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A B S T R A C T

Purpose: Exome and genome sequencing have drastically accelerated novel disease gene dis-
coveries. However, discovery is still hindered by myriad variants of uncertain significance found
in genes of undetermined biological function. This necessitates intensive functional experiments
on genes of equal predicted causality, leading to a major bottleneck.
Methods: We apply the loss-of-function observed/expected upper-bound fraction metric of
intolerance to gene inactivation to curate a list of predicted haploinsufficient disease genes. Using
data from the 100,000 Genomes Project, we adopt a gene-to-patient approach that matches de
novo loss-of-function variants in constrained genes to patients with rare disease. Through large-
scale aggregation of data, we reduce excess analytical noise currently hindering novel discoveries.
Results: Results from 13,949 trios revealed 643 rare, de novo predicted loss-of-function events
filtered from 1044 loss-of-function observed/expected upper-bound fraction–constrained genes.
A total of 168 variants occurred within 126 genes without a known disease-gene relationship. Of
these, 27 genes had >1 kindred affected, and for 18 of these genes, multiple kindreds had
overlapping phenotypes. Two years after initial analysis, 11 of 18 (61%) of these genes have
been independently published as novel disease gene discoveries.
Conclusion: Using large cohorts and adopting gene-based approaches can rapidly and
objectively accelerate dominantly inherited novel gene discovery by targeting the most
appropriate genes for functional validation.
© 2022 The Authors. Published by Elsevier Inc. on behalf of American College of Medical

Genetics and Genomics. This is an open access article under the CC BY license
(http://creativecommons.org/licenses/by/4.0/).
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Introduction

Next-generation sequencing has revolutionized rare disease
diagnostics; more patients than ever are receiving a molec-
ular diagnosis for their rare genetic disorders. This has been
driven by the ever-increasing rise in novel disease gene
discoveries, which is expanding the number of genes tested
for in clinics.1 Making molecular genetic diagnoses is
hugely important to patients and their families and can pave
the way for therapeutic options, cascade testing, and family
planning.2

However, most patients with rare diseases (up to 70%
depending on clinical specialty) lack a definitive, molecular
diagnosis.3 Clinical genetic testing often involves applica-
tion of a gene panel either as the ordered test or by the
analysis strategy applied to exome and genome sequencing.4

In the United Kingdom, the national genome sequencing
program only reports on variants in a prespecified gene
panel. Accredited clinical laboratories have no obligation to
report on variants, including de novo variants outside of the
panel applied.5 Yet, many patients harbor pathogenic vari-
ants not captured by a gene panel or in genes yet to be
associated with disease. Indeed, approximately 50% of
genes thought to cause disease through haploinsufficiency
are yet to be associated with a clinical phenotype.6,7

Therefore, there is an unmet need for holistic and experi-
mental approaches to identify novel disease genes and their
associated phenotypes. These discoveries are critical for
new genes to be added to diagnostic gene panels and for
analytical approaches to uplift diagnostic rates.

Current barriers to novel gene discovery

Novel disease gene discovery is a protracted process that
requires identifying multiple, unrelated patients with vari-
ants in the same gene affected with similar phenotypes.
These discoveries are then followed up with functional
studies to provide evidence for gene causality.

Assessment of exome and genome data typically in-
volves analysis of a small number of related individuals on a
family-by-family basis. However, these analyses are time
consuming and resource intensive, often requiring com-
mercial software and cross-checking public databases. Each
family member has 3 to 4 million variants in their genome
and approximately 30,000 variants in their genes. Assessing
every potential pathogenic variant is simply impossible.3

Although filtering techniques can restrict variant lists
considerably, tens to thousands of variants of uncertain
significance (VUS) typically remain with little to distinguish
pathogenicity between them, particularly for genes of un-
known function.8 It is not possible to investigate all poten-
tial candidate variants because this necessitates intensive
functional experiments on variants of ostensibly equal pre-
dicted causality, which is proving to be a major bottleneck.
Researchers are reluctant to invest in expensive studies
without persuasive evidence that a given candidate warrants
pursuing; however, identifying which variants should be
prioritized is challenged by the paucity of knowledge into
the function of most human genes. Therefore, these VUS
end up as long lists of unreported variants present in a pa-
tient’s sequencing results that no one has time to resolve or
investigate further. In many cases, these lists will contain the
causal variant and thus represent missed opportunities for
molecular diagnosis.

The Matchmaker Exchange

One popular route to pursue candidate variants is through
the Matchmaker Exchange (MME).9 MME has proven
successful in building case series of patients with shared
phenotypes involving the same gene, which are later taken
to publication.10 However, this relies on knowing which
gene candidates, of many, are best to submit to MME.
Because of institutional restrictions on data sharing, it is not
possible to query MME and return a list of genotypes and
phenotypes for all submissions. Each match with another
submitter requires electronic correspondence whereby both
parties may choose to share variant- and genotype-specific
data. Furthermore, there may be multiple matches per pa-
tient, making this method cumbersome and difficult to
manage for large cohorts. Therefore, there are clear advan-
tages to reducing the number of candidate variants for
ongoing investigation.

Gene constraint

Mutation is random, giving rise to new variants, most of
which do not have a biological effect; however, some var-
iants have greater consequences and may help us adapt and
evolve, whereas others may be harmful and cause disease.
Natural selection purges deleterious variation from human
populations because fewer individuals with damaging vari-
ants survive and reproduce. However, in large population
databases, such as the genome aggregation database (gno-
mAD), we still observe loss-of-function (LoF) variants
because some genes are more tolerant than others to inac-
tivation of one or even both gene alleles.11 We can exploit
this principle to identify genes with fewer LoF variants
observed in population data sets compared with random and
expected variant rates, signifying genes most intolerant to
LoF.11,12

Karczewski et al11 developed the loss-of-function
observed/expected upper-bound fraction (LOEUF) score,
which, for each gene in gnomAD v.2.1.1, compared the
number of observed LoF variants in 125,748 individuals
with the number expected. LOEUF places >19,000 genes
along a continuous spectrum of intolerance to gene inacti-
vation, whereby low scores, ie, the fewest predicted LoF
(pLoF) variants observed compared with expectation, are
the most intolerant to LoF. Indeed, genes in the first LOEUF
decile (equivalent to a score < 0.2) have been validated as
the most enriched for OMIM haploinsufficient disease genes
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and show the greatest biological essentiality.11 Yet, as of
January 2021, 65% of genes in the lowest LOEUF decile are
yet to have an OMIM disease association,2 leaving hundreds
of undiscovered potential disease genes causing unrecog-
nized phenotypes in patients.

Although statistical methods exist to identify potential
novel disease genes using excess de novo mutation analysis,
such as DeNovoWEST13 and DeNovolyzeR,14 these
methods require huge cohorts of similar phenotypes, such as
autism spectrum disorder. This study takes a nonstatistical
approach across a more heterogenous cohort and aims to
uplift novel disease gene discovery by targeting pLoF var-
iants (with the greatest pathogenic potential) in genes
whereby inactivation of a single copy of the gene is highly
probable to cause dominant disease. We apply this method
to the 100,000 Genomes Project, which has brought genome
sequencing directly to patients with rare diseases in the
United Kingdom.15 We move from a patient-to-gene
approach to a gene-to-patient approach, whereby we are
powered to identify and assign rare putative pathogenic
variation in predicted disease genes to patients, cohort wide.
Materials and Methods

General methodological principle

We propose an objective filtering strategy that can be
applied at scale. We apply the LOEUF metric of intolerance
to gene inactivation to define a list of predicted hap-
loinsufficient disease genes. We select genes with an
LOEUF score < 0.2 (first decile), which demonstrates the
highest probability of representing autosomal dominant
disease.11 By leveraging genomic and phenotypic data from
rare disease trios in the 100,000 Genomes Project, we adopt
an objective gene-to-patient approach that filters for rare de
novo pLoF variants in LoF-constrained genes and matches
these to rare disease patients. For this study, we exclude any
variants in known OMIM disease genes (autosomal domi-
nant or recessive) and focus only on novel disease genes.
Where more than 1 patient with a de novo pLoF variant is
found in the same gene, we call this a novel disease gene
contender and then assess for phenotype overlap. This
approach reduces analytical noise to focus on the most likely
novel disease genes (Figure 1) and identifies suitable
candidates for functional validation.

Data access

Access to the secure Genomics England (GEL) research
environment (RE) and high-performance cluster was ob-
tained following information governance training and as a
member of the Genomics England Clinical Interpretation
Partnership: Quantitative methods, machine learning, and
functional genomics and with approved project ID: RR359 -
Translational genomics: Optimising novel gene discovery
for 100,000 rare disease patients. This provided access,
originally in 2019, to an aggregate vcf file of 20,050 rare
disease families called using the Illumina Starling pipeline
and passing quality control parameters as previously
described.5 Most patients were children with
neurodevelopmental disorders.5

Phenotype data for each patient were recorded by the
referring clinician as a discrete list of Human Phenotype
Ontology (HPO) terms.16 The number of HPO terms varied
considerably between patients, with some individuals only
having a single HPO term recorded. These data were stored
within the RE in a LabKey data management system. The R
LabKey package was used to extract HPO terms for each
patient and merge these with genotype data.

Code availability

Code generated for this project is specific to data securely
held within the GEL RE. Only users with the necessary
permission and governance training can access these data.
Scripts are available to GEL users within the RE machine
learning directory.

Data filtering

Initial analysis was undertaken in October 2019. We
selected full parent/offspring trios for de novo analysis,
reducing the number of available families from 20,050 to
13,949. Bespoke scripts using bcftools17, VEP18, and
Exomiser19 were developed to filter data. LOEUF scores
were downloaded from gnomAD (http://gnomad.
broadinstitute.org/downloads) and imported into the RE.
We filtered out variants with an allele frequency (AF) >
0.001 across all gnomAD populations and retained only de
novo pLoF variants (canonical splice site, frameshift, stop
gain/nonsense, start loss, stop loss) on RefSeq transcripts
called by VEP in genes with an LOEUF score < 0.2 to
reflect genes with the greatest LoF constraint. To account for
potential false positive pLoF calls, we applied LOFTEE
v1.0 (https://github.com/konradjk/loftee), which removed
low-confidence variants such as those in the last exon.
Variants remaining after LOFTEE filtering were deemed
high-confidence variants.

Merging genotype data with additional datasets

High-confidence variants in putative disease genes that
remained after the filtering approach in 2019 (AF < 0.001,
de novo, pLoF, LOEUF < 0.2) were classified as either
found in a known OMIM disease gene (already associated
with disease) or in a non-OMIM disease gene (not yet
associated with disease), achieved by querying the OMIM
application program interface in October, 2019. All novel
disease gene contenders were compared with 2 mouse da-
tabases, the International Mouse Phenotyping Consortium
database and the Mouse Genome Informatics database.20,21

http://gnomad.broadinstitute.org/downloads
http://gnomad.broadinstitute.org/downloads
https://github.com/konradjk/loftee
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Figure 1 Method to uplift novel disease gene discovery. A. A typical patient-to-gene approach, whereby patient A’s exome or genome is
analyzed and multiple candidates remain of similar predicted causality. B. A proposed gene-to-patient approach to identify novel disease
genes that challenges the widely adopted diagnostic analytical paradigm of exome and genome sequencing. In this approach, a large-scale
database is agnostically filtered for high-confidence, rare, de novo, pLoF variants in genes with an LOEUF < 0.2, and these variants are
assigned to patients. Associated phenotypes are compared between patients with de novo pLoF variants in the same gene. AF, allele
frequency; GEL, Genomics England; LOEUF, loss-of-function observed/expected upper-bound fraction; MME, Matchmaker Exchange;
pLoF, predicted loss of function.

4 E.G. Seaby et al.
Selecting high-priority novel disease gene
candidates

High-confidence pLoF variants in novel disease gene
contenders were selected as candidate pathogenic
variants.
Phenotype overlap
We assessed for phenotype overlap between unrelated pa-
tients who shared a candidate pLoF variant in the same
gene. To do this, we computationally compared HPO terms
(using their coded identification number) between in-
dividuals and considered a phenotype overlap to be when
any single HPO matched exactly. Genes were prioritized as
class 1 candidates if more than 1 unrelated patient harbored
a candidate pathogenic variant in the same gene and there
was a phenotype overlap (Table 1). These novel disease
gene contenders were further curated against the literature to
ascertain if there were existing publications implicating any
of the genes as disease causing before being indexed in
OMIM.

For novel disease gene contenders with only 1 pLoF
variant in the cohort (ie, unique to 1 individual), we curated
high-level phenotypes for each patient by manually
upscaling their HPO terms to align with the terminology
used in the publicly accessible Database of Genomic Vari-
ation and Phenotype in Humans Using Ensembl Resources
(DECIPHER) database (http://deciphergenomics.org). For
example, hydrocephalus was upscaled to “disorder of the
nervous system” and atrial septal defect was coded as
“disorder of the cardiovascular system”.22 We then
compared high-level phenotypes of GEL patients with
DECIPHER patients harboring de novo variants (pLoF or

http://deciphergenomics.org/


Table 1 Classification of novel disease gene contenders

Gene Class Classification Rule

Class 1 pLoF variants identified in the same gene in 2 or more
unrelated kindred in GEL and at least 1 HPO term
exactly matched between affected individuals.

Class 2 A pLoF variant identified in a gene in 1 affected
individual in GEL, whereby at least 1 high-level
phenotype exactly overlapped between the GEL
patient and an individual in DECIPHER with a de
novo pLoF or missense variant in the same gene.

Class 3 No overlap in HPO terms between patients in GEL with
pLoF variants in the same gene, or no overlap in
high-level phenotypes between GEL patients and
affected patients in DECIPHER with de novo pLoF
or missense variants in the same gene (or no
available phenotype in DECIPHER for comparison).

DECIPHER, Database of Genomic Variation and Phenotype in Humans
Using Ensembl Resources; GEL, Genomics England; HPO, Human Phenotype
Ontology; pLoF, predicted loss-of-function.
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missense) in the same gene. We included do novo missense
variants in DECIPHER to increase the number of genes with
an associated phenotype for comparison. When high-level
phenotypes matched, we classified these genes as class 2
candidates. In class 3 candidate genes, phenotypes did not
match or no comparison was available (Table 1).

Taking candidates forward

We requested permission to submit genes to Gene-
Matcher23 for class 1 genes by filling in request forms
within the RE. We completed Clinician Contact Request
forms for all class 1 candidates to obtain more detailed
and current phenotype information from the patient’s
referring clinician, in addition to obtaining consent to
share genotypes and phenotypes and consent for publica-
tion with any matches made using the GeneMatcher node
of MME. Where we successfully matched with interna-
tional colleagues through MME and a case series was
already underway, we worked with the patient’s clinician
to include their patient in the existing case series. Where
no case series were established, we initiated a new interest
group to lead on collecting phenotype data from collabo-
rators and started functional experiments in Xenopus on
novel disease gene contenders.

Validation of method

To validate whether we could correctly predict novel disease
genes, we compared our novel disease gene contenders in
2019 against an updated list of dominant OMIM disease
genes from 2021, in addition to literature published between
2019 and 2021. If one of our predicted novel disease gene
contenders from 2019 was added to OMIM or was pub-
lished as a disease gene between 2019 and 2021, we
manually compared the HPO terms of GEL patients with the
clinical phenotypes reported in the literature and/or OMIM
to assess concordance (Figure 2). We considered our
method as having correctly predicted a disease gene when
any of the patients in GEL had significant overlapping
features with the clinical presentation published for variants
in the same gene and the GEL variant met, at minimum,
likely pathogenic status by American College of Medical
Genetics and Genomics/Association for Molecular Pathol-
ogy guidelines.24,25 We further assessed whether any alter-
native diagnoses were made by National Health
Service–accredited genetics laboratories between 2019
and 2021.
Results

Data from the 100,000 Genomes Project (13,949 trios,
involving 41,847 individuals) revealed 643 rare (AF
< 0.001) de novo pLoF events filtered in 1044
pLoF-constrained genes (Figure 3). A total of 475
variants were in 148 known OMIM genes (as of October,
2019) and 168 were in novel disease gene contenders
(involving 126 unique genes). Of these, 27 genes had
more than one GEL kindred affected and 18 had over-
lapping phenotypes, meeting class 1 criteria (Table 1). Of
these class 1 genes, 5 were absent from OMIM but had
been published in the literature (Supplemental Table 1).
Six more of these genes have since been published as
disease-causing genes with matching phenotypes to our
GEL probands (Table 2).

Nine genes had more than one GEL kindred affected but
the phenotypes between patients were nonoverlapping,
meaning that there were no exact matches of HPO terms
between patients; 4 genes met class 2 criteria with high-level
phenotypes overlapping with DECIPHER entries, and 5
genes met class 3 criteria (Supplemental Table 1).

A total of 99 variants in 99 unique genes were identified
in 98 individuals (Supplemental Table 2). Of these, 50 genes
were classified as class 2 candidates, meaning that their
high-level phenotypes overlapped with individuals in
DECIPHER harboring de novo pLoF or missense variants in
the same gene. A total of 49 genes were class 3, meaning no
patients within GEL or DECIPHER had matching pheno-
types involving the same gene.

Investigating and validating putative disease genes

Between 2019 and 2021, 23 of 126 (18%) of our novel
disease gene contenders were published by independent
groups. Class 1 candidates were the highest predictors of
disease genes, with 11 of 18 (61%) having been functionally
validated and published, confirming their status as new
disease genes.

Of the class 2 and class 3 genes occurring in unique
individuals, 2 of 50 (4%) and 10 of 49 (20%), respectively,
have been published with evidence of causality. Of the



Figure 2 Workflow applied for the validation of novel disease gene contenders. Workflow applied to validate novel disease gene
contenders as new disease genes. The red path shows the pathway for gene 1, which was identified in 2019 and published in the literature
between 2019 and 2021. Associated phenotypes of GEL patients with pLoF in gene 1 were compared with the published phenotype and
matched, validating gene 1 as a correctly predicted new disease gene. The blue path shows the pathway for gene 2; this gene was compared
with OMIM and the literature and was not yet published/in OMIM and will be recompared at a later stage. Gene 3 (thin gray line) was present
in OMIM by 2021 and associated phenotypes in GEL patients with pLoF variants in gene 3 overlapped with the published literature,
validating this gene as a correctly predicted new disease gene. GEL, Genomics England; pLoF, predicted loss of function.
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remaining 7 class 1 genes yet to be validated, case series/and
or functional experiments are underway. By 2021, 15 pa-
tients had likely pathogenic or pathogenic variants inde-
pendently identified in alternative known disease genes by
GEL diagnostic laboratories. In total, we identified 126
novel disease gene contenders.
Figure 3 Summary of class 1, 2, and 3 results. Summary of gene
Genomics England.
Discussion

We rapidly applied an objective filtering strategy across a
large cohort and identified 18 high-confidence putative
novel disease genes, of which 11 (61%) have since been
validated through functional experiments and confirmed as
discovery results after filtering variants from GEL families. GEL,



Table 2 Thirteen putative novel disease genes

Gene Consequence MaxFreq
Shared HPO Terms Across Patients in

GEL
Overlapping Features Between GEL
Patients and Published Literature

Publication
Status (June

2021)

HDLBP Frameshift Absent Macrocephaly, intellectual disability,
global developmental delay,
delayed speech and language
development, delayed fine and
gross motor development, autism

N/A Case series and
functional
studies
underway

Frameshift Absent
Start lost Absent

RIF1 Frameshift Absent Delayed speech and language
development, global
developmental delay, delayed
gross motor development,
intellectual disability

N/A Case series and
functional
studies
underway

Frameshift Absent

DDX17 Frameshift Absent Horizontal nystagmus, global
developmental delay, skeletal
abnormalities

N/A Case series and
functional
studies
underway

Splice acceptor Absent

TAF4 Frameshift Absent Seizures, spasticity, brain atrophy,
cerebellar signs

N/A Manuscript in
preparationStop gained Absent

Splice donor 0.00008
CLASP1 Stop gained 0.00020 Delayed speech and language, global

developmental delay, delayed
gross motor development,
intellectual disability

N/A Case series
underwayStop lost Absent

ANKRD12 Splice acceptor Absent Intellectual disability, global
developmental delay

N/A Case series and
functional
studies
underway

Frameshift 0.00001
Frameshift Absent

CASZ1 Frameshift Absent Intellectual disability N/A Case series
underwayFrameshift Absent

ZNF292a Frameshift 0.00001 Global developmental delay, facial
shape abnormalities, intellectual
disability

Intellectual disability, global
developmental delay, delayed
speech, microcephaly, skeletal
abnormalities, seizures, dysmorphic
features, abnormal face shape

Mirzaa et al26

Frameshift Absent

SETD1Aa Stop gained Absent Global developmental delay,
intellectual disability

Delayed speech and language
development, intellectual disability,
seizures, global developmental delay,
dysmorphic facial features, hypotonia

Yu et al27

Frameshift Absent

ANKRD17a Stop gained Absent Delayed speech and language
development, delayed gross motor
development, intellectual disability

Intellectual disability, delayed speech
and language development,
dysmorphic features

Chopra et al28

Frameshift Absent

USP7a Stop gained Absent Global developmental delay and
abnormal facial shape

Intellectual disability, seizures,
hypotonia, global developmental
delay, facial shape deformation,
feeding difficulties

Fountain et al29

Stop gained 0.00007

TANC2a Stop gained Absent Intellectual disability Intellectual disability, global
developmental delay, behavioral
abnormalities, autism, impaired
speech development, seizures,
delayed motor development

Guo et al30

Frameshift Absent

SPENa Stop gained Absent Intellectual disability Developmental delay/intellectual
disability, autism spectrum disorder,
behavioral abnormalities, dysmorphic
features, obesity/increased BMI

Radio et al31

Stop gained Absent

A table of 13 putative novel disease genes identified from analysis in 2019. Shared phenotypes between patients involving pLoF variants in the same gene are listed.
BMI, body mass index; GEL, Genomics England; HPO, Human Phenotype Ontology; MaxFreq, maximum allele frequency in gnomAD v2.1.1 and 1000 Genomes

phase 3 data; N/A, not available for comparison; pLoF, predicted loss of function.
aCandidates that have been published as of June 2021. For these, shared phenotypes between patients in GEL and patients included in publications by

2021 are recorded.

E.G. Seaby et al. 7
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disease causing. Additionally, we identified a further 108
novel disease gene contenders.

In total, 23 of 126 (18%) of the genes identified in our
study have been validated as disease causing, and diagnoses
are being returned to patients who would otherwise have a
negative genome report. This was achieved by a targeted
gene-to-patient approach applied to the 100,000 Genomes
Project with the power to detect very rare pLoF variation in
genes most intolerant to LoF. However, only in time will we
determine the full specificity and sensitivity of this
approach.

Class 1 genes and internal matches in GEL

Since initial analysis, 11 of 18 (61%) class 1 genes
(Table 1) have undergone functional validation and been
published by independent groups confirming their status
as novel disease gene discoveries, and we anticipate this
number to increase over time. Class 1 genes out-
performed classes 2 and 3 (Fisher’s exact test < 0.0001)
likely because of the greater specificity and granularity
of phenotypes available for internal matching within
GEL.

There were 9 genes where unrelated patients in GEL had
pLoF variants in the same gene, yet no patient shared the
same HPO terms. However, 3 of these genes have since
been published, and the published phenotypes overlap with
the GEL patients (Supplemental Table 1). This may be
explained by variability in HPO terms reported in GEL;
some patients had many HPO terms recorded, yet others had
only 1 or 2. In Table 2, patients with pLoF variants in SPEN
and TANC2 only overlapped by 1 HPO term (intellectual
disability). Yet, when the disease phenotype was further
delineated in published case series for both genes, many
more features observed in the GEL patients were consistent
with the reported phenotypic spectrum. This highlights the
need for longitudinal and deep phenotyping data in auto-
mated gene discovery studies.

Owing to the automated process of exact HPO term
matching between GEL patients, we potentially missed
overlapping phenotypes recorded with subtly different
nomenclature, eg, one patient with intellectual disability
(HP: 0001249) would not match another patient with mild
intellectual disability (HP: 0001256).

Class 2 and 3 genes

More class 3 genes (10/50, 20%) were published as novel
causal genes by 2021 than class 2 genes (2/49, 4%; Fisher’s
exact test = 0.027). This may be due to small sample sizes
but could reflect a weakness in class 2 and 3 classification
(Table 1). Comparing high-level phenotypes is potentially
problematic because it lacks the granularity required to
assess clinical overlap. Furthermore, we compared
high-level phenotypes of GEL patients with patients in
DECIPHER harboring de novo missense variants, which are
considerably more common and less likely to be pathogenic,
increasing the possibility of false disease-phenotype asso-
ciations. Additionally, it is possible that some patients in our
cohort were also in DECIPHER; however, because of data
anonymity, this could not be verified.

Lessons learned

Class 2 and class 3 genes may be better assessed through
MME. Sharing more detailed phenotype data would provide
the granularity to assess true clinical overlap. In GEL, this
step involved contacting the patient’s clinician for permis-
sion to share data with matches through MME, and this
process was not always successful. Because MME involves
manual correspondence between peers, this cannot be easily
automated, highlighting the advantages of internal pheno-
type matching within the same cohort. We are fully utilizing
MME for novel gene candidates; however, presenting these
results is outside of the scope of this manuscript.

Novel gene discovery remains time consuming

Although our method is rapid at identifying highly promising
novel candidate genes, there remain persistent time re-
quirements to validate any results through case series and
functional experiments; however, the strength of the method is
in rapidly identifying which VUS to pursue and therefore
shortening the process of discovery.We have identified 7 class
1 genes, for which we are accruing case series on 6 genes and
have started functional studies in 4 genes (Table 2).We believe
ourmethodprovides theopportunity to identify themost salient
candidates for follow-on studies, meaning that many patients
will have their most damaging VUS investigated when, typi-
cally, no candidates would have been pursued.

Considerations and limitations

De novo analysis applied to predominantly neuro-
developmental phenotypes
We used trios for de novo analysis, meaning that families
without trio data were excluded. However, with plans to
sequence 5 million more genomes in the United Kingdom,
we believe our method will prove increasingly more effec-
tive. Furthermore, we plan to refine our analysis to query all
affected individuals in GEL with pLoF variants in our novel
disease gene contenders, even if segregation data is
unavailable.

The 100,000 Genomes Project is enriched for patients
with rare neurodevelopmental disorders, and therefore we
risk comparing patient phenotypes within a cohort enriched
for similar phenotypes. We were cautious of defining
phenotype overlap as any 2 patients exactly matching on 1
HPO term; however, because of the variability in number of
HPO terms reported in GEL, this maximized sensitivity of
class 1 genes and enabled us to correctly predict SPEN and
TANC2 as novel disease genes.
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Statistical rigor
The large number of neurodevelopmental disorders in the
dataset caused by many heterogenous genes precludes the
reliability of statistical methods to confirm/refute novel dis-
ease gene contenders, although with ongoing genome
sequencing in the United Kingdom, this will likely be over-
come. Further, we specifically focused on pLoF variants only,
meaning that we are not powered evenwith 3 de novo variants
per gene (themaximumwe observed for class 1 candidates) to
reach statistical significance using a case/control Fisher’s test
and multiple test correction.14 Instead, we rely on the estab-
lished approach of identifying overlapping phenotypes to
further prioritize the best candidates for functional validation.

Minor allele frequency
We used a liberal AF of < 0.001, yet the highest variant fre-
quency we observed was 0.0002. The presence of these rare
de novo variants within gnomADcould represent recurrent de
novo variation.32 Although a more restrictive AF would in-
crease confidence of pathogenicity, pathogenic disease vari-
ants can be present in population databases owing to
incomplete penetrance, effects of cis-regulatory variation, and
adult-onset disease.33 Nevertheless, our cohort is likely
depleted for adult-onset diseases, because early-onset condi-
tions are more likely to have complete trios.

Prioritizing haploinsufficiency
Our method is enriched for haploinsufficient disease genes,
and we did not prioritize biallelic observations in our anal-
ysis.11 Using an LOEUF score< 0.2 (top decile) enabled us to
select the genesmost highly constrained for LoF, although the
expectationwas that these would be associatedwith dominant
inheritance, meaning that our approach is not enriched for
autosomal recessive novel gene discovery. Several genes in
the top decile may be embryonically lethal, although we do
not expect to observe these in our cohort.With higher LOEUF
thresholds, it is likely that further haploinsufficient disease
genes and evenmore recessive disease geneswill be found but
at the expense of increased noise.11

Classification of pLoF variants
We included start loss and stop loss within the category of
LoF variants; however, these variants often do not constitute
true LoF and show selection signatures more similar to
missense variants.34 We only observed 6 start/stop loss
variants, and therefore potential misclassification of these
variants is not expected to have substantively affected our
analysis. Our current analysis strategy also misses other LoF
variants, eg, untranslated region variants, extended splice
site, and structural variants. Research into these potential
LoF-disrupting variants using tools such as UTRannotator35

and spliceAI36 may further expand the disease gene
candidate list.

False positive pLoF variants
Not all pLoF variants truly cause LoF; many are enriched
for technical, rescue, and affect errors.11,33 Although in
silico tools can identify some of these errors, manual
curation is the most effective method to identify potential
false positives.33 However, this process is extremely time
consuming and not yet standardized; therefore, there is risk
that we included false positive LoF variants in our anal-
ysis.33 We expect these false positives are more likely to
be variants with higher allele frequencies in gnomAD or in
class 2 and 3 genes whereby detailed phenotype data
cannot be assessed for overlap. Indeed, 15 of our pLoF
variants in class 2 and 3 genes were in individuals who
had an alternative pathogenic variant (Supplemental
Table 2). Although this does not rule out the potential
for a second diagnosis, which occurs up to 5% of the
time,6 it does raise the possibility of a variant without
functional effect.
Conclusion

Using a large cohort and adopting a highly efficient gene-
based approach can accelerate novel gene discovery and
target the most appropriate variants and genes for functional
validation. This can uplift diagnostic rates and add new
disease genes to clinical gene panels.

As rare disease cohorts continue to increase, there is
increasing demand to automate analyses and reduce the
burden of variants requiring analysis by clinical scientists.
With increasing study sizes, our method should be better
powered to detect rare pathogenic variation shared across
individuals but necessitates real-time comparison to previ-
ously generated large datasets if the approach is to be used
in routine diagnostics. Assessing phenotype overlap is an
important step in our method, and with drives toward data
sharing, there is opportunity to securely access data and
apply automated phenotype matching within and across
cohorts using trusted REs, such as the National Human
Genome Research Institute’s Genomic Data Science Anal-
ysis, Visualisation, and Informatics Lab space.37

We anticipate that our method can be applied by other
researchers to their own cohorts; however, we emphasize the
importance of trio analyses and encourage prudence when
determining what constitutes LoF. We demonstrate that
gene-based approaches can successfully identify novel dis-
ease genes, and with larger rare disease cohorts, it is hoped
that more discoveries will be identified for the benefit of
patients, their families, and the wider scientific community.
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