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The article proposes a new approach to reasoning about knowledge and strategies in 
multiagent systems. It emphasizes data, not agents, as the source of strategic knowledge. 
The approach brings together Armstrong’s functional dependency from database theory, 
a data-informed knowledge modality based on a recent work by Baltag and van Benthem, 
and a newly proposed data-informed strategy modality. The main technical result is a 
sound and complete logical system that describes the interplay between these three logical 
operators.
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1. Introduction

With technological progress, more information is either stored in databases and remote servers or exchanged directly 
between autonomous agents. What machines know and can do will rely more and more on the access to such information 
rather than the individual memory. Personal assistants, like Amazon Alexa, often use external sources of data such as 
Wikipedia and Answers .com. Self-driving cars can access map updates in the cloud. Vehicular ad hoc networks (vehicular 
cloud) are being designed to share traffic and other localised information between nearby vehicles [1]. Future medical robots 
will be treating patients with highly contagious diseases relying on knowledge and skills of doctors and nurses placed in 
safe remote locations [2].

In this article, we formally define and study the properties of knowledge and abilities in a multiagent setting where data 
is decoupled from the agents.

1.1. Deep sea rescue example

Suppose that three naval rescue robots, Bluewater (b), Lucky (l), and Extreme (e), are sent on a mission to save the crew 
of a sunk submarine that has one hour of oxygen left. The area in which the submarine sank could be divided into 9 squares 
depicted in Fig. 1. The actual location of the submarine (second row, first column) is not known to the robots and it takes 
one hour for one robot to search through one square. Note that even a single robot in this setting has a strategy to save the 
crew (search first square in the second row), but the robot does not know that this strategy would guarantee the success of 
the rescue operation.
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Fig. 1. Rescue example.

Let us now suppose that the rescue robots somehow learned that the sub is located in the second row. Then, they know 
a joint strategy to save the crew. The strategy consists in three of them searching through different squares in the second 
row. Moreover, observe that anyone who knows in which row (r) the sub is, knows the strategy that Bluewater, Lucky, and 
Extreme can use to save the crew:

Sb,l,e
r (“The crew is safe”).

We write SC
Xϕ to state that the knowledge of a strategy that coalition C can use to achieve ϕ could be gained from the 

values of variables in set X . In other words, anyone who knows the values of the variables in set X knows the strategy that 
coalition C can use to achieve ϕ . In this context, we refer to the set of variables X as “dataset”. We read SC

Xϕ as “dataset 
X informs a strategy of coalition C to achieve ϕ”. Note that for SC

Xϕ to be true, it is not significant whether the members 
of the coalition C themselves know values of variables in dataset X . Furthermore, any knowledge that the members of the 
coalition C might have does not affect if SC

X ϕ is true or not. For this reason, we refer to the members of the coalition C as 
actors rather than agents.

Recall that Bluewater, just like each of the other robots, has a strategy to save the crew (search the first square in the 
second row), but it is not true that anyone who knows r would know how Bluewater can do this. Thus,

¬Sb
r (“The crew is safe”).

In other words, Bluewater’s strategy to rescue the crew is not informed by the dataset {r}. The same dataset also does 
not inform the strategy for Bluewater and Lucky:

¬Sb,l
r (“The crew is safe”).

Let us further assume that the two of the squares contain old shipwrecks. These are the second square in the first row 
and the third square in the second row, Fig. 1.

Let Boolean variable s is true in the squares that contain shipwrecks and is false in the other squares. Observe that 
everyone who knows the row and the ship wracks data (s) of the square where the sub has been sunk, would know that 
the sub is located in one of the first two squares in the second row. Thus, any such person would know how Bluewater and 
Lucky can achieve the goal:

Sb,l
r,s(“The crew is safe”).

The validity of the last statement depends on the location of the sub. It would not be true if the sub is located in any of 
the squares of the third row. In other words, the satisfiability of statement SC

X ϕ depends on which of the possible worlds 
is the current world. In the setting of our example, there are nine possible worlds, corresponding to different locations of 
the sub. By default, all statements that we consider in this section assume that the current world is the one where the sub 
is located in the first cell of the second row. Observe that the column (c) and the wreck data do not inform a strategy for 
Bluewater and Lucky:

¬Sb,l
c,s(“The crew is safe”),

because all three squares in the first column have no wrecks.
Let us also assume that the ocean floor in some squares is covered with sand and in the others with rocks. The squares 

with rock floor are shaded in grey in Fig. 1. Since the sub is lying on the sandy floor and only two of squares with sandy 
floor have no shipwrecks, everyone who knows the floor type and the ship wreck data, knows the strategy that Bluewater 
and Lucky can use to save the crew:
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Sb,l
f ,s(“The crew is safe”).

The validity of the last statement also depends on the current world. It would not be true if the sub was lying on rocky 
floor. One might also observe that row, floor type, and wreck data inform a strategy for Bluewater alone to save the crew:

Sb
r, f ,s(“The crew is safe”).

The numbers in Fig. 1 show the depth (d), in meters, of the ocean in each square. Observe that the depth of the ocean 
in white (sandy) squares is equal to either 115 or 110. Thus, anyone who knows the type of the floor on which the sub is 
lying knows that d is equal to either 115 or 110. We write this as

K f (“The sub is lying at either depth 115 or depth 110”).

In general, we write KXϕ if the knowledge of ϕ about the current world can be gained from the values of variables in 
dataset X . In other words, anyone who knows the values of the variables in dataset X for the current world knows that 
statement ϕ is true in the current world. We read KXϕ as “dataset X informs the knowledge of statement ϕ”.

Note that variable f does not inform strategy for Bluewater and Lucky to save the crew:

¬Sb,l
f (“The crew is safe”)

because there are four different squares with sandy floor. However, everyone who knows the value of f knows that the 
depth at which the sub is lying is either 115 or 110. Thus, everyone who knows the value of f knows that the knowledge 
of variable d reduces the number of locations where the sub is to just two. Hence, everyone who knows the value of f
knows that variable d informs a strategy for Bluewater and Lucky to save the crew:

K f Sb,l
d (“The crew is safe”).

In this article, in addition to data-informed modalities SX ϕ and KXϕ , we also consider dependency expression X � Y . It 
means that, in the current world, the knowledge of the values of variables in dataset X informs the knowledge of the values 
of variables in dataset Y . We read X � Y as “dataset X informs dataset Y ”. For example, note that all squares in the first 
column have no wrecks. Thus, the knowledge of the column in which the sub is located informs the knowledge of the 
wreck data: c � s. At the same time, ¬(r � s) because no cells in the second row have the same wreck data.

1.2. Literature review

Coalition power modality SCϕ for perfect information games has been originally proposed by Pauly [3,4]. Ågotnes and 
Alechina have combined this modality with several group and individual knowledge modalities in imperfect information 
setting [5]. Using their language, one can express statements like “coalition C knows that coalition D has a strategy to 
achieve ϕ”. Note that knowing that a strategy exists is different from knowing the strategy. A complete logical system for 
modality “coalition knows a strategy that it can use to maintain condition ϕ” has been proposed by Naumov and Tao [6]. 
Modality “agent knows a strategy she can use to achieve ϕ in several steps” has been axiomatized by Fervari, Herzig, Li, 
and Wang [7]. The interplay between distributed knowledge modality, “coalition has a strategy to achieve ϕ in one step” 
modality, and “coalition knows a strategy it can use to achieve ϕ in one step” modality has been described in [8,9]. Several 
logical systems that combine modality “coalition knows a strategy it can use to achieve ϕ in one step” with different 
forms of knowledge is proposed in [5]. Modality “coalition knows a strategy it can use to achieve ϕ in one step” in a 
perfect recall setting is axiomatized in [10]. Bisimulations for different logics of “knowing strategy” is proposed in [11]. 
Neighbourhood semantics for one of these logics is introduced in [12]. Multiple other extensions of Pauly’s coalition logic 
have been proposed, including Logic of Cooperation and Propositional Control [13] and Alternating-time Temporal Logic 
(ATL) [14]. An epistemic version of ATL is introduced by van der Hoek and Wooldridge [15]. For more discussion of earlier 
works in this area see [16].

All of the above works that include “knowing strategy” modality assume that the knowing agent (or coalition) is the 
same as the agent whose strategy she knows. For example, such modality can be used to express statement “Alice knows a 
strategy that she herself can use to achieve ϕ”. However, it cannot be used to say that “Alice knows a strategy that Bob can 
use to achieve ϕ”. A logical system that can be used to express the last statement is proposed by Naumov and Tao [17]. 
They have introduced modality “coalition C knows a strategy that coalition D can use to achieve ϕ”. They call this modality 
“second-order know-how” modality and give a complete logical system that describes the interplay between this modality 
and distributed knowledge modality.

Note that in many real world settings the knowledge is separated from the actors. For example, knowledge can be stored 
in a database, on a remote server, or deep in the sea inside the flight recorder of a crashed airplane. It can be encrypted 
or password-protected. In such situations, it is natural to reason about what different agents can do depending on which 
information they can access. To formalise such reasoning, in this article we propose to completely decouple knowledge from 
the actors. To do this, we introduce data-informed strategy modality SC ϕ described in the previous section. This modality 
X
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has certain resemblance to condition know-how modality Sψϕ that stands for “there is a strategy to achieve ϕ from any 
state where ψ is true” [18].

The functional dependency relation X � Y is proposed by Armstrong, who has given its sound and complete axiomatiza-
tion [19]. His axioms became known in database literature as Armstrong’s axioms [20, p. 81]. Beeri, Fagin, and Howard [21]
have suggested a variation of Armstrong’s axioms that describe properties of multi-valued dependence. Baltag proposed a 
logical system for expression X �a Y , that stands “agent a knows how to compute dataset Y based on dataset X” [22]. Deuser 
and Naumov have discussed a connection between Armstrong axioms and strategies in imperfect information setting [23]. It 
is interesting to point out that dependency x � y between single variables x and y could be expressed in the dynamic epis-
temic logic of “knowing the value” [24]. Namely, x � y is equivalent to [x]Kv(y), where [x] is the modality that represents 
public announcement (inspection) of variable x and Kv(y) is expression “variable y is publicly known”. More generally, if X
and Y are finite sets {x1, . . . , xm} and {y1, . . . , yn} respectively, then X � Y is equivalent to [x1] . . . [xm] ∧i≤n Kv(yi). Another 
approach to dependency is proposed in Dependence Logic [25].

Data-informed knowledge modality KXϕ is introduced by Baltag and van Benthem [26]. They have proposed a complete 
logical system, A Simple Logic of Functional Dependence, that captures the interplay between functional dependency relation 
X �Y and data-informed knowledge modality KX ϕ . Due to the choices Baltag and van Benthem have made in the syntax and 
the semantics of their system, their logic contains the axiom ϕ → KXϕ (under certain restrictions on formula ϕ). Perhaps 
because of the presence of this axiom, they refer to modality KX as “dependence” rather than “knowledge” modality. In 
the current article, we use slightly different syntax and semantics. As a result, the above principle is not universally valid 
in our setting. The properties of modality KX in our setting are the standard S5 properties. This is why we refer to KX as 
data-informed knowledge modality. In Section 3, we further discuss the difference between our setting and the one in [26].

The main technical contribution of the current article is a sound and complete logical system describing the interac-
tion between data-informed strategy modality SC

Xϕ , data-informed knowledge modality KXϕ , and functional dependency 
expression X � Y .

1.3. Outline

The rest of the article is structured as follows. In the next section, we introduce formal models of our logical system. 
Then, we describe the syntax and the semantics of the system. Section 4 lists its axioms and inference rules. We show 
soundness of our logical system in Section 5. It turns out that whether our system is strongly complete depends on the 
finiteness of the set of all data variables. We prove that if this set is finite, then our system is strongly complete with 
respect to the proposed semantics. We also show that, if the set is infinite, then any strongly sound system in our language 
is not strongly complete. The proof of strong completeness is in Section 6. The incompleteness result is given in Section 7. 
Finally, in Section 8, we show that even if the set of all variables is infinite, our logical system is complete (but not strongly 
complete) for the formulae that use only finitely many data variables. In Section 9, we propose and analyse a model checking 
algorithm for our logical system and in, Section 10, we discuss a possible future work on multistep data-informed strategies. 
Section 11 concludes.

2. Games

Throughout this article, we assume a fixed nonempty set of propositional variables P , a fixed set of data variables V , 
and a fixed set of actors A. Recall that we use term “actors” rather than “agents” to emphasise that the knowledge in our 
setting is decoupled from the actions.

By a dataset we mean an arbitrary subset of V . In this section, we introduce models of our logical system, called games. 
Informally, a game includes a set of possible states and each of data variables is assigned a value in each of the states. 
An actor who is informed about a dataset cannot distinguish two states when all variables in the dataset have the same 
values in both states. Note that it is only important if a given variable has the same value in two given states and it is not 
important what exactly the value of the variable is. Thus, for the sake of simplicity, our formal definition below does not 
include values of variables. It only contains an indistinguishability relation ∼x on possible states associated with each data 
variable x ∈ V . Intuitively, two states are indistinguishable by a data variable x if this variable has the same value in both 
states. In this article, by B A we denote the set of all functions from set A to set B .

Definition 1. A game is a triple (W , {∼x}x∈V , �, M, π), where

1. W is a (possibly empty) set of states,
2. ∼x is an indistinguishability equivalence relation on set W for each data variable x ∈ V ,
3. � is a nonempty set of “actions”,
4. M ⊆ W × �A × W is a “mechanism” of the game,
5. π(p) ⊆ W for each propositional variable p ∈ P .

By a complete action profile we mean an arbitrary element of the set �A . By a coalition we mean an arbitrary subset 
C ⊆A of actors. By an action profile of a coalition C we mean an arbitrary element of the set �C .
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Our introductory example has 9 initial states, representing the different locations of the sub, and two final states (“saved” 
and “not saved”). Note that although in this example the states are naturally divided into initial and final, the same is not 
true in general. In Definition 1, we assume that, the game might make multiple consecutive transitions between states.

In our example, the set V contains variables r, c, s, f , and d. If w is the current state, in which the sub is located at 
(2, 1), and w ′ is the state in which the sub is located at (1, 2), then w ∼ f w ′ and w ∼d w ′ because squares (2, 1) and (1, 2)

have the same floor type and the same depth.
To keep the notations simple, in Definition 1, we assume that the set of actions � is the same for all actors in all states. 

This assumption is not significant for our results because available actions can always be combined into a single set and the 
additional actions can be assigned some “default” meaning. At the same time, our assumption that set � is nonempty is 
significant. Without this assumption, the Public Knowledge axiom, introduced in Section 4, is not valid.

Note that the mechanism M is a relation, not a function. Informally, (w, δ, w ′) ∈ M if under complete action profile δ ∈
�A the game can transition from state w to state w ′ . Defining mechanism as a relation allows us to model nondeterministic 
games where from a given state under a given complete action profile the game can transition to one of several possible 
“next” states. Note that we also allow that for some combinations of a state and a complete action profile there might be 
no next states. We interpret this as a termination of the game.

In our introductory example, the actions consist in searching a square. Since there are nine squares, the set � has nine 
actions corresponding to these squares. The game transitions from the current initial state w = (2, 1) to final state “saved” 
if at least one of the actions is searching in the square where the sub is lying. Otherwise, the game transitions to the final 
state “not saved”. Note that we do not allow the actors to repeat the game. Thus, no further transitions can be made from 
either of the two final states. We model this by assuming that the mechanism M of this game has no triples whose first 
element is one of the final states of the game.

As common in modal logics, we interpret propositional variables as properties of states. Informally, w ∈ π(p) if proposi-
tional variable p is true in state w ∈ W . This is different from the setting of [26], where Baltag and van Benthem have used 
atomic predicates instead of propositional variables. The predicates are true or false depending not on the state, but on the 
values of data variables in the state. In other words, the atomic formulae in their setting capture properties of the variables 
rather than of the states. We discuss the significance of this difference in the next section.

3. Syntax and semantics

Language � of our logical system is defined by the grammar

ϕ ::= p | X � X | ¬ϕ | (ϕ → ϕ) | KXϕ | SC
Xϕ,

where p ∈ P is a propositional variable, X ⊆ V is a dataset, and C ⊆ A is a coalition. We read X � Y as “dataset X informs 
dataset Y ”, KXϕ as “dataset X informs the knowledge of ϕ”, and SC

Xϕ as “dataset X informs a strategy of coalition C to 
achieve ϕ”. By KXϕ we mean formula ¬KX¬ϕ . We also assume that constant true 	, conjunction ∧, and biconditional ↔
are defined in the standard way. In this article, we omit curly brackets and parenthesis when it does not create confusion. 
For example, we write x instead of {x}, x1, . . . , xn instead of {x1, . . . , xn}, and ϕ → ψ instead of (ϕ → ψ).

For any states w, w ′ ∈ W and any dataset X ⊆ V , let w ∼X w ′ mean that w ∼x w ′ for each data variable x ∈ X . In 
particular, w ∼∅ w ′ is true for any states w, w ′ ∈ W . Also, we write f =B g if f (b) = g(b) for each element b of a set B .

Definition 2. For any state w ∈ W of a game (W , {∼x}x∈V , �, M, π) and any formula ϕ ∈ �, satisfaction relation w � ϕ is 
defined recursively as follows

1. w � p, if w ∈ π(p),
2. w � X � Y , when for each w ′ ∈ W if w ∼X w ′ , then w ∼Y w ′ ,
3. w �¬ϕ , if w � ϕ ,
4. w � ϕ → ψ , if w � ϕ or w �ψ ,
5. w � KXϕ , if w ′ � ϕ for each w ′ ∈ W such that w ∼X w ′ ,
6. w � SC

Xϕ , when there is an action profile s ∈ �C of coalition C such that for all states w ′, v ∈ W and each complete 
action profile δ ∈ �A if w ∼X w ′ , s =C δ, and (w ′, δ, v) ∈ M , then v � ϕ .

Observe that K∅ϕ is the universal modality that says “statement ϕ is true in each state of the game”. If K∅ϕ is true in 
each state, then everyone must know it. For this reason, we read K∅ϕ as “statement ϕ is public knowledge”.

The sentence “dataset X informs dataset Y ” could be interpreted in two ways: locally and globally. Under the first inter-
pretation, the values of variables X in the current state determine the values of variables Y . Under the second interpretation, 
the values of X determine the values of Y in each state. For example, suppose that real values of variables x and y are 
such that y = x2 in each state of the game. Then, the value of x globally determines the value of y, but the value of y
does not globally determine the value of x. However, the value of y determines the value of x locally in each state where 
y = 0. Item 2 of Definition 2, defines the semantics of expression X � Y as local dependency. The global dependency can be 
captured by the expression K∅(X � Y ).
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The data-informed strategies also can be local and global. For example, supposed that based on the test results X a 
doctor knows how to adjust a medication. This is a global data-informed strategy because the doctor would know how to 
adjust medication no matter what the results X are. Of course, for different test results the strategy (adjustment amount) 
would be different. We can specify such global data-informed strategies as functions that map each X-equivalent class of 
states into an action. A local strategy might exist only for the values of X in the current state. For example, a doctor might 
have a strategy to save the life of a cancer patient for the current values of the test results X . For some other value of X
she might no longer have such a strategy. A local data-informed strategy is a single action that guarantees result only in 
the X-equivalence class of the current state. Item 6 of Definition 2 defines modality SC

Xϕ as a claim of existence of a local 
data-informed strategy. The modality for global strategy could be defined as K∅SC

Xϕ .
Recall from the previous section that atomic formulae in [26] capture properties of variables rather than states. The same 

is true about non-atomic formulae as well. In fact, Baltag and van Benthem define satisfaction s � ϕ as a relation between 
an assignment s of values to data variables and a formula ϕ . Because in their setting the validity of any formula is completely 
determined by the values of variables that occur in the formula, their logical system contains the axiom ϕ → KXϕ for any 
formula ϕ such that all data variables that occur in ϕ belong to X . This axiom is not valid in our setting.

Technically, the axiom ϕ → KXϕ is not valid under our approach because we are using a more traditional semantics in 
which satisfaction w � ϕ is a relation between a state w ∈ W and a formula ϕ . Although the approach of [26] is more 
succinct, it eliminates a possibility to have different states with the same values of all data variables. As a result of this 
elimination, the data-informed knowledge modality acquires the additional property captured by the above axiom. Besides 
that axiom, the properties of modality KX in the current article are the same as in [26].

4. Axioms

In addition to propositional tautologies in language �, our logical system contains the following axioms.

1. Truth: KXϕ → ϕ ,
2. Negative Introspection: ¬KXϕ → KX¬KXϕ ,
3. Distributivity: KX (ϕ → ψ) → (KXϕ → KXψ),
4. Reflexivity: X � Y , where Y ⊆ X ,
5. Transitivity: X � Y → (Y � Z → X � Z),
6. Augmentation: X � Y → (X ∪ Z) � (Y ∪ Z),
7. Introspection of Dependency: X � Y → KX (X � Y ),
8. Knowledge Monotonicity: X � Y → (KY ϕ → KXϕ),
9. Cooperation: SC

X (ϕ → ψ) → (SD
X ϕ → SC∪D

X ψ), where C ∩ D = ∅,
10. Strategic Monotonicity: X � Y → (SC

Y ϕ → SC
Xϕ),

11. Strategic Introspection: SC
Xϕ → KX SC

Xϕ ,
12. Knowledge of Unavoidability: KX S∅

Y ϕ → S∅

X ϕ ,
13. Public Knowledge: K∅ϕ → SC

Xϕ .

The Truth, the Negative Introspection, and the Distributivity axioms are the standard principles from epistemic logic S5. 
The Reflexivity, the Transitivity, and the Augmentation are well-known Armstrong’s axioms for functional dependency [19].

The Introspection of Dependency axiom states that if a dataset X informs a dataset Y , then this is known to anyone 
with access to X . The Knowledge Monotonicity axioms states that if a dataset X informs a dataset Y and dataset Y informs 
the knowledge of ϕ , then dataset X also informs the knowledge of ϕ . The Cooperation axiom is a variation of Marc Pauly’s 
axiom introduced in the logic of coalition power [3,4]. It states that if a dataset X informs strategies (actions profiles) of 
disjoint coalitions C and D to achieve ϕ → ψ and ϕ , respectively, then the dataset also informs a joint strategy for these 
coalitions to achieve ψ . The Strategic Monotonicity axiom states that if a dataset X informs a dataset Y , then X informs 
each strategy informed by Y . The Strategic Introspection axiom states that if a dataset X informs a strategy, then X also 
informs the knowledge that it informs the strategy.

To understand the meaning of the Knowledge of Unavoidability axiom, note that statement KX SC
Y ϕ means that “anyone 

who knows X knows that anyone who knows Y knows a strategy of coalition C to achieve ϕ”. Let us refer to the knowers 
of X and Y as Xena and Yeily. Note that while Yeily knows the strategy, Xena only knows that the strategy exists and is 
known to Yeily. Generally speaking, Xena does not know what the strategy is. One important exception, however, is when 
coalition C is empty. In this case, coalition C has only a single strategy (the unique function from the set �C ). In such a 
situation, knowing that a strategy exists is equivalent to knowing what the strategy is. This is captured by the Knowledge of 
Unavoidability axiom. The name of the axiom comes from the fact that S∅

Y ϕ can also be interpreted as “anyone who knows 
Y , knows that ϕ is unavoidable”.

By item 3 of Definition 1, each game has at least one action. Such an action can be used by the members of any coalition 
to achieve any statement which is true in each state of the game. This is captured by the Public Knowledge axiom.

We write � ϕ and say that formula ϕ ∈ � is a theorem of our system if it is derivable from the above axioms using the 
Modus Ponens and the Necessitation inference rule:
6
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ϕ,ϕ → ψ

ψ

ϕ

KXϕ
.

In addition to unary relation � ϕ , we also consider a binary relation F � ϕ . We write F � ϕ if formula ϕ ∈ � is provable 
from the set of formulae F ⊆ � and the theorems of our logical system using only the Modus Ponens inference rule. We 
say that set F is inconsistent if there is a formula ϕ ∈ F such that F � ϕ and F � ¬ϕ .

We prove the soundness of our logical system in Section 5. The proofs of the next four standard lemmas are omitted.

Lemma 1. � KXϕ → KX KXϕ .

Lemma 2 (Deduction). If F , ϕ � ψ , then F � ϕ → ψ .

Lemma 3. If ϕ1, . . . , ϕn � ψ , then KXϕ1, . . . , KXϕn � KXψ .

Lemma 4 (Lindenbaum). Any consistent set of formulae can be extended to a maximal consistent set of formulae.

Lemma 5. Inference rule 
ϕ

SC
Xϕ

is derivable.

Proof. Suppose that � ϕ . Thus, � K∅ϕ by the Necessitation inference rule. Therefore, � SC
Xϕ by the Public Knowledge axiom 

and the Modus Ponens inference rule. �
Lemma 6. � SC

Xϕ → SD
X ϕ , where C ⊆ D.

Proof. Note that formula ϕ → ϕ is a tautology. Thus, � S
D\C
X (ϕ → ϕ) by Lemma 5. Hence, � SC

Xϕ → S
(D\C)∪C
X ϕ by the Coop-

eration axiom and the Modus Ponens inference rule. Therefore, � SC
Xϕ → SD

X ϕ by the assumption C ⊆ D of the lemma. �
5. Soundness

In this section, we prove the soundness of our logical system. The soundness of the Armstrong’s axioms, the Truth, 
the Negative Introspection, and the Distributivity axioms is straightforward. Below, we show the soundness of each of the 
remaining axioms for an arbitrary game (W , {∼x}x∈V , �, M, π) as a separate lemma. We state the strong soundness for the 
whole system as Theorem 1 in the end of this section.

Lemma 7 (Introspection of dependency). If w � X � Y , then w � KX (X � Y ).

Proof. Consider any state w ′ ∈ W such that

w ∼X w ′. (1)

By item 5 of Definition 2, it is enough to prove that w ′ � X � Y . Towards this proof, consider any state w ′′ ∈ W such that 
w ′ ∼X w ′′ . By item 2 of Definition 2, it suffices to show that w ′ ∼Y w ′′ .

The assumptions w ∼X w ′ and w ′ ∼X w ′′ imply w ∼X w ′′ . Hence, by the assumption w � X � Y of the lemma and 
item 2 of Definition 2,

w ∼Y w ′′. (2)

At the same time, statement (1), the assumption w � X � Y of the lemma, and item 2 of Definition 2 imply that w ∼Y w ′ . 
Therefore, w ′ ∼Y w ′′ by statement (2) and because relation ∼Y is symmetric and transitive. �
Lemma 8 (Knowledge monotonicity). If w � X � Y and w � KY ϕ , then w � KXϕ .

Proof. Consider any state w ′ ∈ W such that w ∼X w ′ . By item 5 of Definition 2, it is enough to prove that w ′ � ϕ . Note 
that the assumption w ∼X w ′ implies w ∼Y w ′ by the assumption w � X � Y of the lemma and item 2 of Definition 2. 
Thus, w ∼Y w ′ by the assumption w ∼X w ′ . Therefore, w ′ � ϕ by the assumption w � KY ϕ of the lemma and item 5 of 
Definition 2. �
Lemma 9 (Cooperation). If w � SC (ϕ → ψ), w � SDϕ , and sets C and D are disjoint, then w � SC∪Dψ .
X X X

7
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Proof. By item 6 of Definition 2, the assumptions w � SC
X (ϕ → ψ) and w � SD

X ϕ imply that there are action profiles s1 ∈ �C

and s2 ∈ �D such that

∀w ′, v ∈ W ∀δ ∈ �A(w ∼X w ′, s1 =C δ, (w ′, δ, v) ∈ M ⇒ v � ϕ → ψ) (3)

and

∀w ′, v ∈ W ∀δ ∈ �A(w ∼X w ′, s2 =D δ, (w ′, δ, v) ∈ M ⇒ v � ϕ). (4)

Consider action profile

s(a) =
{

s1(a), if a ∈ C,

s2(a), if a ∈ D,
(5)

of coalition C ∪ D . Note that profile s is well-defined because sets C and D are disjoint by the assumption of the lemma. 
Consider any states w ′, v ∈ W and any complete action profile δ ∈ �A such that w ∼X w ′ , s =C∪D δ, and (w ′, δ, v) ∈ M . By 
item 6 of Definition 2, it suffices to show that v � ψ .

Assumption s =C∪D δ implies that s1 =C δ and s2 =D δ by equation (5). Thus, v � ϕ → ψ and v � ϕ by statements (3)
and (4) and assumptions w ∼X w ′ and (w ′, δ, v) ∈ M . Therefore, v �ψ by item 4 of Definition 2. �
Lemma 10 (Strategic monotonicity). If w � X � Y and w � SC

Y ϕ , then w � SC
Xϕ .

Proof. By item 6 of Definition 2, the assumption w � SC
Y ϕ implies that there is an action profile s ∈ �C of coalition C such 

that

∀w ′, v ∈ W ∀δ ∈ �A(w ∼Y w ′, s =C δ, (w ′, δ, v) ∈ M ⇒ v � ϕ). (6)

Consider any states w ′, v ∈ W and any complete action profile δ ∈ �A such that w ∼X w ′ , s =C δ, and (w ′, δ, v) ∈ M . By 
item 6 of Definition 2, it suffices to prove that v � ϕ . Indeed, by item 2 of Definition 2, the assumption w � X � Y of the 
lemma and statement w ∼X w ′ imply that w ∼Y w ′ . Therefore, v � ϕ by statement (6). �
Lemma 11 (Strategic introspection). If w � SC

Xϕ , then w � KX SC
Xϕ .

Proof. By item 6 of Definition 2, the assumption w � SC
Xϕ implies that there is an action profile s ∈ �C of coalition C such 

that

∀w ′, v ∈ W ∀δ ∈ �A(w ∼X w ′, s =C δ, (w ′, δ, v) ∈ M ⇒ v � ϕ). (7)

Consider any state u ∈ W such that w ∼X u. By item 5 of Definition 2, it suffices to show that u � SC
Xϕ . Indeed, the 

assumption w ∼X u and statement (7) imply that

∀w ′, v ∈ W ∀δ ∈ �A(u ∼X w ′, s =C δ, (w ′, δ, v) ∈ M ⇒ v � ϕ).

Therefore, u � SC
Xϕ by item 6 of Definition 2. �

Lemma 12 (Knowledge of unavoidability). If w � KX S∅

Y ϕ , then w � S∅

X ϕ .

Proof. Note that there is only one action profile s ∈ �∅ of the empty coalition. As a function, this action profile consists of 
the empty set of pairs. We denote this profile by s0.

Consider any states u ∈ W such that w ∼X u. By item 6 of Definition 2, it suffices to prove that

∀v ∈ W ∀δ ∈ �A(s0 =∅ δ, (u, δ, v) ∈ M ⇒ v � ϕ). (8)

Indeed, by item 5 of Definition 2, the assumption w ∼X u and the assumption w � KX S∅

Y ϕ of the lemma imply that 
u � S∅

Y ϕ . Hence, by item 6 of Definition 2, there is an action profile s1 ∈ �∅ of the empty coalition such that

∀w ′, v ∈ W ∀δ ∈ �A(u ∼Y w ′, s1 =∅ δ, (w ′, δ, v) ∈ M ⇒ v � ϕ).

Recall that the action profile of the empty coalition is unique. Thus, s0 = s1. Hence,

∀w ′, v ∈ W ∀δ ∈ �A(u ∼Y w ′, s0 =∅ δ, (w ′, δ, v) ∈ M ⇒ v � ϕ).

The last statement in the case w ′ = u is equivalent to statement (8). �

8
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Lemma 13 (Public knowledge). If w � K∅ϕ , then w � SC
Xϕ .

Proof. To prove w � SC
Xϕ , by item 6 of Definition 2, it suffices to show that v � ϕ for each state v ∈ W . Indeed, consider 

any state v ∈ W . Note that, vacuously, w ∼∅ v . Therefore, v � ϕ by item 5 of Definition 2 and the assumption w � K∅ϕ of 
the lemma. �

The strong soundness theorem below follows from the lemmas above.

Theorem 1 (Strong soundness). For each state w of an arbitrary game, each set of formulae F ⊆ � and each formula ϕ ∈ �, if w � f
for each formula f ∈ F and F � ϕ , then w � ϕ . �
6. Strong completeness

In this section, we prove the completeness of our logical system. The proof combines three ideas: harmony, dataset 
closure, and canonical tree introduced in Section 6.1, Section 6.2, and Section 6.3 respectively. Section 6.3 also describes the 
canonical game construction. Section 6.4 states and proves basic properties of the canonical games which are used later in 
Section 6.5 to prove the strong completeness.

6.1. Harmony

Usually, a proof of the completeness for a modal logic such as S5 defines states as the maximal consistent sets of 
formulae. It also contains a truth lemma that states that a formula is satisfied in a state if and only if the formula belongs 
to the state as a set. The truth lemma is usually proven by induction on structural complexity of the formula. An important 
step during the proof by induction is to show that if a state (maximal consistent set) w does not contain a formula of the 
form �ϕ , then there is a “reachable” state w ′ such that ¬ϕ ∈ w ′ . In our proof, the truth lemma is Lemma 31. In the case 
of modality K, the described above step is formalised as Lemma 25. The latter lemma is used in the induction proof in 
combination with item 5 of Definition 2.

The situation is very different in the case of the modality S because item 6 of Definition 2 contains quantifiers over two 
states: w ′ and v . As a result, in the case of modality S, the mentioned above step in the induction proof must construct 
two states satisfying certain conditions. As it turns out, these two states cannot be constructed consecutively. To construct 
these states concurrently, Naumov and Tao proposed a “harmony” construction [9]. A modified version of this construction 
is also used in [17]. The construction consists in defining a certain relation between two sets, called “harmony”. First, it is 
shown that some initial pair of sets is in harmony. Then, it is shown that any pair in harmony can be expanded till the pair 
is in “complete harmony”. Finally, Lindenbaum’s lemma is used to complete two sets in complete harmony to two maximal 
consistent sets.

We further adjust the construction from [17] to handle data-informed modalities. We define our version of “harmony” 
relation in Definition 3. In Lemma 15, we show that a certain initial pair of sets is in harmony. Lemma 16 shows that any 
pair in harmony can be extended in a certain way preserving the harmony. Definition 4 introduces the notion of “complete 
harmony” as the maximal extension of this type. Finally, Lemma 17 states that any pair in harmony can be extended to a 
pair in a complete harmony. The harmony construction is ultimately used in Lemma 30 to construct the mentioned above 
states w ′ and v .

Definition 3. A pair of sets of formulae (F , G) is in harmony if F � S∅

V ¬ 
∧

G ′ for each finite set G ′ ⊆ G .

Recall that V denotes the fixed set of all data variables and that S∅

V ϕ stands for “for the given values of V , statement ϕ
is unavoidable after transition”. Thus, informally, “F � S∅

V ¬ 
∧

G ′ for each finite set G ′ ⊆ G” means that “for the given values 
of V , the assumptions F about the current state are consistent with the set of statements G being satisfied in the next 
state”.

Definition 3 is a slightly modified version of the definition of harmony from [17]. The definition there is for the second-
order know-how modality SD

C ϕ , where both C and D are coalitions of agents. It means “coalition C knows a strategy that 
coalition D can use to achieve ϕ”. The definition of harmony in [17] requires F � S∅

C ¬ 
∧

G ′ for each coalition C and each 
finite set G ′ ⊆ G .

Lemma 14. If pair of sets of formulae (F , G) is in harmony, then sets F and G are consistent.

Proof. If set F is inconsistent, then F � ϕ for any formula ϕ ∈ �. In particular, F � S∅

V ¬ 
∧

∅. Therefore, the pair (F , G) is 
not in harmony by Definition 3.

Next, let set G be inconsistent. Thus, by Lemma 2 and propositional reasoning, � ¬ 
∧

G ′ for some finite set G ′ ⊆ G . 
Hence, � S∅¬ 

∧
G ′ by Lemma 5. Thus, F � S∅¬ 

∧
G ′ . Therefore, the pair (F , G) is not in harmony by Definition 3. �
V V

9
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Next, we show that certain initial sets are in harmony.

Lemma 15. For any consistent set E ⊆ �, any formula ¬SC
Xϕ ∈ E, any family {Di}i∈I of pairwise disjoint subsets of C , and any set 

{SDi
X ψi}i∈I of formulae from set E, if

F = {χ | KXχ ∈ E}, (9)

G = {¬ϕ} ∪ {ψi}i∈I ∪ {σ | K∅σ ∈ E}, (10)

then the pair (F , G) is in harmony.

Proof. Suppose that the pair (F , G) is not in harmony. Thus, by Definition 3, there is a finite set G ′ ⊆ G such that

F � S∅

V ¬
∧

G ′. (11)

The assumption that set G ′ is finite and equation (10) imply that there are formulae

K∅σ1, . . .K∅σm ∈ E (12)

and indices i1, . . . , in ∈ I such that

� σ1 → (σ2 → . . . (σm → (ψi1 → . . . (ψin → (¬ϕ →
∧

G ′)) . . . )) . . . ).

Thus, by the laws of propositional reasoning,

� ¬
∧

G ′ → (σ1 → . . . (σm → (ψi1 → . . . (ψin → ϕ) . . . )) . . . ).

Hence, by Lemma 5,

� S∅

V

(
¬

∧
G ′ → (σ1 → . . . (σm → (ψi1 → . . . (ψin → ϕ) . . . )) . . . )

)
.

Then, by the Cooperation axiom and the Modus Ponens inference rule,

� S∅

V

(
¬

∧
G ′) → S∅

V (σ1 → . . . (σm → (ψi1 → . . . (ψin → ϕ) . . . )) . . . ).

Thus, by assumption (11) and the Modus Ponens inference rule,

F � S∅

V (σ1 → . . . (σm → (ψi1 → . . . (ψin → ϕ) . . . )) . . . ).

Hence, by equation (9), there are formulae

KXχ1, . . . ,KXχk ∈ E (13)

such that

χ1, . . . ,χk � S∅

V (σ1 → . . . (σm → (ψi1 → . . . (ψin → ϕ) . . . )) . . . ).

Then, by Lemma 3,

KXχ1, . . . ,KXχk � KX S∅

V (σ1 → . . . (σm → (ψi1 → . . . (ψin → ϕ) . . . )) . . . ).

Thus, by the Knowledge of Unavoidability axiom and the Modus Ponens inference rule,

KXχ1, . . . ,KXχk � S∅

X (σ1 → . . . (σm → (ψi1 → . . . (ψin → ϕ) . . . )) . . . ).

Hence, by assumption (13),

E � S∅

X (σ1 → . . . (σm → (ψi1 → . . . (ψin → ϕ) . . . )) . . . ).

Then, by the Cooperation axiom and the Modus Ponens inference rule,

E � S∅

X σ1 → S∅

X (σ2 → . . . (σm → (ψi1 → . . . (ψin → ϕ) . . . )) . . . ).

Note that K∅σ1 ∈ E by assumption (12). Thus, E � S∅

X σ1 by the Public Knowledge axiom and the Modus Ponens inference 
rule. Hence,

E � S∅
(σ2 → . . . (σm → (ψ1 → . . . (ψn → ϕ) . . . )) . . . ).
X

10
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Then, by repeating the previous step m − 1 more times,

E � S∅

X (ψ1 → (ψ2 → . . . (ψn → ϕ) . . . )).

Hence, by the Cooperation axiom and the Modus Ponens inference rule,

E � SD1
X ψ1 → S∅∪D1

X (ψ2 → . . . (ψn → ϕ) . . . ).

Thus, by the assumption SD1
X ψ1 ∈ E of the lemma and the Modus Ponens inference rule,

E � SD1
X (ψ2 → (ψ3 → . . . (ψn → ϕ) . . . )).

Hence, again by the Cooperation axiom, the Modus Ponens inference rule, and the assumption of the lemma that sets D1

and D2 are disjoint,

E � SD2
X ψ2 → SD1∪D2

X (ψ3 → . . . (ψn → ϕ) . . . )).

Then, by the assumption SD2
X ψ2 ∈ E of the lemma and the Modus Ponens inference rule,

E � SD1∪D2
X (ψ3 → . . . (ψn → ϕ) . . . )).

By repeating the previous step n − 2 more times,

E � SD1∪D2∪···∪Dn
X ϕ.

Thus, E � SC
Xϕ by Lemma 6 and the assumption of the lemma that {Di}i∈I is a family of subsets of C . Therefore, ¬SC

Xϕ /∈ E
because set E is consistent, which contradicts the assumption ¬SC

X ϕ ∈ E of the lemma. �
The next lemma shows that any pair in harmony could be extended.

Lemma 16. For any pair of sets of formulae (F , G) in harmony, any formula S∅

X ϕ ∈ �, either the pair (F ∪ {¬S∅

X ϕ}, G) or the pair 
(F , G ∪ {ϕ}) is in harmony.

Proof. Suppose that neither the pair (F ∪ {¬S∅

X ϕ}, G) nor the pair (F , G ∪ {ϕ}) is in harmony. Thus, by Definition 3,

F ,¬S∅

X ϕ � S∅

V ¬
∧

G1, (14)

F � S∅

V ¬
∧

G2, (15)

for some finite sets G1 ⊆ G and G2 ⊆ G ∪ {ϕ}. Then, there must exist a finite set of formulae G ′ ⊆ G such that,

�
∧

G ′ →
∧

G1,

� ϕ →
(∧

G ′ →
∧

G2

)
.

Hence, by the laws of propositional reasoning,

� ¬
∧

G1 → ¬
∧

G ′,

� ¬
∧

G2 →
(
ϕ → ¬

∧
G ′) .

Thus, by Lemma 5,

� S∅

V

(
¬

∧
G1 → ¬

∧
G ′) ,

� S∅

V

(
¬

∧
G2 →

(
ϕ → ¬

∧
G ′))

.

Then, by the Cooperation axiom and the Modus Ponens inference rule,

� S∅

V

(
¬

∧
G1

)
→ S∅

V

(
¬

∧
G ′) ,

� S∅

V

(
¬

∧
G2

)
→ S∅

V

(
ϕ → ¬

∧
G ′) .

Hence, by assumptions (14) and (15) and the Modus Ponens inference rule,
11
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F ,¬S∅

X ϕ � S∅

V

(
¬

∧
G ′) , (16)

F � S∅

V

(
ϕ → ¬

∧
G ′) . (17)

Note that � V � X by the Reflexivity axiom because X ⊆ V . Then, by the Strategic Monotonicity axiom and the Modus 
Ponens rule, � S∅

X ϕ → S∅

V ϕ . Hence, � ¬S∅

V ϕ → ¬S∅

X ϕ by the law of contraposition. Thus, by the Modus Ponens inference 
rule and statements (16) and (17),

F ,¬S∅

V ϕ � S∅

V

(
¬

∧
G ′) ,

F � S∅

V

(
ϕ → ¬

∧
G ′) .

Then, by the Cooperation axiom and the Modus Ponens inference rule,

F ,¬S∅

V ϕ � S∅

V

(
¬

∧
G ′) ,

F � S∅

V ϕ → S∅

V

(
¬

∧
G ′) .

Hence, by Lemma 2,

F � ¬S∅

V ϕ → S∅

V

(
¬

∧
G ′) ,

F � S∅

V ϕ → S∅

V

(
¬

∧
G ′) .

Then, by the laws of propositional reasoning,

F � S∅

V

(
¬

∧
G ′) .

Therefore, by Definition 3 and the assumption G ′ ⊆ G , the pair (F , G) is not in harmony, which contradicts the assumption 
of the lemma that it is in harmony. �
Definition 4. A pair of sets of formulae (F , G) is in complete harmony if this pair is in harmony and, for any formula 
S∅

X ϕ ∈ �, either ¬S∅

X ϕ ∈ F or ϕ ∈ G .

The next lemma follows from Lemma 16 and Definition 4.

Lemma 17. For any pair (F , G) in harmony, there is a pair (F ′, G ′) in complete harmony such that F ⊆ F ′ , G ⊆ G ′ . �
6.2. Dataset closure

Another important idea used in our proof of the completeness is “dataset closure”. Informally, for each set of formulae 
F and each dataset X , by closure X∗

F we denote the set of all data variables about which set F can prove that they are 
informed by set X . This notion goes back to Armstrong’s original article on functional dependency. The “saturated” sets of 
database attributes there [19, Section 6] are essentially our closure sets X∗

F . Closures are used in Definition 7 of the next 
section to specify the labels of the edges of a tree.

Definition 5. X∗
F = {x ∈ V | X � x ∈ F } for any dataset X ⊆ V and any maximal consistent set of formulae F ⊆ �.

In other words, the closure X∗
F is the set of all data variables that, according to set F , are known to each actor who 

knows the values of all variables in dataset X . Intuitively, such set must include variables from the dataset X itself. We 
formally prove this in the lemma below.

Lemma 18. X ⊆ X∗
F .

Proof. Consider any data variable x ∈ X . Thus, � X � x by the Reflexivity axiom. Hence, X � x ∈ F because F is a maximal 
consistent set of formulae. Therefore, x ∈ X∗

F by Definition 5. �
Note that X � x ∈ F for each data variable x ∈ X∗

F by Definition 5. The next lemma shows that if the set of all data 
variables V is finite, then all such variables x could be brought together on the right-hand-side of � expression. The 
assumption that set V is finite is crucial. In Section 7, we show that if set V is infinite, then our logical system does not 
have strongly sound and strongly complete axiomatization. The proof of this incompleteness result, essentially, consists in 
showing that Lemma 19 does not hold for any infinite set V .
12
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Lemma 19. If set V is finite, then F � X � X∗
F .

Proof. The set X∗
F is finite by Definition 5 and the assumption of the lemma that set V is finite. Let X∗

F = {x1, . . . , xn}. Note 
that F � X � xi for each i ≤ n by Definition 5. We prove by induction that F � X � x1, . . . , xk for each integer k such that 
0 ≤ k ≤ n.

Base Case: F � X �∅ by the Reflexivity axiom.
Induction Step: Suppose that F � X � x1, . . . , xk . Then, by the Augmentation axiom and the Modus Ponens inference rule,

F � X ∪ {xk+1} � x1, . . . , xk, xk+1. (18)

Recall that F � X � xk+1. Hence, F � X � X ∪ {xk+1} by the Augmentation axiom and the Modus Ponens inference rule. 
Therefore,

F � X � x1, . . . , xk, xk+1

by the Transitivity axiom, statement (18), and the Modus Ponens rule applied twice. �
6.3. Canonical game

In this section, for an arbitrary maximal consistent set of formulae F0 ⊆ �, we define a “canonical” game G(F0) =
(W , {∼x}x∈V , �, M, π) used in the proof of the completeness.

In completeness proofs for modal logics, the states are usually defined as maximal consistent sets of formulae. Two such 
sets are called indistinguishable by an agent a if they contain the same Ka-formulae. This construction fails in the case of the 
distributed knowledge. Indeed, two maximal consistent sets containing the same Ka -formulae and the same Kb-formulae do 
not have to contain the same Kab formulae. As a result, there might be two states indistinguishable to both agents that have 
different Kab formulae. The same issue exists in our setting if a and b are interpreted as data variables. To solve this issue, 
we employ the “tree” construction that has been previously used to prove the completeness of modal logics that include 
distributed knowledge modality [9,17,27,28].

In this article, we modify the tree construction in a significant way by adding “clones” of each non-root node in the tree. 
For the proof of the completeness to work, the cardinality of the set of all clones of each node should be larger than the 
cardinality of the set of all actors A. We further explain the intuition behind the clones construction below. To incorporate 
clones in our tree construction, we fix any set B of cardinality greater than the cardinality of set A. Note that the proof 
in [17] is using a different technique that only works if the set A is finite.

Definition 6. W is a set of all sequences F0, X1, b1, F1, . . . , Xn, bn, Fn such that, n ≥ 0 and

1. Fi is a maximal consistent set of formulae for each i ≥ 1,
2. Xi ⊆ V is a dataset for each i ≥ 1,
3. bi ∈ B for each i ≥ 1,
4. {ϕ | KXi ϕ ∈ Fi−1} ⊆ Fi for each i ≥ 1.

Item 4 of Definition 6 states that if KXi ϕ ∈ Fi−1, then ϕ ∈ Fi . Alternatively, the same requirement could be stated in the 
equivalent form: KXi ϕ ∈ Fi−1 iff KXi ϕ ∈ Fi . We have chosen the form given in item 4 because it results in somewhat simpler 
proofs. In the next section, we prove a slightly modified alternative form of this requirement as Lemma 23.

For any states w ′, w ∈ W such that w ′ = F0, X1, b1, . . . , Xn−1, bn−1, Fn−1 and w = F0, X1, b1, . . . , Xn−1, bn−1, Fn−1, Xn,

bn, Fn , we say that states w ′ and w are adjacent. The adjacency relation defines an undirected graph structure on set W . 
It is easy to see that this structure is a tree. Fig. 2 depicts a fragment of such tree. In this fragment, state F0, X2, b2, F2 is 
adjacent to state F0, X2, b2, F2, X5, b5, F5. If w = F0, X1, b1, . . . , Xn, bn, Fn , then by hd(w) we mean the maximal consistent 
set of formulae Fn .

For each node w = F0, X1, b1, . . . , Xn−1, bn−1, Fn−1, Xn, bn, Fn , the set of nodes {F0, X1, b1, . . . , Xn−1, bn−1, Fn−1, Xn, β,

Fn | β ∈ B} can be thought of as a set of “clones” of node w in the discussed above tree. For example, node 
F0, X1, b1, F1, X3, b6, F3 is a clone of node F0, X1, b1, F1, X3, b3, F3, see Fig. 2. The existence of such clones will be used 
in the proof of Lemma 30.

Definition 7. For any states

w ′ = F0, X1,b1, . . . , Xn−1,bn−1, Fn−1 ∈ W

w = F0, X1,b1, . . . , Xn−1,bn−1, Fn−1, Xn,bn, Fn ∈ W ,

the edge (w ′, w) is labeled with a variable x ∈ V if x ∈ (Xn)∗ .
Fn−1

13
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Fig. 2. Fragment of a canonical tree.

Fig. 3. States w , u, and v belong to T r(w).

As usual, by a simple path in a graph we mean a path without repeating vertices. We allow zero-length simple paths 
that start and end in the same vertex. Recall that there is one and only one simple path between any two vertices in a tree.

Definition 8. For any states w, w ′ ∈ W and any variable x ∈ V , let w ∼x w ′ if every edge along the unique simple path 
between vertices w and w ′ is labeled with variable x.

Lemma 20. Relation ∼x is an equivalence relation on set W for each variable x ∈ V . �
Definition 9. For any state w ∈ W , let T r(w) be the set of all states u ∈ W such that either w = u or sequence w is a prefix 
of sequence u.

We call set T r(w) the subtree of a state w ∈ W . Informally, T r(w) is a subtree of the canonical tree that starts at node 
w , see Fig. 3. The next two lemmas state an auxiliary property of subtrees used later in this article.

Lemma 21. T r(w) ∩ T r(w ′) = ∅ for any two states w, w ′ ∈ W such that w = F0, X1, b1, . . . , Xn−1, bn−1, Fn−1, Xn, bn, Fn, w ′ =
F0, X1, b1, . . . , Xn−1, bn−1 , Fn−1, X ′

n, b′
n, F ′

n, and (Xn, bn, Fn) �= (X ′
n, b′

n, F ′
n).

Lemma 22. For any states w, u ∈ W and any data variable y ∈ V , if w = F0, X1, b1, . . . , bn−1, Fn−1, Xn, bn, Fn ∈ W , u /∈ T r(w), 
and w ∼y u, then y ∈ (Xn)∗Fn−1

.

Proof. Let w0 = F0, X1, b1, . . . , Xn−1, bn−1, Fn−1. Consider the simple path between vertices w and u. Note that the as-
sumption u /∈ T r(w) of the lemma implies that this path must contain edge (w0, w). Hence, by the assumption w ∼y u of 
the lemma and Definition 8, edge (w0, w) is labeled with variable y. Hence, y ∈ (Xn)∗Fn−1

by Definition 7. �
The definition of the canonical mechanism in the proofs of completeness of several extensions of Marc Pauly’s Coalition 

Logic employ “voting” construction [29,6,30,10]. The construction consists in using the set of formulae � as the set of 
possible actions. If a coalition want to achieve outcome ϕ , then each member of the coalition can simply choose action ϕ . 
Of course, not all such requests are granted by the canonical mechanism. Note that in our case a coalition C might have a 
strategy to achieve ϕ informed by a dataset X and not have such a strategy informed by a smaller set Y � X . To be able to 
model such situations, we require each agent to “sign” the vote with a “key”. The key verifies that the agent has access to 
dataset X . The key potentially could be just the set of values of all variables in dataset X . However, recall that Definition 1
associates not a value, but an equivalence relation with each data variable. For this reason, instead of variable value, we 
use the corresponding equivalence class of relation ∼X as the key. To specify an equivalence class, it suffices to specify 
any element of this class. Thus, a key could be defined simply as a state. In this case, an action of each agent consists in 
14
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specifying a formula ϕ ∈ � and a state w ∈ W of the game. This is captured in the definition below. Similar constructions 
are used in [9,17].

Definition 10. � = � × W .

If d is a pair (x, y), then by pr1(d) and pr2(d) we mean elements x and y respectively.

Definition 11. Mechanism M consists of all triples (w, δ, v) ∈ W × �A × W such that for each formula SC
Xϕ ∈ hd(w), if

1. pr1(δ(a)) = ϕ for each actor a ∈ C and
2. w ∼X pr2(δ(a)) for each actor a ∈ C ,

then ϕ ∈ hd(v).

Informally, for each formula SC
Xϕ that belongs to a set hd(w), our canonical game provides a strategy informed by 

dataset X for coalition C to achieve ϕ . The strategy consists in each member of coalition C voting for formula ϕ and signing 
the vote with a state from the ∼X -equivalence class of the state w . The fact that such a strategy succeeds is guaranteed by 
the canonical mechanism M definition above.

Definition 12. π(p) = {w ∈ W | p ∈ hd(w)} for each propositional variable p ∈ P .

6.4. Canonical game properties

In Section 6.5, we use the defined above canonical game to finish the proof of the completeness of our logical system. 
In this section, we establish the properties of the canonical game needed for this proof. We split these properties into three 
groups.

6.4.1. Properties of modality K
The lemma below shows how formulae of the form KY ϕ can “move” between two adjacent nodes of the canonical tree.

Lemma 23. If set V is finite, then KY ϕ ∈ Fn−1 iff KY ϕ ∈ Fn for any formula ϕ ∈ �, any n ≥ 1, any state F0, X1, b1, F1, X2, b2, . . . ,
Fn−1, Xn, bn, Fn ∈ W , and any dataset Y ⊆ (Xn)∗Fn−1

.

Proof. (⇒): Suppose that KY ϕ ∈ Fn−1. Thus, by Lemma 1 and the Modus Ponens inference rule

Fn−1 � KY KY ϕ. (19)

Note that Fn−1 � Xn � (Xn)∗Fn−1
by Lemma 19. Also, by the assumption Y ⊆ (Xn)∗Fn−1

of the lemma and the Reflexivity 
axiom, � (Xn)∗Fn−1

� Y . Hence, Fn−1 � Xn � Y by the Transitivity axiom and the Modus Ponens inference rules applied twice. 
Then, Fn−1 � KXn KY ϕ by the Knowledge Monotonicity axiom and statement (19). Thus, KXn KY ϕ ∈ Fn−1 because Fn−1 is a 
maximal consistent set. Therefore, KY ϕ ∈ Fn by item 4 of Definition 6.

(⇐): Suppose that KY ϕ /∈ Fn−1. Thus, ¬KY ϕ ∈ Fn−1 because Fn−1 is a maximal consistent set of formulae. Hence, 
Fn−1 � KY ¬KY ϕ by the Negative Introspection axiom and the Modus Ponens inference rule. Then, again because set Fn−1 is 
maximal, KY ¬KY ϕ ∈ Fn−1. Thus, ¬KY ϕ ∈ Fn by item 4 of Definition 6. Therefore, KY ϕ /∈ Fn because set Fn is consistent. �

The next lemma shows that formulae of the form KXϕ can “move” between any two ∼X -equivalent nodes of the canon-
ical tree.

Lemma 24. If set V is finite and w ∼X w ′ , then KXϕ ∈ hd(w) iff KXϕ ∈ hd(w ′).

Proof. If w ∼X w ′ , then, by Definition 8, each edge along the unique simple path between nodes w and w ′ is labeled with 
all variables in set X . We prove the lemma by induction on the length of the unique path between nodes w and w ′ . In the 
base case, w = w ′ . Thus, KXϕ ∈ hd(w) iff KXϕ ∈ hd(w ′). The induction step follows from Lemma 23. �

As usual in the modal logic, at the core of our proof of completeness is an induction (or “truth”) lemma. In our case, this 
is Lemma 31. The next lemma will be used in the induction step of the proof of Lemma 31 in the case when the formula 
has the form KY ϕ .

Lemma 25. For any state w ∈ W and any formula ¬KY ϕ ∈ hd(w), there is a state w ′ ∈ W such that w ∼Y w ′ and ¬ϕ ∈ hd(w ′).
15
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Proof. First, we show that the following set of formulae is consistent:

G = {¬ϕ} ∪ {ψ | KY ψ ∈ hd(w)}. (20)

Suppose the opposite. Then, there are formulae

KY ψ1, . . . ,KY ψn ∈ hd(w) (21)

such that ψ1, . . . , ψn � ϕ . Thus, KY ψ1, . . . , KY ψn � KY ϕ by Lemma 3. It follows by assumption (21) that hd(w) � KY ϕ . Thus, 
¬KY ϕ /∈ hd(w) because set hd(w) is consistent, which contradicts the assumption ¬KY ϕ ∈ hd(w) of the lemma. Therefore, 
set G is consistent.

Second, let w be the sequence F0, X1, b1, F1, . . . , Xn, bn, Fn and G ′ be any extension of set G to a maximal consistent 
set of formulae. Recall that the cardinality of set B is greater than the cardinality of set A. Thus, there is at least one 
element b ∈ B. Define w ′ to be the sequence F0, X1, b1, F1, . . . , Xn, bn, Fn, Y , b, G ′. Note that (i) w ′ ∈ W by Definition 6 and 
equation (20) and (ii) ¬ϕ ∈ G ⊆ G ′ = hd(w ′) by equation (20) and the choices of set G ′ and sequence w ′ . Finally, to prove 
w ∼Y w ′ , note that Y ⊆ Y ∗

Fn
by Lemma 18. Thus, by Definition 7, the edge between vertices w and w ′ is labeled with each 

variable in set Y . Therefore, w ∼Y w ′ by Definition 8. �
6.4.2. Properties of expression X � Y

The two lemmas in this section will be used in the base case of the proof by induction of Lemma 31 when the formula 
has the form X � Y .

Lemma 26. If set V is finite, then for any state w ∈ W and any formula ¬(X � Y ) ∈ hd(w), there is a state w ′ ∈ W such that 
w ∼X w ′ , and w �Y w ′ .

Proof. Let state w be sequence F0, X1, b1, . . . , Xn−1, bn−1, Fn−1, Xn, bn, Fn . Note that the cardinality of set B is greater than 
the cardinality of set A. Thus, there is at least one element b ∈ B. Consider sequence

w ′ = F0, X1,b1, . . . , Xn−1,bn−1, Fn−1, Xn,bn, Fn, X,b, Fn.

To prove that w ′ ∈ W , consider any formula KXϕ ∈ Fn . By item 4 of Definition 6, it suffices to show that ϕ ∈ Fn . Indeed, 
assumption KXϕ ∈ Fn implies Fn � ϕ by the Truth axiom and the Modus Ponens inference rule. Therefore, ϕ ∈ Fn because 
set Fn is maximal.

To prove w ∼X w ′ , note that X ⊆ X∗
Fn

by Lemma 18. Thus, by Definition 7, the edge between vertices w and w ′ is 
labeled with each data variable in set X . Therefore, w ∼X w ′ by Definition 8.

Finally, we show that w �Y w ′ . By Definition 8, it suffices to prove that the simple path between vertices w and w ′ is not
labeled by at least one variable from set Y . Then, by Definition 7, it suffices to show that Y � X∗

Fn
. Suppose the opposite. 

Thus, � X∗
Fn

� Y by the Reflexivity axiom. Note that Fn � X � X∗
Fn

by Lemma 19. Hence, Fn � X � Y by the Transitivity 
axiom and the Modus Ponens inference rule applied twice. Thus, ¬(X � Y ) /∈ Fn = hd(w) because set Fn is consistent, 
which contradicts the assumption ¬(X � Y ) ∈ hd(w) of the lemma. �
Lemma 27. For any states w, w ′ ∈ W , if set V is finite, X � Y ∈ hd(w), and w ∼X w ′ , then w ∼Y w ′ .

Proof. We prove the lemma by induction on the length of the simple path between vertices w and w ′ . If w = w ′ , then, 
vacuously, each edge along the simple path between vertices w and w ′ is labeled with each data variable. Hence, w ∼Y w ′
by Definition 8.

Suppose that w �= w ′ . Consider the unique simple path between vertices w and w ′ . By the assumption w ∼X w ′ of the 
lemma and Definition 8, each edge along this path is labeled with each data variable in set X . Because w �= w ′ , there must 
exist a vertex u ∈ W on the unique simple path between w and w ′ such that vertices u and w ′ are adjacent. Note that the 
unique simple path between vertices w ′ and u is a part of the unique simple path between vertices w and w ′ . Thus, each 
edge along the simple path between vertices w and u is labeled with each data variable in set X . Hence, by Definition 8,

w ∼X u. (22)

Claim 1. The edge between vertices u and w ′ is labeled with each data variable in set Y .

Proof of Claim. We consider the following two cases separately, see Fig. 4:

Case I: u = F0, X1, b1, F1, . . . , Fn−1 and w ′ = F0, X1, b1, F1, . . . , Xn, bn, Fn . Consider any data variable y ∈ Y . By Definition 7, 
it suffices to show that y ∈ (Xn)∗hd(u)

. Note that X � Y ∈ hd(w) by the assumption of the lemma. Thus, by the Intro-
spection of Dependency axiom and the Modus Ponens inference rule, hd(w) � KX (X � Y ). Hence, KX (X � Y ) ∈ hd(w)
16
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Fig. 4. Case I (left) and Case II (right).

because set hd(w) is maximal. Then, KX (X � Y ) ∈ hd(u) by Lemma 24 and statement (22). Thus, by the Truth axiom 
and the Modus Ponens inference rule,

hd(u) � X � Y .

Note that � Y � {y} by the reflexivity axiom. Hence, by the Transitivity axiom and the Modus Ponens inference rule 
applied twice,

hd(u) � X � y. (23)

Recall that u is a vertex on the simple path connecting vertices w and w ′ and all edges along this path are labeled X . 
Hence, X ⊆ (Xn)∗hd(u)

by Definition 7. Then, � (Xn)∗hd(u)
� X by the Reflexivity axiom and the Modus Ponens inference 

rule. Thus, � (Xn)∗hd(u)
� y by the Transitivity axiom and statement (23). Hence, � Xn � y by the Transitivity axiom and 

Lemma 19. Therefore, y ∈ (Xn)∗hd(u)
by Definition 5.

Case II: w ′ = F0, X1, b1, F1, . . . , Fn−1 and u = F0, X1, b1, F1, . . . , Xn, bn, Fn . This case is similar to the previous one, except 
that it uses the set hd(w ′) instead of the set hd(u) everywhere in the proof. �

To finish the proof of the lemma, note that the simple path between vertices w and u is shorter than the simple 
path between vertices w and w ′ . Hence, w ∼Y u, by the induction hypothesis. Also, u ∼Y w ′ by Claim 1 and Definition 8. 
Therefore, w ∼Y w ′ because relation ∼Y is transitive. �
6.4.3. Properties of modality S

This section contains the last group of the canonical game properties. Two of them, Lemma 28 and Lemma 30, are used 
in the induction step of the proof of Lemma 31 when the formula has the form SC

Xϕ . They are used in the parts of the proof 
corresponding to different directions of “if and only if” in the statement of Lemma 31. Lemma 29 is an auxiliary statement 
used in the proof of Lemma 30.

Lemma 28. For any state w ∈ W and any formula SC
Xϕ ∈ hd(w) there is an action profile s ∈ �C such that for all states w ′, v ∈ W

and each complete action profile δ ∈ �A if w ∼X w ′ , s =C δ, and (w ′, δ, v) ∈ M, then ϕ ∈ hd(v).

Proof. Let action profile s ∈ �C be such that

s(a) = (ϕ, w) (24)

for each actor a ∈ C . Consider any states w ′, v ∈ W and any complete action profile δ ∈ �A such that

w ∼X w ′, s =C δ, and (w ′, δ, v) ∈ M. (25)

It suffices to show that ϕ ∈ hd(v).
The assumption SC

Xϕ ∈ hd(w) of the lemma implies hd(w) � KX SC
Xϕ by the Strategic Introspection axiom and the Modus 

Ponens inference rule. Thus, KX SC
Xϕ ∈ hd(w) because set hd(w) is maximal. Hence, K X SC

Xϕ ∈ hd(w ′) by Lemma 24 and the 
part w ∼X w ′ of assumption (25). Then, by the Truth axiom and the Modus Ponens inference rule, hd(w ′) � SC

Xϕ . Thus, 
because set hd(w ′) is maximal, SC

Xϕ ∈ hd(w ′). Therefore, ϕ ∈ hd(v) by Definition 11, assumption (24) and the parts s =C δ

and (w ′, δ, v) ∈ M of assumption (25). �
Before proving the next lemma about the canonical game, we state a property of sets that will be used in the proof of 

that lemma. Informally, this property can be viewed as an infinite variation of the pigeonhole principle: if the cardinality of 
17
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the set of pigeons is less than the cardinality of the set of holes, then there is at least one hole that contains no pigeons. In 
the lemma below, A is the set of pigeons and each set Tb is a hole.

Lemma 29. For any set A and any pairwise disjoint family of sets {Tb}b∈B , if the cardinality of set A is less than the cardinality of set 
B, then there is an index b ∈ B such that A ∩ Tb =∅. �

We are now ready to state the last and the most non-trivial property of the canonical game. The proof of this lemma 
brings together the harmony construction and the clone nodes construction, both of which we discussed earlier.

Lemma 30. For any state w ∈ W , any formula ¬SC
Xϕ ∈ hd(w), and any action profile s ∈ �C , if set V is finite, then there are states 

w ′, v ∈ W and a complete action profile δ ∈ �A such that w ∼X w ′ , s =C δ, (w ′, δ, v) ∈ M, and ϕ /∈ hd(v).

Proof. Consider any state w ∈ W , any formula ¬SC
Xϕ ∈ hd(w), and any action profile s ∈ �C . For each formula ψ ∈ �, 

define coalition

Dψ = {a ∈ C | pr1(s(a)) = ψ}. (26)

Claim 2. {Dψ }ψ∈� is a family of pairwise disjoint subsets of C.

Proof of Claim. By equation (26), set Dψ is a subset of C for each formula ψ ∈ �. To show that sets {Dψ }ψ∈� are disjoint, 
suppose that there is an actor a ∈ C such that a ∈ Dψ1 ∩ Dψ2 for some formulae ψ1, ψ2 ∈ �. Therefore, ψ1 = pr1(s(a)) = ψ2
by equation (26). �

Consider the set of formulae

� = {ψ ∈ � | S
Dψ

X ψ ∈ hd(w)}. (27)

Next, we are going to apply Lemma 15. Note that hd(w) is a consistent subset of � and that ¬SC
Xϕ ∈ hd(w) by the 

assumption of the lemma. Also, observe that {Dψ }ψ∈� ⊆ {Dψ }ψ∈� is a family of pairwise disjoint subsets of C by Claim 2. 
Finally, note that {SDψ

X ψ}ψ∈� ⊆ hd(w) by equation (27). Therefore, by Lemma 15, the pair (F , G) is in harmony, where

F = {χ | KXχ ∈ hd(w)}, (28)

G = {¬ϕ} ∪ � ∪ {σ | K∅σ ∈ hd(w)}. (29)

Then, by Lemma 17, there is a pair (F ′, G ′) in complete harmony such that F ⊆ F ′ and G ⊆ G ′ . Hence, by Definition 4, pair 
(F ′, G ′) in harmony. Thus, by Lemma 14, sets F ′ and G ′ are consistent. Then, by Lemma 4, sets F ′ and G ′ can be further 
extended to maximal consistent sets of formulae F ′′ and G ′′ , respectively, such that

F ⊆ F ′ ⊆ F ′′ and G ⊆ G ′ ⊆ G ′′. (30)

Let state w ∈ W be the sequence F0, X1, b1, . . . , bn−1, Fn−1, Xn, bn, Fn . For each b ∈ B, define sequence,

wb = F0, X1,b1, . . . , Xn−1,bn−1, Fn−1, Xn,bn, Fn, X,b, F ′′. (31)

Recall that we previously referred to such nodes as “clones”.

Claim 3. wb ∈ W and w ∼X∗
hd(w)

wb for each b ∈ B.

Proof of Claim. By Definition 6 and the assumption w ∈ W of the lemma, to show that wb ∈ W , it suffices to show that 
{χ | KXχ ∈ Fn} ⊆ F ′′ . The latter is true by equation (28), part F ⊆ F ′′ of statement (30), and because hd(w) = Fn . Finally, 
note that w ∼X∗

hd(w)
wb for each b ∈ B by Definition 8 and equation (31). �

To continue the proof of the lemma, recall that set B has been assumed to have larger cardinality than set A. Thus, 
because C ⊆A,

|{pr2(s(a)) | a ∈ C}| ≤ |C | ≤ |A| < |B| = |{T r(wb) | b ∈ B}|.
Note that sets {T r(wb) | b ∈ B} are pairwise disjoint by Lemma 21. Hence, by Lemma 29, there must exist at least one 
element β ∈ B such that

{pr2(s(a)) | a ∈ C} ∩ T r(wβ) = ∅. (32)
18
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Fig. 5. Towards the proof of Lemma 30.

Let

w ′ = wβ . (33)

Choose an arbitrary element β ′ ∈ B and define state v as follows, see Fig. 5,

v = F0, X1,b1, . . . , Xn−1,bn−1, Fn−1, Xn,bn, Fn,∅, β ′, G ′′. (34)

Claim 4. v ∈ W .

Proof of Claim. By Definition 6 and the assumption w ∈ W of the lemma, it suffices to show that {σ | K∅σ ∈ Fn} ⊆ G ′′ . The 
latter is true by equation (29), part G ⊆ G ′′ of statement (30), and because hd(w) = Fn . �

Recall that we started the proof of the lemma by fixing a state w ∈ W and an action profile s ∈ �C of coalition C . Define 
complete action profile δ ∈ �A as follows:

δ(a) =
{

s(a), if a ∈ C,

(	, w), otherwise.
(35)

Note

s =C δ. (36)

Claim 5. (w ′, δ, v) ∈ M.

Proof of Claim. Consider any formula

SD
Y ψ ∈ hd(w ′) (37)

such that

∀a ∈ D (pr1(δ(a)) = ψ) (38)

and

∀a ∈ D (w ′ ∼Y pr2(δ(a))). (39)

By Definition 11, it suffices to show that ψ ∈ hd(v). We consider the following three cases separately:

Case I: D = ∅. Assumption (37) implies that S∅

Y ψ ∈ hd(wβ) by equation (33). Thus, ¬S∅

Y ψ /∈ hd(wβ) because set hd(wβ)

is consistent. Hence, ¬S∅

Y ψ /∈ F ′′ by equation (31). Then, ¬S∅

Y ψ /∈ F ′ by part F ′ ⊆ F ′′ of statement (30). Thus, ψ ∈ G ′
by the assumption that the pair (F ′, G ′) is in complete harmony and Definition 4. Hence, ψ ∈ G ′′ by part G ′ ⊆ G ′′ of 
statement (30). Therefore, ψ ∈ hd(v) by equation (34).

Case II: there exists an actor a ∈ D \ C . Then, δ(a) = (	, w) by equation (35). Hence, pr1(δ(a)) = 	. Thus, ψ = 	 by equa-
tion (38). Therefore, ψ ∈ hd(v) because hd(v) is a maximal consistent set of formulae.

Case III: ∅ �= D ⊆ C . We further split this case into two subcases:
Subcase IIIa: Y ⊆ X∗

hd(w)
. Note that pr1(s(a)) = pr1(δ(a)) for each actor a ∈ D by equation (35) and the assumption 

D ⊆ C of Case III. Thus, pr1(s(a)) = ψ for each actor a ∈ D by statement (38). Hence, D ⊆ Dψ by equation (26). Then, 
by assumption (37), Lemma 6, and the Modus Ponens inference rule,

hd(w ′) � S
Dψ

ψ. (40)
Y

19
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At the same time, the assumption Y ⊆ X∗
hd(w)

of Subcase IIIa implies that � X∗
hd(w)

� Y by the Reflexivity axiom. 

Hence, hd(w ′) � S
Dψ

X∗
hd(w)

ψ by the Strategic Monotonicity axiom, statement (40) and the Modus Ponens inference rule. 

Thus, hd(w ′) � KX∗
hd(w)

S
Dψ

X∗
hd(w)

ψ by the Strategic Introspection axiom and the Modus Ponens inference rule. Hence,

KX∗
hd(w)

S
Dψ

X∗
hd(w)

ψ ∈ hd(w ′), (41)

because set hd(w ′) is maximal. Note that w ∼X∗
hd(w)

wβ by Claim 3. Then, w ∼X∗
hd(w)

w ′ by equation (33). Thus,

KX∗
hd(w)

S
Dψ

X∗
hd(w)

ψ ∈ hd(w)

by statement (41) and Lemma 24. Hence, by the Truth axiom and the Modus Ponens inference rule,

hd(w) � S
Dψ

X∗
hd(w)

ψ.

Note that hd(w) � X � X∗
hd(w)

by Lemma 19. Then, hd(w) � S
Dψ

X ψ by the Strategic Monotonicity axiom and the 

Modus Ponens inference rule. Thus, S
Dψ

X ψ ∈ hd(w) because set hd(w) is maximal. Hence, ψ ∈ � by equation (27). 
Then, ψ ∈ G by equation (29). Thus, ψ ∈ G ′′ by equation (30). Therefore, ψ ∈ hd(v) by equation (34).

Subcase IIIb: there is a data variable y ∈ Y \ X∗
hd(w)

. The assumption ∅ �= D of Case III implies that there is an actor 
a ∈ D . Then, by the assumption D ⊆ C of Case III,

a ∈ C . (42)

Also, the assumption a ∈ D implies w ′ ∼y pr2(δ(a)) by statement (39) and the assumption y ∈ Y of Subcase IIIb. 
Thus, w ′ ∼y pr2(s(a)) by equation (35) and statement (42). Hence, by equation (33),

wβ ∼y pr2(s(a)). (43)

At the same time, pr2(s(a)) /∈ T r(wβ) by equation (32) and statement (42). Therefore, y ∈ X∗
hd(w)

by Lemma 22, 
statement (43), and equation (31), which contradicts the assumption y ∈ Y \ X∗

hd(w)
of Subcase IIIb.

This concludes the proof of the claim (w ′, δ, v) ∈ M . �
Thus, towards the proof of the lemma, we constructed state w ′ ∈ W (equation (33) and Claim 3), state v ∈ W (Claim 4) 

and a complete action profile δ ∈ �A such that w ∼X w ′ (equations (31) and (33)), s =C δ (equation (36)), and (w ′, δ, v) ∈ M
(Claim 5). To finish the proof of the lemma, note that ¬ϕ ∈ G ⊆ G ′′ = hd(v) by equation (29), equation (30), and equa-
tion (34) respectively. �
6.5. Final steps

In this section, we finish the proof of the completeness of our logical system. First, we prove the induction (or “truth”) 
lemma for the canonical game using the properties of the game that we established in Section 6.4. After that, we state and 
prove the strong completeness of our system.

Lemma 31. If set V is finite, then w � ϕ iff ϕ ∈ hd(w).

Proof. We prove the statement by induction on the complexity of formula ϕ .
Suppose that formula ϕ is a propositional variable p. Note that w � p iff w ∈ π(p) by item 1 of Definition 2. At the 

same time, w ∈ π(p) iff p ∈ hd(w) by Definition 12. Therefore, w � p iff p ∈ hd(w).
Suppose that formula ϕ has the form X � Y .
(⇒): Assume that X � Y /∈ hd(w). Thus, ¬(X � Y ) ∈ hd(w) because set hd(w) is maximal. Hence, by Lemma 26, there is 

a state w ′ ∈ W such that w ∼X w ′ , and w �Y w ′ . Therefore, w � X � Y by item 2 of Definition 2.
(⇐): Assume that X � Y ∈ hd(w). Recall that set V is finite by the assumption of the lemma. Then, by Lemma 27, for 

any state w ′ ∈ W , if w ∼X w ′ , then w ∼Y w ′ . Therefore, w � X � Y by item 2 of Definition 2.
If formula ϕ is a negation or an implication, then the statement of the lemma follows from the maximality and the 

consistency of the set hd(w), items 3 and 4 of Definition 2, and the induction hypothesis in the standard way.
Suppose that formula ϕ has the form KXψ .
(⇒): Assume that KX ψ /∈ hd(w). Then, ¬KXψ ∈ hd(w) because hd(w) is a maximal consistent set of formulae. Thus, 

by Lemma 25, there is a state w ′ ∈ W such that w ∼X w ′ and ¬ψ ∈ hd(w ′). Hence, ψ /∈ hd(w ′) because set hd(w ′) is 
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consistent. Then, w ′ � ψ by the induction hypothesis. Therefore, w � KXψ by item 5 of Definition 2 and the assumption 
w ∼X w ′ .

(⇐): Assume that KX ψ ∈ hd(w). Consider any state w ′ such that w ∼X w ′ . By item 5 of Definition 2, it suffices to show 
that w ′ �ψ . Indeed, the assumption KX ψ ∈ hd(w) implies KXψ ∈ hd(w ′) by Lemma 24 and the assumption w ∼X w ′ . Then, 
hd(w ′) � ψ by the Truth axiom and the Modus Ponens inference rule. Thus, ψ ∈ hd(w ′) because the set hd(w ′) is maximal. 
Then, w ′ �ψ by the induction hypothesis.

Finally, suppose that formula ϕ has the form SC
Xψ .

(⇒): Assume that SC
X ψ /∈ hd(w). Thus, ¬SC

Xψ ∈ hd(w) because set hd(w) is maximal. Hence, by Lemma 30, for any 
action profile s ∈ �C , there are states w ′, v ∈ W and a complete action profile δ ∈ �A such that w ∼X w ′ , s =C δ, 
(w ′, δ, v) ∈ M , and ψ /∈ hd(v). Then, by the induction hypothesis, for any action profile s ∈ �C , there are states w ′, v ∈ W
and a complete action profile δ ∈ �A such that w ∼X w ′ , s =C δ, (w ′, δ, v) ∈ M , and v � ψ . Therefore, w � SC

Xψ by item 6 
of Definition 2.

(⇐): Assume that SC
X ψ ∈ hd(w). Thus, by Lemma 28, there is an action profile s ∈ �C such that for all states w ′, v ∈ W

and each complete action profile δ ∈ �A if w ∼X w ′ , s =C δ, and (w ′, δ, v) ∈ M , then ψ ∈ hd(v). Hence, by the induction 
hypothesis, there is an action profile s ∈ �C such that for all states w ′, v ∈ W and each complete action profile δ ∈ �A if 
w ∼X w ′ , s =C δ, and (w ′, δ, v) ∈ M , then v �ψ . Therefore, w � SC

Xψ by item 6 of Definition 2. �
Theorem 2 (Strong completeness). For any set of formulae F ⊆ � and any formula ϕ ∈ �, if the set V of data variables is finite and 
F � ϕ , then there is a state w of a game such that w � f for each formula f ∈ F and w � ϕ .

Proof. The assumption F � ϕ implies that set {¬ϕ} ∪ F is consistent. Let F0 be any maximal consistent extension of this set. 
Consider the canonical game G(F0). Let w be the single-element sequence whose only element is set F0. By Definition 6, 
sequence w is a state of game G(F0).

Consider any formula f ∈ F . We show that w � f . Indeed, f ∈ {¬ϕ} ∪ F ⊆ F0 = hd(w) for each formula f ∈ F by the 
choice of set F0 and sequence w . Therefore w � f by Lemma 31.

Finally, we prove that w � ϕ . Indeed, ¬ϕ ∈ {¬ϕ} ∪ F ⊆ F0 = hd(w) by the choice of set F0 and sequence w . Then, 
ϕ /∈ hd(w) because set hd(w) is consistent. Therefore, w � ϕ by Lemma 31. �
7. Incompleteness

In the previous section, we proved that our logical system is strongly complete under the assumption that the set V of 
all data variables is finite. In this section, we show that if set V is infinite, then our system is not strongly complete. In fact, 
we show a more general result that any strongly sound logical system in language � is not strongly complete. We start the 
proof with the definitions of the strong soundness and the strong completeness.

Definition 13. Logical system L is strongly sound when for each set of formulae F ⊆ �, each formula ϕ ∈ �, and each state 
w of an arbitrary game, if w � f for each formula f ∈ F and F �L ϕ , then w � ϕ .

Definition 14. Logical system L is strongly complete, when for each set of formulae F ⊆ � and each formula ϕ ∈ �, if w � ϕ
for each state w of an arbitrary game such that w � f for each formula f ∈ F , then F �L ϕ .

The next theorem is the main result of this section.

Theorem 3. If the set V of data variables is infinite, then any strongly sound logical system L is not strongly complete.

Proof. Let x1, x2, . . . be an infinite countable set of data variables from the infinite set V . We start the proof by establishing 
the following claim.

Claim 6. For each state w of an arbitrary game, if w �∅ � xn for each integer n ≥ 1, then w �∅ � {x1, x2, . . . }.

Proof of Claim. Consider any state u of the game. By item 2 of Definition 2, it suffices to show that w ∼{x1,x2,x3,... } u. 
Assume the opposite. Thus, there exists n ≥ 1 such that w �xn u. Then, w �∅ � xn item 2 of Definition 2. �

Suppose that system L is strongly complete. Thus, by Definition 14, the above claim implies that

∅� x1,∅� x2, · · · �L ∅� {x1, x2, . . . }.
Thus, because any proof is using only finitely many assumptions, there must exist an integer n ≥ 0 such that

∅� x1,∅� x2, . . . ,∅� xn �L ∅� {x1, x2, . . . }. (44)
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Fig. 6. An epistemic model.

Let us now consider the game depicted in Fig. 6. It has two possible states, w and u, indistinguishable by data variables 
x1, . . . , xn and distinguishable by all other variables, including variable xn+1.

Note that w � ∅ � xi for each i ≤ n by item 2 of Definition 2 and the assumption w ∼xi u. Also, w � ∅ � {x1, x2, . . . }
by the same item 2 of Definition 2 and the assumption w �xn+1 u. Therefore, logical system L is not strongly sound by 
Definition 13 and statement (44). �

It is interesting to point out that if operator � is removed from the language, then we can prove strong completeness 
even if set V is infinite. On the other hand, because our proof of Theorem 3 is only using this operator (and no modalities 
K and S), even a pure logical system for � alone is incomplete for infinite set of variables V .

8. Completeness for data-finite formulae

As we have seen in Theorem 2, our logical system is strongly complete if the set of data variables V is finite. We have 
shown in Theorem 3 that our logical system, just like any other strongly sound system, is not strongly complete if set V is 
infinite. It is crucial for the proof of Theorem 3 that we allow dataset Y in expression X � Y to be infinite. In this section, 
we show that if we restrict the language � in such a way that datasets in all formulae are finite, then our logical system is 
complete (but not necessarily strongly complete).

So far, we have been assuming a fixed set of data variables V . In this section, it will be convenient to consider versions 
of our logical system for different such sets. By �V we denote the language specified by the grammar given in Section 3 for 
an arbitrary set of data variables V . By �V we denote the derivability in our logical system in language �V . Finally, note 
that Definition 1 of a game assumes the fixed set of data variables V . A game specified by the version of this definition for 
an arbitrary set of data variables V will be referred to as “game over set V ”.

Towards the proof of the completeness, we start with two technical observations. First, note that Theorem 2, originally 
proven for the fixed set of data variables V , also holds for an arbitrary finite set of data variables V . We restate it in this 
more general form in the corollary below.

Corollary 1. For any finite set of data variables V and any set of formulae F ⊆ �V and any formula ϕ ∈ �V , if F � ϕ , then there is a 
state w of a game over set V such that w � f for each formula f ∈ F and w � ϕ .

Next, we show a “conservative extension” lemma which states that any game over set V could be extended to a game 
over a set V ′ ⊇V in a way that preserves satisfiability of formulae in language �V .

Lemma 32. For any game G = (W , {∼x}x∈V , �, M, π) over a set of data variables V and any set of data variables V ′ ⊇ V there is 
a game G ′ = (W , {∼′

x}x∈V ′ , �, M, π) over a set V ′ such that for any formula ϕ ∈ �V and any state w ∈ W ,

w � ϕ iff w �′ ϕ,

where � and �′ are satisfaction relations for games G and G ′ respectively.

Proof. Define relation ∼′
x for any data variable x ∈V ′ as follows: if x ∈V , then ∼′

x is the relation ∼x , else it is the equality 
relation = on W . It can be shown using Definition 2 and induction on the structural complexity of formula ϕ ∈ �V that 
w � ϕ iff w �′ ϕ for any state w ∈ W . �

We say that a formula ϕ is data-finite if the set of all data variables that occur in formula ϕ is finite. In other words, 
formula ϕ is data-finite if it can be generated by the grammar in Section 3 using only finite set X . We are now ready to 
state and prove the completeness theorem for data-finite formulae. Note that this theorem refers to language �, derivability 
relation �, and games for the original fixed set of data variables V .

Theorem 4. If ϕ ∈ � is a data-finite formula such that � ϕ , then there is a state w of a game such that w � ϕ .

Proof. Let V ⊆ V be the set of all data variables that occur in formula ϕ . Note that set V is finite because formula ϕ is 
data-finite. Assumption � ϕ of the theorem implies �V ϕ because any proof in language �V is a proof in language �. Thus, 
by Corollary 1, there is a game G over set V and a state w of that game such that w � ϕ . By Lemma 32, there is a game 
G ′ over set V ⊇V such that w � ϕ in game G ′ . �
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Ensure: satisf ied[u, i] iff u �ψi for each state u ∈ W and each i ≤ n
for i ≤ n do

for u ∈ W do
if ψi is a propositional variable then

if u ∈ π(ψi) then
satisf ied[u, i] ← true

else
satisf ied[u, i] ← f alse

end if
end if
if ψi has the form ¬ψ j then

satisf ied[u, i] ← ¬(satisf ied[u, j])
end if
if ψi has the form ψ j → ψk then

satisf ied[u, i] ← ¬(satisf ied[u, j]) ∨ satisf ied[u, k]
end if
if ψi has the form KX ψ j then

answer ← true
for u′ ∈ W do

if u ∼X u′ and ¬satisf ied[u′, ψ j] then
answer ← f alse
break

end if
end for
satisf ied[u, i] ← answer

end if
if ψi has the form SC

X ψ j then
satisf ied[u, i] ← F (C, X, u, j)

end if
end for

end for

Fig. 7. Model checking algorithm using function F defined in Fig. 8.

Ensure: return = true iff u � SC
X ψ j

for s ∈ �C do
answer ← true
for (u′, δ, v) ∈ M do

if u ∼X u′ and s =C δ and ¬satisf ied[v, j] then
answer ← f alse
break

end if
end for
if answer then

return true
end if

end for
return false

Fig. 8. Boolean function F (C, x, u, j).

9. Model checking

In this section, we propose a model checking algorithm for our logical system and discuss its complexity. By model 
checking we mean deciding if a statement of the form w � ϕ holds for a given state w of a given game and a given formula 
ϕ ∈ �. The proposed algorithm only works when the set of data variables V , the set of agents A, the set of states W of 
the game, and the set of actions � of the game are finite. It is a dynamic programming algorithm that pre-computes the 
Boolean value of the statement u � ψ for each state u ∈ W and each proper subformula ψ of formula ϕ . More specifically, 
let ψ1, . . . , ψn be the list of all subformulae of formula ϕ , including formula ϕ itself, ordered in non-decreasing order of 
sizes. Note that such ordering guarantees that if formula ψ j is a proper subformula of formula ψi , then j < i.

The model checking algorithm, see Fig. 7, computes the Boolean value satisf ied[u, i] which is true iff formula ψi is 
satisfied in state u. The most important part of this algorithm, function F (C, X, u, j), is shown separately in Fig. 8. This 
function returns true iff formula SC

X ψ j is satisfied in state u.
To analyse the execution time of the model checking algorithm, it is important to fix the way indistinguishability relation 

∼x and mechanism relation M are represented by the algorithm. In our analysis, we assume that both of them are repre-
sented in the most straightforward way as unordered lists of tuples. In the case of relation ∼x it is a list of pairs of states 
and in the case of relation M ⊆ W × �A × W it is a set of triples. In this case, to check if u ∼x u′ is true it takes O (| ∼x |)
steps, where | ∼x | is the number of pairs in relation ∼x . By | ∼ | we denote the maximal value of | ∼x | for all possible data 
variables x ∈ X . Then, to check if u ∼X u′ is true for some dataset X ⊆ V , it takes O (| ∼ | ×|V |) steps. Finally, assuming that 
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Local Global

No Recall A C
Perfect Recall B D

Fig. 9. Four different multistep data-informed strategy modalities.

an action profile δ and a strategy s are also represented as tuples, it takes at most O (|A|) steps to check if δ =C s for any 
coalition C ⊆A. Therefore, an execution of the algorithm depicted in Fig. 8 takes time O (|�A| × |M| × (| ∼ | × |V | + |A|)).

Let us now turn to the analysis of algorithm in Fig. 7. Its part inside the two nested “for” loops has five cases that 
correspond to formula ψi having different forms. The execution time for the case when ψi is a propositional variable, in the 
worse case, is proportional to the length of the list storing the elements of the set π(p) ⊆ W . Thus, this case takes time 
O (|W |) in the worst case. In the case when formula ψi is either a negation or an implication, the execution time is O (1). 
In the case when formula ψi has the form KXψ j , the execution time is O (|W | × | ∼ | × |V |). This is true because, as we 
have observed earlier, it takes O (| ∼ | × |V |) time to check the condition u ∼X u′ . For the last case, the execution time is 
equal to the execution time of the algorithm in Fig. 8, which we have analysed earlier. Thus, the total worst-case execution 
time of the algorithm in Fig. 7 is

O (|n| × |W | × (|W | × | ∼ | × |V | + |�A| × |M| × (| ∼ | × |V | + |A|))).
The same Big-Oh expression also gives the model checking time for any given formula of size n because such a formula has 
at most n subformulae.

Note that in addition to traditional model checking question if a given formula holds in a given state, the same model 
checking algorithm can be used to answer “data optimisation” questions. An example of such a question is: what is a 
minimal dataset X which informs dataset Y in state w? To answer this question, one can run model checking algorithm for 
statement w � X � Y with decreasing set X . Similar optimisation questions can also be solved for modalities KX ϕ and SC

Xϕ .

10. Multistep strategies

In the future, we plan to consider multistep data-informed strategies to achieve. Fervari, Herzig, Li, and Wang studied 
similar strategies for agent-based knowledge [7]. Unfortunately, the Cooperation axiom is not true for such strategies because 
multistep strategies of coalitions C and D might achieve conditions ϕ → ψ and ϕ , respectively, at different times. As a 
result, there are no interesting properties for coalition strategies of this type that can be captured in our modal language. 
Thus, such strategies probably should be considered for single actors, as it is done in [7].

There are two important factors to consider when studying multistep data-informed strategies. First, if the actor has 
perfect recall of the information previously available to her and of the actions she has previously taken. This factor is not 
specific to data-informed strategies. The other factor is specific to data-informed strategies. We refer to it as the distinction 
between a local and a global access to data variables.1 To understand what we mean by this, consider formula w � Sa

xϕ . 
Informally, it states that with access to variable x actor a can achieve goal ϕ in several steps. Note that during these several 
steps the game will transition through multiple states. If the value of variable x is available to actor a only in state w , then 
we say that a has a local access to variable x. If the value of x is available to a in each state it is passing through, then we 
say that a has a global access to variable x. Note that we can make an assumption that strategy has no recall or perfect 
recall and, independently from this, make either a local or a global access assumption. This gives us four possible modalities 
that we denote by A, B, C, and D, see Fig. 9.

We use the two games depicted in Fig. 10 to illustrate modalities A, B, C, and D and to compare their powers. Both of 
these games have just a single actor a who has just a single action “go forward”. We use arrows to show the result of this 
action in each state. We refer to these two games as the left and the right games.

First, observe that, in the left game, w1 � ¬Aa
x p. Indeed, a strategy represented by modality A has only a local (at state 

w1) access to variable x and no recall. So, it has enough data to deduce that the starting state is w1 but it has no memory 
to be able to do exactly two transitions before it stops at state w3, see Fig. 10 (left). At the same time, w1 � Ba

x p because a 
strategy referred to by modality B does have perfect recall, so it would be able to count and stop after two moves.

Second, note that u1 � ¬Ba
x p in the right game. This is true because the strategy represented by modality B has only 

a local (at state u1) access to variable x. Thus, in spite of a having perfect recall, no matter how many moves it makes, 
the strategy will never be able to establish if it started at state u1 or u2, in both of which variable x has the same value. 
Without this crucial information, it will not be able to stop at state u3, see Fig. 10 (right). On the other hand, u1 � Ca

x p. 
Indeed, consider the strategy “stop the first time you visit a state where x = 2”. Note that stopping the first time when x = 2
does not require counting and can be done by a strategy with no recall. This strategy does require a global (in each visited 
state) access to variable x, which is allowed by the definition of modality C. The strategy works starting from either state 

1 In Section 3, we have discussed local and global dependencies and local and global strategies. These notions are related, but not the same as the notions 
of local and global access that we discuss in the current section.
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Fig. 10. The left and the right games.

u1 or state u2, where values of data variable x are equal. Thus, this strategy is informed by the data variable x in both of 
these states.

Third, observe that u1 �¬Ca
xq in the right game because a strategy represented by modality C has no recall. Thus, it will 

not be able to distinguish a visit to state u3, where q is false, from a visit to state u4, where q is true, because data variable 
x has the same value in both of these states, see Fig. 10 (right). At the same time, u1 � Da

xq. Indeed, consider the strategy 
“stop the second time you visit state in which x = 2”. This strategy requires a global access to variable x and an ability to 
count, both of which are allowed under the definition of modality D. The strategy works from either state u1 or state u2, 
where values of data variable x are equal. Hence, it is informed by the data variable x in both of these states.

It is clear from the definition of modalities A, B, C, and D that the class of strategies referred to by modality A is the 
largest and the class referred to by modality D is the smallest. We have already seen above an example of a goal that cannot 
be achieved by a B-class strategy, but can be achieved by a C-class strategy. We conclude this section with an observation 
that there are goals that cannot be achieved by a C-class strategy, but can be achieved by a B-class strategy. Indeed, let us 
go back to the left game and observe that w1 � ¬Ca

x p. This is again because a strategy represented by modality C cannot 
count. At the same time, as we have seen earlier in this section, w1 � Ba

x p. In the future, we plan to study the interplay 
between modalities A, B, C, and D.

11. Conclusion

In this article, we introduced a new “data-informed strategy modality” and a complete logical system that described the 
interplay between the functional dependency expression and the data-informed strategy and knowledge modalities. This 
system highlights a new approach to multiagent systems that emphasizes the connection between data and knowledge 
instead of the connection between agents and knowledge traditionally studied in the literature. In addition, we proposed 
and analysed a model checking algorithm for this system and discussed a possible extension of the system to multistep 
strategies. Another interesting possible direction for future work is proving decidability of the proposed system. Perhaps 
tableaux-based approach could be used here similar to how it is done in [5].
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