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Abstract 

Wavetubes are employed for measurements of acoustic properties in various fluids. The ability 

to manipulate and control the frequency-dependent boundary impedance of the tube improves the 

estimation accuracy. Passive solutions, which use composite materials to change the boundary 

impedance, enable one to realize a finite combination of boundary impedances. In this paper, the 

tube boundary impedance is tuned at will by using two loudspeakers. The suggested method 

operates in the presence of dispersion by estimating, in real-time, a parametric reduced-order 

model using a multichannel least mean square algorithm. The identified model is fed to a 

nonlinear, adaptive control algorithm to realize modal traveling wave ratio control. It has been 

noted that the traveling wave ratio is smooth and parabolic across closed regions in the parameter 

space, thus assuring the convergence of the nonlinear control. Several methods to estimate the 

traveling wave ratio gradient are considered and compared based on an analytical model of a rigid 

impedance tube. An experimental case study utilizing an air-filled impedance tube with two 

loudspeakers is presented. The results demonstrate the ability to control the dynamics of the 

principal acoustic mode at will. Thus, enabling one to set the desired tube’s boundary impedance.  
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I. INTRODUCTION 

 Wavetubes play an essential role in the conduction of nondestructive testing (NDT) of 

composite materials to measure their acoustic properties1,2. The wavetube comprises a hollow 

elastic cylinder filled with a representative fluid under which the acoustic properties are estimated. 

Usually, the material specimen is placed in the middle of the wavetube while two sets of 

microphones are located at each side of the specimen, a loudspeaker is placed at one of the tube’s 

ends to generate the propagating pressure wave, and in most cases, an anechoic termination is 

placed at the other tube’s end3. Most acoustic properties testing experiments separate the measured 

pressure wave into its forward and backward traveling components under the assumption of a 

single planar propagating mode4. It was shown5–7 that the fluid pressure and the elastic tube 

interaction give rise to a rich dispersion diagram. The rich dispersion relation has at least two 

propagation modes (branches) at all frequencies5–9. Each of these modes is associated with 

different energy conveying mechanism10. It was also shown that such modes are excited in an air-

filled thin plastic wavestube7,11. The contributions of the modes to the energy transfer are 

quantified by computing their modal power ratios12. Both the standing wave ratio (SWR)13 and 

the traveling wave ratio (TWR)14,15 can also be used to quantify the normalized amount and 

direction of energy transferred by each mechanism. It has been shown16 that the power ratio and 

the TWR are equivalent descriptive parameters of the modal wave.  

 In several works17–20, multiple excitation sources were considered and used to excite the 

pressure fields along the wavetube. While the classical work of Bodén and Holmberg et al.18,19 

considered a single propagation mode, in more recent work, Sack and Åbom20 considered several 

propagation modes. In both cases, the importance of exciting different combinations of the 
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incident and reflected wave’s amplitudes was emphasized17. If the acoustic sources’ projections 

between various experiments do not differ, the sample’s acoustic properties estimation becomes 

ill-conditioned18. Therefore, introducing the need to excite the wavetube in such a way will resolve 

in various wave’s amplitudes. To this end, it is suggested here to use a model-based closed-loop 

control algorithm and to track the TWR reference signal of a prechosen mode, guaranteeing that 

the needed variety will be obtained. 

 The acoustic behavior along ducts and mufflers and its control are well-established fields. 

Several fundamental transcripts were published around 1980-2000, including the books by 

Munjal21 and Nelson and Elliott22. In their book22, Nelson and Elliott presented a thorough 

analysis of active noise control (ANC) of an air-filled duct under the assumption that the wave 

has a single nondispersive and planar mode. The ANC purpose is to attenuate the pressure at a 

region of the duct. This was achieved by introducing a second loudspeaker and tuning its time 

(phase) delay such that the superposition of the primary wave and the secondary wave sum to zero 

or that the pressure energy is minimal. Moreover, if the secondary loudspeaker is placed at the 

duct far end, they have shown that by tuning the secondary loudspeaker time delay to equal the 

propagation time along the duct, i.e., the duct length over the speed of sound, results in no 

reflection from the boundary, therefore, providing an effective anechoic termination. A secondary 

source was used in previous work to create an effective anechoic termination in wavetube for 

acoustic properties tests23. 

  Although ANC of sound in ducts is known and implemented in many systems, changes to the 

classical methods should be introduced when considering dispersive waves and multiple 

modes24,25, which are the outcome of an elastic fluid-filled tube5,24. In addition, if the control goal 

is not to attenuate the total pressure field or create an effective anechoic termination, a different 
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approach is needed. This work puts forward such an approach by decomposing the different 

dispersive modes and controlling the desired mode’s TWR. By applying the proposed approach, 

the secondary actuator acts as an effective tunable impedance surface. 

 The TWR is preferable over the SWR or the power ratio as the reference signal since it is 

finite, bounded, and smooth11,14. Several methods to control propagation-related phenomena by 

applying traveling wave control26 have been suggested in the past. Notable examples are the work 

of Mace27, Minikes et al.28, and Giraud et al.29, which present control schematics for the traveling 

wave of a 1D beam. The work of O’Connor and Zhu30, Habibi and O’Conner31, and Peled et al.32 

dealing with the control of lumped parameter systems. The work of Gabai and Bucher14, and 

Halevi33 in which the 1D  wave-equation governed systems were controlled. The work of Gabai 

and Bucher34, Sirota and Halevi35, Musgrave et al.36, and Davis et al.37 introduced control laws 

for systems governed by the 2D wave-equation. It was shown14 that the open-loop model control 

is highly sensitive to model uncertainties; therefore, a model-based estimation closed-loop control 

should be used. 

 To track the modal TWR reference signal in real-time, an online model estimation is proposed. 

In previous work38, a batch multichannel (MC) least-squares (LS) method was used to control the 

traveling wave in an air-filled impedance tube using an offline minimization implemented in 

MATLAB©. It was shown11 that the MC least-mean-squares (LMS) 39 method is preferable over 

the MC recursive-least-squares39 and the synchronous demodulation11 methods for the recursive 

online decomposition of the measured pressure wave to its traveling wave components. The MC-

LMS was implemented on a field-programmable gate array (FPGA), decomposing the pressure 

wave into its three dominant modes. As discussed previously11, there is a need to decide the 

number of propagation modes to include in the model to minimize identification uncertainties. To 
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this end, an L-curve-based order selection regularization procedure11,40,41 is used here at each 

frequency. 

 This work develops and verifies an adaptive control law capable of tracking a desired modal 

TWR reference signal. The verification includes both numerical simulation and an experimental 

study case. The preliminary experimental results of this research were presented and published 

during the 179th ASA meeting42. The current paper elaborates on the obtained results and puts 

forward an analytical model and numerical simulation on which the experimentation is based.  

The analytical model, from which the control law is derived, is developed and presented in Section 

II. The control law minimizes the squared tracking error function of the modal TWR by 

introducing a gradient descent adaptive control-law43,44. The stability of the control law is ensured 

by introducing a periodic extension of the parameter’s domain. To estimates the TWR gradient, 

three methods are put forward. Namely, the finite difference approximation, the Extremum 

seeking45, and the zero-order approximation. The methods are compared based on a numerical 

simulation that utilizes the analytical model to obtain the modal TWR for different values of 

parameters. The method convergence is analyzed based on the simulation results. The control 

derivation is presented in Section III.A. Each of the three methods to estimate the TWR gradient 

is described in Sections III.A.1, 2, and 3. The numerical simulation results and their analysis are 

presented in Section III.A.4. The adaptive MC-LMS method used to estimate the modal TWR 

recursively is described in Section III.B. Section IV shows the experimental results when applying 

the proposed control algorithm to an air-filled impedance tube at several excitation frequencies.  
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II. MODELING 

A. Analytical model of an infinite-length fluid-filled elastic wavetube  

 The model being considered here is an infinite-length fluid-filled elastic wavetube with a 

circular cross-section. Previous papers presented the derivation and solution of analytical results 

for such a model6,9. In the current work, the analytical solution presented by Sato et al.6 is adopted. 

The propagation direction in the current work is dubbed 𝑥 and not 𝑧, and some minor changes in 

notation were made. Therefore, the obtained solution is revised here with appropriate notations.  

The fluids’ complex velocity potential is denoted as 𝜙f, and it can be written using modal 

superposition. Each complex mode can be written as: 

𝜙f(𝑛,𝑚) = Af(𝑛,𝑚)𝑍𝑛(|𝜂(𝑛,𝑚)|𝑟)ei𝑛𝜃ei(𝜔𝑡−𝑘(𝑛,𝑚)𝑥) + c. c. (1) 

Here, 𝜔 and 𝑘(𝑛,𝑚) denote the wave angular frequency and modal wavenumber, Af(𝑛,𝑚) is the 

modal amplitude,  (𝑛, 𝑚) represents the modal order pair, 𝑛 = −∞, … , ∞ denotes the azimuthal 

separation constant or the mode Fourier’s coefficients, if 𝑛 ≠ 0 the mode comes in pair of ±𝑛, 

and 𝑚 = 1, … , ∞ denotes the radial separation coefficients order. 𝜂(𝑛,𝑚) ∈ ℂ denotes the set of 

radial separation coefficients, which are the zeros of the characteristic equation. 𝑍𝑛 represents the 

Bessel function of the first kind, 𝐽𝑛, if 𝜂(𝑛,𝑚) is nonnegative or otherwise, the modified Bessel 

function of the first kind, 𝐼𝑛. The modal wavenumber 𝑘(𝑛,𝑚) ∈ ℂ is a function of the angular 

velocity, the sound velocity of the fluid, 𝑣f, and the appropriate radial separation coefficient, 

𝜂(𝑛,𝑚), such that: 

 𝑘(𝑛,𝑚)
± ≡ ∓√(𝜔/𝑣f)2 − 𝜂(𝑛,𝑚)

2 , (2) 
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where the plus and minus superscripts denote the forward and backward traveling directions. 

 Note that when the argument beneath the square-root is negative, i.e., 𝜂(𝑛,𝑚) > 𝜔/𝑣f, the 

modal wavenumber is purely imaginary and represents evanescent mode, which will decay along 

the wavetube. At each finite frequency, there exists only a finite number of real-valued modal 

wavenumbers, which are associated with propagation modes. For the elastic wavetube model, it 

is shown46 that three modes propagate at low-frequency, namely two axisymmetric modes (0,1) 

and (0,2), and the first flexural mode (±1,1). Cutoff occurs at higher frequencies, where the 

square root argument of Eq. (2) becomes positive for additional modes. At the cutoff frequencies, 

additional modes start to propagate along the wavetube. 

 Therefore, up to the Nth cutoff, the complex pressure amplitude located at  

𝒓𝑠 = (𝑥𝑠, 𝑟𝑠 = 𝑅, 𝜃𝑠 = 0), 𝑅 being the tube inner radius, is given by: 

 𝑃s = ∑ 𝐽𝑛𝜇
(𝜂(𝑛𝜇,𝑚𝜇)𝑅)𝑁

𝜇=1 (𝑃𝜇
+𝑒−i𝑘𝜇𝑥𝑠 + 𝑃𝜇

−𝑒i𝑘𝜇𝑥𝑠) + 𝐷. 𝑀., (3)  

where 𝑃𝜇
± = 𝜌f𝜔𝐴(𝑛𝜇,𝑚𝜇)

±  denote the modal wave forward and backward complex amplitudes, 

D.M. denotes the double infinite summations over the decaying evanescent modes, and 𝜇 from 

now will be referred to the propagation mode number as well as the value of the modal order pair 

of the same mode for brevity. The D.M. terms' cumulative contribution is assumed to be 

negligible, far from acoustic’s sources and axial boundaries of the wavetube. The time 

measurement of a sensor located at the same coordinate (𝒓𝑠) at time 𝑡𝑟 is given by: 

𝑝𝑠,𝑟 = 2Re(𝑃𝑠𝑒i𝜔𝑡) = ∑ 2Re(𝑃𝜇
+) cos(𝜔𝑡𝑟 − 𝑘𝜇𝑥𝑠) + 2Re(𝑃𝜇

−) cos(𝜔𝑡𝑟 + 𝑘𝜇𝑥𝑠) −𝜇

2Im(𝑃𝜇
+) sin(𝜔𝑡𝑟 − 𝑘𝜇𝑥𝑠) − 2Im(𝑃𝜇

−) sin(𝜔𝑡𝑟 + 𝑘𝜇𝑥𝑠).  (4) 
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The real-value pressure function is used here since the identification procedure will be later 

implemented on a finite precision FPGA, and complex arithmetic cannot be used directly. By 

employing the sum of angles trigonometric identities, Eq. (4) can be written as: 

 𝑝𝑠,𝑟 = (𝑤𝜇,1 cos(𝑘𝜇𝑥𝑠) + 𝑤𝜇,2 sin(𝑘𝜇𝑥𝑠) ) cos(𝜔𝑡𝑟) + (𝑤𝜇,3 cos(𝑘𝜇𝑥𝑠) +

𝑤𝜇,4 sin(𝑘𝜇𝑥𝑠) ) sin(𝜔𝑡𝑟), (5) 

where the relation between the real-valued wave coefficients vector 𝐰𝜇 = [𝑤𝜇,1, … , 𝑤𝜇,4]
𝑇
to the 

modal wave’s complex amplitudes is given by: 

 [
𝑃𝜇

+

𝑃𝜇
−] =

1

2𝐽𝑛𝜇(𝜂𝜇𝑅)
[
1 i i −1
1 −i i 1

] 𝒘𝜇. (6) 

By defining 

𝐡𝜇
(𝑠,𝑟)

≡ [cos(𝑘𝜇𝑥𝑠) cos(𝜔𝑡𝑟) , sin(𝑘𝜇𝑥) cos(𝜔𝑡𝑟) , cos(𝑘𝜇𝑥𝑠) sin(𝜔𝑡𝑟) , sin(𝑘𝜇𝑥𝑠) sin(𝜔𝑡𝑟)]
𝑇

, 

(7) 

Equation (5), can be written as a vector product: 

 𝑝𝑠,𝑟 = ∑ 𝐡𝜇
(𝑠,𝑟)𝑇

𝐰𝜇𝜇 = 𝐡(𝑠,𝑟)𝑇
𝐰, (8)  

where 𝐡(𝑠,𝑟) = [𝐡1
(𝑠,𝑟)𝑇

, … , 𝐡𝑁
(𝑠,𝑟)𝑇

]
𝑇

, and 𝐰 = [𝐰1
𝑇 , … , 𝐰𝑁

𝑇 ]𝑇. 
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B. Finite length wavetube and modal Traveling Wave Ratio 

 

 

Fig 1.  The wavetube model. L1 and L2 denote the length of the left side and right side of the tube 

accordingly. d represents the material’s sample length and L the overall length of the tube. Two 

loudspeakers are placed at each tube’s side, and sensors are placed along the tube axis at the outer 

diameter. 

 In this section, a finite-length elastic wavetube is considered. In the current derivation, the 

material sample is removed from the wavetube. The wavetube has a loudspeaker located at each 

end; it is assumed that there is no modal interaction at the boundaries and that the excitation forces 

are monochromatic. The boundary conditions under these assumptions can be written in their 

modal form as7:  

 [
1 +

𝑍𝜇,0𝑘𝜇

𝜌f𝜔
1 −

𝑍𝜇,0𝑘𝜇

𝜌f𝜔

(1 −
𝑍𝜇,𝐿𝑘𝜇

𝜌f𝜔
) 𝑒−i𝑘𝜇𝐿 (1 +

𝑍𝜇,𝐿𝑘𝜇

𝜌f𝜔
) 𝑒i𝑘𝜇𝐿

] [
𝑃𝜇

+

𝑃𝜇
−] = [

𝑓𝜇,0

−𝑓𝜇,𝐿
] (9) 

where 𝑍𝜇,0 and 𝑍𝜇,𝐿 denote the loudspeakers’ modal complex acoustic impedances, and 𝑓𝜇,0 and 

𝑓𝜇,𝐿 denotes modal forces that are obtained from the following projections: 

𝑓𝜇,0 =
1

𝐸𝜇
2

∫ ∫ 𝑒−i𝑛𝜇𝜃𝐽𝑛𝜇
(𝜂𝜇𝑟)𝐹spk,0𝑟𝑑𝑟𝑑𝜃

2𝜋

0

𝑅

0

, 𝑓𝜇,𝐿 =
1

𝐸𝜇
2

∫ ∫ 𝑒−i𝑛𝜇𝜃𝐽𝑛𝜇
(𝜂𝜇𝑟)𝐹spk,L𝑟𝑑𝑟𝑑𝜃

2𝜋

0

𝑅

0

, 
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where 𝐸𝜇
2 = 2𝜋 ∫ 𝐽𝑛𝜇

2 (𝜂𝜇𝑟)𝑟𝑑𝑟
𝑏

0
 is the normalization factor of the propagation mode 𝑃𝜇, and 𝐹𝑠𝑝𝑘,0 

and 𝐹𝑠𝑝𝑘,𝐿 are the loudspeakers’ amplitudes. 

Solving Eq. (9) gives the modal wave amplitudes subject to the projections of the excitation 

sources on the propagation mode 

 [
𝑃𝜇

+

−𝑃𝜇
−] =

1

Δ𝜇
[
(1 +

𝑍𝜇,𝐿𝑘𝜈

𝜌f𝜔
) 𝑒i𝑘𝜇𝐿𝑓𝜇,0 + (1 −

𝑍𝜇,0𝑘𝜇

𝜌f𝜔
) 𝑓𝜇,𝐿

(1 −
𝑍𝜇,𝐿𝑘𝜈

𝜌f𝜔
) 𝑒−i𝑘𝜇𝐿𝑓𝜇,0 + (1 +

𝑍𝜇,0𝑘𝜇

𝜌f𝜔
) 𝑓𝜇,𝐿

]. (10) 

where Δ𝜇 denotes the matrix determinant of Eq. (9) left-hand-side matrix. 

 Having parametrized the multiple propagating waves, it is possible to compute the ratio of 

traveling to standing waves proportions for each wavelength associated with one modal 

component. This is done by computing the modal TWR that is defined as11: 

 TWR𝜇 ≡ 1 −
||𝑃𝜇

+|−|𝑃𝜇
−||

|𝑃𝜇
+|+|𝑃𝜇

−|
. (11) 

The fraction represents the ratio between the traveling wave and the total wave amplitudes. The 

shifting is introduced to allow minimum seeking optimization technique for pure traveling wave 

control38. When the modal TWR is equal to zero (TWR𝜇 = 0) the mode is a pure traveling wave 

and when the modal TWR is equal to one (TWR𝜇 = 1) the mode is a pure standing wave. The 

modal traveling wave’s direction of propagation denoted as dir𝜇 is defined by the sign of the 

numerator argument: 

 dir𝜇 ≡ sign(|𝑃𝜇
+| − |𝑃𝜇

−|). (12) 

 Substituting the modal forward and backward going traveling wave amplitudes obtained in 

Eq. (10) to Eq. (11) results in: 
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 TWR𝜇 = 1 −
||𝜐𝜇,𝐿

+ 𝑒i𝑘𝜇𝐿𝑓𝜇,0+𝜐𝜇,0
− 𝑓𝜇,𝐿|−|𝜐𝜇,𝐿

− 𝑒−i𝑘𝜇𝐿𝑓𝜇,0+𝜐𝜇,0
+ 𝑓𝜇,𝐿||

|𝜐𝜇,𝐿
+ 𝑒i𝑘𝜇𝐿𝑓𝜇,0+𝜐𝜇,0

− 𝑓𝜇,𝐿|+|𝜐𝜇,𝐿
− 𝑒−i𝑘𝜇𝐿𝑓𝜇,0+𝜐𝜇,0

+ 𝑓𝜇,𝐿|
, (13) 

where 𝜐𝜇,0
± = 1 ± Z𝜇,0k𝜇/𝜌f𝜔, and 𝜐𝜇,𝐿

± = 1 ± Z𝜇,𝐿k𝜇/𝜌f𝜔 are the normalized modal 

loudspeakers’ impedances. Writing the modal forces as 𝑓𝜇,0 = |𝑓𝜇,0|𝑒i𝜑0 , and 𝑓𝜇,𝐿 = |𝑓𝜇,𝐿|𝑒i𝜑𝐿, 

where 𝜑0, and 𝜑𝐿 are the same for all modes (this is seen from the projection integrals), and the 

normalized modal loudspeakers’ impedances as 𝜐𝜇,0
± = |𝜐𝜇,0

± |𝑒i𝜙𝜇,0  and 𝜐𝜇,𝐿
± = |𝜐𝜇,𝐿

± |𝑒i𝜙𝜇,𝐿 in Eq. 

(13) results in: 

 TWR𝜇 = 1 −
|𝐶𝜇|𝐵𝜇

+𝑒i(𝑘𝜇𝐿+Δ𝜙+)+𝐴𝑟𝑒iΔ𝜑|−|𝐵𝜇
−𝑒−i(𝑘𝜇𝐿+Δ𝜙−)+𝐴𝑟𝑒iΔ𝜑||

𝐶𝜇|𝐵𝜇
+𝑒i(𝑘𝜇𝐿+Δ𝜙+)+𝐴𝑟𝑒iΔ𝜑|+|𝐵𝜇

−𝑒−i(𝑘𝜇𝐿+Δ𝜙−)+𝐴𝑟𝑒iΔ𝜑|
, (14) 

in which, 𝐴𝑟 ≡ |𝑓𝜇,𝐿|/|𝑓𝜇,0| denotes the loudspeaker’s amplitude ratio, Δ𝜑 ≡ 𝜑𝐿 − 𝜑0 the  

loudspeaker’s phase shift, 𝐵𝜇
± ≡  |𝜐𝜇,𝐿

± |/|𝜐𝜇,0
∓ |, Δ𝜙𝜇

± = ±𝜙𝜇,𝐿
± ∓ 𝜙𝜇,0

∓  , and 𝐶𝜇 ≡ |𝜐𝜇,0
− |/|𝜐𝜇,0

+ |. 

Equation. (14) portraits the surface of the modal traveling wave ratio as a function of the wavetube 

dispersion, the loudspeakers’ acoustic impedances, and the amplitude ratio and phase shift 

between the loudspeakers. Therefore, if the modal TWR is to be set assuming that the different 

parameters of the model are known accurately, the nonlinear equation defined by Eq. (14) can be 

solved to find the required amplitude ratio and phase shift between the two loudspeakers.  
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Fig 2. Analytical modeled modal traveling wave ratio, TWR1, contour for a grid of loudspeaker’s 

amplitude ratios and phase shifts based on the model of Eq. (14). The input parameters are: tube 

length 𝐿 = 2 m, fluid sound speed 𝑣f = 346 m/sec, fluid density 𝜌f = 1.2 kg/m3, angular 

frequency 𝜔 = 2𝜋 ⋅ 1500 rad/sec, modal wavenumber 𝑘1 = 27.2392 rad/m, and 

loudspeaker’s complex acoustic impedances 𝑍1,0 = 𝑍1,𝐿 = 1264.5𝑒−i⋅0.4488π Pa/(m/sec).  

 

Fig 3. Slices from the analytical obtained modal traveling wave ratio contour shown in Fig 2.  

(a) – Equal phase shifts contours. (b) – Equal amplitude ratio contours. 
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The modal TWR of the first acoustic mode is shown in Fig 2 for a grid of loudspeaker 

amplitude ratios and phase shifts for prechosen values of the other model parameters. The dark 

red regions are pure standing wave regions, while the blue regions represent the pure traveling 

wave regions. The upper half of the TWR contour (Δ𝜑 ≥ 0) corresponds to forward traveling 

waves (dir1=1), and the lower half (Δ𝜑 < 0) corresponds to backward traveling waves (dir1=–1). 

Note that both slices at constant phase shift and slices at constant amplitude ratio are convex 

functions, as is seen from the contours of Fig 3. It is also shown in Fig 2 and Fig 3(b) that the 

mapping between the loudspeaker’s amplitude ratio and phase shift to the modal traveling wave 

ratio is surjective; therefore, these parameters may be tuned to excite any desirable value of the 

modal traveling wave ratio. 

As discussed from and analytically viewpoint14 and shown experimentally for the air-filled 

impedance-tube38, the values of to be tuned loudspeaker’s parameters, 𝐴𝑟 and Δ𝜑, have high 

sensitivity with respect to the model parameters accuracy. Therefore, an online update procedure 

is required. Since the mapping from the loudspeaker’s parameters to the modal traveling wave 

ratio is both surjective and convex, a model-based, gradient-descend adaptive control schematic 

is put forward. 

III. CONTROL AND ESTIMATION FORMULATION 

In this section, the adaptive control algorithm is developed for an air-filled elastic impedance 

tube. The derivation is based on the mathematical formulation presented in section II. It is 

assumed that the coupling between the fluid and the elastic tube is strong enough to excite multiple 

modes at all frequencies, each with a different amplitude. In the current work, only the first 

axisymmetric acoustic mode, with the modal order (𝑛, 𝑚) = (0,1), is being controlled. It was 
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shown11 that in order to fit an accurate model for the (0,1) propagation mode using a least-squares 

approach, additional modes must be included in the pressure model as well. Specifically, the 

second acoustic mode (0,2) and the first flexural mode (±1,1). 

The control adaptation law is derived based on the analytical model of the modal traveling 

wave ratio introduced in Section II. A closed domain of the control parameter is chosen to ensure 

stability. The periodic extension of the closed domain is achieved using modulo arithmetic. Three 

methods are described and compared to estimate the TWR gradient.  

 To enable the real-time estimation of the traveling wave ratio, which is needed for the control 

law, a multichannel LMS algorithm is proposed. The LMS fits the real-valued modal amplitudes 

introduced in Section II (Eq. (8)) using the matrix h as the filter matrix. The dispersion model was 

calibrated to match the experimental system in a previous work6. When applied to the air-filled 

impedance tube, the LMS convergence and attributes were discussed previously11.  

 

Fig 4. Adaptive control and experimental system setup description. Microphones’ outputs are 

measured and decomposed into their propagating wave’s modal amplitudes using an adaptive 

estimator. The modal amplitudes are sent to the adaptive control law that controls the 

loudspeaker’s amplitude ratio and phase shift to track the reference modal TWR signal. 
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A. ADAPTIVE CONTROL-LAW DERIVATION 

Following the discussion of Section II.B, it is concluded that there are two local minima of the 

TWR that correspond to the pure forward and backward going traveling waves. When examining 

Fig 2, a clear separation between the forward and backward traveling wave region is evident; this 

can be rigorously justified by finding the zeros of the modal direction of Eq. (12), which can be 

written for the case of 𝑍1,0 = 𝑍1,𝐿 as: 

 ( )
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, (15) 

 Where 𝜐𝜇,0
± = 𝜐𝜇,𝐿

± = 𝜐𝜇
±. If the ratio |𝜐𝜇

+/𝜐𝜇
−| is close to unity, which is our case, then the 

direction is switched at 1 ≫ Δ𝜑 > 0, which is justified by the TWR contour plotted for 1500 Hz. 

The direction is correlated with the sign of the phase shift, forward for positive and backward for 

negative. Therefore, the control law is developed for phase shift bounded between 0o to 180o. If 

backward traveling waves are desired, the phase shift's output signal will be multiplied by –1. 

Therefore it is assumed that the traveling wave is a forward going one and the absolute value of 

the numerator of Eq. (14) is discarded, which simplifies to: 
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(16) 

In Eq. (16) , superscript + of the TWR denote that this is the case of a forward-going traveling 

wave.  

 The control goal is to enable the tracking of a desired TWRref. Defining the tracking error: 
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 ( ) ( )=TWR TWRrefe  −  (17) 

where 𝜒 = [𝐴𝑟 , Δ𝜑]𝑇 denotes the controlled parameter vector. The control goal is obtainable by 

minimizing the tracking error energy,𝑒𝜇
2, using a gradient descent formulism43,44: 

 
( ) ( ) ( ) ( )
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where superscript (r) denotes the rth iteration instance and the matrix 𝐊 ∈ ℝ2×2 is the adaptation 

gain matrix. In the general case, K can be regarded as a full matrix. In this work, it is assumed 

that the matrix is diagonal. Meaning that the control law can be implemented separately for each 

of the control parameters. In this case, Eq. (18) can be written as:  

 
( ) ( ) ( )

( )

( ) ( ) ( )

( )

1 1
TWR TWR

,
r

r r

r r r r r r

r r A r r

r

A A e e
A

 

     


+ +



 
= +  =  +

 
, (19) 

where 𝜅𝐴𝑟
 and 𝜅Δφ are the scalar adaptation gains. The derivative of the modal traveling wave 

ratio, TWR𝜇 , with respect to the loudspeakers’ amplitude ratio and phase shift can be computed 

from the analytical model based on Eq. (16). Since the uncertainties in the model parameters will 

affect the TWR derivatives as well, instead of using the exact derivatives, several approximations 

are considered.  

 To guarantee the stability of all approximations and ensure that the loudspeaker amplitude will 

not diverge rapidly, a periodic extension of the control parameters is suggested. The extension is 

made plausible since, as is seen in Fig 2, the TWR is a surjective mapping, i.e., TWR∈(0,1), 

inside the bounded squared parameter domain Ar∈(0.5,2)×Δφ∈(0,𝜋).  Thus, a periodic extension 

of the parameter’s region is available by the introduction of a shift operator and modulo 

arithmetic: 
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 ( ) ( )0.5 , mod ,1.5 , mod ,r r r rA A A A   = +   =   =  .  (20) 

By introducing the periodic extension of the controlled parameters, the adaptation law stability is 

guaranteed. Only the convergence of the chosen law should be considered by tuning the adaptation 

gains and adaptation times (which may differ).  The adaptation-laws of Eq. (19) remains the same 

under the periodic extension of Eq. (20), with the only change being 𝐴𝑟 → Δ𝐴𝑟 : 
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. (21)  

 When backward going waves are required, the almost symmetrical behavior when changing 

roles between the reference and controlled loudspeakers (for similar loudspeakers, 𝑍0 ≅ 𝑍𝐿), is 

utilized. The output phase shift of the adaptation law is negated by multiplying: Δ𝜑𝑜𝑢𝑡 = Δ𝜑 ⋅

dir𝑟𝑒𝑓; and the amplitude ratio is inverted around the 𝐴𝑟 = 1 axis by taking the power 

 𝐴𝑟,𝑜𝑢𝑡 = 𝐴𝑟

dir𝑟𝑒𝑓
, before feeding them to the system. Doing so will ensure that the obtained TWR 

will be similar to that of the forward traveling wave before the inversion and phase shifting. 

 

 



19 

 

 

Fig 5. Adaptation-law block diagram. × denotes multiplication, modx denotes the modulo x 

function, powx denotes the input power to the x, dir is the required reference direction of 

propagation, and z-1 denotes the unit-step delay element. The TWR block represents the mapping 

between the loudspeaker’s amplitude ratio and phase shift to the modal traveling wave ratio. 

 The adaptation law is presented in Fig 5, where the gradient approximation sub-system in this 

work is considered either one of the three possibilities discussed in the following sub-sections: 

the finite-difference, the extremum seeking, and the zero-order approximations. 

1. Finite-difference approximation 

 The finite-difference approximation assumes that the two control parameters mutual effect is 

negligible. Therefore, the derivative with respect to each of the parameters may be written using 

a backward finite difference as: 
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where 𝜉 denote the control parameter, either 𝐴𝑟 or Δ𝜑, 0 < 𝜀 ≪ 1  is introduced to ensure 

numerical stability and is chosen to be around the machine precision, and 𝑎 ≪ 1 is used to 

jumpstart and avoid undesired local roots of the gradient surface.  The approximated derivative is 

passed via a saturation function to maintain reasonable smoothness similar to the one observed in 

Fig 2. 

2. Extremum seeking  

 By modulating each control parameter with a small amplitude oscillation around its nominal 

value, one may write the TWR as: 

 ( )1 1 2 2TWR sin , sinrA a t a t  +  + . (23) 

Since the input is periodic, one may expand the TWR using its Fourier series: 

 0 , 1 , 1 , 2 , 2

1 1

TWR TWR sin cos sin coss n c n s m c m

n m

a n t a n t b m t b m t   
 

= =

= + + + +  . (24) 

The constant TWR0 is removed by passing the measured TWR via a high-pass filter (HPF). Then, 

by multiplying the results with the modulation function 2sinω1t, and passing it via a low-pass 

filter (LPF) results in 
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,(25) 

where the last equality is valid as long as the LPF bandpass is set lower min
𝑚=0,1,… 

|𝑚𝜔2 − 𝜔1|. 

Similarly, one may extract 𝑏𝑠,1 by multiplying with the second modulation function 2sin𝜔2𝑡. In 
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addition, considering the Taylor expansion of the TWR with respect to the two parameters, it 

follows: 

( ) ( )1 1 2 2 1 1 2 2

TWR TWR
TWR sin , sin TWR , sin sinr r
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A a t a t A a t a t
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(26) 

By equating Eq. (25) and (26), it follows that 
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, (27) 

which is visualized by the block diagram given in Fig 6. 

 

Fig 6. Extremum seeking approximation for partial derivatives of the TWR with respect to the 

control parameters. 

 Therefore, by introducing the modulation function and the described signal processing, the 

partial derivatives of the modal traveling wave are approximated. 
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3. Zero-order approximation  

 From the definition of the traveling wave ratio, an intrinsic property is that its derivative at 

TWR=0 is zero. By deriving the series approximation of the TWR around TWR = 0 and assuming 

a lossless and delay-free system, meaning the pure traveling wave are obtained at 𝐴𝑟 = 1, and  

Δ𝜑 = −𝑘𝐿 . The linear approximations of the derivatives under these assumptions are     
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 (28)  

where 𝐶1 and 𝐶2 depends on the loudspeaker’s properties, the tube length, and the modal 

wavenumber, which are constant with respect to the adaptation law. Note that by taking the zero-

order approximation, the TWR derivatives have a constant sign. The convergence, in this case, is 

made plausible due to the periodic extension of the control parameter’s region. This feature of the 

adaptation law will be discussed based on the numerical simulation results presented in the next 

section.  

4. Simulation result 

 Using the TWR expression given in Eq. (14), and based on the adaptive control law block 

diagram of Fig 5, a Simulink© simulation was created to validate the control law and find an initial 

guess to the adaptation gains (𝜅′𝑠). The simulation was done in discrete timesteps. The reference 

TWR was changed every 1000 steps, the reference propagation direction was changed every 

10000 steps, and the error dead-zone was set to ±0.002. The amplitude ratio adaptation gain was 

set to 𝜅𝐴𝑟
= 0.5, and the phase shift adaptation gain to 𝜅Δ𝜑 = 0.1. Initial values were taken for 

the case of perfect wavetube and pure traveling wave, for which the loudspeakers are lossless, 

meaning that  𝐴𝑟 = 1 → Δ𝐴𝑟
(0)

= 0.5, and to match the propagation phase the phase shift is 
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Δ𝜑(0) = 𝜔𝐿/𝑐f. For the Extremum seeking the modulation frequencies were chosen to be 𝜔1 =

2𝜋/30 (rad/sample), and 𝜔2 = 2𝜋/25 (rad/sample) respectively, the HPF was done using the 

Simulink’s© DC Blocker, and the LPF was realized using resettable integral filter, which was 

initialized at each change of the reference TWR. 

 

Fig 7. Simulation results of the proposed adaptive control when the TWR gradient is estimated 

via the finite difference approximation. Dashed line (black) – Reference TWR and dir.  

Solid line (blue) – Simulation outputs. 

The simulation results when the TWR gradient is estimated using the finite difference 

approximation are shown in Fig 7. It is noted that for most reference TWR, the control algorithm 

converges in a reasonable number of steps. Moreover, when the dir reference is changed, 

convergence is almost immediately. Finally, when the reference TWR is small, convergence is not 

guaranteed. The latter can be improved by decreasing the adaptation gains’ values at the trade-off 
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of slower convergence. The analysis and simulation shown here are for perfect measurements, 

i.e., no noise is added. The finite derivative approximation is highly sensitive when considerable 

measurement noise is present.  

 

 

Fig 8. Simulation results of the proposed adaptive control when the TWR gradient is estimated 

using the Extremum seeking. Dashed line (black) – Reference TWR and dir.  

Solid line (blue) – Simulation outputs. 

The simulation results when the TWR gradient is estimated via the extremum seeking 

algorithm are shown in Fig 8. It is noted that the convergence time and the control parameters’ 

smoothness are better than those obtained using the finite derivative approximation (Fig 7). When 

the reference TWR is either near zero or one, the TWR does not necessarily converge. However, 

it can be seen that for half of these cases, the control has converged to the desired TWR. Unlike 
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the finite difference approximation, the Extremum seeking implementation is not straightforward. 

There is a need to tune the modulation frequencies, design and implement the HPF and LPF and 

ensure their convergence. Suppose some of the system parameters will change over time. In that 

case, it is not guaranteed that the initial controller design will be robust. 

 

Fig 9. Simulation results of the proposed adaptive control when the TWR gradient is estimated 

via the zero-order approximation. Dashed line (black) – Reference TWR and dir.  

Solid line (blue) – Simulation outputs. 

The simulation results when the TWR gradient was estimated via the zero-order 

approximation are shown in Fig 9. It is noted that convergence time is comparable with that of 

the Extremum seeking. The obtained amplitude ratio is more oscillatory than the one obtained 

from the Extremum seeking. This is since the gradient sign is constant. However, the phase shift 

seems to behave similarly. The control, in this case, was able to converge to all the desired 
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reference values, even for values near zero or one. The advantage of the zero-order approximation 

over the Extremum seeking is that there is no need to design any additional filters. When 

compared to the finite difference approximation, the zero-order approximation performance is 

better. Moreover, the adaptation for the zero-order approximation is memoryless, rendering it less 

sensitive to measurement noise. 

Based on these results, it was decided to use the zero-order approximation to estimate the 

TWR gradient. The adaptive feedforward block diagram for this case is shown in Fig 10. In the 

next section, the adaptive estimation of the TWR from the pressure measurements will be portrait.  

 

Fig 10. Adaptive control-law block diagram based on the zero-order approximation of the TWR 

gradient. × denotes multiplication, modx denotes the modulo x function, powx denotes the input 

power to the x, the ± is chosen by the desired direction, and z-1 denotes the unit delay element. 

The TWR is being estimated adaptively using the MC-LMS algorithm described in Section III.B.  
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B. ADAPTIVE ESTIMATION – MULTICHANNEL LEAST-MEAN-SQUARES MODEL 

 Since the traveling wave ratio, which is the input to the adaptation law, is not a measurable 

signal, an adaptive estimation is used. In previous work11, different algorithms for the recursive 

real-time identification of 𝐰 where discussed. It has been concluded that the MC-LMS39 has the 

advantage of ease-of-implementation over the longer convergence-time when compared to the 

other recursive methods in the presence of measurement noise. Therefore, the MC-LMS was 

employed in the current effort to control the TWR as the wave decomposition algorithm. The MC-

LMS is implemented on the FPGA using the block diagram presented in Fig 11. Note that only 

multiplications and additions are needed to execute the recursive law; this is the LMS method's 

main advantage. 

The modal wavenumbers (𝑘𝜇) and their modal phase velocities (cp,μ=ω/kμ) of the air-filled 

impedance tube used in this experimental setup (shown in Fig 14 in the Appendix), were identified 

previously6 using the two-actuators phase-perturbations method as a function of the excitation 

frequency. The identified dispersion relation is shown in Fig 12; note that five modes were 

identified at the frequency band of interest. Out of the five modes, three were included in the 

reduced-order model, based on the result of a model-order L-curve regularization test11 done on 

the air-filled tube. The modes used in the current identification procedure are the first (𝑛 = 0, 𝑚 =

1) and second (𝑛 = 0, 𝑚 = 2) axisymmetric modes, and the first flexural (𝑛 = ±1, 𝑚 = 1) mode. 
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Fig 11. MC-LMS block-diagram, 𝑘𝜇 denotes the modal wavenumbers, 𝜔 the excitation frequency, 

𝒙 the microphone axial location vector, 𝑡𝑟 = 𝑟𝑡𝑠 stands for the 𝑟th sampled time, pr is the measured 

pressure vector at time tr, 𝐡𝜇  is the vector function defined in Eq. (7). × and 𝑇 denote the vector 

multiplication and real transpose operators, respectively. z−1 denotes the unit-delay element, 𝜅𝑒 

is the adaptive estimation gain coefficient, 𝐞𝑟 the estimated error vector, and 

𝐰𝑟
𝑇 = [𝐰1

𝑇 ⋯ 𝐰𝑁
𝑇 ] is the weight vector at the sampled time 𝑡𝑟. 

 

Fig 12. Identified dispersion curves of the PMMA air-filled impedance tube using the two-actuator 

phase-perturbations method, c0 denotes the intrinsic speed of sound in air.  

Legend: solid line (red) – first axisymmetric mode; diamond markers (blue)– second 
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axisymmetric mode; square markers (green), circle markers (teal),  

and triangular markers (purple) – flexural modes.     

Using the previously introduced MC-LMS method on the impedance tube (shown in Fig 14 

in the Appendix), the TWRn of all dominant modes were identified for a prescribed grid of 

amplitude gains (Ar) and phase shifts (Δφ) at an excitation frequency of 1500 Hz. The first 

axisymmetric mode’s identified TWR1 contour is shown in Fig 13. 

 

Fig 13. Identified TWR1 contour plot. Obtained from the experimentally measured data for a 

prescribed grid of amplitude ratios (𝐴𝑟) and phase shifts (Δ𝜑) applied to the air-filled impedance 

tube. Identified from the MC-LMS method at an excitation frequency of 1500 Hz.  

Note that the experimentally identified contour of Fig 13 is similar to that of the analytical 

model (Fig 2), even though not all of the system’s dynamic was modeled. 
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Since the TWR is a steady-state phenomenon, the closed-loop control sample rate is reduced 

to be of a similar order to that of the steady-state convergence-time of the TWR, which was 

identified experimentally to be about 0.2 seconds at 1500 Hz. The two decoupled closed-loop 

control block diagrams are depicted in Fig 10. 

IV. EXPERIMENTAL RESULTS AND DISCUSSION 

 

Fig 14. A photograph of the air-filled impedance tube was used in the experiment study case. 

A photo of the system used for the experimental study of the suggested control schematic is 

shown in Fig. 14. An air-filled thin plastic (PMMA) tube of a circular cross-section was used as 

the waveguide under investigation. Two 3", 4 , and 60 W Dayton Audio© PC83-4 loudspeakers 

are connected on each tube’s ends. Eleven 9.7 mm diameter omnidirectional Adafruit© Max9814 

microphones are located along the tube axis. The microphones are placed at the tube’s inner 

diameter at a constant azimuthal angle. The signal-processing flow diagram used to implement 

the control schematic presented in Fig 10 is shown in Fig 15.  
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Fig 15. The flow diagram of the signal-processing layout. 

The measurements are conducted using two DS5203 FPGA boards with sixteen 10 MHz and 

15 bits analog to digital converter channels. The adaptive estimation used for the wave 

decomposition is implemented on the FPGA and runs at a fast rate. The estimated waves’ modal 

amplitudes are transmitted to the dSPACE© DS1005 computational node with a sampling 

frequency of 1000 Hz and 32 bits communication channels. The modal TWR computation and 

the adaptive control-law are implemented using the DS1005 computation node, which sends the 

required loudspeakers amplitude ratio and phase shift to the FPGA. The loudspeakers are driven 

using two 10 MHz and 15 bits digital to analog channels of the FPGA and two analog current 

amplifiers introduced to eliminate the loudspeaker electrical impedance coupling the acoustic 

field. 

The MC-LMS adaptive estimation algorithm was implemented on the DS5203 FPGA at 0.5 

MHz sample frequency. The identified weight vector of Eq. (13). is transmitted to the DS1005 

computation node controller. The suggested adaptive control law was implemented on the DS1005 

at a 2 Hz sample frequency. Both the control parameters Ar and Δφ are transmitted back to the 
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FPGA. The two loudspeaker excitation signals are generated by the FPGA and are transmitted via 

the current amplifiers.  

The first set of experiments introduced a reference signal composed of several different 

constant values of the TWRref at excitation frequency 1500 Hz. This frequency was used to 

identify the TWR1 contour shown in Fig 16, and on its basis, the control law was developed. The 

adaptive control reference tracking result is shown in Fig 16. The microphones measured signals 

and complex amplitude with and without modal decomposition are presented in Fig 17.  

 

Fig 16. Measured TWR1 from the adaptive control reference tracking experiment at an excitation 

frequency of 1500 Hz. Solid line – Measured TWR1. Dashed line – Reference TWR1. 
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Fig 17. Measured adaptive control reference tracking at an excitation frequency of 1500 Hz.  

(a) – Microphones’ measured signal at TWRref=0.1. (b) – Microphones’ complex amplitudes and 

complex modal amplitudes at TWRref=0.1. (c) – Second and Third modes complex amplitudes at 

TWRref=0.1.  

(d) – Microphones’ measured signal at TWRref=0.9. (e) – Microphones’ complex amplitudes and 

complex modal amplitudes at TWRref=0.9. (f) – Second and Third modes complex amplitudes at 

TWRref=0.9. 

The reference tracking result presented in Fig 16 demonstrates the suggested method's 

capability to successfully manipulate the modal wave as desired by achieving the required modal 

TWR. The time-series measurements at steady state for TWRref=0.1 and TWRref=0.9 are presented 

in Fig 17(a) and Fig 17(d). Fig 17(a) shows that all microphone signals have similar amplitudes 

and that their phases differ proportionally to their location, suggesting that the waves are of a 

traveling nature. Contrary, in Fig 17(d), the microphone signals are in similar phases, and that 

their amplitudes differ, suggesting that the waves are almost of pure standing nature.  

The same behavior can be analyzed by inspecting the microphone complex amplitudes, as 

shown in Fig 17(b) and  Fig 17(e). The black diamond markers stand for the complex amplitudes 

of each microphone. By looking at the geometric structure, it can be seen that in Fig 17(b), the 

complex amplitudes form a circle-like shape, which suggests that the waves are of a more 

traveling nature; moreover, the complex amplitudes of Fig 17(e) take the form of a cigar-like 

ellipse indicating that the waves are of more standing nature. A more profound understanding of 

the wave’s nature is made by inspecting each mode's complex amplitudes shown in Fig 17(b) and 

Fig 17(e) in the blue square, red triangle, and magenta circle markers for the first, second, and 
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third modes, respectively. In the case where the control reference was set to TWRref=0.1, the first 

mode’s complex amplitude forms a circle-like shape, which indicates its traveling wave nature13. 

Moreover, both the second and third complex modal amplitudes (Fig 17(c)) form ellipses 

suggesting their mixed traveling and standing waves. By inspecting the two ellipses, it is 

concluded that the second mode is of a more standing-wave nature while the third mode is of a 

more traveling-wave nature.  

Similar observations can be made for the case where the control reference was set to 

TWRref=0.9. The first mode complex amplitudes form a cigar-like ellipse, which indicates its 

standing-wave nature. Moreover, in this case, the third mode complex amplitudes (Fig 17(e) 

magenta circle markers) form a straight line suggesting an almost pure-standing wave. In contrast, 

the second mode complex amplitudes (Fig 17 (e) red triangle markers) form a cigar-like ellipse 

indicating a mixture of traveling-standing-waves where the standing wave is dominant. These 

observations can be quantified using the modal TWR, computed based on each ellipse curve 

fitting13. 

The results presented in Fig 16 and Fig 17 verify the assumptions used during the control’s 

development at the 1500 Hz excitation frequency. To ensure that the assumptions held at different 

frequencies, a similar set of reference step tracking experiments were repeated at the excitation 

frequencies of 1000, 2000, 2500, and 3000 Hz. The modal wavenumbers were updated at each 

frequency according to the identified dispersion relation presented in Fig 12. 
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Fig 18. Measured TWR1 from the adaptive control reference tracking experiments at different 

excitation frequencies: (a) – 1000 Hz, (b) – 2000 Hz, (c) – 2500 Hz, and (d) – 3000 Hz. 

Solid line – Measured TWR1. Dashed line – Reference TWR1. 

The reference tracking results are shown in Fig 18. At all frequencies, the suggested control 

schematic results in a desirable steady-state error between the TWRref and TWR1 and a fast 

convergence time compared to the transient waves’ settling time. Some jitter is observed in the 

steady-state response; this becomes more visible at higher frequencies. The jitter may be removed 

by updating the controller time or gains at the higher amplitudes or using a more sophisticated 

version of control parameters updating such as the leaky-LMS44.  

Based on the model-based control results, it is concluded that the suggested control can be 

implemented on impedance tubes to increase the excited modal amplitudes’ variability. By relying 

on this control schematic, one can set the modal TWR ratio obtained at each measurement and 

ensure that the acoustic parameter identification procedure will be well-conditioned. 
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V. CONCLUSIONS 

In this work, an adaptive control method capable of controlling waves along elastic wavetube 

was developed. The capability to control the modal wave dynamics in an air-filled impedance 

tube using the suggested impedance control schematic has been demonstrated numerically and 

experimentally. The developed control method is composed of an observer-based controller. The 

observer estimates the modal TWR by employing the recursive MC-LMS model-based method. 

The tracking error-function norm is minimized using an adaptive gradient-descend 

approximation. The control strategy allows one to manipulate a chosen mode’s dynamics at will 

while ensuring that the controlled parameters remain bounded by introducing a periodic extension 

of a predetermined parameter region. In addition, since the system is stable in the parametrized 

region, closed-loop stability is ensured.  

Different methods to approximate the modal traveling wave ratio gradient were compared 

based on a numerical simulation. It was found that a zero-order approximation is comparable to 

both the finite difference approximation and the optimum seeking perturbation.   

Being able to control the standing and traveling proportions of the pressure waves, one can 

overcome imperfections in the experimental system so that the impedance of a tested target can 

be accurately derived. Furthermore, the control algorithm can be adjusted for any frequency in a 

chosen region, despite the presence of multiple modes exhibiting dispersive behavior. 
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