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UNIVERSITY OF SOUTHAMPTON
ABSTRACT

FACULTY OF ENGINEERING AND PHYSICAL SCIENCE
DEPARTMENT OF ELECTRONICS AND COMPUTER SCIENCE

Doctor of Philosophy

by Xin Du

This dissertation is on the analysis and applications of a constructive architecture for
training Deep Neural Networks, which are usually trained by End-to-End gradient prop-
agation with fixed depths. End-to-End training of Deep Neural Networks has proven
to offer impressive performances in a number of applications such as computer vision,
machine translation and in playing complex games such as GO. Cascade Learning, the ap-
proach of interest here, trains networks in a layer-wise fashion and has been demonstrated
to achieve satisfactory performance in large scale tasks such as the popular ImageNet
benchmark dataset, at substantially reduced computing and memory requirements. Here
we focus on the nature of features extracted from Cascade Learning. By attempting to
explain the process of learning using Tishby et al.s’ Information Bottleneck theory, we
derive an empirical rule (Information Transition Ratio) to automatically determine a
satisfactory depth for Deep Neural Networks. We suggest that Cascade Learning packs
information in a hierarchical manner, with coarse features in early layers and more task-
specific features in later layers. This is verified by considering Transfer Learning whereby
features learned from a data-rich source domain assist in learning a data-sparse target
domain. Using a wide range of inference problems in medical imaging, human activity
recognition and inference from single cell gene expression between mice and humans, we
demonstrate that Transfer Learning from a cascade trained model outperforms results
noted by previous authors. An exception to this is the single cell gene expression problem

where a single hidden layer network happens to be an adequate solution.
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Chapter 1

Context and Contributions

In recent years, several challenging problems in Artificial Intelligence (AI) such as com-
puter vision (Russakovsky et al., 2015), speech recognition (Dahl et al., 2013) and playing
complex games such as Go (Silver et al., 2016) have been addressed using Deep Neural
Networks (DNNs), achieving significant increases in performance (Chung et al., 2014;
Zhang et al., 2002). DNNs are neural architectures with large number of parameters or-
ganised in layers. They are trained using huge datasets, consuming substantial comput-
ing resources. In addition to the computing demand of such architectures, propagation
of gradients through deep layers comes with a well-known problem known as vanishing
gradients (Hochreiter, 1998): i.e., gradients obtained by multiplying small numbers be-
come so small in magnitudes that weights in early layers of a network do not change
significantly. Techniques such as the use of Rectified Linear Unit (ReLU) and resid-
ual connections are used to circumvent this issue. Further, reducing the complexity of
models is of interest, not only from the point of view of computation, but also as a
way of inducing better generalisation (Burnham and Anderson, 2004; Rissanen, 1978).
The architecture of a network, too, is usually set in an ad hoc manner and adaptively

determining it to suit the complexity in data has also attracted attention in the literature.

Taken together, the above observations have motivated the Cascade Learning (CL) archi-
tecture introduced by Marquez et al. (2018), with its inspiration coming from Fahlman
and Lebiere’s work on Cascade Correlation. This work, Deep CL, forms the context of

the research pursued in this dissertation.

We carry out an analysis of learning in the cascade architecture using recently introduced
framework of Information Bottleneck (IB) (Shwartz-Ziv and Tishby, 2017; Tishby and
Zaslavsky, 2015), which uses the Mutual Information (MI) between the pairs input-
representation and representation-target to define an information plane. Learning is
analysed by considering the dynamics on this plane. We compare cascade and End-
to-End (E2E) learning on this plane using a set of specifically constructed synthetic

and several real-word classification problems. The insights drawn from this leads to the

1



2 Chapter 1 Context and Contributions

definition of an Information Transition Ratio (ITR) which is shown to be a useful quantity

in automatically setting the number of layers required to achieve adequate generalisation.

We consider applications of CL in several Transfer Learning (TL) problems where features
learned from a source domain with large amounts of data could be transferred to a related
target domain in which the availability of data is low. We suggest that a property of
cascade training is to pack coarse or generic features into early layers and problem-
specific detailed features into later ones. This means early layers of cascade-trained
models provide good source features to transfer to a target problem. We study problems
in a number of diverse tasks: medical image classification, Human Activity Recognition

(HAR) and gene expression analysis to confirm this claim.

1.1 Contributions

The main contributions of this work are listed as follows.

e Cascade Learning Dynamics on the Information Plane
We compare the learning dynamics of E2E and cascade trained models on the
information plane, illustrating on a range of problems that the central claim in
Shwartz-Ziv and Tishby’s claim associating Deep Learning (DL) performance to
information compression does not hold. Cascade trained models that do not show
such compression also achieve comparable generalisation. As part of this analysis,
we also propose an ad hoc rule that is helpful in setting the depth of a neural
network, the ITR. Using a range of synthetic and real world problems, we show

this ratio to be a useful heuristic.

e Knowledge Transfer Across Species
We show the use of TL on an interesting biological problem of making inferences
from Single Cell (SC) gene expression data across different species: mice and hu-
mans. We show that computational models learned on data from mice can be
usefully transferred to classifying human tissues with only a small amount of hu-
man data. Somewhat disappointingly, this problem, posed in very high dimensions,
is solvable with a single hidden layer neural network and was not a good candi-
date to illustrate methods meant for deep networks (heuristic for network depth

selection).

e Transfer Learning from Cascade Learning
We show that TL from cascade trained models performs better than from E2E
trained models, either in terms of accuracies or in terms of computational cost.
This is demonstrated on several computer vision problems taken from natural and
medical images, and on human activity recognition problems. Our central ar-

gument is that while E2E training often involves arbitrarily set DNNs, CL only



Chapter 1 Context and Contributions 3

requires a few layers to be trained. We further suggest that TL performance is due
to the way CL packs information into layers, coarse first and finer problem-specific
in later layers. In the literature, such an observation about early layers offering
better transferable features is made with E2E trained models as well. However,
this is only by chance that happens during gradient descent training whereas CL

achieves it by design.

1.2 Structure of Thesis

This thesis is structured as follows:

Chapter Two reviews literature relevant to this study. It covers some early attempts at
constructive neural network architectures and focuses on Fahlman and Lebiere’s Cascade

Correlation algorithm which motivated Deep CL of Marquez et al. and followed up here.

Chapter Three presents the comparison between CL and E2E learning from the per-
spective of IB theory. We explore the differences by validations on synthetic datasets,
small benchmark datasets and larger computer vision datasets such as CIFAR 10 and
ImageNet. We further propose I'TR as a criterion used to determine the structure of

cascade networks.

Chapter Four presents work carried out on SC gene expression data for knowledge transfer
across species, showing that models trained with data from mice (a model organism on
which experiments may be performed) can be transferred to making inferences about
human biology (where performing experiments is limited) with only small amounts of

human data.

In Chapter Five, we consider TL for HAR problems. The empirical work here offers
indirect support for our view that CL packs coarse information in its early layers and finer
task-specific information in later ones. The work achieves state-of-the-art performance
on benchmark datasets, with considerably lower computational cost at a fraction of free

parameters.

Chapter Six presents work on TL across natural and medical image data. Our observa-
tions made in Chapter Five using the HAR problem extend to these domains too. On
the CheXpert benchmark in particular, we find small cascade trained models outperform
TL from far more sophisticated models (ResNet) considered by previous researchers.
The same result is demonstrated on a substantive Covid-19 diagnosis problem (BIMCV
dataset). We use variants of cascade training formulation to train the source models and
three different methods of analysing the way the models considered differ in the way they

make classification decisions.

Chapter Seven summarises the findings of questions explored in this thesis. We finally



Chapter 1 Context and Contributions

discuss future work regarding further improvements of Semantic Cascade Learning (SCL)

and CL, as well as potential scalability of Transfer Learning from Cascade Learning
(TCL) to other applications.

Some derivations related to the IB theory and the Singular Vector Canonical Correlation

Analysis (SVCCA) and additional experiments details are included in the appendix.

1.3 Publications

e Journal articles

a)

Published paper at Nature Communications Biology.

Patrick S. Stumpf, Xin Du, Haruka Imanishi, Yuya Kunisaki, Yuichiro Semba,
Timothy Noble, Rosanna CG Smith et al. "Transfer learning efficiently maps
bone marrow cell types from mouse to human using single-cell RNA sequenc-

ing." Communications Biology, vol. 3, no. 1, pp. 1-11, 2020.

Published paper at Entropy.
X. Du, K. Farrahi, and M. Niranjan, "Information bottleneck theory based
exploration of cascade learning." Entropy, vol. 23, no. 10, pp. 1-16, 2021.

e Conference articles

a)

Published paper at UbiComp/ISWC 2019.

Xin Du, Katayoun Farrahi, and Mahesan Niranjan. "Transfer learning across
human activities using a cascade neural network architecture." In Proceedings
of the 23rd International Symposium on Wearable Computers, pp. 35-44.
2019.

e Presentations and abstracts

a)

Accepted poster at Artificial Intelligence and Augmented Intelligence for Auto-
mated Investigations for Scientific Discovery (AI3SD) 2019 and Quantitative
Systems Biology Workshop.

"Transfer learning across species on single cell datasets using a neural net-

work."

Accepted poster at Advanced Course on Data Science & Machine Learning
(ACDL) 2018.

"Understanding deep neural networks learning using information theory."
Accepted presentation at UK Mobile, Wearable and Ubiquitous Systems Re-
search Symposium (MobiUK) 2019.

"Cascade transfer learning on human activity recognition."
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d) Invited presentation at University of Southampton Symposium on Interdisci-
plinary Machine Learning 2019.

"Applications based on cascade learning."
e In preparation

a) A manuscript.
Xin Du, Junwen Wang, Katayoun Farrahi, and Mahesan Niranjan. "Deep

transfer cascade learning from natural to medical images."






Chapter 2

Constructive Architectures and

Transfer Learning

Deep Learning (DL) considers neural network architectures that contain many layers.
For decades, research and practice in the use of networks have been to use shallow
networks (i.e., one or two hidden layers) following the observation that a single hid-
den layer network is capable of universal approximation. Recent trends however have
been towards deep architectures, consisting of over a hundred layers, which are conve-
niently trained using automatic differentiation (Griewank, 1989), trained efficiently using
Graphics Processing Units (GPUs) on large-scale datasets (e.g., ImageNet (Deng et al.,
2009)) achieving impressive performances. However, despite such successes, many open
problems remain with respect to architecture selection, problem in which dataset sizes
are small and the need for better insights into how networks are able to show good gener-
alisation. In this chapter, starting from some early attempts at adapting neural network
architectures and focus on the literature on training neural networks in a layer-wise

fashion, the topic of interest in this dissertation.

From the time of early work by McCulloch and Pitts (1943), modelling the biological
neuron’s firing behaviour by a weighted sum of its synaptic inputs followed by a thresh-
old or saturating nonlinearity has been in use. Connecting several of these would model
a neural network. When used for a purpose of pattern recognition, this is an Artificial
Neural Networks (ANNs). In pattern recognition, it is known that for Gaussian dis-
tributed classes with equal covariance matrices, the Bayes optimal posterior is a logistic:
a weighted sum of inputs squashed by a saturating nonlinearity. This architecture can
form linear boundaries between classes. A single neuron, as discussed in detail by Min-
sky and Papert (2017), has precisely the same limitation. A combination of neurons can
deal with complex class boundaries, approximating the Bayes optimal classifier when the
class distribution are more complex than Gaussian. While the perceptron (or logistic

regression) can be easily trained, given data, a multi-layer perceptron was seen as diffi-
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cult for several decades. The invention of the back-propagation algorithm (Rumelhart
et al., 1986), essentially implementing the chain rule (Swokowski, 1979) in an elegant
computational structure, was a breakthrough. The back-propagation algorithm enables
the efficient computation of gradients of a loss function with respect to weights, not only
in the output layer connecting to the targets, but also internal hidden layers for which

no explicit target is available.

The application of the chain rule requires parts of the computed gradients to be prop-
agated backwards. During this, with the use of a saturating nonlinearity in the units,
small values get multiplied. Hence, when the architecture is deep, the gradients reaching
the early layers tends to be vanishingly small, and then the further training of neural

networks may be stopped in such End-to-End (E2E) learning mechanisms.

2.1 Adaptive Architectures

Designers of ANNs to solve any problem, usually take a fixed architecture (e.g., E2E
networks), or try several architectures and select the best by Cross Validation (CV).
There has been steady interest among researchers in adaptively selecting an architec-
ture to match the complexity of the problem. This is achieved either by dynamically
growing an existing model or by shrinking a trained architecture by pruning out neu-
rons from a trained model. An example of an architecturally dynamic network using
the method of Radial Basis Functions (RBF) is that of Platt (1991), later extended by
Kadirkamanathan and Niranjan (1993) with a function estimation perspective and its
probabilistic formulation for novelty detection by Roberts and Tarassenko (1994). The
reverse of this, i.e., that of pruning neurons in a multi-layer perceptron is discussed in
Optimal Brain Damage (LeCun et al., 1990).

Among this family of approaches, the Cascade Correlation architecture proposed by
Fahlman and Lebiere (1990) is a powerful member, which further motivates Marquez
et al. (2018) to propose Deep Cascade Learning (CL) applied to Deep Neural Networks
(DNNs) in the setting of layer-wise training.

2.1.1 Cascade Correlation

Instead of updating the weights of an entire network with fixed topology like E2E train-
ing, Fahlman and Lebiere present an algorithm termed Cascade Correlation, starting
with a small network and gradually adding new hidden units one by one to the network.
Once a new unit is added, all previous units are frozen and the network up to that point
acts as a permanent feature extractor. Cascade Correlation attempts to maximise S, the
magnitude of the correlation between the residual error signal (to be eliminated), and

the output of a new added unit. As a formulation of S shown in Equation 2.1, E, is
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the residual output error observed at unit o, and V), is the candidate unit’s value on the

training pattern p. The V and E, are averaged quantities of V and E, over all patterns.

§=> 1> (Vy = V)(E, - E) (2.1)

Fahlman and Lebiere (1990) apply Cascade Correlation to a two-spiral benchmark prob-
lem consisting of 194 continuous valued inputs with balanced binary outputs. To solve

this task, the algorithm was implemented using the following steps:

Step 1: A one-layer network is trained until the error function plateaus.
Step 2: If the performance is satisfied, stop.
Step 3: Otherwise, freeze all the existing network weights.

Step 4: Create a candidate unit and give it inputs and trainable connections from

all pre-existing units in the network.

Step 5: Maximise the correlation between created unit outputs and last measured
residual error (see Equation 2.1) by training the candidate unit! until correlation

plateaus.

Step 6: Install the above candidate unit as a new added unit in the active network

by freezing all its input weights.

Step 7: Repeat steps 3 to 6 if the stop criteria? are not reached, otherwise stop

training.

As one of the first layer-wise approaches of training neural networks, this model begins
with some inputs and one or more output units decided by tasks, but no hidden units.
If the performance of this small network is not satisfactory, new units are added in the
following steps, otherwise, stop at the first step. Once new units are added into the
network where all units are densely connected, these can be seen as appending residual
connections between previously learnt features and a newly added unit as shown in Figure
2.1.

The properties of the Cascade Correlation algorithm can be summarised as follows: (a)
The size of a network is not set a priori by an arbitrary choice. Instead, it is automat-
ically determined by the progress during training and a stopping criterion. Hence, it

is possible to combine it with CV to adaptively determine a suitable network size by

nstead of a single candidate unit, a pool of candidate units with different activation functions can
also be created and the one with best correlation score will be selected. This training process can be
performed in parallel.

2The stop criteria can be the maximum number of iterations or no improved validation error.
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FIGURE 2.1: The architecture of Cascade Correlation. Two hidden units are added to
the model where boxed connections are frozen and crossed connections are trainable.

Vertical lines sum all incoming activation, and +1 is a bias input. Figure adapted from
(Fahlman and Lebiere, 1990).

sequential construction rather than search across a range of architectures. (b) There
is a computational advantages in a limited resource setting because small models are
explored first and the network grows. Finally, (c¢) incrementally increasing the size of
the network without removing previously learned units is appealing because only new

information (not learned previously) enables network growth.

Inspired by this algorithm, Marquez et al. (2018) develop Deep CL objective to extend
advantages of Cascade Correlation to modern DL. Building on that work, this disser-
tation presents an analysis of learning dynamics during CL and considers a range of

Transfer Learning (TL) applications of it.

2.1.2 Resource-Allocating Networks

Following the Cascade Correlation algorithm, a couple of adaptive architectures are de-
veloped. A Resource-Allocating Network (RAN) is one proposed by Platt (1991) for
radial basis function models, which appends a new computational unit to fit an unusual
pattern from the data. The RAN starts with no hidden units and grows gradually when
a novel observation is presented to the network. The outputs of this network are a linear
combination of the hidden units’ responses. The network sequentially sees patterns by
storing some (forming the centres of the basis functions) and increases this only when

patterns seen after are sufficiently novel.

For example, if the model remembers K patterns currently, the novelty of a new pattern
ux+1 is measured by two conditions depending on two thresholds e (scale of resolution
in input space) and e, (achievable minimum error). For each pair of input & and
output y, the first condition is || — ug|| > €, to judge if input @ is far away from the
existing patterns. The second condition is whether the error of the network output is

greater than the error threshold, measured by e = ||y — §|| > €min. When none of the
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conditions is met, the model uses gradient descent to update ay, the weights of layer
and the stored patterns uy, without adding a new unit to the model. Otherwise, a new
unit is added to the model to correct the error. The responses of units and the output

of the model are shown in Equation 2.2 and 2.3 respectively.

By () = exp (-(712 = — uk||2> (2.2)

f@)=0an+ ) opdy(a) (2.3)

k=1
where o is the bias.

The author demonstrates that RAN is a network that can find compact representations
without laborious computations on a time series prediction task. Kadirkamanathan
and Niranjan (1993) further propose a RAN-Extended Kalman Filter (RAN-EKF) by
replacing the Least Mean Squares (LMS) filter with EKF for gradient decent. This
updating improves the compactness of the network with better performance and less

time to converge.

2.2 Layer-wise Training

Extending from constructive architectures that consider unit-wise increase, constructing
neural networks layer-wise is also considered in the literature. These include Deep Belief
Networks (DBNs), Multi-layer Perceptrons (MLPs) and neural networks with convolu-

tional layers.

2.2.1 Deep Belief Networks

As a generative graphical model, DBNs are a type of unsupervised neural networks
trained to reconstruct their inputs. DBNs can be seen as a composition of Restricted
Boltzmann Machines (RBMs) which is a generative model learning a probability distri-
bution over a set of inputs. Hinton et al. (2006) demonstrate a method with two stages
of training DBNs. In the first stage, the author used RBMs?® (Fischer and Igel, 2012)
(or autoencoders (Bengio et al., 2006)) to perform unsupervised learning for obtaining
low-level features without over-fitting. In the second stage, a supervised fine-tuning is
applied to the model to co-adapt the features to labels. For deep, densely-connected

belief networks, this algorithm trains one layer at a time and requires knowledge of the

3In RBMs, the neurons are restricted to be from a bipartite graph where a pair of nodes from two
sets of units have a symmetric connection and the nodes from the same set of units have no connection.
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structure of network prior to its execution, instead of adaptation. In the unsupervised
stage, the wake-sleep algorithm?® (Hinton et al., 1995) is used to reconstruct the training
data by generation. Namely, the objective of this stage is to minimise the differences
between training data and generated outputs. RBMs are used to generate a complemen-
tary prior to get a posterior, which is a factorial distribution. Thus, the distribution of
inputs can be approximated by the distribution of generations by taking derivatives of
the log probability of the data. For each layer, the outputs of the previous layer (being
an approximation of the inputs) will be the inputs of the next layer, with the weights
of the previous layer being frozen. This process is iterative until the desired number of
layers are reached. In the supervised stage, all pre-trained parameters are trainable to

minimise the error function of predicting targets from input data using gradient decent.

This algorithm accomplished the training of networks, without massively over-fitting,
and improved the performance of neural networks to be comparable with state-of-the-art
approaches, in the layer-wise fashion. Thereafter, Bengio et al. (2006) further propose
greedy layer-wise learning based on the work of DBNs. They demonstrated that greedy
layer-wise unsupervised learning contributed to the improvement of generalisation by
initialising weights in a region near good local minima. The authors also mentioned
greedy layer-wise supervised learning, which trains each new hidden layer in a supervised
network consisting of one hidden layer, and use trained weights of this new hidden layer
as the initialisation of this new hidden layer in the entire network. After pre-training of

all hidden layers, a fine-tuning stage will be applied to all layers for fitting targets.

However, it was illustrated that the greedy layer-wise supervised learning performed
worse than the greedy layer-wise unsupervised learning. A possible explanation is that
this procedure is too greedy by discarding some of information about targets. Differing
from their works, the CL used in our work is also a supervised layer-wise training,
but each layer is randomly initialised without the fine-tuning stage (see Section 2.3
for details). Building on RBMs and DBNs, Lee et al. (2009) propose convolutional
DBNs for visual recognition tasks (e.g., MNIST and Caltech-101) and showed competitive

performance in comparison to state-of-the-art results of the period.

2.2.2 Training MLPs Layer by Layer with Internal Representations

Apart from DBNs, layer-wise training is also appropriate for other DNNs (including
MLPs and Convolutional Neural Networks (CNNs)), keeping advantages such as sav-

4The wake-sleep algorithm is an unsupervised algorithm consisting of two training phases: wake and
sleep phases, to produce a density estimator. For a stack of layers, each pair of layers has a recognition
weight and a generative weight in this algorithm. In the wake phase, neurons are fired by recognition
connections (from inputs to outputs) while the generative connections (from outputs to inputs) are
modified to increase the probability of correct reconstruction of inputs in the layer close to inputs. In
the sleep phase, the direction is reversed so that neurons are fired by the generative connections and the
recognition connections are updated for increasing the probability of correct reconstruction in the layer
further to the inputs.
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ing computational resources, automatically adapting topology of networks and better
generalisation in some cases. Lengellé and Denoeux (1996) present that by gradually
adding neurons into the sequential layer and layer-wise training the network, which can
show improvements in terms of performance and robustness on simple tasks compared
with E2E learning. Instead of using targets, this algorithm maximises the separability of
representations in a hidden layer so that these representations can render discrimination

easier in the sequential layer.

A network starts from an input layer and a hidden layer with several units, where the
weights between the input and the hidden layer are initialised randomly (or taken as
the optimal transformation matrix from a discrimination analysis). A new randomly
initialised unit is then added to the hidden layer, of which the weights are updated
iteratively so as to increase the separability of representations. Depending on the type of
structures, this unit can only connect to the units in the previous layer or also connect
to the units in the same layer simultaneously. This hidden layer is extended by adding
units until no further improvement of separability can be gained, and then the process
can be repeated with adding a new layer and updating the weights of this new layer.
The authors suggest that for tasks requiring a large network, adding layers rather than

the units in a layer may be preferable to reducing computational complexity.

2.2.3 Adaptive Structural Learning

Cortes et al. (2017) extend adaptive learning to append sub-networks (not only units)
by proposing Adaptive Structural Learning (AdaNet). In this work, the network starts
from several candidate sub-networks (can be multi-layer) trained by Stochastic Gradient
Decent (SGD), and then selects the candidate structure with the smallest prediction
errors to be appended into the network, discarding others. This process continues in
iterations until no candidate structure contributes to decreasing the error. In each sub-
network, the units across layers (not only within the same layer) can be connected. By
training the model on a 2-class version of CIFAR 10 (Krizhevsky et al., 2010), a computer
vision dataset, the authors present a better performance and less computational demands

than methods using grid search, without needing to find a suitable topology of networks.

2.2.4 Layer-wise Training Using Kernel Similarity

As is widely admitted in the community, DNNs can construct compact and precise la-
tent representations of data with improved performance. Kulkarni and Karande (2017)
propose using layer-wise training of DNNs to build up better representations in a hi-
erarchical way for classification tasks. The algorithm maximises the distance between
features of different classes and minimises the feature distance within the same class via

a Gaussian kernel. For each layer, the input of the current layer are the learned features
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of the previous layer. The features are normalised to have a zero mean and a L2 regular-
isation term is added during optimisation (see Algorithm 1 for details). On both MNIST
and CIFAR 10 tasks, this algorithm showed comparable performance to traditional E2E
training of DNNs. Moreover, on fewer data, this layer-wise learning shows significant
performance improvements compared with traditional E2E training. The authors also
demonstrate that early layers from this algorithm provided richer features than the layer

from a same position of E2E networks by visualising filters from each layer.

Algorithm 1 Training procedure for the ky, layer of a MLP given previously trained
(k-1) layers (adapted from (Kulkarni and Karande, 2017))
1: Variables:

2: Wi: Weights of the kyp, layer
3: Dy._1: Inputs of the k;p, layer
4: Xk: Outputs of the k¢ layer (feature representations of data, € X)
5: 1;&1;: The labels of the i and jp training points from n points
1 ifl; =1;
6 T(i,5) = t 7. A target kernel function
0 otherwise
7 w: Learning rate, A\: A parameter controls the importance of the regularisation
8: Procedure Training the ky;, layer
9: W}, < Random initialisation
10: Until convergence:
11: Xk:Tanh(Dk,lwk)
12: xr = 2 foreach x € X
[P .
13: K = exp 7_(_1_:2(’“ Xi)
14: costimin = # [| K — TH% + A ||Wk||§
. _ d cost
15: gW = 7
16: Wi = Wy — ugW

2.2.5 Progressive Growing of Generative Adversarial Networks

Layer-wise learning has also been applied to generative models. Karras et al. (2018) pro-
pose Progressive Growing of Generative Adversarial Networks (PGGANSs) for generating
super-resolution images. Figure 2.2 shows a training schematic of PGGANS that includes
two parts: (a) generators used to generate image, which ideally should be indistinguish-
able from training data and (b) a discriminator trained to assess whether generated
images are discriminated against real images. The algorithm starts with generating low
resolution images and progressively increases the resolution by adding more layers to the
network. The authors believed this training method can force the model to learn large-
scale structure firstly, and then discover finer scale details instead of learning all scales
simultaneously. Progressing training on CeLebA (Liu et al., 2015), which is a dataset
consisting of 10M real images, provides the following advantages: (a) the generation of
smaller images given by early layers is substantially more stable as less class information
and fewer modes are seen and (b) the training results in a learning process that is two to
six times faster and with comparable quality of generated images. Compared with CL

which freezes trained layers, all existing layers in this model are trainable.
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FIGURE 2.2: The diagram of PGGANs. G is the generator and D is the discrimina-
tor. Starting from a low spatial resolution of 4 x 4 pixels for both the generator and
discriminator, the algorithm advances by gradually adding layers to both parts so that
the generated images will have increasing spatial resolution. Throughout the training
process, all existing layers are trainable. Six generated images are shown as examples
on the right. This figure is adapted from the original work (Karras et al., 2018).

2.2.6 Locally Supervised Learning

In some of the literature, layer-wise learning is also connected to local learning. For
example, taking local objective functions into account to train neural networks in a
similar way to layer-wise training, Xu and Principe (1999) and T Nguyen and Choi (2019)
use information potential and Information Bottleneck (IB) principle (Tishby et al., 1999)
respectively, to constrain the representation of each layer in the E2E multi-hidden layers
network to preserve as much information of the input as possible. Then, they add up the
mutual information, between representations and the input, from all the layers together
as the objective function to optimise. In that situation, both demonstrate that the
layer-wise constraints showed better generalisation performance. Ngkland and Eidnes
(2019) further propose a similarity loss combined with prediction loss for improving the
generalisation of layer-wise training. This similarity loss encourages network to produce

distinct representations for different classes.

Wang et al. (2021) focus on improving generalisation of layer-wise learning as well, based
on IB theory (see Chapter 3 for details). The authors believe the simple classification
loss (e.g., cross entropy) used to train each layer locally collapses task-relative infor-
mation at early layers. To eliminate the diminishing of task-relative information, they
propose an information propagation (InfoPro) loss to encourage local layers to preserve
more task-relevant information and gradually discard task-irrelevant information. On
five computer vision benchmark datasets, the proposed algorithm gains improvements
in both performance and saving up to 40% of computational resources of ResNet struc-
tures. In the experiments, the task-relative information is estimated by using local test

performance to approximate mutual information, which may be affected by the selection
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of local prediction parts.
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FIGURE 2.3: The schematic of Cascade and E2E training. CL starts from a single
hidden layer network, including an output block. This output block is used to generate
predictions of targets and consists of several dense layers depending on the requirements
of the tasks. After the training of one layer, the output of this layer is the input of
the next layer by freezing the trained weights of the current layer. For every layer, a
randomly initialised output blocks will be connected for prediction. In contrast to CL,
E2E training updates the weights of all necessary layers together in each iteration.

2.3 Deep Cascade Learning

The particular mechanism that interests us is a recently introduced architecture known as
Deep CL proposed by Marquez et al. (2018), in which a network is trained layer by layer to
gain significant savings in computation and memory at the expense of some performance
accuracy on vision benchmark problems (e.g. MNIST, CIFAR 10 and CIFAR 100). The
authors mainly introduce Deep CL in the setting of convolutional layers, but this learning
rationale can also be extended to other deep feed-forward networks by circumventing the
well-known vanishing gradients problem. Deep CL trains DNNs by gradually adding
layers to the networks as opposed to the Cascade Correlation algorithm, which is adding
units to networks. As shown in Figure 2.3, the training process in CL is progressively
adding the layer to the existing network and only training the weights of the currently

added hidden layer and the corresponding output block, whereas all the previous layers
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are frozen. For each layer, an activation function, and sometimes also an averaged pooling

layer, will be applied to the output of the current layer as suggested by the literature.

With this learning strategy, Marquez et al. present that the confusion matrix of outputs
is shown to improve in a layer-wise fashion on several multi-class problems, while in
E2E learning no such systematic distinguishable features are observed. At the final
stage of training, both CL and E2E learning show satisfactory performance, which is
also comparable between them. However, CL has significant merits in saving memory
demands. For E2E learning, intermediary results, including the number of parameters
of the entire network and the amount of data of all layers, need to be stored in the
memory for an iteration of propagation. In CL, all previous trained layers are frozen as
a permanent feature extractor, thus only the parameters of one layer (the current layer)
need to be stored in RAM (GPUs or Central Processing Units (CPUs)) and all others
can be cached. Hence, the memory can potentially be used more effectively, and it is
possible to be integrated into smaller devices. The training iteration can be stopped by
reaching a pre-defined depth or by monitoring the changes in errors on a validation set
as new layers are added. We will return to this point in the next chapter, where, by
computing an information ratio, we will propose a useful heuristic for model size (depth)

selection.

Marquez et al. also show several ways of improving the performance of CL, such as
progressively adding training epochs over layers while the first layer only has a small
amount of training epochs for avoiding over-fitting. Trinh (2019) also mentions the
similar way of slowing down the training of early layers for further improvements of
generalisation, but the effects are limited. The author also explores the influence of
adding L2 regularisation with disappointing results, showing that this operation is not
helpful for improving the learning ability of CL. A potential reason is that the Frobenius

norm applied to the weight matrices may be not the right metric for capacity control.

Beyond the advantages of gaining memory saving and better intermediate representa-
tions, Belilovsky et al. (2019) present that this layer-wise training can also scale to
the much more challenging problem of ImageNet, and shows comparable performance
with popular architectures (e.g. AlexNet (Krizhevsky et al., 2017) and Visual Geometry
Group networks (VGG) network (Simonyan and Zisserman, 2014)) by introducing an
auxiliary classifier and an invertible down-sampling operator (Dinh et al., 2017). The
down-sampling operator is selected to reduce inherent losses caused by architectural el-
ements such as average pooling. Afterwards, Belilovsky et al. (2020) propose Decoupled

Greedy Layer-wise (DGL) learning for training networks with parallelization in layers.

There are two types of DGL learning: Sync-DGL and asynchronous DGL. In Sync-DGL,
each set of parameters are updated in parallel across all layers, each of which processes a
sample or batch of data and passes it to the next layer immediately without waiting for

other samples to be processed, while the updating of the current layer happens simulta-



18 Chapter 2 Constructive Architectures and Transfer Learning

neously. Hence, the input of each subproblem solver changes over time. In asynchronous
DGL, a replay buffer is shared between adjacent layers to enable them to reuse the sam-
ple. The delay of each layer is decided by a distribution, according to which the selected
layer will process the outputs from last layer and update the weights of the selected layer,

and then store corresponding outputs to the buffer.

The authors demonstrate that DGL can render efficient training of CNNs without losing
performance. With the same objective to accelerate training, Brock et al. (2017) propose
a variant of exact layer-wise learning to speed up E2E learning. The algorithm progres-
sively freezes layers by annealing the learning rates of each layer to zero. According to
cosine annealing, once the learning rate of a layer reduces to zero, this layer will be at
an inference mode by saving computational resources as the back passes of the layer will
be excluded. Ro and Choi (2021) address a similar problem by proposing auto-tuning of
the learning rate in the setting of fine tuning of an E2E network. The authors connect
learning rates to the weight variation during fine tuning (in TL) to make early layers
have smaller weight variation for keeping low level features while later layers have larger

learning rates to fit target tasks.

Ma et al. (2020) further scale layer-wise training to the ResNet (He et al., 2016), which
is a deeper structure. They propose the latter layers of networks should have a more
intensive distribution of convolutional layers between two pooling layers to extract more
abstract features and improve the performance of later layers, which is termed down-
sampling acceleration in the time domain. The work validates this idea on the CIFAR
10 and CIFAR 100 datasets by training ResNet in a layer-wise fashion and improving

performance by around four percent.

2.4 Transfer Learning

The success of DL on several problems is due to the availability of large-scale datasets in
computer vision (e.g., 1M images in ImageNet) and natural language processing prob-
lems. This, however, is not always the case. For example, medical problems often are
posed on small datasets of approximately 100 — 1000 images (Lundervold and Lunder-
vold, 2019). Human Activity Recognition (HAR) problems (Harel and Mannor, 2011)
also has the issue of data scarcity due to large consumption of time expenses and human
resources in labour (Pan and Yang, 2009). The way to deal with low data settings while

taking advantages of the representations learned by deep architectures is TL.

In TL, there are two domains: source and target domains, related to each other. Ideally,
we hope the model learned on the source domain (Dg) can also generalise well on the
target domain (D). However, in reality, performance degradation is caused by a variety
of reasons roughly summarised as the bias between domains. TL aims to reduce the

performance degradation and enable us to utilise learned knowledge from a source domain
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and apply them to a related target domain where not enough data can be collected for

training a model starting from scratch (Pan and Yang, 2009).

T "
: Lgbelle@ data Pl case 1 Self-tagght
E is not in the ¥ learning
Inductive : source :
Transfer ;. domain i
Learning [ Lot st
Poisinthe . )
grecsomeeeeea Lo, ] ! source ¢ Sourceand i
i Labelled data } : : : .
' ilable in | :___domain itarget tasks are | Multi-task
i1 ahval aplewny  rmmTEIRTITeReess Case2 [ learned ™™ learning
i the target i H
: & : i simultaneously :
i domain e S et
i Assumption:
prossensecaenasns : ) i different  {
' Labfelled data Transductive _" domainsbut {_|  Domain adaption
: is only : Transfer ! single task
Transfer + availablein i_._ Learning S
Learning i thesource & | P\ emeeeemeseeennan,
domain ! : Assumption: ;
""""""""" isingle domain
Vlabellod data : i andsingle ) : ) .
i Labelled data ; : EI€ N Sample selection bias/covariance shift
: is not : H task
i availablein }
! both source !
: and target : Unsupervised
i __domains . Transfer
Learning

FIGURE 2.4: The strategies of TL (adapted from (Pan and Yang, 2009)).

2.4.1 Transfer Learning in Traditional Machine Learning

TL is not only specific to DL but also to traditional Machine Learning (ML). Pan and
Yang summarised TL in traditional ML algorithms as three parts: inductive TL, trans-
ductive TL and unsupervised TL according to domains, tasks at hand and the availability
of data (Pan and Yang, 2009). Figure 2.4 shows a categorisation of traditional TL. In
inductive TL, the source and target domains have different tasks and it does not matter if
both domains are same or not. When labelled data is not available in the source domain,
inductive TL is similar to self-taught learning (Raina et al., 2007) where the information
of labels from both domains may be different and then cannot be used directly across
domains. When labelled data is available in the source domain, inductive TL resembles
multi-task learning but only aims to achieve high performance in the target domain by
leveraging knowledge from the source domain. In transductive TL, the source and target
domains are different (either feature space or marginal distribution of data) while the
targets of them are same (e.g., the source domain has handcraft images of digits while the
target domain has real images of the same digits). Moreover, only the source domain has
labelled data while the target domain has unlabelled data. When the marginal distribu-

tions of data from two domains are different, domain adaption (Daume IIT and Marcu,
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2006) is related to transductive TL. In unsupervised TL, the algorithm aims at solving
unsupervised tasks in the target domain (e.g., clustering, dimensionality reduction and

density estimation) while labelled data is not available in the source domain, too.

2.4.2 Transfer Learning in Deep Learning

In DL, TL is applied by two most popular strategies: pre-trained models as feature
extractors and fine tuning on pre-trained models. As a feature extractor, the model
with layered architecture is firstly trained on the source domain to learn representations
of input data and a predication layer is usually included in the model to fit the source
domain task. Hence, we can utilise this pre-trained model without the prediction layer as
a feature extractor and transfer knowledge learned from the source domain to the target
domain. For fitting target domain tasks, a new prediction layer is usually added after the
extractor. During knowledge transfer, the weights of pre-trained models (extractors) are
not updated on the target domain data. In fine tuning setting, not only the new added
prediction layer are trained on the target domain, parts of weights of the pre-trained
model also need to be retrained for fitting target domain tasks. The applications of TL in
DL achieves success in many areas, such as knowledge transfer from ImageNet to medical
images (Kim et al., 2017) and knowledge transfer across different languages (Johnson
et al., 2017). Belilovsky et al. (2019) show that layer-wise training can further contribute
to performance as a pre-training method, which is a variant of TL. More applications of
TL in DL are introduced in Chapter 4, 5 and 6.

2.5 Summary

Throughout this chapter, we introduce literature of layer-wise learning, in contrast to
E2E learning, from simple perceptrons to DNNs, and TL strategies in both traditional
ML and DL. Overall, layer-wise learning shows advantages in saving computational
resources (including complexity or memory) while outperformed or comparable perfor-
mance to E2E learning are offered. Moreover, the automatic adaption of network struc-
tures reduces the cost of searching for appropriate architectures which is consuming in
E2E learning. CL and its extension greedy layer-wise learning can further scale to large
ImageNet datasets with the above advantages. However, the majority of comparisons
between CL and E2E learning are on the surface level of comparing performance, to the
best of our knowledge. To further explore layer-wise training and comparing it with E2E

learning, more analytical exploration is necessary.

Above all, the previous authors’ achievements strengthen our particular interest in the
information plane of CL being based on IB theory, as this plane can precisely reflect

the training dynamics from the view of information transformation (shown in Chapter
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3). Moreover, based on the demonstration that layer-wise learning can extract different
features from E2E learning given by papers (Kulkarni and Karande, 2017; Marquez et al.,
2018), further meaningful exploration would be whether TL can benefit from this layer-
wise scheme because of better intermediate representations, as shown in Chapter 5 and
6.






Chapter 3

Interpretation of Cascade Learning
based on Information Bottleneck

Theory

In this chapter, we propose using an elegant Information Bottleneck (IB) theory to anal-
yse learning dynamics of Cascade Learning (CL) which has shown promising results in
saving computation and storage costs. As a novel learning mechanism of Deep Neural
Networks (DNNs), CL also addresses the problem of vanishing gradients which causes
inhibition of significant alteration of weights in End-to-End (E2E) networks’ early layers.
The details of CL were introduced in Chapter 2, and here, we focus on using 1B theory to
investigate differences between two learning mechanisms, CL and E2E. Learning dynam-
ics is analysed by considering two mutual information terms, plotted on an information
plane. The first of these is interpreted as information compression, I(X;7), the mutual
information between inputs X and learned representations 7. The second term, I(T;Y),
the mutual information between representations and targets Y relates to how well the
model makes predictions. Through observing trajectories of each layer in a cascade net-
work, we observe that performance is not closely linked to information compression, as
high performance is not consistently accompanied by information compression. This ob-
servation differs from conclusions about E2E learning given by Shwartz-Ziv and Tishby
(2017). Additionally, we find that the later layers of a cascade network can inherit
information about targets from previous layers. Gradually, later layers extract more tar-
get specific features than earlier layers. Following this line of thought, we propose an
Information Transition Ratio (ITR), I(T;Y)/I1(X;T) towards evaluating the specificity
of extracted features. We investigate the feasibility of using this ratio to determine a
stopping criterion of training with comparison to Singular Vector Canonical Correlation
Analysis (SVCCA). Part of work reported in this chapter has been published in the
journal Entropy, entitled "Information Bottleneck Theory Based Exploration of Cascade
Learning" (Du et al., 2021).

23
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3.1 Notations

We define capitals as random variables. For example, X and Y are two random variables
which are distributed according to fixed probabilities p(X) and p(Y") respectively, where
X € X and Y € Y are vectors of specific values representing the realisation of these
variables. T is a representation of X, and T' € 7. The notation X, ) and T are spaces to
which random variables belong. p(-) is the probability mass function (p.m.f.) of discrete
random variables (for the sake of illustration, we only consider the distribution of discrete
variables in this section). As an example, the p.m.f of T" is shown in Equation 3.1, where
p(T|X) is a conditional probability of T given X. Based on the probability of random
variables, entropy can represent the inherent uncertainty or information contained by
random variables. H(-) is entropy and I(-) means Mutual Information (MI), where
Figure 3.1 shows relations between them through two variables. H(X|T') means the
conditional entropy of X given T'. The formulated relations between them are shown by
Equations A.2 and A.3 in Appendix A.

p(T) =Y p(X)p(T|X) (3.1)

H (X) H (T)

FIGURE 3.1: An illustration of relation among entropy, joint entropy, conditional en-
tropy and MI between two random variables.

3.2 Related Work

Tishby et al. (1999)’s IB theory optimises the trad-off between economical representations
of a data distribution and making information predictions from these representations.
Representing data at lower data rates arises in the subject or rate distortion theory
(Berger, 2003), which relates loss (or distortion) incurred by low bit rate representation
of data, and has been widely applied in data compression systems such as low bit rate

speech and image coding (Ortega and Ramchandran, 1998). While a pre-defined bit
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rate is the driver of compression in rate distortion theory, it is analogous to what is
seen in information bottleneck where a compressed representation suitable for prediction
is attained. Namely, subject to relative information in an input variable X about an
output variable Y, a "bottleneck" is formed by a limited code-words of input X. On
the basis of this framework, Tishby and Zaslavsky (2015) further suggest using IB as a
foundation of Deep Learning (DL), where DNNs are quantified by MI between layers’
representations T and inputs X and outputs Y. Afterwards, Shwartz-Ziv and Tishby
(2017) propose using above quantification to analyse DL dynamics. In both works, the
authors use a notion of an information plane consisting of I(X;7) and I(T;Y) axes
to observe the learning dynamics of DNNs. From empirical observations, they believe
there are two stages, fitting/learning and compressing, in training DNNs. In the fitting
stage, both I(T;Y) between representations and targets and I(X;7T) between inputs
and representations increase. Subsequently in the compressing stage, I(T;Y) further
increases before saturating, while I(X;T') decreases (reflecting information compression),
thereby inducing generalisation. The above observations have been illustrated using a

toy binary classification example with a 12 dimensional input.

Although this framework provides an explanation of learning dynamics by analysing
quantified interaction between information compression and predictive ability, Amjad
and Geiger (2018) and Saxe et al. (2018) propose critical appraisals of the above infor-
mation theory based analyses and conclusions given by Shwartz-Ziv and Tishby (2017).
These authors attribute the observations made about the dynamics on information planes
to the properties of the examples chosen rather than being general attributes of complex
learning. Geiger (2021) gives a further summary of these appraisals by empathising the
influences of estimators of MI. Loosely speaking, the appraisals can be summarised by
three aspects: a) if the information compression is a inherent attribution of training neu-
ral networks; b) whether the information compression is closely linked to generalisation;

and c) whether the effects of estimators in information compression are significant.

Regarding to the first aspect, Saxe et al. point out that the trajectory of information
compression on the information plane is more of a consequence of the saturating non-
linear activation function (Hyperbolic Tangent Function (Tanh)) and is not observed
when the non-linearity is the Rectified Linear Unit (ReLU). Additionally, they sometimes
observe information compression at the early phase of training (the learning stages).
The authors of (Chelombiev et al., 2018; Saxe et al., 2018) challenge Shwartz-Ziv and
Tishby (2017)’s conclusions and propose the Stochastic Gradient Decent (SGD) is not the
(only) reason behind information compression, as the compression also takes place when
networks are trained with Batch Gradient Descent (BGD) and Adam. Goldfeld et al.
(2019a) and Schiemer and Ye (2019) believe that information compression is caused by
densely clustered representations in latent spaces, which is in line with Geiger’s claims
about geometric clustering (Capoyleas et al., 1991). Moreover, Cheng et al. (2019)

illustrate that the compression depended on datasets as well, where complex data is
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hard to compress by a shallow network. In relation to the second viewpoint, Chelombiev
et al. (2018) illustrate that the compression attributed to generalisation does not always
take place through plotting the compression score against accuracy, where the higher

rates of compression does not show significant correlation with generalisation.

Referring to the last point relating to estimators, the dominant role of the discussion
regards four classes of estimators: binning estimators (Shwartz-Ziv and Tishby, 2017),
Kernel Density Estimation (KDE) (Kolchinsky and Tracey, 2017), variational and neural
network based estimators (Belghazi et al., 2018), kernel-based estimators (Wickstrgm
et al., 2020; Yu et al., 2020). Some of other estimators (Balda et al., 2018; Gabrié et al.,
2019; Goldfeld et al., 2019b; Noshad et al., 2019; Shwartz-Ziv and Alemi, 2020) are also
mentioned. Strictly speaking, every estimator has its limitation. For example, binning
estimators are naturally limited by the selection of bin size. The interplay between
bin size and a neural networks’ architecture has a great effect on the dynamics on a
information plane. For small bin sizes, every sample falls into a different bin and as
a result I(X;T) converges to log|D|, where |D| is the cardinality of dataset D. A big
bin size leads to more samples falling into the same bins, especially for narrow layers,
which results in more information compression. According to Geiger’s description, KDE
is strongly affected by the value of the variance 2. Parameter selection differs according
to the datasets and architecture sizes. Variational and neural network based estimators
are not stable over several runs as discussed by Geiger. Kernel-based estimators are
hard to use as the Hadamard products (Horn, 1990) will be numerically problematic for
layers with many filters. Gabrié et al. (2019) propose a replica method from statistical
physics to estimate the differential entropy (approximated MI). To make this estimate,
a network with wide layers is trained on a synthetic dataset to satisfy the orthogonal
invariance of the weight matrices. The trajectory of learning dynamics depends on the
choice of the estimator, hence the information plane obtained by different estimators are
not directly comparable (Geiger, 2021). Therefore, the effective conflicting claims can
only be obtained when the same estimators are used in a particular situation. More
importantly, Geiger believes the information plane based analysis can shed significant
light on the training process of a neural network as long as the proper estimation of MI
is considered. Overall, this approach can be advisable in comparing similar architectures

where learning mechanism differs.

On the basis of above foundation, we propose using the framework of information bot-
tleneck theory to analyse two learning mechanisms, CL and E2E, of neural networks
with unified architectures, estimators and configurations of training. Specifically, we are
concerned about what the difference is between two learning mechanisms and explore
this by validating benchmark performance on various datasets from different domains.
As mentioned in Chapter 2, CL trains a neural network layer by layer to gain significant
reduction in computation and memory at the expense of some performance accuracy on
easy problems (e.g., MNIST and CIFAR 10) (Marquez et al., 2018). Belilovsky et al.
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(2019) further illustrate that this layer-wise training can also scale to ImageNet which
is a much more challenging problem, and shows comparable performance with popular
architectures (e.g., AlexNet and VGG). Furthermore, Du et al. (2019) utilise Transfer
Learning (TL) to propose that CL packages features in a different way to E2E learn-
ing (more details are given in Chapter 5). However, all these works just present the
attributes of cascade networks from the shallow performance view without further anal-
ysis. For deeply investigating the characteristics of this novel learning mechanism, we
relate features extracted from each of trained layers from a cascade network to inputs and
targets through MI on the information plane and compare observed dynamics to an E2E
network with same structures. In the following section, we will give a brief introduction

to IB theory for a deeper understanding of the aforementioned information planes.

3.3 The Information Bottleneck Theory

Evolved from rate-distortion theory, the IB is an information theoretic principle utilised
to extract related information contained in a random variable X € X (an input), about
another random variable Y € ) (an output). Namely, the MI I(X;Y") is a quantification
of correlations between inputs and outputs. For the sake of readability, we only introduce
IB theory in this section, more details of the rate distortion theory and their intrinsic
connections are shown in Section A.6. As shown in Equation 3.2, MI is defined based on
the statistical dependence between two variables (X and Y). Dgr[p(X,Y)||p(X)p(Y)]
is the Kullback Leiber (KL) (Kullback, 1987) divergence between the two distributions
p and ¢, p(X,Y) is a joint distribution, H(X) is the entropy of X, and H(X|Y) is
the conditional entropy of X and Y. Namely, relevant and irrelevant features in X
are essentially determined by Y. Capturing the relevant information is the process of
establishing constructive representations of X, and removing the irrelevant information

is the compression of X.

1(X:Y) = D (X, V) p(X)p(V)] = 30 p(X,Ynog(

xSy p(X)p(Y)

_ o [PETY) (3.2)
& s ()

= H(X) - H(X[Y)

In regards to compression, minimal sufficient statistics' (Cover and Thomas, 1999) is

an important concept. By defining X as the minimal sufficient statistics of X i.e., the

'In statistics, a statistic is sufficient with respect to a statistical model and its associated unknown
parameters, if "no other statistic that can be calculated from the same sample provides any additional
information as to the value of the parameter" (Fisher, 1922). A sufficient statistic is considered minimal
sufficient if it can be represented as a function of any other sufficient statistic. In other words, S(X) is
minimal sufficient if and only if: S(X) is sufficient, and if 7'(X) is sufficient, then there exists a function
f such that S(X) = f(T(X)) (Fisher, 1922).
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simplest mapping of X for extracting the MI I(X;Y), X is the representation of X
with respect to Y. Under an assumption of a Markov chain? Y < X « X , an optimal
representation X € X is obtained by minimising the MI I (X; X ) under the constraint
of I(Y; X ). This optimisation can be formulated as the minimisation of an Lagrangian
function as shown in Equation 3.3 subject to the Markov chain constraint, (X ;)A( ) =
I (Y;)? ), due to data processing inequality (Beaudry and Renner, 2012; Kinney and
Atwal, 2014).

Lp(X|X)] = I(X; X) - BI(Y; X) (3.3)

In terms of DNNs, the output of each layer, T', can be seen as the minimal sufficient statis-
tics or a representation of inputs, X, in conjunction with the Markov chain Y <+ X < T
(Shwartz-Ziv and Tishby, 2017). In that case, we consider a model where the category
Y (the true label) is chosen firstly and then an image X (the input) is selected from
that category for obtaining a representation 7" of the input. Therefore, the theoretical
IB formulation of DNNs is shown as Equation 3.4, where [ is the positive Lagrange
multiplier operated as a trade-off argument between the level of preserving information
about targets and the complexity/compression of the representation. To obtain the so-
lution of this Lagrange function, an iterative algorithm based on the Blahut-Arimoto
algorithm (Dupuis et al., 2004) is needed, which is introduced in Section A.6.1 and A.6.2
in Appendix A. Instead of obtaining solutions, we utilise this framework through tracking
trajectories of I(X;7T) and I(T;Y) to observe the transformation of information caused
by training.

Lp(T|X)] =I1(X;T) - BI(T;Y) (3.4)

3.4 Experiments

Aiming at tracking and observing the difference of learning dynamics between CL and
E2E learning, we set up experiments over several datasets in various domains to validate
our hypotheses, and concurrently utilise the two kinds of estimators of MI. In the
implementation, we match the parameter settings of CL with E2E on the same data for

fair comparison.

3.4.1 Datasets

We construct four synthetic datasets, use five benchmark datasets taken from the UCI

repository (Dheeru and Karra Taniskidou, 2017) and utilise three benchmark datasets

2A Markov chain is "a stochastic model describing a sequence of possible events in which the prob-
ablhty of each event depends only on the state attained in the previous event" (Serfozo, 2009). In that
case, Xisa compressed representation of X, hence X should be completely defined given X. Namely,
p(X|X,Y) = p(X|X), which further implies p(X,Y, X) = p(X,Y)p(X|X). An equivalent formulation is
to require the Markovian independence relation Y <> X < X.
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in the computer vision field. The another synthetic dataset used by Shwartz-Ziv and
Tishby for classification can be easily learnable by a network with a single hidden layer,
which is inappropriate to our cascade architecture (as layer-wise training needs at least
two hidden layers). Therefore, to create the synthetic datasets, we construct a randomly
initialised 4 hidden layer network with a structure of 10-7-5-3 where each number refers to
the width of a layer. The network has 12 dimensional binary inputs and binary outputs,
and is used to generate binary classification datasets with 4096 inputs. From 50 generated
datasets, we select four datasets for which a single hidden layer network yields a non-
optimal performance (12-10-1 network gives 91% =+ 1% with L2 (0.01) regularisation).
We also select other high dimensional datasets from the UCI repository where a single
hidden layer neural network may not produce optimal performance. A summary of used

data is shown in Table 3.1 and more details can be found in Section A.1.1.

TABLE 3.1: Datasets used and their summary statistics

‘ Dataset ‘ (N,P)* ‘ Domain ‘ Input | Pos (%) | Neg (%) |
Synthetic 17 (4096, 12) Artificial Binary 63 37
Synthetic 28 (4096, 12) Artificial Binary 62.8 37.2
Synthetic 44 (4096, 12) Artificial Binary 37 63
Synthetic 48 (4096, 12) Artificial Binary 35 65

Dexter? (600, 20000) Text - Continuous 50 50
classification sparse
Dorothea? (1150,100000) | Drug discovery | Binary sparse 50 50
Epileptic .
Epileptic® (11500, 178) seizure Continuous 80 20
. dense
detection
. 5 Digit
Gisette (6000, 5000) s 30 70
recognition
Human activity )
recoginition (HAR)*| (16043, 561) Sensor record : - -
(6-class)
MNIST (70000, 784) Image : - -
CIFAR-10° (60000, 1024) Image : - -

1 N: The number of data, P: The dimension of data. "Pos and Neg" stand for the percentage
of positive and negative samples in binary classification tasks.

2 From the work (Guyon et al., 2004).

3 From the work (Andrzejak et al., 2001).

4 Proportions of data (Anguita et al., 2013) in six classes are in sequence 17.2%, 14.7%, 14.5%,
18.3%, 18.4%, and 16.9%.

5 From the work (Krizhevsky, 2009).

3.4.2 Methodologies

Throughout, we use the Adam optimiser with an initial learning rate decided by tasks
(details are shown in Table A.1 in Section A.1.2). For synthetic datasets, we use the net-

work with 4 hidden layers (10-7-5-3, which is the same as the network used to construct
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datasets), to carry out both CL and E2E learning. Each layer uses a Tanh activation
function and the network is trained using a cross entropy loss (Murphy, 2012). Re-
maining details of architectures used on different datasets are given in Table A.1 in
Appendix A. Based on the purpose of alleviating the natural defects of different esti-
mators, we take into account three different estimators of MI: (a) a discrete binning or
histogram approach used by Shwartz-Ziv and Tishby, (b) a Pair Wise Distance (PWD)
based approach proposed by Kolchinsky and Tracey (2017), and (c¢) an Ensemble De-
pendency Graph Estimator (EDGE) proposed by Noshad et al. (2019). The pseudocode
for these MI estimation methods are given in Appendix A.5, and a comparison between
binning and PWD estimation is shown in Appendix A.5.1. The binning approach con-
structs histograms of the two distributions across which MI is to be measured. There is
a compromise between resolution and data sparsity as the choice of bins/intervals size
is difficult. The PWD based method utilises a KL. divergence based upper bound and a
Bhattacharyya distance (Kailath, 1967) based lower bound to estimate MI. Both bounds
are defined based on element-wise distance. EDGE is a non-parametric estimator with
linear time complexity. We use T; to represent the output of i;, layer. To facilitate the
narrative, we use 1" to substitute T; for simplification. Briefly, we train two networks, CL
and E2E; on the same data with the same structure, and estimate I(X;7") and I(T;Y)
for each epoch of each layer from each network using the same estimator. For each
epoch, we use a point on the information plane to reflect the learning status, and then
get the learning dynamics of each network up to the end of training for comparison. All
trajectories shown in the information plane are averaged over multiple runs (10 runs for
Synthetic 17, 5 runs for HAR and MNIST datasets). The binning and PWD estimation
are used for models on synthetic datasets and realistic datasets from UCI. The EDGE is
used for models trained on MNIST and CIFAR 10. The calculation of SVCCA similarity
is averaged over 5 runs (details of SVCCA similarity see Appendix A.7). The following

section shows our comparison and discoveries from empirical experiments.

3.5 Results and Analyses

Results are illustrated through three parts: (a) the comparison of two learning mecha-
nisms’ information planes; (b) the connection between MI and performance; and (c) the
relation between networks’ depth and I'TR. In summary, even if CL has rarely visible
information compression the classification accuracy of it is comparable to E2E, which
may suggest generalisation has no intimate link to compression. Additionally, ITR po-
tentially shows feasibility of giving a stopping criterion when training cascade networks,
which is different from the ratio I(7;Y)/I(X;Y) given by Shamir et al. (2010), but has

a similar principle (i.e., measuring the fraction of relevant information that 7" captures).
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3.5.1 Information Planes of Cascade and End-to-End Learning

For comparing the learning dynamics of CL. and E2E learning, we use information planes
given by Shwartz-Ziv and Tishby’s work to track both learning mechanisms’ trajectories
during training as shown in Figures 3.2, and give a repetition of Shwartz-Ziv and Tishby’s
work in Section A.2 for a sanity test. As shown in Figure 3.2, the information plane of
CL (Figures 3.2(a), 3.2(c) and 3.2(e)) and E2E (Figures 3.2(b), 3.2(d) and 3.2(f)) has
significant differences while the performance is comparable when the dataset and training
configurations are the same. To be more specific, two different observations are as follows:
(a) there is no visible information compression from each layer of CL at the final stage of
training while E2E has obvious trajectories of information compression; (b) the I(7;Y)
starting point of each CL layer are subsequent to the previous layer’s value in contrast
to E2E of which starting points are decided by randomly initialisation. Section A.4 in
Appendix A shows the comparison of information planes on other datasets (e.g., Figures
A.7 and A.8) whose results have the consistent attributes. We also give a visualisation
of the latent representations from both E2E and CL based on T-distributed Stochastic
Neighbor Embedding (TSNE) projection, which is shown in Figure A.14 in Appendix A 4.
Representations of intermediate layers of cascade networks show the better separability

in comparison to layers of E2E networks.

3.5.1.1 Information Compression and Generalisation

As the information plane of CL shows no discernable information compression while E2E
learning information planes have the visible information compression at the final stage of
training, we compare learning curves and learning dynamics only on information planes
of E2E for finding the connection between the information compression and the learning
ability. As shown in Figure 3.3, we observe that information compression happens before
and after the saturation of accuracy on test datasets. Before the saturation of testing
performance, the information compression (decrements of I(X;7T)) is accompanied with
the increasing I(T;Y"). Therefore, the causality between information compression and
generalisation given by Shwartz-Ziv and Tishby (2017) is not convincing. More results
on other datasets are shown in Figure A.9. For CL, Figure A.10 shows the similar
observation that the increasing accuracy is not always accompanied with the informa-
tion compression. Interestingly, later layers will start compressing information earlier
than former layers. At the same epoch, later layers will have relative greater gradients
compared to early layers. Hence, later layers will try to give representations closer to
targets, much more quickly than early layers by reducing target-irrelevant information.
Overall, there is reason to believe that the information compression manner of an E2E
network may come from more flexible communication between layers of a large network
compared to a single hidden layer network (CL). Contrary to E2E, each hidden layer

of CL does not have real-time communication with other hidden layers. Therefore, we
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F1GURE 3.2: The comparison of trajectories on information planes between both CL and E2E
learning on three different datasets. The first column shows information planes of CL and the
second column gives information planes of E2E learning. From top to bottom, there are three
different datasets which are Synthetic 17, HAR and MNIST in that order. From comparison,
trajectories of E2E show visible behaviours of compressing information (reduction of I(X;T))
while CL’s trajectories barely include this behaviour. Moreover, trajectories of E2E learning
on simple synthetic datasets cannot show consistent dynamics with learning on harder realistic
tasks (as shown in Figures A.7 and A.8). Overall, only the data process inequality chains are
persistent across layers (i.e., I(X;Th) > I(X;Ts)--- = I(X;Ty)).

believe the generalisation cannot only benefit from the information compression on the
basis of above observations. For fair comparison, the training of above E2E networks
contains no regularisation, but an exploration of adding regularisation and layers in E2E
can be found in Section A.3. In the following section, we further explore the connection

between MI and performance by placing emphasis on CL.
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FIGURE 3.3: The connection between information compression and generalisation on artificial
(Synthetic 17) and realistic datasets (HAR). Left panels show learning curves of E2E networks
on both training and testing sets from Synthetic 17 and HAR datasets, respectively. Right panels
show corresponding information planes for tracking learning dynamics. The red dashed line in
the left panel indicates the same training epochs to red circles accompanying with dashed line
in the right panel, when inflection points happens along the I(X;T) axis. The green dotted line
and green squares, shown in left and right panel respectively, highlight the epoch when testing
performance starts saturation. From both cases, the behaviours of information compression
happens between red circles and green squares when the learning settles to generalise, however
it also happens after saturation of accuracy on test data (e.g., Synthetic 17). Comparisons on
other datasets are shown in Figure A.9.

3.5.2 The Connection between the Information Transition Ratio and

Performance

Regarding the depth of networks, we plot out how ITR, I(T;Y)/I(X;T), (of the training
end) change with respect to layers as shown in Figure 3.4. By focusing on the ITR of CL
in Figure 3.4(a) for the synthetic dataset, we can observe the first two layers have the
similar value of ITRs. Reflected by the performance shown in Figure 3.4(b), both train-
ing and testing performance of CL are increasing in this period. At the third layer, the
ratio sharply increases while the testing performance slightly decreases. Simultaneously,
the training performance keeps increasing. For E2E learning, the variation of ratios is
relatively smoother compared to CL, which is in line with our inference in Section 3.5.1
that meaningful features are randomly distributed across layers because of flexible com-
munications (potentially, this ratio is not suitable to decide the depth of E2E networks).
The similar conjunction can also be observed in Figures 3.4(c) and 3.4(d) on the Human
Activity Recognition (HAR) dataset.
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FIGURE 3.4: The conjunction of sharp increases of ITR (I(T;Y)/I(X;T)) and over-
fitting of CL on Synthetic 17 and HAR datasets. ITR is computed at different layers
for both CL and E2E networks. The sharp increases of I'TR over layers and over-fitting
always synchronise.

We also explore how performance changes with respect to the depth (i.e., number of
hidden layers) of E2E networks on three different datasets (see Figure A.6 in Appendix).
We can see the network with two hidden layers shows the best generalisation on the test
set of the synthetic dataset. The trend of performance with respect to the depth of E2E
networks is similar to the tendency of CL. As mentioned in section 3.2, the trajectories
on the information planes are heavily affected by estimators even for the same estimator,
different configurations may result in diverse trajectories. However, the trend of ITR
over layers is relatively more stable compared to trajectories on the information plane.
The comparison of them on two datasets can be found in Figures 3.5 and 3.6. Based
on this comparison, in the following section we explore the feasibility of utilising ITR to

help deciding the size of cascade networks.

3.5.3 When to Stop Training with Cascade Learning Using the Infor-

mation Transition Ratio

From Figure 3.4(a), we observe that the best generalisation performance on test data
comes from the layer or the one layer before where a rapid increase in the ITR is pro-
duced. This may mean the CL architecture on the performance plateau or on the early
boundary of the performance plateau has the optimal generalisation. We further test
this hypothesis on other data and summarise results in Table 3.2. These results confirm

that on all tested datasets, the model depth with the best test performance occurs at the
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F1cURE 3.5: A stability comparison between information plane and ITR of CL on
synthetic 17 data with different estimators, binning and PWD. (a) and (c¢) show the
information plane and corresponding ratio of each layer at the end of training which
is estimated by binning methods with different bin sizes. (b) and (d) show the similar
context while information is estimated by PWD estimators with different noise vari-
ances. There are three different bin sizes, 10, 25, and 30. The selection of noise variance
has three options, 1le~2, 1le~2 and 1le~°. While the trajectories varies significantly with
respect to parameter selection, the tendency of ITR is much more stable. Figure 3.6
shows same comparison on HAR data.

depth with a rapid incline in the ITR (or one layer before). Figure A.12 shows consistent
tendency on a larger 23-class ImageNet task. We further extend these observations to
a higher resolution which shows the alteration of ITR with respect to epochs in Figure
A.13 in Appendix A. Apart from the effects of initialisation on first few epochs of each
layer, the I'TR keeps in a stable value on each layer. These results are significant in
addressing the open question of when to stop training a cascade architecture, or how

many layers to add while training to obtain optimal/significant performance.

3.5.4 Information Transition Ratio and Singular Vector Canonical Cor-
relation Analysis

For visualising the learning dynamics, Raghu et al. (2017) propose using SVCCA to

measure the correlation between representations during and after training to explain how
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FI1GURE 3.6: The information plane of CL on the HAR data with different estimators.
(a) and (c) are based on binning estimation, and (b) and (d) are at the basis of PWD
estimation. There are three different bin sizes, 10, 25, and 30. The selection of noise
variance has three options, le=2, 1le=3 and 1le™°.

TABLE 3.2: ITR and necessary depth of models.

| | CL I | CL |

‘ Dataset ‘ Ratio! ‘ Test? H Dataset ‘ Ratio! ‘ Test? ‘
Synthetic 17 | Layer 3 | Layer 2 Synthetic 28 | Layer 3 | Layer 2
Synthetic 44 | Layer 3 | Layer 2 Synthetic 48 | Layer 3 | Layer 2
HAR Layer 4 | Layer 3 Gisette Layer 3 | Layer 2
Dorothea Layer 2 Layer 1 Epileptic Layer 3 Layer 2
CIFAR 10 | Layer 4 | Layer 3/4 MNIST Layer 3 | Layer 2

ImageNet23 | Layer 4 Layer 4 Dexter Layer 2 | Layer 1/2

1 Where the rapid increment of ratio happens.
2 Where the optimal/significant performance occurs on test data.

extracted features evolves during training. Moreover, both IB theory and SVCCA can
be solved based on finding eigenvalues of a matrix especially the variables are Gaussian
variables. For example, Chechik et al. (2005) mention the differences and similarities
between Gaussian IB and canonical correlation analysis (see Section A.7.3 in Appendix
A for details). Hence, we give a comparison between our proposed ITR based on 1B

theory and the SVCCA, as a stopping criterion of training.

We address to the multi classification tasks, MNIST and CIFAR 10, under CL scheme
in this section. We obtain the SVCCA similarity of the representations between each

intermediate training epoch and final epoch of the same layer to track transformation of
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representations during training. We assume that for the CL scheme, once the SVCCA
similarity has converged, any remaining training process is redundant, inspired by Raghu
et al. (2017).

As shown in Figure 3.7, the ITR shows a sharp increase at the forth layer while the
alteration of the SVCCA similarity of this layer is negligible on the MNIST dataset. For
each layer, the SVCCA similarity starts from a small value and increases to 1 after a
few training epochs. For CIFAR 10 learnt by networks with convolutional layers, the
ITR sharply increases at the forth layer in Figure 3.8 while the performance saturates at
the same layer. There is no clear regularity of SVCCA similarity tendency over layers,
but the SVCCA similarity of each layer will be converged after approximate the 10,
epoch. Reflected on the Figure 3.8(b), the majority of training epochs do not significantly

contribute to improving the performance of current layer.

Hence we assume we can stop the training of a layer once the SVCCA of the layer
is converged. For validating it, we train the same network with the above stopping
paradigm which is only training 10 epochs of each layer on CIFAR 10. As a result, the
performance negligibly drops from 85.11% (150 epochs) to 84.9% (10 epochs). Therefore
we can potentially use SVCCA as an indicator of cutting off point during training a layer
for saving training computational resources (both time and memory) almost without

performance sacrifice.

In both cases, ITR increases rapidly after a certain layer, which is noticeable. After the
certain layer, the training of further layers is dispensable as they barely contribute to
performance. Hence, ITR shows the better ability of deciding the depth of networks
in comparison to SVCCA similarities which do not show clear regularity over layers.
SVCCA may be used to observe when the training of each layer of a CL model starts
to become unnecessary as the further training after some epochs only shows negligible
pruning of the latent representations in training. Moreover, ITR is much more suitable
to be a stopping criterion than SVCCA similarities as it can be estimated in real-time

when the representations from the end of training are dispensable.

Considering the connection between Gaussian IB and SVCCA, we also investigate how
the ratio will change based on a hypothesis that all the variables are Gaussian as shown
in Figures A.17. Since the variables, X,Y and T, are not exact Gaussian variables,
the estimated MI do not match with previous non-parametric estimations perfectly (see

Appendix A.5.2 for more detailed discussion).

3.6 Discussion

Up to now, we have illustrated the difference between CL and E2E through information

planes on both artificial and practical datasets, and explored the connection between the
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ITR and generalisation for finding a stopping criterion of adding layers to a CL network.
During the above exploration, we notice there are many other authors present related
work. Therefore, we give a comparison to previous works by discussing the following
three aspects: (a) whether information compression is inherent; (b) if ratio can help
decide the depth of a CL network and (c¢) why the IB theory based objective function

can improve performance of CL.

3.6.1 Information Compression Reflected on End-to-End & Cascade

Learning

Since the publication of Shwartz-Ziv and Tishby, there has been some in-depth discus-

sions on how realistic information compression is as a factor explaining learning in DNNs.
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For example, attributing the causes of the observed compression phase to stochasticity
in training (Balda et al., 2018; Shwartz-Ziv and Tishby, 2017), the specific activation
function used (Saxe et al., 2018), initialisation of models (Chelombiev et al., 2018) and
the method used for estimating MI (Schiemer and Ye, 2019). There are also authors
who believe information compression is not inevitable such as (Fang et al., 2018). How-
ever, a majority of disagreements are based on multiple factors causing uncertainties
such as datasets, model architectures, estimators and optimiser. Geiger points out the
conflict or agreement based on multivariate comparison is superficial(Geiger, 2021). For
example, Jonsson et al. (2020) observe information compression based on Mutual In-
formation Neural Estimation (MINE) (Belghazi et al., 2018), while Li and Liu (2021)
believe there is no information compression in Convolutional Neural Networks (CNNs).
In order to eliminate such uncertainties, we unify configurations of training on each
dataset for comparing the information plane of two learning mechanisms, CL and E2E.
When we observe the dynamics on the information plane using CL over a range of prob-
lems, we find that the compression phase is not always observed compared to E2E,
and when it is, it is mainly restricted to the early layers of learning (as long as over-
learning is not happening). This would suggest that when reasonable features have been
learnt in early layers, and their weights frozen in training subsequent layers, there is no
flexibility within the network to move in a direction that is sometimes seen as a com-
pression phase. Meanwhile, as the communication between layers from E2E network,
the extracted useful features may be distributed over different layers, which may result
in the obvious information compression. Additionally, this flexibility of communication
between layers may also cause the information compression through over-fitting under a
significant number of training epochs as discussed in Section 3.5.1. In extreme cases, the
infinite training of E2E may force all layers representations to be similar to targets by
discarding task-irrelevant information, while CL has limitation of a single hidden layer’s
power and has no communication between layers and then cannot over-discarding those
task-irrelevant information. In addition, Wickstrgm et al. (2020) also shows that the
information compression seems more prominent or happens after over-fitting through a
tensor-based estimator (Yu et al., 2020).

3.6.2 Qualitative Learning processes Related to Information Transi-
tion Ratio

According to the observation of I(X;7T) and I(T;Y) in our experiments, we notice the
ratio I(T;Y)/I(X;T), which we term as ITR, can be used as a guideline in determining
when to stop the training of CL. Our analysis suggests that the training can be divided

into two stages, as shown in Figure 3.9, through comparing performance and the ITR.

Inspired by the ratio I(7;Y)/I1(X;Y) given by Shamir et al. (2010), we explore the con-
nection between ITR, I(T;Y)/I(X;T), and performance. Shamir et al. demonstrated
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FIGURE 3.9: The learning process of neural networks. (a) shows the evolution of performance
on both train and test datasets during training the model. (b) shows the ITR (I(T;Y)/I(X;T))
with respect to the cumulative training epochs. The training can be divided into two stages: a)
learning the features and fitting to a reasonable performance represented by the grey area; b)
over learning the features as the pink area.

that the size of test datasets can only increase up to a factor I(X;Y)/I(T;Y) of the
training sets for obtaining the similar performance on both train and test sets. The un-
derlying reason is the bottleneck variable, T', only captures a portion, I(T;Y)/I(X;Y),
of relevant information. Under the similar reason, we assume I(7;Y") controls the speci-
ficity of extracted features to training samples (a risk term), and I(X;7) is in charge
of the complexity of features (a regularisation term). Therefore, the trade-off between
these two terms can be measured by their relative speed of changing (the ITR). We
assume that the larger values of the ITR (when I(X;7) # 0) represents more specific
extracted features to the targets, since I(T;Y) is larger while I(X;T') is relative small.
Namely, the features/representations (7") extracted by the model gradually lose parts
of information for better fitting to the training targets (Y'). As this line of thought,
the first stage correlates to the learning stage where the model trains to extract general
useful features and loses some redundant features, reflected in the increasing I'TR. In
this stage, as the general feature is dominant, I(X;7) > I(Y;T), the value of the ITR
is relatively small but slowly increases with time. The second stage of training can be
viewed as over-training, where the model keeps extracting features more specific to the
target than the first stage. This results in an increased or saturated prediction accuracy
on the train data and sharper increases of I'TR in comparison to the first stage. The
prediction accuracy on test data decreases in this stage, implying over-fitting on specific
features to the train data. We focus on finding the boundary between first and second
stages to balance test performance and specific information from training data. In the

next section, we further discuss the relation between I'TR and the depth of networks.

3.6.3 Information Transition Ratio & Network Depth

Shwartz-Ziv and Tishby state generalisation benefits from information compression.
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However, our results show that the information compression (I(X;7') reduction) not
only happens before over-fitting but also after it. Therefore we, like many other authors
(Darlow and Storkey, 2019; Gabrié et al., 2019; Goldfeld et al., 2019a), believe that in-
formation compression does not induces improvements of generalisation. Much research
also focuses on I(Y;T). For example, Perin et al. (2020) illustrated using I(T;Y) as
a metric to decide which epoch to stop training to avoid over-fitting. However, Amjad
and Geiger (2020) and Cheng et al. (2019) illustrated larger I(T;Y") cannot guarantee
better generalisation. For further exploring the connection between generalisation and
information dynamics, we investigate the connection between accuracy and ITR in this
work. As the demonstration given by Cheng et al. (2018) and Cheng et al. (2019) who
believe both I(X;T) and I(T;Y) contribute to final performance, we further believe
there is an optimal balance range between I(X;T) and I(T;Y") for significant perfor-
mance. Although the relationship between accuracy and I(T;Y) is not a simple linear
positive correlation, we find the specialisation of features from the network may be quan-
tified by the transition ratio, I(X;T)/I(T;Y). The sharp growth of ratio will result in
too specific representations and under-performance on the test set based on the exper-
iments for cascade training. The relative speed of evolution between compression and
prediction shows a more reasonable relation to the performance on test data. The ITR
is a useful way to represent this relative speed and decide the depth of networks while
limited data is available and can only be used for training (as the ratio is estimated on
the training set). Furthermore, as this ratio relates to the specialisation of features, it
potentially gives the ability of guiding where the starting point of TL should be, which
can be a meaningful direction for investigating in the future. Moreover, ITR is more
stable than trajectories on the information plane when the configurations of estimators
changes (Schiemer and Ye, 2019) as shown in Figures 3.5 and 3.6. We also provide a way
to find the rapid increase using the convolution of the ITR with a step function. The
peak of this convolution output can pinpoint a layer at which the ITR increases sharply
(see Figure 3.10). As shown in the Figure 3.10, the step convolution is the output of con-
volution of ITR with a step function. We use the peak of this output over layers to select
the reasonable depth of a network. In this process, ITR of each dataset is normalised
to the range [0,1] and subtract the mean of ITR on each dataset separately. The result
of this step convolution shows a maximum at the point of interest, successfully picking
them up in 10 of the 12 datasets we have worked with. On the two where this fails,
Dexter is a very easy dataset that is separable by a single hidden layer network; and in
the ImageNet problem, the difference between the layer we identified by inspection and

the peak of step convolution differ by just one layer.
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F1GURE 3.10: A depth indicator of networks given by the convolution of ITR and a
step function on different datasets. Red dots are the values of ITR over layers. Blue
solid lines are outputs of convolution of ITR and a step function. Red vertical lines
give the location of the peak value of convolution outputs, and the green dots locate
the depth of network showing optimal performance or sharp increase of the ITR.

3.6.4 Objective Functions Related to Information Bottleneck and Cas-
cade Learning

Under the popularity of IB theory and CL, many authors also raise interest in explor-
ing layer-wise learning by using the IB analysis. Instead of comparing the information
during learning between E2E and layer-wise training like we do, those authors focus on
objective functions for improving the performance of layer-wise learning. Elad et al.
(2019) explore the effects of layer-wise training based on this information framework,
and a noise-regularised version of the information bottleneck function is used to replace
the cross-entropy loss. However, in some cases the estimated information over layers is
against information inequality process (later layers show more information than early
layers). Thereafter, Wang et al. propose the inferior performance of layer-wise learn-
ing is caused by gradually decreasing I(T;Y) over layers through comparing I(7;Y)
of greedy layer-wise learning and E2E learning (Wang et al., 2021). They further sug-
gest this inferior performance can be improved by replacing cross-entropy loss with an
information propagation (InfoPro) loss, which can avoid a collapse of task-relevant infor-
mation (I(Y;T)) at each layer during training. However, Amjad and Geiger (2020) and
Cheng et al. (2019) argue that a high I(7;Y) may be not the main reason for success-

ful performance. Therefore, we believe that Wang et al. (2021) should have focused on
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both terms of the proposed InfoPro loss, where the first term tries to maximally retain
information about the input while the second term attempts to maximise task-relevant
information. We believe the synergistic effect of two terms is a much more reasonable
explanation of improved performance given by (Wang et al., 2021) instead of only con-
sidering I(7T;Y’), which has underling connections to our proposed ITR. In addition,
Fang et al. (2018) also illustrated in Figure 4 that the E2E network which keeps a high
value of both I(X;T) and I(Y;T) terms will give better generalisation by comparing
Multi-layer Perceptron (MLP), LeNet (LeCun et al., 1989) and DenseNet (Huang et al.,
2017). In aggregate, we believe both I(X;T) and I(Y;T) have contributions to gener-
alisation, hence, paying attention on the relative speed of transformation between them

may be helpful in generalisation.

3.7 Summary

Information theory is a useful tool to understand the learning process in multi-layer
networks. When trained to learn a mapping between input-output data, networks develop
complex representations from which predicting the target is easier than from the raw
inputs. Shwartz-Ziv and Tishby’s work introduces the idea that representation learning
is achieved by information compression during later stages of learning. In this chapter,
we have used this framework to help with understanding the information dynamics of
a constructive approach by building multi-layer networks using the layer-wise trained
cascade architecture. The dynamics of learning observed on the cascade architecture
is different from that of an E2E trained model. Any compression phase we observe
is mainly restricted to the early layers, and presumably once it has extracted useful
features, later layers show no such obvious compression for removing the redundancy
at later stages. Additionally, we notice the specificity of features from different layers
can be related to a transition ratio comparing the two mechanisms based on information
learning dynamics. This ratio reflects the relative relationship between the information
from labels and original inputs, and shows the ability of finding suitable (or optimal)
depth of a network on the tasks. We already validate this phenomenon over datasets
from various domains and networks. We also compare this IB based ratio to SVCCA,
where an underlying connection exists, in terms of stopping training. We believe the ITR
is better as a criterion of stopping adding layers to CL. Inspired by Fang et al. (2018),
a potential point in the future works is extending the analysis of deciding the number of

neurons of a fixed layer in CL based on the proposed I'TR.






Chapter 4

Neural Network based Transfer
Learning for Single Cell

Classification

In this chapter, we explore Single Cell (SC) classification tasks based on Transfer Learning
(TL) between two species: mice and humans. As an ideal model organism, mouse models
are widely used in researching human diseases such as diabetes, cancer, epilepsy, and
obesity which may be caused by gene mutations (Bedell et al., 1997). Furthermore,
biomedical research on mice is cheap and needs less time for each life cycle (e.g., one
mouse year equals about 30 human years) (Rosenthal and Brown, 2007). Hence, a
greater number of experiments can be implemented on mice than on humans. Moreover,
gathering large amounts of data from humans is difficult due to the limitations from
ethic, privacy, rare diseases, cell culture cycles, environments, etc. (Guasch and Fuchs,
2005).

There have been a number of studies compare the gene expression profiles at the tissue
level across species (Merkin et al., 2012). For example, La Manno et al. (2016) report
a majority of cell types and gene expressions are conserved across species (e.g., mice
and humans). However, this conservation may only exists in parts of tissues. To further
understand the feasibility of mapping information across species, we explore the applica-
bility of classifiers trained on SCRNA-Sequencing (RNA-Seq) transcriptome data taken
from mouse cells and evaluate their performance on the equivalent measurements in hu-
man cells. We show that classification performance is retained in some cell types but not
on others. We then apply TL to retrain classifiers pre-trained on the mouse model data
to the human system, showing significant improvements in overall performance while
limited human data is available. The work is demonstrated on three different tissues
(datasets): a local Bone Marrow (BM) dataset leading to (Stumpf et al., 2020) and two
publicly archived datasets (GSE84133 and GSE76381). The work on the BM dataset
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presented in this chapter was published in the journal Nature Communications Biology,
entitled "Transfer learning efficiently maps bone marrow cell types from mouse to human

using single-cell RNA sequencing" (Stumpf et al., 2020).

4.1 Background and Related Work

Transcriptome analysis is an important way used to map genotypes to phenotypes in
biology and medicine. One cell usually only reflects the activity of part of genes while
the information of identical genotypes is shared over all cells. Hence, the conventional
assumption that cells from a given tissue are homogeneous likely misses important cell-
to-cell variability. Nowadays, SCRNA-Seq is widely used for analysing transcriptome
in biology to provide more precises understanding of the transcriptome in individual
cells (Hwang et al., 2018).

In contrast to conventional bulk RNA-Seq which measures the average expression level
for every gene across a large population of cells, the SCRNA-Seq provides quantitative
measurements of every gene expression in a single cell so that it enhances the feasibility
of studying heterogeneous systems for delineating cell lineage relationship (Petropoulos
et al., 2016)), and characterising outlier cells for discovering cancers (Shaffer et al., 2017;
Shetta and Niranjan, 2020). SCRNA-Seq also provides the possibility of investigating
new biological hypotheses where cell-specific transformations in the transcriptome are
essential such as identification of cell types, inference of gene regulatory networks and
stochasticity of gene expression across cells. A brief description of obtaining SCRNA-Seq

data with high dimensions is shown in Appendix B.1.

The combinatorial effects of diverse biological processes determine the identity of an
individual cell, including cell’s response to local environment signal (e.g., the binding of
a signalling molecule to a receptor), physical environments (e.g., oxygen availability) and
nutrient availability (Wagner et al., 2016). However, both high dimensional SC data and
biological processes are difficult to analyse. For example, original high dimensional SC
data is often noisy, and determining which biological signals should be considered need
to be customisable for different situations (Sun et al., 2019). Therefore, dimensionality
reduction is a popular technique used to reduce the original data into a lower dimensional
latent space based on the hypothesis that the above transformation may correspond to
biological influences on the transcriptome (Cleary et al., 2017; Stein-O’Brien et al., 2018;
Zhu et al., 2017).

Nonetheless, evaluating the accuracy of mapping and interpreting the low dimensional
representations of the biological processes are a challenge which requires a gold standard
provided by biological validation (Stein-O’Brien et al., 2019). A majority of applications
do not have such a gold standard (e.g., fixed criteria or rules to define a specific cell type).

Instead of directly analysing these challenging datasets, an alternate method is utilising
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knowledge learned from different but related data sources. Intuitively, a similar set of
biological process should be reflected across multiple datasets and measurement assays
of the same biological system, in addition, subsets of cellular features may be preserved

across related biological contexts (Stein-O’Brien et al., 2019).

The limited number of high quality labelled data is another challenge in identifying
individual cells. Although, advanced protocols result in an increasing number of SC
data, so far, the majority of SC data are labelled manually by characterising clusters
of cells or utilising fluorescence-activated cell sorting (FACS). Both of these methods
have inherent inadequacies. Manually clustering is affected by the choice of clustering
algorithms and the limitation of knowledge from annotators. For example, owing to
the high dimensionality, distances between cells (data points) become similar, hence
distance based clustering methods tends to be unreliable (Kiselev et al., 2019). FACS
requires extra experiments in addition to the sequencing which cannot be incorporated
into the high throughput methods. As a consequence of these limitations, obtaining large
datasets of labelled SCRNA-Seq is scarce. To address the above problems we propose to
use TL, a method which leverages learned knowledge from the related source to improve
the performance of the current targets even if there is only limited data in the target

domain.

As introduced in Section 2.4, TL is the branch of machine learning that exploits the fact
that if two datasets share common latent spaces, a feature mapping between the two
can identify and characterise relationships between the data defined by the individual
latent spaces (Caruana, 1997; Pan et al., 2008). Hence TL is a technique to assess the
transferability of features across multiple datasets. TL aims to mimic the human ability
to learn new concepts from limited examples by associating new information with prior
understanding (Pan and Yang, 2009). In the TL process, information gained from solving
a problem in a source domain is passed to another related problem in a target domain
thereby improving target domain performance. The gain from such knowledge-transfer
is particularly apparent whenever data is abundant in the source domain but scarce in
the target domain. In this case, new concepts can be efficiently learned in the target
domain from limited training samples via leveraging of prior knowledge from the source

domain.

TL on SC data has raised several authors’ interests. Stein-O’Brien et al. (2019) propose
SC Coordinated Gene Activity in Pattern Sets (scCoGAPS) from which a latent space
from the source SC data is defined. The evaluation of the latent space on the target data
is implemented by TL via a tool named projectR. scCoGAPS is a non-negative matrix
factorisation (NMF) algorithm used to define latent spaces from the source data which
is modified for accomplishing a well-defined latent space consisting of shared biology
across independent and biologically related datasets. In scCoGAPS, SCRNA-Seq data
is a gene expression matrix (XV*P) of which each column represents a cell and each

row represents an observed gene expression value. scCoGAPS decomposes this data
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matrix into two related matrices, the amplitude matrix (AV*") and the pattern matrix
(P"*P), where r is the rank. The row of A quantifies the variation among genes, and the
column of P quantifies the variation among cells. The number of columns of A is the
same as the number of rows of P, and represents the number of dimensions in the low-
dimensional representation of the data. The projectR is achieved by a generalised least
squares fit to the target data via estimating the patterns associated with the amplitude
matrix from NMF. Mathematically, a least squares problem [|Y — AQ||? is solved by
estimating the matrix Q"*?, where YV*¢ is a gene expression matrix on the target
domain, and A is from the source domain. The number of target domain cells ¢ is usually
smaller than p (the number of source domain cells). Using scCoGAPS and projectR,
Stein-O’Brien et al. explore the low dimensional latent space on the mouse retina data,
and demonstrate their approach can annotate latent spaces and transfer annotations for
classifying cells. However, their approach did not consider technical differences between
source and target domains (e.g., from bulk RNA-Seq to SCRNA-Seq), which may cause

spurious predictions on the target domain (Lotfollahi et al., 2020).

Peng et al. (2021) apply a similar methodology named Common Factor Integration &
Transfer Learning (cFIT) on fetal brain SCRNA-Seq data. cFIT is implemented by
minimising the objective function on the source domain, as shown in Equation 4.1, to
capture various batch effects. X;ZjXp is a gene expression data from the j;, batch at a
single lab using a single technology, n; denotes the number of cells from this batch, and
p is the number of genes. By this matrix factorisation, H;»ijr captures the biological
heterogeneity from cell types, and WP*" constructs a common factor space where r
determines the dimension of a latent space. bg *1is a vector used to capture batch-
associated shift, and A? *P is a diagonal matrix used to control the discrepancy of gene
expression caused by batch-specific technical effects. N = Zj]\/il n; is the total number
of cells from the source domain and W, H;,Aj,b; > 0 (each element of the matrix
or vector is non-negative). < is a positive parameters to decide the penalisation for
ensuring the identifiability of the model across batches. In TL, an estimated matrix
W from the source domain are used as a reference matrix in the target domain. To
minimise an objective function G(Hiarget, Atargets Prarget; Wsource) (shown in Equation
4.2), (Htarget, Mtarget, Ptarget) can be recovered on the target domain and subject to the
non-negative constraints. Compare to previous methods, Peng et al. believe their method
impose weaker assumption on the composition of cells from different sources and helped
establish a comprehensive landscape of brain cell type diversity. However, this work only
explores the possibility of transferring knowledge on one tissue (brain), and the selection

of parameters r shows significant influences in the performance of cell classification.
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Wang et al. (2019a) propose SC analysis via expression recovery harnessing external
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SCRNA-Seq data (SAVER-X) to attain data denoising via TL by coupling a deep au-
toencoder with a Bayesian model, and find SAVER-X markedly improves the accuracy
of cell-type identification. The external data is borrowed from public domain data (e.g.,
500K human immunocytes and 200K peripheral blood mononuclear cells) on which a
deep autoencoder is trained, and then the weights of the model is retrained on the tar-
get domain data for knowledge transfer. The adaptive retention of transferable features
across datasets is achievable by this two-step method. The denoised data is obtained by

replacing the prediction of poorly fitted genes with the mean of their target data.

Lieberman et al. (2018) propose classification of SCs by TL (CaSTLe) based on a se-
ries of univariate feature selection methods and extreme gradient boosting (XGBoost).
However, affected by the number of selected features (genes), the performance is not
robust to noise as demonstrated by Lieberman et al.. Therefore, to achieve optimal
performance, this approach requires rigorous fine tuning to select the feature count.
Wang et al. (2019b) propose batch effect removal using deep autoencoders (BERMUDA)
which use TL to do batch correction (i.e., the procedure of removing variability, caused
by technical differences, from the data). The primary idea requires utilising the simi-
larities between the cell clusters to align cell populations from batches (e.g., the type
of sequencing machine). Mieth et al. (2019) propose using prior knowledge from TL
can improve the unsupervised cluster of SCRNA-Seq data through autoencoders. The
knowledge is transferred from a well annotated dataset to an unlabelled data. However

both of them do not investigate the feasibility of knowledge transference across species.

Our work addresses above practical situations which are not considered by previous
authors. For example, we explore the situation where only a small amount of data (e.g.,
hundreds of samples instead of hundreds of thousands of samples) on the target domain
is accessible, in which one of essential values of TL lies. Our work precisely explores small
data regimes in the target domain in the setting of TL across species. Instead of using
traditional matrix factorisation methods, We use Artificial Neural Networks (ANNs) to
explore the possibility of knowledge transfer on three different tissues. The details of

exploration are shown in the following sections.

4.2 Datasets

In order to validate the feasibility of knowledge transfer across species, we use data
from three different tissues, BM, pancreas and mid-brain for both the human and mouse
species, of which details are shown in Table 4.1. For reducing external effects, we select
common classes from both species to implement TL. The following subsections show

descriptions of each tissue.



50 Chapter 4 Neural Network based Transfer Learning for Single Cell Classification

TABLE 4.1: Datasets.

. . Data size .
Tissues Species cells, genes) Categories
BM Mouse 5503,4372) 14

Human (9393,4372) 11

Pancreas(Baron et al., 2016) Human  (7568.10315) 10

1269,8579) 16
1231,8579) 16

Mouse
Human

(
(
(
Mouse  (1416,10315) 10
(
Mid-Brain(La Manno et al., 2016) E

4.2.1 Bone Marrow

BM tissue, a spongy substances, is chosen as it manufactures stem cells which have
the potential to differentiate into different blood cells. Each type of blood cells play
an important role, such as red blood cells carry oxygen to tissues in the body, white
blood cells fight infections and platelets stop bleeding by making blood clotted. As a
tissue with a well-established physiology in mice that is broadly conserved, and yet only
partially understood in humans, it raises our interest. As described by Stumpf et al.
(2020), gene expression signatures of mice are collected from three different mice by
using droplet-based SCRNA-Seq (Drop-Seq (Macosko et al., 2015)). Overall, 6,800 SC
transcriptomes are sequenced, yielding greater than 9 x 10% reads' per cell on average.
Following pre-processing and filtering, a total of 5,503 cells are retained, expressing on

average 2,684 transcripts per cell.

BM human samples are sequenced from three patients undergoing routine hip replace-
ment surgery at Southampton General Hospital. In total, 25,000 SC transcriptomes
from the three patients are sequenced yielding on average 5 x 10* reads per cell. The
data for 9,393 cells expressing on average 3,070 transcripts per cell is obtained. The

sparsity of gene expression of both species is shown in Appendix B Figures B.3 and B.4.
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FIGURE 4.1: The distribution of cell types in mice and humans of the BM dataset.
There are 14 cell types for mouse (left) and 11 types of human cells, shown using the
same colours. TL work uses these 11 common cell types.

1A read is an inferred sequence of a fundamental unit of double-stranded nucleic acids consisting of
two nucleobases bound to each other. Each unit is called a base.
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The label of cell categories is obtained by unsupervised clustering using the Louvain
method (Waltman and Van Eck, 2013) performed in the Seurat package to identify the
various hematopoietic and niche-cell types. Then, we use the likelihood-ratio test (Mc-
David et al., 2013) to identify the differentially expressed genes to label the clusters given
by the Louvain algorithm. In the likelihood-ratio test, we set prevalence > 25%; fold-
change > 2; and p value < 0.001, and screen the obtained cluster markers as biomarkers
for given bone marrow cell populations. Figure 4.1 shows proportion of different cell

types for both species.

4.2.2 Pancreas

For exploring the feasibility of knowledge transfer across species on other tissues, we
select the pancreas tissue of which the dysfunction is clinically important in type 1
(T1D) and type 2 diabetes mellitus (T2D), pancreatitis, and cancer. As described by
Baron et al. (2016), inDrop, a droplet-based SCRNA-Seq method is invoked to determine
the transcriptomes of individual pancreatic cells. In total, four human donors and two
strains of mice are included in the experiments and over 1.2 x 10% cells forming 15 clusters
are obtained. The details of the above clusters can be found in (Baron et al., 2016) or the
National Center for Biotechnology Information (NCBI) gene expression omnibus website
with reference genomes (GSE84133). As shown in Figure 4.2, we select the first 10
common classes ordered by the amount of cells to obtain enough data within each class

for the classification tasks.
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FIGURE 4.2: The proportion of cell types found in the pancreas of each species.

4.2.3 Mid-Brain

Mid-brain is another tissue which is associated with movement in auditory and visual
processing. La Manno et al. (2016) define cell types of the ventral mid-brain in both hu-
mans and mice for a better molecular understanding of human mid-brain development.
Coded by GSE76381 on NCBI, this SC data contains human embryo ventral mid-brain
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cells between 6 and 11 weeks of gestation and mouse ventral mid-brain cells at six de-
velopmental stages between E11.5 to E18.5. We establish a 16-class cell recognition task

and the distribution of classes is shown in Figure 4.3.
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FIGURE 4.3: The proportion of cell types from the mid-brain in mice and humans.

4.3 Methodologies

We use two simple classifiers, the Support Vector Machine (SVM) and decision tree
to recognise different cell types of BM SCRNA-Seq data from both mice and humans.
We compare their performance to a simple ANN which will be used to complete TL in
the later steps. After which, we directly test the mouse model on the corresponding
human tissue datasets to investigate the transferability between the two species without
retraining. Here, we refer to mice as the source domain and humans as the target domain.
We use a small amount of data from the target domain to retrain a model trained on the
source domain. Finally, we investigate the effects of progressively adding the data used

in target domain during knowledge transfer. The details of experiments are as follows.

4.3.1 Feature Selection and Traditional Classifiers

In this part, we explore the learning ability of traditional classifiers on recognising cell
types, including SVMs and decision trees. For each of them, we investigate the effects of

reducing dimensionality of inputs compared to using unprocessed high-dimensional data.

SVMs classify samples by finding a hyperplane which can maximise the margin between
classes. For this classifier, we utilise two ways of reducing the dimensionality of inputs:
Principal Component Analysis (PCA) and gene selection. At the first way, we use PCA to
map the high dimensional data to lower dimensional space, and then send the projected
data to SVMs. Various number of PCA components are selected to observe the influence

on performance. PCA is implemented using the sklearn.decomposition library with the
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default setting? except "whiten—True"?. SVM is performed by the library sklearn.svm,
with the default kernel (radial basis function). The second method of reducing dimen-
sionality of inputs is selecting different number of genes from fewer to more, where genes

are sorted by the variance of gene expression across cells.

Unlike SVMs, decision trees are based on a multistage/hierarchical decision scheme to
perform classification. The tree is composed of a root node, a set of internal nodes
and a set of terminal nodes (leaves). Each node of a tree makes a binary decision to
separate classes. In the experiments, we apply dimension reduction of input data by
PCA, compared to data with full dimensions. To perform decision trees, we use library
sklearn.tree. Decision TreeClassifier with the default criterion (gini) to measure the quality
of each spilt. The depth of the decision tree is 10, which is decided based on all leaves

being pure.

4.3.2 Artificial Neural Networks

Although traditional classifiers can achieve competitive performance, it is not easy to
transfer knowledge based on them. Hence we also explore the performance of ANNs
on classifying cell types as the foundation of TL, and also compare it to traditional

classifiers.

We use single hidden layer neural networks with various number of neurons to recognise
the cell types. We investigate the uncertainty of performance using the stratified k-fold
method to spilt the training and test datasets so that both have the same distribution.
The single layer neural networks are trained for 30 epochs and optimised by Root Mean
Square Propagation (RMSprop)(Tieleman and Hinton, 2012) with a learning rate 0.001,
performed by the keras library. For investigating the effects of regularisation, we also
compare the performance of model using L2 regularisation with factor 0.001 and without

regularisation. Unless otherwise specified, the setting of networks is the same.

Up to now, all the experiments have been implemented based on the data with all gene
expressions. However, a great number of genes are rarely expressed in the majority
of the cells as shown in Figure B.2. Therefore, we further investigate the effects of
reducing utilised genes on prediction performance. We sort the genes by the variance of

expressions over cells from big to small, and then progressively reduce genes, eliminating

2There are two essential parameters, gamma and C. Gamma is a positive parameter to define
how much influence a single input has. A larger gamma results in effects on closer other inputs.
The value of gamma is set as "scaled", and the value equals to 1/(the_number of features
the _wvariance_of inputs). C is used to trade-off the balance between the misclassification of data
and the simplicity of the decision surface. Lower C results in smoother surface.

3We set it as True for improving the predictive accuracy of the downstream estimators as whitening
can remove part of information from the transformed signal, namely reducing the relative variance scales
of the components. The components vectors are multiplied by the square root of n samples and then
divided by the singular values to ensure uncorrelated outputs with unit component-wise variances.
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by the smallest variance. For comparison, we also randomly reduce the same proportion

of genes and then classify the cells using the remaining gene expression data.
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FIGURE 4.4: Schematic diagram of TL from mouse to human. Weights the network
trained on mouse data, apart from those of the final layer, are frozen and the final
layer retrained using human data. Thus, the input to hidden layer transformation (or
mapping) is being transferred from mice to humans. Input distributions are shown
using Gaussian kernel densities applied to TSNE projections.

4.3.3 Transfer Learning

After validating the feasibility of using neural networks to recognise cell types, we fur-
ther investigate the possibility of transferring knowledge between species (from mice to
humans). Figure 4.4 shows the training scheme of TL. Firstly, a single hidden layer
neural network is trained on the (mouse) source domain data. Then, the weights of its
hidden units are frozen while the output layer, with a softmax activation function, is
retrained on the (human) target domain data. As described in the Section 2.4.2, we use
a trained model as a feature extractor to validate the feasibility of knowledge transfer
across species, without fine tuning of weights of hidden layers. In the Chapters 5 and
6, we further explore the case of fine tuning weights of hidden layers after observing the
transferability of extracted features. From experiments on the source domain, we take
the network with 18 neurons to transfer knowledge, as this model has sufficient learning
ability to classify the cells on the source domain. We also explore the effects of reducing
the amount of used genes on TL and the transferability affected by the amount of data

used on the target domain to retrain the model.

Table 4.2 summarises all the scenarios explored in this chapter. In scenarios 1, 2 and 3,
we randomly apply an 80 : 20 spilt on the data to create the training set and testing

datasets. In scenario 4, the human data is split into two equal parts when producing
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the train and test datasets independent and identically distributed (i.i.d). 50% of the
human train data is spilt by a 20-fold stratified Cross Validation (CV). We then randomly
select increasing number of data (more folds are contained) as the set used to retrain
the model. The remaining 50% of the human test data is used as a fixed set to evaluate
models in scenarios 4, 5, and 6. All experiments are evaluated over multiple runs to
explore the uncertainty. Considering the imbalance in distribution of categories, we use
both accuracy and weighted Fy score (which considers both precision and sensitivity)?

to evaluate the performance.

TABLE 4.2: The scenarios applied into exploring the transferability between mice and
humans. In scenarios 5 and 6, the mixed data consists of both mouse and human data.
The details of the mixed data is described in Figure B.5.

Scenarios 1 2 3 4 5 9

Train Mouse Human Mouse Mouse  Mixed Mixed
Retrain - - - Human - Human
Test Mouse Human Human Human Human Human

4.4 Results

In this section, we show and analyse results on three tissues, BM, pancreas and mid-
brain. After comparing the learning ability of neural networks to traditional Machine
Learning (ML) methods, we notice, both of them can provide satisfactory performance
on the same dataset. To investigate the feasibility of knowledge transfer, we further
implement TL based on neural networks with respect to growing amounts of data on the

target domain.

4.4.1 Support Vector Machines

As shown in Figure 4.5, SVMs combined with PCA, show compelling learning ability
on both mouse (scenario 1) and human (scenario 2) data of BM and pancreas tissues.
The results of the developing mid-brain tissue are in the range 0.4 to 0.6, which may
indicate the developing tissues are hard to recognise due to the variable absence of gene
expressions in different developing stages. Moreover, the performance is affected by the

number of PCA components for all three tissues. After increasing the number of PCA

= 2 x precisionXrecall

precision+recall? Where

4F, score is a metric to evaluate the performance as equation: Fj

recall = True Positive (TP) and .. _ TP
~ TP+False Negative (FN) precision = TP+False Positive (FP)"
Weighted Fi scores calculates the I} scores for each class independently and then adds them together

using a weight depending on the number of true labels of each class.
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FIGURE 4.5: The performance of PCA plus SVM on three tissues (BM, pancreas and
mod-brain), evaluated by weighted F1 score and accuracy. The first and second columns
provide results on mice and human, respectively. The performance is investigated with
respect to the growing number of components given by PCA. "No PCA" means data
without PCA is used as inputs of classifiers. Uncertainties in results are evaluated by
ten-fold CV.

components, we notice the relationship between performance and the number of compo-

nents is nonlinear. For example, a SVM implemented on 10 components shows optimal

performance for the BM tissue. For pancreas and mid-brain tissues, 50 components are

optimal. We also find a consistent trend on both evaluations, F} score and accuracy.

We also notice using features from all genes shows better performance than using 500

principal components on the mid-brain datasets, which is unexpected. After carefully

checking the results, this may result from the developing of cells where different genes

will be expressed in the different developing stages.

Figure 4.6 shows performance of SVMs using different number of genes on BM, pan-

creas and mid-brain tissues. We observe that the selection of different number of genes

marginally affects the ability of recognising cell types, and there is no clear tendency
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to indicate whether more genes contribute more to the performance. Compared to the
results given by ANNs (same to results in Figure 4.9), SVMs show slightly inferiority for
BM and pancreas tissues. For mid-brain, the differences between SVMs and ANNs reach
20%. In comparison to PCA plus SVMs (shown in Figure 4.5), training SVMs on selected
genes may cause decrements of performance in recognising cells. As the selection of pa-
rameters (gamma and C) of SVMs may cause significant differences in performance, we
also train several SVMs by searching gamma from a list, [0.05,0.1,0.5,1, 10, 100, 1000],
and C from the list, [0.01,0.05,0.1,0.15,0.5,1,10,100]. As a result, SVMs with default
setting described in Section 4.3 provide significant performance. Although in some cases,
the performance of SVMs can be further improved with carefully fine tuning of parame-

ters, this is not the point we want to chase in this work.
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FIGURE 4.6: The comparison between SVMs and ANNs over an increasing number of
selected genes. Each column shows performance of classification measured by F} score
on one dataset. The top line shows results on mice, and the bottom line is for humans.
The green triangle is the mean over ten-fold CV using SVMs and the blue dashed line
represents the mean results given by ANNs.

4.4.2 Principal Component Analysis and Decision Trees

Figure 4.7 shows performance of a decision tree associated with PCA based on the same
scenarios of Figure 4.5. All performance are measured by both F} score and accuracy. In
this case, the best performing decision tree is inferior to the best performing SVM (see
Figure 4.5). However, compared to the SVM, the decision tree shows relatively more
stable learning performance with respect to the number of PCA components. We also
directly apply a decision tree to the data using all genes (i.e., no PCA), however find
unsatisfactory results on the BM tissue which may be caused by the over-learning of

noise. For the pancreas and mid-brain tissues, using all genes improves the performance
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of decision trees.
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F1GURE 4.7: The performance of decision tree with PCA transformation of three tis-
sues from mice (the first column) and humans (the second column). The ability of
recognising cell types is evaluated by both F1 score and accuracy due to the imbalance
data distribution. "No PCA" means training decision tree using all genes.

4.4.3 Artificial Neural Networks

As ANNSs have repeatedly shown to be powerful learning architectures, we consider vary-

ing sized neural networks on the data using all the genes. As shown in Figure 4.8(a),

the performance of single layer neural networks increases with respect to the number of

neurons of the hidden layer and saturates at 18 neurons on BM and pancreas data (40

neurons on mid-brain data). We also try the case with adding L2 regularisation with

a factor of 0.001 in training models. For the BM tissue, adding regularisation drops

performance from around 95% to 90% measured by accuracy and Fj score where re-

call and precision are around 85% and 98%, respectively. For the pancreas tissue, the
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FI1GURE 4.8: The performance of single hidden layer neural networks on mice for BM,
pancreas and mid-brain tissues. All models are trained without adding regularisation,
and the size of each model is gradually increased with adding more neurons to the single
hidden layer.

performance of models trained by adding the regularisation is in the range from 80%
to 90% measured by accuracy (from 70% to 80% measured by Fj score, recall is less
than 70%, and precision is round 98%). The decrements is about 10% in comparison to
no regularisation in training. Similarly, the accuracy of classification drops about 20%

(accuracy is around 40%), when the regularisation is added, on the mid-brain tissue.

4.4.3.1 The Effects of Gene Selection

As the SC data is sparse, we are also interested in how many genes are essential for
recognising cell types. Figure 4.9 shows the performance of a single hidden layer neural
network (with 18 neurons for BM and pancreas datasets, with 40 neurons for mid-brain
datasets) over the progressively increasing number of genes. Limited genes, selected
by sorted variance, contain better knowledge in recognising BM and pancreas cells, in
comparison to randomly selected. This dominance gradually decreases with an increasing
number of used genes. There are around 20% of genes that show significant importance
in recognising cell types, including gene * ENSMUSG00000039959° as an example of the
BM tissue. However, for the developing mid-brain data, there is no monotonic trend.
Furthermore, the optimal number of used genes is divergent between species. Therefore,
sorting genes simply by the variance of expression over cells is a reasonable but not
optimal way of selecting the relative essential genes for all tissues. A suitable schema used
to select the genes still needs further investigation, however is not our current objective.
For reducing the influence of uncertain factors, we utilise all available common genes

between species to implement the TL in the following session.

4.4.4 Transfer Learning

After validating the feasibility of using neural networks to recognise cell types on SC

data, we further show the transferability of features extracted by neural networks across
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line) and randomly selected (grey line). The shaded areas show the uncertain range of

10-fold CV.
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FIGURE 4.10: The performance of TL from mouse to human on BM dataset. 0 percent
stands for the direct test on the data in the target domain following scenario 3 shown in
Table 4.2. Tt shows comparison between direct learning (scenario 2) and TL (scenario
4). TL shows significant superiority of performance when there is limited available
data on the target domain. Figure 4.13(a) shows the influence of initialisation on the
classifier.

species in this section. Unless otherwise specified, we utilise all available common genes

across the two species in the following experiments.

Figure 4.10 presents the comparison of performance (F'1 score) between direct training
on human data (scenario 2) and transfer from mouse data (scenario 4 from Table 4.2).
An increasing amount of data is used to retrain the model on the target domain. The
result suggests using a small amount of data to retrain the model is helpful to improve
the performance on the target domain compared to directly testing (scenario 3). The
performance of TL increases monotonically over the growing proportions of data used to
retrain the model, saturating at around 20% of the data. The performance of TL can
reach around 90% which is significant in supporting that knowledge of SC data being
transferable across species. Details of this performance measured by other metrics are

shown in Figure B.6.

Furthermore, TL significantly outperforms direct learning on the target domain (scenario
2) as shown in Figure 4.10. When a small amount of data (less than approximately 2.5%)
is available, TL shows more than 20% improvements in recognising cells for the BM
tissue. Similar superiority in classifying cells can also be found in pancreas and mid-brain
tissues, when the target data is limited. Figures 4.11 and 4.12 show the breakdown details
of each class’s transferability based on confusion matrices. For the BM tissue, Figure
4.11(a) shows confusion matrices of TL, and Figure 4.11(b) shows confusion matrices on
direct recognising BM human cells, with models trained on a growing amount of data.
The comparison between them further reveals that directly learning has poorer learning
ability on limited data than TL. For example, knowledge of some cell types, such as
Erythroblasts, Monocytes, Myeloblasts, Myelocytes, Neutrophils and T-NK, have high
transferability even with limited target domain data (such as PL1 and PL2). Considering

the imbalance of cell type distributions as shown in Figure 4.1, we analyse whether the
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FIGURE 4.11: The normalised confusion matrices on the growing number of human
data for both TL ((a) and (c¢)) and direct learning ((b) and (d)). For both BM and
pancreas tissues, a growing percentage of human data is selected to train the model,
where PLz means the increasing levels of percentage from 1 to 20. The model is tested
on fixed percent of unseen human data. At (a) and (b), "C0-C10" corresponds to cell
types of the BM tissues: Erythroblasts, HSPCs, Monoblasts, Monocytes, Myeloblasts,
Myelocytes, Neutrophils, Pericytes, Pre-B, Pro-B, and T-NK. At (c¢) and (d), the axis
values "C0-C10" correspond to the names of the classes from the pancreas tissue: T-
cell, Activated Stellate, Alpha, Beta, Delta, Ductal, Endothelial, Gamma, Macrophage,
Quiescent Stellate, Schwann.
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classes with higher weight will be recognised easier. In short, we eliminate this potential
hazard as features from Monocytes, Myeloblasts, Neutrophils and T-NK cells have high
transferability even though they have a relatively small percentage of data. Compared
to direct learning (scenario 2) without knowledge transfer (see Figure 4.11(b)), Figure
4.11(a) shows features transferred from mouse are obviously helpful towards reducing

the confusion between Monoblasts and Myeloblasts cells.

In line with results on BM, the superiority of learning ability of TL on small amount of
pancreas data can be observed by comparing Figure 4.11(c) with Figure 4.11(d). Figures
4.12(a) and 4.12(b) show the consequence of recognising mid-brain cells by TL and direct
learning, respectively. As recognising developing cells (mid-brain tissues) is much more
difficult than recognising mature cells (BM and pancreas tissues), both of the learning
methods do not provide satisfactory performance. However, TL still reduces confusion

of classification on limited target data, especially for Unk cells.
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(b) Training on mid-brain of human (Scenario 2)

FIGURE 4.12: The comparison of confusion matrices of TL and direct learning on
the growing percentage of human mid-brain data. (a) and (b) are performance of TL
from mouse data and directly training on human data, respectively. The axis values
"C0-C15" correspond to classes: DAO, DA1, DA2, Endo, Mgl, NProg, NbM, NbML1,
NbML5, OMTN, Peric, RN, Rgll, Rgl3, Sert, Unk.

4.5 Discussion

We have validated the transferability between species on the three tissues, we also have
interest in what kinds of effects may cause transferability drop, e.g., initialisation of
classifiers, the distributions of samples, the size of the model and regularisation. We

take the BM tissue as an example to do further exploration regards to above elements.
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Considering the initialisation of classifiers, we compare the effects of randomly initial-
ising classifiers and using pre-trained weights as the initial values. As shown in Figure
4.13, the red dashed line in Figure 4.13(a) shows the results of TL based on random
initialisation (shown in Figure 4.4), and the original solid line in Figure 4.13(b) shows
the performance of the classifier using pre-trained weights from the source domain. Com-
paring each illustrates that the pre-trained classifier show better performance than the
random initialised classifier when target domain data is limited (less than around 2%).
Both TL cases outperform direct training (the blue dashed line) on the target domain

when limited data is available.
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F1GURE 4.13: The performance comparison between TL and direct learning on the
progressively increasing BM data on the target domain. In (a), the classifiers are
initialised by two ways, random (the blue dashed line and orange solid line) and pre-
trained (red dashed line). The pre-trained classifier improves the performance of TL
when there rare data is available on the target domain, and outperforms direct learning.
(b) shows transferability of features from the model being trained on the mixed data.
Compared to being directly trained on the target domain, TL from mixed data shows
significant improvements.

We further explore if transferability is improved when the model has seen parts of mixed
data (scenarios 5 and 6) during training on the source domain. The exploration of
transferring knowledge from mixed data is inspired by a realistic situation in the natural

°. In this use case, the company needed a model to recognise

language processing area
the English based on the voice of the speaker, however, there are various types of English
accents and dialects (Winata et al., 2020). Training a model from scratch is too expensive,
but also, English with different accents and dialects is always lacking data to train the
big model. Hence, the model is trained on the standard English to reduce training costs.
Similarly, impacted by the operations of experiments, patients and ethnic variations, the
prediction of cell types is in a similar situation. Therefore, we give preliminary results on
exploring the transferability of features extracted from mixed data. The corresponding

results are shown in Figure 4.13(b) as the yellow dashed line and the green dashed

®As described in the website https://emerj.com/partner-content/crowdsourced-natural-langu
age-speech-training-use-cases-explanation/
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line. We find significant improvements brought by mixed data on the source domain
when limited data is available on the target domain in comparison to other scenarios.
However, when there is an abundance of target domain data, the improvements are

negligible compared to direct learning on the target domain (scenario 2).

Considering the imbalance in the distribution of classes, we investigate the situation
that all classes are equally sampled from the train data on the source domain, and oth-
ers kept the same. Consequently, we observe no significant change in the performance of
TL. Observing the affect of model size, we find that networks with more neurons do not
show better performance and in some cases show slightly worse transferability. Taking
regularisation into account, we also notice regularisation may be harmful to transferabil-
ity. To validate this, we consider two types of regularisation: adding a dropout layer to
the model and direct L2 regularisation. Both ways show considerable reduction of TL
performance (from around 90% dropping to 60%). Based on this observation, we assume
models working well in the source domain may extract too specific features to source
domain data, so that the features will have poor transferability. To further investigate
this point, we extend our work to the next chapter 5 where TL based on Cascade Learn-
ing (CL) is introduced. As an adaptive learning algorithm, CL shows the potential to
progressively extract features from coarse to fine, layer by layer, where coarse features

may have better transferability.

Moreover, we notice that the performance on the mid-brain data is not ideal (around
70%). We assume the developing cells (mid-brain) have more complex gene expression
features, especially the same type of cells in the different developmental stages which may
have completely different information for the gene expression. Kharchenko et al. (2014)
and Sarkar and Stephens (2021) also refer to another situation called gene ‘dropouts’ in
which a gene is observed at a moderate expression level in one cell but is not detected
in another cell. Taking these potential risks into account, the relative poor results of

classification on the mid-brain data are reasonable.

Although the performance of recognising developing cells need further improvements,
TL can enhance the capability of learning when target domain data is limited. The
consistent advantages are shown on three types of tissues (see Figures 4.11 and 4.12).
Building on these promising results on the small regime data, we further explore TL
in another two applications, Human Activity Recognition (HAR) and medical image
classification, where data scarcity is a widely concerned issue. Similar observations are

reported by us (see Chapters 5 and 6).

4.6 Summary

In this chapter, we have investigated the capacity of traditional methods (the SVM and

decision tree) and neural networks on single cell classification tasks, where we notice
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the comparable performance from all of them (neural networks sometimes show better
results). We further validate the feasibility of knowledge transfer across species based on
features from neural networks. From exploring three tissues, two mature tissues and one
developing tissue, we demonstrate that knowledge can be transferred across species (from
mouse to human). To be more precise, TL shows significant improvements when a limited
number of training target data samples are accessible compared to directly learning
without transferring knowledge. This discovery has important practical implications for
exploring the characteristics of single cell human data for the reason that training a

network from scratch would need amounts of data which is hard to collect.



Chapter 5

Transfer Learning from Cascade
Learning for Human Activity

Recognition

In previous chapters, we have introduced Cascade Learning (CL) as a computationally
efficient method of training Deep Neural Networks (DNNs) and analysed its behaviour in
comparison to End-to-End (E2E) training on the information plane. We also considered
Transfer Learning (TL) applied to genomics problem in which it turned out a simple
single hidden layer neural network gave sufficient performance. In this chapter, we con-
tinue to discuss TL on harder problems that require multiple layers of hidden units. In
comparing cascade and E2E trained networks as source models, we seek to understand
how features from different layers are useful in achieving significant performance in a
target problem. Our observation is that a nature of CL is to extract coarse representa-
tions about a problem in early layers of a network and fine details in later layers. As
such TL from early layers of a cascade trained model often performs better than transfer
from later layers or from corresponding E2E trained models. In this chapter, we demon-
strate this observation on Human Activity Recognition (HAR) problems and the next
chapter present work on natural and medical images. The work reported in this chapter

is published as a peer reviewed conference paper (Du et al., 2019).

5.1 Related Work

Recognising human activities from sensor-based measurements is a challenging and useful
problem in Machine Learning (ML) with a wide range of potential applications, partic-
ularly related to personalised healthcare. Interest in this topic has grown significantly
in recent years with increasing availability of cheap wearable sensors integrated into ev-

eryday devices such as smart phones. Remote monitoring of the elderly in homes (Kuo

67



68 Chapter 5 TL from CL for HAR

et al., 2004) and early diagnosis of complex diseases (Milne et al., 2017) are examples of

activity recognition applications.

In early work, the common way of solving HAR tasks including three stages: extracting
features (e.g., Fourier or statistical features); prepossessing the extracted features; and
using a classifier (e.g., Support Vector Machines (SVMs), Random Forest, Gaussian
Mixture Models, k-Nearest neighbour and Hidden Markov Models) to recognise activities
based on those features (Bulling et al., 2014; Calatroni et al., 2011; Lara and Labrador,
2013; Ordonez et al., 2014; Roggen et al., 2015). However, this traditional pipeline usually
encounters two issues: the extraction of hand-crafted features is limited by human domain
knowledge (Wang et al., 2019¢); and the performance of classification based on hand-
crafted features can be inferior as various activities may need different features (Huynh
and Schiele, 2005).

Advances in algorithm, much of the impressive development has been seen in recent
years using neural networks and increasing the depth of networks is thought to enable
the extraction of features that helps in creating accurate inferences. DNNs have also
been applied to HAR by several authors (Hammerla et al., 2016; Ronao and Cho, 2016)
taking advantage of their ability at carrying out feature extraction and classification
simultaneously. As with a number of other problems, extracting relevant features au-
tomatically by training is seen as an advantage over the use of hand-crafted features
as used in works (Bulling et al., 2014; Lara and Labrador, 2013; Ordoniez et al., 2014).
The most popular Deep Learning (DL) approaches applied in HAR include Multi-layer
Perceptrons (MLPs), Convolutional Neural Networks (CNNs) (Ordonez and Roggen,
2016), Recurrent Neural Networks (Edel and Képpe, 2016), and the Long Short-Term
Memory (LSTM) (Guan and Plotz, 2017).

Although the above approaches show state-of-the-art generalisation performance, the
computational complexity and memory requirements of DNNs is noted to be generally
high (Chellapilla et al., 2006; He and Sun, 2015). These requirements limit the further
application in HAR where one of the goals includes the necessity to integrate these
networks on wearable/edge devices (e.g., smart phones and smart watches) for real-time
detection (Nguyen et al., 2021), such as anticipating the users of certain incidents or
monitoring diseases (Agarwal and Alam, 2020). For different users, the model may need
to be trained on the device to fit the specificity of personal data. Hence, HAR requires
compact models with lower computational cost solutions where CL provides natural
advantages as aforementioned in Chapter 2. This is one motivation for the pursuit of
the CL architecture in this work.

In addition to the need of compact models, data scarcity is another issue in HAR (Al Ma-
chot et al., 2020; Baxter et al., 2015). Collecting and annotating sensory activity data
are expensive and time consuming, which make annotation scarcity be a remarkable

challenge for sensor-based activity recognition. Data for some emergent or unexpected
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activities is especially hard to obtain as training data, which is another factor of data
scarcity. Furthermore, activity patterns are person-dependent, namely different users
may have diverse activity styles which further exacerbates the annotated data shortage
problem. As mentioned in Chapter 4, TL is one of the main ways to alleviate the data
shortage problem. Knowledge transferring across different users is also a potential way in

solving problems caused by person-dependent activity patterns in practical applications.

There have been several authors (Calatroni et al., 2011; Kurz et al., 2011; Morales and
Roggen, 2016) who have considered TL on HAR problems, and Cook et al. (2013) pro-
vide a review of their work. TL combined with DNNs on HAR proposed by Morales and
Roggen (2016) is the closest to our work. They use an eight-layer convolutional neural
network consisting of 64 kernels (5 x 5) in each layer and a final LSTM layer of 128 cells.
They copy and freeze the first few layers of source model and only train the later layers
with random initialisation for implementing TL. This is a large network with a total
of 986,257 parameters and Graphics Processing Unit (GPU) support is necessary. In
addition to requiring heavy computation, the results reported for multi-class TL classifi-
cation tasks are in the region of 0.50 (a low F score). However, the feed-forward cascade
architecture we report in this work requires far fewer parameters (49,224) and could be
run with Central Processing Unit (CPU) computing alone, achieving significantly higher
transferability (see Section 5.4).
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@ =Complete Inertial Measurement Unit <= Triaxial Accelerometer

FIGURE 5.1: The on-body placement of sensors of the Opportunity dataset (Roggen
et al., 2010).

5.2 Datasets

We use two benchmark datasets (Opportunity (Dua and Graff, 2017) and Skoda Mini
checkpoint (Skoda) (Roggen and Zappi, 2015)) with different data acquisition protocols
and the numbers of activity classes. Opportunity contains 18 activities performed by four
subjects measured with wearable sensors, 3D accelerometers and Inertial Measurement

Units (IMUs). Figure 5.1 shows locations of sensor placement on the body. The 18
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activities in this dataset relate to behaviours in the kitchen such as opening and closing
doors, and motions made during cleaning. Skoda is a dataset relating to quality control
activities in a car production setting where 11 activities are contained such as closing
of the vehicle’s trunk and opening/closing of an engine hood. Sensors of Skoda consist
of 20 3D accelerometers placed on both arms whose locations are shown in Figure 5.2.
This dataset was sampled with frequency 98H z, which we down-sampled to 30H z for
consistency with Opportunity. In both cases, the three axes of each accelerometer are

treated as separate channels.

FIGURE 5.2: The on-body placement of sensors of the Skoda dataset (Stiefmeier et al.,
2007).

5.3 Methodologies

We investigate TL from CL on HAR tasks by constructing three tasks:

e (Task 1) the performance comparison between a cascade and an E2E architecture
on the same multi-class activity recognition tasks to establish that CL can achieve

comparable performance to E2E training;

e (Task 2) a comparison of features’ transferability across tasks within a given dataset

where features are obtained from E2E or cascade trained models;

e (Task 3) transfer of learned features across datasets, again comparing features
learned by the two different learning mechanisms. We repeat all experiments with

five runs to assess the uncertainty with 400 training epochs in each run.

Performance is measured by micro Fj scores as well as weighted F scores! to account
for imbalance across classes. The Adam optimiser is used in all experiments with a

heuristically determined initial learning rate of 0.0001.

"Weighted F; scores calculates the F) scores for each class independently and then adds them together
using a weight depending on the number of true labels of each class.
Micro Fi scores uses the global TP, FN, and FP and calculates the F; score directly.
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5.3.1 Task 1: Activity Classification with Cascade Learning

Empirically, we use MLP networks in this experiment. For the Opportunity dataset,
networks have 5 layers with 25 units for each layer. For the Skoda dataset, MLPs have
128 input units and three hidden layers of 64, 64 and 32 units. The number of output
units is decided by the number of classes. We use Hyperbolic Tangent Function (Tanh)
activation function for hidden layer units and softmax at outputs. For the Opportunity
dataset, we use all the IMU sensor measurements and for Skoda we use the sensors placed
on the right arm (determined by activities). For Opportunity, we train the model by
using the data from Activities of Daily Living (ADL)1, ADL2, ADL3 and drill session,
and test the model using data from ADL4 and ADL5 (the same protocols as (Morales
and Roggen, 2016)). For Skoda, we randomly take 20% of the data as testing sets and
the remainder as training sets. Both training and testing data are normalised to [0, 1] as
in (Ordonez and Roggen, 2016).

5.3.2 Task 2: Transfer Learning within an Activity Dataset

In this task, we establish three sub-tasks in the setting of TL. Firstly, we demonstrate
the possibility of knowledge transfer across users based on CL. Then, we compare the
transferability of features acting on different objects through binary and multi-class clas-

sification tasks respectively.

5.3.2.1 Multi-class Classification across Users

For comparison with Morales and Roggen (2016), we use the same evaluation method to
explore the performance. The source data consists of data from subjects 1, 2 and 3 where
the training data consists of all data from subject 1, and data from subjects 2 and 3 in
ADL1, ADL2, ADL3 and drill session. The test data includes all the data from subjects
2 and 3 in ADL4 and ADL5. The target data is all the data from subject 4 where the
train and test spilt are divided in the same way as the source domain (i.e. ADL4 and
ADLS are the test data as in (Morales and Roggen, 2016)).

5.3.2.2 Multiple Binary Classification Tasks

To compare the transferability of features from cascade vs. E2E trained models within
a domain of different tasks, we use the Opportunity dataset which has open and close
activities on different objects (e.g., fridges, doors, drawers and dishwashers). The un-
derlying tasks have similarities in the required movement, but may have differences in
required force and posture. There is a set of TL experiments in which the source domain

model is trained for recognising differences between open and close on the same objects
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(e.g., Door 1) and all open/close pairs on other objects are target domains to transfer.
The transfer is implemented by taking features from each hidden layer of source models
and training a classifier (layer) to fit the subsequent target domains. The details of these
sub-tasks are summarised in Table 5.1. The MLP networks used for these sub-tasks
consists of six layers with 25 hidden units in each. The method of dividing the train and

test data remains the same as previous work (Morales and Roggen, 2016).

TABLE 5.1: Task 2: Summary of source and target domains used for experiments
reported on task 2.

Subtasks ‘ Source domain ‘ Target domains

Multi-class

Subjects 1,2 and 3 | Subject 4
across users

Door2
Fridge

Binary Dishwasher

|
|
|
(open wvs. close) | Door1
|
|

Drawerl

Drawer2

Drawer3

4 classes

(Open/close
1 Type one

Type Two)?

14 classes
Multi-class (Open/close
7 objectives)

1: 7 objectives include: Doorl, Door2, Fridge, Dishwasher,
Drawerl, Drawer2 and Drawer3.

2: Type one and Type two are separated by the difference of hand
movements. Type one: Doors and Fridge. Type Two: Dishwasher

and Drawers.

5.3.2.3 Multi-class Classification Tasks

We further test transferability of features extracted from cascade and E2E trained net-
works in a more challenging multi-class setting. We build a 14—class problem with open
and close on seven different objects (fridge, door 1, dishwasher etc.,) as the source prob-
lem and a four-class problem as the target problem as summarised in Table 5.1. On the
target domain we identify the opening and closing of the Type one objects (doors and
fridge) and the opening and closing of Type two objects (drawers and dishwasher) where
Type one and Type two are grouped according to the similarity of hand movements in
activities. This grouping is done to be consistent with the confusion matrices resulting in
Task 1. Hence, the four target classes in Task 2 are: Open Type One, Close Type One,
Open Type Two and Close Type Two. To clarify the source and target domains for all
experiments done for Task 2, Table 5.1 shows the summary of all the source and target

domains.
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FIGURE 5.3: The scheme of TL in a CL setting. The layers in dashed boxes with the
same colour shared by the source and target domain for transferring knowledge. All
layers in grey are frozen. A transfer block is added to target domain models after the
shared layers for fitting task domain tasks. The structures of transfer blocks are listed
in Section 5.3.3. The classifier layer of each layer on the source domain is included in
the output layers.

5.3.3 Task 3: Transfer Learning across Datasets

To investigate TL across two different domains of HAR, we use both the Skoda and
Opportunity datasets to set up this task. Sensors from similar positions on the left
arm of Skoda and the right arm of Opportunity are chosen as 18 dimensional inputs
with open and close actions. The six selected accelerometers are located at positions
1,2,16,21,27,29 in Figure 5.2 for the Skoda data and two IMUs, RLA and RUA shown
in Figure 5.1 for the Opportunity. The setting is transferring features from the Skoda

to the Opportunity dataset in order to solve a binary classification problem.

We consider three different ways of changing the transfer block (Figure 5.3): (i) training
a randomly initialised classifier; (ii) training a new hidden layer and a classifier layer with
features transferred from the source problem; and (iii) using the trained weights of the
source model as initial conditions and training the entire network on the target problem.
Note, of these (i) and (iii) could be seen as differing only in the initial conditions of

gradient descent training. Hence, we show all the results from the method (ii) for TL.

5.4 Results

5.4.1 Task 1: Activity Classification with Cascade Learning

Tables 5.2 and 5.3 show the performance comparison between E2E and CL on the
Opportunity and Skoda multi-class classification problems respectively. On both tasks

our E2E and CL models achieve comparable performance to results reported by Yang
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et al. (2015) and Zeng et al. (2014). Although our simple neural network architecture
shows lower performance than the huge DeepConvLSTM model (Ordénez and Roggen,
2016) for HAR on Opportunity for classification, without considering TL, performance
is not the focus of this part per se. Instead, we are interested in cascade trained networks

for TL and the performance on a target problem.

TABLE 5.2: Task 1: Classification performance of Cascade and E2E learning on the
18-class Opportunity Dataset. LX means the Xy, layer from the network. The bold
text show the best performing case. For the remaining tables, the same colour coding
and layer notation is used. Due to the imbalance among classes (including the null class
with the majority), the micro F; score shows higher performance.

Model Micro Fy score (%) Weighted F} score (%)

CL L1 86.52+0.31 84.161+0.36
CL L2 86.88+0.30 85.144+0.39
CL L3 86.78+0.23 85.36+0.40
CL L4 86.76+0.38 85.46+0.48
CL L5 86.72+0.31 85.50+0.47
E2E 86.32+0.67 85.08+0.55

TABLE 5.3: Task 1: Classification Performance of CL and E2E Learning on the test
Skoda Dataset. In this table, we include two situations, including null class (11-class)
and no null class (10-class). As the null class results in an imbalanced distribution, we
compare the weighted and micro Fj scores on 11-class task where weighted F} shows
slightly worse performance. Weighted F; score counters the imbalance issues and gives
more reasonable overall results.

Evaluation ‘ CL L1 CL L2 CL L3 CL L4 ‘ E2E

Weighted Fy score (%)
(No Null Class)

Micro Fy score (%)
(No Null Class)

Weighted Fy score (%) | 71.34+2.1 77.70+1.6 79.08+1.5 79.54+1.5 | 78.36+1.0
Micro Fy score (%) 72.70£1.8 78.40£1.5 79.66+1.4 79.98+1.3 | 79.14+£1.0

80.20+1.3 85.06£1.4 85.82+1.8 86.40+1.3 | 85.66*1.3

81.06+1.2 85.24+1.3 86.18£1.3 86.44+1.3 | 85.96£1.2

In consideration of classifying human activities, our architecture achieves 86.88 4= 0.30%
in comparison to DeepConvLSTM which achieves a 91.5% micro F; score. However, con-
sidering the number of parameters, our simple architecture only requires 49224, whereas
DeepConvLSTM requires 9991222, We also have significant savings in the field of train-
ing time, requiring 1 to 2 seconds per epoch with a CPU in contrast to DeepConvLSTM
which requires approximate 3 seconds per epoch with GPU. According to results shown

in Tables 5.2 and 5.3, we further note that CL shows a progressive increase in perfor-

2096800 + (128 * 18) + 18
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mance as additional layers are included, and the corresponding performance outperforms

E2E learning on both datasets under the same configuration of training models.

TABLE 5.4: Task 2: TL performance across users of CL and E2E learning on the
18-class Opportunity Dataset.

Model  Micro Fj score (%) Weighted Fy score (%)

CL L1 84.18+0.33 80.70+0.37
CL L2 83.56+0.67 80.16+0.54
CL L3 82.5240.52 79.06£0.53
CL L4 82.14+0.63 78.4240.63
CL L5 81.76+0.62 77.70£0.41
CL L6 81.34%0.70 77.10£0.58
E2E L1 80.90£0.46 76.24+0.44
E2E L2 81.44+0.64 77.12+0.48
E2E L3 82.80£0.43 78.82%0.33
E2E 14 82.92+0.52 79.2610.46
E2E L5 82.64£0.75 79.08£0.92
E2E L6 81.68+0.52 77.58+0.51

5.4.2 Task 2: Transfer Learning Within a Dataset

For TL in this and following subsections, a single hidden layer and a classification layer
are added to the extracted features and trained using target domain data. The results

are reported in three parts.

5.4.2.1 Multi-class Classification across Users

In comparison to TL across users within Opportunity shown in (Morales and Roggen,
2016), Table 5.4 shows corresponding performance of TL based on CL. For consistency in
results presented in our work, Table 5.4 displays results obtained by using data from the
IMU sensors. Additional experiments are built by using 15 channels from accelerometers
being the same sensor set-up as (Morales and Roggen, 2016). Using the exact same set-up
as (Morales and Roggen, 2016), our results achieve a performance of 75 - 78% measured
by micro F} score, which significantly outperforms the best results (around 60% micro F}
score) presented by Morales and Roggen (2016), (the third column in Figure 3 in Morales
and Roggen (2016)). As shown in Table 5.4, we notice the best performance of TL for
the cascade architecture is approximately 4% higher than TL for the E2E architecture.
We also learn that the transferability decreases with respect to the depth of CL. Worse
performance is given when we transfer later layers of the CL network in contrast to the
E2E network of which the performance first increases with subsequent layers, but then

decreases if we add transfer too many layers.
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TABLE 5.5: Task 2: TL performance of binary classification within the Opportunity
dataset using CL and E2E learning. The performance is evaluated using a weighted Fj
score (%).

Model ‘ Source: D1 | Target: D2 Fridge DW Dr1 Dr2

Dr3

CL L1 73.04+1.4 | 71.20£1.7 71.84+1.0 63.18+3.0 67.78+4.1 59.14+1.6 65.62+2.9
CL L2 73.44+1.5 54.60+3.7 63.56+2.5 56.22+1.5 60.40+1.4 55.38+1.0 49.38+2.3
CL L3 73.42+1.6 49.56£6.3 61.26+0.8 58.28+1.8 56.261+2.6 56.40+£2.5 51.40+1.4
CL L4 73.44+1.5 42.70+6.9 49.44+4.3 50.26+8.1 34.58+4.5 47.46+4.0 50.16+£1.6
CL L5 73.42+1.5 41.32+6.8 45.34+4.5 45.46+7.5 32.38+3.5 46.76+3.5 48.34£2.8
CL L6 73.42+1.5 39.56+4.7 43.98+1.3 43.14+£5.0 31.62+1.7 45.52+0.7 46.34£5.1

E2E L1 - 64.64+1.3 76.50+1.4 60.30+£6.4 69.34+2.7 54.16+2.3 56.48+1.4
E2E L2 - 65.92+1.9 72.68+4.8 55.20+8.1 66.36+£4.0 55.12+4.0 55.64+2.4
E2E L3 - 64.64+3.7 71.44+4.9 55.16+4.9 63.48+6.2 54.32+3.8 51.82+3.1
E2E L4 - 63.36+4.1 68.44+5.5 54.38+4.8 62.08+3.5 51.78+4.2 52.16+£4.7
E2E L5 - 59.78+3.8 62.78+3.6 52.26+4.8 59.521+4.8 52.12+1.7 49.58+3.3

E2E L6 | 76.82+1.5 56.32+5.1 59.3443.2 54.224+4.6 53.94+8.4 51.84+4.2 50.62+3.5

5.4.2.2 Multiple Binary Classification Tasks

In order to validate the difficulty of transfer tasks, we initially consider two different
cases of the task to explore: (a) training on Open Door 1 vs. Open Door 2 as a source
problem and testing on Close Door 1 vs. Close Door 2 as target; and (b) training Open
vs. Close on Door 1 and testing the classifier on Open ws. Close on Door 2. Under
these circumstances, the test accuracy (with balance between two classes around 48%
vs. 52%) of case (a) is 89 £ 0.25%, which suggest that recognising the doors is an easy
problem. On the contrary, the micro F} score performance of case (b) is 48.25 + 3.2%,
which is a more suitable problem requiring TL. Further problems we selected were based

on similar preliminary experiments to this.

Considering TL from the source domain (being opening and closing of door 1) to target
domains (being opening and closing of the other six objects), Table 5.5 shows a result
comparison of the binary classification tasks described above with training the source
domain model using CL and E2E learning respectively. For simplification, D1, D2, DW,
Drl, Dr2, Dr3 are the abbreviations of targets: Door 1, Door 2, Dish Washer, Drawer
1, Drawer 2 and Drawer 3 respectively, which is followed in this work unless otherwise
specified. The transferring features are taken from different layers of the source domain
networks. From results (being evaluated by weighted F; score) shown in Table 5.5, we
note the transferability of features extracted by cascade networks shows a consistent
monotonic decline with network depth where features are taken from. However, for E2E
trained networks, this monotonic decline is partly true. In this setting of TL, features
from the first layer of cascade networks show optimal transferability from which our mo-
tivating idea (a progressive specialisation included by layer-wise training) is confirmed.

Our intuition on this observation is that coarse features are learnt by early layers while
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finer features specific to the source task are picked up by later layers. We further notice
the features from CL show competitive transferability with features from E2E learning.
Although the deeper E2E model shows better performance (around 3%) than all cascade
models on the source domain, the performance on the target domain is not significantly
affected by the learning ability of model on the source domain. The uncertainty of
knowledge transfer is high on these binary classification tasks, but the difference of per-
formance between the first layer and the final layer is higher. Overall, the knowledge
transfer to similar objects (from door 1 to door 2 and fridge) shows much higher trans-
ferability than to dissimilar objects (dish washer and drawers). Besides, the performance
on dissimilar objectives (e.g., dishwasher) has high variance (around 8%), which may
affect the observations. For example, knowledge transfer from the first layer of cascade
models shows a statistically significant merit than from E2E models, with p-value 0.001
using T-test, when the object is dish washers. We also provide a baseline that training
on the source problem and testing on the target problem without any further training,
where test performance is only around 48% for all of objectives considered. This further

justifies training in target domains as undertaken in this study.
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FI1GURE 5.4: Confusion matrices of TL in the Opportunity dataset, learning from a
14—class problem down to a four-class problem with (a) transfer from layer zero and
(b) transfer from layer five.

5.4.2.3 Transfer Learning from 14 Classes to 4 Classes

We show the results of TL from CL on this multi-class task in Figure 5.4 being confusion
matrices from the first and the last layer. It is worth noting that we have introduced
a hierarchy into the classifier outputs in this task which start from a group of coarse
tasks (Type One vs. Type Two) and then spilt into finer tasks within the groups (Open

vs. Close). Therefore, the later layer shows better performance compared to the early
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layer, being different pattern from observation in Table 5.5. A fine-grained classification
problem causes this result (that later layers shows better performance on the finer task)
which confirms the coarse-to-fine nature of features learned by CL in a layer-wise fashion.
Figure C.1 in Appendix C further supports this nature by transferring knowledge to a

coarser task.

5.4.3 Task 3: Transfer Learning across Datasets

Figure 5.5 shows the experimental results for the setting of transferring learned knowledge
from a task in the Skoda data to a task in the Opportunity where the computationally
simpler cascade trained model shows competitive performance compared to the E2E
networks. Deeper layers shows worse transferability (see Figure 5.6). Here again we

observe the same patterns of performance noted with the results of Table 5.5.

0.70
0.65
0.60
0.55
0.50

Dr1

FicUure 5.5: TL performance from Skoda to Opportunity based on CL and E2E
learning (the optimal performance from layers). Corresponding to task 3, the TL is
evaluated by micro F} score.

5.5 Summary

In this chapter, we explored TL from cascade learned networks on HAR, the second of
the applied problems we study in this dissertation. Unlike the single cell data we dealt
with in the previous chapter, multiple hidden layers help and we can observe different
behaviours of cascade and E2E trained models. In addition to being computationally
cheaper, CL offers a specific advantages for TL arising from the way information is
packed in the layers, as distinct from E2E trained models. Such differences were noted
in the study of information plane trajectories in Chapter 3 as well. Our intuition that
CL provides coarse features in early layers and finer features in later layers is validated
by transferring knowledge to target domains layer by layer. In the next chapter, we
will explore issues considerably larger than HAR taken from computer vision, medical

imaging in particular.
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F1GURE 5.6: TL performance from Skoda to Opportunity based on CL and E2E
learning. Corresponding to task 3, the TL is evaluated by (a) weighted F; score and
(b) micro F; score.

As an approach to learning in layered networks, layer-wise training from CL restricts
how information relating to the target is extracted, in contract to the inherent flexibil-
ity between layers enjoyed by E2E training under the same parameter configurations.
Despite this difference, our results show that CL achieves competitive performance on
two HAR classification problems compared to E2E training, and with significantly fewer
parameters and training time than work based on DNNs reported by previous authors.
We also find a hierarchical manner of relevant feature extraction across layers in CL,
which is demonstrated by the result that features taken from different layers show mono-
tonically decreasing transferability from the first to the final layer across tasks. Coarse
features transferred from the first hidden layer of cascade networks trained on source
domains provide optimal performance. Most importantly, these performance are satis-
factory, and most of time (5/7) better than the performance of transferring knowledge
from any layer of E2E trained networks. When transferring finer features, the features
with better transferability can be obtained from the final layer, which further reinforces

this point.






Chapter 6

Knowledge Transfer from Natural to
Medical Images based on Cascade
Networks

Building on the success of Transfer Learning from Cascade Learning (TCL) seen in the
previous chapter, we report on it applications to natural and medical image processing
problems. The medical domain, in particular, is of interest because many problems in this
area are posed in the low data (Lundervold and Lundervold, 2019), low computational
resources (Willemink et al., 2020) regimes. The work reported in this chapter consist of

the following:

(a) We empirically demonstrate a case for Transfer Learning (TL) from cascade trained
networks using several natural image and two medical image classification prob-

lems.

(b) To explore alternate ways of setting up Cascade Learning (CL) models, we in-
troduce Semantic Cascade Learning (SCL), where we set up hierarchical learn-
ing problems, exploiting semantic information in class labels, extracted through
Word2Vec model (Mikolov et al., 2013).

(c) Working towards interpretability, we use subspaces analysis (Singular Vector Canon-
ical Correlation Analysis (SVCCA) (Raghu et al., 2017)) and an image morphology-
based measure to characterise distributions in saliency maps (Moreno et al., 2019)

of gradient distributions.
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6.1 Motivations

With the advances seen in Deep Learning (DL), End-to-End (E2E) learning is the most
widely used approach in the DL literature undergoing a rapid development into diversified
aspects. However, the training of E2E networks usually has two essential requirements,
large amount of annotated data and significant computational resources (Erhan et al.,
2009), of which both are difficult to obtain in the medical domain (Castro et al., 2020;
Claudio Quiros et al., 2021).

The scarcity of annotated medical data is partly caused due to the diseased population
data being small, or annotations having expensive costs. The reverse also tends to be true
as there is no reason to let healthy people subject themselves to an intrusive experiment
such as taking a biopsy from an organ. Key ethical and legal questions further aggravate
the lack of data (Esteva et al., 2021) so that both industry and academia are relying on
small public data. Taking the recent example of diagnosis from chest X-rays of Covid-19
patients, Ai et al. (2020) and Fang et al. (2020) have attempted to diagnose Covid-19
from only 51 patients’ chest computerised tomography (CT) scans. A striking claim in
(Fang et al., 2020) is that CT scans may be more sensitive than real-time polymerise
chain reaction (RT-PCR) results. While the results reported are impressive (sensitivity
98%, in comparison to PCR 71% (p < 0.001)), the data is not acquired via a controlled
experiment and suffers strong bias with respect to the PCR testing (Warnecke et al.,
1997). Furthermore, Soares et al. have recently launched a Kaggle competition' based
on the dataset used in (Soares et al., 2020). While this dataset includes 2482 images in
total (1252 positive cases and 1230 negative cases), we note that the number of unique
patients is a mere 120. The Covid-CT dataset in (He et al., 2020; Zhao et al., 2020)
consists only of 349 CT scans containing clinical findings from 216 patients. All the

above reinforce the need to work with small amounts of data in a target medical domain.

To date, the practical setting and the shifts towards personalised medicine using ubig-
uitous devices (e.g., medical Artificial Intelligence (AI) devices) for monitoring (Park
et al., 2020), are built on resource-limited platforms (e.g., portable and battery-operated
devices) requiring small models. Hence, a challenging task is bridging the gap between
training Deep Neural Networks (DNNs) (for different users) and resource-limited plat-
forms with respect to high demands on processing ability, memory capacity and energy
efficiency. The above reasons necessitate studies that are not particularly focused on
achieving high performance alone as their only goal, but seek to explore regimes of low

computational cost and data scarcity.

While most real-world applications are built on E2E neural networks start with an arbi-
trarily sized architecture or search for an optimal architecture with repeated attempts,

works related to adapting network architectures to the complexity of a problem have

"https://wuw.kaggle.com/plameneduardo/sarscov2-ctscan-dataset
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been explored by researchers. Adapting training shows superiority of training DNNs
with limited computational resources since learned features can be cached at any point
in time such as with Deep CL proposed by Marquez et al. (2018) (see Chapter 2 for
details). A layer-wise approach has the additional advantage of allowing for the optimi-
sation of more interpretable objectives (Belilovsky et al., 2019) which is also important
in medical applications. As mentioned before the domain of medical inference requires
not only a modestly complicated model but also mitigating the issue of data scarcity
of which TL has been shown as a promising solution. That is, a TL model trained in
a statistically similar problem domain with large amounts of data can provide feature
representations that transfer very well to a target domain with data scarcity (Pan and
Yang, 2009; Pratt, 1992).

Several researchers have applied TL to medical imaging in recent years (Ravishankar
et al., 2016; Shin et al., 2016; Talo et al., 2019; Xie et al., 2019), mostly reporting positive
results transferring based on E2E training. However, the existing popular massive E2E
networks are usually data hungry, and are likely to overfit when trained on small datasets.
The CL we pursue in this work, applied to TL (termed as TCL) for inference from medical
images is motivated by the above considerations and has not previously been investigated.
The nature of the way that CL works further motivate our investigation. For example,
in CL there is a progression in complexity as more and more layers are added resulting
in coarse-to-fine feature extraction as previously shown in Chapter 5. Thus, one could
expect that features extracted from earlier layers can be effective when transferred to a

related, yet different, target problem.

As an aside, progressively complex hierarchical processing is also of interest in sensory
processing in biology. Serre (2014), for example reports hierarchical visual sensory pro-
cessing in the neocortex of the mammalian brain. Moreover, Lee et al. (1998); Serre
et al. (2005) develop algorithms for hierarchically extracting information from data in
the field of AI. A new paradigm emerges in Al paying attention on finding information
representations that exhibit characteristics similar to those of the neocortex. They at-
tempt to imitate a primate visual system in DL with a sequence of processing stages:
detection of edges, primitive shapes, and moving up gradually to more complex visual
shapes (Bengio, 2009; Lee and Mumford, 2003). Additionally, Yosinski et al. (2014)
propose that the recognisable low level image features are extracted by the early layers
and more abstract representations are extracted by later layers. Similar to a multi-class
classification setting, different pairs of classes also vary in the difficulty with which they
can be classified. For example, it is harder to let a classifier distinguish different types
of dogs or different types of cars than it is to tell cars from dogs. Information pertaining
to this is likely to be found in the class labels. We seek to exploit this observation in a

framework we refer to as SCL and its influences in the setting of TL.



84 Chapter 6 Knowledge Transfer from Cascade Networks for Medical Images

6.2 Related Work

There is a recent surge of research in applying TL to medical imaging, including works
from Ravishankar et al. (2016); Shin et al. (2016); Talo et al. (2019) and Xie et al. (2019),
where popular directions include using a pre-trained model as a feature extractor and
fine tuning. The first set of works (Arevalo et al., 2015; Bar et al., 2015; Van Ginneken
et al., 2015) transfers knowledge using pre-trained networks as a feature extractor. More
specifically, medical images are fed into the trained model, and then the output (features)
of a certain layer from this trained model is used to train a new pattern classifier on the
target tasks. Recent evidence suggests that features extracted from raw data directly
applied to neural networks, as opposed to features that use some prior knowledge of
images (e.g., spectra) show superior performance. The second set of works (Carneiro
et al., 2015; Chen et al., 2015; Margeta et al., 2017; Schlegl et al., 2014; Shin et al., 2015)
replaces the prediction layer of a pre-trained network with a new logistic layer to fit
target domain tasks. The target domain data is further used to train the new final layer
and keep all other layers the same. This latter approach consistently shows promising

results compared to training a network from scratch.

While much of the literature applying TL reports positive results in terms of improved
performance, Raghu et al. (2019), making a critical appraisal, suggest otherwise. The
authors show that transferability might be interpreted in terms of changing high-level
features from later layers for fitting target domain tasks, via observing the SVCCA
similarity of a pre-trained model’s outputs before and after fine tuning. However, Ke
et al. (2021) show an opposite conclusion that the family of architectures instead of
the model size is responsible for determining the performance of TL with performance
improvements based on models pre-trained on ImageNet. They further believe that pre-
training with smaller networks can give better supports of TL than bigger networks in
the same family of architectures. Generally, the success of knowledge transfer depends
on the transferability of low level image features between the source and target domains,
as the higher level features from later layers are potentially too specific resulting in less
transferability. Therefore, we suggest a smaller network has a limited capacity of learning,
being similar to early layers of cascade networks, extracting overly specific features which

leads to better transferability.

Considering TL in a layer-wise manner on medical images, Tajbakhsh et al. (2016) apply
fine tuning layer by layer on the target domain, which is different from our work. They
keep the entire pre-trained E2E model frozen, and replace the old fully connected layers
at the end of models with new fully connected layers to fit the target domain tasks.
They make the new added layer and the last convolutional layer to be trainable on target
domain data and progressively make more convolutional layers, from bottom to top, to be
trainable in search for the optimal performance. The authors define "shallow tuning" as

tuning the last few convolutional layers and "deep tuning" as tuning all the convolutional
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layers. They suggest this is a more efficient way of TL compared to other literature and

suggest this layer-wise manner leads to incremental performance improvements.

In comparison to their layer-wise TL, our TCL further propels the gain of efficiency in
the setting of TL. Firstly, unlike with E2E trained models, TCL does not need the entire
model to be trained on the source domain. We only need to train the model up to the layer
from which we choose to extract features for knowledge transfer. While this is not an issue
in applications such as computer vision and natural language tasks where a wide range
of pre-trained models are available for download and use, new applications (e.g., biology)
will require source models to be trained, which means that TCL can save vast amounts
of computational resources for the entire process. Secondly, the bottom-to-up (last to
first layer) selection of trainable hidden layers shows potential wasting of computational
resources in both memory and training time. High level features from the later layers of a
pre-trained model may not contribute to target domain tasks or can even impede finding
a solution especially when the dissimilarity between the source domain (natural images)
and the target domain (medical images) is high (Azizpour et al., 2015). Contrary to
their order of selection, our TCL is an efficient way of transferring knowledge from early
layers including low level feature representations and then incrementally include later
layers which helps avoid confusion given by later layers. Potentially, it may be able to fit
different requirements of feature transferability depending on the progressive increasing
similarity of the source and the target domains. In the following section, we show more

details of how to implement TCL in this application.

6.3 Datasets and Methodologies

In our experiments, we utilise four widely used datasets (CIFAR 10 (Krizhevsky et al.,
2010), CIFAR 100 (Krizhevsky, 2009) ImageNet (Deng et al., 2009)) and DTD (Cimpoi
et al., 2014) in the area of computer vision, a chest X-Ray based medical diagnostics
dataset (CheXpert (Irvin et al., 2019)) and also a Covid-19 dataset (de la Iglesia Vaya
et al., 2021) of chest X-Rays and CT from the Valencian Region Medical Image Bank
(BIMCYV). There are three parts of experiments based on these datasets: (a) transferring
knowledge from models trained in the setting of CL; (b) SCL (a variant of CL) and
Transfer Learning from Semantic Cascade Learning (TSCL) (corresponding to TL); and
(c) saliency map based visualisation of representations of hidden layers, and a granulom-
etry score used to measure the concentration ratio of activated areas. More details are

shown in the following subsections.

6.3.1 Datasets

CIFAR 10, CIFAR 100, ImageNet and DTD are benchmark datasets with equal distri-

bution of classes. Since our goal is comparing the transferability of features from two
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different learning mechanisms instead of the pursuit of high performance on benchmark
datasets, in part of the experiments we use the reduced version of the datasets for exper-
iments. In particular, in the setting of transferring knowledge from ImageNet to CIFAR
100 and medical datasets, we use a 23-class problem, where the classes are overlapped
between ImageNet and CIFAR 100.

The CheXpert dataset is an open source medical image classification problem? with
223,000 chest X-Rays from over 65,000 patients. In our experiments, we take the prob-
lem of five classes of pathologies following the setting given by Raghu et al. (2019):
Cardiomegaly, Edema, Pleural Effusion, Atelectasis and Consolidation. The labels of
classes are automatically obtained by analysing radiography reports associated with the
images. In total, a multi-task binary classification problem is applied to this dataset,

where the two classes are disease and non-disease.

For BIMCV, there is a binary task of recognising Covid-19 cases and disease-free cases.
We manually scan through them and filter out images with multiple labels and retain
4940 images as a dataset to be used. There are equal number of images for both disease-
free (labelled as 'mormal’) and Covid-19 scans. We randomly take 75% of data as the

training samples.

6.3.2 Cascade Learning and Transfer Learning from Cascade Learning

As introduced in Chapter 2, TCL is defined as transferring knowledge learnt by cascade
networks on the source tasks to the target tasks in a layer-wise fashion. A schematic
of both the CL and TCL approach is shown in Figure 6.1. On the source domain,
a NN —layer cascade architecture is trained in a one-by-one layer-wise fashion keeping
previously trained layers being frozen. In contrast, E2E learning trains all layers of a
model simultaneously with the same architecture as shown in the lower left corner of

Figure 6.1.

For each layer of a cascade network, we add an Auxiliary Classifier (AC) (inspired by
(Belilovsky et al., 2019)) consisting of k& convolutional layers and f fully connected layers
to fit labels and then improve performance in training the ng, layer. In all of experiments
in this chapter, we set k = f = 2 (for keeping the auxiliary networks shallow with respect
to the network depth as suggested by (Belilovsky et al., 2019)) and keep the preceding
n—1 layers frozen, giving a fixed transformation which can be seen as a feature extractor
acting on the input data. In a similar manner, we freeze the first n layers and add a
randomly initialised AC in training the (n+ 1), layer where the objective is to minimise
the cross-entropy objective by Stochastic Gradient Decent (SGD) or Adam (for the DTD
dataset).

2The data can be obtainable at https://stanfordmlgroup.github.io/competitions/chexpert/.
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FIGURE 6.1: The schematic diagram of CL, E2E and TCL. From left to right, TCL
is implemented by progressively freezing source domain trained layers and re-training
randomly initialised AC on the target domain. The subscripts g and 7 stand for source
and target domains, respectively. The dashed boxes with the same colour illustrate
that the features from these layers are shared across source and target domains in
transferring knowledge. TE2E is implemented by the same layer-wise manner. Finally,

on the target domain TCL and TE2E have the same size architectures for comparison.

For CIFAR 10 and CIFAR 100 datasets, in the first four layers of a cascade network, we
use convolutional layers consisting of 256 filters with kernel size 3 x 3. For layers beyond
the fourth layer, we reduce the number of filters to 128. Subsequent fully connected
layers consist of 64 and 32 units leading to the output classification units are attached.
Batch normalisation, max pooling and Rectified Linear Unit (ReLLU) activation functions
are used throughout the experimental work with standard data augmentation (e.g., hor-
izontal flipping, normalisation, and central cropping). For Describable Textures Dataset
(DTD) dataset, all six convolutional layers include 256 filters and are connected to two
fully connected layers consisting of 128 units. For ImageNet datasets, the first eight
layers have 256 filters and the last three layers have 128 filters when subsequent two fully
connected layers have 128 units and other settings are consistent. The same architecture
are also applied to CheXpert and BIMCV. In comparison to cascade networks, the E2E
networks have the same setting and structure on each dataset. To set network hyper-
parameters (e.g., number of filters), we explored several architectures heuristically and

evaluated their performances on a validation set and chose the best.

We tune the learning rates to have an initial value of 0.1 on CIFAR 100 (0.01 on CIFAR
10, 0.01 on ImageNet, 0.001 on DTD), reducing by a factor 0.8 every 60 epochs (15
epochs on CIFAR 10, 15 epochs on ImageNet). Training took a total of 200 epochs on
CIFAR 100 and DTD (60 epochs on CIFAR 10 and 45 epochs on ImageNet, generally
following the setup in (Belilovsky et al., 2019)).
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For CheXpert, the initial learning rate is 0.01 with 20% of reduction every 5 epochs
and in total we use 20 epochs to train the model. Slightly different from other normal
classification tasks, the objective function of this multi-task binary classification task
is binary cross entropy loss using sigmoid as the activation function of output layers,
following the setup in (Huang et al., 2013; Raghu et al., 2019). The evaluation of this
dataset is area under receiver operating characteristic curves (AUC) score following the
setting in (Raghu et al., 2019). For BIMCV, we use 45 training epochs and initial
learning rate 0.01 with 90% of reduction every 20 epochs. All the networks are trained
based on standard data augmentation (including horizontal flipping, normalisation and

central cropping) with at least 3 runs for validating uncertainty.

In the setting of TCL from the ny, layer, a replica of the network trained on the source
domain, up to layer n, is set up with adding a randomly initialised classifier, AC, as
shown in bounding boxes in Figure 6.1 in the target domain. There are two cases of
knowledge transferring: with fine tuning and without fine tuning. We term the trans-
ferring process as TCL when only the ACT layers are trainable on the target domain
data. Making parameters of all transferred layers to be trainable is additionally termed
as the transfer cascade learning with fine tuning approach (TCLFT). We explore the
transferability of features from CL layer by layer, and compare them to features from
same locations of E2E networks. TL based on E2E networks is referred to as Transfer
Learning from End-to-End (TE2E). Considering the coarse-to-fine nature of CL (namely,
the early layers make a "coarse" separation on the dividing plane between classes and
the later layers refine the separation), we also develop SCL, an extension to the basic

CL approach, described below.

6.3.3 Semantic Cascade Learning

We consider an alternate way of setting up a CL problem that takes advantage of hierar-
chical semantic relationships between classes contained in class labels. This is motivated
by the fact that early layers in CL are small networks not capable of forming complex
class boundaries. Within a multi-class classification problem, we would usually expect
a hierarchical relationship in which higher-level classes are easily separable from lower-
level ones. For example, it is easy to classify several types of dogs taken as a group from
different types of vehicles taken as a group than it is to classify individual dog species or
vehicle types. This points to a formulation in which early layers can be set to classify all
dogs from all vehicles as a two-class problem and later layers to be set up to classify the
different dog types and vehicle types. To acquire the necessary information to construct
this semantic hierarchy, we take the learned representation of class labels from Word2Vec

embedding® and apply hierarchical clustering?. An example of this process is illustrated

3Can be obtained from website (https://github.com/mmihaltz/word2vec-GoogleNews-vectors).
4Using the nearest-neighbour chain algorithm (Lu and Tan, 2003) with the Ward’s method (Ward Jr,
1963).
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in Figure 6.2. By slicing the dendrogram at various levels, we can construct a hierarchy
of progressively harder problems to train each successive layer of a CL architecture. In
Figure 6.2, the first layer is trained on a two-class problem {Car,Truck, Plane, Ship}
vs. {Horse, Cat, Dog, Deer, Bird, Frog}. When the second layer is trained, we solve
a three-class problem {Car, Truck, Plane and Ship}, {Horse, Cat, Dog}, {Deer, Bird,
Frog}. Our expectation is that such a hierarchical formulation is likely to induce the
learning of coarse features in early layers and more fine features deeper into the network.
For reference, we also experimented with grouping these classes at random (which we
refer to as Random CL).
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FIGURE 6.2: Overview of SCL, an extension of CL. SCL is based on a hierarchy of
progressively harder problems which is introduced by semantically clustering the class
labels based on their Word2Vec distributed embedding. The number of classes in each
layer is same as the number of red dots on the dendrogram. The blocks containing
"Cascade Training Layer n" are the CL layers shown in Figure 6.1. This approach is
used to encourage the CL architecture to extract coarse features at the early layers and
finer ones in the later layers.

6.3.4 Visualisations

In addition to performance comparison, we also provide three different visualisation
methods: (a) saliency maps; (b) granulometry scores; and (c) SVCCA similarities, to
validate the coarse-to-fine extraction process over layers of CL. Saliency maps highlight
regions that have big impact on recognising the class of the image. The granulometry
score is a morphological measure of granularity in the image based on corresponding
saliency maps to quantify how active contiguous regions are distributed. SVCCA reflects

the similarity between representations.

6.3.4.1 Saliency Maps and Granulometry Scores

In our experiments, saliency maps are obtained according to the work of Simonyan et al.

(2014) who find activated pixels of images based the gradient of images. Namely, the
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pixels with a large gradient (either positive or negative) only need small modification to
affect the classification results, hence such pixels correspond to the location of interested
regions. By taking the gradient of the class score with respect to the input image, saliency
map can be obtained. As colour images usually have three channels (R,G,B) and we take

the maximum magnitude across all channels.

From the viewpoint of mathematical morphology, granulometry is an approach to cal-
culate a distribution of grain size in binary images based on a series of morphological
opening operations (Dougherty et al., 1989). On the top of that, we propose granulom-
etry score based on the saliency maps of input images to measure the distribution of
activated contiguous regions as shown in Algorithm 2. We use binarised saliency maps
as the input of granulometry to obtain the distribution of different sized highlighted con-
nected regions. In this process, we take activated regions with the top 25% brightness to
do binarisation for filtering out regions with negligible brightness. From the distribution
of different sized regions, we take the number of median regions as the output of gran-
ulometry algorithm for avoiding the case in which all active regions has low brightness.

From each layer we get a granulometry score and then normalised by the maximum.

Algorithm 2 Pseudocode of the Granulometry

Arguments:
A: A saliency map of an image with size m x n.
Outputs:
G'S: The granulometry score.
Initialisation:
B(u): A structuring element with size u, e.g., a square or an ellipse.
AS: The list of grain (connected areas) size.
M: Binary mask of A. The element of mask is "True" or "False".
C': A list of grain counts.
M + A< 75% quantile of A. {This step filters out regions having low brightness in the saliency map.}

—_

11: AS=|1, int(0.25 X max(m,n)/20), int(0.75 x maz(m,n)/20), int(maz(m,n)/20)|
12: for s in AS do

13: newA <« opening(M, B(s)).®

14: C + append the counts of connected areas
15: end for

16: GS <« the median of C.

S in newA.

6.3.4.2 Singular Vector Canonical Correlation Analysis

For comparing the representation from E2E learning and CL at the same layer of the
same sized networks, we utilise the SVCCA similarity as a measurement of representation

differences. We take representations from networks trained by both learning mechanisms

®The opening is a mathematical morphology operation including the succession of an erosion
and a dilation of an image A with the same structuring element, implemented using the library
scipy.ndimage.binary _opening. Using a structuring element B (e.g., a k X k square) to move on the
image A pixel-by-pixel, the erosion A & B operation let all pixels in the superimposed area to be zero if
one of values of A is zero in this overlapped region, otherwise, they are set to 1. The dilation operation
A @ B does the opposite way.

SDuring detecting the connected area for each new pixel being 1, if no pixel on its left or right has
value 1, we assign a new tag to it. If there are pixels on its left or up are 1, it uses the assigned tag. If
pixels on its both left and up are 1, we let them have the same tag as they are connected.
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in a layer-wise fashion, and compare their similarity in each aligned direction and average
values over all directions. The details of the SVCCA algorithm are shown in Appendix
A.7.3.

6.4 Results

We illustrate our results as three parts: (a) performance of CL on the source domain; (b)
comparison of feature transferability of E2E and CL between different natural images;
and (c) comparison of feature transferability of E2E and CL from natural images to
medical images. In the last two parts, we specifically investigate the situation that the
target domain has limited data, which we control from less to more, in order to show the
advantages of TL for data scarcity. Additionally, by using SCL and TSCL as variants of
CL we further validate that features from cascaded networks prominently have better or

comparable transferability than from E2E networks in our scenarios using images.

6.4.1 Performance Comparison on Source Domains

Table 6.1 compares performance of various classifiers (including CL and E2E) using the
CIFAR 10 and CIFAR 100 problems to set up a baseline. We note that our heuristic
implementation of CL produces comparable performance against all models except the
heavily optimised VGG architecture on the CIFAR 10 problem. In particular, our results
are also comparable to other two layer-wise learning on the same data (i.e., work in
(Belilovsky et al., 2019) and (Marquez et al., 2018)). Although, it is possible to achieve
better performance on these datasets by extensive tuning, the results presented satisfy
our purpose of training a decent enough model in the source domain with the objective of
transferring learned features to a target domain. Indeed, both work by Ke et al. (2021)
and our later results confirm that over-tuning in the pursuit of high performance in
the source domain problem will not contribute to or diminish performance in the target

domain.

For SCL and Random CL, Figure 6.3 shows corresponding accuracy comparison between
them. From left to right, the number of classes in the tasks increases in sequence:
2,4,8,30,54,82,97, and 100. In this setting, we solve progressively harder classification
problems layer by layer, hence the performance monotonically decreases along layers as
expected for both SCL and Random CL. We also note that problems, defined by semantic
clustering of class labels, show systematically higher performance than the cases in which
the labels are randomly grouped. After the seventh layer (which includes the 7y, layer),
both SCL and random CL are solving 100-class problems, hence there is no difference
between them, which is rather disappointingly the SCL does not lead to significantly

better performance than the random CL on the harder tasks.
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TABLE 6.1: Baseline performance comparison: Our implementation of CL on CIFAR
10 and CIFAR 100 tasks compared with accuracies reported in the literature.

Models | CIFAR 100 (%) Model size | CIFAR 10 (%) Model size
CL (ours) 65.70 + 0.04 2 layers* 86.70 + 0.10 6 layers
CL2 59 6 layers 84 6 layers
Greedy Layer-Wise®| —— —— 88.3 5 layers
E2E 65.07 £ 0.86 2 layers 877(88.4%) 6(5)layers
AlexNet (E2E) 54.04% 3 layers 89° 4 layers
VGG (E2E) 68.48% 5 layers 92.455 13 layers

1: Best performance taken from the second layer; further layers results in over-training,
degrading to 59.01 4+ 0.01% at 12 layers.
: Token from the work given by Marquez et al. (2018).
: Token from the work given by Belilovsky et al. (2019).
: Token from the work given by Ahmed et al. (2016).
: Token from the work given by Krizhevsky et al. (2017).

: From http://torch.ch/blog/20156/07/30/cifar.html
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FIGURE 6.3: Solving progressively harder problems by semantic clustering in CL. On
the CIFAR 100 problem, Word2Vec representations of class labels are hierarchically
clustered and successive layers of CL are trained on finer and finer problems with
number of classes increasing in the sequence: 2, 4, 8, 30, 54, 82, 97, and 100. This is
benchmarked against random partitioning of the same number of classes in each layer
(boxplots of performances from five runs), showing that semantically grouping classes
forces the solving of easier problems in early layers. Beyond the seventh layer, both
settings solve 100-class problems, hence show indistinguishable performances.

6.4.2 Transfer Learning on Natural Images

Using the baseline models as source models, we implement TL in which features learned
from the source models are used to enhance learning in a related target domain. Firstly,
we transfer knowledge between multi-class problems where both the source and target
problems are natural image classification tasks. There are two cases for this part: from
CIFAR 100 to CIFAR 10 and from ImageNet to CIFAR 100 in which a 23-class overlapped

subset is chosen for classification.

As shown in Table 6.2, we compare the cases in which the source model is trained by
different learning mechanisms (i.e., CL, SCL, random CL and E2E) with CIFAR 10 as

the target domain. All layers shown in the table are trained for a 10-class task on the


http://torch.ch/blog/2015/07/30/cifar.html
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TABLE 6.2: Results of TL in a CL setting with CIFAR 100 as source learning problem
and CIFAR 10 as target problem. Three different CL source models are considered
(SCL: progressively harder multi-class problems at each layer using semantic clustering
of class labels; Random CL: same numbers of classes at each layer as in SCL, but
the classes grouped at random; and CL: Each layer solving a 100-class problem) and
compared against E2E training of the source model. Taking features for transfer is
better towards the early part of the network in all models. Early layers of cascade
trained models give significantly better transferable features, though clustering the
classes based on the semantics of their labels offers no detectable advantage.

Layers | TSCL TRandom CL TCL | TE2E

1 79.74+0.03 80.31+0.28 80.18+0.02 | 74.2242.17
2 79.81£0.04 80.08+0.25 80.44+0.04 | 74.88+0.20
3 79.99+0.06 80.06+0.15 81.59+0.03 | 67.2440.18
4 80.03+£0.04 79.5240.31 81.61£0.03 | 60.78+0.24
5 79.19+0.04 77.671+0.14 80.75£0.03 | 55.17£2.15
6 77.17£0.04 74.81+0.43 77.76+£0.05 | 50.76+0.43
7 73.96+0.04 71.814+0.30 75.53+0.04 | 40.43+1.67
8 70.51£0.06 68.60+0.39 71.55+0.03 | 39.44+1.07
9 64.25+£0.04 63.35+0.05 64.54+0.06 | 34.84+0.73
10 58.36+0.05 58.044+0.34 59.44+0.03 | 29.55+1.18
11 54.53+0.10 53.2340.67 54.50£0.08 | 23.6741.00

target domain. We also explore transferability of features extracted from various layers
of a 11-layer neural network trained on CIFAR 100 in this table. We note from Table 6.2
that taking features from early layers of a network is better for knowledge transfer to a
new domain than extracting features from later layers. The early layers outperform the
later layers by around 20% in this setting (e.g., the difference between the first and the
last layer). This is consistent for CL (including its variants), E2E learning, and works
shown by Yosinski et al. (2014). It is also seen that all three variants of CL adopted are
uniformly better at providing effective features for knowledge transferring irrespective
of how they were trained (i.e., a plain CL with all the classes shown at every layer and
progressively harder classification tasks chosen at random and by semantic clustering of
the labels). Overall, we can say the features from the early layers are more suitable for

knowledge transfer than the later layers.

As features from early layers show better transferability, the effect of TL to a target
domain with knowledge from shallow layers is considered with results shown in Figure
6.4(a). Here, the source domain is the subset of ImageNet with 23 classes (we term it
as ImageNet23) and the target domain is CIFAR 100. In the target domain, when the
model is restricted in capacity from one to three layers, TL shows a distinct advantage in
performance compared to the model only trained on the target domain. The differences
of accuracies decrease with increased capacity allowed in the models. Additionally, even
when the source and target domain have the different classes, TL still shows advantages
than learning on the target domain without TL when the model has less than two layers.
This agrees with work from Neyshabur et al. (2020) saying that lower layers are in charge

of more general features.
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FIGURE 6.4: TL with limited capacity and data in the target domain. Both problems
use ImageNet23 (the source domain) to train networks, and features are transferred to
the CIFAR 100 task. In (a) when a cascade learner is limited in capacity to one to three
layers, transfer of features is helpful. TCL s means the source and target domain have
the overlapped classes, and TCL _d means the source and target domain have different
classes. In (b), when the available data in the target domain is very small (i.e. 5% and
10% of the dataset), TL offers a distinct advantage.

We also illustrate the effect of TL when the target domain has limited availability of
data. As shown in Figure 6.4(b), the performance of both CL and TCL in the target
domain increases with the growing amount of available data used to train the model.
The improvements of TCL compared to CL also decrease with respect to the amount of
available data (from 5% (575 images) to 20% images).

TABLE 6.3: Performance of TL from cascade and E2E trained source models to a
medical image classification target (CheXpert data). The source models are trained
on ImageNet23 with networks (TCL: Cascade trained network, TE2E: E2E trained
network, TSCL: Cascade trained network with semantic clustered classes, TCLFT:
Cascade trained source model with fine tuning, TResNet: Transfer from an E2E trained
ResNet and ResNet: published results given by Raghu et al. (2019)).

Disease | TE2E TCL TSCL TCLFT | TRestNet  ResNet

Atelectasis 77.57+£1.12  79.80£0.93 79.73£0.09 80.10+0.82 | 79.76+0.47 79.52£0.31
Cardiomegaly 75.47+£1.26  78.68+0.93 79.04+0.12 78.92+1.27 74.93£1.41  75.23%£0.35
Consolidation 88.25+£0.04 90.16+0.68 89.84+0.61 90.28+1.01 | 84.424+0.65 85.49£1.32
Edema 80.85£1.79  89.87+0.11 90.06+0.34 90.641+0.21 | 88.89+1.66 88.34£1.17
Pleural Effusion | 83.61+0.47 91.33+£0.13  90.96+0.22 91.53+0.16 | 88.07£1.23 88.70+0.13

6.4.3 Transfer Learning on Chest X-Ray Images

Based on the above basic establishments of TL in the setting of CL, we further explore
the effects of TL applying to medical imaging study. Figure 6.5 and Table 6.3 show
the corresponding results. From the table we note that each of the three variants of

CL significantly outperforms state-of-the-art results published in (Raghu et al., 2019)



Chapter 6 Knowledge Transfer from Cascade Networks for Medical Images 95

TCBRL (mean)
TResNet (mean)
--¢- TE2E (mean)
—}— TCL (mean)
Atelectasis
Cardiomegaly
+- Consolidation
Edema
+- Pleural Effusion

AUC score (%)
4]
o

65 T r r + : : . | | |
1 2 3 4 5 6 7 8 9 10
Layers

FIGURE 6.5: The performance comparison of TL from various architectures on CheX-
pert dataset. The continuous blue line is the average AUC over five tasks when trans-
ferred from a cascade trained source model. The dotted blue line denotes the average
AUC performance of TL from an E2E trained source model. The dashed grey line rep-
resents averaged AUC of TResNet, and the lime dashed line gives results of knowledge
transfer from an E2E model CBRL (both results taken from Raghu et al. (2019)). All
other lines show detailed results of TCL for different diseases.

on this dataset where the model is a ResNet with vast amounts of parameters, and
also outperforms the TE2E and the TL from ResNet architecture reported by them.
For example, TCLF'T shows significantly statistical advantages with p-value 0.0002 than
TRestNet using T-test for the Atelectasis disease.

Figure 6.5 shows results of the same comparison, with more details about transferability
of features from different layers including the work given by Raghu et al. (2019) with an
E2E model. Consistent with previous results, features from later layers show reduction
of transferability. Similar to results shown in Table 6.2, the performance decrease is
dramatic for an E2E network and more gradual for CL. Overall, TCL significantly
outperforms TE2E (from Raghu et al. (2019)). Figure 6.6 further shows the gain of TL
on the limited CheXpert dataset, namely only small fractions of the X-Ray images are
available for training in the target domain. Up to about 30% of the available training
data is used, and the transfer of features from an ImageNet23 task helps to achieve a

performance increase (AUC) of over 2.5%.

6.4.4 Transfer Learning on BIMCV

As a final illustration of TL on medical images, we addressed a problem of classifying
chest X-Ray scan images from Covid-19 patients using a dataset described previously in
Section 6.3. As shown in Figure 6.7, results of various models on the Covid-19 Chest X-
Rays are compared. Taking the optimal performance of each model for the comparison,
whereas a network (the first three columns of each sub-figure) is hard to learn this task
directly without knowledge transfer especially on a small data regime, TCL is able to offer

better performance and outperforms a large-scale ResNet network (see the third column).
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FIGURE 6.6: Comparing the role of TL with limited data in the target domain with
natural images as a source domain (ImageNet23) to classify chest X-Ray images.

The improvement is around 5%. TResNet shows inferior performance in comparison to
TCL, which is consistent with results on CheXpert (see Table 6.3). When only 5% data
is available, TCL (from ImageNet23) shows the optimal performance in comparison to
all of other models, while only 5 layers are needed. TL also outperforms direct learning
on the small data regime. As a cooperation work with my colleague Junwen Wang, we
also apply the similar TL processing to more medical classification tasks of which the

results show the similar tendency.

TABLE 6.4: The comparison of necessary parameters from various source models. For
CL, the number of parameters is summed up to the ny, layer from which the optimal
TL performance is obtained on BIMCV data.

‘ ‘ On ImageNet ‘

‘ Learning mechanisms ‘ Totall‘ ’Hainableﬂ
ResNet50? around 23,521,000 | around 23,521,000
CRBL3 around 7,840,333 | around 7,840,333
CL 2,370,048 59,052
E2E 5,028,480 5,028,480

1 The total number of parameters of the model (excluding classifiers).
2 The number of trainable parameters of a model.
3 The model comes from the work given by Raghu et al. (2019).
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FIGURE 6.7: Comparison between TL and direct learning for the classification of a
binary Covid-19 chest X-ray dataset (BIMCV). In comparison to TL, the first three
columns in each sub-figure correspond to the performance of learning without knowledge
transfer. The last five columns are for TL from two different source domains, DTD and
ImageNet. Each sub-figure includes results of models trained on X% of data on the
target domain.

6.5 Discussion

In the medical domain, the addressing of two issues are essential for Computer Vision
problems, which are data scarcity and the need for simpler deployable models. TL
to extract features from a related domain with similar statistical relationships is an
attractive idea to address the issue of data scarcity. With the rapidly growing research
on this topic, how effective TL is continues to remain an open question. The controversy
between Raghu et al. (2019) and Ke et al. (2021) is a good exposition of this.

Instead of TL building on an E2E network as popular in literature, we propose TCL by
transferring knowledge from multi-layer neural networks trained in a layer-wise fashion.
We postulate that the progressive growth of network’s capacity from layer-wise training
encourages coarse features to be learned in early layers, and finer features (specific to
targets) to be learned in deeper layers. Hence, more transferable features to a new yet

statistically related problem, are enabled to be extracted from early layers of a network.

This could also happen in an E2E trained network as other authors, including Raghu
et al. (2019) note, but cascade training helps to enforce this better and not leave it to
chance as would happen in E2E training. Our empirical results on natural images and
in TL applied to two medical domain problems confirm the better feature transferability

from the early layers. Further support for such structured training is hinted at in (Raghu
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F1GURE 6.8: The SVCCA similarity between CL and E2E on the CIFAR 10 dataset.
Dashed lines are the SVCCA similarity on the ny, aligned directions and the solid line
is the averaged result on all aligned directions. There are small similarities on the early
layer but large similarity has been found on later layers, indicating that the learning
schemes between cascade and E2E learning have large differences in early layers. As
the layer goes deeper there is relative increase SVCCA similarity since both have same
learning targets.

et al., 2019), when the authors suggest freeze-training, i.e., in training an E2E network
where weights of early layers are stopped from being updated after a few epochs whereas
later layers continue to learn. This again could be seen as a strategy similar in spirit to
CL. Moreover, for the purpose of TL, TCL only need to train a few layers on the source
domain instead of the entire network (as required by an E2E network), which further
saves on computational resources. Table 6.4 shows the comparison of the amounts of
parameters needed in the source domain across several learning mechanisms. When the

optimal performance is obtained, CL needs the least parameters.

To compare two learning approaches, we compute the SVCCA similarity (Raghu et al.,
2017) between models trained by both methods layer by layer on the CIFAR 10 dataset.
As shown in Figure 6.8, we note that the early layers from the two learning mechanisms
have very low similarity, as the cascade learner is training a model of low capacity whereas
the E2E training can distribute information more freely across all the layers. When going
deeper into the layers, both methods of training capture similar information along some
directions as they are in pursuit of the same targets. In particular, the directions with
high singular values (i.e., the first direction) show higher similarity than directions with
smaller singular values. This may be caused by the learning of noise which can be an

open question for future exploration.

To illustrate the differences between CL and TCL, we show saliency maps (Simonyan
et al., 2014) derived at different layers in Figure 6.9 on a CheXpert example of Pleural
Effusion characterised by very localised fluid buildup at the lower part of the chest. From
Figure 6.9(b), we note that the first layer of CL represents only coarse features of the
image, and finer features of the illness show up in later layers. However, layer one of
TCL is able to pick up the discriminant features even though it is limited in capacity, as

shown in Figure 6.9(d). For TE2E, the distribution of activated areas is more scattered
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FIGURE 6.9: Illustration of CL, TCL and TE2E using saliency maps and granulometry scores.
(a) an example image from the CheXpert dataset; (b) saliency maps taken at three different
layers in CL, showing a gradual increase in spatially specific features being extracted; (c) an
illustration of the disease, pleural effusion, relating to (a); (d) saliency maps taken at different
layers with TCL, showing that discriminant features are extracted at earlier layers; (e) granu-
lometry scores, an averaged measure on 50 random test images, of spatial morphology of the
saliency maps computed at different layers grow monotonically with depth of a cascade network;
and (f) saliency maps from various layers with TE2E, showing the activated areas are relative
scattered in comparison to TCL (see (d)).

than CL and TCL. Apart from visual difference of saliency maps, in Figure 6.9(e) we
also show a quantification of this using a measure called the granulometry score (of which
details are found in Section 6.3) (Dougherty et al., 1989). A larger value of this score
means the activated contiguous regions (bright areas) of a image are more. This score
(averaged on 50 randomly selected images) is computed over the saliency maps derived
at various layers, and shows monotonic increase. When TL is applied, the fineness in
the features is picked up earlier in the layers and continues to increase. But as we can

see in later layers, this leads to the networks specialising to the source problem in which
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they are trained, hence the features they capture are of little help in the target domain
(as parts of mainly activated areas are not located at the lesion). For TE2E, this score
is lower than the score of CL and TCL, as the scattered distribution.

6.6 Summary

In summary, while E2E training of DNNs currently is the default choice of practitioners,
sequential, constructive approaches have merits in the important problem of TL where
the focus of attention is improving performance on a target domain using limited com-
putational resources. In this chapter, we show empirical evidence for TCL using both
natural and medical images and explore the cases in which only limited availability of
data exists. We also draw on insights using saliency maps and subspace correlations to
compare the differences between different learning mechanisms. Our work suggests that
the performance improvements of TL can be caused by CL and its variants, by packing
coarse information about the source problem into early layers resulting in better trans-
ferability. Therefore, in the source domain we only need to train early layers saving on

computational resources while also gaining improved performance.



Chapter 7

Conclusions and Future Work

The work reported in this dissertation is about an analysis and applications of the tech-
nique of Deep Cascade Learning (CL), a particular technique for progressive training
of neural networks one layer at a time. We purse an information theory-based analysis
(Information Bottleneck (IB)) to explore if trajectories of learning for layer-wise training
show the same dynamics claimed to be an explanation of how neural networks generalise,
put forward by Shwartz-Ziv and Tishby (2017). Using a range of problems, this work has
shown that performance comparable to the more traditional End-to-End (E2E) training
can be obtained without showing similar dynamics, particularly information compres-
sion, a strong claim advanced by Shwartz-Ziv and Tishby (2017). By doing this, we
also offer a heuristic by which an optimal depth of a deep network can be automatically
determined. We refer to this as the Information Transition Ratio (ITR).

We argue that the nature of layer-wise training forces early layers to learn coarse features
of a problem and later layers learning specific ones. This view is indirectly confirmed
by comparing performance of Deep CL with E2E learning on Transfer Learning (TL)
problems. Learning fine features specific to a source problem may not be advantageous
when transferring to a statistically related but different target domain. Such a view
is confirmed using a wide range of problems in Human Activity Recognition (HAR),
computer vision with natural scenes and two substantive medical imaging problems.
Our results on the last two problems using small convolutional networks outperform
results published by other authors using a large ResNet architecture. Next, we provide

short summaries of the contents of each chapter.

7.1 Conclusions

In Chapter Two, we review learning in Deep Neural Networks (DNNs) with a view of

motivating the analysis and applications of layer-wise (cascade) training.

101
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Chapter Three is an analysis of learning in the information plane, an idea introduced and
popularised by Shwartz-Ziv and Tishby (2017), building on earlier work on the IB princi-
ple. This appealing idea is proposed as a way of explaining how deep networks show high
generalisation performance. Our work on studying CL in the information plane, leads
to two conclusions. We contradict Shwartz-Ziv and Tishby’s results that information
compression of features learned in layers is not an explanation of generalisation. This
follows from the fact that cascade trained models achieving the same performance in
a range of problems do not show similar information compression. We further observe
that the speed of change of the two information terms across layers happens in a way
that their ratio could be used as a useful heuristic in determining an optimal depth of
a network. To perform this study, we specifically construct several synthetic problems,
which, unlike the example used in Shwartz-Ziv and Tishby’s work could not be solved
by a single hidden layer network. We also use several benchmark datasets in support of

our empirical work.

Chapter Four addresses a TL problem of making inferences across biological species using
Single Cell (SC) gene expression measurements. While this is a challenging and useful
problem, and our results demonstrate the effectiveness of TL, the problem turned out
to be solvable by a single layer network. Hence, disappointingly, the use of CL and the

remarks we make about it do not apply to this problem.

In Chapter Five, we consider a HAR problem, setting up several TL tasks solved by E2E
and cascade trained networks. The results obtained show that early layers of CL offer
better representations to transfer knowledge to a target task. While this has also been
observed with E2E trained networks by previous authors, E2E achieves this as a side
effect of Stochastic Gradient Decent (SGD) training, whereas in CL, this is achieved by
design. This is because early layers are simple architectures and when forced to learn the
target are only likely to extract coarse features, with later layers specialising to details
of the source domain. The empirical results on the HAR problem (and on the computer

vision tasks, see Chapter Six) offer indirect support to this coarse-to-fine learning view.

In Chapter Six, we further apply Transfer Learning from Cascade Learning (TCL) to
medical image classification tasks where data scarcity always exists. In comparison to
Transfer Learning from End-to-End (TE2E) and learning from scratch, TL shows sig-
nificant improvements when limited data is available. In particular, only the few early
layers are able to provide the better transferability than a large-scale network ResNet
(Raghu et al., 2019) on the CheXpert dataset and a similar conclusion is reached on the
BIMCYV task. Moreover, early layers has lower Singular Vector Canonical Correlation
Analysis (SVCCA) similarities than later layers from cascade and E2E networks, which
further validates the coarse-to-fine feature extraction in growing depth, as later layers get
more specific features to targets in both learning mechanisms. Since features from early
layers of cascade networks have significant transferability, there is no need to train the

entire model on the source domain for implementing TCL, which further saves training
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time and computational resources, compared to TE2E.

In summary, this work explores the difference between CL and E2E learning. In addition
to the benefits of layer by layer feature extraction and different information planes of CL
and E2E learning, we develop TCL and compare it to TE2E on a set of tasks, finding that
TCL shows significant advantages in performance and in saving computation resources.
We conclude that TCL is an alternative to conventional TE2E with adequate performance

on limited data.

7.2 Future Work

In this work, we have analysed a particular way of training neural networks using the IB
principle advanced by (Shwartz-Ziv and Tishby, 2017), thereby contradicting their view
that dynamics on the information plane, especially information compression, are good
explanations of generalisation in deep networks. While much of Shwartz-Ziv and Tishby’s
explanation is illustrated using a simple example, for which a multi-layer network is not
necessary, we have constructed several synthetic examples and covered a range of real-
world datasets to make our claims. Still, our experimental work is small in comparison
to the large problems that are being solved in the current Deep Learning (DL) literature.
As such, scaling up our work to tasks comparable to the ImageNet problem would be
an immediate next step from this work. ImageNet itself is widely used (or over used)
to carry out empirical work, hence other large scale problems in voice recognition or
chemical property prediction could also be considered. Is the heuristic we recommend,

based on I'TR, at such large scales would be an important study to undertake.

Currently, we only propose I'TR for deciding the depth of a model, whilst the width of
each layer is selected heuristically. Inspired by works of Fahlman and Lebiere (1990)
and Platt (1991), it is possible to construct a layer by adding units one by one. We
believe the difference of ITR before and after adding a unit can be used to judge the
necessity of this unit in constructing a layer. That can be a potential way to realise
the automatic adaption of a network structure instead of a tedious search from a list
of structures. Moreover, features from such cascade networks may be able to further

enhance transferability.

Alternate forms of CL have been considered in the literature recently. Of particular note
is the specification of local error functions Wang et al. (2021) and layer-wise decoupled
training based on InfoMax principle (Lowe et al., 2019). Of these, the InfoMax principle
is closely related to the work we have carried out. Exploring the links between the two

would be a useful avenue to purse.

In addition, a proper learning rate scheme may be another way to improve the learning
ability of CL. As Ro and Choi (2021) suggested, the fixed learning rate scheme over
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layers may hinder the notion that early layers extract general features and later layers
extract specific features in the setting of E2E learning. We believe it is worth developing

a layer-wise learning rate schedule for achieving a state-of-the-art performance of CL.

CL is a good framework to explore hierarchy in class labels, when available. Several of
the image classification tasks are hierarchical (families of dogs and vehicles, for example).
While we have touched on this problem in this work and shown that early layers learn
much better when the problem posed is at the root of the hierarchy, we have not explored
this in any detail. The ImageNet problem and the medical problem of CheXpert have
natural hierarchical structures in them. We also used clustering of semantic vector
representations to establish a hierarchy. Exploring this in detail will be another line

of work well justified by the findings in this dissertation.

Finally, broader applications of TCL such as natural language processing, should be
extended, to investigate the adaption of CL in recurrent structures. Doing so, will help

scale up repositories of CL and TCL.



Appendix A

This appendix is a supplementary of Chapter 3. Here we show details of data, configura-
tions of models, extended results and derivations related to Information Bottleneck (IB)

theory and Singular Vector Canonical Correlation Analysis (SVCCA).

A.1 Datasets and Configurations

Datasets used can be divided into three parts, synthetic data, realistic data from UCI
repository and benchmark datasets in the area of computer vision (as an aforementioned
summary in Section 3.4.1). In this section, we provide unmentioned details of realistic
datasets used in Chapter 3 and the corresponding configurations of models on all used

datasets.

A.1.1 Details of Realistic Datasets

Dexter (Guyon et al., 2004) is a dataset to filter texts about "corporate acquisitions"
by solving a two-class text classification problem. The inputs are sparse continuous
representation given by a bag-of-word embedding, and the output are balanced binary
labels. There are 2562 features out of total 9947 original features are always zeros where
the features represents the frequencies of occurrence of the word stems. Thereafter, the
data is reconstructed by adding 10053 simulated features according to Zipflaw of which
the details can be found in (Guyon et al., 2004). Finally, the fraction of non-zero values in
the data is around 0.5% with 20000 features. Originally, there was three parts: training
data, validating data and testing data, however the testing data are still withheld. Hence,
in our experiments we use first two parts of data and make validation data as an unseen

set to test models.

Dorothea (Guyon et al., 2004) is a drug discovery dataset for recognising which com-
pounds bind to Thrombin. The binary sparse inputs are descriptions of chemical com-
pounds given by the three-dimensional structural properties of molecules, and targets

are predictions of active or inactive ability to bind to Thrombin. The data has 139, 351
105
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original features and only 100K top ranking features are kept based on a described crite-
rion in (Guyon et al., 2004). Finally, the non-zero values of data are less than 1%. There

are 800 compounds in training data and 350 compounds in testing data.

Gisette (Guyon et al., 2004) is a handwritten digit recognition problem being similar
to MNIST. The problem is to discriminate the highly confusable digits "4" and "9"
where digits have been size-normalised and centred in a fixed-size image with dimension
28 x28. Similar to the above two datasets, the data is reconstructed for the purpose of the
feature selection challenge. Particularly, pixels in the middle top part of the features are
randomly sampled for obtaining information necessary to disambiguate 4 from 9. Then,
the creation of higher order features is implemented by products of sampled pixels to solve
the problem in a higher dimensional feature space. In addition, a number of distractor
features are also added with random orders. In total, 5000 features are included in this

dataset with around 13% non-zero values and a binary classification task is constructed.

Epileptic (Andrzejak et al., 2001) is a commonly used dataset for detecting epileptic
seizure. It primitively contains 5 classes and we reconstruct it to a binary classification
task for recognising if there has or has not been an epileptic seizure. Inputs consists of
data points with the value of the electroencephalo-graph recording at different points in
time. From 500 individuals, 4097 data points (each one for 23.5 seconds) can be divided
into 23 chunks of which each has 178 data points for a second. Therefore, a dataset with
23 x 500 = 11500 rows and 178 dimensions is obtained. More details can be found in the
UCI repository.

Human Activity Recognition (HAR) (Anguita et al., 2013) is a dataset obtained
from 30 volunteers who carried a waist-mounted smartphone with embedded inertial
sensors. In total, there are six activities (walking, walking upstairs, walking downstairs,
sitting, standing and laying) based on data captured by 3-axial linear acceleration and
3-axial angular velocity at a constant rate of 50H z. Data is pre-processed through noise
filters and sampled using fixed-width sliding windows of 2.56 sec and 50% overlap (128
readings/window). More details of data can be found in the UCI website. According
to the constructed training and test data given by the website, we evaluated a 6-class
task. We also gave a feature selection by ranking the correlation between each feature
and targets in a declining order, and the top 40% of features (around 225 features) are

used in our experiments.

A.1.2 Training Parameters of All Datasets

Obtaining optimal performance on each of the datasets by extensive pruning of structures
is not the aim of this section, therefore we heuristically select architectures for obtaining
reasonable performance of both Cascade Learning (CL) and End-to-End (E2E) learning

on all datasets in order to provide a fair comparison of them.



Appendix A Appendix Related to Information Bottleneck

107

TABLE A.1: Configurations of networks for all datasets.

‘ Dataset ‘ Architecture! ‘ LR? H Dataset ‘ Architecture ‘ LR ‘

Synthetic [10,7,5,3] 0.001 || Epileptic [32,16,14,12,8,4| 0.01
Dexter [6,5,4,3] 0.01 Gisette [32,16,14,10,8,6| 0.001
model 1:[20,20,20,20,20] | 0.01

Dorothea [20,10,7,3] 0.001 MNIST model 2: [1024,20.2020] | 0.03

layer 1-8:256
HAR [10,32,16,10,8,6,4] 01 || CIFART0 | | 0o 1o (onNy | 0001
ImageNet23 | [256,256,256,256,256,256,256] | 0.01

1 The selection of structures is heuristic based on dozens of simulations or recommendations from publications.
2 LR is the abbreviation of learning rate.
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FI1GURE A.1: The comparison of performance between CL and E2FE on all datasets with
a heuristic selection of structures. On the same dataset, the configurations of training
and network architectures of both CL and E2E are same. Based on heuristic selection
of model size without repeat tweak, CL shows significant advantages compared to E2E
learning when over-fitting happens.
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F1GURE A.2: Comparison of linear classifiers’ performance over synthetic datasets.
var_u is the data used by Shwartz-Ziv and Tishby (2017).
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Table A.1 shows structures of models on each dataset. An Adam optimiser is used on
majority of datasets except MNIST and CIFAR 10 which uses a Stochastic Gradient
Decent (SGD) optimiser, accompanied by a learning scheduler with a 0.9 decay on each
epoch. Softmax is the activation function of classifiers/last layer while the activation
function of the middle hidden layers is Hyperbolic Tangent Function (Tanh) except in
the convolutional network on CIFAR 10 and ImageNet23 whose activation function is
Rectified Linear Unit (ReLU). The kernel size of convolutional layers is 3 x 3. The
structure and configurations of the model used to train MNIST are same as described
in (Noshad et al., 2019). For ImageNet23, we selected 23 classes of images, which over-
lapping with CIFAR 100, from 1000 classes. The size of each hidden layer used to train
ImageNet23 is shown in Table A.1. For CIFAR 10 and ImageNet, an auxiliary classifier
is used after the convolutional layers. The auxiliary classifier for CIFAR 10 includes two
fully connected layers consisting of 64 and 32 units leading to the output layer. For Im-
ageNet23, we use one convolutional layer with 128 units and two fully connected layers
with 256 units for each are included. For all of other datasets, the output layer is the
classifier and its size is decided by the number of classes of tasks. Particularly, as the
dimension of the Dexter and Dorothea datasets are much higher than the number of

data in them, we add L2 (1 x e~?) regularisation to mitigate over-fitting.

10000.0
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6 8
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FIGURE A.3: An independent implementation of Shwartz-Ziv and Tishby’s work showing dy-
namics on the information plane of an E2E network, with a Tanh activation function and SGD
optimiser. The trajectories are averaged over 10 runs using random initialisation.

As mentioned in Chapter 2, CL provides the flexibility of structure adaptation, while E2E
does not have. Using a heuristically selected structure of networks trained by E2E and
CL respectively, Figure A.1 shows corresponding performance on each of dataset used
in this section. On majority of tasks, CL shows better performance with the heuristic

structure without needs of searching the suitable topology of networks.

To validate the complexity of different synthetic datasets, we use a Support Vector
Machine (SVM) with the linear kernel to produce each synthetic dataset. As shown in
Figure A.2, our generated synthetic datasets are relative harder than the task used by
Shwartz-Ziv and Tishby (2017).
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A.2 Repetition on Shwartz-Ziv and Tishby’s Data for End-
to-End Training

For validating the implementation of estimators, we firstly give an recreation of partial
works in (Shwartz-Ziv and Tishby, 2017). Figure A.3 shows the reproduced information
plane by us based on binning estimation on Shwartz-Ziv and Tishby’s data. The structure
is same as settings in (Shwartz-Ziv and Tishby, 2017), and obtained planes are analogous.

This is a solid foundation of following works shown in Section 3.4.

A.3 Extended Analyses of Information Bottleneck Planes
for End-to-End Learning

Compared to the information planes of E2E learning shown in Section 3.5.1, we give an
further exploration of E2E learning by adding regularisation and changing the depth of
the networks. In this section, the results of all experiments are averaged over multiple
runs and the information plane of E2E learning includes the trajectory of the prediction

layer which is the closest curve to the y-axis.

10 10000.0 1.0 10000.0
Kol
0.8 7 °® 0.8
.. o o ...".
~06 % . " 0.6 ”
= . < < <
£ . g £ . . g
=04 . ey =04 s . e &
.
0.2 . 0.2 .
. .
0.0+ ° 0.0—2
2 2 6 8 10 12 141.0 o 2 4 6 8 10 12 141.0
1X: ) 1x; 7
(a) L2 (0.01) (b) L1&L2 (0.01)
1.00 1.000
0.975
0.95 i 0.950
> . »0.925
© f I
50.90 / 50.900
g / :
< f 20.875
: 0.850
085 | —— Train Average:0.9808 / Train Average:0.9349
Test Average:0.9409 0'825[’ Test Average:0.9188
0.80 2000 4000 6000 8000 10000 0800 2000 4000 6000 8000 10000
Epoch Epoch
(¢) Performance with L2 (0.01) (d) Performance with L1&L2 (0.01)

FIGURE A.4: Information planes of E2E learning with regularisation on the synthetic 17 dataset.
(a) and (c) respectively show the information plane and performance of an E2E network with
ridge regularisation. (b) and (d) show same content while regularisation contains both lasso
and ridge. Compared to information planes shown in Figure 3.3(a), (a) shows less behaviours of
information compression over layers and better generalisation. (b) shows invisible information
compression from layers (except the last layer).
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A.3.1 Effects of Regularisation in End-to-End Learning

We use two types of regularisation, L2 (ridge) and L1 L2 (lasso and ridge), to apply a
penalty on the layer’s kernel, with all configurations using a factor of 0.01. Compared
to the results shown on Figure 3.2(b), Figure A.4(a) shows less information comparison
with smaller I(Y'; T') values. Comparing Figure 3.3(a) to Figure A.4(c), generalisation is
improved by adding ridge regularisation. This observation further supports our conclu-
sion that generalisation cannot directly benefit from information compression or solely
high values of I(Y;T). When both lasso and ridge regularisation are applied to net-
works, the model is under-fitted as shown in Figure A.4(d) in comparison to the model
only has lasso regularisation. The corresponding information plane also shows deforma-
tion as shown on Figures A.4(b), where information compression is negligible and the
trajectories between some layers cross. Here, the crossed trajectories may be a results
from the flexible communication between layers, and can be an interesting direction to
explore, although it is out of our scope. Chelombiev et al. (2018) also explore the effects
of L2 regularisation on trajectories on information planes, but they only pay attention
on I(X;T) and ignore the change of I(Y;T).

A.3.2 Effects of Adding Layers in End-to-End Learning

Instead of using a fixed structure to train an E2E network, we explore the effects of
gradually enlarging the E2E networks’ size on the information plane. From Figure A.5,
we observe that the model containing two hidden layers shows best generalisation where
information compression is imperceptible. Afterwards, increased depth of models does
not contribute to generalisation but shows slight improvement of training accuracy and
I(T;Y). Some of the middle layers will show information compression. This also indi-
cates information compression cannot be the main/only reason of good generalisation,
and the sole consideration of I(X;T) or I(T;Y) may not be the proper way to connect
IB theory and generalisation. Figure A.6 shows effects of adding layers to E2E networks
on three datasets, which indicates the difficult of searching an optimal structure of E2E

networks.

A.4 Results on Other Datasets

In the main body, we illustrate differences of information planes between CL and E2E
training on one of synthetic datasets and the HAR data in Section 3.5.1. In this section,

we further provide the related results on other datasets.



Appendix A Appendix Related to Information Bottleneck 111

100000 100000 100000 o 100000

=6 \ R A £9¢) J : 2 o ] ’ 2 06 K} : B

. 005 00" 00*
B S A U Rt L VN B R e L N VN B R R b (I T R R B R R
wn wen wen e

(a) One hidden layer (b) Two hidden layers  (c¢) Three hidden layers  (d) Four hidden layers

2000, 1000, 1000

Train Average:0.9075
Test Average:0.8976

Train Average:0.9745
Test Average:0.9536

Train Average:0.9803
Test Average:0.9439

Train Average:0.9808
Test Average:0.9409

o800y W0 A0 &S00 10000 o800y 00 w00 w00 w00 10000 08005 W0 A0 w00 w00 10000 03005 W0 A0 w0 w00 10000

(e) One hidden layer (f) Two hidden layers  (g) Three hidden layers  (h) Four hidden layers

F1cURE A.5: Information planes and performance of E2E learning with different struc-
tures on synthetic 17. Using a L2 regularisation with a factor 0.01, the deepest network
has four layers with the number of units in sequence 10,7,5,3.
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FIGURE A.6: Performance of E2E learning with different structures (gradually increas-
ing) on different datasets. The structure is changed by gradually increasing the number
of hidden layers. The accuracy is obtained by training models adding a L2 kernel reg-
ularisation with a constant 0.01, and datasets are synthetic 17, Epileptic and HAR in
sequence.

A.4.1 Information Planes

Figure A.7 shows information planes of CL and E2E on remaining three synthetic
datasets, where the characteristics of both learning mechanisms are consistent with Fig-
ure 3.2. In that case, Mutual Information (MI) is estimated every epoch within the first
200 epochs, afterwards it is estimated every 100 epochs, using the binning estimation.
The trajectories of the final prediction layers are shown as the most left curve on the

information plane of E2E learning.

In Figure A.7, CL shows invisible information compression along the I(X;T) axis once
the early layers have been trained, while E2E has visible information compression on
the same axis. The starting points, regarding I(7;Y), of both learning mechanisms is
different where E2E starts from initialisation but CL starts on the foundation of previous
learned layers. Both learning mechanisms have a slight loss of I(Y;T') from early to later

layers.

Figure A.8 presents the same information planes on CIFAR 10 where the model contains

convolutional layers associated with ReLLU activation functions. The information is es-



112 Appendix A Appendix Related to Information Bottleneck

10 10000.0 10 10000.0
<06 P 2
= 8 & 8
S04 & o4 &

0.2 0.2

0.0 2.8 5.6 8.4 11.2 14.0 1.0 0.0 2.8 5.6 8.4 11.2 14.0 1.0

10X: ) 107
(a) 28 synthetic E2E. (b) 28 synthetic CL.

1o 10000.0 1o . 10000.0
0.6 w 06 ‘ "
>~ = >~ =
£ R g
= 0.4 o 0.4 i,

0.2 0.2

083 78 5% 84 12 14.01.0 0835 78 5% 84 12 2.0 1.0

IX;T) IX;T)
(c) 44 synthetic E2E. (d) 44 synthetic CL.

10 10000.0 10 10000.0

0.8 0.8 - W//7-//

06 w06 w
> < > <
S g & / g
04 i} =04 i}
02 02
0% 28 56 84 112 12.01.0 0% 28 56 84 112 14.01.0
X:7) ;7

(e) 48 synthetic E2E.

(f) 48 synthetic CL.

F1GURE A.7: Comparison of information planes of CL and E2E on synthetic datasets.
In comparison to E2E learning, there is limited visible information compression dy-
namics at the end of training in CL’s information planes while their performance is

similar.
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FIGURE A.8: Information planes on CIFAR 10. (a) and (b) show trajectories of E2E learning
and CL respectively. For E2E, we got similar information planes as shown in (Jonsson et al.,
2020), which do not show the same smooth behaviour as simpler synthetic datasets. Information
compression happens both before and after over-fitting.
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timated for every 5 epochs using Ensemble Dependency Graph Estimator (EDGE) and
averaged over at least 2 runs (see Section A.1.2 for details of network configurations). We
observe although trajectories of this case are not as smooth as the others, the character-
istics are consistent such as the starting points on the information plane of both learning
mechanisms. CL do not contain the trend of information compression while E2E does

but only slightly.
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FIGURE A.9: A comparison between information compression and generalisation on synthetic
datasets. Corresponding to the comparison shown in Figure 3.3, this figure shows further com-
parison between the performance of E2E learning on test datasets (from synthetic 28, 44 and
48) and trajectories on information planes. Similar to Figure 3.3, the dashed line and the dotted
line highlight the epoch starting inflection and starting over-fitting respectively.
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FIGURE A.10: An exploration of connections between information compression and general-
Briefly, there is also not clear connection between the

isation of CL on synthetic 17 data.
information compression and the performance of CL.
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FI1GURE A.11: A comparison of CL information planes between with and without regularisation
on HAR data. The regularisation is a penalty on each layer’s output with a factor (1le~%). By
comparing the two sub-figures, adding regularisation increases the value of I(X;T) for all layers
except first layer while the trend of absent information compression is consistent. This increment
does not further benefit to the accuracy. All results are averaged over 5 runs.
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F1GURE A.12: The ITR of CL on the ImageNet dataset. 23 classes are selected in this
classification task for saving training time on this large task. The top figure shows a
tendency of ITR, and the bottom figure shows performance on test sets, throughout
layers of the network. The accuracy achieves an optimal value at the forth layer where
ITR shows a sharp increase. Afterwards the forth layer, the accuracy starts to decrease.
The conjunction of testing accuracy decreasing and ITR sharp increasing is consistent

with Figure 3.4.
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A.4.2 Information Compression and Generalisation

We extend our investigations to find when information compression happens in E2E. We
observe visible information compression happens after the saturation of test performance
as shown in Figures 3.3(a) and 3.3(b). Hence, there may be a suggestion that the
information compression happens after over-fitting as mentioned by Wickstrgm et al.
and in Section 3.6. Figure A.10 shows a similar comparison between compression and

generalisation of CL, from which there is no clear tendency.

Taking the HAR task as an example, we further track how trajectories change with
and without regularisation in CL. As shown in Figure A.11, we notice adding proper
regularisation may be able to increase values of I(X;7T') in CL, which is same as men-
tioned in Section A.3. This observation further supports our conclusion that information

compression may be not the main/only reason of better generalisation.

A.4.3 Information Transition Ratio on ImageNet

Furthermore, Figure A.12 shows Information Transition Ratio (ITR) of CL on a 23-class
ImageNet task. Similar to results on other datasets shown in Section 3.5.2, the layer
with a sharp increase of ITR can suggest the appropriate depth of cascade networks,

from which a satisfactory performance can be obtained.

A.4.4 Information Transition Ratio Dynamics of Cascade Learning

As the extension of Table 3.2, Figure A.13 shows the dynamics of I'TR on both synthetic
and realistic datasets. The layers, having sharp increases of I'TR, of networks can produce
the satisfactory performance, and the subsequent layers will not significantly contribute

to the improvement of performance.

A.4.5 Comparison of Subspaces between End-to-End and Cascade Learn-

ing.

On the one hand, we use information planes to track learning dynamics of both learning
mechanisms as described in Section 3.5.1. On the other hand, we visualise the latent
representations of both CL and E2E through projecting representations onto two dimen-
sional planes, using T-distributed Stochastic Neighbor Embedding (TSNE) (of which the
perplexity is 30) from a library, sklearn, projections are shown in Figure A.14. For the
first layer, features, from both CL and E2E, have low separability at the beginning of
training and then gradually increase with epochs. For subsequent layers, CL shows rela-

tively higher separability of features from the beginning of training as features from later
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layers are on the top of previous trained features. However, for E2E learning, the features
have low separability at the beginning of all layers’ training. For middle layers, CL has
better separability of features, compared to E2E. Geiger (2021) believed the information
compression of E2E is caused by geometric clustering. However, in our observations, CL
shows more visible separability in clustering, where information compression is invisible
as shown in Figure 3.2. Therefore, a further discussion in that direction may be an open

question.
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FicUure A.13: ITR dynamics with respect to total training epochs on both synthetic
and realistic datasets. The circles with black margin marks the last training epoch
of each layer. The shading areas show learning (grey) and over-fitting (pink) areas
respectively.
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FicURE A.14: Visualisations of representations from intermediate layers based on
TSNE. The models are trained on HAR problems. Each row of a sub-figure stands
for a layer, and each column stands for an epoch. From left to right, we present the
14, 504, and 2004y, epoch in the sequence. From top to bottom row, there are the 14,
44, and 64y, layer in the sequence. (a) shows representations from CL while (b) is from
E2E learning. By comparing the first column of both sub-figures after the first layer,
we notice CL provides more distinguishable features at the beginning of training each
layer. Reflected on the information plane, the starting point of I(Y;T) is relatively
high. For early middle layers, the features extracted by CL have higher separability.

Algorithm 3 Pseudocode of the Binning Estimation

—_ =

._.
v

13:
14:
15:

16:
17:
18:
19:

20:
21:

Arguments:
X: Inputs, where & € X.
T;: The output/representations from 4y layer, where vector t; € T;.
Y: Labels, where y. € Y, ¢ € N3 is the index of the classes.
Outputs:
I(X;T;): MI between X and T;.
I(T;;Y): MI between Y and Tj.
Initialisation:
Ni: The number of clusters in discrete Tj.
P(x): The distribution of *.
p(x): The probability of *.
H(x): The entropy of x*.
I(*): The MI of .
At each epoch of the i;;, layer:
Discretise T; by binning each dimension of T; into intervals between [—1,1].
{We use 25 intervals according to minimal sufficient statistics (Fisher, 1922).}
P(T;) < Calculate the distribution of the discretised T;.

Ny N1
H(T;) Y p(tij)I(ti;) = —>_ plti;)logs p(ti;)
i=1 i=1
H(TllX) ~—0 {As T; is the deterministic function of X (Amjad and Geiger, 2018).}
Na Ny
H(Ty[Y) < =Y _pye) | D p(tijlye) logs pltizlye)
c=1 =1
I(X;T;) « H(T;) — H(T3| X)

(T3 Y) < H(Ty) — H(T;Y)

3Kullback-Leibler (KL) divergence (Cover and Thomas, 1999) based upper bound (Kolchinsky and
Tracey, 2017) on entropy of mixture of Gaussians with covariance matrix 62 * I. The Bhattacharyya
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Algorithm 4 Pseudocode of the PWD Estimation (Kolchinsky and Tracey, 2017;
Kolchinsky et al., 2019)

1: Arguments:
2 X: Inputs, where & € X, Ny is the number of samples in X.
3 Y: Labels, where y. € Y, ¢ € N, is the index of classes.
4: Ti: The representations from i, layer, where vector t; € TZ.NS XdTi, and dr, is the dimension of T;.
5: 52 Noise variance.
6: Outputs:
7 I(X;T;): MI between X and T;.
8: I(T;;Y): MI between Y and T;.
9: Initialisation:
10: H(x): The entropy of x*.
11: I(*): The MI of *.
12: p(yc) < The probability of each class.
13: At each epoch of the i;, layer:
Ns Ns 2
14: Hy (T} “’N% Lzlzog(;sczlezp «%) _ ‘?zog(zﬁﬁ)ﬂ N % {From the Kullback-

Leibler (KL) divergence?.}

15: HKL(Tle) — ;7' * lOg(27T52 + 1) {The entropy of a multivariate Gaussian distribution (Ahmed and Gokhale,
1989; Huber et al., 2008) }
N
16: Hi L (TiY) < Y p(ye) Hi . (Tilye)
c=1
{Similar to Hir,(T;), Hir (T;|ye) is obtained by using the conditional (T |y.) substitute T,LA}
17: I(X;Ti)%HKL(Ti)fHKL(TAX)
18: I(TZ,Y)FHKL(TZ)—HKL(TAY)
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(a) Binning. (b) PWD. (c) Two estimators’ comparison.

FIGURE A.15: The comparison of the two estimators of MI. The data is synthetic 17.
The number of epochs is decided by early stopping.

A.5 Estimation of Mutual Information

In this section, we give details of three estimations used in Section 3.4.2, binning, Pair
Wise Distance (PWD) and EDGE. Algorithm 3 shows binning estimation. Algorithm 4
and 5 show PWD and EDGE based estimation of MI respectively. In the implementation
of binning estimation, the number of intervals is 25 for most of the realistic data except
synthetic and HAR data of which a comparison among three different intervals (10, 25,
30) is provided. Similarly, we carry out PWD estimations on most of the realistic data
by setting the noise variance as le™2 while comparing difference over le=2, le™3 and
le~® on the synthetic and HAR data.

N

distance based lower bound is Hg (x) + log(%) *



Appendix A Appendix Related to Information Bottleneck

119

MI

0.7

0.5

0.4

03

0.2

0.0

1D
—— MINE
Real

2D
—— MINE

Gaussian
= Bin

2 5D

— MINE

t Gaussian
= Bin

50D
— MINE
Gaussian

—— Bin

=8

100D
—— MINE

Gaussian
—— Bin

0 500 1000
Epochs of MINE

1500 2000

0 500 1000
Epochs of MINE

1500 2000

0 500
Epochs of MINE

1000 1500 2000

0 500 1000 1500 2000
Epochs of MINE

0

500 1000 1500 2000
Epochs of MINE

FIGURE A.16: The estimation of MI over several high dimensional Gaussian artificial
data based on MINE estimators (Belghazi et al., 2018). From right to left, the dimension
of data is in sequence 1,2,5,50,100. The one dimensional data is randomly generated
according to a Gaussian distribution where the real estimation means MI between
Gaussian variables given by the mean and variance. Binning estimation is based on

30 intervals.

following Gaussian distributions.

Other high dimensional data is also constructed by random generation

Algorithm 5 Pseudocode of the EDGE (Noshad et al., 2019)

1
2
3
4:
5:
6
7
8
9

10:

11:
12:
13:
14:
15:
16:
17:

18:
19:

20:

21:

: Arguments:

X: Inputs, where & € XNs*4 N is the number of samples in X.
Y: Labels, where y. € YNVsXNe ¢ ¢ N, is the index of classes.

T;: The representations from i, layer, where vector ¢; € T,

Outputs:

I(X;T,): MI between X and T,.
between Y and Tj,.

I(Tn;Y):

: Initialisation:
H: Hash map of X and Y, and H : R — {1,...

MI

F}.

s XdTi

Where F' is the number of buckets and is a linear function of Nj.

H (x) specifies a vertex index of a dependence graph.

H(u) =

[h(u1), h(u2),...,

, and dr, is the dimension of Tj.

h(ug))]. Where u is the each component of vector (e.g., @).

Where h(u) = [":b}, b € [0, €] is a random number and € is a bandwidth parameter.

{Using Locality-Sensitive Hashing algorithm (Indyk et al., 1997), H maps neighbouring points to a common value}
I(x): The MI of .
At each epoch of the n;, layer:

Create a bipartite graph with two sets of nodes U and V.

Map points in X and T}, to nodes in U and V using H.

Assign the weights w; and w;- respectively to nodes v; and uj, , where v; € V and u; € U.

w;j < The weights of the edge (v;,u;).

N ’
Wy =

— and w;; =

M ;
N

N;; /N
(N:/N)(M; /N)*
Where N; and M; are the number of hashing collisions (instances) at v; and u;.

N;; is the number of pairs («,y) mapped to (v, u;), and 0 < Ny < Ny, Nj.

The estimates of f;, f; and fij /flfj

(X Ty)

I(X;Ty) < > w(t)(

are w;, wj, and wj;.

Z wiw; g(w”) Where e;; is v; — u; edge in the set Fg.
ei;€EEG

ter

(X;Th).

Where w is optimised by minimising ||w(t)||2 being subject to Zw(t) =1

and Z w(t)t

teT
I(Tn§

Y') < Repeat steps 13 to 20 with variables Ty, and Y.

ter

t=0,i€N,and i <d. 7 is a set of index values Moon et al. (2016).

“For two variables X and Y, the general MI between them is I(X;Y))
where g is a smooth convex function with g(1) = 0. For Shannon MI, g( )

J(

fl(x)fz(y)
“fi2(wy)
zrlogx.

)f12(ma y)dl'dy,
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A.5.1 Comparison between Estimators

For validating the effects of different estimators, we use both binning estimation and
PWD estimation to draw the information plane of a CL network on each realistic dataset
and synthetic dataset. Limited by the space, we only show a comparison on the synthetic
17 dataset as an example on Figure A.15. We notice that the two estimators show
similar trajectories in the information plane on a majority of the data, and the value of
estimated MI lays on the diagonal line of Figure A.15(c). However, in some datasets, the
robustness is not so ideal and effected by the selection of parameters of each estimators
the estimation may vary. Therefore, we utilise the same estimator on all datasets to
estimate the MI of both CL and E2E for fair comparison and reduction of uncertainties

(as mentioned in Section 3.4.2).

We also try the estimator Mutual Information Neural Estimation (MINE) proposed by
(Belghazi et al., 2018), however this estimator shows an unstable estimation with an
trend towards infinite as shown in Figure A.16 which is similar as the description in
(Elad et al., 2019). Except one dimensional data, the estimated value of MI keeps
increasing with training estimators. Namely, MINE cannot provide a stable estimation
in these cases. Furthermore, for each estimation, an extra network would need to be
trained for at least 2000 epochs, which would be quite time consuming. Therefore, we

did not use this estimator in our experiments.

A.5.2 Mutual Information of Gaussian Variables

As mentioned in Section 3.5.2, we also estimate MI by assuming all variables are from
Gaussian distribution. Equation A.1 shows the way of estimating MI, given by Huber
et al. (2008), where n is dimensions of *, and ¢ is a covariance matrix for variables. Figure
A.17 shows the visualisation of the Gaussian covariance matrices, the ITR estimated
under Gaussian assumptions, and the intensity of outputs from each layer of cascade

networks on both synthetic and realistic data.

I(X;T) = H(X)+ H(T) - HX,T)
1 (A1)
H(x) = 5 log [(2me)"(8]]

From both Figure A.17(c) and A.17(d), we notice that outputs from early layers have
higher variance (see the diagonal lines) while later layers have higher covariance (i.e.,
outputs of some neurons in a layer are more similar). Reflected by the intensity plot of
the outputs (Figures A.17(e) and A.17(f)), the classes can be easily distinguished from
the later layers’ outputs. The ratio estimated based on a Gaussian assumption shows
an trend with gradually increased values. However, as variables are not exact Gaussian

variables, the estimation has disparity with other estimations as shown in Figures A.18
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and A.19. The ITR given by Gaussian estimation shows sharp increases at the layer
earlier than the optimal layer which is suggested by an appropriate estimator and has

the satisfactory performance.

A.6 Rate Distortion Theory and Information Bottleneck
Theory

In this section (related to Section 3.3), we introduce more details of connections between
IB and rate distortion theory. Equations A.2 and A.3 show the formulated relation
between entropy and MI, corresponding to Figure 3.1. Loosely speaking, IB theory
replaces external constraints in rate distortion theory with a precise goal related to the

targets.

HXIT) == 3 pet)og "0 == 3 pla) Y pltle) ogp(alt)  (a)

seXTET - =)
I(X;T) = H(X) — H(X|T) = H(T) — H(T|X)
= H(X)+ H(T) - H(X,T) = H(X,T) — H(X|T) — H(T|X)
=YX p(z,t) log pfzg‘”;a) (A.3)
S SR

A.6.1 Rate Distortion Theory

According to the notations in Section 3.1, I(X; T') is used to quantify the compactness of a
new representation of an input, where lower values mean more compact transformation.
There are two extreme cases, a) I(X;7T) = 0 when T has a just single value; and b)
I(X;T) = H(X) when T is a simply duplication of X. However, compression is not
enough for evaluating the quality of representations. Continually reducing details in X
can be a way of compressing information getting a compressed representations which will
be useless representations in realistic applications. Therefore, additional constraints are

necessary.

In rate distortion theory, a distortion measure can be an accomplished way of providing
constraints. The distortion quantifies the "distance" between the random variable X
and its representation 7. Specifically, d : X x T — R* is a defined function used to
complete the above quantification with a hypothesis that a smaller distortion implies a
better representation. Given such a function shown in Equation A.4, the representation

of X induced by mapping p(t|x) has an expected distortion. The trade-off between
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representations’ compactness and a corresponding expected distortion is the elemental
adjustment in rate distortion theory (Slonim, 2002). Calligraphic notations denote spaces

to which the value of variables belong.

<d(ma t)>p(m)p(t|a:) = Z Zp(m)p(t|cc)d(:c,t) (A4)

xeX teT

R(D) = min I(X;T
( {p(t|):(d(w,t))<D} ( ) (A-5)

The rate distortion function, denoted by R(D) (shown in Equation A.5), consists of a
given p(x) and a distortion measurement d(x,t). The denotation R(D) is designated
as the infimum of all rates, R, under a given constraint on an averaged distortion D.
Namely, R(D) is the minimal achievable compression-information over all normalised

conditional distributions, p(t|x), meeting the distortion constraints.

On a rate distortion plane shown in Figure A.20, R(D) characterises a monotonic trade-
off that a higher D value (x axis of the plane) implies a smaller I(X;7T) (y axis of the
plane). In other words, more relaxed distortion constraints signify stronger information
compression. {D, I} represents a distortion-compression pair. In the rate distortion
plane, if this pair locates above the curve shown in Figure A.20, then there is a compressed
representation 7" with the level of compression quantified by I(X;7T) = I, accompanying
with an expected distortion being upper bounded by D.

Flp(tle)) = I(X;T) + B(d(@, 1)) p(a)pt|e) (A.6)

A minimisation problem of a convex function needs to be solved for finding the rate
distortion function. As shown in Equation A.6, the convex functional F(p(¢t|x) is min-
imised over the convex set of all the normalised conditional distributions p(t|x). This
problem can be solved by introducing a Lagrange multiplier, 8, and then minimising the

functional F(p(t|x) with the constraint Zp(t|w) = 1. This variational problem can
teT
be solved by making the derivative of F(p(¢t|x) with respect to p(t|x) equal to zero, as

shown in Equation A.7. Where the last term is the normalisation constraints and A(x)
are the normalisation Lagrange multipliers for each . Moreover, the Lagrange multiplier

B, bounded by the value of the expected distortion, D, is positive and satisfies Equation
AS.

For finding a rate distortion function R(D) which can minimise the above functional
formulation, the Blahut-Arimoto algorithm (Arimoto, 1972; Blahut, 1972) is applied.
This algorithm is used to find the minimum distance between two convex sets, as shown

in Algorithm 6. Csiszar (1984) has shown that the minimum problem will converge when
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the two sets are convex.

F(p(tlz))

PIPWC)

OF _8I(X;T)+ 8 (meXteT

= I(X;T) + B{d(®, 1)) pa)pitia) + D, M)
xeX

p(t|lx)d(x t)) 0 (
_|_

S p(tf)

teT

> A=)

S pitla)

|

xeX teT
Op(tlx) — Op(tlx) Ip(t|x) Ip(t|x)
(Zprt t))) (Z Zp p(t|x)d wt))
_ xeX teT —i—IB xeX teT +)\(w)
ap(t|x) Ip(t|x)
(Z Zlogp tle) — ZZlogp )
— o) o p(t|x) xEX teT zEX teT - .
= p(x) log O o) _ p(tlz)p(x) + B[...]+ A=)
- 0 (Z Zlogp(tﬁv)p(w))
i) o p(t|x 1 7 xeX teT Vol v
= p(x) log o o) pitle) p(tle)p(z) + B[ .. ]+ A(x)
= £ ) 10, p(t’a:) _ 1 — 1 €T £ £ _ £
- s iog 5+ i @) @)+ 5L+ A
o) > p(tla)p(x')
= £ (0] p i — ! £ £ £
=p(z) |log o) ) + 5 [p()d(z, t)] + A=)
) > p(tla)p(x') @)
— p(z) |1og YT _ T A7 g
= p(z) |1 oD +1 oD + Bd(x, t) @ 0
pltle) L pt) L A@)
=8~ PN )
A(z)

= plt]) = <>exp{ B(z,t) -

p(t) exp[ Bd(x, t)]

A(z)
p(x)

p(z)

exp

exp [—Bd(az,t)]

Where log Z(x, 8) =

|
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OR

=8 (A8)

Analogous to two sets of distributions, the Kullback Leiber (KL) divergence is the mea-
surement of how much two distributions differ from each other. Rewriting MI I(X;T)
as D p[p(x)p(t|x)|p(x)p(t)], this KL divergence will be an upper bound of the com-
pression information term and equality holds if and only if the marginal distribution

Z p(x)p(t|z). And then the rate distortion function can be rewritten as a double

mlnlmlsatlon as shown in Equation A.9. Henceforth, we can use alternating iterations of
the marginal distribution and Equation A.7 to obtain the optimal rate distortion function
as shown in Equation A.10. Firstly, we randomly initialise p(t), and then use Equation
A.7 to obtain p(t|x) which is for minimising the information term subject to a fixed
distortion constraint. The new p(t) can be further obtained at the basis of the marginal
distribution. This alternative iteration can be defined into mathematical formulation as

shown in Equation A.10. Algorithm 6 shows details of this iteration procedure.

Algorithm 6 Pseudocode of Blahut-Arimoto Algorithm (Slonim, 2002)

1: Inputs:
2: Distribution p(x).

3 Lagrange multiplier 8 for trade-off, and convergence parameter e.
4: A set of representations given by T'.

5: Distortion measurement d: X x T — RtT, Ve € X, Vt € T.

6: Outputs: Value of R(D) where its slope equals —f3.

7: Initialisation: Initialise R(®) +— co and randomly initialise p(t).

8: while True do

9

. (4)
P+ () « gﬁli% exp (—Bd(z, ), Vt € T, Vo € X.

10: pl+b(t) « Zp (2)pU T (t|z), vt € T.
11:  if (RO(D) — R““'l)(D)) < ¢ then

12: Break
13: end if

14: end while

D) = min min D x)p(tlx x)p(t
) D krlp(@)p(tlz)|[p(x)p(t)] (A.9)

pi+1(t Zp )p; (t|a)
(A.10)

piltlz) = ”(% exp [~ fd(x, )]

Where i is the iteration step.

The choice of a distortion measure in rate distortion theory will significantly affect the
final results of rate distortion functions. In other words, R(D) relies on an external
defined measurement which usually is not directly connected to source properties. Moti-
vated by this drawback, IB theory is proposed as an alternative approach which replaces
the distortion measurement by a target variable Y with respect to the source variable

X. The details of this theory are introduced in the next section.
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A.6.2 Information Bottleneck Theory

Analogues to rate distortion theory as mentioned in section 3.3, the IB theory forces
the model to define a precise goal while compressing the source X instead of giving
constraints from external definition. Namely, the theory is looking for a compressed
representation 7' which maintains MI about a relative variable Y as high as possible.
Therefore, a lower bound constraint at the basis of the relevant information, given by
I(T;Y), replaces the upper bound constraint in the rate distortion theory. As shown in
Equation A.11, we want to minimise /(X;7") while preserving I(7;Y") either as much as

possible or above some minimal level.

L=I(X:T)— BI(T;Y) (A.11)

In this sense, T" is a compressed representation of X, hence T only depends on X and
cannot create any new information about Y. Namely, T can only provide the informa-
tion already given by X. An equivalent formulation is shown as Equation A.12. The
corresponding Markovian independence relation is shown in Equation A.13, which also
implies Equation A.14 and A.15.

p(tlz,y) = p(t|x)

(A.12)
p(wv Y, t) = p<w7 y)p(t]a:)
TeXeY (A.13)
= Zp(ylt)p(t) = pylz)p() = plylz) Y plalt)p(t)

p(ylt) = Zp ylz)p(z|t)
t‘:l: )p(z) (A.14)

= p(ylt) = @ Zp(t|93)19(y|w)p(f'3)

= p(tly)p Zp (t|z) Z (|y)p(y)
Yy
= p(tly) = Zp t|ax)p w\y

op(tly) _
oy =

(A.15)

Given a joint distribution p(«,y), the problem of optimising the trade-off between com-

pression and relevance can be defined as a function shown in Equation A.16, where
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the minimisation is over the normalised conditional distributions, p(t|x), for which the
constraint is satisfied. Namely, R(D) is the minimal achievable compression informa-
tion while the relevant information is above D. Equation A.16 is equivalent to the rate

distortion function in the rate distortion theory.

R(D)=  min  I(X;T) (A.16)
(p(tl2):1(T:Y)>D}

Reflected on a relevance-compression plane where I(X;T) corresponds to the horizontal
axis and I(T;Y) is the vertical axis as shown in Figure A.21, R(D) corresponds to a
non-decreasing concave function of D. Furthermore, the slope of this curve is determined
by g—g = 3 which gradually decreases with the preference shift from compression to
preservation of relevant information. In other words, the increase of I(X;7T) can be
analogous to the growing cardinality of the compressed representation | 7. Alternatively,
at the beginning of the curve (i.e minimal I(X; 7)), we look forward to the most compact
representation with |7 = 1. The constraint over I(7;Y") becomes more demanding with
the gradually increasing 5. After some critical value of 3, the single value of 7 will be
bifurcated for fulfilling the relevant information constraint, which can be seen as a phase
transition of the system. The successive increment of 5 will result in another bifurcation
of T. Hence, if the cardinality of the representation T is fixed (e.g. |T| = 2 as shown
in Figure A.21), a family of the sub-optimal curves, falling in the relevance compression

region, can be obtained.

A.6.3 The Solution of the Information Bottleneck Principle

For finding the optimal solution of Equation A.11, we need functional £ as shown in
Equation A.17, where the last term is the normalisation constraints and A(x) are the
normalisation Lagrange multipliers for each ®. Taking the derivative of the functional,
we obtain the expression of p(t|x) at the basis of the divergence Dy [p(yl|x)|p(y|t)].
From the expression we can see the performance of T, as a representation of X, is
improved when a distribution p(y|x) gets closer to a distribution p(y|t). Consequently,
the KL divergence decreases so that p(t|x) increases. On the contrary, if 7' is not a good

representation of X, the KL divergence is large and p(t|x) decreases.

Additionally, the expression implies similar characteristics to the relevance-compression
plane shown in Figure A.21 regarding the value of 5. A small value of § indicates high
diffusion as it has an inhibiting effect on the differences between the KL divergence and
different value of 7. While the limit § — 0, the maximal diffusion implies p(t|xz) is
not depending on X, which corresponds to maximal information compression. While the
limit 8 — oo, the situation is the opposite, where all the emphases are on the preservation

of the relevant information.
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L=1(X;T)=pIT;Y) - Zk(w)p(tlw)
_ Z Zp p(t|x) log 52 ( tly) Z \p(t|z)
xeX teT x,t
oL p(t|z) e L s
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(A.17)
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Where p(ylt) = %Z (ylx)p(ylt).

T

For getting the exact or approximated solution of this variational principle, an iterative
optimisation algorithm as shown in Equation A.18 is needed. As an extension of Blahut-
Arimoto algorithm, Equation A.19 (Shamir et al., 2010; Tishby and Zaslavsky, 2015;
Tishby et al., 1999) shows updating the expression of the IB iterative algorithm at the
iyp, iteration. However, there are distinct differences between those two algorithms. First,
instead of —3, this IB algorithm is going to converge to a point of which the slope is 371;
Secondly, the IB curve is not defined with respect to a predefined distortion measure so
that the minimisation is over three distributions where p(y|t) is an additional one, while
the Blahut-Arimoto algorithm is based on a fixed distortion hence the minimisation is
only over p(t|x) and p(t). Because of the non-fixed representation, the solution of this
algorithm is not guaranteed as an unique one, therefore, we generally can only except
it to converge to a locally optimal solution. The details of this IB iterative algorithm
are shown in Algorithm 7, where JS denotes the Jensen-Shannon divergence (El-Yaniv
et al., 1997).

min min min /j[p(t]w);p(t);p(y\t)] = —(log Z(=x, 5)>p(w)
p(ylt) p(t) p(tle) (A.18)

= I(z;t) + B(Dkrlp(yl)p(Y[t)]) p(a.t)
pi(t|m) = 25 exp [-pd(=, )]
Pi+1(t) = ZP x)p;(t|x) (A.19)

P (ylt) = sz ylz)pi(x|t)

Where d(x,t) = Dir[p(y|z)|p(y|t)], and i is the iteration step.

Algorithm 7 Pseudocode of IB Iterative Algorithm (adopted from (Slonim, 2002))

1: Inputs:
2: Distribution p(x,y).

3 Lagrange multiplier 8 for trade-off, and convergence parameter e.

4: Carnality parameter M

5: Outputs: A partition T of X into M clusters.

6: Initialisation: Randomly initialise p(¢|x) and find p(t) and p(y|t) through Equation A.19.
7: while True do

8
9

. (i)
P+ (t@) Z“ﬂli%exp(—,@d(m t)), Vt € T, Vo € X.

Pt () « > p(a)pl T (), vt € T.

xT

. i+1 i+l
10 D i) gy SR Cep(ylelpi@), Ve T vy € Y.
11: if Ve € X, 7S 1 1 [pttY (t|z),p™ (t|x)] < € then
2°2

12: Break
13: end if

14: end while
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A.7 Gaussian Information Bottleneck and Canonical Cor-

rection Analysis

As mentioned in Section 3.5.4, Chechik et al. (2005) derive a relationship between 1B
theory and canonical correction analysis when the probability densities are Gaussian.
Empirical results under this assumption are shown in Section 3.5.4. In this section, we

explain the details of this connection.

A.7.1 Canonical Correction Analysis

In canonical correlation analysis, we want to find a set of parameters a and b that
maximally correlate X and Y in the subspace. We define vectors a € R™ and b €
R™ such that X = a'X and Y = b'Y have maximal correlation p = corr (X' ,?)
in new subspaces. More precisely, Equation A.20 gives a formulated definition about
cross-covariance and correlation, and Equation A.21 shows the correlation p we want to

maximise. By substituting in Equation A.22, we can obtain Equation A.23.

Yo = Cov(X, X)
(Y,

¥y = Cov(Y,Y)
Cov[X,Y] = E[XY] — E[X]E[Y] = Say (A.20)
Y
X, Y] = 2
Corr[X,Y] S
T b
p= S (A.21)
VaTS,a,\/bT5,b
1
—y2
© la (A.22)
d=132b
Ty=3 3
DINED
c vy A (A.23)

P= Velevd'd

According to Cauchy-Schwarz inequality (Steele 2004) shown in Equation A.24, we can
achieve Equation A.25 by letting u = ¢' X4 2YeyYy 2 and v = d. After reformulating,

we obtain the upper bound of the correlation as shown in Equation A.26.

[{w, v)| < [luf][]] (A.24)

NI

_1 _1 _1 _1
¢ 502 Ny Sy 2d < <sz22myz;1zwzw2c> (d7d): (A.25)
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1
_1 _1 2
(sz 2 Yy Xy Lya e 2 c)

(cTe)?

p < (A.26)

Connected to Raylelgh quotient (Wu, 2005) shown in Equation A.27, we let M =
Yo ZEmyZ} 13y2Y22 and 7 = ¢. Then, to find ppez = R(M,T)maz = Amaz- To solve
this problem, we can perform eigen-decomposition for M, and obtaln the corresponding
eigenvalues p in a descending order. In that way, we transform the canonical correlation
analysis to an eigen-decomposition problem.

r" Mr
T

R(M,r) = (A.27)

r'r

Where M is a symmetry matrix, and R(M,r) reaches maximum when r = v, which
is the eigenvector corresponding to maximum eigenvalue of M. In this case, we have

R(Ma Umax) = A\maz-

A.7.2 Gaussian Information Bottleneck

Analogous to canonical correction analysis, the Gaussian IB theory can also be connected
to the eigen-decomposition problem. In this section, we introduce the Gaussian IB theory

and then show the relation to eigen-decomposition.

As shown in Equation A.28, the entropy of a Gaussian variable can be expressed based on
the covariance of the variable, where X is a d dimensional Gaussian variable, and |34| is
the determinant of ¥,. Under the assumption that X and Y are joint multivariate Gaus-
sian variables (so that the IB is analytically tractable) with dimensions d, and dy,. ¥ and
Yy are the covariance matrices of X and Y, respectively, and ¥, is their cross-covariance
matrix. T is a compressed representation of X obtained via a linear transformation,
where the dimension depends on 3. Hence, we have T' = AX + £ (another Gaussian),
where £ ~ N(0,%¢), and T ~ N(0,%;). Thereafter, we can obtain Xy = AS;AT + 3.
By the definition of T, we have ¥, = A%, 3, and Yiy = AZwy . According to Schur
complement formula (Zhang, 2006), we know ¥, = ¥t — ZtnylZyt = AchmAT +3¢°,
and Sy = B¢ — Dta Xy ' Sat = AV AT + 3¢ — AXe Y 5, AT = ¢, Using this, we can

3Cov(T, X) = E(TX) — E(T)E(X) = E[(AX + 6)X] -0 = E[AX? + ¢X] = AE(X?) + E(¢X) =
AE(X?) = AY,.

Cov(T,Y) = E(TY) — E(T)E(Y) = E[(AX +£)Y] — 0 = E[AXY +£X] = AE(XY) + E(¢Y) =
AE(XY) = AS4y.

PNty = Bt — DeyTy Syt = ATe A + Bg — AVey Sy ' Tye AT = A[Se — Soy Xy SyaAT + B¢ =
AzzwAT + Y.
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obtain Equation A.29.

1 (A.28)
00 = o s
min £ = I(X;T) = BI(T;Y)
» =€
— H(T) ~ H(T|X) - BH(T) + BH(T|Y)
= 5 [om (@2ney1m41) — 1os ((2ne) 01| (A.29)

55 1o (2[5 ) - t0g (274w )
= log (|4]) — log (ISyal ) — Blog (1%4]) + Blog (|5, 1)
—(1-8)log <|AEwAT + zg|) —log (|¢|) + Blog (|A2m|yAT + zd)

By setting A= VD=1V A, where® Y = VDVT = VDV~! we can rewrite Equation
A.29 to Equation A.30 for simplification £(A,%¢) = L(A,I). Here, C = [VD-1V| =
VD[V,

min £ = (1 - j3)log (\flzmﬂ + I|) —log (|1]) + Blog (1A2w|yﬂ i I])
AT

— (1 f)log (\\/FVAzwATvT\/F+ Iy) —log (/1))
+ Blog (NFVAEWATVT\/F + 1|)
= (1-f)log (\\/FVAZGEATVT\/F—F zgv\/ﬁﬁvﬂ)
~log (\v\/ﬁzgﬁvﬁ)
+ Blog (|\/FVA2m,yATVTx/F+ Egvﬁx/ﬁvﬁ)
= (1-f)log (czpchT + zgyc) — log (C|3¢|C) + Blog (C]A2w|yAT + 2§|C>
=2(1 - B)log (C) + (1 - B)log (|AzmAT + 25) — 2log (C) + Blog (|%|) + 281og (C)
+ Blog (\AEWJAT + zg\)
—(1-f)log (\AEwAT + 2£|) — log (|Sel) + Blog (|A2m|yAT + 2§|)
— min £

AN
(A.30)

5V is an orthogonal square matrix (positive semi-definite matrix), hence we have I = EgEgl =
Le(VDV )™t = 2,V DWVvTE = 2.V HTIDTWVT = B (v HTWWD-IWD-1v T
2 VVD-'VD-1VT
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Taking derivative of £ with respect to A, we have Equation A.31.

g*fl =(1-5) (AEwAT + I) X 2A%, + 3 (AzwaT + I) X 2A%,, =0 (A.31)

(1 ; B) (AE:CAT n I)_l X 2AY, = — <A2w|yAT + I)_l X 24551,

6 1) (AEZWAT n 1)
B (AZzAT +1)

(A.32)

A=A 3,55

Rewriting Equation A.31, we will have Equation A.32. Notice the similar form to AV =
XV. If all the variables are scalar, the optimal projection matrix A will be a row

vector. And then, there are two solutions of Equation A.32: (a) A must identically be

_ . . —1) (AZ, ), AT +1
m|y2m1} with an eigenvalue (55 )((AE::LXT—&-I))'

For obtaining a non-degenerate solution of this optimisation task, there is a constraint,

A< %,onﬁand AT

zero, and (b) A is the eigenvector of [E

While all variables are high dimensional, the multiplication of ¥, ¥, by A must reside

x|y
in the span of the rows of A, so that A is the eigenvector of Em|yZ;1. This means that

A should be spanned up to ny, eigenvectors of g, 3, 1 Therefore, by representing

A = WV where the rows of V' are left normalised eigenvectors of i, Land W is a
mixing matrix that weights these eigenvectors, we have the optimal solution as shown
in Equation A.33 (more details of proof can be found in (Chechik et al., 2005)), Where

vim v, ... VnTm} are the left eigenvectors of ¥, ! sorted by their corresponding

BA=Xi)—1
Aivi
coefficients, v, = ’UZT Y,v;, 07 is an ng dimensional row vector of zeros, and semicolons

ascending eigenvalues A1, Aa,...,\,,. [f are critical § values, a; = are

separate rows in the matrix A.

Taken together, for a given value of £, the optimal projection is obtained by taking all
the eigenvectors whose eigenvalues \; satisfy g > 1%)\1_, and setting their norm according
to A = WV with W determined by A, and . Specifically, with the increment of 3, the
projection variable T" will expend the dimensions. Continually, the relative magnitude
of each basis vector is re-scaled through a series of critical points (structural phase
transitions) until all the relevant information about Y is captured by T, which provides

a continuous measure of model complexity.

07;...;07] 0<B<psf
(Vi 0T5 0T BB <

A.33
[a1VlT,a2V2T70T;---;0T} Bs < B <p§ (A5

\
"By denoting v = A”E/ﬁéT
AV oy Y7 e AT = AAXL AT, we have A¥y Y7 'Y AT = My||A|°. Rewriting the eigenvalues, we get

—1 MA[%+1 2 1-2)—1
A= BZL 2R and then 0 < ||A]* = 25

as the norm of Xx with respect to A, v will be positive. As
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A.7.3 Connection between the Gaussian Information Bottleneck and

Canonical Correlation Analysis

As described in subsections A.7.1 and A.7.2, an obtained optimal representation in Gaus-
sian IB theory is a noisy linear projection to eigenvectors of the normalised regression
matrix Yg, iy 18 which is also the basis obtained in canonical correlation analysis (shown
in Equations A.26 and A.32). However, the nature of the projection is determined by
the parameter 8 in Gaussian IB theory. In addition to this connection, there are two
differences between them: (a) Gaussian IB characterises not only the eigenvectors but
also their norm. In contrary, canonical correlation analysis is invariant to a re-scaling of
the projection vectors as the correlation coefficient between the projected versions of X
and Y is a normalised measure of correlation; (b) canonical correlation analysis can be
seen as symmetric as both X and Y are projected to the subspace, while Gaussian IB is

non-symmetric, where only the input variables are compressed.

On the top of canonical correction analysis, Raghu et al. (2017) first applied the empirical
work of SVCCA into analysing representations between the hidden layer of two networks.
They show that the early layers of an E2E network converge faster than later layers in
training. We further apply this tool to investigate the learning nature of CL. Before
applying canonical correction analysis, the SVCCA uses Singular Value Decomposition
(SVD) to select the top n singular values and filters out the lowest 1% in order to remove
some directions or neurons that are constantly zero. That is we use SVD to filter 99%
of variance-preserving principal components, and then we apply canonical correlation
analysis to calculate the canonical similarity in the sub-spaces X’ and Y’. We utilise
SVCCA, IB and Gaussian IB track the learning dynamics in this work for investigating

their connections (see Section 3.5.4 and A.5.2).

8 sy = Se — SaySy 'Sy, 50 that SpyS,-1 =1 — Zo — Say Sy ' Syale-1.
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FIGURE A.17: Gaussianisation results of CL on the synthetic 17 (the first column)
and Epileptic datasets (the second column). By assuming all variables are Gaussian,
the first row ((a) and (b)) provides corresponding information ratios; the second row
((c) and (d)) shows covariance matrices of each hidden layer’s outputs with training
epochs; and the third row ((e) and (f)) provides the intensity of every layer’s outputs
over training stages.
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FIGURE A.18: Comparisons of ITR estimated by binning and Gaussian estimators on
synthetic datasets. Each of sub-figures shows results on one synthetic dataset. Gaussian
estimators are given by assuming all variables to be Gaussian variables. Clearly, the
sharp increase of ITR, estimated by Gaussian estimators, happens at a layer differing
from the layer where the I'TR, estimated by binning method, sharply increases.
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F1GURE A.19: A comparison of ITR between estimations from binning and Gaussian
estimators on the Epileptic dataset. In total, there are two runs. In consistent with
Figure A.18, the ITR given by two estimators shows different tendencies.



136 Appendix A Appendix Related to Information Bottleneck

f—ow
&R B
aD
Rate-distortion
region
I(X;T)

04

o3t

oz}

Non-achievable
01 region
0.4 03 '
<d(x.t) > p->0

FIGURE A.20: An illustration of a rate distortion plane (Slonim, 2002). The function
R(D) separates two regions, the rate distortion region and the non achievable region.
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FIGURE A.21: An illustration of a relevance-compression function R(D) (Slonim, 2002).

The function R(D) (the solid line) defines a monotonic concave curve in the relevance-
compression plane. The region above the curve is a non-achievable region, and the
region below the curve is a achievable relevance compression region. The bifurcations
in the relevance compression region are induced by the specific cardinality of T" where
the solid curve corresponds to |T| = |X|.
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B.1 Collection of Single Cell Data

To provide better understanding of Single Cell (SC) data containing high-resolution
characterisation of cells this section will give a brief summary of SCRNA-Sequencing
(RNA-Seq) processing steps as shown in Figure B.1. Compared to the major break-
through of bulk RNA-Seq in the late 2000’s, SCRNA-Seq is an emerging technology first
proposed by Tang et al. (2009). Limited by the tremendous cost of sequencing and pro-
tocols, SCRNA-Seq did not gain widespread popularity until 2014 when several protocols
(used in the amplification step in Figure B.1) were proposed (e.g., STRT-seq by Islam
et al. (2014), CEL-seq by Hashimshony et al. (2012), Smart-seq by Picelli et al. (2014),
SMART-seq2 by Picelli et al. (2013), MARS-seq by Jaitin et al. (2014), SCRB-seq by
Soumillon et al. (2014), Drop-seq by Macosko et al. (2015), InDrop-seq by Klein et al.
(2015), CEL-seq2 by Hashimshony et al. (2016), and Seq-well by Gierahn et al. (2017))

as shown in Figure B.2.

Currently, SCRNA-Seq consists of isolating the SC and the corresponding Ribonucleic
Acid (RNA) as shown in Figure B.1. The following steps, being the same as bulk
RNA-Seq method, are: Reverse Transcription (RT), amplification, library generation
and sequencing. RT converts RNA to complementary DNA (¢cDNA) labelled by an
unique barcode. To do so, individual cells are either divided into separated wells (like
in early methods) or encapsulated in droplets into a microfluidic device (like in current
methods). Then, the cDNA will be mixed for sequencing and the barcode is used to
identify the transcripts from a particular cell. Before sequencing, the amplification step
has two options, polymerase chain reaction (PCR) or in vitro transcription (IVT), used
to amplify RNA. After sequencing, the SC gene expression data, ranging from 102 to

106 cells, can be analysed by machine learning algorithms.

137
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Single Cell RNA Sequencing Workflow
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FIGURE B.1: SCRNA-Seq workflow (taken from Wikipedia (contributors, 2020)).
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FIGURE B.2: The development of SC sequencing protocols (image taken from Macosko
et al. (2015)).

B.2 Bone Marrow Datasets

As mentioned in Section 4.2.1, SC data is high dimensional and sparse. Taking the Bone
Marrow (BM) dataset as an example, we analyse the data through sorting cells according
to the number of expressed genes in the cells, and sorting genes in terms of the number
of cells where the genes are expressed. As shown in Figures B.3(a) and B.3(c), a great
number of cells contain information from only a small part of expressed genes. Figure

B.3(b) and B.3(d) show that only a few genes are expressed in many cells. Majority of
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genes are not expressed in part of cells, which supports results that a small number of

genes significantly contribute to recognise cell types (see Figure 4.9).
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FIGURE B.3: Variations in number of expressed genes per cell and number of cells in
which a gene is expressed for mouse and human SCRNA-Seq data. (a) and (b) are
from a mouse dataset. Where (a) presents the distribution of expressed genes over
sorted cells, and (b) shows the distribution of cells where the sorted gene expressed. (c)
and (d) illustrate a same substance but on a human dataset. Numbers marked in red

corresponds to values on the y axis.

We further calculate the pair wise distance between cells and pair wise distance between

genes to investigate the difficulty of distinguishing the cell types, showing results in
Figure B.4. As Figures B.4(a) and B.4(c) do not show the number of peaks related

to the cell classes, we can infer this using the distance to classify the cells may be not

feasible.
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FiGUrRE B.4: Distributions of pair wise distances across genes and cells for the BM
dataset from both mice (see (a) and (b)) and humans (see (¢) and (d)). The red
numbers are the values corresponding to y axis.
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FIGURE B.5: The diagram of data separation in scenarios 5 and 6 (in Table 4.2). A
is randomly selected and used as the source domain data to train the model. Parts B
and C are used as two individual domains. For each domain, we divide the data into
train and test datasets. The corresponding percent of training data is scenario-specific
and the percent of the test data is fixed as 50%.
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B.2.1 Mouse and Human Bone Marrow Tissue

As described by Stumpf et al. (2020), the 8-week old C57BL/6 female mice! were used
to collect the mouse BM tissues. The human BM tissues are collected from patients
undergoing routine hip replacement surgery, with informed consent, under the regional
ethics committee’ approval (reference 18/NW/0231). More details can be found in the
work given by Stumpf et al.. Figure B.5 shows how data is constructed in scenarios
5 and 6 as described in Section 4.3.3. For comparing with scenario 4, the test data is
fixed as 50%. The train sets in B and C are selected with a growing percentage, and

corresponding results are shown in Figure 4.13(b).

B.2.2 Transfer Learning on Bone Marrow Data

As mentioned in Section 4.4.4, Figure B.6 shows a comparison of different metrics used to
measure Transfer Learning (TL) performance. In that case, the target domain classifier
is pre-trained on the source domain and retrained on the growing number of data points
from the target domain. Using human data to test a pre-trained model without retaining,
we obtain high precision (majority of cells classified as a type are truly from this type)
and low recall (a small number of cells from a type are correctly recognised). With the

increasing of cells used to retrain models, recall is further improved.
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FIGURE B.6: The comparison of performance metrics on BM dataset. With respect to
the percent of data used to retrain the classifier, the performance of TL on the target
domain is measured by accuracy, F; score, precision and recall. 0 percent stands for
the direct test on the data in the target domain without retraining following scenario
3 shown in Table 4.2.

1C57BL/6, usually referred to as "C57 black 6", "C57" or "black 6", is a king of common laboratory
inbred strain mouse. It can be seen as the "genetic background" of genetically modified mice which
will be used as models of human disease. As best-selling mouse strain, they are widely used due to the
availability of congenic strains, easy breeding, and robustness (Kontgen et al., 1993).






Appendix C

C.1 Transfer Learning from Finer Classes to Coarser Classes

within Opportunity

The results shown in the Section 5.4 suggest a monotonic decline in transferability from
features taken from early layers to later ones from cascade networks. However, the later
layers are necessary for increased recognition accuracy of the source domain classification.
This observation confirms that cascade training packs feature information in a specific
way, with coarse information in early layers and finer details related to the source task

in later layers.

L6 —— Q
L5 e g
e = &
L3 = &
L2 — g
4 3
QLI — Q@
L6 =
L5 = o
L4 = &
L3 —+ =
24 = |2
L4 —_

90 92 94 9
Weighted F1 Score (%)

©
@

Figurge C.1: TL from 14-class to 2-class within Opportunity. Evaluated by weighted F} score
(%), features from early layers of a cascade network show better transferability to this coarser
target task.

To explore the coarseness of features from variant layers of a network, we also check
the performance of Transfer Learning (TL) from 14-class to binary (Type one & Type
two) based on both cascade networks and End-to-End (E2E) networks. In this setting,
the task in the target domain is the coarser classification problems than the task in the
source domain, hence coarse features learned by early layers can provide benefits to this
coarser task. As shown in Figure C.1, we notice the performance decreases monotonically
layer by layer with the increasing depth of cascade networks, while the performance

of Transfer Learning from End-to-End (TE2E) has non-monotonic trend across layers.
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This observation further reinforces our assumption that Cascade Learning (CL) extracts

features from coarse to fine layer by layer.
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