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Abstract

Extraction of material parameters from full-field measurements is an in-
creasingly important part of experimental mechanics. Due to development
of full-field techniques, such as digital image correlation, new types of me-
chanical tests are being developed that lead to a more efficient investigation
of materials behaviour. One of the popular techniques for the extraction of
material parameters from full-field measurements is the virtual fields method.

The virtual fields method is centred around a concept of virtual fields,
which are spatial functions that act as a filter for experimental measurements
during the identification procedure. The choice of appropriate virtual fields is
crucial for tackling the problems of experimental noise and complex structure
of the data obtained in an experiment.

This project explores a new type of virtual fields, designed to improve the
identification of material parameters for non-linear material models with the
virtual fields method. The proposed virtual fields are based on the sensitivity
of the reconstructed stress field to the values of material parameters allowing
them to be automatically generated during the identification. They can be
used with any test geometry and material model, which constitutes a very
general method that is easily applicable to many static and dynamic tests.

In this thesis, the development and testing of the sensitivity-based fields
are presented. The method was applied to the identification of material pa-
rameters in the context of metal plasticity, in particular, small deformation
isotropic plasticity and large deformation anisotropic plasticity. The vali-
dation was performed using a series of numerical and experimental tests; a
significant improvement was found in terms of the accuracy of identification
compared to the standard user-defined virtual used in previous studies.
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Chapter 1

Introduction

Over the last few decades the design process transitioned from using analytical
models and more extensive use of prototypes to advanced numerical modelling of
whole engineering systems. Given the improvements in computational performance
and accessibility to modelling software it is now possible to predict behaviour of
structures involving complicated mechanical phenomena such as yielding, fracture,
fatigue and many more. One of the challenges in numerical modelling is choosing
an appropriate material model, called a constitutive law, that accurately describes
the response of real materials.

Material models can range from simple, such as linear elasticity, to very complex
multi-scale models that include anisotropy of properties, damage, fatigue or plastic
deformation. In reality, no model describes the behaviour of a material perfectly,
and so the goal is to approximate it as closely as possible. Hundreds of constitutive
models have been already proposed, and it is likely further refinements will be nec-
essary to make modelling more accurate. Often, complex models involve as many
as tens of parameters which need to be provided by the investigator. With so many
different models and materials, availability of correct parameters is often limited due
to lack of data in literature.

The inevitable step in modelling is calibration of material models to experimen-
tal data to validate the simulations and increase their accuracy. Calibration usually
consists of conducting multiple simple experiments, such as uni-axial tensile tests.
In these tests, closed-form solutions are known and can be used to calculate mate-
rial parameters explicitly. The availability of closed-form solutions is a very strict
assumption and only simple loading conditions can be used. To improve the under-
standing of material behaviour multiple experimental techniques have been proposed
to introduce multi-axial loading within the specimen, yet maintaining closed-form
solutions. Among the most prominent are plane bi-axial, the Brazilian disc or bulge
tests. They can be used to explore more complex states of stress, but are still limited
to only a few measurement points from strain gauges and extensometers.

A major breakthrough in experimental mechanics came with development of
full-field techniques. These methods are based on optical measurements of the kine-
matics of the test specimen, allowing much richer data to be collected from large
portions of the test pieces. The major advantage of full-field measurements is that
they enable removal of some assumptions regarding strain and stress distributions
within the specimen, as the deformation field is directly measured during the ex-
periment. Moreover, the material no longer needs to be homogeneous allowing
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investigation of a range of complex materials, such as welds, more freely.

Most of the methods for measuring deformation full-field are based on a con-
cept of tracking deformation of a pattern during the experiment. The images of the
pattern are taken with charge-coupled device (CCD) cameras in the reference (usu-
ally unloaded) and deformed configurations. The pictures are then used to obtain
displacement and strain fields at the surface of the specimen. The number of data
points obtained depends on the spatial resolution of the images. However, in most
of applications a few thousands data points are collected from a single image.

The most prominent technique for measuring deformation at the surface is
digital image correlation (DIC) [1,2]. It is based on tracking a random pattern of
white and black speckles between pictures taken in the reference and deformed states.
The accuracy of the measurements is sub-pixel allowing to measure displacements
of the order of 0.01 pixel size.

Another interesting white-light technique is the grid method (GM) [3]. The
principle of the method is similar to that used in DIC, however the random pattern
is replaced with a regular pattern of black lines on a white contrast, forming a grid
used to measure displacements and strains. Although the regular pattern is more
difficult to obtain in practice, the method provides higher spatial resolution than
DIC and can offer a significant improvement when the measured displacements are
small and /or gradients high.

Introduction of full-field measurements into experimental mechanics has en-
abled the design of new advanced tests. By discarding assumptions on the stress
and strain distributions, innovative geometries can be used to investigate material
behaviour under complex loading. Potentially, these new tests can be designed to be
capable of identifying many material parameters at once, compared to the standard
approach (one parameter at a time). A classical example would be characterisation
of strain-rate dependent materials; it is possible to design a test geometry such that
it induces a range of strain rates, e.g. from quasi-static to dynamic values: 1075
10° s7* [4]. Thus, a strain-rate dependent model can be identified from a single test,
as opposed to the standard approach of conducting multiple simple tests at different
loading rates. Additionally, full-field measurements provide thousands of indepen-
dent data points representing hundreds of different stress/strain states, which can
be used to understand the response of materials more completely.

Full-field measurements provide rich, but complex, data. Designing advanced
tests gives an opportunity to capture whole range of material responses, however
since the test geometry is unrestricted, the analysis of experimental results is much
more complex. Since the stress cannot be measured directly with the full-field
techniques, there are no analytical tools to link stresses in the test to the measured
strains. As a result, identification of material properties becomes a complex problem.
The procedure in almost all cases relies on building an error function (cost function)
which depends on the material parameters and the measurements. The identification
of material properties becomes an inverse problem, where the input (experimental
set-up) and the output (kinematic fields) are known, however the model (material
parameters) is not. Solving this problem is a challenging task.

Since the early 1990s many novel techniques have been proposed for extract-
ing material parameters from full-field measurements. Some of them, such as finite
element model updating (FEMU), the equilibrium gap method (EGM), the consti-
tutive equation gap method (CEGM) or the virtual fields method (VFM) are briefly
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summarized in [5]. The methods have been applied to characterize a wide range of
materials including: metals [6], composites [7], concrete [8], rubber [9] and biological
tissues [10].

The two most popular methods used to identify material models from full-field
measurements are FEMU and the VEM [11]. The former is based on finding material
parameters such that the corresponding finite element model of the experimental set-
up matches the full-field data. The latter is based on the principle of virtual work,
i.e. the parameters are chosen so that the stresses corresponding to the measured
strains are in balance with the external loading measured in the experiment. Each
method has its own merits and limitations, but the major advantage of the VFM
over FEMU is its computational efficiency, in addition to the mechanism by which
the experimental boundary conditions are included in the process.

The central element of the VEM are the so-called virtual fields (VFs). These
are functions that act as a spatial filter on the data, i.e. assign weights to data
points. The VFs are capable of filtering out redundant points that do not carry any
information but noise, and to focus on areas rich in information to obtain the signal
more effectively. This property of VFs is crucial when non-linear material models
are considered. Often, the information about a particular parameter is available
only in a part of the test piece. To identify this parameter VFs should focus on the
areas where the signal is present, otherwise the information can be masked by noise.
For the non-linear VFM choosing appropriate VF's is still an open problem.

Typically, VFs are selected from a set of well-defined mathematical formulas
such as polynomials or sine functions. This approach was one of the first to be
used with the VFM and was demonstrated to be successful in the case of linear
elasticity as well as with non-linear models. Since there is an infinite number of
valid fields, the investigator must be proficient in defining VF's to ensure accurate
identification of material parameters. Moreover, VFs usually have to satisfy some
virtual boundary conditions which differ from test to test and need to be included
in the process.

As both the experiments and models become more complex, choosing VFs
manually becomes a very challenging task. There is a strong need for an automated
method for constructing dynamic virtual fields (i.e. time-dependent) that can adjust
to the geometry of a test, suit all material models and trace the evolution of the signal
with time. This is especially important for reducing the number of experiments
needed for complete characterisation of material models. Improving VFs could have
a significant impact on the scientific community, as more complex tests could be
considered (due to better processing of the experimental data), resulting in a more
accurate identification of parameters.

This thesis explores a new method for generating high quality virtual fields.
The new type of VFs, called the sensitivity-based virtual fields (SBVFs), are based
on the idea that the information about each parameter can be identified by analysing
sensitivity of the reconstructed stress field to the value of the parameter. As a result,
separate VF's are constructed - one for each parameter - facilitating identification of
material models from experimental measurements.

The proposed SBVFs have many advantages, but their main strength is the
ability to identify where the signal corresponding to each parameter is. They are
not built upon any assumption about the geometry of the test, loading or material,
thus constitute a generic technique applicable to many different experimental test
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configurations.

This thesis documents this work, and is organised in the following manner.
Chapter 2 presents the virtual fields theory and applications, with a particular
focus on the choice of virtual fields. It is followed by a brief discussion of digi-
tal image correlation. Chapter 3 presents the first step in developing new virtual
fields published in Computational Mechanics [12]. In this work the concept of the
sensitivity-based virtual fields was presented and they were tested in the case of
numerically simulated tensile test used to identify an elastoplastic material. Chap-
ter 4 is the extension of this work and it was published in International Journal of
Material Forming [13]. There, the sensitivity-based virtual fields were extended to
the large deformation framework and applied to a numerical test in order to identify
properties of an anisotropic-plastic material. Chapter 5 contains the third and final
step in developing the new VF's and is intended to be submitted to Ezperimental
Mechanics (Springer). In the report the proposed method is validated experimen-
tally by identifying anisotropic properties of a cold-rolled sheet of DC04 steel alloy.
Finally, Section 6.1 summarizes the work presented in this thesis, and Section 6.2
outlines prospects for future work.



Chapter 2

Theory review and literature
survey

2.1 The virtual fields method

2.1.1 Overview

In this section the virtual fields method is reviewed. First, the theoretical back-
ground is presented, followed by a more detailed discussion about the linear and
the non-linear variants of the VFM. Different types of virtual fields are discussed in
order to set this project in the context of current state of the field. The state-of-the-
art applications of the non-linear VFM are presented, to show how general the VFM
is, but also to illustrate current limitations when choosing VF's for the non-linear
VFM. The chapter is concluded with a short review of different inverse techniques
used to extract material properties from full-field measurements in order to set the
method in a wider context.

2.1.2 Theoretical background

Inverse problems in general deal with identifying unknown causes, which might
be either an input or the system itself, from a known output [14]. A common
problem in mechanical testing corresponds to identifying the system (mechanical
model) from know input (applied loads) and output (kinematic fields). Usually,
a mathematical form of the system is known as it consists of principles such as
equilibrium equations, kinematic equations relating displacements to strains and
constitutive equations relating strains to stresses. In that case inverse problems
focus on identifying unknown constitutive parameters that define the material using
known effects of the imposed load.

The VFM is an inverse method for extracting material properties from full-field
measurements. The method is based on the principle of virtual work (PVW), which
expresses the equilibrium of forces within a body.

Any point within a solid body obeys a local equilibrium equation:

dive + b = pa, (2.1)

where div is the divergence operator with respect to the current configuration, o the
Cauchy stress tensor, b the body forces vector, p the density and a the acceleration
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vector. The equation applies to a fully 3D state of stress and deformation, however
the VFM is usually applied to thin, planar geometries. In the remainder of the
work, following convention will be used with respect to tensor components: in-plane
components will be denoted with numbers 1 and 2, the out-of-plane component will
be denoted with number 3.

The same principle can be expressed in a weak form, i.e. as an integral evaluated
over the whole body. The weak form of the local equilibrium equation is called the
principle of virtual work, and can be mathematically expressed as:

—/a:s*dV+/ t-u*d8V+/b-u*dV:/pa~u*dV (2.2)
A% ov v v

In this equation V is the volume of the body, 0V is the surface of the body where
traction is applied, t is the traction vector and u* is a test function called virtual
displacement. This function is assumed to be continuous and differentiable over the
whole body. Note that €* present in Eq. (2.2) is called virtual strain (or virtual
field) and is simply a spatial derivative of the virtual displacement function:

e = % [vu + vu*T} (2.3)

This definition holds, when small deformation is assumed. It should be stressed
that virtual displacements are not related to real displacements in any sense. Both
virtual displacements and strains do not have any physical interpretation, they are
simply test functions used to weight the stress field and formulate the weak form of
the equilibrium equation.

Often, in engineering applications it is reasonable to neglect body forces and so
the general form of the PVW for dynamics can be expressed as:

- / o:e"'dV +/ t-u'doV = / pa - u*dV (2.4)
v av v

Further simplification can be obtained when the inertia forces experienced by a body
are negligible. In that case, the static equilibrium can be expressed as:

—/a:s*dV+/ t-u'doV =0 (2.5)
\ oV

The principle of virtual work is useful for checking whether a stress distribution
is valid over the body. Assuming that the loading is known (traction term), a
predicted distribution of stress can be validated just by means of the principle of
virtual work. Practically, strains are measured over a region of the body, and are
used to reconstruct stress field by means of an assumed constitutive law. If the
material parameters used in the model are correct, the stress field satisfies the stress
equilibrium. Conversely, if incorrect parameters were are fed to the material model,
the calculated stress field does not satisfy the equilibrium, thus violates the PVW.
This principle is used in the VFM to identify material parameters.

The PVW and VFM are formulated in 3D, but often kinematic data can
only be measured at the surface of a material. To overcome this problem, usu-
ally flat specimens are used. If a flat sample is sufficiently thin (thickness much
smaller compared to the other dimensions of the specimen), the plane stress condi-
tion can be assumed, under which the out-of-plane stress components are negligible
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(013 = 093 = 033 = 031 = 033 = 0). What follows is that the stress state across
the thickness remains constant, and surface measurements are sufficient to identify
material parameters. Since the stress state is constant across the thickness, Eq. (2.5)
can be simplified to:

—h/a':s*dS—l—h/t-u*dGS:O, (2.6)
S oS

where h is the thickness of the specimen, S the surface and OS is the traction
boundary. Moreover, both the stress tensor

011 012
o’ =
012 022

and the virtual strain

Y

5* — |:€§1 512
€12 €99
can be represented with the in-plane components only.
Full-field measurements are characterised by a large density of data points.
As a result, the variation of stress within a data point is negligible. It is therefore
justifiable to transform the integral of the stress field (often called the internal virtual
work) from Eq. (2.6) into a discrete sum:

nPoints

Wi’;t:/a:s*dS: Y ot:ens, (2.7)
s i=1

where nPoints is the number of data points, index ¢ refers to the individual data
point and S’ is an area corresponding to the data point.

The strain field can be obtained using kinematic data measured with techniques
such as DIC or GM by means of a constitutive law and initially unknown set of
material parameters. The idea behind the VFM is to find a set of parameters
that produces a stress field satisfying Eq. (2.6). Although in this work the VEM
is applied under plane stress conditions, it has been applied under different set of
kinematic assumptions, such as for bending and using 3D kinematic data [7,15-17].
Recently, Rossi et al. proposed a method for reconstructing 3D displacement fields
from stereo-DIC measurements at two opposite faces of the specimen using Bézier
curves. This approach can be used to apply the VFM when plane stress assumption
is no longer valid, such as during and after necking in ductile materials [18].

Virtual fields serve an important role in the VFM. As they act as a spatial
weighting function on the stress field, their objective is to filter the data, reducing
the impact of experimental noise as much as possible and enhancing the signal from
relevant parts of the specimen to increase the accuracy of identification. Since the
only assumptions imposed on the virtual displacements is that they are continuous
and differentiable, it follows that there is an infinite number of valid fields to choose
from. As aresult there is a strong need for techniques that help selecting appropriate
virtual fields effectively, improving the identification procedure in the process.

Initially, the VFM was applied to quasi-static linear elasticity problems, to
identify parameters such as Young’s modulus or Poisson’s ratio. Later, the method
was extended to any non-linear model both in statics and dynamics. Since the
procedures for identifying material parameters differ considerably for the two cases,
the VFM can be characterised either as the linear VFM (linear constitutive models),
or the non-linear VFM (all others).
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2.1.3 Linear virtual fields method

Linear elasticity is one of the simplest model that a material can be described
with. It is characterised with stiffness parameters, such as Young’s modulus or
shear modulus, but also with cross-directional interaction effects expressed in terms
of Poisson’s ratio. Depending on the complexity of the material, the model can be
isotropic (behave the same in all directions), orthotropic (material properties aligned
with an orthogonal set of axes) or anisotropic (different in all directions).

The constitutive relationship is called Hooke’s law and relates strains to stresses.
In the case of plane stress isotropic elasticity, the equation is usually expressed as:

011 Qll Q12 0 €11
022 = Qzl Q22 0 €22 (2-8)
019 0 0 Q33 25127
where:
FE
Qi = Qa2 = 1_ .2
Ev
Q12 = Qun =vQn = 1 B
—v
Qi1 — Q12

Q33 = 2

The elastic constants - Young’s modulus, £, and Poisson’s ratio, v, are to be iden-
tified. The parameters can be obtained either with standard techniques, or inverse
techniques such as the linear VFM.

Traditionally, Young’s modulus is measured in a uni-axial test and computed as
the slope of the resulting stress-strain curve. Strain is measured with a strain gauge
and stress is obtained from the resultant force measured with a load cell divided by
the cross-section area. The Poisson’s ratio is derived from the ratio of longitudinal
and transverse strains, also measured with the strain gauge. Although only one
experiment is needed to measure the stiffness of an isotropic material, in the case
of anisotropic materials several tests need to be performed along different loading
directions with respect to the material.

Provided that the test is well designed, the linear VFM is capable of identifying
all elastic properties with just a single experiment. This remark is true not only
for isotropic materials, but for anisotropic as well. This is a clear advantage of the
VFM over standard testing procedures as it reduces the experimental effort involved
in calibrating material models. The principles of the method are outlined here, with
a focus on the isotropic elasticity. The method however is valid for elasticity in
general and the only difference is in the number of parameters to identify.

When isotropic Hooke’s Law (Eq. (2.8)) is applied to Eq. (2.6), the resulting
equation reads:

/Q11€11€>{1ds + /Q11522€;2ds + /Qm (€11659 + €20671) dS +
S S S

- (2.9)
+ / Mewa;zdsz / t - u*dos
S oS

2
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As both the real strains, e, the resultant force, Feed = [ tddS!, are measured in
the experiment and the virtual fields, €*, are chosen, the only unknown quantities
in this equation are the two stiffness coefficients, namely: Q11, Q12.

The PVW is valid for any continuous and differentiable virtual displacement
field, thus applying any two different, linearly independent, virtual fields to Eq. (2.9)
yields two a system of independent linear equations. Solving the system results in
the identified coefficients ()17 and ()12 which can be then used to obtain E and v.
The system of equations can be written in a general form using matrix notation:

AQ =T, (2.10)
where:

fs 5115’1?) + 62252(21) + %5125{%1) ds fs 511€;§1) + 62251((11) — %5125’{51) ds

A —
fS 8115152) + 82282%2) + %8128?&2) dS fS €11€;§2) + 822&';52) — %81281(52) dS
_ |@n
@= {le
T — Jos tu M dos
Jog tu*@dos

The same general reasoning can be extended to orthotropy, where four independent
VFs are needed to calculate four stiffness parameters, or anisotropy with six VF's
needed to determine the stiffness of a material.

Since the integrals are replaced with discrete sums as shown in Eq. (2.7), the
method is straightforward and suitable for a computer implementation. By solving
a simple system of equation, two stiffness coefficients are found which can be later
used to calculate Young’s modulus and Poisson’s ratio.

Here, no particular form of virtual fields was assumed in order to present the
most general approach to the linear VFM. The selection of robust VFs is significant,
as it drives the error embedded in the identified coefficients. Many techniques have
been developed to provide noise-optimising virtual fields for the linear VFM, they
are discussed in Section 2.1.5.

The main advantage of the linear VEM over its main competitor - FEMU - is its
computational performance with respect to the time needed to obtain the solution.
As shown above, only a small system of linear equations has to be solved in order
to obtain the stiffness coefficients, as opposed to building and updating a large FE
model.

2.1.4 Non-linear virtual fields method

The procedure presented in Section 2.1.3 is valid only for constitutive models in
which stress depends linearly on measured strains. This assumption allowed to
replace the stress field from Eq. (2.6) with the measured strains and formulate a
linear equation with respect to the unknown parameters. In many cases, constitutive
models are much more complex and the relation between stress and strain is non-
linear. In models such as plasticity, visco-elasticity, hyperelasticity etc. the stress

IThis follows from the definition of the total force, and can be used in practice if u* is constant
across 0S
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cannot be replaced explicitly with the measured total strains and so the procedure
outlined for the linear VFM is not valid.

As the VFM simply expresses the equilibrium of forces it can be applied to
any non-linear model. The main difference in comparison to the linear VFM is
that parameters can no longer be obtained from a system of linear equations. An
alternative approach has to be adopted, where the stress field is calculated from the
measured strains with an unknown set of material parameters, using an assumed
constitutive law. The unknown set of parameters can be assumed a priori, but in
general it will not produce a stress field that satisfies the stress equilibrium. The
main idea behind the non-linear VFM is to find a set of parameters such that the
corresponding stress field satisfies the PVW in the best possible way.

Often, stress distribution changes with time and loading. This can be either
because of time dependence of the material (such as with viscous or strain-rate
sensitive materials), anisotropy induced by load and micro-structural rearrangement,
or because some permanent deformation is accumulated during the loading history
as in the case of plastic materials. As a result, kinematic data measured at different
times, or load levels, must be included in the identification procedure. This can be
achieved by investigating how much the PVW is violated at each time step. As a
result, the identification procedure becomes an iterative process, in which the error
in the PVW is minimised across all the time steps with respect to sought material
parameters.

For any time step, a residual (error) in the PVW can be written as:

r(t) = /o'(t) edS— [ (1) ut (2.11)
s 88

The residual depends on the sought parameters and the chosen virtual fields. If the

virtual displacements obey all the necessary assumptions, any choice is valid and

the residual will be mostly driven by the quality of material parameters guess. A

cost function can be defined, based on the residuals calculated at all load levels:

nVF | nTime (nPoints

bee=> | Y (Y 0 oeens) - [

2
t(t) - u® (t)d&S) :
i=1 | t=1 93

(2.12)
Where, &, is a vector of unknown parameters, nVF, nTime, nPoints are the numbers
of independent virtual fields, time steps (load levels) and data points respectively.
() is the i-th virtual field at the point j. The material parameters are identified
as those that minimize the cost function.

The non-linear VFM requires, but is not limited to, only one virtual field.
This field can vary from time step to time step in order to adapt to changes in
the stress field. Moreover, multiple virtual fields can be applied to condition the
optimisation problem and improve the stability of solution. The optimal choice of
virtual fields for the non-linear problems is still an open problem. Possible choices
found in the literature are presented in Section 2.1.5. The optimization is performed
with numerical algorithms such as those based on Newton method for unconstrained
optimization (no limitations on the search space). Constraints can be introduced
into the optimization problem reducing the search space for example by restricting
the parameters to be physically admissible, e.g. positive values for yield stress. In
that case more sophisticated algorithms such as sequential quadratic programming

J=1
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(SQP) can be used. The choice of the algorithm heavily depends on the problem
and available software. A review of the most commonly used algorithms and their
applications can be found in [19].

Clearly, from a computational perspective the non-linear VFM is much more
demanding than the linear counterpart. However, when compared to the FEMU
it still provides a significant computational improvement as no FEM computations
need to be performed to identify the parameters.

2.1.5 Selection of virtual fields

In the VFM, the selection of appropriate virtual fields is crucial. Since VFs spatially
filter stress data, they have a strong influence on the magnitude of both the random
and systematic errors. This is particularly important when high noise is present. In
that case, virtual fields should be chosen to minimise the corruption of parameters
due to noise.

An additional challenge for virtual fields is posed when a parameter is only
‘active’? within a small part of the specimen, or only during certain load steps.
In that case, the information about it can only be captured if the fields focus on
that particular regions in time and space. In fact, this is a significant challenge for
most of non-linear models for which parameters activity have a strong spatial and
temporal sensitivity. To identify models efficiently, the virtual fields should evolve
with the data and follow the information in the test. Practically, virtual fields can
be generated by a number of methods based on criteria such as minimisation of
noise influence in the case of elasticity, or location of information for the non-linear
models. In this section different types of virtual fields are reviewed, but firstly basic
assumptions are presented.

There are number of assumptions that virtual displacement fields have to obey.
The most important ones are that they are C° continuous and differentiable. Often,
an additional assumption is made of kinematic admissibility (KA). It means that
the virtual displacements satisfy certain virtual boundary conditions® over 9S. By
assuming null virtual displacements over 0S it is possible to discard the traction term
in Eq. (2.6), which is practical as the distribution of traction is generally unknown.
This assumption allows to apply the VEM to parts of the body, without knowing
the deformation over the entire domain. By removing the traction term it is possible
to discard the effects of the far-field enabling to use of the VFM even when data
is available only within an enclosed part of the body. Often, the assumption of
kinematic admissibility is relaxed. When a total load over S is known, (e.g. the
loading force measured in a uni-axial tensile test) it is possible to include the traction
term, provided that the virtual displacements are constant along that boundary. In
that case, the traction term (often referred to as external virtual work) can be
simplified:

W

EXT

.= h/ t-u*dodsS = hu* - / tdoS = u* - Flowd (2.13)
oS oS

The loading force can be measured during the experiment using a load cell. By in-

2Here, by ‘active’ it is meant that the parameter actively drives the response of the material
under present loading conditions

3virtual boundary conditions refer to the conditions that virtual displacements satisfy over
traction boundaries
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cluding the traction term in the identification procedure, the mathematical problem
of the VFM becomes much more stable with respect to noise, thus it is generally
desirable.

The final remark regarding virtual fields concerns the number of independent
virtual fields needed to characterize the material. The number of fields generally
depends on the type of the problem. As discussed earlier, in case of the linear VFM,
one independent virtual field is needed for each elastic parameter to produce the
necessary number of independent linear equations. This is not the case for the non-
linear VFM in which one virtual field is sufficient. However, more virtual fields can
be considered to improve the cost function leading to a more accurate solution.

2.1.5.1 User-defined virtual fields

The simplest method for selecting VFs is choosing an analytical function that obeys

virtual boundary conditions. The choice depends on the investigator and can heavily

affect the quality of identification. Among the popular choices are functions such
s [11]: shrinking/swelling in one of the directions:

ut = k’{lfl 5?1 =k
! g5, =0 (2.14)
12 =
a barrel-shaped function:
u; =0 ¢ =0
' e, =a(L—z) (2.15)
uh = a1 (L — x1)xg et = (L — 2)
12 =
or sine-based functions, e.g.:
* 2y
£} = cos
* L 5 2man 1 L
{u1 2 sin 222 e, =0 7 (2.16)
U, =
? el =0

where k is a constant, and L is usually a dimension of the region of interest (ROI) in
the x; direction. The first virtual field is especially popular in the non-linear VFM,
due to its simplicity and physical interpretation. Given the uniform virtual strain
field, the integral of stresses is proportional to the internal reaction force, thus the
VFM equation is simplified to the difference between the external loading and the
internal reaction in terms of the forces.

The second virtual field includes an additional stress component, which is im-
portant for heterogeneous strain fields. Practically it is not always beneficial to
include all of the stress components in the identification as some of them might
carry mostly noise and thus have an adverse effect on the accuracy. It can be caused
either by a very stiff response of the material due to a significant anisotropy of prop-
erties, or due to a loading that does not activate these components. In that case
it is reasonable to deliberately ignore the noise-carrying components and focus only
on the ones with information. Note that if the measured strain field is symmetric,
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one should not use anti-symmetric virtual fields as they would lead to trivialisation
of the PVW equation resulting in a large error due to numerical inaccuracy.

This method was the first type of virtual fields ever applied to the VFM and
so was extensively used in early publications. User-defined virtual fields (UDVFs)
require a significant input from the investigator, as a particular form of function
must be chosen. Considerable experience is required to formulate UDVF's that
tackle the experimental noise in an efficient way. As a result, new techniques have
been developed allowing to generate high quality VFs. This was mostly done for
the linear VFM and the UDVFs still remain the most commonly used VFs in the
non-linear VFM.

2.1.5.2 Virtual fields expanded over whole body

Often it is desirable to have virtual fields that obey some assumptions, but are not
explicitly expressed in terms of analytical functions. In that case they might be
expanded over the ROI using interpolants such as polynomials, harmonic or piece-
wise functions. One of the first reports on how virtual fields can be expanded over
the whole body using polynomial interpolants was due to Grédiac et al. [20]. They
assumed the following form of polynomials:

,_.*
I

(2.17)

I M@ ||M3

l\')*

i

where m,n, p,q are the desired orders of polynomials, A;;, B;; are the unknown
coefficients, L, B, are the dimensions of the body in z;, zo directions respectively.
The unknown coefficients were determined based on virtual boundary conditions.
In the work, they proposed that the stability of identification could be improved if
the virtual fields obeyed a speciality condition. They defined special virtual fields,
such that the matrix A in Eq. (2.10) becomes the identity matrix I:

A=L (2.18)

This condition ensures that the conditioning of the system of equations is the best
and it reduces the effect of the noisy measurements of the loading. This assumption
introduces additional constraints on the coefficients A;;, B;; reducing the number
of possible combinations.

Often, the speciality condition and virtual boundary conditions are not suffi-
cient to generate a unique set of virtual fields and some freedom in choosing unknown
coefficients remain. Generally, extra conditions might be imposed on Eq. (2.17), such
as ratios between the coefficients, which eventually leads to a unique set of virtual
fields.

Although the concept is relatively simple this method has few downsides. First,
it is effective only on regular geometries due to the way polynomials are defined.
Moreover, application of boundary conditions poses a significant challenge. Initially
the method was derived for a finite number of hinge supports [20], but later it was
extended to linear supports as well [21]. Still complex geometries are very difficult,
if not impossible, to tackle.
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2.1.5.3 Piecewise virtual fields

A common approach to ensure the continuity of virtual displacements within a do-
main is to use linear piece-wise functions [22]. The main advantage of this approach
is that the virtual fields are independent of the specimen geometry, allowing them
to span over complex shapes. The approach is very similar to what is done in the
finite element method (FEM) and is based on interpolation of nodal values of virtual
displacements over the entire domain using shape functions.

Usually, a virtual mesh is built consisting of isoparametric linear quadrilateral
elements defined with four nodes. Each node corresponds to two degrees of freedom
i.e. two virtual displacements in two perpendicular directions {z, y}. Within an
element, virtual displacements are interpolated as:

4

w(&,m) =Y NOEnu, (2.19)

=1

where, &, 7 are the local coordinates of each element, N are the shape functions
corresponding to the node 4 at the point (£,7), u®”* are the nodal values of dis-
placements at the node . Virtual strains are calculated by interpolation of virtual
displacements using derivatives of shape functions with respect to the global coor-
dinate system:

ZB( (z,y)u ZJ B¢, n)u (2.20)

ox;
05

local-to-global coordinate transformation, and B is the strain-displacement matrix
corresponding to the node i. For details reader can refer to any book on the FEM
and isoparametric elements, e.g. [23]. This approach is not only computationally
very efficient, but also allows to handle boundary conditions easily just by enforcing
them directly at the constrained nodes.

The important property of the piece-wise linear functions is that the virtual
mesh does not need to be compatible with the geometry of the specimen, it is
sufficient that it encloses the region of interest (ROI). However, the boundaries of
the virtual mesh must be aligned with the traction edges of the specimen in order
to ensure the kinematic admissibility of the produced VFs.

Although the procedure is very similar to the FEM, there is a major difference
in the density of the mesh. Whereas in FEM usually a fine mesh is desired, that
is not the case for the VFM. The ROI is usually meshed with grids ranging from
5 x 5—12 x 12 virtual elements in order to introduce some spatial smoothing. The
method is valid for the small deformation framework when the virtual mesh does not
need to follow the deformed ROI, but can also be adjusted to the large deformation
framework with some effort, as shown in Chapter 4.

where z, y are the global coordinates, J;; = is the Jacobian matrix of the

2.1.5.4 Optimised virtual fields

Both polynomial and piecewise VFs are just techniques to ensure the continuity
and kinematic admissibility of virtual displacements over the whole ROI; they do
not uniquely define VFs for a given set of data. Virtually, applying correct virtual
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boundary conditions and the speciality condition does not produce a unique set of
virtual fields and some additional input based solely on the investigator’s experience
is required.

The work of Avril et al. [24] was an attempt to add additional constraints
and optimise special virtual fields so that the variance of the identified stiffnesses
is minimised with respect to the noise. By assuming Gaussian distribution of the
noise, uncorrelated between strain components, they were able to derive an explicit
expression for the variance of elastic parameters. They showed that there exists
a unique virtual field that minimizes the variance of the stiffness and presented a
method for finding it.

The method depends on the stiffness of the material and the measured strains
so no closed form of these fields is available. In fact, they are obtained in an iterative
manner during the identification procedure.

The special optimised virtual fields highlight areas of high strain, which contain
more signal-to-noise ratio effectively increasing their contribution to the identified
parameters. As a result, the identified stiffness coefficients are less affected by the
noise yielding higher accuracy. An additional benefit of the special optimised VFs
is that their formulation is explicitly defined, thus no user input is required.

Finally, it must be noted that the special optimised virtual fields are applicable
to data corrupted with relatively low noise as they were developed with this assump-
tion. Although, some of the assumptions do not hold in practice, the optimised VFs
provide a very good choice for most applications in linear elasticity, are now routinely
used by the VFM community and were implemented on the commercial DIC/VFM
platform MatchID [25].

2.1.5.5 Eigenfunction virtual fields method

Another method for constructing virtual fields was presented by Nigamaa and Sub-
ramanian [26] and it differs significantly from the previously discussed methods. The
virtual fields presented in that work are based on the measured strains and directly
related to the eigenfunctions of strain components, producing a method that based
on physical quantities.

The method was developed with the assumption of the data grid being formed
in a regular, rectangular format which limits the applications to regular geome-
tries. The strain field is analysed over ROI with the principal component analysis
and singular value decomposition is used to compute the eigenfunctions. These
eigenfunctions, are later used to develop virtual fields and the corresponding virtual
displacements.

In contrast to other types of virtual fields, here virtual strains are computed
in the first place and then they are integrated in order to obtain the corresponding
virtual displacements. Initially, that was a very limiting assumption, as the produced
virtual fields could only represent uniform stretching and simple shear in order to
produce constant virtual displacements over the surfaces where traction was applied.
In fact, the authors showed that this assumption introduces very high variance in
two out of four stiffness components they measured [26].

The method was improved further by Subramanian and Nigamaa [27] by reliev-
ing the assumption of a constant virtual displacement over traction boundaries. By
assuming linear elasticity they expressed the integral of traction over the boundary
in terms of unknown elastic coefficients and measured strains. As a result a set
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of uniform linear equations could be generated from which the stiffness coefficients
could be calculated. The authors showed that only in one of these equations the
virtual displacements must be constant along the edges, and as a result they signifi-
cantly improved the identification, obtaining the variation of the parameters on the
level competitive with the special optimised virtual fields.

The method yields good accuracy and low sensitivity to noise, but the assump-
tions it is based on are very strict. A regular grid of data points is required so it is
inadequate to specimens of complex geometry such as double-notched tensile speci-
mens. Until this assumption is relieved it might be difficult to apply the method to
non-linear models, which are often calibrated with specimens of complex geometries
introducing strain heterogeneity.

2.1.5.6 Stiffness-based virtual fields

As discussed before, there are many different types of virtual fields applicable to
the linear VFM which offer different levels of accuracy and stability with respect
to the noise level. The methods were specifically developed with the assumption of
linear elasticity. A little effort has been done to develop optimal virtual fields for
non-linear problems and as a result the most common type of virtual fields in that
case are still UDVFs.

The first attempt to improve virtual fields for non-linear applications is due
to Pierron et al. [28]. Similarly to the case of special optimised virtual fields, they
considered the effect of white noise on the error introduced to the PVW, this time
expressed in the incremental form. A new type of VFs was developed, suitable for
plasticity, which was expanded over a base of piecewise linear functions. The fields
were formulated such that they were dependent on the stiffness of the virtual mesh,
explicitly related to the instantaneous stiffness of the non-linear material.

In order to reduce the bias associated with low strain data points (low signal-
to-noise ratio) they scaled the stiffness matrix with the von Mises stress (Eq. (2.23)),
effectively putting more weight to the areas where plastic deformation localizes. Vir-
tual displacements were obtained by solving a Lagrangian problem minimising the
variance of the PVW under constraints associated with virtual boundary conditions:

H T7] [u* 0

BRIV e =
where H is the matrix derived from the tangent stiffness matrix, A is the vector con-
taining Lagrangian multipliers, ug¢ is the vector containing values of the prescribed
displacements and I is the matrix containing the prescribed virtual boundary con-
ditions. In particular, when a tensile test is considered, one way to set boundary
conditions is to assume null displacements for all nodes at the bottom edge of ROI
and a constant value e.g. 1 across the loading edge to simplify the external virtual

work.
The matrix H is obtained with:

H = K'K* (2.22)

where K* is the modified global stiffness matrix, as defined in Eq. (2.23). The
matrix depends on n, the number of virtual elements, A, the thickness of specimen,
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0, the von Mises stress, B, the strain-displacement matrix, and D, the tangential
elastoplastic stiffness matrix.

K'= ) /S ho® (B'DB) dS (2.23)

elem=1

Once the virtual displacements are identified, the corresponding virtual fields
can be calculated using Eq. (2.20). The method was implemented with constant
strain triangular elements and was shown to be an improvement over UDVF's.

There are however few limitations to the method. It was developed with the
aim of reducing the influence of white noise on the PVW. While this is important
for elastic materials, for which signal-to-noise ratio is relatively small, it is not
as relevant for the ductile materials for which much higher strains are generally
measured. A more important issue is the variation of information during the test,
and these VFs do not address that. Additionally, the method requires a significant
amount of computations in order to identify the virtual fields. The virtual mesh
needs to be constructed, the tangential material stiffness matrix must be computed,
for which not always an explicit form is available. Finally, the global stiffness matrix
must be assembled.

The method was specifically designed to be used together with the interpola-
tion of raw data onto a triangular mesh. This approach is quite limiting and so
implementing the method with a standard data format poses a challenge, as in that
case the virtual mesh would no longer be consistent with the data grid.

Overall, the method provides a significant improvement over the UDVFs. The
major advantage is that it targets areas where the signal-to-noise ratio is the highest
and adapts with time, allowing for a more optimal extraction of parameters from
an experiment.

2.1.5.7 Strain virtual fields

Full-field measurements help to discard limiting assumptions in material testing e.g.
of stress uniformity, enabling investigation of complex phenomena such as post-
necking behaviour of a tensile specimen. This was done by Coppieters et al. [29]
who used a DIC set-up to investigate post-necking hardening of a steel sheet. In
their work they used the VFM with the measured strain acting as virtual fields.
As a result, their criterion for minimisation of the cost function was based on the
difference between the real internal and external work.

They made a strong assumption about the distribution of displacements over
the boundaries of their ROI and to obey it, a large ROI had been used, reducing
the spatial resolution of the measurement. Additionally, they assumed plane stress
condition (strain and stress field constant across the thickness) to allow the analy-
sis. They reported that fitting a hardening models to data including post-necking
behaviour leads to a more accurate calibration overall.

The spatial resolution of the test could be improved by interpolating the mea-
sured strains onto a virtual mesh. Then, the assumption of constant virtual displace-
ments along the boundaries could be enforced directly at virtual nodes, regardless
of the measured displacements and the virtual strains could be matched to the real
strains in a least-square sense.
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2.1.6 Applications of the non-linear VFM

The virtual fields method is a versatile tool applicable to many different materials
and experimental set-ups. It has been applied to various materials including metals,
biological tissues, elastomers, foams, concrete and composites. The method has
been found to be successful under both static and dynamic loadings, as well as with
homogeneous and heterogeneous materials.

2.1.6.1 Metal plasticity

Metal plasticity has attracted much attention from the VFM community and the
non-linear VFM has been applied to study a wide range of ductile materials. Many
models have been investigated, with complexity ranging from isotropic plasticity
with linear hardening to: anisotropic plasticity, viscoplasticity, kinematic hardening
and heterogeneous materials such as welds.

A survey of publications is conveniently summarized in Table 2.1. Clearly,
most of the experimental set-ups are based on a modified tensile test. Usually, the
standard geometry is modified by means of notches or holes to induce a heteroge-
neous strain field. Models can then be identified using a broad range of stress states
(important for anisotropy) or strain rates (important for viscoplastic models).

The most addressed problem has been isotropic plasticity, with various isotropic
hardening models such as linear, Voce, Swift or power laws. Some attempts have
been also made on viscoplasticity by combining multiple tests in a single cost func-
tion with Johnson-Cook being the most popular model considered. Some effort
has been done on kinematic hardening, as well as anisotropic yield criteria (Hill48,
Y1d2000-2D). Overall, a wide range of material models for metals has already been
tested using the VFM.

2.1.6.2 Elastomers

The VFM has been also applied to a range of hyperelastic materials.

The first approach was from Promma et al. [30], where they extended the VEM
to the large deformation theory. They investigated a rubber and considered Mooney
model, in which stresses can be written as a linear function of deformation, thus the
linear VFM was used.

Palmieri et al. [9] investigated rubbers using different planar geometries. They
used both linear (Mooney-Rivlin) and non-linear (Ogden) models. They reported
that the VFM gave a better estimation of the parameters compared to FEMU,
while not relying on strong assumptions about the boundary conditions which is a
considerable advantage over FEMU.

Sasso et al. [31] investigated fluoro-silicon rubbers by means of a bi-axial test
on a cruciform specimen. They were able to obtain reliable parameters for a third
order Ogden model, as well as to characterise visco-elastic properties using Prony
series.

Rubbers were studied under medium strain rates by Yoon et al. [32] using a
drop-weight test and under high strain rates by Yoon et al. [33]. In both cases,
visco-hyperelastic behaviour was described using one-term Ogden model as well as
Prony series. In these set-ups, the dynamic formulation of the VFM was used, to
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discard the contribution of external forces (which are difficult to measure). Instead,
acceleration fields causing inertial forces were used as a load cell.

2.1.6.3 Biological tissues

Avril et al. [10] were the first to apply the VFM to a tissue (human arteries) to
which they fitted an anisotropic hyperelastic model.

Kim et al. [34] studied human aneurismal aortic tissues by means of an inflation
test and identified parameters of Holzapfel model describing anisotropic hyperelas-
ticity.

Recently, Zhang et al. [35] reported a study on the mechanical properties of
human optic nerve head tissues using the VFM. In their study they found that
the VFM was well-suited for their problem, in particular in terms of computational
speed (125 times faster than FEMU). Additionally they reported that the VFM
dealt with the unknown boundary conditions in a convenient way, by including only
a known load over a portion of geometry and setting virtual displacements to zero
elsewhere.

2.1.6.4 Prospects

The VFM has been applied to a large number of different materials, constitutive
models and experimental set-ups, which proves how useful the method is. Novel
tests are being developed, which potentially will be able of reducing the experimental
effort of characterising a material.

What is remarkable is that over ten years of applying the VFM to non-linear
models, there was only one attempt at developing virtual fields suited for non-
linear models [28]. Although the stiffness-based optimised virtual fields showed an
improvement in quality of identified parameters, still the majority of identification
is done using UDVFs. In fact, many authors acknowledged that the identification
of parameters is hindered by a lack of a systematic procedure for generating robust
virtual fields. Often, this was identified as a major challenge to be addressed before
tackling more complex constitutive models is possible.

Therefore, developing a complete method for generating well-performing virtual
fields for non-linear models will definitely have a significant impact on the commu-
nity. Those virtual fields should be suitable for any constitutive model, and ideally
generated with a minimal input from the investigator.



Table. 2.1. Literature survey of the application of the non-linear VFM to elastoplastic materials. The table continues on next page.

Reference Material Test Material model Main outcomes Virtual
fields
Grédiac and  Pierron Numerical Tensile IH* (linear) Extended the VFM to non-linear models UD®
(2006) [36] (notched)
Pannier et al. (2006) [37]  Mild steel Tensile IH (Voce) Experimental confirmation of [36] UD
(waisted)
Avril et al. (2008) [38] Mild steel Tensile  (deep IH (linear) Experimental confirmation of [36] UD
notches)
Avril et al. (2008) [39] Mild steel Tensile  (deep Viscoplasticity Applied the VFM to strain-rate dependent UD
notches) (Perzyna) material
Pierron et al. (2010) [28]  Austenitic stainless Tensile (deep NLKH® Presented stiffness-based VFs, cyclic loading UD,
steel notches) Stiffness-
based
Coppieters et al. (2010) Steel (DCO05) Tensile  (dog- IH (Swift, Voce)  Better description of hardening compared to  Strain fields
[29] bone) standard methods
Kim et al. (2013) [40] Steel (DP780, Tensile IH (Voce, Swift)  Better description of hardening compared to UD
TRIP780, EDDQ)  (coupon) standard methods; Voce law does not repre-
sent post-necking hardening correctly
Rossi and Pierron (2011) Numerical Tensile  (deep Anisotropic Presented complete methodology for apply- UD
[41] notched) (Hill48) ing the VFM to 3D large deformation data.
Kim et al. [42] Advanced Tensile (3-  Anisotropic Applied the VFM to experimental data of an UD
strength steel shaped) (Hill48) anisotropic material
Rossi et al. [43] stainless steel Tensile  (deep Anisotropic Applied the VFM to large deformation UD
notches) (Hill48, Y1d2000- anisotropic plasticity

Isotropic hardening (IH)
SUser-defined VFs (UD)
SNon-linear kinematic hardening (NLKH)

2D)
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Table. 2.1. Literature survey of the application of the non-linear VFM to elastoplastic materials. The table continues on next page.

Reference Material Test Material model Main outcomes Virtual
fields
Notta-Cuvier et al. (2013) Titanium alloy Tensile (deep Viscoplasticity All Johnson-Cook parameters from only 2 UD
[44] (Ti6A14V) notches) x 2 (Johnson-Cook)  tests
Grama et al. (2015) [45] Numerical Shear test Viscoplasticity Studied plausibility of their test to identifi- UD
(Anand) cation of the Anand model
Notta-Cuvier et al. (2015) Simulated Tensile  (deep Coupled The VFM was able to characterise the model UD
[46] notches, perfo- elastoplastic- on simulated data
rated) damage
Valeri et al. (2017) [47] Stainless steel Tensile test  Viscoplasticity Fitted parameters of the model over a range UD
(dog-bone) (Johnson-Cook)  of temperatures up to 900°C
Le Louédec et al. (2013) Friction stir weld Tensile IH (linear) Characterised heterogeneous material under UD
[48] (coupon) static loading
Le Louédec et al. (2015) Friction stir weld SHPB” (Com- Viscoplasticity Applied the VFM to the dynamic loading; UD
[49] pressive) characterised heterogeneous material
Jones et al. (2018) [4] 304L stainless steel ~Tensile (D-  Viscoplasticity Identified BCJ model using numerical data.
shaped) (BCJ) Discussed uniqueness issues of the model.
Saranath and  Ramji Titanium alloy Tensile (dog- IH (power-law) Extracted local properties of a weld on UD
(2015) [50] electron beam bone) Ti6Al4V and compared to the standard
welded method
Fu et al. (2016) [51] High strength steel ~ Shear NLKH Obtained parameters for multi-component UD

NLKH model using 2 cycles of forward-
reverse simple shear.

Split Hopkinson Pressure Bar (SHPB)
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2.1.7 Alternative inverse methods

The virtual fields method is one of many available techniques developed to identify
material parameters from full-field measurements. Naturally, other methods have
been developed that might be applied to the same problem. In this section, other
inverse techniques are reviewed and compared in order to present the whole spectrum
of possibilities for material identification. A more complete comparison in terms of
the performance and accuracy can be found in [5,52].

2.1.7.1 Finite element model updating

The finite element model updating (FEMU) is the most popular approach for iden-
tification of material parameters using full-field measurements. The idea behind it
is very natural and thus easy to understand. An experiment is simulated using a
finite element (FE) model of the test. The model is then matched to the exper-
imental measurements as close as possible. It is essential that the geometry and
boundary conditions are reproduced as accurately as possible. Then, the response
of the model depends only on the material parameters fed to it, and thus they are
adjusted iteratively in order to obtain the best possible match, by minimising an
error (cost) function.

There are multiple ways to formulate the cost function for FEMU. The simplest
method is based on comparing the forces measured in the experiment to those gener-
ated by the FE model (FEMU-F). The forces are computed using the displacements
measured in the experiment. In practice it is virtually impossible to measure forces
corresponding to FE nodes, but only a collective force corresponding for example
to an entire loading edge. The force variant of FEMU can be constructed under
such constraint and solved iteratively to provide a set of material parameters [53].
However, the force is a very global and integrative quantity and retrieving several
parameters from this single quantity quickly leads to severe uniqueness issues. To
alleviate this, adding full-field data to the cost function is an attractive option.

An alternative is to build up a cost function based on the computed and mea-
sured displacements (FEMU-U) see e.g. [54]. In this case, the displacements com-
puted by the FE model are interpolated to the geometrical positions of the data
points. The model can be loaded with a set of prescribed displacements, which can
be either theoretical or measured, at the loaded boundaries. A force loading can
also be incorporated, usually by means of the total force measured with a load cell,
as the exact distribution of the loading over the boundaries is not known.

More options for setting up the cost function exist, e.g. the two methods can
be combined so that the cost function includes both the forces and displacements
(FEMU-UF) [55] . The cost function can also depend on such quantities as measured
strains [56-58], and the measured bi-axial yield stress [59].

FEMU is a universal tool that can be utilised in many diverse set-ups. The
main advantage of the method is that it does not require full-field data over the
entire domain. If fact, any overdetermined data can be used which is suitable when
complex 3D geometries are used or plane stress condition cannot be guaranteed,
as in the case of necking of ductile materials. Moreover, it is based on the finite
element method (FEM) which is familiar to the most of the engineering community
facilitating its spread, use and understanding.

Although universal and easily approachable, the method also has its own short-
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Table. 2.2. Comparison of major characteristics of FEMU and the VFM

Characteristic

FEMU

VFM

Geometry of a spec-
imen
Measurements

Any

Any overdetermined data

2D (Unless full 3D displacement
fields are measured)
Required full-field over domain

(ROT)

Cost function Displacement,  Force,  Strain, Stress (Global equilibrium)
Stress (Numerical vs Experimen-
tal)

Material models Any Any

Noise control Through adding weights to points
in the cost function

Requires running FE model multi-

Through virtual fields (crucial to
the method)

Computational per- Very high performance with linear

formance ple times (slow) model. For non-linear models does
not require solving forward prob-
lem. (fast)

Boundary  condi- Modelled Can be accounted for exactly

tions

FEM Package + Optimization
routine (e.g. Matlab)
Not commercially available

Pre-requisites Simple script (e.g. Matlab)

Integration  with available

DIC software

Commercially
(MatchID®)

comings. One of the major challenges with FEMU is reproducing the correct bound-
ary conditions imposed on the model. Although kinematic constraints can be set
based on optical measurements, setting up force loadings can be challenging.

Since the process of minimising the cost function involves solving the direct
problem multiple times, this method suffers from very poor computational perfor-
mance. This can be an important down-side if for some reason the results are
expected in real time, e.g. for biomedical scanning purposes, when costly computa-
tions are needed to evaluate FE model, e.g. non-linear explicit dynamics, or when
many identifications are required e.g. when uncertainty propagation is to be studied.
In that case, the VFM performs much better, with authors reporting VFM being as
much as 468 times faster than FEMU for metal plasticity [52], or 125 times faster
in the case of anisotropic hyperelasticity [35].

A comparison between FEMU and the VFM is conveniently summed up in
Table 2.2. Clearly, both methods have their own strong sides and limitations and
both can find niches in which they perform very well. Overall, the VFM is an
interesting alternative to the FEMU when full-field measurements are available over
the entire ROI.

2.1.7.2 The equilibrium gap method

The equilibrium gap method [60, 61] has been developed for characterisation of
damage distribution in a material. Assuming that the damage is isotropic, the
stiffness of the material can be expressed as a function of damage scalar D. If a
finite element mesh is established over the data grid, the gap in equilibrium can be
investigated by summing the internal forces over each element. It is worth noting,
that the internal forces corresponding to the element depend on the stiffness of

8http://www.matchid.eu/
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the element, hence are affected by the damage parameter assigned to the element
(damage is assumed to be uniform across the element). This principle serves as a
basis for the identification. For all data points, the gap in equilibrium is minimized
with respect to the damage parameters. Since the system is usually overdetermined,
this is solved in a least square sense.

This method does not require any updating of the finite element model, however
the FE mesh has to be built-up before the identification. The method is equivalent
to the VFM with a particular type of piecewise functions [5] hence requires full-field
data.

2.1.7.3 The constitutive equation gap method

The constitutive equation gap method was initially developed as a tool for error
quantification in FEM results [62]. The method is based on an energy functional,
measuring the difference between a statically admissible stress field, 7, and the
stress field corresponding to the kinematically admissible values measured in an
experiment (e(u)). This constitutive gap can be expressed as:

Vopam = %/Q (r — D™ e(u))T ;D™ (7 = D™ : g(u)) dQ (2.24)

where Q is the region of interest and D™ is a tensorial operator mapping strains
to stresses, which depends on material properties.

The idea is to find a statically admissible stress field that obeys the global
equilibrium, as well as a suitable set of material parameters that produce a stress
field that minimizes the gap. The method may involve FEM computations, however,
what makes it distinct from FEMU is that the statically admissible stress can also
be generated for example through Airy functions [63], relieving the need for FE
computations.

This method has been found to be particularly suitable in characterising prop-
erties of heterogeneous materials. It has been applied mostly to linearly elastic
materials [64-66], however it has been also extended to elastoplasticity [63,67-69]
and hyperelasticity [70].

2.1.7.4 The reciprocity gap method

The reciprocity gap method was developed for problems where measurements are
known only at the boundary of the body, but not inside. Originally developed to
identify anisotropic conductivity properties [71], it was extended to elasticity. The
method is based on Maxwell-Betti reciprocal theorem and involves analysing adjoint
(virtual) displacement fields. A comprehensive review of reciprocity gap equations
can be found in [72]. In particular the method is suitable for crack detection in
an elastic medium [73,74], which can be useful in geological application e.g. using
measurements taken during earthquakes to understand the structure of Earth [74].
However, this is not a very convenient technique to obtain material parameters and
no experimental application can currently be found in the literature.

2.1.7.5 Integrated digital image correlation

An interesting alternative to FEMU-U is the so-called integrated digital image cor-
relation (I-DIC) approach. In this method, the DIC and identification processes
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are integrated into a single step, which leads to a very robust processing of the
noise [75,76]. The idea is to use the global approach of DIC, in which the dis-
placement field is defined using a set of nodes and interpolation functions over the
entire domain, as opposed to the subset-based DIC. The displacements can be de-
rived from an equivalent FE model of the test but the method is not limited to this
approach [77]. The displacements in the DIC are expressed on the same basis as in
the FE model so any projection between a FE mesh and the experimental data grid
are omitted.

It follows that the correlation problem is coupled to the material parameters
used in the FE model, and the minimisation of the correlation function is performed
with respect to the sought parameters, rather than the displacement of each indi-
vidual subset. To solve the correlation problem, sensitivities of displacement fields
with respect to the sought mechanical parameters are computed using FEM [76].
This treatment leads to much better handling of the random noise as a result pro-
vides much more stable parameter values with respect to subset size and boundary
conditions imposed onto the FE model.

2.1.7.6 Conclusions

As outlined in this section, there are many techniques suitable for identification of
material parameters from full-field measurements. Techniques such as the equilib-
rium gap method, or the reciprocity gap method rely on strong assumptions and
therefore are suitable only to specific cases. The two most versatile methods are
FEMU and the VFM. Their comparison has been summed up in Table 2.2. While
both can be applied to a variety of set-ups the VFM has a strong advantage of com-
putational efficiency, with authors reporting the VFM identification being as much
as 468 times faster than FEMU [52]. Importantly, both the VEM and FEMU are
based on techniques familiar to the engineering community, namely the PVW and
FEM and so can be propagated to the end-users easily.

2.2 Digital Image Correlation

2.2.1 Overview

Digital image correlation [2] is a powerful technique for obtaining shapes of objects
and full-field deformation fields from experiments. It stems from computer vision
techniques, however has been adapted to ensure maximum accuracy given how small
measured displacements usually are. The standard method (2D) and stereo (3D)
DIC rely on obtaining images of a random speckle pattern covering the surface of
specimen during an experiment and correlating it to the reference image. Over the
years it became the most popular technique for obtaining full-field measurements.
One of the reasons for it is that the random pattern is easy to obtain in practice, in
contrast to other methods such as grid method relying on a regular pattern. This
section briefly reviews both theoretical and practical sides of DIC. A comprehensive
practical guide for DIC can be found in [78].
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2.2.2 Principles

DIC is an image matching technique relying on tracking a random pattern of speckles
between a reference and deformed images. Typically, the same grey level occurs in
an image multiple times, thus it is impossible to correlate a single pixel to another
- this problem is known as the correspondence problem. In order to resolve it, DIC
relies on analysing a neighbourhood around a pixel, called a subset, and correlating
it between the images.

2.2.2.1 Matching

Matching in DIC is obtained by using the concept of optical flow, meaning that
the intensity of a given pixel with initial position of (z,y,t) is unchanged as it
moves during time increment At to (z + Az,y + Ay,t + At). By assuming that
the motion across chosen subset is constant, it is possible to formulate a matching
criterion, between the reference image F' and the deformed image G and minimise
it to solve for d,x = {Az, Ay}. Mathematically, the displacement can be obtained
by minimising a sum of squared differences (SSD) between the reference and the
deformed images:

d,p: = argminyssp (2.25)

with the cost function:

Xesp = ) |Gl +d) — F(z) (2.26)

By solving this equation, the average displacement of the subset can be obtained.
This procedure is repeated for every subset in the image and the full-field displace-
ment field is reconstructed.

Often, the assumption of optical flow is not obeyed, e.g. due to change in
lighting. In that case the shape of pattern remains the same, however the intensities
of pixels are changed and the SSD criterion fails to identify the correct motion. There
are more robust matching criteria to account for an offset (change by a constant
value) as well as a scale of lighting (linear transformation of intensities). The former

can be addressed by introducing the zero-mean sum of squared differences criterion
(ZSSD):

XQZSSD:Z((Gi_G)_(Fi_F))z, (2.27)

with G, F being mean grey level across the image. The latter can be accounted for
by means of the normalised sum of squared differences criterion (NSSD):

e ’
XZssp = Z (% 2 G — E) (2.28)

Finally, when both of the lighting issues are expected, a compound cost function can

be constructed, called the zero-mean normalised sum of squared differences criterion
(ZNSSD):

XZNssD = Z <<ZZIZ'?GZ - Gz i 1) — (F; — F)) (2.29)
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where:

F=F-F (2.30)
Gi=Gi—G |

The ZNSSD criterion is the most robust of them all, and does not introduce any
significant computational effort [2]. It should be used whenever possible, especially
when stereo-DIC is used, as in that case changes in lighting between the two cameras
are unavoidable.

2.2.2.2 Shape functions

The analysis presented above relies on a simple assumption that the initially square
subset is correlated to a square subset in the deformed image. Often, the mate-
rial undergoes significant deformation including elongation, compression, rotation,
shearing and bending, which significantly distorts the subset. To improve corre-
lation a concept of shape functions was introduced. Shape functions map the the
coordinate system of the deformed subset to the reference frame and thus account
for the distortion of the subset’s shape. Typical types of shape functions include:
rigid (translations only), affine (first order deformation), irregular (including cross
product of Az, Ay) and quadratic. The latter lead to the best spatial resolution (at
a cost of increased noise) and should be chosen whenever possible.

2.2.2.3 Interpolation functions

In order to evaluate the matching cost function it is often necessary to evaluate grey
level values at non-integer positions. This can be achieved by interpolating counts
corresponding to the pixel positions with a chosen base of functions. The interpo-
lation leads to a sub-pixel accuracy but inherently introduces a bias to the mea-
surement and so, it is important to chose it appropriately. In commercial software
many options are available including: polynomials (bilinear, bicubic), fast Fourier
transform-based interpolation (FFT), splines (bicubic) and optimised interpolants
(e.g. optimised 4-tap filter). The choice of the interpolation functions is often left
to the user, however it is worth noting that polynomial interpolators perform poorly
(bias of 1/15 pixel when cubic polynomial is used over 3 pixels), thus other functions
such as bicubic splines or optimised filters are recommended [2].

2.2.2.4 Stereo calibration

The standard stereo-DIC set-up consists of two cameras imaging the same face of the
specimen. Each of the cameras has its own coordinate system in which the images
are represented. To correlate the images, a mapping of one camera to another has to
be known. In practice this is achieved with a calibration procedure involving imaging
a known target plate that has printed fiducial markers on its surface. The target is
moved and rotated over the entire field of view to collect as much information about
the set-up (including distortions caused by lenses). The location of the markers is
identified by both cameras and this information is used to build up a transformation
between the coordinate systems. Once it is known, the stereo-vision is capable of
measuring movement out-of-plane improving the quality of measurements.
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2.2.3 Sources of errors

As a technique for obtaining measurements of kinematic fields, DIC is affected by
many sources of errors, both extrinsic (cameras, lighting, movement of specimen in-
plane, out-of-plane) as well as intrinsic (matching criterion, subset size, interpolation
bias). It is beyond the scope of this review to discuss all factors in-depth, however
attention to some of them is necessary.

2.2.3.1 Camera sensor noise

Every camera has an electrical noise associated with its electric sensor, leading to a
dynamic change of grey level values even if the image is kept static. The level of noise
is not constant the across intensities, but increases as the counts become brighter.
Typically, the grey level noise is in the range of 0.5%-1.0% of the dynamic range
of camera, and can be obtained by taking multiple static images and evaluating
standard deviation of grey level values of each pixel. This serves as a good indicator
of the quality of experimental set-up and should always be checked before loading
the specimen.

2.2.3.2 Out-of-plane movement

Specimen moving perpendicular towards the camera sensor will become uniformly
enlarged introducing artificial biaxial strain to the measurement. The movement
of 100 pm with the imaging distance of 500 mm would create an artefact of 200
microstrains, which is comparable to the strains experienced by materials such as
metals in the elastic range. This is one of the major error sources for the 2D DIC,
and is unavoidable when standard testing machines are used. There are two methods
to reduce this effect: using telecentric lenses or stereo-DIC, with the latter used in
the majority of cases.

2.2.3.3 Displacement resolution

Displacement resolution is defined as a displacement level that can be attributed
to sources of error, most notably camera sensor noise and interpolation bias. It
can be identified by correlating two stationary images and investigating standard
deviation of the displacement field. A more accurate estimation can be achieved by
in-plane translation of the specimen by a known value and investigating the mean
and standard deviation of the measured displacements. Typically, a good DIC set-
up should yield an accuracy of about 0.02 pixel size. As the subset size increases,
the observed displacement noise decreases, however at a cost of spatial resolution.
It is therefore a good practice to keep subset size as small as possible (for sake of
spatial resolution) as the displacement field can be smoothed out at later stages of
analysis.

2.2.3.4 Strain resolution

Similarly, strain resolution can be defined as a strain level that cannot be distin-
guished from noise. It can be found by investigating standard deviation of strain
field corresponding to a static frame. Typically, strain resolution is of order of a
couple hundreds of microstrains. The strains can be obtained using either central
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finite difference method, or by matching a polynomial to a neighbourhood of the
point and computing its spatial derivatives. The larger the chosen neighbourhood
is, the lower the strain noise will be. Similarly to the case of displacements, with
stronger smoothing spatial resolution is compromised. This is especially important
when high strain gradients are expected (e.g. in the vicinity of notches) as it may
lead to a significant underestimation of strain peaks.

2.3 Novelty statement

2.3.1 Aims and objective

The aim of this project is to develop a new type of virtual fields applicable to the
non-linear VFM. The method should be universal and suitable for a vast range of
material models, test piece geometries and loading conditions. Ideally, user input
should minimal and its impact not affect the identification accuracy. In order to
achieve that the following objectives have been outlined.

1. Develop a methodology to generate virtual fields that highlight information in
the test based on the sensitivities of stress field to constitutive parameters.

2. Validate the method using a numerical experiment in which the data can be
controlled completely. Compare the performance of the method against other
known types of virtual fields.

3. Investigate the effect of the user input on the accuracy of identification.

4. Apply the method to identify a large deformation anisotropic plasticity model.
Due to the complexity of the problem the robustness of the proposed method
can be fully tested and compared against UDVFs.

5. Validate the method experimentally to demonstrate its performance, not only
with numerical data, but also with real materials. This objective is a contin-
uation of Objective 4, as the material should follow the same material model
and constitute a challenge for the standard virtual fields.

2.3.2 Detailed motivation

From Section 2.1 it is clear that the methods for choosing virtual fields for the
non-linear virtual fields method are very limited. Particularly in the case of metal
plasticity UDVFs were only used, with the exception of two studies (Table 2.1).
UDVFs have been proven to be useful so far, however they have certain limitations
that could be improved. In particular, they require a significant input from the user,
and their effectiveness is dependent on the user expertise in terms of understanding
the VFM theory and mechanics of the test. Although these limitations did not
prevent obtaining good results, they might become more serious in the future when
more complex heterogeneous tests are developed, and more complex constitutive
models are to be identified.

In this work, a new method is proposed to address these concerns and in turns
to improve the accuracy and applicability of the non-linear VFM. The method is
developed using a general framework that can be applied to any material model,
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test geometry and loading without significant input from the VEM user. The devel-
opment and validation process was gradual and is documented in this thesis.

The sensitivity-based virtual fields were first presented in [12]. In this publi-
cation, the general methodology was established and tested using numerically sim-
ulated data. In particular, we presented the concept of stress-sensitivity fields to
facilitate identification. This concept was used before in the context of material
identification [57,76], but never in the VFM. Here, we propose for the first time
that stress-sensitivity fields be used as virtual strains, to highlight areas of the test
piece rich in information about each parameter individually, at any time through the
test. Then, we presented how those fields could be practically used in the VFM, by
means of projecting them onto a base of linear piecewise functions, to reconstruct an
associated virtual displacement field. The method was validated using numerically
simulated data of a deep-notched test using isotropic plasticity with linear and non-
linear isotropic hardening models. The performance of the method was compared
against the two other types of VFs: user-defined and stiffness-based optimised [28]
VFs. We found that the SBVFs improved the accuracy of identification and that
their effectiveness was largely independent from user input (in terms of mesh size
used, material parameters variation and scaling).

The SBVFs were initially developed using the assumption of small deformation.
It was realized that this was an important limiting factor of the method applicability,
particularly for hyperelastic or ductile materials. Additionally, heterogeneous tests
are promising for identification of anisotropic plasticity models commonly used in
simulating metal forming processes. These models require multiple mechanical tests
to be characterised (e.g. eight for Y1d2004-18 [79]) and that the number could be po-
tentially reduced by employing more complex mechanical tests. This was addressed
in [13], where the SBVFs were extended to the finite deformation framework and
applied to characterise anisotropic plasticity models (Hill48, Y1d2000-2D). Instead
of using the VFM formulation for small deformation, large deformation was used in-
stead, and the SBVFs formulation had to be adjusted accordingly. The equilibrium
was expressed in the reference configuration so the virtual mesh used for expressing
the VF's was only assembled once. Both Hill48 and Y1d2000-2D models were consid-
ered, and the identification results were compared against UDVFs as used in [43].
It was found that the SBVFs were effective at extracting material parameters. In
particular, it was found that the SBVF's were capable of correctly identifying the
Y1d2000-2D model from a single test, which was not possible using the UDVFs. An-
other advantage of the SBVFs is that they are automatically generated and include
different stress components in the identification independently from the user, which
is important for anisotropic materials.

To prove that the method is effective not only on simulated data, experiments
have been carried out using a cold-rolled sheet of DC04 steel. The material is
known to be anisotropic and was modelled using Hill48 or Y1d2000-2D models,
thus the experiments were a continuation of the work previously published. First,
the material was characterised using standard techniques including dogbone tests
along three directions, and a bulge test. Then deep-notched tests were performed
in order to identify the models from a reduced number of tests, using the VFM
and SBVFs. Full-field measurements were obtained using DIC and were fed to the
developed VFM code to identify models parameters. It was found that the SBVFs
were successful at identifying Hill48 model, however the test was not sufficiently
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heterogeneous to yield enough information for Y1d2000-2D. In general, it was found
that the identification with SBVFs yielded more accurate parameters than the one
with UDVFs, suggesting that they are a superior replacement for the currently used
UDVFs. This has been documented in Chapter 5 and is intended to be submitted
to Experimental Mechanics (Springer).

2.3.3 Declaration of authorship

The work presented in [12] was performed in its entirety by the candidate under
supervision of Prof. Fabrice Pierron and Dr. Frances Davis.

Next, the work reported in [13] was performed entirely by the candidate. To
achieve that, a numerical FEM model of the test, as well as the stress reconstruction
routine for Y1d2000-2D were supplied by Mr. Marco Rossi, who was added as a co-
author of the paper.

Finally, the experimental validation included in Chapter 5 was performed by the
candidate, with the exception of the bulge test, which was performed externally, due
to lack of the testing machine at the University of Southampton, by Dr. Jin-Hwan
Kim, who also kindly wrote Section 3.2.2. of the paper describing the experiment
he performed.



Chapter 3

Sensitivity-based virtual fields for
the non-linear virtual fields
method

32



Chapter 3. Sensitivity-based virtual fields

33

Comput Mech (2017) 60:409—-431
DOI 10.1007/s00466-017-1411-6

@ CrossMark

ORIGINAL PAPER

Sensitivity-based virtual fields for the non-linear virtual fields

method

Aleksander Marek!

. Frances M. Davis! - Fabrice Pierron

1

Received: 19 November 2016 / Accepted: 7 April 2017 / Published online: 28 April 2017

© The Author(s) 2017. This article is an open access publication

Abstract The virtual fields method is an approach to
inversely identify material parameters using full-field defor-
mation data. In this manuscript, a new set of automatically-
defined virtual fields for non-linear constitutive models has
been proposed. These new sensitivity-based virtual fields
reduce the influence of noise on the parameter identifica-
tion. The sensitivity-based virtual fields were applied to a
numerical example involving small strain plasticity; how-
ever, the general formulation derived for these virtual fields
is applicable to any non-linear constitutive model. To quan-
tify the improvement offered by these new virtual fields, they
were compared with stiffness-based and manually defined
virtual fields. The proposed sensitivity-based virtual fields
were consistently able to identify plastic model parameters
and outperform the stiffness-based and manually defined vir-
tual fields when the data was corrupted by noise.

Keywords Virtual fields method - Sensitivity-based virtual
fields - Inverse identification - Full field measurement -
Elasto-plastic - Digital image correlation

Electronic supplementary material The online version of this
article (doi:10.1007/s00466-017-1411-6) contains supplementary
material, which is available to authorized users.

B Aleksander Marek
A.Marek @soton.ac.uk

Frances M. Davis
Frances.Davis @soton.ac.uk

Fabrice Pierron

F.Pierron @soton.ac.uk

Faculty of Engineering and the Environment, University
of Southampton, Highfield SO171BJ, UK

1 Introduction

Owing to the rapid diffusion of full-field deformation mea-
surement techniques like Digital Image Correlation [26],
there has been growing effort from the mechanics of mate-
rials scientific community to develop new testing methods
based on more complex tests to improve the efficiency of
constitutive model identification. This is particularly impor-
tant for models including larger numbers of parameters like
anisotropic elasticity and plasticity as well as heterogeneous
materials. It is beyond the scope of the present article to
review this topic in detail and the reader is referred to the fol-
lowing references for a more complete picture of this topic
[2,20,22]. The two main techniques employed in the litera-
ture to extract the constitutive parameters from deformation
maps are Finite Element Model Updating (FEMU) and the
Virtual Fields Method (VFM). FEMU relies on the intuitive
idea that parameters can be identified by updating the mate-
rial parameters in a finite element model until the simulation
matches the experiment [2]. An alternative is the Virtual
Fields Method [20] which directly calculates the stresses
from the measured strains, without a need to conduct forward
calculations using FEM. Stress equilibrium is then evaluated
in the global sense by means of the principle of virtual work
and parameters adjusted until this equilibrium is respected.
The main advantage of the VFM over FEMU is its com-
putational efficiency, particularly for non-linear problems.
Recently, authors reported that the VFM was 125 times faster
than FEMU for their particular application [30], so there is
a definite motivation to choose the VFM over FEMU. How-
ever, the choice of the virtual fields (see Sect. 2) plays a
crucial role in the VFM. In linear elasticity, manually defined
virtual fields were used until the mid-2000s with mixed suc-
cess [18]. In 2004, a systematic procedure for defining noise
minimizing virtual fields was released which enabled the vir-
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tual fields to be automatically defined [1]. These automated
virtual fields are now routinely used to solve linear elasticity
problems, even for heterogeneous materials [11]. This suc-
cess led them to be implemented on a commercial software
platform, MatchID (v. 2.1, www.matchidmbc.be). However,
for non-linear constitutive models, no automated approach
for defining the virtual fields exists and this constitutes a bot-
tleneck for the establishment of the VFM as the gold standard
to inversely identify material properties from full field mea-
surements [22].

In absence of an automated procedure to define virtual
fields for non-linear problems, the VFM has been imple-
mented with manually defined virtual fields. Elasto-plasticity
was the first type of non-linear constitutive model to be
tackled [8]. The non-linear virtual fields method has since
been used to study a wide range of materials such as
arteries [4], rubbers [10,28,29], composites [7], and metals
[12-14,17,25]. As aresult, many different non-linear consti-
tutive model types were considered including hyperelasticity,
elasto-plasticity, visco-elasticity, and anisotropic plasticity.
While manually defining the virtual fields for non-linear
problems has been successful, there are several drawbacks.
The selection of manual virtual fields relies on the exper-
tise of the investigator. In addition, the fields are generally
static and do not evolve with the deformation. The only
attempt so far at defining an automated procedure to define
the virtual fields adapted the procedure for linear elasticity
[1] to elasto-plasticity [19]. The virtual fields obtained were
named stiffness-based virtual fields since they depend on the
elasto-plastic stiffness matrix. However, the problem of sys-
tematically defining efficient and robust virtual fields for a
general class of non-linear problems hinders the widespread
diffusion of the VFM as a standard tool.

In this manuscript, a new type of automated virtual fields
for non-linear problems is proposed. In Sect. 2, the virtual
fields method is described in detail. Next, the automated vir-
tual fields, the so-called sensitivity-based virtual fields, are
derived introducing two variants based on total and incre-
mental sensitivity maps. The performances of the proposed
sensitivity-based virtual fields are then compared to stiffness
based and manually defined virtual fields in Sect. 5 for the
simulated experiment described in Sect. 4.

2 Virtual Fields Method

For a solid that is subjected to quasi-static loading the prin-
ciple of virtual work can be expressed as

—/a(x,t):e*(x,t)dv+/ T u"(x,t)dS =0
\%4 A%
(h

@ Springer

where V is the volume of the solid, o is the stress tensor,
u* and &* are the virtual displacement and strain, respec-
tively, and T is the traction vector. Note that the stress tensor,
virtual displacement, and virtual strain can vary in space
and time. The stress field is calculated directly from the
measured displacements (strains) using assumed a certain
constitutive relation. The calculations are performed with a
numerical implementation of the constitutive model, such as
the radial-return algorithm for plasticity. Therefore, no for-
ward problem solving using FEM is required. In Eq. 1, the
virtual displacement does not have any physical meaning,
and can be any function that is continuous and differen-
tiable over the body. Likewise, the virtual strains do not
have any link with the real strains but only serve as a spatial
weighting functions (also sometimes called ‘test functions’).
The virtual strain is calculated from the virtual displace-
ment using the traditional strain-displacement relationship,
et =1/2 (Vu* + Vu*T). The first integral in Eq. 1 is the
contribution of internal virtual work due to deformation and
the second integral is the contribution from external virtual
work due to externally applied loads.

Since in general, full-field measurements are only per-
formed on the surface of the specimen some assumption on
the material behaviour through the thickness must be made.
In this manuscript, the assumption of plane stress is used
since the samples are loaded in plane and are considered thin.
However, alternative assumptions on the behaviour through
the thickness are possible. Equation 1 can be re-written for a
thin specimen in a state of plane stress:

—h/or (x,y,1)-&"(x,y,1)dS
s

—i—h/ T -u*(x,y,t)dL =0 2)
EN

where h is the thickness of the solid, S is the surface of
the solid, and 9§ is the boundary of the solid. In Eq. 2,
the stress and virtual strain tensors have been written as
vectors: o (x,y,t) = [o11,022,012] and &* (x,y,t) =
le11: €32, 26151

Full-field measurements such as digital image correla-
tion [26] or the grid method [9] determine the displacement
at a large number of discrete locations called measurement
points. When the number of measurement points is large,
the first integral in Eq. 2 can be well-approximated as a
discrete sum using the mid-point rule. Often the distribu-
tion of the traction is unknown and only the resultant force,
F = [ TdA, is measured using a load cell. When the resul-
tant force is known, the external virtual work, W, ,, can be
directly calculated provided that the virtual displacements
are constant over the area where the unknown traction distri-
bution acts. As a result Eq. 2 can be re-written for any time
t as
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nPts
> (o7 -e)sT| = wi, =0 3)

Jj=1

where n Pts is the number of measurement points and S/ is
the area of the jth measurement point.

A constitutive relation must be used to calculate the stress
from the strain data recorded during an experiment. The con-
stitutive relation relates the measured strains to the stresses,
o = o (e, X), where X are the unknown constitutive param-
eters. In the case of linear elastic materials, the constitutive
parameters can be identified by solving a set of linear equa-
tions. This occurs because the stress is a linear function of the
strain. However, for non-linear constitutive relationships, the
VEM no longer yields a set of linear equations. As aresult, the
identification process is based on the minimisation of a cost
function with respect to the constitutive parameters. Using a
suitable set of virtual displacements, the cost function can be
defined as the least squares difference between the internal
and external virtual work through time:

nVF | nTime

DX, e) = Z Z

i=1 t=1

nPts ) i )
> (o7 e X)) ST wg, )
j=I

where nV F and nTime are the numbers of independent
virtual fields and time steps, respectively. The difference
between the internal and external virtual work will be min-
imized, indicating that equilibrium has been satisfied, when
the parameters have been correctly identified. Therefore, to
identify the material parameters for a non-linear constitutive
model, the process is iterative.

To identify the constitutive parameters, X, a set of vir-
tual displacements and strains must be defined. There is an
infinite number of virtual displacement fields that satisfy the
principle of virtual work (Egs. 1-3). In the case of a lin-
ear elastic model, when the number of independent virtual
fields equals the number of unknowns a linear system is pro-
duced that when inverted gives the model parameters. For
these linear systems, Avril et al. [1] have proposed a set
of optimised virtual fields that minimise the influence of
noise on the parameter identification. For non-linear prob-
lems, the situation is more complex. The number of virtual
fields required for a successful identification is not necessar-
ily equal to the number of parameters. However, the selected
virtual fields need to activate the different parameters of the
model, and provide a solution which is as robust as possible
with respect to measurement noise. Until now, and except the
effort reported in [19], the virtual fields were defined intu-
itively by the user. In this article, a new procedure is devised

to automatically generate virtual fields to extract non-linear
parameters with a view to increase the robustness from the
procedure defined in [19].

3 Theoretical development

As constitutive models become more complex, the number
of model parameters tends to increase. The difficulty in iden-
tifying these parameters lies in determining where sufficient
information on each parameter is coded in space (x, y) and
time (¢). The idea behind the proposed sensitivity-based vir-
tual fields is that they will focus on regions that carry the
most information about the constitutive parameters and fol-
low them through time. By perturbing each model parameter,
it is possible to determine the sensitivity of the stress to each
parameter in the constitutive model. In a region where the
stress change is significant, relevant information is encoded
for identifying that parameter. The sensitivity of the stress
field is chosen here as this particular field carries information
in the VFM. Moreover, the stress field is the only quantity
that depends directly on the constitutive parameters in the
VEM, so using these stress sensitivity maps seems like a
very natural idea to select areas with strong dependence to
a given parameter. Since virtual strains can be seen as spa-
tial weight functions, the resulting stress sensitivity map can
be used to focus the identification on these critical regions
where each model parameter has significant influence. Each
model parameter will produce a different stress sensitivity
map and therefore requires its own virtual field. Stress sen-
sitivity based virtual fields following the idea outlined above
are now derived. It is anticipated that by using these virtual
fields to focus on regions where the signal is the most signif-
icant for a given parameter, identifiability of all parameters
will be improved and the influence of noise on the identifi-
cation will be reduced.

3.1 Formulation of sensitivity-based virtual fields

To investigate the spatial sensitivity of the stress field to each
model parameter, the stress sensitivity defined as

sa (e, X, t)=0(e,X,t)—0 (e, X +8X;,1) 5)

was calculated. In Eq. 5, X is the vector of the model param-
eters, i denotes the ith model parameter in vector X, and
t is the time step. By applying a small variation to a sin-
gle model parameter, § X;, it is possible to map in the stress
field the most significant spatial changes associated with this
model parameter. In regions where 8o ) is close to zero, the
varied parameter has a minimal effect on the stress, and con-
versely, large values of 86 ) indicate that small changes in
X; produce large changes in the stress.
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To minimize the history dependence of the stress sen-
sitivity, the incremental stress sensitivity for each model
parameter, §& @ is calculated as:

56D, X,)=080D (e, X, 1) =86V (e, X,t —1) (6)

By subtracting the stress sensitivity between two consec-
utive time steps, only the regions in the stress map that
have changed during that particular time increment are high-
lighted. This is equivalent to a temporal finite difference of
the stress sensitivity maps. Note that an incremental stress
sensitivity must be calculated for every time step and consti-
tutive parameter.

The idea is to use these incremental stress sensitivity maps
as virtual strain maps. However, virtual displacements need
to be defined to calculate the virtual work of external forces.
Moreover, the virtual displacements are also chosen to elim-
inate certain unknown contributions of the traction forces
at the boundary (this will be referred to as ‘virtual boundary
conditions’ in the rest of the article). The objective is to define
a set of virtual displacements such that their associated vir-
tual strain maps ‘look like’ the incremental sensitivity stress
maps. To accomplish this, a least-square projection approach,
described next, was implemented.

To define the virtual displacement, u*, from the incre-
mental stress sensitivity defined in Eq. 6, a virtual mesh was
implemented as it provides more flexibility to include virtual
boundary conditions and ensures numerical stability com-
pared to functions continuously defined over the whole field
of view [20]. The domain, S, is broken into several virtual ele-
ments, collectively called a virtual mesh. Additional details
on the virtual mesh can be found in “Appendix 1”.

The virtual strains at each measurement point are related
to the virtual displacement at the four nodes of the virtual
element that contains the point. A set of three linear equations
can be written for each measurement point which relates the
local virtual strains to the virtual displacements. When the
equations for every element in the mesh are collected the
following system of equations is produced:

560 = g u*® 7

where B is the global strain-displacement matrix which maps
the virtual displacement at every node into virtual strains.
There are 3 x n Pts equations with 2 x nNodes unknowns
for each model parameter. The virtual boundary conditions
place constraints on the virtual displacement, u*® When the
displacement at a boundary is prescribed, the traction at the
surface is generally unknown. To eliminate the contribution
of this unknown traction to Eq. 3, the virtual displacement
at these boundaries are set to zero. Often, the distribution
of the traction is unknown and only the resultant force,
F = f TdA, is measured. In this case, a constant virtual
displacement is applied on the boundary.

@ Springer

Enforcing the constraints on u*(i), a modified global
strain-displacement matrix, B, is found. The virtual displace-
ments are obtained by multiplying the pseudo-inverse of the
modified global strain-displacement matrix with the incre-
mental stress sensitivity,
w*® = pinv (B) 56 "). The virtual strains, e*® also called
the sensitivity-based virtual fields, are then calculated using
the right hand side of Eq. 7. As a result, the virtual displace-
ments are calculated so that the resulting virtual strains match
the incremental stress sensitivity in a least-squares sense.
Although w*® and ¢*@ must be calculated several times
to perform the parameter identification, B and pinv (B) are
only computed once because the virtual mesh and boundary
conditions remain unchanged.

3.2 Inverse parameter identification procedure
To identify the model parameters using the sensitivity-based

virtual strains and displacements, the following cost function,
&, is minimized:

nParams 1
o= 2, [(a(i))z

i=1

nTime [nPts ) o . ’
<> > (a’ (e, X,1)- 8*’(1)(0) ST =W (1)
=1 j=1
®)

In Eq. 8, since the contribution of each parameter can vary
greatly in magnitude, it is scaled by o). The scale factor,
a®  is calculated for each model parameter from the mean
of the n highest internal virtual work (IVW) values where
the IVW is defined as:

nPts
VWO =Y (a/ (e, X, 1)- s*f“)(z)) s/ ©)
j=1
Scaling is necessary because the constitutive parameters
are active over different time scales. As an example when
attempting to identify the parameters in a plastic model,
the parameters which capture the yielding behaviour will
only be active for a short time period while hardening
parameters will, in general, be active for much longer
times. The suitability of this scaling method is validated in
Sect. 5.

3.3 Alternative virtual fields

To quantify the improvement in parameter identification pro-
vided by the sensitivity-based virtual fields, their results are
compared with that from both uniform and stiffness-based
virtual fields. The manually defined uniform virtual field



Chapter 3. Sensitivity-based virtual fields

37

Comput Mech (2017) 60:409—-431

413

applies a linear virtual extension in the x,-direction and the
resulting strain field is uniform. Since the virtual strain is
uniform, the stress in the y-direction is integrated and com-
pared directly with the resultant force (Eq. 2). The virtual
displacements and strains which define this uniform virtual
field are:

%
uf =0 =0
! e =1 (10)
Uy = Xx2 «
e}, =0

The most common approach for the non-linear VEM has
been to manually define the virtual fields and therefore it is
interesting to evaluate it against the sensitivity-based virtual
fields.

Stiffness-based optimised virtual fields [19] were also
implemented; these virtual fields are an earlier attempt
at developing noise-optimised virtual fields for elasto-
plasticity. The stiffness-based virtual fields were derived
using the same noise minimization approach developed
for virtual fields optimization in linear elasticity [1]. The
stiffness-based virtual fields depend on the tangent stiffness
matrix, D, and scale each element’s contribution by its
effective von Mises stress. The reason for scaling by the
effective von Mises stress is twofold. Firstly, the elements
with low stress values generally contribute larger errors to
the cost function, due to low signal-to-noise ratio. Secondly,
scaling by an element’s effective von Mises stress minimises
the influence of the early stress—strain history and is there-
fore a practical way to reduce the importance of areas in
the specimen which have not yielded. In the implementation
by Pierron et al. [19], the stiffness-based optimised virtual
fields were projected onto constant strain triangular elements.
In this study the method was extended to quadrilateral ele-
ments so that the same type of virtual elements could be
implemented for both the sensitivity and stiffness-based vir-
tual fields. A different method must be used to calculate D*P
since kinematic hardening is not considered here. The formu-
lation for the elasto-plastic tangent stiffness matrix presented
by de Souza et al. [16] was used. In order to integrate the ele-
ment stiffness matrix, both the elasto-plastic stiffness matrix
and the effective von Mises stress were averaged across each
virtual element. The mean value for each was assigned to
the centroid of the virtual element. The definitions of the
modified global stiffness matrix and the tangential elasto-
plastic stiffness matrix needed to compute the stiffness-based
virtual fields are given in “Appendix 2”. This approxima-
tion of the element stiffness matrix limits how coarse the
virtual mesh can be; the larger an elements is, the more
points of measurement it contains as well as the larger area it
spans. As a result the value at the centroid is estimated with
larger error leading to reduction in effectiveness of noise-
optimisation.

¥4

fe——45mm—F———]

Fig. 1 Geometry for the tensile specimen. The blue region in the centre
of the specimen is the region of interest (ROI). (Color figure online)

4 Application to simulated test data

To verify the effectiveness of the senstivity-based virtual
fields, the method was tested using simulated data from uni-
axial tensile test on a double-notched specimen. During the
initial portion of the test, the material deforms elastically
and no information on the yield or hardening response can
be identified. Once the material yields a plastic zone is cre-
ated. The parameters which define the yield behaviour of the
material will be active on the boundary of this growing plastic
zone. In the interior of the plastic zone, the parameters which
describe the hardening response will be active. Therefore, the
proposed sensitivity-based virtual fields for yield and hard-
ening should follow the boundary and interior of the plastic
zone, respectively. This can be used as a qualitative check
that the sensitivity-based virtual fields have been correctly
implemented.

4.1 Double-notched tensile test

The simulated double-notched tensile test data was created
to mimic a steel specimen that was subjected to an aver-
age longitudinal strain of 1%. The double notched specimen
geometry pictured in Fig. 1 was selected because the deep
notches produce a heterogeneous strain distribution. Simi-
lar geometry has already been used in [19]. The specimen
was meshed in ABAQUS (v. 6.13) using 8-node bi-quadratic
plane stress quadrilaterals (CPS8) with a total of 12,120
elements. The mesh density was chosen based on a mesh con-
vergence study. The nodes on the bottom edge of the mesh
were fixed and a vertical displacement of 0.3 mm was applied
to the nodes on the top edge. The loading was imposed in 100
equal steps of 0.003 mm each. As a result, 100 different dis-
placement fields are available for the identification process,
simulating the recording of one hundred images during an
experiment.
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Table 1 Reference parameters for the linear and Voce hardening laws

oo MPa) H (MPa) Ro(MPa) R;,y MPa) b

Linear 297.5 3170 - - -
Voce 179.8 - 3170 117.7 3500

1200 (-

1000 [~
Z 800

g

E 600 —— Linear Hardening

400 - - - - Voce Hardening

200 [

0 C 1 1

1 1 1 1 1
0 0.05 0.1 0.15 0.2 0.25 0.3
Displacement, mm

Fig. 2 Force versus displacement curve for the linear and Voce hard-
ening laws. The points highlighted on the curve for linear hardening
correspond to time steps 13 and 20. The points highlighted on the curve
for Voce hardening correspond to time steps 8 and 20

Two different constitutive models were considered. For
both cases, the material model used linear elasticity (E =
199 GPa, v = 0.32) combined with the von Mises yield crite-
rion. Two different hardening laws were implemented: linear
(Eq. 11) and Voce (Eq. 12). For a material that linearly hard-
ens, the updated yield stress, oy, is a function of the equivalent
plastic strain, €7, the initial yield stress, o, and the hardening
modulus, H.

0y = o0+ H&? (1

A modified form of the Voce hardening law [19] was also
implemented to include a non-linear hardening response.
In this case, the updated yield stress is a function of the
equivalent plastic strain and four model parameters: oy,
the initial yield stress, R, the linear hardening modulus,
and Rjyr and b which describe the non-linear response at
yield.

oy = 00 + Rins (1 — exp(—beP)) + Ro&? (12)

The parameters implemented in the FE model for both hard-
ening laws are presented in Table 1. The values for the
Voce law were based on the values cited in [19], whereas
the linear hardening model was defined in such a way
that it produces the same stress—strain relation as the Voce
law as the plastic strain approaches infinity. The force-
displacement curve for both hardening models is shown in
Fig. 2.

@ Springer

4.2 Simulated experimental data

To simulate the data that would be collected during an actual
experiment, the resultant force at the top surface and the
strain at the centroid of each element were exported from
ABAQUS for each loading step. The strain data was inter-
polated onto a regular 150 x 150 mesh, covering the central
portion of the specimen (Fig. 1) using the MatLab function
griddata with a linear interpolant to simulate the format
of data obtained from a typical full-field measurement tech-
nique such as DIC. Gaussian noise with a standard deviation
of 150 e was artificially added to the simulated strain data
to attempt to simulate data collected during an actual exper-
iment. The white (Gaussian) noise was generated in MatLab
using the function randn. The use of noisy data is necessary
to evaluate the ability of the various virtual fields to minimize
the effect of experimental noise on the parameter identifica-
tion. This is thought to be enough to discriminate between the
performances of the different virtual fields. Though beyond
the scope of the present article, a more robust simulation of
experimental data could be undertaken using image defor-
mation [24]. This will be attempted in future work.

5 Results and discussion
5.1 Construction of the sensitivity-based virtual fields

To investigate whether the mathematical formulation pre-
sented in Sect. 3.1 highlights the regions where each param-
eter is active, maps of the equivalent plastic strain, €7, the
stress sensitivity, 86V, and the incremental stress sensitiv-
ity, 0 @), were drawn for both the linear and Voce hardening
models. The stress sensitivity and incremental stress sensitiv-
ity were calculated using Eqs. 5—-6 with exact data from their
respective finite element models and the reference param-
eters given in Table 1. The small variation applied to the
parameters in Eq. 5 was §X; = —0.05X;. Here, the back-
wards finite difference was used in order to include slightly
more points on the elasto-plastic boundary, compared to the
forward finite difference.

5.1.1 Linear hardening

In Figs. 3 and 4, the maps of &7, 8022 ®, and 852, are
shown for the linear hardening model at two different load
steps. Videos of 809, and 852, @ for all 100 time steps can
be found in the Online Resources 1-2 for the yield stress and
hardening modulus, respectively. The two time steps pre-
sented in Figs. 3 and 4 show the two main phases in the
experiment: initial yielding (time step 13) and hardening of
the entire centre region (time step 20). For reference these
two time points are also marked in Fig. 2. In the first phase,
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Fig. 4 Maps of a, d equivalent plastic strain, b, e the vertical compo-
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Fig. 5 Maps of a, d equivalent plastic strain, b, e the vertical com-
ponent of stress sensitivity to b, 602(3), and ¢, f the incremental stress

sensitivity, 6,, . The top row of maps a—c are for a displacement o
tivity, 8655, The top f map for a displ t of

the plastic zone propagates from the notches towards the
centre of the specimen. In the second phase, the yield zone
propagates from the centre towards the top and bottom of the
specimen. As shown in Fig. 3b, e the stress sensitivity high-
lights the plastic zone, very closely resembling the shape
of the equivalent plastic strain (Fig. 3a, d). The incremen-
tal stress sensitivity for yield stress (Fig. 3c, f) follows the
boundary of the equivalent plastic strain, defining the border
between the elastic and plastic zones, as expected. The incre-
mental stress sensitivity focuses only on the regions that have
yielded between the two increments, removing the history
dependent effects shown in the stress sensitivity. However,
Fig. 4 indicates that there is not much difference in shape
between the stress sensitivity and incremental stress sensi-
tivity for the hardening modulus. The only difference is the
locations within the map that are emphasised; the magnitude
of the stress sensitivity is the greatest where the equivalent
plastic strain is the largest. The incremental stress sensitiv-
ity is the highest just behind the border of the plastic zone
due to the removal of the history dependence. These results
confirm that the incremental stress sensitivity, 6@, high-
lights the regions in the specimen where each parameter is
active.

5.1.2 Voce hardening

The stress sensitivity and incremental stress sensitivity were
also examined for the Voce model. As expected, the Voce
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parameters, op and Ry, behave almost exactly as the linear
hardening parameters oy and H. The remaining two parame-
ters Riyr and b which capture the non-linear yielding response
behave quite differently. Videos of the stress sensitivity and
incremental sensitivity for all four model parameters are
included in the Online Resources 3—6. The maps of both
stress sensitivity and incremental sensitivity at two differ-
ent time steps are presented in Figs. 5 and 6 for R;,s and
b, respectively. The two time steps correspond again to the
propagation of the plastic zone from the notches (a—c) and
the merging of the two plastic zones in the centre followed
by vertical propagation (d—f). These two time steps are also
marked in Fig. 2. At the onset of yielding, the stress sensitiv-
ity and incremental stress sensitivity for Rin¢ and b follow the
boundary of the plastic zone (Figs. 5, 6a—c). As the plastic
zone develops, clear differences between the stress sensitiv-
ity and incremental stress sensitivity emerge (Figs. 5, 6e—f).
The incremental stress sensitivity for both parameters con-
centrates in the centre of the specimen, excluding the notched
areas where plastic strain is the highest. The large differences
in shape between the stress sensitivity and the incremen-
tal stress sensitivity are again due to the removal of history
dependent effects by the incremental stress sensitivity. As the
sample continues to plasticize the incremental stress sensitiv-
ities for Riyr and b occupy less space. This occurs because the
exponential term in Eq. 12, which includes R;,r and b, decays
to zero for large values of plastic strain. The stress sensitivity
clearly highlights areas which are sensitive to a small change
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in the constitutive parameter but due to the intrinsic history-
dependence of plasticity, any region where the parameter
was active will still be highlighted. The incremental stress
sensitivity effectively filters the history-dependence creat-
ing virtual fields that will follow the critical regions through
time.

5.1.3 Sensitivity-based virtual fields

Sensitivity-based virtual fields were identified from the incre-
mental stress sensitivity maps, 86 ®, using Eq. 7. The virtual
fields &7, that correspond to the incremental stress sensitiv-
ities in Figs. 3 and 4c, f are shown in Fig. 7. The piecewise
linear functions are capable of reproducing the general spa-
tial features of the stress sensitivity maps. It is worth noting
that the virtual fields do not have to follow the sensitivity
maps very precisely, but it is sufficient to highlight areas
where the signal is present for each parameter at a particu-
lar time step. Due to some high gradients in the incremental
stress sensitivity maps, the coarse mesh (Fig. 7c, g) strug-
gles to capture these local variations. As the virtual mesh
is refined, the features are more accurately reproduced as
shown in Fig. 7d—f and h—j. The primary cost of mesh refine-
ment is the computational time required to produce the global
strain-displacement matrix, B, which is needed to calculate
the sensitivity-based virtual fields (Eq. 7). It is worth not-
ing that the exact shape is not required for the method to be

.. 4

= N

)

a displacement of 0.024 mm which corresponds to a resultant vertical
force of 650 N. The lower row of maps d—f are for a displacement of
0.060 mm which corresponds to a resultant vertical force of 1076 N

successful, as will be shown later; once the general shape is
captured (7 x 7 mesh) the virtual mesh has sufficient resolu-
tion to identify the model parameters for both the linear and
Voce hardening models.

In Figs. 3 and 4, the stress sensitivity and incremental
stress sensitivity were plotted in the loading direction. They
can also be plotted for the remaining stress components. Fig-
ure 8a, d shows the incremental stress sensitivities, 85'1(‘170) and
8 Efg‘”. The incremental stress sensitivity maps correspond to
the second time step depicted in Figs. 3 and 4 when the yield
zone propagates upwards and downwards from the specimen
centre. The sensitivity-based virtual fields £}, and &7, are pic-
tured in Fig. 8b, e and ¢, f for a 7 x 7 and 14 x 14 virtual
mesh, respectively. The shapes of e}, and &}, are similar to
their respective stress sensitivities but, the reconstructions are
not as accurate as for £3,. This mismatch occurs because the
three virtual strain components are not independent. Since the
incremental stress sensitivity in the loading direction is the
largest in magnitude, the least-squares identification of the
virtual strains places more weight on matching this compo-
nent. Employing finer meshes improves the matching of the
overall shapes for all three components but the method still
struggles to match sharp gradients (e.g. pattern in Fig. 8d).
The influence of the virtual mesh density on the parameter
identification is further explored for each of the hardening
models in Sects. 5.3.4 and 5.4.4.
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Fig. 9 Virtual fields obtained for the stiffness-based optimised virtual
fields (14 x 14) for the linear hardening model at two different time
steps. The top row of maps a—c are for displacement of 0.039 mm which

5.2 Construction of stiffness-based optimised virtual
fields

The stiffness-based optimised virtual fields were found using
the method described in “Appendix 2”. Only a single set
of virtual fields, e* = [&f,, £3,, 2¢],], are calculated at
each time step when using the stiffness-based virtual fields.

-
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to a vertical displacement of 0.060 mm and a resultant force of 1085 N
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corresponds to a resultant vertical force of 1011 N. The lower row of
maps d—f are for a displacement of 0.060 mm which corresponds to a
resultant vertical force of 1085N

This differs from the sensitivity-based procedure which pro-
duces a set of virtual fields for each model parameter. The
stiffness-based virtual fields are shown in Fig. 9 for the linear
hardening model and a 14 x 14 virtual mesh. The stiffness-
based optimised virtual fields display a chequered pattern
which is due to the instability of reduced integration bilinear
quadrilateral elements. Employing full integration elements
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would remove the chequered pattern at the cost of inter-
polating the strain at the Gauss points. The full integration
approach has been tested and the obtained results were con-
sistent with the ones generated with the reduced integration
approach, proving that the pattern does not have a detrimen-
tal influence on the identification process here. The shapes
of the stiffness-based virtual fields, 8]*1, appear to follow the
shapes of the equivalent plastic strain maps (Fig. 3a, d). There
does not appear to be any noticeable similarities between the
sensitivity-based and stiffness-based virtual fields, indicat-
ing the each procedure focuses the identification on different
regions.

5.3 Validation on simulated data: linear hardening

The simulated data obtained from the finite element model
was used to validate the approach for the linear hardening
model. Firstly, the evolution of the internal and external
virtual work with respect to time has been investigated to
examine the time scale when each parameter is active. Sec-
ondly, the sensitivity-based, stiffness-based, and uniform
virtual fields were used to identify the linear hardening
parameters, og and H, from the simulated data. Then, noise
was added to the strain data to simulate experimental condi-
tions and all three kinds of virtual fields were again used to
identify the two model parameters. Finally, the influence of
the virtual mesh density on the identified parameters has been
evaluated. In this study, the identification of elastic param-
eters has been ignored as it can be done using only elastic
loading with the linear VEM [1], effectively reducing com-
putational effort in minimising the cost function.

5.3.1 Evolution of the internal and external virtual work

To examine the time steps when each parameter is active, the
internal virtual work was calculated for each parameter using

@ Springer

Eq. 9. Figures 10a, b show the internal and external virtual
work for the yield stress and hardening modulus, respectively.
The magnitude and shape of the curves for the yield stress
and hardening modulus are clearly different. The internal and
external virtual work for both the yield stress and hardening
modulus remain at zero for the first 9 steps corresponding
to elastic loading, hence completely filtering out the elastic
part of the test from the cost function. Then at time step 10,
which corresponds to the onset of plasticity at the notches,
the virtual work starts to increase from zero as expected.
The internal virtual work for the yield stress quickly peaks
at the 15th time step, which corresponds to the plastic zone
spreading across the whole specimen and then decays back
to zero. In contrast, the internal virtual work for the harden-
ing modulus continuously increases throughout the test. The
magnitude of the internal virtual work for the yield stress and
hardening modulus are also markedly different. To properly
identify the model parameters using Eq. 8, the virtual work
is scaled by o) using the 15 highest IVW values to ensure
that the contributions of each parameter to the cost function
are of the same order. The y-axis on the right hand side of
Fig. 10 shows the scaled values for both the internal and
external virtual work. Although not backed by any physical
argument, the scaling method employed here was proven to
be successful as shown in Sect. 5.4.5, where it was found that
the number of time steps taken for computing ) has minor
effect on the identification errors.

5.3.2 Identification without noise

To identify the linear hardening parameters, oy and H, the
cost function given in Eq. 8 was minimized using the built in
MatLab (v. 6.14b) function finincon and the SQP (Sequential
Quadratic Programming) algorithm. The model parameters
were constrained to be greater than zero. This restriction
was imposed to ensure that the material response was physi-



Chapter 3. Sensitivity-based virtual fields

45

Comput Mech (2017) 60:409—-431

421

Table 2 Identified parameters for the linear hardening model using
exact data

Table 3 Identified parameters for linear hardening model using noisy

ag/a(;ef H/H"
Uniform 1.003 0.994
Stiffness 0.998 0.998
Sensitivity 1.000 1.001

cally reasonable for the steel being studied. The initial guess
supplied to the minimization function was generated with a
random number generator. To verify that the set of identi-
fied material parameters represented a global minimum, 15
different starting points were tried. Since the same set of
parameters were consistently obtained independent of the
initial guess, the identified parameters were assumed to be
the global minimum. The results obtained with the uniform,
stiffness-based, and sensitivity-based virtual fields are pre-
sented in Table 2. 7 x 7 and 14 x 14 virtual meshes were used
for the sensitivity-based and stiffness-based virtual fields,
respectively; it should be noted that finer meshes are required
for the stiffness-based virtual fields as described in Sect. 3.3.
All methods accurately identified the model parameters since
the principle of virtual work is satisfied exactly on perfect
(noise-free) data. This verifies that all three virtual field types
were implemented correctly, leading to an identification error
smaller than 1% in Table 2. The virtual mesh density for
the sensitivity-based virtual fields was varied from 5 x 5 to
14 x 14 and no change was observed in the identified model
parameters.

5.3.3 Identification with noise

The parameters for the linear hardening model were also
identified using noisy data. Gaussian white noise with a stan-
dard deviation of 150 pe was added to strain data obtained
from the finite element simulation. This level of noise rep-
resents what is expected in a well designed and conducted
experiment. It should be emphasized that this is only a first
approach to noise propagation simulation. Recent studies
[24,27] have shown that an image deformation procedure
needs to be employed to realistically simulate both systematic
and random errors. However, this procedure is more compu-
tationally extensive and has so far only been applied to linear
elasticity. This approach will be investigated in the future
for elasto-plastic identification and a simpler noise study has
been employed here. It is thought however that this sim-
plified procedure will be enough to get a first idea about
the relative stability of the different virtual fields to noise.
As the radial-return algorithm employed here for stress cal-
culation uses strain increments rather than total strain, it is
worth comparing the magnitude of the noise to that of the
average strain increment. For the strain in the loading direc-

data
Time Signal-to-  op/ O‘(; of H/H"
Steps  noise ratio
Uniform 100 1.1 1.137 £ 0.0076% 0
50 2.1 1.013 £ 0.031% 1.346 £0.49%
33 32 1.022 £ 0.024% 0.967 £ 0.23%
25 43 1.019 £ 0.024% 0.944 £ 0.20%
Stiffness 100 1.1 1.140 £ 0.010% 0
50 2.1 0.987 £0.041% 1.351 £0.52%
33 32 1.003 £0.013% 1.023 £0.11%
25 43 1.004 £ 0.015% 1.003 £ 0.085%
Sensitivity 100 1.1 1.037£0.26% 1.254 £ 13%
50 2.1 1.022 £0.073% 0.999 £1.3%
33 32 1.014 £0.025% 0.994 £0.21%
25 43 1.012£0.027% 0.978 £0.21%

tion, €27, the mean value of strain increment after yielding is
165 e, making the effective signal-to-noise ratio approxi-
mately 1.1. Effectively, such high noise can produce spurious
elastic unloadings which were shown to heavily influence the
cost function and amplify the identification error significantly
[15]. In order to increase the signal-to-noise ratio, the num-
ber of time steps can be reduced by only using data from
every nth time step to increase the strain increment between
consecutive frames. This procedure effectively increases the
signal-to-noise ratio (due to the rate nature of the plastic-
ity equations). In practice, more images means that temporal
smoothing can indeed be used to further increase the signal-
to-noise ratio. Moreover, if too few steps are used, then the
radial return algorithm will generate stress reconstruction
errors so a compromise has to be found. In this paper four
different total time steps were tested, 100, 50, 33, and 25,
resulting in an effective signal-to-noise ratio of 1.1, 2.1, 3.2,
and 4.3, respectively. Although increasing the strain incre-
ment can lead to errors in the radial return algorithm, using
the simulated data there was found to be a less than 0.1%
difference between the stresses predicted using 100 and 25
time steps. Similar to the case without noise, the identifica-
tion was repeated 15 times and the same parameters were
identified independently from the initial guesses. In order
to estimate both random and systematic errors, 30 differ-
ent copies of noise were added to the simulated data. The
mean value and the coefficient of variation of the identified
parameters for the uniform, stiffness-based, and sensitivity-
based virtual fields are given in Table 3 where a virtual
mesh size of 7 x 7 and 14 x 14 was implemented for the
sensitivity-based and stiffness-based virtual fields, respec-
tively.

As the signal-to-noise ratio of the strain increment
increases with a smaller number of time steps, the accuracy
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Fig. 11 Plots of the cost functions obtained for the linear hardening
model using Eq. 11 and uniform virtual fields (Eq. 10). The upper row
a-b corresponds to a 33 time steps and b 100 time steps for perfect

of the identification increases for all methods. Decreasing
from 33 to 25 time steps worsens the accuracy of the iden-
tification for the hardening modulus indicating that there
is insufficient temporal resolution. Notably, from 50 time
steps downwards, the yield stress is accurately identified
with all methods. The sensitivity-based virtual fields are
able to identify the hardening modulus using 50 steps,
which corresponds to a signal-to-noise ratio of 2.1. However
the other methods struggle to identify H at signal-to-
noise levels below 3.2 (33 time steps). Using all 100 time
steps, the lower bound of the optimization algorithm was
reached for the uniform and stiffness-based virtual fields
resulting in H = 0. The zero value for H is compen-
sated for by overestimated o( values. As the signal-to-noise
ratio increases, the random error consistently increases as
well for every virtual field. The reduction in the num-
ber time steps likely causes this increase in random error;
the reduction in time steps makes the identification mores
susceptible to noise which results in increased random
error.
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data. The lower row c—d corresponds to ¢ 33 time steps and d 100 time
steps for noisy data. Note that the log of the cost function is plotted to
better illustrate the minimum

The influence of noise on the cost function can be seen
in Figs. 11 and 12 for the uniform virtual field. For exact
data (Fig. 11a, b) there is a clear minimum which does not
depend on the number of time steps used, supporting the
fact that the identified value is the global minimum. When
the signal-to-noise ratio is high (low number of time steps)
the cost function is not appreciably changed by the addi-
tion of noise (Fig. 11a, c). For a smaller signal-to-noise ratio
(Fig. 11d), a valley with little sensitivity to hardening mod-
ulus was formed. A similar behaviour is observed for the
sensitivity-based virtual fields (Fig. 12), though the mini-
mum for H is slightly closer to the expected value.

5.3.4 Sensitivity to the virtual mesh size

As described earlier, the size of the virtual mesh influences
how well the virtual strains match the incremental stress sen-
sitivity maps. To determine if the mesh density influences the
identification results, three additional mesh densities were
tested: 5 x 5, 10 x 10, and 14 x 14. The identification pro-
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Fig. 12 Plots of the cost functions obtained for the linear hardening
model using Eq. 11 and sensitivity-based virtual fields. The upper row
a-b corresponds to a 33 time steps and b 100 time steps for perfect

Table4 Study of the influence of the mesh size on the identified param-
eters of the linear hardening law using sensitivity-based virtual fields

Virtual mesh oy/ ayref H/H"™/

5x5 1.014 £ 0.027% 0.994 + 0.23%
7x17 1.014 £ 0.025% 0.994 +0.21%
10 x 10 1.013 £ 0.025% 0.993 +0.21%
14 x 14 1.013 £ 0.023% 0.992 +0.19%

cedure was run 30 times, each time with a different copy of
noise. The mean and coefficient of variation of the parame-
ters are reported in Table 4. The mesh density does not have a
significant influence on the mean value of H or oy. The coef-
ficient of variation slightly decreases with increasing mesh
density. The accurate identification of H and oq also proves
that the differences between the incremental stress sensitiv-
ity and the derived virtual fields observed in Figs. 8 and 7 do
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data. The lower row c¢—d corresponds to ¢ 33 time steps and d 100 time
steps for noisy data. Note that the log of the cost function is plotted to
better illustrate the minimum

not impact the identification procedure. This is a very posi-
tive outcome as a strong virtual mesh sensitivity would have
required mesh density optimization.

5.4 Validation on simulated data: Voce hardening

The Voce hardening model was also considered to deter-
mine how increasing the complexity of the constitutive
relationship would influence the inverse parameter identifi-
cation. Based on the sensitivity study discussed at the end of
this section, a virtual mesh of 14 x 14 was used and the pertur-
bation and scaling parameters were fixed to § X; = —0.10X;
and 30% of the highest IVW terms (Eq. 9).

5.4.1 Evolution of the internal and external virtual work
The internal virtual work (Eq. 9) was used to identify when

each parameter was active (Fig. 13). The three parameters,
00, Rinf, and b, that describe the onset of yielding were active
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Fig. 13 Evolution of internal (O) and external (blue line) virgual work, respectively for the sensitivity-based virtual fields for a o9, b Ro, ¢ Rint,
and (d) b. The y-axis for each parameter has been scaled by a”. (Color figure online)

from time steps 7 to 30. The hardening parameter, Ry, also
became active at time step 7 but continued to grow until the
test ended. The graphs in Fig. 13 have two y-axes, the left-
hand axis shows the unscaled values while the right-hand
axis has been scaled by «¥) which is the mean of the 30%
highest values of the IVW terms.

5.4.2 Identification without noise

The parameters were identified using the same procedure
outlined for linear hardening in Sect. 5.3.2. Again all of
the model parameters were constrained to be positive. In
addition, the hardening parameter, Ry, was constrained such
that Ry > 1000 MPa in order to narrow the search region.
The results obtained for all types of virtual fields, with the
same 14 x 14 virtual mesh for both the sensitivity-based and
stiffness-based virtual fields, are shown in Table 5. All of the
methods are clearly capable of identifying the model param-
eters well. It should be noted that parameters op and Rint
are distinguishable only at the onset of plasticity. After some
plastic deformation is accumulated, it is the combined value,
Y = 00+ Rjuf, that influences the cost function. This enables
the values of o and Rj,¢ to compensate for one another and

@ Springer

Table 5 Identified parameters of the Voce hardening model using exact
data

0_0/0_(;@_1" RO/R(r)ef Rinf/Rirng'ff b/bref Y/yref
Uniform 1.001 1.000 1.000 1.000 1.000
Stiffness 1.002 1.002 0.997 1.008 1.000
Sensitivity ~ 1.002 1.000 0.998 0.997 1.001

as a result, the simulated data mainly contains information
about Y and limited data about oy and Rj,¢ individually.
The cost function for the Voce model with exact data is
shown in Fig. 14. Since this model has 4 parameters, the cost
function is situated in a 4-dimensional space. To visualize the
cost function several planes were cut through the cost func-
tion. In Fig. 14, six plots showing the interaction between
pairs of parameters are reported. In each case, an elongated
locus with a unique minimum is observed. The plot of o
vs R,y (Fig. 14b) indicates that there is a strong correlation
between the two parameters, represented by the open valley
inclined at an angle close to 45°. Both o and R;,s show
minimal dependence on b as shown in Fig. 14c, f with open
valleys aligned with reference values of the yielding param-
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Fig. 14 Cuts through a cost function for Voce model with sensitivity-
based virtual fields obtained with exact data and 33 time steps. The plots
show interaction between pairs of parameters: a oo — Ro, b 00 — Ry,

eters. There is however a very well defined minimum on the
Ro—b cut (Fig. 14e), suggesting that the b parameter is found
because of this interaction.

5.4.3 Identification with noise

To test the ability of the different virtual fields to minimize the
influence of noise, Gaussian noise with a standard deviation
of 150 ue was added to the finite element strains. Based on
the identification of the linear hardening parameters, only 50,
33, and 25 time steps were used to perform the identification
resulting in a signal-to-noise ratio of approximately 2.2, 3.3,
and 4.4, respectively. The minimization program was run 15
times varying the initial guess. This time, the different start-
ing points resulted in different sets of identified parameters,
so the set of parameters that produced the lowest value of the
cost function was taken as the global minimum. This process
was repeated 30 times with different copies of noise. Thus
far, the incremental stress sensitivity maps have been used
to generate the virtual fields, however it is also possible to
use Eq. 5 to construct the stress-sensitivity virtual fields. The
mean and coefficient of variation of the parameters identified
using the noisy data are given in Table 6. It should be noted
that for the stress-sensitivity virtual fields only 33 time steps
were used.

cop—b,d Ry — Riyy, e Ry — b, (f) Ry — b. Note that the log of the
cost function is plotted to better illustrate the minimum

For the uniform virtual field, the lower bound for Ry was
frequently reached for 50 and 33 time steps (Rp/ R(r)ef =
1000/3170 = 0.316). In fact, the coefficient of variation
of Ro for 33 time steps is zero because the lower bound
of the minimization routine was reached with every copy of
noise. The sensitivity-based and stiffness-based virtual fields
clearly out-perform the uniform virtual fields, most notably
for Ry and b. For the more complex Voce model, the uniform
virtual fields struggled to identify the yield stress, oy, linear
hardening modulus, Ry, and the non-linear yield parameter,
b even for high signal-to-noise ratios. The stress-sensitivity
virtual fields significantly overestimate oy and b and under-
estimate of R;,r. However the hardening modulus, Ry, is
well identified. Since the history dependence has not been
removed from the stress-sensitivity virtual fields, the later
stages of the test are given a much larger weight and as a
result, the stress-sensitivity virtual fields do not identify the
yielding parameters well.

To visualize the difference between the parameters in
Table 6, the stress—strain curves that would be obtained
using the parameters for 33 time steps are shown in Fig. 15.
The parameters identified using the sensitivity-based, stress-
sensitivity, and stiffness-based virtual fields all produce
stress—strain curves that closely follow the reference curve
(R? = 0.99). In Table 6, the uniform and stress-sensitivity
virtual fields over-estimate the yield stress and the higher
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Table 6 Identified parameters for the Voce hardening model using noisy data

Virtual fields Time steps ao/a(;ef RO/R(r)ef Ri,,f/Rir:jf b/bef y/yref
Uniform 50 1.218 £ 0.35% 0.319+1.8% 1.141 £ 1.1% 0.332 £0.32% 1.188 £ 0.27%
33 1.252 £ 0.29% 0.316 0 0.988 £ 0.47% 0.287+£ 0.23% 1.148 £ 0.021%
25 1.234 +£0.47% 0.470 £ 0.78% 0.921 £ 0.83% 0.328 +0.45% 1.110 £ 0.12%
Stiffness 50 0.954 + 0.76% 1.371 £ 0.34% 1.035 +1.2% 1.545 + 1.4% 0.986 £ 0.027%
33 1.072 £ 0.30% 1.024 +£0.10% 0.905 £ 0.44% 0.971 £ 0.88% 1.006 £ 0.020%
25 1.076 £ 0.59% 1.007 £ 0.059% 0.897 £+ 0.86% 0.948 + 1.0% 1.005 £ 0.020%
(Incremental) sensitivity 50 1.102 £2.2% 1.070 £ 7.3% 0.893 £2.7% 0.949 £ 8.1% 1.019 £ 0.54%
33 1.060 +3.1% 1.012 £2.9% 0.939 +4.0% 0.976 +£9.0% 1.013 £ 0.34%
25 1.054 £ 0.77% 1.005 £+ 0.26% 0.941 £ 1.2% 0.968 £+ 1.4% 1.009 £ 0.037%
Stress sensitivity 33 1.377 £ 2.4% 0.921 £9.0% 0.501 £ 0.33% 1.563 = 57% 1.031 &+ 1.4%
Uniform raLv = éliﬁness raw Iil Sensitivity :'aw

<
e
=
g —
= 200F Reference
8 O Uniform (R*=0.92)
@ A Stiffness-based (R>= 0.998)
100 O Stress-senstivity (R*= 0.996)
< (Incremental) Sensitivity-based (R? = 0.996)
0 1 1 1 1 1 1
0 0.5 1.0 1.5 2.0 25 3.0

Strain, €, %

Fig. 15 Stress—strain curve obtained with parameters identified in
Table 6 for 33 time steps

yield stresses are clearly visible in Fig. 15. While for the
uniform virtual field the overestimated yield stress was
paired with an underestimated hardening modulus, the stress-
sensitivity virtual fields overestimate the yield stress and cap-
ture the hardening response. However. this mis-identification
of the model parameters for the stress-sensitivity virtual fields
does not appear to impair the ability to follow the reference
stress—strain curve. In fact, except at the onset of yield; the
stress-sensitivity virtual fields generated data, closely follow
the incremental stress-sensitivity one.

Typically, to minimize the influence of noise, some form
of temporal smoothing would be used on the measured dis-
placement, especially when plasticity occurs since the noise
can cause spurious elastic unloading [15]. To determine what
effect temporal smoothing would have on the identifica-
tion, the full data set using all 100 points was smoothed
with a simple moving average over a window of five data
points. The data was then reduced to 33 points by keeping
only every third smoothed data point. Using this temporally
smoothed data set, the identification was repeated 30 times
to determine the mean and standard deviation of the iden-
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Fig. 16 Comparison of mean values of identified parameters using
different VFs over 30 copies of noise. The uncertainty bars represents
one standard deviation

tified parameters. In Fig. 16, the results for data that has
been temporally smoothed is compared with unsmoothed
noisy data. The identification using the uniform virtual fields
is improved significantly. The parameters for the stiffness-
based and sensitivity-based virtual fields are all within 1.5%
of the reference values.

5.4.4 Sensitivity to the virtual mesh size

To ensure that the mesh density had a minimal impact on the
identification, three additional virtual mesh densities were
tested: 5 x 5,7 x 7, and 10 x 10. Table 7 reports the mean
and coefficient of variation obtained for each of the param-
eters when the identification was run 30 times with different
copies of noise. Similar to the results obtained for the lin-
ear hardening model, the mesh density did not affect the
mean value of the identified parameters but increasing the
mesh density tended to cause the random error to slightly
decrease.
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Table 7 Influence of virtual -
ref f ! .
mesh size on identified Mesh 00/0)° Ro/Ry Ring/ R,-r,ff b/b"ef y/yref
parameters for Voce model
5x5 1.094 £ 4.0% 1.064 £4.7% 0.887 £5.3% 0.920 + 13% 1.012 £ 0.60%
7x7 1.109 £ 3.8% 1.042 £5.0% 0.864 £ 5.4% 0873 £ 11% 1.012 £ 0.60%
10 x 10 1.089 £3.3% 1.042 +3.0% 0.889 £ 4.4% 0935+ 11% 1.010 £ 0.40%
14 x 14 1.090 £ 2.8% 1.041 £3.6% 0.886 £3.9% 0.926 +7.2% 1.009 £ 0.40%
o R, A R, L )

BT
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Fig. 17 Relative error on the identification versus the implemented a perturbation parameter and b scaling percentage. The error bars show one

standard deviation

5.4.5 Sensitivity to reconstruction parameters

The proposed method includes two parameters that must be
selected, the perturbation, § X;, and the scaling parameter,
a® . The perturbation will influence the stress sensitivity and
its reconstruction while the scaling will directly influence the
cost function (Eq. 8). For the Voce model results, the pertur-
bation and scaling parameters were fixed to § X; = —0.10X;
and 30% of the highest IVW terms (Eq. 9), respectively. The
effect of both these parameters on the quality of identifica-
tion was studied on a noisy data set with 33 time steps. The
mean and standard deviation for the four model parameters
were identified by running the identification 30 times with
different copies of noise.

To study the influence of the perturbation, 6 X;, a virtual
mesh of 14 x 14 and a scaling parameter of 30% were used. A
fine mesh was implemented because smaller virtual elements
are needed to capture the fine features and high gradients
that would be produced as the perturbation shrinks. Five dif-
ferent values were tested: 0.01, 0.05, 0.1, 0.2 and 0.5. In
Fig. 17a the results are presented showing how the identi-
fied value of each model parameter varied as a function of
the perturbation parameter. The random error on the identifi-
cation drastically decreases as the perturbation parameter is
increased. As the perturbation increases so does the error on
the hardening modulus, Ry. The best compromise for the per-

turbation parameter appears to be 10%, after which the bias
on Ry increases. However, the sensitivity of this parameter is
rather small, which is an important feature for the procedure
as one would not want the results to be highly affected by the
users choice of the perturbation parameter.

The full range of the scaling parameter, a”), was also
investigated using a virtual mesh of 14 x 14 and a perturba-
tion of 0.10. For the two extreme cases of 0 and 100%, the
cost function was scaled by the maximum and mean of the
internal virtual work, respectively. In addition, 6 other scal-
ing parameters were also tested, the mean of the highest 10,
15, 20, 30, 45, and 75% of the IVW terms. The results are
shown in Fig. 17b. The scaling has a minimal effect on oy.
The remaining parameters show modest changes of approx-
imately 5% on the mean identified value with the largest
variation observed in the hardening modulus, Ry. The opti-
mum scaling parameter appears to be 45% where the random
error and bias for all of the parameters is the lowest.

6 Conclusions
In this manuscript, a new set of virtual fields for non-linear
constitutive models has been proposed. These virtual fields

are formed using incremental stress sensitivity maps to locate
the areas and times when each constitutive parameter has the

@ Springer



o2

Aleksander Marek

428

Comput Mech (2017) 60:409-431

most impact on the stress. The feasibility of the sensitivity-
based virtual fields was tested for small strain plasticity
implementing two different hardening laws: linear and Voce.
However, the sensitivity-based virtual fields could be broadly
implemented for any non-linear constitutive model. The sens-
itivity-based virtual fields were consistently able to identify
the plastic model parameters even for low signal-to-noise
ratios (Tables 3 and 6), indicating their ability to smooth
out the influence of noise on the parameter identification.
While the incremental stress sensitivity virtual fields con-
sistently performed well, the stress-sensitivity based virtual
fields failed to accurately identify the parameters. The results
obtained with the sensitivity-based virtual fields were also
compared with stiffness-based and manually defined uniform
virtual fields and the sensitivity-based virtual fields were
found to outperform the two alternatives, even though the
stiffness-based fields also showed good stability to noise.

The sensitivity-based virtual fields provide a general
approach to automatically generate high quality virtual fields
for non-linear VFM problems. An open question remains
concerning the high random error exhibited by sensitivity-
based virtual fields when raw data was used. One possible
explanation is that the virtual fields select only ‘active’ zones
in the specimen and filter out the remaining data which
makes the identification very sensitive to the noise pattern.
This possibility is further supported by observation that the
random error drops drastically when the perturbation § X is
increased. For the yield-related parameters, the perturbation
simply controls the width of the zone around the yield front.
Nevertheless, in real experiment, some temporal smoothing
would be introduced which reduces the random error to levels
exhibited by the other virtual fields as shown in Fig. 16.

The implementation of the sensitivity-based virtual fields
also has several limitations which need to be discussed. First,
for the identification of the Voce parameters from noisy
data, the minimisation routine did not always converge to
the global minimum. By running the minimisation 15 times
with different starting points, it was possible to identify a
global minimum. However, running the optimisation mul-
tiple times significantly increased the computational time
required to determine the parameters. When applying this
technique to other constitutive models, appropriate care is
needed to ensure that the global minimum is identified.

In addition, the determination of the sensitivity-based vir-
tual fields requires the user to select an appropriate virtual
mesh size and the two reconstruction parameters: the per-
turbation, §X; and the scaling parameter, «). For both
linear and Voce models, increasing the virtual mesh size
only marginally improves the quality of the identification
(Tables 4 and 7). The factor limiting the maximum size of
the virtual mesh is the available computer memory which
is needed to calculate the pseudo-inverse of the modified
global strain-displacement matrix, B, in Eq. 7. On a com-
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puter with 4 GB of RAM, the maximum virtual mesh size
that could be used was 20 x 20 for a system that includes
17,000 measurement points. For the Voce model, the choice
of the perturbation parameter did not have any significant
influence on the mean identified values but had a minor influ-
ence on the random error (Fig. 17a). The value of the scaling
parameter did influence the mean value particularly for the
parameters with limited sensitivity (i.e. b, Rjyr) as seen in
Fig. 17b. To implement these sensitivity-based virtual fields,
it will be necessary to perform a sensitivity study using sim-
ulated data to identify an optimum set of parameters prior to
implementing it on experimental data. It is expected however
that in the future, when more experience has been gained on
different models and test geometries, guidelines can be pro-
duced as to the choice of these parameters to avoid searching
for appropriate values.

The primary advantage of the virtual fields method over
finite element model updating is its computational effi-
ciency. Using a standard PC with an Intel Core i5 processor
(3.20GHz) and 4 GB of RAM memory, the complete identifi-
cation procedure for the Voce hardening model takes approx-
imately 25, 30, and 35 min using uniform, stiffness-based,
and sensitivity-based virtual fields, respectively. Sensitivity-
based virtual fields require approximately 20% more com-
putational time per iteration when compared to the uniform
virtual fields. The total time to perform the optimization is
heavily dependent on the performance of the radial-return
algorithm used to perform the stress reconstruction, keeping
in mind that the number of reconstructions increases linearly
with the number of model parameters. The times reported
here are for a radial-return algorithm in MatLab; however
the time spent performing stress reconstructions could be
decreased by translating this subroutine into a compiled lan-
guage. A demo code presenting implementation and general
flow of the identification procedure is available in Online
Resource 7. It supports all three types of virtual fields used
in this work.

Another route to increase computational efficiency is to
only selectively update the sensitivity-based virtual fields.
For the first several iterations, the virtual fields generated
from the initial guess would be used; then, every nth itera-
tion, the sensitivity-based virtual fields would be updated. If
the virtual fields are not updated, they can be carried from
the previous iteration directly reducing the number of stress
reconstructions that are needed. While not critical for the
models tested here which included a maximum of 4 param-
eters, selective updating will likely to be critical to keep the
run time down for models with a large number of parameters.
This will be investigated in future studies.

In the future, this method will be tested with more complex
non-linear constitutive models. Currently, the sensitivity-
based virtual field concept is being extended to large defor-
mation and anisotropic plasticity (Hill48, Y1d2000-2D). This
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will be applied to tests such as presented in [14,25]. Future
work also includes extending the method to dynamic loading
[21] where the virtual work due to inertia will be accounted
for in Eq. 1. While not addressed in this manuscript, the
virtual fields method has already been validated for large
strain hyperelasticity [23] and sensitivity-based virtual fields
could be used to identify hyperelastic material parameters. It
should be noted that for models that do not include history-
dependence, it may be appropriate to examine again which
of the stress-sensitivity or incremental stress sensitivity per-
forms better for the inverse material parameter identification.

7 Data report

No data are provided with this article as only simulations
were used which can easily be reproduced from the informa-
tion in the article.
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Appendix 1
Virtual mesh: piecewise virtual fields

The use of a virtual mesh, allows the virtual displacement,
u*,to be defined in a piecewise manner over the surface of the
body. The primary advantage of defining the virtual displace-
ment in a piecewise manner is flexibility; this is particularly
useful when defining the sensitivity and stiffness-based vir-
tual fields. The formulation of the piecewise virtual fields is
briefly described below; for additional details on implement-
ing piecewise virtual fields see Section 3.6 of [20].

In this work, a virtual mesh consists of isoparametric linear
quadrilateral virtual elements defined by four nodes. Each
node has two degrees of freedom, the two in-plane virtual
displacements. Within an element, virtual displacements are

calculated as:

4

w €, m =y NOE nu? (13)

i=1

where & and n are the local (natural) coordinates of each
element, N© is a shape function of node i at point (&, ),
and u*® is a nodal value of displacement at node 7. Strain
is calculated as a derivative of displacement with respect to
the global coordinate system:

4
e (r.y) =) BV yu?

i=1

4
=Y J'BYE pu?, (14)
i=1
where x and y are the global coordinates, J;; = % is the
Jacobian matrix of local-to-global coordinate transformation,
and B® is a strain transformation matrix for node i. The
shape functions then define the virtual displacement over the
element and the virtual strains. Boundary conditions are also
easily enforced directly at the constrained nodes.

Appendix 2

Derivation of stiffness-based virtual fields for
quadrilateral elements

Stiffness-based virtual fields were derived by estimating the
effect that noise has on the data and developing a special
class of virtual fields that minimise the influence of the noise
[19]. The stiffness-based virtual fields can be obtained by
inverting the following system:

2= ]
r o A Upc

where H is the matrix derived from the tangent stiffness
matrix, A is a vector containing Lagrangian multipliers, u ¢
is a vector containing values of the prescribed displacements
and I' is a matrix containing prescribed virtual boundary
conditions. For the specific case presented in Sect. 4.1, the
vertical displacements at the top boundary are equal to L,

the length of specimen, and the displacement at the bottom
boundary is equal to 0. Matrix H is obtained from:

H = K*K* (16)
where K™ is the modified global stiffness matrix, as defined in

Eq. 17. It depends on n, the number of virtual elements, 7, the
thickness of specimen, o°?, the effective von Mises stress,
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B, the strain-displacement matrix, and D?, the tangential
elasto-plastic stiffness matrix.

K* = Xn: / {0 (BTl)ePB) dA (17)
A

elem=1

There are a few differences between the original formu-
lation given in Pierron et al. [19] and the implementation
used in this manuscript. Originally, the experimental data
were interpolated onto a grid consisting of triangular ele-
ments and, as a result, the virtual elements were constant
strain triangular elements. To be consistent with the quadri-
lateral mesh used for the sensitivity-based virtual fields, the
method for the stiffness-based virtual fields was reformulated
for a quadrilateral mesh. For a linear quadrilateral element,
the integration of the stiffness matrix is not a trivial task
unless the strains are known at the Gauss (integration) points.
However, this is not generally the case. To avoid interpolat-
ing the strains at the Gauss points and performing additional
stress reconstructions at the Gauss points, another approach
was taken. The tangential elasto-plastic stiffness matrix, D,
was computed as an average value across each element tak-
ing into account all measurements points within an element.
For the radial-return algorithm used in this work, the consis-
tent elasto-plastic tangential stiffness matrix for von Mises
plasticity with isotropic hardening is [16]:

D? =E —a(EPo 1) ® (EPO 1)

E=[C+ayP]"
o= 1 (18)

T 20%doy /deP
0, PEPG, 1 — 3=2do,/ds? Ay

where C is the plane stress compliance matrix, P is
a matrix mapping a stress vector to the equivalent stress
(Eq. 19). Ay is the plastic multiplier obtained in a implicit
Newton-Raphson radial return scheme, 07 is the equivalent
stress, oy is hardening law and ® is a dyadic product of two
vectors.

2 10
3
(a‘“’)zzzaTPa, P=-|-120 (19)
0 06

This averaged tangential elasto-plastic stiffness matrix
was assumed to be valid at the centroid of the element and
the element stiffness matrix was integrated using the stan-
dard reduced integration scheme for a 4-noded quadrilateral.
The effective von Mises stress was also calculated by taking
the average value across the element. Note that this simpli-
fication is not physical, but since the virtual fields are just
mathematical test functions, it is a reasonable simplification.
This approach of taking the average value across each virtual
element limits the coarseness of the stiffness-based virtual

@ Springer

fields. If the virtual elements become too large the assump-
tion of using the average value at the centroid will lead to
inappropriate virtual fields.
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3.1 Addendum

The definition of ¢ after Eq. 5 should read: ¢ ‘is the time index’.
The paragraph after Eq. 7 should read:

where B is the global strain-displacement matrix which maps the virtual displace-
ment at every node into virtual strains. There are 3 xnPts equations with 2xnNodes
unknowns for each model parameter, where nPts is the number of data points, fac-
tor of three comes from the number of stress tensor components, n/Nodes is the total
number of virtual nodes and the factor of two comes from two degrees of freedom
of each node. Importantly, the unit of B is 1/length which comes from the spatial
differentiation of shape functions (scalar). Eq. 7 leads to virtual displacements that
have a unit of the stress sensitivities unit multiplied by length. Again, it needs to be
reminded that the virtual displacements have no physical significance and the unit
is irrelevant. When multiple virtual fields are combined in one cost function, virtual
displacements need to be normalised so that they have compatible units (unitless),
as outlined later.

The virtual boundary conditions place constraints on the virtual displacement,
uw*Y). When the displacement at a boundary is prescribed, the traction at the surface
is generally unknown. To eliminate the contribution of this unknown traction to
Eq. 7, the virtual displacement at these boundaries are set to zero. Often, the
distribution of the traction is unknown and only the resultant force, F' = [ TdA, is
measured. In this case, a constant virtual displacement is applied on the boundary.’

The end of the paragraph before the beginning of Section 4 should be corrected
to:
‘This approximation of the element stiffness matrix limits how coarse the virtual
mesh can be; the larger an elements is, the more points of measurement it contains
as well as the larger area it spans. As a result the value at the centroid is estimated
with larger error leading to reduction in effectiveness of noise-optimisation.’

Caption of Fig. 8 should read:
‘Maps of (a) (55%‘;0) and {e} (d) 555‘;0) the incremental stress sensitivity to the yield
stress for the linear hardening model. The calculated virtual strains using the sen-
sitivity based virtual fields (b-c) €}, and (e-f) e}, for using a (b,e) 7 x 7 and (c,f)
14 x 14 virtual mesh. The maps correspond to a vertical displacement of 0.060 mm
and a resultant force of 1085 N.’

Section 5.3.1 should read:
‘To examine the time steps when each parameter is active, the internal virtual work
was calculated for each parameter using Eq. 9. Figures 10 a-b show the internal and
external virtual work for the yield stress and hardening modulus, respectively. The
magnitude and shape of the curves for the yield stress and hardening modulus are
clearly different. The internal and external virtual work for both the yield stress
and hardening modulus remain at zero for the first 9 steps corresponding to elastic
loading, hence completely filtering out the elastic part of the test from the cost
function. Then at time step 10, which corresponds to the onset of plasticity at the
notches, the magnitude of virtual work starts to increase from zero as expected. The
internal virtual work for the yield stress quickly peaks at the 15" time step, which
corresponds to the plastic zone spreading across the whole specimen and then decays
back to zero. In contrast, the magnitude of internal virtual work for the hardening
modulus continuously increases throughout the test. The magnitude of the internal
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virtual work for the yield stress and hardening modulus are also markedly different.
To properly identify the model parameters using Eq. 8, the virtual work is scaled
by a® using the 15 highest IVW values to ensure that the contributions of each
parameter to the cost function are of the same order. The y-axis on the right hand
side of Fig.10 shows the scaled values for both the internal and external virtual work.
Although not backed by any physical argument, the scaling method employed here
was proven to be successful as shown in Sect. 5.4.5, where it was found that the
number of time steps taken for computing o has minor effect on the identification
errors.’
The last sentence on page 422 (first column) should read:

‘The reduction in the number time steps likely causes this increase in random error;
the reduction in time steps makes the identification mores susceptible to noise which
results in increased random error.’
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Abstract

The virtual fields method is an approach to inversely identify material parameters using full-field deformation data. In
this work, we extend the sensitivity-based virtual fields to large deformation anisotropic plasticity. The method is firstly
generalized to the finite deformation framework and then tested on numerical data obtained from a finite element model of
a deep-notched specimen subjected to a tensile loading. We demonstrated the feasibility of the method for two anisotropic
plasticity models: Hill48 and Y1d2000-2D, and showed that all the parameters could be characterise from such a test. The
sensitivity-based virtual fields performed better than the currently accepted standard approach of user-defined ones in terms
of accuracy and robustness. The main advantage of the sensitivity-based virtual fields comes from the automation of virtual
fields generation. The process can be applied to any geometry and any constitutive law.

Keywords The virtual fields method - Anisotropic plasticity - Sensitivity-based virtual fields - Material testing - Full-field

measurements

Introduction

Accurate modelling of metal forming processes is of key
interest to industries such as automotive. One of the main
issues in simulating processes such as deep drawing of
metal sheets is ensuring that the chosen constitutive model
represents the material accurately. Many of the metallic
materials used in this industry exhibit anisotropic properties
due to texture induced during cold rolling which highly
affect deformation of it during forming processes (e.g.
earrings formation during deep drawing [20]).

One of the most popular anisotropic plasticity yield
criteria is Hill48 [19], which in case of plane stress
conditions requires four parameters, generally identified
from three uniaxial tests performed in three directions:
rolling (RD), transverse (TD) and 45° to RD. In many
cases, experimental results suggest that Hill48 is not
capable of predicting biaxial yield behaviour accurately,
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and thus has limited applicability for forming predictions.
Numerous models were proposed to capture the biaxial
behaviour of sheet metals more accurately, such as: Y1d89
[9], Stoughton’s model of 2002 and further refinement of
2009 [43, 44], BBC2000 [6], BBC2005 [5], Y1d2000-2D
[8] and Y1d2004-18 [7]. Often, the usefulness of these
complex models is limited by the significant effort required
to accurately identify their parameters experimentally.
In particular, many of these models require performing
an additional biaxial test, such as bulge or equibiaxial
tension on cruciform specimens, increasing the cost of
the procedure. Therefore, there is a drive to improve
testing techniques and a promising way to achieve this
goal is to collect experimental data using more advanced
methods, such as full-field measurements e.g. digital image
correlation (DIC).

New tests can be designed in order to collect more data
within a single run, compared to the standard methods. The
use of full-field measurements makes it possible to choose
complex geometries for the test specimens, introducing
heterogeneous strain fields, thereby enabling the yield
envelope to be probed at thousands of different stress states
at once. One of the main challenges in such approach is to
extract the material parameters from the collected data. Two
of the most used inverse techniques capable of doing this are
finite element model updating (FEMU) and the virtual fields
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method (VFM). It was demonstrated that these approaches
can reduce the number of tests needed to fully characterize
anisotropic models, in particular Hill48, or Y1d2000-2D [11,
13, 18, 21, 35, 38, 39].

The virtual fields method is a very efficient technique
for extraction of material parameters from full-field
measurements. One of the main advantages of the VFM
over the FEMU is that it is significantly faster in terms
of the computational time. In fact, some authors reported
that for their particular application the VFM was 125
times faster than FEMU [47]. This is especially important
as the complexity of material models and the number of
data points available from the measurements grow. Another
advantage of the VEM is that it acts directly on collected
data and no numerical simulations are required. As a result,
the method can be integrated directly into a DIC platform
making it more accessible to practising engineers. The
method has already been applied to a range of materials and
constitutive laws such as arteries [2], rubbers [17, 45, 46],
composites [15], and metals [22, 24, 25, 33, 39].

One of the main challenges in the VFM is the
choice of virtual fields. These are test functions that act
upon the reconstructed stress fields to check for stress
equilibrium. Their choice strongly affects the accuracy
of the identification. Until recently, no structured method
was available to generate high quality virtual fields for
non-linear problems. Currently, the standard approach is
to rely on user-defined virtual fields (UDVFs), using
standard expansion bases such as polynomials or harmonic
functions. The effectiveness of these user-defined virtual
fields strongly depends on their choice, and requires the
user to understand the method in depth to be able to
select these fields in an informed way. Recently, a new
approach for generating high quality virtual fields has been
developed, leading to the so-called sensitivity-based virtual
fields (SBVFs) [28]. They outperformed UDVFs in case of
isotropic plasticity, and are generic enough to be applied to
any constitutive model.

In this work, we have extended the SBVFs to the case of
large deformation anisotropic plasticity, and demonstrated
their feasibility to calibrate Hill48 and Y1d2000-2D yield
functions from a deep notched specimen subject to tensile
loading.

Theory

Brief recall of the finite deformation framework

Let us consider a body %, where the position of particles
in the reference configuration is given by X and in the

deformed one by x. The motion of each material point can
be described by a function x = ¢ (X, ¢), which maps the

@ Springer

position of every particle in the reference configuration to
the current deformed configuration. The displacement field
is defined as the difference between the current and the
reference positions:

uX,rH)=x-—-X (D
The deformation gradient is defined as:

Fo X0y )
X ax

where I is the second order identity tensor. Using polar

decomposition, the deformation gradient can be written as

the product of two second order tensors:
F=VR 3)

where V is the left stretch tensor and R is the rotation tensor.
The left stretch tensor can be conveniently calculated as:

V = VFF7 (4)

where the root operator refers to the root of a matrix.
A consequence of such mathematical description is that
for every point, a local coordinate system rotates during
deformation, as outlined in Fig. 1. This is an important
feature to consider when the body includes a texture, as its
orientation will follow any local rotations.

A convenient measure of strain, called Hencky strain, can
be constructed from the left stretch tensor:

er =V (5)

This strain measure can be used to formulate constitutive
laws within the finite deformation framework. For further
details on continuum mechanics the reader is referred to
[12].

The virtual fields method

Quasi-static equilibrium can be expressed in so-called
weak form’ in which it is enforced as a weighted average
over the entire domain, expressed here in the current
configuration %, in absence of volume forces:

ou* N
—|o: 5 d%#,+ | (on)-u*ddo%B, =0 6)
X
%, 0B,

where 0.%; is the boundary of %,, n is the outwards vector
of 0%; and o is the Cauchy stress tensor.

Equation 6, called the principle of virtual work (PVW),
is satisfied for any continuous function u* (called virtual
displacements) that is piecewise-differentiable. Both stress
and test function (virtual displacements) are expressed in the
current configuration in the case of Eq. 6.
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Fig. 1 Definition of coordinate
systems, X is the initial position
of a material point and X, its
current position, (i, j) is the
initial orientation of local
coordinate system, (1, 2) is the
corotational system, (&, H) is
the material coordinate system
in the reference configuration
and (&, n) is the material
coordinate system in the current
configuration

X, X

The PVW can be alternatively formulated in the
reference configuration. In that case, another stress tensor is
defined, called the first Piola-Kirchhoff stress tensor P:

P = det(F)oF 7 (7

Notably, the first Piola-Kirchhoff stress tensor is asymmet-
ric due to the asymmetry of the deformation gradient.

As a result, in the reference configuration, the PVW can
be expressed as:

oU*
—/P : X d%y + / (PN) - U"dd%y =0 ®)
%’0 333()

where %y is the considered body in the reference
configuration and 9% its boundary. This form is much
more suitable for practical implementation in case of the
proposed method, as the virtual fields U*, defined in the
reference configuration %y, do not need updated virtual
boundary conditions, as will become apparent later in
the article. This approach has been used by most of the
VEM community [36, 38, 39, 41]. Noticeably, it was
demonstrated that the current configuration formulation
could be successfully applied to the case of hyperelasticity
as well [2, 23, 32].

The VFM uses the PVW to identify material parameters
from kinematic data and loading. Generally, kinematic
fields are measured by means of full-field techniques such
as DIC over the entire domain. This data is then used
to reconstruct the stress field using a set of material
parameters, denoted here as x. The calculated stresses must
be in equilibrium with the measured loading, which is
enforced through either Eq. 6 or 8. As the correct values of
the constitutive parameters are unknown at the start of the
process, the stress field is first estimated with a guessed set

Deformation

of parameters and the equilibrium can be checked by means
of Eq. 8:

2

au*
D(x) = —/P(X) "X dBo+ / POON) -U*daZy | (9

Kz L2

The material parameters are found through an iterative
minimisation of the cost function, i.e. the correct material
parameters produce a stress field that minimises the gap
in the PVW. Since the full-field measurements provide
spatially dense data, the integral of the stresses can be
approximated by a discrete sum. Additionally, multiple load
levels (time steps) have to be included to involve all the
parameters of the constitutive model. Multiple independent
virtual fields can be used to involve data in the cost
function in various ways, which generally leads to better
conditioning of the cost function, resulting in more robust
minimisation and more accurate identification. Finally, a
general form of the cost function can be expressed as:

Wint

nVF | nTime | nPts

. qut?
e =212 Z(Pf(eL,x): X th)

i=1 | =1 | j=1

— / P(er, x)N) - U*Ddy 5, .(10)

0%

W()X t

where W;,,; is the virtual work of internal forces and W,,; is
the virtual work of external forces, S/ is the surface area of
Jj-th point and £ is the thickness of specimen.

Since in most of cases the measurements are only
performed at the surface of specimen, some assumption
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about the through-thickness distribution of the mechanical
fields must be made. Often, plane stress is assumed,
provided the thickness of specimen is small in comparison
to the other two dimensions and the loading is in plane. The
measurements provide in-plane kinematic quantities and
the out-of-plane stresses are considered negligible (013 =
o023 = o033 = 0). However, when the PVW is formulated
in the reference configuration (8), the 2D Cauchy stress
must be pulled-back from %; to %, as shown in Eq. 7.
In reality, the gradient of deformation is fully 3D and so
some additional assumptions must be made. Assuming that
for a thin specimen the out-of-plane shearing is negligible
(F13 = Fy3 = F31 = F3p = 0), the Jacobian (det(F)) can
be now expressed as:

det(F) = F33(F11F22 — Fi2Fap). (11

The in-plane values are measured, however, the out-of-plane
term is still unknown. It can be approximated by calculating
the out-of-plane strain during stress reconstruction using the
elasto-plastic constitutive law:

Asyy = _ﬁ (A&, + AeSy) — (Ael, + Aed)  (12)

Here, the Hooke’s law was assumed for the elastic part
and the isochoric flow for the plastic part of the strain
increments. This strain can be then used to calculate the
missing component:
8u3 !
P =1+ 52 =1+en® =1+ [ Aendr. (13)
dx3 fo
It should be noted that if the isochoric flow assumption
becomes questionable, back-to-back camera systems can be
used to determine an average value of £33, as shown in [14].
Finally, with known Jacobian it is possible to pull-back the
Cauchy stress to the reference configuration.

Sensitivity-based virtual fields

The test functions (virtual fields) in Eq. 10 are arbitrary and
must be selected before the identification is conducted. The
selection of virtual fields has a significant impact on the
accuracy of the identification. These functions influence the
amount of error introduced to the cost function by selecting
which data points, and with what weight, are introduced to
the cost function. The main difference between virtual fields
arises in the way they propagate experimental noise.

In linear elasticity, an automated procedure has been
published in 2004, relying on the minimization of the impact
of noise on the identified parameters, i.e., finding the virtual
fields leading to the maximum likelihood solution for a
given basis of functions to expand the virtual fields [3].
This is now routinely used by the VFM community and
also implemented on the commercial DIC/VEM platform
MatchID [29]. An attempt at extending this to non-linear
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laws, namely, isotropic elasto-plasticity, was published in
2010 [34]. The idea there was to use a piecewise linear
definition of the virtual fields based on the tangent stiffness
matrix. The method did improve results but was found
to lack flexibility as it required an expression for the
tangent matrix. Also, for non-linear models where strains
are generally larger, sensitivity to noise is not necessarily
the most relevant criterion to select virtual field.

Recently, a new type of virtual field for the non-linear
laws was proposed [28]. They are automatically generated
during the identification procedure with very limited user
input. These fields, called sensitivity-based virtual fields,
are based on the reconstructed stress field and so, easily and
automatically adapt to any geometry and material model.
They were shown to outperform the user-defined virtual
fields for isotropic small-strain plasticity and seemed very
promising for more complex problems. They were also
shown to outperform the tangent-matrix fields from [34],
though only marginally for this particular case.

The main idea behind the sensitivity-based virtual fields
is to find areas during the test, both in space and time,
where the information about each parameter is contained.
A separate virtual field is constructed automatically for
each constitutive parameter which allows the cost function
to represent each parameter with maximised sensitivity. In
order to locate areas where the information is encoded
for the i-th parameter, an incremental stress sensitivity is
calculated. By perturbing the value of the i-th parameter
during the stress reconstruction for a given set of current
parameters, a change in stress field is noted, highlighting
areas where the parameter is active in influencing the
stress. This information is encoded in a map called stress
sensitivity:

SPO(x. 1) =P(x +8xi.1) —P(x.1) (14)

where 8 y; is a perturbation of the i-th parameter, typically
—02x; < é6xi < —0.1x;. The negative sign is taken
to expand the VFs over points currently not active, as
opposed to penalizing points that just became active (e.g. in
the case of yield stresses). Furthermore, incremental stress
sensitivity maps are found as:

_PO(x. 1) — PO (x, 1 — 1)
- = .

These sensitivity maps, either incremental (15) or total (14)
can be used as virtual strains to provide relevant weight
to the stresses in the PVW equation. This incremental
approach was proposed in order to effectively decouple
the influence of yielding-related parameters from hardening
parameters which act at different time scales.

The incremental sensitivity maps cannot however be
directly used in the PVW as the corresponding virtual
displacements, needed in the PVW, are unknown. Howeyver,

PO (x, 1) (15)
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it is possible to construct virtual displacements such that
the resulting virtual strain fields ‘look like’ the incremental
sensitivity maps. This can be achieved by performing a
least-square match, under some constraints, between virtual
strain fields and incremental stress sensitivity.

An effective way to solve the matching problem is
to construct a virtual mesh, which consists of virtual
nodes connected through virtual elements. The virtual
mesh defines the virtual displacements at the nodes and
interpolate them within an element using classical FE
shape functions. The nodes are connected with 4-node
quadrilateral elements and the interpolation is done using
standard bi-linear shape functions (N). The virtual fields
can be calculated using the values of virtual displacements
at each of the node and the spatial derivatives of the shape
functions. For every point of measurement, the virtual strain
fields can be found as a function of virtual displacements
of the neighbouring nodes. This function is linear with
respect to the displacements and can be expressed using
the strain-displacement matrix B,;, which relates virtual
displacements at the nodes to the virtual strains at the
considered data point:

ouU*
X

= B, U* (16)

where U* is a vector containing the virtual displacements of
%

the element nodes and

is a vector containing values of

virtual strains! at the data point. It is chosen here to express
the virtual fields in the reference configuration, as a results
B.; does not change with deformation. It can be expressed
as:

T ANy
00X

dN>

0 P
X1
oNy
0

N3

0 I
00X
INy
0

0Ny
0 -

X
IN3
0 —_— — — 0 —_—

0X» X, 0X> 0X»
dIN| N> dN3 dNy
— 0 — 0 — 0 — 0
X7 X7 X7 X7

dN1 IN> JdIN3 dNy
0 — 0 — 0 — 0 —_—

X1 X1 X1 0X1 |

(17)

0
0Ny

For every point, matrix B,; can be generated and then
assembled into a global strain-displacement matrix (Bg;op)
which relates virtual displacements from all virtual nodes
to the virtual strains at all data points. The global strain-
displacement matrix has then to be modified to account
for virtual boundary conditions. Often, it is necessary to

Iyirtual strain’ is used here inaptly, to relate to the application of the
PVW in small deformation framework. In fact, here, we should say
‘virtual displacement derivatives’ or ‘virtual displacement gradients’
but ‘virtual strain’ is more compact and convenient.

constrain the virtual displacement in the direction of applied
loading to be constant across the loading edge, so that
only the resultant load appears in the PVW equation and
not its (unknown) distribution. This simplifies the traction
contribution to the PVW (6, 8) to become:

/(PN)-U*d&%’o =U*. / PNdd B, = U* - F°4  (18)
REZ %0

where F/°?¢ s the total force applied. Imposing these con-
straints into Bgjop, a modified global strain-displacement
matrix is found, Bgjyp. In order to solve the least-square
problem, a pseudo-inverse of this matrix is found which can
be used to generate the corresponding virtual displacements:
UO (1) = pinv(Bygion) P (x, 1). (19)
These virtual displacements now produce virtual strain
fields that ‘look like’ the incremental stress sensitivity maps
and obey the necessary virtual boundary conditions. The

virtual strain fields are finally found with the following
formula:

oUu*®)

x = BeorU"".

(20)

Note that the construction of the sensitivity-based virtual
fields must be performed at every time step. However, as
mentioned before, if the reference configuration is chosen
for the PVW, the matrix By, is assembled only once for
the entire identification.

Computing stress sensitivities significantly increases the
identification time, as it virtually doubles the number of nec-
essary stress reconstructions. To improve the computational
efficiency, a selective updating scheme can be employed.
Recall that any continuous virtual displacement fields con-
stitute a valid choice, including the sensitivity-based virtual
fields based on incorrect (e.g. initial) parameters. Effec-
tively, these can be used to put the minimisation algorithm
in the neighbourhood of the solution without updating
them, but carrying across the iterations. As the algorithm
converges, the virtual fields can be updated with parame-
ters much closer to the correct values, saving many stress
reconstructions and significantly improving computational
efficiency.

Finally, in order to balance the contributions from
each virtual field, a scaling is introduced. The virtual
displacements are scaled by a factor dependent on the
current internal virtual work contributions (Wj,;). For each
iteration, W;,; is calculated (10), and then sorted according
to the absolute values over all time steps. The scaling
parameter is calculated as a mean out of the top x'”
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percentile of the sorted values. This ensures that virtual
fields contributions associated with each parameter are of
similar orders of magnitude.

Numerical simulations

The standard way to test anisotropic materials is to conduct
tensile tests on dog-bone specimens cut at different angles
to the rolling direction of the sheet (typically 0°/45°/90°).
If the material model under inspection includes a parameter
related to biaxial yield stress, an additional test is required,
either a bulge test or equibiaxial tension on a cruciform
specimen. The major limitation of this approach is that a
single test provides only one data point on the yield locus
and many tests are needed to match the yield surface.

An alternative is to run a test with enough stress
heterogeneity to identify all necessary parameters at once.
Some of the heterogeneity in the tensile test can be obtained
by means of material orientation, geometric features, and
loading. Rossi et al. [39] proposed a test on a deep-notched
specimen under tensile loading capable of identifying the
Hill48 model using a single specimen. The test is replicated
here and combined with the sensitivity-based virtual fields
to test their applicability to large strain anisotropic plasticity.
This does not mean that this test is optimal in any way, but
it can serve as a clear comparison on how VFs selection
impacts the identification. Many different geometries have
been proposed in the literature to produce heterogeneous
states of stress and strain, it is beyond the scope of the
present paper to investigate this. However, future work will
look at specimen optimization, in the same spirit as for
composites testing in elasticity [16].

FE model

The test proposed by Rossi et al. involved tensile loading
applied to a flat coupon with two circular notches, which
introduce heterogeneous deformation [39]. It was simulated
in Abaqus (v. 6.13) to generate synthetic data which were
then used to test the identification algorithm. The geometry
of the specimen is presented in Fig. 2. The mesh density was
chosen according to a convergence study. The thickness of
the plane stress elements was chosen as 0.74 mm, similar to
that used in [38] and typical of thin anisotropic metal sheets
for the automotive industry. The bottom edge was fixed,
while a constant vertical displacement of 6.75 mm was
applied across the top edge, which was additionally fixed
in the lateral direction to simulate the effect of the grip of
a test machine. The initial material orientation was defined
by specifying the angle (6) between the rolling direction
and the horizontal axis of the model, indicating the principal
material axes (&, H) needed to describe the anisotropic
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Fig. 2 Geometry of the specimen used in the simulated test.
Dimensions in mm

properties (see Fig. 2). Overall, total vertical strains of about
40% were obtained with the model.

Constitutive models

In the VFM, the stress field is reconstructed explicitly
from the kinematic measurements through an assumed
constitutive law. In this work, two different large strain
plasticity models were considered: Hill48 and Y1d2000-2D.

The elastic response was modelled with Hooke’s law
extended to finite deformation:

Ao =DAeS, 21

where A is the rate of change of the Cauchy stress, D is
the elastic operator for plane stress and Ag{ is an increment
of the elastic part of the Hencky strain. Here, we assume
that both Young’s modulus E, and Poisson’s ratio v needed
to construct D are known. They can be identified from
full-field data using the noise-optimised virtual fields in
elasticity [4], considering only the initial elastic steps.
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In order to ensure the objectivity of the model, a
corotational frame was adopted. The reference frame at
each material point rotates with the material. Fig. 1 presents
the corotational and material frames in both reference and
current configurations. Initially, the corotational frame (i, j)
is co-linear with the global frame. The angle between the
material coordinate system (&, H) and the global reference
frame is known. This angle can be used to construct a tensor
(Rpmat) rotating the local coordinate system to the material
one. Due to deformation, the corotational frame rotates with
R and in the current configuration is denoted (1, 2). The
angle between the current material coordinate system (£, 1)
and the corotational frame is fixed and related to Ry,;. The
strain increment in the current material frame (£, ) can
be expressed in terms of the strain increment in the global
frame (i, j):

Ae &M =RTR]

mat

Ae " R,0R. (22)

More complex strategies could be employed to account for
the evolution of material texture such as that presented in
[31]. They would have to be implemented in the constitutive
routine used to reconstruct stress (Fig. 4). Consequently, an
inverse rotation could be performed in order to represent the
reconstructed stress tensor in the global coordinate system,
in which the PVW is expressed.

The strain increments in the global coordinate system are
simply calculated as the difference between two consecutive
total strains:

A1)y =ty — el — 1) (23)

For each of the two plastic models investigated, Hill48
and Y1d2000-2D, an associated flow rule was assumed, as
well as an additive decomposition of strain increments:

Ag; = Ae§ + A&l (24)

where Agf is the elastic strain increment and A@:IL7 is the
plastic strain increment.
A yield criterion, in general, can be written as:

f =0 —0y <0. (25)

where o, is an equivalent stress formulated differently
for each plasticity model and oy is a yield stress evolving
according to a hardening law. A shared feature of both
models is that they are formulated in terms of Cauchy stress
expressed in the current material frame (&, 1 in Fig. 1).

Hill48 is a popular model for anisotropic plasticity [19].
When plane stress is assumed the equivalent stress can be
expressed as:

O’;I]i” — \/GU]ZI + FO'222 + H(O’ll —_ 0-22)2 + 2NO.122 . (26)

This model depends on 4 independent parameters defining
the anisotropy. A suitable way to express the governing
parameters is to relate them to mechanical quantities
measured in an experiment. In this paper the plastic
potentials (R;;) are used to define the criterion:

o 1[ L, }
Al B2 T H2 T p2
2| Ry, Ry Ry
G 1[1 L 1}
=s|l=rt 7~ =
2Ry Ry Ry 27)
H_1[1 L
5| p2 T p2 T p2
2LRy Ry Ry
vl
~ 5 p2
2R12
o
where R;; = —. Note that o]} and 05, are the yield stresses
0

identified in planar uniaxial tests conducted at 0° and 90°
respectively and a3y3 is the through-thickness yield stress.
Finally, Ulyz is the yield stress identified under pure shear.
Furthermore, it was assumed that the yield stress in the
hardening law is equal to O’ly 1 i.e. 0p = le 1> as this reduces
the number of variables to be identified by one, and does not
affect the formulation of model.

Although the model is popular in literature, it suffers
from poor performance when used in context of sheet
materials subject to biaxial loading [30, 39, 44]. This is
mostly due to the quadratic nature of the law which does not
represent real materials accurately. It was found that non-
quadratic models such as Y1d2000-2D or Stoughton2009
predict the behaviour of sheet metals such as steel or
aluminium more accurately [44].

Y1d2000-2D [8] was developed strictly for plane stress
conditions for which the equivalent stress can be calculated
as:

1 1/a
oyt = [5 (IX} = X501 +12X5 + X"+ [2X] + xgw)}

(28)
where a is an exponent based on the metal micro-structure
(a = 8 for FCC and a = 6 for BCC) and X/, X}, and X7,
X7 are principal values of two stress tensors X', X" which
are defined as linear combinations of the Cauchy stress:

X' =Lo
{ X// — L//a (29)
Matrices L’ and L are given by:
Zn 20
3 3
U=| 2020 (30)
3 3
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Table 1 Reference parameters defining the plastic anisotropy of the material

Hill48 Y1d2000-2D
Ry Ro» R33 Rz aj o a3 ay as ag a7 ag
1.000 1.054 1.276 0.738 1.11 1.35 1.21 1.11 1.07 0.96 1.21 1.15

The parameters were adapted from [39]

8as — 203 — 206 + 2004 dog — day — dos + a3 0

9 9
L= daz — das — 4oy + ag 8ay — 206 — 203 + 205

9 9 0
0 0 og

€2y

The model involves 8 independent parameters, o1—osg,
and can accurately represent the behaviour both in simple
tension as well as biaxial loading.

Two different hardening laws were adopted here: linear
(32) and the power law hardening (33):

oy =00+ HE" (32)

oy = oo+ H (¢7)" (33)
Linear hardening is defined with two parameters: initial
yield stress ogp and hardening modulus H. The non-
linear power law includes 3 parameters: initial yield
stress oy, hardening modulus H, and an exponent n. The
equivalent plastic strain &7 is integrated over the history of
deformation by means of summing the equivalent plastic
strain increments obtained at each increment:

per = 248 (34)

Oy

The reference parameters used to generate the models are
presented in Tables 1 and 2.

For each of the constitutive models a routine was
produced integrating the constitutive equations using an
implicit scheme with a radial-return algorithm, returning the
state of stress and out-of-plane strain at each time step, with
both being rotated back to the global coordinate system.

For Hill48, 6 data sets were generated in total, consider-
ing both hardening models at the three different material ori-
entations (30°, 45°, 60°). Due to its computational intensity,
only one model was considered for Y1d2000-2D, simulating
linear hardening with a material orientation of 45°.

Table 2 Reference parameters for the hardening laws based on prop-
erties of BH340 steel alloy

Linear Power law
00 H oo K n
256 855 203 439 0.3195

@ Springer

While in this work the constitutive modelling was
kept simple, the proposed methodology is valid for
any chosen material model. In practice, the investigator
supplies a constitutive law to be identified (see Fig. 4).
The model can be arbitrarily complex, as long as it is
capable of reconstructing the stress field based on the
measured kinematic data (e.g. deformation gradient) and
internal state variables that can be carried over between
different load levels. By choosing more complex models
that account for e.g. multiplicative decomposition of
deformation gradient [27], hyperelasticity [42], anisotropic
hardening [10] or even complete anisotropic elastoplasticity
[40] more complex material description could be reached,
but this has not been considered in this work.

Data processing

Following the FE simulations, raw displacements and
positions of data points were extracted from Abaqus and
exported into Matlab (2016a). The cloud of points was
then interpolated onto a rectangular grid of 409 x 349 data
points, corresponding to the data density typical of a DIC
measurement. The region of interest was then trimmed to
a grid of 362 x 202 points spanning the region of interest
(ROI) (Fig. 2), which produced 57,392 data points. In the
case of Y1d2000-2D model, to reduce the computational
time, a coarser data grid was used: 214 x 119 producing
20,024 points in total.

The displacements were then corrupted with a Gaussian
white noise, with standard deviation of 0.3 um, representa-
tive of a real experiment. For each data point, displacements
were smoothed using spatial and temporal filters, as typi-
cally done for experimental data. Temporal smoothing was
performed using the Savitzky-Golay method with a poly-
nomial order memp and a window size of wemp. This
was complemented with a spatial smoothing using a Gaus-
sian filter of standard deviation ogpa, With the window
size adjusted to be the maximum odd number smaller than
3 X ogpat X 2. While temporal smoothing was performed
on all 400 time steps obtained from Abaqus, only some of
the temporal data points were passed to the identification
procedure. The main reason for that was to decrease the
computational effort, but also this increased the size of the
strain increments mitigating the impact of strain noise on



Chapter 4. Extension to large deformation and anisotropy 67

Int J Mater Form

the error in the stress reconstruction. The time steps used
for the identification are graphically presented on the global
force-displacement curves in Fig. 3.

For each model, a different number of time steps was
taken. In the case of Hill48 with linear hardening, the
calculations were relatively fast, thus having many temporal
points was not a problem. Ultimately, 83 frames were
considered. In the case of the power law hardening, during
deformation a plastic instability occurred and the strains
began to localize in a very small band, causing a geometrical
softening. This data was discarded, as shown in the figure.
Overall, only 60 frames were used, with a maximum plastic
strain of about 30%. Finally, for Y1d2000-2D only 27 time
steps were used, as the constitutive law itself is much more
computationally demanding, and having more points would
just lead to inconvenient computational times, unnecessary
at this first validation stage.

After smoothing and down-sampling were performed,
the deformation gradient F was calculated using central
finite difference, which was then used to calculate V with
Eq. 4, R with Eq. 3 and e; with Eq. 5. The set of the
three quantities (F, R, 1) for all data points constitutes the
kinematic data used to identify the material parameters.

The kinematic data was then used as an input to an
in-house Matlab code implementation of the VFM. The
stresses were calculated using the deformation data and an
initial guess for the material parameters. The SBVFs were
calculated during the stress reconstruction process which
allowed the values of the cost function to be calculated with
Eq. 10. The material parameters were refined iteratively by
means of the Matlab function fmincon minimising (10)
with a sequential quadratic programming algorithm (SQP).
Starting points were selected randomly from the interval
between 50% and 200% of the reference values using a
random number generator. Two starting points were used for

7000
6000
Z 5000
8
:c:, 4000 §
c — Reaction force, Hill48, linear hardening
(e} 2
5 3000 ¢ Steps used, Hill48, linear hardening
8 3 = = Reaction force, Hill48, power law
o 2000 ® Steps used, Hill48, power law 1
I ====Reaction force, YId2000, linear hardening
1000 4 Steps used, YId2000, linear hardening 1
0 L L L L L L
0 1 2 3 4 5 6

Vertical displacement [mm]

Fig. 3 Reaction force vs imposed vertical displacement obtained in
Abaqus. Markers indicate time steps taken for identification

each data set in order to ensure that the identified parameters
corresponded the the global minimum. The identification
algorithm is summarized in Fig. 4 in the form of a flowchart.
Finally, the identified parameters were compared against the
reference values to quantify the accuracy of procedure.

The SBVFs were updated when the first-order optimality
[1] fell below certain threshold (1 x 107%), indicating
convergence of the procedure. The virtual fields were
recomputed and stored in memory, and the threshold was
scaled down by a factor of 2.3 to allow further refinement.
Sometimes, after selective updating was performed, the
value of cost function would increase, creating an apparent
local minimum terminating the minimisation. To prevent
this, the value of cost function was offset below previous
iteration when the update was performed. This scheme leads
to an increasing rate of updates as the solution converges,
providing valid values of virtual fields at the optimum. In
total, about 10-15 virtual fields were computed throughout
the identification consisting of more than 100 iterations,
with the number controlled indirectly by the two parameters
(first-order optimality threshold and threshold refinement
parameter).

User-defined virtual fields

This works aims at extending the SBVFs to large
deformation anisotropic plasticity. As mentioned earlier, the
specimen design was previously proposed by Rossi et al.
[39] who employed UDVFs to identify Hill48 parameters
using a single test, as well as Y1d2000-2D parameters using
a combination of three tests. In this work, their user-defined
virtual fields were used as a benchmark to test the suitability
of the SBVFs. They showed that suitable VFs for the test
consisted of a combination of three virtual fields, defined
with the following virtual displacements:

O _
“ _ 35)
uy " =4¢
SO _ x (yl—H)
x@ v H (36)
*
Uy 0
ut® = % sin (7 37) cos (7 5%7) 3
*(3) 1 o X y ’ 37
uy = = sin (7 3;) cos (7 5%)

The virtual displacements are defined in the coordinate
system presented in Fig. 5. The virtual fields are constructed
in a way to include all stress components in the cost
function.

It is worth noticing, that only the first virtual field (35)
includes the virtual work of external forces. This impacts the
balance of contributions from each virtual field to the cost
function. Traditionally, the residual is scaled by the virtual
work of external forces to provide a dimensionless value
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Fig.4 Flowchart representing the algorithm for material identification. There are three major parts: generation of raw data, processing of raw data

and material identification with the VFM

[33]. This was not possible here, as two of the virtual fields
do not include the contribution of the external forces. To
overcome this problem, scaling by the maximum value of
the internal virtual work was introduced, which normalises
the peaks of the internal virtual work to 1. To balance all
three fields even further, the residual coming from the first
virtual field was scaled by a factor 500, which was found
to produce the best results. This workaround scaling shows
that the manually defined virtual fields lack generality, and
must be individually tailored for each application, which is
a significant disadvantage.

yA

W W

Fig. 5 The coordinate system used to define virtual fields manually
within the region of interest
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Error quantification

As the number of material parameters in the constitutive
models increases, quantifying the accuracy of identification
becomes a challenging task. Often, these models are defined
with parameters that lack physical meaning, and on its own
have limited impact on the model outcome, which is driven
by the compound action of all of the parameters, as for
Y1d2000-2D. It is therefore important to establish tools to
compare different sets of identified parameters in order to
quantify the accuracy of the identification meaningfully.

Because of the rather large number of parameters
and their individual lack of physical meaning, a direct
comparison between reference and identified parameters
on a one to one basis is not always relevant to draw
meaningful conclusions. The apparent uniaxial yield stress
6 as a function of material orientation was found to
provide a convenient and physical-based way of evaluating
identification errors. Assuming a yield criterion of the form
of Eq. 25 and a uniaxial state of stress at angle 6 with
respect to the material coordinate system, the stress state in
the material coordinate system can be expressed as:

cos2(6)6
sin%(0)6
cos(0) sin(0)o

o= (38)
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This stress can be introduced into the expression of o, and
the criterion can now be algebraically transformed into:

6 =6(0,8",8) (39)

Using Eq. 39, it is possible to reconstruct the variation of
the yield stress with angle 6 and equivalent plastic strain
&P. Such map can be calculated for both the reference
and identified parameters, so that they can be meaningfully
compared. The error can be quantified by looking at the map
of relative error:

é:ref - 6'ident

A

Oref

r(6,&") = (40)

The map can be used to investigate whether the error is
associated with the variation of yield stress with material
orientation and/or hardening. Alternatively, the mean of the
error map, 7, gives a single numerical value for the accuracy
of the identification, later referred to as the global error:

T
2 g}’?’mx
1

= — r(0, eP)dode? . 41
n/zxé,ﬁax/f @, €% “h
0

This approach enables the reference and identified sets of
parameters to be compared in a more meaningful way as
opposed to parameter by parameter and furthermore, it also
allows for meaningful comparisons across different material
models.

Results
Validation of the method

As a first validation of the methodology, the six raw FE
data sets generated for the Hill48 model were used. Since

the data did not contain any noise, no smoothing was used.
The following parameters were selected for generation of
the sensitivity-based virtual fields: §x; = —0.15y;, virtual
mesh of 14 x 14 elements, and the scaling parameters based
on the mean of top 30" percentile of the internal virtual
work terms. As shown before, the choice of the parameters
has a limited impact on the identification and mostly affects
the random portion of the error [28]. The results of the
identifications are presented in Table 3.

Clearly, for linear hardening, all tests were successful at
identifying the material parameters. Although marginal here, it
is worth noting that the mean error for sensitivity-based VFs
is already consistently smaller compared to the user-defined
ones. The single tests performed at either 30° or 60° were
only performed usig exact data and the linear hardening.
As they are unlikely to be practical when experimental and
modelling errors are introduced, they were disregarded for
the more complex cases. For the power law hardening, the
identified values were also very close to the reference. With
the exception of the combined 30°460° tests using the user-
defined VFs, the mean error was consistently below 2%,
showing that the methodology adopted here has a potential
of identifying Hill48 parameters using a single test. The
combined test was adopted in order to obtain more data
over uniaxial states of stress, in comparison to the 45° test.
The latter, probes the yield envelope under combined shear
and normal loading, with very little data points containing
information about pure o1 or 02> behaviour. By including
both 30° and 60° tests, more information is available about
these regions, as well about shearing behaviour enabling
identification all of the parameters.

Scaling of UDVFs is of crucial importance. Without
introducing the scaling discussed in Section “User-defined
virtual fields”, the UDVFs lead to large identification errors.
In particular, the yield stress is correctly identified only
near the material orientation angle, while the remaining

Table 3 Identified parameters and mean error as defined in Eq. 41 for the Hill48 model using exact data for both linear and power law hardening

Orientation Hardening VFs 0101 0202 o% 0'102 H n Mean error [%]
45° Linear UD 1.007 1.003 1.001 0.990 1.037 [-] 0.6
45° SB 1.002 1.000 1.001 0.997 0.996 [-] 0.2
30° UD 1.020 1.029 0.997 0.985 1.025 [-] 1.2
30° SB 1.003 1.000 1.001 0.997 0.994 [-] 0.3
60° UD 1.012 1.053 1.019 0.999 1.021 [-] 1.6
60° SB 1.000 1.009 1.003 1.002 0.995 [-] 0.3
30° + 60° UD 1.030 1.030 1.002 0.984 1.049 [-] 1.5
30° + 60° SB 1.001 1.001 1.000 0.996 0.993 [-] 04
45° Power UD 1.000 1.018 0.989 0.955 1.020 0.973 1.7
45° SB 1.020 1.015 1.014 1.005 1.039 1.036 1.1
30° + 60° UD 1.104 1.102 1.086 1.057 1.136 1.206 33
30° + 60° SB 1.003 1.003 1.003 0.999 1.005 1.008 0.1
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Equivalent Plastic Strain [-]
Equivalent Plastic Strain [-]
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(a) 30° test without scaling

Fig. 6 Error maps as defined in Eq. 40 demonstrating the effect of
scaling between the three UDVFs (35-37) for 30° and 45° tests with
linear hardening. Without introducing scaling anisotropy is poorly

orientations are characterised incorrectly, as shown in
Fig. 6a and b. The reason for this is most likely due to the
first set of UDVFs (35) being overrepresented in the cost
function. As a result, the vertical component of the stress
field represented in the global frame is the major source
of information, leading to insensitivity of the cost function
to the other two stress components. The identification can
be improved by introducing the scaling which restores
the balance between the three virtual fields. In that case
the anisotropy is recognized much better, as shown in the
difference between Fig. 6b and c.

Effect of noise in the data

Having validated the methodology, the effect of noise on the
identified parameters was studied. Since in practice, spatial
and temporal smoothing are always implemented, we also
implemented this here to simulate the experimental process
more realistically. Without any smoothing, the difference
between UDVFs and SBVFs was even larger, but this
was thought to be a somewhat unfair comparison. First, a
sensitivity study was conducted to determine the optimal
smoothing parameters. The study was performed using
fixed settings, i.e. sensitivity-based virtual fields, linear

Angle [°]
(b) 45° test without scaling

0.2

0.015

o
Equivalent Plastic Strain [-]

0.005

60 80 0 20 40 60 80
Angle [°]

(c) 45° test with scaling

identified (Fig. 6a and b). The scaling significantly improves the
identification: see the difference between Fig. 6b and ¢

hardening and the same level of noise in each run. In total,
30 copies of noise were processed. The spatial smoothing
parameters were chosen under fixed temporal smoothing,
likewise the temporal parameters were chosen under fixed
spatial smoothing. As presented in Table 4, the smoothing
has a limited effect on the magnitude of both systematic
and random errors (global error value and its spread
respectively), which suggests that the choice of parameters
is not critical for the identification here. Generally, the
stronger the smoothing, the smaller the random portion of
error, at a cost of increased systematic error. However, it was
found previously that significant noise can cause spurious
elastic unloadings, which strongly affect both errors [26].
As a result, some smoothing settings can improve both
errors at the same time. In order to balance systematic
and random errors, spatial smoothing with a window of 9
was selected, combined with 11 points temporal smoothing
using 3" order polynomial.

The selected smoothing parameters were used to study
the effect of the virtual fields on the systematic and random
errors. The identification was run on 30 copies of noise,
as this gives enough statistical representation to establish
the random part of the error. The results are presented in
Tables 5 and 6 for the linear and the power law respectively.

Table4 Identified parameters and mean errors as defined by Eq. 41 for Hill48 model with linear hardening using different smoothing combinations

Ospat/ Window Wiemp/ Miemp 0101 0202 0303 a?z H Mean error [%]
1.0/5 11/3 0.974 +£0.27 0.961 +0.26 0.998 + 0.07 1.108 + 0.15 0.858 +0.43 4.08 +0.09
1.3/7 11/3 0.967 +0.26 0.965 £+ 0.242 0.988 + 0.06 1.031 +£0.15 0.941 +0.43 1.99 £ 0.11
1.5/9 11/3 0.966 £+ 0.29 0.968 + 0.25 0.984 + 0.06 1.008 +0.16 0.963 + 0.46 1.45 £0.13
1.85/11 11/3 0.963 + 0.31 0.967 + 0.25 0.980 + 0.07 0.991 +0.17 0.975 £ 0.51 1.70 £ 0.15
1.5/9 11/3 0.966 £+ 0.29 0.968 + 0.25 0.984 + 0.06 1.008 +0.16 0.963 4+ 0.46 1.45+0.13
1.5/9 15/3 0.977 £0.24 0.971 £0.21 0.985 + 0.06 1.026 +0.13 0.975 £ 0.36 1.50 +0.08
1.5/9 21/3 1.035 +0.33 1.013 £ 0.35 0.999 +0.10 1.011 £ 0.54 1.055 + 0.66 2.33 +£0.08

The parameters are expressed relative to the reference values and the uncertainty represents a coefficient of variation expressed in %
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Table 5 Identified parameters for Hill48 model with linear hardening

Orientation VFs o?l 0202 033 U?z H Mean error [%]
45° UuD 0.954 + 0.15 1.021 £ 0.20 0.994 £+ 0.03 1.034 £ 0.11 0.903 +0.35 2.13£0.04
45° SBs 0.9656 + 0.29 0.968 £+ 0.25 0.984 £+ 0.06 1.008 £ 0.16 0.963 + 0.46 1.45 £ 0.13
30° 4 60° UD 1.041 £0.33 1.042 £ 0.03 1.010 £ 0.01 1.009 £ 0.03 1.048 £ 0.05 2.56 £ 0.01
30° 4 60° SB 0.993 £+ 0.08 0.992 £ 0.08 0.994 £ 0.02 1.036 £+ 0.09 0.962 +0.16 1.29 £ 0.04

The parameters are expressed relative to the reference values and the uncertainty represents a coefficient of variation expressed in %

Hill48 identification
Linear hardening

In the case of linear hardening, the sensitivity-based virtual
fields provide more accurate identification, however with
about three times larger random error compared to the
UDVFs. Although individual parameters exhibit errors as
large as 5%, the global error is significantly smaller,
indicating compensation between parameters. Remarkably,
the overall error is very small, for the level of white noise
added to the displacements. It must be noted that when no
smoothing was used on the data, the accuracy was poor
and the global error was about 20%. By replacing a single
test (45°) with two combined tests (30° + 60°), the random
part of the error is reduced by a factor of 4. This was
expected as more information is used, which averages out
noise more effectively. The effect on the systematic error
is not as notable; for the sensitivity-based VFs the mean
error is slightly reduced, while for the user-defined VFs it
increased a bit, as shown in Fig. 7a.

Power law hardening

The results are markedly different for the power law
hardening. Firstly, the effect of noise is significantly larger
compared to the linear hardening case, as shown in Fig. 7
(note the difference in scaled between Fig. 7a and b).
The mean errors for the 45° tests are between 4 and
5%, compared to about 2% for the simpler hardening
law (Fig. 7). While level of error is still satisfactory,
it must be noted that it represents a lower bound as

the simulation of experimental uncertainties remains very
basic. Unlike the linear hardening case, the random error
was the smallest when the SBVFs were used and the
smallest systematic error was obtained with the UDVFs.
Significant improvement was found when the single test was
replaced by the combined tests, both in terms of systematic
and random errors. This indicates that the additional test
contributes significant data to the cost function. Since the
smoothing parameters were chosen for the linear hardening
model, it is possible that a different combination of
parameters would provide smaller errors, and differentiate
between the two virtual fields types in a different way.
While the single mean error term makes it straightfor-
ward to compare the overall accuracy of the identification
the influence of errors on the yielding and hardening param-
eters can be more readily understood by examining the
error maps, proposed in Section “Error quantification”. In
Fig. 8 the SBVFs provided the larger errors at 45°, even
though the single test at 45° contains direct information
about yielding at this orientation. For the UDVFs the error
was the lowest for angles close to the specimen orientation,
for the single test at 45° and for the combined tests at both
ends of the angle spectrum, as expected from a mechanical
perspective. A possible explanation is the overconstraining
of the sensitivity-based virtual fields. As four independent
stress sensitivity components are mapped onto only two vir-
tual displacements maps, the resulting virtual fields are not
reproduced perfectly. This appears to be especially true for
the shearing components as they are cross-derivatives of the
calculated virtual displacements. This might enhance the
error on the shearing yield stress, observed as a slightly
larger error at 45°. Further study needs to be done to confirm

Table 6 Identified parameters for Hill48 model and the power law hardening

Orientation VFs a?l 0202 023 (7102 H n Mean error [%]
45° UuD 0.842 + 1.11 0.891 £ 1.55 0.925 4+ 0.68 0.995 + 0.47 0.849 £1.12  0.900 £ 1.18 4.67 £0.34
45° SB 0.929 +0.43 0.929 £ 044  0.962 £0.38 1.031 £0.33 1.045 £ 0.55 1.028 £ 0.75 4.35+0.10
30° 4 60° UD 1.020 £+ 0.26 1.021 £0.26 1.032 £0.28 1.053 £ 0.30 1.042 £ 0.24 1.074 £ 0.59 2.60 £ 0.08
30° 4 60° SB 0.967 + 0.18 0.968 + 0.18 0.996 £+ 0.17 1.045 £0.17 1.026 £+ 0.27 1.043 £+ 0.40 3.15 £ 0.06

The parameters are expressed relative to the reference values and the uncertainty represents a coefficient of variation expressed in %
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this hypothesis. While the Hill48 model is acceptably iden-
tified using either UDVFs or SBVFs it must be noted that
the UDVFs presented in Eqs. 35-37 were the result of a long
process of trial and error by the lead author of [39], which
was time-consuming. The SBVFs provide nearly equiva-
lent results using a systematic procedure without any trial
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and error, resulting in a much faster and more rigorous
process.

The quality of the virtual fields can be indirectly
quantified by means of the curvature of the cost function
at the minimum. Theoretically, the more curved the cost
function, the more stable the identification. Additionally,
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Fig.8 Error maps obtained with the mean parameters identified from the tests using manually-defined and sensitivity-based virtual fields

@ Springer



Chapter 4. Extension to large deformation and anisotropy 73

Int J Mater Form

@) Hypvrs
6.86 x 102

" 0.8

0.6

0.4

0.2

-0.2

-0.4

-0.6

(b) Hspyrs
2.00 x 100

Fig.9 Graphical representation of Hessians computed for Hill48 model with the exact data

a much desired feature is to have balanced values on the
diagonal of the Hessian matrix, as this means balanced
sensitivity of the cost function to all of the parameters. The
Hessian can be mathematically expressed as:

1 2dyp
Dident 0Xi0X;

Hyr = (42)

where Hy r is the Hessian matrix for a given virtual field,
Py r
0xiox;
is the second derivative of the cost function with respect to

the material parameters. The balance of the terms is mostly
dominated by the mechanics of the test, however it can be
improved by a good choice of virtual fields. In order to
investigate how the balance is affected by this choice, it is
convenient to look at the Hessian scaled by the largest term.
The curvatures of the cost function for the linear hardening
case are presented in the figure below:

By comparing the two Hessians (Fig. 9) it is apparent
that the SBVFs do slightly better job at balancing aly | and
03, (UDVFs have virtually zero sensitivity to 65,), at a cost
of decreased sensitivity to alyz. This is consistent with the
observations made regarding Fig. 8, where SBVFs noted
larger error at about 45° compared to the UDVFs.

D;dent 18 the value of cost function at minimum, and

Yid2000-2D identification

In the case of the Y1d2000-2D model, the main goal was
to explore the comparative robustness of the UD and SB
VFs when the model is richer in parameters to be identified.
Only exact data from the 45° test were used, as it is already
a good example of the UDVFs underperforming. The
identified parameters are presented in Table 7. It is worth
noting, that in the case of Y1d2000-2D, the anisotropic
parameters do not have any obvious physical meaning, thus
comparing them on a parameter to parameter basis is not
so relevant to draw conclusions as discussed in Section
“Error quantification”. The distribution of initial and final
yield stresses are presented in Fig. 10 and the identified
yield loci are shown in Fig. 11. The superiority of the
SBVFs is spectacular. The distribution of anisotropy is
very well identified and the main source of error comes
from the hardening modulus, which is consistent with the
trend observed for Hill48. In the case of the UDVFs, the
identification was highly inaccurate. The parameters found
were significantly different from the reference, and four out
of eight reached identification constraints (set to 50% and
200% of the reference). Most likely, this is due to the generic
nature of the fields. Y1d2000-2D is a more complex model

Table 7 Identified values of parameters for the Y1d2000-2D from a 45° test using exact data

VFs o] o o3 oy o5 g o7 og o) H Global error [%]
Reference 1.11 1.35 1.21 1.11 1.07 0.96 1.21 1.15 256.00 855.00 [-]

UDVFs 2.22 0.68 1.68 1.49 0.54 0.48 1.04 0.77 241.39 783.14 14.6

SBVFs 1.17 1.41 1.24 1.15 1.11 1.04 1.26 1.20 264.74 934.26 1.6
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Fig. 10 Variation of the yield stress with the 6 angle for the Y1d2000-
2D model. The identified curves were generated using parameters
identified in a 45° test using noiseless data

in which each parameter has a small effect on the overall
yield surface, thus extracting data correctly challenges the
virtual fields much more, compared to the case of Hill48, for
which the used UDVFs were specifically developed. This
can be observed by looking into Hessians, computed with
Eq. 42 and presented graphically in Fig. 12.

In both cases, there is a strong sensitivity to the shearing
components (o7, ®g) and a moderate one for aq. When
the UDVFs were used, there was very little sensitivity to
the remaining parameters, except for the cross-correlation
between «7 and three other parameters: o3, o5 and og. In
contrast, for the SBVFs, many more parameters were active.
There was a cross-correlations between w7 and all other
parameters, as well as small to moderate sensitivities for all
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Fig. 11 Initial shape of the yield stress surface for the Y1d2000-
2D model. The identified curves were generated using parameters
identified in noiseless 45° test data. The outline is drawn at O shear
stress
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o parameters, showing that most of the material parameters
were active during the test and the SBVFs were capable of
balancing their contribution.

Computational efficiency

One of the important practical aspects of the type of metho-
dology presented here concerns computational efficiency.
Information on computing times are often left out in publi-
cations on this topic and therefore, it is difficult to compare
computational efficiency with competing techniques moti-
vating our decision to report this information.

The identification was run on a standard PC with an
Intel Core i5 processor (3.20GHz) and 24 GB of RAM
memory. The stress reconstruction routines were coded
in Matlab, however they were automatically translated to
C language and called as mex file using Matlab coder
tool. This procedure improved the efficiency of the stress
reconstruction routine, which is the most computationally
demanding process. The approximate running times of
identification for Hill48 model can be found in Fig. 13. In
case of Y1d2000-2D the time needed to obtain the results
were 122 and 278 hours respectively for the UDVFs and
SBVFs.

In the case of Hill48 model, the identification took
approximately six hours for linear hardening and between
eight and ten hours in the case of power law hardening,
due to the additional unknown parameter. The SBVFs
are not significantly slower compared to the UDVFs,
and the difference is mostly due to the additional stress
reconstructions needed to calculate the incremental stress
sensitivities. The number of these reconstructions can
be controlled by the number of times the SBVFs are
updated, and so the difference could be brought down even
more. It should also be emphasized that these computing
times would be significantly reduced using a compiled
programming language instead of Matlab.

In the case of the Y1d2000-2D model the identification
times were much longer, mostly due to very slow stress
reconstruction procedure, which on average took ten
minutes for the chosen data density. Additionally, as 10
unknown parameters were sought, the calculations of the
gradients in the minimisation problem call for many stress
reconstructions, further increasing the disparity between
Hill48 and Y1d2000-2D. As a comparison, the FEM model
used to generate the data, took 4 hours to complete.

Although the running times were very high, there are
many ways in which they could be improved. First, and as
stated before, efficient implementation in a fast language
would lead to a significant improvement. Second, replacing
the implicit stress reconstruction algorithm with a direct
method such as the one used in [39] would make the stress
reconstruction faster, especially in the case of Y1d2000-2D
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Fig. 12 Graphical representation of Hessians computed for Y1d2000-2D model with the exact data

for which computing derivatives for the implicit scheme
is a very computationally intensive process. The direct
method is valid only for large deformation data (with
plastic flow well established), however it could be coupled
with the implicit algorithm for elasto-plastic transition. It
was found that when the SQP algorithm was replaced
with the Levenberg-Marquardt algorithm, the computations
were up to 10 times faster, indicating that choosing a
proper tool for minimising the cost function is crucial.
For instance, the identification of the Y1d2000-2D model
using the SBVFs was reduced from 278 hours with SQP to
merely 26 with Levenberg-Marquardt. The major advantage
of the Levenberg-Marquardt algorithm is that it requires
significantly fewer iteration to find a minimum, compared to
the SQP algorithm. In the case of Hill48 identifications the
former converged in approximately 8 iterations, compared
to 130 of the latter. However, the efficiency of the

12

Bl 45" UDVFs
B 45° SBVFs
B30° + 60° UDVFs
I30° + 60° SBVFs

Computation time [h]

linear hardening

power law hardening

Fig.13 Average computational time for the exact data presented in the
paper (Hill48 model)

Levenberg-Marquardt algorithm heavily relies on the initial
guess which must be close to the solution to obtain fast
convergence. This is not required by SQP which can find the
solution from any starting point.

Choosing an optimal data density remains an open
problem. In this work, about 60,000 spatial data points
were used for the identification problem. However, this
could potentially be reduced. For DIC measurements, the
number of data points could be effectively controlled by
means of the stepsize. Additionally, the number of load
steps taken into consideration could be varied. It is worth
noting that if temporal smoothing is performed on the entire
collected data, even the time steps not used explicitly in
the identification affect the outcome, as the information is
passed through the temporal filter. The limiting factor for
the temporal resolution is related to the stress reconstruction
algorithm, i.e. in the case of implicit algorithms the larger
the strain increments, the larger the reconstruction error.
More studies are needed on the optimal number of data
points for accurate reconstruction of material parameters.
To define optimal spatial and temporal sampling leading to
acceptable systematic and random errors, the impact of DIC
parameters, and smoothing would need to be assessed with
a synthetic image deformation procedure as in [37].

Conclusions and future work

In this work we extended the sensitivity-based virtual fields,
originally proposed in [28] to large deformation anisotropic
plasticity, which is the main novelty of this contribution. We
tested the performance of the fields using a deep-notched
tensile test, already used in that context by Rossi et al.
[39], and found that the proposed virtual fields can be
successfully applied to the problem.
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It was found that for the Hill48 model both UDVFs and
SBVFs were capable of correctly identifying the parameters
from a single test. It must be noted that the UDVFs were
developed using a trial-and-error approach by the lead
author of [39]. In that context, the systematic procedure
of SBVFs seems to be especially appealing as it removes
the need of an informed input by the user to arrive at
correct parameters. This is especially important with even
more complex models such as Y1d2000-2D where deriving
appropriate UDVFs is a challenging task.

The main advantage of the new fields comes from
the automatic generation procedure, with limited input
from the investigator, involved only in setting virtual
mesh density and scaling parameters. It was found before
that these parameters have very limited effect on the
overall identification and can be chosen a priori without
a significant impact on the parameter values [28]. As
a result, high quality virtual fields are generated for
any material model, regardless of the test configuration.
This opens up possible implementation in a user-friendly
VEM software for non-linear model identification, like the
MatchID DIC/VFM platform [29]. We demonstrated the
effectiveness of the method on both Hill48 and Y1d2000-
2D, with the latter especially successful in comparison to
the standard approach.

The identifiability of Hill48 model from a single test
has been already established before [13, 39]. Interestingly,
the results suggest that a single test performed at 45° may
contain enough information to characterise the Y1d2000-
2D criterion as well. In fact, if confirmed experimentally,
it would give an exciting alternative to the standard
test protocol involving three uniaxial tests and one
biaxial, significantly reducing the experimental effort to
characterise a material. This would be possible due to the
ability of the SBVFs to identify in space and time when each
parameter is active and focus exclusively on those regions
when identifying the parameters.

The method is currently being validated experimentally
on an automotive DCO04 steel alloy. The results from both
UDVFs and SBVFs will be compared to the parameters
identified with the standard multi-test protocol to confirm
whether the Y1d2000 criterion can indeed be identified from
a single heterogeneous test, which would be a significant
step forward to reduce identification costs and time scales.

Although a relatively simple material model was
employed in this work, the presented method is general
and can be used with any constitutive model. There are
no limitations on the complexity of material model used
within the VFM framework, given that it reconstructs
stress field from measured kinematic fields (deformation
gradient) and some internal state variables (that can be
resolved by considering history of deformation). It must be
stressed that usually the more complex the model, the more

@ Springer

material parameters must be identified experimentally. The
method proposed here allows for complete identification of
material parameters given the experiment contains sufficient
information. To the authors’ best knowledge there is no
systematic way of assessing the level of information that a
test contains given a constitutive model. Investigating this in
future would be certainly of importance for designing better
experiments.

The new route to virtual field selection demonstrated
here has potential in many applications, in particular for
non-linear models with large numbers of parameters. An
obvious extension would be hyper-visco-elastic models.
The VFM has been applied to such materials in the past,
see [17] for instance, but always with UDVFs, limiting
the complexity of the considered models. Another area of
interest concerns transient dynamic tests to identify the
high strain rate elasto-plastic response of materials. Finally,
now that a systematic route has been clearly identified to
generated virtual fields automatically for non-linear laws,
the problem of test optimization can be addressed. This has
been studied for linear elasticity in the past, thanks to the
availability of the noise-optimized virtual fields from [3],
and can now be addressed for non-linear models using a
procedure similar to that in [16].
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The first paragraph in the virtual fields method section should read:
‘Quasi-static equilibrium can be expressed in so-called ‘weak form’ in which it is
enforced as a weighted average over the entire domain, expressed here in the current
(deformed) configuration %, in absence of volume forces:’

The paragraph underneath Eq. 8 should read:

‘where 4 is the considered body in the reference configuration and 0.4 its bound-
ary. This form is much more suitable for practical implementation in case of the
proposed method, as the virtual fields U*, defined in the reference (unloaded) con-
figuration %, do not need updated virtual boundary conditions, as will become
apparent later in the article. This approach has been used by most of the VFM
community [36, 38, 39, 41]. Noticeably, it was demonstrated that the current con-
figuration formulation could be successfully applied to the case of hyperelasticity as
well [2, 23, 32]

The paragr;lph underneath Eq. 27 should read:

‘where R;; = Z—z. Note that o, and o}, are the yield stresses identified in planar
uniaxial tests conducted at 0° and 90° respectively and o3y is the through-thickness
yield stress. Finally, o}, is the yield stress identified under pure shear. Although
the model is defined for plane stress and o33 = 0, the information about ¢3; can
be obtained from the combination of associated flow rule assumption and Lankford
coefficients. Furthermore, it was assumed that the yield stress in the hardening law
is equal to o}, i.e. 09 = 07, as this reduces the number of variables to be identified
by one, and does not affect the formulation of model.’

The units in Table 2 should be defined as follows:

00: MPa; H: MPa; 0o: MPa; K: MPa; n: [—].
Parameters in Table 3 should be changed to the following:

0 0 0
‘7913 %[_];ng o?f?f)[ J; 033 O(ref)[ J; ‘7?2 Oiigf)[ J; H: H(rHef) [—]; n: #[_]

Parameters in Table 4 should be changed to the following;:

0 0 O 0
oty %[_]5 09 ngf)[ J; o33 0(76f)[ J; ot o‘?}Zﬁ[ J; H: ({_'Ief) [—.
Parameters in Table 5 should be changed to the following:
0 0 0 0
‘7?13 Oiqléf)[ —1; 032 off'in[ I; Ugiﬂ Oo(-ief)[ J; 0?2 o%if)[ —]; H: H(I:Ief) [—].
Parameters in Table 6 should be changed to the following;:
0 0 0 0
ol Jiiif)[ J; 095 oif?f)[ J; 035 Oi?«gf)[ J; oy %[_]3 H: %[_L Uz ﬁ[_]

Unlts in Table 7 should be as follows
ap—ag: [-]; 0g: MPa; H: MPa.
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Abstract In this work, the sensitivity-based virtual fields
have been applied to identify two anisotropic plasticity mod-
els (Hill48, Y1d2000-2D) using a deep-notched tensile test
performed on flat samples of cold-rolled sheet of DC04 steel.
The material was characterised using the standard protocol
to obtain the reference sets of parameters. Deformation data
was obtained during deep-notched tests using stereo digi-
tal image correlation and the virtual fields method was em-
ployed to identify material parameters. It was found that the
sensitivity-based virtual fields outperform the standard user-
defined virtual fields in terms of accuracy.

Keywords the virtual fields method - anisotropic plasticity -
sensitivity-based virtual fields - digital image correlation -
inverse identification

1 Introduction

To describe material behaviour accurately, models become
increasingly complex and involve more and more material
parameters that need to be identified from mechanical tests.
Typically, parameters are measured with a number of simple
homogeneous tests, where each test provides limited infor-
mation about the inferred model. As a result, many tests are
generally needed to fully characterise such material models.
On the other hand, developments in full-field measurements
offer the ability to collect large amounts of data with the po-
tential to improve identification of material properties. This
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can be used to design a new class of tests, where deforma-
tion is heterogeneous, leading to a range of multi-axial stress
states within a single specimen. Probing material behaviour
under such loading provides an opportunity for a reduction
of the number of tests needed for characterisation, and the
development of better models.

The problem of increasing amount of experimental ef-
fort needed to characterise a material is an important one for
the sheet metal forming community, where accurate charac-
terisation of plastic anisotropy is essential. For instance, the
simplest anisotropic model, Hill48 [1], requires three uniax-
ial tests performed at three distinct orientations (0° /45° /90°)
to be fully characterised for plane stress applications. The
model however is well known to be performing poorly, espe-
cially under biaxial loading where it cannot accurately rep-
resent the behaviour of most commonly used alloys. Many
improvements have been proposed, often involving biaxial
data in the formulation, significantly increasing the exper-
imental effort involved in identifying the models. Popular
models that can accurately capture the response of sheet
metals, such as: Y1d89 [2], Stoughton’s model of 2002 [3],
BBC2000 [4], BBC2005 [5] and Y1d2000-2D [6] require
four tests in total: three uniaxial and one equibiaxial tests.
Furthermore, there are even more complex material mod-
els such as CB2001 [7, 8] involving five uniaxial and one
biaxial tests and Stoughton’s model of 2009 [9] or Y1d2004-
18p [10] that require seven uniaxial (performed in incre-
ments of 15°) and one biaxial tests. Although these models
improve the accuracy of numerical simulations, they often
imply an extensive experimental effort involved in the char-
acterisation of materials.

A possible strategy to reduce the number of experiments
to identify a given model is to use full-field measurements
and design heterogeneous tests from which more data could
be collected, compared to homogeneous counterparts. Stan-
dard tests produce uniform/simple stress field that can be an-
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alytically linked to the applied load, these are generally re-
ferred to as ‘statically determinate’. This approach produces
a single data point on the yield surface per test. Hetero-
geneous, statically non-determinate tests on the other hand
produce a cloud of points in the stress space, each exhibit-
ing a unique combination of stress/strain states, to which the
model can be matched. In this approach, test design and ma-
terial parameters extraction from the collected data represent
specific challenges, as the stress field is not known a priori.
To identify material parameters from full-field data, inverse
techniques need to be employed.

Two of the most popular inverse techniques for extract-
ing constitutive parameters from full-field measurements are
finite element model updating (FEMU) and the virtual fields
method (VEM). In the former, a model of the experiment is
built up using finite element method (FEM) and the experi-
mental data are matched to their simulated counterparts. The
matching can be done over the loading force, displacements,
strains, or even the identified biaxial stress [11]. In the VFM,
the stress equilibrium is enforced over the entire region of
interest (ROI). It depends on the stress field reconstructed
from the measured deformation through the assumed con-
stitutive law and the material parameters are found such that
they minimise the gap in the stress equilibrium. The method
has successfully been applied to metal plasticity [12-16],
composites [17], concrete [18], elastomers [19-22] and bio-
logical tissues [23,24] to cite but a few.

One of challenges in performing a successful statisti-
cally indeterminate test is to ensure that it contains enough
heterogeneity, i.e. a sufficiently large number of unique stress
states that describe the entire constitutive model. In prac-
tice, the test is usually performed on a standard test machine
and the heterogeneity is achieved by means of the geom-
etry of the specimen. Notched samples were proven to be
particularly popular for testing ductile materials. With suffi-
ciently deep notches it is possible to activate all stress com-
ponents, which is important when dealing with anisotropic
materials [11, 16,25]. An alternative is to machine a special
specimen such as X-shaped sample in [15]. A methodical
approach to design adequate heterogeneous tests is still an
open problem. Recently, there were a few attempts at us-
ing optimisation techniques that iterate through a number
of design variables to improve a measure for strain hetero-
geneity [26, 27]. For other constitutive models, test design
optimization has been studied in more depth, initially us-
ing strain heterogeneity metrics as well [28], then using bal-
anced identification uncertainty over the whole set of pa-
rameters [29, 30]. However, all failed to take into account
the systematic error arising from the finite spatial resolu-
tion of the camera. The next generation of test optimization
procedures relies on synthetic image deformation and min-
imizes the maximum identification error including the sys-

tematic error [31,32]. Extending this strategy to elastoplas-
ticity models is the next step.

In terms of anisotropic plasticity, a number of different
test configurations were used to identify popular models,
with most of the effort dedicated to Hill48, due to its pop-
ularity and simplicity. The problem was tackled as early as
in 1998 by a pioneering work of Meuwissen et al. [33] who
used a specimen with asymmetrically placed notches. They
measured displacements using a discrete number of track-
ers, and compared them with a numerical model to fit the
parameters. Since then, many approaches have been adopted
to characterise Hill48 [15, 16,25, 34—41], the Ferron model

[42], Y1d96 [34], Bron and Besson model [38,39] and Y1d2000-

2D [11, 16]. They included a mixture of tensile tests per-
formed on specimens including geometric features such as
holes or notches and non-standard biaxial tests leading to
a heterogeneous state of stress. However, Hill48 has proved

inadequate to accurately describe the behaviour of many anisotropic

elastoplastic materials [9, 16, 38]. One of the challenges of
fully characterising more advanced constitutive models such
as Y1d2000-2D is the activation and identification of all ma-
terial parameters involved (eight or more).

In the VFM the effectiveness of parameters extraction
relies on using robust virtual fields. These are spatial weight
functions allowing to probe parts of the specimens for in-
formation. Traditionally, they are defined manually by the
investigator using analytical functions such as polynomi-
als, sinusoids, exponential functions etc. and are called user-
defined virtual fields (UDVFs). This approach was success-
fully applied in the case of anisotropic plasticity by [15, 16,
43], however it was noted that the choice of virtual fields
was essential for good accuracy. The choice is dependent
on the expertise of the user, and might be time consum-
ing as it involves a trial-and-error procedure. Moreover, this
intuition-led choice has no reason to be optimal for the ex-
traction of all parameters. This is particularly important for
less influential parameters which may only affect the defor-
mation fields over certain time steps and specific areas of
the specimen. Recently, a new type of virtual fields has been
proposed to address the limitations described above, namely
the sensitivity-based virtual fields [44, 45]. These fields are
automatically generated for any constitutive model, and any
test geometry based on the sensitivity of reconstructed stress
field to each material parameter. This framework provides
enhanced flexibility and allows to tackle complex constitu-
tive models more effectively.

In this work, we present an experimental validation of
the sensitivity-based virtual fields for anisotropic plasticity.
We have tested a cold-rolled sheet of DC04 steel and per-
formed standard characterisation to obtain material param-
eters for Hill48 and Y1d2000-2D models. Then, heteroge-
neous tests (deep-notched specimens) were performed along
different orientations and the VFM with the SBVFs were
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used to characterise the models leading to reduction of the
number of tests. We have shown that the SBVFs were able
to identify Hill48 model with a single test performed at 45°,
and the Y1d2000-2D model could be identified with three
tests if the optimisation problem was constrained with the
data from bulge test.

2 Theory
2.1 Brief recall of the finite deformation framework

Let us consider a body %, where the position of particles
in the reference configuration is given by X and in the de-
formed one by x. The motion of each material point can be
described by a function x = ¢ (X, #), which maps the position
of every particle in the reference configuration to the current
deformed configuration. The displacement field is defined
as the difference between the current and the reference po-
sitions:

uX,r)=x—-X (1)
The deformation gradient is defined as:

Jdx du
F=-C==-+1 2
5% = 3x "1 2
where I is the second order identity tensor. Using polar de-
composition, the deformation gradient can be written as the
product of two second order tensors:

F=VR 3)

where V is the left stretch tensor and R is the rotation tensor.
The left stretch tensor can be conveniently calculated as:

V = VFFT 4)

where the root operator refers to the root of a matrix. A con-
sequence of such mathematical description is that for every
point, a local coordinate system rotates during deformation,
as outlined in Fig. 1. This is an important feature to consider
when the body includes a texture, as its orientation will fol-
low any local rotations.

A convenient measure of strain, called Hencky strain,
can be constructed from the left stretch tensor:

e, =InV )

This strain measure can be used to formulate constitutive
laws within the finite deformation framework. For further
details on continuum mechanics the reader is referred to
[46].

2.2 Constitutive models

In this study we considered two different yield models suit-
able for cold-rolled sheets: Hill48 and Y1d2000-2D [1, 6].
The former is relatively simple extension of the von Mises
criterion to account for anisotropy and the equivalent stress
can be expressed as:

o' = \/GGIZI +Fo3, +H(011 — 022)? +2NGp, . (6)

The plastic potentials (R;;) were used to obtain the govern-
ing parameters from an experiment:

F_1 (1 1 1

2R3, R3 Ry
G_1 [ 1 N 1 1]

2R Ry RS

- - @)

Hﬁl 1 N 1 1

2Ry R, Ry
Nﬁl 1

2R3,

y
where R;; = %. Note that 6y, and 63, are the yield stresses
identified in ploanar uniaxial tests conducted at 0° and 90°
respectively and 035 is the through-thickness yield stress.
Finally, o7, is the yield stress identified under pure shear.
Although the model is defined for plane stress and 633 =0,
the information about G3y3 can be obtained from the com-
bination of associated flow rule assumption and Lankford
coefficients. The reference yield stress was assumed to co-
incide with 67|, i.e. Gy = 07, as this reduces the number of
variables to be identified by one, and does not affect the for-
mulation of model. Additionally, plane stress was assumed,
as the tested samples were thin relative to their in-plane di-
mensions, and associated flow rule was used.

Y1d2000-2D was developed strictly for plane stress con-
dition for which the equivalent stress can be calculated as:

1 1/a
ot = 5 (i —xge loxg e xpie X x| ®)
where a is an exponent based on the metal micro-structure
(a = 8 for FCC and a = 6 for BCC) and X|, X} and X{, X}
are the principal values of two stress tensors X', X which
are defined as linear combinations of the Cauchy stress:

X' =Lo
X// — LI/G (9)
Matrices L' and L are given by:
204 204
S b )
3 3
L'=| 20 20 (10)
3 3

0 0 (07
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Deformation

X, X

Fig. 1 Definition of coordinate systems, X is the initial position of a material point and x, its current position, (i, j) is the initial orientation of the
local coordinate system, (1,2) is the corotational system, (£, H) is the material coordinate system in the reference configuration and (&,1) is the

material coordinate system in the current configuration

805 — 203 — 206 + 201 74%—4a4—4a5+a3

0
9 9
L’ = 740(3—4055—4054—&-0(6 8ay —206—203+205 0 a1
9 9
0 0 o

The model involves 8 independent parameters, o;—0g, which
are generally obtained using 3 tensile tests performed at 0°,
45°,90°, a biaxial test (bulge test), as well as a test for mea-
suring rp = %; at balanced equibiaxial loading. Again, asso-
ciated flow rule was assumed here as well.

A non-linear isotropic hardening power law (Ludwik)
was chosen with the following form:

G =0y +K(EP)" (12)

where 0y, K,n are material parameters and €” is the equiva-
lent plastic strain integrated throughout the history of defor-
mation.

The constitutive computations are performed in a ma-
terial coordinate system (&, 7)) which is aligned with manu-
facturing directions: rolling (RD) and transverse (TD) direc-
tions. Since the kinematic fields are computed in the global
frame (i, j), for each data point strain and stress tensors need
to be rotated to the material frame:

Ag &M = RTRT AR, R. (13)

mat

where R, is a rotation tensor projecting the global frame

onto the material frame in the unloaded configuration (Fig. 1).

Once the stress tensor is reconstructed it is rotated back to

the global frame in which the VFM equations are formu-
lated.

2.3 Virtual Fields Method

The Virtual Fields Method is an inverse technique to iden-
tify material parameters from full-field measurements. It re-
lies on the force equilibrium through the principle of virtual
work (PVW). In the case of static loading under absence of
body forces, it can be expressed in the reference body con-
figuration as [47]:
JdU* N
—/Pzﬁd%’o—&- / (PN)-U*dd % =0 (14)
By 0%,

where %, is the considered body in the reference configura-
tion, d %, its boundary, N is the outwards vector of d %, P
is the 1% Piola-Kirchhoff stress tensor and U* is a vectorial
test function called virtual displacement. Virtual displace-
ment fields need to be continuous and piecewise differen-
tiable.

The stress tensor (P) is directly reconstructed from mea-
sured kinematic fields by means of an assumed constitutive
law and a guessed set of material parameters ()). The valid-
ity of the guess is assessed by the residual value evaluated
with Eq. 14.

As the full-field measurements provide spatially rich data,
the first integral in Eq. 14 can be replaced with a discrete
sum of all points in the region of interest (ROI). By selecting
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virtual displacements as constant across d %y, the second in-
tegral in Eq. 14 can be replaced by a product of U* - F/e¢?,
where F/° is the total load measured with the test machine
load cell. This procedure replaces generally unknown dis-
tribution of tractions over the loading edges with a quantity
casy to measure.

Since the PVW has to be evaluated over the entire vol-
ume, but the measurements are taken only at the surface of
the specimen, it is necessary to make some assumption re-
garding the variation of kinematic fields through the thick-
ness. If the specimen is thin, plane stress assumption is rea-
sonable and the PVW can be expressed in terms of a cost
function as:

Wit
nVF [ nTime | nPts ) aU*j(i) '
o)=Y < Y | Y (Pler,x): X S'h
i=1 | =1 |j=1

2
_U*(l) .Fload] } (15)

W

ext

where S/ is the surface area of each measurement point and
is the thickness of specimen. This cost function can include
a number of independent virtual fields and load levels (time
steps). The identification is carried out by minimising Eq. 15
with respect to the sought material parameters.

It is worth noting that Eq. 14 is formulated in terms of
the 1% Piola-Kirchhoff stress tensor, while most constitutive
laws relate kinematic fields to the Cauchy stress tensor. The
former can be obtained from the latter with:

P = det(F)oF T (16)

where F is the deformation gradient tensor. Since in reality
the deformation is fully 3D, so is the deformation gradient
and this has to be reflected in the computation of its deter-
minant. By assuming negligible out-of-plane shearing, the
determinant can be computed as:

det(F) = F33(F11F2 —Fi2F21). (17)

Since the in-plane values are directly measured the only un-
known is the out-of-plane component. It can be estimated
with a constitutive law (e.g. assuming plane stress elasticity
and isochoric plastic flow), or can be directly measured by
means of back-to-back camera systems as shown in [48].
The virtual displacement (and its spatial derivatives, later
simply referred to as virtual fields (VFs)) spatially probe the
reconstructed stress field for information. As a result, the
choice of VFs is crucial and has strong influence on identifi-
cation quality. Ideally, VFs should be focused on areas rich
in information and minimize the influence of the measure-
ment noise. In the case of non-linear material models, select-
ing VFs usually relies on the manual definition by means of

simple mathematical functions, such as polynomials or si-
nusoids [15, 16]. The effectiveness of these VFs called user-
defined VFs (UDVFs) heavily depends on the expertise of
the investigator. It is worth noting that usually UDVFs are
kept constant across the history of deformation, whereas the
information evolves as the loading changes. As a result, a
VF that is relevant e.g. for identification of yield-related pa-
rameters might not be as effective for identification of the
hardening law. Recently, a new automated method for gen-
erating high-quality virtual fields has been proposed [44,45].
These fields called sensitivity-based virtual fields (SBVFs),
are designed to highlight areas rich in information for each
parameter separately, resulting in better identification, with-
out significant input from the investigator.

2.4 Sensitivity-based virtual fields

The sensitivity-based virtual fields [44,45] are automatically
generated for every material parameter. These SBVFs are
good at finding information about each parameter separately
and coupling them together in one cost function to iden-
tify all material parameters. Each virtual field is constructed
based on the sensitivity of the reconstructed stress field to a
given material parameter. The procedure for generating vir-
tual fields is discussed in details in [44] with the extension to
large-deformation in [45]. Here, we shortly summarize the
necessary steps to generate SBVFs.

For each material parameter a map of stress sensitivity
is calculated through:

8P (3.1) = P(x + 87.1) ~ P(1.1) a®

where Jy; is a small variation of parameter y;, typically
6x; = —0.20——0.10y;. The fields are calculated at all con-
sidered load levels, generating a temporal map of stress sen-
sitivities.

In plasticity, the response is history dependent with yield-
related parameters being active from the onset of plasticity
throughout the whole history, while hardening parameters
are active only during accumulation of plastic deformation.
In order to decouple the influence of yield stress from that
of hardening, a new stress sensitivity field is derived, called
the incremental stress sensitivity field:

PO (x,1) — P (x,t 1)

P (x,1) = - . (19)

These fields highlight the information about a given pa-
rameter in the test and are an excellent candidate for virtual
fields. In order to apply them in the VFM, virtual fields are
generated such that the spatial derivative of virtual displace-
ment fields matches the incremental stress sensitivity fields
in a least-square sense. Additionally, the VFs need to be con-
structed in a way that the corresponding virtual displacement
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field is known. To achieve that, a virtual mesh is employed
to express virtual fields using piecewise linear functions. It
consists of linear quadrilateral elements enclosing the ROI,
which are used to express both virtual displacement and vir-
tual strains fields based on the nodal values through interpo-
lation functions.

To construct SBVFs, a global strain-displacement map
is constructed: for each data point, the spatial derivatives of
the virtual displacement are written as functions of the nodal
virtual displacements through the element shape functions.
All such equations are concatenated in one matrix (Bgjop).
The matrix is then modified to account for the wanted virtual
boundary conditions (e.g. U* = const over d %)), yielding
the modified virtual strain-displacement matrix: B olob- Then,
the incremental stress sensitivity map is projected in a least-
square sense onto the virtual mesh, using a pseudo-inverse
of Bglub:

U*(I) ([) - Pinv(Eglob) 613(1) (xv t)' (20)

Finally, the identified virtual displacements are used to cal-
culate virtual fields at all data points:

U
JX
The procedure yields a separate virtual field for every mate-

rial parameter, at every data point and every time step which
is then used to evaluate Eq. 15.

= By, U, 1)

3 Experimental procedure
3.1 Specimen preparation

Specimens were water-jet cut out of a cold-rolled sheet of
DCO04 low-carbon alloy steel with a nominal thickness of
1.5 mm. Three geometries were tested: a standard dogbone
(DB) specimen, a rectangular specimen for bulge test and a
deep-notched (DN) specimen for heterogeneous test (Fig. 2).
The specimens surfaces were first cleaned with sandpaper
to remove oxides and then coated with a rubber-based white
paint (Rust-oleum Peel coat, white matt finish) to provide
good contrast for black speckles. An optimised speckle pat-
tern [49] was printed on the specimen using a flat-bed printer
(Canon Océ Arizona 1260 XT) which provided good con-
sistency and reproducibility. An average speckle size of ap-
proximately 65 um was achieved (Fig. 3).

3.2 Experimental set-up

3.2.1 Tensile testing

Both DB and DN samples were tested using a servo-hydraulic
test machine with a 100 kN load cell and hydraulic grips.

Table 1 Summary of the tests performed.

Name of specimen  Angle (o) to the RD ~ Number of samples

DB-0 0 3
DB-90 90 3
DB-45 45 3
DN-30 30 3
DN-45 45 4
DN-60 60 3

Deformation was measured using a stereo- digital image cor-
relation (DIC) set-up, with two digital Manta G-504b cam-
eras (5 Mpx), instrumented with 105 mm lenses and polaris-
ers. A LED light panel equipped with a polariser was used to
illuminate the samples. By setting cross-polarization specu-
lar reflection was minimised which resulted in a grey-level
histogram spread across most of the dynamic range of the
cameras. The reference images for correlation were taken
while maintaining zero load; the specimen was loaded in
displacement control divided into three phases: slow rate
(elastic range), medium rate (transition to high rate) and
high rate where majority of plastic deformation happened,
as indicated in Fig. 5. The images were taken every 1 s and
synchronised with the force measured from the load cell.
The set-up is illustrated in Fig. 4. The summary of tested
samples is presented in Table 1.

3.2.2 Bulge tests

Since the yield stress and r-value information in balanced
biaxial state is required for determination of the anisotropic
constitutive parameters, the hydraulic bulge test was carried
out using an Erichsen bulge/FLC tester model 161.

A steel sheet specimen is mounted on the bulge test ap-
paratus as in Fig. 6. Then the specimen is clamped between
the lower blank holder and the upper die. To prevent slip-
ping of the specimen during the test, plastic flow is restricted
with a drawbead and high blank holding force. The diame-
ter of the area of interest in the test device is 200 mm. The
hydraulic pressure is applied on the bottom side of the spec-
imen to produce bulging and plastic deformation.

A stereo digital image correlation technique was used
for measurement of curvature and strain fields as shown in
Fig. 7. Two 2448 x 2048 pixels 14 bit CCD cameras were
used for the measurement. The important correlation vari-
ables chosen in the DIC analysis were: subset: 41, step: 7,
image pixel size: 0.117 mm.

In the bulge test, the biaxial stress-strain curve is derived
from the membrane stress and the thickness strain near the
pole of the bulged specimen [50].
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Fig. 2 Geometry of the specimens used in the test. Dimensions in mm.
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Fig. 4 Experimental set-up.

Fig. 3 Quality of the printed speckle pattern. Speckles are approxi- In membrane theory of a thin-walled pressure vessel,
mately 65 um across. stress is calculated as:
R
o= (22)

T2



88 Aleksander Marek

8 Aleksander Marek et al.

where p is the pressure obtained from a pressure sensor, R

5°¢ the current radius of curvature and ¢ the current thickness.
= Dogbone The current thickness is calculated from:
e al = = = Deep-notched | |
E t=toexp& 23)
% 3t 1 where f is the initial thickness and & the thickness strain
% (& =~ —€&; — &, where € and & are major and minor strains).
f; ol | The current radius of curvature R is obtained from:
2 S N FY A 1
; : R= (24)
S

where x is the curvature.
Two specimens were tested and it was found that the de-

0 2 4 6 8 10 viation was very small between the two membrane stress-
Total displacement of the crosshead [mm)] thickness strain curves

Fig. 5 Loading rate used in the tensile tests.

sheet sample 3.3 Data processing
1 drawbead )
die L} 1 3.3.1 Dogbone specimens
" P ’ /
v hydraulic oil v Raw grey-level images were exported to a DIC package (MatchID

holder 2018.2.2) and processed using stereo-DIC. Due to signif-
f punch icant plastic deformation of the specimen upstream of the
gauge section the small ROI that remained in the camera
< > field of view for the whole test was selected. The camera pa-
200 mm rameters and DIC settings are summarized in Table 2. The
Fig. 6 Schematic diagram of the bulge test. measured fields were used to reconstruct the stress-strain

curve and identify yield stress and hardening law for each
of orientation (0° /45° /90°), using the uniform and uni-axial
stress assumptions. Von Mises plasticity was used as in a ho-
mogeneous test anisotropy cannot be inferred. The average
longitudinal plastic strain was plotted against the average
transverse plastic strain, and a straight line was fitted to the
data in order to obtain Lankford coefficient [51]. The line
passed through the origin and was fitted to the data corre-
sponding to 8—12% range of plastic deformation.

3.4 Deep-notched specimen

Again, raw grey-level images were exported to MatchID and
displacements in the gauge section were obtained using stereo-
DIC, with the parameters presented in Table 3. The data was
exported to Matlab, where displacements were temporarily
and spatially smoothed and then down-sampled to a num-
ber of load levels (time steps). Gaussian filter (defined with
Osmoorh parameter) with edge correction was used for spatial
smoothing and Savitzky-Golay filter was used for temporal
smoothing, characterised with two parameters: polynomial
order mrs and the window size wrs. The down-sampling
purpose was to improve signal-to-noise ratio of strain incre-
ments and reduce the computational effort. The frames were
selected such that the maximal measured strain was about

Fig.7 View of the bulge test experimental set-up.
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Table 2 DIC settings for a dogbone specimen.

Technique used

Sensor (px) and digitization
Camera noise (% of range)
Lens, polariser and imaging
distance

Frame rate (Hz)

Pixel to mm conversion
ROI (mm)

Stereo Digital Image Correla-
tion

2452 x 2056, 8-bit

1.0

105 mm (F-mount), linear, 1 m

1
1 px =20 um
12.5 x 38.0

DIC software

Subset size, step size
Interpolation, shape func-
tions, correlation criterion,
stereo transformation
Reference image

Pre-smoothing
Displacement resolution
Edge data

Strain computation
Strain resolution (raw)

MatchID 2018.2.2

27,7

Bicubic spline, affine, ZNSSD,
affine

Updated (incremental correla-
tion)

Gaussian, 5 px

0.02 px, 0.4 pm

Extrapolated from shape func-
tions

Central finite difference

1000 pe

Table 3 DIC settings for a deep-notched specimen.

Technique used

Sensor (px) and digitization
Camera noise (% of range)
Lens, polariser and imaging
distance

Frame rate (Hz)

Pixel to mm conversion
ROI (mm)

Stereo Digital Image Correla-
tion

2452 x 2056, 8-bit

0.8

105 mm (F-mount), linear, 1 m

1
1 px =16 um
30.0 x 18.0

DIC software

Subset size, step size
Interpolation, shape func-
tions, correlation criterion,
stereo transformation
Reference image
Pre-smoothing
Displacement resolution
Edge data

Strain computation

Strain resolution (raw)
Displacement spatial
smoothing: filter, magni-
tude

Displacement temporal
smoothing: filter, order,
window

MatchID 2018.2.2
21,7

Bicubic  spline,
ZNSSD, affine

quadratic,

Fixed

Gaussian, 5 px

0.01 px, 0.25 pm

Extrapolated from shape func-
tions

Central finite difference

600 pe

Gaussian (with edge correc-
tions), 2

Savitzky-Golay, 3, 11

10% as that was the maximal strain level used in the stan-
dard characterisation. Central finite difference was used to
compute kinematic data (deformation gradient, rotation ten-
sor, Hencky logarithmic strains), which were then passed to
an in-house VFM code to identify the material parameters.

400
— 300 r
‘f ——0° (3 samples)
E — —-90° (3 samples)
" A |- 45° (3 samples)
g 200
0
o
£
& 100

0 . . . )
0 0.05 0.1 0.15 0.2

True strain [-]

Fig. 8 Stress-strain curves measured with the dogbone tests.

4 Results and discussion
4.1 Dogbone testing

For each of the orientations (0°/45°/90°), three specimens
were tested. The measured true stress-strain curves are pre-
sented in Fig. 8. A visible bump around the strain value of
3% is believed to be caused by the step change in the cross-
head velocity as indicated in Fig. 5 and is consistently seen
in all collected data (including DN samples). The curves
were used to identify the hardening parameters (Eq. 12) and
coefficients for Hill48 (Eq. 6) and Y1d2000-2D (Eq. 8). The
hardening law was identified using strain of up to 10%, as at
the higher deformation the assumed hardening model does
not capture the material behaviour accurately. This could be
improved upon in the future, however the main objective of
this contribution is to demonstrate the effectiveness of the
SBVFs, as opposed to improving constitutive description of
a material. Apart from the yield stress defining the hardening
law (0y), a 0.2% offset yield stress (0} o,,) Was identified to
quantify the anisotropy between orientations.

Longitudinal plastic strain was plotted against transverse
plastic strain as shown in Fig. 9. The Lankford coefficients
were identified in the range of 8%—12%. Across all sam-
ples the trend has shown good linear relationship with a lit-
tle variation between different samples. All of the identified
parameters are presented in Table 4.

The ratios of flow stress in each direction to the flow
stress in RD have been investigated under different values
of plastic work. This is now a standard practice in evaluat-
ing anisotropy of metal sheets, as the ratios are difficult to
identify reliably at low levels of plastic deformation, espe-
cially when the bulge test is employed [10]. The obtained
curves are presented in Fig. 10.

Clearly, the anisotropy in yield stress changes rapidly at
low deformation levels. This has to be taken into considera-
tion when selecting the reference parameters for comparison
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Table 4 Parameters identified using dogbone specimens. The uncertainty is presented as a single standard deviation.

Specimen G}, [MPa] oo K [MPa] n[-] 70.08-0.12 [-]

DB-0 20341 164+2 459+4  0.4340.01 1.904+0.08

DB-45 21843 185+3 475+5 0.46+0.01 1.354+0.09

DB-90 2172 185+1 445+5 0.474+0.01 2.05+0.13
0. and Lankford coefficient with orientation of material is pre-
——0° (3 samples) sented in Fig. 11. The corresponding parameters are pre-
o-002y e 8 Zzﬁgizg sented in Table 5. Importantly, the two sets differ only by

§ 0.04 the magnitude of Glyz which drives the values at 45°.

f The biaxial flow stress (0}) and the strain ratio at bal-
‘% 0.06¢ anced biaxial loading (r, = 0.77) were measured in the bulge
E’“ 008t test. The ratio of o}, to the RD flow stress as a function of
é oal work haréenin.g i§ presented in Fig. 10. The equibigxial yield
= stress varies significantly at low level of deformation due to
5 012 differential hardening [53]. This ultimately leads to a set of
014 ‘ ‘ ‘ o different Y1d2000-2D surfaces identified from the standard
0 0.05 0.1 0.15 0.2 tests, two of the surfaces identified (with ratios taken at 10

Longitudinal strain [-]

Fig. 9 Longitudinal versus transverse plastic strains measured using
dogbone samples. The data was used to calculate Lankford coefficients
in the range of 8%—12%.
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Fig. 10 Variation of flow stress ratios with plastic work.

with the DN results. It is reasonable to consider the aver-
age ratios based on plastic work above 10 MPa and more:
1.014 for 90° and 1.040 for 45°. The ratios were then used
to calculate the yield stresses at 90° and 45° degrees from
the hardening at 0°:

& =67, = 164 +459(&")"* (25)
resulting in: oys = 1.040 x 69 = 170.56 MPa and o9y =
1.014 x op = 166.30 MPa.

The collected data was used to obtain Hill48 parame-
ters in two ways: using all Lankford coefficients and oy for
DB-0, or using oy from all tests and the Lankford coeffi-
cient for DB-90 [52]. The variation of the initial yield stress

and 25MPa) are presented in Fig. 12. As seen from the plot,
the biaxial yield stress is over-predicted when Hill48 is used,
due to lack of flexibility of the model.

Naturally, Y1d2000-2D offers much better fit to the ex-
perimental data as demonstrated in Fig. 11, where the varia-
tion in both yield stress and Lankford parameters is captured
correctly with a single set of parameters.

The identified parameters for Y1d2000-2D models are
presented in Table 6 for two different levels of work harden-
ing (10 MPa and 25 MPa).

4.2 Deep-notched test

Three directions were tested: (30°/45°/60°), so that differ-
ent test configurations could be combined together in a sin-
gle test function. For instance, by combining two tests per-
formed at 30° and 60°, richer data is available to identify
the model, which should improve accuracy of identification.
As indicated in Tables 2—3, DN tests exhibited smaller strain
error on unsmoothed data. This is believed to be caused by
slightly smaller pixel size, as well as better lightning set-up
during DN experiments.

Figure 13(a) shows an image of a typical specimen in
the unloaded configuration. Only the region bounded by the
solid box was correlated with the DIC and the data corre-
sponding to the dashed box was then passed on to the iden-
tification routine. The strain fields obtained at 10.5kN (45°
specimen) are presented in Figs. 13(b)-13(d). The base of
white paint did not fail during the experiment, however it
debonded from the specimen when the neck started to de-
velop, see Fig. 14. If observation of the strain localization
was of interest, the base layer could be removed, and white
speckles could be used instead of black ones. In that case,
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Table 5 Reference parameters for Hill48 identified from dogbone testing.

quel fittedto oy, [MPa] 03, [MPa] &3, [MPa] o7, [MPa]
Yield stresses 164.0 166.3 201.2 94.1
Lankford coefficients 164.0 166.1 201.2 104.6
190 2.2 T T T T - .
— Hill48 - fit based on r Y1d2000-2D
- - -Hill48 - fit based on oy § Exp data
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Fig. 11 Variation of yield stress and r parameter with orientation of the material obtained using Hill48 and Y1d2000-2D models.

Table 6 Reference parameters for Y1d2000-2D identified from dogbone testing and the bulge test.

Plastic work [MPa]  Corresponding strain at 0° [%]  a; [-]
10 4.4 1.071
25 9.7 1.061

ool o] o]l os[] o[-l or[] ogl]
1.000  0.774 0.899 0923 0.880 0.975 1.010
0994 0.663 0879 0.899 0.740 0.964 1.092
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Fig. 12 Identified yield surfaces using the standard testing protocol
using two models: Hill48 and Y1d2000-2D.

the contrast could be achieved by means of the material sur-
face, combined with cross-polarization of light to remove
the specular reflection.

Displacements obtained in MatchID were exported to
Matlab, temporarily smoothed with mrg = 3 and window
wrs = 11, then the data was down-sampled to the desired
number of load levels and spatially smoothed with a Gaus-
sian of kernel (Ogp0rn = 2). The kinematic data was fed

to the in-house VFM program to identify the parameters
of Hill48 and Y1d2000-2D. For the identification, a virtual
mesh of 10 x 10 elements, a material variation of 15%
(6y; = —0.15y;) and a scaling parameter [45] of 0.3 were
used. Additionally, the elastic properties were set a priori to
the typical values for steel, i.e. E =200 GPa and v = 0.3.

Minimisation of the cost function (Eq. 15) was carried
out in Matlab, starting from four points selected with a ran-
dom number generator. Initially, Levenberg-Marquardt al-
gorithm was used (1sqnonlin) but it was found that the
algorithm could not converge to a unique global minimum.
The method was then switched to fmincon with the sequen-
tial quadratic programming algorithm (SQP) which was ca-
pable of converging to the same solution regardless of the
starting point.

To quantify the identification accuracy a metric based
on reconstructed apparent yield stress was used [45]. In this
approach, instead of comparing parameters on a one-by-one
basis, a model is used to reconstruct the apparent yield stress
that would cause yielding at a given orientation in a 1D load-
ing scenario (see Fig. 11(a)). Additionally, the effect of hard-
ening can be accounted for which results in a map of the ap-
parent yield stress as a function of orientation and level of
plastic strain. The global mean error is constructed as a mean
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(a) Raw image of a DN specimen. The solid box represents the
correlation region, the dashed box represents the region used in
identification.

. | - 0.06
0.04
0.02

[ —

(¢) Vertical strain at 10.5 kN.

-0.01

-0.02

-0.03

(b) Horizontal strain at 10.5 kN.

0.02

0.01
-0.01
-0.02

(d) Shear strain at 10.5 kN.

Fig. 13 Image of a tested DN specimen. (a) is a grey level map with marked correlation region (solid box) and region used in identifications
(dashed). (b)—(d) represents strain maps obtained from the DIC using spatial smoothing of G0, = 2 and temporal smoothing of mrg = 3,

wrs = 11.

difference between the map corresponding to the reference
parameters (from uniaxial dogbone tests) and the map corre-
sponding to the identified parameters. This procedure helps
quantify the identification error in a more meaningful way in
comparison to standard one-by-one parameter comparison.

4.2.1 Identification of Hill48 with SBVF's

The first set of parameters was identified using specimens
cut at 45° to RD. In total, four different samples were tested
and processed and the details regarding time steps included
in the identifications are presented in Table A.1. The identi-
fied parameters were used to compute the mean error based
on the apparent yield stress metric. A typical map corre-
sponding to DN-45-3 is shown in Fig. 15. The dashed cut
(Fig. 15(b)) shows how well the yield stress was reconstructed

at equivalent plastic strain of 0.002, and the solid cut shows
the hardening behaviour along the orientation of 45°. Note
that although the maximal strain used in the identification
was 10%, the corresponding value in the middle of the ROI
did not exceed 6%, explaining poorer identification of the
hardening law at larger strains. The identified parameters
and the corresponding mean error values for all samples are
shown in Table 7, and graphically in terms of the apparent
yield stress and predicted Lankford coefficients in Fig. 16.
Figure 16 offers an interesting insight into the relevance
of Hill48 model for the tested material. From the four speci-
mens tested, two produced a shallow variation of yield stress
with orientation, corresponding to matching model to yield
stresses, and the other two produced pronounced curves cor-
responding to the matching based on Lankford coefficients.
This indicates that the model is struggling to describe the
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Table 7 Identified parameters using DN test for Hill48 model.

Specimen o7 [MPa] 02 [MPa] o033 [MPa] o0 [MPa] K [MPa] n[-] 70 790 r45 Mean error [%]
DN-45-1 137.8 147.0 163.3 96.2 272.4 0316 140 198 094 8.6
DN-45-2 141.5 147.5 160.5 95.3 357.1 0366 133 1.64 0092 4.9
DN-45-3 152.2 148.8 158.9 88.4 342.7 0.305 130 1.17 1.12 3.0
DN-45-4 147.1 143.3 151.4 84.0 345.5 0.278 1.25 1.11 1.12 2.7

Reference 147.0 149.1 180.6 84.4 298 0.260 190 2.05 135 0.0

Fig. 14 A deformed DN specimen. The white base paint has debonded
over the area of strain localization.

data and indeed there is no unique solution to the match-
ing problem because of over-constraining of the model. In
all cases it is seen that the Lankford coefficients are signif-
icantly underestimated. The vertical position of the recon-
structed Lankford curves is driven by G3y3 which also con-
trols how far the biaxial part of the yield surface extends. As
in the DN tests much richer information is available in com-
parison the the homogeneous counterparts, the limitations of
the model become much clearer. Because of the interactions
between the yield surface, the flow potential and the biaxial
yield stress, it is impossible to match all the data at the same
time with Hill48. This signifies that more advanced constitu-
tive models are required to accurately describe the material
under investigation.

4.2.2 Identification of Hill48 with UDVF's

An alternative to the SBVFs are the user-defined VFs. A set
of viable virtual fields for Hill48 and the geometry used in
this test has been presented in [16] based on a trial-and-error
method and expertise of the lead author. These fields are:

(26)

W H @7)
;(2) -0
u;@) = %sin (n%) cos (n%) o8

ul® = l sin (Ei> cos (n’L)

’ T w 2H
The virtual displacements were defined in the coordinate
system presented in Fig. 18 and were constructed in a way
to include all stress components in the cost function.

The same data as used in Sect. 4.2.1 was fed to the VFM
algorithm, however now the UDVFs were used instead. The
identified parameters were used to reconstruct variation of
the yield stress and Lankford coefficient with orientation as
shown in Fig. 19.

It is apparent from the figure that the UDVFs were not
as successful at characterising Hill48 model as SBVFs were.
The yield stress was accurately predicted at about 45° which
corresponds to the orientation of the test specimen, however
large errors were noted elsewhere. By using the same met-
ric as before, the global error was calculated and was found
to be approximately 20% for all specimens apart from the
specimen 1. Judging based on the Lankford coefficients it is
clear that the reconstructed parameters are not physical as
they lead to a non-continuous distribution.

The first virtual field (Eq. 26) represents a uniform ex-
tension, which leads to a direct comparison between the mea-
sured force and the force reconstructed from the stress field.
In the case of anisotropic properties this integral quantity
is not sufficient to describe the model, as Fig. 19(c) demon-
strates; regardless of a very good matching between the forces,
the behaviour of the material is correctly identified only around
the orientation of 45°.

Although other virtual fields have been included in the
cost function, they were formulated in a way not to include
the work of external forces. As a result, the residuals cor-
responding to those fields are much smaller than the one of
the first field and they are not very effective at including
the other two stress components in the cost function. These
results highlight the problem of manually defining virtual
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Fig. 15 Difference between parameters identified in a single DN test compared to the reference data from 3 DB tests. (a) the error map, (b)
variation of yield stress with orientation at 0 plastic strain, (c) variation of yield stress at 45° with plastic strain.
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Fig. 16 Reconstructed apparent yield stresses and Lankford coefficients using Hill48 and parameters identified with the DN tests performed at

45°.
200
= 150
oM
=)
& 100
50
0 £
0 50 100 150 200
011 [MP&]

Fig. 17 Identified Hill48 yield surface for specimen DN-45-3 marked
with all stress states for which yielding occurred (0 < &7 < 1 x 1075).
The yield surface was drawn at ” = 1 x 10> and the contours repre-
sent increase of shear stress by 0.1 61y2.
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Fig. 18 The coordinate system used to define virtual fields manually
within the region of interest.

fields, as they need to be hand tailored to every application
with a great care and expertise in order to be functional.
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Fig. 19 Identification of Hill48 model using a single DN test at 45° and UDVFs. (a) reconstructed yield stress variation with orientation; (b)
reconstructed variation of Lankford coefficient with orientation; (c) reconstructed loading force from stresses for specimen 3.

4.2.3 The influence of data amounts on Hill48 parameters

In order to investigate whether the results depend on how
much data is supplied to the identification, a study was per-
formed where increasingly more time steps were fed to the
cost function. As a baseline specimen DN-45-4 was chosen,
which in the original study contained the maximal strain of
10.5%.

Here, for each consecutive identification, additional two
time steps were added equal to approximately addition of
1.4% strain, up to the total of 20.3% strain in the horizontal
direction, as indicated in Fig. 20. In principle, as the larger
deformation is supplied to the identification, more emphasis
should be put on the model to match Lankford coefficients
more accurately. However, the incremental stress sensitivi-
ties related to yielding tend to filter out time steps at which
majority of deformation happens. To address that, two stud-
ies were run: one in which incremental stress sensitivities
were used as a base for generating SBVFs, and another one
where total stress sensitivities (Eq. 18) were used instead.
The findings of this study are presented in Figs. 21 and 22
for incremental and total stress sensitivities respectively and
the mean error as a function of maximal strain supplied is
presented in Fig. 23.

Surprisingly, the results obtained using the total (as op-
posed to incremental) stress sensitivities are much more con-
sistent and stable with respect to the total number of time
steps used. Additionally, the mean error is lower than the
one corresponding to the incremental stress sensitivities. Al-
though the identification was improved when the SBVFs
were calculated with total stress sensitivities, no improve-
ment in reconstruction of Lankford coefficients was found,
despite supplying total strain as large as 20%.

A possible explanation for the under-performance of the
SBVFs based on incremental stress sensitivities is due to
filtering out large amounts of data from the cost function
by the fields. As mentioned in Sect. 2.4, the incremental
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Fig. 20 Force versus the displacement of the bottom of the ROI for
DN-45-3. Markers indicate data points included in the identification.

form of stress sensitivities was introduced to filter out his-
tory dependence of plasticity models and highlight transi-
tion zones between elasticity and plasticity. As a result, as
soon as majority of the ROI undergoes yielding a very little
region remains highlighted and not much data is contributed
to the cost function. This might have a detrimental effect
in anisotropic plasticity, particularly when associated-flow
models are used, as the information about the anisotropy
can be queried at different levels of plastic work, not only
during initial yielding, but also during accumulation of de-
formation.

4.2.4 Identification of Yld2000-2D with SBVF's

Y1d2000-2D model was identified using data from 3 exper-
iments (DN-30-2, DN-45-3, DN-60-2) at the same time to
maximise the range of stress states represented in the cost
function. To simplify the problem, the reference flow curve
(Eq. 25) was used, instead of identifying it together with
the anisotropic coefficients. The total stress sensitivity fields
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Fig. 21 Reconstructed apparent yield stresses and Lankford coefficients using Hill48 and parameters identified with the DN tests performed along

45° using incremental stress sensitivities to generate SBVFs.
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(b) Lankford coefficient reconstructed using identified data with
DN tests along 45° using total stress sensitivities and various lev-
els of maximal strain.

Fig. 22 Reconstructed apparent yield stresses and Lankford coefficients using Hill48 and parameters identified with the DN tests performed along

45° using stress sensitivities to generate SBVFs.

were used to generate SBVFs as there was no need to decou-
ple yield and hardening related parameters. The cost func-
tion was minimised using the fmincon function in Matlab
with the SQP algorithm. An additional constraint was added
to the minimisation problem to ensure that the flow curve
represents the behaviour of the material along RD [11]:

4(X5 — Og 6
3

203 — 20
3

=2

‘2a1+a2 6 (29)

6
3 |

Three starting points were selected using a random number
generator and two of them converged to the same solution,
shown in Table 8, and in terms of the yield surface in Fig. 24.

The identified yield surface shows a good agreement with
the reference one in the regions where data were present,
however deviates significantly near the biaxial stress state.
In the region covered with data points, the difference be-
tween the two surfaces is less than 5% in terms of the shear
stress. The poor description around the biaxial stress state
indicates that the tests are not sufficiently heterogeneous for
how flexible the Y1d2000-2D function is, i.e. the data used
in the identification is not diverse enough to constrain the
shape of the yield surface over the all possible loading states.
A similar observation was recently reported in [54], where
authors demonstrated that their model was matched very
well in the domain represented in the tests, however it did
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Fig. 23 Variation of mean error for Hill48 model identified using DN-45-4 specimen and SBVFs.

Table 8 Anisotropic parameters for Y1d2000-2D identified with DN tests.

Test ol-] o] oa[]
DN-30-2+
DN-45-3+

DN-60-2

1.193  0.882  0.694

os[-] o] o] og[-]

0940 1266 1.012 0.846

DN-30-2+

DN-45-3+

DN-60-2 +
Bulge

1.097 0.967 0.781

0.894

0918 0.893 0978 0.967

Reference 1.061 0994 0.663

0.879

0.899 0.740 0964 1.092

100 =~Outlinies at "\
o12 = 0.9507,!
Identified surface !
— — —Reference surface
A DN-30-2 data

« DNd5-3data 409 950 200 250 300 350
o DN-60-2 data
o1 [MPa)

Fig. 24 Comparison of the identified Y1d2000-2D yield surface and
the references one (corresponding to 10 MPa of plastic work). The
yield surface and the experimental data points were plotted for equiva-
lent plastic strain of 3% to represent only the load-paths achieving sig-
nificant plastic strains. The outlines are drawn for change in the shear
stress corresponding to 5% of the yield stress under pure shear.

not provide good predictions outside of it. They suggested
that adding an additional information to the cost function
(in their case a test at different load rate) could significantly
improve predictions over wider domain and relieve the issue
of non-uniqueness of the material parameters.

To confirm this hypothesis another identification has been
carried out, using exactly the same test configuration as above,
however adding additional constraints to the optimisation
problem. The optimisation function was constrained such
that the identified yield surface passed through o, and ry,
measured in the bulge test. Again three starting points were
used, two of which converged to the same solution. The
identified yield surface, apparent yield stress and Lankford
coefficients are presented in Fig. 25. The identified model
matches the reference well in terms of the yield surface and
the Lankford coefficients, confirming that the three deep-
notched tests did not represent enough data to identify Y1d2000-
2D. Once the additional constraints were added to the opti-
misation the SBVFs did a good job at identifying the correct
parameters.

To have further insight into the completeness of the test,
the number of DN tests has been gradually reduced, first to
two tests (30° + 60°) and then to a single test (45°), both
of which included information from the bulge test. The pa-
rameters were identified with these reduced tests using the
same methodology as described before. To quantify the ac-
curacy of identifications 3D yield surfaces were compared;
each surface was reconstructed in the spherical coordinate
system consisting of three variables: the azimuth angle, f3,
in 011-02; plane, the elevation angle, y, above the plane,
and the radius length d. For every combination of the two
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Fig. 25 Comparison of the identified Y1d2000-2D yield surface and the references one (corresponding to 10 MPa of plastic work). The yield
surface was identified using three deep-notched tests and the data from the bulge test.

angles, the distance from the origin to the yield surface was
calculated and compared between the reference and iden-
tified sets of parameters. The error has been defined as a
relative difference between the two distances:

dref(ﬁ’ v, Xref) B did(ﬁv vaid)
dref(ﬁ7 W?xre‘f)

The error is convenient for comparing 3D yield surfaces as it
offers one-to-one correspondence between the models. The
error maps associated with the three test combinations are
presented in Fig. 26. From the figure, it is clear that the
more tests were included in the identification, the smaller
the difference between the reference and identified models.
Particularly, the errors were pronounced in regions not rep-
resented in tests, e.g. between the uniaxial test along 45° and
the equibiaxial region. When two or three tests were used,
some error was also found close to the uniaxial tension at
90°. This however, could be explained by the fact that the
reference set of parameters was generated with the average
flow stress ratios; in reality, the reference yield surface rep-
resents material behaviour approximately over a large range
of plastic work, whereas DN tests contain information corre-
sponding mostly to the low plastic work at which the ratios
vary considerably (Fig. 10). In the case of the single test, the
error in this region is much larger, suggesting that the test is
not sufficient to characterise all possible orientation angles
of the material.

The results suggest that the DN tests alone are not rich
enough to fully identify Y1d2000-2D model. A possible so-
lution to that problem is development of another test, that
inspects the yield surface under a completely different com-
bination of stress states and combining them together to en-
rich the cost function. A good candidate would be a modified
biaxial tension test, such as the one presented in [55]. In this
test, most of the load-paths are located near the bi-axial tip
of the yield surface complementing the distribution obtained
in the DN tests.

Terr(B, ‘vaid) = (30)

Full-field measurements give an insight into a large range
of load paths to which the model is calibrated to. These iden-
tified parameters represent a more complete response of the
material, compared to the parameters derived from three uni-
axial tests and a biaxial one. Further work needs to be done
to establish which of the two sets of parameters is better.
The validation procedure could be performed by modelling
an independent test using the two models, and comparing
the predictions with measurements. This is an exciting op-
portunity for future studies.

5 Conclusions

In this work we have tested a sheet of DC04 steel alloy us-
ing the standard testing protocol and experiments on deep-
notched specimens to identify two constitutive models: Hill48
and Y1d2000-2D. The virtual fields method, combined with
the sensitivity-based virtual fields, has been employed to ex-
tract constitutive parameters from full-field measurements.
The main outcomes of this study can be summarized as fol-
lows:

— The results presented in this contribution suggest that the
sensitivity-based virtual fields are effective at extracting
information about material parameters regardless of the
complexity of the model.

When the heterogeneous tests were used to identify Hill48,
the material parameters converged either to a solution
based on Lankford coefficients, or the one based on the
yield stresses, but the absolute value of the Lankford co-
efficients was always underestimated. We suggest that
the underlying mechanism lies in the over-constraining
of the model, and that the biaxial behaviour influences
the identified Lankford coefficients. Overall, the three
standard tests were successfully replaced with one deep-
notched test performed at 45°

User-defined virtual fields, selected based on the recom-
mendations of [16], were used as an alternative to the
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Fig. 26 Error maps for combinations of DN tests used to identify Y1d2000-2D. The increasing number of tests included in identification decreases
the overall error.

SBVFs. It was found that the identified parameters were  tion of the sample geometry still remains an open problem,
less accurate compared to ones obtained with the SB-  and the results could certainly be improved further if the test
VFs. The behaviour of the material was only matched  was richer in terms of load paths.

along the orientation of the test used for characterisation

(45°) and overall, much larger global errors were noted.

— For Hill48 using total, as opposed to the incremental, 6 Acknowledgements
stress sensitivity fields to generate SBVFS, improved con-
sistency of the identification. This is most likely due to
incremental stress sensitivity fields filtering out the ma-
jority of the supplied data, especially once the entire ROI
has yielded. On the contrary, when the total stress sensi-
tivity fields are used, time steps with larger plastic defor-
mation have more impact on the cost function and iden-
tification.

— The number of load levels included in the identification
did not significantly influence the values of identified
material parameters for Hill48

— Deep-notched tests were not rich enough to identify Y1d2000-
2D over all possible loading states. It was found that the
identified and the reference yield surfaces matched well,
but only in the regions represented in the test. When data
from the bulge test was used to constrain the cost func-
tion, the identified model matched the reference very
well over the entire stress space.

— It was found that commonly used Levenberg-Marquardt
algorithm was not capable of finding the global mini-
mum of the cost function. The sequential quadratic pro-
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enough to converge to the global minimum from a num-
ber of independent starting points.
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The repository contains raw images of deep-notch tests and

the VFM program (implemented in Matlab) used for identi-

fication of material properties.

The authors believe that the sensitivity-based virtual fields
provide a significant step forward to calibrate non-linear mod-
els with the VFM, but there are still some problems worth
investigating. In particular, there are no guidelines on the
selection of how much data should be used in identification
(e.g. maximum strain, magnitude of strain increments). This
should be studied rigorously, particularly employing the pro-
cedure of image deformation to account for the DIC param-
eters involved in the data processing [56]. Finally, the selec-
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A Appendix

This appendix contains detailed information about the data used in this
report. Table A.1 shows which images (available from the online repos-
itory) were used in the identifications carried out. Image offset is the
number of the first image correlated in the DIC software; load steps
taken indicate numbers of correlated images included in the identifica-
tions (notation used here is consistent with the Matlab notation).
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Table A.1 Detailed information about images used to define data sets for each individual test.

Specimen  Image offset Load steps taken Max strain [%]  Image capture rate [Hz]
DN-45-1 20 [30:5:100, 110:10:340] 10.2 1
DN-45-2 20 [30:5:240] 10.0 0.5
DN-45-3 21 [90:10:200, 220:20:360, 370:10:530] 10.3 1
DN-45-4 15 [100:10:490, 495:5:505] 10.5 1
DN-30-1 20 [40:10:160, 190:30:370, 380:10:480, 485] 9.9 1
DN-30-2 17 [80:10:180, 200:30:400, 390:10:500] 10.6 1
DN-30-3 11 [80:10:180, 200:20:360, 365:5:450, 455:10:495] 10.3 1
DN-60-1 21 [60:10:160, 190:30:460, 470:10:570] 10.8 1
DN-60-2 12 [80:10:180, 200:30:400, 390:10:500] 10.1 1
DN-60-3 11 [80:10:180, 200:20:360, 365:5:450, 455:10:505] 10.5 1




Chapter 6

Conclusions and future work

6.1 Conclusions

In this work, a new type of virtual fields, called sensitivity-based virtual fields, was
proposed. They were formulated upon the idea of constructing a separate virtual
field for each material parameter sought. That way, each field could be specialized
in extracting information about the corresponding parameter, leading to a more
robust identification overall. The fields are constructed based on the sensitivity of
the reconstructed stress field to each of the constitutive parameters. The method
is set within a general framework, allowing for any geometry, loading and material
model, making it applicable to many experimental set-ups. Importantly, it over-
comes some of the limitations of currently popular user-defined virtual fields, which
lack generality and require significant input from the user (see Section 2.3).

The first part of the project was to establish a complete methodology for gen-
eration and use of the SBVFs. In [12] we demonstrated the basic principles behind
SBVF's and tested their performance in the case of small-deformation isotropic plas-
ticity. We studied the impact of the user inputs (virtual mesh size, value of material
parameters variation and scaling) on the accuracy, and compared the fields against
other two types that were previously used for the non-linear VFM, namely UDVFs
and stiffness-based virtual fields. We found that the SBVFs were reliable and iden-
tified material properties with very good accuracy. In particular, when non-linear
hardening was considered, they outperformed uniform UDVFs, and were far superior
when high levels of noise were considered.

The method was later extended to the large-deformation framework and applied
in the context of anisotropic plasticity [13]. This application was motivated by the
fact that most commonly used anisotropic models require many tests for complete
characterisation (e.g. seven uniaxial and a biaxial one for Y1d2004-18 [79]), which
could significantly be reduced by means of heterogeneous tests. The SBVF's were
extended to account for both anisotropy and large deformation, and were tested
using numerically simulated data with Hill48 and Y1d2000-2D models. It was found
that one test was sufficient to replace the standard protocol involving three uniaxial
tests in the case of Hill48. Additionally, it was demonstrated that when noiseless
data was used, Y1d2000-2D could be characterised with a single test when SBVFs
were used. This was not possible to achieve with UDVFs; illustrating the power the
new method.

Finally, the method was validated experimentally on a cold-rolled sheet of DC04
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steel alloy (Chapter 5). First, the material was tested using the standard charac-
terisation protocol to obtain reference parameters, then deep-notched tests were
performed along various orientations using digital image correlation. It was demon-
strated that the SBVFs performed well in the identification of material anisotropy
both in the case of Hill48 and Y1d2000-2D. As expected, a significant model error
was evidenced when Hill48 was employed, confirming the need for advanced con-
stitutive models. These models on the other hand are often impractical as they
require many material tests for characterisation. Full-field experiments can signifi-
cantly improve this process in the future, by providing tests rich in data capable of
characterising materials with less experimental effort. In particular, we showed that
a single deep-notched test is sufficient to identify Hill48 model. It was also found
that Y1d2000-2D was matched well in the regions were data were available, however
it was not enough to match it across the entire stress space due to the flexibility of
the model. When biaxial data from the bulge test were added as constraints to the
optimisation problem, the reference yield surface was recovered from the full-field
measurements.

Although the SBVFs were developed and tested using metal plasticity, they
are general and can be applied to any material model, test geometry and loading,
making them extremely flexible. This has been demonstrated by using them with
the direct inertial impact test, to identify rate-dependent properties of steel and
aluminium alloys [80]. In this test, acceleration fields, measured with a ultra-high
speed camera, take up the role of a load cell. It was demonstrated that the SBVFs
performed very well, with the parameters identified from the dynamic test matching
the quasi-static reference parameters for the rate-independent aluminium. On the
other hand, a significant increase in yield stress and hardening modulus was found
for the rate dependent 316L steel.

The potential of the SBVF's has already been recognised as they have been im-
plemented in the commercial DIC/VFM platform MatchID ( [25], version 2018.1.1).
They were validated against UDVF's using independently generated data by means
of the image deformation procedure. They were shown to outperform UDVFs in the
case of isotropic plasticity and hyperelasticity [81].

6.2 Future work

The proposed method is very general and provides significant opportunities for fu-
ture applications. This section attempts at highlighting a few of the major ones.

6.2.1 Effects of the amounts of data on the identification

Full-field measurements offer significant volumes of experimental data. During an
experiment, cameras can be triggered with chosen frequency, often leading to thou-
sands of images, which cannot all be included in the identification due to limited
computational capacities of computers. At the moment, there are no guidelines on
how many load/image steps should be included in the identification, and how av-
erage strain increment affects the results (in the case of metal plasticity). Often,
authors do not even report how many images were used in the identification and thus
it is difficult to objectively select the number of images for identification in a ratio-
nal way. It would be interesting to investigate how strain increment magnitude, and
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maximum strain fed to the identification algorithm affect the overall outcome. One
of the objectives would be to investigate the impact of these variables on yield and
hardening-related parameters separately. This could be achieved by means of the
image deformation technique. However, simply relying on perfect data (numerically
generated) might not be sufficient as real materials also suffer from model errors,
thus it is recommended to include some experimental data as well. The information
propagates between images through temporal smoothing, thus the effects of spatial
and temporal filters should also be included in the study.

6.2.2 Design of a better heterogeneous test for anisotropic
plasticity

One of the most promising routes for future research concerns the design of a better
test for the identification of the Y1d2000-2D model. In particular, it is believed that
one of the issues right now is the lack of data points near the biaxial stress state.
This is especially true when the effects of distortional hardening are to be included,
as the shape of the yield surface changes considerably during biaxial hardening.
Currently, systematic methods for designing heterogeneous tests are scarce [82-84].
The standard practice is to modify a tensile/biaxial test by means of introducing
notches or holes that will produce heterogeneity. One of the possible ways of tack-
ling the problem is to use optimisation algorithms to produce a test that maximizes
certain heterogeneity criterion. The geometry could be defined by a number of holes,
notches or curves and improved systematically to produces the desired data, relevant
to the model. Apart from relying simply on maximisation of a heterogeneity crite-
rion, an additional criterion could be added, based on the systematic and random
errors associated with the identified parameters from the test.

Conversely, another approach could be tried, where the desired stress hetero-
geneity /distribution is assumed a priori and then the geometry and loading of the
mechanical test is reconstructed backwards from that by means of machine learning
algorithms such as neural networks. This approach, if possible, would enable to
design completely new tests, with information far superior compared to modified
homogeneous tests, that usually suffer from e.g. monotonic strain paths. Addition-
ally, this approach is most likely to transcend traditional expertise of mechanical
engineers and would promote collaboration with computer scientists.

It would be interesting to investigate whether the SBVFs could be directly
used to estimate the suitability of a test for a given constitutive model. This could
be achieved by looking at the magnitude of the generated virtual fields (or simply
stress sensitivities) for each material parameter. Theoretically, if the model contains
information about a parameter, the stress sensitivity field should highlight this infor-
mation. By establishing some guidelines on the absolute values of stress sensitivities
it should be possible to rank the ‘completeness’ of a test, providing good feedback
about its applicability.

One of the main challenges in developing new tests is ensuring that the idealised
test could be practically reproduced using laboratory equipment. In particular, full-
field measurements are limited by spatial resolution of the cameras and as such the
measured stress/strain heterogeneity is dependent on the DIC set-up. The effect of
cameras and DIC procedure on measured errors could be quantified with the image
deformation technique. Additionally, materials are usually tested using a standard
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test machines and therefore the loading can be imposed only with a limited number
of actuators (one in the case of uniaxial, and two in the case of biaxial machines).
At this stage, the most plausible approach is to develop an idealised experiment
numerically and adapt it to practicalities using engineering judgement. However,
it is possible that in the future the numerical procedures will be advanced enough
to account for those limitations during the design procedure, e.g. by means of
developing additional test fixtures in order to achieve a complex loading.

6.2.3 Application to other constitutive models

The proposed method is very general and can be applied to any constitutive model.
One of the main challenges of identifying advanced constitutive models is to ensure
that the tests contain enough information to identify all of the sought parameters.
The aim of this section is to provide some prospects and challenges in some of the
most popular classes of models.

6.2.3.1 Anisotropic plasticity

The SBVFs were proven to be useful for anisotropic plasticity. They enabled to
characterise Hill48 criterion with just a single test instead of three standard tests
and matched Y1d2000-2D model well in the parts of yield surface where data was
available. There are however many outstanding issues. First, it would be interesting
to look into kinematic hardening using the SBVFs, as this is an important model
frequently used for simulating real structures. Secondly, it was pointed out that
sheet metals exhibit anisotropy during hardening, i.e. the shape of the yield surface
changes as the material hardens under different stress states. It would be interesting
to look if a distortional hardening model could be characterised using a full-field
experiment by means of the VFM and SBVFs.

To follow directly upon the findings of the third paper presented in this thesis,
Hill48 with a non-associative flow rule could be implemented to see if it reduces the
modelling error [85]. However, there are physical arguments against non-associative
flow rule so this should be handled with care [86]. Y1d2000-2D identification could
be improved by replacing the deep-notched test with a more complete one, such as
biaxial tension test on a modified specimen [87]. The model then could be replaced
with Y1d2004-18, which as an extension of Y1d2000-2D to 3D state of stress. This
model has the advantage of predicting the variable number of ears in a deep-drawing
test on circular blanks [79]. Since it is unlikely to identify out-of-plane shear prop-
erties from a plane stress test, it would be possible to supplement the cost function
with numerically predicted values based on crystal plasticity models [88, 89].

6.2.3.2 Strain-rate dependent plasticity

Image-based inertial impact (IBII) tests [90] can be used to investigate the properties
of materials at very high strain rates. The SBVFs have already been applied in that
context [80], however the research was only preliminary and further work is needed.
One of the main ideas that could be explored is the parametrization of the strain-
rate dependence, i.e. implementation of a hardening law dependent on strain-rate
variables, such as the Johnson-Cook model. This is particularly interesting as in
the IBII the strain-rate is not uniform during the test so it is difficult to associate
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the specimen response with any particular strain rate. By identifying a strain-rate
dependent law, the relationship would be explicit and the characterisation of the
strain-rate effects would be more accurate. The SBVF's are particularly suitable for
this task, as they are capable of generating virtual fields that are sensitive to strain-

rate related parameters, in contrast to static rigid-body virtual fields commonly used
with the IBII tests [91].

6.2.3.3 Hyperelasticty

Hyperelasticity defines a broad range of constitutive models and would be very in-
teresting to look at with the VFM. Currently, few elastomer-related models have
been identified with the VFM [31-33,92], all using relatively simple virtual fields
(UDVFs, randomly generated (piecewise heuristic [92])). The information in the
test evolves with loading thus the intuition-based UDVFs that do not evolve during
experiment may impose serious limitations on the effectiveness of the identification
procedure. The SBVFs offer a natural succession to the UDVFs as they are indepen-
dent from the user inputs. It can be expected that hyperelasticity will pose different
challenges to the SBVFs compared to metal plasticity, however the concept should
still be sound.
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