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Actions on trees are powerful tools for understanding the structure of a group. In this
thesis, we use them to understand separability and automorphisms of free products,
and automorphisms of free-by-cyclic groups.

This is a three paper thesis; the main body of the work is contained in the following
papers:

[1] Naomi Andrew. A Bass–Serre theoretic proof of a theorem of Burns and Romanovskii.
Preprint, July 2021, available at arXiv:2107.02548.

[2] Naomi Andrew. Serre’s property (FA) for automorphism groups of free products. J. Group
Theory, 24(2):385–414, 2021.

[3] Naomi Andrew and Armando Martino. Free-by-cyclic groups, automorphisms and actions
on nearly canonical trees. Preprint, June 2021, available at arXiv:2106.02541.

In [1], we use properties of actions on trees – described in the combinatorial language
of graphs of groups, due to Bass and Serre – to re-prove that free products of subgroup
separable groups are themselves subgroup separable.

In [2], we suppose G is a free product of groups and investigate when Aut(G) admits
actions on trees. Under the assumption that the factor groups are freely indecompos-
able and not Z (for example, if they are finite) this depends only on a count of the
isomorphism classes appearing in the decomposition. To build actions on trees we use
length functions and a theorem of Culler and Morgan; to rule them out we use com-
mutation relations within the automorphism groups.

In [3], we investigate the outer automorphisms of free-by-cyclic groups, and in some
cases prove that they are finitely generated. To do this we introduce the notion of a
“nearly canonical” action on a tree, construct such an action for certain free-by-cyclic
groups, and use these actions to understand the outer automorphisms.
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1

Introduction

In this introduction we provide background material and context for the three papers
that form the main body of the thesis. Note that the ordering of the papers within the
thesis does not reflect publication or posting dates but rather the order I worked on
them during my PhD.

Papers 1 and 2 are single author papers; Paper 3 is a joint paper with Armando Martino
(my supervisor).

The statements and proofs in Section 4 were largely my work; the statements and proofs
in Sections 5 and 6 were formulated and improved together over the course of several
meetings. (For example, Armando suggested using limiting trees in the rank 3 linear
case, while I spotted the connection to trees of cylinders and the extension to the general
linear case.)

I wrote the majority of the first draft; we both reviewed and revised the manuscript
before finalising it.

All three papers rely substantially on Bass–Serre theory, which studies groups with
actions on trees via those actions. How they do so varies: all three consider actions
for specific classes of groups (free products, automorphisms of free products, or free-
by-cyclic groups and their automorphisms), and take differing perspectives on these
actions. Paper 1 is more combinatorial, using covers and immersions from [2] to con-
struct subgroups with desired properties. Paper 2 is concerned with when an action
exists, using the geometry of trees to construct large fixed subgroups, and Paper 3 in-
volves constructing (nearly) canonical actions, in order to understand properties of the
automorphism group.

For this reason, this introduction is not divided according to the papers: however, it is
not necessary to read the whole introduction for each paper. All three papers rely on
material in Sections 1 and 2; for the other chapters, the dependencies are:

Paper 1 Section 3;

Paper 2 Section 4;
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Paper 3 Sections 4-6.

In particular, Sections 4-6 are independent of Section 3. Material on free groups is
included throughout, since they make for good examples. However, they are strictly
speaking only necessary for the final introductory section (on Out(Fn)) and Paper 3.

1 Groups and Presentations

We begin with a brief review of free groups and group presentations, taken largely from
[54, Sections I.1 and II.1-2]

Given a set X, the free group on X, F(X) is defined as follows.

Consider words x1x2 . . . xn, where each xi is an element of X ∪ X−1 (an element of X−1

is a “formal inverse” x−1 of some element x of X). An elementary reduction consists
of removing a pair yy−1 or y−1y from a word, and we impose the equivalence relation
generated by all elementary reductions: this sets equivalent any words which can be
transformed into each other by a sequence of elementary reductions, and insertions of
pairs yy−1 or y−1y. Every word is equivalent to a unique reduced word under this
relation. We also allow the empty word.

The free group F(X) is the set of reduced words under concatenation (followed by
reduction, if necessary). It satisfies a universal property: every map from X to a group
G factors through the inclusion X ↪→ F(X) (as words of length one) and a unique
homomorphism F(X) → G:

F(X)

X G

In fact, this universal property may be taken as a definition; the definition given above
serving to verify that objects exist which satisfy this property. Two free groups F(X)

and F(Y) are isomorphic if and only if the sets X and Y have the same cardinality; when
|X| = n, we write Fn.

Given any group G and a subset X ⊆ G, say that X generates G if for every element g of
G we can write g = x1x2 . . . xn as a product of elements of X (the trivial element is the
empty product, in this context). If there is some finite set X which generates G then G
is said to be finitely generated; sometimes written G = ⟨X⟩.

If X generates G there is a homomorphism from F(X) to G by the universal property
for free groups; so to describe G we need only to give a generating set X and describe
the kernel of this map, N. Sufficient information is a “normal generating set” of this
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subgroup: that is a set of elements R where every element of N is a product of conju-
gates of elements of N. The set R is said to be a set of relators. Then G has a presentation
⟨X : R⟩.

Sometimes it is more instructive to give elements of R as relations of the form u =

v (where u and v are elements of the free group F(X)). The information is always
equivalent: a relator r can be viewed as a relation r = 1, and so a relation u = v implies
uv−1 is a relator.

A group G is said to be finitely presented if it has a presentation ⟨X : R⟩ where both X
and R are finite sets.

For example, ⟨X :⟩ is a presentation of F(X), and it is a finite presentation whenever X
is a finite set. Another example is ⟨x : xn⟩, which is a presentation of the finite cyclic
group with order n. We also have that Z2 = ⟨x, y : x−1y−1xy⟩ (giving R as a relator) or
equivalently ⟨x, y : xy = yx⟩ (giving R as a relation).

There are many different presentations for every group; and even many finite presen-
tations for any finitely presented group. One way to find more is by using Tietze trans-
formations:

Definition 1.1. Tietze transformations are the following two kinds of operation on a
group presentation:

• Introducing or removing a relation implied by the other relations (that is, any
relation implying a relator already contained in the normal subgroup N of F(X)).

• Introducing a new generator and a relation setting it equal to some element of the
group, or removing such a generator and relation (substituting all its occurrences
in the other relations).

The first kind alters just the relations; the second kind the relations as well as the gen-
erators. In some sense, these transformations describe all the ways to change a presen-
tation:

Theorem 1.2 ([54, Proposition II.2.1]). Two finite presentations ⟨X1 : R1⟩ and ⟨X2 : R2⟩
define isomorphic groups if and only if there is a finite sequence of Tietze transformations taking
one to the other.

Note that the theorem does not explicitly construct the transformations required, so it
is less useful than it might at first appear.

New Groups From Old

We introduce a few ways of combining groups. First,
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Definition 1.3. Suppose two groups are defined via presentations as G1 = ⟨X1 : R1⟩
and G2 = X2 : R2. Their free product is defined as G1 ∗ G2 = ⟨X1 ∪ X2 : R1 ∪ R2⟩.

Free products satisfy a universal property similar to free groups: the inclusions of G1

and G2 into G1 ∗ G2 are such that that given homomorphisms G1 → H and G2 → H,
they factor through the inclusions and a unique homomorphism G1 ∗ G2 → H.

G1

G1 ∗ G2 H

G2

We can also define a free product of any set of groups, by combining the presentations
in the same way. (The free product of no groups is the trivial group.) The same prop-
erty (and diagram) can be constructed for general free products; in fact they are the
coproduct for groups.

We also note here two other constructions:

Definition 1.4. Let N = ⟨X1 : R1⟩ and H = ⟨X2 : R2⟩ be groups and Ψ a map H →
Aut(N). The semidirect product of N by H with respect to Ψ is

N ⋊Ψ H = ⟨X1, X2 : R1, R2, h−1nh = Ψ(h)(n) ∀n ∈ N, h ∈ H⟩.

That is, conjugation by elements of H acts as a specified automorphism on N. A partic-
ular kind of semidirect product is known as a wreath product:

Definition 1.5. A permutational wreath product H ≀ Sn is a semidirect product Hn ⋊ Sn,
with the action of Sn being to permute the factors of Hn.

(This definition works in more generality, with the right hand group equipped with an
action on some set X and taking the kernel of the semidirect product to be H|X|.)

Group Actions

Throughout the introduction (and the papers) we consider actions of groups on objects:
often but not always trees. A group action of G on an object X is a homomorphism from
G to Aut(X), the transformations of X; equivalently it is a map X × G → X satisfying
x · 1 = x and x · (gh) = (x · g) · h). Throughout, actions are generally taken to be on
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the right. Whenever G acts on a object X, X is called a G-object; Fix(g) refers to those
elements x ∈ X where xg = x, and Gx to the stabiliser of x, {g ∈ G|xg = x}.

A map f between two G-objects X, Y is equivariant if for every element x of X and
g of G we have that f (xg) = ( f (x))g. There is also a more general notion: given a
homomorphism φ : G → H, a G-object X and an H-object Y, a map f : X → Y is
φ-equivariant if for every element x of X and g of G, f (xg) = ( f (x))(φ(g)). (If we take
φ to be the identity homomorphism, this recovers the simpler notion.)

2 Actions on Trees

Trees are reasonably simple combinatorial objects, which makes them powerful tools
for studying groups which act on them. We largely follow [63] and [2]; there are other
expositions in for example [26]. We begin by exploring the geometry of trees and some
properties of group actions on trees, before moving onto the framework of Bass–Serre
theory used to study groups with these actions. Note that most sources put the actions
on the left; here they will be on the right.

Definition 2.1 (Serre). A graph Γ consists of a set of vertices VΓ and a set of edges EΓ,
together with two maps: ι : EΓ → VΓ; and an involution EΓ → EΓ, e 7→ e. We also
define τ : EΓ → VΓ, τ(e) = ι(e). An orientation of Γ is a choice of one edge from each
pair {e, e}.

For an edge e the vertices ι(e) and τ(e) are referred to as the initial and terminal vertices
of e respectively. Since τ(e) = ι(e), the initial vertex of e is the terminal vertex of e, and
conversely.

These graphs are combinatorial objects, but we can – and frequently do – think of them
geometrically: as CW complexes, with vertices corresponding to zero cells and edge-
pairs corresponding to one cells. The attaching maps are then ι(e) and τ(e). They
are also metric spaces, by giving each geometric edge length 1, identifying it with the
interval [0, 1], and taking the length of the shortest path between any two vertices.
This is the edge path metric. This definition allows loops and double edges, so these
graphs are not simplicial. However, by subdividing twice, any graph can be made into
a simplicial graph.

The formalism of edge-pairs (with twice as many edges as geometrically required) is
not strictly necessary, but we do need a way to distinguish direction of travel along a
geometric edge, and this is one such way: traversing e and e correspond to travelling
in different directions.

Definition 2.2. A path of length n is a sequence of edges e1e2 . . . en such that τ(ei) =

ι(ei+1) for all 0 < i < n. A cycle is a path where in addition τ(en) = ι(e1). A path or a
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cycle is called reduced if no pair eiei+1 is of the form ee, and a cycle is cyclically reduced if
it is reduced and in addition ene1 is not of the form ee.

We can extend the notion of “reversing” to paths as a whole: if p = e1e2 . . . en, then we
say p = en . . . e1.

Definition 2.3. A graph Γ is connected if for every pair of vertices u ̸= v in Γ there is a
path with ι(e1) = u and τ(en) = v.

In this case, we will also have that p is a path from v to u.

A tree is a particularly simple kind of graph:

Definition 2.4. A forest is a graph with no cycles; a tree is a connected forest.

Alternatively, we can express the property of “being a tree” in terms of paths:

Lemma 2.5. A graph T is a tree if and only if there is a unique reduced path between any two
vertices.

Proof. A graph is connected precisely when there are paths joining any two vertices, so
it remains to check that the uniqueness of these paths is equivalent to there being no
cycles.

Suppose T is a tree. If there were two distinct reduced paths p, q joining u and v, then
pq must (after reduction, if necessary) be a non-trivial cycle. So in fact the path joining
u and v must be unique.

Conversely, suppose there is a reduced cycle e1 . . . en in the graph. Then for any 0 < i <
n, the paths e1 . . . ei and en . . . ei+1 both join ι(e1) to τ(ei), and they are reduced (since
the cycle was) and distinct for the same reason: since the cycle is reduced, ei ̸= ei+1.

Definition 2.6. A graph map f : Γ1 → Γ2 consists of maps E(Γ1) → E(Γ2) and V(Γ1) →
V(Γ2) satisfying f (e) = f (e) and f (ι(e)) = ι( f (e)).

This is a fairly restrictive definition of a graph map, but it is the most useful for group
actions on graphs or trees. Other notions – allowing edges to collapse, or to be sent to
paths with length greater than 1 – are possible, and are used for example in the contexts
of deformation spaces (see Section 5).

We say a group acts on a graph if it does so by invertible graph maps: edges are sent to
edges, vertices to vertices, preserving adjacency. We also demand that the actions are
without inversions: that eg ̸= e for all edges e and group elements g. This ensures that
the the quotient object is itself a graph: its vertices and edges are the orbits of vertices
and edges (respectively) under the action. It also means that an edge stabiliser Ge is
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1 a

b

a−1

b−1

a2

ba

FIGURE 1: The Cayley graph for F2 = ⟨a, b :⟩, showing the hyperbolic axis of a in blue.

contained in the adjacent vertex stabilisers. This does not actually restrict the actions
we can consider, since we can always achieve it by subdividing every edge.

Viewing the graph as a metric space, this corresponds to an action by isometries: the
shortest path between two vertices must be sent to the shortest path between their
images. We largely consider groups acting on trees. Within a tree, use [v, w] to denote
the unique shortest path (or geodesic) joining the vertices v and w.

Example 2.7. The free group F2 acts freely on the infinite four-regular tree.

We can construct this tree T as follows: fix a basis {a, b} for F2. The vertex set is the
set of elements of F2, and there is an edge between two vertices u and v if u = sv
with s ∈ {a, b, a−1, b−1}. This tree is shown in Figure 1. (This is a Cayley graph for
this presentation F2 = ⟨a, b :⟩, although the multiplication is taking place on the left to
facilitate a right action.)

We need to check that T is a tree: it is connected since {a, b} generates F2. Suppose there
is a reduced cycle in the graph. Then (picking any vertex v in the cycle) we must have
that s1 . . . snv = v, where si ∈ {a, b, a−1, b−1} are the generators (or inverses) defining
each edge. But these are elements of F2, and so equality only holds if s1 . . . sn = 1.
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Since the cycle was reduced this word must be too: but since there is only one reduced
word in each equivalence class, it must also be empty. So there cannot be a non-trivial
reduced cycle in T.

There is a right action of F2 on T: right multiplication permutes the vertices, since vg
is still an element of F2. We need to check adjacency: suppose we have an edge [v, sv]:
then under g these vertices become vg and svg, and since these differ by s (on the left)
there is another edge [vg, svg]. If there was an inversion, it would imply (amongst
other things) that for some v, g ∈ F2, vg2 = v and so that g2 = 1: but there are no
torsion elements in F2 so this cannot happen.

By the same argument, vertex (and hence edge) stabilisers are trivial. The quotient
graph is a “rose with two petals”: there is one orbit of vertices, and two of edges. One
edge orbit consists of edges of the form [v, av] and the other of edges [v, bv].

Note that the fundamental group of this graph is F2 again: this is a simple example of
the fact that the fundamental group of a space acts freely on its universal cover (when it
exists) [43, Proposition 1.39]. The same arguments hold for Fn, giving a regular tree with
valence 2n and a quotient graph with one vertex and n edges. In fact (see for example
[63, Theorem I.4]) a group acts freely on a tree if and only if it is a free group: the other
direction can be seen topologically, by an argument about fundamental groups and
universal covers, or more combinatorially, by equivariantly collapsing a maximal tree
in the quotient graph in order to recover a tree and action realising the Cayley graph
again.

Stallings [65] uses this idea (expressed purely combinatorially) to express statements
about free groups in terms of coverings of graphs. See for example the proof of Theo-
rem 3.6, which follows Stallings’ proof.

Of course most actions are not free, and the stabilisers can complicate the situation.
Here are some general facts about group actions on trees.

Lemma 2.8. If a group G acts on a tree T, then each element g either fixes a point or preserves
and translates along a line.

Proof. Suppose g does not fix a point, and let v be any vertex. If vg = vg−1 then the
path [v, vg] is inverted by g, in which case the midpoint is a fixed vertex (if it has even
length) or the middle edge is inverted (if it has odd length). Neither is possible, so vg
and vg−1 are distinct. The paths [v, vg−1] and [v, vg] intersect in a segment [v, u], which
is strictly shorter than [v, vg−1], although possibly has length 0, if v = u.

Consider the vertices ug and ug−1. Again, these must be distinct (and distinct from u),
otherwise there is a fixed point or inverted edge. Say there is a segment [x, y1, . . . , yn, z]
if the points y1, . . . , yn lie on the geodesic [x, z] in the given order.
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axis(g)

vg−1 v vg vg2

ug−1 u ug

x

FIGURE 2: Constructing axis(g) when g does not fix a point

Since there is a segment [vg−1, u, v], there is also a segment [v, ug, vg]. Similarly there is
a segment [vg−1, ug−1, v] because there is a segment [v, u, vg]. Since there are segments
[v, ug, vg] and [v, u, vg], there must either be a segment [v, u, ug, vg] or [v, ug, u, vg]. (As
u and ug are distinct, only one of these occurs.) We will see that it must be [v, u, ug, vg].

Suppose not, so instead there is a segment [v, ug, u, vg]. (For instance, ug might be at the
point labelled x in Figure 2.) Then, applying g−1, there is a segment [vg−1, u, ug−1, v].
That is, ug−1 also lies between u and v.

But then ug and ug−1 are the same point, since they both lie in [u, v] and are the same
distance from u, contradicting the fact they are distinct.

So there are segments [v, u, ug, vg] and [vg−1, ug−1, u, v] (by applying g−1). These inter-
sect only along [u, v], so [ug−1, u] and [u, ug] intersect only at u. Therefore the concate-
nation of [ug−1, u] and [u, ug] cannot contain a backtrack and so is exactly the segment
[ug−1, u, ug].

Similarly, [ugn−1, ugn] and [ugn, ugn+1] concatenate to give [ugn−1, ugn, ugn+1]. So the
images of [u, ug] under gn as n varies form a line, preserved by g, and on which g acts
by a translation of length d(u, ug).

The point u constructed in this proof is sometimes called the Y-point of vg−1, v, and vg,
and does not depend on the order in which vg−1, v, and vg are taken [15, Lemma 2.1.2].

Definition 2.9. An element preserving a point is called elliptic. An element translating
along a line is called hyperbolic, and that line its hyperbolic axis In addition, if a subgroup
H of G has a common fixed point, the subgroup is again called elliptic.

Lemma 2.10. Suppose G acts on a tree T and H ≤ G has non-empty fixed point set. Then
Fix(H) is a subtree of T.

Proof. Since edge stabilisers are contained in vertex stabilisers, Fix(H) will be a sub-
graph and hence a subforest of T. We need to show it is connected. To do this, suppose
u and v are fixed by H, and let p be the unique reduced path joining them. Then for all
h ∈ H, we have that uh = u, vh = v, and ph is the unique reduced path joining them.
But since it is unique, this implies that ph = p, so all edges and vertices in p are again
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Fix(g) Fix(h)

p

FIGURE 3: A schematic of the situation described in the proof of Lemma 2.11

fixed by h: any pair of points fixed by h are joined by a path also fixed by h. This was
true for all elements of H, so Fix(H) is connected.

This strategy of arguing about a unique path joining two vertices can be very fruitful.
Here is another example:

Lemma 2.11. Suppose a group G acts on a tree, and has elements g, h which are elliptic and
commute. Then they have a common fixed point.

Proof. Let v be fixed by g, and consider its image under h: vh = vgh = vhg, so Fix(g)
is preserved by h. Similarly, Fix(h) is preserved by g. Either these fixed point sets
intersect, or there is a unique path p joining them. (See Figure 3: Uniqueness follows
since if there were two such paths joining them, there would be a cycle consisting of
those paths, and paths contained in Fix(g) and Fix(h) joining the endpoints.) But since
both elements preserve both fixed point sets, they must both fix p, and there was a
common fixed point after all.

The same argument shows that two commuting elliptic subgroups have a common
fixed point.

There is a useful characterisation of the hyperbolic axis of an element in terms of the
way an edge is moved by the element:

Lemma 2.12. Suppose T is a G-tree, g an element of G, and u a vertex of T that is not fixed by
g. Let v be the first vertex (after u) on the path [u, ug]. Then vg is outside [u, ug] if and only if
g is hyperbolic and u and v are contained in axis(g).

Proof. Certainly if vg is contained in [u, ug] then g is not translating along a line includ-
ing that segment. So suppose vg is outside [u, ug]. Then the intersection of [u, ug] and
[ug, ug2] is only the vertex ug, and as in the proof of Lemma 2.8 the union of the images
of the segment [u, ug] under g form the axis of g.
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axis(g)u ugv vg

v′ v′g

FIGURE 4: The segment [u, v] is translated and contained in axis(g); the segment [v′, u]
is not.

The situation is shown in Figure 4. In this case we say the edge [u, v] is translated by
g. (Other terminology is possible; for example Serre uses “coherent under g”.) If this
edge is not translated by g, then the axis or fixed point set of g includes the midpoint
of [u, ug].

This argument is valid even if v = ug; alternatively, one can equivariantly subdivide
the first edge to guarantee a vertex between them.

A group can act on multiple trees in multiple ways, but some of these differences are
more interesting than others. For example, given an action on a tree, we can add a
new edge and then a leaf vertex at every vertex: the new edges and vertices will have
to share the stabiliser of the vertex to which they are attached. Many more “new”
actions can be constructed in similar ways, by adding subforests and extending the
original action. The tree we started with is a subtree of the tree we have constructed,
and the action can be restricted back to this subtree – we didn’t change the existing
orbits, only added new ones. Often we might want to consider an actions which cannot
be restricted to an invariant subtree, which leads to the following definition.

Definition 2.13. An action on a tree is called minimal if it has no proper invariant sub-
trees.

It turns out that – in most situations – we can pass to a minimal subtree.

Proposition 2.14. If a group G acting on a tree T has hyperbolic elements, there is a unique
minimal invariant subtree of T which is the union of the hyperbolic axes of elements of G.

Proof. First, the collection of hyperbolic axes is G-invariant, as axis(g) · h = axis(h−1gh).
To see this, consider the situation as shown in Figure 5; the four colinear points on
axis(g) must be sent by h to four colinear points in the same order. Then Lemma 2.12
implies that they lie on axis(h−1gh). The same is true for any points along the axis of g,
so the image must be exactly axis(h−1gh).

To show that it is a subtree, we need to show it is connected. Suppose g and h are
hyperbolic elements, and consider their axes. If they do not intersect, we consider
axis(gh). See Figure 6: that the blue shaded section is part of axis(gh) can be checked
by using Lemma 2.12 with the vertices u and v. In particular, gh is hyperbolic, and its
axis intersects the axes of both g and h.
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axis(g) · h
u = xh v = yh u(h−1gh) v(h−1gh)

axis(g)

x

y

xg

yg

h

FIGURE 5: The image under h of the axis of g is the axis of h−1gh.

axis(g)

axis(h)

u ugv vg

ugh vgh

xxh

FIGURE 6: If the axes of g and h do not intersect, then the axis of gh (shown in blue)
intersects both.

Finally we show that any invariant tree contains every axis. To see this, consider any
vertex v in an invariant tree, and its image vg under any hyperbolic element. The
invariant tree must contain the segment [v, vg] joining them, and this contains part of
the axis (as in the proof of Lemma 2.8). Let u be the nearest point to v in axis(g): then
ug is the nearest point to vg. So the invariant tree contains [u, ug], and iterating g and
g−1 will translate this segment across the whole axis, which must again be contained in
the invariant tree.

If there is a global fixed point, then depending on the situation we may want to consider
one point (though this is usually not unique) or all (though this is usually not minimal)
of the fixed point set in similar situations. There are actions on trees where despite ev-
ery element being elliptic there is no global fixed point (see the proof of Theorem 2.32),
but these cannot be minimal.

Graphs of groups and Bass–Serre theory

The idea of a graph of groups is to combinatorially encode sufficient information in
a (usually finite) graph to describe a group action on a tree. It turns out (see Theo-
rem 2.24) that what is required is the quotient graph and the vertex and edge stabilisers.
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This is not the case for general actions on graphs – for example, taking Γ to be a cycle
with n vertices acted on by the cyclic group Cn, then the action is always free, and the
quotient always has one vertex and one edge. So we could not hope to recover the
original group or action from this data. But the (topologically) simpler structure of
trees means that there is enough information to reconstruct the action.

The definitions here are closest to those used in [2], although it is worth noting that
here they are changed so the action on the Bass–Serre tree will be on the right.

Definition 2.15. A graph of groups G consists of a graph Γ together with groups Gv for
every vertex and Ge = Ge for every (oriented) edge, and monomorphisms αe : Ge →
Gτ(e) for every (oriented) edge.

The fundamental group of a graph of groups can be defined in two ways, with respect
to a maximum tree of the graph, and by considering loops in the graph of groups. We
take the second route, which simplifies some subsequent calculations.

Definition 2.16 (Paths). Let F(G) be the group generated by all the vertex groups and
all the edges of G, subject to the additional relations eαe(g)e = αe(g) for g ∈ Ge. Note
that taking g = 1 this gives that e−1 = e, as expected.

Define a path (of length n) in F(G) to be a sequence g0e1g1 . . . engn, where each ei has
ι(ei) = vi−1 and τ(ei) = vi for some vertices vi (so there is a path in the graph), and
each gi ∈ Gvi . A loop at v0 is a path where v0 = vn.

Some authors treat the set of all paths in F(G) as a groupoid, denoted π(G) in [2],
and called the fundamental groupoid; the multiplication is inherited from F(G), with the
product of two paths defined precisely when their endpoints match.

Definition 2.17 (Reduced paths). A path is reduced if it contains no subpath of the
form eαe(g)e (for g ∈ Ge). A loop is cyclically reduced if, in addition to being reduced,
en(gng0)e1 is not of the form eαe(g)e.

Every path is equivalent (by the relations for F(G)) to a reduced path, and similarly
every loop is equivalent to both a reduced loop and a cyclically reduced loop. In general
these reduced representations are not unique, although all equivalent reduced paths
(and cyclically reduced loops) will have the same edge structure:

Theorem 2.18 (see [63, Theorem I.11] or [2, Theorem 1.8, Corollary 1.10]).

(1) A reduced path represents the trivial element of F(G) if and only if it has length 0 and
g0 = 1.

(2) Two reduced paths representing the same element of F(G) have the same edge structure.
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Remark 2.19. It is a consequence of this theorem that vertex groups embed in F(G),
by the map taking g (as an element of Gv) to g, the path of length 0 at v. With only
one edge, the first statement reduces to Britton’s lemma (see [54, Theorem VI.2.1] and
the surrounding section), and in fact by adding an edge at a time inductively this more
general statement is a consequence of Britton’s lemma. A proof of the second statement
proceeds by induction, given the first: the base case is paths of length 0, then for the
inductive step one observes that if p and q are reduced and represent the same element
then pq−1 is not reduced, but the only possible location of s segment eαe(s)e is between
the last edge of p and the first of q−1.

Note that a cyclically reduced loop is only defined up to a choice of initial vertex, and
might not include the initial (and terminal) vertex v0 of the original loop.

Definition 2.20. The fundamental group of G (at a vertex v) is the set of loops at v in
F(G), and is denoted π1(G, v). The multiplication is that of F(G), restricted to these
loops. (Equivalently, this is the multiplication from the fundamental groupoid, since in
the groupoid the product of two loops at the same vertex is always defined.)

Note that loops are counted equal if they are equal under the relations for F(G), so
(for example) two equivalent reduced loops are “the same” for this definition. The
isomorphism class of this group does not depend on the vertex chosen. (In fact, the two
groups obtained by choosing different base vertices are conjugate in the groupoid.)

We take the corresponding definition of the Bass-Serre tree:

Definition 2.21 (Bass-Serre Tree). Let T be the graph formed as follows: the vertex set
consists of ‘cosets’ Gw p, where p is a path in F(G) from w to v. There is an edge(-pair)
joining two vertices Gw1 p1 and Gw2 p2 if p1 = egw2 p2 or p2 = egw1 p1 (where gw ∈ Gw).

Anticipating the next proposition, the graph T is usually called the Bass–Serre tree (or
universal cover) for G.

Proposition 2.22. The graph T defined in Definition 2.21 is a tree, and it has a natural right
action of π1(G, v) which is without edge inversions.

Proof. First we see that T is a tree: by following the defining path p we can connect
each vertex to the vertex Gv. If it contains a reduced cycle there is some Gw p = Gw with
p reduced. But as cosets of Gw in F(G) this implies that p ∈ Gw, and in particular has
length 0: so there are no non-trivial reduced cycles.

Since loops at v both start and finish at v, π1(G, v) acts on the right on the set of vertices,
preserving adjacency. To see it is without edge inversions, we begin by investigating
vertices and showing that g ∈ π1(G, v) fixes a vertex if and only if it cyclically reduces
until it has length 0.
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Suppose g stabilises some vertex Gu p. Then Gu pg = Gu p, which implies that g is an
element of p−1Gu p. (Conversely any such element fixes Gu p; in particular the stabiliser
is isomorphic to Gu.) Note that this implies that any vertex stabiliser has cyclically
reduced length 0. The converse is true too: suppose g has cyclically reduced length 0,
then we can write g = p−1hp where h is an element of Gw, with w the initial vertex of
p. In particular, g fixes the vertex Gw p.

Now note that if g has cyclically reduced length n, gk (for k ≥ 1) has cyclically reduced
length nk: write g = php−1 where php−1 is reduced as written (this condition ensures
that p has the shortest edge structure possible) and h is cyclically reduced; then g2 =

ph2 p−1 and h2 must be reduced (in fact cyclically reduced). So g2 has cyclically reduced
length 2n; proceeding inductively gives the result for general k.

If g inverts an edge e, g2 fixes the vertices at each end of e, and so has cyclically re-
duced length 0; but this can only happen if g had cyclically reduced length 0, in which
case it fixes a vertex. But g fixes the midpoint of the alleged inverted edge and not
its endpoints; in particular it cannot fix the path between this midpoint and the sta-
bilised vertex, so the fixed point set would not be connected. So no edge inversions are
possible.

In fact, the action is precisely characterised by the initial graph of groups.

Definition 2.23 (Quotient graph of groups). Given a group G acting on a tree T, there
is a quotient graph of groups formed by taking the quotient graph from the action and as-
signing edge and vertex groups as the stabilisers of a representative of each orbit from a
fundamental domain. Edge monomorphisms are then the inclusions, after conjugating
appropriately if incompatible representatives were chosen.

Theorem 2.24 (Structure theorem, see [2, Corollary 3.7],[63, Theorem I.13]). Up to iso-
morphism of the structures concerned, the processes of constructing the quotient graph of groups,
and of constructing the fundamental group and Bass-Serre tree are mutually inverse.

Remark 2.25. The appropriate notion of equivalence at the graph of groups level is
characterised by isomorphism of the underlying graphs, together with isomorphisms
of corresponding edge and vertex groups (and those isomorphisms must be compatible
with the edge monomorphisms).

The appropriate notion of isomorphism for groups acting on trees is an isomorphism
of groups and an equivariant isometry of trees (that is, f (x · g) = f (x) · (gφ)).

Careful choice of fundamental domain makes these isomorphisms more obvious: for
example, most times there is a choice we will be wise to choose the fundamental do-
main so it includes Gv.
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It is worth noting that there is a more general notion of morphism of graphs of groups,
corresponding to group homomorphisms and equivariant maps between trees the groups
act on. The details are complicated in general; however they are spelled out in sufficient
detail for the case with trivial edge groups in Paper 1.

Example 2.26.

(1) The simplest example is one we have already seen: a graph can be viewed as a
graph of groups taking every edge and vertex group to be trivial. The funda-
mental group is the usual fundamental group of the graph, a free group, and the
Bass–Serre tree is the universal cover.

(2) Free products (see Definition 1.3) provide another example: if every edge group
is trivial, the fundamental group is isomorphic to the free product of the vertex
groups and a free group which is the fundamental group of the underlying graph.

(3) A free product with amalgamation (sometimes an amalgam) corresponds to a
graph of groups with two vertices and one edge, as shown in Figure 7a. Some-
times this group is written G1 ∗H G2.

(4) For example, SL2(Z) has a presentation ⟨x, y : x4 = 1, y6 = 1, x2 = y3⟩ which
corresponds to the amalgamated free product C4 ∗C2 C6 and the graph of groups
in Figure 7b.

(5) an HNN extension corresponds to a graph of groups with one vertex and one
edge (see Figure 7c. The edge inclusions specify two embeddings φ and ψ of
the subgroup C into A, and given a presentation ⟨X : R⟩ for A, the fundamental
group may be written ⟨X, t : R, t−1φ(h)t = ψ(h) ∀h ∈ C⟩. The new generator t
arises from the loop, and is sometimes called the stable letter. Sometimes an HNN
extension is written G∗C.

(6) A specific example of a HNN extension is the fundamental group of a Klein bottle,
which has presentation ⟨a, t : t−1at = a−1⟩, expressing it as an HNN extension of
Z (generated by a) with the edge group another infinite cyclic group (generated
by c, say): one embedding sends c to a, while the other sends c to a−1, as in
Figure 7d.

The subscript notation for amalgamated free products and HNN extensions is not very
precise: to understand the groups A ∗C B or A∗C we need to know the two embeddings
of the subgroup C, not just its isomorphism class. The last example gives the funda-
mental group of a Klein bottle as Z∗Z, but the same would be true of any presentation
⟨a, t : t−1amt = an⟩ with m, n ∈ Z ∖ 0. This is a presentation for the Baumslag–Solitar
group BS(m, n); two such groups are isomorphic if and only if {m1, n1} = {m2, n2} or
{m1, n1} = {−m2,−n2} [57].
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(D) The fundamental group of a
Klein Bottle

FIGURE 7: Example of graphs of groups

We can view the fundamental group of a graph of groups as iterating these two con-
structions (amalgamated free products and HNN extensions) over each edge of the
graph:

Lemma 2.27. Let e be any edge in a graph of groups G. Then

(1) if e is separating, π1(G) ∼= π1(G1) ∗Ge π1(G2), where G1 and G2 are the graphs of groups
defined on the connected components of Γ after removing e.

(2) if e is non-separating, π1(G) ∼= π1(G1)∗Ge , where G1 is the graph of groups obtained by
removing e.

Proof. First we pick basepoints for G, G1 and G2: let v = ι(e), and choose v as the
basepoint for G and G1. If e is separating, let w = τ(e) be the basepoint for G2. If e is not
separating, fix a (reduced) path p in F(G1) joining v and w = τ(e).

Let H be the graph of groups with one edge (identified with e, and with edge group
Ge) and in the separating case two vertices with vertex groups π1(G1, v) and π1(G2, w).
In the non-separating case take one vertex with vertex group π1(G1, v). Take the vertex
x corresponding to G1 to be the basepoint for H.

Note that in both cases the embeddings αe of Ge into π1(G1, v) are simply the inclusions
into Gv. Similarly, in the separating case, αe is the original inclusion into Gw. (In all these
situations we abuse notation a little by writing α for the inclusion into a vertex group
of H as well as the original inclusion into a vertex group of G.) However in the non-
separating case, we take the inclusion α′

e : Ge → π1(G1, v) to be the map s 7→ pαe(s)p−1,
reserving αe for the original map Ge → Gw.

Now we are in a position to define our map. The idea is to take a reduced path repre-
senting an element of π1(G, v), split it up every time there is an occurrence of e or e and
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replace the intermediate sections with elements of π1(G1, v) or π1(G2, w). Recall that
by Theorem 2.18 the edge structure of any reduced path is uniquely determined.

The remaining segments are paths in G1 or G2. In the separating case they are loops at v
or w and therefore elements of π1(G1, v) or π1(G2, w) as written. In the non-separating
case they may be loops at v or w, or paths from v to w or vice versa. Use the fixed path
p to rewrite all the cases as loops at v: a loop g at w should be taken to pgp−1, a path q
from v to w as qp−1 and a path r from w to v as pr.

This is a homomorphism. The edge relations not involving e are still satisfied in the
relevant subgraph; the edge relation over e is satisfied in the separating case since the
inclusions are the original inclusions here. It is also satisfied in the non-separating case
since eαe(s)e 7→ epαe(s)p−1e = eα′

e(s)e = αe(s). (Note that the final αe includes s into
π1(G1, v); this is the image under our map of the inclusion of s into Gv.

The kernel of this map is trivial: we use Theorem 2.18. If a reduced cycle is sent to a
path representing the trivial element and did not cross e then it represents the trivial
element of π1(G1, v), and so is also trivial in π1(G, v). So suppose it crosses e, in which
case there must be a reduction available. But since the edge group is just the edge group
in G, this implies the original cycle was not reduced.

It is also surjective; given an element of π1(H, x) we can “expand” every vertex group
element to a loop in π1(G1, v) or π1(G2, w). In the separating case this immediately
gives an element of π1(G, v); in the separating case we also need to insert p−1 after
each use of e and p before each use of e. In both cases the element of π1(G, v) we have
constructed maps to the given element of π1(H, x) (the p and p−1 cancel with those in
the homomorphism).

The equivalent procedure in the Bass–Serre tree is “equivariantly collapsing a subfor-
est” comprising the orbits of all edges other than the lifts of e.

Given a graph of groups G, we can define another graph of groups G ′ by taking a
subgraph Γ′ of the underlying graph together with the edge and vertex groups and
inclusions corresponding to Γ′. This is known as a subgraph of groups. A graph of groups
is called minimal if no proper subgraph of groups has isomorphic fundamental group.

Lemma 2.28 ([2, Proposition 7.12]). An action of a group G on a tree T is minimal if and
only if the quotient graph of groups is minimal.

Proof. If there is a proper invariant subtree T′, then consider the quotient graph of
groups with respect to just this subtree. By Theorem 2.24 the fundamental group is
isomorphic to G. This corresponds to a (connected) subgraph of the quotient graph
arising from T; edge and vertex stabilisers are the same so this is a subgraph of groups.
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Conversely, suppose G ′ is a subgraph of groups with isomorphic fundamental group.
Then (fixing a basepoint in G ′) every reduced cycle stays in G ′, since otherwise the
fundamental groups would not be isomorphic. In particular, there is no reduced path
to a vertex of G ′ that goes outside G ′, since composing with any reduced path inside
G ′ would give such a reduced cycle. So the Bass–Serre tree corresponding to G ′ can be
identified with a proper, π1(G)-invariant subtree of the Bass–Serre tree corresponding
to G.

Bass–Serre theory simplifies many proofs by allowing us to work with the geometry
arising from the action on the tree. As an example, consider the Kurosh subgroup
theorem on subgroups of free products.

Theorem 2.29 (Kurosh subgroup theorem [48]). Suppose G is a free product ∗Gi (over
some index set I) and H is a subgroup of G. Then H ∼= (∗ Hj) ∗ F where each Hj is isomorphic
to an intersection H ∩ Gki

i of H with a conjugate of some Gi Further, the set {Hj} is unique up
to conjugation and reindexing, and the rank of F is uniquely determined.

Proof. We may view G as acting on a tree T, with vertex stabilisers corresponding to the
conjugates of the free factors Gi and trivial edge stabilisers. (We can take T as the Bass–
Serre tree of any graph of groups with underlying graph a tree, trivial edge groups and
vertex groups corresponding to the Gi.) Any subgroup H of G acts on the same tree:
consider the quotient graph of groups H for this action. By the Structure Theorem 2.24,
H is isomorphic to the fundamental group of this quotient graph of groups. Since the
edge groups must still be trivial, this expresses H as a free product of the vertex groups
of H and the fundamental group of the underlying graph of H: the vertex groups are
isomorphic to H ∩ Gki

i for some element ki of G, and the fundamental group of the
graph provides the free group. Choosing different representatives for each vertex orbit
has the effect of conjugating the vertex groups, so the Hj are uniquely determined up
to conjugation; since the graph is determined by the action the rank of the free group F
is too.

We also record here a result about decomposing groups as free products:

Theorem 2.30 (Grushko decomposition). Any finitely generated group G can be decom-
posed as a free product G = G1 ∗ . . . Gk ∗ Fr, where the Gi are non-trivial, freely indecompos-
able and not infinite cyclic, and Fr is a free group of rank r. Further, the Gi are unique up to
conjugacy, and the rank of Fr is unique.

This decomposition theorem is a well known consequence of Grushko’s theorem on
the rank of free products [35, 59] and the Kurosh subgroup theorem; see for example
[64]. As Stallings notes, the existence of such a decomposition follows from Grushko’s
theorem , and uniqueness follows from the Kurosh subgroup theorem.
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Serre’s Property (FA)

Since actions on trees provide are useful for understanding a group, it is also useful to
know when to stop looking for one. Serre [63, Section I.6] defines and investigates the
property of “not having such an action”:

Definition 2.31. A group G has Property (FA) if whenever it acts on a tree it does so with
a global fixed point.

Serre provided an algebraic characterisation of this property.

Theorem 2.32 ([63, Theorem 15]). A countable group G has Property (FA) if and only if

(1) it is not a non-trivial free product with amalgamation,

(2) it has no quotient isomorphic to Z, and

(3) it is not finitely generated.

A trivial free product with amalgamation would be of the form A ∗A B where the edge
group is equal to one of the vertex groups. This proof is essentially Serre’s, adapted
slightly for the way we have set up graphs of groups above.

Proof. First we show that if any of the conditions hold then G admits a non-trivial action
on a tree.

If G is a free product with amalgamation, then we can represent G as the fundamental
group of a graph of groups with two vertices and one edge, and G acts on the Bass–
Serre tree for this graph of groups. Assuming both inclusions of the edge group are
proper, there are elements which do not stabilise a point in this tree. The infinite cyclic
group Z acts by translation on the tree consisting of a single line, and so any group
admitting a quotient to Z does too.

Now suppose G is not finitely generated. In this case G is the union of a strictly increas-
ing sequence of subgroups G1 < G2 < G3 < . . . : one way to construct such a sequence
is to enumerate an infinite generating set {g1, g2, . . . }, and add one generator at a time.
Perhaps the generating set was not minimal, so adding some generator gi will not lead
to a new subgroup. In this case we should discard that step; but the process cannot
terminate, since if it did there would be a finite subset of generators that generated G.

We can now build a graph where the vertices correspond to cosets of subgroups in
this sequence, and edges correspond to inclusions “up a single level”. So for example,
with the vertices corresponding to G1 < G2 < G3 there are edges corresponding to
the inclusions of G1 into G2 and G2 into G3, but not to the inclusion of G1 into G3. The



2. Actions on Trees 21

group G acts on this graph by permuting the cosets of the subgroups; we claim that in
fact the graph is a tree.

To see this, suppose there is a reduced cycle, and consider the vertices in this cycle.
Consider a “lowest” vertex in the cycle: that is a vertex corresponding to a coset Gnh,
with all other vertices in the cycle corresponding to cosets of Gi with i at least n. Since
this vertex is lowest, the cycle has no edges going down; there are no edges between
vertices on the same level, and so both edges at this vertex must be going up. But there
is only a single upwards edge, representing the inclusion of Gnh into Gn+1h: so this is a
backtrack, and in fact the cycle was not reduced.

Now suppose that a group satisfies all three conditions and acts on a tree. The quotient
graph Γ must be a tree, since if it contains any non-trivial loops there is a surjection
to a free group (by sending vertex group elements to the identity and preserving ele-
ments corresponding to the edges) and then onwards to Z. Also, the finite generation
assumption allows us to pass to a subtree with a finite quotient graph: consider taking
the subgroups corresponding to fundamental groups of increasing finite subgraphs of
Γ, and observe that after finitely many steps this will contain a generating set of G, and
therefore the fundamental group will already be all of G. Since this is realised by a fi-
nite subgraph, we can consider one that is minimal. If such a minimal graph is a point,
the original tree had an invariant point, which must be a global fixed point.

Otherwise, consider any edge e. Since the quotient graph is a tree, all edges are sep-
arating, so by Lemma 2.27 we have that G ∼= π1(Γ1) ∗Ge π1(Γ2), where Γ1 and Γ2 are
the two connected components of Γ ∖ {e}. But we assumed that G was not an amal-
gamated free product, so in fact we must have that Ge = π1(Γi). But then there are no
reduced loops crossing e, and so Γ was not minimal. So in fact the minimal tree is just
a point, which is to say that G has a global fixed point for the action.

The condition used in the proof was not so much that G was not finitely generated, but
that this implies G is the union of a properly increasing sequence of subgroups. We can
replace the third condition with “is not the union of a properly increasing sequence of
subgroups” even among uncountable groups, and there are uncountable groups which
satisfy this and the first two conditions, and so do have Property (FA), despite being
very far from finitely generated [46].

Example 2.33. Finite groups all have Property (FA): since they are finitely generated it
is enough to show that all elements are elliptic. This is the case since if g is hyperbolic,
then so is gn for all n ≥ 1 (it translates along the same axis, but the translation length
is multiplied by n): but in a finite group for every element there is some n so that gn is
trivial.
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The same argument goes through for finitely generated torsion groups (whose exis-
tence was proved by Golod–Shafarevich [34], but as soon as they are infinitely gener-
ated of course they cannot have Property (FA).

Property (FA) is not inherited by finite index subgroups, but if a group has the stronger
Property (T) (see [4]) then all its finite index subgroups have Property (FA) [66]. So
the existence of a finite index subgroup with a non-trivial action on a tree serves as an
obstruction to Property (T). Paper 2 investigates when the automorphism group of a
free product of groups has Property (FA).

Translation Length Functions and R-trees

Given an action of a group G on a tree (or indeed any metric space), we may define a
translation length function for the action

∥g∥T = inf{d(x, xg) : x ∈ T}.

If the action is assumed to be without inversions, the infimum can be taken to range
over vertices only. (If inversions were a possibility it must include points on the edges
too.)

This infimum is attained, since if g does not fix a point, it is hyperbolic by Lemma 2.8.
It is a consequence of those arguments that for all x ∈ T, d(x, xg) = 2d(x, axis(g)) + ℓ,
where ℓ is the distance g translates along its axis, so the minimum is realised by any
point on the hyperbolic axis.

Translation lengths are constant on conjugacy classes: if g fixes x then h−1gh fixes xh,
and if g is hyperbolic then so is h−1gh, with axis(g)h = axis(h−1gh). Since h induces an
isometry of T, the translation lengths must be the same. (See Figure 5.)

In [22] Culler and Morgan investigate actions on R-trees, where branching can occur
at any distance; they are characterised as metric spaces where there is a unique arc (a
geodesic) joining any two elements.

We can view simplicial trees as R-trees, with the usual edge path metric - all vertices are
at integer distances. We can also vary the edge lengths to obtain more examples – these
are known as metric simplicial trees. It is important to note that not all R-trees are metric
simplicial trees, and in particular there are actions on R-trees that do not correspond to
actions on simplicial trees: for example most surface groups act freely on R-trees [58],
but not on simplicial trees. There are even groups with actions on R-trees but which
have Property (FA) – so there are no non-trivial actions on simplicial trees [56].
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A branch point in an R-tree is a point with no neighbourhood homeomorphic to an
interval; in a metric simplicial tree the branch points correspond to the vertices with
valence at least 3. An R-tree is a metric simplicial tree if and only if the set of branch
points is discrete.

We can define a translation length function for an action on an R-tree too: it can assign
g any value in R≥0 (for an action on a simplicial tree with the edge path metric and no
inversions, it must take values in Z). By the same arguments (the proofs used in the
lemmas apply equally to R-trees) the infima in the definition are realised, and the trans-
lation length function is invariant under conjugation. Culler and Morgan proved that
many actions on R-trees are uniquely characterised by their translation length function,
in the following sense:

Theorem 2.34 (Culler–Morgan, [22, Theorem 3.7]). Suppose G acts minimally and with no
fixed ends on two R-trees T1 and T2, with the same translation length function. Then there is a
unique G-equivariant isometry T1 → T2.

The condition that there are no fixed ends is formulated by Culler and Morgan as “semi-
simple and not a shift” and by some other authors as “non-abelian”. This is partly
because the actions we exclude are those with translation length functions which are
homomorphisms to R, and therefore factor through the abelianisation of G (see [22,
Corollary 2.3]).

Whatever the terminology, the actions being excluded either translate along a single
line, or have several hyperbolic axes but they share a point at infinity. Perhaps the
simplest example of the second case is that of an ascending HNN-extension, such as
BS(1, n) = ⟨a, t : t−1at = an⟩. (Note that a point by definition has no ends, so in
particular cannot have fixed ends. Also recall that an action where every element is
elliptic but there is no global fixed point cannot be minimal.)

The consequences of this theorem are explored and used in Papers 2 and 3, and it plays
a key role in the study of deformation spaces, defined in Section 5.

Culler and Morgan proposed, and Parry [60] proved that the functions G → R which
are translation length functions of an action on an R tree can be characterised as those
which satisfy certain axioms:

Theorem 2.35 (Parry, [60]). Let G be a group, and f a function G → R≥0. Then f is the
translation length function for the action on G on an R-tree if and only if, for every g, h ∈ G,

(1) f (g−1hg) = f (h);

(2) either f (gh) = f (gh−1), or max{ f (gh), f (gh−1} ≤ f (g) + f (h);

(3) if f (g), f (h) > 0, then either f (gh) = f (gh−1) > f (g)+ f (h) or max{ f (gh), f (gh−1} =

f (g) + f (h)
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In fact, Parry’s result holds for a more general notion of Λ-trees, which have a kind
of geometry where the vertices may be at “distances” taking values in any ordered
abelian group Λ [1, 15]. In particular, we can use this to say that the length function of
an action on a simplicial tree (with the standard edge path metric) requires a function
taking values in Z, and satisfying an additional condition (which rules out inversions;
this is not a concern in R-trees since “vertices” are distinguished points which can occur
at any distance).

There is another notion, due to Lyndon [53], of a based length function: where the length
assigned to g is the distance it moves some base point v (which is chosen once and for
all). Similar theorems hold for these based length funtions [14]; in fact the proofs of
results about translation length functions often involve constructing base points and
then using the results for based length functions.

For an action on a simplicial tree, by Theorem 2.24 there is a graph of groups repre-
senting the action. The translation length can be determined from this graph of groups.
(The same is true for metric simplicial trees, with the modification that the edges of the
graph of groups must be assigned the lengths of the edges in the orbit they represent.)

Proposition 2.36. Suppose T is a metric simplicial G-tree, and let G be its quotient graph of
groups. Then for every element g of G, ∥g∥T is the length after cyclic reduction of any loop in
G representing g

Proof. We work with the graph of groups and Bass–Serre tree; by Theorem 2.24 this is
equivariantly isomorphic to the original tree. Fixing a base point v and viewing g as an
element of π1(G, v), write g = php−1 reduced as written and with h cyclically reduced.
Let τ(p) = w. If h has length 0, then g stabilises Gw p−1 in the Bass–Serre tree and is
elliptic. So suppose h does not have length 0. Let tes be the terminal segment of h, so
h = h′tes, reduced as written. Consider the adjacent vertices Gw p−1 and Guesp−1 and
their images under g: Gw p−1(php−1) = Gwhp−1 and Guesp−1(php−1 = Gueshp−1) (the
situation is shown in Figure 8); since everything was reduced as written all four vertices
lie on the segment [Gv, Gueshp−1]. So g translates [Gw p−1, Guesp−1], and so Lemma 2.12
gives that this is contained in axis(g). This translation is exactly by the length of h, so
this is the translation length, as required.

3 Residual Finiteness and Subgroup Separability

Given a group, we can ask “how easy” it is to tell its elements apart. One way to try to
do this is to look at finite quotients of the group:

Definition 3.1. A group G is residually finite if for every element g ̸= 1 of G, there is a
homomorphism G → K where K is a finite group and g lies outside the kernel.
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FIGURE 8: Calculating translation length for g = php−1

The idea is that elements can be distinguished (from the identity, and so by considering
gh−1 from each other) by looking at some finite quotient of the group. There are several
equivalent definitions of residual finiteness, one of which first needs the definition of a
topology on any group G (see [42, 61]):

Definition 3.2. For a group G, the profinite topology on G is the topology with basis
given by all cosets of finite index subgroups of G.

The cosets forming this basis are closed as well as open: they are the complement of the
(finite) union of the remaining cosets of the same subgroup. Also notice that this is a
true basis and not just a subbasis: the intersection of two finite index subgroups is again
finite index and the intersection of cosets, if non-empty, is a coset of the intersection of
the underlying groups.

We now give several equivalent characterisations of residual finiteness:

Lemma 3.3. For a group G, the following are equivalent:

(1) G is residually finite;

(2) for every non-identity element g of G, there is a finite index normal subgroup N of G that
does not contain g;

(3) for every non-identity element g of G, there is a finite index subgroup H of G that does
not contain g;

(4) the trivial subgroup of G is closed in the profinite topology.

The last condition implies that the profinite topology on G is Hausdorff: since the topol-
ogy respects the multiplication, either all or no singletons are closed.

Proof. Assertions (1) and (2) are equivalent since the kernel of a map to a finite group is
a normal finite index subgroup.

Assertion (2) implies assertion (3); to see the converse suppose H is a finite index sub-
group, and consider the action of G on the cosets gH. This acts to permute the cosets,
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so it defines a map to Sn, where n is the index of H. We let N be the kernel of this action;
it is a finite index normal subgroup, and it is contained in H (which stabilises itself in
this action) so does not contain g.

To see that (4) is equivalent to these conditions, consider the collection of all finite index
subgroups of G. They are closed in the profinite topology, and therefore so is their
intersection. If G is residually finite, every non-identity element G lies outside some
finite index subgroup, and therefore the intersection (the finite residual) is the trivial
group.

Conversely, if the trivial subgroup is closed, its complement is covered by a subset of
the basis. That is, for every non-identity element g there is a coset gH of a finite index
subgroup that contains g and not 1. This implies that gH ̸= H: that is, g lies outside
H.

Given a subroup H, the right coset Hg is the same set as the left coset gHg = g(g−1Hg),
so the basis given for the profinite topology does not need this to be specified. Also,
by passing to the normal cores (the largest normal subgroup N contained in a subgroup
H; in fact this agrees with the subgroup N constructed in the proof that (2) implies (3)
above) taking the basis to be cosets of finite index normal subgroups defines the same
topology.

The last equivalent condition of Lemma 3.3 suggests a generalisation: given a group,
we can ask which subgroups are closed in the profinite topology. This leads to the
following definitions.

Definition 3.4. A subgroup H of a group G is called separable if it is closed in the profi-
nite topology. The group G is subgroup separable if all finitely generated subgroups are
separable.

So a group is residually finite if the trivial subgroup is separable. As with residual
finiteness, these definitions have an interpretation involving finite index subgroups.

Lemma 3.5. A subgroup H of a group G is separable if and only if for every element g there is
a finite index subgroup K containing H but not g.

Proof. As for residual finiteness, we may consider the intersection of all finite index
subgroups containing H. If every g outside H is also outside a finite index subgroup
containing H, this intersection is exactly H which is therefore closed.

Now suppose H is closed in the profinite topology: so there is some finite index sub-
group K such that gK and H are disjoint. By passing to the normal core, we can assume
without losing generality that K is normal. Now HK is a subgroup (since K is normal)
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and finite index (since it contains K, which is finite index). Lastly, g cannot be an ele-
ment of HK: if so, we have g = hk with h in H and k in K. But then h = gk−1 ∈ gK, and
H is not disjoint from gK.

A subgroup separable group is sometimes said to be LERF, for “Locally Extended
Residually Finite”.

One notable class of groups which are subgroup separable are free groups, a result
originally due to Marshall Hall.

Theorem 3.6 (Marshall Hall Jr. [41]). Let Fn be the free group on n generators, H be a finitely
generated subgroup of Fn and g ∈ Fn be outside of H. Then there is a finite index subgroup K
of Fn, which contains H as a free factor and does not contain g. In particular, finitely generated
free groups are subgroup separable.

The proof given here is an adaptation of the one due to Stallings [65] .

Proof. We view Fn as the fundamental group of a rose Rn – a graph with one vertex and
n edges. The universal cover is a 2n regular tree T, on which Fn acts freely. Fix a basis of
Fn corresponding to the edge set of Rn; then the axes of the basis elements all intersect,
at a “preferred lift” v of the vertex of Rn.

The subgroup H can be represented by a locally injective map f (an immersion) of a
finite graph Γ into R. Stallings constructs such a graph by taking a rose representing
a generating set for H and folding until it is locally injective; one can also consider
the quotient graph of the action of H on its minimal invariant subtree of T, extending
equivariantly to include the preferred lift of the base point. By labelling each edge of
Γ with its image in R, and choosing the base point corresponding to the orbit of the
preferred lift, we can read loops in Γ as elements of Fn. (Choosing any other base point,
this reading would give a conjugate of the intended subgroup.)

We can further extend Γ to “read” the element g, by adding a line (at the base point)
whose edges read g, and then folding so there is once again an immersion from Γ to R.
Since g was given as outside of H, it must not be a loop, even after this process. (From
the perspective of the action on the tree, this corresponds to equivariantly extending
the invariant tree to include the path from v to vg.)

Our aim now is to extend Γ and the immersion to construct a finite cover of R corre-
sponding to a subgroup K as described in the statement. The preimages of each edge
of R give a partial bijection between the vertices of Γ: since f is an immersion, there
cannot be two edges with the same image starting or ending at the same vertex.

Adding the edges corresponding to some extension of this partial bijection to a full bi-
jection, and repeating for each edge of R, we will construct extend Γ and f to a cover of
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R. The subgroup K corresponding to this cover contains Γ as a subgraph, and therefore
contains H but does not contain the element g, since the path representing g still cannot
be a loop.

The vertices of this covering graph correspond to the cosets of K (since two vertices vg1

and vg2 are in the same K-orbit if and only if g1g−1
2 is in K). Since it is finite, K is finite

index.

Burns [13] and Romanovskii [62] proved that free products are subgroup separable if
the factor groups are; Paper 1 consists of a new proof of this theorem in the language
of Bass–Serre theory.

4 Automorphisms of Groups

Definition 4.1. Let G be a group. Its automorphism group, Aut(G) is the set of self-
isomorphisms under composition.

We identify one notable kind of automorphism.

Definition 4.2. Conjugation by g ∈ G induces an inner automorphism of G. The inner
automorphism group denoted Inn(G) is the collection of such automorphisms.

These automorphisms are “easier” to understand – at least no harder than the group
itself:

Lemma 4.3. The group Inn(G) is a normal subgroup of Aut(G), and is isomorphic to G/Z(G).

Proof. Suppose γ is an inner automorphism, induced by conjugating by g ∈ G, and φ

is any element of Aut(G). Then applied to some h ∈ G, we see that

h(φ−1γφ) = (g−1(hφ−1)g)φ

= (g−1φ)h(gφ)

That is, we have that the image of γ under this conjugation is the inner automorphism
induced by conjugating by gφ.

The image of the map from G to Aut(G) taking elements to the inner automorphism
they induce is exactly Inn(G), so we need to check the kernel. If g is in the kernel then
g−1hg = h for all elements h of G, so this is exactly the centre Z(G).

We often will want to work “up to an inner automorphism” and consider the quotient
by Inn(G).
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Definition 4.4. The quotient Aut(G)/ Inn(G) is known as the outer automorphism group,
or Out(G).

There is also a topological justification for studying the outer automorphisms: a base
point preserving self homotopy equivalence induces an automorphism of the funda-
mental group of a space. If we do not insist that the homotopy equivalence preserves
the base point then the resulting automorphism is only defined up to picking a path
from the base point to its image. In particular, when two such paths are not homotopic
(relative to the endpoints) then they form a loop, and the automorphisms will differ by
conjugation by the element of the fundamental group that loop represents.

Example 4.5. There are some examples where Inn(G) trivial, so Aut(G) ∼= Out(G):

(1) If G is a finite cyclic group, Aut(G) is isomorphic to its group of units (when G
is viewed as a ring): we have to send a generator to another element with the
correct order.

(2) If G is infinite cyclic (that is, Z) then we have Aut(Z) = Z/2Z: we must either
fix or invert the generator.

(3) If G is finitely generated free abelian, we have Aut(Zn) = GLn(Z): invertible
integer valued matrices with integer valued inverses (equivalently, integer valued
matrices with determinant ±1).

These groups are all abelian, and in particular equal to their centres: there are no non-
trivial inner automorphisms, and so we have Out(G) ∼= Aut(G). In contrast,

(4) With n ≥ 7 the symmetric group Sn has Aut(Sn) ∼= Inn(Sn) ∼= Sn: every auto-
morphism is inner, and there is no centre.

Of course there are many examples where both the inner and outer automorphism
groups are non-trivial:

(5) With n ≥ 7 the alternating group An has Aut(An) ∼= Sn (An is a subgroup of Sn

that is preserved by all automorphisms, and in fact the induced map to Aut(An)

is surjective.) There is no centre, so Out(An) ∼= Sn/An ∼= Z/2Z: a representative
of the non-trivial outer automorphism can be found by taking the conjugation by
any odd element of Sn.

Automorphisms of free groups and free products

The automorphism groups of free groups and free products have been studied in some
form for many years. There are presentations (of both cases combined: a free group is
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a free product of copies of Z) due to Fouxe-Rabinovitch in [28] and [29] and later by
Gilbert in [32]. Gilbert’s presentation can be transformed into a finite presentation pro-
vided that the factor groups and their automorphism groups are finitely presented [32,
Theorem 3.3].

The following generating set is taken from Gilbert’s paper, under the assumption that
G = G1 ∗ · · · ∗ Gn ∗ Fr is given as a Grushko decomposition: so each Gi is freely inde-
composable and not isomorphic to Z.

There are three kinds of automorphism, which generate the whole automorphism group.
Fixing a basis X for Fr (which gives a decomposition of Fr as a free product of infinite
cyclic groups), they are:

• Factor automorphisms, which are automorphisms of just one free factor and do
not affect the rest (including replacing a single element of X with its inverse);

• Permutation automorphisms, which permute isomorphic free factors according
to a fixed, compatible set of isomorphisms (including permuting the elements of
X);

• Whitehead automorphisms, of two kinds:

– partial conjugations sending a free factor Gi to Ga
i or an element x of X to xa

– for an element x of X, transvections sending x to ax.

In the case of a partial conjugation of Gi, a must be drawn from some Gj, j ̸= i or
from X. In the case of a partial conjugation or transvection of an element of X, a
must be drawn from some Gi or from X ∖ x.

In the case where r = 0 – so this is a free product of groups which are not Z – there are
only Whitehead automorphisms of the first kind. If G is given as a free product but not
in a Grushko decomposition (for example, some Gi is freely decomposable) then all the
generators above still define automorphisms of G, but together they no longer generate
Aut(G).

The automorphism group or outer automorphism group of some group G does not
inherit the properties of G. For example, free groups act freely on trees, but Aut(Fn)

(and therefore Out(Fn) too) has Property (FA) for n at least 3 [10, 24].

The properties of the automorphism group Aut(G) do not usually depend in obvious
ways on a presentation of G: for example the Baumslag–Solitar groups BS(2, 3) = ⟨a, t :
t−1a2t = a3⟩ and BS(2, 4) = ⟨a, t : t−1a2t = a4⟩ differ only by a power of a in their pre-
sentations, but Out(BS(2, 3)) is finite (in fact it has order 2) [19, 33], while Out(BS(2, 4))
is not finitely generated [20].
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Paper 2 studies the automorphisms (and outer automorphisms) of free products (with-
out infinite cyclic factors); Paper 3 seeks to describe the outer automorphism groups of
free-by-cyclic groups, which requires information about Out(Fn).

Characteristic Subgroups

A normal subgroup is preserved by conjugation, and therefore it is preserved by all in-
ner automorphisms. We can also consider subgroups preserved by all automorphisms.

Definition 4.6. A subgroup H of a group G is characteristic if Hφ = H for all automor-
phisms φ of G.

Characteristic subgroups have different inheritance properties to normal subgroups: if
H ≤ K ≤ G and both inclusions are characteristic then in fact H is characteristic in G:
an automorphism of G preserves and therefore induces an automorphism of H, which
in turn preserves K. In fact if H is characteristic in K which is only normal in G, the
same argument shows that H is normal in G.

However, it is not true that a characteristic subgroup is necessarily characteristic (though
it will be normal) in all intermediate subgroups:

Example 4.7. Let K be ⟨a, t : t−1at = a−1⟩. This has an index two subgroup isomorphic
to Z2, ⟨a, t2⟩. The centre of K is ⟨t2⟩, and it is characteristic in K but not in this copy of
Z2.

Characteristic subgroups allow us to pass automorphisms to the quotient group:

Proposition 4.8. If N is a characteristic subgroup of G, then there is a homomorphism Aut(G) →
Aut(G/N) given by φ 7→ (Ng 7→ N(gφ)).

We need N to be characteristic to ensure this definition is well defined; then composi-
tion and inverses follow.

In the same way as the normal core of a finite index subgroup is another finite index
subgroup, we can find finite index characteristic subgroups given some finite index
subgroup.

Proposition 4.9. Suppose G is finitely generated and H is a finite index subgroup of G. Then

(i) G has only finitely many subgroups of index n = [G : H];

(ii) there is a finite index subgroup of H that is characteristic in G.
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FIGURE 9: Three graphs of groups for G = A ∗ B ∗ C.

Proof. As in the construction of the normal core, we consider the action of G on the
cosets G/H, where H is its own stabiliser. This action gives a map from G to Sn, with
n = [G : H], and H is mapped to the subgroup stabilising {1}. These maps correspond
to a choice of elements of Sn for each generator and if G is finitely generated there are
only finitely many such maps. However, as we vary H across subgroups of index n,
we get different maps, since different subgroups are mapped to the stabiliser of {1}. So
there can be only finitely many subgroups of a given finite index n.

To find a characteristic subgroup, observe that the index of a subgroup is preserved by
an automorphism. So the finite set of index n subgroups is also preserved. Take the
intersection of these subgroups: it is finite index (as the intersection of finitely many
subgroups) and characteristic, since being an element in every index n subgroup is
invariant under automorphisms.

Note that automorphisms do not in general fix the elements of a characteristic sub-
group in the same way that conjugations do not in general fix the elements of a normal
subgroup.

Example 4.10. Characteristic subgroups include the commutator subgroup, the centre
of a group, the subgroup generated by all finite order elements, and (in a free product)
the normal subgroup generated by all free factors of the same isomorphism class (pro-
vided the group is written as a Grushko decomposition, and that isomorphism class is
not Z).

5 Deformation Spaces and Canonical Actions

There may be many graphs of groups suggested by the same presentation of a group
G. For example, if G = A ∗ B ∗ C, two candidates are a “star” and a “line”, as shown in
Figure 9a-b.

These graphs of groups give very different actions: for example the products ab and ac
(with a ∈ A, b ∈ B and both non-trivial) are hyperbolic in all cases. Taking all edge
lengths to be 1, in Figure 9a the translation length ∥ab∥T1 is 4, whereas in Figure 9b we
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have ∥ab∥T2 = 2. However, ∥ac∥T1 = ∥ac∥T2 = 4, showing that the difference is not due
to a scaling.

If we allow the edge lengths to vary, we can deform the star into the line, by collapsing
the edge with B until it has length zero. We could also get lines where a different vertex
group was in the middle, by collapsing a different edge.

Another variation is to swap one of the vertices for a conjugate, as in Figure 9c this
has the same fundamental group, but (letting b ∈ B be the conjugating element) the
element cb−1ab will have translation length 4 in T3 but 8 in T1, while bc has translation
length 4 in both cases.

None of these graphs of groups is obviously “better” than the others: some are more
symmetric, but they have vertices that seem perhaps unnecessary since they have triv-
ial stabiliser. Similarly, the choice of A over Ab was arbitrary: but when we swapped
them the actions changed. In some situations it is better to consider not one action,
but the whole family that can be obtained in these (and similar) ways. This leads us to
deformation spaces, introduced by Forester [27]; the definitions here follow Guirardel
and Levitt [36].

Definition 5.1. A deformation space of G-trees consists of all actions of G on metric
simplicial trees having the same set of elliptic subgroups. That is, T1 and T2 are G-trees
in the same deformation space, then any H ≤ G fixes a point of T1 if and only if it fixes
a point of T2.

Any action of G on a tree T defines a deformation space, by considering all simplicial
actions of G on a tree with the same elliptic subgroups. Note that there can still be
vertices with stabilisers that are not conjugate to a stabiliser in the original action. (In
the example above for G = A ∗ B ∗ C, some trees have an orbit of trivially stabilised
vertices, and others do not, but they are all elements of the same deformation space.)

Definition 5.2. Given G-trees T1 and T2, say that T1 dominates T2 if there is a G-equivariant
map T1 → T2.

Trees are in the same deformation space if and only if they dominate each other; the
maps are built by matching up vertices according to their stabilisers, and then mapping
the paths between them appropriately. Note that the maps allowed in this definition
are far more general than the graph maps defined earlier: they send vertices to vertices,
but may collapse edges to vertices or send them to edge paths.

There are three “kinds” of equivalence relation on G-trees we may want to consider;
each has benefits and drawbacks depending on the context. We will assume all actions
are minimal, and usually that they are irreducible. (Equivalently that the minimal ac-
tion is on a tree with at least 3 ends, none of which are fixed; many of the results also
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FIGURE 10: A graph of groups for G = A ∗ B ∗ C with an extra edge group.

hold for the “dihedral actions” on a line without preserving its orientation, but do not
for actions with fixed ends.)

First, we will always want to use the translation length functions to distinguish ac-
tions. So, following Theorem 2.34 we will always consider actions up to G-equivariant
isometry.

We can also “projectivise”, and consider actions that are distinct up to equivariant ho-
mothety (or scaling: a map such that for all points x, y we have d( f (x), f (y)) = Cd(x, y)
for some global constant C > 0): this corresponds to a scaling of the length function.
(Note that in the trivial action every element is elliptic, so this translation length is not
a scaling of the length function of any action with hyperbolic elements.) We can choose
a representative of all classes simultaneously by fixing the covolume, the sum of all edge
lengths in the quotient graph.

Finally we may want to ignore variations in edge lengths, counting G-trees as equiv-
alent if they are equivariantly homeomorphic. This reflects the underlying simplicial
structure, taking the vertices to be the set of branch points together with any “inver-
sion points”, any x ∈ [v1, v2] stabilised by an element swapping the segments [x, v1]

and [x, v2] (this means the combinatorial object will have no “removable” vertices with
only two incident edges, and the same stabiliser as those edges): in fact the homeomor-
phism can be chosen to be linear on edges.

Rather than considering all trees in a deformation space, we can pass to a “restricted”
deformation spaces, where we only allow trees with edge groups in some family of
subgroups F , which should be closed under conjugation and taking subgroups. This
provides a way to remove examples such as Figure 10, which is another graph of groups
for G = A ∗ B ∗ C, but with a (not particularly necessary or interesting) edge that is
not trivially stabilised. In general [36, Definition 4.9] there is a way to pass from a
deformation space to a subset which is a restricted deformation space, where the family
restricted to comprises subgroups fixing an edge in every point of the deformation
space.
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Example 5.3. (1) The Culler–Vogtmann Outer Space CVn [23] for a free group con-
sists of minimal free actions of Fn on metric simplicial trees: this is the deforma-
tion space where the only elliptic subgroup is the trivial group. Usually Culler–
Vogtmann space is taken to be projectivised, in practice often by restricting to
actions with covolume 1. The spine of CVn is constructed by putting a partial or-
der on the homeomorphism classes (defined by collapse maps), and realising this
partial order as a simplicial complex.

(2) The examples considered at the start of the section for G = A ∗ B ∗ C are points of
the deformation space with elliptic subgroups conjugates of A, B, and C. Taking
the restricted deformation space with trivial edge groups (which includes all the
points shown in Figure 9, but not that in Figure 10) gives the space studied by
McCullough and Miller in [55]; and when the factors are freely indecomposable
and not Z, this is sometimes called the Grushko decomposition space (since it realises
the Grushko decomposition of a free product), and studied in [37].

(3) JSJ decompositions over a family of subgroups [40] are actions on trees where
edge groups are in the given family and elliptic in every such splitting, and which
dominate any other tree with this property. They are generally not unique, and
so the correct object to study is a deformation space. JSJ decompositions over the
trivial group recover the Grushko decomposition space; another example is the
JSJ deformation space of a hyperbolic group over virtually cyclic groups, or a rel-
atively hyperbolic group over elementary (parabolic and virtually) cyclic groups.
(These have particularly nice properties when they are one-ended [11, 39].)

Actions on Deformation Spaces

Given any G-tree T, we can produce another by twisting the action by an automor-
phism: that is, for every automorphism φ of G there is a new action ∗φ defined as
x ∗φ g = x · (gφ). The length function of the new action is given by ∥gφ∥. This gives
an action of Aut(G) on the set of G-trees; this action respects the three equivalences
(equivariant isometry, homothety or homeomorphism) given above.

If the elliptic subgroups defining a deformation space are Aut(G)-invariant – as hap-
pens for example in outer space CVn (since only the trivial group is elliptic) or the
Grushko decomposition space for a free product – then this action preserves the defor-
mation space.

By Theorem 2.35, an inner automorphism preserves all length functions and so must
be in the kernel of this action (working up to equivariant isometry, of course): so we
can consider it an action of the outer automorphism group.
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This perspective has been very fruitful. For example, careful inspection of the defor-
mation space for BS(2, 4) in [16] provides a proof that Out(BS(2, 4)) is not finitely gen-
erated via Bass–Serre theory.

In general this action of Out(G) does not have global fixed points. (Sometimes very
far from this: in CVn, point stabilisers are finite [21, 45].) If there is a global fixed
point – equivalently a length function which is preserved by all automorphisms – then
this is called a canonical tree. In this situation we can study the (outer) automorphism
group via Bass–Serre theory: as is discussed in Paper 2, when the action satisfies the
hypotheses of Theorem 2.34 there is an action of Aut(G) on the same tree. Bass and
Jiang in [3] provide a filtration of Out(G) in this situation, which is used in Paper 3.

One way of constructing canonical trees is via a tree of cylinders, as defined by Guirardel
and Levitt in [38]. This is described in Paper 3; the input is any tree in the deforma-
tion space, and an equivalence relation on its edge groups; the output is a tree where
the induced splitting is preserved by all outer automorphisms which preserve the de-
formation space. The equivalence relation is required to satisfy certain axioms; one of
their effects is that it can be extended to an equivalence relation on edges in such a way
that the equivalence classes form subtrees, which are known as cylinders. From this a
new tree Tc is constructed by replacing each cylinder with the cone on its boundary;
the axioms on the original equivalence class also guarantee that this is equivariant, in
the sense that the new tree inherits an action of G.

The tree of cylinders Tc depends only on the deformation space of T, in the sense that
given two minimal, non-trivial trees T, T′ in the same deformation space, there is a
canonical equivariant isomorphism between Tc and T′

c [38, Corollary 4.10]. In particular
this means that this tree of cylinders is fixed by any automorphism which preserves the
deformation space, and so can be used to study these (outer) automorphisms.

It is always true that T dominates Tc, but cylinder stabilisers were not necessarily ellip-
tic in T and so Tc might not be an element of the original deformation space. In some
cases the failure is spectacular: the tree of cylinders for CVn is a single point with the
trivial action. The deformation space of the tree of cylinders depends on the size of the
cylinders: if all cylinders are bounded, or equivalently contain no hyperbolic axis, then
the cylinder stabilisers are elliptic in T and so Tc lies in the same deformation space,
and conversely [38, Proposition 5.2].

6 Out(Fn) and Outer Space

Let n ≥ 2, and consider the outer automorphisms Out(Fn). Given two automorphisms
φ and ψ representing the same outer automorphism, say they are isogredient if there is
an inner automorphism γ conjugating one to the other (so γ−1φγ = ψ).
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The introduction of train tracks by Bestvina and Handel in [8] proved a useful tool for
studying automorphisms of free groups. One of the results of that paper concerns the
ranks of fixed subgroups of automorphisms:

Theorem 6.1 (Bestvina–Handel, [8]). Let Φ ∈ Out(Fn). Then,

∑ max{rank(Fix(φ))− 1, 0} ≤ n − 1,

where the sum is taken over representatives, ϕ, of isogredience classes in Φ.

In particular the fixed subgroup of any automorphism has rank bounded by n, so this
result resolved the Scott conjecture.

Fix a basis X, and consider lengths of words in this basis. In order to work with outer
automorphisms, we consider conjugacy length, setting ∥g∥ to be the length of the short-
est word in its conjugacy class. As we iterate an (outer) automorphism, we can consider
how this length changes. By taking λ to be the maximum, ∥xΦ∥ over elements x of the
basis X, every element satisfies

∥Φk(g)∥
∥g∥ ≤ λk,

In fact, Bestvina–Handel proved that for any Φ ∈ Out(Fn) and g ∈ Fn, we either have
that

µk ≤ ∥Φk(g)∥
∥g∥ ≤ λk,

for some µ ∈ (1, λ), or

Akd ≤ ∥Φk(g)∥
∥g∥ ≤ Bkd,

with d ∈ {0, 1, . . . , n − 1}, and A < B positive constants. Levitt in [51, Theorem 6.2]
gives a more precise characterisation, showing that each conjugacy class grows as a
polynomial times an exponential under iteration.

In the first case g is exponentially growing, and if any element is exponentially growing
then Φ is also called exponentially growing. If no elements grow exponentially then Φ
is said to be polynomially growing of degree d, where d is the smallest degree bounding
the growth of every element.

Example 6.2. Consider the following automorphisms defined on basis elements:

φ ψ

a −→ a a −→ b
b −→ ba b −→ ab
c −→ cb
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The automorphism φ is quadratically growing; this is realised by c. Its restriction to
⟨a, b⟩ is linearly growing, and the fixed subgroup Fix(φ) is ⟨a, bab−1⟩.

The automorphism ψ is exponentially growing; nevertheless the commutator aba−1b−1

is periodic: it is fixed by ψ2.

Following Bestvina and Handel [7], a stronger condition we may put on elements of
Out(Fn) is being unipotent polyomially growing or UPG: an element has this property if
it is polynomially growing and its image in GLn(Z) is unipotent (that is, conjugate to
a matrix with all diagonal entries equal to 1). Intuitively, this is excluding “periodic
behaviour” – so every element fixed by a power of φ is already fixed by φ, for example,
although periodic behaviour can also occur among elements that are growing. By [7,
Corollary 5.7.6], every polynomially growing automorphism has a power that is UPG.

Outer Space and its boundary

As mentioned above, projectivised Outer Space CVn is the space of minimal free Fn

actions on metric simplicial trees, working up to equivariant homothety. It is equipped
with an action of Out(Fn). Usually representatives of homothety classes are chosen by
requiring covolume 1. The equivariant homeomorphism classes define simplices, as
we vary the lengths of the edges in the quotient graph; however not all combinations
of edges can be collapsed while the action remains free, so some faces are missing.

Outer space CVn may be given a topology by identifying an action with its length func-
tion (free actions of Fn are irreducible for n at least 2, so Theorem 2.34 applies), giving a
subset of R|Fn|∖ {0}/ ∼ (the equivalence relation ∼ is scaling). (There are other topolo-
gies one can put on a deformation space of trees; since the trees in CVn are locally finite
these are all equivalent [36, Section 5].)

Outer Space is not closed; missing faces provide examples of limit points outside CVn.
There are limit points arising in other ways too: for example some have non-trivial
edge stabilisers (see Theorem 6.5). It turns out that the closure can be characterised as
as space of “very small” actions on real trees:

Definition 6.3. An action of G on a real tree T is very small if

(i) arc stabilisers do not contain F2 (it is small);

(ii) for every elliptic element g and n such that gn ̸= 1, Fix(g) = Fix(gn);

(iii) for every ellipic element g, Fix(g) does not contain a tripod.

We are concerned with free groups, in which case the first condition implies arc sta-
bilisers are trivial or cyclic, and the second condition must hold for all n ̸= 1.
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Theorem 6.4. The closure of CVn is precisely the space of minimal, irreducible, very small
actions of Fn on real trees.

That the closure consists only of very small actions is due to Cohen and Lustig [17];
that every very small action arises in this way is due to Horbez [44]; see also Bestvina
and Feighn’s preprint [6]. Note that some of these actions are not on metric simplicial
trees, unlike CVn itself.

One way to construct explicit limit points is to produce a “limiting tree” for an automor-
phism, by taking an element of CVn, twisting it by an automorphism, and rescaling the
result appropriately. In some cases there are strong existence and uniqueness theorems
for these trees. For example,

Theorem 6.5 (Parabolic Orbits Theorem (see [17] and [18]). Let Φ ∈ Out(Fn) be linear
and unipotent. Then for any X ∈ CVn, limk→∞ Φk(X) = T ∈ CVn exists, is a simplicial tree
and lies in the same simplex (that is, any two such limit trees are equivariantly homeomorphic)
independently of X. Moreover, T is a simplicial Fn-tree with the following properties.

(i) Edge stabilisers are maximal infinite cyclic

(ii) Vertex stabilisers are precisely the subgroups Fix(φ), where φ ∈ Φ has a fixed subgroup
of rank at least 2.

Note that the theorem is usually stated for Dehn Twist automorphisms of Fn: these are
exactly the linear unipotent automorphisms (see [18], [47], [8] and [7]).

Another example comes from automorphisms of Fn where no power preserves a non-
trivial free splitting of Fn (known as irreducible with irreducible powers). These fix two
points on the boundary of CVn: an “attracting tree” and a “repelling tree” (neither are
simplicial). Every point in the closure of CVn, except the repelling tree, tends to the
attracting tree under iterating the automorphism [5, 52].

These limiting trees have been used to investigate the conjugacy problem in Out(Fn)

(for example, [18]). In Paper 3 the parabolic orbits theorem is used to construct actions
of free-by-cyclic groups (with linearly growing defining automorphism) on trees.

Free-by-cyclic groups

Paper 3 studies free-by-cyclic groups. These are semidirect product of Fn by Z, defined
by an element φ of Aut(Fn) as

Fn ⋊φ Z = ⟨x1, . . . xn, t : t−1xit = xi φ⟩.
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By introducing t′ = t−1 or t′ = tg to the presentation and then removing t it is apparent
that choosing different representatives of the same outer automorphism or its inverse
do not change the isomorphism type of the free-by-cyclic group. In fact more is true; it
is an invariant up to conjugacy and inverses within Out(Fn) [9]. So properties of free-
by-cyclic groups may be expected to correspond to properties of their defining outer
automorphism.

For example, periodic outer automorphisms give rise to free-by-cyclic groups which
are act on trees with all edge and vertex groups isomorphic to Z (known as generalised
Baumslag–Solitar groups); exponentially growing automorphisms yield relatively hy-
perbolic free-by-cyclic groups [30, 31, 25]; and automorphisms with no periodic conju-
gacy classes (atoroidal automorphisms) give hyperbolic free-by-cyclic groups [12].

In the periodic [50] and atoroidal [49] cases this leads to descriptions of Out(G). Ad-
ditionally, the outer automorphisms of all groups isomorphic to F2 ⋊ Z were charac-
terised (up to a finite index subgroup) in [9].

Paper 3 proves finite generation for Out(G) when G is isomorphic to Fn ⋊φ Z with φ

linearly growing, or F3 ⋊φ Z in general. The techniques used are those from Bass–Serre
theory and the study of deformation spaces: in particular we define “nearly canonical”
trees that the groups act on, and use these to characterise Out(G).
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Paper 1: A Bass–Serre theoretic proof of a theorem of
Burns and Romanovskii

Naomi Andrew

ABSTRACT. A well known theorem of Burns and Romanovskii states that a free prod-
uct of subgroup separable groups is itself subgroup separable. We provide a proof
using the language of immersions and coverings of graphs of groups, due to Bass.

1 Introduction

Subgroup separability is a strengthening of residual finiteness. It has many equivalent
definitions; we will use the following:

Definition 1.1. Let G be a group and H be a subgroup of G. Say H is separable in G if
for every element g ∈ G ∖ H, there is a finite index subgroup K of G containing H and
not g.

If every finitely generated subgroup of G is separable in G, say that G is subgroup sepa-
rable.

This note is concerned with the following theorem, giving that subgroup separability
is closed under finite free products:

Main Theorem. Suppose G is a finite free product of subgroup separable groups. Then G is
itself subgroup separable.

This theorem is originally due (independently) to Romanovskii [9] and Burns [4], and
there are subsequent proofs due to Gitik [5] and Wilton [12].

The object of this paper is to provide a new proof of this theorem, generalising the proof
Stallings gives in [11] that free groups are subgroup separable (a theorem originally
due to Hall [7]; see also [3]) to graphs of groups with trivial edge groups. Previous
proofs have worked with other objects associated to the free product, such as graphs of
spaces (viewed topologically) or relative Cayley graphs; ours uses the graph of groups
structure more immediately.

The notions of immersions and coverings of graphs of groups, due to Bass, are rather
more technical than those used by Stallings for graphs. So we begin by covering the
necessary definitions for graphs of groups, then the notion of Kurosh rank for a sub-
group of a free product (given an action on a tree). Given a group acting on any set
(or in particular a tree) we provide a way to calculate the index of a subgroup from
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its action in Lemma 3.4. Finally in Section 4 we combine these results to show how
to complete an immersion of graphs of groups to a cover, and how this implies the
Burns–Romanovskii theorem.

2 Graphs of Groups

We follow Bass’ exposition [2], although we change some notation. There are other
sources covering the same material, such as [10]. Unlike many expositions, we put the
action on the right.

Graphs of groups are a combinatorial tool encoding group actions on trees: they con-
sist of a graph corresponding to the quotient together with edge and vertex groups
corresponding to stabilisers.

Definition 2.1. A graph Γ consists of a set of vertices VΓ and a set of edges EΓ, together
with two maps: ι : EΓ → VΓ; and an involution EΓ → EΓ, e → e. We also define
τ : EΓ → VΓ, τ(e) = ι(e). An orientation of Γ is a choice of one edge from each pair
{e, e}.

Definition 2.2. A Graph of Groups, G, consists of

• a connected graph ΓG ;

• for each vertex v of ΓG , a group Gv;

• for each edge e of ΓG , a group Ge such that Ge = Ge and there is a monomorphism
αe : Ge → Gτ(e).

Where the graph of groups is clear, we may just refer to Γ for the underlying graph.

There are two main ways of defining the fundamental group and universal cover of
a graph of groups: by a maximal tree, and by considering loops at a base point. We
follow Bass, and consider paths and loops in the graph of groups.

Definition 2.3 (Paths). Let F(G) be the group generated by all the vertex groups and all
the edges of G, subject to relations eαe(g)e = αe(g) for g ∈ Ge. Note that taking g = 1
this gives that e−1 = e, as expected.

Define a path (of length n) in F(G) to be a sequence g0e1g1 . . . engn, where each ei has
ι(ei) = vi−1 and τ(ei) = vi for some vertices vi (so there is a path in the graph), and
each gi ∈ Gvi . A loop is a path where v0 = vn.

The set of all paths in F(G) forms a groupoid (sometimes called the fundamental groupoid
of G).
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Definition 2.4 (Reduced paths). A path is reduced if it contains no subpath of the form
eαe(g)e (for g ∈ Ge). A loop is cyclically reduced if, in addition to being reduced,
en(gng0)e1 is not of the form eαe(g)e.

Every path is equivalent (by the relations for F(G)) to a reduced path, and similarly
every loop is equivalent to both a reduced loop and a cyclically reduced loop. In gen-
eral these reduced representations are not unique, although all equivalent (cyclically)
reduced paths (or loops) will have the same edge structure. Note that a cyclically re-
duced loop might not be at the same vertex as the original loop.

Definition 2.5. The fundamental group of G at a vertex v is the set of loops in F(G) at v,
and is denoted π1(G, v).

The isomorphism class of this group does not depend on the vertex chosen. (In fact, the
two groups obtained by choosing different base vertices are conjugate in the groupoid.)

We define the Bass–Serre tree (or universal cover) in the corresponding way:

Definition 2.6 (Bass–Serre Tree). Let T be the graph formed as follows: the vertex set
consists of ‘cosets’ Gw p, where p is a path in F(G) from w to v. There is an edge(-pair)
joining two vertices Gw1 p1 and Gw2 p2 if p1 = egw2 p2 or p2 = egw1 p1 (with gw ∈ Gw).

This graph is a tree, and there is a right action of π1(G, v) on the vertex set, since this
multiplication is possible in the groupoid, and the paths will still start at v. This action
preserves adjacency and is without inversions, and so π1(G, v) acts on T.

There is another construction, that takes a group action on a tree and returns a graph
of groups:

Definition 2.7 (Quotient graph of groups). Suppose a group G acts on a tree T. Form
a graph of groups whose underlying graph to be the quotient graph of the action, with
edge and vertex groups are assigned as follows: choose subtrees Tv ⊆ Te such that Tv

contains exactly one representative of each vertex orbit (that is, a lift of a maximal tree
in the quotient), and Te exactly one representative of each edge orbit, in such a way that
at least one end of every edge is in Tv. We abuse notation a little by identifying vertices
in Tv and edges in Te with their orbits (that is, their image in the quotient graph). Set the
vertex and edge groups to be the stabilisers Gv and Ge. To define the monomorphisms,
we choose elements gv ∈ G which act to bring each vertex of Te into Tv: if v ∈ Tv then
set gv = 1, and otherwise choose any element with this property. Now we may set
the monomorphisms αe to be the composition of the inclusion with conjugation by our
chosen elements (so s 7→ g−1

τ(e)sgτ(e)).

In many cases, the full complexity of this definition is unnecessary: we can consider
the stabiliser of any orbit representative and assert that the injection is the composition
of an inclusion and the relevant conjugation.
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Theorem 2.8. Up to isomorphism of the structures concerned, the processes of constructing
the quotient graph of groups, and of constructing the fundamental group and Bass–Serre tree
are mutually inverse.

From the perspective of groups acting on trees, the isomorphisms required are an iso-
morphism between the original group and the fundamental group, and an equivariant
isometry between the original tree and the Bass–Serre tree. From the perspective of
graphs of groups, they are an isomorphism of underlying graphs, together with iso-
morphisms of corresponding edge and vertex groups (and these must respect the edge
monomorphisms). This is the fundamental result linking actions on trees with split-
tings of groups.

Morphisms, immersions and covers

If G is the fundamental group of a graph of groups, then any subgroup of G will also act
on the Bass–Serre tree, and this action will give a quotient graph of groups carrying that
subgroup. In the case of a free action (where G must be a free group), then we know that
the quotient graph is a cover of the original graph - in fact, there is a correspondence
between covers and subgroups. This point of view has been fruitful for investigating
free groups, and is the main tool of Stallings’ paper [11]. The aim of Bass’ definitions
of morphisms and covers (and immersions) is to recover the same correspondence for
graphs of groups.

There is a lot of structure, and so any definition of a morphism must feature a graph
map and several group homomorphisms. It turns out that slightly more data is needed
as well, in the form of group elements attached to each edge and vertex.

The definitions we give here are specialised to the case of free products - that is, when
all Ge are trivial. In general the elements δe defined below must satisfy conditions in-
volving the edge group inclusions, but these are automatically satisfied for any choices
with trivial edge groups.

Definition 2.9. Suppose H and G are graphs of groups with all edge groups trivial. A
morphism of graphs of groups Φ : H → G consists of:

• a graph morphism φ : ΓH → ΓG ;

• a group homomorphism ϕv : Hv → Gφ(v) for every vertex v ∈ ΓH;

• an element λv in π1(G, φ(v)) for every vertex v of ΓH;

• an element δe ∈ Gφ(ι(e)) for every edge of ΓH.
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Such a morphism induces maps on the structures that can be defined from a graph of
groups, as follows:

• A homomorphism (of groups) F(H) → F(G) by s 7→ λ−1
v ϕv(s)λv for s ∈ Hv and

e 7→ λ−1
ι(e)δ

−1
e eδeλτ(e).

• A homomorphism ΦP of fundamental groupoids, by restricting that map to the
paths in F(H). Note that, in this case, for each edge e, the extra elements intro-
duced at e, ι(e) and τ(e) will cancel to leave δe and δe which are elements of the
vertex groups at either end.

• A homomorphism Φv : π1(H, v) → π1(G, φ(v)) of the fundamental groups, by
further restricting the above map to loops at v.

• An equivariant graph map Φ̃ on the Bass–Serre trees, defined on vertices by
Hw p 7→ Gφ(w)λwΦP(p).

Additionally, we can define a ‘local map’ at each edge of G. (Requiring edge stabilisers
to be trivial simplifies this considerably compared to Bass’ general definition.)

Given a vertex v and an edge with τ(e) = v, the lifts of e at a single vertex in the Bass–
Serre tree correspond to the elements of Gv, by identifying the edge [Gv p, Gwesp] with
the element s.

Given a morphism Φ : H → G, let v be a vertex of ΓH and f be an edge of ΓG with
τ( f ) = φ(v). Define a map

Φv/ f : ⨿
e∈φ−1( f ),τ(e)=v

Hv → Gφ(v)

by
h 7→ δeϕv(h).

Alternatively, we can view Φv/ f as a map Hv × {e ∈ E(H) : ι(e) = v, φ(e) = f } →
Gφ(v) taking (Hv, e) 7→ δeϕv(Hv). These maps are useful for “locally” understanding
the image of the Bass–Serre tree under a morphism: see Proposition 2.12.

Given two group actions on trees, and an equivariant map between the trees we can in-
duce a graph of groups morphism between the quotient graphs of groups. We continue
to assume that the actions are free on edges.

Proposition 2.10. Suppose S is an H-tree, T a G-tree, ψ : H → G is a homomorphism and
f : S → T is a ψ-invariant graph map. (That is, f sends vertices to vertices, edges to edges,
preserves adjacency, and vh f = (v f )(hψ).) Let H and G be the quotient graphs of groups
corresponding to the actions of H on S and G on T respectively. Then ψ, f induce a graph of
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groups morphism H → G, which (after the isomorphisms required by Theorem 2.8) recovers ψ

and f as maps of fundamental groups and Bass–Serre trees.

For details, and full proofs, see [2, Section 4]. Here we give sufficient details to explain
how the induced morphism is constructed. First, since f was ψ-equivariant it induces
a graph map φ on the quotients S/H → T/G: this is our map between the underlying
graphs. Let Sv, Se, Tv and Te be the subtrees of S and T used in Definition 2.7, and let
hu and gv be the elements given there which bring vertices of Se and Te into Sv and Tv

respectively.

For vertices v in Sv, choose a kv in G, so that f (v)kv is in Tv; similarly for an edge e let
ke be an element of G with f (e)ke in Te, and ke = ke. Since f is ψ-equivariant, ψ takes
stabilisers to stabilisers, though not necessarily of the preferred representative of each
orbit. Define ϕv : Hv → G f (v)kv by s 7→ k−1

v ψ(s)kv.

To define a morphism also requires elements λv and δe. For an edge e in Se, let v = ι(e),
x = f (v)ke and y = vhv. Then let δe = g−1

x k−1
e ψ(hv)ky. To see that this is indeed an

element of Gφ(v), observe that both ψ(hv)ky and kegx act to bring f (v) into Tv, and the
vertex group Gφ(v) (of G) is defined as the stabiliser of the vertex of Tv in the same orbit
as f (v).

We will want to let λv = k−1
v ; however to be in the right group we must first apply

the isomorphism (of Theorem 2.8 from G → π1(G, φ(v)). (This can be thought of as
“reading” the path between v and vkv in T.)

There is usually some choice as to the subtrees used to construct the quotient graph
of groups. In particular, if we arrange for f (Sv) to (maximally) intersect Tv, we may
choose several λv to be 1, simplifying the morphism and allowing choices of basepoint
(in H) so that the map on fundamental groups is “as written” – meaning it does not
involve a conjugation by a non-trivial λv.

We are most interested in studying subgroups H of a group G with an action on a tree
T, so usually ψ is an inclusion, and f is either the inclusion TH → T (sometimes a
slightly larger H-invariant tree) or the identity T → T. In this case, we should expect
the induced morphism to have good properties, since the map on trees makes no iden-
tifications. These good properties are characterised by the morphism being a cover or
immersion.

In the context of a graph (with no groups) a covering map corresponds to the usual
topological definition, and an immersion relaxes “locally bijective” to “locally injec-
tive”. This allows the universal cover of the immersed graph to be strictly contained in
the original universal cover.

The Bass–Serre tree gives the “universal cover” in this world: of course it is not a true
cover, since an edge may have many (even infinitely many) preimages at each vertex.
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Similarly, our covers and immersions might have several preimages of an edge at a
vertex:

Definition 2.11 ([2, Definition 2.6]). A morphism Φ : H → G is an immersion if

(1) each ϕv : Hv → Gϕ(v) is injective and

(2) each Φv/e is injective

And a covering if the second condition is replaced by

(2’) each Φv/e is bijective.

Bass proves that these properties exactly characterise the situation of a subgroup acting
on a subtree:

Proposition 2.12 ([2, Proposition 2.7]). A morphism Φ is an immersion if and only if Φv0 (on
fundamental groups), and Φ̃ (on Bass–Serre trees) are injective. Furthermore, it is a covering if
and only if Φv0 (on fundamental groups) is injective and Φ̃ (on Bass–Serre trees) is bijective.

Viewing Φv/ f as a map Hv × {e ∈ E(H) : ι(e) = v, φ(e) = f } → Gφ(v) taking (Hv, e) 7→
δeϕv(Hv), we have that it will be injective if and only if ϕv is, and the δe represent
different right cosets of Gφ(v)/ϕv(Hv).

One way to construct immersions is by taking a subgroup of subgroups: restrict to a
subgraph of the underlying graph, and take subgroups of each vertex group. Then
letting Φ consist of the graph and group inclusions, and all λv and δe trivial, this is an
immersion.

3 Kurosh rank and finite index subgroups of free products

Recall Kurosh’s theorem about subgroups of free products:

Theorem 3.1 ([8]). Suppose G is a free product ∗Gi (over some index set I) and H is a sub-
group of G. Then H ∼= (∗ Hj) ∗ F where each Hj is isomorphic to an intersection H ∩ Gki

i of H
with a conjugate of some Gi. Further, the set {Hj} is unique up to conjugation and reindexing,
and the rank of F is uniquely determined.

The idea of Kurosh rank is inspired by this theorem, and aims to measure the “com-
plexity” of such a subgroup in terms of its free factors. Here we take the approach of [1]
of defining it with respect to an action on a tree:
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Definition 3.2. For a group G and a G-tree T with trivial edge stabilisers, the Kurosh
rank (relative to T) of a subgroup H is

κT(H) = rank(H\T) + |{Hv ∈ H\T : Hv ̸= 1}|

where rank(H\T) is the number of edges outside a maximal tree.

The reduced Kurosh rank of a subgroup is κT(H) = max{κT(H)− 1, 0}.

Note that rank(H\T) is the rank of the fundamental group of the graph H\T. In partic-
ular, in the case of a free group acting freely on a tree, (reduced) Kurosh rank reduces
to the usual definition of (reduced) rank.

Proposition 3.3 ([1, Proposition 2.3]). Let H be a subgroup of G, and T a G-tree with trivial
edge stabilisers. Then

(1) The Kurosh rank with respect to any H-invariant subtree T′ of T, κT′(H) is equal to the
Kurosh rank with respect to the minimal H-invariant subtree TH, κTH (H).

(2) The Kurosh rank κT(H) is finite if and only if the quotient H\TH is finite.

If T is clear from context then we will often just write κ, without subscripts, even if we
are reasoning with some H-subtree.

By Grushko’s theorem [6], the Kurosh rank of a subgroup is bounded above by its true
rank. (Each vertex group adds 1 to the Kurosh rank while adding at least 1 to the true
rank of the subgroup.)

We need to calculate the index of a subgroup from its covering graph of groups, for
which we use the following lemma:

Lemma 3.4. Suppose a group G acts transitively on a set X, and H is a subgroup of G. Let X0

be a set of orbit representatives for the action of H on X. Then

[G : H] = ∑
x∈X0

[Gx : Hx].

In particular, [G : H] is finite if and only if X0 is finite as is every index [Gx : Hx].

Proof. We will exhibit a bijection (though it is very far from canonical) from ⨿x∈X0
Hx\Gx

to H\G. To define this, fix a base point x0 ∈ X, and for every element x of X a g[x] ∈ G
such that g[x]x0 = x.

Now define a function sending a coset Hxg to the coset Hgg[x]. This is well defined
in the sense that if g1 and g2 are in the same Hx-coset of Gx, then (g1g[x])(g2g[x])−1 =

g1g−1
2 which is an element of Hx and in particular H. To see it is injective, suppose
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there are orbit representatives x, y and elements g1 ∈ Gx, g2 ∈ Gy such that Hg1g[x] =
Hg2g[y]. That is, g1g[x]g[y]−1g−1

2 is an element of H. But this element moves y to x,
and so these must represent the same orbit. So we may assume x = y, and this reduces
to considering g1g−1

2 . This is an element of H, and also of Gx, and therefore of Hx, so g1

and g2 represent the same Hx-coset.

To see surjectivity, we will write an arbitrary g ∈ G as a product hĝg[x], where ĝ ∈ Gx.
To do this, let y be the element gx0, and observe that we may write y as hx = hg[x]x0 for
some orbit representative x. The element hg[x] is in the same Gy-coset as g, so we may
write g = g̃hg[x] with g̃ ∈ Gy. But recall that Gy = hGxh−1, so we have that g̃ = hĝh−1,
with ĝ an element of Gx. In particular, we have that g = (hĝh−1)hg[x] = hĝg[x], as
required.

Given any (not necessarily transitive) action, we can calculate the index of a subgroup
by restricting our attention to one orbit and using Lemma 3.4. In the context of an
action on a tree, this would mean looking at the orbit of a single edge or vertex and
considering the edge or vertex groups that arise in the covering graph of groups. In
particular, for a free product, counting the occurences of any edge in the same G-orbit
will give the the index. If the original action gave rise to a finite quotient graph, so will
the action of a finite index subgroup. In particular, if the original action was minimal,
the minimal invariant subtree for the subgroup will be the whole tree again.

This gives a criterion for a subgroup of a graph of groups to be finite index: this hap-
pens if and only if the covering graph of groups has finite underlying graph, and every
vertex (or indeed edge) group is finite index in the relevant vertex group of the original
graph of groups.

Note that this lemma provides a link between the index and Kurosh rank of a finite
index subgroup of a free product, though this is complicated somewhat by the possi-
bility that a vertex has non-trivial stabiliser under G but is trivially stabilised by the
subgroup H. However, if we reduce to the case that the vertex groups are infinite these
complications disappear. (Restricting to normal subgroups provides a different simpli-
fication.)

Corollary 3.5. Suppose a group G is expressed as a free product of infinite groups, and H is a
finite index subgroup of G. Then κ(H) = [G : H]κ(G).

Proof. Represent G as the fundamental group of a graph of groups G with trivial edge
stabilisers, and let H be the covering graph of groups corresponding to the action of H
on the Bass–Serre tree of G. Write κ(H) = |EH| − |{v ∈ VH : Hv = 1}|. If a vertex has
trivial stabiliser under H, it will also have trivial stabiliser under G, since otherwise Gv
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would be a finite subgroup. So use Lemma 3.4 to rewrite as follows:

κ(H) = |EH| − |{v ∈ VH : Hv = 1}|
= [G : H]|EG| − [G : H]|{v ∈ VG : Gv = 1}|
= [G : H]κ(G).

For a free group acting either freely or as a free product of infinite cyclic groups, the
Kurosh rank and the true rank agree, so this recovers Schreier’s formula for free groups:

rank(H)− 1 = [F : H](rank(F)− 1).

4 Subgroup separability for free products

In this section we provide the Bass–Serre theoretic proof of the theorem that free prod-
ucts of subgroup separable groups are themselves subgroup separable. The proof is in
three steps, dealing in turn with “completing” a graph of groups immersion, enlarging
the vertex groups, and then doing this in general for all finitely generated subgroups
of a free product.

Stallings’ proof (in the free group case) begins with a (finite) labelled graph where the
labelling provides an immersion to a rose. The lifts of any edge in a cover would pro-
vide a bijection from the vertex set to itself, and the lifts present in the immersion give
a partial bijection. Thus any way of completing the partial bijection to a full bijection is
admissible in a cover. (There are only finitely many options, and all of them will work.)
The condition on a cover can be checked one edge of the rose at a time, so we may do
this separately to each edge and the final graph will be a covering graph.

There are several obstacles in extending this to graphs of groups. First, the graph (of
groups) we are covering may have more than one vertex. In the free group case this
is easily surmountable, although a little care is needed: we must first make sure that
all vertices have equal numbers of lifts. We can achieve this by adding isolated ver-
tices to the immersed graph, to take each vertex up to the maximum. Notice that after
adding edges (which now correspond to bijections between different kinds of vertex,
in general), every vertex will be connected to at least one vertex of every kind. Since
at least one vertex had no extra preimages added, all of these are connected. Thus the
constructed graph will have only one component.

Another obstacle is that the notion of “local injectivity” is different, and we will need
to assign δe values to any new edges in a way which preserves the immersion. Finally,
we will have to alter the vertex groups so that all of them are finite index, otherwise (by
Lemma 3.4) the subgroup cannot be.



4. Subgroup separability for free products 57

We deal in turn with the obstacles presented in generalising Stallings’ proof. First, The-
orem 4.1 gives a way to complete an immersion to a cover when the vertex groups
have finite index image in the target graph of groups; then Theorem 4.2 gives sufficient
conditions for enlarging the vertex groups so this condition is met. Finally we prove
the Burns–Romanovskii theorem by combining these to produce a covering graph of
groups containing a given finite index subgroup but excluding any given element out-
side it.

Theorem 4.1. Suppose G is a free product, expressed as the fundamental group of a graph of
groups G where every edge group is trivial. Suppose H is a subgroup of G, corresponding to an
immersion Φ : H → G, where ΓH is finite and each Hv is mapped to a finite index subgroup of
Gφ(v).

Then there is a finite index subgroup M of G containing H as a free factor.

Proof. By Lemma 3.4, in a cover the index of the subgroup can be calculated by looking
at the preimages of any edge or vertex and their stabilisers. So we need to ensure these
are equal. To this end, for each vertex u of G calculate

du = ∑
v∈φ−1(u)

[Gu : Hv].

Each du is finite: the sum is over finitely many vertices (since H is finite), and each
[Gu : Hv] is finite by assumption. Since G is also finite, there is a maximum among the
du, say d. This will be the degree of the cover. For each vertex in G add d − du isolated
vertices to H, declaring them to be in the pre-image of u, and assigning each the full
subgroup Gu. (Recalculating du after doing this, all are equal to d.)

Though it is disconnected, we can still extend Φ to the new vertices: each v is in the
pre-image of some vertex u of G, and set each new ϕv to be the identity map. We now
need to add edges, further extending the morphism Φ by assigning φ(e) and δe as we
do.

We have the local maps on cosets, Φv/ f and we may extend these to the new vertices
(note that, where there are no edges in the pre-image of f at v, this is a map from the
empty set). These maps are all injections since we began with an immersion and maps
out of the empty set must be injective. Our goal is that they should all be bijections: we
will need to add more edges, choosing values for δe to achieve this.

For each edge f of G, there should be d pre-images in H. Consider a vertex v of H, and
the pre-images e of f at v. The values δe form a partial system of coset representatives
for Gφ(v)/ϕv(Hv), since Φv/ f is injective.



58 Paper 1. Free products and subgroup separability

Suppose f has initial vertex u and terminal vertex y. The edges in the pre-image of f
provide a partial bijection

⨿
v∈φ−1(u)

Gφ(v)/ϕv(Hv) → ⨿
x∈φ−1(y)

Gφ(x)/ϕx(Hx),

by
ϕι(e)(Hι(e))δe 7→ ϕτ(e)(Hτ(e))δe.

Both these disjoint unions have cardinality d, so this can be completed to a bijection.
Add new edges (in the pre-image of f ) and coset representatives δe and δe according to
this bijection. (The choice of bijection will usually change the subgroup we construct,
but not its index.)

Let M be the graph of groups constructed by repeating this for each edge in G, and
Φ be the extension of the original morphism to all of M. This process added finitely
many edges to H. Every connected component of M contains at least one pre-image of
each vertex of G, and since at least one vertex of G had no pre-images added, and this
means the underlying graph of M will be connected. Also, each Φv/ f is now bijective,
so the morphism Φ has been extended to a cover.

Picking a base point for M (in the pre-image of a chosen base point for G) we recover
a subgroup M of G, which has index d since M by Lemma 3.4.

Just as in the free group case, restricting M to the edges and vertices of H recovers H:
so we may view H as a free factor of M = π1(M).

For a general subgroup H of G, the vertex groups of H are not finite index subgroups
of the corresponding vertex groups of G so the process used proving Theorem 4.1 will
not terminate – in fact, any cover must have infinite degree by Lemma 3.4, so there will
be infinitely many edges in each pre-image.

So to say anything for general H, we must first replace each vertex group Hv with a
group mapping to a finite index subgroup of Gφ(v). Done carelessly, this enlarging of
vertex groups is likely to cause some δe values to represent the same coset, and we will
no longer have an immersion. So care – and separability assumptions – will be needed
as we do this.

Theorem 4.2. Suppose G is a free product, expressed as the fundamental group of a graph of
groups G where every edge group is trivial. Suppose H is a subgroup of G, corresponding to
an immersion Φ : H → G with ΓH finite. If each ϕv(Hv) is separable in Gφ(v), then there is
a finite index subgroup K of G corresponding to a cover K that contains H as a subgraph of
subgroups.
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Proof. Our first goal is to alter H and Φ, so each vertex group maps to a finite index sub-
group of the relevant Gv, while keeping Φ an immersion. In order to achieve this, we
must ensure that the elements δe continue to represent different cosets Gφ(v)/ϕv(Hv).

For each vertex v of H and edge f with ι( f ) = φ(v), let Xv/ f be the finite set of elements
δ−1

ei
δej where ei and ej are distinct edges with ι(ei) = ι(ej) = v and φ(ei) = φ(ej) = f .

Let Xv be the disjoint union of the Xv/ f over edges f at φ(v).

Since each ϕv(Hv) was assumed separable in Gφ(v), there is a finite index subgroup of
Gφ(v) that contains ϕv(Hv) but no elements of Xv. Let Kv be isomorphic to this sub-
group, contain Hv, and extend ϕv to Kv so its image is this subgroup.

This remains an immersion: the vertex maps are still injective, so we have to check
the local coset maps Φv/ f . This amounts to checking that for each edge f at φ(v) the
elements δe with e in the preimage of f represent different right cosets of ϕv(Kv), or
equivalently that δ−1

ei
δej are outside ϕv(Kv) for all pairs ei, ej of edges.

But this is exactly what we ensured by requiring ϕv(Kv) to exclude Xv, so this condition
is satisfied, and Φ remains an immersion.

Now we are able to apply Theorem 4.1: we have an immersion where the vertex groups
correspond to finite index subgroups. This immersion can be completed to a cover cor-
responding to a finite index subgroup. Since the procedure to do this does not identify
any edges or vertices, we can recover H (and the original immersion) by restricting to
a subgraph and subgroups of the vertex groups.

Remark 4.3. Note that the hypothesis that each vertex group embedding is separable
was stronger than needed for the conclusion: all that was used was the fact that each
ϕv(Hv) was contained in a finite index subgroup excluding Xv in order to keep the
cosets separate. This condition is necessary as well as sufficient, since otherwise there
is no way to enlarge Hv to a finite index subgroup where the δei represent different
cosets.

Now we have the tools to prove the main theorem,

Main Theorem. Suppose G is a finite free product of subgroup separable groups. Then G is
itself subgroup separable.

Proof. The proof is essentially an application of Theorem 4.2 (and therefore also of The-
orem 4.1), but a little care is needed in the set up to be sure that we can exclude any
element.

Let G be a finite graph of groups (with trivial edge groups) representing G as π1(G, v0),
and T be the Bass–Serre tree for G. Let v be the vertex in T represented by Gv0 – the
“preferred lift” of v0 to T.
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Let H be any finitely generated subgroup of G and let g be any element of G outside of
H. Define a subtree T1 of T as the smallest subtree which

• is H-invariant (that is, contains TH);

• contains v;

• contains vg.

This subtree is the union of TH and the orbits of paths from v and vg to TH; since these
paths are finite the quotient T1/H is again finite.

Let u0 be the vertex of H corresponding to the H-orbit of v: this will be our basepoint
for H. Let H be the quotient graph of groups obtained from the action of H on T1,
choosing the subtree Sv to contain v.

The group and graph inclusions H → G and T1 → T induce an immersion Φ : H → G,
as described in Proposition 2.10. This realises the embedding of H into G as Φu0 :
π1(H, u0) → π1(G, v0); careful choice of subtrees avoids any conjuations appearing in
this map, so a cyclically reduced loop at u0 will be mapped to a cyclically reduced loop
at v0.

Since H is finitely generated, it also has finite Kurosh rank as this is bounded above
by the true rank. So Proposition 3.3 implies that H is a finite graph of groups, since in
constructing it we used a tree which differed from TH only by the addition of the orbits
of two finite paths. Notice that since the Kurosh rank must not change when we add
these paths, there are no non-trivial vertex stabilisers: the “interest” will be captured
by the elements δe of the immersion Φ.

The path p from vg to v in T and T1 is the lift of g as a loop in G, and quotients to a path
beginning at u0 in H. Since g is not an element of H, either this path is not a loop, or it
is a loop but the final group element s at Gv0 is not the image of an element in Hu0 .

In the first case, we can apply Theorem 4.2 directly. Since G was a free product of sub-
group separable groups, all the ϕv(Hv) are separable in Gφ(v). Since no identifications
are made between edges or vertices in this process, the path p will still not be a loop in
K, and therefore π1(K, u0) will not be an element of K.

If, on the other hand, p is a loop, we must slightly adapt the proof. When the sets Xv are
constructed (containing the elements that must be excluded from each Kv), we simply
add s to Xu0 . Then s will still not be the image of an element of Ku0 , so g is not an
element of K.
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Paper 2: Serre’s Property (FA) for automorphism
groups of free products

Naomi Andrew

ABSTRACT. We provide some necessary and some sufficient conditions for the au-
tomorphism group of a free product of (freely indecomposable, not infinite cyclic)
groups to have Property (FA). The additional sufficient conditions are all met by finite
groups, and so this case is fully characterised. Therefore this paper generalises the
work of Leder in [18] for finite cyclic groups, as well as resolving the open case of that
paper.

1 Introduction

Serre introduced Property (FA) in [22] as a ‘near opposite’ to a group splitting as a free
product with amalgamation or an HNN extension. A group G has Property (FA) if
every action of G on a tree has a fixed point.

Serre proves ([22, Theorem 15]) that Property (FA) is equivalent to the following condi-
tions

(1) G is not a (non-trivial) amalgamated free product

(2) G has no quotient isomorphic to Z

(3) G is not the union of a strictly increasing sequence of subgroups.

If G is countable, then the third condition is equivalent to finite generation; there are
uncountable groups satisfying Property (FA) ([17]). Examples of groups with Property
(FA) include finitely generated torsion groups and SL(n, Z) for n ≥ 3 (both due to Serre
in [22]); Aut(Fn) for n ≥ 3 (due to Bogopolski in [4], with an alternative proof in [8])
and the automorphism group of a free product of at least four copies of Z/nZ (due to
Leder in [18]).

In fact, Leder shows (in most cases) that for free products of finite cyclic groups, whether
the automorphism group has Property (FA) depends only on the number of times each
isomorphism class appears. Our results give the following generalisation and comple-
tion of Leder’s work:

Corollary 1.1. Let G be a free product of finite groups. Then Aut(G) has Property (FA) if
and only if all but possibly one factor appear at least four times (up to isomorphism), and the
remaining factor (if present) appears only once.
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This is a consequence of our main results which are, in the positive direction:

Theorem 3.1. Let G be a finite free product of groups satisfying one of the following two
conditions.

(1) Each free factor satisfies:

(a) its isomorphism class appears at least four times in the decomposition,

(b) it has Property (FA), and

(c) its automorphism group has finite abelianisation and cannot be expressed as the
union of a properly increasing sequence of subgroups;

(2) There is a free factor appearing exactly once that has Property (FA) and its automorphism
group has Property (FA), and all other free factors are as in (1).

Then Aut(G) has Property (FA).

And in the opposite direction, we have:

Theorem 4.1. Let G be a free product of freely indecomposable groups, with no infinite cyclic
factors. Suppose G satisfies any of the following three conditions:

(1) At least one free factor appears exactly two or three times, or at least two free factors
appear exactly once.

(2) The automorphism group of any factor appearing exactly once does not have Property
(FA).

(3) The automorphism group of any factor appearing more than once does not have finite
abelianisation or can be expressed as a union of a properly increasing sequence of sub-
groups.

Then Aut(G) does not have Property (FA).

These imply Corollary 1.1 since finite groups and their automorphism groups have
Property (FA), and so the extra conditions of Theorem 3.1 are always satisfied.

Comparing Theorems 3.1 and 4.1, most of the sufficient conditions in Theorem 3.1 are
also necessary. The exception is the requirement that each factor has Property (FA):
since the structure of the automorphism group places significant restrictions on the
possible trees it could act on, it seems plausible that there are examples of groups that
act on trees but not in a way that extends to the automorphism group of their free
product.
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The cases with infinite cyclic factors are in general still open although some cases of
Theorem 4.1 go through allowing free rank 1 or 2, and (as observed above) in the op-
posite direction Aut(Fn) has Property (FA) for n ≥ 3.

All of the groups considered have finite index subgroups that do act on trees, which
will be shown as Proposition 4.12, and so we obtain

Corollary 4.13. Suppose G is a finite and non-trivial free product where each factor is freely
indecomposable and not infinite cyclic. Then Aut(G) does not have Kazhdan’s Property (T).

This is in contrast to the situation for free groups, where it has recently been shown that
Aut(Fn) has Property (T) for n at least 4. (See [16, 15, 21].)

Remark 1.2. In view of Remark 1.10 of [6], Theorem 3.1(1) is true for Property (FR), as
is Theorem 3.1(2) with the extra hypothesis that the free factor appearing once only is
finitely generated.

Acknowledgements. I am grateful to my supervisor, Armando Martino, for all his
guidance and encouragement. I am also grateful to Ric Wade for pointing out the ob-
servation of Proposition 4.12, as well as to Ashot Minasyan for helpful comments on
this manuscript. I would also like to thank the anonymous reviewer for their helpful
comments and suggestions.

2 Background

2.1 Actions on trees

First, we collect some lemmas about trees, subtrees and fixed point sets of elliptic sub-
groups of groups acting on trees, that are needed at various points in the later argu-
ments. Many of the statements and proofs hold for both real and simplicial trees, but
unless otherwise specified, all trees are simplicial trees equipped with the edge-path
metric. All actions are on the right.

Lemma 2.1. Let Xi be a family of subtrees of a tree T with non-empty intersection, and let
Y be another subtree. Suppose that for each i, Xi ∩ Y is non-empty. Then (

⋂
Xi) ∩ Y is also

non-empty.

Proof. Let v be a nearest point in Y to
⋂

Xi. Then for each i, Xi contains v, since Xi

includes both
⋂

Xi and part of Y. So v ∈ ⋂
Xi, and since it was in Y by definition it is in

(
⋂

Xi) ∩ Y).

In the finite case, but not in general, we may weaken the hypotheses to give the follow-
ing lemma. (In fact, it can be proved by using Lemma 2.1 as an induction step.)
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Lemma 2.2 (Serre, Lemma 10 of [22]). Let X1, . . . , Xm be subtrees of a tree T. If the Xi meet
pairwise, then their intersection is non-empty.

Definition 2.3. Let G act on a tree T. A subgroup H ≤ G is elliptic if there is a point
v ∈ T such that vh = h for all elements h ∈ H. In this case, the fixed point set for H
(denoted Fix(H)) consists of all such points, and forms a subtree of T.

Lemma 2.4. Suppose H and K are subgroups of a group G acting on a tree. If H and K are
elliptic and every element of H commutes with every element of K, then the subgroup they
generate is elliptic.

Proof. Consider some point v in Fix(H). Since vkh = vhk = vk, for all h and k, the point
vk is also in Fix(H). So the geodesic [v, vk] is contained in Fix(H). Since k is elliptic,
the midpoint of this geodesic is fixed by k which puts it in the intersection Fix(H) ∩
Fix(k) which must be non-empty. Since Fix(K) is the non-empty intersection of all the
Fix(k), the subtrees Fix(k) and Fix(H) satisfy Lemma 2.1, and so Fix(H) ∩ Fix(K) is
non-empty.

Note that this also gives that the direct product of two groups with Property (FA) itself
has Property (FA). The converse is also true, since factors are quotients so if either factor
has an action on a tree the direct product will.

Lemma 2.5.

(1) Suppose a tree has subtrees S1, S2, T1, T2 such that S1 has non-empty intersection with
T1 and T2, and S2 has non-empty intersection with T1 and T2. Then S1 and S2 have
non-empty intersection, or T1 and T2 have non-empty intersection.

(2) Suppose a group G acts on a tree, and has subgroups H1 and H2 which are elliptic, and an
element g such that H1 has common fixed points with Hg

1 and Hg
2 , and H2 has common

fixed points with Hg
1 and Hg

2 . Then H1 and H2 have a common fixed point.

Proof.

(1) Suppose S1 and S2 do not intersect. Consider the bridge joining S1 and S2. Since
T1 has non-empty intersection with both these subtrees, T1 contains this bridge.
Similarly, T2 contains this bridge. So T1 ∩ T2 contains the bridge, and must be
non-empty.

(2) The fixed point subtrees of the four subgroups satisfy the conditions of part (1), so
either H1 and H2 or Hg

1 and Hg
2 have a common fixed point. But since Fix(Hg

1 ) ∩
Fix(Hg

2 ) = (Fix(H1) ∩ Fix(H2))g if one is non-empty both are. So in fact both are
non-empty and so H1 and H2 have a common fixed point.
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2.2 Automorphisms of free products

Presentations of the automorphism group of a free product were found by Fouxe-
Rabinovitch in [11] and [12] and later by Gilbert in [14]. (Gilbert’s is a finite presen-
tation, under some reasonable finiteness assumptions on the factor groups and their
automorphisms.) They assume that the free product is given as a Grushko decomposi-
tion:

Theorem 2.6 (Grushko decomposition). Any finitely generated group G can be decomposed
as a free product G = G1 ∗ . . . Gk ∗ Fr, where the Gi are non-trivial, freely indecomposable and
not infinite cyclic, and Fr is a free group of rank r. Further, the Gi are unique up to conjugacy,
and the rank of Fr is unique.

Remark 2.7. This decomposition theorem is well known; see for example [23]. As
Stallings notes, the existence of such a decomposition (for a finitely generated group) is
provided by Grushko’s theorem, and its uniqueness by the Kurosh subgroup theorem.
Proofs of these theorems can be found in many textbooks, for example [20].

They distinguish three kinds of automorphism, which generate the whole automor-
phism group. Fixing a basis X for Fr (which gives a decomposition of Fr as a free
product of infinite cyclic groups), they are:

• Factor automorphisms, which are automorphisms of just one free factor and do
not affect the rest (including replacing a single element of X with its inverse);

• Permutation automorphisms, which permute isomorphic free factors according
to a fixed, compatible set of isomorphisms (including permuting the elements of
X);

• Whitehead automorphisms, of two kinds:

– partial conjugations sending a free factor Gi to Ga
i or an element x of X to xa

– for an element x of X, transvections sending x to ax.

In the case of a partial conjugation of Gi, a must be drawn from some Gj, j ̸= i or
from X. In the case of a partial conjugation or transvection of an element of X, a
must be drawn from some Gi or from X ∖ x.

We will refer to the following subgroups of Aut(G): Fact(G), which is generated by
the factor automorphisms; Perm(G), which is generated by the permutation automor-
phisms, and FR(G), which is generated by partial conjugations. (Usually, we only con-
sider FR(G) in the case where G does not have any infinite cyclic factors.)

We denote the first kind of Whitehead automorphism by (A, b), indicating that the free
factor A is to be conjugated by the element b. In addition, we use (A, B) to denote the
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subgroup consisting of the partial conjugations (A, b) for all elements b of some other
free factor B.

Note that an inner factor automorphism, conjugating a free factor by one of its own ele-
ments, is not a Whitehead automorphism because of the requirement that a is drawn
from a different factor. It lies only in the first class.

Gilbert gives the following characterisation of Fact(G) and Perm(G). We restrict to the
case with no infinite cyclic factors, since we do not require the general case.

Proposition 2.8 (Gilbert, Proposition 3.1 of [14]). Let G = G1 ∗ · · · ∗ Gk be a free product
of freely indecomposable and not infinite cyclic groups. After reordering if necessary, suppose
G1, . . . , Gd are representatives of all the distinct isomorphism classes of the Gi, and that the
isomorphism class represented by Gi occurs ni times. Then:

(1) Fact(G) ∼= ∏d
i=1 Aut(Gi)

(2) Perm(G) ∼= ∏d
i=1 Sni

(3) ⟨Fact(G), Perm(G)⟩ ∼= ∏d
i=1(Aut(Gi) ≀ Sni)

(Here Sn is the symmetric group on n elements, and the wreath products are permuta-
tion wreath products on a set of n elements, not n!.)

The subgroup FR(G) has the following presentation given explicitly as Proposition 3.1
of [5] (although it can be deduced from [11] and [14]):

Proposition 2.9. Suppose G is a free product of freely indecomposable groups with no infinite
cyclic factors. Then the subgroup FR(G) of Aut(G) is generated by the partial conjugations
(A, b) subject to the relations:

(A, b)(A, b′) = (A, b′b) for b, b′ ∈ B (1)

(A, b)(C, d) = (C, d)(A, b) for A ̸= C, b /∈ C, d /∈ A (2)

[(A, b)(C, b), (A, c)] = 1 for A, B, C all different, b ∈ B, c ∈ C (3)

If each factor is finitely generated or presented, the same is true of FR(G), by rewriting each
generator (A, b) in terms of a finite generating set for the subgroup B ∋ b, and eliminating all
unnecessary relators.

Finally, a presentation for Aut(G) is found by adding a set of generators and relations for
⟨Fact(G), Perm(G)⟩ together with the relations φ−1(A, b)φ = (Aφ, bφ) for each
φ ∈ ⟨Fact(G), Perm(G)⟩.

Since inner factor automorphisms are not in FR(G), it intersects ⟨Fact(G), Perm(G)⟩
trivially. So together with the final relation above giving that it is normal, we have that
Aut(G) = FR(G)⋊ ⟨Fact(G), Perm(G)⟩.
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2.3 Bass-Serre theory

We restate some of the definitions and results of Bass-Serre theory, making sure the
notation lines up with this paper. In particular, the action will be on the right. (This is
closest to the exposition by Bass [2], but other expositions can be found in [22] and [9].)

Definition 2.10. A graph of groups G consists of a graph Γ together with groups Gv for
every vertex and Ge = Ge for every (oriented) edge, and monomorphisms αe : Ge →
Gτ(e) for every (oriented) edge.

(Here, the graph Γ should be understood as it is defined by Serre [22], with edges in
oriented pairs indicated by e, and maps ι(e) and τ(e) from each edge to its initial and
terminal vertices.)

The fundamental group of a graph of groups can be defined in two ways, with respect
to a maximum tree of the graph, and by considering loops in the graph of groups. We
take the second route, which simplifies some subsequent calculations.

Definition 2.11 (Paths). Let F(G) be the group generated by all the vertex groups and
all the edges of G, subject to relations eαe(g)e = αe(g) for g ∈ Ge. Note that taking g = 1
this gives that e−1 = e, as expected.

Define a path (of length n) in F(G) to be a sequence g0e1g1 . . . engn, where each ei has
ι(ei) = vi−1 and τ(ei) = vi for some vertices vi (so there is a path in the graph), and
each gi ∈ Gvi . A loop is a path where v0 = vn.

Some authors prefer to treat the set of all paths in F(G) as a groupoid, denoted π(G) in
[2], and called the fundamental groupoid; the multiplication is inherited from F(G), with
the exception that some products are not defined. In this sense, the product of two
paths is defined precisely when their endpoints match.

Definition 2.12 (Reduced paths). A path is reduced if it contains no subpath of the
form eαe(g)e (for g ∈ Ge). A loop is cyclically reduced if, in addition to being reduced,
en(gng0)e1 is not of the form eαe(g)e.

Every path is equivalent (by the relations for F(G)) to a reduced path, and similarly
every loop is equivalent to both a reduced loop and a cyclically reduced loop. In gen-
eral these reduced representations are not unique, although all equivalent (cyclically)
reduced paths (or loops) will have the same edge structure. Note that a cyclically re-
duced loop might not be at the same vertex as the original loop.

Definition 2.13. The fundamental group of G (at a vertex v) is the set of loops in F(G)
at v, and is denoted π1(G, v). The multiplication is that of the fundamental groupoid,
restricted to these loops. (Equivalently, this is just the multiplication from F(G), since
in the groupoid the product of two loops at the same vertex is always defined.)
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The isomorphism class of this group does not depend on the vertex chosen. (In fact, the
two groups obtained by choosing different base vertices are conjugate in the groupoid.)

We take the corresponding definition of the Bass-Serre tree:

Definition 2.14 (Bass-Serre Tree). Let T be the graph formed as follows: the vertex set
consists of ‘cosets’ Gw p, where p is a path in F(G) from w to v. There is an edge(-pair)
joining two vertices Gw1 p1 and Gw2 p2 if p1 = egw2 p2 or p2 = egw1 p1 (where gw ∈ Gw).

The graph T is a tree, usually called the Bass-Serre tree (or universal cover) for G. Since
loops at v both start and finish at v, π1(G, v) acts on the right on the set of vertices,
preserving adjacency.

Definition 2.15 (Quotient graph of groups). Given a group G acting on a tree T, there
is a quotient graph of groups formed by taking the quotient graph from the action and as-
signing edge and vertex groups as the stabilisers of a representative of each orbit. Edge
monomorphisms are then the inclusions, after conjugating appropriately if incompati-
ble representatives were chosen.

Theorem 2.16 (Structure theorem). Up to isomorphism of the structures concerned, the pro-
cesses of constructing the quotient graph of groups, and of constructing the fundamental group
and Bass-Serre tree are mutually inverse.

2.4 Translation length

The results in Section 4 require some calculations involving the translation length func-
tion for an action on a tree. This function was investigated in [7]; Section 1 of that paper
proves many of its basic properties.

Definition 2.17 (Translation length function). For a group G acting on an (R-)tree T the
translation length function is ∥−∥ : G → R with ∥g∥ = infx∈T d(x, xg).

If g stabilises a point, then ∥g∥ = 0, and if g is a hyperbolic element ∥g∥ is the distance
between a point on the axis and its image. Translation length is invariant under conju-
gation (that is, ∥h−1gh∥ = ∥g∥). Also, if T is a simplicial tree (with edge lengths equal
to 1), then the translation length function takes only integer values.

For the action of the fundamental group of a graph of groups on its Bass-Serre tree,
using the definitions above, the translation length function is easy to calculate:

Proposition 2.18. Let G be a graph of groups, with fundamental group G, acting on its Bass-
Serre tree T. For each element g ∈ G, the translation length ∥g∥ is the path length of g after
cyclic reduction.
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3 Sufficient conditions

In this section we prove the following sufficient conditions for the automorphisms of a
free product to have Property (FA):

Theorem 3.1. Let G be a finite free product of groups satisfying one of the following two
conditions.

(1) Each free factor satisfies:

(a) its isomorphism class appears at least four times in the decomposition,

(b) it has Property (FA), and

(c) its automorphism group has finite abelianisation and cannot be expressed as the
union of a properly increasing sequence of subgroups;

(2) There is a free factor appearing exactly once that has Property (FA) and its automorphism
group has Property (FA), and all other free factors are as in (1).

Then Aut(G) has Property (FA).

Since these conditions require each factor to have Property (FA), they are certainly
freely indecomposable and not infinite cyclic. So their automorphism group decom-
poses as Aut(G) = FR(G)⋊ ⟨Fact(G), Perm(G)⟩ as described in Proposition 2.9. First
we will show that the quotient ⟨Fact(G), Perm(G)⟩ has Property (FA). In [6] Cornulier
and Kar characterise the permutational wreath products with Property (FA). Their re-
sult is:

Theorem 3.2 (Theorem 1.1 of [6]). Let G be a group that is a permutational wreath product
G = A ≀X B where A ̸= 1, X ̸= ∅ and X has finitely many B-orbits each with more than one
element. Then G has Property (FA) if and only if B has Property (FA) and A has finite abelian-
isation and cannot be expressed as the union of a properly increasing sequence of subgroups.

Since Proposition 2.8 gives us a decomposition of ⟨Fact(G), Perm(G)⟩ as a direct prod-
uct of permutational wreath products, we may use this result to investigate this sub-
group.

Proposition 3.3. Letting G be as in Theorem 3.1, the subgroup generated by factor and per-
mutation automorphisms has Property (FA).

Proof. By Proposition 2.8 this is a direct product of permutation wreath products. If
G satisfies part (1) of Theorem 3.1 then each of them satisfies the hypotheses of Theo-
rem 3.2: since each ni ≥ 4 the set X is non empty; Sni acts transitively on it so there
is only one orbit; and from the hypotheses of Theorem 3.1 these Aut(Gi) have finite
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abelianisation and cannot be expressed as the union of a properly increasing sequence
of subgroups, and Sni is finite so has Property (FA). So each wreath product has Prop-
erty (FA). If G satisfies part (2) of Theorem 3.1, then the automorphism group of the
singleton factor has Property (FA) by assumption, and all others satisfy the hypotheses
we need for Theorem 3.2 just as above. So, in either case, we have a direct product
of groups with Property (FA). Their direct product must also have Property (FA), by
inductively applying the argument of Lemma 2.4.

Next we show that, whenever Aut(G) acts on a tree, the subgroup FR(G) has a fixed
point. Most of the arguments are similar, and proceed by finding ‘enough commuta-
tion’ that various elliptic subgroups are forced to have common fixed points, but we
write them out in full.

Proposition 3.4. Let G be as in part (1) of Theorem 3.1. Then any action of FR(G) on a Z-tree
which extends to an action of FR(G)⋊ Perm(G) on the same tree has a global fixed point.

Proof. The subgroup FR(G) is generated by finitely many subgroups (A, B). (Recall
that this consists of all partial conjugations (A, b), where A is fixed, but b ranges over
all of some other factor B.) This is isomorphic (in fact, anti-isomorphic) to B, and so
since B has Property (FA), all such subgroups are elliptic. By Lemma 2.2, if their fixed
point subtrees intersect pairwise then their intersection is non-empty.

So we check all the possible pairs (A, B) and (C, D): (Different letters always represent
different subgroups; some combinations cannot occur due to the fact the inner factor
automorphisms are excluded.)

(1) (A, B) and (C, D): These commute (by Relation (2)), and so since they are elliptic
there must be a common fixed point by Lemma 2.4.

(2) (A, B) and (C, B): These subgroups commute by Relation (2). Since both are el-
liptic, they must have a common fixed point by Lemma 2.4.

(3) (A, B) and (A, D): Since there are (at least) four isomorphic copies of each factor
group, there is some C′ (different to A, B, D) such that C′ ∼= A. Letting τ be the
permutation interchanging A and C′, then (A, B), (A, D) and τ satisfy the condi-
tions of Lemma 2.5(2): (A, B)τ = (C′, B) and (A, D)τ = (C′, D) both commute
with both (A, B) and (A, D) (by Relation (2)) and so have common fixed points
by Lemma 2.4. So (A, B) and (A, D) have a common fixed point.

(4) (A, B) and (B, D) (and, by symmetry (A, B) and (C, A)): This time take C′ ∼= B
so that A, B, C′, D are all different. Let τ swap C′ and B, so conjugating by τ gives
(A, C′) and (C′, D). Now (C′, D) commutes with both the original elements, and
(A, C′) commutes with (C, D) (all by relation (2)), and so there are fixed points in
common by Lemma 2.4. Also, (A, B) and (A, C′) fit the hypotheses of Case (3),
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and so they have common fixed point. So (A, B), (B, D) and τ satisfy Lemma 2.5
and there is a common fixed point.

(5) (A, B) and (B, A): Take C′ ∼= B and D′ ∼= A, so that A, B, C′, D′ are different
factors. Then let τ swap C′ with B, and D′ with A. The images after conjugating
by τ (which are (D′, C′) and (C′, D′) respectively) commute (by Relation (2)) and
so have common fixed points (by Lemma 2.4) with (A, B) and (B, A), and so
(A, B), (B, A) and τ satisfy Lemma 2.5 so these subgroups have a fixed point.

These pairwise intersections satisfy Lemma 2.2, so have a non-empty intersection. This
is fixed by every element of FR(G), and so since these subgroups generate, this inter-
section is fixed by FR(G) which must itself be elliptic.

Before proving the second case, we cover one aspect of the proof in a lemma.

We use H∗n to denote the free product H1 ∗ · · · ∗ Hn of n copies of the group H. By
analogy with a wreath product, we make the following definition.

Definition 3.5. Let H and K be groups, and equip K with an action on a set X. The
wreathed free product of H and K (with respect to the given action) is the semidirect prod-
uct H∗|X| ⋊ K, where the action of K on H∗|X| is to permute the free factors according to
the action on X.

The symmetries induced by the K-action have the effect of restricting the trees such
groups can act on, as we see in the following lemma (restricting to the action of Sn on a
set of n elements):

Lemma 3.6. Suppose the wreathed free product H∗n ⋊ Sn acts on a tree T, such that the free
factor H1 fixes a subtree T1. Then

(1) Each factor Hi fixes a subtree Ti, and these are permuted by the action of Sn on T.

(2) There are vertices vi ∈ Ti such that

• d(vi, vj) = d(Ti, Tj) for all i, j

• The vertices vi are permuted by the action of Sn on T

• The geodesics [vi, vj] (for i ̸= j) all have the same midpoint, which we denote w.

Let T′ be the convex hull of the set of all vertices vi (see Figure 2.1).

(3) There are elements hi ∈ Hi such that Fix(hi) ∩ T′ = vi. These elements can be chosen so
they are permuted by the action of Sn on H∗n.
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(4) Suppose there is a group G, containing H∗n ⋊ Sn (with n at least 3) as a subgroup and
acting on a tree. Since the subgroup H∗n ⋊ Sn also acts on the tree, we may choose
elements hi in accordance with (3). If there is an element g in G which commutes with
h1 and some hj (j ̸= 2) and satisfying g−1h1h2g = h2h1, then the H∗n ⋊ Sn subgroup is
elliptic. (That is, T′ is a single point.)

v1
v2

v3

vi

vn

w

FIGURE 2.1: The graph T′ described in Lemma 3.6(2)

Proof. Write the elements of Sn in disjoint cycle notation, but we use the notation σ

with a subscript to denote the corresponding isometry of T. That is, σ(12) denotes the
isometry of T induced by (12).

(1) Since (1i)−1H1(1i) = Hi, we must have that Hi fixes precisely Ti := T1σ(1i), which
in particular is non empty.

(2) If n = 1 then we may choose any global fixed point for the H-action. If any (and
therefore every) pair has a common fixed point, in fact the H∗n action must be
elliptic. Since the Sn action permutes the Ti, it acts on their (non-empty) intersec-
tion. Since it is finite, it does so with a fixed point, which will be a fixed point
for the whole action. Let every vi be this fixed point; then this one point subtree
works.

Otherwise, since Sn acts 2-transitively on the set {Ti}, and is acting by isometries,
we have that d(Ti, Tj) = λ(1 − δij) where λ is a positive constant and δij is the
Kronecker delta. Let vij (with i ̸= j) be the nearest point in Ti to Tj. In fact this
is the same point as j varies, since if there were j, k such that vij and vik were
different, we would have

d(Tj, Tk) = d(vji, vij) + d(vij, vik) + d(vik, vki) > d(Ti, Tj) + d(Ti, Tk).

Since all three distances are equal, this is not the case. Call this common nearest
point vi; then we have that d(vi, vj) = d(Ti, Tj) as we wanted. Since the action
is by isometries, d(T1, Tj) = d(v1, Tj) = d(v1σ(1i), Tjσ(1i)) = d(v1σ(1i), Tj(1i)). As
explained above, d(T1, Tj) = d(Ti, Tj(1i)), and so since v1σ(1i) lies in Ti it is the
nearest point to Tj(1i). So v1σ(1i) = vi, and they are permuted by the Sn action.
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If n = 2 then since σ(12) must swap T1 and T2, it will invert the geodesic. So (after
subdividing if necessary) there must be a fixed vertex w at the same distance from
v1 and v2.

For n ≥ 3 consider the vertices vi, vj, vk, and their y-point, w. This tripod con-
tains three geodesics which must all be the same length, and w is therefore the
midpoint of the geodesic joining any two. As i, j, k are arbitrary, the point w is the
midpoint of the geodesic joining any two of the vi.

(3) For each h ∈ H1 consider the intersection Fix(h)∩ T′. This is a collection of closed
sets whose intersection must be the point v1. Since T is a Z-tree, the diameter of
each set must be an integer. But then in order for the intersection to consist only
of the boundary point v1, there is some h such that Fix(h) ∩ T′ is precisely v1.

Choose an h1 ∈ H1 such that Fix(h1) ∩ T′ = v1, and let hi ∈ Hi be σ−1
(1i)h1σ(1i) for

each i. By definition, the hi are permuted by the action of Sn, and Fix(hi) ∩ T′ =

Fix(h1)σ(1i) ∩ T′ = (Fix(h1) ∩ T′)σ(1i) = v1σ(1i) = vi as needed.

(4) Suppose not. So T′ is not a single point, h1 and h2 have no common fixed point,
and so the element h1h2 is hyperbolic: its axis includes the geodesic [v1, v2], and
its translation length is 2d(v1, v2). The same is true of the element h2h1, although
it translates the other way along the common segment. Since g commutes with
h1 and hj, it preserves both fixed point sets, and fixes the geodesic [v1, vj] join-
ing them. In particular, it fixes the segment [v1, w]. Consider how the elements
g−1h1h2g and h2h1 move this fixed segment: h2h1 must move it past v1. But
g−1h1h2g cannot move it past v1: g−1h1h2 moves it along Axis(h1h2), and then
the nearest point of Fix(g) is closer than v1 so the segment must stay the same
side. So the equation given cannot hold, giving us a contradiction. So T′ is a
single point, and the subgroup H∗n ⋊ Sn is elliptic in this action.

Remark 3.7. This lemma is also true for R-trees, with one change: in (3) we must as-
sume the group H is finitely generated, and then we can restrict to a finite generating
set and consider the intersection of finitely many Fix(h) ∩ T′ to argue the existence of a
h1 such that Fix(h1) ∩ T′ = v1.

Proposition 3.8. Let G be as in part (2) of Theorem 3.1. Then any action of FR(G) on a Z-tree
which extends to an action of FR(G)⋊ Perm(G) on the same tree has a global fixed point.

Proof. This is the same idea as for Proposition 3.4, but depends even more on having
access to symmetries required by the permutation automorphisms. Recall that the hy-
potheses provide one factor appearing exactly once, and the others are repeated at least
four times. Throughout the proof, we denote the non-repeated factor by K.

For any action of FR(G) on a tree, extending as required, the following subgroups have
global fixed points:



76 Paper 2. (FA) for automorphisms of free products

(i) The subgroup generated by all partial conjugations of repeated factors by re-
peated factors – this is what was proved in Proposition 3.4.

(ii) The subgroup generated by all partial conjugations where the conjugating group
is the non-repeated factor K. This is a direct product of several copies of K, and
so will have Property (FA) since K does.

(iii) Every subgroup of the form (K, H) where K is the non-repeating factor. We deal
with these by isomorphism class of H. Let H1, . . . , Hn be the n ≥ 4 repeated
copies; then ⟨(K, H1), . . . , (K, Hn)⟩ is isomorphic to H∗n. Let Sn be the subgroup
of Perm(G) which permutes the Hi; then H∗n ⋊ Sn is a subgroup of FR(G) ⋊
Perm(G), and we only consider actions which arise as actions of this group. We
will show that this subgroup is elliptic in every action of this kind.

We apply Lemma 3.6, letting {(K, hi)} be the elements {hi} provided by part (3).
Consider the element (H2, h1). By Relation (2) it commutes with and so has com-
mon fixed points with all (K, hi) with i ̸= 2. The final commutation relation (3)
for FR(G) gives that [(K, h1)(H2, h1), (K, h2)] = 1. Expanding (and moving some
commuting elements past each other) this becomes

(K, h1)(K, h2) = (H2, h1)
−1(K, h2)(K, h1)(H2, h1).

Therefore part (4) of the lemma tells us that the H∗n ⋊ Sn subgroup is elliptic. Of
course, so are all its subgroups, including in particular all subgroups (K, H).

All subgroups of the form (A, B) are contained in one of these subgroups, so must
themselves be elliptic. As before, we check that any pair of these subgroups have a
common fixed point. Pairs drawn from the same subgroup are already done, so we
check the cases where they are drawn from different subgroups. Some cases are by
commuting subgroups, others rely on Lemma 2.5 and so are similar to the technique
used in the previous result, and others need the use of Relation (3) of Proposition 2.9.
Denote by K the factor occuring once, and by A, B, . . . any of the factors that appear at
least four times. As before, different letters denote different factors.

(1) (A, B) and (C, K): These commute and therefore have a common fixed point (by
Relation (2) and Lemma 2.4).

(2) (A, B) and (A, K): Let τ be the permutation swapping A and some C′ ∼= A (differ-
ent to A and B). Conjugating by τ gives (C′, B) and (C′, K), which both commute
with both original subgroups. So by Lemma 2.5 we get that our elements have a
common fixed point.

(3) (A, B) and (B, K) Let C′ ∼= B, different to A and B, and let τ swap B and C′. After
conjugating, both have common fixed points with the original subgroups: (A, C′)
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and (A, B) by case (3) of Proposition 3.4 and the rest since they commute. So we
satisfy Lemma 2.5 and there is a common fixed point.

(4) (A, B) and (K, C) or (A, B) and (K, B) commute so there will be a common fixed
point.

(5) (A, B) and (K, A): In this case we need τ to swap A and a C′ ∼= A, giving (C′, B)
and (K, C′). These both have common fixed points with both original elements,
in three cases because they commute, and in the fourth because (K, A) and (K, C′)

are subgroups of one of the groups discussed in (iii) above. So we have the com-
mon fixed points we need to once again deploy Lemma 2.5 to give us a common
fixed point.

(6) (K, A) and (B, K): Consider [(B, a)(K, a), (B, k)] = 1 (one of the relations (3) in
Proposition 2.9). Since they commute (and are elliptic), (B, a)(K, a) is elliptic.
Also, (B, k) is elliptic, and so since these elements commute (and are elliptic)
there is a common fixed point for (B, a)(K, a) and (B, k). But this means there
is a common fixed point for all three elements, and so in particular for (K, a) and
(B, k). We now apply Lemma 2.1 twice: first, fix a ∈ A and vary k ∈ K to see that
Fix(K, a) and Fix(B, K) have non empty intersection for all a ∈ A. Then this gives
that Fix(K, A) and Fix(B, K) have non-empty intersection, as we wanted.

(7) (A, K) and (K, A): Let B′ ∼= A (but different), and let τ be the permutation au-
tomorphism swaping A and B′. Again, these satisfy Lemma 2.5: the four pairs
are (A, K) and (B′, K) which commute; (K, A) and (K, B′) which are subgroups
of one of the groups discussed in (iii); (A, K) and (K, B′), and (K, A) and (B′, K)
which satisfy the previous case. So this final pair also have a common fixed point.

(8) (K, A) and (K, B) where A ≇ B. Consider [(K, a)(B, a), (K, b)] = 1: just as above,
this gives a common fixed point for (K, a) and (K, b) and then applying Lemma
2.1 gives that Fix(K, A) and Fix(K, B) have non-empty intersection.

Propositions 3.3, 3.4 and 3.8 provide the proof of Theorem 3.1, as follows:

Proof of Theorem 3.1. An action of Aut(G) on a tree defines an action of FR(G) on the
same tree. Since FR(G) ⋊ Perm(G) ≤ Aut(G), this action must extend to the per-
mutation automorphisms. So by Proposition 3.4 or 3.8 this subgroup is elliptic. Now
consider v ∈ Fix(FR(G)): we have that vhg = vg′h = vh for all g ∈ FR(G), h ∈
⟨Fact(G), Perm(G)⟩, where g′ = hgh−1 ∈ FR(G). So ⟨Fact(G), Perm(G)⟩ acts on the
fixed point set of FR(G). Since it has Property (FA) by Proposition 3.3 that action will
have a fixed point, which must be a fixed point for the whole action. So Aut(G) also
has Property (FA).
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4 Necessary conditions

The results in this section, taken together, will prove all parts of Theorem 4.1. First we
deal with the (shorter) parts (2) and (3), and then afterwards part (1).

Theorem 4.1. Let G be a free product of freely indecomposable groups, with no infinite cyclic
factors. Suppose G satisfies any of the following three conditions:

(1) At least one free factor appears exactly two or three times, or at least two free factors
appear exactly once.

(2) The automorphism group of any factor appearing exactly once does not have Property
(FA).

(3) The automorphism group of any factor appearing more than once does not have finite
abelianisation or can be expressed as a union of a properly increasing sequence of sub-
groups.

Then Aut(G) does not have Property (FA).

Proposition 4.2. Let G be a free product of freely indecomposable groups, with no infinite cyclic
factors. Suppose there is some free factor H whose isomorphism class appears exactly once in
the Grushko decomposition, and Aut(H) does not have Property (FA). Then Aut(G) does not
have Property (FA).

Proof. By Proposition 2.9, the group ⟨Fact(G), Perm(G)⟩ is a quotient of Aut(G). Then
by part (3) of Proposition 2.8, one of the direct summands of this group is Aut(H). So
Aut(H) is a quotient of Aut(G). Since Aut(H) has an action on a tree without global
fixed point, the same is true of Aut(G).

Proposition 4.3. Let G be a free product of freely indecomposable groups, with no infinite
cyclic factors. Suppose there is a free factor H whose isomorphism class appears at least two
times in the decomposition, and Aut(H) does not have finite abelianisation or can be expressed
as a union of a properly increasing sequence of subgroups. Then Aut(G) does not have Property
(FA).

Proof. Again, by Proposition 2.9, ⟨Fact(G), Perm(G)⟩ is a quotient of Aut(G). Then
again using part (3) of Proposition 2.8, one of the direct summands of this group is
Aut(H) ≀ Sn. By Theorem 3.2 this does not have Property (FA). So since Aut(G) has a
quotient that does not have Property (FA), neither does Aut(G).

For part (1) of Theorem 4.1, we will extend the action of G on a Bass-Serre tree to its
(outer) automorphisms. It is useful to view an action of a group G by isometries on a
tree T as a homomorphism G → Isom(T).
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We recall a theorem of Culler–Morgan (also due to Alperin–Bass) on R-trees and trans-
lation length, starting with the relevant definitions.

Definition 4.4 ([7], page 573). Consider a group, G, acting on an R-tree, T.

(1) The action is called irreducible if G does not preserve a point, a line or an end of
T. In particular, this means that there are two hyperbolic axes whose intersection
has finite length.

(2) The action is called a shift if G preserves a line, and the orientation of the line.

(3) The action is called dihedral if G preserves a line, but not the orientation of the
line.

(4) The action is called semi-simple if G either preserves a point, or is irreducible, or a
shift or dihedral.

Theorem 4.5 (see [7, Theorem 3.7] and [1, Theorem 7.13(b)]). If a group G acts minimally
and irreducibly, or minimally and dihedrally, on R-trees T1 and T2 with the same translation
length function. Then there is a unique G-equivariant isometry f : T1 → T2. That is, f is the
unique isometry such that with f ∗ : Isom(T1) → Isom(T2) defined by φ f ∗ = f−1φ f the
following diagram commutes.

Isom(T1)

f ∗
��

G
55

))
Isom(T2)

Note that the condition in [7] is that the action is minimal and semi-simple, and for
uniqueness that it is not a shift. They also do not give the interpretation as a commuta-
tive diagram.

Also note that irreducibility is a property of the length function; that is, if two trees
have the same length function then one is irreducible if and only if the other is.

We will consider the following subgroup of automorphisms:

Definition 4.6. Suppose G is a group acting on a tree T. Let AutT(G) be the subgroup
of Aut(G) that preserves the translation length function of the action.

The uniqueness part of Theorem 4.5 leads to the following corollary, for which we give
a full proof.

Corollary 4.7. Given a group G acting minimally and irreducibly, or minimally and dihedrally,
on an R-tree T, then AutT(G) acts by isometries on T. Moreover, the following statements hold.

(1) Denote by δ(g) the inner automorphism induced by g. Then δ(g) induces the same
isometry as g. So if the original action of G has no fixed points, the same is true for the
action of AutT(G).
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(2) The action of AutT(G) is compatible with the action of G, in the sense that the subgroup
G ⋊ AutT(G) of the holomorph acts on T with the given actions of each factor.

(3) If the original tree was a Z-tree then the action constructed is also an action on a Z-tree,
after subdividing if necessary to remove edge inversions.

Groups acting on trees may have a non-trivial centre, for example in SL(2, Z) the centre
has order 2. However, if the action has at least two axes, or a single axis and an elliptic
element that does not preserve its orientation, then the centre of the group must be in
the kernel of the action. So since two elements inducing the same inner automorphism
must already have the same image in Isom(T), the isometry described in (1) is unique.

Proof of Corollary 4.7. Given an action · : G → Isom(T), and any automorphism φ of G,
there is another action defined by ∗φ = φ ◦ · : G → G → Isom(T). That is, t ∗φ g =

t · (gφ).

For any φ ∈ AutT(G), this action will have the same translation length function as ·.
So we may apply Theorem 4.5 to the actions · and ∗φ to give a unique isometry fφ of T
(corresponding to the automorphism φ) such that the following diagram commutes:

G · //

φ

��

∗φ

##

Isom(T)

f ∗φ
��

G · // Isom(T)

These isometries do give an action: for ∗1 = ·, the identity map on T is an equivariant
isometry of T making the diagram commute. So by uniqueness, f1 = Id. Now for
φ, ψ ∈ AutT(G), consider this diagram:

G · //

φ

��

∗φ

##

Isom(T)

f ∗φ
��

G · //

ψ

��

∗ψ

##

Isom(T)

f ∗ψ
��

G · // Isom(T)

Here, the top square shows the equivariant isometry induced by φ, and the bottom
square that by ψ. We want to consider the element φψ, which should also induce a
unique equivariant isometry. However, from the diagram, the composition fφ fψ is just
such an equivariant isometry, and so it must be the unique fφψ.

To see (1): let g be some element of G, and consider the inner automorphism that conju-
gates by g (called δ(g)). In this case, the usual action of g is an equivariant isometry for
the conjugation, since we have that (x · g) ∗δ(g) h = (x · g) · (g−1hg) = x · hg = (x · h) · g.
As a commutative diagram (where the right hand arrow is induced by the action of g):
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G · //

δ(g)
��

∗δ(g)

##

Isom(T)

��
G · // Isom(T)

So, by uniqueness, fδ(g) = ·g.

To see (2): we need to check that the isometries corresponding to (gφ) (as an element of
G) and φ−1gφ are the same for all g ∈ G and φ ∈ AutT(G). This is immediate from the
commutative diagram in the statement of Theorem 4.5 with the actions · and ∗φ, since
the downwards arrow is then precisely conjugation by the isometry corresponding to
φ.

To see (3): The induced isometries must send branch points to branch points (of the
same valence). In a Z-tree, since branch points are vertices and all other vertices are at
integer distance, the vertex set must be preserved by the induced isometries. In the case
where T is a single line, there must be a vertex stabilised by an orientation reversing
element. The induced isometries must send this to another such point, and in a Z-tree
these are all vertices. Again, all other vertices are at integer distance, and so the vertex
set is preserved. So the action of AutT(G) is still by an action on the Z-tree, as we
needed.

We use this corollary to prove the first part of Theorem 4.1. First, we prove special cases
where there are only two or three free factors (satisfying the conditions of the theorem)
and then use properties of characteristic subgroups to extend these results. In the two
factor case we construct an action of the full automorphism group on a Bass-Serre tree
for the group; in the three factor case it is an action of the outer automorphism group.

Proposition 4.8. Suppose G = H ∗ K, with H and K freely indecomposable. Then Aut(G)

does not have Property (FA).

This proposition follows from work of Forester [10], generalised by Levitt [19]; we give
a proof for this case that does not require the (explicit) use of deformation spaces.

Proof. If neither H nor K are infinite cyclic, realise G as the fundamental group of the
graph of groups shown in Figure 2.2a. Consider the action of G on the Bass-Serre tree
for this graph of groups. We want to check that the translation length is preserved
by every automorphism, which requires us first to calculate it. An elliptic element is
a conjugate of an element of a factor group. None of the generating automorphisms
given in Subsection 2.2 change this, and so all automorphic images of elliptic elements
are themselves elliptic.

Any hyperbolic element is conjugate to a cyclically reduced word a1b1a2b2 . . . anbn,
where a1 and bn are non-trivial. The path length of this cyclically reduced word is
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e
H K

(A) Graph of Groups for H ∗ K

e H

(B) Graph of Groups for H ∗ Z

FIGURE 2.2: Graphs of groups realising each G in Proposition 4.8.

its length (that is, 2n): we use Proposition 2.18, noting that for these elements the path
length does not depend on the chosen base vertex. Since translation length is conju-
gacy invariant, it is sufficient to check invariance on words of this form. Factor auto-
morphisms do not change the structure of our word at all, so lie in AutT(G). There is a
permutation automorphism (which we write τ) if and only if H and K are isomorphic:
applying this and conjugating by a1τ we once again have a word of length 2n in our
preferred structure, and so τ ∈ AutT(G). For the partial conjugation (A, b) we have

a1b1a2b2 . . . anbn 7→ (b−1a1b)b1(b−1a2b)b2 . . . (b−1anb)bn = (a1b′1a2b′2 . . . anb′n)
b

where each b′i = bbib−1. Once again, we have a cyclically reduced conjugate of length
2n in our preferred form. Therefore every partial conjugation lies in AutT(G). (The
argument is identical for conjugating the other factor.)

Since all the generators preserve the translation length function, AutT(G) = Aut(G).
By Corollary 4.7 there is an action of the automorphism group on the Bass-Serre tree
that is without global fixed points. If H and K were isomorphic, and we have a permu-
tation automorphism, the isometry it induces will invert the edge in the fundamental
domain, we need to pass to the barycentric subdivision; otherwise no subdivisions are
necessary.

If exactly one factor is Z, we can use the same technique. We write G = H ∗ Z, and use
x for the generator of Z. A generating set for this automorphism group consists of the
partial conjugations H 7→ Hx and x 7→ h−1xh for all h ∈ H, the transvections x 7→ hx
for all h ∈ H, and the factor automorphisms Aut(H) and x 7→ x−1. Realise G as the
fundamental group of the graph of groups in Figure 2.2b and consider the action of G
on its Bass-Serre tree. Elliptic elements are in some conjugate of H, and are sent to some
other conjugate of H by all of the generators. Hyperbolic elements have a cyclically
reduced conjugate of the form h1xn1 . . . hkxnk . By Proposition 2.18 the translation length
of this element is ∑ |ni|. Factor automorphisms of H don’t affect this; conjugating H
by x is an inner automorphism so can’t change the translation length. Replacing x
with any of its images, after conjugating by h−1 if necessary to return to a cyclically
reduced conjugate of the preferred form, has the same absolute exponent sum, and
so the translation length is unchanged. So every element of the automorphism group
is length preserving, and so it too acts on the Bass-Serre tree by Corollary 4.7. The
involution x 7→ x−1 induces an edge inversion, so we must subdivide.
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If both factor groups are infinite cyclic, then Aut(G) is just Aut(F2), which does not
have Property (FA) (by [4]; it maps onto GL2(Z) ∼= D4 ∗D2 D6).

For the case with three isomorphic factors, we will find an action of the outer automor-
phism group on a tree, similar to that given in Propositions 4.1 and 4.2 of [5] for three
non-isomorphic factors, and in [18] for finite cyclic groups.

Proposition 4.9. Suppose G = A ∗ B ∗ C is a free product of three copies of some freely
indecomposable and not infinite cyclic group. Let γ(a) denote the inner factor automorphism
conjugating A by a; φ = (φa, φb, φc) denote an element of Fact(G); and σ(12), σ(123) the
permutation automorphisms. Then Out(G) has the following presentation.

Generators: (A, b), (B, c), (C, a), Aut(A), Aut(B), Aut(C), σ(123), σ(12)

Relations (with terms going over all appropriate generators):

(A, b)(A, b′) = (A, b′b), etc. (1)

[Aut(A), Aut(B)] = [Aut(A), Aut(C)] = [Aut(B), Aut(C)] = 1 (2)

σ3
(123) = 1, σ2

(12) = 1, (σ(123)σ(12))
2 = 1 (3)

φ−1(A, b)φ = (A, bφ), etc. (4)

σ−1
(12)(A, b)σ(12) = γ(a−1)(C, a−1) (5)

σ−1
(12)(B, c)σ(12) = γ(c−1)(B, c−1) (6)

σ−1
(12)(C, a)σ(12) = γ(b−1)(A, b−1) (7)

σ−1
(123)(A, b)σ(123) = (B, c), etc. (8)

(φa, φb, φc)
σ(12) = (φb, φa, φc), (φa, φb, φc)

σ(123) = (φb, φc, φa) (9)

Relations (2) are inherited from the direct product structure on Fact(G); relations (3) give
a presentation of S3, and relations (9) are a consequence of the wreath product structure
on ⟨Fact(G), Perm(G)⟩.

A proof of this presentation is given as an appendix, since it closely follows the proof
in [5] for three non-isomorphic groups.

This presentation gives a semidirect product decomposition of Out(G) as (Ĝ⋊Fact(G))⋊
Perm(G), where Ĝ is isomorphic to G but generated by the (A, b),(B, c) and (C, a) (de-
note these factor groups by B̂,Ĉ and Â respectively) and the actions are the actions
from the original semidirect decomposition of Aut(G). However, whenever the fac-
tors are not abelian, the order of evaluation is now important, since Perm(G) does not
normalise Ĝ in the presence of inner factor automorphisms.

Proposition 4.10. If G = A ∗ B ∗ C is a free product of three copies of some freely indecom-
posable group, then Out(G), and therefore Aut(G), acts on a tree without global fixed points.
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Fact(G)⋊ S2

Fact(G)⋊ S3 (Â ⋊ Fact(G))⋊ S2

(C) (Ĝ ⋊ Fact(G))⋊ S3

FIGURE 2.3: The graphs of groups at each stage of Proposition 4.10

Proof. We will construct an action at each stage of the semidirect product decomposi-
tion.

Consider the tripod graph of groups for Ĝ (shown in Figure 2.3a), taking the central
vertex to be the base point. Call the Bass-Serre tree for this graph of groups T. Any
elliptic word can be cyclically reduced to a single letter - a path of zero length (as ex-
pected). The translation length of any hyperbolic word is twice the length of a cyclically
reduced conjugate, since every letter will require traversing two edges. The factor auto-
morphisms act by sending (A, b) to (A, bφ) (for example), and so they don’t change the
(cyclically reduced) word length. So the factor automorphisms are translation length
preserving, and have an action on T. By Corollary 4.7(2), this action is compatible with
the action of Ĝ, and so we have an action of Ĝ ⋊ Fact(G) on T.

A quotient graph of groups for this action, taking the same fundamental domain, is
shown in Figure 2.3b. The factor automorphisms preserve the subgroups Â, B̂, and Ĉ
and so fix the fundamental domain: the equivariance of the induced isometries means
fixed points are sent to fixed points, so an automorphism preserving a subgroup will
induce an isometry preserving its fixed point set. Since the fixed point sets in an action
with trivial edge stabilisers are single vertices, this means that the induced isometry
fixes the same vertex. The central vertex must then be fixed in order to preserve ad-
jacency. Also, no orbits are collapsed by this action, so the fundamental domain does
remain the same.

A element of Ĝ ⋊ Fact(G) may be written uniquely as φw, where φ is an element of
Fact(G) and w is an element of Ĝ. Each conjugacy class has a representative with w
cyclically reduced: first write w = h−1gh, where g is cyclically reduced, and the last
letter of g and the first letter of h are drawn from different factor groups. (So there are
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no reductions or concatenations to do except possibly at h−1g.) We can then conjugate
the element as a whole by h−1, giving φw ∼ hφh−1ghh−1 = φ(hφ)h−1g. The word
(hφ)h−1g (after cancelling and concatenating as necessary, depending on how many
terminal letters of h are fixed by φ) is cyclically reduced, since we chose h to ensure that
it (and so also (hφ)) have a first letter drawn from a different factor group to the last
letter of g.

So it is enough to calculate the translation length of φw when w is cyclically reduced.
Using the graph of groups in Figure 2.3b, since φ can be picked up at the same vertex
as the first non-trivial group element, and w is cyclically reduced, the length of the
(cyclically reduced) path for φw is just the same as that for w. So ∥φw∥ = ∥w∥.

Now we need to describe the effect of a permutation automorphism on the translation
length. We have seen that is enough to understand it in the case where w is cyclically
reduced, so we restrict to this case. In general, there are inner factor automorphisms
introduced by the permutation, which we will need to move past the rest of the word
to get back to our standard form. This can’t change the length or structure (in terms of a
sequence of factor groups from which the elements have come) of the word, since they
either fix each letter or replace it with a different letter from the same factor group. So
(φw)σ = φ′w′, where φ′ is a (likely different) element of Fact(G), and w′ is the image
of w after applying σ and moving any inner factor automorphisms past it. Provided
w was cyclically reduced, w′ is also cyclically reduced and has the same length. So by
the argument above, ∥(φw)σ∥ = ∥w′∥ = ∥w∥ = ∥φw∥, and so the translation length is
preserved by the permutation automorphisms.

So the permutation automorphisms are a subgroup of AutT(Ĝ ⋊ Fact(G)), and so we
may further extend the action to the full outer automorphism group (Ĝ ⋊ Fact(G))⋊
Perm(G), again by applying Corollary 4.7(2).

A quotient graph of groups for this action (giving the splitting) is shown in Figure
2.3c. The effect of the permutation automorphisms is to collapse the orbits of the three
outer vertices to one, while preserving the orbit of the central vertex. So there are two
orbits of vertices and one orbit of edges: the edge is stabilised by Fact(G)⋊ C2, and the
vertices by (Â ⋊ Fact(G))⋊ C2 and by Fact(G)⋊ S3.

We are now in a position to prove the final part of Theorem 4.1:

Corollary 4.11. Suppose G is a free product of freely indecomposable groups, such that any of
the following occur:

• the free rank is exactly 2;

• the free rank is exactly 1, and another free factor appears exactly once
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• G has no infinite cyclic factors and either a free factor appears exactly two or three times,
or any two free factors appear exactly once.

Then Aut(G) does not have Property FA.

Proof. Let H be the subgroup generated by the free factors matching one of the con-
ditions in the hypotheses. The normal subgroup N generated by all other free factors
is characteristic (Nφ = N for all automorphisms φ of G), since it contains all repre-
sentatives of these isomorphism classes. So there is a homomorphism from Aut(G) to
Aut(H). It is onto since Aut(G) already contains a copy of Aut(H) (by restricting the
presentation to only these generators), and this is sent to itself. We have that Aut(H)

acts on a tree by Proposition 4.8 if H has two free factors, or that the quotient Out(H)

(and therefore the group Aut(H)) does by Proposition 4.10 if there are three. In either
case, we have an action (without global fixed points) of a quotient of Aut(G) on a tree,
and so Aut(G) also acts on that tree without global fixed points. So Aut(G) does not
have Property (FA).

The proof of Theorem 4.1 is just assembling the proofs in this section:

Proof of Theorem 4.1.

(1) This is (3) of Corollary 4.11.

(2) This is Proposition 4.2.

(3) This is Proposition 4.3.

However, all of these groups (assuming the free product is non-trivial) do have finite
index subgroups that admit actions on trees:

Proposition 4.12. Suppose G is a finite and non-trivial free product, where each factor is freely
indecomposable and not infinite cyclic. Then there is a finite index subgroup of Aut(G) that
does not have Property (FA).

This proof uses only methods already described in this paper. A different proof can be
established from [13].

Proof. The finite index subgroup we will work with is the group FR(G)⋊Fact(G), with
the finite quotient being Perm(G). Observe that all the generators of this group pre-
serve the conjugacy class of each free factor, making the normal closure of any collec-
tion of free factors ‘characteristic for this subgroup’. Let N be the normal closure of
all but two factors. There is a map to Aut(G/N), and all generators (apart from the
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permutation, if present) are in the image. So we have a quotient isomorphic to (a finite
index subgroup of) some Aut(H), where H is a free product of just two groups. (If all
the free factors are isomorphic, then Aut(H) necessarily contains a permutation auto-
morphism, which is not in the image. However, its index 2 subgroup FR(H)⋊ Fact(H)

works just as well for the rest of the argument.) By Proposition 4.8 this admits an action
on a tree and so does not have Property (FA).

Corollary 4.13. Suppose G is a finite and non-trivial free product where each factor is freely
indecomposable and not infinite cyclic. Then Aut(G) does not have Kazhdan’s Property (T).

Proof. Discrete groups with Property (T) are finitely generated [3, Theorem 1.3.1], so
if any factor is uncountable they certainly do not have Property (T). If all factors are
countable, we may use Watatani’s result [24] which gives that if Aut(G) had Property
(T), then every finite index subgroup would have Property (FA). Since Proposition 4.12
gives a finite index subgroup which acts on a tree, and therefore does not have Property
(FA), Aut(G) cannot have Property (T).
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A A presentation of Out(G)

This appendix contains a proof of the presentation of Out(G) given in Section 4:

Proposition 4.9. Suppose G = A ∗ B ∗ C is a free product of three copies of some freely
indecomposable and not infinite cyclic group. Let γ(a) denote the inner factor automorphism
conjugating A by a; φ = (φa, φb, φc) denote an element of Fact(G); and σ(12), σ(123) the
permutation automorphisms. Then Out(G) has the following presentation.

https://arxiv.org/abs/1810.06287v1
https://arxiv.org/abs/2009.05134v2
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Generators: (A, b), (B, c), (C, a), Aut(A), Aut(B), Aut(C), σ(123), σ(12)

Relations (with terms going over all appropriate generators):

(A, b)(A, b′) = (A, b′b), etc. (1)

[Aut(A), Aut(B)] = [Aut(A), Aut(C)] = [Aut(B), Aut(C)] = 1 (2)

σ3
(123) = 1, σ2

(12) = 1, (σ(123)σ(12))
2 = 1 (3)

φ−1(A, b)φ = (A, bφ), etc. (4)

σ−1
(12)(A, b)σ(12) = γ(a−1)(C, a−1) (5)

σ−1
(12)(B, c)σ(12) = γ(c−1)(B, c−1) (6)

σ−1
(12)(C, a)σ(12) = γ(b−1)(A, b−1) (7)

σ−1
(123)(A, b)σ(123) = (B, c), etc. (8)

(φa, φb, φc)
σ(12) = (φb, φa, φc), (φa, φb, φc)

σ(123) = (φb, φc, φa) (9)

Relations (2) are inherited from the direct product structure on Fact(G); relations (3) give
a presentation of S3, and relations (9) are a consequence of the wreath product structure
on ⟨Fact(G), Perm(G)⟩.

The proof is largely the same as that given in [5] for three non-isomorphic factors, dif-
fering by taking account of the permutation automorphisms which appear when the
factor groups are isomorphic.

A presentation of Aut(G) (derived from Propositions 2.9 and 2.8) consists of:

Generators: (A, b), (A, c), (B, a), (B, c), (C, a), (C, b); Aut(A), Aut(B), Aut(C); σ(123), σ(12)

Denote by φ = (φa, φb, φc) an arbitrary factor automorphism, and σ some permutation
automorphism. Then we have the following relations, which should be taken to range
over all appropriate generators:

[(A, b), (C, b′)] = 1, etc. (1)

[(A, b)(C, b), (A, c)] = 1, etc. (2)

(A, b)(A, b′) = (A, b′b), etc. (3)

[Aut(A), Aut(B)] = [Aut(A), Aut(C)] = [Aut(B), Aut(C)] = 1 (4)

σ3
(123) = 1, σ2

(12) = 1, (σ(123)σ(12))
2 = 1 (5)

φ−1(A, b)φ = (A, bφ), etc. (6)

σ−1(A, b)σ = (Aσ, bσ), etc. (7)

(φa, φb, φc)
σ(12) = (φb, φa, φc), (φa, φb, φc)

σ(123) = (φb, φc, φa) (8)
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Relations (4) are inherited from the direct product structure on Fact(G); relations (5)
give a presentation of S3, and relations (8) are a consequence of the wreath product
structure on ⟨Fact(G), Perm(G)⟩.

This gives Aut(G) as the iterated semidirect product FR(G) ⋊ Aut(A)3 ⋊ S3, where
Aut(A)3 ⋊S3 is the permutation wreath product in Proposition 2.8. Since S3 normalises
FR(G), it can be evaluated in either order.

To find a presentation of Out(G), we add relations to this presentation setting each
inner automorphism equal to the identity. To do this, let γ(a) be the inner factor au-
tomorphism conjugating A by a ∈ A and fixing the other factor groups, and similarly
γ(b) and γ(c). Then we add relations γ(a)(B, a)(C, a) = 1, and similarly for elements
in B and C.

Use the new relations to rewrite three kinds of generators ((A, c), (B, a) and (C, b)). For
example, (A, c) = γ(c−1)(B, c−1). Then we can eliminate both those generators and the
new relations. Putting this substitution in the first kind of relation we see that they are
implied by the others (and so are unnecessary):

[(A, c), (B, c′)] = [γ(c−1)(B, c−1), (B, c′)]

= (B, c)γ(c)(B, c′−1)γ(c−1)(B, c−1)(B, c′)

= (B, c)(B, cc′−1c−1)(B, c−1)(B, c′) by (6)

= (B, c′c−1cc′−1c−1c) by (3)

= (B, 1)

= 1

Similarly for the second kind:

[(A, b)(C, b), (A, c)] = [γ(b−1), γ(c−1)(B, c−1)]

= γ(b)(B, c)γ(c)γ(b−1)γ(c−1)(B, c−1)

= γ(b)(B, c)γ(b−1)(B, c−1) by (4)

= (B, c)(B, c−1) by (6)

= 1

Sometimes only one substitution is required, for example the relation

[(A, b)(C, b), (C, a)] = 1

.

Relations (3),(4),(5), and (8) are all in terms of only generators we eliminated (in which
case they have also been eliminated) or of only generators we still have, so don’t need
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any rewriting. Relations (6) only have the effect of changing the conjugating element
for another drawn from the same factor group, so again don’t require any rewriting.

However, (7) requires rewriting for transpositions. Taking σ(12), to interchange A and
B, we have

σ(12)(A, b)σ(12) = (Aσ(12), bσ(12))

= (B, a)

= γ(a−1)(C, a−1)

And similarly:

σ−1
(12)(C, a)σ(12) = γ(b−1)(A, b−1)

σ−1
(12)(B, c)σ(12) = γ(c−1)(B, c−1)

So with generators σ(12) (interchanging A and B) and σ(123) (cycling A to B to C to A)
we replace (7) above with:

σ−1
(12)(A, b)σ(12) = γ(a−1)(C, a−1) (7a)

σ−1
(12)(B, c)σ(12) = γ(c−1)(B, c−1) (7b)

σ−1
(12)(C, a)σ(12) = γ(b−1)(A, b−1) (7c)

σ−1
(123)(A, b)σ(123) = (B, c), etc. (7d)

After eliminating (1) and (2), and replacing (7) by (7a)-(7d), this gives the presentation
of Proposition 4.9.

Note that while this still gives an iterated semidirect product structure, in general the
S3 no longer normalises the first factor and so the order of evaluation is important. If
the free factors are abelian then the inner factor automorphisms are trivial and again
the semidirect product can be evaluated in either order.
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Paper 3: Free-by-cyclic groups, automorphisms and
actions on nearly canonical trees

Naomi Andrew and Armando Martino

ABSTRACT. We study the automorphism groups of free-by-cyclic groups and show
these are finitely generated in the following cases: (i) when defining automorphism
has linear growth and (ii) when the rank of the underlying free group has rank at most
3.
The techniques we use are actions on trees, including the trees of cylinders due
to Guirardel and Levitt, the relative hyperbolicity of free-by-cyclic groups (due to
Gautero and Lustig, Ghosh, and Dahmani and Li) and the filtration of the automor-
phisms of a group preserving a tree, following Bass and Jiang, and Levitt.
Our general strategy is to produce an invariant tree for the group and study that,
usually reducing the initial problem to some sort of McCool problem (the study of
an automorphism group fixing some collection of conjugacy classes of subgroups) for
a group of lower complexity. The obstruction to pushing these techniques further,
inductively, is in finding a suitable invariant tree and in showing that the relevant
McCool groups are finitely generated.

1 Introduction

1.1 Free-by-cyclic groups

Given a finite rank free group Fn and an automorphism φ ∈ Aut(Fn), we can define a
free-by-cyclic group G = Fn ⋊φ ⟨t⟩ = ⟨x1, . . . xn, t|t−1xit = xi φ⟩ (so conjugating by the
stable letter t acts on Fn as the automorphism φ). The properties of this free-by-cyclic
group depend only on the automorphism φ, and in fact only on the conjugacy class of
its image in the outer automorphism group, Φ [6, Lemma 2.1].

Various properties of G follow from φ and indeed from Φ: for example, G is hyperbolic
if and only if φ is atoroidal (no power of φ fixes the conjugacy class of an element in
Fn) [7], and is relatively hyperbolic if and only if the length of some word in Fn grows
exponentially under iteration of φ [14, 15, 13]. Both of these properties are properties
of the outer class as a whole.

In this paper we study the actions of free-by-cyclic groups on trees, and through this
their automorphisms. Even in rank 1 (the two cyclic-by-cyclic groups) it is hard to say
anything very general about their automorphisms: for Z2, the outer automorphism
group is GL(2, Z), whereas for the fundamental group of the Klein bottle it has only
four elements.
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There are groups which can be expressed as free-by-cyclic groups with more that one
possibility for the rank of Fn. However, there are some things which these presentations
will have in common: for example, the growth rate of the outer automorphism Φ will
be the same [26]. An automorphism is polynomially growing (with degree d) if, as it is
iterated, the conjugacy length of a word is bounded by a polynomial (of degree d), and
(by a Theorem of [5] – see Subsection 2.4) exponentially growing otherwise. We split
our investigation by growth rate.

Levitt’s work on Generalised Baumslag-Solitar groups [22] includes (after checking
some hypotheses) that if the defining (outer) automorphism is finite order (in which
case the free-by-cyclic group G is virtually Fn ⋊ Z) then Out(G) is VF, and so in partic-
ular finitely generated.

We extend finite generation to all cases where the defining outer automorphism has
linear growth:

Theorem 1.1.1. Suppose G ∼= Fn ⋊φ Z, and φ is linearly growing. Then Out(G) is finitely
generated.

Also [6], studies the case when the underlying free group has rank 2. There Out(G)

is calculated up to finite index for all defining automorphisms, and this classification
shows that Out(G) is finitely generated.

We extend the finite generation result to all cases where the underlying free group has
rank 3 (in which case the growth is either at most quadratic or exponential):

Theorem 1.1.2. Suppose G ∼= F3 ⋊ Z. Then Out(G) is finitely generated.

We understand the automorphism groups through studying certain actions of G on
trees. Since they are defined as HNN extensions, all free-by-cyclic groups have a trans-
lation action on the real line. But they also admit actions on more complicated trees.
These actions are equivalent to alternative presentations which can provide more in-
formation about the group. To understand the automorphisms, we use particular trees
which are in some sense invariant under all – or sometimes only most – automor-
phisms.

The details are different in the exponentially growing and polynomially growing cases.
With exponential growth, G is one-ended relatively hyperbolic, and so it has a canon-
ical JSJ decomposition by [18]. These decompositions are particularly useful and well
understood, and there is a description of the outer automorphism group arising from
them. We describe the canonical tree and for the low rank cases carry out the calcula-
tions needed for the automorphism group in Section 4.

Using Guirardel and Levitt’s tree of cylinders construction [16], we construct canoni-
cal trees when the defining automorphism is unipotent polynomially growing (UPG)
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and either linear or, in low rank, quadratic. These trees arise from fixed points on the
boundary of Culler-Vogtmann outer space for the defining (outer) automorphism and
restricting the action to Fn will give an action in the same deformation space as such a
tree. Every polynomially growing automorphism has a power which is UPG (in fact,
the power can be taken to depend only on the rank of the free group – see Defini-
ton 2.4.4). This implies the existence of a normal finite index subgroup which is again
free-by-cyclic, this time with a UPG defining automorphism.

Understanding the automorphisms of a finite index subgroup does not necessarily pro-
vide insight into those of the larger group: the fundamental group of a Klein bottle
(with only four outer automorphisms) contains Z2 as an index 2 subgroup. A key part
of our proof is that we can use the existence of a canonical splitting of a normal finite
index subgroup to find a splitting of the larger group which is “nearly canonical” –
invariant under at least a finite index subgroup of automorphisms.

The result is:

Proposition 3.1.4. Let G be a finitely generated group, G0 a normal finite index subgroup of
G, and suppose that T is a canonical G0-tree. Then

(i) G acts on T, and this action restricts to the canonical G0-action.

(ii) With this action, T is nearly canonical as a G-tree.

By this result, we have an action of G on a tree, and we can consider the outer au-
tomorphisms preserving this action, which is finite index in the full outer automor-
phism group. Understanding this group depends on understanding the vertex and
edge groups, their automorphisms, and how those automorphisms interact. In partic-
ular, we need to calculate “McCool groups”, for vertex groups with respect to adjacent
edge groups: the outer automorphisms having representatives that restrict to the iden-
tity on each of a family of subgroups.

As part of our proof, we carry this calculation out for free-by-cyclic groups defined by
a periodic automorphism, with respect to a limited class of subgroups, and when the
underlying free group has rank 2.

We note that there appear to be two main obstacles to extending this result further:
constructing actions on trees which are (nearly) canonical, and understanding the Mc-
Cool groups arising from these trees. In the exponential case, the canonical trees exist
and the obstruction is only the McCool groups, which are generally required to be
with respect to fairly complex subgroups. In the polynomially growing case(s) passing
to a (UPG) power should lead to actions arising from limit points of CVn, and with
quadratic growth these are even unique – see [25]. But it is not obvious that the defor-
mation spaces these define are canonical. If canonical trees can be found, the McCool
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groups are likely to be needed relative only to infinite cyclic subgroups, which may be
more manageable.

Acknowledgements. The first author was supported by an EPSRC studentship, and
the second author by Leverhulme Trust Grant RPG-2018-058.

2 Background

2.1 Notation, Actions on trees and Bass-Serre Theory

We record here some notation for actions on trees and various subgroups of (outer)
automorphisms used throughout the paper.

We recall enough of Bass-Serre theory to set notation; see [32] amongst others for a
fuller exposition. Following Serre, the edges of a graph come in pairs denoted e and e,
and ι(e) and τ(e) denote the initial and terminal vertices. An orientation, O, is a choice
of one edge from each pair {e, e}.

Let a group G act on a tree T. We let Gv and Ge denote the stabiliser of a vertex v or
edge e respectively; from the perspective of graphs of groups we use them for vertex
and edge groups, and use αe to denote the monomorphism Ge → Gι(e). Often we
simply identify Ge with its image αe(Ge) in Gι(e). An action on a tree is called minimal
if it does not admit a G-invariant subtree; most of our actions will be assumed to be
minimal. An action on a tree is irreducible if it does not fix a point, line, or end of the
tree; to guarantee this it is sufficient that the action has two hyperbolic axes whose
intersection is at most finite length.

We use NG(H), CG(H) and Z(H) for the normaliser of H in G, the centraliser of H in G,
and the centre of H. To save space and subscripts in the context of an action on a tree,
we let Ne = NGι(e)

(Ge) and Ce = CGι(e)
(Ge).

As usual, Aut(G) denotes the automorphisms of G, and Out(G) = Aut(G)/ Inn(G)

the outer automorphisms. We use lower case greek letters (φ) for automorphisms, and
upper case (Φ) for outer automorphisms. If the image of φ in Out(G) is Φ, we say φ

represents Φ, or φ ∈ Φ (viewing Φ as a coset of Inn(G)).

Given an automorphism φ of G, we can define the cyclic extension of G by φ as

G ⋊φ Z = ⟨X, t : R, t−1xt = xφ⟩

(taking ⟨X : R⟩ to be a presentation of G). Automorphisms representing the same
outer automorphism define isomorphic extensions, as can be seen by introducing a
new generator t′ = tg. For this reason, we will sometimes use the notation G ⋊Φ Z
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to refer to the isomorphism class of cyclic extensions defined by any automorphism
representing Φ.

For g ∈ G, we write Ad(g) for the inner automorphism of G induced by g.

If G normalises H, let Ad(G, H) denote the automorphisms of H induced by conjugat-
ing by elements of G. If H is clear, it may be omitted; in particular (and assuming an
action on a tree) Ad(Ne) always means the automorphisms of Ge induced by conjugat-
ing by Ne, its normaliser in Gι(e). Notice that since Ne contains Ge, the subgroup Ad(Ne)

descends to a subgroup of Out(Ge).

We identify certain “relative” subgroups of Out(G):

Definition 2.1.1. Given a family of subgroups {Gi} of G, we define

• the subgroup Out(G; {Gi}) to be those outer automorphisms of G where for each
subgroup Gi there is a representative that restricts to an automorphism of Gi.

• the subgroup Mc(G; {Gi}) to be those outer automorphisms of G where for each
subgroup Gi there is a representative that restricts to the identity on Gi.

Note that these are subgroups of outer automorphisms; any given representative will
not usually have the correct restriction for every subgroup Gi.

Throughout the paper we consider actions of Fn ⋊φ Z on trees. Dahmani (in Section
2.2 of [12]) gives some useful results about such an action. The following lemma is
specialised to free-by-cyclic groups; Dahmani gives it more generally for semidirect
products with Z (suspensions, in the terminology of that paper) of any finitely gener-
ated group.

Lemma 2.1.2. Suppose G ∼= Fn ⋊ ⟨t⟩ acts minimally and irreducibly on a tree. Then

(1) Fn acts on the same tree with finite quotient graph

(2) The stabilisers in any action of G on a tree are again free-by-cyclic; the free part is the
Fn-stabiliser, and the generator of the cyclic factor has the form tkw.

(3) In particular, all edge stabilisers are at least infinite cyclic, and G is one ended.

(4) If all incident edges at some vertex are cyclically stabilised, its stabiliser cannot be finitely
generated and infinitely ended.

The hypotheses given here differ slightly from Dahmani’s: we demand an irreducible
action while Dahmani uses “reduced”. In fact a sufficient condition is that Fn acts non-
trivially, which is guaranteed by either of these conditions.
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Note that the last point is not immediately obvious: the free part at a vertex could be
infinitely generated, and free by cyclic groups of this form can be infinitely ended, and
even free. It implies that in any splitting of this kind there cannot be a “quadratically
hanging” vertex group, for these have exactly the combination of properties ruled out
here (see Section 4).

The crucial observation is that since Fn is a normal subgroup, it also acts minimally on
the whole tree. Then finite generation ensures the quotient under this action is finite. To
recover the free-by-cyclic structure on the stabilisers, consider the action of ⟨t⟩ on the
quotient graph, and lift the stabilisers back to the whole group. This kind of argument
enables us to analyse the splitting of G by considering the induced splitting of Fn.

To see the last point, in this case, note that this could only occur if the free part of
the relevant vertex stabiliser was not finitely generated. Contract all other edges and
consider the induced free splitting of Fn: this expresses Fn as a free product where one
free factor is not finitely generated, which is impossible.

(More generally, the free part of a vertex may only be infinitely generated if the same
is true of at least one incident edge group; control over the edge groups provides some
control over the vertex groups.)

2.2 Length Functions and Twisting Actions by Automorphisms

Since we will usually be working with simplicial metric trees, an action of G on a tree
T will be equivalent to a map G → Isom(T).

Any action of G on a tree T defines a translation length function on G, by considering the
minimum displacement of points in the tree for each element. That is, given an isomet-
ric action of G on T, we can define the function, lT : G → R by lT(g) = minx∈T dT(x, xg)
(and this minimum is always realised). Note that lT is constant on conjugacy classes.

We recall a well-known Theorem of Culler and Morgan:

Theorem 2.2.1 ([11, Theorem 3.7]). Let G be a finitely generated group and let T1, T2 be two
R-trees equipped with isometric G actions which are minimal and irreducible. Then lT1 = lT2

if and only if T1 and T2 are equivariantly isometric. Moreover, such an equivariant isometry is
unique if it exists.

Remark 2.2.2. This result says that, in many cases, the translation length function de-
termines the action.

The action of G on T defines a deformation space, by considering all simplicial actions
of G on a tree with the same elliptic subgroups (this is an equivalence relation on G-
trees); the elliptic subgroups are those subgroups of G which fix a point in the tree. Note
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that there can still be vertices with stabilisers that are not conjugate to a stabiliser in the
original action. (For example, consider representing a free product of three groups as a
graph of groups where the underlying graph is a line versus a tripod: these are in the
same deformation space, despite the extra trivially stabilised vertex.) Trees in the same
deformation space dominate each other; that is, there are equivariant maps between
them.

Definition 2.2.3. Given an isometric action of a group G on a tree, T, a new ‘twisted’
action of G on T can be defined by pre-composing with any automorphism of G. That
is, if φ ∈ Aut(G), then x ·φ g = x · (gφ)

In terms of length functions, this means that lφT(g) = lT(gφ). (Here φT is the “twisted
tree”, isometric to T but with the new action defined above.)

Given a deformation space of trees, this defines an action of Aut(G) on that space.

Remark 2.2.4. Note that there is a switch from left to right; if the automorphisms of G
act on elements on the right then the action on trees by pre-composing is on the left and
vice versa.

In most cases this changes the length function; we let

AutT(G) = {φ ∈ Aut(G) : lφT = lT}

denote the subgroup of Aut(G) which leaves it unchanged. Notice that this is true of
all inner automorphisms, so these are a subgroup of AutT(G). By Theorem 2.2.1 such
an automorphism induces an equivariant isometry of T, and assuming the action is
minimal and does not fix an end this is unique and extends to an action of AutT(G).
This action is compatible with the original action in at least two senses: G ⋊ AutT(G)

(with the usual action of AutT(G) on G) acts on T, restricting to the original action of G
and the induced action of AutT(G), and the action of G on T factors through the map
sending each element to the inner automorphism it induces.

This is asserting the existence of a commuting diagram (see [1] for how to use Theo-
rem 2.2.1 to produce this diagram):

AutT(G) Isom(T)

G

g 7→Ad(g) ·

Recall (from Section 2.1) that Ad(g) is the inner automorphism induced by g.
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In fact, such a diagram is also sufficient to recover the definition in terms of length
functions since for any φ ∈ AutT(G),

lT(g) = lT(Ad(g)) = lT(Ad(g)φ) = lT(Ad(gφ)) = lT(gφ),

(where we are moving between the G action and the AutT(G) action using the commu-
tative diagram).

We will consider OutT(G) = AutT(G)/ Inn(G), the subgroup of outer automorphisms
which preserves the length function. By the correspondence theorem, many properties
of AutT(G), such as finite index or normality, are inherited by OutT(G).

2.3 Trees of cylinders

Guirardel and Levitt in [16] define a tree of cylinders for a deformation space. The
input is any tree in the deformation space, and an equivalence relation on the edges; the
output is a tree where the induced splitting is preserved by all (outer) automorphisms
which preserve the deformation space. They are our main tool for producing trees
which allow us to analyse outer automorphisms by considering trees.

We start the construction by defining a family E of subgroups of G. It should be closed
under conjugation, but not under taking subgroups. We then define an admissible equiv-
alence relation on E [16, Definition 3.1]. This must satisfy

(1) if A ∼ B then Ag ∼ Bg for all g ∈ G

(2) if A ≤ B then A ∼ B

(3) Suppose G acts on a tree with stabilisers in E . If A ∼ B, v ∈ Fix(A) and w ∈
Fix(B), then the stabiliser of any edge lying in [v, w] is equivalent to A (and B)

To show (3) it is sufficient to show that ⟨A, B⟩ is elliptic [16, Lemma 3.2]

Now suppose that G acts on T with edge stabilisers in E . Define an equivalence relation
on the edges of T by saying e ∼ e′ if Ge ∼ Ge′ . A cylinder consists of an equivalence class
of edges; the conditions on an admissible equivalence relation ensure that cylinders are
connected, and that two cylinders may intersect in at most one vertex.

To construct the tree of cylinders Tc, replace each cylinder with the cone on its bound-
ary [16, Definition 4.3]. That is, there is a vertex Y for every cylinder, together with
surviving vertices x lying on the boundary of two (or more) cylinders. Edges show
inclusion of a boundary vertex x into a cylinder Y. The stabilisers of boundary ver-
tices are unchanged; the stabiliser of a cylinder vertex is the (setwise) stabiliser of the
cylinder. Edge stabilisers are the intersection of the relevant vertex stabilisers.
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The tree of cylinders Tc depends only on the deformation space of T, in the sense that
given two minimal, non-trivial trees T, T′ in the same deformation space, there is a
canonical equivariant isomorphism between Tc and T′

c [16, Corollary 4.10]. In particu-
lar this means that this tree of cylinders is fixed by any automorphism which preserves
the deformation space, and so can be used to study these (outer) automorphisms.

It is always true that T dominates Tc, but cylinder stabilisers may not be elliptic in
T. The deformation space of the tree of cylinders depends on the size of the cylin-
ders: if all cylinders are bounded, or equivalently contain no hyperbolic axis, then the
cylinder stabilisers are elliptic in T and so Tc lies in the same deformation space, and
conversely [16, Proposition 5.2].

Edge stabilisers may not be in E ; in this case the collapsed tree of cylinders T∗
c is defined

by collapsing all edges of Tc with stabilisers not in E [16, Definition 4.5]. Assuming that
E is sandwich closed (if A ≤ B ≤ C are subgroups of G, and A and C are in E , then
so is B), the construction is stable in the sense that (T∗

c )
∗
c = T∗

c [16, Corollary 5.8]. If T
and T′ are in the same deformation space then there is a unique equivariant isometry
between T∗

c and (T′)∗c [16, Corollary 5.6] and again this action is canonical.

In general, there may be more restrictions put on the trees: sometimes we require that
a certain collection of subgroups is elliptic. In this case the deformation space and tree
of cylinders is canonical relative to the automorphisms which preserve this collection.

2.4 Automorphisms of free groups

We recall some of the results we will use about automorphisms of free groups. Here
Aut(Fn) denotes the automorphism group of the free group of rank n and Out(Fn) =

Aut(Fn)/ Inn(Fn), the group of outer automorphisms, which is the quotient by the in-
ner automorphisms. Thus an outer automorphism is a coset of inner automorphisms,
and there is an equivalence relation on this set of automorphisms called isogredience.
Formally,

Definition 2.4.1. Two automorphisms φ, ψ ∈ Aut(Fn) are said to be isogredient if they
are conjugate by an inner automorphism. This is an equivalence relation when re-
stricted to any coset of Inn(Fn), that is an element of Out(Fn).

Theorem 2.4.2 (Bestvina-Handel Theorem, [5]). Let Φ ∈ Out(Fn). Then,

∑ max{rank(Fix φ)− 1, 0} ≤ n − 1,

where the sum is taken over representatives, φ, of isogredience classes in Φ.

Note that isogredient automorphisms have conjugate fixed subgroups, so the ranks of
the fixed subgroups do not depend on the representatives chosen.
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Growth Rate

If we fix a basis, B, of Fn then we set ∥g∥B to be the length of the shortest conjugacy class
of g with respect to B, for any g ∈ Fn. We simply write this as ∥g∥ if B is understood.

Given a Φ ∈ Out(Fn) it is then clear that there exists a λ such that,

∥Φk(g)∥
∥g∥ ≤ λk,

as we can simply take λ to be the maximum conjugacy length of the image of any
element of B. (Also note that since these are conjugacy lengths, we can apply any
automorphism in the same outer automorphism class and get the same result. Thus we
are effectively applying an outer automorphism.)

One of the results of [5] is that the growth of elements in this sense is either exponential
or polynomial. That is, for any g ∈ Fn, we either get that, for some µ < λ,

µk ≤ ∥Φk(g)∥
∥g∥ ≤ λk,

or there exist constants 0 < A < B such that

Akd ≤ ∥Φk(g)∥
∥g∥ ≤ Bkd,

where d ∈ {0, 1, . . . , n − 1}.

See [23, Theorem 6.2] for a precise description of the growth types of elements of Fn.

Accordingly, we say that

Definition 2.4.3. Φ ∈ Out(Fn) has exponential growth if there is some element g whose
conjugacy length grows exponentially. And we say that Φ has polynomial growth of
degree d if the conjugacy length of every element grows polynomially and d is the
maximum degree of these polynomials.

Note that in our usage “polynomial growth of degree d” implies that d is the smallest
degree bounding the growth of every element: so for example for an automorphism of
quadratic growth there will be an element whose conjugacy length grows quadratically.

We note that the property of having exponential or polynomial growth (and the degree
of polynomial growth) are independent of the basis, B. Also, the growth type (although
not the exponential growth rate) of an automorphism is the same as that of its powers.
(This includes negative powers, though this is a harder fact to verify).
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UPG Automorphisms

We shall look at (outer) automorphisms of polynomial growth and consider a subclass
of these, called the UPG automorphisms.

Definition 2.4.4. (see [3], Corollary 5.7.6) We say that Φ ∈ Out(Fn) is Unipotent Poly-
nomially Growing, or UPG, if it has polynomial growth and it has unipotent image in
GLn(Z). This is guaranteed if the automorphism induces the trivial map on the ho-
mology group of Fn with Z3 coefficients.

Hence, any polynomially growing automorphism has a power which is UPG. More-
over, this power can be taken to be uniform (given n).

In the subsequent arguments we will have need to refer to a particular type of free
group automorphism called a Dehn Twist. These are defined in terms of certain maps
via a graph of groups. Namely, one takes a splitting of the free group with infinite
cyclic edge groups and looks at a map defined by “twisting” along the edges. For our
purposes, the following Theorem provides a useful alternative characterisation, and
can be taken as a definition.

Theorem 2.4.5. (see [10], [20], [5] and [3]) Dehn Twist automorphisms of free groups are
precisely the linear growth UPG automorphisms.

Remark 2.4.6. As commented in [20], Theorem 2.4.5 is not proved explicitly in the
papers cited, but is well known to experts. The idea is that a UPG automorphism has a
‘layered’ improved relative train track representative by [3]. The fact that it has linear
growth will imply that there are no attracting fixed points on the boundary, and from
there is it relatively straightforward to produce a graph-of-groups description in terms
of the ‘twistors’ of [10]. The arguments in [27] show how to go from the relative train
track map to the graph of groups description explicitly.

A crucial Theorem about Dehn Twists is the parabolic orbits Theorem, which requires a
little notation to set up. The context is Culler-Vogtmann space, CVn, which is the space
of free, simplicial actions of Fn on metric trees. In this formulation, two points – actions
on trees – are said to be equivalent if there is an equivariant homothety between them.
There is a compactification of this space, CVn, which turns out to be the space of very
small actions of Fn on R-trees. The precise definition is not necessary here, but it is worth
noting that the compactification includes points which are actions on trees that are not
simplicial R-trees.

There is a natural action of Out(Fn) on CVn and CVn, as in Definition 2.2.3, obtained by
pre-composing the action by automorphisms.

Theorem 2.4.7 (Parabolic Orbits Theorem – see [9] and [10]). Let Φ ∈ Out(Fn) be a Dehn
Twist. Then for any X ∈ CVn, limk→∞ Φk(X) = T ∈ CVn exists, is a simplicial tree and lies
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in the same simplex – any two such limit trees are equivariantly homeomorphic – independently
of X. Moreover, T is a simplicial Fn-tree with the following properties.

(i) Edge stabilisers are maximal infinite cyclic

(ii) Vertex stabilisers are precisely the subgroups Fix φ, where φ ∈ Φ has a fixed subgroup of
rank at least 2.

Since inner automorphisms only fix infinite cyclic groups, and as any vertex stabiliser,
H, has rank at least 2, then the corresponding automorphism φ ∈ Φ, such that H = Fix φ,
is uniquely defined.

Note that if we take two vertices of T in the same orbit, then their stabilisers are conju-
gate, and the corresponding automorphisms are isogredient. (In general, having con-
jugate fixed subgroups is not enough to imply isogredience, but it is when the fixed
subgroup has rank at least 2). Conversely, if two vertices are in different orbits then the
corresponding automorphisms are not isogredient, since edge stabilisers are cyclic.

Given a Dehn Twist, Φ and a φ ∈ Φ, one can construct the free-by-cyclic group,
G = Fn ⋊φ ⟨s⟩ (one can do this for any free-by-cyclic group, and the group does not
depend on the choice of φ). Using the parabolic orbits Theorem, one gets that G acts on
T, with the following properties,

(i) The induced action of s on the quotient of T by Fn is trivial,

(ii) The G edge stabilisers are maximal Z2,

(iii) The G vertex stabilisers are Fk × Z, for k ≥ 2,

(iv) The element sg fixes a vertex of T if and only if φ Ad(g) has a fixed subgroup of
rank at least 2 (equivalently, if sg has non-abelian centraliser).

3 Extending actions to the automorphism group

3.1 Canonical actions and nearly canonical actions

Since outer automorphisms of free groups often have a power that is better understood
(for us, usually a UPG power of a polynomially growing outer automorphism) it can
be easier to work with the free-by-cyclic group defined by this power, which is a finite
index subgroup of G. However, this means understanding how the automorphisms of
a group and a finite index subgroup relate. In general this is hard: recall that the Klein
bottle group has a finite outer automorphism group, but contains Z2 as a finite index
subgroup.
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Recall that, by Theorem 2.2.1, the action of G on a tree, T, is encoded by its translation
length function, lT. Our strategy is to show that AutT(G), the subgroup of automor-
phisms preserving the tree (or, equivalently, length function) is finitely generated. Thus
we need to find a tree T, such that AutT(G) is either equal to Aut(G) or is a finite index
subgroup of it.

However, the proof of one of our key Lemmas (Lemma 3.1.4) requires us to work with
the actions directly rather than via length functions. Therefore we make the following
definitions:

Definition 3.1.1. An action of a group G on a tree, T, is called canonical if there exists a
commuting diagram:

Aut(G) Isom(T)

G.

g 7→Ad(g) ·

In the case where G is finitely generated and the G-action is minimal and does not
preserve an end, this is equivalent – by Theorem 2.2.1 – to translation length function
being preserved by all of Aut(G), that is AutT(G) = Aut(G) (and OutT(G) = Out(G)).

Definition 3.1.2. We say that an action of G on a tree, T, is called nearly canonical if there
is a finite index subgroup, Inn(G) ≤ A ≤ Aut(G) such that the following diagram
commutes:

A Isom(T)

G.

g 7→Ad(g) ·

In the case where G is finitely generated and the G-action is minimal and does not
preserve an end, this is equivalent to the translation length function being preserved
by a finite index subgroup of automorphisms; that is AutT(G) is a finite index subgroup
of Aut(G).

Remark 3.1.3. We are not aware of this last definition in the literature, but it is clearly
useful. Also, we have avoided calling this virtually canonical since it would raise the
confusion between what we mean, and canonical for a finite index subgroup of G. (See
Proposition 3.1.4).

We are able to extend a canonical action of a normal finite index subgroup to a nearly
canonical action of the whole group, as shown in the following proposition.

Proposition 3.1.4. Let G be a finitely generated group, G0 a normal finite index subgroup of
G, and suppose that T is a canonical G0-tree. Then

(i) G acts on T, and this action restricts to the canonical G0-action.
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(ii) With this action, T is nearly canonical as a G-tree.

Proof. The hypotheses tell us that the action of G0 on T factors through an action of
Aut(G0) on T:

Aut(G0) Isom(T)

G0

g 7→Ad(g) ·

We let A denote the subgroup of Aut(G) which preserves G0 setwise. The restric-
tion map (which in general is neither injective nor surjective) gives us a homomor-
phism from A to Aut(G0), and so A acts on T via this map (and the previous action of
Aut(G0)).

A Aut(G0) Isom(T)res

Since G0 is normal, Inn(G) is a subgroup of A, and so this action defines an action of G
on T.

A Aut(G0) Isom(T)

G

g 7→Ad(g)

In particular, with respect to this action, A ≤ AutT(G). Moreover, since G0 is finite
index in G, A is a finite index subgroup of Aut(G) and hence the action of G on T is
nearly canonical.

Finally, this action of G on T extends the original action of G0 since the following dia-
gram commutes (the left two maps from G0 are just the maps sending a group element
to the inner automorphism it defines, and the rightmost map is the one given by the
original action of G0):

A Aut(G0) Isom(T)

G0

·

Remark 3.1.5. One can clearly weaken the hypothesis in the Proposition above so that
T is only nearly G0 canonical, and essentially the same proof works. However, the
normality of G0 seems essential to get a G-action. If G0 were not normal, one could
pass to a further finite index subgroup, H, of G0 which would be normal in G. But then
the action of H on T has no reason to be canonical or nearly canonical. The example
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of Z2 in the Klein bottle group shows that passing to a finite index subgroup is not a
benign process from this point of view.

3.2 Automorphisms which preserve a splitting, and a theorem of Bass–Jiang

Our proof strategy is to use trees of cylinders to produce a tree where enough of the
(outer) automorphisms act, and then to analyse that subgroup. (There are some short-
cuts when the defining automorphism is exponentially growing, and we do not have
to do all the work ourselves.)

There is a thorough discussion of the structure of the group OutT(G) of outer automor-
phisms that preserve an action on a tree in [2].

We recall below the main structural theorem of that paper. Note though that to save on
notation we do not state the result in full. (To be precise, their result allows for a centre,
although the filtration becomes a step longer. Also, they give a precise description of
the quotients at (4) and (5).)

Theorem 3.2.1 ([2, Theorem 8.1]). Suppose a centreless group G acts on a tree T, minimally
and irreducibly. Write Γ for the quotient graph, and O for a (fixed) choice of orientation of the
edges of Γ. Suppose OutT(G) is the subgroup of Out(G) which acts on T – that is, preserves
the length function of the action. Then there is a filtration of OutT(G),

OutT(G) ⊵ OutT
0 (G) ⊵ T + ⊵ H ⊵ K ⊵ 1

The quotients at each stage are as follows:

OutT(G)/ OutT
0 (G) ≤ Aut(Γ) (1)

OutT
0 (G)/T + ∼= ∏

v∈V(Γ)

′ Out(Gv; {Ge}ι(e)=v) (2)

T +/H ∼= ∏
e∈O

Ad(Ne) ∩ Ad(Ne)

Inn(Ge)
(3)

H/K is a quotient of ∏
e∈E(Γ)

CGι(e)(Ge) (4)

K is a quotient of ∏
e∈O

Z(Ge) (5)

The “prime” on the product at (2) indicates that it is restricted to elements where for
every incident edge e0 the induced outer automorphism of Ge0 is also induced by an
element in Out(Gτ(e0); {Ge}ι(e)=τ(e0

).
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This property is characterised by the following commutative diagram. Suppose (Θv),
with v ranging through the vertices of Γ, is an element of the product

∏
v∈V(Γ)

Out(Gv; {Ge}ι(e)=v).

Then (Θv) is an element of the restricted product if and only if for every edge e, with
v = ι(e) and w = τ(e) there are representatives θv and θw of the relevant outer automor-
phisms (of Gv and Gw), and an automorphism ψ of Ge so that both squares commute.

Gv Ge Gw

Gv Ge Gw

θv

αe αe

ψ θw

αe αe

There is another exposition in [21], from where we have borrowed some notation (for
example, T + is Levitt’s bitwists).

Our common strategy for the polynomially growing case is to construct a canonical tree
– possibly only truly canonical for a finite index subgroup – as a tree of cylinders, and
then use this theorem to analyse the automorphisms which preserve it.

By Lemma 2.1.2 the quotient graph for the action must be finite, and so the quotient at
(1) will be finite in every case. The quotient at (2) contains the McCool groups, which
are generally easier to analyse.

The following lemma relates the restricted product at (2) in Theorem 3.2.1 to the Mc-
Cool groups (see Definition 2.1.1) for the vertex groups with respect to their incident
edge groups. It is analogous to part of Proposition 2.3 of [21] which deals with the case
where Out(Ge) is finite.

Lemma 3.2.2. The product ∏v∈V(Γ) Mc(Gv; {Ge}ι(e)=v) is a normal subgroup of the restricted
product ∏v∈V(Γ)

′ Out(Gv; {Ge}ι(e)=v).

The quotient is isomorphic to a subgroup of ∏e∈E(Γ) Ae/ Ad(Ne), where Ae is a subgroup of
Aut(Ge), every element of which is induced by an automorphism of Gv. Further, Ae = Ae for
all edge pairs {e, e}.

Proof. For each edge at a vertex v there is a map from Out(Gv; {Ge}ι(e)=v) to
Aut(Ge)/ Ad(Ne) (note that this is a quotient of Out(Ge)). Assembling them, we get
a map to their product, and the kernel of this map consists of those elements induced
by conjugations at every vertex; precisely the McCool group Mc(Gv; {Ge}ι(e)=v). The
conditions on the initial restricted product amount to requiring that an element induces
the same automorphisms on the stabiliser of an edge and its inverse: that is, the auto-
morphisms Ae of Ge and Ae of Ge will be the same. (Though note that the quotient
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Aut(Ge)/ Ad(Ne) depends also on the vertex group, and so there is no reason to expect
these will be the same for both an edge and its opposite.)

Our strategy is to prove that the McCool groups are finitely generated, and that the
quotient is too, usually by showing that this is true of every subgroup of this product.
The details vary and appear in the relevant case.

In most of our cases, the edge groups are virtually abelian (that is, their free part has
rank at most 1). In this case, we can understand the quotient at (3) as well.

Proposition 3.2.3. Suppose G is free by cyclic, and H ≤ G is free-by-cyclic and virtually
abelian. Then NG(H) induces a finite subgroup of Out(H). (That is, Ad(G, H)/ Inn(H) is
finite.)

Proof. The hypotheses give us that H must be trivial, Z, Z2 or the fundamental group
of a Klein bottle. In every case except for Z2, the outer automorphism group is finite
and so there is nothing to prove. So suppose H = Z2. The kernel of the map to Out(H)

contains H, so it is enough to show that H is finite index in NG(H). H ∩ Fn must be
infinite cyclic, and we have that H ∩ Fn ≤ NG(H) ∩ Fn ≤ NFn(H ∩ Fn). (Recall that
conjugating cannot change the exponent of the stable letter.) Since the leftmost group
is finite index in the rightmost group, it is also finite index in the middle group.

In the quotient, both H and NG(H) have non-trivial image. So the image of H is finite
index in the image of NG(H). The index of H in NG(H) is the product of these two
indices, and is therefore finite too.

To show that the quotient at (4) is finitely generated, we will show that the centralisers
(and therefore any quotient of their product) are finitely generated. The splittings we
define for the polynomial case all have edge and vertex groups with finitely generated
free part, so we will use the following lemma.

Lemma 3.2.4. Suppose H ≤ G are (finitely generated free)-by-cyclic. Then CG(H) is finitely
generated.

Proof. Let Fn be the “free part” of G, the kernel of the given map to Z. If H ∩ Fn is
rank at least two, then CG(H) ∩ Fn is trivial, and so CG(H) is either trivial or Z. If
H ∩ Fn is Z, then so is CG(H)∩ Fn, and CG(H) may be Z or Z2. If H ∩ Fn is trivial, then
CG(H) ∩ Fn consists of those elements in G ∩ Fn which are fixed by conjugating by H.
As the fixed subgroup of an automorphism of a free group, this is finitely generated
(by Theorem 2.4.2). The full centraliser has an additional generator which is a root of
the generator of H.
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The centre of a free-by-cyclic group G is isomorphic to Z2 if and only if G is; Z if G is
virtually free-times-cyclic and not Z2, and trivial otherwise. So the group given at (5)
is a finitely generated abelian group, as are all its quotients.

In the exponential case, G is a one-ended relatively hyperbolic group. We are able
to use previous work in the literature ([18]) on canonical JSJ decompositions and the
automorphisms that preserve them.

4 Exponential growth

4.1 Relative Hyperbolicity

In this section, we assume that φ is exponentially growing. Then we have access to
a very useful fact: the group G ∼= Fn ⋊φ Z is relatively hyperbolic (see [14, 15, 13]).
Several definitions of relative hyperbolicity, together with proofs of their equivalence,
can be found in [19], for instance; we do not include one here since we do not work
directly with the definition.

Given a free group outer automorphism Φ, say a subgroup P is polynomially growing
(for Φ) if there is a power m and a representative α of Φm so that Pα = P and the
restriction of α to P is polynomially growing.

Proposition 4.1.1 ([23, Proposition 1.4]). Every non-trivial polynomially growing subgroup
is contained in a unique maximal polynomially growing subgroup. Maximal polynomially
growing subgroups have finite rank, are malnormal, and there are only finitely many conjugacy
classes of them.

These maximal polynomially growing subgroups are a key ingredient in the relatively
hyperbolic structure of a free-by-cyclic group:

Theorem 4.1.2 ([14, 15, 13]). If φ is an automorphism of Fn with at least one exponentially
growing element, the semidirect product Fn ⋊φ Z is relatively hyperbolic with respect to sub-
groups of the form H ⋊φmγ Z, where H is a maximal polynomially growing subgroup, m is the
minimum (positive) power of φ which carries it to a conjugate, and γ is the inner automorphism
so φmγ preserves H.

(This collection is sometimes referred to as the “mapping torus” of the collection of
maximal polynomially growing subgroups. For each H, that such an m exists is guar-
anteed since there are only finitely many conjugacy classes of maximal polynomially
growing subgroups, and since φm sends H to a conjugate, there is an inner automor-
phism so that the composition preserves H.)
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Recall that Lemma 2.1.2 gives that Fn ⋊ Z is one ended, and so it is one ended relative
to any collection of subgroups.

Now we have access to a wide range of technology used in the study of relatively hy-
perbolic groups. In [18] there is a careful examination of the subgroup Out(G;P) for
relatively hyperbolic groups which are one ended relative to their parabolic subgroups,
using JSJ theory and analysing the subgroup of automorphisms which preserves a split-
ting. We recall enough of their work to make the statements which follow self contained
(although the proofs will not be).

There is a JSJ decomposition space over elementary (parabolic and virtually cyclic) sub-
groups relative to P , which is invariant under Out(G;P). It contains a canonical JSJ
tree, the tree of cylinders of the deformation space, which again is Out(G;P)-invariant.
There are four possibilities for vertex stabilisers:

Maximal loxodromic stabilised by an infinite cyclic group

Maximal parabolic stabilised by a maximal parabolic subgroup

Rigid non-elementary and elliptic in every splitting with elementary edge groups and
where P are elliptic

Flexible QH with finite fiber none of the above, in which case they are “quadratically
hanging with finite fiber”

In fact, in our case the last possibility cannot occur. In general, these groups map with
finite kernel onto an orbifold group, and the incident edge groups are virtually cyclic
(and their images are in boundary subgroups). Since we are considering groups which
are torsion free, the structure is actually much simpler here. First, the kernel must be
trivial, so the group itself is an obifold group. By [12, Lemma 2.4] this is (virtually)
free and hence infinitely ended, and therefore cannot occur as a vertex group with the
required (virtually) cyclic incident edge groups by Lemma 2.1.2.

The tree is bipartite: one class of vertices is those stabilised by a maximal elementary
group, and the other is the rigid vertices. Edge groups are maximal elementary sub-
groups of the rigid vertex group they embed in.

As Guirardel and Levitt point out, Lemma 3.2 of [31] tells us that when the groups in P
are not themselves relatively hyperbolic, every automorphism permutes the conjugacy
classes of the Pi. This is true in our case. Theorem 4.1.4 below concerns Out(G;P); since
this consists of those (outer) automorphisms which preserve each of these conjugacy
classes, it is a finite index subgroup of Out(G).

Before we state the theorem, we define the group of twists, a subgroup of automor-
phisms of G. (See Section 2 of [21] or Subsection 2.6 of [18].)
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Definition 4.1.3. Let e be an edge of a graph of groups, and g an element of Ce (the
centraliser of Ge in Gι(e)). Define the twist by g around e to be the automorphism that:

• if e is separating, so G = A ∗Ge B, conjugates A by g and fixes B (with B corre-
sponds to the factor containing Gι(e));

• if e is non-separating, so G = A∗Ge , fixes A and sends the stable letter t to tg.

The group of twists, T , is the group generated by all twists.

The group of twists T is a quotient of the direct product of all Ce, the centralisers of
edge groups in adjacent vertex groups. Also, recall that McCool groups are defined in
Definition 2.1.1.

Theorem 4.1.4 ([18, Theorem 4.3]). Let G be hyperbolic relative to P = {P1, . . . , Pn}, with
Pi infinite and finitely generated, and assume that G is one-ended relative to P . Then there is a
finite index subgroup Out1(G;P) of Out(G,P) which fits into the exact sequence

1 → T → Out1(G;P) →
p

∏
i=1

MCG0
Tcan

(Σi)× ∏
j

Mc(Pj; Inc(Pj)) → 1

where Tcan is the canonical JSJ decomposition relative to P , T is its group of twists; MCG0
Tcan

(Σi)

relate to flexible vertex groups; and Mc(Pj; Inc(Pj)) is the McCool group of Pj with respect to
the incident edge groups. (The product is taken only over those parabolic subgroups which
appear as vertex stabilisers in Tcan)

(Theorem 4.1.4 is derived from Levitt’s discussion in [21], together with some analysis
of the bitwists, showing that they are all twists, and extended McCool groups that
can appear, to deduce that there is a finite index subgroup fitting into this short exact
sequence. Compared to the Bass-Jiang approach, they show that the second normal
subgroup is just T and that the first quotient has a finite index subgroup isomorphic to
right hand term above.)

In our case there are no flexible vertex groups, so that term does not appear. We will
use this theorem to prove finite generation for Out1(G;P), which will give us finite
generation of Out(G). This will follow from showing that the group of twists and the
McCool groups which can appear are finitely generated.

Levitt in [23] provides several inequalities relating invariants of an outer automor-
phism. Theorem 4.1 of that paper concerns the ranks of conjugacy classes of maxi-
mal polynomially growing subgroups for an automorphism of Fn and gives that it is
at most n − 1 when the automorphism is exponentially growing (since there is at least
one exponentially growing stratum in this case).
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Proposition 4.1.5. The group of twists is finitely generated.

Proof. The group of twists is a quotient of the direct product of the centralisers of the
edge groups in the vertex groups so it is enough to show that all of these are finitely
generated. The edge and vertex groups have the structure of a free-by-cyclic group:
say the vertex group is V = F ⋊ ⟨tkg⟩, and the edge group is E = H ⋊ ⟨tℓh⟩, where
H = E ∩ F. (Note that H and F are not necessarily finitely generated but are subgroups
of the defining free group, which is.) If H has rank at least two, then its centraliser in F
is trivial, and so the centraliser of E in V is at most infinite cyclic. If H is infinite cyclic,
then so is its centraliser in F; then the whole centraliser is either Z or Z2.

The final case is where H is trivial, so we are interested only in the centraliser of tℓh.
Again, it will be sufficient to show that the centraliser in F is finitely generated, since
there is at most one more generator contributed from the “cyclic part” to the full cen-
traliser. The argument is different at rigid and maximal elementary vertex groups.

First consider rigid vertex groups. Since conjugating by tℓh induces the automorphism
φℓ Ad(h), any w in F that commutes with tℓh is fixed by φℓ Ad(h). In particular, it
is polynomially growing for the outer automorphism Φ. This implies that ⟨w, tℓh⟩ is
an elementary subgroup. Since edge groups are maximal elementary in rigid vertex
groups, this cannot happen and so there is no such w. (For the same reason, there is no
root of tℓh.)

At maximal elementary vertices, the free part of the centraliser is the fixed subgroup for
the automorphism of F induced by conjugating by tℓh (again, conjugation induces the
automorphism φℓ Ad(h), so any element of F that commutes is fixed by this automor-
phism). Since F is finitely generated (as a maximal polynomially growing subgroup), so
is this fixed subgroup (in fact the rank is bounded by the rank of F; Theorem 2.4.2).

Thus far what we have said is true for any finitely generated free group; but we do not
(yet) have the tools to understand McCool groups of free-by-cyclic groups in general.
So we specialise to F3, for the sake of Theorem 1.1.2.

In this case, the bounds on polynomially growing subgroups mean they can have rank
at most 2. Here we can analyse the McCool groups, since there is a good classification of
the outer automorphism groups for rank 2 in [6], and rank 1 is fairly easy to understand.

Proposition 4.1.6. Suppose G = Fn ⋊Z, with n = 1, 2. Let H be a finite collection of finitely
generated subgroups of G. Then Mc(G;H) is finitely generated.

Proof. In rank 1 the outer automorphism groups are GL2(Z) or finite, and in both cases
this subgroup must be finitely generated. (For Z2 notice that elements are their own
conjugacy classes, and if g is fixed, so is its root, and so after changing basis the only
matrices in the subgroup are triangular, and so it is virtually cyclic.)
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In rank 2, we refer to [6, Theorem 1.1] for their outer automorphism groups. Most cases
are either finite or virtually cyclic: so any subgroup is finitely generated. The remaining
cases are G = F2 × Z, and G = F2 ⋊−I2 Z.

In the first of these, we have that Out(G) = (Z2 ⋊ C2)⋊ GL2(Z) [6, Theorem 1.1(i)].
Since GL2(Z) preserves each of the first two factors, we may pass to a finite index
subgroup that is Z2 ⋊GL2(Z). (An element u ∈ Z2 acts by sending tkg → tk+u·gabg, and
GL2(Z) on the free part as you might expect.) Now consider a set of finitely generated
subgroups H.

Since t is central, its exponent cannot be changed by inner automorphisms. So any
element of the McCool group must fix the t-exponent in each generator: this will give
a subgroup of Z2 (orthogonal to the abelianised free parts of the generators) which is
therefore finitely generated. So our McCool group is finitely generated if and only if
its intersection with Out(Fn) is. In fact, this intersection is exactly the McCool group
for the free part: since t is central, it cannot identify any conjugacy classes of Fn. These
are finitely generated by [29], which completes the proof. Note that McCool proves
the result for elements; however in the free group case and more generally for toral
relatively hyperbolic groups [17, Corollary 1.6] the McCool group for a finite set of
subgroups is equal to the McCool group for some finite set of elements.

For F2 ⋊−I2 Z, the outer automorphism group is PGL2(Z) × C2 [6, Theorem 1.1(ii)].
Again, we can just consider the finite index subgroup PGL2(Z), which only acts on
the free part. We can consider the McCool group for the free group (as a subgroup of
GL2(Z)). Its image in PGL2(Z) is a finite index subgroup of the subgroup we want,
which is therefore finitely generated.

We now summarise this case in a theorem.

Theorem 4.1.7. Suppose G ∼= F3 ⋊φ Z, and φ is exponentially growing. Then Out(G) is
finitely generated.

Proof. Use the canonical tree and the analysis of the outer automorphisms derived from
it in Theorem 4.1.4. Propositions 4.1.5 and 4.1.6 show that the outside groups in the
short exact sequence are finitely generated, and therefore so is Out1(G;P) which is a
finite index subgroup of Out(G).
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5 Linear growth

5.1 Strategy

Our strategy for showing that the automorphism group of a free-by-cyclic group, in the
case of linear growth, is as follows.

• Start with a free-by-cyclic group, G = Fn ⋊Φ Z, where Φ has linear growth,

• Consider a finite index subgroup, G0 = Fn ⋊Φr Z, so that Φr is UPG, and hence a
Dehn Twist

• Use the parabolic orbits Theorem to find a tree whose deformation space is in-
variant,

• Deduce that the tree of cylinders, T = Tc, of this space is G0-canonical,

• Use Proposition 3.1.4 to deduce that T is nearly G-canonical

• Show that OutT(G) is finitely generated if certain McCool groups for free-by-
finite groups are

• Carry out the calculation of the relevant McCool groups, to conclude that OutT(G)

is finitely generated.

5.2 Constructing a tree

First we record a useful lemma on normalisers in free-by-cyclic groups.

Lemma 5.2.1. Suppose Fn ⋊ ⟨s⟩ is a free-by-cyclic group, and w ∈ Fn is not a proper power
and commutes with s. Then ⟨w, s⟩ is its own normaliser.

Proof. Suppose skg ∈ Fn ⋊ ⟨s⟩ so that ⟨w, s⟩sk g = ⟨w, s⟩. This gives that ⟨wg, sg⟩ = ⟨w, s⟩.
Taking intersections with Fn, we must have that wg ∈ ⟨w⟩. But this means that g ∈ ⟨w⟩
so skg ∈ ⟨w, s⟩ as required.

In the following Proposition, we take a Dehn Twist and use the Parabolic Orbits Theo-
rem 2.4.7 to get a tree on which the corresponding free-by-cyclic group acts. We would
like, at this stage, to say that the resulting action is canonical for the free-by-cyclic
group. Although this seems plausible, our proof goes via the tree of cylinders con-
struction which is guaranteed to be canonical and – as we prove in this case – remains
in the same deformation space.
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Proposition 5.2.2. Suppose φ is a UPG and linear automorphism of Fn. Then there is a canon-
ical action of G0 = Fn ⋊φ Z on a tree, where

(1) Edge stabilisers are maximal Z2;

(2) Vertex stabilisers are either maximal Z2, or maximal Fm × Z with n ≥ m ≥ 2.

Proof. The initial input for the construction is the Dehn twist, φ. By Theorem 2.4.7,
there is a unique simplicial Fn-tree (defining a simplex in the boundary of CVn) that is
preserved by φ. This tree gives a splitting of Fn, where the vertex stabilisers are fixed
subgroups (of rank at least two) corresponding to different representatives of the outer
automorphism, and the edge groups are maximal infinite cyclic. By Theorem 2.4.2
there are only finitely many conjugacy classes of these subgroups, and their ranks are
bounded by n.

Since it is fixed by φ, the same tree provides a splitting for G0. The vertex groups are
now free times cyclic, and the edge groups are maximal Z2. (They are generated by the
original edge group generator g, together with an element sw in either adjacent edge
group which commutes with g. They must be maximal since otherwise there would
be another element skh commuting with g (and sw); writing this element as (sw)kh′

implies that h′ commutes with g. Since g generated a maximal infinite cyclic subgroup
of Fn, h′ is a power of g, and so (sw)kh′ is contained in ⟨g, sw⟩.)

This tree defines a deformation space which is preserved by automorphisms, since the
vertex stabilisers can be specified algebraically: they are precisely the centralisers of
some sw, corresponding to an automorphism in the outer automorphism class of φ

with fixed subgroup having rank at least 2. (Equivalently, they are the centralisers that
contain a copy of F2 × Z.) So they will be permuted by automorphisms of Fn ⋊φ Z and
the deformation space must be preserved.

We now have most of the tools to start constructing a tree of cylinders for this defor-
mation space: it remains to specify the family E of allowed edge stabilisers, and the
admissible equivalence relation. We will take E to be maximal Z2, and the equivalence
relation to be equality. (It is easy to check this is admissible, since if A ≤ B are both
maximal Z2 then we must have A = B).

Now we can calculate the cylinders. First, note that a cylinder may contain at most one
edge from each edge orbit. If two edges in the same orbit have the same stabiliser, then
there is an element outside the stabiliser which normalises it. However, Lemma 5.2.1
shows that there is no such element.

This also means that a cylinder stabiliser must actually stabilise it pointwise: since it
is a subgroup of G0, it cannot permute edges in different orbits. So cylinder stabilisers
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are precisely the stabiliser of any (and every) edge in that cylinder. Every vertex is in
multiple cylinders, so is also in the tree of cylinders.

Cylinders are finite, and in particular bounded, so the tree of cylinders will lie in the
same deformation space. It is already collapsed, since the edge stabilisers are still (max-
imal) Z2.

Remark 5.2.3. Note that an alternative construction of this canonical tree involves sub-
dividing every edge and folding – the effect of constructing the tree of cylinders is to
change to original tree so that each vertex has at most one adjacent edge with a given
stabiliser. There are examples where the tree of cylinders is not very small – it has
tripod stabilisers, so the construction has done something.

However, the (finite index) subgroup of automorphisms which does not permute the
underlying graph of groups does act on the original limiting tree, since we can recover
it by equivariantly collapsing some edges. This means that in our terminology the
action on the limiting tree was itself nearly canonical, though it is not clear how to find
a direct proof of this fact.

If a cylinder had only one edge, then it will have been subdivided – allowing (if the
endpoints are isomorphic) for the possibility of inversions. (If not, or if the endpoints
are not isomorphic, no inversions are possible.)

We now equip ourselves with a nearly canonical action for a general linearly growing
automorphism , using this tree of cylinders.

Proposition 5.2.4. Suppose G = Fn ⋊Φ Z is a free-by-cyclic group, and Φ is linearly growing.
Then G has a nearly canonical action on a tree T, where

(1) Edge stabilisers are virtually Z2 (and therefore either Z2 or the fundamental group of a
Klein bottle).

(2) Vertex stabilisers are Fm ⋊φ Z where Fm is a subgroup of Fn, the rank m is at most n, and
φ is a representative of Φ, which restricts to and is periodic on Fm. (They are virtually
free-times-cyclic.)

Proof. Since Φ has a power which is UPG, and therefore a Dehn twist, we pass to the
normal finite index subgroup G0 this suggests and use Proposition 5.2.2 to construct a
canonical tree T. We then use Proposition 3.1.4 to extend this action to a nearly canoni-
cal action for G. Edge and vertex stabilisers in G will contain edge and vertex stabilisers
in G0 as finite index subgroups, and must themselves be free-by-cyclic by Lemma 2.1.2.
Combining these properties gives the conclusions in (i) and (ii).
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5.3 Reducing to free-by-finite groups

We consider the subgroup OutT(G) of outer automorphisms which preserves this tree,
and apply Theorem 3.2.1 to understand it. The quotients at parts (1) and (3-5) of the
theorem are finitely generated by the observations following the theorem; the main
difficulty is in understanding the quotient at (2).

First, we reduce to the case where we can consider McCool groups; we will then show
that the result we want is implied by a similar result in the free-by-finite group ob-
tained by quotienting by the centre, and in the next section prove the result there. (The
arguments involved in the reduction and the following section are easier for the larger
groups Out(Gv; {Ge}ι(e)=v) at least when the edge groups all contain the centre of the
vertex group as in our case. However, it does not seem possible to take account of the
edge compatibility relations through this process, so we do need to pass to McCool
groups.)

We begin with a straightforward structural result about free-by-cyclic groups defined
by periodic outer automorphisms;

Lemma 5.3.1 ([24, Proposition 4.1]). Suppose G is a free-by-cyclic group which is virtually
free-times-cyclic and not virtually Z2. Then G has an infinite cyclic centre, and is the funda-
mental group of a graph of groups with all edge and vertex groups isomorphic to Z.

Such a group is known as a Generalised Baumslag-Solitar (GBS) group, and having a non-
trivial centre is equivalent to having trivial modulus, in the language of [22]. The free-
by-(finite cyclic) groups we will consider are obtained by taking a group of this kind
and quotienting by the centre.

We now study the group appearing as a quotient at (2) in Theorem 3.2.1, beginning by
considering automorphisms of edge groups that can be induced here.

Lemma 5.3.2. Suppose G is a free-by-cyclic group that is virtually free-times-cyclic, and Hi is
a collection of subgroups isomorphic either to Z2 or to the fundamental group of a Klein bottle.
Then Out(G; {Hi}) induces a virtually cyclic subgroup of Aut(Hi).

Proof. If Hi is the fundamental group of a Klein bottle, Out(Hi) is finite, and Inn(Hi)

is virtually cyclic. Therefore Aut(Hi) is again virtually cyclic, and so is the subgroup
induced by Out(G; {Hi}).

If Hi is Z2, it contains a finite index subgroup of the infinite cyclic centre of G. Let δ

generate this subgroup. We can choose a basis {x1, x2} for Hi so that δ = xk
1 with k > 0;

roots are unique in Z2, so x1 is as uniquely defined as δ: it is unique up to inverses.
Any automorphism of G will preserve the centre; in particular it must send δ to itself
or its inverse. So any automorphism restricting to Ge will likewise send x1 to itself or
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its inverse. Viewing elements of GL(2, Z) as matrices, this implies that we can only
induce automorphisms represented by triangular matrices. This subgroup is virtually
cyclic.

We use this to characterise the subgroup generated when we quotient by the product
of McCool groups, which will mean it is sufficient to prove that those are finitely gen-
erated.

Proposition 5.3.3. Suppose G is a free-by-cyclic group where the defining outer automorphism
is linearly growing. Let T be the tree constructed in Proposition 5.2.4, with a nearly canonical
action of G (where edge stabilisers are virtually Z2, and vertex stabilisers are either virtually Z2

or virtually Fm × Z with m ≥ 2). Then the quotient of ∏v∈V(Γ)
′ Out(Gv; {Ge}ι(e)=v) (from

Theorem 3.2.1 (2)) by ∏v∈V(Γ) Mc(Gv; {Ge}ι(e)=v) (as described in Lemma 3.2.2) is finitely
generated.

Proof. We consider the projection to each factor Ae/ Ad(Ne). The subgroup we are
interested in is contained in the product of these projections, which we will show is
slender, and from there deduce that our subgroup must be finitely generated.

First, we consider the vertices where the stabiliser contains a rank 2 free group. In this
case, by Lemma 5.3.2 each of these vertex groups can only induce a virtually cyclic
subgroup of automorphisms of each edge group. This is a property closed under sub-
groups and quotients, so for every edge e with ι(e) a vertex of this type the projection
to Ae/ Ad(Ne) is virtually cyclic.

The remaining vertices arose as cylinders, and their vertex groups are either the funda-
mental group of a Klein bottle or Z2 (as are the incident edge groups). If Gv is a Klein
bottle, then it has finite outer automorphism group. So Out(Gv; {Ge}ι(e)=v) is finite, and
Ad(Ne) must therefore be finite index in Ae for each edge group. So the projection to
Ae/ Ad(Ne) for edges starting at these vertices is finite.

If Gv is Z2, we need to use the structure of the tree. The quotient graph inherits the
bipartite structure of the tree of cylinders constructed in Proposition 5.2.2 – every edge
joins a cylinder vertex to a vertex with larger stabiliser. By Lemma 3.2.2 the induced
automorphisms Ae and Ae of the stabilisers of an edge and its inverse are the same.
By Lemma 5.3.2 this is virtually cyclic, and so the same is true of the projection to
Ae/ Ad(Ne) in this case.

Assembling these projections we get a group that is virtually finitely generated abelian,
and in particular is Noetherian. So any subgroup – including the quotient of

∏
v∈V(Γ)

′ Out(Gv; {Ge}ι(e)=v)

by the product of McCool groups – is again finitely generated.
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In the Klein bottle case, the McCool group (as with any subgroup of the outer automor-
phism group) is finite, and in particular finitely generated. In the Z2 case the McCool
group is trivial since elements of GL2(Z) are uniquely characterised by their action on
a finite index subgroup of Z2: as soon as an edge group is fixed, so is the whole vertex
group. Therefore the remainder of the work is at the vertices stabilised by some Fm ⋊Z,
with m ≥ 2.

This reduces the problem to calculating the McCool groups at each vertex. We use
Levitt’s work in [22] to further reduce the problem to McCool groups of free-by-(finite
cyclic) groups.

By Lemma 5.3.1, the larger vertex groups Gv are Generalised Baumslag-Solitar groups
with trivial modulus. Levitt proves this theorem, which we use to enable us to under-
stand Out(G) in terms of the outer automorphisms of a free-by-finite group.

Theorem 5.3.4 (see [22, Theorem 4.4]). Suppose G is a GBS group with trivial modulus,
and let H be the quotient of G by its centre. Then there is a finite index subgroup Out0(G) of
Out(G) fitting into a split exact sequence

1 → Zk → Out0(G) → Out0(H) → 1

where k is the rank of the underlying graph, and Out0(H) is a finite index subgroup of Out(H).
The section of Out0(H) fixes the centre of G.

The Zk subgroup should be thought of as Hom(π1(Γ), Z(G)): it acts by multiplying ev-
ery “HNN-like generator” by an element of the centre. The subgroup Out0(H) consists
of (outer classes of) automorphisms which preserve the conjugacy classes of elliptic
elements, and the image of a certain map τ to some finite cyclic group.

The map τ is initially defined as a map to Isom(R), and we then observe that the image
is discrete, and so is isomorphic to Z.

This definition does not apply to the “elementary” GBS groups, Z2 and the funda-
mental group of a Klein bottle. These are distinguished among free-by-cyclic groups
as being virtually Z2, and this property cannot occur in a free-by-cyclic group with
underlying free group having rank at least 2. Since the groups we consider here (corre-
sponding to non-cylinder vertices in the nearly canonical tree) do, this definition (and
the following arguments) apply in sufficient generality for our use.

Let δ generate the centre of G, and T be the GBS tree that G acts upon. Recall that if a
group acts on a tree without fixing an end, its centre lies in the kernel of the action. In
particular, δ is contained in every vertex group. Suppose xv generates a vertex group,
so xnv

v = δ for some nv. Following [22], define τ on xv as the translation by 1/nv. (So δ
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is translation by 1.) On generators arising from edges, τ is the identity. Further define
τ by taking a quotient by the group generated by τ(δ).

In some sense, τ is a “better” map to Z than the one arising from the presentation of G
as a free-by-cyclic group. First consider its kernel:

Lemma 5.3.5. The kernel of the map τ is a finitely generated free group.

This follows from the computation of the relevant BNS invariants in [8, Corollary 3.2],
but can be proved by more elementary methods as follows:

Proof. Consider the action of the kernel on the GBS tree T. This action is free – non-
trivial elements of vertex stabilisers are not in the kernel of τ – and so the kernel is a
free group. It remains to show it is finitely generated. To do this consider τ, defined by
passing to the quotient by τ(δ). The kernel of this map is finitely generated (as a finite
index subgroup of a finitely generated group), and we claim it is the direct product
ker(τ)× ⟨δ⟩. (Notice that δ has non-trivial image under τ, so there is no intersection
and this is a direct product.)

Both factors are in the kernel of τ, and so too is their product. To show the other
inclusion, suppose g lies in ker(τ), so τ(g) = τ(δk) for some k ∈ Z. So g′ = gδ−k lies in
ker(τ), and we may rewrite g = g′δk, as an element of ker(τ)× ⟨δ⟩.

Since ker(τ) is a quotient of a finitely generated group, it too is finitely generated.

This lemma shows that the map τ fibres: it gives us another way to write G as a free-
by-cyclic group. Note that the rank of the free group may have changed, but since there
is still a centre, the defining outer automorphism must still be periodic. (Sometimes,
though not always it becomes periodic as an automorphism – for example, using this
construction it becomes apparent that the rank three free-by-cyclic group defined using
the automorphism a 7→ b−1c, b 7→ a−1c, c 7→ c is isomorphic to F2 × Z.)

By design, this new presentation as a free-by-cyclic group is very well behaved when
applying τ: the image under τ of any element is the exponent of the (new) stable letter.
This exponent is preserved by conjugation, and (by considering the stable letter as a
root of δ) by the section of Out0(H). So if an automorphism whose outer class is an
element of Out0(G) does not preserve the exponent on the stable letter, writing it in
the normal form for a semidirect product will involve a non-trivial element of the Zk

subgroup given in the decomposition of Theorem 5.3.4. Note that since the exponent is
preserved by conjugation, this effect is constant across an outer class.

Proposition 5.3.6. Suppose that G is a free-by-cyclic group that is virtually free-times-cyclic,
and {Gi} is a family of subgroups. Write H for the quotient of G by its centre, and let Hi be the
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image of the subgroup Gi under this quotient map. Let s be the section of Theorem 5.3.4. Then

Out0(G) ∩ Mc(G, {Gi}) = (Zk ∩ Mc(G, {Gi})) · s(Out0(H) ∩ Mc(H, {Hi})).

In particular, it is finitely generated if and only if (Out0(H) ∩ Mc(H, {Hi})) is.

Proof. Consider the split short exact sequence of Theorem 5.3.4. The kernel of the quo-
tient map applied to Out0(G)∩Mc(G, {Gi}) will be (Zk ∩Mc(G, {Gi})), a finitely gen-
erated abelian group. The image of Out0(G) ∩ Mc(G, {Gi}) in Out0(H) is contained
in Mc(H, {Hi}), since subgroups which are conjugate in G have conjugate images in
H. To complete the proof, we must show that this accounts for all of (Out0(H) ∩
Mc(H, {Hi})). To do this consider the section: we need to show that every element
lifts to an element of Out0(G) ∩ Mc(G, {Gi}).

For an element of (Out0(H) ∩ Mc(H, {Hi})) consider the collection of representatives
αi, each fixing the subgroup Hi. Lemma 4.1 of [22] constructs the equivalent section for
automorphism groups; one of the properties of the lift α of α is that applying α first does
not alter τ. So if αi fixes h, and g is any preimage of h, αi must send g to gδk. However,
since τ must be unaltered, in fact k = 0 and g is fixed. So each αi fixes the subgroup Gi.
The last thing to check is that they all represent the same outer automorphism. This is
the case since inner automorphisms lift to inner automorphisms (by any preimage of
the conjugator, as they differ by a central element). So any (indeed every) αi represents
an element of Mc(G, {Gi}), which is contained in Out0(G) since it is the image of the
section of Theorem 5.3.4.

So to show that the McCool groups we are interested in are finitely generated, we need
to show the same for the relevant McCool groups of free-by-finite groups. In our sit-
uation the edge groups are virtually Z2, and a power of a generator is central in the
vertex group, so in H the image of each edge group becomes virtually infinite cyclic. In
this case, we can understand the McCool groups.

5.4 McCool groups for free-by-finite groups

The purpose of this section is to study the groups Mc(H, {Hi}), which will complete
our proof in the linear growth case.

Proposition 5.4.1. Suppose H is virtually free and {Hi} is a finite collection of virtually
infinite cyclic subgroups. Then Mc(H, {Hi}) is finitely generated.

First we use a result which allows us to understand the outer automorphisms of the
extension by considering the centraliser of the finite cyclic subgroup.
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Proposition 5.4.2. Let H be a group, and F a normal subgroup of H with trivial centre. Let
Ad(h) represent the automorphism of F induced by conjugating by h. Let AutH(F) be the
subgroup of Aut(F) that commutes with Ad(H) up to inner automorphisms. That, is the
subgroup defined by

{α ∈ Aut(F)|[Ad(h), α] ∈ Inn(F) ∀h ∈ H}.

Further, let N be the subgroup of Aut(H) which preserves F and all its cosets (that is, it acts
trivially on the quotient H/F).

Then the restriction to F sends N isomorphically to AutH(F).

Proof. First we consider the image of the restriction map. Suppose α is an element
of N, and consider its restriction to F. For all f ∈ F, and h ∈ H, f (Ad(h)α) =

( f h)α = ( f α)(hα) = f (α Ad(hα)). This gives that, as automorphisms of F, Ad(hα) =

α−1 Ad(h)α. Since α preserves cosets of F, h−1(hα) = f , for some f ∈ F. But then
Ad( f ) = Ad(h−1(hα)) = Ad(h)−1α−1 Ad(h)α: the restriction of α to F satisfies the
commutator property defining AutH(F), and so the image in Aut(F) lies in this sub-
group.

Next we show that the restriction map is a surjection to AutH(F). To do this, we con-
struct an automorphism of H with a given image in AutH(F). For any α ∈ AutH(F),
we have α−1 Ad(h)α = Ad(h)Ad( fh,α) by the defining commutator property, where
fh,α is an element of F depending on both h and α. Since F is centreless, it has a unique
element inducing any inner automorphism – fh,α is well defined. Extend α to a func-
tion α defined on all of H by setting hα to be h fh,α. (On F, since α−1 Ad(h)α = Ad(hα)

for inner automorphisms, hα = h fh,α, so the restriction is indeed α.) To see α is an
endomorphism, we need to check that hk fhk,α = h fh,αk fk,α.

Consider the following diagram: the squares all commute by the definition of AutH(F),
the left hand triangle is a consequence of Ad being a homomorphism, and we are in-
terested in the right hand triangle, whose commutativity follows from chasing the di-
agram (noting that the top map is an isomorphism). This gives that Ad(hk fhk,α) =

Ad(h fh,αk fk,α), and by normality of F this is equal to Ad(hk f k
h,α fk,α). That is, we have

that the unique element of F inducing the correct inner automorphism is fhk,α = f k
h,α fk,

with which we get that hk fhk,α = h fh,αk fk,α.
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F F

F F

F F

Ad(h)

α

Ad(hk)

Ad(h fh,α)

Ad(hk fhk,α)

Ad(k)

α

Ad(k fk,α)

α

To see α is surjective, note that it is surjective on F, and for general h, we have h =

(h( f−1
h,α α−1))α. To see injectivity, suppose hα = 1, so h fh,α = 1. In particular, this means

h is an element of F; but on F α agrees with α, which is an automorphism. So h = 1,
and α is an element of Aut(H), restricting to α on F as claimed.

Finally, we show that the restriction map N → AutH(F) is injective. Denote by K the
kernel of the map Ad : H → Aut(F). Since F has no centre, K ∩ F is trivial.

Suppose α lies in the kernel of the restriction map, so it fixes every element of F. Then
for all f ∈ F, h ∈ H, we have that f h ∈ F, so f hα = ( f α)hα = ( f h)α = f h. So the actions
of hα and h on F are the same: that is, hα and h lie in the same K-coset.

So for all elements h ∈ H we have that (hα)−1h lies in K. Since both automorphisms
preserve cosets of F, in fact (hα)−1h lies in F ∩ K. But these groups intersect trivially, so
hα = h for all elements h, α must be the identity, and so the restriction map has trivial
kernel.

We now specialise this general result to our current case of virtually free groups.

Corollary 5.4.3. Let H be a finitely generated virtually free group, that is not virtually cyclic,
and F a normal finite index subgroup (with rank at least 2) of H. Then the subgroup AutH(F)
of Aut(F) is isomorphic to a finite index subgroup of Aut(H) which preserves F, and where the
isomorphism is given by the restriction map.

(This Corollary is similar in spirit to [28], which deals with centralisers in Aut(F); ours
looks at the preimage of centralisers in Out(F), and deals simultaneously with the split-
ting and non-splitting cases.)

Proof. By Proposition 5.4.2, the subgroup AutH(F) of Aut(F) is isomorphic to the sub-
group N of Aut(H). This subgroup preserves F and all its cosets, and the restriction to F
provides the isomorphism, as required. To finish the proof, notice that since H is finitely
generated and F is a finite index subgroup, N must be finite index in Aut(H).
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We want not just the outer automorphism group but the McCool group. The relevant
result about Out(Fn) is the following theorem of Bestvina, Feighn and Handel.

Theorem 5.4.4 ([4, Theorem 1.2(3)]). Suppose Q is a finite subgroup of Out(Fn), and OutQ(Fn)

is its centraliser. Let K1, . . . Kn be a collection of conjugacy classes of finitely generated sub-
groups of Fn. Then the subgroup of OutQ(Fn) fixing each Ki is VF (in particular, is finitely
presented).

Note that the conclusion we want is stronger: we want the action on a representative
of Ki to be by conjugation, not just sending it to a conjugate. However, as the relevant
subgroups are infinite cyclic this is only a matter of passing to a finite index subgroup.

These theorems allow us understand the subgroup of outer automorphisms conjugat-
ing an element that lies in the finite index free subgroup; to extend the result to the full
subgroups Hi, we need the following lemmas.

Lemma 5.4.5. Suppose A is a virtually cyclic group. Then Out(A) is finite.

See, for instance, [30, Lemma 6.6] for a proof. The key fact from this lemma is that the
inner automorphisms are finite index, so ‘most’ automorphisms of a virtually cyclic
group are conjugations.

Lemma 5.4.6. Suppose H is virtually free (of rank at least 2), and let h be a non-trivial ele-
ment of the finite index free subgroup F. Then ⟨h⟩ has finite index in its normaliser, which in
particular is virtually cyclic.

Proof. First consider the intersection NH(⟨h⟩) ∩ F: this is an infinite cyclic group, gen-
erated by the root of h (which we denote ĥ). This contains ⟨h⟩ with finite index. But
NH(⟨h⟩) ∩ F itself is a finite index subgroup of NH(⟨h⟩), which must again contain ⟨h⟩
with finite index.

We now combine these results to prove Proposition 5.4.1.

Proof of Proposition 5.4.1. Let F be a finite index normal subgroup of H. By Corollary 5.4.3,
it will suffice to show that the subgroup of N (the isomorphic image of AutH(F) in
Aut(H)) that acts as conjugation on each subgroup Hi is finitely generated. We use A
for this subgroup of N.

Each subgroup Hi is virtually Z; in particular its intersection with F is generated by a
single element hi. This intersection is preserved under conjugation by elements of Hi

(since F is a normal subgroup of H): in particular Hi is a subgroup of NH(⟨hi⟩). By
Lemma 5.4.6, since it contains hi, it is finite index in this normaliser.
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Let Q = Ad(H)/ Inn(F) ∼= H/FK be the subgroup of Out(F) induced by H, and
denote by OutQ(F) the centraliser of Q in Out(F). This is the projection of AutH(F)
to Out(F). By Theorem 5.4.4, the subgroup OutQ(F) preserving the conjugacy class of
each ⟨hi⟩ is finitely generated, so this is also true of the subgroup A of N Normalisers
must be sent to normalisers, so A sends NH(⟨hi⟩) to a conjugate of itself too.

This normaliser is virtually cyclic, so by Lemma 5.4.5 it has finitely many outer au-
tomorphisms. After composing with an inner automorphism we induce an automor-
phism of NH(⟨hi⟩), and we may restrict to those which induce an inner automorphism.
This restriction gives a finite index subgroup of A, which acts as a conjugation on
NH(⟨hi⟩), and in particular on the subgroup Hi. Repeating this for each subgroup Hi

(there are only finitely many) still defines a finite index subgroup, which is itself finitely
generated.

Remark 5.4.7. Notice that the ad-hoc arguments given in Proposition 4.1.6 for the two
cases that are not virtually cyclic can be viewed as a special case of the arguments used
here for general periodic automorphisms. (Observe that PGL2(Z) ∼= Out(C2 ∗ C2 ∗ C2),
though the Out0 considered above would be a finite index subgroup isomorphic to
C2 ∗ C2 ∗ C2.) There the problem can be reduced to understanding McCool groups of
free groups, allowing more complicated incident edge groups to appear while leaving
the problem tractable.

We are now in a position to prove one of our main theorems.

Theorem 1.1.1. Suppose G ∼= Fn ⋊φ Z, and φ is linearly growing. Then Out(G) is finitely
generated.

Proof. The defining automorphism φ has a power that is UPG and linearly growing, so
it is a Dehn twist. Taking this power to define a normal subgroup G0 of G, by Propo-
sition 5.2.2, G0 has a canonical action on a tree T. Then by Proposition 3.1.4, G has a
nearly canonical action on the same tree. The vertex stabilisers are free-by-cyclic groups
which are virtually free-times-cyclic; edge stabilisers are free-by-cyclic groups that are
virtually Z2 (see Proposition 5.2.4).

Analyse this action using Theorem 3.2.1. The quotient at (1) is finite since by Lemma 2.1.2
the quotient graph is. The quotient at (2) is also finitely generated. By Proposition 5.3.3,
this will be finitely generated if and only if the relevant McCool groups are. After pass-
ing to a finite index subgroup, Proposition 5.3.6 describes these McCool groups (up to
finite index) by considering McCool groups of virtually free groups, arising by quo-
tienting by the centre. Since the edge groups contain the centre of the vertex groups,
their image under this quotient map is virtually infinite cyclic. Finally, Proposition 5.4.1
gives finite generation for these McCool groups, completing this part of the proof.
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The edge groups are virtually Z2, and in particular virtually abelian, so by Proposi-
tion 3.2.3 the quotient at (3) is finitely generated. Edge and vertex groups are both
(finitely generated free)-by-cyclic, so by Lemma 3.2.4 the centralisers are finitely gener-
ated groups, and so is their quotient at (4). Finally, the quotient at (5) is a quotient of a
finitely generated abelian group, so is itself finitely generated.

Putting this together, we see that Out(G) admits a finite index subgroup which is
finitely generated, and so Out(G) itself is finitely generated, as claimed.

6 Quadratic growth

6.1 Strategy

The strategy of the proof of this section is much like the last:

• Start with a free-by-cyclic group, G = F3 ⋊Φ Z, where Φ has quadratic growth,

• Consider a finite index subgroup, G0 = F3 ⋊Φr Z, so that Φr is UPG,

• Find a good basis of F3 for Φr and use this to construct a tree whose deformation
space is left invariant by any automorphism of G0,

• Deduce that the (reduced) tree of cylinders, T = T∗
c , of this space is G0-canonical,

• Use Proposition 3.1.4 to deduce that T is nearly G-canonical

• Show that AutT(G) is finitely generated, using Theorem 3.2.1, and conclude that
Aut(G) is finitely generated.

We establish some notation. Given a group, G, a subgroup H of G and elements g, h of
G we set:

(i) We write g ∼ h to denote that g and h are conjugate in G, and

(ii) We write g ∼H h to denote that g and h are conjugate by an element of H (even if
g, h might not themselves be elements of H)

6.2 Normal forms and a tree to act on

First we equip ourselves with a useful representative of a UPG automorphism.
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Proposition 6.2.1. Suppose Φ is a UPG element of Out(F3) of quadratic growth. Then there
is a representative φ ∈ Φ and a basis {a, b, c} of F3 so that

φ

a −→ a
b −→ ba−k

c −→ hcg−1,

where k is non-zero and h and g are in ⟨a, b⟩.

This is close to [8, Proposition 5.9]; we have more control over the images of the first
two generators in exchange for less control over the final generator.

Proof. By [3], any UPG automorphism is represented by a homotopy equivalence on a
graph, G, such that G consists of edges, E1, . . . , Ek and the homotopy equivalence maps
Ei to Eiui−1, where the ui−1 are closed paths involving only the edges E1, . . . , Ei−1 (ui−1

may be the trivial path).

In particular, this implies that any UPG automorphism of F2 has a representative, such
that with respect to some basis, {a, b}, the automorphism fixes a and sends b to ba−k for
some k.

(Briefly, if the top edge, Ek, were separating, then the components on removing this
edge would both be homotopic to circles, and then it is easy to see that the map is
homotopic to the identity relative to the initial vertex of Ek. If Ek is not separating, then
removing Ek leaves a graph, homotopic to a circle, on which the map is homotopic to
the identity – giving us the a – and the Ek edge becomes the b basis element. Note that
the layered description, which is a consequence of the UPG property, does not allow
“inversions” of these various invariant circles.)

Now, if we are given a UPG automorphism, Φ, of F3, the above description implies that
some rank 2 free factor is left invariant, up to conjugacy – again, remove the top edge
Ek. Each component of the complement is invariant under the map, and there must be
one of rank 2. Moreover, the restriction of Φ to this invariant free factor is also UPG –
in fact the restriction of the map has a layered form as above.

This implies that there is a basis, {a, b, c} of F3 and a representative φ ∈ Φ such that

φ

a −→ a
b −→ ba−k
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c

⟨sh⟩c = ⟨sg⟩

⟨a, b, s⟩

FIGURE 3.1: T0, as described in Corollary 6.2.2

But now, since the images of a, b, c must also be a basis for F3, the only possibility for
the image of c is hc±1g−1 for some g, h ∈ ⟨a, b⟩. The fact that Φ is UPG (or using the
description of the map) means that the image must be hcg−1.

Finally, note that if k were to be zero, then Φ would have linear growth, hence we may
conclude that k ̸= 0.

Corollary 6.2.2. Let G = F3 ⋊Φ Z be a free-by-cyclic group where Φ has quadratic growth.
Then G has a normal finite index subgroup G0 = F3 ⋊Φr Z with presentation:

G0 = ⟨a, b, c, s : as = a, bs = ba−k, cs = hcg−1⟩

= ⟨H, c : (sh)c = sg⟩, where H = ⟨a, b, s⟩

where g, h ∈ ⟨a, b⟩ and k ̸= 0.

Moreover, G0 acts on a tree, T0, with one orbit of vertices, and one orbit of edges such that the
vertex stabilisers are conjugates of H = ⟨a, b, s⟩ and edge groups are conjugates of ⟨sg⟩ =

⟨sh⟩c. (See Figure 3.1.)

Proof. Every polynomially growing automorphism has a power which is UPG, and
Proposition 6.2.1 provides a good generating set and the corresponding presentation.
The final relations in both presentations are equivalent, realising G0 as an HNN exten-
sion of ⟨a, b, s⟩ with stable letter c, and T0 is the corresponding Bass-Serre tree.

6.3 Invariance of the tree

Proposition 6.3.1. Any automorphism of G0 fixes the conjugacy class of ⟨a, b, s⟩. That is, the
deformation space defined by the tree, T0 from Corollary 6.2.2 is invariant under the automor-
phisms of G0.

Proof. First we will see that s is sent to a conjugate of s±1, and then we prove that in the
case it is fixed or inverted, the subgroup ⟨a, b, s⟩ is preserved.

The subgroup ⟨a, bab−1, s⟩ is the centraliser of s and so its image must be the centraliser
of some element. Since the free part has rank 2, this element has to be sℓw for some ℓ
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and w. In fact by Theorem 2.4.2 the only elements which commute with a subgroup
of rank at least two are conjugate to sℓ. Since s has no roots we must have ℓ = ±1. In
particular, this implies ⟨a, bab−1, s⟩ is sent to a conjugate.

Therefore, up to composing with an inner automorphism, we may assume that s is
fixed or inverted by our automorphism, and we consider the images of a and b. We
write u for the image of a and snv for the image of b, where u, v are elements of ⟨a, b, c⟩.
(Notice that the relation bs = ba−k implies that the image of a lies in this free group.)

The image of bab−1 is vuv−1, so ⟨u, vuv−1⟩ = ⟨a, bab−1⟩. In particular, this shows that u
and v (by malnormality of free factors) are contained in ⟨a, b⟩.

To see the other inclusion, notice that we also know that ⟨u, v⟩ contains ⟨a, bab−1⟩. By
considering the Stallings graphs (see [33]) of both subgroups, this means it contains
either ⟨a, bab−1⟩ or ⟨a, b⟩ as a free factor.

That is, the subgroup inclusion gives a graph morphism from the Stallings graph of
⟨a, bab−1⟩ to that of ⟨u, v⟩ with respect to the basis {a, b}. If this map is injective, then
the Stallings graph of ⟨a, bab−1⟩ is a subgraph and therefore ⟨a, bab−1⟩ is a free factor
of ⟨u, v⟩. If not, then the two vertices of the Stallings graph of ⟨a, bab−1⟩ are identified,
and we must get that ⟨a, b⟩ is a free factor of, and hence must be equal to, ⟨u, v⟩. This is
an easy version of the arguments in [34], Theorem 1.7.

Since it has rank 2, this actually says ⟨u, v⟩ is equal to either ⟨a, bab−1⟩ or ⟨a, b⟩; the first
is impossible since it would imply that ⟨u, v⟩ = ⟨a, bab−1⟩ = ⟨u, vuv−1⟩, which cannot
happen since the last subgroup does not contain v.

Hence, ⟨u, v⟩ = ⟨a, b⟩ and ⟨u, v, s⟩ = ⟨a, b, s⟩.

Corollary 6.3.2. The (collapsed) tree of cylinders, T∗
c , of T0 is G0-canonical and hence nearly

G-canonical.

Proof. The fact that the deformation space of T0 is invariant, gives us that the (collapsed)
tree of cylinders, T∗

c is canonical, see Subsection 2.3.

Then Proposition 3.1.4 gives us the second statement.

6.4 Calculating the tree of cylinders, Tc

Our goal now is to calculate Tc. In order to do this, we actually modify the basis given
by Proposition 6.2.1. The tree, T0 from Proposition 6.2.2 remains the same, but these
modifications aid the calculation.
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Throughout this subsection, we are working with the subgroup

G0 = ⟨a, b, c, s : as = a, bs = ba−k, cs = hcg−1⟩.

First we observe that we can modify the elements g, h from Proposition 6.2.1, and thus
in the description of G0.

Lemma 6.4.1. The choices of g and h in the statement of Proposition 6.2.1 are not unique.
In particular, if sh ∼⟨a,b⟩ sh′ and sg ∼⟨a,b⟩ sg′, then there exist x, y ∈ ⟨a, b⟩ such that if
c′ = x−1cy, then the image of c′ under φ is h′c′g′−1.

Proof. We will work in the corresponding free-by-cyclic group, G0 from Proposition 6.2.2
and its presentation.

Recall that G0 = ⟨a, b, c, s : as = a, bs = ba−k, cs = hcg−1⟩. It will be sufficient to show
that s−1c′s = h′c′g′−1.

Suppose (sh)x = sh′, and (sg)y = sg′, where x and y are elements of ⟨a, b⟩. Then put
c′ = x−1cy.

We get that,

s−1c′s = (x−1cy)s

= x−shcg−1ys

= (x−shx)c′(y−1g−1ys)

= s−1(sh)xc′(sg)−ys

= h′c′g′−1.

Note that each of sh and sg normalise ⟨a, b⟩. Moreover, they induce the same outer au-
tomorphism, and this is a Dehn Twist of ⟨a, b⟩. However, while sh and sg are conjugate
in G0 – and so induce isogredient automorphisms of ⟨a, b, c⟩ – they might not induce
isogredient automorphisms of ⟨a, b⟩.

One key point is that:

Lemma 6.4.2. The following are equivalent:

(i) sh and sg induce isogredient automorphisms on ⟨a, b⟩

(ii) sh ∼⟨a,b⟩ sg

(iii) sh ∼⟨a,b,s⟩ sg.
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Proof. The first two are clearly equivalent, and notice that ⟨a, b, sh⟩ = ⟨a, b, s⟩ = ⟨a, b, sg⟩,
which makes the second and third equivalent since we can choose the new generator
so it centralises the conjugated element.

We will use the following result, to help us modify g and h as above.

Corollary 6.4.3 ([27, Corollary 3.10]). Let Ψ ∈ Out(Fn), n ≥ 2, be a Dehn Twist outer
automorphism fixing a conjugacy class. Then there is a ψ ∈ Ψ with fixed subgroup of rank at
least two fixing an element of that conjugacy class.

Lemma 6.4.4. In G0, the centraliser C⟨a,b⟩(sh) has rank 0,1 or 2. If the rank is at least 1, then
sh ∼⟨a,b⟩ sh′ for some h′ ∈ C⟨a,b⟩(s) = ⟨a, bab−1⟩. The same is true for g.

Moreover, one of C⟨a,b⟩(sh) and C⟨a,b⟩(sg) has rank 0 (is the trivial group).

Proof. The first statement follows from the Bestvina-Handel Theorem, Theorem 2.4.2.

For the second statement, we invoke Corollary 6.4.3, to say that if C⟨a,b⟩(sh) is non-
trivial, then there exists a non-trivial w ∈ ⟨a, b⟩ and an x ∈ ⟨a, b⟩ such that:

(wx)sh = wx

ws = w.

Here we are using Theorem 2.4.2 to say that since the underlying free group has rank 2,
there is exactly one isogredience class with fixed subgroup of rank at least 2, and hence
the ψ from Corollary 6.4.3 is, without loss of generality, the automorphism induced by
conjugation by s (on ⟨a, b⟩). (It is more convenient for the following argument to write
wx for the element fixed by the automorphism induced by sh.)

But these equations imply that,

ws−1x(sh)x−1
= wx(sh)x−1

= (wx)(sh)x−1
= (wx)x−1

= w.

Hence, as w is non-trivial and both w and s−1x(sh)x−1 are elements of ⟨a, b⟩, we get
that s−1x(sh)x−1 ∈ ⟨w⟩ ≤ C⟨a,b⟩(s), and hence sh ∼⟨a,b⟩ swm, for some m ∈ Z (without
loss of generality, we can assume w is not a proper power, and so generates its own
centraliser in ⟨a, b⟩). The same calculation gives the result for g.

Finally, notice that if both h, g ∈ C⟨a,b(s), then Φ has linear growth. Thus, via Lemma 6.4.1,
we deduce that one of C⟨a,b⟩(sh) and C⟨a,b⟩(sg) has rank 0.

Remark 6.4.5. Given this result, we shall henceforth assume that C⟨a,b⟩(sg) is the trivial
group. (Note that h and g can be interchanged by replacing c with c−1 so there is no
loss of generality in assuming this.)
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We also record that,

Lemma 6.4.6. Let G be a free-by-cyclic group, with stable letter s. Any subgroup ⟨smw⟩, with
m ̸= 0, has centraliser and normaliser equal.

Proof. Notice that conjugation by any element of the normaliser induces an automor-
phism of ⟨smw⟩, and in particular either preserves the generator (in which case it is an
element of the centraliser) or inverts it. However, conjugating cannot affect the expo-
nent sum of the stable letter s, and so this last case does not arise.

Since there is only one orbit of edges, we can understand the cylinders by understand-
ing the normaliser of any edge stabiliser. Since the edges are stabilised by infinite cyclic
groups of the kind discussed in Lemma 6.4.6, this is equivalent to understanding their
centralisers.

Theorem 6.4.7. Let G0 = ⟨a, b, c, s : as = a, bs = ba−k, cs = hcg−1⟩, and T0 be the Bass-
Serre tree on which G0 acts via the HNN decomposition, G0 = ⟨H, c : (sh)c = sg⟩, where
H = ⟨a, b, s⟩.

Moreover, assume that C⟨a,b⟩(sg) is the trivial group, as in Remark 6.4.5.

We form the tree of cylinders, Tc, and collapsed tree of cylinders T∗
c taking maximal infinite

cyclic groups to be the family E and equality to be the admissible equivalence relation.

• If sh ̸∼⟨a,b⟩ sg, then T∗
c = T0, or Tc = T∗

c is simply a subdivision of T0.

• If sh ∼⟨a,b⟩ sg, then Tc = T∗
c has one edge orbit, with infinite cyclic stabilisers, conjugates

of ⟨sh⟩, and two vertex orbits, with stabilisers conjugates of ⟨a, b, s⟩ and C(sh) ∼= Z2.

Proof. Since T0 has one orbit of edges and one orbit of vertices, the tree of cylinders of
T0 will have two orbits of vertices – one for the cylinders, and one for the T0-vertices.

Since our relation is equality, edge stabilisers in T0 are conjugate to sh, and we have
Lemma 6.4.6, we deduce that a cylinder is the orbit of an edge under the action of the
centraliser of the edge stabiliser (in G0).

As G0 acts without inversions on T0, we may equivariantly orient the edges of T0. A
vertex stabiliser in T0 acts on the incident edges with two orbits – one orbit for the
incoming edges, and one for the outgoing edges.

Choose this orientation so that at the vertex stabilised by ⟨a, b, s⟩, the incoming edges
have stabiliser conjugate (in ⟨a, b, s⟩) to ⟨sg⟩ and for the outgoing edges it is conjugate
to ⟨sh⟩.

The fact that C⟨a,b⟩(sg) is the trivial group implies that C⟨a,b,s⟩(sg) = ⟨sg⟩ and hence that
no cylinder may contain two incoming edges at a vertex.
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Suppose sh ̸∼⟨a,b⟩ sg:

If a cylinder contained both incoming and outgoing edges at a vertex, then (moving
back to the vertex stabilised by ⟨a, b, s⟩) we would have sh ∼⟨a,b,s⟩ sg, since acting on the
edges conjugates the stabilisers. So if sh ̸∼⟨a,b⟩ sg (which is equivalent to sh ̸∼⟨a,b,s⟩ sg),
then no cylinder may contain both incoming and outgoing edges at a vertex.

Thus if sh ̸∼⟨a,b⟩ sg, all cylinders consist of a collection of outgoing edges from a ver-
tex. More concretely, if we take the edge with stabiliser ⟨sh⟩, then the corresponding
cylinder consists of edges starting from the vertex with stabiliser ⟨a, b, s⟩, and are thus
all in the same ⟨a, b, s⟩-orbit. In particular, this implies that C(sh) = C⟨a,b,s⟩(sh) =

C⟨a,b⟩(sh)× ⟨sh⟩.

The cylinder stabiliser acts with two orbits on its vertices – the central vertex and all the
rest, and hence the tree of cylinders of T0 has two edge orbits corresponding to these
different inclusions. One of these edges has stabilisers equal to the edge stabilisers of
the original tree (this is where we have the vertex being one of the ‘outside’ vertices
of the cylinder), whereas the other edge group is equal to the stabiliser of the cylinder,
(conjugates of) C(sh).

If C(sh) is not cyclic, then the collapsed tree of cylinders will collapse the corresponding
edge, and we will return to the original tree.

If C(sh) is cyclic, then the tree of cylinders is just a subdivision of T0 – we have sub-
divided an edge, and given the new vertex the same stabiliser as the edge it is part
of.

Suppose sh ∼⟨a,b⟩ sg:

If sh ∼⟨a,b⟩ sg, then we orient the edges of T0 as before and now we get that both
C⟨a,b⟩(sh) and C⟨a,b⟩(sg) are trivial (since they are conjugate). Therefore, C⟨a,b,s⟩(sh) =

⟨sh⟩ and C⟨a,b,s⟩(sg) = ⟨sg⟩.

This means that a cylinder cannot contain either two outgoing or two incoming edges
at any vertex. However, each cylinder does contain both an outgoing and incoming
edge at each vertex. Hence the cylinder is a line and it is straightforward to verify
that C(sh) ∼= Z2. (Since sh ∼⟨a,b⟩ sg, we may assume that h = g, and in this case,
C(sh) = ⟨c, sh⟩ – c is acting as a translation, and therefore transitively on the vertices
and edges of this line).

In this case, there are again two orbits of vertices in the tree of cylinders – one for
the cylinders, one for the vertices of T0 – with stabilisers (conjugates of) ⟨a, b, s⟩ and
C(sh) ∼= Z2.

Since the cylinder stabiliser acts transitively on its vertices, there is only one edge,
whose stabiliser is (the conjugates of) ⟨sh⟩.
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Remark 6.4.8. The tree of cylinders produced by this theorem realises a maximal pre-
served free factor system for the automorphism induced by s: it is an interesting ques-
tion if this is true more generally (say, in higher rank or higher polynomial growth).

We now use Theorem 6.4.7 to provide a nearly canonical tree for the general (not just
UPG) case.

Corollary 6.4.9. Let G ∼= F3 ⋊Φ Z, and Φ is quadratically growing. Then G admits an action
on a nearly canonical tree, T, such that:

(i) The action is co-compact (equivalently, co-finite),

(ii) Edge stabilisers are infinite cyclic,

(iii) Vertex stabilisers are of the form Fr ⋊ Z, where r = 0, 1, 2.

Proof. We simply apply Proposition 3.1.4 to the collapsed tree of cylinders for G0 above,
Theorem 6.4.7, to get a nearly canonical action on the same tree. The fact that the G
action extends the G0 action tells us about the stabilisers. (For example, edge stabilisers
in G must be infinite cyclic since their intersection with F3 is trivial).

We now use this to prove the following theorem, which is part of Theorem 1.1.2.

Theorem 6.4.10. Suppose G ∼= F3 ⋊φ Z, and φ is quadratically growing. Then Out(G) is
finitely generated.

Proof. We use the tree constructed above, and we calculate the quotients of OutT(G)

described in Theorem 3.2.1. The quotient graphs are finite, and therefore so is the quo-
tient at (1). For the quotient at (2), the edge groups are all infinite cyclic, and therefore
have finite outer automorphism group. So by Lemma 3.2.2, we only need to check the
McCool groups of vertex groups. Since vertex groups are free by cyclic groups of rank
0, 1 or 2, these are finitely generated by Proposition 4.1.6.

Since the edge groups are infinite cyclic, we may apply Proposition 3.2.3 to see that the
quotient at (3) is finite. The quotient at (4) is finitely generated by Lemma 3.2.4 and that
at (5) as a quotient of a finitely generated abelian group.

Our other main theorem is proved by combining Theorem 1.1.1 (restricted to rank 3)
for the linear growth case, Theorem 6.4.10 for the quadratic growth case, Theorem 4.1.7
for the exponential case and [22] for the periodic case.

Theorem 1.1.2. Suppose G ∼= F3 ⋊ Z. Then Out(G) is finitely generated.
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