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Novel b-jet Analyses for Beyond the Standard Model Higgs Bosons at the
LHC

by Billy George Ford

Despite the many successes of the LHC since running began in 2008 - such as the
discovery of the Higgs Boson in 2012 - the hunt for new physics beyond the Standard
Model (SM) remains elusive.

One particularly appealing extension to the SM comes in the form of Two-Higgs-Doublet-
Models (2HDMs), which provide an enriched scalar sector of additional Higgs particles
(the CP-even H and h, CP-odd A, and charged H±). Where kinematically possible,
interactions between these Higgses can lead to high b-jet multiplicity final states via
H → hh→ bbb̄b̄ decays.

In this thesis, various novel approaches to observing such new physics are considered. An
alternative to traditional jet clustering algorithms, using a variable-R cone dependent
on jet pT , is shown to increase the potential signal significance when modelled against
the leading backgrounds.

Furthermore, the use of high level machine learning is investigated. By mapping pT -weighted
pixels in a detector into images, we build a convolutional neural network (CNN) to clas-
sify wide cone b-jets in signal events coming from 2HDM decays, against the leading
backgrounds.

Finally, we present a novel approach to jet reconstruction using spectral clustering
machine learning techniques, and compare the performance with the currently well-
established methods in use at the LHC.

http://www.southampton.ac.uk
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Chapter 1

Introduction

The ultimate goal of particle physics is to provide a complete description of the foun-
dational building blocks of our universe. In fact the very beginnings of particle physics
can be traced back to an astoundingly simple question posed by Greek philosophers, if
I divide an object into progressively smaller pieces, can I continue ad infinitum, or will I
reach a fundamental piece that cannot be further broken, an “uncuttable”, or “atom”?

It was in the 19th century when subatomic particles graduated from the realm of philo-
sophical speculation into scientific reality, and since then the following century gave rise
to an avalanche of particle discoveries, from the electron in 1897, up to the eventual
discovery of the Higgs boson in 2012 at the Large Hadron Collider (LHC).

It was the Higgs Boson that provided the final piece of the Standard Model (SM) puzzle,
our current best fundamental theory of nature, that has held up remarkably well against
LHC experiments. Despite this, there exist well known shortcomings of the SM, and
so the hunt for a more complete theory of particle physics continues. Areas of active
research range from complete reworks of the language of fundamental physics, such as
string theory, or reworks of the group structure driving fundamental interactions, to
experimental searches for simpler extensions to the SM, via precision measurements and
new particle searches.

In this thesis, approaches of phenomenologically probing new theories beyond the Stan-
dard Model (BSM) are considered. In particular Two-Higgs-Doublet-Models (2HDMs)
comprised of an extended scalar structure of the SM, yielding additional Higgs particles
that can potentially be observed at the LHC via high b-jet multiplicity final states.

The outline of this thesis is as follows; chapters 2-5 introduce the theoretical groundwork
and motivation for the research activities undertaken. In chapter 2, a overview of the
SM is presented, with focus on the Higgs sector. The shortcomings of the SM are also
addressed. In chapter 3 a theoretical review of 2HDMs is presented, and chapter 4
discusses the physics of jets, as well as clustering algorithms, in the context of the LHC.



4 Chapter 1. Introduction

Finally in chapter 5, the field of machine learning is introduced, and application within
high energy physics is discussed.

Chapters 6-8 present published research work, in chapter 6 the methodologies and results
of the paper “Revisiting Jet Clustering Algorithms for New Higgs Boson Searches in
Hadronic Final States”, where a jet clustering algorithm using a variable-R is compared
with traditional fixed cone algorithms in the context of potential 2HDM searches.

Chapter 7 describes recent research activity on jet visualisation, exploring the ability
of convolutional neural networks (CNNs) to classify signal 2HDM processes from the
leading backgrounds, when represented as jet images mapped in detector (η,φ) space.

In chapter 8, a completely novel approach to jet clustering is presented, utilising spectral
clustering, from the work “Spectral Clustering for Jet Physics”.

Finally, chapter 9 presents concluding remarks of the various research endeavours, as
well as discussing possible future work moving forward into future iterations of the LHC,
such as the High Luminosity Large Hadron Collider (HL-LHC).
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Chapter 2

The Standard Model of Particle
Physics

For many years the Standard Model has been the crowning achievement of theoretical
particle physics, and provides the most complete description of nature at a fundamental
level we currently have. In field theory language, the SM is a renormalisable QFT with
a local SU(3)C × SU(2)L × U(1)Y gauge symmetry, corresponding to three of the four
fundamental forces of nature, Quantum Chromodynamics (QCD), the Weak Interaction,
and Quantum Electrodynamics (QED).

2.1 The Brout-Englert-Higgs Mechanism in the SM

It would be an understatement to say that the discovery of the Higgs boson at the LHC in
2012 had been overdue, in fact its existence had been predicted by Peter Higgs, François
Englert and Robert Brout back in 1964 [3], and utilised as a method of explaining the
origin of mass for the the weak gauge bosons W± and Z0 by Steven Weinberg in 1967 [4].
Unlike their counterparts the photon γ and gluon g, the weak bosons had experimentally
verified masses which had so far been unexplained in the SM.

2.1.1 The Higgs Potential

The scalar sector of the SM Lagrangian takes the following form [5]

LH = (Dµφ)∗(Dµφ)− µ2φ∗φ− λ(φ∗φ)2. (2.1)

If we firstly consider the case where φ is a complex scalar field, the lagrangian has a
global U(1) invariance under transformations like
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φ→ eiαφ, (2.2)

and Dµ is the covariant derivative Dµ = ∂µ + iqAµ. In such a case, for µ2 > 0, there is
a single vacuum state with vanishing field expectation value φ0 = 0. If however µ2 < 0,
the potential takes on the form (shown in Fig.2.1)

V (φ) = µ2φ∗φ+ λ(φ∗φ)2. (2.3)

Figure 2.1: The ‘Mexican hat’ or ‘wine bottle’ Higgs potential, with an infinite ring
of minima at φ0 6= 0.

The shape of the potential is such that the minimum does not occur at φ0 = 0, but
instead there exists an infinite ring of minima. The minimum, known as the vacuum
expectation value (v.e.v), is found, setting dV (φ)

dφ = 0,

φ0 =

√
−µ2
2λ

=
v√
2
. (2.4)
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Moving on to the Standard Model, the gauge group of which is SU(2)L × U(1)Y , the
Lagrangian is written [6]

LH = (Dµφ)†(Dµφ)− µ2φ†φ− λ(φ†φ)2. (2.5)

where φ is a complex SU(2)L doublet,

φ =

(
φ+

φ0

)
=

1√
2

(
φ1 + iφ2

φ3 + iφ4

)
. (2.6)

Dµ = (∂µ− igAµτ
a− ig′Y Bµ) represents the SU(2)L×U(1)Y covariant derivative. The

second and third term are the Higgs potential, V (φ),

V (φ) = µ2φ†φ+ λ(φ†φ)2. (2.7)

The same arguments as before follow for the µ2 > 0 and µ2 < 0 cases, where again it
can be shown that φ0 =

√
−µ2
2λ = v√

2
.

2.1.2 Spontaneous Symmetry Breaking

By making a choice of non-zero v.e.v, the gauge symmetry SU(2)L × U(1)Y is sponta-
neously broken to U(1)EM .

By making a choice of a radial direction, which here is taken as φ3 (i.e setting φ1,2,4 = 0),
one can write [7]

φ0 =
1√
2

(
0

v + h(x)

)
, (2.8)

with h(x) corresponding to the physical Higgs field, appearing as the perturbation about
the minimum v. Making this choice is known as the unitary gauge.

2.1.2.1 Gauge Boson Masses

To see the effect of the Higgs on the mass spectrum of gauge bosons, we can expand Eq.
2.1 using 2.8,

(Dµφ)†(Dµφ) =
1

2
(∂µh)†(∂µh) +

1

4
g2(v+ h)2W+

µ W
−µ+

1

8
(v+ h)2(g+ g′)2Z0

µZ
0µ (2.9)
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where W±
µ = 1√

2
(A1

µ ± A2
µ) and Z0

µ = 1√
g2+g′2

(gA3
µ − g′Bµ) represent the now more

familiar W± and Z0 gauge bosons. From terms two and three in Eq. 2.9, the mass
terms for the gauge bosons can be read off as

MW± =
vg

2
; MZ0 =

v

2

√
g2 + g′2. (2.10)

There is also the term Aµ = 1√
g2+g′2

(g′A3
µ + gBµ), which is identified with the photon

with Mγ = 0.

We can perform the same exercise on the potential V (φ), gathering together h2 terms,

V (φ0) =
µ2

2
(v + h)2 +

λ

4
(v + h)4 = ...+

(
µ2

2
+

6λv2

4

)
h2 + ... (2.11)

to determine the mass of the Higgs boson

Mh =
√
2λv =

√
2µ. (2.12)

2.1.2.2 Fermion Masses

As we know, particle mass in the Standard Model is not constrained only to gauge
bosons. Here we demonstrate how the process of spontaneous symmetry breaking allows
the fermions to acquire masses. A simple term of the form

Lψ = mψ̄ψ (2.13)

is not gauge invariant, so we have to think a little more carefully. By coupling fermions
to the Higgs boson, Using the example of the up quark, one can write [8]

Lu = −λuQ̄LΦcuR + h.c. (2.14)

We have introduced the Yukawa coupling λu, and constructed the field (for the first
generation of quarks)

QL =

(
uL

dL

)
. (2.15)

This yields a mass for the u quark of
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mu =
vλu√
2
. (2.16)

Moving on to leptons, considering electrons for example, one can write down a term

Le = yeL̄LψeR + h.c. (2.17)

Which gives rise to a mass term

me =
yev√
2
. (2.18)

2.1.3 Goldstone’s Theorem

Goldstone’s theorem states that there is a new massless scalar field for each generator
of a spontaneously broken continuous, global symmetry. In the case of the Higgs mech-
anism however, recall that the spontaneously broken SU(2)L×U(1)Y is indeed a gauge
symmetry [9].

As we are dealing with a local gauge symmetry, there are no Goldstone bosons. We
say instead that, by making a choice of gauge, such as the unitary gauge in Eq. 2.8,
the degrees of freedom corresponding to the Goldstone bosons are ‘eaten’ by the gauge
bosons, acquiring a mass.

2.2 QCD and the Strong Force

2.2.1 QCD Lagrangian

The strong sector of the SM is governed by a local non-abelian SU(3)C gauge symme-
try. As such, we expect our quark fields to be invariant under spacetime dependent
transformations [10]

ψ(x) → eiα
a(x)taψ(x), (2.19)

where ta are the generators of SU(3)C , which follow the Lie algebra [ta, tb] = ifabct
c,

and fabc the structure constants. The full Lagrangian of QCD is given by

LQCD =
∑
f

ψ̄f (i /D
µ −mf )ψf −

1

4
F aµνF aµν , (2.20)
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where f = u, d, s, c, b, t labels the quark flavour. The ψf represent the quark fields with
mass mf , which are acted on by the covariant derivative

Dµ = (∂µ + igtcAc). (2.21)

The interactions of gluons, the strong gauge bosons, are dictated by the gluon field
strength tensor

F aµν = ∂µA
a
ν − ∂νA

a
µ − gfabcAaµA

b
ν , (2.22)

where the label a = 1, ..., 8(= N2
C − 1).

2.2.2 QCD Running Coupling

One of the more notable features of QCD, and key differences between an abelian and
non-abelian gauge theory, is in the running of the coupling. This is made apparent by
computing the β function, which describes the running of the coupling g with energy
scale.

2.2.2.1 Renormalisation

It turns out that using Eq. 2.20 to calculate diagrams involving loop induced processes
will introduce unwanted divergences. What one will find is that this is due to the fact
that the loop momentum is being integrated up to infinity, which implies that the theory
is is valid up to arbitrarily large energy scales. It turns out this is not the case, and the
prescription for taming these infinities is the process of renormalisation.

In particular, the terms in the Lagrangian written down in Eq. 2.20 are known as the
bare fields, whereas to proceed with meaningful calculations one requires the renor-
malised fields/parameters [11]

ψB =
√
Z2ψR; A

µ
B =

√
Z3A

µ
R; gB = Zgµ

εgR =
Z2

√
Z3

Z1
gR. (2.23)

The Zi are rescaling factors, which can also be parametrised as counter-terms δi =

Zi = 1. The renormalised quantities are the quark fields ψ, the gluon fields Aµ, and
the coupling g. In the term for the coupling g, µ is a mass scale, and ε = 4−d

2 is a
dimensionful regularisation parameter, and is used to evaluate Euclidean integrals in
d-dimensions, noting that as d = 4− 2ε, we recover the d = 4 case in the limit ε→ 0.
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2.2.2.2 The β Function

The β function, which defines how the coupling g varies with energy scale µ, is defined
as

β(g(µ)) =
∂g(µ)

∂ logµ
. (2.24)

In QED, the β function is positive, taking the form βQED = e3

12π2 , and hence the evolution
of the QED coupling e with energy scale is increasing. We will see that in QCD this is
not the case, which leads to the theory having the property of asymptotic freedom.

To explicitly evaluate the β function (to first order), we use

β(g) = g res(2δ1 − 2δ2 − δ3), (2.25)

where res refers to the residue of the pole in the loop integral proportional to ε−1. To
compute the δi’s one must compute the relevant loop diagrams.
Vertex Loops Z1

1

(a) The gluon-quark vertex loop dia-
grams contributing to the δ1 counter

term.

Quark Loop Z2

1

(b) The quark loop diagram corre-
sponding to δ2.

Gluon Loops Z3

1

(c) The gluon loop diagrams for δ3.

Figure 2.2: The loop diagrams contributing to the three counter terms δ1,2,3, required
to compute the β function via Eq. 2.25.

By computing these divergent diagrams in Fig. 2.2, one finds [11]
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βQCD(g) = − g3

16π2

(
11

3
NC − 2

3
Nf

)
= − g3

16π2
β0, (2.26)

for a theory with NC colours, and Nf quark flavours, which are known to be three and
six respectively for the SM. Notice that for 11

2 NC > Nf , which is satisfied in the SM,
the β function is negative.

2.2.2.3 The QCD Coupling αs

In terms of the QCD strong coupling constant αs = g2

4π , the solution to the the β

function, for running energy scale Q and fixed renormalisation scale µ, is given by [11]

αs(Q) =
αs(µ)

1 + β0
2παs(µ) log

Q
µ

, (2.27)

such that the running of coupling takes the form shown in Fig. 2.3.

Figure 2.3: The running of the QCD coupling constant α(Q) with energy scale Q.

2.2.3 Asymptotic Freedom

As a result of the above, the strong force between quarks qf and gluons g has the
characteristic of being asymptotically free. From Fig. 2.3, we can see that the coupling
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strength αs reduces as one increases the energy scale. The increase in energy scale
(dimension GeV), corresponds to a decrease in length scale (GeV−1), such that αs is low
at small distances, and grows at larger distances. As a consequence, quarks and gluons
cannot be observed as individual objects, existing in nature only in bound states, called
hadrons.

One can therefore imagine, as the separation between two quarks is increased, the strong
force between them will increase, and in fact this can lead to scenarios where it becomes
energetically favourable for the formation a new pair of quarks from the binding energy
of the original pair. Later we will see this is an important behaviour in large scale
particle physics experiments such as the LHC.

2.2.3.1 Colour Combinations

Another way of expressing this, is that in nature only colour charge neutral states can
exist, which in turn comprise of combinations of coloured objects. As quarks and gluons
carry colour charge (in contrast with QED, where the photon is chargeless), they both
must exist in bound states together. It is here where the colour description of SU(3)C

become rather convenient, as one can imagine how the two types of hadron satisfy this
colour neutrality. Mesons, which contain a quark anti-quark pair (qq̄), are combinations
of a coloured quark, and an anti-quark of the corresponding anti-colour, which combine
to a net colour of zero. Likewise, for baryons, which are bound states of three quarks
(or three antiquarks), the combination of red, blue, and green also yields a colourless
final state (as indeed would anti-red, anti-green and anti-blue).

2.3 Limitations of the SM

As a final discussion on the Standard Model, we look at some of the well established
limitations, which act as motivation for the ongoing search for physics beyond the SM.
We note here that not all BSM models address all of these issues, and the list provided is
not representative of the issues solved by models we consider later, but instead provides
a varied list of the kinds of physics yielding tensions with the SM.

2.3.1 Gravity

Perhaps the most famous example of incompleteness within the SM is its failure to
incorporate a satisfactory quantum theory of gravity. The theory governing the dynamics
of the gravitational force is General Relativity, governed by Einstein’s field equations,

Gµν + Λgµν ≡ Rµν −
1

2
Rgµν + Λgµν =

8πG

c4
Tµν . (2.28)



14 Chapter 2. The Standard Model of Particle Physics

GR has been remarkably successful, and stood up to countless tests, including the
recently discovered Gravitational Waves [12]. However attempts to quantise gravity and
incorporate into the SM have been so far unsuccessful, in particular it is found that
gravity is perturbatively nonrenormalisable.

Such a quantum theory of gravity would imply the existence of a graviton, a massless,
chargeless, spin-2 boson, however any experimental verification of their existence would
come with great difficulty.

2.3.2 Dark Matter

Another well known issue in the SM is on the origin of Dark Matter. There is an
astounding amount of evidence from both astronomical and cosmological phenomena
postulating the existence of additional ‘dark’ matter in the universe. A few key examples
are given below, but this list is non-exhaustive.

2.3.2.1 Galaxy Rotation Curves

A galactic rotation curve compares the velocity of a visible object in a galaxy, with its
radial displacement from the galactic core. Kepler’s third law, which relates the square
of the orbital period T of an object with the cube of its semi-major axis of orbit, is given
by

T 2 = αr3 (2.29)

where α = 4π2

GM , with G the gravitational constant and M the galactic mass. With this
one can predict the expected orbital period of a star, by measuring the distance to the
centre and the mass within the galaxy.

It is found, however, that there is a large discrepancy between the curve predicted, using
visible light to compute the mass, and the curve obtained from measuring the velocities
[13]. This inconsistency implies that there must be some additional mass in the galaxy
which is not observable.

2.3.2.2 Velocity Dispersions

Astronomical observations of galaxies have yielded discrepancies between the observed
mass to that predicted by theory [14]. By the Virial theorem, which states that the
time averaged kinetic energy T̄ and potential energy Ū for a bound system of stars in a
galaxy satisfy
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T̄ +
1

2
Ū = 0, (2.30)

along with measurements of the velocity distribution of stars inside a galaxy, one can
calculate the expected mass distribution of a galaxy. Such measurements have been
made and shown a discrepancy between measured and predicted velocities, in particular
that the observed velocities would arise from a total mass greater than is measured -
again implying something is missing.

2.3.2.3 Cosmic Microwave Background

A further source of evidence for the existence of Dark Matter comes from measurements
of the Cosmic Microwave Background (CMB). The CMB is the earliest window through
which we can peer into the early universe, first observed in 1941 by Andrew McKellar
[15], and later famously discovered by Anro Penzias and Robert Wilson [16].

Measurements of the power spectrum of the CMB, the fluctuations of the temperature
with angular scale coming from the observed anisotropy of the early universe, can be
made. These currently indicate that approximately 5% of the universe is comprised
of known baryonic matter, and around 26% Dark Matter, in close agreement with the
Lambda-Cold-Dark-Matter (ΛCDM) cosmological model [17].

2.3.3 Neutrino Masses

Originally neutrinos were believed to be massless within the Standard Model, however
recent experimental observations have suggested that neutrinos are in fact massive. In
particular neutrino oscillations in Super-Kamiokande [18], as well as measurements from
solar neutrinos [19].

If we label the three neutrino masses as i = 1, 2, 3, we can express the oscillation, for a
neutrino flavour f , as a superposition of these mass eigenstates

|νf 〉 =
∑
i

Ufi |νi〉 , (2.31)

where Ufi is an element of the Pontecorvo-Maki-Nakagawa-Sakata matrix, giving the
probability of each respective mass eignenstate i.

As a result of the above, some extension to the SM is required to account for massive
neutrinos, many candidates of which exist, such as Dirac mass, Majorana mass, or the
seesaw mechanism. There are also ways in which neutrino masses can be incorporated
into 2HDMs [20].
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The above are a few examples out of a whole host of issues with the SM, others including
matter-antimatter asymmetry, the hierarchy problem, the strong CP problem and dark
energy.
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Chapter 3

Two-Higgs-Doublet-Models

In this chapter we will briefly review the foundations and phenomenology of Two-Higgs-
Doublet-Models (2HDMs).

3.1 A Second Higgs Doublet

The fundamental idea behind 2HDMs is strikingly simple. Instead of a single Higgs
doublet, as seen in the SM, that looks like

φ =

(
φ+

φ0

)
=

1√
2

(
φ1 + iφ2

φ3 + iφ4

)
, (3.1)

we add a second, such that we have complex scalar SU(2) doublet fields (with hyper-
charge Yi = 1)

Φi =

(
φ+i
φ0i

)
, (3.2)

with i = 1, 2. This yields a richer phenomenology in the Higgs sector. The most general
form of the potential for the new fields Φi can be written as [21]

V2HDM = m2
11Φ

†
1Φ1 +m2

22Φ
†
2Φ2 −m2

12

(
Φ†
1Φ2 + h.c.

)
+
λ1
2

(
Φ†
1Φ1

)2
+
λ2
2

(
Φ†
2Φ2

)2
+ λ3

(
Φ†
1Φ1

)(
Φ†
2Φ2

)
+ λ4

(
Φ†
1Φ2

)(
Φ†
2Φ1

)
+

[
λ5
2

(
Φ†
1Φ2

)2
+ h.c.

]
+
[
λ6

(
Φ†
1Φ1

)(
Φ†
1Φ2

)
+ h.c.

]
+
[
λ7

(
Φ†
2Φ2

)(
Φ†
1Φ2

)
+ h.c.

]
,

(3.3)
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where m11,22 and λ1,2,3,4 are real, and m12 and λ5,6,7 are complex, totalling fourteen
degrees of freedom in V2HDM. The same procedure as for the SM is followed, finding the
ground states which minimise V2HDM, such that the ground states are

Φ0
i =

1√
2

(
0

vi

)
. (3.4)

We note that Eq. 3.4 only generates mass for the d-type quarks. The u-type quarks
gain mass from the isodoublet Φ̃i [22], whose ground states look like

Φ0∗
i =

1√
2

(
vi

0

)
. (3.5)

The real parameters v1,2 can be written

v1 = v cosβ; v2 = veiξ sinβ; tanβ =
v1
v2

(3.6)

such that the vev v is

v2 = v21 + v22 = (246 GeV)2. (3.7)

3.2 Extracting New Physical Higgs States

With two doublet fields, after expanding around the minimum of the potential, we have
eight fields [21]

Φi =

(
φ+i

vi+ρi+iηi√
2

)
, (i = 1, 2). (3.8)

In analogue with the SM Higgs mechanism, three Goldstone bosons, G± and G0, are
‘eaten’ by the weak bosons W± and Z, such that there are five physical Higgs states
remaining. These are the neutral CP -even scalars h and H, the charged scalar h± and
a neutral CP -odd pseudoscalar A.

By convention we take H to be the heavier of the two neutral scalars, and recognise
that presently the Higgs boson discovered within the framework of the SM in 2012 can
be identified with either h or H in 2HDMs. These two scenarios correspond to the
alignments limits cos(β − α) → 0 and sin(β − α) → 0 respectively.
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3.2.1 A Change of Basis

In order to extract physical quantities from the states Φi, we must choose a basis to
work from. We can transform from a given basis to another by rotating the fields with
some 2× 2 unitary matrix U

Φ′
i =

∑
j

UijΦj . (3.9)

One such choice is the Higgs basis [23], which is reached by rotating the Φi fields

(
H1

H2

)
=

(
cosβ sinβ

− sinβ cosβ

)(
Φ1

Φ2

)
. (3.10)

After SSB it is found that the H1 field obtains a vev of v√
2
=

√
v21+v

2
2

2 , while H2 has a
null vev.

From Eq. 3.8, the Goldstone modes are

G± = φ±1 cosβ + φ±2 sinβ; G0 = η1 cosβ + η2 sinβ, (3.11)

the physical charged Higgses are written

H± = −φ±1 sinβ + φ±2 cosβ. (3.12)

For the neutral Higgses, in addition to ρ1,2, we have

ρ3 = −η1 sinβ + η2 cosβ. (3.13)

To obtain the physical neutral Higgs states, we perform a rotation parametrised by α,
such that

h = −ρ1 sinα+ ρ2 cosα; H = η1 cosα+ η2 sinα (3.14)

and A = ρ3, in the case where the specific model concerned is CP -conserving, such that
the ρ3 decouples from the gauge boson pairs at tree level.
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3.2.2 Higgs Masses

Finally, we can write expressions for the masses of the physical Higgs spectrum arising
in the theory. For the pseudoscalar A we have [23]

m2
A =

m2
12

sinβ cosβ
− v2

(
λ5 +

λ6
2

cotβ +
λ7
2

tanβ

)
, (3.15)

for the charged Higgses H±

m2
H± =

m2
12

sinβ cosβ
− v2

(
λ4 −

λ5
2

+
λ6
2

cotβ +
λ7
2

tanβ

)
. (3.16)

For the CP -even states h and H, the mass matrix M

M2 =

(
M2

11M
2
12

M2
21M

2
22

)
(3.17)

is used, where

M2
11 = m2

A sin2 β + v2(λ1 cos
2 β + λ5 sin

2 β + 2λ6 sinβ cosβ)

M2
12 =M21 = −m2

A sinβ cosβ + v2((λ3 + λ4) sinβ cosβ + λ6 cos
2 β + λ7 sin

2 β)

M2
22 = m2

A cos2 β + v2(λ2 sin
2 β + λ5 cos

2 β + 2λ7 sinβ cosβ).

(3.18)

The masses for the CP -even scalar are then given by (taking mH > mh) [24]

mh,H =
1√
2

(
M2

11 +M2
22 ∓

√
(M2

11)−M2
22)

2 + 4M4
12

) 1
2

. (3.19)

3.2.3 Quark Masses

Of course this does not explain how the Higgs gives mass to fermions. As we will see
there are several different iterations of 2HDM, which each treat the generation of quark
masses differently. In further study we limit ourselves to the so-called type II case.

In the type II 2HDM (or 2HDM-II), the u type quarks (i.e. those with charge q = +2/3)
couple to one Higgs doublet, and the d type quarks (q = −1/3) couple to the other.
Conventionally these are taken to be Φ2/Φ1 for the u and d types respectively [25].



3.3. FCNCs in 2HDMs 21

3.3 FCNCs in 2HDMs

Flavour changing neutral currents (FCNCs), are fermion interactions from one flavour
to another, without any change in electric charge - for example an interaction a decay
process that converts a µ− to an e−. In the SM, tree level FCNCs are not allowed,
and beyond tree level FCNCs are suppressed by the Glashow-Iliopoulos-Maiani (GIM)
mechanism [26]. In fact the SM is hugely successful in its treatment of FCNCs - and so
any new physics should not alter this behaviour.

When introducing a second Higgs doublet in a 2HDM, we introduce new potential sources
of FCNCs, which do not agree with current observations, and so a mechanism to suppress
FCNCs is required. In the 2HDM framework described above in Eq. 3.8, we invoke a
Z2 symmetry

Φ1 → Φ1, Φ2 → −Φ2. (3.20)

With this, the potential becomes

V2HDM = m2
11Φ

†
1Φ1 +m2

22Φ
†
2Φ2 +

λ1
2

(
Φ†
1Φ1

)2
+
λ2
2

(
Φ†
2Φ2

)2
+ λ3

(
Φ†
1Φ1

)(
Φ†
2Φ2

)
+ λ4

(
Φ†
1Φ2

)(
Φ†
2Φ1

)
+

[
λ5
2

(
Φ†
1Φ2

)2
+ h.c.

]
−m2

12

(
Φ†
1Φ2 + h.c.

)
,

(3.21)

where we have rearranged the terms, demonstrating that the imposed Z2 symmetry is
softly broken by m2

12. There are in fact four types of 2HDM which can account for the
softly broken Z2 - type I, type II (seen above), type X and type Y.

3.4 Phenomenology of 2HDMs

We have laid the foundations of the theoretical framework of 2HDMs, and so we now dis-
cuss the phenomenology of 2HDMs, including a discussion of LHC searches for evidence
of 2HDM particles.

3.4.1 Theoretical Model Constraints

Before investigating the experimental searches, and hence regions of explored parameter
space, there are important constraints on certain parameters.
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3.4.1.1 Vacuum Stability

In order for the vacuum to be stable we require that the potential V2HDM is positive,
which implies the following constraints on the λi (i=1,..,7) [23]

λ1,2 > 0; λ3 > −
√
λ1λ2. (3.22)

For the case where either λ6 or λ7 are zero, we also require

λ3 + λ4 − λ5 > −
√
λ1λ2, (3.23)

and where both λ6 = λ7 = 0, λ5 is replaced with |λ5| in the above expression.

3.4.1.2 Tree-Level Unitarity

A further constraint comes from the scattering matrices, which are required to be unitary.
This implies that the eigenvalues, which are given by

a± = 3 (λ1 + λ2 + 2λ3)±

√
9(λ1 − λ2)2 +

(
4λ3 + λ4 +

1

2
(λ5 + λ6)

)2

b± = λ1 + λ2 + 2λ3 ±
√
(λ1 − λ2)2 −

1

4
(2λ4 − λ5 − λ6)

2

c± = λ1 + λ2 + 2λ3 ±
√

(λ1 − λ2)2 +
1

4
(λ5 − λ6)

2

e1 = 2λ3 − λ4 −
λ5
2

+
5λ6
2

e2 = 2λ3 + λ4 −
λ5
2

+
λ6
2

f+ = 2λ3 − λ4 +
5λ5
2

− λ6
2

f− = 2λ3 + λ4 +
λ5
2

− λ6
2

f1 = f2 = 2λ3 +
λ5
2

+
λ6
2

p1 = 2(λ3 + λ4)−
λ5
2

− λ6
2
,

(3.24)

obey the conditions [27]

|a±|, |b±|, |c±|, |e1|, |e2|, |f+|, |f−|, |f1|, |p1| ≤ 8π. (3.25)
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3.4.1.3 Oblique Parameters

The oblique parameters S, T and U [28] (along with their higher order cousins V , W and
X [29]) are a powerful tool in measuring deviations from the SM, via precise electroweak
interaction measurements.

The parameters themselves encode loop corrections to electroweak gauge interactions,
and are computed via a litany of electroweak diagrams. By convention, in the SM
S = T = U = 0, such that a non-zero value for any of the observables give a large
hint on the existence of BSM physics. In particular, for 2HDMs, there are corrections
contributing to S, T and U arising explicitly from the extra Higgses, in particular in
their loop contributions and couplings to the SM Higgs boson [30].

3.4.2 2HDMs at the LHC

Clearly, as the particle content in 2HDMs are indeed richer than predicted in the SM,
perhaps the most obvious route to discovering evidence of 2HDMs is via the detection
of one of the unobserved Higgs states, to follow the 125 GeV Higgs boson in 2012.

3.4.3 (Pseudo)Scalar Higgs Decays

3.4.3.1 H → hh Decays

The process of interest throughout this thesis is entirely between the CP -even, neutral
scalars, h and H. Where it is kinematically possible, i.e. for mH > 2mh, we can
observe decays from the heavier Higgs H to a pair of lighter Higgses hh. Assuming for a
moment we identify h with the observed Higgs boson, so mh = 125 GeV, then the decay
channels are well known [31]. In particular, the dominant decay channel is h→ bb̄ (with
a branching ratio of around 57%).

With the above, we can therefore observe decay chains of the form H → hh → bbb̄b̄,
leading to high multiplicity b-jet final states at the LHC. Such final states are part of
active searches, for example at the ATLAS detector [32], along with mixed final states
from H → hh decays, such as bb̄τ+τ−, bb̄γγ and bb̄W+W−. We limit our focus to the
bbb̄b̄ final states in part II.

3.4.3.2 h/H → AA Decays

In analogue with the above, there are also experimental searches involving the pseu-
doscalar A. For example, where kinematically permitted, h/H → AA → γγγγ [33] or
h/H → AA→ τ+τ−τ+τ− [34].
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3.4.4 Charged Higgs Decays

As mentioned, the research in this thesis is primarily focused on the decays from the
scalar particles in the extended 2HDM Higgs family, however other searches are of course
possible, such as via the charged Higgses H±.

There are a range of possible avenues for charged Higgs searches, depending on the mass
mH± . In the lower mass region, the dominant production mechanism for the charged
Higgs comes from top decays t→ H+b, with H+ → τ+ν.

At higher masses the reverse occurs, with H+ → tb, as well couplings with other Higgses
via W± bosons H± → h/AW±. These only cover a small portion of possibilites, For
comprehensive review of charged Higgs searches at the LHC, we refer the reader to [35].
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Chapter 4

Jet Physics

We now move on to a review of the physics of jets, which are of paramount importance
in mapping between messy final states in high energy experiments, and details of the un-
derlying hard interactions. The latter are of course are required for discovering evidence
of BSM physics.

4.1 Jet Formation - Revisiting QCD

We will later see that the a jet is not a fundamental object in a QFT, and instead
requires a jet definition to be observed and studied. The foundational basis for such a
requirement arises due to nature of the strong force in a high energy particle detector
environment, in particular the feature of colour confinement in QCD.

In particular, jets arise from quarks and gluons, collectively referred to as partons in
this context. If, in some event in a particle collider, a hard interaction results in partons
in the final state, these undergo several processes between the hard interactions and the
detector, which we outline below.

4.1.1 Parton Showering

The first step in the genesis of jets is so called parton showering, which is a series of
small angle splittings from a parton, as shown in Fig. 4.1.

Consider the production of a quark antiquark pair from an electron positron collider,

e+e− → qq̄. (4.1)
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As the quark and antiquark traverse away from one another over sufficiently large enough
distances, we have seen that the strong force between them increases in strength. This
can be further expressed in the QCD potential for a qq̄ separated by distance r, which
contains a term linear in r

VQCD ∼ −4

3

αS
r

+ κr. (4.2)

The gluon flux tube connecting the qq̄ pair is elongated as they move farther and farther
apart, and when the length exceeds some critical value the tube “breaks”, whereby it is
energetically favourable for the formation of an addition qq̄ pair, forming a set of two
qq̄ pairs [36].

This is however not the full story, as partons can also emit gluons, which themselves
can undergo transitions into a pair of gluons or a quark antiquark pair, i.e. the vertices
gqq̄ and ggg are permitted. As a simple picture, consider the probability of a parton
(labelled X) to emit a quark or gluon, given by

P(X → Xg) ∼ αs

∫
dE

E

dθ

θ
, (4.3)

for an angle θ, and at outgoing energy E. We can see this diverges at low θ, which
represents the angle of emission, and so the probability of radiating a gluon at small
angle will dominate over large angle emissions. A series of emissions will therefore be in
collimated flows - this is the starting point for a jet.

Due to the E integral, there is also a soft singularity as E → 0. The mechanism by
which this is remedied is slightly more subtle, and occurs via the cancellation of diagrams
corresponding to real and virtual corrections to IRC safe observables [37].

Generalising to various kinds of splittings, one can write down the Dokshitzer-Gribov-
Lipatov-Altarelli-Parisi (DGLAP) equation, which encodes the behaviour of partons in
hadron collisions via the parton distribution functions (PDF) f(x, µ), at some energy
scale µ

µ
∂

∂µ
fj(x, µ) =

∑
j

∫ 1

x

dz

z

αS
2π
Pij(z)fj

(x
z
, µ
)
. (4.4)

The sum represents a generalisation to multiple parton splittings, and the Pij(z) repre-
sent the splitting functions, for a j → ik splitting with i taking a fraction z of the total
momentum of j. We can write the splitting functions [10]
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Pqq(z) ∼
1 + z2

(1− z)+
+

3

2
δ(1− z)

Pqg(z) ∼ z2 + (1− z)2

Pgq(z) ∼
1 + (1− z)2

z

Pgg(z) ∼
z

(1− z)+
+

1− z

z
+ z(1− z) + δ(1− z).

(4.5)

Fig. 4.1 provides a schematic picture of what happens after a series of splittings, forming
a group of partons at small angle with the incident quark.

1

Figure 4.1: A demonstration of a quark undergoing multiple collinear splittings, also
know as parton showering.

4.1.2 Hadronisation

As we have established, the QCD coupling α runs with energy scale Q. Considering the
environment inside a detector, the primary interaction vertex where the accelerated par-
tons collide is at high energy, such that we are in the perturbative regime for QCD where
quarks gluons are (almost) free. By the time particles reach the detector however, we
are at larger distance scales, and hence lower energy scales, such that quarks and gluons
are strongly coupled, and perturbation theory no longer holds. This is where hadroni-
sation (also referred to as fragmentation) occurs, whereby coloured partons form stable
colourless hadrons (such as pions or kaons) which are eventually found in detectors.

A key concept for approaching hadronisation models is the local parton-hadron duality
(LPHD) [39], which states that there is a similarity between global jet features computed
at parton level (that is after showering, but before hadronisation) and those measured
(i.e. the ones after hadronisation).
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π±

π0

K±

K0

η

1

Figure 4.2: The showering process in Fig. 4.1, with hadronisation, whereby partons
join to form colourless hadrons.

4.1.2.1 Longitudinal Tube Model

A particular, simple example of a hadronisation model is the longitudinal tube model
[40], where hadrons arising from a pair of colour-connected partons are confined to a
cylinder in (y, pT ). Here y is the rapidity coordinate defined by [41]

y =
1

2
ln

(
E + pz
E − pz

)
, (4.6)

for a particle with energy E and momentum along the z-axis (taken to be the beam line
in colliders) pz. Defining the hadron density, ρ(pT ), the energy and momentum for a jet
is written

E =

∫ Y

0
dy d2pT ρ(pT )pT cosh y = λ sinhY

p =

∫ Y

0
dy d2pT ρ(pT )pT sinh y = λ(coshY − 1) ∼ E − λ,

(4.7)

where we are integrating over a tube of length Y. We also have

λ =

∫
d2pT ρ(p

2
T )pT , (4.8)

which sets the scale for hadronisation.
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4.1.2.2 Lund String Model

A more realistic model of hadronisation, used in modern fragmentation and hadronisa-
tion simulation software, is the Lund string model [42]. As the name suggests, in such
a model one treats the interactions between partons as a one dimensional string.

Considering again the simplest example of a qq̄ pair, one can construct a Hamiltonian
for the string system binding together two quarks (which we label i and j respectively)
as

H = Ei + Ej + κ∆xij , (4.9)

where ∆xij is the qq̄ separation ∆xij = |xi − xj |, and κ refers to the string tension.
One can image a mode where the quark separation fluctuates periodically between some
maximum value ∆x′ and zero, in a bouncing ‘yo-yo’ like motion. However, as we have
seen, one of the driving mechanisms of hadronisation is the ability for the strings to
break due to build up of potential energy in the string.

If we label the initial quark antiquark pair as q0q̄0, then after a splitting we produce a
new quark pair q1q̄1, which are organised into bound states q0q̄1 and q1q̄0. The newly
produced hadron h (q1q̄1), carries a fraction z of momentum modelled by the distribution

f(z) ∼ (1− z)a

z
e−b

m2
h
z , (4.10)

where a and b are parameters tuned via experimental data.

4.2 Jet Clustering Algorithms

We have seen that the large distance behaviour of QCD leads to parton showering
and fragmentation, which deposits collimated sprays of colour neutral hadrons in the
detectors of large scale particle collider experiments. However, a jet is not a fundamental
object of the theory, and so in order to become well defined we are required to implement
some kind of jet definition.

In order to define jets, we use jet clustering algorithms, which act a map from the messy
detector environment containing sprays of hadrons, back to the original hard interaction
that took place. Once defined, the jets can be ‘tagged’ based on the parton from which
they originated, which can then be used to infer which kind of interaction took place.
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4.2.1 Higgs Decays into bb̄ Pairs

As an example of using jets to infer hard physics, consider the production of a single
Higgs boson in the SM, which then decays via its most familiar products, a bb̄ pair [43].
Assuming for a moment that the Higgs is produced at rest, the outgoing b-(anti)quarks
will be back to back, resulting in two well resolved jets. The jets can then be b-tagged
(more on tagging later), and by plotting the invariant mass of the dijet system (that is,
the two b-jets combined), we will observe a peak around the mass of the Higgs boson.

1

Figure 4.3: Schematic of a back to back dijet system at parton level (that is, we do
not display the effect of hadronisation), where the blob represents the Higgs production

in our example.

We can see the dynamics of a back to back jet system in Fig. 4.3. This is of course a
simplistic scenario, and treating the intermediate state (the Higgs in this example) at
rest will generally not be the case in a real experiment. We will come back to more
complex examples later on in this section.

Assuming that we can indeed correctly identify these jets are originating from b-quarks,
and so they are labelled as b-jets, we then construct the invariant mass of the dijet
system to see where the bb̄ came from.

Generating a small sample of Monte-Carlo events, we can see the kind of mass distribu-
tion one might observe for a pair of b-jets from a SM like Higgs boson in Fig. 4.4. Of
course in order to define jets here, we have applied a jet algorithm, which we review in
the next section.

4.2.2 Sterman-Weinberg Jets

The first jet algorithm was developed in 1977 by Sterman and Weinberg [44], in the
context of e+e− collisions into hadrons at the SLAC experiment. It was found that at
high energies, e+e− → jj processes dominate, which were noted to follow an angular
distribution comparable to that of a pair of charged spin-12 point particles, of 1+ cos2 θ.
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Figure 4.4: The mbb̄ distribution from the decay of an SM Higgs boson (mh = 125
GeV).

In the Sterman-Weinberg algorithm, events are classified as containing two jets if a
fraction of the entire energy of the event, 1 − ε, can be contained within two cones
of half-angle δ. We can write this for an event with total energy Etot, the final state
daughters arising from the showering of two partons, i and j, with combined energy Ei
and Ej respectively, are classified as two distinct jets if

Ei + Ej > (1− ε)Etot (4.11)

where the respective products from i and j are contained within an angle

θi, θj ≤ δ. (4.12)

We can see this diagrammatically in Fig. 4.5.

Despite referring to this as the first clustering algorithm, this is perhaps a small mis-
nomer. The Sterman-Weinberg algorithm is actually an example of a cone algorithm,
rather than a clustering algorithm. The former aim to directly construct a stable cone
out of the final state radiation, where no actual ‘clustering’ takes place. Alternatively,
algorithms that explicitly cluster particles together are referred to as sequential recom-
bination algorithms.
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Figure 4.5: Demonstration of Sterman-Weinberg jets.

4.2.3 JADE Algorithm

The first such example of a sequential recombination algorithm is the JADE algorithm
[45]. As the name suggests, such algorithms work by iteratively combining the final state
particles. An intuitive way of thinking about this is that we are reversing the showering
process, back to the parton from which the jet originated from.

To implement such an algorithm, we must define a distance measure between a pair of
particles i and j. For JADE, we use

dij =
m2
ij

E2
tot

∼ 2EiEj(1− cos2 θij)

E2
tot

, (4.13)

where Etot represents the energy in the entire event. The algorithm then proceeds as
follows

→ Calculate dij for all possible pairs ij

→ Find the pair with the minimum dij , which we refer to as i0 and j0

→ Define a cut off distance measure, d0

→ If di0j0 < d0, particles i0 and j0 are combined into a single object

→ Repeat the above steps until di0j0 > d0, at which point all particles are declared
as jets.
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1

Figure 4.6: Visualisation of two particles i and j being combined in a sequential
recombination algorithm.

We note that the distance measure vanishes both for collinear pairs, i.e. θij → 0, and
also for soft particles Ei/j → 0. In practice, as the algorithm works through an event, it
will prioritise clustering regions with collinear and soft emissions, however this has the
potential to cause issues, where two soft particles (Ei, Ej → 0) that are widely separated
are clustered before some other pair, as the energy of both particles are accounted for
in dij .

Clearly this algorithm is significantly more intensive than cone algorithms, however
comes with performative advantages. The flexibility of having a single input parameter
d0, allows the JADE algorithm to behave well to multijet events, which become tricky
when using cone algorithms.

4.2.4 k⊥ Algorithm

Shortly after the JADE algorithm was developed, the next sequential was designed,
the k⊥ Algorithm [46]. This was also developed primarily in the context of e+e− →
hadrons events, and comprised primarily of a small tweak to JADE rather than a rigorous
overhaul.

As we mentioned, the behaviour of the the distance measure dij caused wide angle soft
particle pairs to be clustered ahead of perhaps more sensible choices, and so a modified
distance measure was introduced,

dij =
2min(E2

i , E
2
j )(1− cos2 θ)

E2
tot

. (4.14)

All we’ve done here is replace the product EiEj with min(E2
i , E

2
j ). The min function

here means that only the energy of the softer of the particle pair i, j is accounted for,
and so particularly soft particles will be clustered with nearby neighbours rather than
other soft particles at wide angles. The algorithm then proceeds in the same way as
JADE, clustering pairs that minimise dij until all remaining pairs exceed the cut off d0.



34 Chapter 4. Jet Physics

4.2.5 Generalised kT Algorithm

The generalised kT algorithm [47] proceeds similarly to above, using a modified distance
measure

dij =
min(pnTi, p

n
Tj)∆R

2
ij

R2
, (4.15)

where the quantity

∆R2
ij = (yi − yj)

2 − (φi − φj)
2 (4.16)

represents the angular separation between particles i and j, where y and φ refer to the
rapidity azimuthal angle for a given object, and R is the input parameter, analogous to
d0 in the JADE algorithm. To proceed with the algorithm, we also define the so-called
beam distance for each single object i, defined as 1

dBi = pnTi. (4.17)

The algorithm then proceeds as follows, where we introduce a new naming convention
that each intermediate object in the set of particles being clustered is referred to as a
pseudojet until it is declared as a jet,

→ Calculate dij for all possible pairs ij, and dBi for all particles i

→ The minimum of the set (dij , dBi) is taken, which we refer to as d0

→ If d0 is a dij , the pseudojets i and j are combined into a new object

→ Alternatively if d0 is instead a dBi, then pseudojet i is declared a jet and removed
from the sample

→ The above steps are then repeated until all objects have been combined and de-
clared as jets.

In analogue with the JADE algorithm, the generalised kT only has a single input pa-
rameter, this time R. We can think of R as a kind of jet size (though this is not strictly
accurate - however generally a larger value of R will yield jets with a larger radius). We
can explicitly see the effect of R by considering the following, for a given pair of objects

1Note here an alternative notation is possible, whereby R is absorbed into the beam distance, such
that dij = min(pnTi, p

n
Tj)∆R2

ij and dB,i = pnTiR
2. In fact we will refer back to this notation in part II.
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i and j (where we will take i as the object that minimises min(pTi, pTj)), such that we
have

dij =
pnTi∆R

2
ij

R2
=

∆R2
ij

R2
dBi. (4.18)

In order to preferentially declare i as a jet over combining it with pseudojet j, we
therefore require

∆R2
ij

R2
< 1, (4.19)

such that R acts as a cut-off for clustering objects together. As alluded to by the name,
there are multiple iterations of the generalised kT , each of which have their own distinct
benefits and drawbacks.

4.2.5.1 The Anti-kT Algorithm

We begin with the most popular of these flavours, the anti-kT (AK) algorithm [48]. In
this form of the generalised algorithm, we set the variable n = −2, such that in the
distance measures dij and dBi the transverse momentum appears as 1/p2T - hence the
name “anti-kT ”.

dij = min

(
1

p2Ti
,

1

p2Tj

)
∆R2

ij

R2
, dBi =

1

p2Ti
. (4.20)

Consequently, harder particles will have a suppression in their respective distance mea-
sures dij and dBi’s, and hence be preferentially clustered over softer particles. The
resulting jets from anti-kT clustering therefore tend to have a well defined shape around
a hard central core of particles.

4.2.5.2 The Cambridge-Aachen Algorithm

The main other version of the generalised kT algorithm is the Cambridge-Aachen (CA)
algorithm [49]. Here we take n = 0, producing the modified distance measures

dij =
∆R2

ij

R2
, dBi = 1. (4.21)

A stark difference between the CA and the other sequential recombination algorithms
is immediately obvious, CA had no dependence on the transverse momentum of the
particles being clustered, and is hence purely geometrical.
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4.2.5.3 Anti-kT vs Cambridge-Aachen Jets

We saw that the AK algorithm will preferentially cluster jets around hard particles, the
CA however only cares about the proximity from one potential constituent to the next.
This behaviour can lead to more erratically shaped jets, with a less well defined shape,
which can be advantageous in certain situations, such as resolving fat jets.

In Fig. 4.7 we observe the same event, clustered with the two kT algorithms, both with
parameter R = 0.4. We observe the different behaviour of the two algorithms, most
notably in the sub-leading jet. When using the AK4 algorithm, the jet catchment area
is enhanced by the central hard particles, such that significantly more particles are swept
in. In fact this effect is so great, the jet loses enough radiation to drop a position in the
pT ranking. In the CA4 case, we have seen already that clusters are dictated by distance,
leading to a more even split of particles in the region between the two overlapping jets.

However, how do we know which of these algorithms is performing ‘correctly’? In the
case where we have access to Monte-Carlo information, we can of course manually track
the ancestry of each final state hadron, to check which parton it originated from. Of
course this is not useful for real experiments, where we do not have access to such
information, but there is a modern class of algorithm which potentially solves this issue.

4.2.6 Variable-R Jets

A concept we have not yet covered yet, is selecting an optimal value for the input
parameter R. Clearly it is not the case that all jets will fit into a single cone size, and
so some thought is required when selecting a particular value.

In fact the angular separation of a given jet can be approximated by the following

R ∼ 2m

pT
, (4.22)

in particular note the dependence on jet pT . For hard (high pT ) jets, one can expect
tightly compact narrow cone jets, for softer jets (low pT ), the resulting jet constituents
are more spread out. So a jet definition which accounts for this behaviour should be
expected to cluster jets of different sizes accurately - enter variable-R [50].

As the name suggests, variable-R (VR) algorithms remove the need the settle on a single
fixed cone, which might be not be suitable for multijet events involving boosted objects.
In VR algorithms, the distance measure dij is modified

dij =
min(pnTi, p

n
Tj)∆R

2
ij

R2
eff(pTi)

, (4.23)
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Figure 4.7: The same pp→ jjjj event, clustered with (upper) the anti-kT algorithm,
and (lower) the Cambridge-Aachen algorithm, both using R = 0.4. Diamonds with
black edges refer to the position of the jet, whereas the circles represent each jets

constituents, with the size representing the pT of the particle.
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where Reff replaces the fixed input parameter R in traditional algorithms,

Reff(pTi) =
ρ

pT
. (4.24)

We immediately notice the new measure Reff encodes Eq. 4.22, where ρ is a dimensionful
input parameter, which is generally set to match the pT scale of the jets in the event
being clustered.

The algorithm proceeds in the same way as the generalised kT , with dBi taking the same
form as before. We also notice the appearance of n in dij , such that the VR algorithm
can modified to mimic the AK or CA algorithms.

We will revisit VR algorithms in the next part of this thesis, where the performance
of such algorithms are compared against traditional clustering algorithms on particular
2HDM processes involving high jet multiplicity final states.

4.2.7 Infrared and Collinear Safety

When constructing a jet algorithm, there is a one property that is of particular impor-
tance, the concept of infrared and collinear (IRC) safety. For a jet algorithm to be IRC
safe, the resultant jets should remain unchanged for a sample of particles with addi-
tional soft (E → 0) and collinear (θ → 0) emissions. As we have demonstrated, soft,
collinear splittings are a natural ingredient of the parton showering process, and our jet
algorithms indeed ought to be resistant to such emissions.

Generally, cone algorithms, which have not been discussed in detail here, have difficulties
with IRC safety. Thankfully however the sequential recombination algorithms we have
discussed here are indeed IRC safe. In the next part of this thesis we will review
the performance of a new approach to clustering, whereby IRC safety is not a priori
guaranteed, and so performative tests are required.

4.3 Jets at the LHC

So far we have focused primarily on jets from a theoretical perspective, and so moving
on to our final background discussion, we consider jets as they arise in high energy
experiments.
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4.3.1 The CMS Detector

There are a number of concurrent experiments at the LHC, including ALICE, ATLAS,
CMS and LHCb, each of which are designed with different goals in mind. We limit our
discussion to the CMS (Compact Muon Solenoid) detector.

The CMS experiment is designed as a general purpose detector, aiming to address a series
of BSM physics endeavours, such as dark matter, Higgs physics (including extended
Higgs sectors), and extra dimensions. It is comprised of five layers, the tracker, the
electric calorimeter (ECAL), the hadron calorimeter (HCAL), the magnet, and the muon
detectors [51].

4.3.2 Detector Geometry

The LHC is the largest particle collider in the world, comprising of a circular tube
of circumference 27km. At the point where the protons converge upon one another,
the resulting hadrons (after showering and hadronisation of course) are ejected in all
directions about the interaction point, sometimes referred to as the primary vertex. The
shape of the detector about the beamline is thus shaped like a cylinder, with end caps
on the flat sides to cover emissions from as small angles from the beamline as possible.

With this geometry in mind we can define the coordinate conventions used at the de-
tectors. We take the beamline as the z-direction, and define the following angular
coordinates [51],

η = − ln

(
tan

θ

2

)
=

1

2
ln

(
|p|+ pz
|p| − pz

)
, (4.25)

known as the pseudorapidity. The angle θ is the angle made to the z-axis, i.e. the in-
coming beamline. We also express η in terms of the three-momentum and z-momentum.

The second coordinate used is the angle φ, which rotates about the beamline. In fact
we have seen this coordinates in action before, in Fig. 4.7, where we have taken a slice
along the detector, and ‘unravelled’ into a flat two dimensional coordinate system to
image the radiation in an event.

4.3.3 Jet Tagging

As we have seen, clustering jets into suitable cones is only half of the battle, in order to
extract useful physics we must of course determine which kind of parton the jet came
from - this is done via jet tagging. We will limit our discussion to the tagging of jets
coming from b-quarks, suitably named b-jets.
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Figure 4.8: Demonstration of the psuedorapidity η with respect to the beamline of
an event at the LHC.

ẑ
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Figure 4.9: Demonstration of the azimuthal φ angle with respect to the beamline
(moving into the page) of an event at the LHC.

4.3.3.1 Impact Parameter

The key feature behind traditional b-tagging is in the lifetime of hadrons containing
b-quarks, B-hadrons [53]. In a decay originating from a b-quark, this lifetime is suf-
ficient enough for the B-hadron to travel some measurable distance from the primary
interaction point, which is referred to as the impact parameter d0.

A good indicator on whether a jet came from a b-quark using this information is therefore
to trace back tracks in the jet to their point of origin, if they align with some point
separated from the hard interaction, the secondary vertex, the jet is more likely to be
given a b-tag.
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Figure 4.10: Diagram of the impact parameter from a B-hadron decay.

4.3.3.2 Origin of the b Lifetime

Before moving on to features within jet tagging, we take a quick detour to describe the
origin of the b lifetime, which as we have seen is sufficiently long for the measurement
of the impact parameter distance.

Consider the decays of a b-quark. Due to FCNC’s, decays into d or s quarks are prohib-
ited, and so the b decays into either u or c quarks, which occurs via the weak interaction.
We can see this diagrammatically in Fig. 4.11 for the example of b→ cW−.

b

c

W−

d

ū

1

Figure 4.11: Example of a b weakly decaying into a c and W−.

The coupling between pairs of different quark flavours are found in the Cabibbo-Kobayashi-
Maskawa (CKM) matrix [54]
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Vud Vus Vub

Vcd Vcs Vcb

Vtd Vts Vtb

 =

0.97370± 0.00014 0.2245± 0.0008 (3.82± 0.24)× 10−3

0.221± 0.004 0.987± 0.011 (41.0± 1.4)× 10−3

(8.0± 0.3)× 10−3 (38.8± 1.1)× 10−3 1.013± 0.030

 .
(4.26)

We can see that both Vcb and Vub << 1, corresponding to rare decays - which conse-
quently gives the b its sufficiently long lifetime to make b-tagging possible.

4.3.3.3 Modern Jet Tagging

In recent times there has been significant work on jet tagging, in particular making use
of machine learning methodologies, which we will discuss in the next chapter on machine
learning in high energy physics.

4.3.4 Boosted Jets

A prominent feature of jets, in particular jets arising from some intermediate particle
of interest, are boosted jets [55]. Consider the example of an SM Higgs boson decaying
into a pair of b-jets, simple conservation of momentum tells us that for a Higgs at rest,
the decaying bb̄ pair will be back to back, and hence in our detectors be collected as two
distinct objects.

However, in high energy collisions the Higgs can be created with significant momentum,
which we refer to as being ‘boosted’, and so the decay products will be created with a
component of their momentum in the direction of the parent Higgs, and become squeezed
closer together. For sufficiently boosted Higgses, we can therefore encounter a scenario
where the two resulting b-jets are so close together that clustering algorithms struggle
to reconstruct the two individual jets, as there may be overlap between radiation.

Instead of trying to reconstruct the two b-jets individually, we can instead construct a
single wide cone (large R) object, called a ‘fat jet’, which is comprised of two subjets
(namely the jets from the decaying Higgs). We would then expect to be able to extract
the Higgs mass from the invariant mass of this single fat b-jet.

4.3.5 Pile-Up and Jet Substructure

So far we have limited our discussion to simple scenarios whereby the only radiation in
an event comes from the hard interaction we are interested in, for example from an SM
Higgs production. In real life this is not at all the case - a given event will have emissions
from a number of interactions, which is known as pile-up (PU).
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Figure 4.12: The merging of jets due into a single object due to a boosted decay.

At the LHC, instead of accelerating single proton pairs for collision, large bunches com-
prised of billion of protons are accelerated around the ring, up to 2556 bunches at a time,
spaced out by around seven meters, which equates to roughly 25 nanoseconds. There-
fore, when collisions occur, multiple protons collide at separate interactions points, up
to around 50 interactions per bunch recorded at CMS.

4.3.5.1 Pile-Up Per Particle Identification

A popular method for PU removal is the Pile-Up Per Particle Identification (PUPPI)
[56]. PUPPI relies on the fact we can trace back the interaction vertex from which
charged tracks originate, such that charged tracks from a vertex displaced from the
interaction point of interest can be removed. However charged particles only account
for around 60% emissions from a pp interaction, so we must still remove the neutral
radiation arising from PU events.

In PUPPI, a parameter α is defined, known as the shape, that estimates a probability
of a given particle arising from a PU event,

αi = log
∑
j

PTj
∆Rij

Θ(∆Rij −Rmin)Θ(R0 −∆Rij). (4.27)
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Here Θ is the Heaviside step function, and R0 and Rmin are input variables, R0 defines a
cone around particle i, such that only particles j within R0 are included in the sum. Rmin

acts as a minimum cut-off that regulates collinear splittings from i, and only particles j
separated from i by at least Rmin are included in the sum.

One can then plot a distribution of α for all particles, to identify which are believed
to have originated from PU. Generally we notice that neutral PU particles follow the
same pattern as charged PU particles, such that neutral PU can be identified from the
charged PU particles.

4.3.5.2 Jet Grooming

Another methodology of PU removal comes with so called jet grooming. Jet grooming
involve methods of tidying up the radiation inside a jet, such that only particles coming
from a particular particle of interest are kept (for example a bb̄ pair coming from a Higgs
boson). Here we briefly review a few methods of jet grooming.

4.3.5.3 Jet Trimming

Trimming is a method used on fat jets [57]. To cluster a fat jet, a large R parameter is
used in sequential reconstruction algorithms, however as we have seen, there still exist
the underlying subjets associated with the decay products of the boosted particle.

In the trimming procedure, we recluster the constituents of the fat jet with a smaller R,
into subjets. For the sample of subjets i, we keep only those that satisfy

pTi = Λfcut, (4.28)

where fcut is a cut-off parameter, and Λ a hard momentum scale. The resulting, trimmed,
jet, is the sum of the subjets i which satisfy Eq. 4.28. Radiation arising from the hard
partons of interest should be confined to small comes, such that the reclustering should
be able to locate the remnants from the areas of interest, while additional uninteresting
radiation we expect to be uniformly distributed, and hence will not sneak past the cut.

4.3.5.4 Jet Pruning

Another method of jet grooming is pruning [58]. The basis of jet pruning is that generally
the final radiation to be clustered into a jet are soft, wide angled emissions, which can
have a severe impact on the resultant jet mass, and hence impact the ability to extract
meaningful physics from jet variables.
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Given a jet, pruning works by reclustering the constituents using the CA algorithm, and
then unravelling the clusters, i.e. forming a series of splittings. For a particular splitting
k → ij, the following parameters are computed, firstly

z =
min(pTi, pTj)

pTk
. (4.29)

This parameter acts as a measure of the softness of the emissions, and is compared with
an input value zcut. We also make a measure of the angular separation of i and j against
a cut-off value,

∆Rij > Dcut. (4.30)

For a pair of splittings ij that satisfy z < zcut and ∆Rij > Dcut, the softer (lower pT )
particle is removed and the process continues, until a sufficiently hard split is found.

4.3.5.5 Softdrop

More recently, the pruning algorithm described above has been modified into the so-
called softdrop algorithm [59]. Softdrop proceeds in the same way as pruning, with a
different removal criteria. The condition for keeping a particle in softdrop is that a pair
ij satisfy

min(pTi, pTj)

pTi + pTj
> zcut

(
∆Rij
R0

)β
, (4.31)

else the softer of i and j are removed. Here, both zcut and β are input parameters, and
hence can be tuned to optimise the softdrop performance.

4.3.5.6 N-Subjettiness

Another method of accessing jet substructure is via the parameter N -subjettiness [60].
The N -subjettiness for a jet k, τNk, is defined by the measure

τNk =
1

d0

∑
i

pTimin(∆Rji). (4.32)

To deconstruct this, the label j ∈ (1, N) here identifies the candidate subjets inside jet
k for which we are computing τNk for, and the i iterate over the constituent particles
inside the jet k. What we have inside the min(...) function therefore, is that we are
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choosing the subjet j with smallest angular distance ∆R (defined in Eq. 4.16) to a given
constituent i. The leading factor is

d0 =
∑
i

pTiR, (4.33)

where R is the value used to cluster the original jet. It is straightforward to interpret
τNk, the output value simply scales with how likely a jet is to contain at least N + 1

subjets, whereas for small values a jet is likely to be comprised of N or fewer subjets.
For example, if for a jet k, we compute τ2k >> 0, then there is a significant amount of
radiation aligned away from the two candidate subjets. We therefore compute for three
subjets and find τ3k ∼ 0, which implies most of the radiation inside k is aligned well
with the three candidate subjets.
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Chapter 5

Machine Learning in High Energy
Physics

In the final of our background chapters, we will briefly review some of the foundations
behind machine learning (ML), with a focus on the application of ML in high energy
particle physics experiments.

5.1 An Introduction to Machine Learning

Despite being perceived as a cutting edge, modern area of research, the term machine
learning was in fact coined in 1959 by Arthur Samuel, and has been in the realm of
active research ever since. The fundamental idea behind machine learning is, in essence,
a novel way of approaching problems with data.

Tom Mitchell provided the following quote which succinctly describes ML - “A computer
program is said to learn from experience E with respect to some task T and some
performance measure P, if its performance on T, as measured by P, improves with
experience E”.

5.1.1 A Jet Physics Example

Let’s consider an example in jet physics - the problem of b-tagging discussed in the
previous chapter. The traditional way of tackling such a problem is to come up with
a set of rules, likely derived from the underlying physics, in order to deduce a way to
estimate the probability a jet arose from a b-quark. There are numerous issues with this
kind of approach, for example such methods clearly do not generalise well to changes
in the underlying rules. Of course this is unlikely to cause significant issues in physics,
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but in the unlikely scenario where we find that our understanding of QCD is not quite
correct, the rules for our tagger would need to be altered correspondingly.

So how does using ML differ? Instead of coming up with the rules by hand, we collect
a large sample of data and feed into an ML algorithm of choice (determined by the
exact problem at hand), which we can ‘train’ to come up with its own rules for assigning
b-tags. An important feature that is present when using many ML techniques is the
ability to look under the hood at the model that has been created, such that we can
see what it is the algorithm has learned, and in particular understand why particular
decisions have been made.

With the ML approach, as we are not feeding in information by hand, we are less
susceptible to issues arising if the ‘rules’ change. As mentioned this is perhaps unlikely
in the context of this specific jet physics example, but in a simpler implementation,
such as identifying junk email, it is perhaps more intuitive to imagine a scenario where
identifiers of spam email change over time. In such cases, so long as we continue to
train the model on new data, the algorithm will continue to learn the features it needs
to perform adequately.

5.1.2 Classifying Machine Learning

Modern ML can be applied to a vast array of problems, due to the diverse range of
techniques available, which we briefly review here.

5.1.2.1 Supervised Learning

Supervised learning is classified as such due to the fact that the dataset used to train
a model contains truth labels of the variable we are trying to predict, which is referred
to as the target class. In the example of jet tagging, what this means is that for each
jet, we have a dataset, comprised of a series of variables we believe will be suggestive of
whether the jet came from a b (in ML these variables are referred to as features), and
we also have label telling us whether the jet actually has a b-tag or not.

5.1.2.2 Classification

The jet tagging example is a classification problem - we are categorising between a set of
discrete target labels, in this case two, i.e. b-jet or not a b-jet. Classifiers with two target
classes are referred to as binary classifiers, but this is not a requirement for classification
problems. Cases where we are classifying between more than two different categories
are sometimes referred to as multiclass classification problems.
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5.1.2.3 Regression

Conversely to classification, but still within the realm of supervised learning, there are
regression problems. Regression is useful if we would like to make a prediction on a
continuous target variable. One can in fact frame classifications as regression problems,
instead of predicting a particular class, we can output the probability that a particular
instance belongs to a certain class. In fact this a common strategy with classifiers, as
one can therefore experiment with different cut-off’s for making a prediction for a given
class.

Referring back to the jet tagger, in order to reduce the number of jets we incorrectly
assign a b-tag to, we might only want to tag jets we are more confident should be assigned
a tag, for example jets which our algorithm outputs a probability of at least 70%.

5.1.2.4 Unsupervised Learning

In contrast to supervised learning, unsupervised learning is used in problems where we
do not have access to truth information. In fact we have seen a good example of an
application for unsupervised learning in high energy physics (HEP) already, namely in
jet clustering algorithms. We have a set of data (four momenta of final state tracks in
an event), and we do not know a priori how these should be distributed into jets, i.e.
we do not have a truth label to assign to each constituent.

In fact, as we will see in a later chapter, one can indeed apply unsupervised ML tech-
niques to cluster jets in place of the traditional clustering algorithms.

5.1.3 The Role of Data in Machine Learning

As we have demonstrated, the key component of building an ML model is the data we
feed in as an input - it is this data (combined with the hyperparameters of your model
of choice) which determine how useful the results will actually be.

5.1.3.1 Splitting the Data

A key concept for building a model is the splitting of your data into two subsets - a
training set and a testing (or validation) set. The reason for this is that, as we will see,
models are built by minimising some function which represents the error of the models
predictions. The issue with this is that it is unreliable to evaluate the model performance
on the data used to train that very model.
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What is done instead, is that a subset of the data (both the series of features xi and the
target class y) are removed from training, such that when we come to evaluate how well
a model is performing, the test is done on a set of data that it has not seen before.

5.2 Machine Learning Models

In this section we will review a select few popular ML models - focussing on those useful
to the application of jet physics.

5.2.1 Logistic Regression

The most basic ML models are linear models. These are simple in their implementation,
but also somewhat limited. As the name suggests, these models are of course only
useful on datasets where there are linear relationships between the features and target
variable. While we do not explicitly use logistic regression in physics research, the
general framework laid out is indicative of other classification methods.

For linear classification problems, we use logistic regression [61] . As the name suggests,
despite being a classifier the logistic regression acts as a regressor of sorts, in that it
predicts probabilities for the each output class. The output is the logistic of the result,
given by [62]

p̂ = hθ(~x) = σ(~xT ~θ), (5.1)

where σ is the sigmoid function, ~x is a vector of the features in a given instance of the
data set (i.e. the variables one is using to train the model), and ~θ is a vector of the
tuned parameters of the model, which rescale each feature to give the output prediction.

σ(x) =
1

1 + e−x
. (5.2)

Observing the form of σ(x), we can see the symmetry about x = 0, so that for the
output of a given logistic regressor, we can see that a convenient way to classify between
two classes is

ŷ =

{
0, p̂ < 0.5

1, p̂ ≥ 0.5.
(5.3)

When comparing with the formula for the sigmoid function, we can see that this decision
boundary is equivalent to
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Figure 5.1: The sigmoid function σ(x).

ŷ =

{
0, ~xT ~θ < 0

1, ~xT ~θ ≥ 0.
(5.4)

The goal of training a logistic regression algorithm is therefore to output large values of
p̂ for instances with y = 1, and low values of p̂ for instances labelled with y = 0, the
behavior of which is encoded in the cost function

c(θ) =

{
− log(p̂) if y = 1

− log(1− p̂) if y = 0.
(5.5)

Looking at the behaviour of the cost function, we can see that − log(x) is large as
x → 0, such that an instance with truth value y = 0 has a large cost associated with
being incorrectly predicted ŷ = 1, and likewise for incorrect predictions the other way
around. Therefore in order to find an optimal model, we minimise the following overall
cost function
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Figure 5.2: The cost function for logistic regression, as defined in Eq. 5.5.

J(θ) = − 1

n

n∑
i=1

[
y(i) log(p̂(i)) + (1− y(i)) log(1− p̂(i))

]
, (5.6)

i.e. the mean average loss over all instances in the training data set.

Unlike in the case of linear regression (which is not covered here), there does not exist
a closed form solution for the cost function, and so minimisation algorithms are used,
such as gradient descent, which is beyond the scope of this chapter.

5.2.2 Deep Learning

The final family of ML models we will discuss here are deep learning (DL) models,
which are the most cutting edge techniques at the forefront of artificial intelligence (AI)
research. DL can be applied to all sorts of problems, a notable example being the
AlphaZero [63] algorithm which can outperform the top human players in both chess
and go, and we will see later the potential for deep learning when applied to particle
physics.
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5.2.2.1 Neurons

The basic structure of deep learning neural networks (NNs) are loosely based on bio-
logical neurons. Neurons receive and send electrical impulses, and are arranged in vast
arrays to complete complicated tasks despite their rather simple basic function.

A trivial example of neuron system is for the logic computation α = β,

α

β

Neurons

Connections

1

Figure 5.3: Demonstration of neurons for the trivial logic computation α = β, demon-
strated by the fact that whenever α fires, β will also fire.

5.2.2.2 Perceptron

Using the a series of these neurons, one can construct a network, where a series of
inputs xi (i = 1, .., n) are fed into a series of n neurons, which can be connected to
further neurons before reaching an output z.

Each of the neurons in a perceptron will come with a weight wi, such that output is

z =
n∑
i

wixi = ~xT ~w, (5.7)

before outputting however, an activation function is applied to the output in the so-
called threshold logic unit (TLU), such as the Heaviside step function H, such that the
output is

hw(~x) = H(z). (5.8)

The structure in Fig. 5.3, if we take α as an input layer and β as a TLU, would be
an example of a single-layer perceptron (SLP), however these can be generalised to
multi-layer perceptrons (MLP), which can have variable depths.
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5.2.2.3 Multi-Layer Perceptron

MLPs are perhaps the most common example of a NN, consisting of an input and output
layer - as with the SLP - as well as a number of ‘hidden’ layers. The multi-layered
structure allows the MLP to capture highly complex patterns in data [64].

MLPs are ‘fully connected’, which means that each neuron in a given layer is connected
to all neurons in the previous and next layer.

Input Layer

Hidden Layer

Output Layer

1

Figure 5.4: Visualisation of simple MLP with three features, comprising of a single
hidden layer.

Another difference in MLPs is in the activation function used. In order to be able
to model data that is not linearly separable, nonlinear activation functions are used,
of which there are several choices - including the hyperbolic tan, sigmoid and rectifier
linear unit (ReLU).

In order to to train an MLP NN, a common algorithm used is backpropagation, where
the weights wij for a given feature i and layer j are sequentially updated in order to fit
the data and optimise some cost function. The mathematical details of backpropagation
are beyond the scope of this chapter.

When training a NN, we can actually see the model learning by looking at the evolution
of the loss function over time - this is possible as NNs are trained over ‘epochs’. An
epoch is a training iteration, which includes a full sweep of the training data set. At
each epoch of training, the model will make its set of predictions on the validation data
set and compute a score - generally the loss value - so that over a series of epochs we
can see the loss decreasing over time until our model reaches an optimal performance.

We can see in Fig.5.6 the evolution of the accuracy and loss, on both training and
validation datasets. In fact by plotting for the result on both of these datasets we unveil
another perk of tracking the scores by epoch - namely that we can compare the scores
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Figure 5.5: Three activation functions, the sigmoid, hyperbolic tan tanh, and ReLU.

on the two sets to check the model isn’t being overfit to the training data (more on this
later).

5.2.2.4 Convolutional Neural Networks

The final deep learning models we will discuss in this section are convolutional neural
networks (CNNs) [65]. A CNN is a specialised flavour of NN which can take images
(or rather matrices) as their inputs rather than one dimensional vectors - and hence are
particularly useful for image recognition problems, such as the well known example of
classifying handwritten digits.

Images can be very simply used as inputs by mapping each pixel into a numerical scale
representing colour (in fact one can even represent RGB colours as a (3 × 1) vector
at each pixel). Traditionally, to use a standard NN for such tasks, one would have to
perform a transformation on the input data to flatten the pixels, i.e. compress a (3× 3)

matrix into a (9× 1) vector. It is found however that the performance in these cases for
more complex images is extremely limited.
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Figure 5.6: An example of the evolution of both model accuracy (i.e. proportion of
correctly classified instances in the test set) and loss over a number of epochs.

With this improvement however comes potential issues with performance - for high
resolution images the amount of data will be exceedingly large - a 4K image is comprised
of (3840× 2160 ' 8 million) pixels. Thankfully part of the CNN structure is a so-called
convolution layer, which applies a filter to subgroups of connected pixels in the image
and represents them as a single value.

1 3 4
2 2 1
3 5 1

0 1 0
1 0 1
0 1 0

11×

Image Kernel

1

Figure 5.7: A (3 × 3) subset of an image being reduced to a single number by the
convolution kernel layer.

This action has two benefits, firstly we are reducing the amount of data being fed into the
model training, which will lead to an increase in computational performance, but also
secondly this acts as a way of extracting high level features from the image. The precise
features learned from the convolution layer will vary depending on the exact kernel used,
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which is also a positive as one can tune exactly which kernel to use depending on what
we want our model to learn from the images.

Similarly to convolutions, there are also pooling layers in CNNs, which also act as
dimensionality reductions, but in a slightly more elementary way. Pooling layers will
also iterate sub-matrices across the image, but instead of applying a complex kernel,
they will simply extract either the average or maximum value of the sub matrix, named
average pooling and max pooling respectively.

1 3 4
2 2 1
3 5 1

2.44 5

Image Average Max

1

Figure 5.8: A (3×3) subset of an image being reduced to a single number by a pooling
layer, common choices for which are either taking the max or the mean average of the

pixel values of the input matrix.

A CNN architecture can be comprised of multiple layers of various different transforma-
tions on the input images, including pooling and convolutions, and one can even create
more complex multi-stream networks which take multiple input images.

5.2.3 Unsupervised Models

So far we have primarily focused on supervised problems, however the applications of
ML in physics are not limited to problems with truth information. We will introduce a
few unsupervised ML techniques in this section.

5.2.3.1 k-Means Clustering

Perhaps the simplest, and most intuitive, unsupervised learning method is k-means
clustering [66]. The set of inputs will be a series of instances i = 1, ..., n with a value for
each feature j = 1, ...,m, i.e.

(~x1, ~x2, ..., ~xn), (5.9)

where each ~xi is an m dimensional vector. We note this is the same input for a super-
vised problem, except of course of the truth labels. Given this set of inputs, and an
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input parameter k, k-means works by computing k centroids in the data, and clustering
instances into groups defined by each centroid. We can therefore see that the input k
defines the number of groups we want to cluster the data into - and so k-means might
be limited in its application to jet physics for example, as we would need to know how
many final state jets we expect before clustering.

Initially centroids Ci (i=1,...,k) are placed at random 1, and instances are partitioned
into groups Gi based on these centroids. At the next time step, the locations of Ci are
moved based on the quantity

C(t+1)
i =

1

|G(t)
i |

∑
~xj∈G

(t)
j

~xj . (5.10)

The algorithm simply runs by updating and procedurally moving the centroids, and
converges when the centroids no longer move - such that a minimum is found.

The k-means is a fairly simple example of an ML clustering algorithm, and one that
comes with its limitations. Firstly it requires k as an input, although it is possible to
run over multiple values of k and find an optimal value, this can become computational
intensive. Furthermore, k-means does not generalise well to where the groups Gi are
different sizes.

5.2.3.2 Spectral Clustering

We move on to a more robust ML clustering method - spectral clustering [67]. Rather
than taking the raw instances (in feature space) as an input as with other models, we
perform a transformation on this data, and map the points into the so-called embedding
space - which is generally optimised to cluster the points into groups. The data used for
the clustering step is represented as a graph - a series of nodes (points), connected by
edges, which can have an associated weight called an affinity which measures how likely
two connected nodes are to belong to the same final group.

For a set of n input points in the feature space, the first step is to construct an (n× n)

similarity matrix A, which is a symmetric matrix where an entry Aij represents the
similarity between points i and j, defined by some custom measure. The matrix A is
then used to construct a Laplacian matrix L as we will see below.

The general procedure for a given set of coordinates is to represent the points as nodes
in a graph, with weighted edges denoting the probability of two joining nodes belonging
to the same group G. In order to obtain the final clusters, the graph is split into S

1In fact, if the initial placement is completely random, then k-means is not guaranteed to converge
to an optimal solution. There are methods of selecting an informed inital placement which can assist in
finding the optimal solution.
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subgraphs Gk (k = 1, ..., s), where the groupings aim to minimise the affinities split to
create them, mathematically we are minimising the parameter Ncut

Ncut =
1

2

∑
k

W (Gk, Ḡk)
vol(Gk)

. (5.11)

Here the quantity W (Gk, Ḡk) represents the cumulative sum of edges one must cut in
order to detach subgroup Gk from the remainder of the group Ḡk, i.e.

W (Gk, Ḡk) =
∑
i∈Gk

∑
j∈Ḡk

aij . (5.12)

The term in the denominator is a measure of the affinities throughout the entire group
to each point inside a subgroup Gk, given by

vol(Gk) =
∑
i

∑
j∈Gk

aij . (5.13)

The affinity matrix A can then be defined as

Aij = (1− δij)aij , (5.14)

which in turn can be used to construct the Laplacian L. If we define the diagonal matrix
D as

Dij = δij
∑
k

aik, (5.15)

one can define the Laplacian as

L = D− 1
2 (D −A)D− 1

2 , (5.16)

the eigenvectors of which are used to determine the transformed coordinates of the points
in the new embedding space. In addition to L, we define indicator vectors in order to
label the group in which a particular point is assigned,

~hik =

{
vol(Gk)−

1
2 for i ∈ Gk

0 otherwise.
(5.17)
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It turns out proceeding with vectors of this form yields a Non-deterministic Polynomial
(NP-hard) problem - so we use a relaxing assumption that the elements of h can have
arbitrary values, which we denote as hrelax, such that the eigenvalues can written

λmin = min
x 6=0

hHrelax L hrelax

hHrelax hrelax
. (5.18)

There will be a zero eigenvalue corresponding to an eigenvector for (D−A) with all equal
values - this is the trivial solution where all points are clustered into a single object. The
remaining k eigenvectors ~hrelax are used to construct the (n× k) matrix U , where each
column in U corresponds to a ~hrelax. We read off each row of U as a length-k vector,
labelled by ~yi, which are each representative of one particle. The points (~yi)i=1,..,n are
clustered into groups using k-means clustering.

In a later chapter we will see how spectral clustering can be used to perform the task
of jet clustering, compared with the traditional algorithms discussed in the previous
chapter.

5.3 Evaluating Machine Learning Models

We have seen that generally models will be optimised by minimising some loss function,
but how do we interpret how ‘good’ the model performance actually is? Due to the the
nature of applying different loss functions, these can be non-trivial to interpret outside
of comparing different models (with the same loss function) against one another. It
turns out there are many possible ways of evaluating performance, which go beyond the
more intuitive and obvious examples.

5.3.1 Evaluation Metrics

Before discussing explicit examples of some metrics, we will introduce some simple no-
tation used to define them here, and note that much of this section applies mostly to
classification rather than regression or unsupervised problems.

Given a set of predictions, a simple way of visualising the performance is to print out
the confusion matrix. This takes the following form

M =

(
TP FP

FN TN

)
, (5.19)

where TP and FP refer to true positives and false positives, and FN and TN false
negatives and true negatives. Consider a simple binary classifier which outputs 0 or 1,
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TP s are instances with truth value 1, for which 1 was predicted, while FP s have truth
value 0 but are predicted a 1, and vice versa for the FNs and TNs.

5.3.1.1 Accuracy

Perhaps the simplest evaluation metric is the model accuracy A - simply the number
of correctly predicted instances divided by the total number of instances, expressed as
number between 0 and 1. One can express the accuracy in terms of the positive and
negative rates as

A =
TP + TN

TP + FP + TN + FN
. (5.20)

As alluded to, the accuracy is in fact a rather limited metric for evaluating a model.
For example, in order to be reliable, clearly the dataset needs to be split 50/50 between
positive and negative classes, otherwise models will become biased to predicting the
more common class. In fact if we are predicting an occurance that occurs in around 10%

of the data, a model that always outputs 0 will have a 90% accuracy score!

5.3.1.2 Precision and Recall

As the limitations in using accuracy perhaps imply, it is not always sensible to apply
a ‘one size fits all’ evaluation metric, indeed the context of the problem might suit a
particular metric. In the physics case of a jet tagger - this for example could depend on
if we care more about a) identifying as many b-jets as possible, at the cost of predicting
more false positives, or b) wanting to reduce the background as much as possible, sacri-
ficing some true b-tags such that the final sample has fewer non-b’s incorrectly classified
as b’s.

In fact the two scenarios described above can be accounted for by choosing different
metrics, namely precision and recall. The precision P is defined as

P =
TP

TP + FP
, (5.21)

and gives a better score where the model reduces the number of FP s, such that P(FP →
0) → 1. In practise, for the jet example, this means that the model will sacrifice
identifying all of the b-jets, in order to reduce incorrectly applying b-tags.

Alternatively, there is the recall R,

R =
TP

TP + FN
. (5.22)
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In analogue with the precision, we have R(FN → 0) → 1, such that a b-tagger will aim
to tag as many of the truth b-jets as possible, while also sweeping up some additional
non b-jets.

There is in fact a balancing act between P and R known as the precision recall trade-off.
As one of these is increased, the other will decrease, such that there is a trade-off.

Figure 5.9: A visualisation of the precision recall trade off, as recall decreases, the
precision increases, and vice versa.

In Fig. 5.9, we can think of each point along the x-axis (labelled “Threshold”), as a
single model, and hence a value of precision and recall evaluated on the test set. As one
moves along the x-axis, we can think of us moving the decision boundary for classifying
an instance as a 0 or 1 - generally one might think to select 0.5, but by increasing
(decreasing) this boundary we are, in effect, artificially changing the precision and recall.

5.3.1.3 F1-Score

In addition to precision and recall, there exists a more generalised metric, which acts as
a balance between the two, known as the F1-score

F1 =
2

P−1 +R−1
=

2PR
P +R

. (5.23)

The F1 acts as a convenient middle ground between precision and recall, and in analogue
with accuracy is easily interpreted as a number between 0 and 1, with 1 representing a
perfect score.
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Figure 5.10: The shifting of the decision boundary, where the two curves represent
the two subsets of data split by truth value. Instances to the left of the boundary will

be predicted a 0, and to the right a 1.

5.3.1.4 ROC Curves

Another good test for model performance also builds off of the idea of moving a decision
boundary, like with precision and recall. This is the receiver operating characteristic
(ROC) score, derived from the ROC curve.

The ROC is very simple a plot of the true positive rate

TPR =
TP

P
(5.24)

against the false positive rate

FPR =
FP

N
, (5.25)

where P and N refer to the number of true positives and negatives in the dataset. The
ROC score is then defined as the area under this curve, which will be 1 for a perfect
classifier, and 0.5 for a random classifier.

5.4 Machine Learning in High Energy Physics

Now that we have been through a whirlwind tour of the fundamentals of machine learn-
ing, we will now review some of the examples of its uses in high energy physics research.
For some overall reviews on the subject, we refer the reader to [68, 69, 70].
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Figure 5.11: Demonstration of the ROC curve for a well performing classifier, with
the ROC curve for a random classifier and perfect classifier.

5.4.1 Jet Tagging

As we have seen, perhaps one of the more intuitive examples of an ML application for
particle physics is in jet tagging - it is a well defined supervised classification prob-
lem, and it is fairly straightforward to generate labelled training data via Monte-Carlo
methods.

5.4.1.1 b-Tagging

The physics example we have referred to in this section is of tagging jets originating
from b-quarks, which is in fact an active area of research in ML and particle physics.
As seen previously, information on the secondary vertex can be indicative of the chance
a given jet came from a b. It therefore follows that one could feed some information
on the jet vertices (among any other things that might be useful) into an ML model to
perform tagging.

Recent endeavors at the CMS collaboration can boast up to a 15% increase in tagging
efficiency over other algorithms [71]. Other studies include the ATLAS detector [72]
using recurrent neural networks (RNNs), as well as [73, 74].
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5.4.1.2 Top Tagging

While b-jets are particularly useful for accessing the Higgs sector, jets arising from
t-quarks are also useful in a variety of contexts, such as accessing dark matter candidates
in certain BSM models. A good review on the variety of ML methodologies applied to
top tagging can be found at [75].

Owing to their large mass, t-quarks actually decay before hadronisation, such that the
final state from a top will be comprised of a series of objects which all came from the
t. An example would be in the decay t → bW , W → jj, such that the final state is
comprised of a b-jet (which itself requires tagging) and a pair of jets which reconstruct the
W mass - although the W can decay in other ways, such as leptonically i.e. W → µ−ν̄.

In scenarios with boosted tops, instead of trying to reconstruct each object individually,
we can form a fat jet with a substructure comprising of these decay products - as seen
in the section on jet physics. Boosted top taggers therefore rely on information of jet
substructure, which can be represented as a series of variables (recall N -subjettinness
for example), see [76, 77].

Alternatively one can actually ‘look’ inside the jet by visualising the region of the de-
tector containing the jet constituents as pixels in an image, if which there are a number
of studies [78, 79, 80].

5.4.2 Detector Physics

While not the focus of this work in particular, it is interesting to note the additional
areas in which ML can be utilised in particle physics. Another area where ML can useful
is workings of the detectors themselves.

5.4.2.1 Track Reconstruction

One such example is in reconstructing charged particle tracks as in [81, 82]. There are
a large number of outgoing particles in a given event, and the detectors work in such a
way that a series of spacetime points can be recorded when a particle ‘hits’ that layer -
however from this series of points it is useful to trace out the trajectory a given particle
follows for identification purposes.

5.4.2.2 Triggers

Another experimental problem at particle colliders are in the triggers, which are kine-
matic constraints used to decide whether or not to store a particular particle. It turns
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out the number of particles in a given LHC event is so large that it is impossible to
record everything. Generally the stuff we are interested in is of a higher energy, and
hence transverse momentum, and so low pT particles can be discarded before they even
have a chance to contaminate the event by not being stored in the first place.

Traditionally one would use kinematic constraints to determine this, however studies
exploring the use of ML algorithms have been show to perform quickly and efficiently,
such as using BDTs [83], or deep learning [84].

5.4.2.3 Pile-Up

ML has also recently been applied to the problem of pile-up mitigation, which we have
seen before. For example in [85, 86, 87].

5.4.3 ML in BSM Physics

A final emerging use of ML in particle physics is moving away from experiments into the
theoretical realms of BSM model building and exploration. Even limiting to 2HDMs, to
explore the possible parameter space in the physical mass basis there are nine parameters,

mh, mH , mA, mH± , sin(β − α), λ6, λ7, m
2
12, tanβ. (5.26)

To scan over these points over a sufficiently fine grid the number of points to check can
become incredibly large - and hence it is in the interest of computational efficiency to
be able to perform a targeted exploration of the parameter space. Examples of applying
ML to such problems include [88, 89, 90].
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Chapter 6

Revisiting Jet Clustering
Algorithms for New Higgs Boson
Searches in Hadronic Final States

6.1 Introduction

Before starting we note the research here is published as a preprint [1] of which I am
the lead author. The results presented represent an updated version of the paper in
question.

The ultimate motivation of our study is to address the incomplete nature of the Standard
Model (SM) of particle physics, by looking for signs of physics Beyond the Standard
Model (BSM). In particular, we pose the question of whether different jet clustering
techniques might be more or less suited to particular final states of interest, coming
from topologies involving an extended Higgs sector from some 2-Higgs Doublet Model
(2HDM). In such scenarios, as we will explain in more detail, high b-jet multiplicity
final states are expected and a point worth addressing is which current experimental jet
reconstruction is in fact optimal for these types of searches.

Several BSM scenarios with an enlarged Higgs sector allow for the existence of additional
neutral Higgs boson states, CP-even or CP-odd. These resonances can be both lighter,
or heavier, than the SM-like Higgs boson discovered at the LHC in 2012, which has a
mass of approximately 125 GeV [91]. These new physics frameworks are ubiquitous in
non-minimal models of Supersymmetry (SUSY) [92], in particular, but not only, in the
Next-to-Minimal Supersymmetric Standard Model (NMSSM) [93]. If one departs from
SUSY and remains with low-energy models, a BSM framework including these states in
its particle spectrum is the 2HDM [94, 95, 21].
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Hadronic Final States

In such a 2HDM, two complex Higgs doublet fields undergo Electro-Weak Symmetry
Breaking (EWSB), yielding five physical Higgs states, labelled as h, H (which are CP-
even with, conventionally, mh < mH), A (which is CP-odd) and a pair of charged states
with mixed CP properties, H±. It is currently possible for the observed 125 GeV Higgs
boson to be identified as either h or H in 2HDM scenarios. In both scenarios, when
mh < mH/2 or mA < mH/2, the decays H → hh and/or H → AA (respectively)
may occur. Taking h(H) as the SM-like 125 GeV Higgs boson, for a H(h) state with
a mass of order 250(60) GeV or more(less), the dominant decay mode in a 2HDM is
bottom-antibottom quark pairs [96, 97], i.e., h → bb̄, so that the final state emerging
from the hard scattering pp → H → hh is made up, at the partonic level, of four
(anti)quarks1, see Fig. 6.1. However, due to the confinement properties of Quantum
Chromo-Dynamics (QCD), the partonic stage is not accessible by experiment, only the
hadronic “jets” emerging at the end of the parton shower and hadronisation phase are
seen.

H
h

h

b

b̄

b

b̄

R

Figure 6.1: The 2HDM process of interest, where the SM-like Higgs state (mH = 125
GeV) produced from gluon-gluon fusion decays into a pair of lighter scalar Higgs states,

hh, each in turn decaying into bb̄ pairs giving a four-b final state.

In order to decipher the source of these showers of hadrons, “jet clustering algorithms"
are currently used. Jet clustering algorithms reduce the complexity of such final states by
attempting to rewinding the showering, back to the parton it originated from, such that
we move from a large sample of particles to a smaller number, each of which represents
a state emerging from the hard interaction of interest in a given event. In other words,
we characterise the sample of particles originating from a single parton as an object in
itself - a jet. Needless to say, there is a variety of jet clustering algorithms available and
we will dwell at length on these in a forthcoming section.

The purpose of this paper is to determine whether alternative jet reconstruction tools, in
particular a modification to traditional sequential combinations alogrithms employing
a variable inter-jet distance measure [50] (so-called ‘variable-R’ algorithms, where R

represents a typical cone size characterising the jet), might be better suited to the
1Notice that the same argument can be made for the case of pp → H → AA → bb̄bb̄ when mA <

mH/2.
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four-b final states coming from 2HDMs. We approach this problem from a simplified,
theoretical perspective, in order test a range of different combinations, in order to inform
whether a detailed experimental analysis might be worth pursuing. Furthermore, the
four-b final state that we are invoking here is an ubiquitous signal of BSM Higgs boson
pairs which are lighter than the SM one so that they can be produced from it2, crucially
giving access (through the extraction of the h state properties) to key features of the
underlying BSM scenario, e.g., in the form of the shape of the Higgs potential, hence,
of the vacuum stability and perturbative phases of it.

While the above outlines that the problem of optimal jet reconstruction is clearly an
experimental endeavour, we stress that this study is undertaken at a theoretical level.
The aims of this paper are to employ a simplified analysis in order to compare the
relative performance of traditional fixed-R jet clustering against a variable-R method.
A comprehensive, more realistic, experimental investigation is left to a future study. For
example, another key feature of the hadronic final state initiated by b-quarks that we
intend to study is that the emerging jets can be “tagged” as such, unlike the case of lighter
(anti)quarks and gluons, which are largely indistinguishable from each other. Here, we
implement a simplified method of tagging using Monte Carlo (MC) truth information
on the b-partons, along with a probabilistic implementation of inefficiencies. For a more
detailed discussion on b-tagging at detectors, we refer the reader to [98].

The layout of the paper is as follows. In the next section, we describe how we performed
jet reconstruction and b-tagging as well as discuss the tools used for our simulations.
In the following one, we present our results for both signal and background. Then, we
conclude.

6.2 Methodology

6.2.1 Jet Clustering Algorithms

In order to extract proper physics from hadronic sprays found in particle detectors, al-
gorithms are used to characterise the detected radiation into distinguishable objects, the
aforementioned jets. There is indeed a rich history associated with the development and
evolution of algorithms for jet definition, beginning in 1977 with Sterman and Weinberg
[44], initially deployed in the context of e+e− → hadron scatterings. For a detailed look
into the evolution of jet clustering, we refer the reader to [99]. Here we focus on the
modern implementations.

2Here, ubiquitous refers to the fact that this signal is very typical of a variety of BSM scenarios, so
that we effectively use the 2HDM for illustration purposes. Our results can therefore be applied to the
case of other new physics models.
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The type of algorithms currently utilised are known as sequential recombination algo-
rithms, or ‘jet clustering algorithms’ [99]. Rather than categorising the entire event
at once, as in previous approaches, each particle in the event is considered and all are
iteratively combined together based on some inter-particle distance measure, until all
particles are gathered into stable jets.

The type of algortihms currently deployed at the LHC all take a similar form, descending
from the generalised kT algorithm used initially in e+e− colliders. This uses an inter-
particle distance measure which can be written in the form

dij = min(pnTi, p
n
Tj)∆R

2
ij , (6.1)

where ∆R2
ij = (yi− yj)

2 − (φi− φj)
2 is the angular separation between particle i and j,

with y and φ being the rapidity and azimuth of the associated final state hadron. They
also make use of the ‘beam distance’, which is the separation between object i and the
beam B,

dBi = pnTiR
2. (6.2)

Note that we use the same notation as in [50], where R2 is included in the definition
of dBi. (An alternative convention is to embed R2 into the definition of dij such that
dij = min(pnTi, p

n
Tj)

∆R2
ij

R2 , leaving dBi = pnTi, like in [100].) For a set of particles, all
possible dij ’s and dBi’s are calculated and the minimum is taken. If the minimum is a
dij , objects i and j are combined and the process is repeated. If, instead, a dBi is the
minimum, then i is declared a jet and removed form the sample. This procedure is then
repeated until all objects are classified into jets.

In dBi, R is a fixed input variable which dictates the size of the jet and acts as the cut-off
for any particle pairing. If we consider some pair of particles i and j, with i having lower
pT (and hence being selected in dij), we can write (for n ≥ 0)

dij = ∆R2
ijp

n
Ti =

∆R2
ij

R2
dBi. (6.3)

Since we require the ratio ∆R2
ij

R2 < 1 to avoid declaring i a jet over merging i with j, we
can see that R acts as an effective cut off for the maximum separation of two pseudojets
to be combined and, hence, it is proportional to the final jet size. From this general
formulation, the main two jet clustering algorithms currently in use at the LHC are
the Cambridge-Aachen (CA) [101, 49] one and the anti-kT [48] one, which use the above
expressions with n = 0 and −2, respectively [102].
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6.2.2 Jet Clustering with Variable-R

There has in fact been a more recent development to these techniques. One notices that
the above algorithms require as input a fixed parameter, R, which in the case of the
anti-kT algorithm effectively acts as the jet radius, hence a cone parameter when tracing
the jet back to the interaction point3. Recall this acts as a cut off for combining hadrons
and can therefore be interpreted as implementing a size limit on the jets depending on
the particle separation.

The angular spread of the final jet constituents has a dependence on the initial partons
pT . For higher pT objects the decay products will be more tightly packed into a more
collimated cone whereas for low pT objects one would expect the resulting jet constituents
to be spread over some wider angle. One can therefore imagine the need for carefully
selecting the R value used for clustering depending on the pT of the final state jets, but
what about in a multi-jet scenario where the final state partons have a wide range of
pT ’s?

The aforementioned variable-R jet clustering algorithm [50] alters the above scheme so
as to adapt to events with jets of varying cone size. A modification to the distance
measure dij is made, by replacing the fixed input parameter R with a pT dependent
Reff(pT ) =

ρ
pT

, where ρ is a chosen dimensionful constant (taken to be O(jet pT )). With
this replacement, the beam distance measure becomes

dBi = pnTiReff(pTi)
2. (6.4)

When the distance measures are calculated, dBi will therefore be suppressed for objects
with larger pT and hence these objects become more likely to be classified as jets. For
low pT objects, dBi is enhanced and so these are more likely to be combined with a near
neighbour, thus increasing the spread of constituents in the eventual jet.

We hypothesise therefore that, in multijet signal events where one might expect signal
b-jets with a wide spread of different pT ’s, a variable-R reconstruction procedure could
improve upon the performance of traditional fixed-R routines. In particular, using a
variable-R alleviates the balancing act of finding a single fixed cone size that suitably
engulfs all of the radiation inside a jet, without sweeping up too much outside ‘junk’.

As a brief visualisation, we can map the constituents of b-tagged jets (herafter, b-jets for
short) in the same event, which have been clustered using both a variable-R and fixed
R = 0.4 scheme, as seen in Fig. 6.2. We notice that, for the leading and sub-leading

3It is an important distinction to notice that R only looks like a cone parameter for the anti-kT
algorithm (n = −2). In this case, the ‘min’ in Eq. (6.1) picks out the larger pT pseudojet. If we take
i as the higher pT object, then, if j is further from i than R, i and j will not be combined. In other
words, if i is close to the eventual jet axis, low momenta j’s will not be included, so that in the end R
effectively ends up as the jet radius. While this point is important, we also note that we mostly use the
anti-kT algorithm in this study and so referring to R as an effective cone size is largely justified.
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b-jets, the jet content is roughly the same. For the lower pT jets, however, the variable-R
jets gather a wider cone of constituents. The loss of constituents will harm our ability
to accurately reconstruct Higgs masses when analysing b-jets. In Fig. 6.3 we see a case
where using a larger fixed cone (R = 0.8), to try and gather all of the constituents,
only resolves three b-jets. Variable-R however ‘finds’ all four b-jets expected from the
signal. We can see that fixed-R sweeps radiation from a nearby jet into the leading b-jet,
whereas variable-R is able to resolve both due to the larger pT (and hence smaller Reff)
of the leading b-jet, while also having a large enough cone to suitably reconstruct the
lower pT jets.

Figure 6.2: The same MC event in (η, φ) space. Tracks have been clustered with
(left) a fixed R = 0.4 and (right) variable-R algorithm. The coloured points are the
constituents of the corresponding b-jet in the legend and black outlined diamonds are
at the overall (η, φ) coordinates of the formed b-jet. The anti-kT algorithm is used in

both cases.

Figure 6.3: Same plot as in Fig. 6.2, however, here, the given event is clustered into
three b-jets when a fixed R = 0.8 is used (left) and four b-jets when we use a variable-R

approach (right).
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6.2.3 Implementation of b-Tagging

In this paper we implement a simplified MC informed b-tagger. For events clustered using
a fixed-R cone size, jets within angular distance R from each parton level b-(anti)quark
are searched for and tagged as appropriate. For scenarios where multiple jets are found,
the closest is taken as the assignee for the b-tag. When the variable-R approach is used,
the size of the tagging cone is taken as the effective size of the jet, Reff, defined above.

In addition, we account for the finite efficiency of identifying a b-jet as well as the non-
zero probability that c-jets and light-flavour plus gluon jets are mistagged as b-jets. We
apply the variable mistag rates and tagging efficiencies from the Delphes CMS card.

6.2.4 Simulation Details

We consider two sample benchmark points, one of which where we take h as the SM-like
125 GeV Higgs Boson, and one with mH . In the former case (which we will refer to as
BP1), we use mH = 700 GeV, and in the latter (BP2 henceforth) mh = 60 GeV. Both
benchmarks are in a 2HDM Type-II (2HDM-II henceforth), which have been tested (and
pass as not currently excluded) against theoretical and experimental constraints by using
2HDMC [23], HiggsBounds [107], HiggsSignals [108] as well as checking flavour contraints
with SuperISO [109]. We generate samples of O(105) events, with

√
s = 13 TeV. In

SuperISO, we test against the following flavour constraints on b-meson decay Branching
Ratios (BRs) and mixings, all to a 2σ level: BR(b→ sγ), BR(Bs → µµ), BR(Ds → τν),
BR(Ds → µν), BR(Bu → τν), BR(K→µν)

BR(π→µν) , BR(B → D0τν) and ∆0(B → K∗γ).

The production and decay rates for the subprocesses gg, qq̄ → H → hh → bb̄bb̄ are
presented in Tab. 7.1, alongside the 2HDM-II input parameters. (Notice that the H
and h decay widths are of order MeV, hence much smaller than the detector resolu-
tions in two- and four-jet invariant masses, respectively, so that the Higgs states can
essentially be treated as on-shell.) In the calculation of the overall cross section, the
renormalisation and factorisation scales were both set to be HT /2, where HT is the sum
of the transverse energy of each parton. The Parton Distribution Function (PDF) set
used was NNPDF23−lo−as−0130−qed [110]. Finally, in order to carry out a realistic MC
simulation, the toolbox described in Fig. 6.4 was used to generate and analyse events
[111, 112, 113, 114]4.

4Note that we use the Leading Order (LO) normalisation for the signal cross sections here, for consis-
tency with the fact that most of the background ones in our forthcoming analysis are only implemented
at LO. While this affects our final results on event rates and significances, we re-instate here that the
main purpose of our paper is to assess the jet clustering performance, rather then the exact values of
signal and backgrounds rates.
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Label mh (GeV) mH (GeV) tanβ sin(β − α) m2
12 BR(H → hh) BR(h→ bb) σ(gg → H → hh→ 4b) (pb)

BP1 125 700.668 2.355 -0.999 1.46×105 6.218×10−1 6.164×10−1 1.870×10−2

BP2 60 125 1.6 0.1 4×103 6.764×10−1 8.610×10−1 6.688

Table 6.1: The 2HDM-II parameters and cross sections of the process in Fig. 6.1 for
each benchmark point.

Generate signal events of gg → H → hh→ bbb̄b̄ using
MadGraph5@NLO v2.6.3.2

Shower and hadronise parton level events using
Pythia8 v8.243

Apply detector simulation via Delphes v3.4.2 CMS card

Perform jet reconstruction, apply cuts and
carry out analysis using MadAnalysis5 v1.8.5

Figure 6.4: Description of the procedure used to generate and analyse MC events.

6.3 Cutflow

Before introducing the full sequences of cuts that we have adopted here, some discussions
are in order on their possible choice, as intimated in the previous section. In existing four
b-jet analyses by the ATLAS and CMS collaborations, seeking to extract chain decays of
Higgs bosons like the ones considered here from the background, rather restrictive cuts
have been used for the ensuing fully hadronic signature. Taking CMS as an example,
upon enforcing the same pT cuts on b-jets as in Ref. [115] on BP2, we noticed that the
signal selection efficiency was too low (in various respects, as described later) to enable
one to create a MC sample suitable for experimental analysis assuming Run 2 and 3
luminosities. For BP1, cuts informed by [116] of all four b-jets satisfying pT >50 GeV
are used. In the case of BP2, we use a flat cut on all four b-tagged jets of 20 GeV. It
remains to be seen if this is viable at the LHC, but for the purpose of this study we
present results in this regime as a demonstration of the effect of using a variable-R jet
reconstruction algorithm on low-pT jets from 2HDM-II decays into bbb̄b̄ final states.

6.4 Results

In this section we present the results for our signal at both the parton and detector
level. In the latter case, we also discuss the dominant backgrounds, due to QCD 4b



6.4. Results 77

Apply detector simulation using Delphes to output eflow objets

Perform jet reconstruction and b-tagging on the eflow tracks
in fastjet [100], with specified clustering algorithm and ∆R

Remove jets with pT < 50 (BP1) / 20 (BP2) GeV

Where at least three b-jets remain,
find the pair best constructing mh and save as dijet

If four b-jets are found, save the remaining pair as a second dijet

Figure 6.5: Description of our initial procedure for jet clustering, b-tagging and selec-
tion of jets. Notice that the starred cut (∗) will eventually be modified in our optimised
b-jet selection. Also note that the bulk of our analysis is performed at particle rather
than detector detector, so MC truth information is used for cuts on jet constituents.

production, gg, qq̄ → Zbb̄ and gg, qq̄ → tt̄5.

6.4.1 Parton Level Analysis

At the Matrix Element (ME) level, all the events have four b-quarks originating from
the decay of the two light Higgs bosons (h). We plot the R separation between the
b-quarks coming from the same light Higgs state (see upper panel of Fig. 6.6). The
two distributions corresponding to BP1 and BP2 are markedly different. This can be
understood as follows. In general, the angular separation between the decay products a
and b in the resonant process X → ab can be approximated as ∆R(a, b) ∼ 2mX

pXT
. Hence,

we plot in the middle panel of Fig. 6.6 the transverse momentum of each of the h bosons.

For mh = 60 GeV, the light Higgs boson has less pT than for lower values (owing to the
smaller mH − mh mass difference), therefore, the b-quarks are more widely separated
in this case, compared to mH = 700 GeV. In the light of this, we can already conclude
that there is a strong correlation between the mass difference mH −mh and the cone
size of the jet clustering algorithm that ought to be used. In particular, we can say that,
in order to maximise the number of jets6 for different choices of the light Higgs boson
mass, we need to vary the jet radius parameter. That is, a fixed jet radius parameter
may not be suitable here for all mass configurations. In the lower panel of Fig. 6.6, we
finally plot the ∆R separation between the two light Higgs states. For the configuration

5In fact, we have checked that the additional noise due to tt̄bb̄ events as well as hadronic final states
emerging from W+W−,W±Z and ZZ production and decay are negligible, once mass reconstruction
around mh and mH is enforced.

6This is done also with a view at background rejection.
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Figure 6.6: Upper panel: the ∆R distribution between the two b-partons originating
from the same h. Lower left panel: the pT distribution of the light Higgs boson h
originating from H decay; lower right panel: the ∆R distribution between the two h
states originating from the H decay. No (parton level) cuts have been enforced here.

in BP1, it is clear (since ∆R ≈ π) that the H → hh decay is dominantly back-to-back
(in the laboratory frame). However, for mh = 60 GeV, there is a double peak structure.
This occurs due to a recoil effect from Initial State Radiation (ISR), which only becomes
apparent at the mass boundary where mH ' 2mh. The inability of the two emerging h
states to fly apart implies some overlapping of the b-quark momenta. Hence, we expect
that the signal, upon enforcing a jet clustering algorithm, will have a rather high b-jet
multiplicity, so long that the two b-jets stemming from h decays are resolved, unless
detector acceptance and signal selection cuts reduce it, which is quite possible given the
light masses considered for the h state in relations to typical jet pT thresholds used in
applying b-tagging. We will investigate this later.

As a final study, in fact, the pT of the b-quarks is plotted. This is done in Fig. 6.7. From
the top histogram we can see that, while the range of pT ’s in BP1 is much larger, in both
mass configurations the b-quarks have a range of pT ’s, and hence one would expect the
resulting jets to have a similar spread. In particular, we also plot the highest and lowest
pT ’s amongst the b-quarks in a given event (lower left and right frames, respectively),
and notice a stark difference in both cases. Further to the discussion in Sec. 6.2.2, one
would therefore expect the resulting spread of radiation from each signal b-quark to
vary in solid angle and hence the resulting jets be of differing sizes. This thus motivates
the need for a jet reconstruction sequence that behaves sensibly for jets of various cone
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sizes. Therefore, in the next section, we firstly test how jet clustering with fixed-R input
behaves and then introduce the variable-R algorithm.

Figure 6.7: Upper panel: the pT distribution for all b-quarks. Lower left panel:
highest pT amongst the b-quarks; lower right panel: lowest pT amongst the b-quarks.

No (parton level) cuts have been enforced here.

6.4.2 Jet Level Analysis

In this section we consider a jet level analysis, using hadronised parton showers that
have been run through detector simulation and clustered into jets. We will compare
the kinematic distributions of final state b-jets, when clustered with a fixed cone, and
with variable-R, for both mass configurations BP1 and BP2. In particular we will be
interested in the b-jet multiplicity, that is the number of b-tagged jets in a given event.
This is of course indicative of how ‘well’ our clustering is performing, in that we know
the final state has four b-quarks, and so a good algorithm should reconstruct all four of
these frequently. We will also investigate the mass distributions of b dijets and four b-jet
masses, which indicate our ability to observe the signals containing BSM Higgs Bosons.

We first consider the effect of a variable vs fixed cone strategy by observing kinematic
variables from signal events for each benchmark point. We choose a value of R = 0.4,
and use the anti-kT algorithm throughout (The results for the CA scheme are very
similar, so we refrain from presenting them). For variable-R, we use different values
for each of the benchmarks as follows, for BP1 we use ρ = 100GeV, for BP2 we use
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ρ = 20GeV. These values are inferred from the pT scale of the fixed cone b-jets. Finally,
we use Rmin = 0.4 and Rmax = 2.0 throughout wherever variable-R is used.

We begin by observing the b-jet multiplicity, for each of the benchmarks/algorithms.

Figure 6.8: Left panel: The b-jet multiplicity distributions for BP1. Right panel: For
BP2.

The stark difference between the two plots is due to the relative kinematics of the final
state b-jets. Due to the different mass configurations, b-jets from BP2 have significantly
lower pT than those from BP1, and so significantly more are lost to the trigger, as well
as from the (pT dependent) b-tagging efficiencies.

As for the effect of variable-R, in the BP1 case there is very small increase toward events
with higher b-jet multiplicity. The shift is significantly clearer in BP2.

In order to extract evidence of new physics from b-jet signals, we look at the invariant
mass of dijet systems, in order to reconstruct a mass that resembles the resonance from
which the pair of jets originated.

Figure 6.9: Left panel: The b-dijet invariant masses for BP1. Right panel: Four-b
invariant mass.

From Fig.6.9, we can see more definitively the benefits of using a variable-R jet clustering
algorithm. In both cases, the peak of the variable-R plot is shifted right of the fixed



6.4. Results 81

cone, closer to the expected mass of the of respective decaying Higgs. Finally, for the
invariant mass of all four b-tagged jets we have

Figure 6.10: Left panel: The four b-jet invariant masses for BP2. Right panel: Four-b
invariant mass.

The same behaviour for four b-jets masses (Fig. 6.10) can be seen as in the dijet plot,
events clustered with variable -R have the four b invariant mass more closely aligned
with the expected positions at mH .

6.4.3 Signal-to-Background Analysis

Clearly a good algorithm should not just amplify the signal, but also avoid sculpting the
backgrounds. As a final exercise, we perform a calculation of the signal-to-background
rates, so as to compare the various jet reconstruction procedures mentioned in this
paper also in connection with their performance in dealing with events not coming from
our BSM process. In order to do so, we perform the selection procedure described in
Fig. 6.14. We use the anti-kT measure throughout but conclusions would not change in
case of the CA one.

6.4.3.1 Jet Quality Cuts

Before proceeding on with the analysis, there is one additional cut we consider in order
to compare signal over background significance of the two approaches. As per [50], we
employ the use of jet quality cuts, which themselves are well motivated. In particular,
we compute the distance δ between the energy and pT centre of the jets, which are
defined as follows:

~PE =
∑
i

Ei~̂pi, ~PpT =
∑
i

pTi~̂pi, (6.5)
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where i labels each constituent of a given jet, ~̂pi is the four-momenta of the ith con-
stituent, normalised to unity, and Ei and pTi are the energy and transverse momentum
of the ith jet constituent respectively. In applying the jet quality cut, we are imposing
that, for a given jet i,

∆R(~PE , ~PpT ) < δ, (6.6)

where δ is a user defined cut-off. In order to get an idea of the usefulness of jet quality
cuts, we can look at the b dijet and four jet invariant mass peaks corresponding to mh

and mH , on samples of events with and without quality cuts.

Figure 6.11: Left panel: The b-dijet invariant masses for BP1, with and without the
addition of jet quality cuts as defined in Eq. 6.5 and 6.6. Right panel: The four b-jet

invariant mass. Here we have used a value of δ = 0.05 for BP1.

Figure 6.12: Left panel: The b-dijet invariant masses for BP2, with and without the
addition of jet quality cuts as defined in Eq. 6.5 and 6.6. Right panel: The four b-jet

invariant mass. Here we have used a value of δ = 0.1 for BP2.

We can see in Fig. 6.11 the increased height of the mass peaks that comes with applying
jet quality cuts on the benchmark point with mH = 700GeV. The effect is also present
for the mh = 60GeV benchmark in Fig. 6.12, in particular in the four b-jet mass
distribution.
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We further note that, while there is a hint of signal yield improvement with jet quality
cuts, the main gains come from the reduction of backgrounds, which we see in the
following section.

6.4.3.2 Signal Selection

Generate events for background processes
using MadGraph5@NLO v2.7.2

Shower and hadronise parton level
events using Pythia8 v8.243

Perform jet reconstruction, apply reduced cuts
and carry out analysis using MadAnalysis5 v1.8.45

Figure 6.13: Description of the procedure used to generate and analyse MC events
for background processes.

Select events that contain exactly four b-jets

Remove event if |mbbbb −mH | > 50 GeV

Using di-jet pairings chosen in above analysis

Remove event if |mbb −mh| > 20 GeV

Figure 6.14: Event selection used to compute the signal-to-background rates.

To carry out this exercise, we generate and analyse pp → bb̄bb̄, pp → Zbb̄ and pp →
tt̄ background processes using the toolbox described in Fig. 6.13 [111, 112, 113, 114].
Tab. 6.2 contains the cross sections in pb for signal and the various background processes
upon applying the aforementioned cuts and mass selections, including the jet quality
cuts.

It is clear from the data obtained that the QCD-induced pp → bb̄bb̄ process is the
dominant background channel7, followed by pp → Zbb̄ and pp → tt̄. Our next step
is then to calculate the event rates in order to get the significances for two values of
(integrated) luminosity, e.g., L = 140 and 300 fb−1, corresponding to full Run 2 and 3

7In fact, we have computed the full four-jet sample produced by QCD, i.e., including all four-body
partonic final states, yet, in presence of the described kinematical selections and b-tagging performances,
the number of non-bb̄bb̄ events surviving is negligible [106, 117, 118].
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data samples, respectively. The event rate (N) for the various processes is given by:

N = σ × L. (6.7)

After the event rates have been calculated, we simply evaluate the significance, Σ, which
is given by (as a function of signal S and respective background B rates)

Σ =
N(S)√

N(Bbb̄bb̄) +N(BZbb̄) +N(Btt̄)
. (6.8)

It is then clear from Tabs. 6.3–6.4 that the variable-R approach works better than fixed-R
one also in providing the best significances, no matter the choices of R for the latter.
The improvement in the final significances is indeed very significant. This should not be
surprising, given the ability of the former in outperforming the latter from the point of
view of kinematics. Again, while the signal-to-background analysis has been performed
for the anti-kT algorithm, the same conclusions are reached for the CA case.

Process variable-R R = 0.4
BP1 BP2 BP1 BP2

pp→ H → hh→ bb̄bb̄ 2.077× 10−4 8.962× 10−3 1.254× 10−4 3.210× 10−3

pp→ bb̄bb̄ 3.798× 10−3 2.131 1.651× 10−3 9.470× 10−1

pp→ tt̄ 7.973× 10−4 2.850× 10−2 1.595× 10−3 2.217× 10−2

pp→ Zbb̄ 9.689× 10−6 2.627× 10−2 3.876× 10−6 9.695× 10−3

Table 6.2: Cross sections (in pb) of signal and background processes upon enforcing
the reduced cuts plus the mass selection criteria |mbbbb−mH | < 50 GeV and |mbb−mh| <

20 GeV for the various jet reconstruction procedures.

variable-R R = 0.4

BP1 1.145 0.823
BP2 2.268 1.214

Table 6.3: Final Σ values calculated for signal and backgrounds for L = 140 fb−1

upon enforcing the reduced cuts plus the mass selection criteria |mbbbb−mH | < 50 GeV
and |mbb −mh| < 20 GeV for the various jet reconstruction procedures.

variable-R R = 0.4

BP1 1.676 1.205
BP2 3.320 1.777

Table 6.4: Final Σ values calculated for signal and backgrounds for L = 300 fb−1

upon enforcing the reduced cuts plus the mass selection criteria |mbbbb−mH | < 50 GeV
and |mbb −mh| < 20 GeV for the various jet reconstruction procedures.
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6.4.4 Variable-R and Pile-Up

It has been noted that the nature of variable-R, combined with our reduced pT restric-
tions, allow for wider cone signal b-jets. We therefore perform a quick analysis of events
with pile-up and multiple parton interactions (MPI), using variable-R. As briefly men-
tioned, in order to perform such a study a proper detector simulation is required. We
therefore now employ the use of DELPHES, passing our hadronised events (and pile-up,
simulated in Pythia8) through the CMS card (with the same b-tagging efficiencies and
c/light-jet mistag rates as before). We also perform the same exercise with a fixed cone
of R = 0.4 to compare.

We present in Figs. 6.15-6.16 the mbb and mbbbb spectra, as described earlier, for the
signal with pile-up and MPI, comparing R = 0.4 and variable-R jet clustering. We note
that, with the addition of pile-up, we use a different value for the variable-R parameter
ρ. Furthermore we also do not use any jet quality cuts here, as we have discussed the
main benefit of such techniques are in background reduction, which we do not consider
for pile-up. We see that, with pile-up simulation added on top of our signal events,
using a variable-R jet reconstruction and tagger passes significantly more events in its
selection procedure.

Figure 6.15: Left panel: The b-dijet invariant masses for BP1, using variable-R and
fixed-R clustering, when considering the effect of pile-up and MPI. Right panel: The

same for the four-b jet invariant mass.

As a final point, we note that a further pile-up mitigation technique is possible in
variable-R, which is in the values chosen for the Rmin/max variables. Clearly if, for
some particular process, one discovers that using a variable-R sweeps in too much extra
‘junk’ into the jets, a simple reduction of Rmax is always possible.

6.4.5 Other Variable-R Studies

Before concluding, we review here some other studies from the literature utilising a
variable-R reconstruction procedure.
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Figure 6.16: Left panel: The b-dijet invariant masses for BP2, using variable-R and
fixed-R clustering, when considering the effect of pile-up and MPI. Right panel: The

same for the four-b jet invariant mass.

We note that, while the leading b-jet has an Reff roughly in line with expected values
(Reff ' 0.5), the lowest pT b-jets have large cone sizes (Reff > 1.0), risking potential
contamination from additional radiation. This effect is discussed in [119]. We do not
implement any vetoes to remedy this effect, yet, despite this, our results still suggest
that the variable-R approach displays an improvement over traditional methods.

There have been other studies utilising variable-R methods for physics searches. For
example, in highly boosted object tagging of hh → bbb̄b̄ decays in [120]. Futhermore,
in [119] mentioned above, a variable-R algorithm is deployed in the context of heavy
particle decays. In both examples, an improvement over current fixed-R methods is
present when using variable-R, which is in line with our findings.

As a final word on using variable-R jet reconstruction in experiments, we discuss its
use in relation to b-tagging performance. In particular, the studies of Refs. [121, 122]
explore the possibility of Higgs to b-jet tagging at ATLAS using variable-R techniques.
Specifically, these studies deal with boosted topologies, focusing on fat b-jet substructure,
so the validity of applying these techniques in a non-boosted regime is to be determined.

6.5 Conclusions

In this paper, we have assessed the potential scope of the LHC experiments (from mainly
a theoretical perspective) in accessing BSM Higgs signals induced by cascade decays of
the 125 GeV SM-like Higgs state discovered in July 2012, through the following proto-
typical production and decay channel: gg, qq̄ → H → hh, where H is the SM-like Higgs
state and h is a lighter BSM Higgs state, with mass less than mH/2, so as to induce
resonant production and decay, thereby enhancing the overall rate. Any such a h boson,
largely independently of the BSM construct hosting it, would decay to bb̄ pairs, eventu-
ally leading to a four b-jet signature. The latter is extremely difficult to establish at the
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LHC, owing to the substantial hadronic background. Therefore, b-tagging techniques
are to be exploited in order to make such a signal visible. However, this poses the prob-
lem that the latter are most efficient at large transverse momentum of the b-jets, say at
least 20 GeV, which in turn corresponds to a significant loss of signal events if the BSM
Higgs mass is in the sub-60 GeV range. Hence, if one intends to maximise sensitivity to
this benchmark signature of BSM physics, a thorough reassessment of the current Run
2 approaches is mandated for and especially so in view of the upcoming Run 3.

The first message we deliver is that, with current pT cuts on final state b-jets, using a
fixed-R jet reconstruction and tagging procedure, will lead to a poor signal visibility,
with a majority of signal b-jets being lost. We instead presented a reduced cut-flow,
based on existing bb̄µ+µ− analyses, and showed that this indeed provides a window onto
gg → H → hh→ bbb̄b̄ signals with mH = 125 GeV and mh <

mH
2 .

Additionally, and perhaps more remarkably, we also tested a variable-R reconstruction
approach on events with this reduced cut-flow and showed a significant improvement in
signal yield as well as signal-to-background rates. We notice that in final states of this
kind, the signal b-jets have a wide range of pT and hence varied spread of constituents.
Using a fixed cone of a standard size (R = 0.4) constructs well higher pT jets in an event
but does not capture much of the wider angle radiation from lower pT jets. This leads
to two issues. Firstly, it will prove difficult to accurately construct mh and mH in the
two- and four-jet invariant masses. Secondly, these jets will more often be lost due to
kinematic cuts. A larger cone (R = 0.8), conversely, will gather up too much ‘junk’ in
the higher pT jets, which again will contaminate the signal.

We have obtained all of the above in presence of a sophisticated MC event simula-
tion, based on exact scattering MEs, state-of-the-art parton shower, hadronisation and
B-hadron decays as well as a simplified detector simulation. Given the results of our
analysis, we recommend a more thorough detector level analysis is undertaken, for a va-
riety of different high b-jet multiplicity scenarios, to explore whether a shift to variable-R
jet clustering, on the one hand, could be implemented and, on the other hand, would
improve upon current signal significance limitations using fixed-R jet reconstruction.
In fact, while we have quantitatively based our case on the example of the 2HDM-II
(wherein h was the lightest CP-even Higgs state, yet it could equally have been the CP-
odd one, A), our procedure can identically be used in other BSM constructs featurings
light (pseudo)scalar states emerging from decays of the SM-like Higgs state and in turn
decaying into bb̄ pairs.
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Chapter 7

Jet Visualisation for New Higgs
Boson Searches at the LHC

7.1 Introduction

The work presented in this chapter is yet unpublished, instead establishing a proof-of-
concept for further research into an academic paper once more investigation has been
completed. I am the lead author of the current progress presented here.

In recent years, the evolution in the field of machine learning has allowed physicists to test
and explore novel approaches to problems pertaining to high energy physics. The areas
of application for ML are plentiful, ranging from the exploration of parameter space
for models beyond the standard model [88, 89, 90], improving jet tagging efficiencies
[73, 74, 76, 77, 78, 79, 80], alternative jet clustering methodologies [2] and in the function
of the detector itself [81, 82, 83, 84]. In the case of physics searches at the LHC involving
jets, the application of more advanced deep learning techniques have been and continue
to be explored, in particular the use of methods involving the mapping of the detector
into an image.

The use of imaging is particularly attractive proposition - while a given model itself
will generally be a rather complex multi-layered network, with a large number of inputs
corresponding to the pixels of the image - implementing them to make classifications
requires little to no preparation beyond the detector registering particle hits and po-
tentially jet clustering and tagging. Simpler methods, such as BDTs, will generally be
trained on variables extracted from a given jet (such as N -subjettinness), which can
involve summations over all of its constituents.

Many of these studies - such as those tasked with jet identification and tagging - are
largely agnostic to the specific physics from which they came, and as such can be applied
to a variety of specific LHC searches. In fact a particular advantage of ML generally is
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the remarkable adaptability to adjacent problems. A particular model architecture can
easily be trained on a new dataset (for example coming from a different physics process),
without any changes to the model itself.

In this study, we investigate the potential of using jet substructure visualisation tech-
niques to identify events coming from 2HDM-II models, by designing a convolutional
neural network. It has been the long standing aim of the LHC to find evidence of new
physics beyond the current standard model, and while a variety precision measurements
have manifested tensions with standard model predictions, the golden target of a new
particle discovery remains elusive. There are of course well established LHC searches for
numerous processes of potential interest using more traditional techniques [32, 33, 34], as
well as exploratory studies investigating alternative clustering algorithms for 2HDM-II
final states [1]. We build upon the remarkable ability of image recognition informed jet
taggers, to map information representative of an entire event to an image that can be
used for training.

A particular area of interest occur for events containing boosted Higgses, such that the
resulting decay products are enclosed at small angles into “fat jets” - which we introduced
in the previous chapter on jet physics. For such boosted topologies, traditional jet
clustering techniques can struggle to resolve the individual decay products from the
boosted mother. It can in fact be more convenient to instead employ a large cone
clustering to gather everything that came from the original Higgs into a single jet. This
is a potentially convenient way of observing H → bb̄ decays, and have invariant masses
directly matching the Higgs - however traditional jet tagging would require finding two
b-tags for such jets, in order to verify it is indeed a combination of two slim b-jets. Double
b-tagging can involve the use of complex, high-level features [123]. By imaging jets we
present a method of peering into the structure of fat jets using low level information (i.e.
detector hits), without the need to compute additional variables such as N -subjettinness.

1

Figure 7.1: The merging of jets due into a single object due to a boosted decay.
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For this study, we focus on 2HDM-II decays of heavy Higgses, into SM-like Higgs pairs,
and subsequently into final states of four b-jets, i.e. gg → H → hh→ bbb̄b̄.

H
h

h

b

b̄

b

b̄

R

Figure 7.2: The 2HDM-II signal process of interest for this study.

7.2 Methodology

The approach to our study can be broken into three main stages - the generation of the
physics events to train our classifier, mapping this data into a sample of images, and the
training and tuning of the machine learning classifier itself.

7.2.1 Event Simulation

Firstly we select a particular 2HDM-II benchmark point and simulate signal (and back-
ground) events using a Monte-Carlo event generation tool kit comprised of MadGraph

v2.6.3.2 [111] and Pythia v8.243 [112], with an analysis cutflow applied to the jets via
MadAnalysis v1.8.5, with detector simulation in Delphes v3.4.2 [105] interfaced with
FastJet [100] for jet reconstruction. In order to work with a benchmark point that is
not experimentally excluded1, we test the benchmark against 2HDMC [23], HiggsSignals

[108], HiggsBounds [107] and SuperISO [109].

mh (GeV) mH (GeV) tanβ sin(β − α) m2
12 BR(H → hh) BR(h→ bb) σ(pb)

125 700 1.5 0.999 1.8×105 3.231×10−2 9.066×10−1 3.542×10−1

Table 7.1: The 2HDM-II parameters and cross sections of the gg → H → hh→ bbb̄b̄
process for the selected benchmark point for this study.

The selected benchmark model we use is shown in Tab.7.1. We are identifying the
currently discovered Higgs boson as the lighter scalar in the 2HDM framework, h. We

1Although we recall here that the malleability of ML methodologies mean the results presented would
be easily testable on both 2HDM-II models with different parameters, but also different models entirely
(that result in the same final states).
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generate a sample of O(105) events of the process gg → H → hh→ bbb̄b̄, with the tools
described above.

The background processes we consider are the following,

pp→ tt̄, (t→W+b, W+ → jj), (t̄→W−b̄, W− → all, all)

pp→ bbb̄b̄

pp→ Zbb̄, Z → bb̄.

(7.1)

Due to the kinematic differences between the signal process and leading backgrounds,
we will limit the training of our CNN to jets within a specific pT window of 200GeV <

pjet
T < 400GeV. In order to achieve this, we therefore apply generation level cuts within

MadGraph, given by

pp→ tt̄; pgen
T (t) > 250GeV

pp→ bbb̄b̄; pgen
T (b) > 100GeV

pp→ Zbb̄, Z → bb̄; pgen
T (Z) > 250GeV, pgen

T (b) > 200GeV.

(7.2)

in order to improve the selection efficiency at jet level. The showering and hadronisation
is performed as usual via Pythia8 interfaced with MadGraph. The basis constituents used
in jet clustering are then EFlow objects from the detector simulation in Delphes, which
are stored to form the jet images, where finally, an analysis cutflow selection is applied
to all events before passing to the next phase.

Generate samples of signal and background in MadGraph, and shower in Pythia8

Construct EFlow tracks using Delphes

Cluster jets with R = 1.2 using MadAnalysis5
with Delphes and FastJet (anti-kT algorithm)

Apply pT window cut pjet
T ∈ [200, 400]GeV and run b-tagging

Apply selection criteria to event, if it contains pricesly two b-tagged jets
write constituents to a file for jet images

Figure 7.3: Description of the procedure used to generate and analyse MC events in
preparation for ML training.
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7.2.2 Jet Image Generation

The next step is to then map the jets into images. For each of the processes, we have a
sample of events containing precisely two b-jets, along with information on their EFlow
constituents. Before fitting the constituents in to pixels, there are several preprocessing
steps we perform in order to enhance the key substructure features.

7.2.2.1 Data Input

The input data used from the event generation are EFlow tracks, which source from
charged and neutral hadrons, and photons in the detector simulated with Delphes.
These contain kinematic information of each constituent track of each jet in the event,
as well as the same information for the jet the constituent belongs, where in the previous
step we have filtered events such that only those that contain two b-tagged jets. In
particular, we have

nevent, njet, pjet
T , m

jet, ηjet, φjet, nconst, pconst
T , ηconst, φconst. (7.3)

With the (η, φ)const coordinates, we can map out the position of each constituent in
detector space, and the jet information (η, φ)jet enables us perform transformations on
all constituents of jet (described below) wile preserving the relative structure of the jet.

By clustering the boosted Higgses into jets of large radius R = 1.2, we expect to gather
all of the information of the event into two such jets, each with an invariant mass close
to mh = 125GeV. The key feature of these jets is therefore the presence of two subjets
inside the R = 1.2 cone. As a method or preprocessing, we perform a translation and
rotation on the constituents, such that the two subjets are found in the same regions
across all images. This processing acts as a dimensionality reductions of sorts, we are
removing the geometric variation in the distribution of the two subjets within the fat
jet - the CNN should therefore in principle more easily ‘pick out’ the subjets and learn
the substructure to classify Higgs jets.

7.2.2.2 Coordinate Transformations

The first step is the translation, which is done by locating the hardest constituent (c1)

in a given fat jet, ranked by pT , and defining new coordinates (η′, φ′) such that the track
c1 is at the origin, and all other constituents of the jet are translated such that their
relative positions with respect to c1 are unchanged.

Now that the jet is centred on the origin in (η′, φ′), we next look for the second hardest
constituent c̄2 of the jet, if it is sufficiently separated from c1 such that
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Figure 7.4: An example jet before and after the translation preprocessing step. The
point sizes are weighted by pT , to demonstrate that the highest pT particle is translated

to the origin in (η′, φ′).

∆R(c1, c̄2) > 0.2, (7.4)

then we label c̄2 as c2, if it is separated from c1 by an angular distance smaller than
0.2 we look for the next hardest constituent and compute the distance to c1, until Eq.
7.4 is satisfied. Once c2 has been located, we compute the polar coordinates of c2 from
(η′, φ′), i.e. (r′, θ′), and compute the angle required to rotate c2 to θ′ = 3π

2 , denoted here
by ∆θ. All of the jet constituents are then rotated by ∆θ around the hard jet centre
constituent at the origin.

We note here that our method in transforming the jets differs from other studies - which
tend to rely on reclustering a fat jet with a smaller cone size in order to define subjet
candidates, and translate/rotate based on the leading subjets. We propose a simpler, less
time consuming method which we show can still lead to images that can be classified to a
high level. Additionally, we open the door to the potential for deep learning classification
methods that do not require clustering at any stage, even in to the initial fat jets which
are put into images. We will discuss the prospect of such methods in the final section.
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Figure 7.5: An example jet before and after the rotation preprocessing step.

7.2.2.3 Flipping The Image

Finally, we perform a simple flip about the η′ = 0 axis, such that the half of the image
containing the highest total pT is always in the region η′ < 0. We will see that certain
processes contain a larger spread of radiation away from the centre of each subjet, and so
by gathering everything to one side we are highlighting this wide angle radiation. This
is particularly useful for visualising the images (see section. 7.2.3), as the wide cone
radiation is soft compared with the subjet centres, so gathering onto the same region of
the image will increase the cumulative pT for generating images over a large sample of
jets.

7.2.2.4 Binning and Stacking

With the constituents translated, rotated and flipped into place, we can finally apply the
last step of preprocessing, which is to group the jet constituents together into ‘pixels’.
We use a (0.1× 0.1) grid in (η, φ) space, and bin constituents weighted by their pT into
two dimensional bins, plotting over the range (η′ ∈ [−1.5, 1.5], φ′ ∈ [−1.5, 1.5]). The
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resulting image for a given jet is therefore a (30 × 30) pixel image, with an intensity
scaling with the cumulative sum of pT s of all constituents in a given (0.1× 0.1) pixel.

However, the we aim to classify these images at an event level, rather than jet level, and
we recall that the events in our selection contain two b-jets. To build a model that takes
an input representative of the entire event, we stack the jet images for the two fat jets in
an event, i.e. assign two values to each pixel in the image, corresponding to each of the
two jets. The input for the CNN therefore are (30 × 30 × 2) pixel images, represented
as arrays.

7.2.3 Average Jet Images

Having laid out the procedure for forming jet images, we now move on to looking at the
features of the signal and background images, which we hope to train our network on.
It is not so useful to flick through a gallery of O(104) images, and so instead we present
an average jet image of a large sample of N jets. The values for each pixel in the N jet
average image is simply the cumulative sum of that pixel over all N jets, divided by N .

Figure 7.6: The average image for a sample of 10, 000 fat b-jets coming from the
signal process H → hh→ bbb̄b̄.

We can see in Figs. 7.6 - 7.9 the general substructure in the wide cone jets from each
process. For the signal, we observe a clear two-subjet structure, with little radiation
‘spilling’ outside of the hard central cores of each subjet. Visually, the tt̄ background
appears to be the background most closely resembling the signal, again displaying two
distinct subjets, however due to the nature of the t/t̄ decays, there is a more complex
substructure associated with the combination of b-jets and jets from the W± bosons.
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Figure 7.7: The average image for a sample of 10, 000 fat b-jets coming from the
background process pp→ tt̄.

Figure 7.8: The average image for a sample of 10, 000 fat b-jets coming from the
background process pp→ bbb̄b̄.

This is where the motivation of the flip stage of the preprocessing becomes apparent,
we are gathering all of the additional radiation from nearby truth jets (i.e. not directly
from the b’s) into one half of the image.

We can see in both the pp → bbb̄b̄ and pp → Zbb̄ backgrounds that there is not as
strong a substructure in the fat jets. For the former, as the b-jets are coming from QCD
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Figure 7.9: The average image for a sample of 10, 000 fat b-jets coming from the
background process pp→ Zbb̄, Z → bb̄.

processes, there is no boosting and hence it is we do not generally observe two b-jets
collinear with one another. For the Zbb̄ case, there is a hint of a second subjet, however
this is softer than in the signal and tt̄ cases, owing to the imbalance in the two types of
fat jets from this process. Clearly we will expect some fat boosted objetcs from the Z,
however in our images where fat jets are read in pairs from a given event, this will be
countered by the remaining bb̄ pair produced with the Z, which we do not expect to be
boosted (and hence merged into a single object with clear substructure).

7.2.4 Machine Learning Training

Having taken a qualitative look at the jets we are training on, we now move on to
describing the CNN architecture used to train the classifier model. What we present
here is to be considered an early prototype for a CNN model - used to establish the
feasibility of classifying the signal from a mixed sample of background images.

The toy model we implement here is comprised of the following;

• A (3× 3) 2D convolutional layer

• A (4× 4) max pooling layer

• A (5× 5) 2D convolutional layer

• A (2× 2) max pooling layer
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• A 0.5 dropout layer

• A flattening layer to length 128

• A 0.4 dropout layer

• A length 32 dense layer

• A 0.25 dropout layer

• A length 10 dense layer

• A 0.25 dropout layer

• A 2 node output layer.

We have seen the role of pooling and convolution layers in extracting information from
the images. The flattening allows us to feed image data into a fully connected MLP like
structure, and dropouts represent a random sampling where certain nodes are dropped -
which prevents the model from overfitting too much. Finally the two node output layer
represents the probability for classifying an image as signal (1) or background (0).

7.3 Preliminary Analysis and Results

Here we present early stage performance of the model described in section 7.2.4. To
visualise the training for the model, we plot the evolution of the loss and accuracy, both
on the training and validation data sets.

We then check the output score for all of the images in the validation set, which we recall
is a score between zero and unity, and interpreted as a probability for the output of a
given instance coming from the signal process. If this is close to one the model is sure
it came from the signal process, close to zero and the model is confident it is instead a
background.

Finally, we plot a receiving operator characteristic (ROC) plot, and compute the area
under the curve (AUC), which gives a convenient numerical scoring between zero and
unity.

In Fig. 7.10 we can see the model learning, and slowly plateauing off at a peak perfor-
mance. We observe that the accuracy and loss on the validation sets tracks the training
sets fairly closely, such that we can be confident the model is not overfitting on the
training set - and therefore should generalise well to new, unseen images.

As mentioned, the model output for a particular event is a measure of the model’s
estimated probability for that event belonging to the signal set. To see how well the
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Figure 7.10: The evolution of the loss and accuracy, across 40 training epochs.

Figure 7.11: The model output for the unseen images in the validation set.

model is doing, we separate out the signal and background datasets to see how closely
the prediction matches the truth information. We can see that generally background
events are predicted values closer to zero, with a large peak at around 0.1, and likewise
the signal generally predicts higher values, indeed with a spike at 1.0. There is however
some significant overlap, suggesting there are a large number of events the network
struggles to classify - and hence that further improvements are desirable.
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Figure 7.12: The ROC curve, with ROC AUC plotted, to demonstrate the perfor-
mance of the final iteration of the model in training.

Finally, we present the ROC curve for samples in the validation set. This plots the true
positive rate, given by

TPR =
TP

P
(7.5)

against the false positive rate

FPR =
FP

N
, (7.6)

where each point on the curve represents the model with a different decision boundary.
We can see that this model, with an appropriately placed decision boundary, can achieve
a TPR of around 0.7, with a background rejection of under 0.4.

7.4 Comments and Future Work

We have presented a prototype for a jet visualisation CNN algorithm capable of clas-
sifying events from 2HDM-II H → hh → bbb̄b̄ processes from the leading backgrounds,
pp→ tt̄, pp→ bbb̄b̄ and pp→ Zbb̄. In contrast with other studies on jet image machine
learning, we make use of a stacking method in order to display information representative
of the entire event in a single image.
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We demonstrate a simple toy model CNN that can achieve a ROC AUC of up to 0.74

when trained for the signal against an equal mixture of the leading backgrounds - which
motivates further investigation to implement a more robust network.

We now outline potential improvements to the model which will for the basis of future
work in designing a final iteration of the network with optimised performance. As men-
tioned, for the basis of this study we aimed to limit the inputs to low level information in
the form of detector deposits. It is possible however to incorporate additional informa-
tion into the model like in [124]. We note in our model, we are losing global information
on the distribution of the jets within the detector, such as the distance ∆R between the
two fat jets. This could be included in the model via a series of additional features, or
in keeping with the goal of using only low level information, a second stream could be
added to the neural network with an event image covering more of the detector, which
would capture the distribution of radiation at a global event level.

In our treatment of backgrounds, we have used a simplified 50/50 split of data between
signal and background, with each background comprising 16.6% of the total data (i.e. on
third of the background data). This split is made with the machine learning aspect of the
problem in mind - that is a binary model being trained on data that is not evenly split
will be biased to the class with most samples. This is not the reality of the underlying
physics, indeed each process has an associated cross section and hence different event
rates. Despite this, once could proceed training a model in the way we present, and
evaluate on a realistic spread of the different processes weighted by the corresponding
cross sections, or alternatively depending on the exact rates apply a slightly different
ML approach, such as anomaly detection, if the signal process is sufficiently rare when
compared with the backgrounds.

Again related to the physics, the precise implementation of the classifier can also be
adjusted. Here we apply a short cutflow in the name of simplicity, by filtering events
that contain two b-tagged jets with a pT ∈ [200, 400]GeV. It would also be possible create
a version of our model that can be applied after a more intensive selection process, for
example incorporating masses of the fat jets to reduce the background rates - which
would also go some way in addressing the points in the previous paragraph. Even if the
original background rates are larger than the signal, a sensible cutflow might go some
way in reducing the backgrounds to a similar level to the signal - and there active efforts
investigating this, informed by experimental cutflows.

Another point relating to the grouping of this background data is that we have combined
all backgrounds into a single class - despite the fact that we have demonstrated each
background has different features that would distinguish them from the signal. This
choice is again made with the ML implementation in mind, it is more straight forward
to train and evaluate a binary classifier. While this is a convenient simplification, more
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investigation could be done to investigate the separation power between the signal and
each background individually.

We have seen that the architecture implemented here has been designed by hand as a
toy model. Once issues pertaining to the input and physics have been addressed, a final
model would of course be designed by explicitly scanning over the tunable hyperparam-
eters in order to maximise the classifying performance.
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Chapter 8

Spectral Clustering for Jet
Physics

8.1 Introduction

We note that the work presented here is based on [2], of which I am a co-author. My
role in this research was in qualitative support of the physics and algorithm, as well as
informing on methods of evaluating the performance of the algorithm.

We have investigated the various uses of machine learning in particle physics, and in
presented a study using supervised deep learning to classify between events arising from
different processes. In this chapter, we present research on a more fundamental area
of high energy physics - that is in the jet clustering algorithm itself. Current choices
for algorithms are the anti-kT [48] and Cambridge-Aachen [49] algorithms, which are
examples of sequential recombination algorithms.

These algorithms have been wildly successful for a variety of reasons, for example they
are resistant to clustering events with a different number of jets (unlike cone algorithms),
are IR safe, and are fast. Despite this, as computational resources increase, we can look
toward alternative methods, and compare these with the traditional ones. The process of
jet clustering is actually quite simple, the input is a series of particle coordinates, defined
in some space on (η, φ) in a detector, and the output jets are essentially just groupings
of these initial coordinates. It is quite clear that this can be recast as an unsupervised
ML problem, we do not a priori know how many jets we should be clustering into, nor
is there any information on the “correct” ways to organise the inputs into groups.

In this study we consider the use of spectral clustering (SC) machine learning on the
problem of jet reconstruction. As we have seen, spectral clustering is powerful unsu-
pervised ML technique, that can significantly outperform more basic methods such as
k-means clustering. In transforming input data into a new space, one has control over
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the definition of similarity used - it can therefore be seen how spectral clustering can
go beyond simple clustering based on Euclidean distances in parameter space. This
freedom is highly suggestive that spectral clustering might be suited to jet reconstruc-
tion - one can incorporate information beyond just the detector geometry, such as pT
or object type (charged track, neutral track, photon etc), which could be useful in jet
reconstruction.

We begin by reviewing the methodology behind the formation and training of our SC al-
gorithm, in particular highlighting the modifications required to apply SC to jet physics.
We then review the toolkit used to simulate physics events, which we test our algorithm
on, as well as describing the physics processes we are testing. Following this, the precise
steps for forming our algorithm are outlined, and finally we present the results of SC
compared with tradition jet algorithms.

8.2 Methodology

We have seen the procedure for finding the Laplacian L which forms the basis of SC
Here we will outline how we go about adapting this technique to cluster particles into
jets.

8.2.1 Modifications to Spectral Clustering

We have that, as with other unsupervised ML techniques, spectral clustering requires
the user to input the expected number of groupings before any clustering has taken place
- this is a clear drawback when applying to jet physics - however we propose a modified
algorithm which does not require an input for the number of final state jets.

Spectral clustering works by computing a Laplacian matrix L from the graph of input
points to be clustered. We can then compute the minimum eigenvalues λmin, each of
which corresponds to a grouping of points. In the generalised method, the number of
these eigenvalues we chose determines the number of clusterings to partition the data
into - which is also the dimensionality of the embedding space c. To circumvent the
issue of not knowing a priori the number of expected final state jets, we do not fix the
number of eigenvalues we compute, and instead compute all eigenvalues smaller than a
cut-off λcut.

Another modification we must make to the usual spectral clustering methodology is in
the implementation of a stopping condition. In traditional jet algorithms this is well
defined in that points are combined and sequentially removed until no more remain,
at which point all particles have been clustered. An intuitive choice might be the dis-
tance between the two points most recently combined, however it turns out this varies
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significantly between events, and that taking the mean distance between points for all
combinations is a more stable choice.

Finally, as the dimensions of the embedding space are not of equal importance in a
clustering (in contrast with the intuition for geometrically clustering), we normalise the
eigenvectors of the Laplacian by the corresponding eigenvalue to some power β. For a
particular eigenvector satisfying λ < λcut, which can be written as

∑
j

Lijhj = λhi, (8.1)

where j iterates over points in the sample. The coordinate for a point j in the embedding
space will therefore be

mj =
(
λ−β1 h1j , ..., λ

−β
c hcj

)
, (8.2)

i.e. the component of a vector in the nth dimension are suppressed by a factor of λβn.

8.2.2 Coordinate System

The coordinate system we use differs slightly to that used in the previous chapter. We
keep the same definitions of the beam line z direction, and angular azimuthal coordinate
φ, however in place of the pseudorapidity η we have seen before, we use the rapidity
defined by

y =
1

2
ln

(
E + pz
E − pz

)
. (8.3)

We see in Fig. 8.1 a demonstration of the same event, plotting in the physical coordinate
system in a physics detector, and in the embedding space from our implementation of
spectral clustering.

8.2.3 Physics Simulation

Of course in order to test our algorithm, we require some physics data to cluster in to
jets. To generate event samples, we use a simple tool kit of MadGraph interfaced with
Pythia to produces showered and hadronised particles. Instead of using a full detector
simulation, we apply an approximation in the form of a cutflow, which are tailored to
each process.
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Figure 8.1: An example event, plotted in (upper) the detector space (y, φ), and
(lower) the first four dimensions in the embedding space.

We consider four different scenarios, two of which arise from 2HDM-II models, where
we simulate the decay process

pp→ H → hh→ bbb̄b̄, (8.4)

as seen in [1]. In the first of these benchmarks, we identify H as the SM-like Higgs
boson with mH = 125GeV, with the lighter scalar Higgs mass mh = 40GeV - this point
is referred to as the light Higgs (LH) process. In the second benchmark, which we refer
to as heavy Higgs (HH), we identify mh = 125GeV, and select a heavier mH = 500GeV
scalar partner.

The next two we consider are SM processes, firstly a top quark process (which we refer
to as TT)

pp→ tt̄, (t→W+b,W+ → jj), (t̄→W−b̄,W− → lνl), (8.5)

where l = e, µ. Finally, we simulate three jet events when testing the IR safety of the
algorithm,

pp→ jjj, (8.6)
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referred to as 3J. The cutflow used to emulate a simple detector are outlined below in
Tab. 8.1.

Process pparticle
T (GeV) ηparticle pjet

T ηjet pmiss
T (GeV) plepton

T (GeV) ηlepton ∆R(lepton,jet)
LH >0.5 <2.5 >15 - - - - -
HH >0.5 <2.5 >30 - - - - -
TT >0.5 <2.5 >30 <2.4 >50 >55 or >120? <2.4 >0.44
3J - <2.5 - - - - - -

Table 8.1: The cutflow applied to each of the processes considered in this paper,
where cuts for the TT process are taken from [125].

In the cutflow for the TT process, we note the following, (?) in the lepton pT cuts, if the
lepton is a µ then a pT of 55GeV is required, if it is an electron then either pT>55GeV is
required if the electron is isolated [126], or pT>120GeV if it is not isolated. Furthermore
(4), the cut on separation between the jet and lepton is interchangeable with a cut on
the pT difference (|pjet

T − plepton
T | > 40GeV).

In the LH and HH processes, to analyse how well our clustering algorithm is performing
we test the invariant b dijet mass and four b-jet masses against the respective model
values for mh and mH . For the TT events, there are three masses that can be re-
constructed, the W mass from the W+ → jj decays, the hadronic top mass can be
reconstructed from the b-jet along with the W+ remnant jets, and finally the leptonic
top can be reconstructed from the combination of the resulting b-jet along with the
missing momentum.

As a simplified method of jet tagging, we use MC truth information. For example for
b-jets, we take each truth b-quark in the event sample, and match it to the closest jet,
i.e. the one that minimises

∆R(b, jet) =
√
(yb − yjet)2 + (φb − φjet)2, (8.7)

if ∆R(b, jet) < 0.8, the tag is kept, otherwise no tag is assigned. The same procedure is
followed for other jet flavours, replacing the b-quark with the relevant MC particle.

8.2.4 Spectral Clustering For Jets

We now outline the spectral clustering algorithm designed for reconstructing jets. The
input for our algorithm are a series of final state particles with the cutflow applied
defined in Tab. 8.1. The particles in a given event are read as pseudojets, randomly
ordered. The algorithm proceeds in time steps, recursively combining pseudojet pairs
via the so-called E scheme, where a new combined pseodojet is formed by summing the
momenta, i.e. for a joining of pseudojets i and j into k
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pk(t+ 1) = pi(t) + pj(t). (8.8)

In order to select two psuedojets i and j to join, we compute affinities between the nodes
(particles), which form a measure of the likelihood two particles belong in the same jet.
A simple basis for this is of course geometric distance, which in our coordinate system
(y, φ) is defined as

dij =
√

(yi − yj)2 − (φi − φj)2. (8.9)

Clearly one would expect the affinity to be larger for pseudojets that are close together,
the affinity measure we use is given by

aij = e−d
α
ij/σv . (8.10)

We note that affinity measure will change for each time step t, however this dependence
is suppressed in the above. Points separated by a large distance are unlikely to be good
candidates for joining, in order to reduce noise, for each pseudojet, we therefore only
keep a select number of neighbours, kNN, setting sufficiently low affinity pairings to zero.
These affinities are used to compute the symmetric normalised Laplacian L, the entries
of which will be

Lij =

{
∝ −aij for i 6= j

1 for i = j.
(8.11)

We define the matrices

Dij = δij
∑
k

aik; Aij = (1− δij)aij , (8.12)

such that the Laplacian can be initially written

L = D− 1
2 (D −A)D− 1

2 , (8.13)

where we again note that everything here has a time dependence, for each step in the
clustering process the Laplacian will change as we combine particles. We introduce the
quantities Wij(t) = δijw(t)i and Zij(t) = δij(t), where zi(t) is the sum of all affini-
ties connected to a particle i, and wi(t) measures the weighting of the contribution of
pseudojet i to a cluster. We can then write the Laplacian as
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L(t) =W (t)−
1
2 (Z(t)−A(t))W (t)−

1
2 , (8.14)

where the time dependence is shown explicitly. At each time step, when two pseudojets
are combined, L will reduce in size by a row and a column. The eigenvectors of L are
then

Lhk = λkhk, (8.15)

where k = 1, ..., c labels the number of eigenvectors, which are used to define the pseudo-
jets in the embedding space. As discussed, to capture the flexibility for desired number
of jets, we compute all non trivial eigenvectors whose eigenvalues satisfy

λk < λcut. (8.16)

Eigenvectors are rescaled by their corresponding eigenvalue raised to the power of β, and
to circumvent potential issues arising from zero division errors (for small eigenvalues),
we apply the following function to the eignenvalues

λk = min(λk, 0.001). (8.17)

With the eigenvectors we can construct the points in the embedding space, the coordi-
nates of which for the jth particle will be

mj(t) =
(
λ1(t)

−βh1j(t), ..., λc(t)
−βhcj(t)

)
, (8.18)

where here the time dependence is shown explicitly. In order to cluster the points, we
define a distance measure in the embedding space,

√
dij(t) = cos−1

(
mi(t) ·mj(t)

||mi(t)|| ||mj(t)||

)
, (8.19)

where ||mi(t)|| is the Euclidean length of the vector mi at a time t. Finally, as discussed
in section 8.2.1, we implement a stopping condition, inspired by traditional clustering
algorithms, based on the input distance parameter R 1 and mean distance between each
pseudojet pairing. While the condition

1Unlike in traditional clustering, R is in fact optimised as part of the model training rather than
being chosen by the user.
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2

c(c− 1)

∑
i 6=j

√
dij(t) < R (8.20)

is satisfied, we continue clustering pseudojet pairs with the minimum dij(t). Once this
is broken, i.e.

2

c(c− 1)

∑
i 6=j

√
dij(t) > R, (8.21)

all pseudojets are relabelled as jets, at which point jet level cuts can be applied. In our
implementation, we apply the cut that, if a given jet has fewer than two constituents, it
is removed and the particles clustered into the jet are considered noise.

8.2.5 Model Parameters

In the procedure for our spectral jet clustering algorithm, we defined a number of pa-
rameters. As we are now in the realm of machine learning, these are actually parameters
which are tuned in the training of the model. We note that in many ML methodologies,
the model parameters can be rather abstract and hence difficult to interpret physically
- in the case of our spectral clustering algorithm this is not the case - we outline the
parameters and their interpretation below.

In the affinity measure defined in the previous section,

aij = e−d
α
ij/σv , (8.22)

we introduced the quantities α and σv. The first of these parameters α defines the shape
of the distribution that describes nearby particles around a given point, with α = 2

corresponding to a Gaussian kernel. We also have σv, which estimates the distance scale
we expect between particles arising from the same shower (and hence belonging to the
same jet). It is analogous to the input parameter in the generalised kT jet algorithm,
here referred to as RkT , and will therefore generally take on similar values. We note
that α and σv are related, in that an increase to the parameter α leads to a reduction
of the probability of joining particles with a separation exceeding σv.

When computing affinities between pseudojets, recall that we replace sufficiently small
affinities with zero, such that only a fixed number of neighbours, kNN, are kept. Reducing
the number of neighbours kept acts as a way of reducing noise, however values that are
too small will lead to a loss of signal.
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To create a variety of spectral clustering algorithm that does not require prior knowledge
of the desired final number of clusters, we introduce a way of computing a variable
number by considering those with corresponding eigenvalues lower than some cut off
λcut. Increasing λcut will therefore increase the number of dimensions of the embedding
space - although not by any measurable amount - as the effect will vary event by event.

In order to properly weight each dimension in the embedding space, we normalise each
eigenvector with its eigenvalue raised to the power of the parameter β. This rescaling
suppresses eigenvectors with larger eigenvalues - which contain lower quality information.

Finally, in our addition of a stopping condition we implement the parameter R, that
acts as a cut-off mean distance between pseudojets in the sample, that when exceeded
halts the clustering and declares jets.

8.2.6 Parameter Optimisation

To determine a good set of the above parameters, we perform scans on a sample of
2000 MC events. We test the quality of a given set of hyperparameters by comparing
the constituents of a clustered jet against the MC truth particles that came from the
decaying quark. For a given parton, such as a b-quark from which we are trying to
construct a b-jet, we refer to decay products originating from the b as descendants. A
similar study utilising MC truth information can be found in [127].

It can therefore be deduced that, for some parton jet, there is a sample of particles that
are descendants of the original parton, and so a perfect classifier would gather precisely
this sample of particles into the jet corresponding to that parton. Conversely, a realistic
algorithm will make errors arising from two different sources, namely

• Particles that arose from that parton not being included in the corresponding jet
leading to a reduction in the jet mass - this is referred to as signal mass lost S.
In standard jet clustering this would occur if the chosen input parameter R is too
small.

• Particles that did not come from the parton in question, being drawn in to the
jet, leading to an artificial increase in jet mass - we refer to this as background
contamination B. For standard clustering, we would expect contamination when
we select an R that is too large.

Using the above, we construct a loss function that is used to evaluate the performance
of the algorithm for a given set of hyperparameters,

L =
√
wB2 + S2, (8.23)
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where we apply a weighting w = 0.73 to B.
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Figure 8.2: The loss L plotted over the scan of hyperparameters.

In our scan, we therefore test a variety of values for each parameter, and record the
corresponding loss, as seen in Fig. 8.2. We note that while a particular set of parameters
are selected for this study, there are large regions of parameter space that result in low
loss values - and so do not need to be fine tuned for an acceptable clustering performance.
The final values used in the remainder of this paper are

α = 2, kNN = 5, R = 1.26, β = 1.4, σv = 0.15, λcut = 0.4. (8.24)

8.2.7 Infrared Safety

As we saw in a previous chapter, any good jet clustering algorithm must be IR safe.
We demonstrate this for our spectral clustering algorithm by computing an IR sensitive
variable, and showing it remains consistent between datasets both containing and miss-
ing IR singularities. By means of completing an exhaustive search, we again perform a
scan over the hyperparameters of the model, to show that there is no combination that
is IR unsafe.
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To avoid the task of comparing mass spectra by eye, we compute the Jensen-Shannon
score [128], which quantitatively encodes the divergence between a pairs of distributions.
For two probability density distributions p and q, the Jensen-Shannon (JS) score is

DJS(p, q) =
1

2
DKL

(
p|1
2
(p+ q)

)
+

1

2
DKL

(
q|1
2
(p+ q)

)
(8.25)

where

DKL(p|q) =
∫ ∞

−∞
p(x) log

(
p(x)

q(x)

)
dx (8.26)

is the Kullback-Leibler divergence.

8.3 Results

In this section we present the results of our spectral clustering algorithm, starting with
a demonstration of the IR safety. We then present a comparison of the performance of
spectral clustering against the anti-kT jet algorithm.

8.3.1 IR Safety

8.3.1.1 Jet Shape Variables

To test the IR safety of a given algorithm, we compute the following jet shape variables;
jet mass, thrust, sphericity, spherocity, oblateness. For an in-depth review of jet shape
variable, we refer the reader to [129].

Firstly, the jet mass is found by constructing the invariant mass from the combined
four momentum of its constituents. The jet thrust is defined relative to a specified axis
~nthrust,

t = max

(∑
a |~pa| · |nthrust|∑

a |~pa|

)
, (8.27)

where the sum is over hadrons in a jet. ~pa is the three-momentum of the ath jet con-
stituent Sphericity is defined as

S =
3

2

∑
a |paT |2∑
a |pa|2

, (8.28)
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where pa is the three-momentum, and paT transverse momentum of the ath particle in a
given jet. Sphericity is IR safe, but not collinear safe, so spherocity is also tested, which
is IRC safe, given by

S̄ =
4

π
min

(∑
a |paT |∑
a |pa|

)2

. (8.29)

The oblateness of a jet, similarly to thrust t, is defined in with respect to axes. Firstly
nmajor, which is in the plane orthogonal to nthrust. There is also nminor, which is or-
thogonal to both nmajor and nthrust. The overall oblateness is written in terms of terms
containing these two axes,

O = Fmajor − Fminor =

∑
a | ~Ea · ~nmajor|∑

aEa
−
∑

a | ~Ea · ~nminor|∑
aEa

, (8.30)

where the Ea are jet constituents.

8.3.1.2 Testing for IR Safety

We observe that an IR safe algorithm, when computed on a LO and NLO dataset, will
give a low JS score, whereas an IR unsafe algorithm would be sensitive to soft and
collinear emissions present in the NLO data, corresponding to a greater difference in the
jet shape variables and hence larger DJS.

We use the 3J dataset described in section 8.2.3, and compute the shape variables as
detailed above. It is clear in Fig. 8.3 that spectral clustering is closely matching the
performance of the kT algorithm.
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Figure 8.3: A comparison of the jet shape variables computed in the LO and NLO
dataset, for both the generalised kT algorithm and for our spectral clustering algorithm.

As an additional measure, we present the JS score of the jet shape variables, this time
comparing the generalised kT , spectral clustering and the iterative cone algorithm [130],
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which is known to be IR unsafe. The inclusion of the latter ensures that we can verify
our safety measure does indeed identify IR unsafe algorithms with an enhanced JS score.
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Figure 8.4: The JS scores for the five jet shape variables, computed for our SC algo-
rithm, the generalised kT algorithm, and the IR unsafe iterative cone algorithm. Plotted
is a distribution of JS scores, where each score corresponds to a different selection of

clustering parameters.

We can indeed see in Fig. 8.4, that the SC algorithm closely matches the generalised
kT , with comparatively low JS scores compared to the iterative cone algorithm.

8.3.2 Signal Jet Reconstruction

We finally consider the physics performance of our SC algorithm when compared with
the anti-kT . We consider two implementations of the anti-kT , both with RkT = 0.4
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Figure 8.5: The jet multiplicity for each of the datasets, comparing the three algo-
rithms AK4, AK8 and SC.

(AK4) and RkT = 0.8 (AK8), and measure the performance on three datasets, the LH,
HH and TT described in section 8.2.3.

Firstly, we compare the jet multiplicity of the three algorithms. As we are generating
processing with a known number of expected final state jets, we can identify a good jet
algorithm as one that reconstructs all expected jets frequently.

We can see from Fig. 8.5 that for Higgs datasets, all three algorithms perform compara-
bly, for the TT dataset AK8 is clearly a less optimal choice, and in fact AK4 reconstrctus
the expected four jets most of the time. However as we have seen, the number of jets is
not an exhaustive way of testing the jet algorithms - we require the jets reconstructed
to represent the physics from which they originated, in the form of invariant mass dis-
tributions.

As a side note, it is worth mentioning the stark difference between the jet multiplicities
quoted here and in [1]. A big source of jet suppression in [1] comes from the pT cuts,
which are made looser in this study. Furthermore, the implementation of b-tagging here
is slightly different than in the previous study. Here, we use a fixed tagging radius
of R = 0.8 universally, whereas previously we had matched the tagging radius to the
radius used in jet clustering, this enhances the number of jets successfully b-tagged in
this study. We also do not simulate any b-tagging inefficiencies here, unlike in [1] where
pT dependent b-tag probabilities are used.

From Fig. 8.6, we plot the mass distributions of the jets in each sample, reconstructed
with each algorithm. In the LH sample, we observe SC leading to narrower mass peaks
in reconstructing both the mH = 125GeV Higgs (from all four b-jets) and for the two
mh = 40GeV Higgses. The stronger and weaker signal labels refer to the b-jet pairings
with a larger and smaller combined mass respectively. We also note that here, the peaks
from the AK8 algorithm appear sharper than those from the AK4.
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For the HH data, the performance of the three algorithms are more closely matched,
with SC and AK8 in particular producing narrow peaks at the expected mass for the
respective Higgs the jets are reconstructing, and AK4 peaks being slightly below the
expected values - perhaps due the signal mass lost S. Referring back the Fig. 8.5, we
note that the multiplicity for SC was better for the HH data than the AK8 algorithm,
and so we argue here that SC is in fact the optimal choice. We also highlight a further
benefit of SC, in that for both the LH and HH datasets we have used the same model,
with the same hyperparameters, both achieving a strong performance. In contrast the
anti-kT algorithm performance varies for the two choices of RkT - implying an element
of fine tuning in the choice of this parameter on different datasets.

We finally consider the TT dataset. The masses constructed are as follows; the hadronic
W is reconstructed from the jj decay products, where the correct partons corresponding
to the jets are identified using MC information, via Eq. 8.7. The hadronic t is recon-
structed from the combination of the associated W described previously, along with the
companion b-jet, which is tagged in the usual way. The leptonic t is reconstructed from
the leptonic W and its corresponding b-jet. Again here the SC performance is compa-
rable to the best anti-kT algorithm, in this case AK4, and we again draw attention to
the fact that this is the same variation of SC used for the other datasets.

8.4 Conclusions

We have demonstrated that an alternative to sequential recombination jet clustering
algorithms, using machine learning, can achieve a comparative performance, without
the need to tune the hyperparameters to the particular physics we are interested in.

By utilising spectral clustering, in which we transform data from it’s original feature into
a new, transformed embedding space, we are able to train a model with specific hyper-
parameters that can accurately reconstruct jets from various physics process, of various
different kinematics and sizes. In contrast, the user input in the anti-kT algorithm is
dependent on the spread of radiation in the jets themselves, and should be adjusted ac-
cordingly - as demonstrated in varied performance of AK4 and AK8 on different physics
processes. Furthermore, SC is also adaptable in that many other combinations of hy-
perparameters perform adequately, such that it is possible for a single ‘out-of-the-box’
configuration to work well on whatever physics is thrown at it, all while maintaining IR
safety.

Finally, while there are a multitude of different ML inspired methods for jet reconstruc-
tion, SC has the added benefit of being strikingly simple when compared with deep
learning methods. Only basic linear algebra is required to construct the Laplacian and
its eigenvectors and corresponding eigenvalues.
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Figure 8.6: The jet masses for each of the datasets, HH (upper panel), LH (middle)
and TT (lower), comparing the three algorithms AK4, AK8 and SC.
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The simplicity and performance of SC make it a promising new candidate for jet physics,
the results of this study highly motivating further study into more complex effects such
as full detector simulation, pile-up and MPI, and fat jet substructure.
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Part III

Final Comments
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Chapter 9

Conclusions

The role of particle accelerators, both current (LHC) and potentially in the future with
the high luminosity LHC (HL-LHC), is to explore new physics beyond the SM. The
environment inside such experiments are noisy and highly populated with radiation from
multiple sources - both from processes of potential interest and additional ‘junk’ which
must be carefully removed to accurately assess the physics content of a given event. As
such, it is of paramount importance that the methodologies of mapping detected final
state radiation into the underlying physical process from which it came can perform
well, for many different types of physics.

At the forefront of such methods are jets - sprays of hadronic radiation arising from a
final state parton, which are confined to cone shapes due to the evolving nature of the
QCD coupling over distance scales. Accurately reconstructing and identifying the source
of such jets is a non-negotiable requirement for extracting physics from these messy final
states.

An exciting potential source of new physics are so called two-Higgs-doublet-models
(2HDMs), which closely match the SM, with the addition of an extended Higgs sec-
tor, in the form of additional physics Higgs states - h,H,A,H±. Measurements of the
Higgs boson, discovered in 2012, show that the preferred decay mode for this Higgs is
into a pair of b-quarks, which in turn form b-jets in the detector. This makes 2HDMs
a good candidate for assessing jet reconstruction techniques - however we note that
of course jet reconstruction is universally required for any BSM models in one way or
another.

The current popularity of data science and machine learning are leading advancement
in a diverse range of fields, from our day-to-day lives in social media, e-commerce and
banking, to AI that can outperform humans in chess, aiding medical diagnoses and self
driving cars. We have shown that high energy physics can also profit from these these
techniques.
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Firstly, by employing the power of modern high performance computing (HPC), we are
able to simulate huge particle datasets mimicking what is seen in experiments such as the
LHC. In chapter 6 we test alternative jet clustering algorithms on high b-jet multiplicity
datasets from H → hh → bbb̄b̄ decays, with a variable R parameter, which we demon-
strate allows for clustering single events containing multiple jets of different angular
sizes. We see that, when combined with quality cuts, there is an improvement in signal
to background ratio when using variable-R in place of traditional fixed-R algorithms.

In chapter 7 we then consider more cutting edge techniques on b-jets from 2HDM-II
Higgs decays. By mapping the constituents of jets in these decays into images, we
apply deep learning techniques to build and train a classifier to predict which kind of
physics event a set of jets came from. In this iteration, we present a proof-of-concept
which highlights the ability of CNNs to learn from relatively low level information (that
is, direct pT deposits in a detector, rather than other ML methods which can require
highly tuned parameters).

Finally, in chapter 8, we consider the origin of the jet formation, that is in the initial
clustering of final state particles - and present a novel, ML informed, clustering algorithm
based upon spectral clustering. This SC algorithm can be trained and used on a variety
of different events, with jets of different angular scales, without the need for constant
changes to the model parameters. It is shown that SC performs comparatively well
compared with the anti-kT clustering algorithms.

In all three of these endeavours we observe that traditional jet reconstruction techniques,
while very powerful, can potentially be improved upon with more modern ML and data
intensive methodologies. The field of ML is continually growing and advancing, and
so therefore will the applications in high energy physics. With the plans for the HL-
LHC to begin in 2027, which will drastically increase the amount of data produced, the
demand for new ways to use and model data will also grow - which makes for an exciting
time in high energy physics to push the current boundaries of our understanding of the
fundamental building blocks of nature.
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