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BIT-SERIAL ARTIFICIAL NEURAL NETWORKS FOR EPILEPSY SEIZURE

DETECTION

by Si Mon Kueh

Fifty million of the world’s population are afflicted with epilepsy and 80% of these

epileptic patients lives in developing countries. It is crucial to develop a low cost, power

saving and reliable home-based seizure detection system for those disabled individuals

who have insufficient access to seizure detection equipment.

This research presents three contributions. The first demonstrates that simple bit-

serial architecture can be used when designing extremely low-power and low-cost neural

network processors to detect epileptic seizures. The proposed design is tailored to be

cost effective by employing variable bit precision to allow for compromise between the

detection accuracy and the hardware cost.

The second contribution highlights extensive studies of epileptic seizure detection by

DPU arrays, using bit-serial neural networks (BSNN) where the control module consists

of only simple finite state machines. It has been demonstrated that epilepsy detection

through such low-cost and low-energy dedicated neural network is feasible and there is

potential for massively parallel network configuration. Different network configurations

with variable numbers of network nodes and layers were designed and tested on FP-

GAs. The best performing version of the complete system has been implemented on an

ALTERA Cyclone V FPGA which uses 3931 ALMs with an average recognition rate of

89%.

The third contribution illustrates the development of a dedicated feature extraction

component to be used as part of the proposed epilepsy detection system. Two different

dedicated feature extraction hardware systems have been designed to provide inputs to

the neural network in order to facilitate the classification of EEG waveforms. The EEG

features extracted in this research are the slope and mean energy in EEG waveforms.

Through multiple experiments, it was found that using a combination of both features

as input to the proposed BSNN provides a detection accuracy of 90%.

Results of this research have been published in three conference papers and also in the

IEEE Journal on Translational Engineering in Health and Medicine.
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Chapter 1

Introduction

1.1 Background Information

In 2018, the World Health Organization (WHO) statistics revealed that 50 million of

the world’s population is affected by epilepsy [1]. Approximately 80% of the reported

epileptic cases are found in developing countries. These countries may not have readily

available treatment facilities and medications. Many epileptic cases are not reported

especially in developing countries because epileptic patients and their families are afraid

of being stigmatised and discriminated upon. This research addresses the problem of

detecting epileptic seizures that affects these individuals around the world. Epilepsy is

caused by abnormal impulses generated in the brain, the most complex part of the human

body. It is well known that only 10% of the 1013 cells are involved in the information

processing and communicating part of the brain [1]. The cells that make up the most

integral part of the human body are neurons. The brain itself is enclosed in a skull,

and protected by a dura matter which is the dense protective fibre like layer. The brain

consist of three main parts: cerebrum; cerebellum; brain stem.

Currently, epilepsy treatments are usually provided in the form of anti-epileptic drugs

(AEDs) [2]. In the 1920s, the ketogenic diet was popularised as an alternative form

of treatment for epilepsy. This diet was popular among children with epilepsy as it

had a success rate of 30% to 50% which was good in those days. Another popular

form of treatment was the vagus nerve stimulation (VNS) technique which was used

to treat problematic seizures. In 1997, this device was approved by the U.S Food and

Drug Administration unfortunately it is less effective than AEDs as only 50 percent of

the 40% of patients treated respond to the treatment [3]. In 1970, the development

of seizure prediction research was started by Viglione and colleagues. Seizure predic-

tion analyses have several different categories: time-domain analysis; frequency-domain

analysis; non-linear dynamics [4]. Most of the previous work will be explained in more

1
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detail in Chapter 2. Unfortunately, nowadays there is still no home-based seizure detec-

tion system that can specifically differentiate between epileptic and non-epileptic seizure

electroencephalogram (EEG) patterns.

To address the problem of epilepsy seizure detection, this thesis has reviewed different

state of the art seizure detection methods. These methods are categorized as linear

methods and non-linear methods. Linear methods have the advantage of simplicity and

versatility compared with non-linear methods that are more capable of addressing the

non-stationary nature of the EEG signals. It was decided to use one of the linear method-

ology to develop the epilepsy detection system which requires lower computational power

[5]. The Artificial Neural Network (ANN) is a form of classifier that works in conjunc-

tion with feature extraction for epilepsy detection. ANN provides a more reliable seizure

prediction with a range of error from 89 to 100%, verified with the datasets tested in

this research. Thus, ANN have been chosen as the basis of the classifier designed in this

thesis to overcome the problem of epilepsy detection.

Furthermore, the research project known as Ambient Assisted Living (AAL) have been

of interest internationally in recent years [6],[7]. Through technological advancement

which contributes to various smart objects with the capability of identifying, locating,

sensing and connecting and thus leading to new forms of communication between people

and things. Ambient Assisted Living (AAL) involves the use of various technical systems

to support elderly people in their daily routine to allow an independent and safe lifestyle

as long as possible. Personal communication between elderly people, their environment

and relevant groups of care givers is an important aspect in AAL. Therefore, it is possible

that epileptic patients also can benefit from the use of AAL in their daily lives. In order

to accomplish such a feat, there is the need of identifying the best architecture may

it be hardware plus software or just software for this seizure detection system. The

thesis hopes to incorporate a viable seizure detection system into the AAL ecosystem

and possibly future smart homes.

1.2 Specification and Approach

This section provides the approach and specification of this research. It should be

noted that other literature have used the assumption that EEG is generated by a highly

complex linear system [8]. This assumption is also being used in our research.

1.2.1 Why a bit-serial neural processor design?

In order to develop a wearable, home-based seizure detection system, the size and energy

efficiency issue of the system will need to be addressed. The bit-serial architecture

was chosen as the basis of this design because this method is generally perceived and
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recognised as a method of choice for producing low cost and low power processors. When

compared with the alternative which is the bit-parallel approach which prioritize speed

over cost, the bit-serial architecture methodology is preferred for developing a neural

processor for this research as a wearable system needs to prioritize cost over speed.

1.2.2 Why an artificial neural network?

A neural processor would be the ideal design to simulate a biological neuron as it is

also commonly used in brain modelling [9]. As part of the epilepsy detection system,

the performance and speed of the system can be compromised to obtain a minimum

hardware cost. It is expected that the small design developed in this research would

be more energy efficient than a general processor and therefore used for this particular

application. In this research, the developed system is mainly implemented on a Field

Programmable Gate Array (FPGA) board. It is anticipated that in the near future,

it will be necessary to completely design and fabricate an ASIC model of this neural

hardware. It will then be fully tested to gauge its energy efficiency and feasibility to be

used by epilepsy patients during their daily activities.

1.2.3 Specification of our design

At present, there is still no standard specifications for good epileptic seizure detection.

Therefore, this research has set specifications based on reference literatures i.e. the paper

by Painkras et al. [9] which is closely related to this area of studies. The design proposed

in this research have met certain specifications required for epileptic seizure detection.

As the design decision involves a wearable system, the size of the proposed system

should be less than 20% of the provided hardware resources of an FPGA chipset. In this

research, comparisons have been made using three different chipsets, including Cyclone

IV, Cyclone V and Stratix IV. As the research is still a proof of concept, evaluation of

the results mainly focus on correct recognition rate of EEG patterns and hardware cost.

Estimation of power and latency have also been included. However, the author strongly

advised that these are estimated values which can be further optimised.

In order to compete with designs shown in other literature, the average accuracy of the

proposed system must be over 80% as to convince experts world wide that this device

can successfully detect epileptic seizure patterns. This specification is reinforced in a

paper presented by Raygoza-Panduro et al. [10] which have an accuracy of 80%. The

paper has been accepted and published by IEEE.
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1.2.4 Hardware and software used for simulation and hardware testing

Software simulation have been proven to be faster and more accurate for ANN testing.

However, software simulation requires the use of a laptop with an i5 processor, 8 GB

RAM and a 64-bit operating system which is both bulky and cumbersome. In contrast,

the proposed hardware is portable and can be used without the need of a connected

laptop. In this research, an FPGA board have been used for hardware implementation.

Synthesis for this design was conducted suing an Altera Quartus II software.

1.3 Aims and Contributions

In this section, the author wishes to address the research aims and objectives that led

to the completion of this thesis. This research was started on the premise that it is

vital for an epileptic patient to have a early seizure detection device that will prevent

any unnecessary injuries or accidents. This objective then led to the various questions

of developing a wearable seizure detection system. In order to complete this task, the

author have established a few research aims that were addressed in this thesis. Firstly,

the wearable seizure detection system aims to be developed using simple hardware as to

minimize the hardware cost and power consumption. Secondly, this device must also run

on an algorithm that provides an acceptable compromise between speed and accuracy

(recognition rate). Finally, the research aims to be a proof of concept for future research

such as smart homes and ambient assisted living.

Over the course of this research, three different contributions were made and published

[11, 12, 13]. The completed system designs are tested and synthesised on FPGAs. The

complete epilepsy detection system is illustrated in the Healthcare Innovations and Point

of Care Technologies (HI-POCT) revised journal paper.

1. Proposal of a low-cost and low-energy data processing unit (DPU) [11]

At the beginning of this research, a detailed literature review was done in order

to fully comprehend the state of the art epilepsy detection systems as well as the

basic principles of their application. This literature review is included in Chap-

ter 2 of this thesis. It was found that most epilepsy detection systems analyses

EEG signals using software implementation techniques which consumes high com-

putational power and therefore is not desirable for use in a portable, home-based

epilepsy detection device. Thus, the research proposed a prototype low-cost and

low-energy portable epilepsy detection system using bit serial ANN.

The data processing unit (DPU)was proposed to fully implement the functional-

ity of a biological neuron. This proposed DPU found in Chapter 3 is based on a

bit-serial architecture which has the capability of minimizing the hardware cost
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in terms of logic elements (LE) needed for the dedicated neural hardware when

compared with other bit-serial architecture processors. The advantages and dis-

advantages of these proposed bit serial techniques and hardware is analysed in the

critical analysis section, section 2.12.

2. Development and testing of dedicated hardware ANNs [11, 12]

The research progressed further to develop a fully functional ANN using the pro-

posed dedicated DPU [11] in Chapter 4 . The various ANN configurations devel-

oped in this research are based on bit-serial architecture. The first set of experi-

ments involves the implementation of a single neuron accurately. The developed

ANNs is known as the bit-serial neural network (BSNN). The BSNN uses identi-

cal DPU as each network nodes. Each layer of the network will have a number

of the DPUs aligned in a vector arrangement and controlled easily using simple

finite state machines (FSM). Next, the BSNN have a central controller FSM. This

removes the need of complex program and further reduces the necessary hardware

cost.

As part of the verification process of testing the functionality of the DPU, various

forms of simple ANNs have been designed and experiments were conducted. In

these tests, EEG input have also been used to test the BSNN. First, the tests

used to detect epilepsy involve a single neuron with multiple inputs. Furthermore,

multiple hidden neurons were used to further improve the accuracy of the network.

Multiple experiments were also conducted using a number of hidden layers to find

the best network configuration.

The proposed hardware neural network was synthesised on different FGPAs as a

form of comparison and to find the best development chip for our design. The

hardware cost of each system are shown in section 4.4. Different bit-precision

were also used as a method of choosing the best trade off between performance

and size. The tests are then evaluated with different metrics such as sensitivity

(TPR), specificity (TNR), positive predictive value (PPV) and negative predictive

value (NPV). Further details of these experiments can be found in Chapter 4.

3. EEG feature analysis and implementation of the optimal BSNN design

[11]; [12]; [13]

In order to fully implement the epilepsy prediction system, a feature extraction

component was designed to provide the inputs to the BSNN. Two different feature

extraction hardware were designed and multiple experiments have been conducted

to test for an optimal feature extraction component. The first component is a

simple slope calculator. The other component calculates the mean energy value of

a single EEG window.

Experiments conducted using the slope calculator have an accuracy over 85% while

the mean energy system have a 62% accuracy. Chapter 5 discuss the reason behind
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such a low accuracy for the mean energy system. A combination of both feature

extraction hardware has a 90% accuracy which only accord a 2% improvement

when compared with the slope calculator system. With this in mind, the slope

calculator system was preferred.

The network configurations used in our experiments were closely based on a recent

work that used ANNs in their classification process [14]. The results were then

closely compared with a suitable EEG benchmark in section 5.4. In order to

keep human error to a minimum when writing the hardware codes, this research

provides an automated method to complete the hardware codes for a massive

parallel neural network with simple Python scripts. Section 6.1 presents some

further work which would be to improve and implement this wearable epilepsy

detection system physically for an epilepsy patient. This involves synthesis of the

physical layout of the DPU and the full system using an ASIC technology. This will

help in estimating the area and power needed for the dedicated neural hardware

system.

1.4 Thesis Organization

This thesis is broken down into several chapters. Chapter 1 introduces the problem and

the reason for conducting this research, the different challenges, a brief explanation of

any previous work and address the contributions achieved in this research. Chapter 2

is the literature review which discusses research conducted by various groups over the

past decades. It gives details of the state of the art seizure detection technology, neural

processors, different forms of neural networks and other useful information. Chapter 3

then proposes a novel approach with a new bit-serial data processing unit (DPU) design

along with various tests that were conducted to test the functionality of the processor.

Chapter 4 presents a novel bit-serial neural network (BSNN) using the DPU proposed

in Chapter 3 for a simple and wearable epilepsy detection system. Multiple experiments

were also conducted to find out the feasibility and efficiency of the BSNN. The cost of

various BSNN configurations is also discussed. Chapter 5 includes EEG feature analysis

and BSNN optimization. This chapter presents two dedicated extraction hardware that

is incorporated into the complete epilepsy detection system. Chapter 6 concludes the

thesis, explains associated limitations of this research and presents future possibilities

of this research.



Chapter 2

Background Research

This chapter reviews previous/ongoing research in epilepsy detection. As EEG wave-

forms are mainly used to detect and diagnose patients with epilepsy, section 2.1 briefs

the reader on the EEG research related to epilepsy detection. Section 2.1.1 then presents

different EEG waveform analysis methods used in the EEG research. Section 2.2 then

presents a thorough analysis on different conventional epilepsy detection methods. It is

crucial to review this topic in order to improve existing techniques or develop new equip-

ment. This chapter also include a general review of existing parallel learning systems

in section 2.3 which have provided inspiration for this research. Section 2.4 presents

different artificial neural network (ANN) used in software implementation as part of the

process to find the best ANN solution for the hardware implementation conducted in

this research. Section 2.5 gives a review on Deep Learning Neural Network which is used

as comparison against the research proposed design. Section 2.6 presents different state

of the art neural processors which allows the research to find inspiration and weakness

that can be exploited. Section 2.7 and 2.8 further explains the potential of ANN in

prediction applications along with the state of the art real time hardware devices. This

gives the research more opportunity to draw inspiration from the different papers. As

part of the specification of the research, section 2.9 gives a review on bit-serial archi-

tecture and the hardware that have been developed in this area. Section 2.10 and 2.11

presents certain related work that the research have used as inspiration for hardware

neural network.Critical analysis of these reviewed methodologies is presented in section

2.12.The tables in that section are included to allow the reader to fully comprehend the

work that has been reviewed. Through the reviewed literatures discussed in this chapter,

this research was able to develop a fully parallel bit-serial neural network (BSNN) for

epilepsy detection. A summary of this chapter is then included in Section 2.13.

7
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2.1 EEG Research in Epilepsy Detection

In general, an EEG signal is a non-stationary biomedical signal. This signal is also

used to determine physiological and psychological activity in the brain [15, 16, 17].

EEG analysis is considered to be the most common methodology when trying to detect

epilepsy in the medical world. Epilepsy can be characterized by recurrent seizure spike

patterns in the EEG signal. There are a few specifications of an EEG signal that can

be useful during a seizure event. From an original EEG wave, four sub signals (delta,

theta, alpha and beta) are extracted. Alpha wave (8-12Hz) is the natural frequency

of the brain [17]. During an epileptic seizure, the delta (0-4Hz) and theta (4-8Hz)

waves have unique characteristics which present as low frequency and high magnitude

waveforms. The brain also produces beta waves that have low magnitude and a higher

frequency (>13Hz) compared to the other waves [17].

EEG signals emitted on the outer layer of the cerebral cortex are recorded by positioning

the electrode on different locations on the scalp of the brain. This procedure is used to

determine the brain activity involved [18, 19]. When EEG is used, a healthy patient’s

EEG scan [20] presents itself in the form of low-voltage spikes. However, these spikes

increase in magnitude in particular areas during the occurrence of a seizure. During a

seizure event, rhythmic and sharp spikes are recorded. It was also found that the ictal

or EEG signals during seizure events is very different from normal brain activity with

reference to frequency and neural firing patterns [21]. Interictal signals are part of the

EEG signal between epileptic seizures [22].

Different forms of waveform analysis have been researched and formed to analyse EEG

in recent decades. The wavelet-chaos analysis has been used specifically to analyse the

EEG sub-bands, in order to determine possible parameters which can be used in seizure

and epilepsy detection [21].

The traditional procedure of analysing an EEG scan would require expensive personnel

where a specialist is needed to review the whole recording of the EEG signal. This

method takes time. As part of the ongoing research into epilepsy detection, an automatic

seizure identification method will be preferable in this area. Different techniques for

EEG analysis have been considered, such as Wavelet Transform and Autoregressive

(AR) modelling. These methods have superior resolution for short data segments, and

these methods have the advantage when real-time data processing is required.

2.1.1 EEG Waveform Analysis Methodology

There are a few state of the art waveform analysis methods which include Short Time

Fourier Transforms, Wavelet Transforms, Lyapunov Exponent, Autoregressive Modelling

etc. The frequency components of an EEG signal can be extracted using Short Time
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Fourier Transform (STFT) as the basic Fast Fourier Transform (FFT) method suffers

from large noise sensitivity [23]. Next, the magnitude of the signal is measured using

electrodes placed on the surface of the scalp. The average sum of electric potential

emitted by the group of neurons is recorded by specific placement of the electrodes [20].

With the Rosenstein algorithm, the Largest Lyapunov Exponent (LLE), rate of separa-

tion of infinitesimally close trajectories for the EEG signals can be calculated. It is a

measure of the sensitivity dependence on certain initial conditions as well as a quanti-

tative measure of the chaotic characteristic of the EEG signal. This algorithm can then

be combined with a fuzzy-logic based system which enables the detection of an epilepsy

seizure event [24]. The wolff algorithm, mainly used for Monte Carlo simulation of the

Ising model is the other alternative algorithm that can be used here. However, this

algorithm is very sensitive to noise in time series and degree of measurement. Thus, the

research [24] chose to use Rosenstein algorithm which utilizes the method of delays. It is

also very accurate even when there are changes related to the following quantities: em-

bedding dimension; time delay; divergence of nearest trajectories; noise level; the size of

the datasets being used for analysis. This is accomplished with the use of least-squares

to fit a line to the data [25].

The recorded EEG signals can also be divided using low and high wavelet coefficients and

these are further divided into high and sub low coefficients. Akmin et al. [17] presents

the theory for wavelet transform in their recent work. They proposed the method of

acquiring a dataset using PCI-MIO-16-E4 for computer-based analysis (202 samples in

6 seconds). In their work, the assume that a stationary signal is a signal that does not

change over a long period of time. This allows the team to apply Fourier Transform to

the obtained signal. Brain activity recorded in EEG signal displays a combination of

many non-stationary or transitory characteristics. Wavelet transform employs the use of

STFT that studies a small section of the signal which maps the signal in a 2D function

of time and frequency (Hz).

Wavelet Transform can be automated to identify the epileptic features within the EEG

signals. The optimal wavelet basis function (ψ) is first designed using genetic algorithm

(GA) to adapt the spikes of the EEG signals through a series of function of scale (s) and

shift (τ). This function can also be used as matching filters for identifying seizure spikes

represented by the ξ(t) in equation 2.1. The seizure spikes are extracted from the EEG

recordings with Wavelet Transform and threshold-based estimation [26]. This method

is applied and evaluated using different clinical samples of real EEG data of epileptic

patients. The group obtained both a high sensitivity and selectivity over 90%. The

implementation was conducted using MATLAB and the stopping criteria was based on

a high number of generations (i.e. number of iterations). The rationale for using this

method is to locate a convergence, and this will give an optimum fitness function value

using function (2.1).
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f(τ, s) =

∫
|ξ(t)− ψ(

t− τ
s

)|dt (2.1)

A combination of GA and genetic programming was proposed for EEG analysis [26]. In

a recent work [27], Genetic Programming (GP) was used to develop an ANN in order

to solve complex problems. This process removes the need for human participation,

but further hardware based research is needed before any feasible clinical trial can be

conducted. The hardware research is the main focus in many core applications with the

implementation of specific processors.

In 2006, Sarang [28] considered three methods of Wavelet Transform application to

detect EEG signal spikes. These methods are:

1. Complex Continuous Wavelet Transform

2. CWT via multi scale view

3. Discrete Wavelet Transform

Autoregressive (AR) modelling methodology increases the resolution of the EEG spec-

trum using the assumption that the EEG signal continues to some extent outside the

EEG window. Next, AR modelling also reduce spectral leakage by applying the use

of smoothing windows rather than finite sampling record. Further, the data records

of autoregressive modelling is shorter as compared to FFT [23]. The optimum order

of an AR model is determined by the Bayesian Information Criterion (BIC) and the

AR parameters of an EEG signal. The sub-bands are based on a paper written by

Mousavi [29]. Extracted parameters are used as a feature to categorize the EEG signal

by the group using the multilayer perceptron (MLP) classifier. The output signals are

categorised as different signals: healthy (normal EEG), interictal (EEG signal between

epileptic seizure events) and ictal signals (seizure event EEG signals).

Another recent work uses a Hebbian eigenfilter with a General Hebbian Algorithm

(GHA). The few main contributions of this research are the data streaming method,

a stream-based General Hebbian Algorithm and a new learning kernel architecture. The

stream based method and the hardware architecture are being evaluated thoroughly

[30]. This approach is based on an assumption that the recorded neural activities are

considered infinite and stable over a long period of time. This assumption is necessary

for automated epileptic detection. However, it is not a realistic assumption as EEG

signals are not stationary.

An original Automatic Test Pattern Generation (ATPG) algorithm was proposed by

Chakradhar et al. [31] which was based on stochastic neural networks. Certain param-

eters and stochastic operations used in the ATPG algorithm were not used in the new
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algorithm proposed by Masatoshi Arai et al. [32] which is based on strictly digital neural

network (SDNN). In this case, the author and their team managed to develop a new logic

circuit to obtain a preliminary set of test patterns. This method is quite efficient when

it comes to large scale problems. Neural action potential, or ”spike” detection, is a nec-

essary first step in neural recording. In 2015, Y. Yang et al. [33] proposed an approach

to reduce the amount of neural data by compressing the entire neural signal on-line,

and by reconstructing complete neural waveform off-line for any form of data processing

process. This will reduce processing time and the needed computational power.

2.2 Conventional Classification Methods for Epilepsy De-

tection

This section reviews different conventional classification techniques for machine learning,

which are used for medical diagnosis applications, including epilepsy. These methods

are Naive Bayes (NB) classifier, decision trees, k-nearest-neighbors (k-NNs) and logistic

regression. These techniques are analysed and reviewed in critical analysis section 2.12.

The logistic regression model is a special case of a linear regression classifier that utilizes

a linear function [34].

The NB classifier is a simple probabilistic classifier which utilizes the Bayes Theorem.

This theorem uses the probability of certain causes and their conditional probability

as a technique to compute the conditional probability of each possible causes for a

given observed outcome. Thus, it is considered as a conditional probability model. NB

classifier uses the independence assumption that focus on each feature independent of

each other, while ignoring any possible correlation between the different features [35].

This assumption has been widely criticized as unrealistic. The advantage of using an

NB classifier in medical data mining is the limited use of training data for classification.

The equation 2.2 and 2.3 are used for classification when using a NB classifier. The

parameters in the equations are the prior probabilities P (Ci); P (Y ) the prior probability

of (Y );P (Ci|Y ) is the posterior probability; P (Y |Ci) is the posterior probability of Y

that depends on the condition, Ci

P (Ci|Y ) > P (Cj |Y ) for i ≤ j ≤ n, j 6= i (2.2)

and

P (Ci|Y ) =
P (Y |Ci)P (Ci)

P (Y )
(2.3)
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It is also applicable in automated medical diagnosis when it is used to diagnose different

medical problems. The NB classifier outperforms the other algorithms that were being

used in this comparative analysis [35]. The example with relation to our research is

provided below. Table 2.1 includes a few EEG samples taken from publicly available

EEG data [36]. The classification for each feature, Spikes, Noise and Chaotic were

made using human observation. The decision to use human observation is to emulate a

specialist observing an EEG recording.

Example EEG Spikes Noise Chaotic Seizure / Free Seizure

1 Large Weak Less Seizure
2 Large Weak Less Seizure
3 Small Dominant More Free Seizure
4 Small Dominant More Free Seizure
5 Large Weak More Seizure
6 Small Weak More Seizure
7 Small Dominant More Free Seizure
8 Small Weak More Free Seizure
9 Large Dominant Less Seizure
10 Large Weak Less Seizure

Table 2.1: EEG sample data related to thesis research using NB classifier [36]

The test example to be classified is a large spike, with dominant noise but more chaotic

EEG signal. We use equation 2.2, 2.3 to classify this example. First, these probabilities

need to be calculated.

Description Value

P (Large|Seizure) 0.78
P (Dominant|Seizure) 0.75
P (More|Seizure) 0.4

P (Large|FreeSeizure) 0.5
P (Dominant|FreeSeizure) 0.63
P (More|FreeSeizure) 0.6

P (Seizure) 0.5
P (FreeSeizure) 0.5

P (Seizure)*P (Large|Seizure)*P (Dominant|Seizure)*P (More|Seizure) 0.117
P (FreeSeizure)*P (Large|FreeSeizure)*P (Dominant|FreeSeizure)*P (More|FreeSeizure) 0.0945

Table 2.2: Table displaying a simple example of using NB classifier in the context
of epilepsy detection

Table 2.2 shows that 0.0945 < 0.117 meaning that the example EEG signal will be

classified as a seizure signal. From this simple example, the NB classifier provides an

inspiration for our research. The dominant feature in this simple example is the spikes

which is used as the main focus for epilepsy detection in this thesis.

The NB classifier operation has three stages. Firstly, the likelihood P (x|c) is estimated

during the training stage with the use of two forms of training sample, i.e a epileptic

seizure EEG and a normal EEG. Secondly, an output decision will be made in the testing

phase using the posterior probability P (c|x). Thirdly, a high probability will classify the

training sample as an epileptic waveform and vice versa. This acts as a basis to develop

a more complex NB model.
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The equation 2.4 can be simplified with the assumption that the features that are being

classified are conditionally independent of each other in order to reduce the required

amount of computational power. The parameters in equation 2.4 are P (c|x), the poste-

rior probability of a target given the attribute; P (c), the prior probability of the target;

P (x|c), the probability of a attribute given the target; P (x), the prior probability of an

attribute.

P (c|x) =
P (x|c)P (c)

P (x)
(2.4)

This particular classifier has a very high accuracy when dealing with independent at-

tributes or features. However, there are two main disadvantages. Firstly, the classifica-

tion is made on a strong assumption that the features used are independent of each other

which will affect the results if the features are not independent. Secondly, information

might be lost in the process of making continuous features discrete.

The intended research outcome is the design of a simple and low cost hardware, this clas-

sifier model would not be a suitable choice as equation 2.4 is a rather complex equation

to be implemented in hardware. This can be attributed to the need for multiple multi-

pliers and dividers. Furthermore, the variables of the equation 2.4 require pre-processing

when extracted from the original EEG waveform. However, this thesis requires the use

of features that can be extracted easily from the EEG signals.

In machine learning, there is the decision tree classifier (DTC) which uses search heuris-

tic model for prediction. For an example, we shall use a simple problem of deciding

whether to play or not to play based on the weather situation. The classification shall

be conducted using DTC.

The main difference between a decision tree and the NB classifier is that decision tree can

classify directly using tabular data but NB classifier require the need of manual feature

selection. This type of model uses recursive partitioning algorithms to distinguish subsets

of specific data from the original data set. By increasing the number of splits between

the partitions, there will be an increase information gain [34].

The DTC has a lot of potential when used as an efficient way of classifying different sets

of data. It has a shorter training time than a multilayer perceptron (MLP) solution.

This thesis train the proposed ANN design off-line similar to that of the DTC. As

compared to other classifiers, there will be no need to conduct the training in real time.

It is also specified in a recent work [37] that neural networks are used in the design of a

DTC, which, proves that the basic design of this high level classifier would still need the

hardware proposed in this research. The general structure of a decision tree is illustrated

in Figure 2.1
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root

i k j
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Depth (m-1)

Terminals (class labels)

Figure 2.1: General Design of a Decision Tree (Reproduced from paper [37]).

It is well known [38] that, for decades, that timing information has been used for most

medical implantations. The Current Implantable Cardioverter Defibrillators (ICDs) ap-

plied a time based decision tree for cardiac arrhythmia classification. The network used

in this work is a 10:6:3 multilayer perceptron. A perceptron is a computer model that

can simulate the brain recognition capabilities. There are a few disadvantages when

using a decision tree. It will not be as accurate as the other classifiers as a very small

change in the training datasets might result in a huge change in the output prediction.

Furthermore, the performance of the DTC is linked to the effectiveness of the particular

DTC design.

Next, the review examines the k-NN classifier [35, 39, 40], a non-parametric, non-linear

classifier. This type of classifier is more effective when dealing with large datasets.

This classifier functions with class assignment based on a nearby dataset. The similarity

between the samples used are measured with a distance function. There are two different

distance functions that are commonly used, the Euclidean distance function (equation

2.5) and the Manhattan distance function (equation 2.6). The parameters in equation

2.5 and 2.6 are: d(xj , xk) is the distance between point xj and xk; xj in this context is a

point of x on the j axis and xk is the point x on the k axis. In the context of these two

equations, i represents the number of points to be calculated from i = 0 to i = n − 1

where n is the maximum number of points.

d(xj , xk) =

√√√√i=n−1∑
i=0

(xj,i − xk,i)2 (2.5)

d(xj , xk) =

i=n−1∑
i=0

(|xj,i − xk,i)| (2.6)
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Figure 2.2 presents a generic example of the k-NN algorithm where the threshold of

the two different classes are shown clearly with different circles. The red star can be

interpreted as the input that requires classification, and k are the thresholds (k =
√
n,

n is categorized by the data sets, A and B [35]). The two different x axes, x1 and x2

are used as reference for the distance equations 2.5 and 2.6. In this example, the class

of red star would be B if k = 3 and A if k = 6. The number of nearest neighbours for

class A if k = 3 is higher than that of A, thus the red star is classified as class B. If

the circle is expanded to k = 6, it will be classified as class A as the number of nearest

neighbours of class A now exceeds that of B.

x1, x2 = Reference for 
Distance Equation
k = thresholds

Figure 2.2: General Idea of a k-NN classifier (reproduced from [40]).

In conclusion, we can see that the red star is classified as class B if k = 3.

In general, the classifier takes a majority vote from the k-nearest neighbour where k

is the number of neighbour. In A. Sharmilla et al. work, the number of k chosen is

2, which provides a minimum error rate [35]. A paper by L. Arbach et al. [39] that

uses three different classification methodologies to determine which is the best. These

methods include a back propagation neural network (BPN), the k-NN classifier and a

human reader. It was found that k-NN could not produce a 100% sensitivity as compared

to a BPN that prove to have an acceptable performance for the mammographic masses

classification application. The recent work by L. Arbach et al. in 2003 [39] demonstrated

that k-NN is applicable for medical classification problems. Unfortunately, the k-NN
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classifier still produce a false negative value of 2 while the BPN have no false negative,

which inspired the thesis to use a neural network solution rather than the k-NN classifier.

The basic algorithm for a k-NN classifier is relatively similar to that of a neural network

classifier. Both have a training stage and a prediction stage. The training stage of the

k-NN classifier involves the entirety of the samples used. These samples are stored in a

form of memory. A neural network uses the training stage to calculate the weights with

the highest accuracy to predict a target output. When taking the similarity between the

two different algorithms, it can be beneficial to consider using both algorithms together

to compare the output performance.

There are a few advantages to using this particular classifier. The learning process is

conducted off-line using simulation software which coincides with our thesis specification

(Chapter 1.2). However, the evaluation time for a k-NN classifier is longer compared

to an ANN solution. The ANN solution would be more suitable when a hardware

implementation is needed as it produces the best results even with huge datasets, i.e.

multiple EEG waveforms [34].

2.3 Parallel Learning System

There are three type of parallel learning systems: totally dependent; partially inde-

pendent; totally independent. A totally independent system have nodes that are not

affected by any other node in the same level. The partially independent system have

nodes which are dependant on the same father nodes in the same level. However, nodes

with different father nodes are independent of each other. Lastly, the totally dependant

system nodes rely on each other in the same level [41]. The thesis uses a bottom-up

learning approach.

Block Based Neural Network (BBNN) is one type of evolutionary algorithm (EA) neu-

ral network which consists of two-dimensional arrays that are used to support integer

weights [42]. The proposed FPGA based ECG signal classification uses a parallel genetic

algorithm and BBNN. The proposed design in this research is suitable for hardware im-

plementation as it has a cellular like structure. This device will be used for long term

patient monitoring and the design is shown in Figure 2.3. It also proves to be a form of

device that is a great inspiration to the research done in this thesis. However, a different

approach is taken here; the implementation uses on-line learning, whereas this thesis

research uses off-line learning.

The conventional formulation of fundamental neural algorithms have made neural im-

plementation on state of the art parallel hardware very difficult. Therefore, an effective

network parallelisation solution has been formulated by Liberios et al. [43]. It is in the

form of an algorithmic mapping of multilayer feed forward neural network, and includes
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Figure 2.3: The Block Based Neural Network (BBNN) design block diagram
(extracted from paper [42]).

a back-propagation learning (FFBP) system. This solution is developed on a massively

parallel system framework known as the Neural DF KPI architecture. A recent work

[43] used 5 layers for their network topologies and it can be seen their network used over

800 neurons. They have chosen to simulate the network using a Intel P4; 2.4 GHz 1GB

RAM workstation.

Grey neural networks [44] are another feasible alternative for predictive applications.

There are four types of traditional grey neural network model. These models can be

distinguished as serial, parallel, inlaid and blending. The traditional grey model has a

rather poor learning ability and a long-term prediction accuracy which is not ideal for

the research in this thesis. This literature used a BP neural network to construct a serial

grey neural network model, and thus observe an increase in the prediction accuracy [44].

Market prediction would be a suitable application when using this technique. A recent

work [45] proposes a improved model to optimize the market prediction model.

The more recent Multi-Views Multi-Learners (MVML) model is a novel neural network

designed to solve complex pattern recognition problems [46]. The multi-views single-

learner (MVSL) approach may fail to provide a high detection accuracy because MVSL

approaches utilizes a single learner to approximate multiple views which might not be

enough to converge on all the views. They use two criteria, recognition rate (RR)

and normalized root mean square error (NRMSE) to assess the quality of the proposed

ANN-based speech recognizer.
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2.4 Epilepsy Detection Using Software

It is possible that the prediction of the onset of a seizure occurrence can be achieved with

the assumption that normal EEG signals are complex but low energy spike waveforms,

the spikes will become more repetitive and increase in energy potential during epileptic

seizures. Example of EEG waveforms are shown in the figure 2.4, 2.5. By analysing the

power/energy spectrum of those waveforms, it is also feasible to continue the analysis

by employing a linear approach [8].

Figure 2.4: Sample of normal EEG signal.

Figure 2.5: Sample of a Seizure EEG signal.

Kiranmayi et al. [8] in 2013 states that a three layer BPN is commonly used (Figure 2.6)

and in this work, the data used for training and testing purposes is taken from a hospital

in India [8]. The paper also suggests the use of a bispectrum for feature extraction

in the form of a third order fourier transform. Furthermore, the learning process for

this work uses a training set to determine the real values of the EEG signals [47].

The result shows that with the bispectrum feature in neural network analysis have

an accuracy of 82.66%, when differentiating an epileptic EEG from a normal EEG. The

power spectrum features classification yields an accuracy of 53.33%. The results indicate

that the bispectrum feature have a high resistance to noise in EEG recordings. This
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analysis method can detect phase couplings even with the presence of Gaussian noise in

the testing environment. Furthermore, certain processing elements in the hidden layer

of BPN are independent of any input. The paper claims the method has an accuracy of

97% when detecting epileptic cases.

Figure 2.6: Network Structure of recurrent BPN Design (extracted from paper
Kiranmayi et al.’s work [8])

.

Another form of automatic detection algorithm, Gabor’s BPN method [14], is also used

in experimental procedures. In this case, 16 different data channels consisting of Epilep-

tiform Discharges (ED) pattern are used as inputs. The method proposed in this paper

has some advantages, as it trains the BPN for each patient to include individual ED

pattern. Thus, it has the capability of self-recognition (to recognize ED pattern of each

patient). In addition, it has the capability of eliminating artifacts which are activities

that are not of cerebral origin, i.e. (eye blinks, electrode and movement artifacts and

EMG).

The sliding window technique is also plausible with the use of a feed forward ANN.

It is used to differentiate between a normal and an epileptic EEG [48]. The datasets
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used for the method was obtained from Bonn, Germany [49]. This method has four

stages (Figure 2.7) where the neural network classification will be executed once the

features are extracted. Soft computing techniques are mainly used in chaotic systems

[50] which include ANN amongst other complex algorithms. These algorithms ease the

burden on medical experts in the field of medical diagnosis. This paper discuss the use

of two different systems, ANN and Neuro-Fuzzy Systems. There are some contributions

of using ANN in the medical field as it can model biological systems. This can solve very

complex and non-linear problems. The paper proposed a design with a general ANN

structure, but it uses a gradient descent approach. This minimizes error at the output

stage within the feed-forward network.

Figure 2.7: Flow diagram of EEG classification scheme incorporating ANN
(reproduced from work [51])

The block diagram (Figure 2.8) shows the flow of methodology used here [50]. After the

training is complete, it was found that the ANFIS system surpassed the neural network

system with an accuracy of 95.38%. However, the use of an ANFIS model will depend

on the specific application.

There are other ANN being researched, such as the MLP solution [52] which can be

described as a feed forward network with one hidden layer and uses the sigmoid activation

function to obtain the output. Furthermore, there is always a target output with a

corresponding training set.

Additionally, EEG records have been found to localize within the epileptogenic foci [53].

Researchers have analysed EEG pre-seizure components for seizure activities using a

recurrent neural network. The structure is a three layer back propagation 5-10-5 archi-

tecture neural network. With incremental training and the gradient-descent algorithm

(steepest descent method, which is a form of non-linear optimization method), the BPN

can be used to locate the epileptogenic foci within the EEG records of each patient.
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Preprocessing of EEG 
data

Back Propagation 
ANN process

Neuro Fuzzy Logic 
process

End result compared and best result is chosen and 
diagnosis is recommended

Figure 2.8: Block diagram showing a whole system comparing BPN and a fuzzy
logic system [51].

The focus of the work by Bao et al. [51] in 2008 is to use pre-seizure EEG and EEG

data between seizure/convulsions as an alternative to develop an automatic detection

system for epilepsy diagnosis through a probabilistic neural network (PNN). For the

purpose of making medical decisions with PNN, the paper suggests the best solution is

to use Bayesian strategies [51]. It is very difficult to use EEG data as the input to the

ANN as it has to be filtered and analysed. In the report, it was proposed to develop an

ANN with distance-based functions for computation and a bell shape activation function

when making non-linear decisions. Furthermore, the decision can be changed instantly

in real-time as new data is added. The layout of the network design generally consists of

3 layers: an input layer; a radial basis layer; a competitive layer. There is no bias in the

competitive layer, but it is present in the radial basis layer. There are two important

parameters within the Radial Basis Layer that need to be addressed which are the Radial

Basis Layer Weights and Radial Basis Layer Biases.

There are many references in the paper reviewing computerised methods for diagnosing
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Figure 2.9: Network Structure of PNN Design [51].

epilepsy [54]. The paper focuses on a combination of Elman Network and PNN with

inputs from the time domain feature of an EEG signal, approximate entropy (ApEn).

ApEn is a statistic parameter that is used to quantify the regularity of a time series in

a physiological signal [55]. It has been proposed and used in many other areas [54]. The

datasets were obtained in a similar manner to other studies and it contains 100 single-

channel EEG segments, each segment has a duration of 23 seconds [54]. Moreover, the

datasets are obtained from healthy and epileptic subjects. The epileptic data is recorded

during a seizure event with the use of intracranial electrode. The PNN target values, 1

for a normal EEG and 2 for an epileptic EEG [56]. Furthermore, the overall performance

(OA) of the PNN can be calculated with equation 2.7.

OA = NCDP /NAPP ∗ 100 (2.7)

where NCDP is the total number of correctly detected patterns, and NAPP is the total

number of applied patterns.

Bao et al. [57] extracted three unique features from the EEG signal, Power Spectral

Features, an energy distribution description in the frequency domain; Fractal Dimensions

which outlines the signal’s fractal property; and Hjorth Parameters which models the

signal’s chaotic behaviour. They fed these features into their PNN. These features were

later optimized to fully develop a classification network which is comprised of several

PNN-based classifiers. This network has an accuracy of 94.07%. This approach does

not require the occurrence of any seizure activity. This reduces the difficulty in data

acquisition and thus removes the need for more sophisticated medical devices in places

where medical resources are limited. In Bao et al. 2008 work [51], they repeated all their

experiments using a 10-fold cross-validation and achieved an overall accuracy over 80%,

the required specification of this research. Therefore, this shows that their approach

has good generalizability. It has a 99.3% overall accuracy during cross validation when

employing the interictal EEG based approach (n.b. normal EEG is still included with

the interictal data during the learning process) and 96.7% during the ictal EEG based

approach. This shows different ANN systems have been developed in the labs and have

their own advantages and disadvantages. It should be noted that there is no automated

EEG epilepsy diagnostic system using only interictal scalp EEG data at this time. The

PNN proves to be fast, highly accurate and the network structure can be updated easily
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[58]. A simple voting scheme is used (Figure 2.10) to improve classification accuracy

[57] using the method of Leave-One-Out Cross-Validation (LOOCV).

Figure 2.10: Voting scheme used in the classification process [57],

Elman Network (EN) has some contributions that have been reviewed in this thesis. EN

has a feedback connection that allows this particular network to recognise and generate

temporal and spatial patterns [57]. This network is made from a two layered BPN which

includes a feedback loop that connects the output of the hidden layer to the input of the

EN [57, 59]. It employs a recency gradient approach. Furthermore, the gradient descent

algorithm is used with adaptive learning rate when training the network. Evidence from

one of the references, focuses on how Jordan / EN network is used in a recent work

[49]. This network allows modification to be made to the multilayer perceptron and it

consists of two layers of BPN. The test data was taken from the University of Bonn, and

the database is available for public use [60]. The data set consists of 100 single channel

EEG segments (23.6 second duration for each segment) with no artificial artifacts. The

simulations are conducted using this Jordan/EN with different hidden layers. The input

is fed with random data from the database previously obtained. The processing element

within the hidden layer during the experiment was also varied. The data used in this

work is broken down into three different sections: training data, cross validation (CV)

data; testing data. The network is trained repeatedly with random weights to minimize

any form of bias. Certain learning rules are also applied in the training procedure.

Step momentum is the optimum learning rule in this instance, however other learning

rules including conjugate gradient, quick propagation and delta bar delta may also be

used. Their proposed clinical epilepsy diagnosis system obtained relatively high overall

accuracy of 99.83% for training data and 99.92% for cross validation (CV) data and

testing data [49]. Thus, it is a system worth considering for this thesis.
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EN recurrent network [52] is another form of EN network that is used in the automatic

detection system. It takes results from the previous hidden layer output of the ANN

and it feeds it to the input. Furthermore, it uses the sigmoid activation function to

introduce the non-linearity property into the EN recurrent network.

SNN is a third generation that has been researched in recent years [61]. SNN is different

from other forms of ANN as each individual spiking neuron propagates information by

using the timing of the neuron, rather than the rate of the spikes. The supervised rule,

known as SpikeProp [62], is also used for training purposes with the assumption that the

internal state of the neuron increases linearly within a small enough region for neuronal

firing. HuiJuan Fang et al. [63] propose a few methods to improve the learning rate

adaptability. The proposed methods are then tested with four different experiments :

XOR problems; Iris data-set classification problems; fault diagnosis in Tenesse Eastman

(TE); decoding information from a Poisson spike train. It was also found that SNN are

mainly used in brain modelling [64, 65]. The SNN is very efficient as it only requires

a single spiking neuron for pattern recognition. The hardware implementation of a

SNN was performed using NVIDIA CUDA, a graphic processing unit (GPU) which can

implement the SNN.

There are advantages and disadvantages of this hardware implementation. The constant

read-only memory (ROM) is proved to have higher access speed than global memory.

However, more GPU memory is required. Additionally, SNN requires more time to access

the parameters of individual neurons when ROM are used. The data preprocessing stage

for SNN involves the removal of signal noises from the original EEG signal. This process

is completed by passing the EEG signal through a low pass filter. Next, the wavelet

analysis breaks down the entire EEG input into various sub-band waveforms allowing

individual channels to be used as inputs. Furthermore, the chaos analysis stage extracts

the important features from the input waveforms. The features are then used as the

neural network inputs (Figure 2.11 [21]).

2.5 Deep Learning Neural Networks

Si Jin Lie [66] explores the feasibility of using deep learning neural networks (DNN)

for human pose detection. In this study, Si Jin Lie stated that a human pose can be

estimated quite accurately from a 2D image using depth maps. However, there are some

issues that need to be addressed, such as the ambiguities of appearances and self occlu-

sion. In many practices, this type of estimation is completed using two different methods

[66]. The methods are part-based graphical models, and both methods rely on regression

modelling. In a recent paper [66], certain considerations were made for the proposed

neural network such as low level feature sharing, preservation of location information
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Figure 2.11: The different processes leading to the neural network in classifica-
tion problem [21],

and integration of context information. The assumptions used by the research group in

the proposed deep neural network will be useful in the thesis.

In the case of the speech processing application, the first step is to provide the necessary

audio features for processing. Different techniques have been developed over the past

decade that are variants of the decision rules based on features of an audio signal [67]. It

is stated [67] that convolutional neural networks (CNN) are similar to convolutional deep

neural networks (CDNN), with the exception of the additional CNN feature extraction

layer.

Other relevant studies include the optimization of DNN. S. Zhang et al. [68] in 2014

stated that the need to pre-train the network as an alternative to reduce delay in pro-

cessing was not required. With dropout based training, the network would only require

an approximate of 20 iterations. In order to accomplish this, the network uses dropout

as a form of pre-conditioner. Dropout is a useful technology [68] as it increases the

generalization capabilities of the neural network. State of the art DNN primarily uses

feed-forward neural networks with hidden layers, comprising of the same number of

hidden nodes. Figure 2.12 illustrates a sample of DNN.
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Figure 2.12: A DNN with four hidden layers [68],

2.6 Neural Network Processors

2.6.1 Radial Basis Function Network

Radial Basis Function (RBF) networks have a fast learning capability and special ar-

chitecture which is useful for efficient digital hardware implementation. Recent research

[69] developed a RBF type network with three inputs to be implemented on the FPGA.

This design can be modified easily to include more inputs. Each processing element of

the RBF design is analogous to a biological neural element. This may be suitable for

the home-based design desired for this thesis. The research design [69] uses the available

resources provided by the FPGA development board. Furthermore, it is interesting to

compare the performance and logic elements required of each neuron with the proposed

bit-serial design.

Equation (2.8) is the end result of the design where : y is the output of the RBF network;

x is the input vector; ci is the centre of the i-th basis function; wi is the weight of the

basis function of centre i; N -is the number of basis functions [69].

y =

N∑
i=1

g(x, ci) ∗ wi (2.8)

A full combinatorial approach for hardware implementation is capable of reducing prop-

agation delays. However, there will be an increase in hardware cost. The pipelined

sequential approach was proposed by the research team [70] as an alternative, this is a

compromise between the rapidity and occupied silicon area. Additionally, the work ad-

dresses various problems of hardware implementation in neural networks using a FPGA.

The performance issue relating to the activation function has been reviewed. It states
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that the activation functions commonly used are the sigmoid function in BFNN and

the radial function in RBFNN. In order to reduce the design solution complexity, the

precision of the activation function can be truncated using a wise linear approximation,

or by placing the look-up table within a Read Only Memory (ROM).

Another work by T. Wang et al. [71] use a combination of RBF and GA to develop

a networked synchronous control model. In this research, the proportional integral

derivative (PID) model is compared with the RBF neural network controller. By using

the response curve of the phase step, it is proven that the RBF-GA controller is more

efficient than the PID controller Figure 2.13.

Figure 2.13: The response curve of the phasestep between two different ap-
proaches [71],

2.6.2 Stochastic Neural Networks

A simplified version of the original ANN hardware architecture was proposed by a dif-

ferent team of researchers [72] to be used in a wind turbine generator system. This

ANN hardware system provides control for a sensorless wind speed control system. The

stochastic neural network provides a basic, yet effective approach for hardware develop-

ment. In this section, the basic principles and proposed stochastic feed-forward network

will be explained in detail.

The key principles [72] of stochastic arithmetic are:

1. The randomization process converts the inputs into binary stochastic pulse streams.

The real number entered into the system will be coded as a binary bit sequence

where information is contained using a probability mechanism. The accuracy and

the threshold characteristics of the activation function for the stochastic neural
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network are paramount. In order to meet these requirements, equation (2.9) is

used. This relation applies when X is in the range of [-1,1].

X = 2 ∗ p− 1 (2.9)

where X is the real number, and p is the probability of any bit with logic ’1’.

Normalization is enforced to solve the range limitation problem.

2. A bus of random binary bits stream is generated after the randomization process.

Any arithmetic operation can be carried out with a simple digital circuit.

3. At the end of the calculation, the random stream will be converted back to a

normal numerical value through the de-randomization process.

In summary, the mathematical operations used in the proposed feed-forward neural

network [72] are : signed multiplication; signed addition; non-linear activation function.

Basic mathematical operations do not require a large amount of logic resources. The

stochastic multiplier and activation function provide a trade off in terms of accuracy as

a method to reduce the number of digital logic elements required for the proposed neural

network. The fall in accuracy is associated with the noise introduced by the proposed

system.

2.6.3 Parallel FDFM Processor Core for Neural Networks

The Few Digital Signal Processor (DSP) slices and Few block RAM (FDFM) design

performs routine computation more efficiently [73]. Figure 2.14 includes the conven-

tional approach and a novel FDFM approach proposed by the research group [73]. The

conventional approach requires an increase in circuitry.

The paper published by Ago et al. [73] reviewed and implemented a 3-layer multilayer

perceptron (MLP) using the proposed FDFM approach. Figure 2.16 illustrates the

design of this MLP where Nx,Nh,and No clearly denotes the number of nodes in each

layer (input, hidden, output layers). The real number xi which is within the range of

[0,1] is fed into the inputs. The target output range (h′j) also lies within the range of

[0,1]. The weight of each connection and the sum can be calculated using equation 2.10.

In equation 2.10, the vi,j is the weight of each connection. To use this equation, it is

assumed that with each hidden node a real number, cj is assigned. It was decided that

a similar neural network approach, a form of MLP would be used as a the basis for the

proposed bit-serial neural network (BSNN) in this thesis. Equation 2.10 provides an

inspiration for the BSNN in this thesis.

h′j = cj +

Nx−1∑
i=0

(vi,j ∗ xi) (2.10)
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Figure 2.14: The different Processor Core approach [73]

2.6.4 Restricted Boltzmann Machine (RBM)

Restricted Boltzmann Machine (RBM) is a fully connected two layer undirected graph-

ical model with an observed layer and a layer with hidden stochastic variables [74].

With Gibbs distribution, the probability, p of the observed variables in the RBM with

a parameter set θ can be defined using equation 2.6 using a joint energy of visible and

hidden units E(v, h; θ). v and h are the visible and hidden variables respectively. The

Z(θ) denotes the normalisation constant.

p(v; θ) =
1

Z(θ)

∑
h

(e−E(v,h;θ)) (2.11)
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Figure 2.15: The Advantage of FDFM Processor Core approach [73].
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Figure 2.16: 3 Layer MLP Design [73].

The research team [74] proposed and developed a new algorithm using learning class-

specific features. This convolutional RBM is a probabilistic model for the density over

different observed variables. In contrast with common RBM, this model involves the

research of convolutional neural network from a literature written by Lecun Y. et.al [75].

Stacks of these Convolutional RBM (C-RBM) are trained to extract large scale features
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tuned to any particular object.

2.6.5 FPGA-based co-processors

Compact bit vector (CBV) is used to execute core correlation matrix memory (CMM)

operations within this type of processor [76]. There are many advantages when using

such a representation, including an increase in system storage capacity. However, this

representation will compromise the processing performance. The architecture used is

the Advanced Uncertain Reasoning Architecture (AURA) [76].

The CMM [76] is a form of binary neural network which is useful in approximate search

and match operations that involve massive unstructured datasets. CMM operations

are required to be conducted at high speed. In addition, this type of memory is also

known as weightless neural network which can be used to implement associative memory

structures. CMM can be considered as a two dimensional array M , where elements can

be set to be 1 or 0. The two main functions of a CMM are loading and recalling an

object. When loading an object into the CMM, the input, I and output pattern, O need

to be expressed. The y variable is the row index and x the column index. The recall

process requires a query input pattern I which can be expressed with equation 2.12.

Ox =
x∑
p=1

(Mpy&Iy) (2.12)

With hardware hashing, the process of searching and retrieving information from large

lookup tables can be completed efficiently. The hardware hashing functionality is based

on a combination of a few other functions which include bit folding, exclusive OR and

a pseudo random number generator based on cellular automata (CA) [77]. Figure 2.17

shows the design of a hardware hashing memory structure which gives three distinct

advantages over RAM based designs [76]:

1. The memory would be limited to the number of column IDs in a single query.

2. All the valid IDs and totals are stored in the current stack frame.

3. By resetting the stack pointer, the memory will be cleared.

In comparison, data streaming memory is heavily pipelined and it requires a burst or

stream optimised SDRAM controller to efficiently access the selected row data. The

main idea of a hardware hashing memory is illustrated in Figure 2.18 which is one of

its functional units. This ITS can be combined to perform logical operations which is

necessary for computing problem expressed in the same literature [76].
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Figure 2.17: The Hardware Hashing Memory [76].

Figure 2.18: The ITS functional unit [76].

2.6.6 SNN based Auto-associative based memory

SNN based auto-associative based memory is a type of memory based on the third

generation SNN neural network and it is “content-addressable”. Based on a paper by

Ang et al. [78], the proposed SNN memory is compared with another design proposed

by A. van Schaik [79]. The memory developed by A. van Schaik is a Java-based spiking

memory model. The proposed model in the literature [79] will store and recall a single

item in comparison with other model. The auto-associative memory functionality is

clearly illustrated in Figure 2.19. By using some simple form of programmable delays,

the training patterns are easily stored and adapted. This idea can be useful when trying

to conserve the cost of logic elements.



Chapter 2 Background Research 33

Figure 2.19: The SNN auto-associative memory general functionality [78].

2.6.7 Synchronous and Self-timed neuroprocessor

The paper [10] presents a FPGA implementation of a neuroprocessor based on the

self-organizing (SOM) architecture. This new novel design is both synchronous and

self-timed. Figure 2.20 illustrates the functionality of the SOM architecture and the

hardware implementation of this architecture is proposed in the paper.

Figure 2.20: The SOM architecture [10].

The SOM network seen in the Figure 2.21 above is composed of 4 main blocks which

are listed below [10]:

1. Self-time control block that regulates the data flow in the SOM network.

2. A Somdist Circuit which can be viewed as an ALU of this particular architecture.

3. The Compet circuit can be broken down into two blocks: Compet1 Circuit which

compares partial results between active neurons of the output layer; Compet2

Circuit.
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Figure 2.21: The SOM neural network extracted from the source. [10].

4. An array of ROM memory blocks store the weight value corresponding to various

input patterns when training the network.

2.6.8 Block-based Neural Networks

In 2008, a group [80] came up with a custom FPGA-based implementation that supports

dynamic change of the structure and the internal parameters of a certain ANN. This

ANN is comprised of 2D regular patterns of locally connected neuron blocks described

in the references from a paper [80]. The basic processing elements are connected as a

block based neural network (BBNN). BBNN generally are arranged in the form of a grid

as illustrated in Figure 2.22.

Equation 2.13 is used for the computation of each individual output based on a weighted

input and a bias for the BBNN.

yk = g(bk +

J∑
j=1

(wj,k ∗ xj)), k = 1, 2...K (2.13)

where, yk & xj are output k and input j, i signal of each neuron block. The wj,k & bk

exist as the weight and bias of the output and input node respectively. g is the activation
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Figure 2.22: (a) The BBNN consisting of basic blocks. (b) A 2/2 internal
configuration of the network [80].

function as in many neural network [80]. BBNN was developed over a decade ago but

has features suitable for use in this thesis.

2.7 Prediction Application Using Different Forms of NN

Many applications involve prediction, one such application involves the use of predic-

tive emission monitoring systems (PEMS). These systems are an alternative method for

monitoring air emission condition. A neural network modelling technique was proposed

for this application, and certain key issues will impact the performance of the PEMS

sensors. These are: reliable and accurate measurement; compliant environmental re-

porting; integration into existing mill infrastructure; availability of continuing support;

cost effective technologies [81].

2.7.1 Neural Models Assisted Hardware Implementation Using FP-

GAs

In 2007, the work conducted by Weinstein, Reid and Lee [82] used different simulation

tools such as Matlab / Simulink and LabView. The proposed process utilizes auto

generated scripts and runtime interaction tools provided by the software. This can

enhance the performance of FPGA as a neural-modelling platform.

Another application involves electromotor control. There are two main types of electro-

motors: direct current electromotors and alternating current electromotors. Alternating

current asynchronous electromotors have more extensive applications as they have a

lower manufacturing cost and other favourable characteristics [83]. In order to control



36 Chapter 2 Background Research

such an electromotor, a PID control model is normally used. In this recent research [83],

a neuron can be used to simulate the behaviour of the PID model.

2.7.2 SpiNNaker: A Massive-Parallel Chip Multiprocessor

The SNN proves to be an inspiration for this research. SNN has many suitable appli-

cations in software implementation. SNN has the capability of implementing a massive

network which is the basis of SpiNNaker. This architecture is used in various applications

such as brain modelling. This form of network requires a huge amount of computational

power that fails the specified goals in the thesis research. However, the contributions of

SpiNNaker should be addressed.

SpiNNaker is a chip designed with the collaboration of Engineering and Physical Sciences

Research Council (EPSRC) and ARM amongst other companies. SpiNNaker is a scalable

general purpose platform for massive parallel computing systems which can simulate up

to a million neurons with varying degrees of connectivity in real-time. The full detail

of the application is explained in many papers [9, 84, 85, 86]. Through the use of

the ARM968 processor [87], flexibility and generality is maintained in the neural models

simulated by the SpiNNaker chip. The node of the machine consists of 18 such processor

cores. Sixteen of these cores will be used for the specified application, one for monitoring

and controlling the nodes and the last redundant processor is used in case of any fault.

The configuration of the node as well as the best configuration for the whole machine is

described in detail in recent works [88, 89]. In another literature [90], a study has been

put forward that certain system events have been used by SpiNNaker neural network

simulations which include a timer event, packet received event and a Direct Memory

Access (DMA) done event. Other than that, the power characteristic of such a system

can be characterized as a fixed and a variable power consumption state. The terms that

characterize such power consumption of this system are listed below [89]:

1. Reset Power

2. Baseline Power

3. Neural Power

4. Synaptic Power

According to Painkras et.al [89], an assumption was made when the multiprocessor chip

was being considered. The main cost behind the computational load is the energy driv-

ing the system. A related work [91] proposed that an event driven approach which

depends solely on the execution of the data will produce more realistic results in real-life

application, compared with the application of a sequential program flow. Another paper
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[92] proposed an analog VLSI neural network which is capable of detecting the morphol-

ogy changes that occur during an ECG. This proposed network has a few advantages

such as: a small area as it is an analog design; it can be easily interfaced with an analog

signal device; there is no need for temperature compensation.

2.7.3 Condition Monitoring Using Different Forms of ANN

The state of the art CMOS technology has led to many new developments in signal

electrode technologies such as the high density multiple-electrode arrays (HDMEAs). A

large HDME recording system is developed to store the data detected from this array.

By recording the electrical activity of a single neuron on multiple electrodes, it is proven

to increase the performance of spike sorting. Spike sorting is performed in real time.

In this literature, a medium sized Virtex 6 is proven to simultaneously process 650

neurons[93].

When trying to prevent any form of machine fault, condition monitoring is necessary to

observe the power electronics components, converters and the condition of the systems

in the industrial field. In this research [94], the group attempts to introduce a new

method to conduct condition monitoring based on the use of Artificial Neural Network

(ANN). It is known that there are two different kinds of electromyogram (EMG) nerve

monitoring method: spontaneous and triggered [95]. The custom design presents a

flexible framework and good expandability for different applications.

An additional work [96] proposed an on-line streaming kernel that can mitigate the

issue of large memory requirement needed by neural signal processing . The Multiple

Electrode Array (MEAs) records high resolution neuronal signals which is used in the

research. The method proposed is still able to maintain an effective accuracy of the

algorithm. The on-line kernel’s efficiency is compared to batch processing using a range

of BMI benchmark algorithm in the paper.

Back propagation neural network (BPN) is used by some applications. The basis of a

BPN includes two distinct stages, a forward propagation stage and a back propagation

stage. The normal neural operation uses the forward propagation to pass along the

sample provided along the input layer to the hidden layer where calculations are being

made which in turn is passed to the output layer to produce the output sample of the

neural network. This stage is the basis of our proposed system. The back propagation

stage includes a learning process to reduce the error between the calculated output

sample and the target output. This process is performed by adjusting the weights of the

neural network in real time [8].

BPN neural operation is implemented using equation 2.14.
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y

Figure 2.23: General Back Propagation Neural Network (BPN) (Reproduced
from paper [8]).

u =
I∑
i=1

wixi (2.14)

The equation symbols are identified here. u is the product of the neural calculation, i

is the bit number, w is the weight, x is the input and y is the neural output. The back

propagation stage uses equation 2.15 to provide an average of the error over a variable

number of training samples to increase the performance of the BPN. With the average

of sum of squared error, E, weight adjustment can be made.

E = target− output (2.15)

E =
1

2n

∑
p

(‖ dp − yp ‖)2 (2.16)

where E is the sum of squared error, d is the expected output, y is the calculated output

and p is the sample number and n is the number of samples.

The weight adjustment is calculated using the gradient descent method. Equation (equa-

tion 2.17) is provided here when there is need to update the weights. The symbol α is

the learning rate, the derivative being the gradient and the product of both is multi-

plied with -1 as to update the weight, wij in the direction of the minimum of the error

function. The variable i is the inner neuron of the weight and j the output neuron.

∆wij = −α dE

dwij
(2.17)



Chapter 2 Background Research 39

In this thesis, the research implements the forward propagation stage in hardware. The

training and weight adjustment are completed off-line as to reduce the computational

power needed. Furthermore, it is unnecessary to include an on-line learning process for

an epilepsy detection application.

2.8 Real Time Hardware Based Epilepsy Detection and

Prediction Research

This section mainly focus on wearable embedded devices which are used in the area of

automated seizure detection.

2.8.1 Wearable Embedded Seizure Detection Devices

In 2010, Saleheen et al. [97] made some major contributions in FPGA implementation

for this specific application. This study found a method to automate real-time detection

of seizure events and process EEG signals in an embedded hardware design. The evalu-

ation of the prototype uses three different hardware configurations which are (i) sample

entropy and ANN, (ii) variance and predetermined threshold value, and (iii) variance

and ANN. The evaluation considered different factors: the accuracy of detection and

utilization of hardware resources. The evaluation of algorithmic and optimization tech-

niques reduce the hardware overhead and power consumption while maintaining a high

detection accuracy [97]. From the evaluation of the prototype hardware [97], certain

observations were made from the results.

1. There is a decrease in the precision of the fixed point representation.

2. They reuse different hardware components during hardware synthesis in order to

minimize the hardware footprint. An advantage over other researchers in the field

is provided by reducing the hardware footprint by a factor of 4.4. The power

consumption was also reduced by a factor of 2.7.

One paper [98] states that a FPGA based sensor has been developed based on Nokia

research centre projects. This device uses intelligent processors (Advanced Sensor Pro-

cessor). Figure 2.24 illustrates the architecture of an Advanced Sensor Processor (ASP)

which allows minimal power consumption by processing the signal on a compact and

power efficient processor unit. During the signal processing phase, the processor will

keep the complex application processing environment idle to conserve computational

power. Industrial companies have tried to optimize the processor by reducing the leak-

age current using a bit-serial processor.
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Figure 2.24: The ASP architecture allows two different option of interfacing
with the application processor [98].

2.8.2 PennBMBI: A General Purpose Wireless BMBI Interface Sys-

tem Design and Developed further for Unrestrained Animals

Neural stimulation is a bidirectional method of communication between the brain and the

external hardware. The Brain Machine Brain Interface (BMBI) system proposed inte-

grates four battery-powered wireless devices when implementing the closed-loop sensory

motor neural interface, which includes: a neural signal analyzer; a neural stimulator; a

body-area sensor node; a graphic user interface. The computer interface is designed by

the research team to monitor, control and configure the whole closed-loop system which

is connected via a wireless link. This interface uses a custom designed communication

protocol [99, 100].
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2.9 Bit-Serial Architecture with Relation to Neural Net-

work Processors

2.9.1 Basics of Bit-Serial Architecture and Advantages over State of

the Art Technology

The bit-serial architecture transfers data bit by bit along a wire, during a single clock

cycle, while state of the art uses bit-parallel word architecture transfer input bits along

a bus during a single clock cycle. This will allow faster processing time. However, it is

far better to use bit-serial architecture when the designer requires a lower power design

for a low power design as the hardware cost is far lower.

2.9.2 COLUMNUS & Bit-serial CORDIC

The design proposed [101] is a SIMD array of bit-sequential processors which provides

an extended set of boolean operations. The design is mainly built from a large column

of n bit-sequential processors which is then connected directly to a column of dynamic

random access memory (DRAM) memory chips using a large data bus (n lines). The

SIMD was implemented as a CMOS chip that integrates 32 bit-sequential processors. It

was designed using 1.5 µm technology. The proof of concept was evaluated using a small

system consisting of one sequencer board and four processor boards (standard Europe

format).

Another architecture was also proposed [102] to address the leakage power issue in mod-

ern hardware implementations. Other related work has also supported the claim that

the bit-serial approach will be more power conservative . Even though bit-serial design

is slower, it can be faster by shortening the critical path. The disadvantage of using

this design is the need for a large amount of registers and an increase in dynamic power

consumption. This will be dependent on the algorithm required by the designer. The

paper [102] focuses on the COordinate Rotation DIgital Computer (CORDIC) Algo-

rithm which uses bit-serial implementation. The design was developed using VHDL and

synthesised for a UMC 130nm technology.

2.9.3 Bit-Serial Architecture For Neural Network and Various Appli-

cations

In order to reduce the size of the logic circuit, bit-serial architecture is implemented

while considering the hardware complexity. Further minimisation also occurs during the

training phase using the implementation of a leap-frog algorithm. This is completed
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off-line. Once the network is fully trained with its new weight coefficients, it is loaded

onto the existing hardware [103].

When a digital filter is designed using a bit-serial architecture, the input samples are

processed in a bit-serial manner as a bit-based filter. However, the overall samples

included in the window frame are processed in parallel. A word-based architecture

processes the samples sequentially and individual words in a parallel form.

There are a few classifications using this architecture for digital filters reviewed by

Yamamoto [104]:

1. Systolic arrays architecture associates each window sample with a rank and this

rank is then updated when the window is shifted along the signal.

2. Sorting networks is different from array architecture as there is a sorting mechanism

before a sample of necessary rank is selected.

3. Stack-based architectures are a form of filter which maps the filtered sample into

the binary domain through the use of majority function.

Moldovan and Fortes [105] illustrates how they can partition and map an algorithm into

a fixed size systolic array. Their method is essential when it comes to computational

problem that are larger than the size of the VLSI array intended for that problem.

Through algorithm partitioning, they divide the index sets into bands and map the

bands into the processor space. The results that were obtained from their method was

quite promising though quite dated. However, it provides certain inspiration for our

research.

Recently, Patrick et al. [106] presents Stripes (STR), a new hardware accelerator design

for DNN computing. This proposed design is an extension to the DaDianNao (DaDN)

design proposed by T. Luo et al. [107]. There are many parameters that were compared

between STR and DaDN. These parameters are area, energy and performance. The STR

exploits precision variability by bit-serial inner-product units while using parallelism.

Another recent work by Charles et al. [108] can be used in conjunction with Patrick et

al. [106] work. Charles research presents a new neural cache that performs bit-serial

in cache acceleration of DNN. Their work allowed improved efficiency and lower power

consumption across the board.

2.9.4 Bit-Serial Multiplier Architecture

In 1982, Noel et al. [109] presented a serial multiplier that is suitable for VLSI im-

plementation. This particular design uses a carry-save addition technique that accepts
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bit-serial inputs and produces bit-serial outputs. Their research use canonic signed digit

(CSD) [110] encoding to realize their design along with bit-level pattern coincidences.

The resulting design fits well in our attempt to develop a FPGA and ASIC realization

for pre-trained neural network. The difference in our approach is our design will be

catered mainly for medical applications whereas their approach is more versatile.

The literature [111] states that bit-serial n*n bit multiplication can be split into two

different categories: bit-parallel multiplication and bit-serial multiplication. During each

clock cycle, the bit-serial multiplier processor will process each input bit individually.

Furthermore, bit-serial multipliers can be further classified as serial-serial multipliers or

serial-parallel multipliers. Bit-serial multiplier processors are better in terms of power

consumption and smaller in size. Another paper [112] supports the decision that array

multipliers are not useful in the thesis research as they will consume a large hardware

area, thus consuming a large amount of power.

Another work by Shafer et al. [113] has also used a fully-serial pipelined multiplier.

This research is efficient in certain applications. This type of multiplier includes a

quasi-serial multiplier. This multiplier takes in two different inputs operand, one serial

and one parallel. However, the output is processed in a serial fashion. This multiplier

still requires 2 ∗ n clock cycles to perform a multiplication of 2 n-bit numbers. The

pipelined design will only require n cycle to return a product, but this would involve a

larger hardware cost.

There are two types of multi-bit multiplier: a combinational multiplier and a sequential

multiplier which was introduced in a paper [114]. 16-bit representation is used to imple-

ment this design which is easy to expand to a 32-bit design. This multiplier is used as an

interface for microcomputers to perform specific operations. The current research of this

thesis implements a similar form of multiplier that can be compared for performance.

Discrete Wavelet Transform (DWT) have useful features such as multi-resolution time-

frequency behaviour, low-aliasing distortion, inherent scalability for VLSI realization and

most importantly of all lower computational-complexity. The previous work [115] uses

two dimensional DWT (2-D DWT) for image processing. 2-D DWT is highly complex

and it involves real-time processing. In order to implement 2-D DWT, there are two

approaches: separable (indirect) or non-separable (direct). The separable approach

would require two modules of 1-D DWT devices (1 for row transformation and the other

for column transformation) and another transposition unit. This transposition unit is

not favourable for VLSI implementation [115]. Non-separable devices have small latency

in terms of a few clock cycles. This is acceptable in real time applications.
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2.10 Support Vector Machine Contribution to Epilepsy

Detection

EEG signals provide a great deal of detail about the brain activity. Most of the details

are redundant, or irrelevant where an epileptic patient is concerned. Thus, this leads

to high power overheads for wireless transmission. A smart sensor IC was designed

by Sukumaran et al. [116] using a CMOS chip that has an area of 0.35um for scalp

EEG acquisition. This chip is integrated with the local processing of the sensor node.

Furthermore, they include ultra low power electronic circuits to increase the processing

power on the chip.

The smart sensor has a low-noise amplifier (LNA) for signal acquisition that is acquired

through a single electrode. The feature vectors of the signal are extracted and classified

through machine learning. A spiking neuron based ELM pattern classification hardware

was used [116] for the classification process. ELM functions similar to a SVM but it

requires less nodes and random weights. In order to produce a whole functional system

for epilepsy detection, the number of sensors to be worn would increase to achieve spatial

correlation. Each individual output of the classifier could then be combined to detect

the onset of an epileptic seizure.

2.10.1 Support Vector Machine Used in Medical Technologies

In this particular paper [117], the application of fuzzy SVM is being utilized in credit

risk analysis. Standard SVM is not suitable here as there is a certain drawback due

to their sensitivity to outliers or noises in the training of the sample data. When used

for lung cancer diagnosis [118], SVM is suitable as it possesses the advantage of high

generalization and an assurance of global optimization as it has been successfully used

in many other fields which require classification.

2.10.2 Vapnik’s Statistical Learning Theory

SVM is based on the Vapnik’s Statistical Learning Theory [23]. It is proposed in the

research to use the SVM and fractal dimensions (FD) as a mean of EEG signal classifi-

cation. Figure 2.25 was taken from the paper [23] which provides a comparative analysis

table of different algorithms when using support vector machine (SVM).
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Figure 2.25: A Comparative Analysis Table Extracted From The Literature [23]
Detailing Different Algorithms Using Support Vector Machine (SVM).

2.11 Other Related Work

2.11.1 Energy Efficient VLSI Neural Network Design

ASLAN (Automatic methodology for Sequential Logic ApproximatioN) is proposed in

a related work [119] to create an approximate version of the sequential circuit which

consumes less energy while meeting the necessary requirements of the circuit .

This proposed methodology was used to synthesise a few approximations of well known

sequential benchmarks such as 16-bit FIR filter and a 8-bit neuron. These synthesised

approximations are then evaluated using two different quality metrics which are maxi-

mum error magnitude and relative error.
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2.11.2 Dedicated Neural Hardware for Medical Technologies

The group [120] studied the Health-Related Quality of Life (HRQOL) and came up with a

classification method that can be broken down into three different components including

physical health, mental health and social health. One main factor that perceives the

HRQOL in Temporal Lobe Epilepsy(TLE) patients would be depression.

The literature [121] outlined the report, through the development of the Quality of

Life of Epilepsy questionnaire(QOLIE-89). There is an association between depression

and HRQOL. A mood factor has been developed by using the Profile of Mood State

(POMS) which was the best predictor of HRQOL. This explains 47% of the variance in

the predicted value.

With the wireless sensor networks (WSNs) [122], the system is capable of monitoring

patient vital signs in hospitals, and enhancing the performance of emergency responders

in large disasters by using automatic electronic triage. Further, WSN also improves the

quality of life of the elderly in many situations and enables large field studies of human

behaviour and chronic diseases.

There are various technical challenges that will need to be solved when trying to apply

WSNs in the patients’ daily activities. These challenges can be categorized as follows:

trustworthiness; privacy and security; resource scarcity.

BMI approaches [123] have recently been extended to be a recurrent brain-machine

interface. This new interface will introduce an artificial neural pathway that allows the

adaptive brain to learn to adapt and incorporate the normal desired function . The

design proposed involves the use of various forms of antenna to find the optimal design

such as monopole antenna; micro-strip patch antenna; substrate integrated waveguide

antennas. Next, it employs the use of multi channel spike sorting. The work uses FPGA

to evaluate their design.

2.12 Critical Analysis

This background research aims to present an overall understanding of the ongoing re-

search into epilepsy detection. Using this knowledge, this thesis presents an alternative

epilepsy detection system design which can be used in a wearable device.

The EEG research in this chapter presents an overview on EEG signals and the tradi-

tional method for EEG waveform analysis which involves expensive manpower, a spe-

cialist and manual inspection of the EEG waveform recording. This method is very time

consuming and prone to human error. Therefore, there is a need for automated EEG

waveform analysis. Several methodologies have been used and improved to develop such

an automated system. These methods include: STFT, Wavelet Transform, Lyapunov
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Exponent, AR modelling etc. The advantages and disadvantages of these methods is

summarized in Table 2.3.

Techniques Advantages Disadvantages

STFT Better noise sensitivity compared to normal FFT Less accurate compared to WT
Short process time

Wavelet Transform (WT) works on a multi-scale basis, needs selecting a proper mother wavelet
More accurate compared to STFT
Low spectral leakage similar to AR

Lyapunov Exponent Robust against noise Complexity in selecting parameters for analysis
Can evaluate chaotic behaviour of the EEG signals

AR modelling High frequency resolution similar to WT susceptible to heavy biases and large variability

Table 2.3: Advantages and Disadvantages of the reviewed EEG research tech-
nologies [124, 125]

This research does not focus on the issue of EEG signal processing. These methods were

reviewed to provide the reader with an understanding of EEG analysis methodology in

epilepsy detection.

Conventional software classification methods for epilepsy detection does include NB

classifier, DTC, k-NN etc. Table summarises the advantages and disadvantages of these

approach.

Methods Advantages Disadvantages

NB Limited use of training data Based on assumption that features used are all
independent

information might be lost when making
continuous features discrete

DTC Do not require manual feature selection small change in training data lead to possible error
in prediction

performance is linked to the particular DTC design

k-NN effective when dealing with large dataset long evaluation time
learning conducted offline

ANN learning conducted off line accuracy will depend on particular design
able to deal with large EEG datasets

feature selection is optional though recommended
amount of training data can be limited if accuracy has been obtained

Table 2.4: Advantages and Disadvantages of different conventional epilepsy de-
tection classification methods

Epilepsy Detection using ANN software implementation include BPN; PNN; EN and a

more recent SNN. With a software implementation, high accuracy up to 97% can be

obtained. The different types of ANN structure are compared here to provide some idea

for the hardware design presented in this thesis.

In summary, every form of ANN in Table 2.5 involves some form of feed-forward neural

network (FNN). Therefore, it can be summarised that designing a better FNN is useful

for a wearable epilepsy detection system. This research propose to design a hardware

FNN which can be used as the main processor for such a system.

Table 2.6 gives a summary of different processors that are included in this literature

review. This table shows that different approaches have been used to improve the results
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Type of ANN Advantages Disadvantages

BPN fast, flexible, easy to program, performance depend on input data,
does not require extensive parameter tuning sensitive to noisy data and outliers

PNN faster than MLP, more accurate than MLP, slower than MLP, require large memory space
easily updated network structure

EN an extension of the BPN design, can be used recurrently requires specific learning rules

SNN closely models a biological brain require more GPU memory and time to access parameters
efficient in pattern recognition

Table 2.5: Advantages and Disadvantages of different bit-serial architecture
ANN

Neural Processors Advantages Disadvantages

FPGA based processors Reprogrammable Higher unit cost compared to micro-processor
Suitable for proof of concept and prototyping

SNN based Auto-associative based memory simple circuity not reprogrammable

Synchronous and self time neuroprocessor 80% accurate Large hardware cost
for pattern recognition

easy programming

Block-based optimized configuration restricted to 2D arrays
and integer weights (easy implementation)

Table 2.6: Advantages and Disadvantages of different type of processors

for pattern recognition. This research use the information gathered from these papers

to further improve the pattern recognition of EEG signals in the context of an epilepsy

detection system.

2.12.1 Why not deep learning neural networks in this research?

The deep learning neural network is a network that has the capability to compute

and update the required weights in real time. This requirement is not a necessary

specification for a long term epilepsy detection and monitoring device. It is possible for

the device to be trained and updated off-line as a way of reducing computational power

required by a deep neural network.

2.12.2 Why FPGA for prototyping?

FPGA is a probable choice for prototyping as it is more flexible, reusable, quicker to

acquire not pre-designed to perform a certain task. A ready made FPGA is purchasable

which cost more upfront. However, re-programmability prevents recurring expenses

but it is better at handling parallelized task. The simpler design cycle with integrated

software which makes it easier to manage much of the routing, placement, and timing

to match the programmed specification.
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In order to meet the re-programmability specification of this research, there are a few

technologies that has been considered, such as the FPGA and available microcontrollers.

There is a reason why the FPGA was chosen over the microcontroller. If we have

chosen a microcontroller, we need to have a sequencer and a program to implement our

algorithm. If we use an FPGA, there is another option of using only FSM to implement

our algorithm. Therefore, the design decision was made to use an FPGA instead of a

microcontroller. Furthermore, a microcontroller is not suitable for an application that

involves large number of parallel operations. In the case of our research, we need to

operate multiple DPUs in the same neural network layer in parallel. Thus, an FPGA is

a far better choice than a microcontroller. As this is the first stage of the research, an

FPGA provides more flexibility when compared with a microcontroller. At a later stage

in the research, the prototype can be implemented on a microcontroller.

2.12.3 Why not SVM?

By analysing the work of Yongqiao Wang et al. [117], we can see that SVM have made

some contribution towards epilepsy detection research. However, there is the issue of

sensitivity to noise or outliers in the sample data when going through the training phase

as mentioned in section 2.10.1. In the case of an ANN, this issue can be dealt with

feature extraction and EEG signal processing.

2.12.4 Why bit-serial architecture?

Bit-serial technology Advantages Disadvantages

COLUMNUS More powerful bit-serial operation in a single clock cycle Dedicated array processor
Application not limited by memory size

Bit-serial CORDIC reduced leakage power slower logic

STR Highly configurable Traded area for precision

Table 2.7: Advantages and Disadvantages of different bit-serial architecture
ANN

The dedicated array processor COLUMNUS inspires the thesis research using dynamic

memory bank and bit-serial architecture. However, it is designed with a specific pur-

pose for pattern recognition in statistical physics. Therefore, COLUMNUS cannot be

directly implemented in the thesis research. The COLUMNUS design does indicate that

a dedicated processor is better than a general processor when solving a specific problem

such as epilepsy detection.

The CORDIC algorithm is a low level design with the intention for reducing leakage

power and different constraints have been applied in this design to achieve the smallest

and fastest solution. This design provides inspiration for the thesis to use a bit-serial

approach as to find the smallest solution for the epilepsy detection system.



50 Chapter 2 Background Research

With bit-serial data path, it is possible that throughput will decrease however this will

reduce the area as well. This is presented in the STR design which is similar to our

proposed design.

2.13 Conclusion

In summary, this literature review has covered a range of areas in the ongoing epilepsy

detection research. There are four different EEG waveform analysis that can be consid-

ered when analysing EEG waveforms. These are STFT; Lyapunov Exponent; Wavelet

Transform; autoregressive modelling. The literature review has focused on software im-

plementation of neural networks (i.e. BPN, PNN, EN and SNN), thus a major section of

the literature review has been used to focus on different neural network processors. Many

forms of ANN are suitable for software implementation when a simulation is needed to

resolve certain problems. In this research, a hardware solution is required that needs

to perform at a fast pace yet not reducing the accuracy of the solution. The first stage

of the BPN has been used in this research which essentially forms an Multi Layered

Perceptron (MLP) and the SNN has been used as a inspiration for the research.

State of the art neural processors such as SpiNNaker requires high computational power

which is not conducive for a mobile hardware solution. Such parallel systems is efficient

in terms of speed but have larger hardware cost. However, the research needs a low cost

approach with acceptable efficiency. Therefore, bit-serial architecture is used in the new

approach. The proposed network focuses low cost and power. The speed is considered

to be a second priority in the specification of this research.

The proposed system would be an open-loop detection system. This is a form of device

that has no form of intelligent control mechanism. It is used to monitor the brain

state and improve seizure control. In comparison, close loop seizure control is a three

part control system: an EEG recording system, seizure detection signal processor and a

programmable neurostimulator. This system however analyses EEG recording in real-

time [126]. Such a close loop system will be far more accurate yet larger in size and

cost. The new approach uses a variable bit-precision approach to reduce the size and

cost while still maintaining an acceptable accuracy.

In conclusion, a neural network solution proves to be a better solution as compared with

other forms of classifier that can meet the research specifications. The neural network

can be implemented in hardware without affecting much of the device performance when

processing huge amounts of data which is one of the main goals of this thesis. The next

chapter will present the work of the author in this research that incorporates the choice

of using a neural network. Chapter 3 presents the research team proposal to develop a

bit-serial neural network for epilepsy detection. In this chapter, the author addresses the

advantages of using the ANN in the proposed hardware through various experiments.
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With positive experimental results, the thesis hopes to provide a convincing proof of

concept for the use of the newly proposed hardware. The main reason to have a working

proof of concept for a wearable / home based bit-serial neural network for epilepsy

detection is because there are still many epileptic patients across the globe who are

always at risk of accidents. Furthermore, this proof of concept would be able to act as

the first step in assisting the patients in completing their daily routine safely.





Chapter 3

Bit-serial Dedicated Neural Data

Processing Unit (DPU)

In epilepsy detection research, the dedicated neural hardware approach is one of the main

reasons this research was conducted. The bit-serial architecture was chosen to model

our design as bit-serial computing has been the interest of ultra low energy consumption

processor designers in recent years. Bit-serial architectures which process data bit by

bit during each clock cycle are largely historic. Most modern processors use bit-parallel

data processing for performance. However, when high performance is not a priority but

instead the emphasis is on very low-power and low-cost, bit-serial computing has its

advantages. In modern applications, bit-serial processing is still used in digital filters

where input samples are processed in a bit-serial manner. [102].

This chapter is organized as follows: Section 3.1 presents the fundamental equations

of the proposed data processing unit (DPU); Section 3.2 then introduces the proposed

DPU design; Section 3.3 illustrates the basic experiments conducted to verify the DPU’s

functionality and the results of synthesising the proposed DPU on various FPGAs; Sec-

tion 3.4 discusses the proposed model and compares it with related work; Section 3.5

finalizes the chapter.

3.1 Neural Processor Model

The neural model of the proposed dedicated processor is implemented using the linear

equation 3.1. The equation is based on the McCulloch Pitts neuron model. This pro-

posed Data Processing Unit (DPU) is the first contribution of this research and is used

to implement equation 3.1. In this equation, u is the sum of products calculated from

the inputs, xi and weights, wi; where i is the number of inputs.

53
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u =
I∑
i=0

wixi (3.1)

y = Φ(u) (3.2)

Equation 3.2 obtains the value of y when the neural output u is used in an activation

function, Φ. Φ can be any type of activation function where a sigmoid function is

commonly used. In this research, a unit step (threshold) function 5.1 where th is the

threshold value has been used to ascertain the correct y value which is either low ‘0’ or

high ‘1’. This function is chosen for it can be implemented without the need of a ROM.

Φ(u) =

0 u ≤ th

1 u > th

When the DPUs are used in a vector arrangement, there will be no need of multiple

control units for each DPUs. With a single control unit, multiple number of DPUs

can be controlled simultaneously as each DPU in the same layer will perform the same

operation. The vector approach of using multiple DPUs in a single layer will be presented

in a later section.

3.2 Bit-Serial DPU Design

In this research, a novel dedicated neural hardware is proposed. This chapter will

focus on describing the DPU design and its work flow. The control unit, a finite state

machine (FSM) and counters used to complete the neural operation are also presented.

The proposed design is compared with the Stripe design [106] in section .

A modular design is used as this enables each block to be tested and integrated easily

using a simple encapsulating module which simplifies the debugging process. The Sys-

temVerilog Hardware Design Language (SystemVerilog HDL) is used in this research.

The hardware modules are assembled according to the block diagram 3.1 to implement

a single neuron (equation 3.1). The proposed DPU control signals in the data path, SH

and SA are received from the FSM to complete the add and shift algorithm.

The DPU design includes a synchronous RAM, a single bit full adder, a few general

purpose registers, a single AND gate and a number of multiplexers. This design ensures

the DPU is a low-cost component in the ANN that is proposed in Chapter 4. A syn-

chronous RAM memory was chosen over a ROM for the purpose of storing the weight
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S_A

i = sample count
j = bit count for x
k = bit count for w
xi = external input
wi = corresponding weight to address [i]
wik = bit extracted from weight
xij = bit extracted from input
 

Wmem

i

wi

k

x0

j

xij
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Xn-1
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Dn-1

i

y[j]

FAa

Carry 
Register
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cin

PH PL
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y
y[j]

PH[0]

P[0]

S_A = Addition of Partial Product select input
S_H = Addition of Multiplicand to previous 
value
y[j] = LSB of y for partial product addition
a = AND product of wik and xij

cout, cin = carry bit
P = Partial Product register, PH and PL
PH = High Part of P
PL = Low Part of P

S_A

S_H S_A

*Note: Multiplication :  S_H = 1, 
S_A = 0 

Addition of Partial Product : S_H = 
1, S_A = 1

wi, xi = n bits
wik, xij = 1 bit

PH[0] = LSB of PH
P[0] = LSB of P
b = PH[0] or P[0] addition input for FA

ALU
Classic Multiplier

Figure 3.1: Proposed DPU Design.

(w) values to limit any use of logic elements resulting in a more efficient DPU design.

A ROM would be much more costly in terms of hardware logic. The complete ALU is

represented as the novelty of the DPU design in this research with the main accumulator

y acting as a memory storage unit for the end result of the neural operation.

Q

Q
SET

CLR

S

R

s[i]

c[i]

a[i]
b[i]

Figure 3.2: Single Bit-adder Circuit in the proposed Bit-Serial Processor.

The sum s[i] is fed into the accumulator (PH, PL) using a serial load operation. The

accumulator is a double length general purpose register of 2*n bits used where n is the

number of bit representation needed in the neural operation. The carry register input

is taken from the full adder (cout) and output (cin) to be processed by the full adder

(FA) in the next stage of the bit-serial addition process.

The DPU design uses a classic single bit full adder, Figure 3.2 to perform the addition

process in the neural processor. Multiple multiplexers will be needed to complete the

DPU circuitry, as shown in Figure 3.1 to accommodate the use of only a single bit full

adder for the whole DPU circuit. This DPU design is slower but smaller as compared
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to a general ALU design which uses parallel loading. The neural output is then stored

in the y register before the next operation starts. In order to use the value stored in

the y register as input to the next network node, a truncation process takes place by

selecting the most significant bit (MSB) of the value stored. This process is completed

by right shifting the register value. This novel DPU design will provide an alternative

approach in the ongoing research for an efficient home based system needed for the

epilepsy detection application.

The Table 3.1 below illustrates an example that performs the bit-serial operation by

using this proposed DPU.

The idea that is used in this design is an add and shift multiplier. The classical bit-serial

multiplication is performed by the single bit adder (FA), a carry register and a product

register (y). The bit’s from the multiplicand and multiplier selected using multiplexers.

The novelty in this design comes from the use of a single bit adder instead of a k-bit

adder in order to save cost and adding a partial product register (P). The connections

between each component can be altered at any given time using multiplexers.

3.2.1 Hardware Counters for Neural Operation

The FSM includes a basic counter system in order to complete the neural operation

(Figure 3.3). The multiple loops represented in the counter system (Figure 3.4) are

simple while loops.

where:

• i = number of samples

• j = bit number in input(x), j = 0,1,... n-1

• k = bit number in weight(w), k = 0,1,... n-1

• p = bit number in output (u), p = 0,1, ... n-1

• add = signal to begin counter addition

• SA = signal from FSM to undergo addition of partial product to end product

Conditions associated with the counters are:

• When j reaches n, j resets to 0 and k increments by 1

• Once k reaches n, p increments till it reaches 2*n - 1

• When p reaches 2*n - 1, reset j, k, p and increment i by 1 till i reach maximum

number of samples.
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Description i j k w[ik] x[ij] a sum PH PL y

Default 0 0 0 0 0 0 0 0 0 0
Add a to PH[0] and shift sum to PH[msb] 1 0 0 0 1 0 0 0 0 0
Add a to PH[0] and shift sum to PH[msb] 1 0 0 0 0 0 0 0 0
Add a to PH[0] and shift sum to PH[msb] 2 0 0 0 0 0 0 0 0

Shift P by 1 bit to the right 0 0 0 0 0
Add a to PH[0] and shift sum to PH[msb] 0 1 1 1 1 1 100 0 0
Add a to PH[0] and shift sum to PH[msb] 1 1 1 0 0 0 10 0 0
Add a to PH[0] and shift sum to PH[msb] 2 1 1 0 0 0 1 0 0

Shift P by 1 bit to the right 0 0 0 100 0
Add a to PH[0] and shift sum to PH[msb] 0 2 0 1 0 0 100 0
Add a to PH[0] and shift sum to PH[msb] 1 2 0 0 0 0 100 0
Add a to PH[0] and shift sum to PH[msb] 2 2 0 0 0 0 100 0

Shift P by 1 bit to the right 0 0 0 10 0
Add y[j] to P[j] and shift sum into y[msb] 0 0 1 0
Add y[j] to P[j] and shift sum into y[msb] 1 0 0 100000
Add y[j] to P[j] and shift sum into y[msb] 2 0 0 10000
Add y[j] to P[j] and shift sum into y[msb] 3 0 0 1000
Add y[j] to P[j] and shift sum into y[msb] 4 0 0 100
Add y[j] to P[j] and shift sum into y[msb] 5 0 0 10
Add a to PH[0] and shift sum to PH[msb] 2 0 0 1 1 1 1 100 0 10
Add a to PH[0] and shift sum to PH[msb] 1 0 1 0 0 0 10 0 10
Add a to PH[0] and shift sum to PH[msb] 2 0 1 0 0 0 1 0 10

Shift P by 1 bit to the right 0 0 0 100 10
Add a to PH[0] and shift sum to PH[msb] 0 1 0 1 0 0 0 100 10
Add a to PH[0] and shift sum to PH[msb] 1 1 0 0 0 0 0 100 10
Add a to PH[0] and shift sum to PH[msb] 2 1 0 0 0 0 0 100 10

Shift P by 1 bit to the right 0 0 0 10 10
Add a to PH[0] and shift sum to PH[msb] 0 2 0 1 0 0 0 10 10
Add a to PH[0] and shift sum to PH[msb] 1 2 0 0 0 0 0 10 10
Add a to PH[0] and shift sum to PH[msb] 2 2 0 0 0 0 0 10 10

Shift P by 1 bit to the right 0 0 0 1 10
Add y[j] to P[j] and shift sum into y[msb] 0 1 0 0 100001
Add y[j] to P[j] and shift sum into y[msb] 1 1 0 0 110000
Add y[j] to P[j] and shift sum into y[msb] 2 0 0 0 11000
Add y[j] to P[j] and shift sum into y[msb] 3 0 0 0 1100
Add y[j] to P[j] and shift sum into y[msb] 4 0 0 0 110
Add y[j] to P[j] and shift sum into y[msb] 5 0 0 0 11

Final answer in register y

Table 3.1: Table: Example of the bit-serial operation performed using the pro-
posed DPU using 3 bit precision. (P = [PH +PL], w1 = 2, x1 = 1, w2 = 1, x2
= 1).

3.2.2 Layer Finite State Machine (FSM)

The DPUs are controlled using a single layer FSM. The FSM has a default START stage

where no operations are carried out. When the nreset signal from the central control
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START

i = 0, j = 0
k = 0, p = 0 

add 0
i = i, j = j, 

k = k, p = p

1

j = j + 1

j = n-1 yes
j = 0

k = k + 1
k = n-1

yes

j = n-1, k = n-1
p = p + 1

p = 2*n -1

yes

J = 0, k = 0
p = 0

i = i + 1
i = I

yes

END

no

no

no

no

 SA

yes

0

Figure 3.3: Counters algorithm for the hardware neural network

FSM is low ‘0’, the state machine proceeds to the LOAD stage. In the LOAD stage, the

inputs, xi are loaded from the previous neuron / feature extraction hardware, and the

weights,wi from the hex file (extracted from training) into the DPU. The FSM sends the

SH signal to provide an addition function to the data processing unit (DPU) during the

ADD stage. As the values of x and w are multiplied in a bit-serial format, the bit-wise

operations are controlled by the counter system (Figure 3.3, 3.4).

Once the calculations were completed for each sample (k = n-1), the FSM sends SA to

the DPU which allows the partial product to be added to the final product registers.

When the total number of i inputs have been calculated, the hidden layer FSM will

send a DONEH signal to the central control FSM to trigger the output layer to begin

operations (nresetO signal). The hidden layer will then revert to the START stage to

await further instructions. The mechanism of the central control FSM will be explained

in Chapter 4. Finally, the DONEO signal will indicate that the output layer has also

completed the calculations which will then stop the device.

The timing diagram for the processor interaction between the control unit and the DPU

for an individual input (Figure 3.6). The global clock (clk) is used as a reference point

with the rising edge and falling edge for different signal activations. When the GO signal
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While (add)
j++

If j == n -1
k = k + 1
j = 0

While (k < n)
k++

While (i < I)
i++

i, j, k, p

If k == n - 1
j = n, k = n, 
while (p < 2*n)

p ++
If p == 2*n-1

j, k, p = 0
add

** I = max {i},  i   S
Where S is number of samples
j = x[j], j = 0, 1,   n-1
k = w[k], k = 0, 1, ...n-1
p = u[p], p = 0, 1,   n-1

Counter

Figure 3.4: Multiple counters diagram for the hardware neural network

goes high, the Mreset signal will go low. The output of the central control FSM (nreset)

will begin the FSM operations which sends a SH or a SA signal to perform the add and

shift algorithm using the inputs, x and weights, w. The accumulator product will be

recorded in u0. The same process will be repeated for any number of samples.

3.3 DPU Verification

3.3.1 Simple Classification with BSNN

The next stage involves functionality testing for the DPU when used as the basic building

block of an artificial neural network. Two simple neural networks (Figure 3.7, 3.8) have

been designed to solve some general classification problems. The first problem uses the

network (Figure 3.7) to determine three different types of class (van, lorry or car) using

two different inputs (mass (M) and length (L)). The output of the network presents the

probability that the input has been correctly classified. The network is an input output

design which does not include a hidden layer. The output layer consists of 3 DPUs. The

weights (wM and wL) are clearly labelled next to the arrows.

The next test involves logic gate verification. The XOR gate was chosen for this

test(Figure 3.8). The design has two layers with a single DPU in both the hidden

and output layers. It has two inputs (a,b) and the weights are clearly labelled w1, w2,
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START

LOAD (w)

nreset

0

• Step 1: Perform reset 
of DPU registers and 
input values

1

• Step 2: Load weight (w) 
data from hex file into 
RAM

ADD (x[p] + w[p])
SH = 1

• Step 3: Addition of input 
(x) to w in bit serial 
format

SHIFT

• Step 4: When j = n-1, shift 
partial product by 1 bit

j = n-1

1

0

k = n-1

• Step 5: Repeat Step 3 and 
4 until k = n-1

0

• Step 7: Repeat Step 3 to 
6 until i = I

STOP

• Step 8: When max I is 
finished, send DONE 
signal to central control 
FSM in STOP stage

p = 2*n-1

** p = 0,1   n-1
Where n is number of 
bits

• Step 6: when j and k = n, 
repeat step 4 and 5 until 
p = 2*n-1

** I = max {i},  i   s
Where s is number of samples
j = x[j], j = 0, 1,   n-1
k = w[k], k = 0, 1, ...n-1
p = u[p], p = 0, 1,   n-1

i= I

1

** nreset = {0: proceed        
to next stage; 1: reset FSM}

0

0

SA = 1

1

Figure 3.5: A finite state machine for the Layer FSM

w3, w4, w5 throughout the network. The output corresponds exactly to the truth table

of a common XOR gate.
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clk

Mreset
GO
i
k
j
p

add
SA

SH

nreset

DONE

Figure 3.6: Timing diagram of a single sample neural operation (clk = global
clock, Mreset = Master reset signal, i = sample number, k = bit in weight, j
= bit in input x, p = accumulated producted, u, add = add signal, SH , SA =
signal from the FSM to perform shift and add algorithm, nreset = nreset signal,
DONE = signal in every layer of the neural network to stop operation )

DPU

DPU
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Van
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wM

wM

wM

wL
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Figure 3.7: Simple Single Layer Neural Network (Mass (M), Length (L) as
inputs and wi = weights)

3.3.2 Peak Detection Using the Proposed Vector Processor Design

A two layer neural network was designed for peak detection with ECG inputs to examine

the functionality of the proposed vector processor in the field of medicine. For this peak

detection problem, a sample was extracted from the ECG input waveform with 1000

consecutive data points. The design has been included in Figure 3.9 where a and b
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Figure 3.8: XOR gate double Layer Neural Network (a and b as inputs and wi
= weights)

are different thresholds. a and b can be 0,1 in the neural network where 1 indicates it

has passed the thresholds and vice versa. These two threshold allow the output to be

differentiated into three separate classes, 0,1,2. If the output moves between classes (0

to 1, 0 to 2, 1 to 2), the output is registered as a peak.

Figure 3.10 shows the plot of an ECG input which clearly illustrates seven different

peaks. Thus, the different peaks can be confirmed by reviewing Figure 3.11 and the

result from the device. All weights and inputs are truncated into the form of integers

allowing simpler calculations. However, the truncated values will affect the accuracy of

the results. The input and weight data representation can be reviewed in section 4.2.

DPUh

DPUo
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b

w0

w1

w2

w3

w4

DPUh

X

w5

Figure 3.9: Simple Multi Layer Neural Network for ECG Plot Peak Detection
(a, X, b as inputs and wi = weights)

Another experiment was also conducted using a 1-8-1 network topology. This experiment

goal is to fit the input onto a target output waveform. This experiment has also been

conducted using different bit architecture (6,8,12,16 bit). The figures below shows the

results of the software output and the different hardware outputs.
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Figure 3.10: ECG Plot For Simple Peak Detection

3.3.3 Bit-Serial DPU FPGA Synthesis

With the novel approach, it is possible to develop a specialized neural processor which

can provide significant advantages in terms of cost and accessibility. This reduces the

need for complex simulation software that requires high computational power. The

synthesised hardware can reproduce the results of the simulation software within an

acceptable error margin with an accuracy over 85% and complete the necessary operation

within a reasonable time frame. The results are presented in Chapter 4. However, there

is a trade off between the speed and cost during development. This feature allows the

use of low bit resolution yet able to produce reliable results.

The synthesis of any hardware prototype was completed using a hardware synthesis

software (Quartus II). The RTL of the device needs to be reviewed to confirm the correct

hardware has been synthesised. The cost for the proposed bit-serial designs is vital to

this research goal by reducing the number of logic elements. The proposed approach

includes variable bit precision. The logic elements needed for each DPU is presented in

Table 3.2 using variable bit precision.

In the next chapter, the synthesised DPU model will be used as network nodes in a

bit-serial ANN. The network will then be used for epilepsy prediction based on EEG
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Figure 3.11: Peak Result obtained from (a) MATLAB & (b) Hardware to be
compared against Figure 3.10

readings of a single patient.

By analysing Table 3.2, 3.3, 3.4, it is clear that Cyclone IV FPGAs require additional

hardware compared to Cyclone V and Stratix IV FPGAs. Next, Figure 3.17, 3.18, 3.19

presents a clear comparison of the hardware cost between the three different FPGAs.



Chapter 3 Bit-serial Dedicated Neural Data Processing Unit (DPU) 65

O
ut

p
ut

 d
at

a 
po

in
t

Input data point

Figure 3.12: Target output waveform to be matched by hardware
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Figure 3.13: Output Waveform obtained from using 6-bit precision 1-8-1 hard-
ware

From the graphs, it can be seen clearly that Stratix IV will require more Altera Logic

Elements (LE) if a 16 bit precision or higher is used for a single DPU. Furthermore, the

total cost of a single neuron and DPU starts to flattened out once a higher bit precision



66 Chapter 3 Bit-serial Dedicated Neural Data Processing Unit (DPU)

O
u

tp
u

t 
d

at
a 

p
o

in
t

Input data point

Figure 3.14: Output Waveform obtained from using 8-bit precision 1-8-1 hard-
ware
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Figure 3.15: SOutput Waveform obtained from using 12-bit precision 1-8-1
hardware

is used on any Cyclone FPGA. This could be attributed to the fact that certain logic
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Figure 3.16: Output Waveform obtained from using 16-bit precision 1-8-1 hard-
ware

bit precision Logic Element Cost
Cyclone IV Cyclone V Stratix IV

4 42 17 20
6 48 24 20
8 57 25 28
12 87 39 33
16 131 41 48
32 217 74 79
64 249 85 142

Table 3.2: Logic elements needed for DPU tested with three different FPGA
technologies

gates might have been reused across the network.

After analysing the results, Cyclone V FPGA is the better choice for this research. This

particular board has sufficient computational power to accommodate the testing of the

hardware neuron. The proposed hardware neuron is simulated using MATLAB. Then,

the FPGA is used in this research to implement our designs as it has the advantage of

reprogramming various designs, unlike a GPU or ASIC chip.

Different hardware implementation methodologies have also been considered. These in-

clude an ASIC approach, and a complex programmable logic device (CPLD). The ASIC

architecture proved to be more energy efficient and have a lower hardware cost, yet an



68 Chapter 3 Bit-serial Dedicated Neural Data Processing Unit (DPU)

bit precision Logic Element Cost
Cyclone IV Cyclone V Stratix IV

4 21 15 15
6 25 19 18
8 29 23 20
12 35 25 24
16 42 30 30
32 68 41 43
64 123 84 81

Table 3.3: Logic elements needed for FSM tested with three different FPGA
technologies

bit precision Logic Element Cost
Cyclone IV Cyclone V Stratix IV

4 57 50 48
6 82 68 66
8 106 80 81
12 191 155 153
16 244 165 166
32 463 182 296
64 700 291 559

Table 3.4: Logic elements needed for a single neuron tested with three different
FPGA technologies

ASIC is fixed thus preventing it from implementing a prototype that needs to be con-

stantly modified. The CPLD architecture has a less flexible design due to its restrictive

structure. Therefore, the FPGA is the best choice for implementing the proposed design.

In the near future, the ASIC architecture will be considered for implementation. The

details of this approach is presented in the future work section of this thesis.

In order to validate the functionality of the bit-serial processor, different tests have been

conducted and completed at various stages during the research. The first stage is the

testing of a single DPU design using a n-bit architecture. The addition process will

require 2n + 1 clock cycles (2n clock cycles to complete the whole addition and 1 clock

cycle to save the data). The tests are conducted using simulation software and the

results validated with the results from the synthesised hardware.

3.4 Discussion and Comparison

There are different methods for neural processor implementation that includes analog

and digital techniques. There are also hybrid methods that use the best of the two
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Figure 3.17: DPU LE Cost Comparison Between Cyclone IV, Cyclone V and
Stratix IV

Figure 3.18: FSM LE Cost Comparison Between Cyclone IV, Cyclone V and
Stratix IV

approaches. The analog methodology would need certain circuit elements as a candi-

date for the synapse element. One such candidate is the ferroelectric memristor [127].
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Figure 3.19: Single Layer LE Cost Comparison Between Cyclone IV, Cyclone
V and Stratix IV

However, there is difficulty in controlling the accurate conductance for this device. In

comparison, the digital approach offers accurate precision and reprogrammability. Such

an approach would be more suitable for our research as there is a need to deal with

large EEG datasets (6576 sample waveforms) and accurate detection (minimum recog-

nition rate of 80%). Therefore, the digital approach has been chosen to implement the

dedicated DPU.

As part of the evaluation process, few experiments have been conducted to test the

functionality of this DPU. The first experiment involves the classification of three dif-

ferent vehicles lorry, car or van depending on the inputs mass or length. The weights

were relatively straightforward and there were no issues for the hardware network to

classify the samples. This also apply when dealing with the case of the XOR logic gate

experiment.

For the last two experiment, the results were more interesting. The third experiment

involved the use of an ECG plot. It can be seen clearly that from the Figure 3.10 that

eight peaks are clearly shown in the ECG plot and in Figure 3.11 (a) MATLAB. The

hardware Figure 3.11 (b) could only detect 7 out of 8 peaks which provides a recognition

rate of 87% for such a simple neural network. Furthermore, this was achieved with 12-bit

precision. This indicates that this DPU can be used in a scenario where peak detection

is required such as epilepsy detection.
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The last experiment involves the matching of input data points to output data points.

Figure 3.13 - 3.16 waveforms are results extracted using the proposed hardware. 12-bit

and 16-bit precision matches the target waveform, but 6-bit and 8-bit precision have some

mismatching issues. Therefore, the hardware neural network is feasible but minimum

bit precision for accepted recognition rate must be maintained.

In this research, few revisions have been made to the bit-serial DPU design. The first

design was found to be inefficient in terms of hardware cost when compared with the

DPU illustrated in section 3.2. Figure 3.21 below presents our first design which was

published in 2016. The design itself includes two ALUs, various registers (Wmem, Res1

and Mreg) to complete the neural operation. Wmem store the weight values and Mreg

the input values. Res1 then store the partial product values. These components were

simplified in the final design. This design was programmed with simple machine codes

which meant more hardware costs for the control path. In Chapter 4, the control path

of the final design will be illustrated and explained.

Figure 3.20: First DPU Design Published in WASET Paper [128]

Table 3.5 shows that an 8-bit DPU requires only 24 Logic Elements (LEs) on an in-

expensive Altera Cyclone V FPGA, out of over 300,000 LEs available on a Cyclone V

chip. This compares favourably with the size of the data paths of typical bit-serial pro-

cessors mentioned in the Table. Bearing in mind that the control logic of the proposed

approach requires only simple state machines, rather than fully-fledged program con-

trol paths used in general-purpose processors, the expected overall benefits of an ASIC

implementation will include faster operation and lower power consumption.

The proposed design is compared with Stripes [106] proposed by P. Judd and his research

team. However, the Stripes design trades precision for energy and performance at the

expense of the chip area. The proposed DPU in this thesis trades speed for precision and

area instead. With the power analyser tool provided in the Quartus II Altera software, a
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Hardware Development LE
Chip Count

Bit Array [129] ASIC 56 Altera
Processor Equivalent LEs

Cellular Processor [130] Virtex 5 26 Altera
(Data Path) equivalent LEs

Proposed Neural Processor Cyclone V 25 LEs

Table 3.5: Cost comparison between three different processors.

single proposed DPU is estimated to use 5.81 mW. The FSM consumes 0.1 mW. These

estimated values are of a whole system rather than that of a critical path.

The main difference between Stripe and our design is in the design itself. Stripe is a

modification of DaDianNao, a DNN accelerator which focus on improving the energy

efficiency and speed. The design proposed in this chapter instead focus on reducing the

area while maintaining an accuracy over 80%. Next, Stripe has been implemented on a

chip while our design is still being implemented on an FPGA as a prototype. Therefore,

direct comparison is not suitable at this point in the research. Direct comparison can

be made at a later stage when a dedicated chip has been fabricated for our proposed

design.

In this section, comparison will be made in the context of different design decisions.

The Stripes design uses a dedicated neuron memory while our proposed design utilizes

synchronous RAM to store weight values. Next, the Stripes design includes the con-

volutional layer of the DNN whereas the thesis focusses only on producing a bit-serial

FNN. Equivalent LE a term used to try to bridge the world from ASIC discrete logic

to how FPGA function with their slices and lookup tables. One slice could be used to

create a single AND gate or a to some extent part of a larger adder. By rationalising

the equivalent logical gates required is some pseudo way of marketing their size.

Figure 3.21: Table for logic cell comparison (Extracted from datasheet [131]

The table above is extracted from a data sheet [131] where slices equivalent was made

that can be used to compare Xilinx Virtex-4 and Altera ALM. The author used this

comparison to make the LE equivalent comparison between his design and other designs

found in research literatures. By using this form of comparison, the author hopes to

achieve some form of fair comparison across different designs.
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3.5 Conclusive Remarks

In this chapter, a novel approach of using a dedicated neural processor to detect epilepsy

has been presented. The novelty lies within the use of bit-serial architecture when

designing the dedicated data processing unit (DPU). The DPU consists of different

basic electronic components such as an AND gate, multiple multiplexers and a single bit

full adder. This full adder will perform the addition and multiplication process for the

neural operation. A few registers have been used to complete the processor. This DPU

presents the implementation of the functionality of a single neuron. Multiple identical

units are connected to a finite state machine (FSM) that provides the algorithm for

the DPUs. Simple experiments were conducted in this stage of the research to fully

ascertain the feasibility of the proposed design and various bit precision were also used.

The design was synthesised on various FPGAs to find the best suited FPGA for this

research.

The author considers that simple verification is needed to show that DPU can perform

individually which had led to the decision of using simple verification experiments as a

verification platform for the proposed DPU. Once the simulation process is completed,

the processor is synthesised and the cost of the processor proves that the basic vector

processor is a small device with a minimum of 80 logic elements for a single neuron using

8 bit architecture. In the next chapter, the author will use the proposed DPU as the

basic building block to develop various forms of ANNs for epilepsy prediction.





Chapter 4

Bit-serial Based Hardware Neural

Network for Epilepsy Detection

This chapter presents a novel approach for hardware-based epilepsy detection. As pre-

sented in the last chapter, bit-serial architecture was chosen to model this artificial neu-

ral network hardware as bit-serial computing has been the interest of ultra low energy

consumption processor designers in recent years.

The chapter is organized as follows: Section 4.1 presents the basic understanding of

implementing a hardware neural network. Section 4.2 proposes the approach of imple-

menting a hardware neural network with the main focus on the novel data processing

unit (DPU) presented in Chapter 3. The section also provide some basic explanation

of the bit-serial computation used in the design. This will provide a simple, low cost

yet efficient way of classifying a seizure event. Section 4.3 discusses the training and

testing of the neural network for epilepsy detection. Section 4.4 examines and compares

various software simulation and the hardware results. Finally, Section 4.5 draws some

concluding remarks based on the discussion from the work completed in this research.

A vector processor approach was chosen from the various state of the art approaches

of building a complex neural network, as it is the most suited way of performing the

required computations which involves massive matrices.

4.1 A Neural Network Model for Hardware

The literature discussed in Chapter 2 illustrates the existing state of the art technology

which is used as a reference during the development of the novel neural processor pro-

posed in this thesis. The proposed approach recognises that there is a trade off for using

a bit-serial architecture instead of a bit parallel approach. The parallel architecture

will complete the neural operation within a few clock cycles. However, the size of the

75
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hardware being designed will be much larger than the latter design which is small in

size but needs much more time to complete the same operation. In the research spec-

ifications, size of the hardware is paramount as it is needed to be a low cost wearable

device. Therefore, a compromise was made to use bit-serial architecture for the main

data processing unit (DPU) but the other components of the system will use a parallel

architecture.

Figure 4.2 represents the hardware implementation of the 4-3-2 network topology shown

in Figure 4.1. The input layer of the 4-3-2 topology consist of 4 input neurons (X0, X1,

X2, X3), 3 hidden layer neurons (H0, H1, H2) and 2 output neurons (U0 and U1). The

weights, w is presented along each arrow leading to the hidden layer. The hidden layer

weights (wh) are the arrows leading from the hidden layer to the output layer. This is

one of the many examples that can be configured using the proposed approach.
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** wx and wH are weights

Figure 4.1: 4-3-2 Network Topology

Equation 3.1 and Figure 3.5 illustrate the neural operation of a 4-3-2 network topology

when implemented in hardware (Figure 4.2). In Figure 4.2, the range of x0 to x3 indicate

the inputs, w indicates the weights with u0 and u1 as separate outputs. The u outputs

will later be passed through an activation function to obtain the output y in equation

3.2.
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Figure 4.2: 4-3-2 Network Topology in hardware

4.2 Proposed Approach: Novel Hardware Neural Network

Implementation Design

In this section, a novel approach was proposed as an alternative method when imple-

menting an artificial neural network (Figure 4.2). The DPU design proposed in Chapter

3 is efficient and has a very low hardware cost. With the historic bit-serial architecture,

a biological neuron can be accurately modelled. This provides the basis for the bit-serial

neural network (BSNN) developed in this thesis. The learning process of the proposed

design is completed off-line by using a simulation software. The basic structure of this

processor consists of a control path (Figure 4.3) and a data path explained in Chapter

3. The control path only requires two different FSM in order to keep the design simple

and efficient. The FSM in the control path are connected with a simple nreset signal.

4.2.1 Central Control FSM

In order to complete the wearable device, a simple algorithm is shown in the form of

a simple FSM diagram (Figure 4.4) without the need of a complex MIPs design. The
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4.2.1

3.2.2 3.2.2

3.2.1)3.2.1)

Figure 4.3: Control Path for Vector Processor.

Mreset signal received externally will reset the whole network to default. The GO signal

will begin the neural operation.

At the start of the algorithm, there will be a READY state with a high nresetH and

nresetO. The network will proceed with the calculations in the MULH state. In order

for the hidden layer to operate, nresetH and nresetO will need to have opposing signals

to prevent the output layer from performing any operation until the hidden layer has

completed the calculations. When the layer has finished the calculations, a DONE

signal is sent from the layer FSM to the central control FSM to proceed to the next

layer.

When the DONEH is received by the FSM, it proceeds to the MULO state starting the

operation on the output layer. The end of the algorithm is indicated when a DONEO is

received by the central control FSM. With the power analyser tool provided in Quartus

II Altera software, this component is estimated to use 14.93 mW of power.

4.2.2 BSNN Data Path

The full data path of the proposed BSNN is based on the proposed neural DPU which

is fully explained in Chapter 3. The DPUs are used as network nodes for the BSNN.

The DPU are connected as shown in Figure 4.2. The DPU design was presented in

Chapter 3 and illustrated clearly in Figure 3.1. As mentioned in Chapter 3, each layer

is controlled using a simple FSM. Please refer to Figure 3.5 in Chapter 3 for clarity. In
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Figure 4.4: Flow chart for the central control FSM

order to fully complete the neural operation, several counters were used and this was

explained in Chapter 3 Section 3.2.1.
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4.3 Case Study: Training and Testing of BSNN For Epilepsy

Detection

As described in Chapter 2, there are different types of classifier that can be used for

detecting epilepsy including Naive Bayes classifier, decision tree or the k-NN classifier.

There are certain advantages when using these different classifiers. However, the compu-

tational power needed for these classifiers is higher when dealing with massive datasets.

An ANN solution would be more suitable when a hardware implementation is needed.

Furthermore, a neural network hardware solution can perform better when dealing with

multiple EEG waveforms.

Many BSNN configurations were designed and tested to confirm its full functionality.

These designs could include multiple numbers of hidden neurons, as well as multiple

inputs. Figure 4.5 show two different series of an EEG input plot clearly demonstrating

the different amplitudes of both seizure free and seizure waveforms. The higher ampli-

tude waveform represents a seizure event, and the free seizure event has a peak to peak

amplitude of 40 uV. Each wave is plotted with 100 data points. In order to minimize

the possibility of any overfitting issues, bias was introduced into the network and the

number of tests during training were increased.

Epilepsy EEG

Normal EEG

Figure 4.5: EEG data window

4.3.1 Epileptic seizure detection in EEG Waveform

In order to analyse the accuracy of the proposed approach, variable number of bit

architecture were tested (6 bit, 12 bit). The input EEG digitized signals were taken
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from an on-line open source EEG database [132]. The proposed network topology (n-1-

1) is trained and simulated with the MATLAB software. The weights are then extracted

and used in the synthesised hardware design. With a low bit resolution, the accuracy of

input waveforms is limited and further tests were made to assess the suitability of the

low resolution approach. The first seizure waveform experiment involves a n-1-1 neural

network ( Figure 4.6) where n can be any number of input neurons. The next part of

the research explores the potential of this proposed approach in various massive parallel

neural networks.

DPU0

DPUn

DPUout
 output

DPUh0
wh0

Figure 4.6: Simple Neural Network Testing (e.g. n-1-1)

Multiple numbers of inputs are used as the independent variable (10,20,30,40,50). Each

independent variable are tested using 50 trials. The baseline of the output varies with

the number of inputs. Any output above the threshold is a seizure event, and any output

below the threshold is a seizure free event.

4.3.2 Network Architecture Development

With the simulation software, different network designs can be trained and tested eas-

ily. MATLAB provides the neural network toolbox that enable the hardware neural

networks to be trained more effectively. Figure 4.7 presents a training tool with differ-

ent training functions. The functions include checking the network performance which

assess the mean square error (mse) of the simulated network. Different training func-

tions can be used to train the neural network in the MATLAB software, such as the

Levenberg-Marquardt backpropagation (trainlm), BFGS Quasi-Newton (trainbfg), Re-

silient Backpropagation (trainrb), Scaled Conjugate Gradient (trainscg) and Conjugate

Gradient with Powell/Beale Restarts (traincgb). It has been stated that the Levenberg-

Marquardt backpropagation function is the fastest training function for most applica-

tions. Furthermore, the toolbox gives a clear view of the network design. With the
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default setting, the training uses 70% of the datasets being tested; 15% are used for

validation and the last 15% for testing the network.

Figure 4.7: The training of the neural network provided in MATLAB

The Levenberg-Marquardt backpropagation training function (LM function) is accurate

for linear approximate problems. The LM training function is at least four times faster

than the BFG training algorithm. This was tested using a simple sine wave problem
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provided by open source MATLAB documentation. When dealing with less than hun-

dred weights and result approximation needs to be very accurate, the LM function was

proven to be the best choice. Thus, it is suitable for the research when implementing

the bit-serial approach effectively. In conclusion, the choice of training algorithms will

depend on the specific application.

BFG and CGB can perform better with pattern recognition problems. These problems

include the recognition of huge datasets patterns. When the weights and EEG data

reach the limit of the capability of the LM training, other types of training functions

should be considered. It would be advantageous to have a comparison of the different

types of training functions when testing the EEG datasets.

The trainlm function has been proven to be the most successful function in terms of per-

formance by conducting the training process on MATLAB using different training func-

tions. The performance for these networks is recorded: 0.0801 for BFGS Quasi-Newton,

0.1654 for Resilient Backpropagation and 0.0059 for Levenberg-Marquardt algorithm.

Figures (4.8, 4.9,4.10) shows clearly that the Levenberg-Marquardt algorithm takes the

least amount of time to obtain the best performance (6 epochs / iterations). It has also

the least mean square error (mse) giving the best performance for the network.

4.3.3 Neural Network Design Validation and Testing

The research input data was obtained from an on-line open source [133]. The online

dataset were obtained from different scenarios during an EEG scan. The tests used a

combination of SET C (100 EEG waveforms with seizure free instances) and SET E (100

EEG waveforms during seizures). In the form of a controlled experiment, the datasets

are taken from the brain (epileptogenic zone) of the same patient.

4.3.3.1 Network Validation

Using MATLAB results as a comparison, Table 4.1, 4.2, 4.3, 4.4 illustrates the correct

recognition of the software implementation and the bit-serial neural network hardware.

The EEG waveform used in these tests are the same dataset used in the training process

as a method of validation. These tests validates the feasibility the designs which were

also tested using various bit precision. Two different threshold approaches were used

here: mean and median. By increasing the number of tests in the training process, the

accuracy of the network increased accordingly. Each trial is a single EEG waveform

which contains a certain number of inputs. The figures below (Figure 4.11, 4.12, 4.13,

4.14 and 4.15) illustrate the neural output of the network for each trial in the form of

spikes. Any neural output point (circle), above the border (red line in the Figure 4.11,

4.12, 4.13, 4.14, 4.15) is considered as a seizure event; below the border are the seizure

free events.



84 Chapter 4 Bit-serial Based Hardware Neural Network for Epilepsy Detection

Figure 4.8: (a) training process in MATLAB (Levenberg-Marquardt algorithm)

Figure 4.9: (b) training process in MATLAB (BFGS Quasi-Newton algorithm)

Figure 4.10: (c) training process in MATLAB (Resilient Backpropagation algo-
rithm)
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No. of inputs Correct Recognition (Software / Hardware)

10 49 / 45
20 48 / 47
30 47 / 48
40 49 / 50
50 46 / 50

Table 4.1: Correct Recognition of different inputs for Bit-Serial Vector Processor
Using Mean (n-1-1 network,12 bit precision))

No. of inputs Correct Responses Out of 50 Trials (Software / Hardware)

10 49 / 45
20 48 / 48
30 47 / 48
40 49 / 50
50 46 / 50

Table 4.2: Correct Recognition of different inputs for Bit-Serial Vector Processor
Using Median (n-1-1 network, 12 bit precision)

No. of inputs Correct Responses Out of 50 Trials (Software / Hardware)

10 49 / 19
20 48 / 20
30 47 / 33
40 49 / 28
50 46 / 34

Table 4.3: Correct Recognition of different inputs for Bit-Serial Vector Processor
Using Mean(n-1-1 network, 6 bit precision)

No. of inputs Correct Responses Out of 50 Trials (Software / Hardware)

10 49 / 18
20 48 / 24
30 47 / 32
40 49 / 32
50 46 / 33

Table 4.4: Correct Recognition of different inputs for Bit-Serial Vector Processor
Using Median(n-1-1 network, 6 bit precision)

Figure 4.11 presents the tests of a 10-1-1 network; Figure 4.12 a 20-1-1 network; Figure

4.13 a 30-1-1 network; Figure 4.14 a 40-1-1 network and Figure 4.15 a 50-1-1 network.

The networks were tested with an increase of inputs but the same number of neurons in

the hidden layer. These validation experiments attempt to increase the accuracy before

conducting further tests using additional data.

From the results, the 40-1-1 network design is one of the basis of our optimal BSNN
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Figure 4.11: 10 Input EEG Neural Network Test ((a) 12 bit representation, (b)
6 bit representation)
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(a
)

(b
)

Figure 4.12: 20 Input EEG Neural Network Test ((a) 12 bit representation, (b)
6 bit representation)
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(a
)

(b
)

Figure 4.13: 30 Input EEG Neural Network Test ((a) 12 bit representation, (b)
6 bit representation)
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(a
)

(b
)

Figure 4.14: 40 Input EEG Neural Network Test ((a) 12 bit representation, (b)
6 bit representation)
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(a
)

(b
)

Figure 4.15: 50 Input EEG Neural Network Test ((a) 12 bit representation, (b)
6 bit representation)
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design. In this validation process, the tests for epilepsy detection yielded an average

validation accuracy of 94% when using a 12 bit architecture. A lower bit resolution (6

bit) have also been tested which yielded a validation accuracy of 54%. However, the

time consumed for each operation is reduced by half. Thus, the 12 bit architecture will

be used in the testing stage with various configurations to find the optimal network for

epilepsy detection.

With the correct recognition results, it is possible to evaluate the potential of the network

with several different evaluation metrics such as sensitivity, specificity and precision/-

positive predictive value (PPV). The equations and definition for these metrics are listed

below.

1. Sensitivity:

TPR = TP/P = TP/(TP + FN) (4.1)

2. Specificity

SPC = TN/N = TN/(TN + FP ) (4.2)

3. Precision/PPV

PPV = TP/(TP + FP ) (4.3)

4. Negative Predictive Value/ NPV

NPV = TN/(TN + FN) (4.4)

Where:

1. P = Positive Sample: Epileptic Patient EEG

2. N = Negative Sample: Normal Patient EEG

3. TP = True Positive: Correctly Identified Epileptic EEG

4. TN = True Negative: Correctly Identified Normal EEG

5. FP = False Positive: Incorrectly Identified Epileptic EEG

6. FN = False Negative: Incorrectly Identified Normal EEG

Table 4.5 demonstrates the suitability of using a single neuron to detect epilepsy. Using a

40 input design, it is possible to achieve the maximum accuracy of detecting the epileptic

spikes. Table 4.6 illustrates the possibility of using a single neuron in epilepsy detection.

The detailed comparison between the two architecture is illustrated clearly in Figure

4.16.
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No. of Inputs Sensitivity Specificity PPV NPV

10 95.4% 85.7% 84% 96%
20 95.9% 94.1% 94% 96%
30 95.8% 92.3% 92% 96%
40 100% 100% 100% 100%
50 95.8% 92.3% 92% 96%

Table 4.5: Evaluation of different number input for single neuron design with
12 bit architecture

No. of Inputs Sensitivity Specificity PPV NPV

10 33.3% 42.8% 20% 50%
20 33.9% 57.2% 41.5% 56%
30 60% 64% 62.5% 62%
40 53.3% 59% 62.5% 50%
50 66.7% 73.9% 75% 65.4%

Table 4.6: Evaluation of different number input for single neuron design with 6
bit architecture

4.3.3.2 Network Testing

The hardware design was tested using other EEG waveforms. It was found that the

n-1-1 network configuration has a very bad recognition rate when compared with the

simulation results obtained from MATLAB. A detailed comparison between the valida-

tion and testing stage of the design process is illustrated in Figure 4.17. The parameters

used in the comparison are the evaluation metrics described above.

With the result analysis, it can be concluded that a a multi input single neuron is not

sufficient to detect epilepsy accurately. Therefore, different configurations of network

has been tested. The network configuration used is a 40-n-1 network with n number of

hidden neurons. The architecture used in these network has a 12 bit precision to obtain

better accuracy. Table 4.7 presents the response of the 40-n-1 network using MATLAB

results as a form of comparison.

No. of hidden neurons Correct Responses Out of 50 Trials (Software / Hardware)

1 49 / 5
10 49 / 31
20 48 / 26
30 47 / 29
40 49 / 26

Table 4.7: Correct Recognition of different inputs for Bit-Serial Vector Processor
Using Mean(40-n-1 network, 12 bit precision)
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Figure 4.16: Various Evaluation Metrics
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Figure 4.17: Various Evaluation Metrics
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(a
)

(b
)

Figure 4.18: (a) 40-10-1 network configuration (b) 40-20-1 network configuration

The output results for these different configurations is included here in Figure 4.18, 4.19.

The evaluation metrics for these configuration are analysed in Table 4.8 and illustrated

with a column chart (Figure 4.20).

In summary, the network configuration of 40-30-1 provides some promising results at

detecting epileptic waveforms. Further tests were conducted using a larger number

of inputs and additional data in the next chapter. This allows an optimal network

configuration for epilepsy detection to be obtained.
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Figure 4.19: (a) 40-30-1 network configuration (b) 40-40-1 network configuration

No. of hidden neurons Sensitivity Specificity PPV NPV

10 63.6% 60.7% 56% 68%
20 51.7% 52.3% 60% 44%
30 55.5% 56.5% 60% 52%
40 50% 50% 48% 52%

Table 4.8: Evaluation of different number of hidden neuron network design (40
inputs, 12 bit precision)
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Figure 4.20: Evaluation Metrics

4.4 Discussion and Comparison

As mentioned in Chapter 3, there are two main techniques when implementing a neural

processor, i.e. analog or digital. As the analog method is less accurate and inflexible,

the digital approach has been used to develop the DPU. The digital vector processor

approach is used to develop the needed ANN as it is simple and have the required

accuracy to tackle epilepsy detection.

4.4.1 Evaluation of MATLAB Results

The software simulation of the different neural networks are proven to be more accurate

with an error margin of less than 5%. Thus, the MATLAB is suitable to be used for the

training process.

The training of the proposed neural network conducted using MATLAB acts as a bench-

mark for the hardware testing. Three different training algorithms have been used to

train the data and it was found that the Levenberg-Marquardt backpropagation function

is the best training algorithm to be used for this application with a mse of 0.081. As

part of the training process, bias values and additional training data have been used to

minimize the chances of overfitting.
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With the training data, the accuracy of the network using MATLAB is 100% and can

still maintain a minimum correct recognition rate of 90% when tested with additional

data. This shows that the proposed neural network is viable for epilepsy detection.

4.4.2 Evaluation and discussion of hardware results

The synthesised hardware can be implemented on a Altera Cyclone FPGA V board

with the extracted weights from the simulation software. The inputs and weights are

first truncated before the experiments. The research also presents some comparison of

the hardware cost when different number of inputs are used for a single neuron. These

comparisons were made using different bit precision, i.e. 6, 8, 12, 16 bits as shown in

Table 4.9, 4.10, 4.11, 4.12. The FPGAs used for comparison are Cyclone IV, Cyclone V

and Stratix IV. From the results in the tables, it is concluded that Cyclone V is still the

best option when implementing the BSNN . Figure 4.21 illustrates how the cost increases

when different number of inputs are used when implemented on an Altera Cyclone FPGA

V board. The figure clearly illustrates the results of different bit precision.

Number of Inputs Logic Element Cost
Cyclone IV Cyclone V Stratix IV

10 113 96 97
20 116 103 103
30 131 103 96
40 138 107 110
80 148 107 106
100 148 109 106

Table 4.9: Logic elements needed for a single neuron with different number of
inputs (6 bit precision)

Number of Inputs Logic Element Cost
Cyclone IV Cyclone V Stratix IV

10 139 104 106
20 146 105 101
30 159 110 106
40 159 113 113
80 188 120 119
100 197 128 128

Table 4.10: Logic elements needed for a single neuron with different number of
inputs (8 bit precision)

Next, comparison is also made for BSNN with various number of hidden neurons. It

should be noted that the comparisons do not include the feature extractor that is pro-

posed in the next chapter. Table 4.13, 4.14, 4.15, 4.16 presents the cost of a 40-n-1

network where n is the number of hidden neurons used. This comparison is also made
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Number of Inputs Logic Element Cost
Cyclone IV Cyclone V Stratix IV

10 188 133 133
20 201 140 140
30 206 144 144
40 219 155 156
80 253 187 180
100 270 195 194

Table 4.11: Logic elements needed for a single neuron with different number of
inputs (12 bit precision)

Number of Inputs Logic Element Cost
Cyclone IV Cyclone V Stratix IV

10 231 157 156
20 243 168 168
30 250 168 168
40 260 182 188
80 295 215 216
100 315 206 226

Table 4.12: Logic elements needed for a single neuron with different number of
inputs (16 bit precision)

Figure 4.21: n-1-1 Network Cost Comparison

using different bit precision. Figure 4.22 illustrates the different hardware cost needed

when implementing the network on a Cyclone V FPGA. The figure clearly shows the

increase in LE cost when different bit precision is used. 40 inputs were chosen for

this comparison as this network shows some promising results when experiments were

conducted. Different features are used as network inputs to find the optimal network

configuration in Chapter 5.
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Bit Precision Logic Element Cost
Cyclone IV Cyclone V Stratix IV

6 803 381 363
8 1172 512 512
12 1378 657 674
16 1598 811 796

Table 4.13: Logic elements needed for a 40-10-1 network with different bit
architecture

Bit Precision Logic Element Cost
Cyclone IV Cyclone V Stratix IV

6 1323 536 536
8 1885 748 748
12 2577 1104 1126
16 2866 1134 1164

Table 4.14: Logic elements needed for a 40-20-1 network with different bit
architecture

Bit Precision Logic Element Cost
Cyclone IV Cyclone V Stratix IV

6 1835 709 712
8 2681 911 1016
12 3527 1383 1385
16 4297 1678 1679

Table 4.15: Logic elements needed for a 40-30-1 network with different bit
architecture

Bit Precision Logic Element Cost
Cyclone IV Cyclone V Stratix IV

6 2364 847 853
8 3417 1147 1147
12 5657 2763 2786
16 6541 3240 3084

Table 4.16: Logic elements needed for a 40-40-1 network with different bit
architecture

Some evaluation have been added to this subsection. It is clearly interesting to see how

bit-precision affects the hardware cost across different network configuration and it is

apparent there is an exponential increase in hardware cost when hidden neurons were

increased from 30 to 40. This caused an increase of 41% in logic elements (LE). It is also

quite clear when analysing Table 4.13 to 4.16, Cyclone IV requires more logic elements

to synthesise the same network compared to Cyclone V and Stratix IV indicating that
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Figure 4.22: 40-n-1 Network Cost Comparison

our application still requires an up to date development chip such as one which is on

par with Cyclone V.

4.5 Conclusive Remarks

In conclusion, different methods of implementing a neural processor were discussed as

part of the introduction to the research solution. After much consideration, the vector

approach proved to be the most suitable approach in providing an alternative approach

in the ongoing research for epilepsy detection. The full design of a vector processor is

discussed in detail with a novel, efficient, yet low cost data processing unit (DPU) as

the basis of the neural processor. This vector processor will form a single layer of the

neural network. A simple central control FSM provides the necessary states to begin

the neural operation. In this research with a 12 bit architecture, the DPU requires 39

logic elements; a state machine and the control path needs 48 logic elements.

The research proceeded with the testing of EEG waveforms using the vector processor

network design to test the full functionality of the network in the field of medicine.

The peak detection neural network design which is a fairly complex neural network is

displayed in Figure 4.1 which can be used as an alternative approach in the ongoing

research of developing an epileptic detection classification device.

In summary, this proposed compact vector processor design is a novel methodology based

on many basic architecture and ideas to allow the construction of complex hardware

ANNs for the use in the application of epilepsy detection. The ideal functionality of the
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neural network is to be used as an ASIC chip for a portable healthcare device that can

be made available easily for epileptic patients to use in daily life, which can identify and

predict the occurrences of any impending major seizures.



Chapter 5

EEG Feature Analysis for

Complete Epilepsy Prediction

System

This chapter incorporates the features extracted from the EEG waveform, the slope

and mean energy value. These features are used as inputs to the BSNN. In order to

accomplish this, different dedicated feature extraction hardware have been designed

and tested on Cyclone V FPGAs. Figure 5.1 illustrates the proposed system and their

connections. The full BSNN design is explained in detail in Chapter 4 and the proposed

DPU in Chapter 3. Different BSNN configurations have been used to find the optimal

network configuration for this application. Figure 5.1 also show that each hidden layer

can consist of n number of DPUs and the end result (u) is taken from the DPU in the

output layer.

The chapter is organized as follows: Section 5.1 will first explore the optimal allocation

technique for the EEG signal that is needed for the experiments conducted in this

chapter; Section 5.1.1 experiments with various network configurations proposed by

related work; Section 5.2 illustrates the two proposed feature extractors mentioned above

and experiments conducted using these hardware; Section 5.3 presents the complete

system with the results obtained from multiple experiments; Section 5.4 compares our

complete system and results with other related work; Section 5.5 concludes this chapter.

5.1 Optimal Allocation Sampling of EEG Signals

This section presents the methodology used to obtain an optimized hardware-based

BSNN for epilepsy diagnosis. It is based on the proposed DPU design in Chapter 3.

Various techniques have been reviewed in order to optimize the hardware for epilepsy

103
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Figure 5.1: Proposed System Design

detection such as optimal allocation sampling techniques (OAT) [134]. Two feature

extraction hardware are proposed in this chapter which involves the slope of an EEG

waveform and the mean energy value which will be fed as inputs into the BSNN.

The proposed BSNN hardware can be optimized by using the feature extraction. With

OAT [134], the extracted features are then used as inputs to the BSNN. These two

equations (equation 5.1 5.2) are used during the sample allocation for each segment.

These equations can be implemented using a simple MATLAB script.

The EEG dataset used in this research is taken from an on-line open source [36], the

Epilepsy Center of the University of Bonn, Germany [60]. The EEG waveforms have

4097 data points for each and every channel (100 channels). Therefore, N in this study

is the number of data points on a single channel.

Equation 5.1 is used to calculate no, the desired sample size using: z, the standard

normal variate of a desired confidence level (commonly 95% or 99%); p, an estimated

proportion of an attribute (seizure or free seizure) present in the population, N ; d, the

margin of error.

The parameters used:

• z = 2.58 (value used to achieve the desired confidence level of 99% [134])
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• p = 0.5 (Chosen as characteristic remain unknown in order to produce the maxi-

mum sample size)

• d = 0.01 (error margin for the desired 99% confidence level)

no =
z2 ∗ p ∗ (1− p)

d2
(5.1)

With the parameters used, no obtained is 16641. n which is the sample size needed in

each class (free seizure or seizure) can then be calculated using equation 5.2 with N , the

total population of a single EEG waveform (4097 data points) [134].

n =
no

1 + (no−1)
N

(5.2)

The initial population for each EEG window, Ni (segment 1,2,3) is 1024 samples and

1025 for segment 4 respectively. The numbers are found by dividing N by 4. Table 5.1

provides the determined number of samples using OAT,bi for each segment in the EEG

dataset. As the EEG dataset used in this thesis is the same as in Kabir et al. work

[134], the number for each segment have been taken from their paper to allow consistent

comparison with the thesis design.

Classes n1 n2 n3 n4 Total n per class

Free Seizure 839 841 780 828 3288
Seizure 833 844 815 796 3288

Table 5.1: Sample Number Determined using OAT for Each Segment

The sample sizes in each class are different because of the variability of the samples

in each segment. The size of each segment depends on the variability, large variability

will lead to a larger EEG segment and vice versa. The sample data are extracted from

the dataset used in Chapter 4. In Chapter 4, the testing focused on detecting seizure

waveforms on a single channel. This chapter attempts to distinguish the waveforms on

all 100 channels. This will produce more reliable results.

Figure 5.2 illustrates the work flow of the design decision made in optimizing the design

for this thesis.

EEG waveform from online 
open source

Segmented 
waveform

Optimum 
Allocation of 

Samples
Feature Extraction Classification

Figure 5.2: Work Flow of Epilepsy Detection with Optimum Allocation



106 Chapter 5 EEG Feature Analysis for Complete Epilepsy Prediction System

5.1.1 Optimal BSNN Configuration for Epilepsy Detection

In order to fully develop a small and energy saving hardware device for epilepsy detection,

the BSNN design proposed in this research has been optimized further following the

experiments conducted in Chapter 4. This section explore various methods in order to

optimize the hardware network to provide a decent level of correct recognition when

distinguishing both free seizure and seizure waveforms.

There are certain rules of thumb for ANN optimization. Input layers mainly consist of n

number of neurons which depends on the input data. The number of inputs are optimized

using the optimal sample allocation technique discussed in the previous section. Output

layer neurons will depend on the number of classes that needs to be classified. The

number of hidden neurons usually lies between the number of input and output neurons.

However, a n-1-1 neural network would not perform well in detecting a epileptic waveform

as shown in Chapter 4.

Next, we explore various network configurations to achieve the best correct recognition

rate possible. These different configurations include high amount of hidden neurons and

also different number of hidden layers. The experiment begins with a 11-7-1 network.

The whole EEG waveform obtained from the benchmark dataset is segmented into 4

independent segments. Each segment is taken with a period of 5.9 s from a whole

waveform of 23.6 s. A comparison of the accuracy and other metrics will be included in

a later section.

5.1.2 Hardware Network Validation and Testing

As the research’s main focus is to distinguish free seizure waveform from seizure wave-

forms, the healthy patient brain waveforms from the database used are not included in

the design testing. This design is tested and compared with different software imple-

mentations for epilepsy detection [135].

Using the training dataset, the 11-7-1 hardware neural network with a 12 bit architecture

has a sensitivity, specificity and sensitivity of 60%. It could recognise 30 out of 50

waveforms when training the network in MATLAB. In order to perform this controlled

experiment, the same inputs will be used that consist of the same feature vectors.

The feature vector values consist of the same metrics as those provided in a related work.

These values contain mean (XMean), median (XMedian), mode (XMode), standard devi-

ation (XStdDev), first quartile (XQ1), third quartile (XQ3), inter-quartile range (XIQR),

skewness (Xskew), kurtosis (Xkurtosis), minimum (XMin), and maximum (XMax)[135].

Ten other network configurations have been designed and tested. These configurations

were chosen using MATLAB in order of decreasing mean square error (mse). Table
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5.2 presents the configurations and their corresponding mean square error. When the

hardware results were obtained, a compromise between the size and performance will be

made and the design used as the ASIC model in the next chapter.

From Table 5.2, it can be seen that a single hidden layer with 100 neurons has a similar

performance to that of a double layer network (10 neurons in each layer). Furthermore,

it is apparent that the results have a much lower disparity when identifying waveforms

from different sets of data.

Network Configuration Correct Recognition Correct Recognition
against training data against additional tests

11-25-1 52% 60%
11-40-1 56% 50%
11-65-1 60% 30%
11-100-1 66% 55%

11-10-10-1 62% 60%
11-20-20-1 56% 80%
11-30-30-1 58% 60&
11-40-40-1 64% 45%

11-10-10-10-1 54% 50%
11-5-5-5-1 56% 30%

Table 5.2: Correct Recognition of different hardware ANN configuration

Figure 5.3: Performance (MSE) of different ANN configuration

By analysing these results, it can be seen that this simple feature vector may prove

lacking in providing a very accurate classification. Thus, it is decided to proceed with a
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different input vector consisting of multiple slope values of the EEG waveform. These

values can be preprocessed to form a feature vector.

5.2 Proposed Feature Extraction Hardware

In order to complete the wearable seizure detection system, it is imperative to develop

a simple feature extraction hardware as a component to provide inputs to the BSNN

designed in Chapter 4. The two different feature extraction hardware consist of a single

ALU with two synchronous RAM and a simple controller.

5.2.1 Slope calculator

The data path of the feature extractor illustrated in Figure 5.4 consists of a synchronous

RAM, a simple subtractor implemented as an ALU and registers. The data path is

controlled by a simple FSM module. The hardware cost for the ALU requires only 13

ALMs when synthesised on a Altera Cyclone V chip. This hardware will serve as a

method of extracting the slope, S of the EEG waveform from two adjacent points (x1

and x0) on the EEG sample. It is calculated using this simple equation, S = x1 - x0.

Each S value is stored in the registers and used as inputs for the BSNN. As part of the

research, it is possible to build the extraction hardware in two different forms. The first

method is as described above with the use of multiple registers. The second method is

possible to build the same number of subtractor modules as the number of input neurons

for the BSNN. However, the latter method would require many more logic elements and

time to complete the operation which is not suitable for the specification of a low cost

and efficient wearable epilepsy detection system.

Figure 5.4 provides a simple understanding of the connection between the different mod-

ules. The feature extraction hardware can be controlled easily with a simple state ma-

chine. With the inclusion of the feature extraction hardware, a new network configura-

tion of 100 inputs (100-40-40) is tested and synthesised. This new network configuration

has a 75% correct recognition rate when tested against training and additional data.

5.2.2 EEG waveform slope Used as Feature Vector

In the previous subsection, a feature vector consisting of various statistic metrics is

used. The maximum accuracy was 80% when tested using additional data. However,

the disparity when testing the same network configuration against the training data

should be noted. Thus, 11-20-20-1 network shows some promising results.

This subsection presents results of experiments that have been conducted to obtain

better accuracy by using the slope of the EEG waveform using multiple slope values as
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Figure 5.4: Feature Extraction Hardware (Slope Feature)

a feature vector. The tested network configurations are 11-10-10-1, 11-20-20-1, 11-30-

30-1 and 11-40-40-1. The results are evaluated using the same statistic metrics used

in the above section. The recognition rate for each configuration are included in Table

5.3. The metrics are presented in Table 5.4 and Table 5.5. With 11 inputs, the best

correct recognition rate that was obtained was the 11-40-40-1 configuration with 70%

and precision rate of 100% when tested using training data. When tested with additional

data, the network configuration have an recognition rate of 61% and a precision rate of

80%.

Network Configuration Correct Recognition Correct Recognition
against training data against additional tests

11-10-10-1 60% 70%
11-20-20-1 54% 60%
11-30-30-1 65% 40%
11-40-40-1 70% 61%

Table 5.3: Correct Recognition of different hardware ANN configuration using
EEG waveform slope
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Network Configuration TPR TNR PPV

11-10-10-1 57% 100% 80%
11-20-20-1 52% 44% 42%
11-30-30-1 66% 64% 58%
11-40-40-1 63% 100% 100%

Table 5.4: Statistic for Network Configuration Evaluation (Against Training
Data)

Network Configuration TPR TNR PPV

11-10-10-1 75% 33% 43%
11-20-20-1 50% 50% 40%
11-30-30-1 25% 44% 10%
11-40-40-1 53% 33% 80%

Table 5.5: Statistic for Network Configuration Evaluation (Against Additional
Data)

5.2.3 Experiments with Mean Energy

In addition to the slope calculator presented above, another feature was also extracted

from the EEG input signals which is the energy of a designated EEG signal window.

This feature would be able to perform better when dealing with larger sample datasets,

i.e. datasets that involve over 700 data points. The equation used is included here which

is adapted from the equation presented in a recent work [136].

MeanEnergy =
1

w
∗

I∑
i=1

a(i)2 (5.3)

The mean energy is calculated once the summation of energy from each window is

obtained. a is the amplitude values of the EEG signal spikes. w then represents the

number of a values being used. A new system which uses the feature extraction hardware

component was used on FPGAs and achieved a 62% accuracy in 50 different EEG

samples. 25 of the samples are free seizure and 25 are EEG seizure waveforms. Figure

5.5 below presents the output obtained from the experiment. The waveforms that are

not classified correctly are clearly circled in red in the figures. The low accuracy could be

attributed to the way of feature extraction. Raw data from the EEG dataset was used

to obtain the mean energy feature but the work [136] treated the data before feature

extraction.
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Figure 5.5: Mean Energy System Experiment Output
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5.3 Proposed System: Feature Extraction + BSNN

As part of the plan to create a simple and wearable epilepsy detection system, this

research integrated the feature extraction hardware with the input to the BSNN. The

feature extraction hardware will use raw EEG input data points to extract the desired

features, in this case the slopes between two adjacent points. The network configuration

with a double hidden layer has been tested with a different number of inputs yielding

different results.

The first configuration consist of 11 inputs with 40 hidden neurons in each layer. The

next configuration consists of 50 inputs with the same number of hidden neurons and

the last configuration has 100 inputs. Table 5.6 below presents the correct recognition

rate and estimated power consumption of these designs.

Network Correct Recognition Correct Recognition power consumption
Configuration (Against Training Data) (Against Other Data) (estimated (mW))

11-40-40-1 70% 61% 485.97
50-40-40-1 75% 75% 497.8
100-40-40-1 90% 90% 513.06

Table 5.6: Network Configuration with a different number of inputs

With these results, it can be seen that the 100-40-40-1 network configuration provides

the best detection possible and can be a reliable starting point for any future research.

This whole system has been tested and synthesised on an Altera FPGA board to verify

its functionality. Different multi-layer hardware neural network examples are included

here along with their costs. The network designs and costs will be compared with some

other recent state of the art design in this subsection. The designs included here are a

100-20-20-1 and a 100-40-40-1 configuration.

5.3.1 Improved System

The newly improved system includes both mean energy and slope values extracted from

the EEG signals to be used as features for the proposed network. The main network

that is tested and compared to is the 100-40-40-1 network configuration with only slope

features. The main network obtained a 88% recognition rate. With this improved

system, a 90% recognition rate can be obtained. The experiment uses 20 samples for

the additional tests. Figures 5.6, 5.7, 5.8 illustrates the output obtained when conducting

these experiments. The trials that are not correctly classified are clearly circled in red

in the figures. When 16, 12, 8 bits are used, 194us, 374us and 612us are needed to

complete a single trial respectively.
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Figure 5.6: Output of Improved System Using 8 bit Architecture

Figure 5.7: Output of Improved System Using 12 bit Architecture

Detailed comparison of the statistics obtained from the experiment output is shown

clearly in Table 5.7 below.

From the statistics obtained from the experiments, it can be seen that a 16 bit system

has the highest correct recognition rate. However, this system could be made smaller at
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Figure 5.8: Output of Improved System Using 16 bit Architecture

Bit Architecture Recognition rate TPR TNR PPV

16 90% 100% 83% 80%
12 80% 100% 60% 71%
8 40% 33% 43% 33%

Table 5.7: Improved system statistics using 100-40-40-1 network configuration

the expense of some accuracy as a 12 bit system still have a high possibility of correctly

identifying a seizure event.

5.3.2 Potential for Massively Parallel BSNN System

The proposed dedicated hardware neuron in this research has shown that it is possible

to create a complex neural network. This section attempts to explore the possibility to

of creating a massive parallel neural network using the proposed dedicated hardware.

The method of generating a massive number of neuron hardware SystemVerilog code

involves a basic python script. This will reduce the possibility of any human error when

writing the code by hand.

Python scripts were produced to generate the required hardware code for the various

designs used in the experiments of this thesis, which can remove the possibility of any
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human errors. Heavy text manipulation was used in the scripts. A loop module was

integrated into the script to allow any number of DPUs to be generated. The weights

and inputs extracted from the data files were preprocessed and included in the hardware

codes by using the scripts.

A few samples of the optimized system had been synthesised and tested on an FPGA

Cyclone V board. Furthermore, Table 5.8, 5.9, 5.10 present a comparison between

different samples of the complete system and their respective hardware cost. The cost

comparison is made using three different bit architectures, 8; 12; 16.

Network Bit Precision
Configuration 8 bits 12 bits 16 bits

100-25-25-25-1 7527 LE 10737 LE 12546 LE
100-80-1 9704 LE 12227 LE 15527 LE
200-100-1 11242 LE 20043 LE 21208 LE

Table 5.8: Hardware Cost (LE) Implemented on Cyclone IV FPGA

Network Bit Precision
Configuration 8 bits 12 bits 16 bits

100-25-25-25-1 2718 LE 4945 LE 5532 LE
100-80-1 4212 LE 5259 LE 6073 LE
200-100-1 3897 LE 6569 LE 7907 LE

Table 5.9: Hardware Cost Implemented on Cyclone V FPGA

Network Bit Precision
Configuration 8 bits 12 bits 16 bits

100-80-1 4211 LE 5463 LE 5284 LE
100-25-25-25-1 2693 LE 4387 LE 4905 LE

200-100-1 4979 LE 7658 LE 7607 LE

Table 5.10: Hardware Cost Implemented on Stratix IV FPGA

Figure 5.9, 5.10, 5.11 present a clear picture of the hardware cost difference between

each system using variable bit precision. Figure 5.10 shows that the 100-80-1 network

have the lowest hardware cost difference when implemented on three different FPGAs.

From the tables and figures above, it can be seen that the Cyclone V FPGA is more

conducive for implementing our proposed system.

5.4 Comparison with Related Work

The optimized design was first tested against the whole range of EEG waveform obtained

from an on-line open source [36] provided by the Epilepsy Center of the University of
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Figure 5.9: LE Cost of Three Different Systems Using 8 Bit Precision

Figure 5.10: LE Cost of Three Different Systems Using 12 Bit Precision

Bonn, Germany [60]. The source provide sets of EEG waveforms for both seizure free

instances and EEG waveforms during seizures taken from the brain (epileptogenic zone)

of the same patient [29]. The datasets were separated into four different segments using

the OAT methodology mentioned in the section 5.1. The results of the tests are included

here in Table 5.11 and the output values are illustrated clearly in Figures 5.12, 5.13, 5.14,

5.15. Half of the trials included in our experiments consist of free seizure samples and

the other half are seizure samples. Each trial is a single EEG window taken from the
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Figure 5.11: LE Cost of Three Different Systems Using 16 Bit Precision

EEG waveform provided by the open source mentioned above. The waveforms that are

wrongly recognized is clearly circled in red in the figures.

Figure 5.12: Segment 1 Output Using Slope Feature

EEG Segment Correct Recognition TPR TNR PPV

1 90% 83% 100% 100%
2 90% 83% 100% 100%
3 85% 82% 78% 82%
4 90% 100% 83% 100%

Table 5.11: Results Obtained when tested with different EEG Segments
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Figure 5.13: Segment 2 Output Using Slope Feature

Figure 5.14: Segment 3 Output Using Slope Feature

Both optimized hardware neural network systems are tested and compared against sev-

eral software implementations commonly used for epilepsy detection [135, 134]. When

compared with the results from another paper [134], it is possible to argue that the de-

sign proposed and developed in this thesis works better when compared with the SVM

approach mentioned in the paper. As the design will need to be a simple wearable hard-

ware design, many more input neurons are used in comparison with the design proposed

in the paper [134]. The software implementation of a epilepsy detection system used in

the paper [134] were LMT, MLR and SVM classifiers. Table 5.12 below presents a close

comparison between our design and the designs implemented in the paper [134]. From

the results, both optimized design proposed in this research fair much better than an
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Figure 5.15: Segment 4 Output Using Slope Featuret

SVM approach and has the level of competency between a MLR and a LMT classifier.

The system using a slope feature can provide a reliable accuracy with a lower hardware

cost when compared with the latter system that uses both mean energy value and slope

feature.

Classifier Overall Accuracy TPR TNR PPV

LMT 95.33% 95.3% 97.7% 95.3%
MLR 82.67% 82.7% 91.3% 82.9%
SVM 36% 36% 68% 78.1%

BSNN (S) 88.8% 87% 90.25% 95.5%
BSNN (S & E) 90% 100% 83% 80%

Table 5.12: Results Obtained when tested with different Classifiers (S = Slope
Feature, E = Mean Energy Feature)

Hardware Classifier Overall Estimated Development Chip Latency
Accuracy Power (mW) (Cost)

FPGA based co-processor [79] - - Virtex II - 8% -
SOM Neuroprocessor [10] 80% - Virtex II - 17% -

Stripes [106] 95% Varies ASIC - 122.1 mm2 Varies
BSNN (S) 88.8% 500 Cyclone V - 4% 500us

BSNN (S & E) 90% 600 Cyclone V - 4% 600us

Table 5.13: Results Obtained when tested with different Hardware Classifiers (S
= Slope Feature, E = Mean Energy Feature , Cost = in terms of total hardware
resources provided by the development chip)

There exists a possibility of unfair comparison between software and hardware techniques

such as in Table 5.12. The thesis attempts to reduce such possibility by providing more



120 Chapter 5 EEG Feature Analysis for Complete Epilepsy Prediction System

comparison between different proposed epilepsy detection hardware system as listed in

Table 5.13 below. This table presents different hardware classifier for epilepsy detection

as proposed in different literature. The common metrics used in this comparison mainly

includes overall accuracy, power, LE cost and latency. From the table, it can be seen that

our design (BSNN) is smaller and slightly more accurate then the SOM neuroprocessor.

However, the speed and power could not be compared in this case as the values were

not reported in the literature. Next, we can compare the proposed system against an

FPGA based co-processor which consumes 8% of the total hardware resource provided

by a Virtex II FPGA development chip. Our design is smaller in this context yet we

could not compare with other parameters.

Furthermore, we have compared our design with a bit-serial neural network design

(Stripes) [106]. It should be stressed that Stripes has been implemented on an ASIC

chip. The thesis design is still in the stage of prototyping using an FPGA. Our accuracy

is slightly lower than that of Stripes. However, the author is confident with further op-

timization the BSNN design will surpass the Stripes design in the context of power and

latency. It can also be justified that Stripes was created as an accelerator and extension

to DaDianNao which differs from the thesis BSNN which was designed specifically for

epilepsy detection.

It can also be seen that both of BSNN proposed differs only in terms of overall accuracy.

5.5 Conclusive Remarks

In conclusion, this chapter reviewed different methods used to optimize the hardware

neural network in order to develop a low cost and efficient ASIC prototype in the near

future. Optimum allocation of samples would provide a non-bias array of samples.

Different type of inputs have been used as a comparison (i.e. feature vector [135], slope

feature vector and mean energy value). The statistic of these three systems are included

in Table 5.14. Furthermore, there is a 2% increase in performance for the improved

system (Combination of EEG slope and Mean Energy Feature); yet the 12-bit network

using only EEG slope features can still provide a reliable performance when predicting

seizure events.

System Recognition rate TPR TNR PPV

EEG slope system 88% 87% 90% 95%
Improved system 90% 100% 83% 80%

Mean energy system 62% 59% 67% 76%

Table 5.14: Comparison between three different proposed systems

There are some scientific merits to this proposed system that will be discussed here.

As a proof of concept, the research team have conceived a viable low energy and low
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hardware cost epilepsy detection system in this thesis. Being a low energy and low

hardware cost system, it is of great interest to health personnels as it can be integrated

into complex health monitoring environment such as AAL and smart homes. Next, it

is crucial for the reader to understand the significance of the algorithm chosen by the

research team which is a simple shift and add algorithm. There is also the use of a

simple threshold activation function to determine the existence of a seizure event. Both

of this are significant as they are simple to implement and do not put a lot of stress

on the hardware system and this in turn reduces the amount of power required for the

hardware to function properly. Furthermore, the research team finds that this work will

impact modern hardware / software architecture in many ways, i.e. increase in the use

of bit-serial technology in areas that are viable and in certain cases implementing the

epilepsy detection system through a fully software approach. By analysing the impact

of this result, it is possible to find some means to integrate the proposed system into

different uses such as smart homes and AAL environment as mentioned above. By using

this proposed hardware system as a long term health monitoring device / system, various

groups of individuals can benefit from it. These groups of individuals include the elderly

and patients with long term disabilities or illness. The research team hopes that by

implementing this system as part of the AAL environment, these individuals can live

independently and safely.

In the next chapter, we present certain possibilities in the near future for this proposed

system. We emphasize the possibility of implementing this system using an ASIC ap-

proach. With the ASIC model, the area and power of the proposed system can be

directly compared with state of the art dedicated neural ASIC processors.
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Conclusion

The start of this thesis provides a comprehensive understanding of the problem that is

tackled in the research. The contributions of this research are included in four different

publications. In 2016, the first paper published by the author illustrates the feasibility of

using bit-serial architecture as an alternative when developing epilepsy detection hard-

ware [128]. Furthermore, the paper introduced a novel neural processing element which

uses bit-serial architecture. In 2017, another paper was published which presents a novel

data processing unit (DPU) which is the basic building block for the BSNN. Several ex-

perimental results were included in the paper [128]. In 2018, a paper was published at a

symposium which reviews the work that has been done along with a proposal of a simple

feature extraction hardware for the epilepsy detection system. Furthermore, a journal

paper was published in 2018 which included the proposed system and comparison of

the performance with other software implementations. The general organization of this

thesis is also detailed in the introduction. The thesis is followed by a literature review,

the proposed approach of a novel bit-serial DPU, the bit-serial neural network (BSNN)

design and EEG feature analysis as well as the proposal of a novel feature extraction

hardware.

In summary, the bulk of the literature review covers a large scope of studies with re-

lation to epileptic detection, neural processors and bit-serial architecture. Chapter 2

reviews state of the art EEG research that is used to analyse and extract certain nec-

essary features from the EEG signal. Furthermore, different types of neural processors

have been researched to devise a novel approach. It is clear that a multitude of funding

and focus have gone into the theoretical study and software implementation of epilepsy

detection with various types of technology over the past decades. There are different

prototype hardware designs that have been used in animal experimentation procedures.

It would appear that the novel BSNN should incorporate the best of these prototypes

[97], overcome the weaknesses and adapt the designs to accommodate the specifications

of the current research. The literature review further focuses on the bit-serial architec-

ture which is proven to be an energy-saving, reliable and cost-effective design. Different

123



124 Chapter 6 Conclusion

bit-serial architectures developed over the last few decades such as the COLUMNUS

and bit-serial CORDIC architecture were also reviewed.

Chapter 3 introduced the novel DPU design concept to implement a biological neuron

accurately. Next, the DPU design is synthesised on different FPGA boards to verify the

number of logic elements needed for a single DPU. The smallest DPU was synthesised on

a Cyclone V FPGA board. The cost for a DPU with 8 bit architecture only required 28

ALMs. Simple experiments were conducted in this chapter to fully test the functionality

of the DPU. Three general classification problems were used for testing the BSNN: an

XOR problem, a simple data classification problem and a crude ECG peak detection

problem. The XOR problem result is similar to a XOR truth table. Next, correct

response to epileptic EEG signal dataset is completed to test the capability of the novel

BSNN design when used for epilepsy detection. Various statistic metrics were used as

a method of comparison with recent works such as the sensitivity (TPR), specificity

(TNR), positive predictive value (PPV), and negative predictive value (NPV). It was

found that the DPU can solve simple problems perfectly and is able to be act as the

basis for our bit-serial neural network.

Chapter 4 explores the potential of the bit-serial DPU to be used in a complex neural

network. The hardware neural network and the design control path were proposed.

In this research, the DPU with a 12 bit architecture requires 39 logic elements and the

control path needs 48 logic elements. Various classification experiments were conducted.

These tests are needed to fully assess the functionality of the novel neuron hardware. The

training was performed off-line using MATLAB. The neural network toolbox provided

by the software was used to verify which training function would be suitable for the

research application. Example datasets are also provided by the simulation software.

By comparing the results obtained from simulation and the synthesised hardware, the

feasibility of the novel bit-serial neural network (BSNN) was verified. The above metrics

were used in this chapter to compare the networks efficiency.

Chapter 5 presents an optimized epilepsy detection system with simple feature extrac-

tion hardware and the BSNN proposed in Chapter 4. The feature extraction hardware

use two adjacent points on a single EEG waveform to calculate the slope to be used as

BSNN inputs. Different designs were tested to find the optimum network configuration.

The 100-40-40-1 network was found to have a correct recognition rate of 90% for a single

segment and an overall accuracy of 88.8% with the data from all four EEG segments.

This network has a precision rate of 95.5%. This approach has a better overall accu-

racy than certain software implementations of epilepsy detection when using the same

EEG benchmark waveforms. A comparison was made with a 16 bit architecture design

which had a far lower recognition and precision. Therefore, it is better to use a 12 bit

architecture for this thesis.
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There are a few possibilities that can be pursued in the near future. One such possibility

involves the synthesis of an ASIC model of this DPU and the fabrication of this DPU.

This can be done to test the size and power efficiency of this proposed design. There

are some important implications of this particular research. This research presents

the feasibility of an alternative approach for an wearable epilepsy detection system.

Furthermore, the proposed system will be an important step forwards for a reasonable

cost and accessible epilepsy detection hardware for patients around the globe.

There are a few limitations in this research. The main limitation to this proposed system

is the compromise between performance and size of the hardware cost. Furthermore, the

testing conducted during this research were mainly performed using EEG benchmark

waveforms. Furthermore, it is crucial to address the non-linearity component of the brain

when trying to improve this design. Further research would be helpful to fully establish

the model as an alternative approach for epilepsy detection hardware and fabrication

can be made with an ASIC approach.

6.1 Further Work

In this thesis, the optimal BSNN network have been designed and tested. In the near

future, it is crucial that the physical layout of the network be developed and optimized

further. This design can be implemented as an ASIC model. The balance between size

and energy efficiency would need to be explored and the model can then be compared

with existing state of the art neural networks.

The main requirements for an optimized epilepsy detection ASIC design would require

low power and small in area while still maintaining high recognition rate. A potential

ASIC chip can be used in this area. The first one was designed for a subdermal implant.

This was to be used as an ASIC detector. This design was fabricated in a TSMC 0.18

micro meter CMOS processor and consumes only an average of 2 micro w of power per

EEG channel [137]. Another epilepsy detection hardware [138] was also proposed to be

implemented using this same technology. In this case, the chip is used in a proposed

smart headband.

As an FPGA based model, it is not practical to be used as a wearable epilepsy detection

system. Therefore, it is necessary to develop an ASIC model in order to integrate with

a wearable epilepsy detection system to be used by the patient in a mobile environment.

At the end of this research, the FPGA synthesis provides the first step in designing a

ASIC dedicated hardware neural network. With the synthesis program, it synthesises

the RTL level of the hardware neural network design. The ASIC model would be a cell

based design are more simplistic as they used already made blocks. The ASIC route

would use the technology library to perform gate level synthesis and then proceed with

physical library for physical synthesis. The Synopsys software package is used here in
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this research to complete the task. This thesis design was completed on an FPGA with

the end result was on the RTL level. In the future, further minimization can be made to

the RTL design and ASIC modelling would be necessary for design physical fabrication.

In the process of optimizing the ASIC design, there are certain exploitations that can

be taken into consideration. The place and route procedure in the ASIC design would

need to be completed efficiently as it allows smaller chip to be developed. As part of

developing a wearable and optimized system, power and size needs to be optimized.

Power optimization can involve the process of clock gating.

The RTL level design would need to be optimized as the first step in area optimization.

Various unnecessary logic need to be removed before proceeding to gate level synthesis

and physical synthesis. Area optimization involves constant propagation, elimination

of redundant logics and a 2-level SOP optimization. The critical path of the design

should also be improved as the design uses a bit-serial architecture which is much slower

compared to state of the art system. This stage involves the process of reducing slack

on the critical path.
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