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Abstract—As a low-cost solution for the 5G communication
system, centralised radio access network (C-RAN) has been
implemented in the ultra-dense environment, where radio over
fiber (RoF) technology can enable reduced operational cost
as well as coordinated multi-point (CoMP) despite its less-
robustness and reduced system performance. On the other hand,
machine learning has been recognised as an efficient method
for accelerating the fiber-optic communications with the aid
of the advancements of the learning algorithms as well as
the available high processing capabilities. In this paper, we
propose a supervised learning-aided A-RoF system, where the
logistic regression classification is invoked for removing the A-
RoF module’s need for re-customization and for boosting its
performance. As a result, we can adaptively select the modulation
format according to the optical power and the RF voltage, where
we obtain an enhanced spectral efficiency and dynamic range
(DR) by a factor of 4/3 and 19/13, respectively, while the learning
network can be updated online.

Index Terms—Analogue radio over fiber (A-RoF), Centralised
radio access network (C-RAN), supervised learning, logistic
regression classification, fronthaul.

I. INTRODUCTION

At the time of writing, the fiber-based radio access network
(RAN) has been evolving for decades for the sake of sup-
porting various services [1]-[3], such as 5G, Wi-Fi, voice or
video call, etc., while supporting seamless connections, ultra-
low latency and massive data access [1], [4]. The latest RAN
architecture defined by the enhanced common public radio
interface (eCPRI) employs the digitised radio over fiber (D-
RoF) and functional split to reduce the data rate required in the
RAN fronthaul by relocating some physical layer function to
the remote radio head (RRH) [5]. However, it is at the cost of
increased RRH’s complexity, cost and less efficient centralised
RAN (C-RAN) virtualization [1], [5].
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In this context, implementing the analogue radio over fiber
(A-RoF) technique in the fronthaul system provides a low-
cost and bandwidth-friendly solution, since it can eliminate
the need for the digital signal processing [1], [4], [5], such as
digital-to-analogue/analogue-to-digital converter (ADC/DAC).
On the other hand, the A-RoF can reduce the optical band-
width from 295 GHz needed in the D-RoF to 10 GHz
using the A-RoF if a 16 x 16 multiple-input-multiple-output
(MIMO) system is considered [1]. Despite its huge bandwidth-
and power- efficiency, the A-RoF based fronthaul remains
renounced by the mobile operators due to the following
challenges. Firstly, A-RoF are less robust than D-RoF and
require re-customisation, which increases the expenditure cost
for robustness management and installation fee, which is a
priority for the mobile operators [6]. Then, A-RoF experi-
ences reduced performance in terms of error vector magnitude
(EVM) compared to the D-RoF, which affects the quality of
service of the fronthaul system [1].

Specifically, the joint effects of noise, fiber-link nonlinearity
and dispersion challenge the A-RoF’s feasibility for the next-
generation wireless RAN [7]. Hence, there has been several
research projects addressing these challenges [8]. For exam-
ple, novel optical devices and novel architecture have been
investigated for optical noise-reduction by low biasing the
optical modulator [8], while the fiber’s and optical modula-
tion’s non-linearity have been analysed and investigated using
multiple fiber transmission in [9] and using linearized optical
modulator in [10]. Additionally, overcoming the chromatic
dispersion exploiting fiber grating was designed in [11]. On the
other hand, advanced optical signal processing including pre-
distortion and post-compensation technique [12] and optical
phase conjugate [13], [14] have been proposed to increase the
linearization of the optical modulator and reduce the fiber’s
chromatic dispersion. These techniques are designed for lower-
order modulations, which is lower than 64 QAM [1], [4]
and mainly considering discrete fiber-link impairments, while
ignoring the interaction amongest fiber-link nonlinearity and
noise as well as the fiber dispersions. Hence these techniques
fail to provide a robust fronthaul system, where parameters
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Fig. 1. Conventional A-RoF Fronthaul Downlink. LD: Laser Diode, MZM:
Mach-zenhder Modulator, WDM: Wavelength Division Multiplexing, EBPF:
Electronic Band-pass Filter.

such as modulation format, the range of optical power and
fiber link, and the amplitude of radio frequencies should be
adapted for various contexts.

In recent years, machine learning has been actively applied
in areas of optical communications such as resource alloca-
tion, signal demultiplexing and decoding, linear and nonlinear
equalizing [15], [16]. Furthermore, a comprehensive review of
machine learning for A-RoF is demonstrated in [17], justifying
the feasibility of machine learning for improving the A-RoF’s
quality of service (QoS).

Moreover, due to the implementation of higher-order mod-
ulation and wider bandwidth for pursuing higher data rate, the
A-RoF fronthaul still suffers from severe fiber-link impair-
ment. In order to mitigate the fiber-link adversaries, in this
paper, in the context of an A-RoF fronthaul downlink using
64 QAM and 256 QAM, and a carrier aggregation of 16
carrier components, we design a supervised learning aided
A-RoF C-RAN system, where the central unit (CU) performs
the learning algorithm using logistic regression to improve
both the capacity and the EVM performance by predicting the
optimal modulation format based on the given optical and RF
power. Explicitly, we exploit logistic regression classification
algorithm for the sake of improving the system robustness and
to increase the achievable system capacity of the potentially
deployed next-generation A-RoF C-RAN system [1].

Our contributions are summarised as follows:

1) Instead of using the traditional closed-form equation to
solve the classification problem of modulation formats,
which suffers from a high computing complexity [18],
[19], we propose a logistic regression classification
model to predict the EVM performance of the A-RoF
fronthaul system based on the RF power and optical
power (after the optical source). As a result, the super-
vised logistic regression learning algorithm can mitigate
the impact of the RF power and optical power on the
E/O’s nonlinearity and fiber nonlinearity.

2) We conceive an A-RoF system, which is capable of
increasing the capacity by invoking an learning aided
adaptive modulation selection scheme by selecting the
higher-order modulation format, while achieving a reli-
able system performance.

The rest of this paper is organised as follows. We describe
the conventional system model in Section II, where we present
the conventional A-RoF system architecture, after which we
employ the logistic regression classification model for the A-
RoF fronthual downlink in Section III, while the results and
analysis are presented in Section IV. Finally, we conclude in
Section V.

II. THE CONVENTIONAL A-ROF SYSTEM ARCHITECTURE

TABLE I
SIMULATION PARAMETER

Parameter Value
Subcarriers (IEEE 802.11 a) (Data 48; Pilot 4; Null 1)
Carrier Aggregation 16 Component Carriers (5G NR)
Bandwidth 800 MHz/ per wavelength (antenna)
Subcarrier Spacing 312.5 KHz
Modulation 256 QAM/64QAM
RF Carrier 3 GHz
WDM Spacing 25 GHz (Dense WDM)
Fiber Length 20 Km
Fiber type Standard Single-mode Fiber
Fiber length 10 km
EVM Requirement (3GPP Rel. 15) | 3.5% for 256 QAM; 8% for 64 QAM
Simulation Environment MATLAB

In this section, we present an overview of the conventional
A-ROF systems and its corresponding challenges regarding the
dynamic range and EVM performance for various modulation
formats.

As mentioned in Section I, our design is based on the A-
RoF aided C-RAN architecture, where the connection between
the CU and RRH, namely fronthaul, transmits the modulated
radio frequency signal via the optical fiber. Fig. 1 presents
the architecture for low-cost and high-performance fronthaul
solutions [1], [4], where the analogue fronthaul eliminates the
requirement for high-speed power-consuming ADC/DAC in
the RRH, while the wavelength-division-multiplexing (WDM)
aided MIMO signal processing can improve the signal-to-noise
ratio by using analogue beamforming, and can also increase
the channel capacity by exploiting the spatial multiplexing
or combat the multi-path fading by implementing diversity
schemes [20], [21]. In Fig. 1, we demonstrate a WDM based
A-RoF fronthaul downlink. The A-RoF fronthaul downlink
is framed by a central unit (CU) and several RRHs, which
is termed as C-RAN, that is a low-cost RAN solution [22]
popularly deployed in 4G and 5G networks [1], [4]. Let us
commence by describing the conventional system without the
learning network. In the CU of Fig. 1, the laser diodes (LDs)
emit the unmodulated light into the mach-zenhder modulator
(MZM) for the electro-to-optical conversion, where the RF
signal conveying the quadrature amplitude modulation (QAM)
symbols are carried by the light signal. Then, the outputs of
the different MZMs in Fig. 1 are combined by the WDM
multiplexer (WDM Mux), forming a WDM signal transmitted
in the optical fiber from the CU to the RRH, as shown in
Fig. 1. The WDM demultiplexer (WDM DeMux) separates
the individual wavelengths, which are then converted back to
the electronic signal after each photo-detector. Afterwards, the
electronic bandpass filter (EBPF) and electronic amplifier (EA)
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Fig. 3. A-RoF Fronthaul Downlink using logistic regression classification.

are responsible for filtering out the unwanted RF signal and
the amplification before the RF signals are transmitted via the
air by the antennas.

Then, in order to further elaborate the challenges of
reduced-robustness and poor system performance, in the fol-
lowing, we present the system performance and the robustness
of 64-QAM and 256-QAM using the parameters shown in Ta-
ble I, which are in accordance with IEEE’s 802.11ac standards
[1]. Explicitly, the 64-QAM or 256-QAM signal is carried
by the RF signal of 3GHz which is then optical-to-electronic
(O/E) converted to the optical signal of 1550 nm wavelength
over the standard single-mode fiber. Our simulation imple-
ments the carrier aggregation and OFDM with a sub-carrier
spacing of 312.5 KHz, transmitting a wide-band signal of 800
MHz per wavelength.

Fig. 2 shows the dynamic range achieved when using 64-
QAM and 256-QAM, which represents the laser power range
meeting the 3GPP’s EVM requirements, such as 8% for 64-
QAM and 3.5% for 256-QAM. In both graphs of Fig. 2 and
as shown in Table I, we transmit the signal at the same symbol
rate (i.e. occupying the same bandwidth), where in Fig. 2a, the
64-QAM is implemented, while in Fig. 2b, the 256-QAM is
explored. Thus, we have the bit rate ratio of 3 : 4 between 64-
QAM and 256-QAM due to their identical symbol rate, where
the corresponding dynamic range ratio is 20 : 12 as seen in
Fig. 2. As a result, the 256-QAM has a higher data-rate but
poorer dynamic range. Therefore, a good trade-off balancing

the bit rate and the dynamic range should be investigated for
boosting the system performance and robustness, which would
benefit from the selection of the modulation formats.

The selection of 64 QAM versus 256 QAM is a classifi-
cation problem, which has been investigated in the literauture
[15], [16], while suffering from a high complexity. Hence, in
the following, the machine learning algorithm using logistic
regression model is invoked for reduced complexity [15], [23],
in order to flexibly customize the A-RoF system in varied
environments, thus improving the robustness, and adaptively
selecting the modulation format.

III. LOGISTIC REGRESSION MODEL FOR A-ROF SYSTEM
DOWNLINK

In this section, we present the learning aided A-RoF down-
link system using logistic regression model, which is an exam-
ple implementation of a learning algorithm. Logistic regression
is a supervised learning method for predicting the optimal
classes by training the historic data with a decision boundary.
As mentioned in Section I, the major issues of A-RoF aided
RAN system are its lack of robustness and poor system
performance, which requires repeated system configuration
customization for modulation format, optical power, RF signal
etc. in order to have improved user experience. As a mature
technique, logistic regression method features its flexibility,
and simplicity in order to stabilize the system performance and
improving the robustness, with the aid of adaptively selecting
the modulation format according to the available power level.

Specifically, there are four phases for the logistic regression
implementation in the A-RoF system, namely data collection,
training phase, data validation and real-time data transmission.
As shown in Fig. 3, a learning network for data training and
modulation format selection is adopted in the CU of Fig. 3,
whilst the data collection is performed in the RRH of Fig.
3 using "DSP for EVM evaluation” block. Specifically, the
data collected by the "DSP for EVM evaluation” block is
retrieved by the learning network for data training. Let us
elaborate a little further, as shown in Fig. 3, a learning network
is imposed in the CU, where the data from the "DSP for
EVM evaluation” will be fed back to the learning network
for determining the optimal modulation format based on the
optical power level and RF power level. Then, the learning
network will analyse the data based on the supervised learning
using the logistic regression classification, where quasi-newton
method, regularization and the feature normalization are used
for enhancing the prediction accuracy. Finally, the trained
model is built for testing the real-time data, where we can
select the optimal RF power and optical power for enhanced
channel capacity and system flexibility. In the following, we
will elaborate on each phase.

A. Data Collection

According to the specific optical power and RF voltage, we
collect the optimal class meeting the 3GPP’s requirements as
shown in Algorithm 1, which performs the method for the
data collection in the "DSP for the EVM Evaluation” of the
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Fig. 4. Data Collection

RRH of Fig. 3, where the data collected will then be fed to
the learning network of the CU.

Algorithm 1 Data Collection
1: Features including optical power and RF voltage
2: The CU collects the data point modulated by 64QAM or
256QAM
3: Data Collection
if EVM < 3.5% then
Select as 256QAM
elseif EVM < 8% then
Select as 64QAM
else
Select as Non
endif

The EVM threshold meeting the 3GPP’s EVM requirement
for 256 QAM and 64 QAM are 3.5% and 8% [1], [5], respec-
tively. Therefore, by setting the range of the launched optical
power and of the RF Voltage from -10 dBm to 15 dBm and
from 0 V to 1.5 V, respectively, where the EVM is probably
meeting the above threshold, and by invoking Algorithm 1, we
collect the training data using MATLAB by simulating the A-
RoF system described in Section II. Fig. 4 shows the training
data, where the +, circle and diamond represent the 256 QAM,
64 QAM and other lower order modulation formats potentially
providing better EVM performance, which we mark in the
figure as "None”.

These data will then be used as the training data for
training the logistic regression algorithm in the CU of Fig.
3 for building the learning model based on logistic regression
algorithm in the next section.

B. Training Phase

Fig. 4 shows the collected training data for the example
simulation setup shown in Table I. In this section, by modelling
a decision boundary using the logistic regression method, we
can predict the optimal modulation formats to use at a specific
power level. Assuming that X = {x,y} is a matrix, where x, y
are the column vectors representing the optical power and RF
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Fig. 5. Decision Boundary for 256QAM and 64QAM

Amplitude, respectively. To derive the decision boundary, the
data is firstly normalized and then the Quasi-Newton algorithm
is used for determining the optimal hypothesis function, where
the logistic cost function are optimized [24].

The feature normalization aims to speed up the gradient
descent algorithm by scaling the X with the standard devi-

ation o, resulting a new Xgcaled = {Xscaled,Yscaled} =
{ x—mean(x) y-—mean(y) }
o(x) a(y) : .
In this system, we attempt to find the optimal parameter 6 of
the hypothesis function hg(Xscaled) to minimize the objective

function J(#), where the problem is as [25], [26]

mein J(0), (1)
where J(0) = 5= 3 (ho(XE 10q) — 20)% + A 3 62), with
i=1 j=1

m and n representing the number of training samples and
the coefficient # in the hypothesis function hy(Xgcalea)- The
second term in the bracket is the regularizer to avoid overfitting
[26]. The logistic regression cost function is as [26]

Cost(hg(Xscaled) — 2)

= leghe (scaled) + (1 - Z)log(l — hg (Xscaled))- @

Here, we use the binary classification to calculate the
minimized J (@), where z can be either 0 or 1. Note that the
hypothesis function hg(Xgcaled) is @ sigmoid function as

1
1 + eaTXscaled ’

hé) (Xscaled) = 3)

Then, we use the MATLAB’s built-in function fminunc
to find the minimum of Problem (1) using the quasi-newton
algorithm, where the best parameters of € can be used for
plotting the decision boundary as shown in Figs. 5 and 6
to predict the best modulation format. Specifically, we set
the regularization parameters A and j to be 0 and 28 for
obtaining the optimal decision boundary. Then, we validate
our model accuracy by feeding the original data as discussed
in the following.

As analysed in Section III-B, the decision boundaries of
Figs. 5 and 6 are used to predict the best modulation format
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using the regularization parameter A of 0 to avoid the underfit-
ting, where Fig. 5 aims to classify differentiate 256 QAM and
64 QAM using hg, (Xscaled ), While Fig. 6 show how to clas-
sify using QAM or other schemes exploiting hg, (Xscaled )-
Algorithm 2 based on hg, (Xscaled) and hg, (Xscaled ) predicts
the optimal modulation format.

Then, by feeding the original data as collected in Fig. 4,
we compare our predicted modulation format with the data
shown in Fig. 4, obtaining a training accuracy of 96.266667%.
Next section presents the real-time demonstration by inputting
random data into our proposed system.

Algorithm 2 Data Validation
1: if hgl (Xscaled) > 0.5% And h92 (Xscaled) < 0.5% then
Select 256QAM
elseif hy, (Xscalea) < 0.5% And hg,(Xscaled) >
0.5% then
Select 64QAM
else
Select Others (i.e. those below 64-QAM)
endif

IV. SIMULATION RESULTS AND ANALYSIS

In this section, we input the random data while setting the
optical power ranging from -10 dBm to 15 dBm!. Specifically,
the input optical power level and the input RF power level are
evaluated by the learning network of the CU of Fig. 3. The
logistic regression model performed in the learning network
of the CU of Fig. 3 will select the optimal modulation format?
used for the downlink RF signal based on Algorithm 2. Note
that Logistic regression has a low computational complexity,
which makes it practical for low latency applications [18],

IFor the power range lower than -10 dBm and those larger than 15 dBm, the
EVM perfomance exceeds the 3GPP’s EVM requirement due to the poor SNR
and due to the fiber-nonliearity, respectively [1], which would be automatically
regarded as "None”

2In this paper, we evaluate the optimal optical power whilst fixing the
RF power as an example to verify that the learning aided logistic regression
method can be used in our design. The RF power can also be optimised using
the same process.
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Fig. 7. The dynamic range of the proposed system

[19], [26], while the conventional closed-form solution using
normal equation [25] will be very slow when data is very large
[18], [19].

Then, the modulated downlink RF signal is E/O converted
by the MZM of Fig. 3, and then the RF signal is transmitted
by the A-RoF system to the RRH for a more-robust and
enhanced-data-rate wireless transmission. As shown in Fig.
7, a real-time transmission selecting 64 QAM and 256 QAM
is demonstrated. The red-line of Fig. 7 illustrates the power
range for selecting 256-QAM or 64-QAM, with the upper line
representing the 256-QAM transmission and the bottom line
the 64-QAM transmission. Note that the results in this section
are generated using the parameters in Table 1.

As analysed in Fig. 7, 64 QAM is selected when the optical
power ranges from -7 dBm to -4 dBm and from 9 dBm to 13
dBm, while the system selects 256 QAM when the power
spans from -4 dBm to 9 dBm. Furthermore, we can conclude
from Fig. 7, the dynamic range has been improved from the
12 dBm of only using 256 QAM for transmission as shown in
the right graph of Fig. 2 to 19 dBm as shown in Fig. 7. Thus,
the proposed system avoids the re-customization of the system
parameters, such as the RF power, optical power, waveform,
etc., since we can adaptively select the best modulation format
based on the on-line training data, which reflects the context,
to maintain the system reliability.

Meanwhile, the spectral efficiency is enhanced by a factor
of % when the power ranges from -4 dBm and 9 dBm, thanks
to the transmission of 256 QAM. Note that when the optical
power is lower than -4 dBm and higher than 13 dBm, neither
64 QAM nor 256 QAM is capable of meeting the 3GPP’s
requirement, so other modulation formats below 64-QAM
should be considered.

Fig. 8 shows the probability density function (PDF) of
the modulation formats along side the optical power range,
where we can predict the best modulation format based on
the optical power given. Hence, by on-line updating the
training data, we can obtain updated optimal logistic regression
model, adaptively predicting the optimal modulation formats,
improving the system robustness and channel capacity, and
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increasing the dynamic range.

V. CONCLUSIONS

In this paper, inspired by the low-cost and bandwidth-
saving of the A-RoF technique in the C-RAN, we proposed
a learning aided A-RoF system using supervised learning.
The less-robustness and poor-performance were addressed
using the learning network implemented in the CU, where
we invoked the logistic regression classification and improved
the data rate by a factor of % and dynamic range of %.
Furthermore, we can adaptively select the modulation format
relying on the training model, effectively removing the need
for re-customization, which is seen as the major obstacle for
the A-RoF’s commercialization. Furthermore, the nonlinearity-
induced poor dynamic range can be extended from 12 to
19 dBm thanks to the fast learning aided logistic regression
method.
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