thermal failures ac-

counted for 53%, 31% and 9% of the total failures, respectively.  

A more recent worldwide transformer reliability survey conducted by CIGRÉ in 2015 showed that 

the major failure rate was 0.58% of the participants in the survey [21]. The dielectric failure had the 

highest contribution to the total failures, followed by the mechanical, electrical and thermal failures 

[21]. Due to development of a vacuum OLTC, it significantly reduces the number of outages or 

maintenance for OLTC. This is because an arc takes place in a designed vacuum chamber instead of 

a transformer tank where the insulating oil could be contaminated.  

The dielectric failure is caused by the fact that the insulating material is not able to withstand the 

electric field. There are many reasons causing the dielectric failures such as poor design, defective 

manufacturing or ageing insulation. Ageing processes accelerated by temperature can lead to dielec-

tric failures [6]. The ability to distinguish an anomalous increase in temperature will avoid unusual 

ageing and eventually reduce risk of dielectric and thermal failures. 

2.3 Ageing of Insulating Material 

New transformers can more easily accommodate a high level of mechanical and electrical stresses. 

As a result of ageing of the solid insulation system, which is usually made of cellulose, mechanical 

and electrical strength declines to the end of life by approximate 20 years at the operating temperature 

of 98°C for Kraft paper and at the operating temperature of 110°C for thermally upgraded paper, and 

the ageing rate increases exponentially with temperature [5]. Ageing mechanism involves three re-

actions, hydrolysis, pyrolysis and oxidation [6]. The oxidation could be reduced by using inhibited 

oil in which an antioxidant is added [22]. The moisture content is usually low for hermetically sealed 

transformers as there is no exchange air between a transformer tank and the atmosphere. For free 

breathing transformers a silica filter is equipped to filter out water while drawing air from the atmos-

phere. Despite that, the degradation of the internal cellulosic insulation produces water as a by-prod-

uct, with degradation increasing at higher temperatures [23, 24].  

The dielectric strength of the insulating paper insignificantly degrades while the mechanical strength 

does decrease significantly over the life expectancy of the unit. However, due to fragility of the 
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degraded insulating paper, the dielectric integrity could be compromised by mechanical damage [8]. 

As a result of the deterioration of the insulating material, there is a higher risk of the catastrophic 

failure during severe conditions such as a short-circuit, or lightning strike because the aged insulating 

paper is not able to withstand mechanical stresses caused by short-circuit faults and dielectric stress 

generated by lightning strikes. Many studies showed that there is a clear relationship between de-

crease in degree of polymerisation of the insulating paper and reduction in mechanical properties 

[25, 26, 27]. The degree of polymerisation of the cellulosic insulation is representative of the number 

of the glucose units chained together [5]. The initial degree of polymerisation of Kraft paper is usu-

ally around 1100 – 1200 [5]. According to IEEE Std C57.91-2011 [8], the remaining degree of 

polymerization of the insulating material should be greater than 200 after being continuously sub-

jected to temperature at 110°C with well-dried and oxygen-free condition for 150,000 hours or 17.12 

years. For thermally upgraded paper, temperature of 110°C is used as a reference temperature while 

temperature of 98°C is used for non-thermally upgraded paper. The ageing rate varying with the 

operating temperature for thermally upgraded paper is as follows [9]: 

𝐴𝑅 = exp (
15000

383
−

15000

𝜃H + 273
)                                                        (2. 1) 

For non-thermally upgraded paper, the ageing rate is as follows [9]: 

𝐴𝑅 = 2(
𝜃H−98
6

)                                                                                (2. 2) 

where 𝜃H is the hot-spot winding temperature [°C] and 𝐴𝑅 is ageing rate relatively to the reference 

temperature. 

Studies regarding variations in relative ageing rate due to oxygen and water levels were conducted 

in [23, 24]. They showed that the higher oxygen and water levels could accelerate the degradation 

rate significantly. Controlling the oxygen and water contents in permissible levels is necessary to 

maximise the transformer life expectancy. The hydrolysis of the insulating paper catalysed by low 

molecular acids were studied in [28, 29]. It was found that the formic acid has the highest acceleration 

factor followed by acetic and levulinic acids. This means that the hydrolysis of the insulating paper 

is an auto accelerative process, which means that the hydrolysis is catalysed by its own by-product. 

A comprehensive discussion regarding those factors that accelerate the degradation rate of the insu-

lating paper can be found in [10]. 

Ageing transformers need to be monitored carefully to avoid an unexpected failure. As not only do 

unexpected failures result in costly maintenance and replacement, but operators also have to pay a 

penalty charge for unexpected power outages and contingency costs. Many condition monitoring 

techniques have been developed to detect incipient faults and prevent transformers from catastrophic 

failures such as partial discharge (PD) measurement, dissolved gas analysis (DGA) and thermogra-
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phy, see [30], [31] and [32] for detailed discussion regarding PD measurement, DGA and thermog-

raphy techniques, respectively. In this thesis the focus is on thermal condition monitoring techniques 

because only the thermal performance of transformers is of interest. 

2.4 Thermal Condition Monitoring Techniques 

The transformer temperature is an essential parameter for condition monitoring. An excessive oper-

ating temperature leads to gas generation and accelerates the ageing rate in the insulation system, 

which jeopardises the transformer integrity. Identification of anomalous thermal behaviour would 

help the operators to manage their assets and plan intervention accordingly. 

2.4.1 Thermography 

Transformer surface temperatures can be obtained by measuring infrared emission. The testing can 

be performed on-line without an outage. Abnormalities which are close to transformer’s surface can 

be detected such as clogged oil pipe or poor electrical connection [32]. Although a hot-spot location 

inside a transformer tank could not be directly detected by this method, it can be a useful tool to 

narrow a possible hot-spot location. An infrared image may be taken at the beginning of its operation 

as a reference and then it is used to compare with another to investigate thermal issues. As the trans-

former temperature vary with loading conditions, the comparison needs to be carried out carefully. 

It could be improved by continuously monitoring and recording the surface temperature rather than 

routine schedules.  

2.4.2 Oil temperature indicator and Winding temperature indicator 

Transformers usually have separate oil pockets in the top of the tank for temperature measurements. 

The oil pockets enable the operator to measure indirectly top-oil temperature without contaminating 

the oil inside the tank. It is easy for maintenance. Oil temperature indicator (OTI) is usually installed 

in the oil pocket to measure the top-oil temperature [10]. The temperature could be measured me-

chanically using capillary tube, which is based on the fact that the pressure of a fluid changes with 

temperature. Alternatively, the temperature could be measured electrically using resistance temper-

ature detector (RTD) which is based on changes in electrical resistance with temperature. PT100, a 

temperature sensing probe made of platinum that has resistance of 100 Ω at temperature of 0°C, has 

been widely used to measure the transformer temperature [33]. OTIs can send a signal to control 

cooling pumps and fans and disconnect the transformer from the service based on the measured tem-

peratures. 

A winding temperature indicator (WTI) is similar to an OTI, but also captures the temperature rise 

of the winding above top oil through the use of a heating coil, see Figure 2.1. The heating coil is 

supplied with a proportional current to the winding current via a current transformer to replicate the 
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heat inside the winding [34]. The simulated heat is calibrated to make similar the hot-spot tempera-

ture rise over the top oil temperature at rated current measured during the heat run test in accordance 

with [8]. WTIs can also control cooling systems and disconnect units, in a similar manner to OTIs. 

 

Figure 2.1 Traditional winding temperature indicator 

2.4.3 Direct temperature measurement 

Direct measurement on a transformer winding hot-spot temperature using fibre optic sensors was 

introduced over many decades ago [35]. Temperature measurement using fibre optic sensors for 

power transformers is usually based on changes in the light absorption properties of semiconducting 

crystals, which are usually made of gallium arsenide (GaAs) [36]. Fibre optic sensors were used to 

measure the transformer winding temperature directly for confirmation of a new transformer design 

where the conventional method could not work due to electromagnetic interference [37]. A number 

of sensors would need to be installed to measure the temperature distribution along the winding [38, 

39]. The sensors are installed at the hot-spot location as near as possible regarding transformer design 

and simulation results. However, there are some limitations. It is difficult to install the sensors once 

the transformer has been already assembled [10]. Therefore, this method is not recommended for 

transformers which are already in service. The cost of fibre optic sensors is high, and it is likely that 

a number of them are required to measure the temperature at the hot-spot location [10]. Another 

limitation is vulnerability to physical damage. The maintenance and replacement of the sensors is 

also difficult due to their location within the windings. 

2.5 Computational Fluid Dynamics (CFD) 

Computational fluid dynamics (CFD) is a numerical method that is used to solve the Navier-Stokes 

equations by turning a combination of the differential equations to algebraic equations. By simulta-

neously solving the heat equation, it is in theory possible to determine the oil velocity and tempera-

ture anywhere in a transformer.  Instead of conducting many experiments for developing a new trans-
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former, design engineers could adjust transformer parameters in CFD models to simulate their de-

signs and then conduct an experiment to validate the simulation. The majority of research to date 

focuses on the thermal behaviour at the windings and cooler bank where the majority of the genera-

tion and removal of the heat takes place [40, 41, 42]. CFD research has also considered the location 

of the peak winding temperature [43, 44]. In [43], it was found that the location of the hottest winding 

temperature for transformers which is in an oil-natural-air-natural (ONAN) state is at the top of the 

winding of each cooling pass, which is a stack of disc windings and cooling ducts, and at the middle 

for transformers which is either in an oil-forced-air-forced (OFAF) or oil-directed-air-forced (ODAF) 

state. Later on, studies based on CFD have shown that with high oil velocity, the location of the hot-

spot temperature for direct forced oil (OD) could move to the bottom horizontal duct of a cooling 

pass due to a reverse oil flow [45, 46]. A relationship between a reverse oil flow and dimensions of 

the discs and ducts in the windings for OF and OD cooling modes was studied using the CFD model 

[47, 48]. A correlation between the hot-spot factor (𝐻) and the Prandtl and Reynolds numbers for 

power transformers which are in an OD cooling mode was investigated [49]. There are many efforts 

try to improve the heat transfer coefficient of cooler bank by adjusting positions of cooling fans 

horizontally and vertically in CFD models [50, 51]. One of advantages of CFD modelling is that 

temperature profiles in any location could be determined. One of disadvantages of CFD is that it 

needs high computational resources and time. For example, the computational time for a complex 3-

D system, solved by an ordinary computer, could be weeks [40]. Due to the long computational time, 

the CFD approach is not preferred for dynamic transformer thermal modelling. 

2.6 Thermal-Hydraulic Network Models (THNM) 

Thermal-hydraulic network models (THNMs) for transformers are fundamentally based on the law 

of conservation of heat and mass and pressure equilibrium in closed loops [52]. The hydraulic model 

considers flow and temperature distribution of the oil while the thermal model is representative heat 

exchange between the oil and the windings regimes. Unlike CFD approach that describes a system 

using partial differential equations, THNM utilise a combination of simple algebraic equations to 

determine oil flow and temperature distribution. These assumptions simplify the model to reduce 

computational time. The boundary of the surface temperature for each disc is assumed to be constant 

in [53]. In [54], the winding structure was simplified to rectangular ducts. Advantages of this ap-

proach are that the flow and temperature distribution for each section of the winding could be calcu-

lated, and the computational time is relatively faster than the CFD approach. A study showed that 

typical average temperature differences between measurements and prediction made by THNM did 

not exceed 5°C, while the calculation of hot-spot location in a transformer is more complicated and 

still needed to be improved [55].  
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2.7 Thermal Network Models 

Based on the information presented in section 2.5 and 2.6, it appears that a key limitation of those 

approaches is computational time. This is a reason why those methods are not appropriate for condi-

tion monitoring and dynamic rating calculations. The industry standard approach is to use thermal 

network models, they are also used in international guidance, and offer a low computational cost 

approach for determining transformer temperatures [40]. 

A basic oil-filled transformer thermal model at steady state is shown in Figure 2.2 [9]. The aim of 

transformer models is to determine a maximum power rating thermally limited by the hot-spot wind-

ing temperature [56]. The hot-spot winding temperature is usually expressed as combination of three 

components: ambient temperature, top-oil temperature rise above ambient temperature, which is the 

oil temperature rise at the top of the tank, and the hot-spot temperature rise above the top-oil temper-

ature, which is the winding temperature rise at the hottest location [8, 9]. Traditionally, the hot-spot 

temperature rise is estimated using a “winding gradient”, which is the temperature difference be-

tween average winding and oil temperature because a direct measurement of the hot-spot temperature 

could not be undertaken. This winding gradient is likely to be higher for the top of the winding 

because there are additional losses due to the leakage flux at the top of the winding, and the oil flow 

may be restricted [40]. 

 

A    Top-oil temperature derived as the average of the tank outlet oil temperature and the tank pocket temperature 
B Mixed oil temperature in the tank at the top of winding 

C Temperature of the average oil in the tank 

D Oil temperature at the bottom of the winding 
E Bottom of the tank 

𝑔R Average winding to average oil (in tank) temperature gradient at rated load 

H Hotspot factor 

P Hotspot temperature 
I Average winding temperature determined by resistance measurement 

 

Figure 2.2 A basic transformer thermal model [9]. 
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The higher temperature rise has led to the introduction of a hot-spot factor, 𝐻, applied to the winding 

gradient to determine the rise of the hot-spot above the top-oil temperature. Hence, the hot-spot tem-

perature is defined as follows:  

𝜃H,R = 𝜃A + ∆𝜃O,R +𝐻𝑔R                                                                    (2. 3) 

𝜃H,R is the hot-spot temperature at rated load [°C]. ∆𝜃O,R is the top-oil temperature rise above ambient 

temperature at rated load [°C]. 𝜃A is ambient temperature [°C]. 𝐻 is hot-spot factor and 𝑔R is the 

average winding gradient at rated load [°C]. 

Thermal network models can be considered as a lumped element model similar to electrical problems 

[14]. The analogy between lumped thermal and electrical elements is shown in Table 2.1. The tem-

perature differences between two considered points is equivalent to the electric potential difference 

and the heat transfer rate is equivalent to electric current. There are also equivalent expressions for 

thermal resistance and capacitance. It is worth to note that some types of thermal resistances have a 

strong non-linear temperature dependency, especially for natural convective resistances which 

mainly contribute to the thermal resistance of oil-immersed power transformers that are in an ONAN 

state. 

Table 2.1 The Lumped Electrical and Thermal Elements. 

Electrical element Thermal elements 

Voltage (𝑉 [V]) Temperature (𝜃 [°C]) 

Current (𝐼 [A]) Heat transfer rate (𝑄 [W]) 

Electrical resistance (𝑅𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙  [Ω]) Thermal resistance (𝑅𝑡ℎ𝑒𝑟𝑚𝑎𝑙 [K/W]) 

Electrical capacitance (𝐶𝑒𝑙𝑒𝑐𝑡𝑟𝑖𝑐𝑎𝑙 [F]) Thermal capacitance (𝐶𝑡ℎ𝑒𝑟𝑚𝑎𝑙 [W·s/K]) 

A simplified top-oil model could be considered as a thermal RC circuit with a heat source as shown 

in Figure 2.3 [14]. The heat sources comprise of the core and winding losses [57]. The core losses 

mainly depend on the supplied voltage and frequency, and are therefore assumed to be constant [57]. 

The winding losses are proportional to the square of the flowing current through the winding. The 

winding losses also depend on temperature because of changes in electrical resistance. Thermal ca-

pacitance is due to the thermal mass of the core, tank and oil [8]. The thermal resistance describes 

the heat transfer due to the cooling air and oil [14]. The radiation from the tank wall is neglected in 

a simplified top-oil model. Hence, the governing equation of the simplified top-oil model is given as 

follows [14]: 

𝑄Fe + 𝑄Cu =  𝐶O
𝑑𝜃O
𝑑𝑡

+ (𝑄Fe,R + 𝑄Cu,R)(
𝜃O − 𝜃A
𝜃O,R − 𝜃A

)

1
𝑛1
                                      (2. 4) 
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where 𝑄Fe is the core losses (no-load losses) [W], 𝑄Cu is the winding losses (load losses) [W], 𝜃O is 

the top-oil temperature [°C], 𝑅O,R is the top-oil thermal resistance at rated conditions [K/W], 𝐶O is 

the top-oil capacitance [W·s/K], 𝑛1 is an exponent depending on cooling modes and 𝜃A is the ambient 

temperature [°C]. 

Approximately, the top-oil temperature can be determined as follows: 

 𝜃O(𝑡 + ∆𝑡) ≈
∆𝑡

𝐶O
 (𝑄Fe +𝑄Cu − (𝑄Fe,R +𝑄Cu,R) (

𝜃O(𝑡) − 𝜃A
𝜃O,R − 𝜃A

)

1
𝑛1
)+ 𝜃O(𝑡)    (2. 5) 

where ∆𝑡 is time interval [s]. 

 

Figure 2.3 The simplified equivalent circuit of the transformer thermal model [14]. 

A thermal model for power transformers that is proposed by Pierce [58] is in similar approach to the 

previous equation, assuming the oil temperature at any location in a transformer obeys the same form 

of the equation, but the top-oil temperature is replaced with the average oil temperature. Subse-

quently, the top-oil temperature is then calculated using a proportion of the top-oil temperature rise 

above the bottom-oil temperature at rated load as follows: 

∆𝜃T/B = (
𝜃AO − 𝜃A
𝜃AO,R − 𝜃A,R

)

1
𝑛2
∆𝜃T/B,R                                                          (2. 6) 

𝜃O = 𝜃AO +
∆𝜃T/B

2
                                                                             (2. 7) 

where 𝜃AO is the average oil temperature [°C], 𝜃AO,R is the average oil temperature at rated load [°C], 

𝜃A,R is the ambient temperature at rated load [°C], 𝑛2 is an exponent depending on cooling modes, 

∆𝜃T/B is the top oil temperature rise over the bottom-oil temperature [°C], ∆𝜃T/B,R is the top-oil 

temperature rise over the bottom-oil temperature at rated load [°C]. 
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Pierce’s method also considers type of insulating liquid, changes in viscosity and winding losses due 

to temperature, and cooling modes. This method is widely accepted and included in the Annex G of 

the IEEE standard, which is referred to as IEEE-Annex G method. [8]. The method will be used to 

calculate the top-oil temperature as a reference method in Chapter 4 and Chapter 5 as it has been 

commonly used as a reference [18, 59, 60]. 

Over recent decades, the concept of top-oil model represented by an equivalent circuit has been un-

changed. However, there are many researchers attempting to improve the accuracy of the model by 

considering the temperature dependency of the thermal resistance of the moving air and oil [14, 15, 

61, 62]. G. Swift et.al argued that the exponent applied in the heat source should be rearranged to the 

oil temperature according to heat transfer principles [14], whereas the exponent is applied to the total 

losses in the governing equation used in the IEC guidance [9]. Changes in oil viscosity due to tem-

perature have been explicitly included the top-oil model [15, 61]. Furthermore, the variation in the 

winding losses with temperature was discussed in [60]. 

The hot-spot temperature is determined in similar manner to the calculation of the top-oil tempera-

ture, excepting only the winding losses are considered. The hot-spot temperature rise is estimated as 

follows [8]:  

∆𝜃H(𝑡 + ∆𝑡) ≈
∆𝑡

𝐶H
 (𝑄Cu − 𝑄Cu,R (

𝜃H(𝑡) − 𝜃O
𝜃H,R − 𝜃O,R

)

1
𝑛3
(
𝜇H,R
𝜇H(𝑡)

)

1
𝑛4
)+ ∆𝜃H(𝑡)         (2. 8) 

where 𝜃H is hot-spot temperature [°C], 𝐶H is the hot-spot winding capacitance [W·s/K], 𝜇H is the oil 

viscosity [kg/(m·s)], 𝜇H,R is the oil viscosity at rated load [kg/(m·s)], 𝑛3 is an exponent depending 

on cooling modes and 𝑛4 is an exponent depending on cooling modes.  

Since fibre-optic technology has been developed as a temperature sensor, a number of investigations 

onto hot-spot temperature under different load conditions have been reported [17, 37]. It was found 

that there is an overshoot response of the hot-spot temperature rise for large power transformers due 

to relatively slow changes in the oil circulation especially, ONAN transformers [17]. Later, the over-

shoot responses of the hot-spot temperature rise above top oil temperature has been included into the 

IEC model by using two temperature gradients describing the hot-spot temperature rise, which con-

sider the slow changes in the oil circulation.  

Furthermore, a simple thermal model for the absolute hot-spot temperature was proposed in [63]. 

The differences are that the thermal model considers the ambient temperature at the reference tem-

perature rather than the top-oil temperature. The second difference is that the thermal time constant 

switches between the winding time constant and the oil time constant dependent on specified thresh-

olds. When the oil time constant is used, it means that the remaining change in the absolute hot-spot 
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temperature is caused by only a change in the top-oil temperature because the hot-spot temperature 

rise above the top-oil temperature, which has a faster time constant, has already reach an ultimate 

value.  

In addition, environmental factors, solar radiation and wind, could also impact on the transformer 

temperature and loading capacity [64]. A study showed that the oil temperature for a distribution 

transformer in Iran could be increased by 3.7°C due to the high intensity of the solar radiation [65]. 

Another study conducted in Bahrain showed that the hot-spot temperature of a 15-MVA unit could 

be increased by 9°C in summer and 6°C in winter due to the solar radiation [66]. Effects of the solar 

radiation on the transformer temperature vary with the location of transformers, time of the year and 

the ratio of the total losses generated by the transformer to the received solar radiation. There is 

limited explicit literature about the impact of prevailing wind on transformer temperature. However, 

studies undertaken to improve heat transfer rate at the transformer radiators could provide relevant 

information. Based on simulation results, air velocity due to natural convection is within 1 m/s and 

air velocity could be improved to approximately 10 m/s by cooling fans [67, 68]. The air flow direc-

tion is vertical because the cooling fans are typically installed at the bottom of the radiators and the 

natural convection is caused by the buoyancy force. For prevailing wind, typical average wind speeds 

in the substation analysed are between 2 m/s and 5 m/s depending on substation and it should be 

noted that the typical direction of the prevailing wind on transformer substations analysed in this 

work is horizontally southwest, see Table 5.2 for average wind speeds and direction for each trans-

former considered in this work. 

2.8 Data Driven Thermal Models 

Alternatively, a transformer thermal model could be developed using historical measurement of load 

profiles, transformer temperature and weather factors instead of physical models. The performance 

of computers has improved significantly in recent decades, enabling researchers to develop trans-

former thermal models utilising machine learning techniques. In early work, feedforward artificial 

neural networks (ANNs) were used to develop a transformer thermal model by learning historical 

measurements consisting of load, ambient temperature and the top-oil temperature [69]. In [70] a 

comparison between feedforward and recurrent ANNs was undertaken. This showed that the recur-

rent ANNs, where the top-oil temperature at the previous time step is used as an input for predicting 

the top-oil temperature at the next time step, was superior to the feedforward approaches. In a more 

recent work, a transformer hot-spot thermal model was developed using recurrent ANNs [71] and it 

showed promising results. Furthermore, development of a transformer thermal model using a support 

vector machine (SVM) approach was also carried out [72]. Based on the review undertaken, a key 

limitation is the limited size of the datasets, less than a month, so it is impossible to evaluate error 

variation throughout a year and to determine the size of training datasets required to create a robust 



Chapter 2 

18 

model. Moreover, weather factors, such as wind and solar radiation have not been considered in these 

models to date. 

2.9 Summary 

Based on the literature undertaken, it appears that there has yet to be a thermal model for power 

transformers that considers prevailing wind and solar radiation. Typically, thermal models only in-

clude solar radiation and ambient temperature as weather inputs. Theoretically, a substantial wind 

would improve the cooling performance of transformers. It is noted that the wind speed is dependent 

on seasons, location and might not persist for extended periods of time. It is of interest that to what 

extent prevailing wind could improve the cooling performance, especially for those transformers that 

are in windy location, e.g. wind farms and offshore substations. This motivates the development of 

a thermal model for power transformers that considers those weather factors to improve the accuracy 

of the prediction. The discussion and results are provided in Chapter 4. 

Although there are earlier transformer thermal models developed using machine learning techniques, 

there has yet to be a comprehensive analysis due to the limited data available. As historical load and 

WTI measurements collected by National Grid Electricity Transmission are available for long peri-

ods, 5 years of data, and across many transformer units, it enables the author to investigate a possi-

bility of creating transformer thermal models using machine learning techniques in greater detail, see 

Appendix A. In this thesis, detailed discussion of development of transformer thermal models using 

data driven techniques are provided in Chapter 5. 

Based on the review undertaken, the IEEE-Annex G method will be used as a reference thermal 

model throughout this thesis. 
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Operational Measurements and Time Series Analysis  

In this chapter, historical operational measurements considered in this work are presented and dis-

cussed. A time series decomposition technique is used to investigate distinct characteristics of the 

data. An algorithm that could identify faulty winding temperature indicators (WTIs) with load and 

ambient temperature dependency issues is proposed using a time series decomposition technique and 

correlation coefficients. Limitations of traditional transformer thermal models are also discussed.   

3.1 Operational Measurements 

In this chapter, three transformers are considered. Load and winding temperature indicator (WTI) 

measurements were provided by National Grid Electricity Transmission (NGET) as a part of Condi-

tion and Climatic Environment for Power Transformer (ConCEPT) project. The data are in an hourly 

interval format between 2013 and 2018 and 15-minute interval format since 2019. In addition, local 

substation weather stations have been installed at the substations as a part of ConCEPT project and 

the data are available since July 2019. The local substation weather stations have a sampling interval 

of 15 minutes, they measure and record: ambient temperature, wind speed, wind direction and solar 

radiation. As the weather information from the local substation weather stations does not cover the 

whole period of time, some of the weather information was derived from the nearest weather station 

of the UK meteorological office, referred to as the Met Office hereafter [73]. The data from the Met 

Office are only available in an hourly interval format. A summary of the data availability for the 

three transformers is provided in Table 3.1. Examples of load, WTI measurement, ambient tempera-

ture, wind speed, wind direction and solar radiation are shown in Figure 3.1. A picture of the local 

substation weather station for Transformer A is shown in Figure 3.2. Overall transformer specifica-

tions are provided in Appendix B in Table B.1. Transformer A and B are in the same family and at 

the same substation. Their main tanks are indoors while the radiators are left outdoors. They are in 

an urban area, surrounded by concrete walls. It is reported by a NGET operator that cooling pumps 

and fans of Transformer B are operating continuously regardless of the transformer temperature. 

Transformer C is an outdoor unit, with its main tank and radiators outdoors in a rural area, with 

another transformer next to it. 
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(a) Load, WTI measurement and ambient temperature 

 

(b) Wind speed 

 

(c) Wind direction (0° = North, 90° = East, 180° = South and 270° = West) 
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(d) Solar radiation 

Figure 3.1 Example of Load, WTI measurement, wind speed and solar radiation data for the local 

substation weather station. 

 

Table 3.1 Availability of load, WTI measurement and weather information 

Transformer 
WTI and load 

Measurement 
Met Office Local Substation 

A 01/2013 to 05-2020 01/2013 to 05/2020 07/2019 to 05/2020 

B 01/2013 to 05/2020 01/2013 to 05/2020 07/2019 to 05/2020 

C 01/2013 to 05/2020 01/2013 to 05/2020 09/2019 to 05/2020 

 

 

Figure 3.2 Weather station at substation of Transformer A. 
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3.2 Time Series Analysis 

Time series analysis is a statistical technique for studying characteristics of time series. It is useful 

to split time series into a number of distinct independent component series. As changes in the trans-

former temperature driven by the loading conditions are considered, time series of the load and WTI 

temperature rise above ambient temperature are determined. It is expected that characteristics of the 

component series of WTI temperature rise should be similar with the components of the load with a 

time lag of several hours. The time lag is due to the thermal oil time constant which is dependent on 

transformer designs and the cooling state. 

There are a plethora of component combinations that can be used. In the case of load and WTI tem-

perature rise data it is appropriate to consider them as a multiplicative series (𝑦m), with a general 

trend (𝑇m), seasonal (𝑆m) and irregular components (𝐼m) as follows:  

𝑦m = 𝑇m x 𝑆m x 𝐼m                                                                           (3. 1) 

A multiplicative series is appropriate because the variability of the time series is roughly proportional 

to its magnitude. For example, the average load is typically smaller on weekends and has lower 

variability.    

To calculate these components, logarithms of original data are first calculated as follows: 

log 𝑦m = log 𝑇m +  log 𝑆m +  log 𝐼m                                                      (3. 2) 

This means that the series become an additional series which is easier to calculate. A logarithm of a 

trend is then calculated as a moving average over a specified period as follows: 

log 𝑇m(𝑡) =
∑ log 𝑦m(𝑡 − 𝑖)
8759
𝑖=0

8760
  ;                  𝑡 ≥ 8761                                            (3. 3) 

The trend is calculated since the second year of the data because the first year of the data is used a 

base for calculating moving average. The size of moving window depends on time series character-

istics. The window size is selected so that the trend is not comprised of any kind of cyclical patterns. 

Following this, a logarithm of a detrended series which is then used to calculate logarithms of sea-

sonal components could be determined as follows:  

𝐷m = log 𝑦m −  log 𝑇m                                                                            (3. 4) 

A seasonal component is represented a repeated pattern which is occurs with a fixed period, e.g. 

yearly, weekly and daily. A logarithm of a yearly seasonal component is determined as follows: 

  S1,yearly(t) =
∑ 𝐷m(𝑡+(8760𝑖))
Year
𝑖=0

Year
   , 1 ≤ 𝑡 ≤ 8760                                                      (3. 5) 
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S2,yearly(t) =  S1,yearly(t) − S1,yearly(t)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅                                                          (3. 6) 

log 𝑆yearly(𝑡) =

{
 
 

 
  ∑ S2,yearly(8760 − 𝑖)

167−𝑡
𝑖=0 + ∑ S2,yearly(𝑡 − 𝑖)

𝑡−1
𝑖=0

168
     if          𝑡 ≤ 167 

∑ S2,yearly(𝑡 − 𝑖)
167
𝑖=0

168
                                                              if          𝑡 > 167  

      (3. 7) 

where Year is the number of years of the data. It should be noted that the size of log 𝑆yearly(𝑡) is 

8760 data points. 

A logarithm of a weekly seasonal component is determined as follows: 

𝐷m,weekly = 𝐷m − log 𝑆yearly                                                                                    (3. 8) 

  S1,weekly(t) =
∑ 𝐷m,weekly(𝑡+(168𝑖))
Week
𝑖=0

Week
   , 1 ≤ 𝑡 ≤ 168                                                      (3. 9) 

S2,weekly(t) =  S1,weekly(t) − S1,weekly(t)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅                                                         (3. 10) 

log 𝑆weekly(𝑡) =

{
 
 

 
  ∑ S2,weekly(168 − 𝑖)

23−𝑡
𝑖=0 + ∑ S2,weekly(𝑡 − 𝑖)

𝑡−1
𝑖=0

24
        if         𝑡 ≤ 23 

∑ S2,weekly(𝑡 − 𝑖)
23
𝑖=0

24
                                                              if         𝑡 > 23  

    (3. 11) 

where Week is the number of weeks of the data. The size of log 𝑆yearly is 8760 data points and it is 

replicated so that it has the same size as the detrend series. It should be noted that the size 

of log 𝑆weekly(𝑡) is 168 data points. 

A logarithm of a daily seasonal component is determined as follows: 

𝐷m,daily = 𝐷m − log 𝑆yearly −  log 𝑆weekly                                                          (3. 12) 

  S1,daily(t) =
∑ 𝐷m,daily(𝑡+(24𝑖))
Day
𝑖=0

Week
   , 1 ≤ 𝑡 ≤ 24                                                      (3. 13) 

log 𝑆daily(𝑡) =  S1,daily(t) − S1,daily(t)̅̅ ̅̅ ̅̅ ̅̅ ̅̅ ̅̅                                                          (3. 14) 

where Day is the number of days of the data. The size of log 𝑆weekly is 168 data points and it is 

replicated so that it has the same size as the detrend series. It should be noted that the size 

of log 𝑆daily(𝑡) is 24 data points. 

A logarithm of an irregular component contains the remaining data which is not captured in the trend 

or seasonal components, e.g. uncertainty of electricity consumption, outages or overloading due to a 

failed transmission line or transformer and is determined as follows: 

log 𝐼m =  log 𝑦m − log 𝑇m −  log 𝑆yearly −  log 𝑆weekly −  log 𝑆daily                           (3. 15) 
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It should be noted that the seasonal components are replicated so that their size are equal to the size 

of the trend. 

Figure 3.3 to Figure 3.8 and Figure 3.9 to Figure 3.14 show the decomposition components for Trans-

former A which is in Westminster, Greater London, and Transformer C which is in Braintree, Essex, 

respectively. For Transformer A, it appears that the trend of load profile was quite constant at 50 

MVA until 2018. Then the trend increased to about 70 MVA. The same behaviour was also observed 

for the trend of the WTI temperature rise as expected. While the trends of both load and WTI tem-

perature rise for Transformer C did not vary significantly. It appears that the loads have a yearly, 

weekly and daily seasonal components for both Transformer A and C. The load and WTI measure-

ments of Transformer A and C were provided for two different periods, i.e. 1st January 2013 to 31st 

January 2019 and 1st February 2019 to 1st May 2020. Missing data in late 2018 to early 2019 for 

Transformer A and C were because permissible amount of the data downloaded for each time had 

been reached. The author was unable to obtain data for the gaps because the load and WTI measure-

ments had to be downloaded by an independent party. However, it is a sufficiently short period that 

it would make no difference.   

Similar curves were also observed in the seasonal components of the WTI temperature rise, but there 

is a time lag between the load and the WTI temperature rise of about five hours, which is expected. 

Regarding the yearly seasonal component, it suggests that the load is strongly dependent on the am-

bient temperature. This is expected because the electricity demand for heating would be relatively 

low in summer. It is worth noting that the load drops noticeably during Christmas and New year 

holidays where most workplaces, supermarkets, schools, etc are closed. It appears that the yearly 

variation in the load of Transformer A is slightly lower than the load variation of Transformer C. 

This is probably because the ratio of industrial and commercial electricity demands to domestic de-

mands is relatively higher for Transformer A (6.66:1 average between 2013-2017) than Transformer 

C (1.06:1 average between 2013-2017) [74]. It is plausible that industrial and commercial demand 

depends less on ambient temperature than domestic demand.  

For the weekly seasonal components, it shows that the load demand for weekends is relatively lower 

for weekdays. This is because workplaces, schools and so on are closed. Regarding the daily seasonal 

components, the load peaks between 10:00 AM and 6:00 PM where they are working hours for 

Transformer A. While there are 2 peaks for Transformer C at 8:00 AM and 6:00 PM. These are 

common times for preparing breakfast and dinner in the UK where electrical cooking appliances are 

being used [75]. 

The seasonal and irregular components are divided by the trend component so that the values of those 

components are fractions of the trend component. 
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Figure 3.3 Original data and trend component of WTI temperature rise for a transformer in the cen-

tral London (Transformer A). The gaps are either unavailable data or periods that the 

transformer is not in operation.  

 

Figure 3.4 Original data and trend component of load for a transformer in the central London 

(Transformer A). The gaps are either unavailable data or periods that the transformer 

is not in operation.  
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Figure 3.5 Yearly seasonal component of WTI temperature rise and load for a transformer in the 

central London (Transformer A). 

 

 

Figure 3.6 Weekly seasonal component of WTI temperature rise and load for a transformer in the 

central London (Transformer A). 
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Figure 3.7 Daily seasonal component of WTI temperature rise and load for a transformer in the 

central London (Transformer A). 

 

Figure 3.8 Irregular component of WTI temperature rise and load for a transformer in the central 

London (Transformer A). The gaps are either unavailable data or periods that the 

transformer is not in operation.  

 

 

 

 

 



Chapter 3 

28 

 

Figure 3.9 Original data and trend component of WTI temperature rise for a transformer in 

Braintree that is a residential area (Transformer C). The gaps are either unavailable 

data or periods that the transformer is not in operation.  

 

Figure 3.10 Original data and trend component of load for a transformer in Braintree that is a resi-

dential area (Transformer C). The gaps are either unavailable data or periods that the 

transformer is not in operation.  
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Figure 3.11 Yearly seasonal component of WTI temperature rise and load for a transformer in 

Braintree that is a residential area (Transformer C). 

 

Figure 3.12 Weekly seasonal component of WTI temperature rise and load for a transformer in 

Braintree that is a residential area (Transformer C). 
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Figure 3.13 Daily seasonal component of WTI temperature rise and load for a transformer in 

Braintree that is a residential area (Transformer C). 

 

Figure 3.14 Irregular component of WTI temperature rise and load for a transformer in Braintree 

that is a residential area (Transformer C). The gaps are either unavailable data or peri-

ods that the transformer is not in operation.  
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3.3 Identifying Faulty WTIs using Time Series Decomposition 

Winding losses in the transformer, which are correlated with load, and ambient temperature should 

lead to changes in the WTI temperatures. However, due to a failure of a WTI part, WTIs may no 

longer exhibit the intended load and ambient temperature dependency. Time series decomposition is 

a simple technique which can be utilised to easily check whether the data is correlated over different 

daily and weekly periods. It is worth noting that a limitation of this approach is WTIs with tracking 

top-oil temperature issues cannot be identified by this algorithm because they still exhibit load and 

ambient temperature dependency. WTIs with tracking top-oil temperature mean that there is a faulty 

part associated with a heater of a WTI that generates a temperature gradient between top-oil temper-

ature and hot-spot temperature resulting in underestimating a hot-spot temperature. An algorithm 

that will be able to identify these issues will be discussed later in Chapter 6. 

This section explains how faulty WTIs that do not have load and ambient temperature dependency 

could be identified using seasonal components between the load and WTI temperature rise and cor-

relation coefficient. It is necessary to identify faulty WTIs because they control the cooling system 

of transformers and protect transformers from overheating. Typically, power transformers are 

equipped with two WTIs for LV and HV windings. As there are a sufficient large number of power 

transformers on the network, it is necessary to automate a process to detect faulty WTIs as much as 

possible. 

Figure 3.15 shows a flow chart of a proposed algorithm for detecting faulty WTIs. First of all, the 

load, WTI temperature and ambient temperature measurements for the last 28 days are acquired to 

calculate the weekly seasonal components. This amount of the data provides sufficient information 

to calculate average values of the data for each time and day of weeks for weekly seasonal compo-

nents, which is equal to 4 data points at any time of a week.  The WTI temperature is subtracted with 

ambient temperature to obtain the WTI temperature rise. 

The weekly seasonal components for both load and WTI temperature rise are calculated. Following 

that, the correlation coefficient between the load and WTI temperature rise for the weekly compo-

nents is determined. If the correlation coefficient between the weekly components is less than 0.5, it 

indicates a faulty WTI with load dependency issue. Even when the coefficient of the weekly compo-

nents is slightly higher than 0.5, there is probably an incipient fault. The daily correlation coefficients 

between the original load and WTI temperature rise, and between the ambient temperature and ab-

solute WTI temperature for each single day are therefore determined for further investigation. If both 

daily correlation coefficients are less than 0.5 for three consecutive days, it indicates a faulty WTI 

with load and ambient temperature dependency issue. Typically, the correlation coefficients of 

healthy WTIs are between 0.8 and 1.0, see Figure 3.19. To reduce the number of fault positive results, 

the correlation coefficient of 0.5 is set as a threshold and it is also required to have three similar 

consecutive results. The reason why the correlation coefficient between the ambient temperature and  
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Figure 3.15 A flow chart of identifying faulty WTI with load and ambient temperature dependency. 
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the WTI temperature is also determined is that sometimes the load does not change significantly to 

cause a significant change in the WTI temperature, for example some weekends in summers. In con-

trast, the WTI temperature changes significantly because of ambient temperature, especially in sum-

mer. As there is a time lag from changes in the load and ambient temperature to changes in the WTI 

temperature, the temperature data are shifted backward so that the two data are in the same alignment. 

The correlation coefficients are calculated using the WTI temperature data shifted backward between 

0 and 12 hours. The maximum coefficient is selected for judgement. The algorithm can be automat-

ically and repeatedly applied over large periods of the data and identify a suspicious period when 

WTIs do not work properly. This helps maintenance team to target WTIs that need to be repaired 

effectively. The following are examples of the analyses of heathy and faulty WTIs. Figure 3.16 and 

Figure 3.17 show the original WTI temperature rise and load and their trend components for a healthy 

WTI, respectively. Figure 3.18 shows the weekly seasonal component for both the WTI temperature 

rise and load. The value of the correlation coefficient between them was greater than 0.95. In addi-

tion, the daily correlation coefficients were determined as shown in Figure 3.19. As either the daily 

correlation coefficients between load and WTI temperature rise or between ambient temperature and 

absolute WTI temperature had been greater than 0.5 over that periods, it indicated that the WTI was 

healthy.  

 

Figure 3.16 Original data and trend component of WTI temperature rise for a heathy WTI. 

 

Figure 3.17 Original data and trend component of load for a heathy WTI. 
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Figure 3.18 Weekly seasonal components of WTI temperature rise and load for a heathy WTI. 

 

Figure 3.19 The daily correlation coefficients for a heathy WTI between load and WTI temperature 

rise and between ambient temperature and absolute WTI temperature. 

WTIs of Transformer A, B and C are working properly. To demonstrate that the algorithm is able to 

identify a faulty WTI, a WTI measurement read by a real faulty WTI, from a transformer not con-

sidered thus far, is analysed. Analyses of a real faulty WTI that does not have load and ambient 

temperature dependency are shown in Figure 3.20 to Figure 3.23. It appears that the WTI was reading 

random values. The fault might be overlooked because the WTI was sending some values instead of 

being unresponsive. However, the fault will be detected by this algorithm as the correlation coeffi-

cient of the weekly seasonal components between the WTI temperature rise and load was less than 

0.5. The values of the daily correlation coefficient also indicated a faulty WTI, see Figure 3.23. Ab-

sences of the values of the daily correlation coefficient on some days are due to missing data on those 

days. 
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Figure 3.20 Original data and trend component of WTI temperature rise for a real faulty WTI with 

load and ambient temperature dependency issue. 

 

Figure 3.21 Original data and trend component of load for a real faulty WTI with load and ambient 

temperature dependency issue. 

 

Figure 3.22 Weekly seasonal components of WTI temperature rise and load for a real faulty WTI 

with load and ambient temperature dependency issue. 
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Figure 3.23 The daily correlation coefficients for a real faulty WTI between load and WTI tempera-

ture rise and between ambient temperature and absolute WTI temperature. Absences 

of the values of the daily correlation coefficient on some days are due to missing data 

on those days. 

3.4 The IEEE-Annex G Model  

Providing load profile, ambient temperature and transformer thermal parameters, the transformer 

temperature could be approximately determined using the IEEE-Annex G model [8]. Discussions of 

the results of the prediction made by the IEEE-Annex G model versus the measurement are provided 

in this section. The data were between July 2019 to April 2020 where weather stations have been 

installed at the substations as a part of ConCEPT project. Figure 3.24 to Figure 3.26 show examples 

of measurements and predictions made by the IEEE-Annex G model for Transformer A, B and C. 

Root mean squared errors (RMSEs) between the measurement and prediction for three transformers 

are provided in Table 3.2. The prediction of the model is fairly accurate, but it appears that the errors 

do vary with prevailing wind and solar radiation in some units. Impacts of prevailing wind and solar 

radiation are therefore investigated further in the next section. 

Table 3.2 RMSE between measurement and prediction made by the IEEE-Annex G model. 

Transformer RMSE (°C) 

A 1.96 

B 2.10 

C 2.96 
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a) Measured and predicted WTI measurements and ambient temperature 

 

b) Load and wind speed profiles 

Figure 3.24 WTI measurements and predictions made by the IEEE-Annex G model and load and 

wind speed profiles for Transformer A. 

 

 



Chapter 3 

38 

 

a) Measured and predicted WTI measurements and ambient temperature 

 

b) Load and wind speed profiles 

Figure 3.25 WTI measurements and predictions made by the IEEE-Annex G model and load and 

wind speed profiles for Transformer B. 
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a) Measured and predicted WTI measurements and ambient temperature 

 

b) Load and wind speed profiles 

Figure 3.26 WTI measurements and predictions made by the IEEE-Annex G model and 

load and solar radiation profiles for Transformer C. 
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3.4.1 Impacts of Wind and Solar Radiation 

The daily average WTI temperature rise against load squared of Transformer A are plotted to illus-

trate an impact of prevailing wind as shown in Figure 3.27. It is evidenced that the daily average 

WTI temperature rise is usually cooler on windy days. Windy days are defined here as being those 

with a wind speed above 4 m/s. In addition, a plot of the RMSEs made by the IEEE-Annex G model 

against wind speed is provided in Figure 3.28. The results show that the errors rise with increasing 

wind speed. This supports that a presence of substantial wind could decrease the WTI temperature. 

Furthermore, the top-oil temperature rise at rated load and oil time constant, which are key parame-

ters in the thermal model, are fitted for each single day. The rated top-oil temperature rise is supposed 

to be a constant, but it appears to decrease with increasing wind speed as shown in Figure 3.29. 

 

Figure 3.27 Daily average WTI temperature rise above ambient temperature against load squared 

for normal and windy periods for Transformer A. 

 

Figure 3.28 RMSEs mady by the IEEE-Annex G model agaist 6-hour average wind speeds for 

Transformer A. 
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Figure 3.29 Daily rated top-oil temperature rise against daily average wind speed. 

In addition to impacts of prevailing wind, the influence of solar radiation on the transformer temper-

ature is also investigated. A plot of the daily average WTI temperature rise against load squared for 

Transformer C is shown in Figure 3.30. It also appears that the daily average WTI temperature is 

warmer during sunny days as shown in Figure 3.30. Plots of the RMSEs versus solar radiation and 

the fitted top-oil temperature rise also support this, see Figure 3.31 and Figure 3.32. As a transformer 

tank of Transformer A and B is indoor and only cooling banks are outdoor, it does not appear that 

the transformer temperature is warmer on sunny days which is as expected. 

Based on the initial analysis, the weather factors do not have significant effects on Transformer B 

which is in an OFAF state. This is likely to be because the effect of wind cooling is small compared 

with forced air from fans and solar heating is only a small proportion of the total losses for this 

transformer which is more highly loaded. It is therefore excluded from further investigation. But this 

analysis does provide motivation for developing transformer thermal models for an ONAN state that 

can consider these weather factors. 

 

Figure 3.30 Daily average WTI temperature rise against load squared for normal and sunny periods 

for Transformer C. 
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Figure 3.31 RMSEs mady by the IEEE-Annex G model agaist 6-hour average solar radiation for 

Tranformer C. 

 

Figure 3.32 Daily rated top-oil temperature rise against daily average solar radiation. 

3.5 Summary 

Characteristics of time series of the load and WTI temperature rise have been investigated using the 

time series decomposition technique. It has been found there are yearly, weekly and daily seasonal 

components. The load appears to gradually drop from winter toward summer and then rise from 

summer to winter. It could be inferred that the load usually depends on ambient temperature as the 

electricity demand for heating would be reduced with increasing ambient temperature. The load de-

mand is usually much lower on weekend. There is a time lag of about 5 hours between changing load 

and WTI temperature rise.    

Faulty WTIs with load and ambient temperature dependency issues could be detected automatically 

using the time series analysis and correlation coefficient. The WTI temperature rise which is read by 

a healthy WTI should have a high correlation with the load. This algorithm helps maintenance teams 
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target faulty WTIs more effectively and reduce possibilities of overheating issues due to the faulty 

WTIs. 

It appears that in some units the daily average WTI temperature rise is lower during windy days, 

while the daily average WTI temperature rise is warmer during sunny days. In addition, the errors 

between the measurement and prediction made by the IEEE-Annex G model that does not consider 

wind and solar radiation during windy and sunny periods are higher than average. According to this 

analysis, it is found that there is a dependency of the WTI temperature and wind speed for Trans-

former A, and dependency of the WTI temperature and solar radiation for Transformer C. This anal-

ysis does provide motivation for developing transformer thermal models for an ONAN state that can 

consider these weather factors. In Chapter 4, a top-oil transformer thermal model that considers wind 

and solar radiation will be discussed. 
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A Top-oil Thermal Model for Power Transformers 

Considering Weather Factors 

In this chapter, a top-oil thermal model for power transformers that considers weather factors is pro-

posed to address the limitations of the traditional model discussed in the previous chapter. The ther-

mal model is based on the thermal-electrical analogy and principles of heat transfer. Wind and solar 

radiation are explicitly included in a proposed differential equation. Prevailing wind is considered as 

a forced convection which improves the heat transfer rate while the solar radiation is considered as 

an additional heat source. The approach is validated using operational measurement from two differ-

ent transformers. Effects of the weather factors on the loss of the solid insulation life and power flow 

capacity are also discussed. 

4.1 Transformer Thermal Model  

A novel transformer thermal model of the top-oil temperature is proposed by considering two envi-

ronmental factors: prevailing wind and solar radiation. The thermal model is based on thermal-elec-

trical analogy and heat transfer principle. The proposed model is designed for transformer units that 

are operating at an ONAN mode based on the analysis in the section 3.4.1. It clearly demonstrates 

dependency of the transformer temperature on wind speed and solar radiation, see Figure 3.27 and 

Figure 3.30. The novel contribution of the proposed thermal network model to the existing literature 

is that prevailing wind and solar radiation are both included in the governing equation for top-oil 

temperature. 

The proposed model is based on Swift’s model [14] but the top-oil thermal resistances are explicitly 

split into two regimes: between the oil and the radiator interior and between the radiator exterior and 

the ambient. For the interior regime, the thermal resistance depends on the oil movement. For the 

exterior regime, the natural and forced convection due to the air movement and the radiation from 

the radiator wall are explicitly considered simultaneously. This is especially necessary when the ther-

mal resistance of the air and oil are similar. For example, it is a reasonable assumption to consider 

only thermal resistance of the air when operating in an ONAN mode because the oil has much lower 

thermal resistance than the air [14]. However, the situation has changed when fans are working or 

there is substantial wind as the air’s thermal resistance is significantly decreased and is therefore 
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closer to the oil’s thermal resistance. The thermal resistance of the radiator steel is neglected as the 

radiator wall is a good thermal conductor [14].The heat sources are comprised of the magnetic core, 

winding losses and solar radiation. Figure 4.1 illustrates the proposed top-oil thermal circuit. 

 

Figure 4.1 The proposed top-oil thermal model network that explicitly includes impacts of wind 

and solar radiation. 

The governing differential equation is as follows: 

𝑄Fe + 𝑄Cu = 𝐶O
𝑑𝜃O
𝑑𝑡

+
𝜃O − 𝜃A − 𝑅MR,A(𝜃O, 𝜃A)𝑄Solar
𝑅N,O(𝜃O, 𝜃A) + 𝑅MR,A(𝜃O, 𝜃A)

                                    (4. 1) 

where 𝑄Fe are the magnetic core losses [W], 𝑄Cu are the winding losses [W], 𝑄solar is the total 

received solar radiation [W], 𝐶O is thermal capacitance [W·s/K] and calculated in accordance with 

[8], 𝑅N,O is the thermal resistance between the oil and the interior of the radiator which considers the 

natural convection of the oil [K/W], 𝑅MR,A is the thermal resistance between the exterior of the radi-

ator and ambient comprised of the forced and natural convection due to the air (𝑅M,A) and the radia-

tion from the wall (𝑅R), 𝜃O is the top-oil temperature [°C] and 𝜃A is the ambient temperature [°C]. 

Necessary thermal properties of the air and oil are derived from [76]. It should be noted that all 

thermal resistances are temperature dependent.  

To calculate the effective thermal resistance on the air side and the oil side (𝑅MR,A and 𝑅N,O), it is 

necessary to calculate the temperature at the wall of the radiator (𝜃W). This can be calculated by 

iteratively solving the following equation, which ensures the continuity of heat flux: 

𝜃O − 𝜃W
𝑅N,O

+ 𝑄Solar = 
𝜃W − 𝜃A
𝑅MR,A

                                                                    (4. 2) 

4.1.1 Oil-to-Wall and Wall-to-Air Convection 

The heat transfer due to convection exists as a result of fluid movement. Within the radiator, the 

convection occurs due to the oil movement while the convection arises between the exterior of the 

radiator and ambient due to air movement. The convection can be improved by applying external 
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force, e.g. pumps and fans. The prevailing wind could be considered as external force that improves 

the heat transfer rate of the radiator. 

The thermal resistance due to convection is inversely proportional to heat transfer coefficient and 

cooling area, it is defined as [77]: 

𝑅 = 
1

ℎ𝐴C
= 

𝐿

𝐴C𝑘𝑁𝑢̅̅ ̅̅
                                                                              (4. 3) 

where ℎ is a heat transfer coefficient [W/(K·m2)], 𝐴C is cooling area due to convection [m2], 𝐿 is 

characteristic length of heat transfer [m], 𝑘 is thermal conductivity of the fluid which will be air or 

oil [W/(m·K)] and 𝑁𝑢̅̅ ̅̅  is the Nusselt number. 

The Nusselt number (𝑁𝑢̅̅ ̅̅ F), Reynold number (𝑅𝑒𝐿), and Prandtl number (𝑃𝑟 ) of forced convection 

for constant heat flux on a vertical plate with a laminar flow are based on empirical correlations as 

follows [77]: 

𝑁𝑢̅̅ ̅̅ F = 𝐷1𝑃𝑟
1/3𝑅𝑒𝐿

1/2                                                                           (4. 4) 

𝑅𝑒𝐿 = 
𝑢𝐿F𝜌

𝜇
                                                                                        (4. 5) 

𝑃𝑟 =  
𝜇

𝛼𝜌
                                                                                              (4. 6) 

where 𝐷1 is an empirical constant, 𝐿F is characteristic length for forced convection [m], 𝑢 is wind 

speed [m/s], 𝜇 is dynamic viscosity of air [kg/(m·s)], 𝜌 is density of air [kg/m3] and 𝛼 is thermal 

diffusivity of air [m2/s].  

The Nusselt number (𝑁𝑢̅̅ ̅̅ N) and Rayleigh number (𝑅𝑎𝐿) of natural convection on a vertical plate with 

a laminar flow based empirical correlations are expressed as [77]: 

𝑁𝑢̅̅ ̅̅ N = 𝐷2𝑅𝑎𝐿
1
4                                                                           (4. 7) 

𝑅𝑎𝐿 =
g𝛽𝑐𝑝𝜌

2∆𝜃𝐿N
3

𝜇𝑘
                                                                    (4. 8) 

where 𝐷2 is an empirical constant, 𝐿N is characteristic length for natural convection, 𝜇 is dynamic 

viscosity of the fluid which will be air or oil [kg/(m·s)], 𝑐𝑝 is specific heat of the fluid [W·s/(kg·K)], 

g is gravitational constant [m/s2], 𝜌 is density of the fluid [kg/m3], ∆𝜃 is the temperature difference 

over the fluid medium which will be a temperature difference of the oil above radiator wall for the 

interior of the radiator and a temperature difference of the radiator wall above air the exterior  of the 

radiator [K]. 𝛽 is thermal expansion coefficient of the fluid [1/K].  

 



Chapter 4 

48 

The heat transfer coefficient of mixed forced and natural convection of air is expressed as fol-

lows [78]: 

ℎM,A = ( ℎF,A
3.2 + ℎN,A

3.2)
1
3.2                                                             (4. 9) 

where ℎF,A is the heat transfer coefficient of forced convection of air [W/(K·m2)] and ℎN,A is the heat 

transfer coefficient of natural convection of air [W/(K·m2)]. ℎM,A is then used to determine the ther-

mal resistance through (4.3).  

As the radiators of transformers are not perfectly planar the values of empirical constants (𝐷1 and 

𝐷2) are treated as free parameters. The fitted values are determined using trust-region-reflective al-

gorithms [79]. To avoid the fitted values becoming unrealistic, both constants are restricted to be-

tween 0 and 1. A comparison of the fitted values is made against literature values, [77], which are 

0.68 and 0.59 for 𝐷1 and 𝐷2 respectively. 

The wind direction will influence the extent to which it can penetrate the radiator. The reduction due 

to the alignment is considered by treating 𝐷1 as a free parameter. Generally, the wind has a prevailing 

direction at any given site so the value of 𝐷1 for any given location, radiator type and orientation 

should remain roughly constant. 

𝑅M,A is expressed in terms of a combination of forced and free convective thermal resistance of the 

air (𝑅F,A and 𝑅N,A) by substituting (3) to (9) and then rearranging the equation as follows: 

𝑅M,A =
1

𝐴CℎM,A
                                                                  (4. 10) 

where 𝐴C is cooling area [m2] and ℎM,A is the heat transfer coefficient of mixed convection of air 

[W/(K·m2)]. 

𝑅N,O is calculated in the same way as 𝑅N,A, replacing the air’s thermal properties with the oil’s prop-

erties. 𝑅MR,A is calculated as the total resistance of two thermal resistances connected in parallel as 

follows: 

𝑅MR,A =  (
1

𝑅M,A
+
1

𝑅R
)

−1

                                                         (4. 11) 

where 𝑅R is a thermal resistance due to radiative heat transfer of the radiator wall [K/W]. 

4.1.2 Radiative Heat Transfer 

Transformers are not only receiving heat from the sun, but they also transfer heat to the surrounding 

environment via radiation. The radiative thermal resistance (𝑅R) is [12]: 
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𝑅R =
1

𝜀𝜎𝐴R[(𝜃W)
2 + (𝜃A)

2](𝜃W + 𝜃A)
                                                     (4. 12) 

where 𝜀 is emissivity, 𝜎 is the Stefan-Boltzmann constant [W/(m2·K4)], 𝐴R is the radiating area [m2], 

𝜃W is the radiator wall temperature [K] and 𝜃A is ambient temperature [K]. As the paint colour of 

the transformers is grey, a value of 0.9 for 𝜀 is considered reasonable [76]. 

4.1.3 Additional Heating Due to Solar Radiation 

 As the global solar radiation is only recorded on a horizontal surface, the global solar radiation on 

vertical surfaces is estimated based on the solar radiation on the horizontal surface. The global solar 

radiation of a tilted surface is estimated as follows [80]: 

𝑞global = 𝑞dir𝑅𝑏 + 0.5𝑞indir(1 + cos∅) + 0.5𝑝𝑔𝑟(𝑞dir + 𝑞indir)(1 − cos∅)     (4. 13) 

where 𝑞dir [W/m2] and 𝑞indir [W/m2] are the direct and indirect radiation on a horizontal surface, 

respectively, 𝑅𝑏is the ratio of the direct radiation on the tilted surface to that on a horizontal surface, 

𝑝𝑔𝑟 is albedo factor and ∅ is tilted angle with respect to the ground. A value of 0.3 for 𝑝𝑔𝑟 is typically 

found for weathered grey concrete [81].The 𝑅𝑏 is dependent on the altitude and azimuth angles and 

the location of the surface and is expressed as follows: 

𝑅𝑏 =  cos∅ + sin∅ tan(𝑍𝑁) cos(𝐴𝑍 − 𝜗)                                           (4. 14) 

where 𝜗 is the surface azimuth rotation angle [rad], 𝑍𝑁 is zenith angle [rad] and 𝐴𝑍 is azimuth angle 

[rad]. The azimuth and zenith angles are dependent on the time of the year and location of the trans-

former. Detailed calculation for the altitude and azimuth angles can be found [82]. 

The indirect radiation for the UK could be estimated as follows [83]: 

𝑞indir =    𝑞global H𝑘̅indir                                                                   (4. 15) 

𝑘̅indir = 0.89𝑘𝑡
2̅̅ ̅ − 1.185𝑘𝑡̅ + 0.95                                                  (4. 16) 

where 𝑘̅𝑖𝑛𝑑𝑖𝑟 is the monthly-averaged ratio of the indirect to global radiation, 𝑞global H is the global 

radiation on a horizontal surface measured by the local substation weather station, and 𝑘𝑡̅ is the 

monthly-averaged clearness index. 𝑘𝑡̅ used in this work is derived from [80], see Table 4.1. 

The direct radiation on a horizontal surface is expressed as follows: 

𝑞dir  = 𝑞global H − 𝑞indir                                                                      (4. 17) 

where 𝑞global H is the global radiation on a horizontal surface measured by the local substation 

weather station [W/m2]  and 𝑞indir is indirect radiation on a horizontal surface [W/m2]. 
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Solar radiation is accounted for using the same approach suggested in [65], taking into account the 

fact that for the larger power transformers considered in this work comprise of a tank and a cooler 

bank. In [65] only smaller power transformers were considered, where solar radiation on a main tank 

and fins attached to it was considered. For the inner of radiator plates, the surface areas are decreased 

due to shadow of the adjacent plates. The value of the direct radiation on the remaining areas that are 

not in the shadows is corrected as follows [65]: 

𝑞diri  = (1 − 𝑟𝑠)𝑞dir                                                      (4. 18) 

where 𝑟𝑠 is the ratio of the shadow to the total area. 

There are seven surfaces that receive the solar radiation in total: two vertical surfaces of the radiator, 

four vertical surfaces of the transformer tank and the horizontal surface of the transformer tank. The 

surfaces that are not facing to the sun only receive indirect solar radiation. This is shown in Figure 

4.2. The total received solar radiation is: 

𝑄Solar = ∑𝛼solar𝐴𝑖𝑞global 𝑖

7

𝑖=1

                                                    (4. 19) 

where 𝛼solar is the solar radiation absorption, 𝐴𝑖 is the receiving area on each surface [m2], 𝑞global 𝑖
 

is the global radiation on each surface [W/m2]. A value of 0.9 for 𝛼solar is considered reasonable for 

transformers painted with grey color [76]. If the transformer tank is indoors, the tank surface is ex-

cluded. 

 

Figure 4.2 Surfaces of a transformer tank (left) and radiator (right) subjected to solar radiation. This 

figure is not drawn to scale. 
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Table 4.1 Monthly-Averaged Clearness Index for The UK [80] 

Month Jan Feb Mar Apr May Jun 

𝑘𝑡̅ 

0.24 0.29 0.34 0.35 0.39 0.43 

Jul Aug Sep Oct Nov Dec 

0.4 0.39 0.39 0.35 0.31 0.25 

4.2 Results and Discussion 

The proposed model is validated with the operational measurement of Transformers A and C. The 

data comprised WTI measurement, load, tap position, ambient temperature, wind speed and solar 

radiation. The analyses have been carried out based on the measurements between July 2019 and 

May 2020 for Transformer A and C. The total numbers of the data points for Transformer A and C 

are 17796 and 25622 points with 15-minute sampling interval. The first half of the operational meas-

urement is used to adjust the 𝐷1 and 𝐷2 and the other half is used to evaluate the accuracy. The results 

are provided and discussed in this section. Transformer A is in an urban area, surrounded by concrete 

walls. Transformer C is an outdoor unit, with its main tank and radiators outdoors in a rural area. 

Overall transformer specifications are provided in Appendix B in Table B.1. 

4.2.1 Transformer thermal parameters 

Table 4.2 shows the results of the thermal parameters derived based on the first half of the operational 

measurement. The value of 𝐷1 of Transformer A is lower than the value derived from the literature. 

This is probably the transformer is surrounded by walls which could restrict prevailing wind. While 

the value of 𝐷1 is similar to the recommended value for Transformer C in a rural area without sur-

rounding buildings. The values of 𝐷2 that are derived from the measurement are slightly higher than 

the value in the literature [77]. This is probably because the plates of the transformer cooler banks 

are optimized to increase heat transfer coefficient in comparison with a plain plate. The thermal pa-

rameters associated with geometry of transformer are provided in Table 4.3. It was found that the 

average contribution of the radiative losses from the tank and coolers for a whole year is about 2% 

and 12% to the total losses for Transformer A and B, respectively. The reason that the contribution 

of Transformer A is relatively smaller is because the main tank is indoors. The contribution of the 

radiative heat transfer to the total heat transfer varies with transformer designs and operating condi-

tions. 
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Table 4.2 Thermal Parameters Derived from the Local Substation Data. 

Transformer Forced Convection (𝑫𝟏) Natural Convection (𝑫𝟐) 

A 0.45 0.85 

C 0.69 0.62 

Literature 0.68 0.59 

Table 4.3 Thermal Parameters 

Thermal Parameters 
Transformer 

A 

Transformer 

C 

LN [m] 3.74 2.09 

LF [m] 4.0 5.1 

Cooling areas [m2] [AC] 2573.0 1364.5 

North and south-facing radiator surface areas 

[m2] 
N/A N/A 

East and west-facing radiator surface areas [m2] 14.96 10.66 

North and south-facing Transformer surface ar-

eas [m2] 
11.6 24.8 

East and west-facing transformer surface areas 

[m2] 
28.3 15.3 

Top transformer surface areas [m2] 22.6 28.6 

Radiating areas [m2] (AR) 29.92* 130.12 

For Transformer A, radiating areas are accounted for radiator surface areas only because the tank is 

indoors. 

4.2.2 Comparisons between Measurement and Prediction 

The other half of the operational thermal measurements of the two transformers is compared with 

the predictions made by the proposed model as well as the Annex G in the IEEE guide [8], referred 

to as the IEEE-Annex G model hereafter. To improve the accuracy of the IEEE-Annex G model the 

top oil temperature rise at rated load, a key model input, was adjusted to reduce the error between 

simulated and measured data instead of using the original value derived from the heat run test. This 

was based on previous investigations by the authors [84]. It should be noted that the set of equations 
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of the IEEE-Annex G model are not modified but only the top-oil temperature rise at rated load is 

tuned to fit the operational measurement.  

Comparison of the accuracy of the predictions between the IEEE-Annex G and the proposed models 

on windy periods for Transformer A and their dependency on wind speed is provided in Table 4.4. 

The results on sunny periods for Transformer C and dependency on solar radiation are provided in 

Table 4.5. In general, the accuracy of the proposed model is not significantly different from the tra-

ditional model. However, the improvement of the prediction made by the proposed model is signifi-

cant when the transformers are subjected to substantial prevailing wind or solar radiation for extend 

periods of time. The predictions made by the proposed model without considering solar radiation and 

wind speed intentionally are also included in the results to highlight the improvement due to the 

consideration of the weather factors. 

Table 4.4 RMSE of Thermal Model for Transformer A. 

Model All Periods Windy Periods* 

IEEE-Annex G (°C) 1.96 4.53 

Proposed Model (°C) 1.77 1.99 

Improvement (%) 9.5 56.1 

Proposed Model (NW) (°C) 2.62 5.70 

*Windy periods are defined here as being those with 6-hour average wind speed above 6 m/s and no 

weather (NW) means weather factors ignored intentionally. 

 

Table 4.5 RMSE of Thermal Model for Transformer C. 

Model All Periods Sunny Periods** 

IEEE-Annex G (°C) 2.96 5.92 

Proposed Model (°C) 2.01 2.21 

Improvement (%) 32.1 62.7 

Proposed Model (NW) (°C) 2.78 4.06 

**Sunny periods are defined here as being those with 6-hour average solar radiation above 

0.4 kW/m2 and no weather (NW) means weather factors ignored intentionally. 
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The root-mean-square errors (RMSEs) between the measurements and predictions based on the 

IEEE-Annex G and the proposed model over sunny and windy periods are used to evaluate the ac-

curacy. Windy periods are defined here as being those with 6-hour average wind speed above 6 m/s 

and sunny periods are defined here as being those with 6-hour average solar radiation above 0.4 

kW/m2. The transformers were subjected with various load and ambient temperature. 

The RMSEs made by the IEEE-Annex G and proposed models at various 6-hour average wind speeds 

of Transformer A are shown in Figure 4.3. For Transformer A, it appears that the errors between the 

measurement and prediction based on the IEEE-Annex G model increase with increasing wind 

speeds while the errors for the proposed model do not vary with the wind speeds.  

Figure 4.4 shows the RMSE against the 6-hour average total receiving solar radiation for Transformer 

C. There is a significant correlation between the RMSE made by the IEEE-Annex G model and the 

solar radiation for Transformer C while there is not dependency of the RMSE made by the proposed 

model on solar radiation. The RMSE of the proposed model is around 3.0°C at the solar radiation of 

55 kW while the RMSE of the IEEE-Annex G model is about 7.5°C. 

 

Figure 4.3 Statistical errors of the IEEE-Annex G and proposed models against 6-hour average 

wind speed for Transformer A.  

 

Figure 4.4 Statistical errors of the IEEE-Annex G and proposed models against the total 6-hour av-

erage receiving solar radiation for Transformer C.  
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Examples of WTI measurement and prediction made by the IEEE-Annex G and proposed models for 

Transformer A on a windy day and Transformer C on a sunny day are shown in Figure 4.5 and Figure 

4.6. The prediction made by the proposed model is typically in closer agreement with the measure-

ment compared with the prediction made by the traditional model. The RMSE of the traditional 

model is about 8°C at the wind speed of 9 m/s while the accuracy of the proposed model is higher at 

the RMSE of 3°C. 

 

a) WTI measurement and predictions and ambient temperature 

 

b) Load profile and wind speeds 

Figure 4.5 Example of WTI measurement and prediction made by the IEEE-Annex G and proposed 

models on windy days for Transformer A. 
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a) WTI measurement and predictions and ambient temperature 

 

b) Load profile and solar radiation 

Figure 4.6 Example of WTI measurement and prediction made by the IEEE-Annex G and proposed 

models on sunny days for Transformer C. 
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Figure 4.7 and Figure 4.8 show error duration curves of absolute errors between the measurement 

and predictions based on the IEEE-Annex G and proposed models over windy and sunny periods for 

Transformer A and C, respectively. It showed the prediction based on the IEEE-Annex G model is 

less accurate and always overestimated over windy periods for Transformer A. The highest error is 

about 9°C and the errors rise with increasing wind speed. The overall accuracy of the proposed model 

over windy periods is improved about 3°C for Transformer A. For sunny periods of Transformer C, 

the traditional model often underestimates the transformer temperature with the highest error of 

11.5°C while the errors made by the proposed model are reduced by 4°C. 

 

Figure 4.7 Error duration curve of errors between the measurement and prediction based on the 

IEEE-Annex G and proposed models over windy periods of Transformer A. 

 

Figure 4.8 Error duration curve of errors between the measurement and prediction based on the 

IEEE-Annex G and proposed models over summer of Transformer C. 

4.2.3 Effect of Weather Factors on Loss of Transformer Life 

Loss of transformer insulation life is a useful indicator to estimate the remaining life of the solid 

insulation. Ageing rate of insulation life depends on the transformer hot-spot temperature. According 
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to the IEC guidelines [9], the nominal ageing rate for non-thermally upgraded paper is referenced to 

the hot-spot temperature of 98°C. The hot-spot temperature could significantly decrease on windy 

days. Ignoring the effects of wind could result in overestimating the loss of transformer life. To 

illustrate the influences of the weather on the ageing rate, the proposed model is used to determine 

the hot-spot temperature over different loading conditions.  

It is assumed that Transformer C continuously carries a load of 1.0 p.u. of the ONAN capacity over 

24 hours at daily average ambient temperature of 40°C. It is worth noting that the loading condition 

is a hypothetical example for the sake of simplicity. Under typical operation transmission transform-

ers do not operate at this level for extended periods of time. The solar radiation profile is derived 

from a typical sunny day on summer periods of the historical measurement. The peak solar radiation 

is about 0.8 kW/m2 on the horizontal surface. The hot-spot temperatures estimated by the proposed 

model are 99°C without solar radiation and 104.7°C with solar radiation respectively. It shows that 

the solar radiation could increase the hot-spot temperature by 5.7°C for Transformer C.  

The hot-spot temperature and loss of life at 1.0 p.u. of the ONAN capacity and various wind speeds 

for Transformer A are also investigated. The aim is to demonstrate that a substantial prevailing wind 

could decrease the transformer temperature significantly. It is noted that the actual wind speed usu-

ally varies throughout a year and not sustained for extend periods of time. To estimate actual cumu-

lative loss of life, the historical measurement of wind speed will be required. The results are shown 

in Figure 4.9. The transformer temperature and the loss of life for Transformer A is decreased by 

approximately 5% and 30% at wind speed of 5 m/s, and 15% and 60% at wind speed of 10 m/s, 

respectively. The calculation made by the IEEE-Annex G model may be a relatively conservative 

estimation for transformers in windy locations, e.g. wind farms and could lead to a decision to replace 

the transformers earlier than necessary on the loss of life criterion. 

 

Figure 4.9 The calculated hot-spot temperature at rated and load loss of life against wind speeds 

based on the proposed model for Transformer A. 
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4.2.4 Utilisation of Weather Information from the Met Office 

The feasibility of exploiting weather data from the Met office as an alternative is investigated. Not 

all the substations have a local substation weather station but there should be the Met office’s weather 

station that is close to that area. The same analysis has been carried but the weather data derived from 

the local substation is replaced with the data derived from the Met office. As the Met office dataset 

is in hourly format, the data is interpolated into a 15-minute format so that the format of the weather 

data is the same format as the load and WTI measurements. A list of the nearest Met office weather 

station for each transformer is provided in Appendix B in Table B.2 . 

The RMSEs between the measurement and predictions based on the Met office and local substation 

datasets against 6-hour average wind speed for Transformer A are provided in Figure 4.10. The ther-

mal parameters that are derived from the datasets, 𝐷1 and 𝐷2, are provided in Table 4.6. The RMSEs 

of the thermal models for both the datasets over all periods and windy periods for Transformer A are 

provided in Table 4.7. A snapshot of the measurement and predictions on windy periods is provided 

in Figure 4.11. The error duration curve of the absolute error between the measurement and predic-

tions are provided in Figure 4.12. 

 

Figure 4.10 Statistical errors of the IEEE-Annex G and proposed models against 6-hour average 

wind speed for Transformer A. 

Table 4.6 Thermal Parameters derived from the local substation and Met office station datasets for 

Transformer A 

Dataset Forced Convection (𝑫𝟏) Natural Convection (𝑫𝟐) 

Local Substation 0.45 0.85 

Met Office 0.53 0.84 
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a) WTI measurement and predictions and ambient temperature 

 

b) Load and wind speed 

Figure 4.11 Example of WTI measurement and prediction based on the local substation and Met 

office station datasets on windy days for Transformer A. 
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Table 4.7 RMSE of Thermal Model for Transformer A 

Model 

Local Substation Met Office 

All Periods Windy Periods* All Periods Windy Periods* 

IEEE-Annex G (°C) 1.96 4.53 2.22 5.25 

Proposed Model (°C) 1.77 1.99 1.91 1.55 

Improvement (%) 9.5 56.1 14.0 70.5 

*Windy periods are defined here as being those with 6-hour average wind speed above 6 m/s 

 

Figure 4.12 Error duration curve of errors between the measurement and prediction based on the 

local substation and Met office station datasets over windy periods for Transformer A. 

It is shown that the results derived from the local substation and Met office datasets are comparable. 

The patterns of the ambient temperature and wind speed from the two datasets are relatively similar 

despite of spikes of wind speeds in the local substation dataset. Consequently, the Met office station 

dataset could be used as a substitute for the local substation dataset for Transformer A in case that 

the local substation dataset is not available. 

The analysis has also been carried out for Transformer C that the dependency on solar radiation is 

identified. The RMSEs between the measurement and predictions based on the Met office and local 

substation datasets against 6-hour average solar radiation for Transformer C are provided in Figure 

4.13. The thermal parameters that are derived from the datasets, 𝐷1 and 𝐷2, are provided in Table 

4.8. The RMSEs of the thermal models for both the datasets over all periods and sunny periods for 

Transformer C are provided in Table 4.9. A snapshot of the measurement and predictions on sunny 

periods is provided in Figure 4.14. The error duration curve of the absolute error between the meas-

urement and predictions are provided in Figure 4.15. 
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Figure 4.13 Statistical errors of the IEEE-Annex G and proposed models against 6- hour average 

solar radiation for Transformer C. 

Table 4.8 Thermal Parameters derived from the local substation and Met office station datasets for 

Transformer C 

Dataset Forced Convection (𝑫𝟏) Natural Convection (𝑫𝟐) 

Local Substation 0.69 0.62 

Met Office 0.48 0.60 

 

Table 4.9 RMSE of Thermal Model for Transformer C 

Model 

Local Substation Met Office 

All Periods Sunny Periods** All Periods Sunny Periods** 

IEEE-Annex G (°C) 2.96 5.92 2.81 5.19 

Proposed Model (°C) 2.01 2.21 1.65 1.86 

Improvement (%) 32.1 62.7 41.3 64.2 

**Sunny periods are defined here as being those with 6-hour average solar radiation above 

0.4 kW/m2 
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a) WTI measurement and predictions and ambient temperature 

 

b) Load and solar radiation 

Figure 4.14 Example of WTI measurement and prediction based on the local substation and Met 

office station datasets on sunny days for Transformer C. 
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Figure 4.15 Error duration curve of errors between the measurement and prediction based on the 

local substation and Met office station datasets over sunny periods for Transformer C. 

As the patterns of the ambient temperature and solar radiation between the local substation and Met 

office station datasets are relatively similar, the results based on the two datasets are relatively com-

parable. Therefore, the Met office station dataset could be used as a substitute for the local substation 

dataset for Transformer C in cases where the local substation dataset is not available. 

It should be note that it is not always guarantee that the Met office dataset will be a good substitute 

for a local substation weather station. In case that the distance between the nearest Met office weather 

station and the substation is significantly high, it would be preferable to install the local substation 

weather station on that substation. 

4.3 Summary 

A top-oil thermal model that considers the thermal influence of prevailing wind and solar radiation 

is proposed. The thermal model is based on heat transfer theory and the thermal-electrical analogy. 

The prevailing wind is considered as an additional forced convection and solar radiation is treated as 

an additional heat source. The average heat transfer rate can be improved in windy periods resulting 

in transformer operating at a lower temperature than expected. Transformers subjected to solar radi-

ation for extended periods can have a noticeable increase in the WTI temperature. 

The IEEE-Annex G and proposed models are used to determine the hot-spot temperatures of two 

different transformers over various conditions. The results show the better agreement between the 

operational measurement and prediction made by the proposed model over all periods especially 

windy and sunny periods while the IEEE-Annex G model appears to overestimate the hot-spot tem-

perature during windy periods and underestimate the hot-spot temperature over summer periods. The 

results show the prevailing wind has less effect when cooling fans are in operation. The similar results 

are also observed over extended periods using the Met Office weather information. 
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In general, environmental effects should be taken into account if attempting to compare the as-in-

stalled transformer performance with factory heat run measurements. 
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Data Driven Thermal Models for Power Transformers 

This chapter presents data driven alternative algorithms for calculating transformer thermal profiles: 

nonlinear autoregressive neural network with external inputs (ANN), support vector machine for 

regression (SVM) and multi linear regression (MLR). A summary of each algorithm is provided. 

Following this, a comparison of the performance between the traditional and the proposed algorithms 

is undertaken. Influences of weather factors, wind speed, wind direction and solar radiation, on the 

transformer temperature are also investigated. Abilities of the alternative thermal models to predict 

thermal profiles in different situations such as thermally stressful events or active cooling events are 

evaluated. The sensitivity of model performance to inputs is also investigated and discussed. 

5.1 Introduction 

As historical thermal, load and weather measurements for power transformers are increasingly avail-

able, it is of interest whether they can be leveraged to develop transformer thermal models using data 

driven modelling techniques. Data driven modelling allows the development transformer thermal 

models without considering physical principles. Thermal models could be developed using only the 

measured data.  

As data driven modelling considers a transformer as a black box, there is no need to derive a differ-

ential equation. Weather factors can be easily added to a data driven model. 

The data driven algorithms that are proposed in this thesis are as follows: nonlinear autoregressive 

neural network with external inputs (ANN), support vector machine for regression (SVM) and multi 

linear regression (MLR). These algorithms have been widely used in many applications and shown 

promising results [85, 86, 87].   
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5.2 Time Series Forecasting 

This section provides a summary of the concepts behind each algorithm considered here: a nonlinear 

autoregressive neural network with external input (ANN), a support vector machine for regression 

(SVM) and a multiple linear regression (MLR) model.  

5.2.1 Artificial Neural Networks (ANN) 

The first algorithm investigated is a nonlinear autoregressive neural network with external input, 

referred to as ANN hereafter. Neural networks operate as a series of simple elements called neurons 

[88]. These neurons accept inputs and, using a defined transfer function, provide a certain output. 

Neurons are connected to each other, with most neurons passing their output data to become the input 

data of other neurons of the next layer. There are three main layers: an input layer, hidden layers and 

an output layer [88]. The input layer is a layer containing input features. The hidden layers contain a 

series of neurons, which could be a single layer or multiple layers. The output layer then sums up all 

the final information from the last hidden layers. Inputs are weighted regarding their contribution to 

the output data of each neuron. A bias is also associated with each neuron and the weighted inputs 

combined with the bias are then used to calculate the neuron output using its transfer function. A set 

of training data is used by the neural network to learn, adjusting the weightings between neurons, 

and their biases, such that when the training input data is inputted the output from the network is 

close to the training output data [89].  Figure 5.1 shows a basic feed-forward neural network archi-

tecture [90]. 

 

Figure 5.1 Neural network architecture [90]. 𝑥 are inputs, 𝑤 are weights, 𝑏 are biases, 𝑎 are the out-

put from the activation function and 𝑦̃ are predicted outputs. 

The neural network used in this report is a nonlinear autoregressive neural network with external 

input. Autoregressive means that predicted future value of variables is based on the known values at 
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earlier times. This means that inputs into the model include values of the prediction at earlier times. 

Nonlinearity means that the relationships between inputs and output are allowed to be nonlinear.  

The following equations describe the process of a feedforward ANN. First each input is multiplied 

by its own weight and then they are added together with bias as a single input as given follows: 

𝑛𝑘+1(𝑖) =  

{
  
 

  
 
∑𝑤𝑖𝑗

𝑘+1𝑎𝑗
𝑘 + 𝑏𝑖

𝑘+1

𝑁𝑘

𝑗=1

                   if 𝑘 > 0   

∑𝑤𝑖𝑗
𝑘+1𝑥𝑗 + 𝑏𝑖

𝑘+1

𝑁𝑘

𝑗=1

                     if 𝑘 = 0 

                                    (5. 1) 

where 𝑥 is an  input vector, 𝑎 is an output of the activation function, 𝑤 is weight, 𝑏 is bias, 𝑘 is the 

index of the layer itself, 𝑖 is the index of the neurons, 𝑗 is the index of the input features to the 

activation function and 𝑁 is the total number of the input features for each layer. 

The outputs of each layer are passed to the next layer as input data until the output layer. The sum of 

squared errors (𝑆𝑆𝐸) between the prediction and measurement is defined as follows: 

𝑆𝑆𝐸 = ∑(𝑦𝑞 −  𝑦̃𝑞)
2 = ∑𝐸𝑞

2

𝑄

𝑞=1

𝑄

𝑞=1

                                                             (5. 2) 

where 𝑦𝑞 are the measured outputs,  𝑦̃𝑞 are the predicted outputs, 𝐸𝑞
2 are the squared error between 

the measured and predicted outputs, 𝑞 is the index of the points within dataset and 𝑄 is the total 

number of datapoints. 

Weights and bias are adjusted to minimise the sum of squared errors. The numbers of hidden layers 

and neurons are pre-defined parameters by a user. There is not a set of optimal values that can fit all 

problems. If the number of the hidden layers and neurons is sufficiently large, it will result in the 

network memorising individual inputs and outputs rather than learning a pattern from the data. This 

is known as overfitting [89]. The key is to determine the number of hidden layers and neurons that 

will provide the lowest error when the model is tested against the testing data. 

The network was trained in open loop form, which means that only the next time step of the output 

is predicted. A labelled schematic of the open loop network is provided in Figure 5.2. In order to 

predict multiple time steps ahead a closed loop form of the network, shown in Figure 5.3, is required. 

In a closed loop network predicted outputs are fed back into the network as inputs. 
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Figure 5.2 Labelled schematic of open loop form of the nonlinear autoregressive neural network 

used in this thesis.  The number of the neurons are increased until the increase makes 

no significant difference to the model performance. The highest number of the neu-

rons was 10 [91]. 

 

Figure 5.3 Schematic of the nonlinear autoregressive neural network in closed loop form. All com-

ponents have the same meaning as those in Figure 5.2 [91].  

The neural network was implemented using prebuilt functions in MATLAB. The weightings and 

bias are solved using Levenberg-Marquardt algorithm [92]. The Levenberg-Marquardt algorithm is 

a method for solving nonlinear least square problems so that the errors between measurement and 

prediction are minimised. An important point to note is that the initial values for weights and biases 

are randomly assigned, and as such the trained network, and the outputs from it, are not exactly 

reproducible. 

5.2.2 Support Vector Machine for Regression (SVM) 

In addition to the ANN algorithm, support vector machine for regression is also proposed as an al-

ternative dynamic thermal modeling technique. The concept of SVM is to try to create a linear func-

tion between inputs and outputs by minimizing the loss function and ignoring errors below a specified 

margin, generally referred to as the error margin (𝜀) [93]. However, most systems have a non-linear 

relationship between inputs and outputs within the original space. In order to create a linear relation-

ship between inputs and outputs, the data are mapped into a higher dimensional space using a kernel 

function. The kernel function is a technique for measuring similarity between two sets of data [94]. 
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The kernel method is selected for SVM as it has a fast computational time. The algorithm is referred 

to as “support vector machine” because some input vectors in the training dataset are used as refer-

ence, or support, vectors in the kernel function to calculate the output prediction.  A basic architecture 

of SVM regression is shown in Figure 5.4 [95]. 

The predicted output based on the SVM for regression is given as follows: 

𝑦̃ =  ∑ 𝜆𝑚𝑘(𝒙, 𝒙̃𝑚) + 𝑏

𝑆

𝑚=1

                                                                     (5. 3) 

where 𝒙̃𝑚 are the support vectors which are subsets of the input data in the training dataset, 𝑚 is the 

index of the support vectors, S is the total number of the support vectors,  𝜆𝑚 are weights for each 

support vector and 𝑘(𝒙, 𝒙̃𝑚) is a kernel function. Similarities between an input vector (𝒙) and support 

vectors 𝒙̃𝑚 are computed using a kernel function and then weighted and added with bias to form the 

predicted output. 

There are many popular kernel functions such as linear, polynomial, Gaussian and hyperbolic tangent 

functions [93]. The Gaussian function has been widely used and shown to outperform the others in 

various applications [95]. Explicitly the kernel function is: 

𝑘(𝒙, 𝒙̃𝑚) = exp(
−‖𝒙 − 𝒙̃𝑚‖

2

𝛾
)                                                             (5. 4) 

where 𝛾 is the kernel scale and ‖ ‖ is Euclidean distance. The output of the kernel function is equal 

to one if an input vector is in the same position as the support vectors or decreases toward zero if an 

input vector is far away from the support vectors. 

 

Figure 5.4 Architecture of SVM regression. The figure is adapted from [95]. 𝑥 are inputs, 𝜆 are 

weights, 𝑏 are biases, 𝑘(𝒙, 𝒙̃𝑚) is a kernel function and 𝑦̃ are predicted outputs. 



Chapter 5 

72 

The algorithm determines a set of support vectors from the training dataset, weight (𝜆(𝑚)) and bias 

(𝑏) by minimizing the following nonlinear least square problem:  

              minimise          
𝑆𝑆𝐸

2
+ 𝐶∑𝐸𝜀

𝑄

𝑞=1

(𝑦𝑞 −  𝑦̃𝑞) 

subject to 𝐸𝜀(𝑧) =  {
|𝑧| − 𝜀      𝑖𝑓 |𝑧| ≥ 𝜀 
  0               otherwise

.                                                     (5. 5) 

where 𝐶 is the penalty factor and 𝜀 is the error margin. 

The type of kernel function, kernel scale (𝛾), penalty factor and the error margin are needed to be 

specified by the user in order to optimize the accuracy of the model. These parameters are used to 

optimise the model errors mainly preventing overfitting problems. Higher value of the penalty factor 

can cause overfitting problem to the training dataset because it emphasises the model error of the 

training dataset and vice versa according to (5.5). Larger values of the kernel scale lessen the mag-

nitude of the difference between 2 sets of data. As a single set of data can represent wider areas, this 

reduces the number of support vectors required to form a model [86]. Larger values of the error 

margin allow more errors not to be considered in the loss function, and the fewer number of support 

vectors are likely to be required to form a model which could underfit data [86].  

The SVM was implemented using prebuilt functions in MATLAB. The Gaussian function is selected 

as a kernel function. The kernel scale, penalty factor and error margin are optimised for each model, 

see section 5.4 for detailed discussion. 

5.2.3 Multiple Linear Regression (MLR) 

A multiple linear regression model assumes that there are linear relationships between a dependent 

variable and functions of one or multiple independent variables. A general multiple linear regression 

model is [96]: 

𝑦̃ =  𝛽0 +∑𝛽𝑗

𝑁

𝑗=1

𝑓𝑗(𝑥𝑗) + 𝜖                                                        (5. 6) 

where 𝑓𝑗(𝑥𝑗) is a function of input feature of 𝑗th index, 𝜖 is a random noise, 𝛽𝑗 are coefficients and 

𝛽0 is a constant term that does not relate to any independent variables. The noise term should be 

random errors that have normal distributions with mean zero and constant standard deviation and 

independent correlation with the responses and predictors. The coefficients are adjusted to minimise 

the sum of square errors between the observation and prediction. 
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In this analysis, the transformer WTI temperature is assumed to have linear relationships with the 

square of load, a cosine function of angle differences between radiator and wind direction and linear 

functions of the other independent variables for simplicity as follows: 

𝜃WTI = 𝛽0 + 𝛽1𝐾
2 + 𝛽2𝜃WTI,P + 𝛽3𝜃A + 𝛽4𝑢cos(∅R − ∅W) + 𝛽5𝑞dir              (5. 7) 

where 𝜃WTI is the WTI temperature at the next time step [°C], 𝜃WTI,P is the WTI temperature at the 

present time step [°C], 𝐾 is the load factor at the present time step [p.u.], 𝜃A is the ambient tempera-

ture at the present time step [°C], 𝑢 is the wind speed at the present time step [m/s], ∅Ris direction 

of the radiator [°], ∅W is wind direction [°] and 𝑞dir is the solar radiation on a horizontal surface at 

the present time step [kW/m2]. 

5.3 Operational Measurements 

5.3.1 Sources of Weather information 

There are 2 different sources of weather information: local substation weather stations and the Met 

office weather stations [73]. The weather datasets that are derived from the local substation weather 

station and the Met office are referred to as Local substation dataset and Met Office station dataset 

hereafter, respectively. The sampling intervals of the Local substation and the Met Office station 

datasets are every 15 minutes and 1 hour, respectively. The amount of Local substation dataset is 

limited by the commencement date of the local substation weather station, which is since mid-2019 

and the load and WTI measurements provided by NGET which are available until mid-2020. The 

amount of the Met Office station dataset is restricted by the availability of the load and WTI meas-

urements which are usually only stored by NGET for the last 7 years. There are 3 transformers in the 

local substation weather station, i.e. Transformer A, B and C which are investigated in Chapter 4. 

The Met Office station is comprised of the data of Transformer A, B and C and eight additional 

transformers. The aim of the Met Office station dataset is to investigate whether this approach can 

be generally applied to other transformers. Overall transformer specifications are provided in Ap-

pendix B in Table B.1. 

5.3.2 Statistical Quantities of Inputs and Output 

The data are comprised of seven measurements: load, tap position if it is available, WTI measure-

ment, ambient temperature, wind speed, wind direction and solar radiation. All of them are used as 

inputs including the WTI measurement at the present time step. The WTI measurement at the next 

time step is an output. Examples of measurement for Local substation and Met Office station datasets 
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are shown in Figure 5.5 and Figure 5.6, respectively. The means and standard deviations of the meas-

urements for each transformer are provided in Table 5.1 for Local substation dataset and Table 5.2 

for Met Office station dataset.  

 

(a) Load, WTI measurement and ambient temperature 

 

(b) Wind speed 

 

(c) Wind direction (0° = North, 90° = East, 180° = South and 270° = West) 
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(d) Solar radiation 

Figure 5.5 Example of Load, WTI measurement, wind speed, wind direction and solar radiation 

data for the local substation weather station. 

 

(a) Load, WTI measurement and ambient temperature 

 

(b) Wind speed 
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(c) Wind direction (0° = North, 90° = East, 180° = South and 270° = West) 

 

(d) Solar radiation 

Figure 5.6 Example of Load, WTI measurement, wind speed, wind direction and solar radiation 

data for the Met office. 

 

Table 5.1 Statistical quantities of measurements for Local substation dataset. 

Transformer 
WTI 

(°C) 

Load 

(MVA) 
Tap 

Ambient 

(°C) 

Wind 
Speed 

(m/s) 

Wind* 

Direction 

(°) 

Solar 

(W/m2) 

A 45.5±5.3 66±15 9±1 11.1±5.1 2.8±1.5 192±89 190±190 

B 32.7±6.6 70.5±17.1 10±1 12±5.6 2.8±1.5 192±90 200±200 

C 31.5±3.6 46.2±14.5 11±1 8.7±4.5 2.3±1.3 192±79 170±170 

Mean±Standard deviation. 

*Wind direction (0° = North, 90° = East, 180° = South and 270° = West) 
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Table 5.2 Statistical quantities of measurements for Met Office station dataset. 

Transformer  
WTI 

(°C) 

Load 

(MVA) 
Tap 

Ambient 

(°C) 

Wind 
Speed 

(m/s) 

Wind*  

Direction 

(°) 

Solar 

(W/m2) 

A 42.3±5.2 53.2±14.3 10±1 11.4±5.7 2.3±1.3 197±91 220±220 

B 33.8±7.2 71±21.7 10±1 12.3±5.8 2.3±1.2 196±93 250±240 

C 36.3±5.7 56.3±24.3 10±1 10.2±6 4.1±2.3 199±96 220±220 

D 53.3±6.7 83.4±19.9 13±1 11.5±5.7 2.3±1.3 199±90 230±230 

E 46.5±7.8 94.2±24.2 N/A 10±5.8 4.2±2.3 201±94 220±220 

F 41.5±5.7 91.5±24 N/A 11±5.9 4.9±2.4 185±94 240±230 

G 41.7±8.4 243±100 N/A 12±5.8 2.3±1.3 197±92 240±240 

H 44±8.4 266±98 N/A 11.9±5.7 2.3±1.3 200±90 230±230 

I 41.3±8.5 282±94 N/A 11.5±5.7 2.4±1.3 195±91 230±220 

J 39±8.6 253±100 N/A 12.3±5.9 2.2±1.2 199±91 240±240 

K 46.9±9.8 292±101 N/A 9.8±5.5 4.4±2.5 208±86 210±210 

Mean±Standard deviation. 

Wind direction* (0° = North, 90° = East, 180° = South and 270° = West) 

5.3.3 Training and Testing Datasets 

The provided datasets for each transformer are equally divided into two datasets, training (50% of 

the total data) and testing (50% of the total data). It should be noted that the cross-validation dataset 

is subset of the training dataset. The training dataset is used to develop the thermal model and the 

testing dataset is treated as unseen data and used to evaluate the accuracy of the model. Table 5.3  

and Table 5.4 provide periods of the measurement data used as training and testing datasets for Local 

substation and Met office datasets.  

Table 5.3 Periods of Training and Testing Datasets for Local substation dataset. 

Transformer  Training Dataset Testing Dataset 

A 01/07/2019 – 17/12/2019 18/12/2019 – 30/04/2020 

B 01/07/2019 – 29/11/2019 30/11/2019 – 30/04/2020 

C 01/09/2019 – 17/12/2019 22/01/2020 – 30/04/2020 

 

 



Chapter 5 

78 

Table 5.4 Periods of Training and Testing Datasets for Met Office station dataset. 

Transformer  Training Dataset Testing Dataset 

A 01/2013 – 10/2015 10/2015 – 06/2018 

B 01/2015 – 10/2016 10/2016 – 06/2018 

C 01/2013 – 10/2015 10/2015 – 06/2018 

D 01/2013 – 10/2015 10/2015 – 06/2018 

E 01/2013 – 10/2015 10/2015 – 01/2018 

F 01/2013 – 04/2016 04/2016 – 06/2019 

G 01/2013 – 04/2016 04/2016 – 06/2019 

H 01/2013 – 04/2016 04/2016 – 06/2019 

I 01/2013 – 10/2014 10/2014 – 06/2016 

J 01/2013 – 04/2016 04/2016 – 06/2019 

K 01/2013 – 04/2016 04/2016 – 06/2019 

 

5.3.4 Data Preprocessing  

Although the presence of load dependency of the WTI measurement has been checked by the algo-

rithm proposed in Section 3.3, many of datasets still contained spurious data points including periods 

of constant load, periods of constant WTI temperatures and in some cases small intervals of missing 

data. This erroneous data, despite comprising a relatively small subset of the full dataset, was found 

to significantly reduce the performance of learning algorithms as it contaminated the training data. 

To resolve this the following post processing was performed to remove the following data from all 

sets: 

A. Periods of where WTI temperatures were unfeasibly high relative to the load (greater than 

100°C) 

B. Periods of where WTI temperatures registered 0°C. 

C. Periods of where the load were the load reached zero. In these cases the load was typically 

recording sensible values and then returning zero for a single data point. 

D. Periods of where the load changed by more than 200 MVA in an hour. 

E. Periods of where the WTI temperature changed by more than 50°C in an hour. 

In order to generate a continuous dataset for training the remaining periods of reliable data were 

spliced together assuming there was an hour gap, which is time interval of the data, between them. 

This does introduce spurious discontinuities in load and WTI data at these points. However, given 

the relatively short time constant of the transformer in comparison with the time periods of the whole 

dataset, and the fact that such points are discounted from “Thermally Stressful” events, which will 

be discussed later, it is unlikely to impact the findings of this work. 
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Furthermore, it is necessary to normalise the input data before using them to develop the thermal 

model. Scaling the data in the range between 0 and 1 avoid one or more independent variables which 

have larger numeric values dominating other variables with smaller values. In this work, the data are 

scaled as follows: 

𝑥𝑞𝑗 =
𝑥𝑞𝑗 −min(𝒙𝒋)

max(𝒙𝒋) − min(𝒙𝒋)
                                                                  (5. 8) 

where 𝑥𝑞𝑗 is the 𝑞th predictor of 𝑗th input feature, 𝑥𝑞𝑗 is a normalised value of 𝑥𝑞𝑗 and 𝒙𝒋 is all of 𝑗th 

input feature. The data normalisation was applied to the input data into the alternatives introduced in 

this chapter. 

5.4 Hyperparameter Optimisation 

Hyperparameter optimisation is a method for tuning learning parameters. Training datasets, which 

in this work are half of the total dataset unless stated otherwise, are divided equally into five sections 

in this work. A model is trained with four sections which means 80% of the training dataset is used 

for training, or equivalently 40% of the total dataset. The remaining section of the training dataset is 

referred to as a cross-validation dataset, which is used to test the model for the purpose of the hy-

perparameter optimization. Each section is swapped for testing in turn. This means that there will be 

five trained models in total that use the same set of the hyperparameters. A set of optimized learning 

parameters that provides a minimum of the sum square errors against the cross-validation data for 

each trained model, is finally selected for the trained model. 

5.4.1 Number of Hidden layers and Neurons 

The number of the neurons are increased until no significant difference to the model performance is 

observed based on the cross-validation technique. The number of the neurons for each model varies 

with transformers, see Table 5.8 and Table 5.9. The highest number of the neurons was ten. This 

value was found to avoid overfitting and allow reasonably fast training of the network. 

Furthermore, it is of interest whether the model with multi hidden layers could improve the perfor-

mance. The models are trained with 3 different configurations as follows: 1) models based on single 

hidden layer, 2) models based on double hidden layers and 3) models based on triple hidden layers. 

For each hidden layer, the number of the neurons are between 1 and 10 and that means there are 10 

models, 100 models and 1000 models for single, double and triple hidden layer configurations, re-

spectively. The models with the lowest errors among the same configuration are selected. The per-

formance of the selected models for each configuration is provided in Table 5.5 and Table 5.6 for 

Local substation and Met Office station datasets, respectively. It shows that by increasing the number 

of the hidden layers does not significantly improve the performance. Therefore, the model with a 
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single hidden layer was found to work effectively and have relatively low computational time for 

training the network about five minutes instead of several hours for multiple hidden layers.  

 

Table 5.5 RMSE predicted by the models with single, double and triple hidden layer configurations 

for Local substation dataset. 

Transformer ID 

RMSE (°C) 

1 Hidden 

Layer 

2 Hidden 

Layers 

3 Hidden 

Layers 

A 1.2 1.4 1.3 

B 1.2 1.3 1.1 

C 1.4 1.4 1.6 

All Transformers 1.3 1.4 1.3 

 

Table 5.6 RMSE predicted by the models with single, double and triple hidden layer configurations 

using Met Office station dataset. 

Transformer ID 

RMSE (°C) 

1 Hidden 

Layer 

2 Hidden 

Layers 

3 Hidden 

Layers 

A 1.7 1.6 1.6 

B 1.2 1.2 1.3 

C 1.8 1.7 1.7 

D 2.2 2.2 2.2 

E 1.6 1.6 1.6 

F 1.4 1.5 1.3 

G 1.2 1.4 1.2 

H 1.4 1.4 1.3 

I 1.2 1.2 1.1 

J 1.2 1.4 1.2 

K 1.4 1.4 1.4 

All Transformers 1.5 1.6 1.5 
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5.4.2 Hyperparameters of Support Vector Machine 

There are three hyperparameters tuned to optimise the model accuracy for the SVM algorithm, i.e. 

the error margin (𝜀), kernel scale (𝛾) and the penalty factor (𝐶). The restrictions of the hyperparam-

eters are provided in Table 5.7. As the number of combinations of the hyperparameter is enormous, 

it requires relatively high computational resources to optimise the hyperparameter using the grid 

search, which sweeps each parameter from the lower to the upper limits. Instead, in this work, the 

Bayesian optimisation method is used to solve the hyperparameter optimisation [97]. The Bayesian 

method is usually used to determine global optimisation for black-box functions and functions that 

require high computational time to be evaluated [98]. It is based on two processes; a Gaussian process 

model which is a probabilistic regression model and an acquisition function which is a probability 

function used for selecting a next optimal combination [99]. Initially, several sets of the hyperparam-

eters are evaluated to model the cost function using the Gaussian process model. Following this, the 

next candidate set of the hyperparameters is selected according to the acquisition function. The hy-

perparameters of the SVM algorithm are provided in Table 5.8 and Table 5.9. 

 

Table 5.7 Restrictions of Hyperparameters  

Algorithm Parameter Lower Upper 

SVM 

Error margin (𝜀) 10-3𝜎(𝑦𝑞) 103𝜎(𝑦𝑞) 

Kernel scale (𝛾) 10-3 103 

Penalty factor (𝐶) 10-3 103 

                   𝜎(𝑦𝑞) = Standard deviation of 𝑦𝑞 

 

Table 5.8 Optimised Hyperparameters for Local Substation Dataset. 

Transformer 

ANN SVM 

Neurons 
Error margin 

 (𝑪) 

Kernel scale 

(𝜸) 

Penalty factor 

(𝜺) 

A 10 433.9 1.719 0.261 

B 9 185.2 0.333 0.164 

C 5 6.1 0.996 0.183 
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Table 5.9 Optimised Hyperparameters for Met Office Station Dataset. 

Transformer 

ANN SVM 

Neurons 
Error margin 

 (𝑪) 

Kernel scale 

(𝜸) 

Penalty factor 

(𝜺) 

A 9 207.5 17.18 0.8008 

B 8 339.6 5.722 0.1264 

C 10 16.9 1.599 0.0087 

D 7 717.9 84.415 0.1182 

E 8 26.5 0.731 0.1218 

F 10 966.4 185.203 0.0159 

G 7 22.2 1.271 0.008 

H 9 891.3 1.91 0.0167 

I 7 138.5 1.063 0.13 

J 10 158 0.367 0.0083 

K 7 324.6 4.673 0.0237 

 

The variation in the hyperparameters of the SVM model is large even within the same transformer 

family. However, the accuracy is not compromised by the variation. It is unlikely that there is a 

universal combination of the hyperparameters that is suitable for any model, and the hyperparameters 

should therefore be optimized for each model. As a check, the optimized hyperparameters were 

swapped among the models to investigate how well they can be used for the other transformers. It 

appears that most of optimal combinations can be used for the other transformer and still yield rea-

sonable accuracy, but a few combinations result in inaccurate models when transformers of a differ-

ent family were considered. Furthermore, the trained models of the ANN and SVM algorithms for 

Transformer G, H and I, which are in the same family, are used to predict the temperature for the 

other transformer in the same family, see Chapter 6 for a further investigation. The performance is 

mostly similar. As the optimization algorithm usually provide local optimums, it is likely there might 

be different optimal combinations that provide similar performance.  

5.5 Accuracy of WTI Temperature Prediction of Algorithms 

The thermal models are developed using 5 different algorithms: IEEE-Annex G model, the trans-

former thermal model proposed in Chapter 4 referred to as TNM hereafter, ANN, SVM and MLR. 

The models are evaluated using the testing datasets. Examples of the measurement and prediction 

made by the algorithms and the errors between them for Transformer A are shown in Figure 5.7. As 

the measured WTI data are discretely recorded while the values predicted are continuous, there are 
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sometimes rapid and small rises in the errors between the measurement and prediction when the 

measurement changes from a discrete value to another. The root mean squared errors (RMSE) and 

error duration curves of absolute errors between the measurement and prediction made by the algo-

rithms over the testing datasets for the 3 transformers are used to assess the model performance, see 

Table 5.10 and Figure 5.8. As the TNM algorithm is developed for transformers that operate in an 

ONAN state only, it is not applicable for Transformer B which is in an OFAF state. It appears that 

the ANN and MLR algorithms clearly outperform both IEEE-Annex G model and TNM, while the 

SVM algorithm surpass IEEE-Annex G, but it is not as accurate as the TNM algorithm. 

 

(a) Measurement and prediction 

 

(b) Errors between the measurement and prediction 

Figure 5.7 Examples of the measurement and prediction made by the algorithms for Transformer 

A: (a) measurement and prediction and (b) errors between the measurement and 

prediction. 
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Table 5.10 RMSEs between Measurements and Predictions made by the algorithms for each Trans-

former in Local substation dataset. 

Transformer ID 

RMSE (°C) 

IEEE 

Annex G 
TNM ANN SVM MLR 

A 2.0 1.8 1.2 2.2 1.2 

B 2.1 N/A 1.2 1.9 1.4 

C 3.0 2.0 1.4 1.7 1.6 

All Transformers 2.3 1.9 1.3 2.0 1.4 

 

Figure 5.8 Error duration curves of errors produced by the algorithms for Local substation dataset 

of the three transformers. 

Furthermore, the thermal models for the transformers in Met Office station dataset are developed 

using the same alternative algorithms to investigate whether they can be generally reproduced to 

other transformers. As there is not a local substation weather station in the substation of the trans-

formers in Met Office station dataset, the weather information is derived from the nearest Met Office 

weather station. The number of transformers analysed in the Met Office station dataset are 11 trans-

formers while there are only three transformers that have the weather data from the local substation. 

This increases confidence that they can be applied to any transformers if the algorithms work effec-

tively and provide promising results for both Local substation and Met Office datasets.  

Examples of the measurement and prediction made by the algorithms and the errors between them 

for Met Office station dataset are shown in Figure 5.9. It can be seen in Figure 5.9b that the errors 

made by the algorithms oscillated, especially in IEEE-Annex G and TNM. This implies that there is 

still an issue of the algorithms to capture complexity of changes in the thermal oil time constant due 

to temperature. According to the RMSEs for all the transformers, the ANN algorithm outperforms 

all other algorithms by a small margin. The overall RMSEs for the ANN, SVM and MLR algorithms 
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are 1.5°C, 1.6°C and 1.6°C, respectively, see Table 5.11. The error duration curves of absolute errors 

produced by the algorithms across all the transformers are shown in Figure 5.10. 

 

(a) Measurement and prediction 

 

(b) Errors between measurement and prediction 

Figure 5.9 Examples of the measurement and prediction made by the algorithms: (a) measurement 

and prediction and (b) errors between the measurement and prediction. 

 

Figure 5.10 Error duration curves across all the transformers of Met Office station dataset for each 

algorithm. 
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Table 5.11 RMSEs between Measurements and Predictions made by the algorithms for each Trans-

former in Met Office station dataset. 

Transformer ID 

RMSE (°C) 

IEEE 

Annex G 
TNM ANN SVM MLR 

A 2.2 2.2 1.5 1.6 1.6 

B 2.1 N/A 1.2 1.2 1.4 

C 2.8 2.2 1.7 1.9 1.8 

D 3.5 3.4 2.2 2.5 2.5 

E 2.3 1.7 1.6 1.6 1.7 

F 2.4 1.8 1.4 1.4 1.4 

G 2.2 2.2 1.2 1.3 1.4 

H 2.5 2.5 1.3 1.4 1.4 

I 2.2 1.7 1.2 1.2 1.3 

J 2.1 1.5 1.2 1.2 1.4 

K 2.8 2.8 1.4 1.5 1.5 

All Transformers 2.5 2.2 1.5 1.6 1.6 

 

5.5.1 Calculating Thermal profile for “Thermally Stressful” Events 

Abilities to calculate the transformer temperature at maximum capacity or even beyond are necessary 

[8, 9]. The degradation rate of solid insulation increases exponentially with temperature [100]. It is 

necessary to investigate the accuracy of the thermal model for predicting the transformer temperature 

during overloading conditions. This is because a miscalculation at the higher loading conditions 

could cause more severe consequences than at the lower loading conditions due to the exponential 

increase in the insulation deterioration rate. 

As transmission transformers do not usually operate at maximum capacity for extended periods of 

time, it is unlikely to have the data to evaluate the model accuracy. Therefore, events that transform-

ers are subjected to sufficiently high loading conditions are used instead and referred to as “Ther-

mally Stressful” events or TS events. TS events are 100 events in the testing datasets that the 10-hour 

averaged load carried by the transformers are closest to their maximum capacity. Each event consists 

of 10 hours of data points and is at least one day apart from each other. An example of TS event is 

shown in Figure 5.11. 
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(a) WTI Measurement 

 

(b) Load profile 

Figure 5.11 An example of 100 TS events from the WTI dataset of Transformer E. During this pe-

riod, the transformer was operating in an ONAN model.  

As the amount of the data in Local substation dataset is limited, the analysis is carried out for Met 

Office station dataset only. 100 TS events of 11 transformers are used to evaluate ability of the algo-

rithms to estimate WTI profile while the transformers were being subjected to the thermal stress. The 

thermal models used to determine WTI profiles of TS events are the same as the models in 5.4. It 

should be noted that the TS events have never been seen by the trained models before, as they are all 

located within the testing dataset. For the ANN, SVM and MLR algorithms the initial point is simply 

taken from the data. The IEEE-Annex G and TNM algorithms require an appropriate initial condi-

tion. To achieve this the load for the first data point was altered such that a steady state solution 

outputted WTI temperature which matched the measured values. An example of the predictions made 

by the different algorithms is provided in Figure 5.12. A statistical analysis of the errors, discounting 

the initial data point which is set equal to the measured data and the averaged load of 100 TS events, 

are provided in Table 5.12. The RMSEs between the measurement and prediction made by the ANN, 
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SVM and MLR algorithms for TS events across all the transformers are 1.3°C, 1.4°C and 1.5°C, 

respectively. 

 

 

(a) Measurement and prediction 

 

(b) Errors between measurement and prediction 

Figure 5.12 Example of the predictions of different algorithms for a single TS event: (a) measure-

ment and prediction and (b) errors between measurement and prediction. The rating 

event is the same as that shown in Figure 5.11. 
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Table 5.12 RMSEs between Measurements and Predictions on TS Events Based on the algorithms 

for each Transformer. 

Transformer ID 

Average 

load of TS 

events 

RMSE (°C) 

IEEE-

Annex 

G 

TNM ANN SVM MLR 

A 0.487 2.3 2.3 1.2 1.2 1.2 

B* 0.599 1.9 N/A 1.1 1.1 1.3 

C 0.480 2.2 1.9 1.6 1.5 1.5 

D 0.524 2.2 2.0 1.4 1.8 1.8 

E 0.602 2.3 2.3 1.6 1.7 2 

F 0.493 2 1.9 1.2 1.3 1.2 

G 0.435 2.9 2.9 1.2 1.2 1.4 

H 0.459 2.8 2.8 1.4 1.4 1.5 

I 0.419 2.4 2.0 1.2 1.2 1.2 

J 0.443 3.4 3.1 1.3 1.5 1.5 

K 0.461 2.9 2.7 1.3 1.3 1.5 

All Transformers 0.491 2.5 2.4 1.3 1.4 1.5 

* Transformer B is the only transformer that cooling systems are in operation. 

5.5.2 Estimating Hot-Spot Temperature Rise above Ambient Temperature at Rated Load 

The aim is to replicate the conditions of the heat run test by using the algorithms to determine the 

hot-spot temperature rise above ambient temperature at rated load. As WTI datasets of the provided 

transformers are recorded while the transformers are in an ONAN mode, the rated hot-spot temper-

ature rise is calculated for the ONAN mode only excepting Transformer B that is in an OFAF state 

continuously. The ambient temperature is set equal to 20°C. The weather factors are set equal to zero 

value because the heat run test is usually undertaken indoors. The calculation assumes a nominal tap 

position. The calculated hot-spot temperature at rated load based on the algorithms are provided in 

Table 5.13.  

Table 5.14 provides the percentages of the differences between the values determined from the heat 

run test and the alternative algorithms. The TNM algorithm outperforms the other algorithms for 

calculating transformer rating following with the MLR and ANN algorithms. The averaged differ-

ence between the values derived from the heat run test and the TNM algorithm for all the transformers 

is 4.3%.  
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Table 5.13 Hot-Spot Temperature at Rated Load Calculated by the Algorithms. Assuming ambient 

temperature of 20°C. 

Transformer ID 
Heat run 

test 

Rated Hot-spot temperature (°C) 

IEEE-

Annex 

G 

TNM ANN SVM MLR 

A 71.4 65.3 67.8 61.3 62.5 63.2 

B 78.3 95.8 N/A 75.1 87 90.5 

C 66.1 65.5 65.1 63.5 64.5 63.4 

D 71.4 65.2 72 70.7 70.2 70.3 

E 66.9 68.5 64.9 61.9 61.9 64.0 

F 58.3 63.8 56.3 55.4 56 57.4 

G 79.0 80.8 85.3 79.5 75 80.7 

H 78.6 80.4 84.8 68 77.6 80.5 

I 78.6 78.4 77.9 74.5 74.9 77.7 

J 78.9 78.5 79.1 75.1 64.6 78.6 

K 78.6 82 88 72.1 81.0 82.8 

 

Table 5.14 Percentages of Difference between the Values Derived from the heat run test and alter-

native Algorithms. 

Algorithm Difference (%) 

IEEE-Annex G 5.6 

TNM 4.3 

ANN 5.4 

SVM 6.5 

MLR 4.5 

 

5.5.3 Abilities to Predict Thermal Profiles during Cooling Events 

Power transformers are usually equipped with cooling pumps and fans to decrease the transformer 

temperature during heavily loaded conditions. While pumps and fans are working, the heat transfer 

is significantly enhanced because the air and transformer oil are forced to flow more quickly than 

when transformers cool naturally.  

Thermal models developed using the operational measurement during natural cooling, and forced 

cooling due to prevailing wind, cannot be applied to predict the temperature during forced cooling 

by pumps and fans. It is necessary to develop another separate thermal model for predicting thermal 

profile during forced cooling periods. As operation status of pumps and fans are not usually recorded, 
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an algorithm to identify the cooling events will be developed first and discussed in the next section. 

Following that, the same algorithms are used to develop the thermal models for predicting the trans-

former temperature during cooling events. 

5.5.3.1  Identifying Cooling Events 

As cooling status of pumps and fans is not provided, periods where pumps and fans are in operation 

are identified by observing historical WTI time series along with load profiles. A cooling event is 

detected using a threshold method. The threshold values for activating and deactivating cooling sys-

tem are usually set about 75°C and 50°C, respectively. However, due to sampling intervals or the 

other winding temperature triggering cooling system on rather than the provided WTI dataset in the 

same transformer, the turn-on thresholds can vary between 70°C and 75°C, whereas the turn-off 

threshold are between 45°C and 50°C. Using this information, an algorithm searches for a period 

where the WTI temperature is nearly 70°C and WTI temperatures for the next 24 hours are then 

captured. If the cooling system is active the WTI temperature should have decreased to the turn-off 

threshold value within 24 hours since the load pattern is diurnal. If WTI temperature have reached 

the lower threshold within the specified period, it is assumed that there is a cooling event.  

Measurements recorded at hourly intervals cannot completely capture information during cooling 

events as the resolution is insufficient. Therefore, WTI and load measurements with 15-minute in-

terval are used instead. An example of a cooling event from the WTI dataset of Transformer D with 

15-minute interval is shown in Figure 5.13. The number of cooling events detected for Transformer 

D of the WTI dataset are provided in Table 5.15.   

Table 5.15 Cooling Events. 

Transformer ID Data Period Number of Cooling Events 

D 01/2017 – 6/2019 50 

 

5.5.3.2 Estimating WTI Profiles of Cooling Events from Historical Data 

The same algorithms are used to develop thermal models to estimate the temperature response of the 

transformers during the cooling events, but the dataset is different. Only the data that are in periods 

of cooling events detected in the previous section are considered. Half of the number of cooling 

events are used to train the thermal models and the other half are used to test the models. As the 

number of cooling events occurring over the provided data is limited, only limited analysis can be 

performed. An example of the predictions made by the different algorithms is provided in Figure 

5.14. A statistical analysis of the errors, discounting the initial data point which is set equal to the 

measured data and the number of cooling events for testing dataset, are provided in Table 5.16. Figure 
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5.15 shows the average absolute errors between the measurement and prediction made by the algo-

rithms for each cooling event. There is not a sign of increase in the errors over the considered periods. 

This implies that the cooling performance has not changed during the considered periods. Although 

the ANN and SVM algorithms completely failed to estimate the WTI temperature during a cooling 

event occurred on 25th April 2019, the prediction made by the MLR algorithm is relatively close to 

the measurement as shown in Figure 5.15. This should be considered as the model failure rather than 

a cooling issue. This is unsurprising when there are such a limited number of datasets for training. 

More cooling events that occur in various load and weather conditions are required to train a more 

robust model. 

 

(a) WTI Measurement 

 

(b) Load Profile 

Figure 5.13 An Example of Cooling Events from WTI dataset of Transformer D. 
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(a) Measurement and prediction 

 

(b) Error between measurement and prediction 

Figure 5.14 An Example of the measurement and predictions made by the algorithms for a cooling 

event: (a) Measurement and prediction and (b) errors between measurement and pre-

diction. The cooling event is the same as that shown in Figure 5.13. 

 

Table 5.16 RMSEs between Measurements and Predictions on Cooling Events Based on the algo-

rithms for Transformer D. 

Transformer ID 
Cooling 

Events 

RMSE (°C) 

ANN SVM MLR 

D 25 3 2.3 1.7 
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Figure 5.15 Average absolute errors of each cooling event from predictions made by the algorithms 

for Transformer D. 

5.6 Robustness and Sensitivity 

Robustness and sensitivity of the thermal models are also investigated. As the data quality is key to 

the algorithms’ performance, sensitivity in the model performance to the number of input features 

(regression order), the amount of the data used to train a model and weather factors are analysed. 

Including all the data and input features as much as possible will not always be the most effective 

way as it would require longer computational time and more computational resources. The following 

analyses will provide useful results regarding to what extent the model performance is sensitive to 

the quantities of the data and the input features.  

5.6.1 Regression orders 

As the future WTI temperature is also dependent on the past conditions, it is of interest whether 

extending the inclusion of earlier data points, for example two or three time steps back could improve 

the performance. For the Local substation dataset which is recorded with 15-minute interval, it seems 

that including the data for the last 45 minutes could slightly reduce the errors from 1.3°C to 1.1°C, 

see Figure 5.16, however by including the data further than the last 45 minutes does not appear to 

improve the performance significantly. For the Met Office station dataset which is recorded with 1-

hour interval, the performance does not improve any further by including more earlier data points 

and actually becomes less accurate, see Figure 5.17. This could be because of overfitting issues where 

the model tries to correlate the output data to the input data that do not have relationship with the 

output data. 
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Figure 5.16 RMSE versus regression orders using Local substation dataset. Each regression order is 

equivalent to 15 minutes backward. 

 

Figure 5.17 RMSE versus regression orders using Met Office station dataset. Each regression order 

is equivalent to one hour backward. 

5.6.2 Weather Factors 

An investigation on a combination of the weather factors which have the most significant impacts on 

the accuracy of the prediction is provided in this section. As the overall accuracy of the prediction 

made by the ANN algorithm has the lowest RMSE, it is used to build thermal models in this section. 

Basically, the models are trained with different sets of input features: 1) load, ambient temperature 

and previous WTI temperature, referred to as standard inputs hereafter, 2) standard inputs plus wind 

speed and direction, 3) standard inputs plus solar radiation and 4) standard inputs plus wind speed, 

wind direction and solar radiation. The RMSE between the measurement and prediction made by the 

different models for the Local substation and Met Office station datasets are provided in Table 5.17 

and Table 5.18, respectively. It can be seen that the wind factors improve the accuracy significantly 

while the solar radiation does improve the accuracy for Transformer C only. This implies that the 

solar radiation received by Transformer C is significant compared to its total losses while it implies 
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the solar radiation received by the remaining transformers is an only small fraction compared to their 

total losses. Considering the weather factors in the model for Transformer B, which is continuously 

in an OFAF state and transformer tank is indoor, does not improve the performance but it seems to 

make it less accurate. This is likely to be because the effect of wind cooling is small compared with 

forced air from fans and solar radiation is only a small proportion of the total heating for this trans-

former which is more highly loaded.  

For predicting thermal profile during cooling events for Transformer D, the evidence shows that 

without considering wind and solar radiation as inputs reduces the errors between the measurement 

and prediction see Table 5.19. It is consistent with the results of Transformer B. 

Table 5.17 RMSEs between Measurements and Predictions Using Different Feature Inputs Based 

on the ANN algorithms for Local substation dataset. 

Transformer ID 

RMSE (°C) 

Load, Ambient 

& WTI 

Load, Ambient, 

WTI & Wind 

Load, Ambient, 

WTI & Solar 

Load, Ambient, 

WTI, Wind & 

Solar 

A 1.5 1.3 1.7 1.2 

B 1.0 1.1 1.1 1.2 

C 2.2 1.6 2.1 1.4 

All Transformers 1.6 1.3 1.6 1.3 

Table 5.18 RMSEs between Measurements and Predictions Using Different Feature Inputs Based 

on the ANN algorithms for Met Office station dataset. 

Transformer ID 

RMSE (°C) 

Load, Ambient 

& WTI 

Load, Ambient, 

WTI & Wind 

Load, Ambient, 

WTI & Solar 

Load, Ambient, 

WTI, Wind & 

Solar 

A 1.8 1.5 1.7 1.5 

B 1.2 1.2 1.2 1.2 

C 2.6 1.7 2.3 1.7 

D 3.1 2.3 3.1 2.2 

E 2 1.6 2 1.6 

F 1.7 1.4 1.7 1.4 

G 1.7 1.2 1.5 1.2 

H 1.6 1.3 1.6 1.3 

I 1.7 1.2 1.7 1.2 

J 1.4 1.2 1.4 1.2 

K 2.4 1.4 2.4 1.4 

All Transformers 2.0 1.5 2.0 1.5 
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Table 5.19 RMSEs between Measurements and Predictions Using Different Feature Inputs Based 

on the ANN algorithms over cooling events. 

Transformer ID 

RMSE (°C) 

Load, Ambient 

& WTI 

Load, Ambient, 

WTI & Wind 

Load, Ambient, 

WTI & Solar 

Load, Ambient, 

WTI, Wind & 

Solar 

D 1.5 3.3 2.2 3 

 

5.6.3 Training Dataset Size  

The sensitivity of the model performance against the amount of the training data is investigated. The 

number of training data points are varied as follows: 1) 2-year data points, 2) 1-year data points, 6-

month data points, 3-month data points and 1-month data points. It is found that Model 1 trained with 

2-year of data point have lowest errors between the measurement and prediction among the other 

models. However, the difference in the performance between Model 1 and Model 2 is insignificant. 

The errors increase significantly when the number of the training data is lower than 6 months. This 

should be because the training datasets with 2-year and 1-year data points allow the models to learn 

a yearly seasonal pattern which are naturally happen for weather conditions and load profile in some 

transformers, while the other models do not. Therefore, at least 1-year of data points for training a 

robust and accurate transformer thermal model are recommended. 

Table 5.20 RMSEs between Measurements and Predictions Using the Different Amount of the 

Data  Based on the ANN algorithms for Met Office station dataset. 

Transformer 

ID 

RMSE (°C) 

2-year 

Data Points 

1-year 

Data Points 

6-month 

Data Points 

3-month 

Data Points 

1-month 

Data Points 

A 1.5 1.6 1.8 1.8 2.6 

B N/A 1.1 1.3 2.4 2.4 

C 1.7 2.6 3.2 2.4 2.8 

D 2.2 2.2 2.9 3.4 4.5 

E 1.6 1.6 1.9 3 3.4 

F 1.4 1.4 1.8 2.4 1.9 

G 1.2 1.3 1.5 2.2 2.4 

H 1.4 1.4 1.7 1.8 2.2 

I N/A 1.1 1.5 2 3.9 

J 1.4 1.2 1.3 2.9 3.3 

K 1.4 2 1.6 3.2 4 

All  

Transformers 
1.5 1.7 2.0 2.6 3.2 
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5.7 Summary 

The alternative algorithms based on the data driven modelling are proposed to predict the transformer 

temperature over various loading conditions. An overview of each algorithm is provided. The ad-

vantage of the alternative algorithms over the traditional model is that physical properties, thermal 

parameters and governing equations are not required. However, limitations of the proposed algo-

rithms are that relationships between inputs and output are not explicitly understandable as the ther-

mal model is treated as a black box, and the algorithms are prone to be less accurate for predicting 

loading conditions that lie outside of the range of the training dataset. 

Following that, the performance of the algorithms to calculate WTI profiles for the unseen opera-

tional measurement are investigated. The alternative algorithms, ANN, SVM and MLR, outperform 

the IEEE-Annex G model. The RMSEs between the measurement and predictions of the alternative 

algorithms, ANN, SVM and MLR, TNM and IEEE Annex-G model over the three transformers 

based on Local substation dataset are 1.3°C, 2.0°C, 1.4°C, 1.9°C and 2.3°C, respectively.  

The accuracy of the algorithms to estimate the transformer temperature during “Thermally Stressful” 

events is discussed. The results are promising, with the ANN algorithm capable of accurately pre-

dicting the thermal response during the TS events with the RMSE of 1.3°C. In addition, the ONAN 

hot-spot temperature rise above ambient temperature at rated load is calculated based on the algo-

rithms. The results are compared with the heat run test data. The differences between the true and 

calculated values are about 5.4%, 6.5% and 4.5% for the ANN, SVM and MLR algorithms, respec-

tively. 

The performance of the algorithms to predict the transformer temperature during cooling events is 

discussed. The results are promising. Even though the number of cooling events is limited, the 

RMSEs between the WTI measurement and prediction made by the ANN, SVM and MLR algorithms 

during cooling events are 3.0°C, 2.3°C and 1.7°C. More datasets containing cooling events would 

improve the accuracy and robustness of the models. When wind and solar radiation are included in 

the ANN algorithm the performance for predicting cooling events decreases, with the RMSE increas-

ing from 1.5°C to 3°C. This suggests that the algorithm is overfitting the data which it could be 

expected when the number of the training data is limited.  

The sensitivity on the accuracy against the quantities of the data is investigated. The results show 

that including the input data only for the last 45 minutes and 1-hour is sufficient to predict the tem-

perature at the present time for Local substation dataset and Met Office station dataset, which the 

sampling frequencies are 15-minute  and 1-hour intervals, respectively. Considering the wind gener-

ally improves the accuracy of the prediction in all the units excepting Transformer B, which is in an 

OFAF state, while including the solar radiation improves the accuracy on Transformer C only. This 

is probably because the solar radiation might only be a small fraction compared to the total heat 
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losses in most transformers.  The period of the training data should be at least one year so that the 

model can be exposed to yearly load and weather cycles.   
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Thermal Condition Monitoring System 

This Chapter presents a development of thermal condition monitoring system for power transformers 

that utilises the data driven thermal models developed in the previous Chapter. Due to abilities of the 

thermal model to estimate the transformer temperature with errors of a few Celsius given load pro-

files and weather information, it is feasible to develop an algorithm to identify thermal anomalies for 

power transformers. Relative cooling performance among transformer family could also be com-

pared to each other using the thermal model. A comprehensive discussion of the proposed condition 

monitoring system is provided. The loss of insulation life of transformer, which is a useful indicator 

of the remaining life of the transformer, could be also calculated accurately due to the improved 

temperature prediction made by the data driven thermal models. The accuracy of the prediction of 

the loss of the life using the thermal model is provided. 

6.1 Loss of Life Prediction 

The end of life for power transformers is primarily due to the insulation paper no longer being able 

to withstand one of thermal, electrical or mechanical stresses. The degradation rate is usually de-

pendent on the operating temperature. According to IEEE standards [8], well-dried insulation paper 

which is continuously subjected to a hot-spot temperature of 110°C and oxygen-free should last at 

least 20 years. Life expectancy could be extended if the operational temperature is less than the ref-

erence temperature and vice versa. 

The relative ageing rate of the paper insulation that is given in the IEC standards [9] for non-thermally 

upgrade paper is then calculated using the measured and predicted transformer temperatures made 

by the ANN algorithm. Examples of comparisons of the cumulative loss of insulation life determined 

based on both the measured and predicted hot-spot temperature of Transformer A and Transformer 

K are shown in Figure 6.1 and Figure 6.4 for Local substation and Met Office station datasets, re-

spectively. The total estimated cumulative loss of the insulation life over the whole testing periods 

for Local substation and Met Office station datasets are provided in Table 6.1 and Table 6.2, respec-

tively. 
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Table 6.1 Estimated Cumulative Loss of Insulation Life Based on Measured and Predicted Temper-

atures over periods of Local substation testing dataset. 

Transformer 

Estimated Loss of Life (Hour) 

Based on Measured 

Temperature  

Based on Predicted 

Temperature 
Error (%) 

A 18.65 19.05 2.14 

B 5.68 5.60 -1.32 

C 2.25 2.20 -2.22 

 

Figure 6.1 Estimated cumulative loss of insulation life over periods of Local substation testing da-

taset based on measured and predicted WTI temperature for Transformer A. 

 

Figure 6.2 Estimated cumulative loss of insulation life over periods of Local substation testing da-

taset based on measured and predicted WTI temperature for Transformer B. 
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Figure 6.3 Estimated cumulative loss of insulation life over periods of Local substation testing da-

taset based on measured and predicted WTI temperature for Transformer C. 

 

Figure 6.4 Estimated cumulative loss of insulation life over periods of Met Office station testing 

dataset based on measured and predicted WTI temperature for Transformer A. 

 

Figure 6.5 Estimated cumulative loss of insulation life over periods of Met Office station testing 

dataset based on measured and predicted WTI temperature for Transformer B. 
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Figure 6.6 Estimated cumulative loss of insulation life over periods of Met Office station testing 

dataset based on measured and predicted WTI temperature for Transformer C. 

 

Figure 6.7 Estimated cumulative loss of insulation life over periods of Met Office station testing 

dataset based on measured and predicted WTI temperature for Transformer D. 

 

Figure 6.8 Estimated cumulative loss of insulation life over periods of Met Office station testing 

dataset based on measured and predicted WTI temperature for Transformer E. 
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Figure 6.9 Estimated cumulative loss of insulation life over periods of Met Office station testing 

dataset based on measured and predicted WTI temperature for Transformer F. 

 

Figure 6.10 Estimated cumulative loss of insulation life over periods of Met Office station testing 

dataset based on measured and predicted WTI temperature for Transformer G. 

 

Figure 6.11 Estimated cumulative loss of insulation life over periods of Met Office station testing 

dataset based on measured and predicted WTI temperature for Transformer H. 
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Figure 6.12 Estimated cumulative loss of insulation life over periods of Met Office station testing 

dataset based on measured and predicted WTI temperature for Transformer I. 

 

Figure 6.13 Estimated cumulative loss of insulation life over periods of Met Office station testing 

dataset based on measured and predicted WTI temperature for Transformer J. 

 

Figure 6.14 Estimated cumulative loss of insulation life over periods of Met Office station testing 

dataset based on measured and predicted WTI temperature for Transformer K. 
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Table 6.2 Estimated Cumulative Loss of Insulation Life Based on Measured and Predicted Temper-

atures over periods of Met Office station testing dataset. 

Transformer 

Estimated Loss of Life (Hour) 

Based on Measured 

Temperature  

Based on Predicted 

Temperature 
Error (%) 

A 34.2 35.9 4.97 

B 6.5 6.6 1.54 

C 21.1 21.8 3.32 

D 226.1 233.6 3.32 

E 93.7 86.2 -8.00 

F 14.7 14.2 -3.4 

G 59.8 59.4 -0.67 

H 67.4 65.4 -2.97 

I 25.2 24.8 -1.59 

J 42.8 41.5 -3.04 

K 98.2 92.4 -5.91 

The errors of the estimated loss of life based on measured and predicted temperatures across 11 

transformers are within ±10%. The estimated loss of life based on predicted temperature is likely to 

be underestimated when the loads carried by transformers on interested periods are significantly 

higher than the loads in the training dataset due to underestimation of the transformer temperature 

caused by poor extrapolation of the algorithm.  

With the more accurate thermal models, the operators could use these thermal models to anticipate a 

new steady-state temperature caused by new higher or lower load conditions for planning, providing 

there is a sufficient volume of data points at this load in the training dataset. Subsequently, more 

accurate temperature prediction made by the thermal model improves the estimation of the loss of 

insulation life, and therefore it helps for planning the maintenance and replacement schedule. 
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6.2 Relative Thermal Performance 

Typically, power transformers with the same designs are ordered in groups, which are referred to as 

transformer families. Theoretically, these transformers should have identical thermal behaviour. 

However, the transformers are subjected to loading conditions differently or are affected by imperfect 

manufacturing, and the ageing rate between them are therefore gradually divergent.  

Using the proposed thermal model, relative thermal performance among the family could be deter-

mined. The thermal model, which is developed using the measurements of a unit in the fleet, should 

generally be able to be used for predicting the temperature of the other transformers in the same 

family, which are usually in the same substation, without significant errors if those transformers are 

subject to similar environmental conditions, for example they are all unaffected by solar radiation 

because they are in the shade. Building on this hypothesis, a thermally underperforming transformer 

could be distinguished from the family by creating an error matrix. The error matrix is a matrix of 

mean errors between the measurement and predictions made by the thermal model that is developed 

using its own historical data and the data of the other transformers in the same family. Typically, the 

mean errors between the measurement and prediction made by the thermal model using its own data 

should be approximately zero, however, the mean errors that are produced by the thermal model of 

the other transformer might be positive or negative, if the thermal behaviour between them is signif-

icantly different. If the mean error (𝐸̅) is positive, it means the transformer whose measurement data 

is used for testing is operating at a hotter temperature than the transformer used to train the model. 

In the datasets considered, there are five transformers that are in the same family. The transformers 

could be ranked by their thermal performance using the thermal models. As the data are provided in 

different winding: two of them are the temperature of HV winding and three of them are the temper-

ature of LV winding, there are two matrices: Matrix 1 (G and J) and Matrix 2 (H, I and K). 

Transformer ID in the first column indicates the thermal model used for prediction and Trans-

former ID in the row headers indicates the measured data compared with the model prediction, see 

Table 6.3 and Table 6.4. It can been seen that the diagonal elements are approximately zero because 

the measurement and thermal model are derived from the same transformer while the elements out-

side the diagonal could be zero, positive or negative depending on the differences between their 

thermal behaviour. The results show that Transformer G is generally operating at a higher tempera-

ture than Transformer J about 4°C if the same loading conditions are applied to both transformers, 

see Figure 6.15. Table 6.4 suggests that Transformer K is operating hotter than its sister units fol-

lowed by Transformer H and I. The temperature difference between Transformer K and I is about 

7°C and the temperature difference between Transformer H and I is about 3.5°C, see Figure 6.16. 
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Table 6.3 Error matrix between Transformer G and J 

 Measurement 

Model G J 

G -0.22°C -4.12°C 

J 3.87°C -0.06°C 

 

Figure 6.15 Examples of measurement of Transformer J and predictions based on the thermal mod-

els derived from Transformer J and G. 

Table 6.4 Error matrix between Transformer H, I and K 

 Measurement 

Model H I K 

H -0.05°C -3.67°C 3.95°C 

I 3.66°C -0.01°C 7.91°C 

K -3.28°C -7.2°C 0.37°C 

 

Figure 6.16 Examples of measurement of Transformer I and predictions based on the thermal mod-

els derived from Transformer I, H and K. 
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6.3 Incipient Thermal Fault Identification 

As the alternative algorithm for calculating the transformer temperature proposed in Chapter 5 can 

generally predict the hot-spot temperature with the RMSEs of 1.5°C, it could be effectively used to 

identify anomalous thermal behaviour. An algorithm for identifying incipient thermal faults, such as 

restricted oil flow, is proposed using the alternative thermal model, see Figure 6.17 for a flow chart 

of the algorithm. Firstly, a transformer thermal model is developed using historical operational meas-

urements. According to the previous results in 5.6.3, the models trained with 2-year data have the 

lowest RMSE in general. It is strongly recommended that the model should be trained with at least 

1-year data so that the variations in loading condition and ambient temperature with seasons are 

properly captured. Secondly, a fault identification threshold (FIT) is calculated based on the training 

data as follows: 

FIT = |E|̅̅ ̅̅ + 4𝜎(|𝐸|)                                                             6. 1 

where 𝐸 are the errors between the measurement and prediction made by the algorithm for the train-

ing dataset. With regards to the error probabilities of the 11 transformers over the training datasets 

which contain 2-year of data for each transformer, typically 99.7% of the error lie within the values 

of the FIT. 

Following that, the load profile, ambient temperature, solar radiation, wind speed, wind direction and 

the hot-spot temperature at the previous time step and the hot-spot temperature at the present time 

step are inputted and then the thermal model predicts the present hot-spot temperature which is com-

pared with the measured hot-spot temperature. Subsequently, the difference between the measure-

ment and prediction in the testing dataset (Et) is compared to the FIT to identify whether there is an 

incipient fault. There are 5 scenarios: 1) the difference between the measurement and prediction is 

less than FIT (No indication of an incipient fault), 2) the difference is greater than FIT but less than 

FIT + STD (Level 1), 3) the difference is greater than FIT + STD but less than FIT + 2STD (Level 

2), 4) the difference is greater than FIT + 2STD but less than FIT + 3STD (Level 3) and 5) the dif-

ference is greater than FIT + 3STD (Level 4). The higher level means it is highly likely that there is 

an incipient thermal fault. 

To ensure that reliability of the algorithm, A counting technique is introduced. A warning will be 

raised only if the errors have exceeded the thresholds for a certain period continuously. The periods 

of time vary with the magnitude of the divergence. The higher difference between the measurement 

and prediction is, the shorter period for that the excessive errors must have persisted is. For Level 1, 

to Level 4, the periods of time that the excessive errors must have persisted to raise a warning are 2 

days (48 datapoints), 1 day (24 datapoints), 12 hours (12 datapoints) and 6 hours (6 datapoints), 

respectively. To reset all the counters, the errors must have been less than FIT for 1 day (24 data-

points) consecutively. 
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Figure 6.17 Flow chart of  the algorithm of the incipient thermal fault identification 

This algorithm has been applied to identify incipient faults from the measured data. It is found that 

there was one transformer where an incipient fault was detected by the algorithm, which is Trans-

former E. The model was developed using the data from 1st January 2013 and 31st December 2014 

and then the threshold values were calculated, see Figure 6.18 and Figure 6.19. The predictions be-

tween 1st January 2015 and 31st December 2019 was then made by the algorithm using the load, 

thermal and weather measurements. There had not been a significant difference between the meas-

urement and prediction until 3rd January 2018, after which a level 4 warning was raised. The diver-

gence had persisted until mid-April 2019 and the measurement has approached to the prediction 
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again since then. Although the WTI temperature is not significantly higher than the WTI temperature 

in the adjacent year, the average load in the suspicious periods, 0.3 p.u., is relatively smaller than the 

average load in the adjacent year which is 0.4 p.u. 

A list of maintenance activities for this transformer was reviewed but there were not any activities, 

which were carried regarding this incident. It is believed that there may have been a partial blockage 

of oil sludge in an oil pipe. The blockage in the oil pipe results in a reduction in the oil flow, which 

carries the heat away from a transformer tank to the environment via a cooler bank, causing a lower 

heat transfer rate. It is possibly that the blockage was cleared when the pumps were working. 

Although the anomalous thermal fault was remedied without intervention, it took approximately 1 

year before the problem disappeared. Using the algorithm, the issue could have been identified within 

one day and subsequently a proper maintenance could be planned to fix the fault. Even though there 

was not a catastrophic fault, the solid insulation of the transformer was aged with a higher rate for an 

extended period than it should be due to the higher operational temperature. 

To ensure the result, another thermal model for this transformer was developed using a different 

training dataset instead, which is the data from 1st January 2015 to 31st December 2016, see Figure 

6.21 and Figure 6.22. The similar results were observed. Besides, another thermal model was devel-

oped using the data during the periods that the thermal anomaly was identified. It is expected that the 

thermal model overestimates the temperature for normal periods because the thermal model was 

trained to capture the thermal behaviour while the cooling performance was affected by the fault, but 

predicts the temperature during the faulty period more accurately, see Figure 6.23 and Figure 6.24. 

Furthermore, another thermal model was developed using the data from another transformer which 

is in the same family as Transformer E. The results are shown in Figure 6.25 and Figure 6.26. Alt-

hough it seems that the cooling performance of Transformer E is generally less effective than the 

sister transformer, during the faulty periods the cooling performance was even worse. According to 

those results, it infers that there was an incipient fault on that periods although it disappeared later. 

With the proposed algorithm, the fault could have been fixed sooner and an unnecessarily higher 

ageing rate could have been avoided. 

It should be noted that the proposed approach will detect anomalous performance provided that the 

transformer is behaving “normally” in the training data. It would therefore be recommended that 

these algorithms are trained by the data from the commencement of service. 
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Figure 6.18 Time series of WTI measurement and prediction over training and testing datasets for 

Transformer E. 

 

Figure 6.19 Time series of absolute errors between the measurement and prediction from Figure 

6.18 showing periods that thermal anomaly was detected. 
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a) Load 

 

b) Ambient temperature 

 

c) Wind speed 

 

d) Solar radiation 

Figure 6.20 Historical measurements for Transformer E: a) load, b) ambient temperature, c) wind 

speed and d) solar radiation. 
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Figure 6.21 Time series of WTI measurement and prediction over training and testing datasets for 

Transformer E. The data is the same dataset as Figure 6.18 but the training dataset is 

between 1st January 2015 and 31st December 2016. 

 

Figure 6.22 Time series of absolute errors between the measurement and prediction from Figure 

6.21 showing periods that thermal anonaly was detected. 

 



Chapter 6 

116 

 

Figure 6.23 Time series of WTI measurement and prediction over training and testing datasets for 

Transformer E. The data is the same dataset as Figure 6.18 but the training dataset is 

between 3rd January 2018 and 16th April 2019. 

 

Figure 6.24 Time series of absolute errors between the measurement and prediction from Figure 

6.23. 
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Figure 6.25 Time series of WTI measurement and prediction made by a thermal model of its sister 

transformer. The data is the same dataset as Figure 6.5 but the model is developed 

using the data from its sister transformer. 

 

Figure 6.26 Time series of absolute errors between the measurement and prediction from Figure 

6.25. 
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6.4 Summary 

The ANN thermal models developed in Chapter 5 are used to predict the transformer temperature 

and the loss of the insulation life given load and weather conditions. The loss of the insulation for 

non-thermally upgraded insulation paper is calculated according to the IEC60076-7 [9]. The average 

difference between the loss of the insulation life calculated using the WTI measurement and predic-

tion across 11 transformers is 3.52%. The accurate prediction of the loss of the insulation life is useful 

for the operators to plan maintenance and replacement schedules for their assets. 

An error matrix is introduced to identify a transformer which is thermally underperforming from its 

same family. The thermal models are developed for each transformer in the same family. Following 

that, the thermal model for each transformer is used to predict the temperature for the other trans-

formers. If the mean error between the measurement and prediction made by the thermal model de-

veloped from a sister transformer is approximately zero, it implies that the thermal characteristics 

between them are similar. On the other hand, if the mean error is significantly positive, it implies that 

the transformer from which the measurement is recorded would have a higher operational tempera-

ture for the same loading conditions than the transformer from which the thermal model is developed 

and vice versa. For example, Transformer K is typically operating at a higher temperature than Trans-

former I about 7°C regarding Table 6.4.  

A method for incipient thermal fault identification is introduced using the thermal models. The ANN 

thermal model is created using the historical measurements where it is believed that the transformer 

is healthy. Following that, the thermal model is used to predict the transformer temperature and then 

compared with the measurement. The algorithm notifies the operators if the differences between 

measurement and prediction have been significantly greater than a specified threshold over a given 

period. A proper maintenance could be then planned and carried to address the issue and avoid a 

catastrophic failure. 
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Conclusion and Future Work 

This Chapter presents a conclusion of the thesis and a discussion of potential future work. A summary 

of the work undertaken is provided. A discussion of novel contributions of the work to the existing 

literature is provided. The implications for future thermal condition monitoring techniques are dis-

cussed. 

7.1 Conclusion 

The ultimate aims of this work are to develop a model to predict the thermal responses of power 

transformers over various loading, cooling and weather conditions using data driven modelling tech-

niques, and to implement such an algorithm to a thermal condition monitoring system for power 

transformers.  

Time series of WTI temperature, ambient temperature and load profiles were investigated using time 

series decomposition. For the transformers considered, the load was found to decrease with increas-

ing ambient temperature, presumably because of heating demands. An algorithm was developed to 

check whether the WTI data exhibits expected load and ambient temperature dependency. WTI tem-

perature rise above ambient was also found to vary with environmental conditions: wind speed, wind 

direction and solar radiation 

The top-oil thermal model for power transformers that considers wind and solar radiation is proposed. 

It is based on the thermal-electrical analogy and heat transfer principles. Prevailing wind is consid-

ered as forced convection while solar radiation is taken into account as an additional heat source. The 

proposed model generally outperforms the traditional model, especially windy and sunny periods. It 

suggests that the calculation made by the traditional model may be a relatively conservative estima-

tion for transformers in windy locations, e.g. wind farms and could lead to a decision to replace the 

transformers earlier than necessary on the loss of life criterion. Environmental effects should be con-

sidered if attempting to compare the as-installed transformer performance with factory heat run meas-

urements. 

Alternatively, hot-spot thermal models have been developed using data driven modelling techniques. 

The thermal models are treated as a black-box model and based on only the measured data. The 
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ANN, SVM and MLR algorithms are proposed. It appears that the ANN algorithm outperforms the 

other algorithms including the thermal model proposed in Chapter 4 and the IEEE-Annex G model. 

The RMSE between the measurement and prediction made by the ANN algorithms across 11 trans-

formers is 1.5°C for the testing dataset. It is found that increasing the number of the hidden layers or 

regression order does not improve the model accuracy significantly. The accuracy of the model re-

duces with decreasing the amount of the training dataset and vice versa. For transformers considered 

that are in an ONAN state, excepting Transformer C, including the solar radiation in the alternative 

algorithms does not increase the accuracy significantly but considering prevailing wind does. For 

transformers that are in an OFAF state, inclusion of the weather factors does not improve the model 

accuracy. This is expected because the cooling wind is marginal compared to forced cooling by fans 

and the solar radiation is only a small proportional to the total heating for transformers in an OFAF 

state which are more highly loaded. 

In addition, the algorithm of the incipient thermal fault identification has been proposed using the 

thermal models developed in Chapter 5. An incipient fault is identified by comparing the measure-

ment and prediction made by the thermal model. If the differences between them are larger than the 

specified values for the certain periods, an alarm is raised by the algorithm to notify the operators. 

Proper maintenance could be then planned and carried to fix an incipient fault and a catastrophic 

failure is avoided. This moves us a one closer step from a dependency on time-based transformer 

maintenance to condition-based assessment/maintenance.     

7.2 Future Work 

This thesis has shown that it is viable to develop the transformer thermal models using the data driven 

modelling techniques and implement the algorithm to identify faulty transformers with thermal issues 

based on such models. In future, it is highly likely that direct fibre-optic hot-spot measurement will 

be available for most brand-new power transformers. Unlike WTIs, which are not direct measure-

ment, fibre-optic sensors could be installed in multi-locations and measure local hot-spot tempera-

tures in the winding directly. The ANN algorithm could be implemented but replacing WTI meas-

urement with direct fibre-optic hot-spot measurement. This will improve understanding about dy-

namic thermal distribution inside the transformer winding and facilitate development of transformer 

winding thermal model. 

It is found that cooling pumps and fans are rarely in operation because the transmission transformers 

are usually lightly loaded. This is difficult to evaluate cooling effectiveness. It will be useful for 

condition monitoring as well as rating calculation to develop a scheme where a number of heat run 

tests will be carried out on-site. Measurements gathered from the heat run tests will provide useful 

information of current transformer thermal conditions: cooling performance and maximum power 
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flow capacity. In addition, the thermal model could be developed using the data derived from the on-

site heat run tests information using the data driven modelling techniques. 

The same approach could be also applied to distribution transformers. An increasingly smart grid 

will require more reliable and effective power systems. That means that the traditional time-based 

maintenance needs to move forward to predictive condition-based maintenance, and an on-line rating 

system would be preferable to a traditional rating table. It is impossible to achieve those goals unless 

an accurate dynamic thermal model for transformers has been developed and its use accepted as an 

International Standard approach. 
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Appendix A Summary of Historical Data 

Table A.1 Periods of Measurements for Local Substation Dataset 

Transformer Periods 
Typical  

cooling 
Comment 

A 07/2019 – 05/2020 ONAN 
Data comprise WTI at LV winding, tap position, load 

profile, ambient temperature, wind speed, wind direc-

tion and solar radiation. 15-minute sampling interval 

B 07/2019 – 05/2020 OFAF 
Data comprise WTI at LV winding, tap position, load 

profile, ambient temperature, wind speed, wind direc-

tion and solar radiation. 15-minute sampling interval 

C 09/2019 – 05/2020 ONAN 
Data comprise WTI at LV winding, tap position, load 

profile, ambient temperature, wind speed, wind direc-

tion and solar radiation. 15-minute sampling interval 

 

Table A.2 Periods of Measurement for Met office Station Dataset 

Transformer Periods 
Typical 

cooling 
Comment 

A 01/2013 – 06/2018 ONAN 

Data comprise WTI at LV winding, tap position, load 

profile, ambient temperature, wind speed, wind direc-

tion and solar radiation. 60-minute sampling interval. 

B 01/2015 – 06/2018 OFAF 

Data comprise WTI at LV winding, tap position, load 

profile, ambient temperature, wind speed, wind direc-

tion and solar radiation. 60-minute sampling interval. 

C 01/2013 – 06/2018 ONAN 

Data comprise WTI at LV winding, tap position, load 

profile, ambient temperature, wind speed, wind direc-

tion and solar radiation. 60-minute sampling interval. 

D 01/2013 – 06/2018 ONAN 

Data comprise WTI at LV winding, tap position, load 

profile, ambient temperature, wind speed, wind direc-

tion and solar radiation. 60-minute sampling interval. 

E 01/2013 – 01/2018 ONAN 

Data comprise WTI at LV winding, load profile, ambi-

ent temperature, wind speed, wind direction and solar 

radiation. 60-minute sampling interval. Tap position is 

not available. 

F 01/2013 – 06/2019 ONAN 

Data comprise WTI at LV winding, load profile, ambi-

ent temperature, wind speed, wind direction and solar 

radiation. 60-minute sampling interval. Tap position is 

not available. 

G 01/2013 – 06/2019 ONAN 

Data comprise WTI at HV winding, load profile, ambi-

ent temperature, wind speed, wind direction and solar 

radiation. 60-minute sampling interval. There is not 

tap changer. 

H 01/2013 – 06/2019 ONAN 

Data comprise WTI at LV winding, load profile, ambi-

ent temperature, wind speed, wind direction and solar 

radiation. 60-minute sampling interval. There is not 

tap changer. 

I 01/2013 – 06/2016 ONAN 

Data comprise WTI at LV winding, load profile, ambi-

ent temperature, wind speed, wind direction and solar 

radiation. 60-minute sampling interval. There is not 

tap changer. 
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Table A.2 (continued). 

J 01/2013 – 06/2019 ONAN 

Data comprise WTI at HV winding, load profile, ambi-

ent temperature, wind speed, wind direction and solar 

radiation. 60-minute sampling interval. There is not 

tap changer. 

K 01/2013 – 06/2019 ONAN 

Data comprise WTI at LV winding, load profile, ambi-

ent temperature, wind speed, wind direction and solar 

radiation. 60-minute sampling interval. There is not 

tap changer. 
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Appendix B Transformer Specifications 

Table B.1 Specifications of Transformers Analysed  

Quantities 

Transformers 

A B C D E F G to K 

Voltages(kV) 275/66 400/132 400/275 

Nameplate Capacity (MVA) 180 180 240 1000 

Typical cooling mode ONAN OFAF ONAN ONAN ONAN ONAN ONAN 

Load losses (kW) 992 992 748 596 792 848 1772 

No-load losses (kW) 130 130 55 68 51 63 75 

∆𝜃OR (K)  41.5 39.4 38.5 46.3 33.8 34.2 45.0 

𝐻𝑔R (K) 7.3 22.0 8.7 5.7 14.5 5.2 15.4 

Mass of coil and core, in kg 128000 128000 109000 109000 109000 109000 140000 

Mass of tank and fitting, in 

kg 
69200 69200 103750 103750 103750 103750 102000 

Mass of oil, in kg 78250 78250 108850 108850 108850 108850 100000 

Mass of coil, core, tank, fitting and oil for Transformer C, D and F are estimated from Transformer 

E because the data are not available. 
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Table B.2 Transformer Substation and Nearest Met Office Weather Station 

Transformer 

ID 
Transformer Location 

Nearest MET Office 

Weather Station 
Source ID 

A St. John’s Wood, London St. James’s Park 697 

B St. John’s Wood, London St. James’s Park 697 

C Braintree, Essex Andrewfield 19188 

D West Ham, London St. James’s Park 697 

E Hoddesdon, Hertfordshire Rothamsted 471 

F Walpole, Wisbech Holbeach No2 395 

G Broxbourne, Hertfordshire St. James’s Park 697 

H Broxbourne, Hertfordshire St. James’s Park 697 

I Broxbourne, Hertfordshire St. James’s Park 697 

J Broxbourne, Hertfordshire St. James’s Park 697 

K Leeds, North Yorkshire Bramham 534 
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