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Abstract—Sparse Bayesian learning (SBL)-based channel state
information (CSI) estimation schemes are developed for filter
bank multicarrier (FBMC) systems using offset quadrature
amplitude modulation (OQAM). Initially, an SBL-based channel
estimation scheme is designed for a frequency-selective quasi-
static single-input single-output (SISO)-FBMC system, relying
on the interference approximation method (IAM). The IAM
technique, although has low complexity, is only suitable for
channels exhibiting mild frequency-selectivity. Hence, an alter-
native time-domain (TD) model based sparse channel estimation
framework is developed for highly frequency-selective channels.
Subsequently, the Kalman filtering (KF)-based IAM and its
TD counterpart are developed for sparse doubly-selective CSI
estimation in SISO-FBMC systems. These schemes are also ex-
tended to FBMC-based multiple-input multiple-output (MIMO)
systems, for both quasi-static and doubly-selective channels, after
demonstrating the special block and group-sparse structures
of the IAM and TD-based models respectively, which are the
characteristic features of such channels. The Bayesian Cramér-
Rao lower bounds (BCRLBs) and the time-recursive BCRLBs are
derived for the proposed quasi-static as well as doubly-selective
sparse CSI estimation models, respectively. Our numerical re-
sults closely match the analytical findings, demonstrating the
enhanced performance of the proposed schemes over the existing
techniques.

Index Terms—Filter bank multicarrier, sparse Bayesian learn-
ing, channel estimation, Kalman filtering.

I. INTRODUCTION

Orthogonal frequency division multiplexing (OFDM) sig-
naling has gained prominence for broadband transmission
in both wired and wireless systems. The subcarriers in an
OFDM system are modulated and demodulated using the
computationally efficient IFFT and FFT operations, respec-
tively, which leads to low complexity, thus rendering it well-
suited for practical implementation [1], [2]. However, the
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rectangular prototype filter of the IFFT/ FFT filter bank in an
OFDM system has a sinc-shaped spectrum in the frequency-
domain that suffers from relatively high out-of-band (OOB)
emission, which makes the performance of these systems
sensitive to practical imperfections, such as timing- and carrier
frequency-offset (CFO). Therefore, OFDM may not be ideally
suited for all the use cases in future mobile communication
systems [3], [4]. In order to address the above shortcomings
of OFDM, alternative multicarrier waveforms based on filter
bank processing at the transmitter and receiver relying on
different prototype filters have attracted significant research
interest. In particular, offset quadrature amplitude modulation
(OQAM)-aided filter bank multicarrier (FBMC) transmission
has emerged as one of the potential waveform candidates to
replace OFDM in next generation wireless systems [2], [4],
[5]. This is because of the fact that the sharp cut-off prototype
filter in FBMC-OQAM can significantly lower the OOB
emission, and also obviate the use of cyclic-prefix (CP). The
key differences between OFDM and FBMC-OQAM systems
lie i) in the fact that the latter adopts OQAM symbols rather
than QAM symbols; and ii) in the specific choice of the time-
domain prototype windowing. In contrast to OFDM, FBMC
uses a non-rectangular pulse, e.g. the isotropic orthogonal
transform algorithm (IOTA) [6], Phydyas [7], root raised
cosine (RRC), whose duration is much greater than the FBMC
symbol duration. Therefore, in order to attain an identical
spectral efficiency as that of OFDM, the adjacent time-domain
FBMC symbols overlap with each other [8]. Furthermore,
it must be noted that orthogonality in an FBMC system
holds only in the real field. The accuracy of channel estimate
available at the receiver has a key role in the reliable detection
of data in FBMC-OQAM systems and hence, channel state
information (CSI) estimation for these systems has been at
the center of various contributions, as described in the next
subsection. In the sequel, FBMC-OQAM is referred to as
FBMC, for brevity.

A. Literature Review

Based on the FBMC system models, training-based channel
estimation schemes can be broadly classified as follows.
The first category is based on the interference approxima-
tion method (IAM), which relies on the assumption that the
channel is approximately frequency-flat at the subcarrier level
[9]. The IAM-based schemes exploit the property that the
desired FBMC symbol interferes only with its neighborhood
symbols, and approximate the channel’s frequency response
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(CFR) by a constant envelope over this neighborhood [9]. The
second category is based on the time-domain (TD) model,
which is used for the estimation of highly frequency selective
channels, since unlike the IAM approach, it does not require
the channel to be frequency-flat over each subcarrier [10].
In the context of IAM-based channel estimation, Lele et al.
in [9] have proposed a least-squares (LS) CFR estimation
technique for FBMC-aided single-input single-output (SISO)
systems. As a further advance, Katselis et al. [6] presented
a comparative study of channel estimation in SISO-FBMC
and CP-OFDM systems, while Choi et al. [7] investigated
a pilot-aided LS channel estimation scheme that exploits the
intrinsic interference for enhancing its accuracy. Savaux et
al. [11] studied joint minimum mean square error (MMSE)-
based channel and noise variance estimation for SISO-FBMC
systems, while the authors of [12]–[14] developed IAM-based
channel estimation schemes for SISO-FBMC systems using
machine learning based approaches. Cui et al. in [15] proposed
a novel scattered IAM-based pilot-aided channel estimation
scheme for FBMC systems. One can find a comprehensive
literature on IAM-aided CSI estimation schemes conceived for
SISO/multiple-input multiple-output (MIMO)-FBMC systems
in [16]. Reference [17] investigated the impact of scattered
silot-based channel estimation at the receiver on the perfor-
mance of channel adaptive modulation (CAM) in terms of
channel estimation errors and bit error rate (BER).

When considering TD model based schemes, Kong et al.
[10] have investigated the weighted LS (WLS) and MMSE
schemes designed for highly frequency-selective CSI esti-
mation in SISO-FBMC systems. As a further development,
[18], [19] designed channel estimation schemes for highly
frequency-selective MIMO-FBMC systems. Perez Neira et al.
[20] reviewed the family of channel estimation techniques
conceived for scenarios having both high and low frequency-
selectivity. Zhang et al. in [21] analyzed the impact of a
doubly-selective non-sparse channel on the performance of
FBMC systems in terms of the mean square error (MSE)
of the received signal. Ihalainen et al. in [22] extended the
frequency sampling based equalization technique in MIMO-
FBMC receivers for equalization at each subcarrier.

It has been shown in [23], [24], and in the references therein
that due to the wide bandwidth and high sampling frequency,
a typical wireless channel is sparse in the delay-domain and
has a high delay spread. However, the training based schemes
reviewed above do not exploit the sparsity of the multipath
wireless channel, which tends to have only a few dominant
channel taps. Exploiting the inherent sparsity can lead to a
significant reduction in the required number of pilot transmis-
sions, hence improving the bandwidth efficiency. Recently, He
et al. [25] have proposed orthogonal matching pursuit (OMP)-
based schemes for doubly-selective sparse channel estimation
in SISO-FBMC systems, while Wang [26] designed OMP-
based techniques for sparse CSI estimation in MIMO-FBMC
systems. The OMP-based techniques developed in [25], [26],
however rely on the IAM model of FBMC systems. Thus,
their estimation performance degrades for highly frequency-
selective sparse wireless channels. Furthermore, He et al. [25]
do not consider the time-correlation of a doubly-selective

transmission medium. Also, the performance of their solution
is critically dependent on the selection of both the stopping
criterion and of the sensing matrix. The performance of
other popular sparse signal recovery schemes found in the
literature, such as the least absolute shrinkage and selec-
tion operator (Lasso) [27], is sensitive to the regularization
parameter, whereas the focal underdetermined system solver
(FOCUSS) [28] suffers from convergence deficiencies [29].
The authors of [30] develops sparse Bayesian learning (SBL)-
aided channel estimation schemes for millimeter (mmWave)
hybrid MIMO-FBMC systems considering both quasi-static
and doubly-selective scenarios. Their work is based on the
assumption that the symbol duration is sufficiently longer than
the maximum delay spread of the channel, hence making it
feasible to employ only IAM-based estimation. Furthermore,
since the mmWave MIMO channel is sparse in the angular
domain, a frame-wise channel estimation model has been
developed therein in order to excite all the spatial modes
of the channel. Moreover, the work in [30] only considers
forward filtering and derives its Bayesian Cramer-Rao lower
bound (BCRLB). Donoho et al. developed a set of iterative
algorithms in [31], popularly known as approximate message
passing (AMP), for sparse signal estimation. The AMP-based
basis pursuit (BP) and Lasso-techniques were derived in [32].
Subsequently, the AMP algorithm was also extended to a
Bayesian setting in [33], where it has been demonstrated that
in comparison to the original expectation-maximization (EM)
based SBL framework, which necessitates a matrix inversion
to compute the a posteriori covariance matrix, the AMP-
based SBL algorithms have a low-complexity, since they only
track the a posteriori mean and variance of each element
of the sparse vector. The performance of the AMP-based
algorithms is typically seen to be comparable, but sub-optimal,
in comparison to the SBL algorithm, since the messages are
approximated by the Gaussian distribution [33]. Furthermore,
the AMP-based techniques are not suitable for applications
wherein the entire a posteriori covariance matrix is required,
such as for Kalman filtering. The authors of [34] developed
SBL-based sparse channel estimation for OFDM systems
considering both quasi-static and time-varying scenarios for
a sparse multipath power delay profile (PDP). Another work
in [35] designed CSI acquisition and tracking schemes for a
massive MIMO system in a time-varying scenario considering
the angular domain sparsity. However, these contributions
considered batch processing of the pilot observations for CSI
tracking and updating the hyperparameters, which make them
block-based processing in nature. Another similar treatise [36]
focuses on downlink channel estimation for a time-varying
massive MIMO channel. Here, a coordinate-wise EM-based
SBL framework is developed for estimating the sparse virtual
channel and the noise covariance, followed by tracking via
an optimal Bayesian Kalman filtering (KF). However, these
contributions do not derive any performance bounds for their
algorithms. In order to overcome the above drawbacks, SBL
[29] and its multiple signal based extension M-SBL [37] have
been demonstrated in [23] to attain superior sparse signal re-
covery. Thus, motivated by the success of SBL, this treatise de-
velops SBL-based sparse channel estimation schemes for both
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TABLE I: A tabular form of literature review on CSI estimation for SISO/MIMO-FBMC systems.

[6], [8], [11]-[14] [9]-[10] [7] [15] [17]-[18] [19] [24] [25] Proposed
SISO-FBMC X X X X X X X × X
MIMO-FBMC × × × X × X × X X
IAM model X X X X X X X X X
TD model × × X × X X × × X
Sparsity × × × × × × X X X
Simultaneous-sparsity × × × × × × × × X
Quasi-static channel X X X X X X X X X
Doubly-selective channel × × × × × × × × X
Online estimation × × × × × × × × X
BCRLB × X X × × × × × X

SISO and MIMO-FBMC systems, operating both in quasi-
static and doubly-selective scenarios, while considering both
low as well as high grade of frequency-selectivity. In addition,
the designs herein are online in nature, which renders them
ideally suited for tracking doubly-selective CSI associated with
a sparse PDP. The present treatise also derives the BCRLBs for
benchmarking the performance of the proposed algorithms. A
tabular representation of the above literature review depicting
the seminal contributions and explicitly contrasting our new
contributions is given in Table I. Our key contributions are
given next.

B. Contributions

• We commence with the development of sparse channel
estimation schemes for SISO-FBMC systems. By con-
sidering a quasi-static scenario, initially, an SBL scheme
is developed for IAM-based ill-posed sparse channel
estimation. The proposed IAM-SBL technique employs a
parameterized Gaussian prior and estimates the associated
hyperparameters using the EM framework.

• In order to overcome the performance degradation of
IAM-SBL for the estimation of a channel with high
frequency-selectivity, an alternative TD model based
scheme, termed as TD-SBL, is developed. In contrast
to [30], the present work focuses on SBL-based chan-
nel estimation for sub-6 GHz. The proposed TD-SBL
scheme herein, unlike the IAM model, is also capable
of successfully estimating strongly frequency-selective
channels. Furthermore, this work additionally develops
the pertinent analytical results for backward smoothing
along with forward filtering to enhance the estimation
accuracy along with deriving their respective BCRLBs.

• For the estimation of a doubly-selective wireless channel,
KF-based online schemes, referred to as IAM-SBL-KF
and TD-SBL-KF, are developed that exploit both the
temporal-correlation as well as the inherent sparsity.

• Subsequently, a novel IAM-based block-sparse model is
developed for MIMO-FBMC systems. The IAM based
block-sparse SBL (IAM-BSBL) technique is proposed for
exploiting the block-sparsity for CSI estimation, which
demonstrably leads to improved performance. Alterna-
tively, for a MIMO channel that is highly frequency
selective, an analogous TD-based estimation scheme is
developed after proving that the model exhibits group-
sparsity.

• The KF counterparts of the IAM-BSBL and TD-group
sparse SBL (GSBL) schemes, termed as IAM-BSBL-KF
and TD-GSBL-KF respectively, are also conceived for
doubly-selective MIMO channels.

• The Bayesian Cramer-Rao lower bounds (BCRLBs) are
derived for benchmarking the performance of the pro-
posed CSI estimation techniques. Furthermore, detailed
analysis is presented to determine and compare the
computational complexities of the proposed and existing
schemes.

C. Notations

The quantity j ,
√
−1 and the operators ={·} and <{·}

symbolize the imaginary and real parts. An L × L diagonal
matrix is denoted by diag

[
γ0, γ1, · · · , γL−1

]
, while Tr(·)

represents the trace of a square matrix. The notation ⊗
symbolizes the Kronecker product, while the operation vec(·)
column-wise vectorizes a matrix. The operator E[·] denotes
the statistical expectation.

II. SISO/MIMO-FBMC SYSTEM AND CHANNEL
ESTIMATION MODELS

1) SISO-FBMC System: In a SISO-FBMC system with N
subcarriers, the transmitted baseband signal is given as [38]

s[k] =

N−1∑
m=0

∑
n∈Z

dm,nχm,n[k]. (1)

Here Z denotes set of integers and k symbolizes the sample-
index associated with the sampling time T/N , where T
denotes the duration of a QAM symbol cm,n at the symbol
instant n and subcarrier m. The QAM symbols are drawn from
a symmetric QAM constellation, such as {4, 16, 64, 256}-
QAM. The T/2-duration OQAM symbol dm,n is extracted
from the real and imaginary parts of the T -duration QAM
symbol [16]. The real and imaginary parts of a QAM sym-
bol are independent and identically distributed (i.i.d.) with
power Pd such that E

[
dm,nd

∗
m,n

]
= Pd, which implies that

E
[
cm,nc

∗
m,n

]
= 2Pd. The quantity χm,n[k] that symbolizes

the FBMC basis function at the frequency-time (FT) index
(m,n) is χm,n[k] = p[k−nN/2]ej2πmk/Nejφm,n , where p[k]
denotes the impulse response of the real valued symmetrical
prototype filter of length Lp. The phase factor φm,n obeys
φm,n = (π/2)(m + n) − πmn [38]. Let the quantity ξm̄,n̄m,n

be defined as ξm̄,n̄m,n =
∑+∞
k=−∞ χm,n[k]χ∗m̄,n̄[k]. In order
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to be able to perfectly reconstruct dm,n in a distortion-free
transmission medium, ξm̄,n̄m,n must obey <

{
ξm̄,n̄m,n

}
= δm,m̄δn,n̄,

which implies that ξm̄,n̄m,n = 1, for (m,n) = (m̄, n̄), and
for (m,n) 6= (m̄, n̄), ξm̄,n̄m,n = j〈ξ〉m̄,n̄m,n = ={ξm̄,n̄m,n}. This
is popularly known as the real field orthogonality condition.
Let h[l], 0 ≤ l ≤ Lh − 1, denote an Lh-tap channel impulse
response (CIR) of fading channel. The received FBMC signal
r[k] is

r[k] = s[k] ∗ h[k] + η[k], (2)

where η[k] is the i.i.d. additive white noise distributed as
CN

(
0, σ2

η

)
and the operation ‘∗’ denotes the convolution.

The demodulated signal at the FT index (m̄, n̄) is obtained
as ym̄,n̄ =

∑+∞
k=−∞ r[k]χ∗m̄,n̄[k]. Using (1) and (2), we arrive

at

ym̄,n̄ =

Lh−1∑
l=0

h[l]

+∞∑
k=−∞

N−1∑
m=0

∑
n∈Z

dm,ne
−j2πml/Np

[
k − n̄N

2

]
p

[
k − l − nN

2

]
ej(φm,n−φm̄,n̄)ej2π(m−m̄)k/N + ηm̄,n̄, (3)

where ηm̄,n̄ =
∑+∞
k=−∞ η[k]χ∗m̄,n̄[k] represents noise at the

output of the demodulator. It can be readily shown that
ηm̄,n̄ ∼ CN (0, σ2

η). If the maximum channel delay spread
is sufficiently shorter than the symbol duration T , one can
exploit the property [9], [16]

p[k − l − nN/2] ≈ p[k − nN/2] for l ∈ [1, Lh]. (4)

Hence, employing (4), and thanks to the fact that the FBMC
prototype filter is both time and frequency localized, the
demodulated signal ym̄,n̄ in (3) can be simplified to:

ym̄,n̄ ≈ Hm̄bm̄,n̄ + ηm̄,n̄, (5)

where the m̄th subcarrier’s CFR Hm̄ is defined as Hm̄ =∑Lh−1
l=0 h[l]e−j2πm̄l/N . The quantity bm̄,n̄, popularly known

as the virtual symbol [16], obeys bm̄,n̄ = dm̄,n̄ + jIm̄,n̄. The
quantity Im̄,n̄ represents the intrinsic interference, which is
expressed as Im̄,n̄ =

∑
(m,n)∈Ωm̄,n̄

dm,n〈ξ〉m̄,n̄m,n. The set Ωm̄,n̄
above is comprised of the symbols in the neighborhood of
FT point (m̄, n̄). Since the OQAM symbols are i.i.d. with
power Pd, from [9], we obtain E

[
|btm̄,n̄|2

]
= E[|dtm̄,n̄|2] +

E[|Itm̄,n̄|2] ≈ 2Pd. The FBMC models in (3) and (5) are
popularly refereed as the TD and IAM models, respectively. It
can be readily seen that data detection in the IAM model in (5)
can be performed using a simple one-tap equalizer. One the
other hand, data detection in the TD in (3) requires multi-
tap equalization, which makes it computationally intensive
[39]. Thus, when the channel has relatively modest-frequency
selectivity, one can use IAM-based sparse channel estimation
followed by one-tap channel equalization for data detection.
When the channel is highly frequency-selective, it is advisable
to use TD based sparse channel estimation followed by multi-
tap channel equalization for data detection.

2) MIMO-FBMC System: We consider a MIMO-FBMC
system communicating using Nr receive antennas (RAs), Nt
transmit antennas (TAs) and N subcarriers. For the tth TA,
let a complex QAM symbol at the FT index (m,n) be

denoted by ctm,n. The OQAM symbols dtm,2n and dtm,2n+1

are drawn from the real and imaginary parts of the QAM
symbols ctm,n, and are assumed to be i.i.d. with power
Pd such that E

[
dtm,n

(
dtm,n

)∗ ]
= Pd. This implies that

E
[
ctm,n

(
ctm,n

)∗ ]
= 2Pd. Following the procedure described

in the previous section, the demodulated signal of the rth RA
at FT index (m̄, n̄), similar to (3), can be expressed as

yrm̄,n̄ =

Nt∑
t=1

Lh−1∑
l=0

hr,t[l]

+∞∑
k=−∞

N−1∑
m=0

∑
n∈Z

dtm,np[k − l − nN/2]

× p[k − n̄N/2]e−j2πml/Nej(φm,n−φm̄,n̄)

× ej2π(m−m̄)k/N + ηrm̄,n̄, (6)

where ηrm̄,n̄ ∼ CN (0, σ2
η) represents the demodulated noise at

the rth RA. Employing the approximation p[k− l−kM/2] ≈
p[k−nM/2] for l ∈ [0, Lh], the IAM model of MIMO-FBMC
systems can be derived similar to (5) as

yrm̄,n̄ ≈
Nt∑
t=1

Hr,t
m̄ btm̄,n̄ + ηrm̄,n̄, (7)

where Hr,t
m̄ =

∑Lh−1
l=0 hr,t[l]e−j2πm̄l/N symbolizes the CFR

at subcarrier index m̄ between the tth TA and rth RA.
The complex quantity btm̄,n̄, popularly termed as the virtual
symbol of the tth TA, obeys btm̄,n̄ = dtm̄,n̄ + jItm̄,n̄. The
associated intrinsic interference Itm̄,n̄ is expressed as Itm̄,n̄ =∑

(m,n)∈Ωm̄,n̄
dtm,n〈ξ〉m̄,n̄m,n. The relationship E

[
|btm̄,n̄|2

]
=

E[|dtm̄,n̄|2] + E[|Itm̄,n̄|2] ≈ 2Pd follows from [9]. Let ym̄,n̄ =

[y1
m̄,n̄, y

2
m̄,n̄, . . . , y

Nr
m̄,n̄]T ∈ CNr×1 denote the vector of re-

ceived symbols stacked across all the RAs. Eq. (7) can be
written in vectorized form as

ym̄,n̄ ≈ Hm̄bm̄,n̄ + ηm̄,n̄, (8)

where the matrix Hm̄ ∈ CNr×Nt represents the MIMO-FBMC
CFR, whose (r, t)th element is Hr,t

m̄ . The quantity ηm̄,n̄ =

[η1
m̄,n̄, η

2
m̄,n̄, . . . , η

Nr
m̄,n̄]T ∈ CNr×1 symbolizes the noise vector

having the covariance matrix E
[
ηm̄,n̄η

H
m̄,n̄

]
= σ2

ηINr
while

bm̄,n̄ = [b1m̄,n̄, b
2
m̄,n̄, . . . , b

Nt
m̄,n̄]T ∈ CNt×1 stacks the virtual

symbols and satisfies E
[
bm̄,n̄bHm̄,n̄

]
≈ 2PdINt .

3) IAM-based SISO-FBMC Sparse Channel Estimation
Model: Fig. 1(a) shows the FBMC frame for sparse CSI
estimation in SISO systems. It is comprised of L0 OQAM
symbols per subcarrier. In each frame, the first Np subcarriers
at index n = 0 carry the training symbols. Due to the overlap
of adjacent time- and frequency-domain FBMC symbols, we
insert z zero symbols across both the dimensions to curb
interference between the training and data symbols [9], [16].
Typically, z = 1 suffices to suppress the interference to a
tolerable level, since the pulse shaping filters in FBMC have
a sharp cut-off. Evaluating (5) at n = 0, we get:

yiam
m̄,0 ≈ Hm̄bm̄,0 + ηm̄,0, (9)

where bm̄,0 = dm̄,0 + jIm̄,0 is the virtual training symbol
at the m̄th subcarrier. By utilizing zero symbols across the
time and frequency axes, it has been shown in [16] that
Im̄,0 =

∑Np

m=1,m 6=m̄ dm,0〈ξ〉
m̄,0
m,0. Let h ∈ CLh×1 denote
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(a) (b)

Fig. 1: FBMC frame for sparse CSI estimation in SISO systems: (a) IAM model; and (b) TD model. The notations
⊗

, © and represent
data, zero and training symbols, respectively.

the CIR vector as h = [h[0], h[1], . . . , h[Lh − 1]]T and
FDFT ∈ CN×N represent the discrete Fourier transform (DFT)
matrix and Ftr

DFT ∈ CN×Lh denote the truncated-DFT matrix
defined as Ftr

DFT = FDFT(:, 1 : Lh). Let F ∈ CNp×Lh denote
the matrix obtained by extracting the first Np rows of Ftr

DFT.
For convenience, the model in (9) can be written in compact
form by stacking the outputs across the Np pilot subcarriers as

yiam
0 = B0Fh + η0, (10)

where yiam
0 = [yiam

0,0 , y
iam
1,0 , . . . , y

iam
Np−1,0]T ∈ CNp×1 and B0 =

diag(b0,0, b1,0, . . . , bNp−1,0) ∈ CNp×Np are the received train-
ing vector and diagonal virtual training matrix, respectively.
Finally, η0 = [η1,0, η2,0, . . . , ηNp−1,0]T ∈ CNp×1 is the
stacked noise vector.

4) IAM-based MIMO-FBMC Sparse Channel Estimation
Model: Let each TA transmit M training frames on each
subcarrier, where each training frame comprises symbols as
shown with dotted lines in Fig. 1(a). In each frame, the first
Np subcarriers at time instants 0 ≤ n ≤ (M − 1)(1 + z),
carry the pilot symbols used for CSI estimation. This is
followed by the transmission of Nd data symbols on each
subcarrier. Evaluating (8) at the pilot positions n = i(1 + z),
for i = 0, . . . ,M − 1, and over the Np pilot subcarriers, we
get

Yiam
m̄ = Hm̄Bm̄ + ηm̄, (11)

where Yiam
m̄ = [ym̄,0,ym̄,(1+z), . . . ,ym̄,(M−1)(1+z)] ∈

CNr×M represents the observation matrix corresponding
to all the pilot positions and the corresponding noise is
given by ηm̄ = [ηm̄,0,ηm̄,(1+z), . . . ,ηm̄,(M−1)(1+z)] ∈
CNr×M . The matrix Bm̄, comprising the virtual training

symbols at the m̄th pilot subcarrier, is obtained as Bm̄ =
[bm̄,0,bm̄,(1+z), . . . ,bm̄,(M−1)(1+z)] ∈ CNt×M , where the
tth element of bm̄,i(1+z) ∈ CNt×1 is expressed as btm̄,i(1+z) =

dtm̄,i(1+z) + jItm̄,i(1+z). It follows from [16] that the interfer-
ence term Itm̄,i(1+z) can be formulated as

Itm̄,i(1+z) =
∑
m6=m̄

dtm,i(1+z)〈ξ〉
m̄,0
m,0. (12)

Let H[l] ∈ CNr×Nt denote the lth MIMO channel tap
with its (r, t)th element given by hr,t[l], and the con-
catenated channel matrix H ∈ CNr×NtLh be defined as
H =

[
H[0],H[1], . . . ,H[Lh − 1]

]
. The MIMO CFR ma-

trix Hm̄ corresponding to the m̄th subcarrier can be re-
cast as Hm̄ = H (fm̄ ⊗ INt

), where the vector fm̄ =
[1, e−j2πm̄/N , . . . , e−j2πm̄(Lh−1)/N ]T ∈ CLh×1 is obtained
by extracting the m̄th row of the matrix F. With the above
identity, the IAM model of CSI estimation of a MIMO-FBMC
system in (11) can be expressed as

Yiam
m̄ = H

(
fm̄ ⊗ INt

)
Bm̄ + ηm̄. (13)

Vectorizing (13) and invoking the properties of the matrix
Kronecker product [40], one obtains

vec(Yiam
m̄ )︸ ︷︷ ︸

ỹiam
m̄

=
(
B̃T
m̄ ⊗ INr

)︸ ︷︷ ︸
Φm̄

vec(H) + vec(ηm̄)︸ ︷︷ ︸
η̃m̄

, (14)

where the matrix B̃m̄ obeys B̃m̄ =
(
fm̄ ⊗ INt

)
Bm̄. Upon

concatenating ỹiam
m̄ across the pilot subcarriers 0 ≤ m̄ ≤ Np−

1, the IAM-based channel estimation model is obtained as

yiam = Φh̄ + η, (15)
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where the output vector is yiam =[
(ỹiam

0 )T , (ỹiam
1 )T , . . . , (ỹiam

Np−1)T
]T ∈ CNpNrM×1, the

MIMO CIR vector is h̄ = vec(H) ∈ CNrNtLh×1 and the
noise vector is η =

[
η̃T0 , η̃

T
1 , . . . , η̃

T
Np−1

]T ∈ CNpNrM×1.

The dictionary matrix Φ =
[
ΦT

0 ,Φ
T
1 , . . . ,Φ

T
Np−1

]T ∈
CNpNrM×NrNtLh . Note that one of the key differences
between OFDM and FBMC systems is that the former does
not experience intrinsic interference, because unlike FBMC,
the time domain symbols in OFDM do not overlap with
each other and the subcarriers are orthogonal. Therefore, in
OFDM systems the matrix B0 in (10) and the above matrix
Φ, depend on the training symbols only. Consequently, the
resultant intrinsic interference in B0 and Φ in FBMC play a
crucial role, and also make channel estimation significantly
different from that of its OFDM counterpart. For calculating
the intrinsic interference, FBMC system, as shown in Fig. 1,
requires the placement of z zero symbols between the
adjacent training symbols to avoid ISI between them. One
also has to find the optimal number of zero symbols in
terms of the overhead required for channel estimation while
avoiding any undue BER degradation. This work addresses
this issue with the aid of the BCRLBs. It is observed in the
simulations section that the proposed IAM and TD schemes
achieve their respective BCRLBs using z = 3. Thus, z = 3 is
ideally suited to avoid under-design/ over-design of an FBMC
system. The approximation in (4), which leads to frequency
flat models across the subcarriers for a mildly frequency-
selective channel, plays a key role in the development of the
IAM-based channel estimation model above. However, for a
highly frequency-selective channel, where the assumption in
(4) is not satisfied, the performance of channel estimation
schemes based on the IAM model exhibits severe degradation.
The TD-based channel estimation model developed next does
not require a frequency-flat channel at the subcarrier level,
and thus overcomes this limitation.

5) TD-based SISO-FBMC Sparse Channel Estimation
Model: The frame structure of a TD-based model is shown
in Fig. 1(b), which is similar to that of the IAM model of
Fig. 1(a), except for the following differences. In contrast
to the latter, the former does not require the insertion of
zero symbols across the subcarrier axis at the time instant
n = 0. This is due to the fact that unlike the IAM model, the
operation of the TD-based channel estimation scheme does
not require computation of the intrinsic interference. For the
training subcarriers at time instant n = 0, the output training
symbol at the FT index (m̄, 0) can be expressed with the aid
of (3) as ym̄,0 =

∑Lh−1
l=0 Dm̄,lh[l] + ηm̄,0, where the quantity

Dm̄,l is formulated as

Dm̄,l =

Lp−1∑
k=l

Np−1∑
m=0

dm,0p[k]p[k − l]ej(φm,0−φm̄,0)

× ej2π(m−m̄)k/Ne−j2πml/N . (16)

For mathematical ease, the expression for ym̄,0 can be suc-
cinctly written in vector form as [18]

ytd
0 = Dh + η0, (17)

where ytd
0 = [y0,0, y1,0, . . . , yNp−1,0]T ∈ CNp×1 is once again

the stacked vector of received outputs across the Np training
subcarriers and D ∈ CNp×Lh is a matrix whose (m̄, l)th
element is given by Dm̄,l in (16). The main difference between
FBMC and OFDM with respect to the TD model is that
the calculation of the matrix D for the former requires the
insertion of z zeros, as shown in Fig. 1. These z zeros reduce
the overlap between the training and data symbols. Therefore,
one also has to find the optimal number of zero symbols
inserted between pilot and data symbols. As explained below
(15), this issue is addressed in the simulation section with the
help of BCRLBs derived in this work.

6) TD-based MIMO-FBMC Sparse Channel Estimation
Model: Each TA employs Np training subcarriers in the dotted
box of the frame in Fig. 1(b) for CSI estimation. From (6), the
pilot output at FT index (m̄, 0) of the rth RA is obtained as
yrm̄,0 =

∑Nt

t=1

∑Lh−1
l=0 hr,t[l]Dt

m̄,l + ηrm̄,0, where the quantity
Dt
m̄,l is given by

Dt
m̄,l =

N−1∑
m=0

dtm,0e
j(φm,0−φm̄,0)e−j2πml/N

×
Lp−1∑
k=l

p[k]p[k − l]ej2π(m−m̄)k/N . (18)

Let hr,t = [hr,t[0], hr,t[1], . . . , hr,t[Lh − 1]]
T ∈ CLh×1 de-

note the CIR vector between the tth TA and rth RA. The
TD-based MIMO-FBMC model can be succinctly cast in
vectorized form as

yr0 =

Nt∑
t=1

Dthr,t + ηr0, (19)

where yr0 = [yr0,0, y
r
1,0, . . . , y

r
Np−1,0]T ∈ CNp×1 denotes the

vector of training symbols received by the rth RA and ηr0 =
[ηr0,0, η

r
1,0, . . . , η

r
Np−1,0]T ∈ CNp×1 is the associated noise.

The matrix Dt ∈ CNp×Lh is computed at the receiver using
the training symbols {dtm,0}

Np−1
m=0 and the pulse shaping filter

p[k], and its (m̄, l)th element is given by Dt
m̄,l. Then we can

rewrite (19) as

yr0 = Dhr + ηr0, (20)

where the matrix D ∈ CNp×NtLh = [D1,D2, . . . ,DNt ],
the channel vector hr ∈ CNtLh×1 =
[(hr,1)T , (hr,2)T , . . . , (hr,Nt)T ]T comprises the CIRs
from all the TAs to the rth RA. Stacking the vectors
yr0, 1 ≤ r ≤ Nr, the TD CSI estimation model is formulated
as

ȳtd
0 = D̄h̃ + η̄0, (21)

where ȳtd
0 ∈ CNpNr×1 = [(y1

0)T , (y2
0)T , . . . , (yNr

0 )T ]T con-
sists of the received training vectors and η0 ∈ CNpNr×1

is the corresponding noise vector, and the block diagonal
matrix D̄ ∈ CNpNr×NtNrLh = blkdiag[D,D, . . . ,D] is
the dictionary matrix. The quantity h̃ ∈ CNrNtLh×1 =
[(h1)T , (h2)T , . . . , (hNr )T ]T denotes the stacked CIR vector.

Commencing with the model in (17), the conventional LS
and MMSE estimates of the CIR vector h for the TD model
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can be obtained in a straightforward fashion as

ĥLS =
(
DHD

)−1
DHytd

0 and

ĥMMSE =
(
R−1
h + DHR−1

η D
)−1

DHR−1
η ytd

0 ,

where the matrices Rh = E
[
hhH

]
∈ CLh×Lh and Rη =

E
[
η0η

H
0

]
∈ CNp×Np denote the covariance matrices of the

CIR vector h and the noise η0, respectively. More details
and in-depth analysis of such l2-norm minimization based
conventional estimators can be found in standard texts such
as [41]. A significant drawback of the LS approach is that
it does not exploit the sparsity of the CIR vector h arising
due to the sparse multipath delay profile of a typical wireless
channel [23], [24], which implies that the number of non-zero
taps Ls is in practice much smaller than the total number Lh
of the CIR taps. Naturally, exploiting this sparsity can lead to
performance benefits together with a reduced pilot overhead.
As a result, the LS approach requires an overdetermined
system [41], i.e., Np ≥ Lh, which leads to higher pilot
overheads and reduced spectral efficiency. On the other hand,
the MMSE technique can exploit this sparsity via the prior
covariance matrix Rh of the CIR vector h. However, Rh is
unknown in practice. This motivates the development of sparse
channel estimation techniques, which iteratively estimate the
parameters corresponding to the prior distribution of the CIR
vector h from the pilot output ytd

0 . This forms the focus of
this paper.

III. QUASI-STATIC SPARSE CSI ESTIMATION IN FBMC
SYSTEMS

Channel estimation in FBMC systems, as shown in Fig. 1,
requires the placement of zero symbols between adjacent
training symbols to avoid inter-symbol-interference (ISI) due
to the overlapping nature of the time-domain FBMC symbols.
This, in turn, requires careful examination of the intrinsic inter-
ference at the receiver to evaluate the resultant virtual training
symbols. Moreover, one also has to address the optimal
number of zero symbols required to avoid system underdesign/
overdesign of FBMC system in terms of overhead requirement
for channel estimation. Thus, while addressing the channel
estimation problem in FBMC systems, it is not always possible
to extend the existing schemes or corresponding analysis for
OFDM systems.

1) TD-based SISO-FBMC Sparse Channel Estimation: The
SBL, which has enjoyed popularity for sparse CSI estima-
tion owing to its superior sparse signal recovery, employs
a Bayesian philosophy for sparse estimation. We start with
assigning the following parameterized Gaussian prior to the
sparse CIR vector h [29]

f (h; Γ) =

Lh−1∏
i=0

(πγi)
−1

exp

(
−
∣∣h (i)

∣∣2
γi

)
, (22)

where γi ≥ 0, 0 ≤ i ≤ Lh−1, denotes the hyperparameter that
signifies the prior variance of the ith element of the CIR vector
h, while Γ ∈ RLh×Lh

+ is a diagonal matrix comprising the
hyperparameters γi on its principal diagonal. Upon employing
the parameterized Gaussian prior above, the MMSE estimate

µ ∈ CLh×1 of the channel tap vector h and the corresponding
error covariance matrix Σ ∈ CLh×Lh can be expressed as [41]

µ = ΣDHR−1
η ytd

0 and Σ =
(
Γ−1 + DHR−1

η D
)−1

. (23)

It can be readily observed that the MMSE estimate µ
depends on the hyperparameter matrix Γ. Therefore, the
estimation of the CIR vector in a SISO-FBMC sys-
tem reduces to that of the hyperparameters γi. We can
readily estimate these hyperparameters by maximizing the
Bayesian evidence f

(
ytd

0 ; Γ
)

expressed as f
(
ytd

0 ; Γ
)

=

(1/(π)
Np det (Σy)) exp

(
−
(
ytd

0

)H
Σ−1
y ytd

0

)
[41], where the

matrix Σy =
(
DΓDH + Rη

)
∈ CNp×Np denotes the covari-

ance of the received pilot vector ytd
0 . As described in [29], the

log-likelihood log
[
f
(
ytd

0 ; Γ
)]

of the optimization objective is
non-concave and therefore its direct maximization with respect
to the hyperparameters becomes intractable. Hence, the SBL-
based channel estimation technique proposed in our treatise
employs an expectation-maximization (EM) framework as
follows.

Consider the received pilot output ytd
0 as the known variable

and the CIR vector h as the latent/ unknown variable. There-
fore, the complete data set employed in the EM framework
[41] is defined as

{
ytd

0 ,h
}

. Let Γ̂
(p−1)

represent the estimate
of the matrix Γ in the (p− 1)st iteration of the EM framework.
In the pth iteration, the expectation step (E-step) computes the

log likelihood L
(

Γ | Γ̂
(p−1)

)
of the complete information

set as

L
(

Γ | Γ̂
(p−1)

)
= E

h|ytd
0 ;Γ̂

(p−1)

{
log
[
f
(
ytd

0 ,h; Γ
)] }

= E
{

log
[
f
(
ytd

0 | h
)]

+ log [f (h; Γ)]
}
.

Subsequently, the associated maximization step (M-step) of the

EM procedure maximizes the log likelihood L
(

Γ | Γ̂
(p−1)

)
to estimate Γ̂

(p)
as

Γ̂
(p)

= arg max
Γ

L
(

Γ | Γ̂
(p−1)

)
. (24)

The conditional log-likelihood log
[
f
(
ytd

0 | h
)]

= C1 −(
ytd

0 −Dh
)H

R−1
η

(
ytd

0 −Dh
)

with the constant C1 =
−Nplog(π) − log [det (Rη)] can be seen to be independent
of the hyperparameter matrix Γ. Therefore, the M-step of
hyperparameter estimation in (24) can be simplified to

Γ̂
(p)

= arg max
Γ

E
{

log [f (h; Γ)]
}

≡ arg max
Γ

E

{
Lh∑
i=1

− log (γi)−
1

γi

∣∣h (i)
∣∣2}.

By differentiating the above expression with respect to the
hyperparameter γi and setting it equal to zero, we obtain
the hyperparameter update equation for the pth EM iter-
ation as γ̂

(p)
i = E

h|ytd
0 ;Γ̂

(p−1)

{∣∣h (i)
∣∣2}. Next, to evalu-

ate E
h|ytd

0 ;Γ̂
(p−1){·}, we have to employ the a posteriori

probability density function (pdf) f

(
h | ytd

0 ; Γ̂
(p−1)

)
=
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CN
(
µ(p),Σ(p)

)
, where the a posteriori mean µ(p) and the

covariance matrix Σ(p) can be determined by substituting
Γ = Γ̂

(p−1)
into Eq. (23). Using this, the update equation

of γ̂(p)
i for the pth EM iteration is expressed as

γ̂
(p)
i =

∣∣µ(p) (i)
∣∣2 + Σ(p) (i, i) . (25)

Next, the estimate of the hyperparameter matrix is obtained as
Γ̂

(p)
= diag

(
γ̂

(p)
0 , γ̂

(p)
1 , . . . , γ̂

(p)
Lh−1

)
. The E-step and M-step

derived above are repeated until the Frobenius norm of the
difference of the estimated hyperparameter matrix falls below
a threshold ε1, i.e., ‖Γ̂

(p)
− Γ̂

(p−1)
‖F < ε1 or Nmax EM-

iterations are completed. Upon convergence, the SBL-based
estimate of the CIR vector ĥTD-SBL for the TD SISO-FBMC
channel estimation model of (17) is given by ĥTD-SBL = µ. The
concise step-by-step procedure of the proposed TD-SBL CSI
estimation of SISO-FBMC systems is given in Algorithm-2 of
our technical report [42]. Furthermore, the IAM-based SBL
estimate ĥIAM-SBL of the IAM model in (10) can be derived
along similar lines.

2) IAM-based MIMO-FBMC Sparse Channel Estimation:
It is interesting to note that the CIR vector h̄, as shown in
Fig. 1(b) of the technical report [42], is block-sparse in nature,
where each block of NtNr consecutive entries has an identical
sparsity profile. This block sparsity is exploited by the IAM-
Block SBL (IAM-BSBL) technique described next for channel
estimation.

The IAM-BSBL technique assigns the following parameter-
ized Gaussian prior to the lth, ∀ 0 ≤ l ≤ Lh − 1, vectorized
channel tap denoted by hl , vec(H[l]):

f (hl; γl) =

NrNt∏
i=1

(πγl)
−1

exp

(
−
∣∣hl (i) ∣∣2

γl

)
. (26)

Hence, the prior assigned to the vectorized channel h̄ is
given by f

(
h̄; Γ

)
=
∏Lh−1
l=0 f (hl; γl) . Employing the EM

procedure described in Section III, the a posteriori pdf

f

(
h̄ | yiam; Γ̂

(p−1)
)

in the pth EM iteration can be formu-

lated as f
(

h̄ | yiam; Γ̂
(p−1)

)
= CN

(
µ̄(p), Σ̄

(p)
)

, where the

a posteriori mean µ̄(p) and covariance matrix Σ̄
(p) can be

expressed as

µ̄(p) = Σ̄
(p)

ΦHR̄−1
η yiam and

Σ̄
(p)

=
(
ΦHR̄−1

η Φ +
(
Γ̂(p−1) ⊗ INrNt

)−1 )−1

,

where R̄η = E
[
ηηH

]
∈ CNpNrM×NpNrM denotes the noise

covariance. Furthermore, the update equation of γ̂(p)
i in the

pth EM iteration can be expressed as

γ̂
(p)
i =

1

NtNr

iNrNt∑
l̃=iNrNt+1

∣∣µ̄(p)(l̃)
∣∣2 + Σ̄

(p)
(l̃, l̃). (27)

Upon convergence, the IAM-BSBL based estimate h̄IAM-BSBL

is given by h̄IAM-BSBL = µ̄.

3) TD-Based MIMO-FBMC Sparse Channel Estimation: It
is interesting to note that the CIR vector h̃ of the TD channel
estimation model formulated above exhibits a group-sparse
structure. This is justified as follows. Let h̃i ∈ CNrNt×1

denote the ith group, 0 ≤ i ≤ Lh − 1, of the CIR vector
h̃, which is defined as

h̃i =[h̃ (i+ 1) , h̃ (Lh + i+ 1) , . . . ,

h̃ ((NrNt − 1)Lh + i+ 1)]T . (28)

As demonstrated in Fig. 1(b) of our technical report [42], the
NrNt elements within the group h̃i of vector h̃ are expected
to be either all-zero or non-zero. The TD-GSBL framework
is developed next, which exploits this group-sparsity for
improved estimation of the CIR vector h̃. This begins by
assigning the Gaussian prior parameterized by γi to the ith
group h̃i as

f
(
h̃i ; γi

)
= (πγi)

−NrNt exp

(
−γ−1

i

∥∥∥h̃i∥∥∥2

2

)
. (29)

The prior corresponding to the CIR vector h̃ can be ob-
tained as f

(
h̃; Γ

)
=
∏Lh−1
i=0 f

(
h̃i ; γi

)
. Employing the

EM procedure described in Section III, the a posteriori pdf

f

(
h̃ | ȳtd

0 ; Γ̂
(p−1)

)
in the pth EM iteration can be calcu-

lated as f
(

h̃ | ȳtd
0 ; Γ̂

(p−1)
)

= CN
(
µ̃(p), Σ̃

(p)
)

, where the

a posteriori mean µ̃(p) and the covariance matrix Σ̃
(p)

are
formulated as

µ̃(p) = Σ̃
(p)D̄H

R̃−1
η ȳtd

0 and

Σ̃
(p)

=
(
D̄H

R̃−1
η D̄ +

(
INrNt

⊗ Γ̂(p−1)
)−1 )−1

. (30)

Employing the a posteriori pdf above, the update of the
hyperparameters is expressed as

γ̂
(p)
i =

1

NrNt

NrNt∑
d=1

∣∣∣µ̃(p)
(
d̃
)∣∣∣2

2
+ Σ̃

(p)
(
d̃, d̃
)
, (31)

where d̃ = (i+ 1 + (d− 1)Lh). Upon convergence, the
TD-GSBL based estimate of the CIR vector h̃ is given by
h̃TD-GSBL = µ̃.

A. Other Sparse Channel Estimation Techniques: OMP, FO-
CUSS and Lasso

As it transpires from the previous section, the SBL frame-
work employs a Bayesian philosophy for sparse estimation.
The orthogonal matching pursuit (OMP) is another popular
greedy-search based sparse channel estimation technique [43].
This is also used for performance comparison in Section-
VI. The operation of OMP-aided SISO-FBMC systems is
described in a compact fashion in Algorithm-1 of the tech-
nical report in [42]. As described in Step-3 therein, the
OMP algorithm chooses the column of the matrix D at
each iteration in a greedy fashion. Its convergence and the
resultant performance therefore is sensitive to the selection
of the sensing matrix D and to the stopping-threshold ε0,
which gives rise to structural and convergence errors [29].
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The least absolute shrinkage and selection operator (Lasso)
[27] and focal underdetermined system solver (FOCUSS) [28]
are other attractive convex-relaxation based techniques that
can be employed for sparse channel estimation in FBMC
systems. However, the performance of the Lasso technique
is sensitive to the regularization parameter, whereas FOCUSS
suffers from convergence deficiencies [29]. On the other hand,
the SBL framework is free from any regularization/ stopping
parameters and leads to fewer convergence errors, which can
be attributed to the well-established properties of the EM
method. Due to lack of space, these are not described here.

IV. DOUBLY-SELECTIVE SPARSE CSI ESTIMATION IN
FBMC SYSTEMS

In practice, the CIR vector h is a time- as well as frequency-
selective [44], [45], i.e. doubly-selective sparse CIR vector
hu ∈ CLh×1, where u denotes the block-index. The time-
evolution of the CIR vector hu can be described by a first-
order Gauss-Markov model [23], [46]

hu = ρhu−1 +
√

1− ρ2 wu, (32)

where the correlation ρ symbolizes the time-domain correla-
tion of the vector hu. Similar to [23], we can employ Jake’s
model for calculating the coefficient ρ as ρ = J0 (2πfDTB),
where J0 is the zeroth-order Bessel function of first kind, while
TB and fD denote the block-length and the Doppler spread,
respectively. The complex vector wu ∼ CN (0,Γ) ∈ CLh×1

models the driving noise process and shares a common sparsity
profile with hu, an assumption that is justified by the fact
that the locations of the dominant components of the channel
vector hu do not change for several OFDM frames [23], [46],
since the power delay profile is constant. This also implies that
the process hu considered in the state model (32) is wide-
sense stationary (WSS). Furthermore, upon considering the
block duration to be well within the coherence time interval,
we can assume the channel hu to be constant over each
block. By exploiting the properties of a Gauss-Markov random
process, the components of the sparse innovation vector wu

are assumed to be independent of hv , for v < u.
1) Doubly-Selective Sparse Channel Estimation in SISO-

FBMC: Using (17), the doubly-selective TD model of sparse
CSI estimation can be described as

ytd
0,u = Dhu + η0,u, (33)

where ytd
0,u ∈ CNp×1 denotes the received pilot vector corre-

sponding to the block-index u. The TD-SBL-KF framework
is now developed for the estimation of the doubly-selective
sparse CSI vector hu (33). To begin with, the following pa-
rameterized Gausssian prior is assigned to the sparse doubly-
selective CIR vector hu

f(hu; Γu) =

Lh∏
i=1

(πγi,u)−1 exp

(
− |hu(i)|2

γi,u

)
, (34)

where γi,u, 1 ≤ i ≤ Lh, represents the hyperparameter
associated with the ith channel tap in the uth training block,
and Γu ∈ RLh×Lh

+ is the diagonal matrix comprising these
hyperparameters. Let ĥu−1|u−1 ∈ CLh×1 and Σu−1|u−1 ∈

CLh×Lh represent the filtered estimate and the corresponding
estimation error covariance matrix of the CSI vector hu−1,
respectively. Let Γ̂u denote the estimate of the matrix Γu in
the uth block. The MMSE prediction ĥu|u−1 of the CIR vector
hu and the corresponding error covariance matrix Σu|u−1 are
obtained as [41]

ĥu|u−1 = ρ ĥu−1|u−1, and

Σu|u−1 = ρ2 Σu−1|u−1 + (1− ρ2) Γ̂u, (35)

where the covariance matrix of the driving noise vector wu

has been set to Γ̂u in (35). Furthermore, upon employing the
predicted quantities ĥu|u−1 and Σu|u−1 above, the filtered
estimate ĥu|u and the associated error covariance Σu|u can
be updated as

ĥu|u = ĥu|u−1 + Ku(ytd
0,u −Dĥu|u−1) and

Σu|u = (ILh
−KuD)Σu|u−1, (36)

where Ku ∈ CLh×Np is the Kalman-gain matrix given by
Ku = Σu|u−1D

H(Rη+DΣu|u−1D
H)−1. Interestingly, since

the matrix Ku depends on the matrix Σu|u−1, which in turn
only depends on Γ̂u, the filtered estimate ĥu|u of the sparse
CSI vector once again boils down to the estimation of the
matrix Γu. To achieve this, we can once again maximize
the Bayesian evidence f(ytd

0,u; Γu) using the EM iterations
described next.

Let Γ̂
(p−1)
u be the hyperparameter matrix estimate ob-

tained in the EM iteration (p − 1) corresponding to the uth
block. The a posteriori pdf of the sparse doubly-selective
CIR vector hu in the pth EM iteration can be evaluated
as f(hu|ytd

0,u; Γ
(p−1)
u ) = CN

(
µ

(p)
u ,Σ(p)

u

)
, where the a

posteriori mean µ
(p)
u ∈ CLh×1 and the covariance matrix

Σ(p)
u ∈ CLh×Lh are determined as

µ(p)
u = Σ(p)

u DHR−1
η ytd

0,u and

Σ(p)
u =

(
DHR−1

η D +
(
Γ̂(p−1)
u

)−1 )−1

. (37)

As seen in (25), the estimates γ̂(p)
i,u in the pth EM iteration can

be obtained as

γ̂
(p)
i,u = Σ(p)

u (i, i) + |µ(p)
u (i)|2. (38)

Upon convergence of the EM procedure, the estimate Γ̂u in the
uth block is obtained as Γ̂u = diag

(
γ

(p)
1,u, γ

(p)
2,u, · · · , γ

(p)
Lh,u

)
.

The various quantities of the TD-SBL-KF are initialized as
ĥ−1|−1 = 0Lh×1,Σ−1|−1 = Γ̂

(p)
0 , Γ̂

(0)
0 = ILh

. The proposed
SBL-KF framework initializes the hyperparameter matrix Γ̂

(0)
u

for block u as Γ̂
(0)
u = Γ̂

(p)
u−1, i.e., to the converged estimate of

the hyperparameter matrix obtained from the previous block.
The advantage of this initialization procedure is two-fold:
when the sparsity profile of the CIR does not change, the
convergence is faster. On the other hand, when it changes
suddenly, the proposed SBL-KF becomes capable of detecting
the change and adapts to the new sparsity profile in a few
iterations. This has been illustrated via a simulation result
in Fig. 2 of our technical report in [42]. The schematic of
the proposed TD-SBL-KF scheme is given in Fig. 1(a) of
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the technical report [42]. The hyperparameter update block
therein evaluates the hyperparameter matrix Γu, which ensures
sparsity in the estimate of the CIR vector hu through the
Prediction block. The Filtering block therein provides the
final estimate ĥTD-SBL-KF

u = ĥu|u and the error covariance
matrix Σu|u of the sparse doubly-selective CIR vector hu. An
algorithmic description of the proposed TD-SBL-KF technique
is given in Algorithm-3 of the technical report [42]. A very
important property of the proposed TD-SBL-KF technique is
that it is online of nature, since it only employs the output
vector ytd

0,u for updating hu. This significantly reduces both
the estimation delay as well as the complexity. The IAM-
based doubly-selective channel estimation can be developed
following similar lines, commencing with the observation
model of a quasi-static channel in (10).

Finally, in order to further improve the CSI estimation
accuracy, one can employ a KF-smoother (KFS) framework,
which employs all the available measurements to refine the
filtered estimates. Toward this, let U represent the number of
blocks. Using the standard Kalman filter (KF) notations, the
backward smoothing steps are given as follows.
for u = U,U − 1, · · · , 2

Σ̃u−1 = ρΣu−1|u−1Σ
−1
u|u−1,

ĥu−1|U = ĥu−1|u−1 + Σ̃u−1

(
ĥu|U − ĥu|u−1

)
,

Σu−1|U = Σu−1|u−1 + Σ̃u−1

(
Σu|U −Σu|u−1

)
Σ̃H
u−1,

where the quantity ĥu−1|U represents the final estimate of the
KFS for the (u− 1)st block.

2) Doubly-Selective Sparse Channel Estimation in MIMO-
FBMC: Let the doubly-selective CIR hr,tu ∈ CLh×1 corre-
sponding to rth RA and tth TA be defined as

hr,tu =
[
hr,tu [0], hr,tu [1], . . . , hr,tu [Lh − 1]

]T
, (39)

where hr,tu [l], 0 ≤ l ≤ Lh−1, denotes the lth CIR tap in the uth
block. Similar to the doubly-selective channel model of (32),
the time-evolution of the CIR vector hr,tu can be modeled as

hr,tu = ρhr,tu−1 +
√

1− ρ2 wr,t
u , (40)

where the complex vector wr,t
u ∈ CLh×1 denotes the driving

noise process, and shares a common sparsity profile with hr,tu .
To avoid repetition, the notations defined for the quasi-static
MIMO-FBMC system are extended to the doubly-selective
scenario with the addition of the subscript u for the uth block-
index. Let h̄u denote the doubly-selective block-sparse CIR
vector corresponding to the uth block. Along similar lines to
Section III-2, the IAM-model of doubly selective sparse CSI
estimation in MIMO-FBMC systems can be constructed as

yiam
u = Φh̄u + ηu, (41)

where yiam
u and ηu represent the received pilot and the

corresponding noise vectors, similar to (15), for the block-
index u. Similarly, let h̃u denote the doubly-selective group-
sparse CIR vector corresponding to the uth block. Using (21),
the TD-based model of doubly-selective sparse CSI estimation

for our MIMO-FBMC system can be expressed as

ȳtd
0,u = D̄h̃u + η̄0,u, (42)

where ȳtd
0,u and η̄0,u denote the received pilot and noise

vectors in the block-index u. The doubly-selective sparse chan-
nel estimation technique TD-SBL-KF developed for SISO-
FBMC systems can now be readily extended to the TD-
GSBL-KF model of MIMO-FBMC systems by modifying
the hyperparameter update equation derived in (31). The TD-
GSBL-KF algorithm proposed for the doubly-selective channel
estimation model of (42) is presented in Algorithm-4 of our
technical report [42]. The equivalent procedure of the IAM-
based doubly selective channel estimation model of (41) can
be derived similarly.

V. COMPLEXITY ANALYSIS

This subsection briefly describes the computational com-
plexity of both the proposed and exiting SISO- and MIMO-
FBMC sparse channel estimation schemes. A detailed com-
plexity analysis is provided in the technical report in [42].
As shown in [42], the complexity order of the proposed
IAM-SBL, TD-SBL, IAM-SBL-KF and TD-SBL-KF chan-
nel estimation schemes for SISO-FBMC is O(N3

p + L3
h).

On the other hand, the proposed IAM-BSBL/IAM-BSBL-KF
and TD-GSBL/TD-GSBL-KF schemes conceived for MIMO-
FBMC channel estimation have the computational complexity
of O(N3

pN
3
rM

3 + N3
t N

3
rL

3
h) and O(N3

pN
3
r + N3

t N
3
rL

3
h),

respectively. The OMP scheme, as described in [42] has the
computational complexity of O(i3) in the ith iteration. This
leads to O(N3

p ) complexity for SISO-FBMC sparse channel
estimation, whereas it has the complexities of O(N3

pN
3
rM

3)
and O(N3

pN
3
r ) for MIMO-FBMC sparse channels using the

IAM and TD models, respectively. It follows from (10) and
(17) that the conventional LS estimator designed for SISO-
FBMC has the complexity of O(L3

h), while its MIMO coun-
terpart incurs a complexity order of O(N3

t N
3
rL

3
h), as inferred

from (15) and (21). It can be observed that the proposed
SBL-based schemes have complexity orders similar to their
OMP counterparts, but they have slightly higher complexities
than their LS counterparts. However, as shown in the next
section, the proposed SBL-based schemes significantly outper-
form both the exiting OMP and LS-based schemes for sparse
channel estimation in both SISO- and MIMO-FBMC systems.

VI. SIMULATION RESULTS

We now demonstrate the sparse CSI estimation performance
of the proposed schemes and compare them to that of a variety
of other schemes such as OMP, FOCUSS [28], Lasso [27] and
AMP [31]. The number of subcarriers N is chosen from the set
{64, 256}. The IOTA based discrete time prototype filter p[k]
of length Lp = 4N is utilized for FBMC modulation. The data
and training symbols use QPSK (4-QAM). The SNR on each
subcarrier is computed as 2Pd/σ

2
η . The standard pedestrian-B

and Vehicular-A channel models of the international telecom-
munication union (ITU) [47], which has Lh = 32 taps in
conjunction with 6 dominant taps, model the wireless channel
for quasi-static and doubly-selective scenarios, respectively,
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Fig. 2: SISO-FBMC quasi-static channel estimation performance comparison of the proposed schemes with the corresponding BCRLBs
derived in our technical report in [42] and the existing schemes: (a) NMSE versus SNR with N = 64 and z = 3; (b) NMSE versus SNR
with N = Np = 256 and z = 3; and (c) NMSE versus SNR over 5G-NR CDL-B channel with N = 256, Np = 256 and z = 3.

between each pair of TA and RA, unless stated otherwise.
The number of TAs and RAs for the MIMO scenario is set
to Nr = Nt = 2. However, note that the proposed designs
are applicable for estimating quasi-static and doubly selective
channels of any MIMO configuration. The hyperparameters
γi, for γi = 1, 0 ≤ i ≤ Lh − 1, are initialized to unity.
The stopping parameters ε1 and Nmax are set to 10−5 and 50,
respectively, for all the proposed sparse schemes. As shown
in (10), (17) and (21) for quasi-static channel estimation, and
in (33) and (42) for doubly selective channel estimation, the
proposed designs estimate the channel in the time-domain, in
order to exploit the sparse nature of the respective channels.
Hence the NMSE is calculated as ||ĥ − h||2/||h||2, where ĥ
denotes the estimate of the CIR vector h.

A. Sparse CSI Estimation in SISO-FBMC Systems

Fig. 2(a) depicts the NMSE of the SBL, OMP, AMP,
Lasso and FOCUSS estimators for sparse CSI estimation in
SISO-FBMC systems, using both the IAM and TD models in
Section-II-3 and Section-II-5. The NMSE of the conventional
LS estimator is also shown therein. However, while an ill-
posed channel estimation model using Np = 28 training sub-
carriers is considered for the sparse estimators, Np = 60 pilot
subcarriers are used for the LS estimator, in order to obtain a
comparable NMSE. The proposed SBL-based techniques have
significantly lower NMSE than the OMP, Lasso, FOCUSS and
LS benchmark techniques. The poor performance of the LS
approaches, despite employing more than twice the number
of pilots, is due to the fact that they do not exploit the sparse
nature of the wireless channel. This clearly demonstrates the
importance and significant benefits that can be realized via
exploiting sparsity. The OMP algorithm, which is fragile to
the selection of both the sensing matrix and of the stopping
threshold, also results in poor performance. The NMSE of
the AMP-based algorithms is slightly inferior to its SBL
counterpart, since the former approximates the messages by
the Gaussian distribution [33]. Furthermore, it is observed
that the TD schemes yield significantly lower NMSE than
the IAM-based techniques in the high SNR regime, because,

unlike the latter, the former does not necessitate a frequency-
flat channel at the subcarrier level. The intrinsic interference,
which dominates in the high-SNR regime, results in NMSE
floors for the IAM-based channel estimation schemes at higher
SNR.

Fig. 2(b) compares the NMSE versus SNR results for both
the proposed and existing schemes using N = Np = 256
and z ∈ {1, 3}. This renders the channel estimation models
in (10) and (17) well-posed. The BCRLBs of the proposed
IAM-SBL and TD-SBL schemes, as determined in Section-
IV of our technical report [42], have also been plotted for
reference. It may be observed that for z = 1, the NMSE of all
the schemes saturates at high SNRs due to the ISI between the
training symbols and the rest of the frame. It can be readily
seen that the OMP techniques perform similarly to their LS
counterparts for both the IAM and TD systems. The proposed
SBL schemes once again outperform both the OMP and the
conventional LS techniques. Interestingly, it is also observed
that the proposed IAM-SBL scheme performs similarly to its
TD counterpart and achieves its BCRLB at low SNR for z =
3. By contrast, the proposed TD-SBL approach achieves its
BCRLB across the entire SNR range for z = 3. It is important
to realize that the BCRLB corresponds to the ideal scenario
of having a known channel profile and zero ISI between the
training symbols. The fact that the SBL algorithm is capable of
achieving this in a realistic system having an unknown channel
support demonstrates its prowess and suitability for practical
implementation.

The NMSE performance of Fig. 2(a) and Fig. 2(b) un-
derlines an interesting aspect of the IAM-SBL scheme. It is
observed that as the number of subcarriers N increases, the
performance of IAM-SBL approaches that of the TD-SBL
scheme. This can be explained by the observation that the
IAM-based schemes rely on the approximation in (4). The
corresponding approximation error diminishes progressively as
the number of subcarriers N increases. Since the proposed
TD-SBL approach does not rely on the approximation in
(4), its performance does not exhibit an NMSE floor at high
SNRs, regardless of the number of subcarriers. However, for
data detection under the TD-based model, one has to use a
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Fig. 3: SISO-FBMC doubly-selective channel estimation: (a) NMSE versus number of blocks (u) with N = 64, Np = 28, z = 3,
ρ = 0.9981 and SNR = −5 dB; (b) NMSE versus SNR with corresponding BCRLBs derived in [42] with N = 64, Np = 28, ρ = 0.9981
and z = 3; and (b) NMSE versus SNR with N = Np = 256, ρ = 0.9981 and z = 3.

multi-tap time-domain equalizer [20], [39], which suffers from
a high computational complexity. On the other hand, data
detection in the IAM-based model can be performed using
the conventional single-tap frequency-domain equalizer [20]
that has a low complexity. In light of the above observations,
one can deploy the IAM-SBL scheme, when the number
of subcarriers N is significantly larger than the number of
channel taps Lh. Otherwise, the TD-SBL scheme is best suited
for such systems.

Fig. 2(c) displays NMSE versus SNR performance of the
proposed schemes for estimating CDL-B channel model of
5G-new radio (NR). A 50 MHz system is considered over
CDL-B channel, which has a maximum normalized delay
spread of 4.7834 [48, Table 7.7.1-2]. It follows from Eq.
(7.7-1) of [48] that with the desired channel delay spread
of 500 ns, the maximum delay spread of the CDL-B chan-
nel is 4.7834 × 500 = 2391.7 ns. Thus, with a sampling
interval of 1/(50 × 106) = 20 ns, the CDL-B channel has
2391.7/20 ≈ 120 channel taps. Out of these 120 taps, 24
taps, as per Table 7.7.1-2 of [48], are the dominant taps, which
leads to an approximately sparse channel. For estimating this
channel, an FBMC system with N = 256 subcarriers and
Np = 128 pilot symbols is considered. It can seen from
Fig. 2(c) that the proposed TD-SBL and IAM-SBL schemes
significantly outperform their conventional counterparts. The
NMSE of the IAM-based schemes exhibit a floor at high SNR
due to the dominance of the intrinsic interference. This clearly
demonstrates the accuracy of the proposed schemes for the
CDL-B channel estimation.

Fig. 3(a) plots the NMSE versus the number of blocks (u)
both for the OMP and for the proposed SBL suite of schemes,
which includes SBL and SBL-KF that incorporates the Kalman
filter, for the CSI estimation of a doubly-selective scenario at
SNR = −5dB. A SISO-FBMC-aided mobile user operating in
the 2.4 GHz band and roaming at a velocity of v = 30 km/h,
which results in a Doppler shift of fD = 69 Hz, has been
considered. The block-length TB is set to 0.2 ms. With these
settings in Jake’s model, the time-correlation ρ of the doubly-
selective CSI model of (32) becomes ρ = J0(2πfdTB) ≈

0.9981. Interestingly, the NMSE of the OMP and of the
general SBL schemes that exploit only sparsity is seen to
remain unaffected by the number of blocks u. By contrast,
the performance of the SBL-KF techniques that leverage the
sparsity in addition to the temporal correlation across blocks,
significantly improves upon increasing the number of blocks,
thus outperforming the quasi-static approaches.

Fig. 3(b) displays the NMSE versus SNR of the OMP
and SBL techniques for doubly-selective channel estimation.
This study is performed using N = 64 and Np = 28 pilot
subcarriers, leading to ill-posed channel estimation models in
(33) and (41). The SBL-KF schemes of both the IAM and
TD systems, which were specifically designed for doubly-
selective channel estimation, result in a significantly lower
NMSE than the other schemes. The SBL-KFS further enhances
the estimation performance in comparison to the SBL-KF,
since it employs all the available measurements to further
refine the filtered estimates. Once again, the NMSE of the
IAM-based schemes exhibit floor at high SNR due to the
high level of intrinsic interference. The SBL-KF and SBL-
KFS techniques of the TD system achieve the time-recursive
BCRLB derived in [42].

Fig. 3(c) displays the NMSE of the OMP and SBL class of
schemes for doubly-selective channel estimation with pilots
transmitted over all the subcarriers, i.e. for N = Np = 256.
Similar to our observation in Fig. 2(b) for a quasi-static
channel, due to the increased number of subcarriers, the
performance of the IAM algorithms exhibits flooring above
SNR = 10dB.

B. Sparse CSI Estimation in MIMO-FBMC Systems

Fig. 4(a) provides our NMSE comparison between the SBL-
based sparse CSI estimation schemes as well as the LS and
OMP techniques. The number of pilot subcarriers of the LS-
based schemes is set to Np = 60, which is significantly
higher than that of both the OMP and SBL-based estimators
with Np = 28. The IAM model based BSBL and TD model
based GSBL schemes, which exploit the special block and



13

−5 0 5 10 16
−14

−12

−10

−8

−6

−4

−2

0

2

SNR (dB)

N
M

S
E

 (
dB

)

 

 
TD−BCRLB
IAM−BCRLB
TD−GSBL
IAM−BSBL
TD−OMP
IAM−OMP
IAM−LS
TD−LS

N
p
 = 60

N
p
 = 28

(a)

1 5 10 15 20
−12

−11

−10

−9

−8

−7

−6

−5

−4

Number of Blocks (u)

N
M

S
E

 (
dB

)

 

 

IAM−BSBL
IAM−BSBL−KF
IAM−OMP
TD−OMP
TD−GSBL−KF
TD−GSBL

(b)

−4 −2 0 2 4 6 8 10 12 14 16
−14

−12

−10

−8

−6

−4

−2

0

SNR (dB)

N
M

S
E

 (
dB

)

 

 
IAM−OMP
TD−OMP
IAM−BSBL
TD−GSBL
TD−GSBL−KF
IAM−BSBL−KF
TD−BCRLB
IAM−BCRLB

(c)

Fig. 4: Performance comparison of the proposed techniques with the corresponding BCRLBs derived in the technical report in [42] and
the existing schemes for sparse CSI estimation in 2 × 2 MIMO-FBMC systems: (a) quasi-static channel estimation: NMSE versus SNR
with N = 64 and z = 3; (b) doubly-selective channel estimation: NMSE versus number of blocks (u) with N = 64, Np = 28, z = 3,
ρ = 0.9981 and SNR = 5 dB (c) doubly-selective channel estimation: NMSE versus SNR with N = 64, Np = 28, ρ = 0.9981 and z = 3.

group-sparse structures inherent in the sparse MIMO channel,
significantly outperform their OMP counterparts. Once again,
we have an NMSE floor for the IAM-based schemes in the
high-SNR regime due to the approximation error arising from
(4). The TD model based proposed GSBL is seen to achieve
its BCRLB.

Fig. 4(b) considers a doubly-selective MIMO-FBMC system
and demonstrates the NMSE performance versus the number
of blocks (u) for the various proposed and existing schemes.
The SNR is set to 5 dB for this study with Np = 28 subcarriers
loaded with pilots. It can seen that the NMSE of the BSBL-
KF and GSBL-KF techniques proposed for doubly-selective
sparse channel estimation is better than that of their quasi-
static counterparts, namely of the BSBL, OMP and GSBL
based on either the IAM or TD models. The NMSE improve-
ment can be expected due to the reason that the BSBL-KF
and GSBL-KF schemes, unlike their quasi-static counterparts,
additionally exploit the temporal correlation across training
blocks. Fig. 4(c) displays the NMSE of the various schemes
for doubly-selective sparse channel estimation, which shows
a similar trend as observed in Fig. 4(b). Furthermore, the
TD model based GSBL-KF is seen to achieve the recursive
BCRLB determined in [42].

Fig. 3 of our technical report in [42] shows the coded
BER performance of MIMO-FBMC systems using channel
estimates obtained from the proposed and existing schemes.
The TD system using GSBL can be seen therein to achieve
the lowest BER, outperforming, viz. IAM with BSBL and
both TD as well as IAM-based OMP and LS estimators.
The NMSE floor of channel estimation in the IAM-based
techniques naturally leads to the BER floor at high SNRs.

VII. CONCLUSIONS

We developed a suite of SBL-based approaches for sparse
CSI estimation in FBMC systems using the IAM and TD mod-
els that are well-suited for channels with low and high levels of
frequency selectivity, respectively. Initially, SBL-based sparse

channel estimators were conceived for CSI estimation in quasi-
static SISO-FBMC systems. The SBL-KF framework was
subsequently exploited to track the CSI of doubly-selective
SISO-FBMC systems. Next, novel IAM and TD-based channel
estimation models were developed for MIMO-FBMC systems
that demonstrate block and group sparsity, respectively. These
properties were successfully exploited by our IAM-based
BSBL and TD-based GSBL schemes for sparse estimation,
which were shown to lead to improved estimation performance
arising from leveraging the simultaneous sparsity encountered.
The BCRLBs were derived for all the estimation scenarios.
The performance of the proposed SBL-based schemes were
shown to be significantly improved in comparison to the
various sparse channel estimators such as the OMP, Lasso,
FOCUSS as well as the conventional LS technique, for both
the ill-posed and well-posed observation models. Interestingly,
the TD-based estimators are seen to achieve the respective
BCRLBs, while the performance of IAM-based schemes floors
at high SNRs.
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