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Many great efforts to find an answer on what are the most fundamental particles and

forces in our nature have shaped the very important and beautiful theory known as the

Standard Model (SM). The observables in the SM are consistent with their

experimental bounds with high accuracies. However, many particle physicists agree

that the SM is not an ultimate answer to our nature, since there are many observables

which can not be addressed by the SM such as mass of neutrinos, a few of well-known

anomalies in the SM, the puzzle of the CKM and PMNS mixing matrices, the Dark

Matter (DM) and the Dark Energy (DE), etc. In order to bring these interesting topics

to understanding of the human beings, it assumes that expansion of the SM is not

avoidable and we call this expanded theory “Beyond Standard Model (BSM)”. Many

possible BSM models have been suggested to connect with al least one of the listed

observables and this idea motivates us to search for physics beyond the SM.

Recapitulating the whole story, the SM itself is a great success, however it should be

expanded by any means to explain the observables whose mechanisms are not

confirmed.

We start from this consideration: how can we expand the SM without violating the

gauge symmetry and the current experimental bounds for the SM observables. It is

evident that the SM must be expanded for the observables which can not be addressed

by the SM as discussed above. A possible answer to the question is a minimal

extension to the SM and then to study the well-known anomalies and studying the

anomalies was a main target over my two works [89,148]. The other way is to study

the FCNC observables within a minimally extended SM, as they are very sensitive to

new physics and this approach is a main target of my third project. We made use of

the model-dependent approach since there are new operators, which can not be fully

replaced by the effective operators appearing in the model-independent approach. As

we take the model-dependent approach, it is necessary to extend at least one of the

following sectors: SM fermion, scalar and gauge symmetry. An important difference

between our first and second (as well as third) work is whether we considered the

hierarchical structure of the SM, as we regard the strong hierarchical structure of the

SM as a very clear hint at new physics at higher energy scales.

A main motivation of our first work is to explain the muon and electron anomalous

magnetic moment g − 2 simultaneously. In order to achieve this goal, we extend the

SM fermion sector by the fourth vector-like family and the scalar sector by a singlet

flavon and the SM gauge symmetry by the local U(1)′ symmetry. Under an

assumption that our Z ′ neutral gauge boson only couples to the SM charged leptons,

we defined the Z ′ coupling constants by using the mixing formalism in the mass basis.

In order to make our analysis as simple as possible, we constrained the relevant mixing

angles between ith chiral SM family and 4th vector-like family to be θ12,14,24 for the

charged leptons. In this analysis, the mixing angles θ12,14,24 are free parameters and
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they are constrained by experimental bounds of the anomalies, the branching ratio of

µ→ eγ, and neutrino trident production. Using the mass insertion approximation, we

distinguished two mass sources, one of which is the chirality flip mass MC
4 whereas the

other is the vector-like mass ML
4 . What we found there is increasing the mixing angle

θ12 slightly gives an unacceptably high prediction for the branching ratio of the

charged lepton flavor violation (CLFV) µ→ eγ decay, and this becomes a good

motivation to vanish the mixing angle through rest of the analysis. The dominant

contribution to each anomaly arises from the Z ′ left-right interactions including an

enhancement factor MC
4 /mµ, and the chirality flip mass MC

4 can not increase as much

as the vector-like mass ML
4 does, as it is governed by the SM Higgs vev. For this

reason, we constrained the chirality flip mass to be ranged from 0 to 200 GeV, and

then we found no any value between them can satisfy both anomalies, so leading to a

conclusion this BSM model can not explain them simultaneously.

Our second BSM model in our second work goes one step further from the first BSM

model by implementing the hierarchical structure of the SM in a kinematic way. In

order to achieve this goal, we need to assume the SM Lagrangian is the effective

Yukawa interactions arising as a result of broken U(1)′ symmetry and what this

implement is the general Yukawa interactions can not take place due to the U(1)′

charge. Under this consideration, our second model features that the SM fermions are

augmented by two vector-like families and the scalar sector are enlarged by one more

SM-like Higgs Hd and a singlet flavon φ and lastly the SM gauge symmetry is extended

by the global U(1)′ symmetry (Notice that this U(1)′ is global). One vector-like family

can provide two effective seesaw operators, so this is why we introduce two vector-like

families, and then all SM generations can acquire their masses. A clear difference

between our first and second work is whether we built a mass matrix for each sector of

the SM and the construction was done in our second work, so the mixing angles

appearing in the second work become a ratio between the Yukawa and vector-like

masses. We defined all required mixings, while diagonalizing the mass matrix for the

charged lepton sector, and then discussed both anomalies mediated by the SM W

gauge boson and by the non-SM scalars at one-loop level. First of all, the W

contributions to both anomalies turn out to be too small to its experimental bound, so

we conclude another approach is required to explain both anomalies simultaneously and

come up with the non-SM scalar exchange at one-loop level and then finally confirm

both anomalies can be explained by the non-SM scalar exchange simultaneously.

A main motivation of our third work arises from studying the flavor changing neutral

currents (FCNCs) to constrain masses of the vector-like family, while keeping the

hierarchical structure of the SM implemented in the second work. What we considered

especially important is to diagonalize a mass matrix for each fermion sector without

any assumptions. For the correct diagonalization, we mainly focus on the second and

third generation of the SM at cost of having massless particles in the first SM

generation with only one vector-like family. In order to study the FCNC observables,
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we consider the SM Z gauge boson, however it is evident that the SM Z gauge boson

can not generate the flavor violating interactions. The SM Z gauge boson can cause

the renormalizable flavor violating interactions by extending the SM fermions by the

vector-like family and by operating SU(2) violating mixings, and then it can have

small non-zero off-diagonal Z coupling constants in the mass basis. Using the defined

Z coupling constants in the mass basis, we analyze the charged lepton sector first via

the CLFV τ → µγ, τ → 3µ and Z → µτ decays, predicting the singlet or doublet

vector-like charged lepton masses. Our numerical predictions are not significantly

constrained by the experimental bounds for the CLFV decays, however it comes as the

CMS experimental bound for the vector-like doublet charged leptons might be able to

exclude our predictions to a significant extent. As for the quark sector, we use the rare

t→ cZ decay and the CKM mixing matrix and the CKM mixing matrix appears as a

challenging observable to fit our predictions. After fitting our prediction to the CKM

mixing matrix as much as possible, we confirm that no any point of our predictions is

excluded by the experimental bound for the rare t→ cZ decay, predicting mass range

of vector-like quarks as in the charged leptons.

Based on the minimal extension of the SM in my three works, it has confirmed that

physics beyond the SM can be explored in simple scenarios, leading to interesting

scientific predictions related to the hypothetical particles such as vector-like particles,

CP-even and -odd scalars, Z ′, etc. and these findings can be verified or ruled out in

close future experiments.
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Chapter 1

Introduction

Many dedicated efforts to find an answer on what are the most fundamental particles

and forces consisting of our nature have shaped the awesome and beautiful theory

known as the Standard Model (SM). The discovery of the Higgs particle at CMS and

ATLAS in 2012 [1, 2], especially, was one of the great successes in the history of

particle physics as it is the only scalar particle in the SM at the moment and

motivated us to search for physics beyond the Standard Model (SM). With the last

puzzle of the Higgs particle, the SM looks complete and it has actually explained many

observables with high accuracies and one of them is the correct measurement of the

CKM mixing matrix.

Figure 1.1: The correct measurement of the CKM mixing matrix in terms of the
parameters ρ̄ and η̄
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What the stunning feature of Figure 1.1 tells is there exists a mixing between each

generation of the SM fermions and the mixing mechanism is a principal rule when we

extend the fermion sector of the SM. Interestingly, this mixing mechanism appears not

only in the fermion sector but also in the electroweak gauge symmetry

SU(2)L × U(1)Y sector.

1. The SU(2)L eigenstates W1,2,3 and the U(1)Y eigenstate B

2. The mixing between the gauge particles in the flavor basis leads to the physical

gauge particles such as W±, Z and γ.

The mixing mechanism also tells that there must exist two eigenstates, one of which is

the mass eigenstate (or equally the physical eigenstate) and the other is the flavor

eigenstate (or equally the interaction eigenstate). The most sizeable mixing of the SM

appears in the neutrino sector, confirmed in the neutrino oscillation experiment [165]:

θ23 ≈ 49◦, θ12 ≈ 33◦, θ13 ≈ 9◦ (1.1)

The large mixing angles of the neutrinos lead to the large off-diagonal elements in the

PMNS mixing matrix and the different mixing patterns appearing in the CKM and

PMNS mixing matrix are the well-known puzzle and will be discussed in detail in

chapter 2. Even though the SM is greatly successful, many particle physicists agree

that the observables such as masses of the SM neutrinos, a few of well-kwnon

anomalies, etc. point out the SM itself is not enough to cover all aspects of our

universe and the SM must be extended to the “Beyond Standard Model” (BSM) in

order to understand observables whose mechanisms are not confirmed. The way to new

physics arises from both the theoretical and experimental approaches.

As for the theoretical approach, we start from this consideration: how can we expand

the SM without violating the gauge symmetry and the current experimental bounds

for the observables. It is evident that the SM must be expanded due to the limitations

of the SM, which will be discussed in chapter 2. A possible answer to the question is a

minimal extension to the SM and then to study the well-known anomalies in the BSM

model. This approach was done over our two works [89,148]. Another answer is to

study the FCNC observables in a minimally extended SM, as they are very sensitive to

new physics, and this approach was done in our third work. Therefore, the minimal

extension to the SM becomes quite important and this can be done by enlarging at

least one of the following sectors: the SM fermion, the scalar and lastly the gauge

symmetry. For the enlargement of the SM fermion sector, two hypothetical particles

has been widely considered, which are the vector-like (VL) and leptoquark (LQ)

particles. As we have made use of the vector-like particles over my three works, the

vector-like fermions would be a main target in this thesis and a detailed description of
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the vector-like fermions will be studied in subsection 3.1 as a prerequisite. As in the

fermion sector, there have been many attempts to extend the SM scalar sector. The

discovery of the SM Higgs particle in 2012 has led to a lot of questions, one of which is

the small SM Higgs mass 125 GeV is a result of the extremely fine tuned parameter

following the QFT calculation. Based on this result, many particle physicists assume

that more possible scenarios for the extension to the SM scalar sector will be lied

ahead. With this motivation, we augmented the SM scalar sector by more scalar

particles. In our first work, a singlet flavon is added for the enlargement of the scalar

sector. For the second and third works, the SM scalar sector is extended by one more

SM-like Higgs and the singlet flavon, so the BSM models feature the well-known

2HDM. Featuring the 2HDM is also motivated by the strong hierarchical structure of

the SM fermions and this will be discussed in subsection 3.2 as another prerequisite.

Lastly, extension of the SM gauge symmetry has gotten intense attention for the need

of the unification. This is based on the feature of the running coupling constants for

the electromagnetic, weak and strong force and the feature tells they can be converged

at a point at GUT scale. However, attempts to connect directly from the SM to either

the GUT or ToE will be very likely to mislead our understanding to the known

phenomenology, since there are many intermediate breaking patterns as well as

hypothetical particles, and this connection is also opposite to the minimal extension.

For this reason, we consider the simplest possibility: U(1)′ symmetry. This feature will

also be discussed in subsection 3.3 as the last prerequisite.

Now that we look at a few of aspects for the theoretical approach to arrive at the

BSM, it is also important to figure out how we can find out new physics from

experiments. There are three ways as follows:

• The energy frontier

• The luminosity (intensity) frontier

• The cosmic frontier

The energy frontier is simply to increase the CM collision energy in order to find a new

particle in person and the direct discovery of the SM Higgs particle at CERN in 2012

is a great success of the energy frontier. After that discovery, no any new particle has

been found by the experiments with 13 TeV so far and this implies not just the energy

frontier but also the luminosity frontier should be considered as of equal importance.

The luminosity frontier is simply to increase the number of events to find out some

anomaly within the events. This luminosity frontier is strongly preferred for the FCNC

observables, since they are very suppressed in the SM by the

Glashow-Iliopoulos-Maiani (GIM) mechanism. The FCNC observables, very sensitive

to new physics, are a main target in our third work. Lastly, the cosmic frontier is to
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study the ultra-relativistic cosmic particles and this is deeply related to the cosmology

and high energy neutrinos.

In this introduction, we simply look at how successful the SM is by discussing the

mixing formalism appearing in both the fermion sector and the gauge symmetry

sector. Even though the SM is quite successful in many fields, there are some

important limitations such as the masses of the SM neutrinos, a few of well-known

anomalies, dark matter, dark energy, etc. and these limitation tells the SM must be

expanded to the BSM. For the extension, at least one of the following sectors, the SM

fermion, scalar and gauge symmetry, must be extended and we discuss the theoretical

aspects of the BSM models and its implications through my two published

works [89,148] plus my third work [166].

This thesis is organized as follows. In chapter 2, we discuss main features of the SM

and its principal limitations. In chapter 3, the three common theoretical tools, which

are the vector-like fermions, 2HDM and U(1)′ symmetry, appearing in my three works

are covered as prerequisites and the first BSM model as well as its mixing formalism in

my first work are discussed. In chapter 4, we try to explain both the muon and electron

anomalous magnetic moments in a Z ′ model and discuss the experimental Z ′ mass

bound and lastly conclude main features of our first work. In chapter 5, we introduce

our second BSM model and discuss how this model is different compared to our first

BSM model. Plus, it will be emphasized that this model is strongly motivated by the

hierarchical structure of the SM. In chapter 6, we discuss the first non-SM W gauge

boson contributions to both anomalies as an attempt to explain them simultaneously.

In chapter 7, we discuss the second non-SM scalar contributions to both anomalies,

while investigating the scalar potential, and then conclude main features of the second

work. In chapter 8, we discuss our third BSM model with one vector-like family and

the SM Z gauge coupling constants in the mass basis. In chapter 9, we discuss diverse

FCNC observables in both quark and lepton sectors as well as the CKM mixing matrix

without unitarity to constrain our BSM model predictions and conclude our third

paper. Finally, we conclude main features of this thesis in chapter 10.
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Chapter 2

The Standard Model and its

limitations

After discovering the charm quark through J/ψ meson in 1974, the bottom quark in

1977, the top quark in 1995 and lastly the neutral component of Higgs particle in 2012,

the current form of the Standard Model (SM) was established. The SM has been

tested for many experiments and explained them with very high accuracies. The firmly

accepted SM becomes now the cornerstone of the particle physics to figure out how our

beautiful nature works in this universe. At the same time, however, the particle

physicists have understood that the SM is not an ultimate answer for our nature due

to lots of unspecified observables such as masses of the SM neutrinos, a few of

well-known anomalies, hierarchical structure of the SM, gravity, matter-anti matter

asymmetry and dark matter (DM) plus dark energy (DE), etc. A thing is certain,

though, that all unidentified observables must start from the SM at the electroweak

scale. This relation between the SM and the observables which can not be addressed

by the SM can be pictorialized in Figure 2.1.

Standard

Model

ν
anoma-

lies

hier-

archy

gravity
DM

+ DE

etc.

Figure 2.1: The SM and the unspecified observables
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These interesting observables which can not be addressed by the SM require for the

SM to be expanded in anyway and the expanded SM is called, especially, “Beyond the

Standard Model (BSM)”. A lot of new BSM models have been suggested to explain

the observables and I will cover our three attempts to explain some of the observables

based on my papers across next chapters. Before we go into the details of the papers,

we need to look into some important properties of the SM as well as the limitations of

the SM in detail. The rest of this chapter is assigned for the explanations.

2.1 The Standard Model

The beautiful and awesome SM can be first represented by its gauge symmetry

SU(3)C × SU(2)L × U(1)Y , (2.1)

where SU means the special unitary and the subscript C,L, Y mean the color charge,

the left-handed chirality and the hypercharge, respectively. This gauge symmetry is

especially important since it determines which kind of interactions can take place and

there are two interactions, the Yukawa interactions and gauge interactions. The

fermions which appear in the SM consist of both quarks and leptons, charged under

the gauge symmetry. The SM particle spectrum is given in Figure 2.2.

Figure 2.2: The SM particle spectrum
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The SM particles can be categorized by some principle standards. The first principal

standard is whether they belong to either fermions or bosons. The fermions are the

spin half-integer particles obeying the Pauli’s exclusion principle, therefore they can

not occupy the same quantum numbers and follow the Fermi-Dirac statistics, whereas

the bosons are opposite to the fermions in a couple of senses that they do not respect

the exclusion principle and they are the spin integer particles, so it is possible for them

to take up the same quantum numbers and they follow the Bose-Einstein statistics.

From the SM particles, they are separated as follows.

• Fermion : u, c, t, d, s, b, νe, νµ, ντ , e, µ, τ

• Boson : h0, γ,W±, Z, g

The SM particles again can be separated by mentioning their spins. In quantum field

theory (QFT), the particles corresponding to spin 0 are called scalars and there is only

an unique scalar of “Higgs” in the SM. The spin 1 particles are called the vector

particles and there are the photon γ, the W bosons W± and lastly the gluons g in the

SM. The scalar and vector particles are inclusively grouped as the boson particles in

that they have integer number of spin. All fermions of the SM have the spin 1/2 as

mentioned in the above context. These can be categorized as follows.

• spin 0 particle : h0

• spin 1 particles : γ,W±, Z, g

• spin 1/2 particles : u, c, t, d, s, b, νe, e, νµ, µ, ντ , τ - Fermion

Boson

The fermion particles can be separated again depending on whether or not they

experience the strong interaction SU(3) and the ones charged under the strong

interaction are called “quarks”, while the ones not charged are called “leptons”.

• spin 0 particle : h0

• spin 1 particles : γ,W±, Z, g

• spin 1/2 particles (quarks) : u, d, c, s, t, b

• spin 1/2 particles (leptons) : νe, e, νµ, µ, ντ , τ

Boson

Fermion

One of the most important differences between quarks and leptons is the lepton

particles can be isolated, so it is possible to appear as an independent particle, whereas

the quark particles can not be isolated due to the confinement, therefore they are

observed as the shape of baryon or meson. The baryon is an composite particle

consisting of three quarks (or three anti-quarks) and the meson is a composite particle
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consisting of one quark and one anti-quark. This interesting feature can be understood

by the running coupling constant of each interaction and this will be detailed further

in the next subsection of unification. The fermion sector can be further divided by

generation and how to divide the fermions by generation is associated with how stable

the fermions are. For example, the u quark which belongs to the first generation of the

SM is most stable among the three generations, whereas the t quark of third

generation is most unstable therefore it decays into b quark soon by the exchange of

the W gauge boson.

• spin 0 particle : h0

• spin 1 particles : γ,W±, Z, g

• spin 1/2 particles (quarks) : u, d︸︷︷︸
1st

, c, s︸︷︷︸
2nd

, t, b︸︷︷︸
3rd

• spin 1/2 particles (leptons) : νe, e︸︷︷︸
1st

, νµ, µ︸︷︷︸
2nd

, ντ , τ︸︷︷︸
3rd

Boson

Fermion

It is interesting that the generation is related to the flavor, which describes each

species of the SM fermions, thus there are six species in either quark or lepton sector.

Since the particles in each generation share the similar patterns about their stability,

relative lightness, etc., there have been many attempts to figure out quark and lepton

sector based on their relative similarities and these kind of studies have been known as

the flavor physics. My research fields are also deeply related to the flavor physics and I

am going to talk about my three works based on features of the flavor physics.

The SM is also known as the chiral theory, which means the left-handed (LH) particles

behave differently when compared to the right-handed (RH) particles. Taking the

different chirality of each quark and lepton into account, they can be written

symbolically in terms of the quantum numbers under the SM gauge symmetry

(i = 1, 2, 3).

• LH quark sector QiL = (uiL, diL)T =
(
3,2, 1

6

)
• RH up-type quark sector uiR =

(
3,1, 2

3

)
• RH down-type quark sector diR =

(
3,1,−1

3

)
• LH lepton sector LiL = (νiL, eiL)T =

(
1,2,−1

2

)
• RH down-type lepton sector eiR = (1,1,−1)

The bold numbers 3 or 1 in parentheses mean the fields behave as a triplet or singlet

under the color charge respectively, and the bold numbers 2 or 1 at the middle of the

parentheses mean they transformed as a doublet or singlet under the left-handed
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chirality and finally the fractions or integer numbers are the hypercharge of each

fermion field. The capital letters Q,L are conventionally used to implement they are

the left-handed doublets, whereas the small letters stand for the right-handed singlets.

The SM Higgs field can be represented by the gauge symmetry notation.

• The Higgs field H =
(
h+, h0

)T
=
(
1,2, 1

2

)
The Yukawa interactions between two fermions and one scalar can arise by making the

interactions be the gauge singlet. In other words, the interaction which is not the

gauge singlet is not allowed to be written in the Lagrangian. Taking this property into

account, a few of the allowed Yukawa interactions can be written as follows

(i, j = 1, 2, 3)

L = (yu)ijQiLH̃ujR + (yd)ijQiLHdjR + (yl)ijLiLHejR + h. c., (2.2)

where yu, yd, yl are the Yukawa coefficients which determine the strength of the

interactions for up, down quarks and charged leptons respectively and H̃ is defied as

iσ2H∗. These terms are a few of the well-known Yukawa interactions in the SM and

are going to be discussed in detail when introducing the mass insertion process in the

next subsection.

The last aspect of the SM particles is whether they are either Dirac or Majorana

particles. The Dirac particles are the ones whose anti-particles is completely different

to those, so they are clearly distinguishable, whereas the Majorana particles are the

ones whose anti-particles are exactly same to the original particles. From this feature,

it is possible to derive the Dirac and Majorana mass. The Dirac mass consists of two

completely different particles, which means they behave differently under the SM

gauge group therefore it is impossible to write their mass by hand since it violates the

gauge conservation. As for the Majorana mass, it is possible to write their mass by

hand as long as they are the trivial gauge singlets under the SM (or equally sterile),

however there is no way to constrain the Majorana mass by experiments. Besides that,

the Majorana mass requires one more condition, which is that the particles consisting

of the Majorana mass must be neutral otherwise it violates the charge conservation

unlike to the Dirac mass. The only candidate to meet this condition could be the

neutrinos in the SM and all other fermions are Dirac particles. Even though the

neutrinos are assumed to be the Majorana particles in the SM, their Majorana mass

still violates the gauge singlet conservation since they are charged under the SM gauge

group as
(
1,2,−1

2

)
which is not the trivial gauge singlet. This problem is covered in

the section “first limitation of the SM - neutrinos” in detail.

Now that the particles consisting of the SM are introduced in some brief and compact

way, it is necessary to look into a couple of main mechanisms like the Yukawa
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interactions, spontaneous symmetry breaking (SSB), and the broken gauge symmetry,

step-by-step through in the next subsections.

2.1.1 The Yukawa interactions and the spontaneous symmetry

breaking

In order to grab a sense of how the mass term can be written in the Lagrangian,

consider the next term written by hand as just an example.

L = m2ee (2.3)

This term looks apparently right at first sight, however a problem starts to emerge

when it takes the polarized basis using the left- and right-handed projector PL,R.

Expanding the term by inserting the projects, the result is

L = m2e (PL + PR) (PL + PR) e

= m2eReL + eLeR.
(2.4)

A clear problem of the result of Equation 2.4 is that each term is not the gauge singlet

under the SM gauge group, therefore these kind of mass terms are not allowed to be

written. Thus the mass terms for the Dirac fermions in any Lagrangian must arise

from the Yukawa interactions discussed in Equation 2.2, which respect the gauge

singlet condition. Consider the third term of Equation 2.2 for simplicity.

L = (yl)ijLiLHejR = (yl)ij

(
νiL eiL

)(h+

h0

)
ejR

= (yl)ij
(
νiLh

+ejR − eiLh0ejR
)

?
= (yl)ijveiLejR + · · · = (me)ijeiLejR + · · ·

(2.5)

If the field h0 can develop its vacuum expectation value (vev) v as seen in Equation

2.5, the mass can be written by the form of the Yukawa constant yl multiplied by the

vev v in the Lagrangian. One thing to care about is whether the initial Yukawa and

final mass terms conserve the gauge singlet condition. The initial Yukawa interaction

(yl)ijLiLHejR definitely maintains the gauge singlet condition, whereas the mass term

(me)ijeiLejR does not. What this means is all mass terms in the Lagrangian appear as

a result of broken symmetries. The symmetry breaking process takes place when the

Higgs field h0 develop its vev v and this process is known as the spontaneous

symmetry breaking (ssb), which occurs in the Higgs field potential. The spontaneous

symmetry breaking process is especially important as it can allow masses for the SM

Dirac fermions, written by the Yukawa constants multiplied by the non-zero vev,

without violating the underlying gauge symmetry and this feature will be discussed in

detail in the next subsection.
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2.1.2 The Higgs potential and the spontaneous symmetry breaking

Consider first the Higgs potential which consists of a single real Higgs field h

V (h) =
1

2
m2h2 +

1

4!
λh4, (2.6)

where m2 is a positive mass parameter which has mass dimension of 2 and λ is a

positive dimensionless quartic coupling constant. In the Higgs potential of Equation

2.6, no something special takes place; the minimum of the potential is appeared as the

Higgs field h approaches to 0 and the minimum is simply 0. To make this potential

more interesting, we rewrite the Higgs potential with the mass parameter m2 replaced

by −µ2 where µ2 is a positive mass parameter.

V (h) = −1

2
µ2h2 +

1

4!
λh4 (2.7)

The rewritten Higgs potential of Equation 2.7 gives rise to nonzero minimum of the

Higgs potential V (h) at nonzero value of the Higgs field h. The comparison between

the potential of Equation 2.6 and Equation 2.7 can be seen clearly by the below graph

in Figure 2.3.

Figure 2.3: The “original” means the Higgs potential of Equation 2.6 and the “rewrit-
ten” means that of Equation 2.7

A difference between the “original” and “rewritten” Higgs potential arises from the

energy (or equally temperature) difference. In other words, the “original” Higgs

potential takes place at high energy (or equally at high temperature) and the potential

turns into the “rewritten” Higgs potential as the high energy goes down to low energy

(or equally at low temperature). The low energy scale corresponds to the electroweak

scale whose mass order is about a hundreds of GeV scale and the interesting ssb

process can take place at this energy scale. Imagine a ball is put at the center of the

Higgs field in the “rewritten” Higgs potential. As time goes on, the ball is likely to fall
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down either to left or right direction in the potential since the center position is

unstable. Besides that, the direction which the ball will take can not be predicted and

this is the reason why this symmetry breaking process takes place spontaneously. After

the ball is put in the stable (or minimum) position, it can have nonzero value of the

Higgs potential at the nonzero value of the Higgs field h and the nonzero value of the

Higgs potential is reinterpreted as the vacuum expectation value v. This process can

also be understood mathematically by the Equation 2.7. Differentiating the Higgs

potential of Equation 2.7 with respect to the Higgs field h, the minimization condition

reads off (Suppose that the Higgs field h developed its vev v):

∂V (v)

∂h
= −µ2v +

λ

6
v3 = v

(
−µ2 +

λ

6
v2

)
= 0

→ v = ±
√

6µ2

λ
, 0.

(2.8)

Since I am only interested in the nonzero vev v, the value 0 will be excluded. It

confirms that the vev v is given from both the mass parameter µ2 and the quartic

coupling constant λ and the experimentally known value of the vev is 246.22 GeV. The

order of this vev is 100 GeV and this corresponds to the electroweak scale. An

important feature of the Higgs potential is the Higgs field appearing in the SM is a

complex field, so the Higgs potential features 3-dimensional space as shown in

Figure 2.4.

Figure 2.4: The left is a complex Higgs potential at high temperature and the right
is the complex Higgs potential at low temperature.

2.1.3 The broken gauge symmetry of the SM and its interpretation

The ssb process covered in the previous subsection applies exactly to the general SM

Yukawa interactions with a couple of modifications. The first change is the single real

Higgs field h0 must be changed to the complex field in order to implement the U(1)Q

electromagnetic symmetry. The second change is the single complex Higgs field h
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needs to be doublet in order to make the SM Yukawa interactions be the gauge

singlets, therefore one more charged Higgs h+ is required. The generally accepted form

of the SM Higgs field is given by

H =

(
h+

h0

)
. (2.9)

After the neutral component of the Higgs field h0 develops its vev v by the spontaneous

symmetry breaking process, the Higgs doublet takes the below shape in unitary gauge.

H =

(
h+

h0

)
→

(
0

1√
2

(v + h)

)
(2.10)

The neutral Higgs field h after ssb is what the particle physicists found at CERN

experiment in 2012. The SM Higgs field H consists of one neutral Higgs and another

charged Higgs, however what we found is the only neutral Higgs field since the charged

Higgs is integrated out below the electroweak scale. If the energy scale goes up more

than the electroweak scale, then we might be able to observe the charged Higgs h+ in

person and many studies have been suggested to find out the charged Higgs and thus

to make the Higgs field H complete. Taking a look at the value of 1√
2
v, it is about

174 GeV, which is quite close to the top quark mass (in other words, the top quark

Yukawa coupling is nearly 1) and this is the reason why the Higgs physics is sensitive

to the correct measurement of the top quark mass. After the currently accepted form

of the SM Higgs doublet field develops its vev, it confirms that how the SM gauge

symmetry is broken to the smaller symmetry.

SU(3)C × SU(2)L × U(1)Y → SU(3)C × U(1)Q (After ssb) (2.11)

After the spontaneous symmetry breaking, the electroweak gauge symmetry

SU(2)L × U(1)Y is broken to the electromagnetic gauge symmetry U(1)Q and three of

the massless SU(2) gauge bosons A1,2,3 plus U(1) gauge boson B in the SM get

massive via the mixing mechanism after the Higgs develops its vev and one of the

mixed gauge bosons remains massless. The three massive gauge bosons W+,W−, Z

and one massless gauge boson γ appear as a linear combination of the four gauge

bosons A1, A2, A3, B in the interaction basis as follows:(
W+

W−

)
=

1√
2

(
1 −i
1 +i

)(
A1

A2

)
, mW± = g

v

2(
Z

A

)
=

1√
g2 + g′2

(
g −g′

g′ g

)(
A3

B

)
, mZ =

√
g2 + g′2

v

2
, mA = 0,

(2.12)

where the coupling constant g and g′ are the ones in the covariant derivative of the

Higgs field h

Dµh =

(
∂µ − igAaµτa − i

1

2
g′Bµ

)
h, (2.13)
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where τa = σa

2 ≡ T
a and the index a runs from 1 to 3. The mixing matrix for the

massless fields A3, B can be rewritten in terms of the Weinberg angle or weak mixing

angle θW . (
Z

A

)
=

(
cos θW − sin θW

sin θW cos θW

)(
A3

B

)
, (2.14)

where cos θW = g√
g2+g′2

and sin θW = g′√
g2+g′2

. Then, the covariant derivative of h can

be rewritten in terms of the mass eigenstates W±, Z,A.

Dµh =

(
∂µ − igA1

µT
1 − igA2

µT
2 − igA3

µT
3 − i1

2
g′Bµ

)
h

=
(
∂µ − igA1

µT
1 − igA2

µT
2 − igA3

µT
3 − iY g′Bµ

)
h

=

(
∂µ − ig

1√
2

(
W+
µ +W−µ

)
T 1 − ig i√

2

(
W+
µ −W−µ

)
T 2

− ig (cos θWZµ + sin θWAµ)T 3 − iY g′ (− sin θWZµ + cos θWAµ)

)
h

=

(
∂µ − ig

1√
2

(
W+
µ T

+ +W−µ T
−)− i g

cos θW

(
T 3 − sin2 θWQ

)
Zµ − ieQAµ

)
h

(2.15)

While deriving the final result of Equation 2.15, there are many important

implications; from the first equality I rewrite the factor 1
2 as the quantum number of

U(1)Y ; from the second equality the covariant term is rewritten in terms of the mass

eigenstates using the Equations 2.12 and 2.14; from the last equality I rearrange terms

with respect to Zµ and Aµ using T± = T 1 ± iT 2 and defined the charge quantum

number Q by T 3 + Y and the electron charge e by gg′/
√
g2 + g′2. With the redefined

quantity Q, I also rearrange the interaction terms with Zµ. Summarizing the redefined

quantities, they are given by:

e =
gg′√
g2 + g′2

= g sin θW = g′ cos θW , Q = T 3 + Y, mW = mZ cos θW . (2.16)

From the quantities of Equation 2.16, the mass of weak gauge bosons are connected to

each other by the weak mixing angle θW and the electric charge e and quantum

number Q tells that the electromagnetic U(1)Q symmetry appear as a result of broken

bigger gauge symmetry SU(2)L × U(1)Y by the SM Higgs vev v.

2.1.4 The CKM mixing matrix

One of the great successes in the SM is the discovery of the mixing in the fermion

sector of the SM, as mentioned in the introduction, which is seen in person from the

CKM mixing matrix as well as the PMNS mixing matrix. The CKM mixing matrix is

appeared as a result of the mixing between the flavor and mass eigenstates of the

fermions in the SM and it can be seen manifestly by the charged current Jµ+
W . For the
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task, it needs to define the two bases connected by the unitary transformation as

follows:

uiL = U iju u
′j
L , diL = U ijd d

′j
L (2.17)

where the indices i, j run from 1 to 3 and Uu,d are the unitary mixing matrices for the

up- and down-quark sector in the SM. Then we are ready to write down the CKM

mixing matrix in terms of the mixing matrices in the charged current Jµ+
W as follows:

Jµ+
W =

1√
2
uiLγ

µdiL =
1√
2
u′iLγ

µ
(
U †uUd

)
ij
d′jL

=
1√
2
u′iLγ

µVijd
′j
L

, (2.18)

where Vij is the unitary mixing matrix known as the Cabibbo-Kobayashi-Maskawa

(CKM) mixing matrix. This unitary mixing matrix is first predicted by Cabbibo with

two SM generations and is expanded by Kobayashi and Maskawa by assuming three

generations of the SM. Therefore, the mixing angle in the unitary matrix consisting of

only two generations is known as the Cabibbo mixing angle and its value is about 0.22.

The full CKM mixing matrix can be parameterized by two conventions; one of which is

the Wolfenstein parameterization which manifests the hierarchical structure of the

CKM mixing matrix in terms of the parameter λ, and the other is the Euler rotation

which reveals the Cabibbo mixing angle well.

VCKM ≡ V u†
L V d

L =

Vud Vus Vub

Vcd Vcs Vcb

Vtb Vts Vtb



=

1 0 0

0 c23 −s23

0 s23 c23


 c13 0 s13e

−iδCP

0 1 0

−s13e
iδCP 0 c13


 c12 s12 0

−s12 c12 0

0 0 1



=

 c12c13 s12c13 s13e
−iδCP

−s12c23 − c12s23s13e
iδCP c12c23 − s12s23s13e

iδCP s23c13

s12s23 − c12c23s13e
iδCP −c12s23 − s12c23s13e

iδCP c23c13



=

 1− λ2/2 λ Aλ3 (ρ− iη)

−λ 1− λ2/2 Aλ2

Aλ3 (1− ρ− iη) −Aλ2 1



(2.19)

where cij = cos θij , sij = sin θij , δCP is the CP-violating phase angle. It is possible to

connect the mixing angles used in the Euler rotation and the parameters A, λ, ρ, η used

in the Wolfenstein parameterization using the experimentally known hierarchical
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structure among the mixing angles 1� s12 � s23 � s13 as follows [3–5]:

s12 ' λ '
|Vus|

|Vud|2 + |Vus|2
,

s23 ' Aλ2 = λ| Vcb
Vus
|,

s13e
iδCP = V ∗ub = Aλ3 (ρ+ iη)

=
Aλ3 (ρ̄+ iη̄)

1−A2λ4 (ρ̄+ iη̄)

√
1−A2λ4

1− λ2

(2.20)

where the new parameters ρ̄, η̄ are introduced to keep unitarity of the CKM mixing

matrix in terms of A, λ, ρ̄, η̄ to all orders in λ and they are defined as follows:

ρ̄ = ρ
(
1− λ2/2 + · · ·

)
,

η̄ = η
(
1− λ2/2 + · · ·

)
.

(2.21)

Using the parameters ρ̄ and η̄, the Wofenstein parameterization can be rewritten by:

VCKM =

 1− λ2/2 λ Aλ3 (ρ̄− iη̄)

−λ 1− λ2/2 Aλ2

Aλ3 (1− ρ̄− iη̄) −Aλ2 1

 , (2.22)

and then it can easily be confirmed that any unitary mixing matrix follows the

well-known constraint. ∑
i=1,2,3

VijV
∗
ik = δjk, for j, k = 1, 2, 3 (2.23)

From the constraint, we are able to write one unitary condition such as:

VudV
∗
ub + VcdV

∗
cb + VtdV

∗
tb = 0,

VudV
∗
ub

VcdV
∗
cb

+ 1 +
VtdV

∗
tb

VcdV
∗
cb

= 0,
(2.24)

and then to sketch the famous triangle in the complex plane in terms of the

parameters ρ̄, η̄ using the relation defined in Equation 2.20



2.1. The Standard Model 17

(a) The unitary triangle in terms of the parameters
ρ̄ and η̄

(b) The unitary triangle experimentally observed

where the angles α, β and γ are defined as follows:

β = φ1 = arg

(
−
VcdV

∗
cb

VtdV
∗
tb

)
,

α = φ2 = arg

(
−
VtdV

∗
tb

VudV
∗
ub

)
,

γ = φ3 = arg

(
−
VudV

∗
ub

VcdV
∗
cb

)
.

(2.25)

The most fitted CKM mixing matrix with the unitarity of the SM is given in Particle

Data Group (PDG) as well as the Wolfenstein parameters
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(A = 0.832± 0.009, λ = 0.22465± 0.00039, ρ̄ = 0.139± 0.016, η̄ = 0.346± 0.010):

VCKM =

0.97446± 0.00010 0.22452± 0.00044 0.00365± 0.00012

0.22438± 0.00044 0.97359+0.00010
−0.00011 0.04214± 0.00076

0.00896+0.00024
−0.00023 0.04133± 0.00074 0.999105± 0.000032

 . (2.26)

There is another interesting case, where the unitarity of the CKM mixing matrix is

relaxed, as shown in Equation 2.27 [150,151]

|KCKM| =

0.97370± 0.00014 0.22450± 0.00080 0.00382± 0.00024

0.22100± 0.00400 0.98700± 0.01100 0.04100± 0.00140

0.00800± 0.00030 0.03880± 0.00110 1.01300± 0.03000

 . (2.27)

A possible deviation can arise from the first row of the CKM mixing matrix without

unitarity and the deviation can be expressed by [150]

∆ = 1− |Vud|2 − |Vus|2 − |Vub|2, (2.28)

and its experimental value is known as [150]

√
∆ ∼ 0.04. (2.29)

This interesting case is discussed in my third work.

2.2 First limitation of the SM - neutrinos

The SM neutrinos νe,µ,τ (or equally ν1,2,3 in the interaction basis, respectively) are the

most intuitive and instructive observables to hint at physics beyond the SM. It had

been believed that the SM neutrinos are massless for a long time, since no any

right-handed neutrinos had been observed, before the Super-Kamiokande experiment

revealed the tiny mass differences between the SM neutrinos confirmed by the neutrino

oscillation experiment. What the experiment revealed is there are tiny mass differences

among the three neutrinos and the mass differences at 1σ can be confirmed by the

NuFIT 5.0 [165].

∆m2
21 = m2

2 −m2
1 =

(
7.42+0.21

−0.20

)
× 10−5 eV2,

∆m2
31 = m2

3 −m2
2 =

(
2.517+0.026

0.028

)
× 10−3 eV2 for normal ordering,

∆m2
32 = m2

3 −m2
2 = −2.498+0.028

−0.028 × 10−3 eV2 for inverted ordering,

(2.30)

The neutrino mass splitting reported in Equation 2.30 tells that the neutrino sector of

the SM must be enlarged to cover the neutrino’s tiny mass, which makes predict the

right-handed neutrinos which has not yet been observed.
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2.2.1 The mass mechanism for neutrinos

Now that the particle physicists know that the SM neutrinos are massive, they have

considered the mass insertion mechanism for the neutrinos. In order to consider the

mass insertion mechanism for the neutrinos, the first thing to do is to confirm that

whether the neutrinos follow either the Dirac or Majorana nature. As mentioned in the

earlier context, the SM neutrinos are the only candidates which could be the Majorana

particles. Therefore, both the Dirac and Majorana mass insertion scenarios for the SM

neutrinos must be considered until future experiments reveal its nature further. First

of all, consider a case where the SM neutrinos are the Dirac particles. If the SM

neutrinos have the Dirac mass, it necessarily requires to assume the right-handed

neutrinos νiR (i = 1, 2, 3). Then, the Lagrangian for the Dirac SM neutrinos can be

written as follows (i, j = 1, 2, 3):

Lν = (yν)ij LiLH̃νjR + h. c.,

= (yν)ij

(
νiLliL

)( h0

−h−

)
νjR + h. c., after ssb

= (yν)ij
〈
h0
〉
νiLνjR + · · ·+ h. c.,

= (mν)ij νiLνjR + · · ·+ h. c.,

(2.31)

The derived Dirac mass for the light SM neutrinos from Equation 2.31 looks correct

and no problem takes place as long as the right-handed neutrinos νjR are assumed.

However, there is one thing which should be considered. Taking that the vev 〈h〉 is

around order of hundreds GeV into account, the Yukawa constant for the neutrinos

must be suppressed by order of nearly 10−12, which looks quite “unnatural” when

compared to that of the other SM Dirac fermions. The extraordinarily suppressed

neutrino Yukawa constants do not cause any physical problems, however it is less

convincible to acknowledge the Dirac mass for the SM neutrinos due to the strong

hierarchical structure.

Next it is possible to come up with the Majorana mass for the SM neutrinos since they

can be the Majorana particles. The Majorana particle has its own anti-particle and

this property can be seen by the following definition.

ψ = ψL + ψR = ψL + CψL
T

= ψL + ψCL , (2.32)

where C is the charge conjugation operator and is defined by C = iγ2γ0. Operating

the charge conjugation operator C to the ψ, the Majorana particle is exactly same as

its own anti-particle.

ψC =
(
ψL + ψCL

)C
=
(
ψCL + ψL

)
= ψ (2.33)
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From Equation 2.32, it is clear that the right-handed component ψR can be interpreted

as CψL
T

and the right-handed component written in terms of the left-handed field can

be applied to the Dirac mass in order to write down the Majorana mass.

L = mνLνR → L =
1

2
mνLCνL

T (2.34)

The Majorana mass of Equation 2.34 implements that the mass term can be written

only in terms of the left-handed fields therefore it does not take a risk of assuming the

right-handed neutrinos. However, the Majorana mass term violates the gauge singlet

condition as well as the lepton number conservation which has not been observed yet.

Therefore, both approaches have its own one advantage and one disadvantage.

In order to solve the problems of either the Dirac or Majorana masses, the Seesaw

mechanism was suggested, which can explain the tiny mass of the light SM neutrinos

in a dynamical way. Consider a Lagrangian including the heavy right-handed

Majorana neutrino N after ssb (we only consider a neutrino species for simplicity).

Lν,M = yDvνN +MNNN + h. c. (2.35)

Then the interactions can be written in the matrix basis as follows:(
0 MD

MD MN

)
, (2.36)

where MD is the Dirac mass defined by MD = yDv and MN is the Majorana mass

which can be as heavy as possible if the right-handed neutrino is trivial gauge singlet

under the SM gauge group. Diagonalizing the mass matrix of Equation 2.36, it gives(
−M2

D
MN

0

0 MN

)
, (2.37)

which tells that the light mass of the SM neutrinos can be accompanied by mass of the

heavy Majorana neutrinos. Taking a closer look at the light SM neutrino mass given

from the seesaw mechanism, we can also read off the effective operator for the SM

neutrinos.

Leffective
ν =

1

MN

(
LH̃LT H̃T

)
(2.38)

The Lagrangian of Equation 2.38 is known as the Weinberg’s five dimensional effective

operator (or equally Type 1 seesaw mechanism) for the neutrinos and the effective

operator predicts that the right-handed Majorana neutrinos are of order 1014 GeV as

long as the Dirac masses are of order 100 GeV. There are three well-known seesaw

models named type 1, 2, 3 seesaw mechanism in Figure 2.6,
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Figure 2.6: Type 1, 2, 3 seesaw mechanism from left to right, respectively

where the type 1, 2, 3 seesaw mechanism exchanges right-handed singlet neutrinos NR,

scalar triplets ∆ and fermion triplets ΣR, respectively. On top of the well-known type

1, 2, 3 seesaw mechanisms, there are diverse variations from the standard seesaw

mechanisms such as type 1b seesaw mechanism and inverse seesaw mechanism for the

purpose of lowering mass order of the right-handed neutrinos and of taking moderate

Yukawa couplings. We will make use of the Weinberg-like operator known as type 1b

seesaw mechanism [82] from our second work (we call the Weinberg operator “type 1a

seesaw mechanism” for comparison). Our attempt to explain mass and mixing of the

SM neutrinos in our second work [148] are based on the following assumptions.

1. We assume the SM neutrinos are Majorana particles.

2. The SM neutrinos are extended by the vector-like neutrinos with the type 1b

seesaw mechanism.

2.2.2 mass ordering for the neutrinos and lepton flavor mixing

The SM neutrinos are strictly massless in the SM since there are no right-handed

neutrinos. What this feature implies is there is no mixing among the three SM

neutrinos, which is exactly opposite to the observed PMNS mixing matrix, taking into

account that the sizeable off-diagonal mixings of the PMNS mixing matrix come from

the neutrino sector and the sizeable neutrino mixings have been confirmed by the

neutrino oscillation experiment for the first time. Thus, the PMNS mixing matrix itself

is a great hint at new physics and it explicitly tells why the SM neutrino sector

requires physics beyond the SM. Since the neutrino oscillation experiments are only

sensitive to the SM neutrinos’ mass differences and their mixings, the absolute mass

scale of the SM neutrinos have been known yet, and this feature allows two possible

mass orderings, which are known as the normal and inverted hierarchy and they are

given in Figure 2.7. The neutrino oscillation experiments have revealed that the SM

neutrinos νe,µ,τ change their flavors while propagating some distance, and this

characteristic can be also identified in the Figure 2.7 in that the SM neutrinos νe,µ,τ in
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the mass basis consist of the flavor eigenstates of the neutrinos ν1,2,3.νeνµ
ντ

 =

Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3


ν1

ν2

ν3

 = UPMNS

ν1

ν2

ν3

 (2.39)

Figure 2.7: The left is the normal hierarchy where m2
1 is the lightest and the right is

the inverted hierarchy where m2
3 is the lightest.

The PMNS unitary mixing matrix of Equation 2.39 is especially important since it

provides some clues on why the quark mixing matrix (or equally the CKM matrix) is

quite different to the lepton mixing matrix (or equally the PMNS matrix).
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Figure 2.8: The left is the quark mixing matrix and the right is the lepton mixing
matrix.

Before going into the details of the CKM and PMNS mixing matrix, it is necessary to

understand how the mixing takes place at the interaction basis, thus consider an weak

current as an example.

Jµ+
W =

1√
2
uiLγ

µdiL, (2.40)

where each basis is defined as follows: uiL =
(
u1
L, u

2
L, u

3
L

)
, diL =

(
d1
L, d

2
L, d

3
L

)
. The

defined bases uiL and diL in the interaction basis can be transformed to the physical

basis ui′L = (uL, cL, tL) and di′L = (dL, sL, bL) via the unitary mixing matrices Uu,d.

uiL = U iju u
j′
L , diL = U ijd d

j′
L (2.41)

Substituting the Equation 2.41 back into the Equation 2.40, the weak current

generates an additional mixing.

Jµ+
W =

1√
2
uj′L(U iju )†γµU ikd d

k′
L =

1√
2
uj′Lγ

µ(U †uUd)jkd
k′
L =

1√
2
uj′Lγ

µ(UCKM)jkd
k′
L (2.42)

The Equation 2.42 implements that the quark (lepton) mixing matrix arises as a result

of mixing between up-quark sector (neutrinos) and down-type quark sector (charged

leptons). Focussing on the magnitude of each component of the CKM and PMNS

mixing matrix, their behaviours are quite different; the diagonal components are more

dominant that the off-diagonal components in the CKM matrix, whereas most of the

off-diagonal components are compatible to the diagonal components in the PMNS

matrix. It is possible to parameterize the PMNS mixing matrix in terms of the lepton
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mixing angles θ12, θ13 and θ23 and it is given by Equation 2.43

UPMNS =

Ue1 Ue2 Ue3

Uµ1 Uµ2 Uµ3

Uτ1 Uτ2 Uτ3



=

1 0 0

0 c23 s23

0 −s23 c23


 c13 0 s13e

−iδCP

0 1 0

−s13e
iδCP 0 c13


 c12 s12 0

−s12 c12 0

0 0 1



=

 c12c13 s12c13 s13e
−iδCP

−s12c23 − c12s23s13e
iδCP c12c23 − s12s23s13e

iδCP s23c13

s12s23 − c12c23s13e
iδCP −c12s23 − s12c23s13e

iδCP c23c13

 ,

(2.43)

where c, s are the shortened notations for cos θ, sin θ, respectively; two Majorana

phases α, α′ are required for completeness in the PMNS mixing matrix, however I

consider them just 0 for simplicity. The experimentally fitted mixing angles from

NuFIT 5.0 [165] are given as follows:

sin2 θ12 = 0.304+0.012
−0.012, sin2 θ23 = 0.573+0.016

−0.020, sin2 θ13 = 0.02219+0.00062
−0.00063, δCP = 195◦+27◦

−24◦ .

(2.44)

The current mixing angles θ13,23 exclude the possibility of the “tri-bimaximal” or

“bimaximal” mixing, which are assumed when θ13 = 0 and θ23 = 45◦ some years ago.

However, the similar second and third rows in the PMNS mixing matrix might be able

to implement some hidden symmetry and many flavor models with some discrete or

continuous symmetry have been considered. In this section, we simply reviewed what

is the current position of the SM neutrinos and how it can connect from the SM to new

physics. The neutrinos are definitely one of the clear hints at physics beyond the SM

and are required to be searched carefully and passionately.

2.3 Second limitation of the SM - the muon and electron

anomalous magnetic moments g − 2

There are a few of well-known anomalies which can not be addressed by the SM. One

of the famous anomalies is known as the long-established muon anomalous magnetic

moment aµ = (g − 2)µ and the other is the less-established electron anomalous

magnetic moment ae = (g − 2)e. It is important to understand the origin of this

anomalies before I go into the details of both anomalies. The magnetic dipole moment

at the classical level can arise from the circulating current of the charged particle with

the electric charge e and mass m in the natural units (~ = 1, c = 1)

µL =
e

2
r × v =

e

2m
L, (2.45)
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where the orbital angular momentum L is given by mr × v. At the quantum level, the

intrinsic quantity “spin” S corresponds to the classical orbital angular momentum L

and the magnetic moment can be rewritten in terms of the spin

µl = gl
e

2ml
S, (2.46)

where l = e, µ, τ and the magnitude of the spin S is 1/2. The gl was first suggested to

be 2 by Paul Dirac in 1928 and the experimentally observed values for the magnetic

moment revealed that it is slightly shifted from the value 2 and the difference is called

the “anomalous magnetic moment”. The anomalous magnetic moment is defined in

terms of the gyromagnetic ratio by

al = µl/µB − 1 =
1

2
(gl − 2) , (2.47)

where µB is the Bohr magneton µB = e
2me

in natural units. The anomalous magnetic

moment al has revealed that the higher order contributions take actually place and

those higher contributions to the magnetic moment is the main reason that the gl is

not exactly 2 but with some small deviation from the central value 2. Julian Schwinger

calculated the one-loop correction to the magnetic moment which consists of the SM

particles like electron and photon and he found the first loop effect yields α/2π,

e e

γ

γ

e e
= α/2π

Figure 2.9: The one-loop correction to the electron magnetic moment calculated by
Julian Schwinger and the value is α/2π

.

where the α is the fine structure constant. The higher SM loop corrections to the

magnetic moment for the lepton l were calculated up to five loops corrections and the

BNL experiment reported the muon anomalous magnetic moment with the 1σ of error

bar in 2018.

∆aµ = aExp
µ − aSM

µ = (26.1± 8.0)× 10−10 (2.48)

The muon anomalous magnetic moment of Equation 2.48 implements 3.2σ deviation

from its central value and the deviation clearly exceeds the SM prediction. The muon

anomaly deviation above slightly 3σ has been established for a long time and regarded

as a signal for new physics. The electron anomalous magnetic moment ae is somewhat

less interesting since it is not fully established as compared to the muon anomaly. The
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fundamental reason causing the difference in the electron anomaly arises from the

correct measurement of the fine structure constant going on globally and this feature is

given in Figure 2.10 [80].

Figure 2.10: Many experiments to improve the precision of the fine structure con-
stant. The red points are contributed from ge − 2 experiments and QED impacts. The
green points and blue points are given from caesium and rubidium recoil experiments,

respectively.

This precision measurement of the fine structure constant also affects my second work;

we made use of the fine structure constant of the Berkely 2018 experiment αBerkeley at

the beginning of the work, which gives rise to

∆ae = aExp
e − aSM

e [αBerkeley] = (−8.8± 3.6)× 10−13 and −2.4σ, and then the new result

of the fine structure constant of the LKB 2020 experiment αLKB2020 was released at the

last of the work, which gives rise to ∆ae = aExp
e − aSM

e [αLKB2020] = (4.8± 3.0)× 10−13

and +1.6σ, and the new result to the electron anomaly looks like it is under the

prediction of the SM. As nobody knew which experiment is exact at the moment, we

stuck to the result of the Berkeley 2018 experiment. The correct measurement of the

fine structure constant is quite important for all fields of the modern physics and it is

especially important to the particle physics in that the electron anomaly we have

regarded as a new physics signal is likely to be less interesting if the new result of the

LKB 2020 experiment is correct. The muon anomaly is also likely to get affected by

the change of the fine structure constant and the FNAL reports a long-awaited new

result for the muon anomalous magnetic g − 2 with 4.2σ of SM deviation [152].

As an interesting case, there have been many attempts to explain the muon and

electron anomalous magnetic moments in a unified way, since they share the structural

similarity as a leading order contribution. If we consider the one-loop correction to

both anomalies as the dominant next leading order (NLO) contribution, explaining the
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different sign of the muon and electron anomalies under the results of BNL 2018 and

Berkeley 2018 experiment has been challenging and this was our good motivation

governed in both my first and second work. The motivation will be covered in detail in

my first and second works.

2.4 Third limitation of the SM - the hierarchy

The hierarchical structure of the SM might be able to look less convincible when

compared to other limitations. The main reason for this is that all particles under the

SM can be explained by the Yukawa interactions and spontaneous symmetry breaking

with the relative Yukawa constants. The hierarchical structure of the SM can be seen

in Figure 2.11.

Figure 2.11: The left is the relative magnitude of each particle’s Yukawa constant
and the right is the Yukawa constant is expressed in logarithmic scale.

However, this kind of view has not come to an agreement for the mass insertion

mechanism of each particle, especially neutrino, by many particle physicists since it

looks “unnatural”. This hierarchical problem of the SM can be further clarified by

mentioning the order of the Yukawa constant for the SM neutrino, electron and lastly

top quark with the Higgs vev 246/
√

2 ' 174 GeV, respectively.

O(yν) ' 10−12, O(ye) ' 10−6, O(yt) ' 1 (2.49)
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The big gap between the order of SM neutrino and that of top quark has made many

particle physicists consider whether there is another more convincible and reasonable

mass insertion mechanism to cover the tiny mass of neutrinos more naturally and the

consideration has taken the shape of the seesaw mechanism. Starting from the

conventional seesaw mechanism covered in Equation 2.37, there have been many

variants for the seesaw mechanism like type 1b seesaw, inverse seesaw mechanism, etc.

for the purpose of lowering the mass scale of Majorana neutrinos assumed to exist at

high energy scale. Through these diverse seesaw mechanisms, it is possible to lower the

mass scale of the sterile neutrinos up to TeV scale which is an accessible energy scale

in close future experiments.

Considering the hierarchical structure of the SM seriously leads to the seesaw

mechanism to explain the very tiny mass of neutrinos in a more natural and dynamical

way and the seesaw mechanism might be able to reveal the sterile neutrinos which

resides in the TeV scale. As long as the hierarchy of the SM might be able to reveal

some new physics, I believe it should be considered as serious as other limitations.

2.5 Fourth limitation of the SM - unification

One of the greatest successes of the SM is the forces which had been regarded as the

separate forces actually could be united as a more fundamental force like the

electroweak interaction at the electroweak energy scale. A very beautiful aspect of this

unified interaction can be clarified by the gauge symmetry SU(2)L × U(1)Y in a

mathematical way, however it requires to look into the interaction in detail to

determine whether the combined gauge interaction means really two separate forces

are united. This investigation can be done through the connection of the coupling

constants g and g′ which appear in the covariant derivative of the Higgs field of

Equation 2.13 as seen in the Equation 2.16.

e =
gg′√
g2 + g′2

= g sin θW = g′ cos θW ,
g′

g
= tan θW (2.50)

Suppose that there is a larger gauge symmetry G involving the electroweak gauge

symmetry SU(2)L × U(1)Y which consists of two independent interactions.

G ⊃ SU(2)L × U(1)Y (2.51)

Then, all observables can be described by a new coupling constant gnew under the

larger gauge group G. Including the strong interaction SU(3), I can define the larger

gauge group at the scale of grand unified theory (GUT).

GGUT ⊃ SU(3)C × SU(2)L × U(1)L (2.52)
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At the GUT scale, the observables can be described by the new coupling constant

gGUT where each coupling constant gEM , gW and gS meet simultaneously. Particularly,

the Callan-Symanzik equation revealed that the coupling constants gEM, gW and gS

have the dependence on the momentum scale and this property is shown by the

running coupling constants in Figure 2.12

Figure 2.12: Running coupling constants of the SM interactions

In Figure 2.12, the weak and strong coupling constants tells an interesting feature

known as asymptotic behaviour, in which the coupling constant gW and gS get

stronger as the distance increases, whereas the characteristic is exactly opposite to the

electromagnetic coupling constant gEM. The reason that the weak and strong

interactions behave differently arises from their self-interactions which cause negative

values of the beta function.

As shown in the unification for the electromagnetic, weak and strong force, the particle

physicists have dreamed of unifying the last known force “gravity” with the SM forces.

However, it has remained unsuccessful for a long time since the gravity can not be

quantized. The diverse efforts to find the quantized gravity has evolved as the string

theory which looks relatively successful rather than other theories, however this field

still has some critical issues like it is difficult to observe or experiment the results

derived from the string theory since the energy scale is too high to experiment with the

current machine power. Despite all these difficulties, unifying all known forces has

been very attractive since this unification itself is a great motivation for new physics.
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My BSM models [89,148,166] did not touch this unification in person since it requires

to investigate how the SM gauge symmetry can arise as a result of more fundamental

symmetries spontaneously broken and inevitably makes the investigation much more

challenging due to lots of breaking patterns and assumed particles (as well as lots of

assumptions). A research to investigate more fundamental symmetries is carried out

within an extension of the Pati-Salam model [167] and this research can suggest one

possible direction to constructing more fundamental symmetries despite many

difficulties such as lots of assumptions. This unification is definitely an important

subject, related to the origin of the universe, and this research will be carried out with

more fundamental symmetries in my future works.

2.6 Fifth limitation of the SM - Dark matter and Dark

energy

The all limitations of the SM treated so far are based on the known SM particles and

forces. However, I talk the rarely known objects Dark Matter (DM) and Dark Energy

(DE) in this section. The main motivation for the DM started from the rotation curve

of the spiral galaxy.

Figure 2.13: Rotation curve of the spiral galaxy

As seen in Figure 2.13, many physicists expected the speed of the spiral galaxy would

be slower as the distance between the galaxy and the center of the galaxy increases.

However, the actual observation of the speed showed that it continues to increase as

the distance increases. In order to explain the observed result of the rotation curve of

the spiral galaxy, two theories known as the modified gravity and the Dark Matter have

been discussed. As time goes on, many evidences supporting the DM started to emerge

like the gravity lensing effect, the bullet clusters, etc. in Figure 2.14 and in Figure 2.15.
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Figure 2.14: The left is the principle of the gravity lensing effect and the right is the
actual lensing effect observed.

The gravity lensing effect in Figure 2.14 explains how the unseen objects can be seen

by distorting the path of the light and is actually observed in the right of Figure 2.14.

Figure 2.15: The left is how the bullet clusters takes place and the right is the
visualized image for the bullet clusters.

When two clusters collide with each other, they just pass by one another as if no

collisions take place and the right of Figure 2.15 is the visualized image for the bullet

clusters. Except for these observations such as the gravity lensing effect and the bullet

clusters, there are many other observations supporting the DM theory, whereas the

modified gravity theory has some limitations to explain the observed effects.

Therefore, many particle physicists have leaned on the DM model and this field has

been one of the most open and interesting phenomenology in the particle physics.

Despite all these interesting and attractive properties, the actual difficulty for the

research of the DM arises from that few things have been known so far; the particle

physicists have believed its existence, however there is no any clue or hint about

whether they are either boson or fermion, their spin, the candidate particle for the

DM, etc. Assuming stability of the DM and it does not have the electromagnetic
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interaction with the charged particles, many sterile candidates which do not respect

the SM gauge symmetry like the weakly interacting massive particle (WIMP) have

been suggested, however these are remained as one of possibilities and it requires some

physical observables on it to confirm whether the candidate is really consistent with

the DM. Three search methods for the DM were suggested as seen in Figure 2.16.

Figure 2.16: Three DM search methods

Each method has its own advantage and disadvantage and I will not address them here

since DM is not directly related to my researches I have done so far. In general, the

DM is deeply related to the cosmology, which studies the origin and evolution of the

universe. The cosmology has revealed the energy distribution in our universe in Figure

2.17.

Figure 2.17: The energy distribution in our universe

Following the energy distribution of Figure 2.17, the universe consists of 5% of the SM

particles, 26% of the DM and 69% of the Dark Energy which is calculated in the



2.6. Fifth limitation of the SM - Dark matter and Dark energy 33

Einstein’s field equation to explain the current accelerating universe. It is worth

mentioning that the vector-like fermions, frequently used to extend the SM fermion

sector in my works [89,148,166], does not belong to the 5% of matter particles. Based

on the features, the presence of DM and DE has been believed they must exist.

However, many particle physicists agree that their candidates are not in the SM; the

neutrinos had been considered as the only possible candidate for the DM in the SM,

however their too light mass had some issues with the stability of the DM so the

possibility was excluded. The DM and DE which have been firmly established

phenomenologically should be explained by some BSM models and these are one of the

clear reasons why the SM should be extended.

As in the unification covered in the subsection 2.5, I did not touch the DM in my

works [89,148,166] in person since we focused on more flavor observables such as a few

of anomalies as well as the FCNCs. However, my BSM models have big room for the

DM since the SM fermion and scalar sector all are extended by the vector-like fermions

and one more SM-like Higgs (as well as one singlet flavon), respectively. The

hypothetical vector-like fermions and non-SM scalars are generally assumed to be

much heavier than the top quark, thus they are suitable to be candidates for the DM

and there was an attempt [168] to explain DM by the vector-like neutrinos via the type

1b seesaw mechanism, used in our second work [148]. In my future researches, the DM

will be studied within an extension of the SM.
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Chapter 3

The first BSM model - the

fermiophobic Z ′ model

We saw that the SM itself is not enough to cover every detail of our universe via the

discussions of chapter 2, therefore we need to come up with how to extend the SM and

we start from this consideration: how can we extend the SM without violating the

gauge symmetry and experimental bounds for the SM observables. A possible answer

to the question is a minimal extension to the SM, which is a main principle over my

three works. As emphasized in the introduction, at least one of the following sectors,

the SM fermion, scalar and gauge symmetry, must be expanded for the minimal

extension. Before we go to the prerequisites to cover each hypothetical tool required

for our BSM models, it is good to look at main features in my three works.

• First work (Phys. Rev. D, 115016) [89]

– Main target : the muon and electron g − 2, the µ→ eγ decay and the

neutrino trident production, the Z ′ gauge boson

– extension of the fermion sector : fourth vector-like family

– extension of the scalar sector : a singlet flavon

– extension of the SM gauge symmetry : U(1)′ local symmetry (gauge

symmetry)

• Second work (Phys. Rev. D, 115024) [148]

– Main target : the muon and electron g − 2, the µ→ eγ decay and the

hierarchical structure of the SM, the SM W gauge bosons, the non-SM

scalars

– extension of the fermion sector : fourth and fifth vector-like families

– extension of the scalar sector : a more SM-like Higgs and the singlet flavon



36 Chapter 3. The first BSM model - the fermiophobic Z ′ model

– extension of the SM gauge symmetry : U(1)′ global symmetry (family

symmetry)

• Third work (In arXiv) [166]

– Main target : the diverse FCNC observables such as

τ → µγ, τ → 3µ,Z → µτ and the rare t→ cZ decay and the CKM mixing

matrix and the hierarchical structure of the SM, the SM Z gauge boson

– extension of the fermion sector : fourth vector-like family

– extension of the scalar sector : the SM-like Higgs and the singlet flavon

– extension of the SM gauge symmetry : U(1)′ global symmetry (family

symmetry)

The common features appearing in all three works are the vector-like family, the

SM-like Higgs plus the singlet flavon and lastly the U(1)′ symmetry. Therefore, it is

quite important to understand them and they are discussed in the following

prerequisites.

3.1 Prerequisite : vector-like (VL) fermions

In order to extend the SM fermion sector, many hypothetical ingredients have been

studied and considered such as the vector-like (VL) fermion, leptoquark (LQ) and

long-lived particle (LLP). Each of those is based on the fundamental property of the

SM and we focus mainly on the vector-like fermions since the SM fermion sector of all

my works are extended by only the vector-like fermions.

The vector-like fermions are a well-known candidate as they have the exact same

quantum numbers as in the SM fermions and one vector-like family consists of two

partner particles which share the same quantum number, so they cancel out the

possible gauge anomalies in the SU(2)×U(1) interaction theory as given in Figure 3.1.

As the name “vector-like” tells, one vector-like family generally consists of its

left-handed (LH) and right-handed (RH) particles where both share the same quantum

numbers, so they can have two source of mass; one is the chirality flip mass and the

other is the vector-like mass. This interesting mass sources with the vector-like

particles can be seen clearly by referring to the particle content used in our first paper.
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U(1)

U(1) U(1)
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Figure 3.1: Gauge anomalies which can take place at SU(2)×U(1) interaction theory

Field QiL uiR diR LiL eiR νiR H Q4L Q̃4R ũ4L u4R d̃4L d4R L4L L̃4R Ẽ4L E4R ν4R ν̃4L φf

SU(3)C 3 3 3 1 1 1 1 3 3 3 3 3 3 1 1 1 1 1 1 1

SU(2)L 2 1 1 2 1 1 2 2 2 1 1 1 1 2 2 1 1 1 1 1

U(1)Y
1
6

2
3 −1

3 −1
2 −1 0 1

2
1
6

1
6

2
3

2
3 −1

3 −1
3 −1

2 −1
2 −1 −1 0 0 0

U(1)′ 0 0 0 0 0 0 0 qQ4 qQ4 qu4 qu4 qd4 qd4 qL4 qL4 qe4 qe4 qν4 qν4 −qf4

Table 3.1: Particle content to explain two mass sources consisting of the vector-like
particles

As shown in Table 3.1, the subscript 4 means fourth vector-like family (It means fourth

after the three SM generations). For simplicity, we focus on the fourth vector-like

lepton doublets (L4L, L̃4R). The first interesting feature of them is they have the exact

same quantum numbers, so it allows for them to have the vector-like mass as follows:

Lmass = ML
4 L4LL̃4R + h. c., (3.1)
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and the vector-like mass ML
4 is not constrained by any symmetry, so it can be as heavy

as possible and allows more freedom to our numerical scans. Along the vector-like

mass, the vector-like particles can have one more mass source called the chirality flip

mass as follows:

Lmass = xLL4LH̃E4R + h. c. = MC
4 E4LE4R + h. c., (3.2)

Unlike the vector-like mass ML
4 , the chirality flip mass MC

4 is governed by the vev of

the neutral component of the SM Higgs, therefore it can not be very heavy. Before

going into a further detailed analysis of the vector-like and chirality flip mass, it is

good to remind of their symbolic notation appearing in many Feynman diagrams.

Figure 3.2: A symbolic notation for either the vector-like or chirality flip mass

As Figure 3.2 tells, the symbolic notation “cross” means either the vector-like or

chirality flip mass, so it should be careful when we consider interactions involving either

the vector-like or chirality flip mass. This property of the vector-like and chirality flip

mass is reflected on our analysis of the muon and electron g − 2 in our first work, by

considering the masses separately in the one-loop diagrams. Strictly speaking, this is

not a very correct way of dealing with the masses in our analytic analysis, since we did

not carry out diagonalization of the mass matrix, however it is a good approximation

under the assumption ML
4 �MC

4 . As you are aware of from the diagonalization, it is

possible to build the mass matrix involving both the vector-like and chirality flip mass

and let me construct it as follows (I do not consider three generations of the SM at the

moment, but only focus on the fourth vector-like leptons for simplicity):

ML =

 Ẽ4R E4R

E4L ML
4 y

(e)
4 v

Ẽ4L 0 ME
4

 =

 Ẽ4R E4R

E4L ML
4 MC

4

Ẽ4L 0 ME
4

 . (3.3)

We can find the physical vector-like masses by diagonalizing the mass matrix given in

Equation 3.3. As mentioned previously, we did not carry out the diagonalization of our

whole mass matrix in our first work since we had not constructed the whole mass

matrix, however, it was a good approximation to the diagonalization under the

assumption ML,E
4 �MC

4 .

It is a common feature that the vector-like family was used over my three works,

however there is a big difference between the first and second plus third BSM model.

In the first model, the general SM Yukawa interactions are allowed as the SM Higgs H

is neutral under the U(1)′ charge, whereas the general SM Yukawa interactions are not

allowed in both the second and third BSM model as the SM Higgs is charged under the
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U(1)′ symmetry in order to take the SM as an effective theory and then to bring the

hierarchical structure of the SM under our understanding in a kinematic way. On top

of that, we used the mass insertion approximation in the analysis of the muon and

electron g − 2 in our first work, which means both the chirality and vector-like masses

appear in the analytic form of the anomalies. In the second work, two vector-like

families were used in order to make all SM generations massive (One vector-like family

can provide two effective seesaw operators) and the mass matrices of second work were

diagonalized with an assumption all mixing angles appearing there are quite small. In

our third work, we made use of just one vector-like family for the purpose of

diagonalizing the mass matrices without any assumptions. The first SM generation can

not be massive as a result, however it is a good approximation taking into account the

first SM generation is quite light.

There is an important feature in my three works [89,148,166], that both the vector-like

doublet and singlet fermions were considered at the same time. Taking into account

that the most simplest extension of the SM fermion sector is to consider only the

vector-like singlet fermions, it looks like our BSM models are less minimal (as well as

less economical) and the vector-like doublet fermions are not necessary to extend the

SM fermions. However we prefer to consider both for two reasons.

1. The first reason is to have a realistic fermion mass spectrum. Referring to the

numerical plots for the charged lepton as well as quark sector in our third

work [166], the doublet vector-like fermion’s masses are relatively lighter

compared to their singlet vector-like masses, which means the doublet vector-like

fermions will be likely to be observed first if there exist the vector-like fermions.

2. As the BSM models under consideration in my three works were based on UV

completion theory, which means the BSM models must be effective theories to be

able to explain the SM without violating gauge symmetry and the current

experimental bounds if the energy scale goes down to the electroweak scale. In

this view point considering both provides many natural analytical explanations

for the observables. In our third work [166] we were able to find out how

deviation of the first row of the CKM mixing matrix can arise in an analytic way

by considering both the doublet and singlet vector-like fermions.

For these reasons, we firmly believe that considering a complete vector-like family is

much more realistic to extend the SM fermions.

Summarizing this subsection, the vector-like particles have been an important

ingredient to extend the SM fermion sector in that they can implement richer

phenomenology such as the vector-like or chirality flip mass and purely new

interactions at tree-level, so we can explore its new possibility to new physics. We will
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take a closer look at how the vector-like particles can contribute to new physics

throughout the rest of this thesis.

3.2 Prerequisite : 2 Higgs Doublet Model (2HDM)

The observed SM Higgs reports a quite light mass 125 GeV and this observation has

been a quite interesting open question: why is the SM Higgs so light? Following one of

the convincing explanations for the Higgs mass, the SM Higgs is an extremely fine

tuned parameter by subtracting from the SM Higgs’s bare mass to its loop correction

as follows:

m2
phys = m2

bare −m2
loop, (3.4)

where order of mbare,loop is about 1019, which is quite close to the Planck scale. This

extreme suppression between mbare and mloop might imply new possibilities and one of

which is there must be some other extra symmetry in the SM scalar sector if we

approximate the SM Higgs mass to be zero. Plus, the SM Higgs has vev of 246 GeV

and what this means is the SM can not predict a heavier mass like 1 TeV. However,

many particle physicists agree that there must be at least a new physics between the

electroweak scale to the Planck scale and this naturally leads to needs to extend the

SM scalar sector in order to explain the heavy particles assumed in new physics. As

long as we consider only the Yukawa interactions and the spontaneous symmetry

breaking to assign each fermion a mass, it is necessary to include more scalars, whose

vevs are generally assumed to be heavier than the SM Higgs vev, which plays a crucial

role in my three works. And the SM Higgs vev is known as 246 GeV and we can come

up with the possibility known as the 2 Higgs Doublet Model (2HDM) if we consider the

up- and down-type quark sectors (as well as the charged lepton sector) are governed by

the different Higgs vevs. This is a quite nice idea when we try to explain the strong

hierarchical structure of the SM and it has been one of our main motivations over my

second and third works. Our second and third BSM models feature the 2HDM, in

which the up-type Higgs Hu couples to the up-type quarks, whereas the down-type

Higgs Hd interacts with the down-type quarks as well as the charged leptons (the SM

neutrinos need to be treated separately and this will be discussed when we explore our

second work). Therefore, the up- and down-type Higgs vevs hold for this relation:

v2
u + v2

d = (246 GeV)2 (3.5)

Therefore, the SM Higgs is enlarged by the two SM-like Higgses Hu,d and this has a

couple of advantages; one of which is the hierarchical structure of the SM can be

explained dynamically and the other is we can expect richer phenomenology of the

CP-even and -odd Higgses, which appear as a result of the mixing between Hu and Hd,

and this feature is covered in our second work.
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Summarizing this subsection, the light SM Higgs mass 125 GeV can imply the other

extra symmetry in the SM scalar sector and its vev 246 GeV can not predict heavier

particles whose masses are order of 1 TeV or above than that. The assumed heavy

particles are frequently considered in some new physics model and this means some

other scalars, whose vevs are generally assumed to be heavier than that of the SM

Higgs, should be introduced. An extended 2HDM by the singlet flavon has become a

main BSM model for my second and third work in order to explain the hierarchical

structure of the SM and this feature will be discussed in detail when we explore the

second and third work.

3.3 Prerequisite : U(1)′ gauge symmetry

As in the enlargement of the fermion and scalar sectors, extension of the SM gauge

symmetry has been considered important and all the extensions are based on the

unification covered in chapter 2. The generally accepted standard theory to explain the

origin of the universe is known as the Big Bang theory as given in Figure 3.3,

Figure 3.3: The Big Bang theory which has been accepted as a standard theory for
the origin of the universe

and it is believed there must be a most fundamental symmetry corresponding for the

start of the Big Bang theory. The four forces, which are electromagnetic, weak, strong

and gravity, have been known so far and it is proved that the electromagnetic and
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weak forces can be unified at the electroweak scale. These unifications can be seen in

Figure 3.4.

Figure 3.4: Unification of all the fundamental forces at higher energy scales

The unification between the electroweak and strong forces is known as the Grand

Unified Theory (GUT), whose energy scale is corresponding for 1015 GeV and that

between the GUT and gravity is known as the Theory of Everything (ToE), whose

energy scale is corresponding for the Planck scale 1019 GeV. There have been many

attempts to explain the GUT or ToE by the larger symmetries such as E6, E8 or

SO(10). However, a critical problem of direct connection from the SM gauge

symmetry to the higher energy scale is very likely to mislead our understanding to the

phenomenology of the particle physics and it is not possible to confirm the derived new

particles and intermediate symmetries experimentally, as their energy scale is too high.

For this reason, we focus on the minimal extension for the gauge symmetry and a

simplest possibility is U(1)′ symmetry. The U(1)′ symmetry can be further separated

depending on whether it is local or global. If the U(1)′ symmetry is local, the neutral

Z ′ boson appears and the Z ′ boson can lead to some new physics and this idea was

carried out in my first work. If the U(1)′ symmetry is global, the Z ′ boson does not

appear and a main role of the symmetry is to constrain some Yukawa interactions,

which was carried out in my second and third works.

Summarizing this subsection, the extension of the SM gauge symmetry is based on the

feature of the unification as well as the fermion and scalar sectors. Since the direct

connection from the SM gauge symmetry to either GUT or ToE is very likely to

mislead our understanding to the phenomenology, so we take a simplest possibility, the

U(1)′ symmetry, in order to avoid the misleading. The U(1)′ symmetry can be further

separated depending on whether it is a local or global. The local U(1)′ symmetry

features the neutral Z ′ gauge boson and this will be discussed in our first work. Our

second and third work features the U(1)′ global symmetry and the U(1)′ symmetry

plays a role of constraining some Yukawa interactions.
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We have discussed common features shared by my three works and we start to discuss

our first BSM model in our first work from the next section.

3.4 Introduction and motivation

The Standard Model (SM) provides an excellent explanation of all experimental data,

apart from neutrino mass and lepton mixing. Yet there are a few possible anomalies in

the flavour sector that may indicate new physics beyond the SM. For example,

recently, there have been hints of universality violation in the charged lepton sector

from B → K(∗)l+l− decays by the LHCb collaboration [6–8]. Specifically, the RK [9]

and RK∗ [10] ratios of µ+µ− to e+e− final states in the B → K(∗)l+l− decays are

observed to be about 70% of their expected values with a roughly 2.5σ deviation from

the Standard Model (SM) in each channel. Following the recent measurement of

RK∗ [10], a number of phenomenological analyses have been presented [11–17] that

favour a new effective field theory (EFT) physics operator of the CNP9µ = −CNP10µ

form [18–20]. The most recent global fit of this operator combination yields

C9 = (34.0TeV)−2 [20], though other well-motivated solutions are also possible [21].

In previous works [18], it has been suggested that such observations of charged lepton

universality violation (CLUV) must be accompanied by charged lepton flavour

violation (CLFV) such as µ→ eγ in the same sector, however, such a link cannot be

established in a model-independent way because the low-energy effective operators for

each class of processes are different. Nevertheless, in concrete models the connection is

often manifest. This motivates studies of specific models. For example, studies of

CLFV in B-decays using generic Z ′ models (published before the RK∗ measurement

but compatible with it) are provided in Ref. [22]. A concise review of BSM scenarios

that aim to explain CLUV and possible connections to dark matter is provided in

Ref. [23]. Other theoretical explanations for universality violation in the lepton sector

are discussed in Refs. [18, 22,24–45].

Independently of these anomalies, for some time now, it has been known that the

experimentally measured anomalous magnetic moments g-2 of both the muon and

electron each observe a discrepancy of a few standard deviations with respect to the

Standard Model predictions. The longstanding non-compliance of the muon g-2 with

the SM was first observed by the Brookhaven E821 experiment at BNL [46]. The

electron g-2 has more recently revealed a discrepancy with the SM, following an

accurate measurement of the fine structure constant [47]. However the different

magnitude and opposite signs of the electron and muon g-2 deviations makes it

difficult to explain both of these anomalies in any model, which also satisfies the

constraints of CLFV, with all existing simultaneous explanations involving new

scalars [48–56], or conformal extended technicolour [57]. We know of no study which
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discusses both anomalies in a Z ′ model. One possible reason is that the CLFV process

µ→ eγ, which would be concrete of BSM physics in the charged fermion sector, is very

constraining. Neutrino phenomena do give rise to CLFV but in the most minimal

extensions this would occur at a very low rate in the charged sector, making it

practically unobservable. Given the considerable resources committed to looking for

CLFV, it is crucial to study relevant, well-motivated BSM scenarios which allow for

CLFV at potentially observable rates. For example, such decays can be enhanced by

several orders of magnitude if one considers extensions of the SM with an extra U(1)′

gauge symmetry spontaneously broken at the TeV scale. To summarise, although such

extensions are able to successfully accommodate the experimental value of the muon

magnetic moment [32,44,58–60], we know of no study of a Z ′ model which discusses

both the electron and muon magnetic moments, including the constraints from µ→ eγ.

In this work, we ask the question: is it possible to explain the anomalous muon and

electron g − 2 in a Z ′ model? It is difficult to answer this question in general, since

there are many possible Z ′ models. However it is possible to consider a model in which

the Z ′ only has couplings to the electron and muon and their associated neutrinos,

arising from mixing with a vector-like fourth family of leptons, thereby eliminating the

quark couplings and allowing us to focus on the connection between CLUV, CLFV and

the electron and muon g-2 anomalies. Such a renormalisable and gauge invariant

model is possible within a U(1)′ gauge extension of the SM augmented by a fourth,

vector-like family of fermions and right-handed neutrinos as proposed in [27]. In the

fermiophobic version of this model [27], only the fourth family carry U(1)′ charges,

with the three chiral families not coupling to the Z ′ in the absence of mixing. Then

one can switch on mixing between the first and second family of charged leptons and

the fourth family, allowing controlled couplings of the Z ′ to only the electron and

muon (and fourth family leptons) of the kind we desire. Such a model allows charged

lepton universality violation (CLUV) at tree-level with CLFV and contributions to the

electron and muon magnetic moments at loop level. Within such a model we attempt

to explain the anomalous magnetic moments of both the muon and electron within the

relevant parameter space of the model, while satisfying the constraints of BR(µ→ eγ)

and neutrino trident production. Using both analytic and numerical arguments, we

find that it is not possible to simultaneously explain the electron and muon g-2 results

consistent with these constraints.

The remainder of this article is organised as follows; in Section 3.5 we outline the

renormalisable and gauge invariant fermiophobic model in which the Z ′ couples only to

a vector-like fourth family. In Section 4.1, we show how it is possible to switch on the

couplings of the Z ′ to the electron and muon and their associated neutrinos, thereby

eliminating all unnecessary couplings and allowing us to focus on the connection

between CLUV, CLFV and the electron and muon g-2 anomalies. A simplified

analytical analysis of the CLFV and the electron and muon g-2 anomalies in the
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fermiophobic Z ′ Model is presented in Section 4.2. In Section 4.3 we analyse the

parameter space numerically, presenting detailed predictions for each of the examined

leptonic phenomena. In Section 4.4 we discuss the experimental and theoretical Z ′

mass bound. Section 4.5 concludes the paper.

3.5 The Fermiophobic Z ′ Model

Consider an extension of the SM with a U(1)′ gauge symmetry, where fermion content

is expanded by right-handed neutrinos and a fourth, vector-like family. The scalar

sector is augmented by gauge singlet fields with non-trivial charge assignments under

the new symmetry. The basic framework for such a theory was defined in [27].

Henceforth we consider the case where the SM fermions in our model are uncharged

under the additional symmetry, whereas the vector-like fermions are charged under

this symmetry, corresponding to so called “fermiophobic Z ′” model considered in [27].

The field content and charge assignments are given in Table 5.1. Note that such a

theory is anomaly free; left- and right-handed fields of the vector-like fermion family

have identical charges under U(1)′, and hence chiral anomalies necessarily cancel.

Field QiL uiR diR LiL eiR νiR H Q4L Q̃4R ũ4L u4R d̃4L d4R L4L L̃4R Ẽ4L E4R ν4R ν̃4L φf

SU(3)c 3 3 3 1 1 1 1 3 3 3 3 3 3 1 1 1 1 1 1 1

SU(2)L 2 1 1 2 1 1 2 2 2 1 1 1 1 2 2 1 1 1 1 1

U(1)Y
1
6

2
3 −1

3 −1
2 −1 0 1

2
1
6

1
6

2
3

2
3 −1

3 −1
3 −1

2 −1
2 −1 −1 0 0 0

U(1)′ 0 0 0 0 0 0 0 qQ4 qQ4 qu4 qu4 qd4 qd4 qL4 qL4 qe4 qe4 qν4 qν4 −qf4

Table 3.2: Particle assignments under SU(3)C × SU(2)L × U(1)Y × U(1)′ gauge
symmetry. i = 1, 2, 3. The SM singlet scalars φf (f = Q, u, d, L, e) have U(1)′ charges

−qf4 = −qQ4,u4,d4,L4,e4 .

Although the Z ′ couples only to the vector-like fourth family to start with, due to the

mixing between SM fermions and those of the fourth vector-like family (arising from

the Lagrangian below) the Z ′ will get induced couplings to chiral SM fermions. After

mixing, the model can allow for a viable dark matter candidate and operators crucial

for explaining the RK and RK∗ flavour anomalies [32]. As we shall see, this setup can

also generate CLFV signatures such as µ→ eγ and accommodate the experimental

value of the anomalous muon and electron magnetic dipole moments.
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With the particle content, symmetries and charge assignments in Table 5.1, the

following renormalisable Lagrangian terms are available:

LY =

3∑
i=1

3∑
j=1

y
(u)
ij QiLH̃ujR +

3∑
i=1

3∑
j=1

y
(d)
ij QiLHdjR

+
3∑
i=1

3∑
j=1

y
(e)
ij LiLHejR +

3∑
i=1

3∑
j=1

y
(ν)
ij LiLH̃νjR

+ y
(u)
4 Q4LH̃u4R + y

(d)
4 Q4LHd4R + y

(e)
4 L4LHE4R + y

(ν)
4 L4LH̃ν4R

+
3∑
i=1

x
(Q)
i φQQLiQ̃4R +

3∑
i=1

x
(u)
i φuũ4LuRi +

3∑
i=1

x
(d)
i φdd̃4LdRi

+
3∑
i=1

x
(L)
i φLLLiL̃4R +

3∑
i=1

x
(e)
i φeẼ4LeRi +MQ

4 Q4LQ̃4R +Mu
4 ũ4Lu4R

+Md
4 d̃4Ld4R +ML

4 L4LL̃4R +ME
4 Ẽ4LE4R +Mν

4 ν̃4Lν4R +H.c.

(3.6)

where the requirement of U(1)′ invariance of the Yukawa interactions involving the

fourth family yields the following constraints on the U(1)′ charges of fourth fermion

families:

qQ4 = qu4 = qd4 qL4 = qe4 = qν4 (3.7)

It is clear from Equation (3.6) that fields in the 4th, vector-like family obtain masses

from two sources; firstly, Yukawa terms involving the SM Higgs field such as

y
(e)
4 L4LHe4R which get promoted to chirality flipping fourth family mass terms MC

4

once the Higgs acquires a vev, and secondly from vector-like mass terms like

ML
4 L4LL̃4R (these terms show up in lines 2 and 4 of Equation (3.6) respectively). For

the purposes of clarity, we shall treat MC
4 and ML

4 L4LL̃4R as independent mass terms

in the analysis of the physical quantities of interest, rather than constructing the full

fourth family mass matrix and diagonalising it, since such quantities rely on a chirality

flip and are sensitive to MC
4 rather than the vector-like masses ML

4 L4LL̃4R.

Spontaneous breaking of U(1)′ by the scalars φi spontaneously acquiring vevs gives rise

to a massive Z ′ boson featuring couplings with the chiral and vector-like fermion fields.

In the interaction basis such terms will be diagonal and of the following form:

LgaugeZ′ = g′Z ′µ(QLDQγ
µQL + uRDuγ

µuR + dRDdγ
µdR

+ LLDLγ
µLL + eRDeγ

µeR + νRDνγ
µνR)

(3.8)

Here, g′ is the ‘pure’ gauge coupling of U(1)′ and each of the Ds are 4x4 matrices.

However, only the fourth family has non-vanishing U(1)′ charges as per Table 5.1 and

hence these matrices are given by:

DQ = diag(0, 0, 0, qQ4), Du = diag(0, 0, 0, qu4), Dd = diag(0, 0, 0, qd4),

DL = diag(0, 0, 0, qL4), De = diag(0, 0, 0, qe4), Dν = diag(0, 0, 0, qν4)
(3.9)
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At this stage, the SM quarks and leptons do not couple to the Z ′. However, the

Yukawa couplings detailed in Equation (3.6) have no requirement to be diagonal.

Before we can determine the full masses of the propagating vector-like states and SM

fermions, we need to transform the field content of the model such that the Yukawa

couplings become diagonal. Therefore, fermions in the mass basis (denoted by primed

fields) are related to particles in the interaction basis by the following unitary

transformations:

Q′L = VQLQL, u′R = VuRuR, d′R = VdRdR,

L′L = VLLLL, e′R = VeReR, ν ′R = VνRνR
(3.10)

This mixing induces couplings of SM mass eigenstate fermions to the massive Z ′ which

can be expressed as follows

D′Q = VQLDQV
†
QL
, D′u = VuRDuV

†
uR
, D′d = VdRDdV

†
dR
,

D′L = VLLDLV
†
LL
, D′e = VeRDeV

†
eR
, D′ν = VνRDνV

†
νR

(3.11)

Thus far all discussion of interactions and couplings has been general. In Sections 4.1

and 4.3, we will prohibit mixing in some sectors to simplify our phenomenological

analysis. In particular, we shall only consider induced Z ′ couplings to the electron and

muon.
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Chapter 4

Is it possible to explain the muon

and electron g − 2 in a Z ′ model?

As an attempt to explain the connection between CLUV, CLFV and both anomalies

with the Z ′ gauge boson, we set up the fermiophobic Z ′ model covered in chapter 3. In

the model we showed the chiral SM particles have no interaction with the fourth

vector-like family in the interaction basis due to the diagonal charge matrix, however

the mixing arise in the physical basis since the diagonal charge matrix get to induce

the off-diagonal mixing through the unitary transformation. From this stage, I expand

our analysis for both anomalies as well as the two constraints, which are the CLFV

µ→ eγ decay and neutrino trident production.

4.1 Z ′ couplings to the electron and muon

In this paper we are particularly interested in the electron and muon g-2. We therefore

take a minimal scenario and consider mixing only between first and second families of

charged leptons, and ignore all quark and neutrino mixing, leading to a leptophillic Z ′

model, in which the Z ′ couples only to the electron, muon and their associated

neutrinos. Therefore, only VLL and VeR will be non-diagonal, and LHC results will not

constrain the Z ′ mass as there is no direct coupling between SM quarks and the new

vector boson, nor mixing between SM and vector-like quarks, because SM quarks are

uncharged under U(1)′ as seen in Table 5.1. Among the CLFV processes, we will focus

on studying the µ→ eγ decay, which put tighter constrains than the τ → µγ and

τ → eγ decays. For this reason, to simplify the parameter space, we also forbid the

third family fermions from mixing with any other fermionic content. As such, all
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mixing at low energies can be expressed as per Equation (4.1).

VLL,eR =


cos θL,R12 sin θL,R12 0 0

− sin θL,R12 cos θL,R12 0 0

0 0 1 0

0 0 0 1




cos θL,R14 0 0 sin θL,R14

0 1 0 0

0 0 1 0

− sin θL,R14 0 0 cos θL,R14




1 0 0 0

0 cos θL,R24 0 sin θL,R24

0 0 1 0

0 − sin θL,R24 0 cos θL,R24

 (4.1)

The mixing angle θ14,24 can be expressed in terms of mass parameters written in the

Lagrangian of Equation 3.6 as follows.

tan θL14 =
x

(L)
1 〈φL〉
ML

4

, tan θL24 =
x

(L)
2 〈φL〉√(

x
(L)
1 〈φL〉

)2
+
(
ML

4

)2 (4.2)

The angles defined here take the theory from the interaction basis in Equation (3.6) to

the mass eigenbasis of primed fields introduced with Equation (3.10). They directly

parameterise the mixing between the 4th, vector-like family and the usual three chiral

families of SM fermions. Such mixing parameters will cause the D′ matrices from

Equation (3.11) to become off-diagonal. This incites couplings between the massive Z ′

vector boson and the SM leptons, suppressed by the mixing angles. These mixing

angles can be expressed in terms of parameters from the Lagrangian (Equation (3.6)),

as per Equation (4.3) [27].

tan θL14 =
x

(L)
1 〈φL〉
ML

4

, tan θL24 =
x

(L)
2 〈φL〉√(

x
(L)
1 〈φL〉

)2
+
(
ML

4

)2 (4.3)

With the restrictions defined in Equation (4.1) and above, all of the relevant couplings

between the massive Z ′ and fermions in the mass basis of propagating fields can be

determined as the following:

LgaugeZ′ = Z ′µlL,R(gL,R)ll′γ
µl′L,R (4.4)
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where l, l′ = e, µ,E, the mass eigenstate leptons electron, muon and vector-like lepton

respectively with the following couplings to the massive Z ′ boson:

(gL,R)µµ = g′qL4,e4

(
cos θL,R12 sin θL,R24 − cos θL,R24 sin θL,R12 sin θL,R14

)2
(4.5)

(gL,R)ee = g′qL4,e4

(
sin θL,R12 sin θL,R24 + cos θL,R12 cos θL,R24 sin θL,R14

)2
(4.6)

(gL,R)EE = g′qL4,e4

(
cos θL,R14

)2(
cos θL,R24

)2
(4.7)

(gL,R)eE = g′qL4,e4 cos θL,R14 cos θL,R24

(
sin θL,R12 sin θL,R24 + cos θL,R12 cos θL,R24 sin θL,R14

)
(4.8)

(gL,R)µE = g′qL4,e4 cos θL,R14 cos θL,R24

(
cos θL,R12 sin θL,R24 − cos θL,R24 sin θL,R12 sin θL,R14

)
(4.9)

(gL,R)µe = g′qL4,e4

(
sin θL,R12 sin θL,R24 + cos θL,R12 cos θL,R24 sin θL,R14

)
(4.10)

×
(

cos θL,R12 sin θL,R24 − cos θL,R24 sin θL,R12 sin θL,R14

)
It is important to note that only the first and second family of SM leptons e, µ couple

to the massive Z ′, with their non-universal and flavour changing couplings controlled

by the mixing angles θL,R14 , θL,R24 with the vector-like family. Throughout the remainder

of this work, we assume that g′qL4,e4 = 1 for simplicity.

4.1.1 Muon decay to electron plus photon

In this subsection we study charged lepton flavor violating process µ→ eγ in the

context of our BSM scenario. It is worth mentioning that a future observation of the

µ→ eγ decay will be indisputable evidence of physics beyond the SM . The SM does

predict non-zero branching ratios for the processes µ→ eγ, τ → µγ and τ → eγ, but

such predictions are several orders of magnitude below projected experimental

sensitivities [61,62]. The µ→ eγ decay rate is enhanced with respect to the SM by

additional contributions due to virtual Z ′ and charged exotic lepton exchange at the

one-loop level. General li → ljγ decay can be described by the following effective

operator [61]:

LEFT =
µMij
2
liσ

µν ljFµν +
µEij
2
iliγ

5σµν ljFµν (4.11)

where Fµν denotes the electromagnetic field strength tensor, µEij and µMij are the

transition electric and magnetic moments, respectively and i, j = 1, 2, 3 denote family

indices. Diagonal elements in the transition magnetic moment µMij give rise to the

anomalous dipole moments ∆al = 1
2(gl − 2) of leptons, whilst off-diagonal elements in

the transition moments contribute to the li → ljγ decay amplitude. Based on the
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effective Lagrangian in Equation (4.11), one has that the amplitude for a generic

lepton decay f1 → f2γ has the form [63]:

A = eε∗µ(q)v2(p2) [iσµνqν(σLPL + σRPR)]u1(p1) (4.12)

where σL and σR are numerical quantities with dimension of inverse mass that can be

expressed in terms of loop integrals [63]. u1 and v2 are spinors, furthermore, we have

the following relations:

σµν =
i

2
[γµ, γν ] , PL,R =

1

2
(1∓ γ5), q = p1 − p2 (4.13)

In such a general case, the decay rate expression for the µ→ eγ process is the

following [59,61,63,64]:

Γ(µ→ eγ) =
αem

1024π4

m5
µ

M4
Z′

(|σ̃L|2 + |σ̃R|2) (4.14)

where σ̃L and σ̃R are given by:

σ̃L =
∑

a=e,µ,E

[
(gL)ea(gL)aµF (xa) +

ma

mµ
(gL)ea(gR)aµG(xa)

]
,

σ̃R =
∑

a=e,µ,E

[
(gR)ea(gR)aµF (xa) +

ma

mµ
(gR)ea(gL)aµG(xa)

]
, xa =

m2
a

M2
Z′

(4.15)

F (x) and G(x) are loop functions related to the Feynman diagrams for µ→ eγ as per

Figure 4.1, and have the functional form given in Equation (4.16). gL,R are couplings

in the fermion mass basis, as detailed in Equations (4.5) through (4.10). ma here

corresponds to the full propagating mass of the vector-like partners. In the

approximation where the vector like mass ML
4 is always much greater than the

chirality-flipping mass MC
4 (ML

4 �MC
4 ) that we will adopt here, this full propagating

mass is almost equivalent to the vector-like mass. Therefore when a = E, we

approximate mE 'ML
4 . The loop functions are given by [59]:

F (x) =
5x4 − 14x3 + 39x2 − 38x− 18x2 lnx+ 8

12(1− x)4
,

G(x) =
x3 + 3x− 6x lnx− 4

2(1− x)3

(4.16)

Equation (4.14) has some generic features; the loop function F (x) varies between 0.51

and 0.67 when x is varied in the range 10−3 ≤ x ≤ 2, whilst in the same region, G(x)

varies between -1.98 and -0.84. Consequently, in the case of charged fermions running

in loops, contributions proportional to G(x) will likely dominate over those

proportional to F (x). The dominant contributions involve left-right and right-left Z ′

couplings, whereas the subleading ones include either left-left or right-right couplings.
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Figure 4.1: Feynamn diagrams contributing to the µ → eγ decay. Note that these
diagrams all rely on a chirality flipping mass (LR). Where the chirality flip involves the

fourth family, the relevant mass is MC
4 .

Dividing Equation (4.14) by the known decay rate of the muon yields a prediction for

the µ→ eγ branching fraction [59,61,63,64]:

BR(µ→ eγ) =
α

1024π4

m5
µ

M4
Z′Γµ

[∣∣∣(gL)µµ(gL)µeF (xµ) + (gL)µE(gL)eEF (xE) + (gL)µe(gL)eeF (xe)

+
mµ

mµ
(gL)µe(gR)µµG(xµ) +

MC
4

mµ
(gL)eE(gR)µEG(xE) +

me

mµ
(gL)ee(gR)µeG(xe)

∣∣∣2
+
∣∣∣(gR)µµ(gR)µeF (xµ) + (gR)µE(gR)eEF (xE) + (gR)µe(gR)eeF (xe)

+
mµ

mµ
(gR)µe(gL)µµG(xµ) +

MC
4

mµ
(gR)eE(gL)µEG(xE) +

me

mµ
(gR)ee(gL)µeG(xe)

∣∣∣2]
(4.17)

where the total muon decay width is Γµ =
G2
Fm

5
µ

192π3 = 3× 10−19GeV. The mass MC
4 that

appears in the Feynman diagrams with a chirality flip on the 4th family fermions E4
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Figure 4.2: Feyman diagrams contributing to the muon (g − 2)µ

(Figure 4.1, 5th and 11th diagrams) is not the vector-like mass, but instead arises from

the Yukawa-like couplings from Equation (3.6), MC
4 = y

(e)
44 vφ, where vφ is the vacuum

expectation value of the SM Higgs field, which acquires a vev and spontaneously

breaks electroweak symmetry in the established manner. Under the assumption that

MC
4 > mµ, such terms proportional to the chirality flipping mass in Equation (4.17)

give by far the largest contributions to µ→ eγ. The experimental limit on

BR(µ→ eγ) is determined from non-observation at the MEG experiment at a 90%

confidence level [65,66]:

BR(µ→ eγ) < 4.2× 10−13 (4.18)

4.1.2 Anomalous magnetic moment of the muon ∆aµ

In this subsection we study the muon anomalous magnetic moment in the context of

our BSM scenario. In a model such as this, the Feynman diagrams for µ→ eγ are

easily modified to give contributions to the anomalous magnetic moment of the muon

as per Figure 4.2. The prediction for such an observable in our model therefore takes

the form [59]:

∆aZ
′

µ = −
m2
µ

8π2M2
Z′

[(
|(gL)µµ|2 + |(gR)µµ|2

)
F (xµ) +

(
|(gL)µE |2 + |(gR)µE |2

)
F (xE)

+
(
|(gL)µe|2 + |(gR)µe|2

)
F (xe) + Re

(
(gL)µµ(g∗R)µµ

)
G(xµ)

+ Re
(
(gL)µE(g∗R)µE

)MC
4

mµ
G(xE) + Re

(
(gL)µe(g

∗
R)µe

)me

mµ
G(xe)

]
(4.19)

Once more, the dominant terms will be those proportional to the enhancement factor

of
MC

4
mµ

, corresponding to the final diagram in Figure 4.2, provided MC
4 > mµ. Recent

experimental evidence has shown that the muon magnetic moment as measured by the
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Figure 4.3: Feynamn diagrams contributing to the electron g − 2

E821 experiment at BNL is at around a 3.5σ deviation from the SM

prediction [46,67–72]:

(∆aµ)exp = (26.1± 8)× 10−10 (4.20)

4.1.3 Anomalous magnetic moment of the electron ∆ae

Analogously to the muon, there is also an amendment to the electron (g − 2)e in this

scenario, from Feynman diagrams given in Figure 4.3. The analytic expression for ∆ae

is the following [59]:

∆aZ
′

e = − m2
e

8π2M2
Z′

[(
|(gL)ee|2 + |(gR)ee|2)F (xe) +

(
|(gL)eµ|2 + |(gR)eµ|2

)
F (xµ)

+
(
|(gL)eE |2 + |(gR)eE |2

)
F (xE) + Re

(
(gL)ee(g

∗
R)ee

)me

me
G(xe)

+ Re
(
(gL)eµ(g∗R)eµ

)mµ

me
G(xµ) + Re

(
(gL)eE(g∗R)eE

)MC
4

me
G(xE)

] (4.21)

As per the muon moment, if MC
4 > mµ the largest contribution to the electron

moment will be the final term in Equation (4.21), corresponding to the last diagram in

Figure 4.3. The most recent experimental result of the (g − 2)e, obtained from

measurement of the fine structure constant of QED, shows a 2.5σ deviation from the

SM, similarly to the muon magnetic moment [47]:

(∆ae)exp = (−0.88± 0.36)× 10−12 (4.22)

Notice especially that Equations (4.20) and (4.22) have deviations from the SM in

opposite directions, therefore explaining both phenomena simultaneously can be

difficult for a given model to achieve.
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Figure 4.4: Feynamn diagram contributing to neutrino trident production, N denotes
a nucleus.

4.1.4 Neutrino trident production

So-called trident production of neutrinos by process νµγ
∗ → νµµ

+µ− through nuclear

scattering is also relevant. The Feynamn diagram contributing to neutrino trident

production in our model is shown in Figure 4.4. This process constrains the following

effective four lepton interaction, which in this scenario arises from leptonic Z ′

interactions [73–75]:

∆Leff ⊃ −
(gL)2

µµ

2M2
Z′

(µLγ
λµL)(νµL γλ νµL)− (gR)µµ(gL)µµ

2M2
Z′

(µRγ
λµR)(νµL γλ νµL) (4.23)

Said coupling is constrained as in the SU(2)L symmetric SM, left-handed muons and

left-handed muon neutrinos couple identically to the Z ′ vector boson. Experimental

data on neutrino trident production νµγ
∗ → νµµ

+µ− yields the following constraint at

95% CL [76]:

− 1

(390GeV)2
.

(gL)2
µµ + (gL)µµ(gR)µµ

M2
Z′

.
1

(370GeV)2
(4.24)

This limit can be applied to the model’s parameter space in a similar manner to other

CLFV constraints discussed previously.

4.2 Analytic arguments for (g − 2)µ, (g − 2)e and

BR(µ→ eγ)

In order to gain an analytic understanding of the interplay between (g − 2)µ, (g − 2)e

and BR(µ→ eγ), in this section we shall make some simplifying assumptions about

the parameters appearing in Equations (4.19), (4.21) and (4.17). If we assume large

fourth family chirality flipping masses MC
4 � mµ, then the expressions for these

phenomena reduce to a minimal number of terms, all proportional to MC
4 .

Furthermore, we assume that left- and right- handed couplings are related by some
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real, positive constants k1 and k2 defined thus:

(gL)µE = gµE , (gR)µE = k1gµE ,

(gL)eE = geE , (gR)eE = −k2geE
(4.25)

The final coupling in Equation (4.25) is defined with a sign convention such that,

seeing as it is known numerically that the G loop function is always negative, we

automatically recover the correct signs for all of our observables. We also define the

following prefactor constants to further simplify our expressions:

C1 =
α

1024π2

m5
µ

M4
Z′Γµ

, C2 =
m2
µ

8π2M2
Z′
, C3 =

m2
e

8π2M2
Z′

(4.26)

Under such assumptions, Equations (4.19), (4.21) and (4.17) reduce to the following:

BR(µ→ eγ) = C1

(∣∣∣MC
4

mµ
k1geEgµEG(xE)

∣∣∣2 +
∣∣∣MC

4

mµ
k2geEgµEG(xE)

∣∣∣2) (4.27)

|∆aµ| = C2k1g
2
µE

MC
4

mµ
|G(xE)| (4.28)

|∆ae| = C3k2g
2
eE

MC
4

me
|G(xE)| (4.29)

We can then invert Equations (4.28) and (4.29) to obtain expressions for the couplings

in terms of the observables as per Equation (4.30).

gµE =

√
|∆aµ|
C2k1

1

|G(xE)|
mµ

MC
4

, geE =

√
|∆ae|
C3k2

1

|G(xE)|
me

MC
4

(4.30)

Substituting into the flavour violating muon decay in Equation (4.27) and expanding

the constants defined earlier yields:

BR(µ→ eγ) =
απ2

16

(k2
1 + k2

2)

k1k2
|∆aµ||∆ae|

m2
µ

Γµme
(4.31)

independently of MZ′ and MC
4 which cancel. Rearranging Equation 4.31 and setting

the physical quantities |∆aµ|, |∆ae| equal to their desired central values, yields a

simple condition on r = k1/k2 in order to satisfy the bound on BR(µ→ eγ):

‖r +
1

r
‖ < 5.57× 10−10 (4.32)

Since the left hand side is minimised for r = 1, the bound on BR(µ→ eγ) can never be

satisfied while accounting for (g− 2)µ, (g− 2)e (although clearly it is possible to satisfy

it with either (g − 2)µ or (g − 2)e but not both). However this conclusion is based on

the assumption that the physical quantities are dominated by the diagrams involving
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the chirality flipping fourth family masses MC
4 � mµ. In order to relax this

assumption, a more complete analysis of the parameter space is required, one that

considers all relevant terms in our expressions for observables in a numerical

exploration of the parameter space. Such investigations are detailed in Section 4.3.

4.3 Numerical Analysis of the Fermiophobic Z ′ Model

Given the expressions for observables that we have outlined above, we use these

phenomena to constrain the parameter space of the model. As mentioned, a minimal

parameter space is considered here, limiting mixing to the lepton sector and omitting

the third chiral family from any mixing. From coupling expressions in Section 4.1, the

angular mixing parameters such as θ24L and particle masses form a minimal parameter

space for this model. We set direct mixing between the electron and muon (θ12L,R) to

be vanishing for all tests, as even small direct mixing can easily violate the strict MEG

constraint on BR(µ→ eγ).

4.3.1 Anomalous muon magnetic moment

Initially, we focus on the longest-standing anomaly, that of (g − 2)µ. We first utilise a

simple parameter space, as we require only mixing between the muon and vector-like

lepton fields. To keep the analysis in a region potentially testable by upcoming future

experiments, we take a vector-like fourth family lepton mass of ML
4 = 1TeV and a

chirality-flipping fourth family mass of MC
4 = 200GeV (as discussed earlier we make a

distinction between these two sources of mass). The smaller value of MC
4 is well

motivated by the need for perturbativity in Yukawa couplings, as the SM Higgs vev is

176GeV, since MC
4 is proportional to the Higgs vev. For this investigation, the

parameter space under test is detailed in Table 4.1.

Parameter Value/Scanned Region

MZ′ 50→ 1000 GeV

MC
4 200 GeV

ML
4 1000 GeV

sin2 θ12L,R 0.0

sin2 θ14L 0.0

sin2 θ14R 0.0

sin2 θ24L,R 0.0→ 1.0

Table 4.1: Explored parameter space for muon g − 2 test.
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Within the stated parameter space, expressions for the observables under test are

simplified considerably, and with fixed MC
4 and ML

4 we constrain the space in terms of

the three variables sin2 θ24L, sin2 θ24R and MZ′ , as shown in Figure 4.5. Note that, as

θ12L,R and θ14L,R are set vanishing, contributions to (g − 2)e and BR(µ→ eγ) are

necessarily vanishing, as can be readily seen from Equations (4.21) and (4.17). The

dominant contribution to (g − 2)µ under these assumptions is shown in the final

Feynman diagram in Figure 4.2, that with the enhancement factor of MC
4 /mµ.
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Figure 4.5: Constraints in the MZ′ , sin2 θ24L and sin2 θ24R parameter space,
mixing between the electron and vector-like lepton switched off. Note we will

discuss the Z ′ experimental bound in a next subsection.

The legend in Figure 4.5 shows the constraint from neutrino trident production as

‘νTri’ for brevity. Using only mixing between the muon and the vector-like lepton, it is

not possible to predict a value for the electron g − 2 consistent with the observed value

as the electron-Z ′ coupling does not exist. In order to recover this, we must consider

mixing of the vector-like lepton with the electron, detailed in the following subsection.

4.3.2 Anomalous electron magnetic moment

Here we concentrate on the (g − 2)e. In order to test this observable alone, we

investigate only mixing between the electron and vector-like lepton, and ignore any

muon contributions. The region of parameter space under test is given in Table 4.2,

note also that mixing with the right-handed electron field is not required to obtain a

good prediction.
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Parameter Value/Scanned Region

MZ′ 50→ 1000 GeV

MC
4 200 GeV

ML
4 1000 GeV

sin2 θ12L,R 0.0

sin2 θ14L 0.0→ 1.0

sin2 θ14R 0.0

sin2 θ24L,R 0.0

Table 4.2: Explored parameter space for electron g − 2 test.

In Figure 4.6, we colour the electron g − 2 being greater than the observed value (i.e.

‘less negative’ than the experimental data) as the blue region, as such values are more

SM-like. Blue regions therefore ameliorate the SM’s tension with the experimental

data but do not fully resolve it.
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Figure 4.6: ∆ae impact on sin2 θ14L, MZ′ parameter space, mixing between
the muon and vector-like lepton switched off. Note we will discuss the Z ′

experimental bound in a next subsection.
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Similarly to the preceeding section, because there are no couplings between the electron

and the muon (even at the loop level), there are no contributions to the CLFV decay

µ→ eγ. Similarly, there are no amendments to the SM expressions for the muon g − 2

or neutrino trident decay. From this analysis one can conclude that only through using

mixing between both muons and electrons with the vector-like leptons is it possible to

simultaneously predict observed values of both the anomalous magnetic moments.

4.3.3 Attempt to explain both anomalous moments

In an attempt satisfy all constraints simultaneously, we set specific values for MZ′ , M
C
4

and sin2 θL14 that inhabit allowed regions of parameter space in Figures 4.5a, 4.5b and

4.6, then scan through angular mixing parameters as before. The investigated region is

summarised in Table 4.3. The choice of Z ′ mass here is motivated by studying the

regions of Figures 4.5 and 4.6 that admit muon and electron (g − 2)s respectively.

Parameter/Observable Value/Scanned Region

MZ′ 75 GeV

MC
4 200 GeV

ML
4 1000 GeV

sin2 θ12L,R 0.0

sin2 θ14L 0.75

sin2 θ14R 0.0

sin2 θ24L,R 10−7 → 1.0

BR(µ→ eγ) 10−3 → 1.0

Table 4.3: Parameter space and BR(µ → eγ) in a parameter space where
the electron and muon both mix with the vector-like lepton. Initial attempt

to satisfy both anomalous moments.

This story concludes quite quickly with all points being excluded. The enchancement

factor of MC
4 /mµ in Equation (4.19) is largely responsible for (g − 2)µ in this scenario,

however such a term also gives an unacceptably large contribution to BR(µ→ eγ) as

per Equation (4.17), resulting in a branching fraction far above the experimental limit;

the minimum BR(µ→ eγ) for any parameter points in this scenario is around 10−3, as

shown in Table 4.3. Such a situation persists even if sin2 θL14 is scanned through it’s

entire range, and furthermore is unchanged by the choice of ML
4 , and is insensitive to

the Z ′ mass in the case of large MC
4 . We conclude therefore, that with a large

chirality-flipping mass circa 200 GeV, it is not possible to simultaneously satisfy

constraints and make predictions consistent with current data. This conclusion is
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consistent with the analytic arguments of the previous section, where the large

contributions coming from large chirality flipping fourth family masses MC
4 were

assumed to dominate. We now go beyond this approximation, considering henceforth

very small MC
4 .

If one sets MC
4 vanishing, terms proportional to the aforementioned enhancement

factor also vanish, eliminating the largest contribution to µ→ eγ, as follows from

Equation (4.17). Motivated by this reduction in the most restrictive decay the above

analysis is repeated, but with the chirality-flipping mass removed.

4.3.3.1 Vanishing MC
4

If we choose to turn off the chirality-flipping mass of the vector-like leptons, their mass

becomes composed entirely of ML
4 . Terms proportional to the enhancement factor

MC
4 /mµ in Equation (4.19) are sacrificed, which makes achieving a muon g − 2 that is

consistent with the experimental result more challenging. Larger mixing between the

muon and vector-like leptons is required, but more freedom exists with respect to

BR(µ→ eγ). We investigated a region of parameter space defined as per Table 4.4, to

test its viability.

Parameter Value/Scanned Region

MZ′ 50→ 100 GeV

MC
4 0 GeV

ML
4 1000 GeV

sin2 θ12L,R 0.0

sin2 θ14L 0.5→ 1.0

sin2 θ14R 0.0

sin2 θ24L,R 0.0→ 1.0

Table 4.4: Parameters for scan without chirality-flipping mass.

For the results of this scan we consider the impact of each constraint separately, then

check for overlap of allowed regions. Note that in Figure 4.7, angular parameters and

the heavy vector Z ′ mass are varied simultaneously, hence here we randomly select

points and evaluate relevant phenomena, rather than excluding regions in the space.

This also explains the spread of parameter points as compared to the previous

exclusions. Note that the range of sin2 θL14 has been restricted in Tables 4.4 and 4.5 due

to the fact that no points that satisfy BR(µ→ eγ) could be found with sin2 θL14 < 0.5,

omitting this region increases the efficiency of our parameter scan. We also limit the
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ranges of MZ′ in Tables 4.4 and 4.5 as Z ′ masses much higher than this were found to

be incompatible with (g − 2)µ, and masses much below saturated the bound from

µ→ eγ.

(a) Parameter points that resolve ∆aµ
and separately, points allowed under the
µ → eγ constraint. Fixed parameters
given in legend. Chirality-flipping mass
is set vanishing. All good ∆aµ points

are excluded by trident and µ→ eγ.

(b) Parameter points that resolve ∆ae
and separately, points allowed under
µ→ eγ. Fixed parameters given in leg-
end. Chirality-flipping mass is set van-
ishing. Some good ∆ae points are al-

lowed by trident and µ→ eγ.

Figure 4.7: Parameter scan results for MC
4 = 0. Note we will discuss the

Z ′ experimental bound in a next subsection.

In Figure 4.7a, one can see that, as suspected, larger sin2 θ24L,R mixings are required to

obtain a muon (g − 2)µ consistent with current data. However, there is no overlapped

region in Figure 4.7a, and (g − 2)µ cannot be solved without violating the muon decay

constraint for a vanishing chirality-flipping mass, or the shown exclusion for neutrino

trident production. On the other hand, Figure 4.7b shows that there are points that

resolve the SM’s tension with (g − 2)e, and are allowed by the strict BR(µ→ eγ) limit

and neutrino trident production. The lack of terms with the enhancement factor of

MC
4 /mµ in Equation (4.17) means that points have been found with an acceptable

branching fraction of µ→ eγ that was not possible with a large MC
4 .

Note that in both panels of Figure 4.7 the most conservative neutrino trident limit is

shown, where we assume that MZ′ is fixed at 50GeV. We have also found that there is

also no obvious correlation between MZ′ and sin2 θ14L for µ→ eγ, and points appear

to be randomly distributed in this space. Since we have seen that neither large nor

vanishing MC
4 are viable, in the next subsection we switch on a small but non-zero

MC
4 , to investigate if it may be possible to increase (g − 2)µ to an acceptable level,

without giving an overlarge contribution to the CLFV muon decay.
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4.3.3.2 Small MC
4 O(mµ)

Here we perform analogous tests to those above but with a small chirality flipping

mass, motivated by (g − 2)µ with the requirement that BR(µ→ eγ) remains below the

experimental limit. Ranges of parameters scanned in this investiagtion are given in

Table 4.5.

Parameter Value/Scanned Region

MZ′ 50→ 100 GeV

MC
4 5mµ

sin2 θ14L 0.5→ 1.0

sin2 θ14R 0.0

sin2 θ24L,R 0.0→ 1.0

sin2 θ12L,R 0.0

Table 4.5: Parameters for larger scan with a small chirality-flipping mass.

Figure 4.8 shows points allowed under each separate observable in an analogous

parameter space to Figure 4.7, but with MC
4 = 5mµ. Once more neutrino trident

production excludes a large region of the parameter space in this scenario. From initial

study of the parameter space it seems that there is overlap between the allowed regions

of (g− 2)µ, (g− 2)e and BR(µ→ eγ), however, upon closer inspection of the parameter

points allowed by µ→ eγ, those points always yield negative (wrong sign) (g − 2)µ

that is far away from the experimental value, and hence all points are excluded.
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(a) Parameter points that resolve ∆aµ and sep-
arately, points allowed under the µ → eγ con-
straint. Fixed parameters given in legend, small
chirality flipping mass. Unfortunately none of the
points shown which have viable µ → eγ and sat-

isfy trident also have good ∆aµ (see text).

(b) Parameter points that resolve ∆ae
and separately, points allowed under the
µ → eγ constraint. Fixed parameters
given in legend, small chirality flipping

mass.

Figure 4.8: Parameter scan results for small MC
4 = 5mµ. Note we will

discuss the Z ′ experimental bound in a next subsection.

In Table 4.6, we examine more closely the points that are allowed under the most

stringent constraint of µ→ eγ. As 4th family mixing with the muons exists in this

space, neutrino trident production is also a consideration, and the constraint of this

observable in our space is given in Figure 4.8. All points valid when considering

BR(µ→ eγ) exist with a small sin2 θ24R mixing angle, but can have a wide range of Z ′

masses and sin2 θ14L.
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Parameter Observable

MZ′/GeV sin2 θ14L sin2 θ24L sin2 θ24R BR(µ→ eγ) ∆ae ∆aµ

69.5 0.61 0.11 0.02 3.25× 10−13 −2.15× 10−13 −1.80× 10−10

68.5 0.80 0.05 0.01 1.69× 10−13 −3.32× 10−13 −1.63× 10−10

91.0 0.99 0.08 0.16 3.34× 10−13 −2.41× 10−13 −1.19× 10−9

63.0 0.99 0.02 0.13 1.38× 10−13 −5.390× 10−13 −2.03× 10−9

65.5 0.78 0.07 0.02 4.94× 10−14 −3.43× 10−13 −2.36× 10−10

64.8 0.78 0.09 0.02 3.61× 10−13 −3.46× 10−13 −3.19× 10−10

77.9 0.85 0.005 0.02 6.13× 10−14 −2.77× 10−13 −1.77× 10−10

91.4 0.81 0.14 0.04 5.80× 10−14 −1.73× 10−13 −2.71× 10−10

97.2 0.86 0.08 0.03 1.07× 10−13 −1.73× 10−13 −2.71× 10−10

76.0 0.63 0.03 0.004 1.72× 10−13 −2.01× 10−13 −3.97× 10−11

56.8 0.96 0.04 0.05 3.77× 10−14 −6.22× 10−13 −8.36× 10−10

78.1 0.99 0.07 0.20 1.84× 10−14 −3.32× 10−13 −2.04× 10−9

89.4 1.0 0.07 0.28 2.95× 10−13 −2.56× 10−13 −2.25× 10−9

Table 4.6: Parameter points that are below the upper bound on BR(µ→ eγ) for MC
4 = 5mµ.

The points in this table correspond to the 13 black points in Figure 4.8 that are also below the
grey neutrino trident exclusion. These points do not satisfy the experimental value of (∆aµ)exp =

(26.1± 8)× 10−10.

We see that for the points in Table 4.6, electron g − 2 prefers regions of the space with

small sin2 θ24L, similarly to the preferred points under the neutrino trident constraint,

given in the same plot as an excluded region derived in the same way as previous

results for MC
4 = 0. Many of these points are simultaneously consistent with the

µ→ eγ limit, and also provide a (g − 2)e consistent with experimental data (denoted

in green), whilst a subset of these points do not violate the neutrino trident production

limit. From these results, we can conclude that the best points lie in the region of

small sin2 θ24L and sin2 θ24R, and that such points simultaneously comply with

BR(µ→ eγ), (g − 2)e and neutrino trident. Such candidate points however do not

allow for resolution of ∆aµ, as they all have negative values for ∆aµ, as opposed to the

experimental value which is positive.

A number of other chirality flipping masses were examined in this work, in the region

5mµ < MC
4 < 200GeV, including a parameter scan whereby MC

4 was randomly

selected between these limits, and these tests yielded similar results to those shown in

the last three sections, whereby it was not possible to obtain predictions that were

simultaneously consistent with (g − 2)e, (g − 2)µ and BR(µ→ eγ).



4.4. The experimental and theoretical bound for the neutral Z ′ gauge boson 67

4.4 The experimental and theoretical bound for the

neutral Z ′ gauge boson

The neutral Z ′ gauge boson can be constrained by both the effective four fermion

effective interactions and the theoretical oblique corrections S, T, U . However, the

unknown coupling constant and mass of Z ′ gauge boson leave the predictions not fully

determined. Both will be explored in order.

4.4.1 Four fermion effective interactions

In order to make our analysis as simple as possible, we assumed the neutral Z ′ gauge

boson are generated via the leptonic collision process e+e− → Z ′ → e+e− and the

experimental bound for the Z ′ boson is given in PDG [153–158].

MEXP
Z′ = 48 GeV (4.33)

However, a critical problem is the result of Equation 4.33 is too old to trust. Plus, it

looks like the fact that the CM energy of the e+e− collision process of the LEP

experiment has reached up to 209 GeV makes our numerical prediction for the Z ′

mass, 75 GeV, excluded completely. However, we came to two agreements on the fact

through our discussions as follows:

1. The experimental Z ′ bound of Equation 4.33 is a somewhat weak bound.

2. The CM energy 209 GeV is not the ultimate experimental bound for the Z ′

neutral gauge boson at the moment.

Based on the agreements, we find a suitable relation to constrain the Z ′ mass and the

effective four fermion leptonic Lagrangian for the constraint is given by [44]:

Leff = −
g2
X

M2
Z′

3∑
j=1

[xl1LxljL(l1γ
µPLl1)(ljLγµljL) + xl1LxljR(l1γ

µPLl1)(ljRγµljR)]

−
g2
X

M2
Z′

3∑
j=1

[xl1RxljL(l1γ
µPRl1)(ljLγµljL) + xl1RxljR(l1γ

µPRl1)(ljRγµljR)]

(4.34)

The resulting limit for the leptonic collision process e+e− → µ+µ− from Equation 4.34

has the form of [44,149]:

2MZ′

gX
√
xl1Lxl2L + xl1Rxl2R + xl1Rxl2L + xl1Lxl2R

> 4.6 TeV, (4.35)
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4.4.2 Oblique corrections S, T and U

It is well-known that any BSM model can be significantly constrained by the oblique

corrections S, T and U . The oblique corrections S, T and U were first suggested by

Peskin and Takeuchi in 1991 and one of the great success of the oblique corrections

was to find top quark’s mass. Therefore, we can expect that masses of the hypothetical

particles such as Z ′ gauge boson and non-SM scalars can be constrained by the oblique

corrections. The oblique corrections S and T come from dimension six operators

whereas U comes from dimension eight operator, so the corrections S and T play a

more important role in constraining the hypothetical particles. The definition for the

corrections S and T are given by [169]

S =
2 sin 2θW
αEM (MZ)

dΠ30

(
q2
)

dq2

∣∣∣∣∣
q2=0

,

T =
Π33

(
q2
)
−Π11

(
q2
)

αEM (MZ)M2
W

∣∣∣∣∣
q2=0

,

(4.36)

where Πs are the vacuum polarization amplitudes with external gauge bosons W1,2,3

and B. The oblique corrections S and T consist of its SM part and new physics effect

S = SSM + ∆S,

T = TSM + ∆T,
(4.37)

and the SSM and TSM are calculated by [170]

SSM =
1

12π
ln

(
m2
h

m2
W

)
+

1

2π

[
3− 1

3
ln

(
m2
t

m2
b

)]
' 0.106

TSM = − 3

16π cos2 θW
ln

(
m2
h

m2
W

)
+

3m2
t

32π2αem (mZ) v2
' 0.537

(4.38)

where α
(
M2
Z

)−1
= 128.944. The current best-fit results of oblique parameters S, T and

U are given by [151,171]

S = −0.01± 0.10, T = 0.03± 0.12, U = 0.02± 0.11. (4.39)

The neutral Z ′ gauge boson can appear in the vacuum polarized amplitudes via mixing

with the external gauge bosons W1,2,3 and B.
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W1,2,3, B W1,2,3, B

q

k + q

q

k

Figure 4.9: Diagrams contributing to the gauge boson 2-point function

However, a main difficulty of determining the Z ′ theoretical bound comes from its

unknown coupling constants and masses. Plus, I could not find any convincing papers

related to constraining the light Z ′ gauge boson with the oblique parameters (There

are a few papers, however all of them depend on a specific scenario and their

constraints are of order TeV, which is quite difficult to generalize and apply to our

BSM model). In my fourth project, I will try to constrain the MZ′ with the oblique

parameters after finding preferred order of Z ′ coupling constants by diverse flavor

observables such as muon g − 2, FCNC observables, etc.

4.5 Concluding Remarks

In this paper, we have addressed the question: is it possible to explain the anomalous

muon and electron g − 2 in a Z ′ model? Although it is difficult to answer this question

in general, since there are many possible Z ′ models, we have seen that it is possible to

consider a simple renormalisable and gauge invariant model in which the Z ′ only has

couplings to the electron and muon and their associated neutrinos, arising from mixing

with a vector-like fourth family of leptons. This is achieved by assuming that only the

vector-like leptons have non vanishing U(1)′ charges and are assumed to only mix with

the first and second family of SM charged leptons. In this scenario, the heavy Z ′ gauge

boson couples with the first and second family of SM charged leptons only through

mixing with the vector-like generation.

A feature of our analysis is to distinguish the two sources of mass for the 4th,

vector-like family: the chirality flipping fourth family mass terms MC
4 arising from the

Higgs Yukawa couplings and are proportional to the Higgs vev and the vector-like

masses ML
4 which are not proportional to the Higgs vev. For the purposes of clarity we

have treated MC
4 and ML

4 as independent mass terms in the analysis of the physical

quantities of interest, rather than constructing the full fourth family mass matrix and

diagonalising it, since such quantities rely on a chirality flip and are sensitive to MC
4

rather than ML
4 .
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We began by assuming large fourth family chirality flipping masses MC
4 � mµ, and

showed that the expressions for (g − 2)µ, (g − 2)e and BR(µ→ eγ) reduced to a

minimal number of terms, all proportional to MC
4 . We were then able to construct an

analytic argument which shows that it is not possible to explain the anomalous muon

and electron g − 2 in the Z ′ model, while respecting the bound on BR(µ→ eγ).

We then performed a detailed numerical analysis of the parameter space of the above

model, beginning with large MC
4 = 200 GeV, where we showed that it is possible to

account for (g − 2)µ in a region of parameter space where the electron couplings were

zero. Similarly, for MC
4 = 200 GeV, we showed that it is possible to account for

(g − 2)e in a region of parameter space where the muon couplings were zero. In both

cases BR(µ→ eγ) was identically zero.

Keeping MC
4 = 200 GeV, we then attempted to explain both anomalous magnetic

moments by switching on the couplings to the electron and muon simultaneously, but

saw that it was not possible to do this while satisfying BR(µ→ eγ), as expected from

the analytic arguments.

We then went beyond the regime of the analytic arguments by considering very small

values of MC
4 . With MC

4 = 0, we saw that it is not possible to account for (g − 2)µ

without violating the bounds from BR(µ→ eγ) and trident, however it is possible to

account for (g − 2)e while respecting all constraints. With small but non-zero MC
4 we

reached similar conclusions, although the analysis was more complicated, and it was

necessary to examine specific benchmark points to reach this conclusion.

We stress that the fermiophobic Z ′ model is a good candidate to explain either

(g − 2)µ or (g − 2)e, consistently with BR(µ→ eγ) and trident, with the choice

determined by the specific mixing scenario. However to explain the (g − 2)µ always

requires a significant non-vanishing chirality flipping mass involving the 4th vector-like

family of leptons.

We would like to comment on the generality of our conclusion that, for the Z ′

framework considered in this paper, we cannot simultaneously explain the electron and

muon g-2 results within the relevant parameter space of the model, while satisfying the

constraints of BR(µ→ eγ) and neutrino trident production. Does this conclusion

apply to all Z ′ models? While it is impossible to answer this question absolutely, there

are reasons why our results here might be considered very general and indicative of a

large class of Z ′ models. The main reason for this is that, in the considered framework,

the Z ′ is only allowed to couple to the electron and muon and their associated

neutrinos, arising from mixing with a vector-like fourth family of leptons, thereby

eliminating the quark couplings and allowing us to focus on the connection between

CLUV, CLFV and the electron and muon g − 2 anomalies only, independently of other

constraints. Moreover, the allowed Z ′ couplings are free parameters in our approach

and so may represent the couplings in a large class of Z ′ models. Furthermore, we have
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presented a general analytic argument that provides some insight into our numerical

results. For example, we do not require the Z ′ to couple identically to left- and

right-handed leptons, and the masses for intermediate particles in the one-loop

diagrams cancel in the final expression for BR(µ→ eγ) in Equation 4.31, which lends

this result some generality. We also note that this paper represents the first paper to

attempt to explain both electron and muon g − 2 anomalies simultaneously within a Z ′

model. Thus, although the problem of the CLFV constraint in preventing an

explanation of electron and muon g − 2 anomalies is well known in general, it had not

been studied within the framework of Z ′ models before the present paper. Indeed this

is the first work we know of that attempts to explain the muon and electron anomalous

magnetic moments simultaneously using a simple Z ′ model. On top of that, we also

discuss the Z ′ mass limit. The current Z ′ experimental bound is known as 48 GeV at

PDG, however we agree that this is a somewhat weak bound and need to determined

the correct Z ′ mass bound, based on the fact that the LEP experimental has reached

up to 209 GeV for the CM energy of the leptonic collision process e+e− → e+e−. Using

the experimental limit suggested by LEP experiment [44,149], we derived the

numerical mass bound for the Z ′ gauge boson, which is MZ′ > 287.5 GeV. Since this

numerical result depends on lots of assumptions though, we conclude the correct Z ′

mass bound is not yet completely determined.

Finally we comment that since there are models in the literature which account for all

these observables based on having scalars, it might be interesting to extend the scalar

sector of a Z ′ model. The lepton flavour violating processes could then be used to set

constraints on the masses for the CP even and CP odd heavy neutral scalars, as

in [44]. However, such a study is beyond the scope of the present paper.

In conclusion, within a model where the Z ′ only has tunable couplings to the electron

and muon and their associated neutrinos, arising from mixing with a vector-like fourth

family of leptons, it is not possible to simultaneously satisfy the experimentally

observed values of (g − 2)µ and (g − 2)e, while respecting the BR(µ→ eγ) and trident

constraints, within any of the exhaustively explored parameter space (only one or

other of (g − 2)µ or (g − 2)e can be explained). Since the model allows complete

freedom in the choice of couplings, and the diagrams involving fourth family lepton

exchange can be chosen to contribute or not, this model may be regarded as indicative

of any Z ′ model with gauge coupling and charges of order one.
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Chapter 5

The second BSM model - SM

fermion mass hierarchies from VL

families with an extended 2HDM

In this chapter, we start discussing our second BSM model with two vector-like

families, mainly motivated by the hierarchical structure of the SM, taking the SM as

an effective theory. In the BSM model, we discuss the hierarchical structure of the SM

with the mixing formalism and how the BSM model can give rise to the effective SM

interactions.

5.1 Introduction and motivation

The Standard Model (SM) has made many successful predictions for the

phenomenology of both quark and lepton sectors with very high accuracy. However

there are long-established anomalies which are not addressed by the SM such as muon

and electron anomalous magnetic moments aµ = (g − 2)µ /2, ae = (g − 2)e /2. The

muon anomalous magnetic moment reported by the Brookhaven E821 experiment at

BNL [46] and the electron anomaly have confirmed +3.5σ and −2.5σ deviations from

the SM, respectively. Detailed data analysis of the Standard Model predictions for the

muon anomalous magnetic moment are provided in [67,69,77–79]. The experimentally

observed values for the muon and electron anomalies at 1σ of experimental error bars,
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with an extended 2HDM

respectively, read 1:

∆aµ = aExp
µ − aSM

µ = (26.1± 8.0)× 10−10

∆ae = aExp
e − aSM

e = (−0.88± 0.36)× 10−12.
(5.1)

When trying to explain both anomalies to within 1σ, a main difficulty arises from the

sign of each anomaly: the muon anomaly requires positive definite non-standard

contributions, whereas the electron anomaly requires such contributions to contribute

with a negative sign [80]. Without loss of generality, the Feynman diagrams

corresponding to the contributions for the muon and electron anomalies take the same

internal structure at one-loop except from the fact that the external particles are

different. The similar structure of the one-loop level contributions to the muon and

electron anomalous magnetic moments might be able to be explained by the same new

physics, but accounting for the relative negative sign is challenging. For example,

considering the one-loop exchange of W or Z ′ gauge bosons results in theoretical

predictions for the muon and electron anomalies having the same sign.

In this paper we take the view that both anomalies should be explained to 1σ using

the same internal structure at the one-loop level by some new physics which is capable

of accounting for the correct signs of the anomalies. To explain the muon and electron

anomalies, we focus on a well motivated model which is also capable of accounting for

origin of Yukawa couplings and hierarchies in the SM. The model we consider will

account for the Yukawa coupling constant for the top quark being nearly 1 while that

for the electron is around 10−6, as well as all the other fermion hierarchies in between,

as well as the neutrino masses and mixing. In order to achieve this we shall introduce

vector-like particles, which are charged under a global U(1)′ symmetry. In a related

previous work [31], with a gauged U(1)′ symmetry, the first family of quarks and

leptons remained massless when only one vector-like family is included. Here we shall

modify the model to include two vector-like families charged under a global U(1)′ to

allow also the first family to be massive and avoid Z ′ constraints. Then we shall apply

the resulting model to the problem of muon and electron anomalous magnetic

moments. The considered model is based on a 2 Higgs doublet model (2HDM)

extension of the SM, supplemented by a global U(1)′ symmetry, where the particle

spectrum is enlarged by the inclusion of two vector-like fermion families, as well as one

singlet Higgs to break the U(1)′ symmetry 2. The SM Yukawa interactions are

1It is worth mentioning that the experimental value of the anomalous magnetic moment of the
electron is sensitive to the measurement of the fine-structure constant α. The experimental value of
∆ae = ae,exp− ae(αBerkeley) used in this work and given in Equation 5.1 is obtained using αBerkeley from
caesium recoil measurements by the Berkeley 2018 experiment [47]. As this paper was being completed
a different experiment [80] reported a result that implies ∆ae = aExp

e − aSMe = (0.48± 0.30) × 10−12

which differs from the SM by +1.6σ. The two experiments appear to be inconsistent with each other,
and our results here are based on the earlier result in Equation 5.1.

2An example of a multiHiggs doublet model that uses a flavor dependent global U(1)′ symmetry to
explain the SM charged fermion mass hierarchy by hierarchies of the vacuum expectation values of the
Higgs doublets is provided in [81]
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forbidden, but the Yukawa interactions with vector-like families charged under the

U(1)′ symmetry are allowed. Once the flavon develops a vev and the heavy vector-like

fermions are integrated out, the effective SM Yukawa interactions are generated, as

indicated in Figure 8.1. Furthermore, this model also highlights the shape of the

2HDM model type II, since in our proposed model, one Higgs doublet (which in the

alignment limit corresponds to the SM Higgs doublet) couples with the up type quarks

whereas the other one features Yukawa interactions with down type quarks and SM

charged leptons. Regarding the neutrino sector, since we consider the SM neutrinos as

Majorana particles, we have that this sector requires another approach relying on the

inclusion of a new five dimensional Weinberg-like operator, which is allowed in this

model and which requires both SM Higgs doublets to be present, namely the so called

Type Ib seesaw model [82].

We shall show that the heavy vector-like leptons are useful and necessary to explain the

anomalous electron and muon magnetic moment deviations from the SM, of magnitude

and opposite signs given in Equation 5.1. A study of such g − 2 anomalies in terms of

New Physics and a possible UV complete explanation via vector-like leptons was

performed in [48], although the model presented here is quite different, since our model

is motivated by the requirement of accounting also for the fermion mass hierarchies.

Other theories with extended symmetries and particle spectrum have also been

proposed to find an explanation for the muon and electron anomalous magnetic

moments [32,44,48–60,83–114]. In the following we provide a brief comparison of our

model to other works, starting with the model proposed in [105] where vector-like

leptons are also present. The model of [105] corresponds to an extended type X lepton

specific 2HDM model of [105] having a Z2 discrete symmetry under which one of the

scalar doublets and the leptonic fields are charged. In such model the vector-like

leptons induces a one-loop level contribution to the electron anomalous magnetic

moment whereas the muon anomalous magnetic moment is generated at two-loop via

the exchange of a light pseudoscalar. On the other hand, in our proposed model a

spontaneously broken global U(1)′ symmetry is considered instead of the Z2 symmetry

and the vector-like leptons generate one-loop level contributions to the muon and

electron anomalous magnetic moments and at the same type produce the SM charged

lepton masses, thus providing a connection of the charged lepton mass generation

mechanism and the g − 2 anomalies, which is not given in the model of [105]. It is also

worth emphasising that our model is very different from other models proposed in the

literature based on the Universal Seesaw mechanism [34,35,39,115–129]. Universal

Seesaw models are typically based on the left-right symmetric model with electroweak

singlet fermions only, while our vector-like fermions involves complete families,

including electroweak doublets which are typically the lightest ones. Some examples of

theories relying on the Universal Seesaw mechanism to explain the SM charged fermion

mass hierarchy are provided in [34,35,39,115–129].
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with an extended 2HDM

In the approach followed in this paper the large third family quark and lepton Yukawa

couplings are effectively generated via mixing with a vector-like fourth family of

electroweak doublet fermions, which are assumed to be relatively light, with masses

around the TeV scale. The smallness of the second family quark and lepton Yukawa

couplings is due to their coupling to heavier vector-like fourth family electroweak

singlet fermions. Similar considerations apply to the lightest first family quarks and

leptons which couple to heavy fifth family vector-like fermions. It may seem that the

problem of the hierarchies of SM fermions is not solved but simply reparameterised in

terms of unknown vector-like fermion masses. However, there are four advantages to

this approach. Firstly, the approach is dynamical, since the vector-like masses are new

physical quantities which could in principle be determined by a future theory.

Secondly, it has experimental consequences, since the new vector-like fermions can be

discovered either directly, or (as in this paper) indirectly via their loop contributions.

Thirdly, this approach can also account for small quark mixing angles [31], as well as

large lepton mixing angles via the type Ib seesaw mechanism [82]. Fourthly, the

effective Yukawa couplings are proportional to a product of two other dimensionless

couplings, so a small hierarchy in those couplings can give a quadratically larger

hierarchy in the effective couplings. For all these reasons, the approach we follow in

this paper is both well motivated and interesting.

Returning to our proposed model framework, we first consider the contribution of W

boson exchange with neutrinos to the electron and muon anomalous magnetic moments

at the one-loop level. Since this model involves the vector-like neutrinos, the sensitivity

of the branching ratio of µ→ eγ decay can be enhanced with respect to the observable

level and the muon and electron anomalous magnetic moments are studied while

keeping the µ→ eγ constraint. As a result, we find that the impact of our predictions

with W exchange at one-loop level is negligible when compared to their experimental

bound. We then consider the contributions from the 2HDM scalar exchange. To study

the implications of the one-loop level scalar exchange in the muon and electron

anomalous magnetic moments, we first construct a scalar potential and derive the mass

squared matrix for CP-even, CP-odd and charged Higgses assuming there is no mixing

between the SM Higgs h and two non-SM physical scalars H1,2. A diagonal Yukawa

matrix for charged leptons implies the absence of mixing between charged leptons,

resulting in vanishing branching ratio for the µ→ eγ decay, which in turn leads to a

fulfillment of the charged lepton flavor violating constraints in this scenario. In such a

framework we show that both anomalies can successfully explain both anomalies,

including their opposite signs, at the 1σ level. We present some benchmark points for

both the muon and the electron anomalies, together with some numerical scans around

these points, which indicate the mass regions of the Higgs scalars of the 2HDM in this

scenario. We also provide some analytic arguments to augment the numerical results.
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The layout of the remainder of the paper is as follows. In Section 5.2 we discuss the

origin of Yukawa couplings from a fourth and fifth vector-like family, within a mass

insertion formalism. In Section 5.3 we construct the effective Yukawa matrices using a

more detailed mixing formalism which goes beyond the mass insertion formalism. In

Section 6.1 we consider W exchange contributions to (g − 2)µ , (g − 2)e and

BR (µ→ eγ) based on the type Ib seesaw mechanism within our model and show that

the contributions are too small. In Section 7.1 we turn to Higgs scalar exchange

contributions to (g − 2)µ , (g − 2)e and BR (µ→ eγ), focussing on analytical formulae.

Then in Section 7.2 we give a full numerical analysis of such contributions, showing

that they can successfully explain the anomalies, presenting some benchmark points

for both the muon and the electron anomalies, together with some numerical scans

around these points, which indicate the mass regions of the Higgs scalars of the 2HDM

in this scenario. Section 7.3 discusses the experimental and theoretical non-SM scalars’

mass bound. Section 7.4 concludes the main body of the paper. Appendix B.1

provides a discussion of the quark mass matrices in two bases. Appendix B.2 includes

a brief discussion of heavy scalar production at a proton-proton collider.

5.2 The origin of Yukawa couplings from a fourth and

fifth vector-like family

We start by asking a question: what is the origin of the SM Yukawa couplings? In

addressing such question, we assume that the SM Yukawa Lagrangian is the low energy

limit of an extended theory with enlarged symmetry and particle spectrum, and arises

after the spontanous breaking of an U(1)′ global symmetry at an energy scale as low as

TeV. Therefore, understanding the origin of the Yukawa interaction naturally leads to

the presence of another Higgses whose masses are higher than the mass of the SM

Higgs. Furthermore, the SM Yukawa interactions are forbidden by the global U(1)′

symmetry, however the Yukawa interaction with the vector-like particles are allowed.

With these considerations in place, the possible diagrams generating the Yukawa

interactions can be drawn as indicated in Figure 8.1.

ψiL ψjR

H̃ φ

ψkR ψ̃lL

Mψ′
lk

ψiL ψjR

φ H̃

ψ̃kR ψlL

Mψ
lk

Figure 5.1: Diagrams in this model which lead to the effective Yukawa interactions,
where ψ,ψ′ = Q, u, d, L, e(neutrinos will be treated separately) i, j = 1, 2, 3, k, l = 4, 5,

Mlk is vector-like mass and H̃ = iσ2H
∗, H = Hu,d
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There are two key features in Figure 8.1, one of which is the presence of the assumed

flavon φ and the other one is the vector-like mass M . Once the flavon φ develops its

vev, the effective Yukawa interactions ψiLH̃ψjR are generated with a coupling constant

proportional to 〈φ〉 /M , assumed to be less than unity, which appears in front of the

usual Yukawa constant. The proportional factor 〈φ〉 /M plays a crucial role in

explaining why one Yukawa constant can be relatively smaller or bigger than the other

ones since the magnitude of each Yukawa constant is accompanied by the mass of the

vector-like particles. The effective Lagrangian in this diagram reads in the mass

insertion formalism:

LYukawa
eff = yψik(M

−1
ψ′ )klx

ψ′
lj 〈φ〉ψiLH̃ψjR + xψik 〈φ〉(M

−1
ψ )kly

ψ
ljψiLH̃ψjR + h. c. (5.2)

where ψ,ψ′ = Q, u, d, L, e (neutrinos will be treated separately) and x is a Yukawa

constant in the interaction with φ and y is in the interaction with H̃ as per Figure 8.1.

Throughout this work, we take a view that the Yukawa constant y can be ideally of

order unity while the x is small compared to the y. We shall also use a mixing

formalism rather than the mass insertion formalism.

5.2.1 The model with U(1)′ global symmetry

For an analysis of the phenomenology described above, we extend the SM fermion

sector by adding two vector-like fermions, the SM gauge symmetry by including the

global U(1)′ symmetry and the scalar sector of the 2HDM model is enlarged by

considering a gauge scalar singlet, whose VEV triggers the spontaneous breaking of the

U(1)′ symmetry. The scalar sector of the model is composed of by two SU(2) doublet

scalars Hu,d and one flavon φ. Our extended 2HDM with enlarged particle spectrum

and symmetries has the interesting feature that the SM Yukawa interactions are

forbidden due to the global U(1)′ symmetry whereas the Yukawa interactions of SM

fermions with vector-like families are allowed. Furthermore, such vector-like families

have mass terms which are allowed by the symmetry. Thus, the SM charged fermions

masses are generated from a Universal Seesaw mechanism mediated by heavy

vector-like fermions. Unlike the U(1)′ model proposed in [27], we assume that the

U(1)′ symmetry is global instead of local. This allows us more flexibility in the allowed

range for the scale where the U(1)′ symmetry is broken. On top of that, the up-type

quarks feature Yukawa interaction with the up-type Higgs whereas the down-type ones

interact with down-type Higgs. In this BSM model, the SM particles are neutral under

the U(1)′ symmetry, while the vector-like particles and all other scalars are charged

under the symmetry. The particle content and symmetries of the model are shown in

Table 5.1.
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Field SU(3)C SU(2)L U(1)Y U(1)′

QiL 3 2 1
6 0

uiR 3 1 2
3 0

diR 3 1 −1
3 0

LiL 1 2 −1
2 0

eiR 1 1 1 0

QkL 3 2 1
6 1

ukR 3 1 2
3 −1

dkR 3 1 −1
3 −1

LkL 1 2 −1
2 1

ekR 1 1 −1 −1

νkR 1 1 0 −1

Q̃kR 3 2 1
6 1

ũkL 3 1 2
3 −1

d̃kL 3 1 −1
3 −1

L̃kR 1 2 −1
2 1

ẽkL 1 1 −1 −1

ν̃kL 1 1 0 −1

φ 1 1 0 1

Hu 1 2 1
2 −1

Hd 1 2 −1
2 −1

Table 5.1: This model is an extended 2HDM by the global U(1)′ symmetry with
two vector-like families plus one flavon and reflects the property that the SM Yukawa
interactions are forbidden. All SM particles ψi(i = 1, 2, 3) are neutral under the U(1)′

symmetry and the right neutrinos νiR are not considered. Notice that this model in-
volves two right-handed vector-like neutrinos νkR, ν̃kR. The SM particles are extended
by two vector-like families where k = 4, 5 and two SM Higgses Hu,d are charged neg-
atively under U(1)′ to forbid the renormalizable SM Yukawa interactions. The flavon

field φ plays a role of braking the U(1)′ symmetry at TeV scale.

The right-handed neutrinos νiR are absent in this model since we treat the left-handed

neutrinos in the lepton doublet as Majorana particles and they are only extended by

vector-like neutrinos. The vector-like particles and their partners have exact opposite

charge to each other under the extended gauge symmetry to cancel out chiral anomaly.

Lastly, the SM Higgses Hu,d are negatively charged under the U(1)′ symmetry to

forbid the renormalizable SM Yukawa interactions.
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5.2.2 mass insertion formalism

The renormalizable Yukawa interactions and mass terms for both up and down quark

sectors read:

LYukawa+Mass
q = yuikQiLH̃uukR + xukiφũkLuiR + xQikφQiLQ̃kR + yukiQkLH̃uuiR

+ ydikQiLH̃ddkR + xdkiφd̃kLdiR + ydkiQkLH̃ddiR

+Mu
klũlLukR +Md

kld̃lLdkR +MQ
klQkLQ̃lR + h. c.

(5.3)

where i, j = 1, 2, 3, k, l = 4, 5 and H̃ = iσ2H
∗. The possible diagrams contributing to

the low energy quark Yukawa interaction are given in Figure 8.2:

QiL ujR

H̃u φ

ukR ũlL

Mu
kl

QiL ujR

φ H̃u

Q̃kR QlL

MQ
lk

QiL djR

H̃d φ

dkR d̃lL

Md
kl

QiL djR

φ H̃d

Q̃kR QlL

MQ
lk

Figure 5.2: Diagrams in this model which lead to the effective Yukawa interactions
for the up quark sector(two above diagrams) and the down quark sector(two below
diagrams) in mass insertion formalism, where i, j = 1, 2, 3 and k, l = 4, 5 and Mlk is

vector-like mass.

The above two diagrams correspond to the up-type quark sector whereas the below

two diagrams correespond to the down-type quark sector. The model under

consideration is an extended 2HDM where the up-type Higgs Hu is relevant for the

up-type quark sector whereas thedown-type Higgs Hd is suitable for the down-type

quark and charged lepton sectors. Like in the quark sector, the Yukawa interactions

and mass terms for charged leptons can be written in a similar way:

LYukawa+Mass
e = yeikLiLH̃dekR + xekiφẽkLeiR + xLikφLiLL̃kR + yekiLkLH̃deiR

+M e
klẽlLekR +ML

klLkLL̃lR + h. c.
(5.4)

Then, the possible diagrams giving rise to the charged lepton Yukawa interactions are

shown in Figure 8.3: As for the neutrinos, its behaviour is different as compared to the

quarks or charged leptons since there exists only Majorana neutrinos in this model so

initial and final neutrinos in mass insertion formalism diagrams must be same. The
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LiL ejR

H̃d φ

ekR ẽlL

Me
kl

LiL ejR

φ H̃d

L̃kR LlL

ML
lk

Figure 5.3: Diagrams in this model which lead to the effective Yukawa interactions for
the charged lepton sector in mass insertion formalism, where i, j = 1, 2, 3 and k, l = 4, 5

and Mlk is vector-like mass.

Yukawa interactions and mass terms for the neutrino sector are given by:

LYukawa+Mass
ν = yνikLiLH̃uνkR + xLikLiLHdν̃kR +MM

kl ν̃lRνkR + h. c. (5.5)

Here, one important feature in Equation 8.6 is the presence of the vector-like mass M .

From the two Yukawa interactions in Equation 8.6, it follows that both νR and ν̃R have

a lepton number +1 and they are different particles. And then taking a look at the

vector-like mass term in Equation 8.6, it can be confirmed that the vector-like mass is

not a strict Majorana mass because νR and ν̃R are different particles but plays a role of

Majorana mass since the mass term violates the lepton number conservation. The

corresponding diagram for the neutrino sector in the mass insertion formalism is given

in Figure 8.4. However for our calculations we use a mixing formalism (see next

section). The operator LiLjH̃uHd resulting from Figure 8.4 gives rise to the so called

LiL LjL

H̃u Hd

νkR ν̃lR

Mν
lk

Figure 5.4: Type Ib seesaw diagram [82] which leads to the effective Yukawa interac-
tions for the Majorana neutrinos in mass insertion formalism, where i, j = 1, 2, 3 and

k, l = 4, 5 and Mlk is vector-like mass.

type Ib seesaw mechanism [82] which differs from the usual type Ia seesaw mechanism

corresponding to the Weinberg operator LiLjH̃uH̃u and will be discussed later in

detail.

5.3 Effective Yukawa matrices using a mixing formalism

As seen from Equation 8.3, we need to mix Higgses with the flavon to generate the

effective Yukawa Lagrangian required to produce the SM fermion mass hierarchy. Since
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there is no an extra symmetry or constraint to keep the mixing between Higgses and

flavon from taking place, it is natural to assume their mixing.

5.3.1 The 7× 7 matrix

Consider the 7× 7 mass matrix for Dirac fermions:

Mψ =



ψ1R ψ2R ψ3R ψ4R ψ5R ψ̃4R ψ̃5R

ψ1L 0 0 0 yψ14〈H̃0〉 yψ15〈H̃0〉 xψ14〈φ〉 xψ15〈φ〉
ψ2L 0 0 0 yψ24〈H̃0〉 yψ25〈H̃0〉 xψ24〈φ〉 xψ25〈φ〉
ψ3L 0 0 0 yψ34〈H̃0〉 yψ35〈H̃0〉 xψ34〈φ〉 xψ35〈φ〉
ψ4L yψ41〈H̃0〉 yψ42〈H̃0〉 yψ43〈H̃0〉 0 0 Mψ

44 Mψ
45

ψ5L yψ51〈H̃0〉 yψ52〈H̃0〉 yψ53〈H̃0〉 0 0 Mψ
54 Mψ

55

ψ̃4L xψ
′

41〈φ〉 xψ
′

42〈φ〉 xψ
′

43〈φ〉 Mψ′
44 Mψ′

45 0 0

ψ̃5L xψ
′

51〈φ〉 xψ
′

52〈φ〉 xψ
′

53〈φ〉 Mψ′
54 Mψ′

55 0 0


,

(5.6)

with the coefficients y and x being Yukawa constants where the former is expected to

be of order unity whereas the latter is smaller than y. Furthermore, the 125 GeV SM

like Higgs boson H will corresponds to the lightest of the CP even neutral scalar states

arising from Hu, Hd and φ, whereas M is the vector-like mass. The column vector

located at the lower left block in Equation 5.6 consists of left-handed particles while

the row vector at the upper right block are made up of right-handed particles. The

zeros in the 3× 3 upper block in Equation 5.6 mean that no SM Yukawa interactions

take place due to charge conservation as well as zeros in two 2× 2 blocks. Since we are

interested in explaining the muon and electron anomalous magnetic moments in this

model, we first focus on the lepton sector in the next subsection and the method used

for obtaining the low energy SM Yukawa matrices in the lepton sector can be applied

to the quark sector in the same way with a slight change so that the quark sector will

be discussed in Appendix B.1.
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5.3.2 A convenient basis for charged leptons

From Equation 5.6, we can take a specified basis by rotating some fields as below:

M e =



e1R e2R e3R e4R e5R L̃4R L̃5R

L1L 0 0 0 0 ye15vd 0 xL15vφ

L2L 0 0 0 ye24vd ye25vd 0 xL25vφ

L3L 0 0 0 ye34vd ye35vd xL34vφ xL35vφ

L4L 0 0 ye43vd 0 0 ML
44 ML

45

L5L ye51vd ye52vd ye53vd 0 0 0 ML
55

ẽ4L 0 xe42vφ xe43vφ M e
44 0 0 0

ẽ5L xe51vφ xe52vφ xe53vφ M e
54 M e

55 0 0


, (5.7)

where vd =
〈
H0
d

〉
and νφ = 〈φ〉. We start by pointing out the reason why we take this

specific basis for the charged leptons. The reason is that the strong hierarchical

structure of the SM fermion Yukawa couplings can be implemented by the rotations

with a simple assumption in this model to be specified below. In order to arrive from

Equation 5.6 to Equation 5.7, we rotate the leptonic fields L4L and L5L to turn off ML
54

and rotate e4R and e5R to turn off M e
45. Then, we can rotate L1L and L3L to set xL14vφ

to zero and then rotate L2L and L3L to set xL24vφ to zero. The same rotation can be

applied to e1R,2R,3R to set ye41,42vd to zero. Finally, we can further rotate L1L and L2L

to switch off ye14vd and this rotation also goes for e1R,2R to switch off xe41vφ. The above

given mass matrix includes three distinct mass scales which are the vev vd of the

neutral component of the Higgs doublet Hd, the vev vφ of the flavon φ and the

vector-like masses M , whose orders of magnitude can be in principle be different.

Therefore, the mass matrix will be diagonalized by the seesaw mechanism step-by-step

instead of diagonalising it at once. This mechanism is also known as Universal Seesaw,

and was proposed for the first time, in the context of a left-right symmetric model

in [115].

5.3.3 A basis for decoupling heavy fourth and fifth vector-like family

As mentioned in the previous section 5.3.2, the mass matrix in Equation 5.7 involves

three distinct mass scales vd, vφ and M so it is possible to split this whole mass matrix
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by partial blocks to group mass terms with vev of Hd as in Equation 5.8

M e =



e1R e2R e3R e4R e5R L̃4R L̃5R

L1L 0 0 0 0 ye15vd 0 xL15vφ

L2L 0 0 0 ye24vd ye25vd 0 xL25vφ

L3L 0 0 0 ye34vd ye35vd xL34vφ xL35vφ

L4L 0 0 ye43vd 0 0 ML
44 ML

45

L5L ye51vd ye52vd ye53vd 0 0 0 ML
55

ẽ4L 0 xe42vφ xe43vφ M e
44 0 0 0

ẽ5L xe51vφ xe52vφ xe53vφ M e
54 M e

55 0 0


, (5.8)

and then elements of the blocks involving φ can be rotated away to make those zeros

by unitary mixing matrices of Equation 5.10 as per Equation 5.9:

M e =



e1R e2R e3R e4R e5R L̃4R L̃5R

L1L 0 0

L2L 0 0

L3L ỹ′eαβvd 0 0

L4L M̃L
44 M ′L45

L5L 0 M̃L
55

ẽ4L 0 0 0 M̃ e
44 0 0 0

ẽ5L 0 0 0 M ′′e54 M̃ e
55 0 0


, (5.9)

where the indices α, β run from 1 to 5, and tilde, primes repeated in the mass matrix

mean that the parameters are rotated. The unitary 5× 5 matrices are defined to be

VL = V L
45V

L
35V

L
25V

L
15V

L
34V

L
24V

L
14, Ve = V e

45V
e

35V
e

25V
e

15V
e

34V
e

24V
e

14, (5.10)

where each of the unitary matrices Vi4,5 are parameterized by a single angle θi4,5

describing the mixing between the ith chiral family and the 4, 5th vector-like family.

The 5× 5 Yukawa constant matrix in a mass basis (primed) can be diagonalized by the

unitary rotation matrices as below:

ỹeαβ = VLỹ
′e
αβV

†
e (5.11)

From Equation 5.7, we can read off the 5× 5 upper block and confirm that the

(3, 4), (1, 5), (2, 5), (3, 5) mixings in the L sector and (2, 4), (3, 4), (1, 5), (2, 5), (3, 5)

mixings in the e sector are required to go to the decoupling basis. The unitary

matrices of Equation 5.10 and mixing angles appearing in the unitary matrices are
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parameterized by

VL = V L
35V

L
25V

L
15V

L
34

=


1 0 0 0 0

0 1 0 0 0

0 0 cL35 0 sL35

0 0 0 1 0

0 0 −sL35 0 cL35




1 0 0 0 0

0 cL25 0 0 sL25

0 0 1 0 0

0 0 0 1 0

0 −sL25 0 0 cL25




cL15 0 0 0 sL15

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

−sL15 0 0 0 cL15



×


1 0 0 0 0

0 1 0 0 0

0 0 cL34 sL34 0

0 0 −sL34 cL34 0

0 0 0 0 1

 ≈


1 0 0 0 sL15

0 1 0 0 sL25

0 0 1 sL34 sL35

0 0 −sL34 1 0

−sL15 −sL25 −sL35 0 1

 ,

sL34 =
xL34 〈φ〉√(

xL34 〈φ〉
)2

+
(
ML

44

)2 , sL15 =
xL15 〈φ〉√(

xL15 〈φ〉
)2

+
(
ML

55

)2 ,
sL25 =

xL25 〈φ〉√(
xL25 〈φ〉

)2
+
(
M ′L55

)2 , sL35 =
x′L35 〈φ〉√(

x′L35 〈φ〉
)2

+
(
M ′′L55

)2 ,
x′L35 〈φ〉 = cL34x

L
35 〈φ〉+ sL34M

L
45, M ′L45 = −sL34x

L
35 〈φ〉+ cL34M

L
45

M̃L
44 =

√(
xL34 〈φ〉

)2
+
(
ML

44

)2
,

M ′L55 =

√(
xL15 〈φ〉

)2
+
(
ML

55

)2
, M ′′L55 =

√(
xL25 〈φ〉

)2
+
(
M ′L55

)2
,

M̃L
55 =

√(
x′L35 〈φ〉

)2
+
(
M ′′L55

)2

(5.12)
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Ve = V e
35V

e
25V

e
15V

e
34V

e
24

=


1 0 0 0 0

0 1 0 0 0

0 0 ce35 0 se35

0 0 0 1 0

0 0 −se35 0 ce35




1 0 0 0 0

0 ce25 0 0 se25

0 0 1 0 0

0 0 0 1 0

0 −se25 0 0 ce25




ce15 0 0 0 se15

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

−se15 0 0 0 ce15



×


1 0 0 0 0

0 1 0 0 0

0 0 ce34 se34 0

0 0 −se34 ce34 0

0 0 0 0 1




1 0 0 0 0

0 ce24 0 se24 0

0 0 1 0 0

0 −se24 0 ce24 0

0 0 0 0 1

 ≈


1 0 0 0 θe15

0 1 0 θe24 θe25

0 0 1 θe34 θe35

0 −θe24 −θe34 1 0

−θe15 −θe25 −θe35 0 1

 ,

se24 ≈
xe42 〈φ〉
M e

44

, se34 ≈
xe43 〈φ〉
M ′e44

, se15 ≈
xe51 〈φ〉
M e

55

, se25 ≈
x′e52 〈φ〉
M ′e55

, se35 ≈
xe53 〈φ〉
M ′′e55

,

x′e52 〈φ〉 = ce24x
e
52 〈φ〉+ se24M

e
54, M ′e54 = −se24x

e
52 〈φ〉+ ce24M

e
54,

x′e53 〈φ〉 = ce34x
e
53 〈φ〉+ se34M

′e
54, M ′′e54 = −se34x

e
53 〈φ〉+ ce34M

′e
54,

M ′e44 =

√
(xe42 〈φ〉)

2 + (M e
44)2 , M̃ e

44 =

√
(xe43 〈φ〉)

2 + (M e
44)2,

M ′e55 =

√
(xe51 〈φ〉)

2 + (M e
55)2, M ′′e55 =

√
(x′e52 〈φ〉)

2 + (M ′e55)2,

M̃ e
55 =

√
(x′e53 〈φ〉)

2 + (M ′′e55 )2.

(5.13)

Given the above unitary rotations, the 5× 5 Yukawa matrices are computed in terms

of the mixing angles and the upper 3× 3 block would be the effective SM Yukawa

matrix. Assuming all cos θ to be 1 and neglecting order of θ square or more than that,

we have a simple 3× 3 Yukawa matrix of Equation 5.14.

yeij =

s
L
15y

e
51 + ye15θ

e
15 sL15y

e
52 + ye15θ

e
25 sL15y

e
53 + ye15θ

e
35

sL25y
e
51 + ye25θ

e
15 sL25y

e
52 + ye24θ

e
24 + ye25θ

e
25 sL25y

e
53 + ye24θ

e
34 + ye25θ

e
35

sL35y
e
51 + ye35θ

e
15 sL35y

e
52 + ye34θ

e
24 + ye35θ

e
25 sL34y

e
43 + sL35y

e
53 + ye34θ

e
34 + ye35θ

e
35


(5.14)
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5.3.4 A convenient basis for neutrinos

The relevant Yukawa and mass terms of the neutrino sector give rise to the following

neutrino mass matrix:

Mν =



L1L L2L L3L ν4R ν5R ν̃4R ν̃5R

L1L 0 0 0 yν14vu yν15vu xL14vd xL15vd

L2L 0 0 0 yν24vu yν25vu xL24vd xL25vd

L3L 0 0 0 yν34vu yν35vu xL34vd xL35vd

ν4R yν14vu yν24vu yν34vu 0 0 Mν
44 Mν

54

ν5R yν15vu yν25vu yν35vu 0 0 Mν
45 Mν

55

ν̃4R xL14vd xL24vd xL34vd Mν
44 Mν

45 0 0

ν̃5R xL15vd xL25vd xL35vd Mν
54 Mν

55 0 0


(5.15)

Here, the zeros in the upper 3× 3 block of Equation 5.15 mean that neutrinos remain

massless in the SM. Therefore, the SM neutrinos can be massive via the inclusion of

two vector-like families. In order to make this mass matrix as simple as possible, the

only choice left is to rotate ν4R and ν5R to turn off Mν
45 since rotations between

L1L,2L,3L are already used in the charged lepton sector.
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Chapter 6

Non-standard contributions to

the muon and electron anomalous

magnetic moments : W gauge

boson exchange

In the second BSM model covered in chapter 5, we discuss the first non-SM

contributions to the muon and electron anomalous magnetic moments g − 2 with the

SM W gauge boson at one-loop level via the type 1b seesaw mechanism.

6.1 W boson exchange contributions to the

(g − 2)µ , (g − 2)e and BR (µ→ eγ)

Within the framework of our proposed model, we start by investigating the muon and

electron anomalous magnetic moments with W boson exchange first. Given that such

W boson exchange contribution also involves virtual neutrinos in the internal lines of

the loop, we revisit the mass matrix for neutrinos. In this mass matrix, we remove fifth

vector-like neutrinos ν5R and ν̃5R since they are too heavy to contribute to the

phenomenology under study. As mentioned in the previous section, we stick to a

condition where the coefficient y is expected to be of order unity, whereas the coupling

x is expected to be smaller than y. Such condition can be easily seen by substituting

the coefficients yνi4 by yνi and the coefficients xLi4 by εyν′i where ε is a suppression factor.

Putting all these considerations together, the mass matrix for neutrinos in Equation
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5.15 after electroweak symmetry breaking takes the form:

Mν ≈



ν1L ν2L ν3L ν4R ν̃4R

ν1L 0 0 0 yν1vu εyν′1 vd

ν2L 0 0 0 yν2vu εyν′2 vd

ν3L 0 0 0 yν3vu εyν′3 vd

ν4R yν1vu yν2vu yν3vu 0 Mν
44

ν̃4R εyν′1 vd εyν′2 vd εyν′3 vd Mν
44 0


≡

(
0 mD

mT
D MN

)
, (6.1)

where vu(vd) is the vev of H̃u(Hd), vu runs from 246/
√

2 GeV ' 174 GeV to 246 GeV

and v2
u + v2

d = (246 GeV)2.

6.1.1 Type 1b seesaw mechanism

Now that we constructed the neutrino mass matrix for this task, the next step is to

read off the operator which gives rise to the neutrino mass from the mass matrix.

Generally, the well-known operator for neutrino mass is the Weinberg operator(type 1a

seesaw mechanism) 1
ΛLiLjHH. A main feature of the Weinberg operator is the same

SM Higgs should be repeated in the operator, however that property is not present in

our model since the Higgs doublets Hu,d are negatively charged under the U(1)′

symmetry, which implies the corresponding Weinberg operator having such fields will

not be invariant under the U(1)′ unless an insertion of a quadratic power of the gauge

singlet scalar φ is considered. However we do not consider the operators
1

Λ3 (L̄iH̃u)(H̃uL
C
j )(φ∗)2 and 1

Λ3 (L̄iHd)(HdL
C
j )φ2 in the neutrino sector, since they are

very subleading and thus will give a tiny contribution to the light active neutrino

masses. Instead of relying on a seven dimensional Weinberg to generate the tiny

masses for the light active neutrinos, we take another approach named type 1b seesaw

mechanism (we call the Weinberg operator “type 1a seesaw mechanism” to

differentiate with) where the mixing of different SU(2) Higgs doublets can appear

satisfying charge conservation. Diagrams for the operators are given in Figure 6.1 for

comparison: The diagrams in Figure 6.1 clearly tell the difference between Majorana

mass and vector-like mass. They share a common property that they violate the lepton

number conservation, whereas the particles appearing in a Majorana mass term are

same but those ones involved in vector-like mass terms are different. As the type 1b

seesaw mechanism only works in this model, we make use of this seesaw mechanism for

the analysis of neutrinos. With the operator, the renormalizable Lagrangian for

neutrinos can be written as:

LYukawa+Mass
ν = yνi LiLH̃uνkR + εyν′i LiLHdν̃kR +MM

kk ν̃kRνkR + h. c., (6.2)

where i = 1, 2, 3 and k = 4. The renormalizable Lagrangian of Equation 6.2 above the

electroweak scale generates an effective Lagrangian after decoupling the heavy
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Li Lj

H H

νkR νkR

Mν
kk

Li Lj

H̃u Hd

νkR ν̃kR

MM
kk

Figure 6.1: Diagrams which lead to effective Weinberg operators for the Majorana
and vector-like mass in the mass insertion formalism, where i, j = 1, 2, 3 and k = 4,
respectively. The left is the Weinberg operator(or type 1a seesaw mechanism) in which
mass M is Majorana mass and the right is Weinberg-like operator(or type 1b seesaw

mechanism) in which mass M is vector-like mass.

vector-like neutrinos, which is suitable for study of low energy neutrino phenomenology.

The effective Lagrangian for neutrino at electroweak scale is given by [82]

Ld=5 = cd=5
ij

((
LTi H̃u

) (
HT
d Lj

)
+
(
LTi Hd

) (
H̃T
u Lj

))
, (6.3)

where the coefficient cd=5
ij is suppressed by a factor of the vector-like mass M . The

neutrino mass matrix of Equation 6.1 can be diagonalized by the unitary matrix U as

below:

UT

(
0 mT

D

mD MN

)
U =

(
mdiag
ν 0

0 Mdiag
N

)
, (6.4)

where mdiag
ν is a diagonal matrix for the light left-handed neutrinos νiL and Mdiag

N is

that for the heavy vector-like neutrinos ν4R, ν̃4R. Here, the unitary mixing matrix U is

defined by multiplication of two unitary matrices which we call UA and UB,

respectively [130]:

U = UA · UB

UA = exp

(
0 Θ

−Θ† 0

)
'

(
I − ΘΘ†

2 Θ

−Θ† I − ΘΘ†
2

)
at leading order in Θ

UB =

(
UPMNS 0

0 I

) (6.5)

The unitary matrix UPMNS in UB is the well-known

Pontecorvo-Maki-Nakagawa-Sakata matrix and is parameterized by [82,131]

UPMNS =

1 0 0

0 cos θ23 sin θ23

0 − sin θ23 cos θ23


 cos θ13 0 sin θ13e

−iδCP

0 1 0

− sin θ13e
iδCP 0 cos θ13



×

 cos θ12 sin θ12 0

− sin θ12 cos θ12 0

0 0 1


e
−iα′/2 0 0

0 e−iα/2 0

0 0 1

 ,

(6.6)
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where the Majorana phase α′ is set to zero in this model. The mixing matrices UA,B

are unitary, however the 3× 3 upper block of the unitary matrix U is not unitary due

to the factor
(
I −ΘΘ†/2

)
for the light neutrinos. An interesting feature of the unitary

matrix U is it is unitary globally, but non-unitary locally and this non-unitarity

contributes to explain muon and electron anomalous magnetic moments. Replacing the

unitary matrices in Equation 6.5 back to Equation 6.4, the result is simplified with the

assumption MN � mD to the conventional seesaw mechanism:

Θ ' m†DM
−1
N

U∗PMNSm
diag
ν U †PMNS ' −m

T
DM

−1
N mD ≡ −m

Mdiag
N 'MN ,

(6.7)

where m is the effective mass matrix resulted from Equation 6.1.

mij =
εvuvd
Mν

44

(
yνi y

ν′
j + yν′i y

ν
j

)
(6.8)

Therefore, smallness of the light neutrino masses can be understood not only from

mass of vector-like mass Mν
44 but also from the suppression factor ε and the presence of

ε allows more flexibility in the allowed mass values of the vector-like neutrinos.

Revisiting non-unitarity part for the light neutrinos from the unitary matrix

U [130,132], it reads: (
I −

ΘiΘ
†
j

2

)
UPMNS = (I − ηij)UPMNS (6.9)

The non-unitarity η is associated with the presence of the heavy vector-like neutrinos

and can be derived from a coefficient of the effective Lagrangian at dimension 6 [133]:

Ld=6 = cd=6
ij

((
L†i H̃u

)
i/∂
(
H̃†uLj

)
+
(
L†iHd

)
i/∂
(
H†dLj

))
(6.10)

Once the SM Higgs doublets in Equation 6.10 develop its vev, the Lagrangian at

dimension 6 causes non-diagonal kinetic terms for the light neutrinos and it gives rise

to deviations of unitarity when it is diagonalized. The deviations of unitarity can be

expressed in terms of the coefficient at dimension 6 ηij ≡ v2cd=6
ij /2.

ηij =
ΘiΘ

†
j

2
=

1

2

m†DmD

M2
N

=
1

2Mν2
44

(
v2
uy

ν∗
i y

ν
j + ε2v2

dy
ν′∗
i yν′j

)
' v2

u

2Mν2
44

yν∗i y
ν
j (6.11)

From the fourth term in Equation 6.11, the term with ε2 can be safely ignored due to

both relative smallness of vd and the suppression factor ε. Thus, the deviation of

unitarity η consists of the vector-like mass Mν
44 and the Yukawa couplings yνi,j . As an

interesting example, it is possible that the Yukawa couplings yνi,j can be obtained from

the observables such as the PMNS mixing matrix and two mass squared splitting,
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∆m2
sol and ∆m2

atm, in the neutrino oscillation experiments. Since the hierarchy

between the light neutrinos is not yet determined, there are two possible scenarios,

normal hierarchy(NH) and inverted hierarchy(IH), and the lightest neutrino remains

massless, whereas two other neutrinos get massive. The Yukawa couplings yν,ν′i for the

NH(m1 = 0) are determined by

yνi =
y√
2

(√
1 + ρ (U∗PMNS)i3 +

√
1− ρ (U∗PMNS)i2

)
yν′i =

y′√
2

(√
1 + ρ (U∗PMNS)i3 −

√
1− ρ (U∗PMNS)i2

)
,

(6.12)

where y and y′ are real numbers and ρ = (1−
√
r)/(1 +

√
r) with

r ≡ |∆m2
sol|/|∆m2

atm| = ∆m2
21/∆m

2
31, whereas the Yukawa couplings yν,ν′i for the

IN(m3 = 0) are

yνi =
y√
2

(√
1 + ρ (U∗PMNS)i2 +

√
1− ρ (U∗PMNS)i1

)
yν′i =

y′√
2

(√
1 + ρ (U∗PMNS)i2 −

√
1− ρ (U∗PMNS)i1

)
,

(6.13)

where ρ = (1−
√

1 + r)/(1 +
√

1 + r) with r ≡ |∆m2
sol|/|∆m2

atm| = ∆m2
21/∆m

2
32.

6.1.2 The charged lepton flavour violation(CLFV) µ→ eγ decay

Consider the three light neutrinos in the SM for the CLFV µ→ eγ decay first. In this

case, the unitary mixing matrix becomes just the PMNS mixing matrix and the GIM

mechanism which suppresses flavour-changing process works, therefore it leads quite

suppressed sensitivity for BR (µ→ eγ) about 10−55 [62], which is impossible to observe

with the current sensitivity of µ→ eγ decay. This impractical sensitivity can be

enhanced to the observable level by introducing the heavy vector-like neutrinos which

give rise to deviation of unitarity. With the presence of heavy vector-like neutrinos, the

GIM mechanism is gone and the factor suppressed by GIM mechanism can survive

with a factor of deviation of unitarity, which plays a crucial role to increase

significantly order of theoretical prediction for µ→ eγ decay [134]. Therefore, the

strongest constraint for deviation of unitarity in the modified PMNS mixing matrix

comes from CLFV µ→ eγ decay. The possible one-loop diagrams for the CLFV

µ→ eγ with all neutrinos in this model are given in Figure 6.2.

The amplitude from above diagrams in Figure 6.2 reads [62]:

M (µ→ eγ) = ueiσµνq
ν
(
F1 + F2γ

5
)
uµε
∗µ

= ueiσµνq
ν (ARPR +ALPL)uµε

∗µ,
(6.14)

where u is Dirac spinor for the muon and electron, q is four momentum of an outgoing

photon, F1,2 are form factors, AL,R are left- and right-handed amplitude defined to be
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µR eL

γ

µL
νn

W− W−

µL eR

γ

eLνn

W− W−

Figure 6.2: Diagrams for CLFV µ→ eγ decay with all neutrinos. Here n = 1, 2, 3, 4, 5.

AL,R = F1 ± F2 and lastly PL,R are projection operators. From the amplitude, the

helicity flip between initial particle and final particle should arise and this makes the

helicity flip process takes place on one of external legs since the W gauge boson

couples only to left-handed fields. Comparing the left diagram with the right, the left

is proportional to the muon mass, while the right is proportional to the electron mass,

which means that impact of the right is ignorable. The unpolarized squared amplitude

|M|2 takes the form:

|M|2 = m4
µ (AR +AL)2 ' m4

µ (AR)2 (6.15)

Then, the decay rate is given by

Γ (µ→ eγ) =
|M|2

16πmµ
=
m3
µ

16π
|AR|2 (6.16)

where AR is expressed by [62,135]1

AR =
g2e

128π2

mµ

M2
W

∑
n=1,2,3,4,5

U2nU
∗
1nF (xn)

[
1− 1

3

ln ξ

ξ − 1
+

1

ξ − 1

(
ξ ln ξ

ξ − 1
− 1

)]
(6.17)

Taking the unitary gauge into account, ξ →∞, the additional ξ-dependent terms in

AR all are cancelled by contribution of Goldstone bosons so AR is gauge invariant.

Substituting the gauge invariant AR back into the decay rate of Equation 6.16 and

dividing the expanded decay rate by the total muon decay rate

Γ (µ→ eνν) = G2
Fm

5
µ/192π3, we have the prediction for µ→ eγ decay [62,82]:

BR (µ→ eγ) =
Γ (µ→ eγ)

Γ (µ→ eνµνe)
=

3α

32π

|
∑5

n=1 U2nU
†
n1F (xn)|2

(UU †)11 (UU †)22

, (6.18)

where xn = M2
n/M

2
W and the loop function F (xn) is

F (xn) =
10− 43xn + 78x2

n − (49− 18 log xn)x3
n + 4x4

n

3(xn − 1)4
. (6.19)

1Since the PMNS mixing matrix is multiplied by a factor of deviation of unitarity, it is not unitary
any more. Therefore, the first term of sum over neutrino eigenstates in Equation (28) of [62] does not
vanish and come in our prediction with a loop function F (xn).
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µR µL

γ

µL
νn

W− W−

µL µR

γ

µL
νn

W− W−

Figure 6.3: Diagrams for muon anomalous magnetic moment with all neutrinos. Here
n = 1, 2, 3, 4, 5.

Numerator in Equation 6.18 can be simplified by separating the light neutrinos and

heavy vector-like neutrinos as below(Contribution of the fifth neutrino ν̃4R is safely

ignored both by the suppression factor ε and by relative smallness of vd compared to

vu):

|
5∑

n=1

U2nU
†
n1F (xn)|2 ' |U2iU

†
i1F (0) + U24U

†
41F (x4)|2

U2iU
†
i1 = −η∗12 − η21 = −2η21

U24U
†
41 = Θ24Θ∗14 = 2η21

|
5∑

n=1

U2nU
†
n1F (xn)|2 ' |4η21|2 (F (x4)− F (x0))2

(6.20)

The final form for the CLFV µ→ eγ decay in this model reads:

BR (µ→ eγ) =
3αem

8π
|η21|2 (F (x4)− F (0))2 , (6.21)

where αem is the fine structure constant. We find that our theoretical prediction for

the µ→ eγ decay can be expressed in terms of the deviation of unitarity η21.

6.1.3 The anomalous muon magnetic moment g − 2

We derive our prediction for the muon anomalous magnetic moment in this section and

confirm the derived expression can be consistent with an expression of the theoretical

prediction for µ→ eγ in references [61,62]. Consider two possible diagrams for muon

anomalous magnetic moment at one-loop level in Figure 6.3. The amplitude for the

muon anomalous magnetic moment at one-loop level is:

M (∆aµ) = uµiσµνq
ν
(
F1 + F2γ

5
)
uµε
∗µ

= uµiσµνq
ν (ARPR +ALPL)uµε

∗µ
(6.22)

Unlike the CLFV µ→ eγ decay, muon anomaly diagrams have the same structure for

helicity flip process. So we conclude AR is equal to AL and can make use of other
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expression of this amplitude to derive our own expression for ∆aµ [61].

V = uµiσαβq
βemµ

(
AMµµ + γ5A

E
µµ

)
uµε
∗α

= uµiσαβq
βemµ

((
AMµµ +AEµµ

)
PR +

(
AMµµ −AEµµ

)
PL
)
uµε
∗α

(6.23)

Comparing Equation 6.22 with Equation 6.23, we confirm that

AR = emµ

(
AMµµ +AEµµ

)
AL = emµ

(
AMµµ −AEµµ

) (6.24)

Here, we can use the condition that AR = AL identified in Figure 6.3 and can

rearrange AL,R in terms of AM,E
µµ , which are essential to derive our theoretical muon

anomaly prediction. Then, we find our desirable form AM,E
µµ for the muon anomalous

magnetic moment.

AMµµ =
1

emµ
AR =

g2

128π2

1

M2
W

∑
n=1,2,3,4,5

U2nU
∗
2nF (xn)

AEµµ = 0

(6.25)

Using the definition for both the muon anomalous magnetic moment and branching

ratio of µ→ eγ decay in [61], we can check our analytic argument for the observable

and constraint are correct.

∆aµ = AMµµm
2
µ

BR (µ→ eγ) =
3(4π)3αem

4G2
F

(
|AMµe|2 + |AEµe|2

) (6.26)

One difference between AM,E
µµ and AL,R is thatAM,E

µµ is only determined by the internal

structure of the loop in Figure 6.3, whereas AL,R is the extended factor by multiplying

AM,E
µµ by the helicity flip mass in one of the external legs. Therefore, it is natural to

think AM,E
µµ is the same as AM,E

µe since their internal structure of loop are exactly

same2. The muon anomalous magnetic moment and the branching ratio of µ→ eγ

take the form:

∆aµ =
αW
32π

m2
µ

M2
W

∑
n=1,2,3,4,5

U2nU
∗
2nF (xn)

BR (µ→ eγ) =
3αem

32π
|
∑

n=1,2,3,4,5

U2nU
∗
1nF (xn)|2

(6.27)

where the αW is the weak coupling constant. As for the branching ratio of µ→ eγ in

Equation 6.27, we showed that substituting Aµe back into the branching ratio in

Equation 6.26 is exactly consistent with the one in Equation 6.18. Expanding the

2One can concern the coefficient at the vertex with electron. However, this change is already reflected
on the loop integration AR of Equation 6.17 by U1n. For the muon anomaly, the coefficient is simply
replaced by U2n, therefore, modification of the coefficient at the vertex does not harm our argument.
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eLνn
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Figure 6.4: Diagrams for electron anomalous magnetic moment with all neutrinos.
Here n = 1, 2, 3, 4, 5.

unitary mixing matrices in the muon anomaly prediction in Equation 6.27, yields the

following relation:

∆aµ =
αW
32π

m2
µ

M2
W

((1− 2η22)F (0) + 2η22F (x4)) . (6.28)

Looking at Equation 6.28, it is clear that the SM part which is without η and the BSM

having η are entangled together. We arrive at the right prediction for the muon

anomaly at one-loop by removing the SM part from Equation 6.28

∆aµ =
αW
16π

m2
µ

M2
W

η22 (F (x4)− F (0)) . (6.29)

Similarly to the branching ratio of µ→ eγ decay, it can be confirmed that the

prediction for the muon anomaly also consists of the factor of deviation of unitarity η.

6.1.4 The anomalous electron magnetic moment g − 2

As in the muon anomalous magnetic moment, the same diagrams with external

particles replaced by electrons can be generated in Figure 6.4. Using the complete

form of the muon anomaly prediction in Equation 6.29, we can derive the right

prediction for the electron anomalous magnetic moment with slight modifications

mµ → me, η22 → η11.

∆ae =
αW
16π

m2
e

M2
W

η11 (F (x4)− F (0)) . (6.30)

6.1.5 Numerical analysis of W exchange contributions

The presence of heavy vector-like neutrinos leads to the deviation of unitarity and the

observables ∆aµ,e and constraint BR (µ→ eγ) can be written in terms of the factor of
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Figure 6.5: The left plot is an available parameter space for two free parameters: mass
of vector-like neutrino Mν

44 and SM up-type Higgs vev vu. Here, the free parameter y
is set to 1. The right plot is the case where vev of the up-type Higgs is constrained

from 246/
√

2 ' 174 to 246 GeV or from tanβ = 1 to 50 in a same way

non-unitarity η.

BR (µ→ eγ) =
3αem

8π
|η21|2 (F (x4)− F (0))2

∆aµ =
αW
16π

m2
µ

M2
W

η22 (F (x4)− F (0))

∆ae =
αW
16π

m2
e

M2
W

η11 (F (x4)− F (0)) .

(6.31)

6.1.5.1 The branching ratio of µ→ eγ decay

We consider the branching ratio of µ→ eγ decay first. Since we assume that mass of

heavy vector-like neutrinos are heavier than 1 TeV, the value of F (0) for the light

neutrinos converges to approximately 3.3, while that of F (x4) for the heavy vector-like

neutrino converges to 1.3. Therefore, the branching ratio of µ→ eγ decay can be

reduced to [82]

BR (µ→ eγ) =
3αem

8π
|η21|2 (F (x4)− F (0))2 ≤ 3αem

2π
|η21|2. (6.32)

The non-unitarity η of Equation 6.11 consists of four free parameters: mass of heavy

vector-like neutrinos Mν
44, a real number y, a CP violation phase δ, and a Majorana

phase α. The experimental branching ratio of µ→ eγ decay constrains the minimal

parameter space in terms of Mν
44 and y, while setting up two phases δ, α which

maximize or minimize the branching ratio of µ→ eγ [82], and the minimal parameter

space is shown in Figure 6.5. The left plot in Figure 6.5 is an available parameter

space for mass of the vector-like neutrino versus the free parameter y times SM

up-type Higgs vev vu. The blue bold line corresponds to bound of the branching ratio

of µ→ eγ decay at the normal hierarchy with CP violation phase δ = 0 and Majorana

phase α = 0 and this line can be relaxed up to the blue dotted line where δ = 0,

α = 2π. The green bold(dotted) line corresponds to the inverted hierarchy with

δ = π/2(0) and α = 9π
10 (0). Since we are especially interested in the range of SM
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up-type Higgs vev vu from 174 to 246 GeV, the right plot consistent with the interested

range is extracted from the left after replacing vu by tanβ = vu/vd using the relation

v2
u + v2

d = (246 GeV)2.

As for the constraint of deviation of unitarity η with the CLFV µ→ eγ decay at 1σ, it

is given by [66,136]

|η21| ≤ 8.4× 10−6. (6.33)

6.1.5.2 The muon and electron anomalous magnetic moments ∆aµ,e

As in the constraint for η21 in Equation 6.33, the other non-unitarities η11,22 for the

electron and muon anomalous mangetic moment are given by [82,136]

η11 < 4.2× 10−4 (for NH) , < 4.8× 10−4 (for IH)

η22 < 2.9× 10−7 (for NH) , < 2.4× 10−7 (for IH)
(6.34)

With the constraints η11,22 in Equation 6.34, we can calculate impact of the muon and

electron anomalous magnetic moments at NH(IH) using Equation 6.31.

∆aµ =
αW
16π

m2
µ

M2
W

η22 (F (x4)− F (0)) ' −6.6(−5.5)× 10−16

∆ae =
αW
16π

m2
e

M2
W

η11 (F (x4)− F (0)) ' −2.2(−2.6)× 10−17

(6.35)

There are two interesting features in the above prediction for the muon and electron

anomalous magnetic moments. One feature is sign of each prediction. As mentioned in

the introduction, this prediction with the W exchange can not flip the sign of each

anomaly. In order to explain both anomalies at 1σ, the prediction for both anomalies

with W exchange requires additional contributions such as Z ′ or scalar exchange.

Another feature is magnitude of each prediction. For the muon anomaly, the

experimental order of magnitude at 1σ is about 10−9, however our prediction is much

smaller than that of the experimental bound as well as the electron anomaly, which

means the non-unitarity derived from the presence of heavy vector-like neutrino can

not bring the anomalies to the observable level. This inadequate prediction with W

exchange has been a good motivation to search for another possibility such as scalar

exchange.
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Chapter 7

Non-standard contributions to

the muon and electron anomalous

magnetic moments : non-SM

scalar exchange

In the second BSM model covered in chapter 5, we discuss the second non-SM

contributions to the muon and electron anomalous magnetic moments g − 2 with the

non-SM scalars at one-loop level via the scalar potential. We also discuss how the

non-SM physical scalars appear in the scalar potential and carry out numerical scans

to find relevant mass parameters for the vector-like charged leptons as well as the

non-SM scalars. And then we conclude the non-SM scalar exchange can actually

accommodate both anomalies at 1σ error bar of the anomalies.

7.1 Higgs exchange to contributions to (g − 2)µ , (g − 2)e
and BR (µ→ eγ)

The relevant sector for the muon and electron anomalous magnetic moments with

scalar exchange is the charged lepton Yukawa matrix which can be expressed in the
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mass insertion formalism as,

yeij =

0 0 0

0 ye24x
e
42 ye24x

e
43

0 ye34x
e
42 ye34x

e
43

 〈φ〉
M e

44

+

y
e
15x

e
51 ye15x

e
52 ye15x

e
53

ye25x
e
51 ye25x

e
52 ye25x

e
53

ye35x
e
51 ye35x

e
52 ye35x

e
53

 〈φ〉
M e

55

+

y
e
51x

L
15 ye52x

L
15 ye53x

L
15

ye51x
L
25 ye52x

L
25 ye53x

L
25

ye51x
L
35 ye52x

L
35 ye53x

L
35

 〈φ〉
ML

55

+

0 0 0

0 0 0

0 0 xL34y
e
43

 〈φ〉
ML

44

(7.1)

The effective Yukawa matrix of Equation 7.1 in the mass basis is diagonalized by the

universal seesaw mechanism due to involving a few of different mass scales. Therefore,

the only diagonal components should alive in the mass matrix. In order to make the

mass matrix diagonal, we assume that

ye34 = xe43 = ye15,25,35 = xe51,52,53 = xL25,35 = ye52,53 = 0. Then, the mass matrix is reduced

to

yeij =

0 0 0

0 ye24x
e
42 0

0 0 0

 〈φ〉
M e

44

+

0 0 0

0 0 0

0 0 0

 〈φ〉
M e

55

+

y
e
51x

L
15 0 0

0 0 0

0 0 0

 〈φ〉
ML

55

+

0 0 0

0 0 0

0 0 xL34y
e
43

 〈φ〉
ML

44

yeij =

y
e
51s

L
15 0 0

0 ye24s
e
24 0

0 0 ye43s
L
34

 ,

(7.2)

where sL15 ' xL15 〈φ〉 /ML
55, se24 ' xe42 〈φ〉 /M e

44, sL34 ' xL34 〈φ〉 /ML
44 and the diagonal

elements from top-left to bottom-right should be responsible for electron, muon and

tau Yukawa constants, respectively. After removing all irrelevant terms to both

anomalies and applying the assumption, the 7× 7 mass matrix in the interaction basis

is also reduced to as below:

M e =


e1R e2R e4R L̃5R

L1L 0 0 0 xL15vφ

L2L 0 0 ye24vd 0

L5L ye51vd 0 0 ML
55

ẽ4L 0 xe42vφ M e
44 0

 (7.3)

The reduced charged lepton mass matrix of Equation 7.3 clearly tells that no mixing

between charged leptons arise so the branching ratio of µ→ eγ is naturally satisfied
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under this scenario. The scalar exchange for both anomalies can be realized by closing

the Higgs sectors in Figure 8.3 as per Figure 7.1.

µL µR

γ

ye24 h
0
d

xe42 φ

Me
44

H1,2, A1,2

e4R ẽ4L

eL eR

γ

xL15 φ ye51 h
0
d

ML
55

H1,2, A1,2

ẽ5R e5L

Figure 7.1: Diagrams contributing to the muon anomaly (left) and the electron
anomaly (right) where H1,2 are CP-even non-SM scalars and A1,2 are CP-odd scalars

in the physical basis

In Figure 7.1, the CP-even non-SM scalars H1,2 and CP-odd scalars A1,2 appear as a

result of mixing between Higgses Hu, Hd and φ in the interaction basis. The Higgs

sector in the interaction basis is defined by

Hu =

(
H+
u

vu + 1√
2

(
ReH0

u + i ImH0
u

)) ,
Hd =

(
vd + 1√

2

(
ReH0

d + i ImH0
d

)
H−d

)
,

φ =
1√
2

(vφ + Reφ+ i Imφ) .

(7.4)

For consistency, we equate vu, vd and vφ to v1, v2 and v3, respectively.

7.1.1 The 2HDM scalar potential

The scalar potential of the model under consideation takes the form:

V = µ2
1

(
HuH

†
u

)
+ µ2

2

(
HdH

†
d

)
+ µ2

3 (φφ∗) + µ2
sb

[
φ2 + (φ∗)2

]
+ λ1

(
HuH

†
u

)2
+ λ2

(
HdH

†
d

)2
+ λ3

(
HuH

†
u

)(
HdH

†
d

)
+ λ4

(
HuH

†
d

)(
HdH

†
u

)
+ λ5

(
εijH

i
uH

j
dφ

2 + h. c
)

+ λ6 (φφ∗)2

+ λ7 (φφ∗)
(
HuH

†
u

)
+ λ8 (φφ∗)

(
HdH

†
d

)
,

(7.5)

where the λi (i = 1, 2, · · · , 8) are dimensionless parameters whereas the µj (j = 1, 2, 3)

are dimensionful parameters and µsb is a dimensionfull soft-breaking parameter. We

consider the U(1)′ symmetry as global in this model so our model does not feature Z ′

boson and the scalar potential requires the inclusion of the soft-breaking mass term

−µ2
sb

[
φ2 + (φ∗)2

]
in order to prevent the appearance of a massless scalar state arising
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from the imaginary part of φ. The minimization conditions of the scalar potential yield

the following relations:

µ2
1 = −2λ1v

2
1 − λ3v

2
2 −

1

2
λ7v

2
3 +

λ5v2v
2
3

2v1
,

µ2
2 = −2λ2v

2
2 − λ3v

2
1 −

1

2
λ8v

2
3 +

λ5v
2
3v1

2v2
,

µ2
3 = −λ8v

2
2 − λ6v

2
3 + v1 (2λ5v2 − λ7v1)− 2µ2

sb.

(7.6)

7.1.2 Mass matrix for CP-even, CP-odd neutral and charged scalars

The squared mass matrix for the CP-even scalars in the basis
(
ReH0

u,ReH0
d ,Reφ

)
takes the form:

M2
CP-even =

 4λ1v
2
1 +

λ5v2v23
2v1

−1
2λ5v

2
3 + 2λ3v1v2

√
2v3 (−λ5v2 + λ7v1)

−1
2λ5v

2
3 + 2λ3v1v2 4λ2v

2
2 +

λ5v1v23
2v2

√
2v3 (−λ5v1 + λ8v2)√

2v3 (−λ5v2 + λ7v1)
√

2v3 (−λ5v1 + λ8v2) 2λ6v
2
3

 .

(7.7)

From the mass matrix given above, we find that the CP-even scalar spectrum is

composed of the 125 GeV SM-like Higgs h and two non-SM CP-even Higgses H1,2.

Furthermore, we assume that no mixing between the SM physical Higgs h and the two

non-SM CP-even Higgses H1,2 arise and this assumption constrains the (1, 2), (1, 3),

(2, 1) and (3, 1) elements of CP-even mass matrix of Equation 7.7. The constraints are

given by the following decoupling limit scenario

λ5 =
4v1v2

v2
3

λ3

λ7 =
v2

v1
λ5 =

4v2
2

v2
3

λ3,

(7.8)

and then the CP-even mass matrix of Equation 7.7 with the constraints is simplified to

M2
CP-even =


4λ1v

2
1 + 2v2

2λ3 0 0

0 4λ2v
2
2 + 2v2

1λ3

√
2v3

(
−4v21v2

v23
λ3 + λ8v2

)
0

√
2v3

(
−4v21v2

v23
λ3 + λ8v2

)
2λ6v

2
3

 .

(7.9)

In the above given decoupling limit scenario, chosen in order to simplify our analysis,

the CP-even neutral scalar states contained in the SU(2) doublet Hu will not mix with

the CP-even neutral ones contained in Hd. In such limit, the neutral CP-even states of

Hu will not feature mixing with the gauge singlet scalar φ. Thus, the lightest 125 GeV

CP-even scalar of our model will have couplings to the SM particles close to the SM

expectation, which is consistent with the current experimental data. Diagonalizing the

simplified CP-even mass matrix, it reveals masses of the physical SM Higgs h and
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non-SM CP-even scalars H1,2 in the physical basis (h,H1, H2)

R†CP-evenM2
CP-evenRCP-even = diag

(
m2
h,m

2
H1
,m2

H2

)
. (7.10)

The SM Higgs h is appeared as ReH0
u itself and the non-SM CP-even scalars H1,2 are

the states which ReH0
d is mixed with Reφ. Regarding the CP-odd scalar sector, we

find that the squared mass matrix for the CP-odd scalars in the basis(
ImH0

u, ImH0
d , Imφ

)
is given by:

M2
CP-odd =


λ5v2v23

2v1
1
2λ5v

2
3

√
2λ5v2v3

1
2λ5v

2
3

λ5v1v23
2v2

√
2λ5v1v3√

2λ5v2v3

√
2λ5v1v3 4λ5v1v2 − 4µ2

sb

 . (7.11)

The squared CP-odd mass matrix is diagonalized in the same way as in the CP-even

mass matrix and the CP-odd physical basis is given by (GZ , A1, A2) where GZ is the

massless Goldstone bosons associated with the longitudinal components of the Z gauge

boson, whereas A1 and A2 are massive non-SM CP-odd scalars

R†CP-oddM2
CP-oddRCP-odd = diag

(
0,m2

A1
,m2

A2

)
. (7.12)

Furthermore, the squared mass matrix for the electrically charged scalars is given by:

M2
charged =

(
λ4v

2
2 +

λ5v2v23
2v1

λ4v1v2 + 1
2λ5v

2
3

λ4v1v2 + 1
2λ5v

2
3 λ4v

2
1 +

λ5v1v23
2v2

)
. (7.13)

The charged scalar mass matrix can be diagonalized in the basis
(
H±1 , H

±
2

)
as in

CP-even or -odd mass matrix:

R†chargedM2
chargedRcharged = diag

(
0,m2

H±
)
. (7.14)

Then, the electrically charged scalar sector contains the massive scalars H± and the

massless electrically charged scalars G±W which correspond to the Goldstone bosons

associated with the longitudinal components of the W± gauge bosons. In the following

sections we will analyze the phenomenological implications of our model in the Higgs

diphoton decay as well as in the muon and electron anomalous magnetic moments.

7.1.3 The Higgs diphoton signal strength

The rate for the h→ γγ decay is given by:

Γ(h→ γγ) =
α2

emm
3
h

256π3v2

∣∣∣∣∣∣
∑
f

ahffNCQ
2
fF1/2(ρf ) + ahWWF1(ρW ) +

ChH±H∓v

2m2
H±

F0(ρH±k
)

∣∣∣∣∣∣
2

,

(7.15)
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where ρi are the mass ratios ρi =
m2
h

4M2
i

with Mi = mf ,MW ; αem is the fine structure

constant; NC is the color factor (NC = 1 for leptons and NC = 3 for quarks) and Qf is

the electric charge of the fermion in the loop. From the fermion-loop contributions we

only consider the dominant top quark term. Furthermore, ChH±H∓ is the trilinear

coupling between the SM-like Higgs and a pair of charged Higges, whereas ahtt and

ahWW are the deviation factors from the SM Higgs-top quark coupling and the SM

Higgs-W gauge boson coupling, respectively (in the SM these factors are unity). Such

deviation factors are close to unity in our model and they are defined as below:

ahtt ' 1, ahWW =
1√

v2
1 + v2

2

∂

∂h

 ∑
i,j=1,2,3

vi
(
RTCP-even

)
ij

(h,H1, H2)j

 =
v1√
v2

1 + v2
2

(7.16)

Furthermore, F1/2(z) and F1(z) are the dimensionless loop factors for spin-1/2 and

spin-1 particles running in the internal lines of the loops. These loop factors take the

form:

F1/2(z) = 2(z + (z − 1)f(z))z−2,

F1(z) = −2(2z2 + 3z + 3(2z − 1)f(z))z−2,

F0(z) = −(z − f(z))z−2,

(7.17)

with

f(z) =


arcsin2

√
2 for z ≤ 1

−1
4

(
ln
(

1+
√

1−z−1

1−
√

1−z−1−iπ

)2
)

for z > 1

(7.18)

In order to study the implications of our model in the decay of the 125 GeV Higgs into

a photon pair, one introduces the Higgs diphoton signal strength Rγγ , which is defined

as:

Rγγ =
σ(pp→ h)Γ(h→ γγ)

σ(pp→ h)SMΓ(h→ γγ)SM
' a2

htt

Γ(h→ γγ)

Γ(h→ γγ)SM
. (7.19)

That Higgs diphoton signal strength, normalizes the γγ signal predicted by our model

in relation to the one given by the SM. Here we have used the fact that in our model,

single Higgs production is also dominated by gluon fusion as in the Standard Model.

The ratio Rγγ has been measured by CMS and ATLAS collaborations with the best fit

signals [?,?]:

RCMS
γγ = 1.18+0.17

−0.14 and RATLAS
γγ = 0.96± 0.14. (7.20)

As it will be shown in the next subsection, the constraints arising from the Higgs

diphoton decay rate will be considered in our numerical analysis.
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7.1.4 The muon and electron anomalous magnetic moments

The Yukawa interactions relevant for the computation of the muon anomalous

magnetic moment are:

L∆aµ = ye24µ
(
ReH0

d − iγ5 ImH0
d

)
e4+xe42ẽ4

(
Reφ− iγ5 Imφ

)
e2+M e

44ẽ4e4+h. c. (7.21)

where the Yukawa coupling constants ye24, x
e
42 are assumed to be real, the scalar fieds

have been expanded by their real and imaginary parts and the properties of the

projection operators PL,R acting on the charged leptonic fields have been used. By

expressing the scalar fields in the interaction basis in terms of the scalar fields in the

physical basis, the charged lepton Yukawa interactions relevant for the computation of

the g − 2 anomalies take the form:

L∆aµ = ye24µ
(
(RTe )22H1 + (RTe )23H2 − iγ5(RTo )22A1 − iγ5(RTo )23A2

)
e4

+ xe42ẽ4

(
(RTe )32H1 + (RTe )33H2 − iγ5(RTo )32A1 − iγ5(RTo )33A2

)
e2

+M e
44ẽ4e4 + h. c.

(7.22)

where we are using the unitary gauge where the contributions arising from unphysical

Goldstone bosons to the muon anomaly are excluded and we shorten the notations

RCP by Re(o). Here Re and Ro are the rotation matrices that diagonalize the squared

mass matrices for the CP even and CP odd scalars, respectively. Then, it follows that

the muon and electron anomalous magnetic moments in the scenario of diagonal SM

charged lepton mass matrix take the form:

∆aµ = ye24x
e
42

m2
µ

8π2

[ (
RTe
)

22

(
RTe
)

32
I

(µ)
S (me4 ,mH1) +

(
RTe
)

23

(
RTe
)

33
I

(µ)
S (me4 ,mH2)

−
(
RTo
)

22

(
RTo
)

32
I

(µ)
P (me4 ,mA1)−

(
RTo
)

23

(
RTo
)

33
I

(µ)
P (me4,mA2)

]
∆ae = ye51x

L
15

m2
e

8π2

[ (
RTe
)

22

(
RTe
)

32
I

(e)
S (me5 ,mH1) +

(
RTe
)

23

(
RTe
)

33
I

(e)
S (me5 ,mH2)

−
(
RTo
)

22

(
RTo
)

32
I

(e)
P (me5 ,mA1)−

(
RTo
)

23

(
RTe
)

33
I

(E)
P (me5 ,mA2)

]
,

(7.23)

where the loop integrals are given by [61,140–143]:

I
(e,µ)
S(P )

(
mE4,5 ,mS

)
=

∫ 1

0

x2
(

1− x±
mE4,5

me,µ

)
m2
e,µx

2 +
(
m2
E4,5
−m2

e,µ

)
x+m2

S,P (1− x)
dx (7.24)

and S(P ) means scalar (pseudoscalar) and E4,5 stands for the vector-like family. It is

worth mentioning that E4 and E5 only contribute to the muon and electron anomalous

magnetic moments, respectively.
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7.2 Numerical analysis of the Higgs exchange

contributions

For the sake of simplicity, we consider the scenario of absence of mixing between SM

charged leptons, which automatically prevents charged lepton flavour violating decays.

In our numerical analysis we have found that the non-SM CP-even scalar mass can

reach values around 200 GeV. Despite the fact that the non SM CP-even scalar is

quite light and can have a sizeable decay mode into a bottom-anti bottom quark pair,

its single LHC production via gluon fusion mechanism is strongly suppressed since it is

dominated by the triangular bottom quark loop. Such non SM CP-even scalar H can

also be produced by vector boson fusion but such production is expected to have a low

total cross section due to small HWW and HZZ couplings, which are proportional to

vd. In this section we will discuss the implications of our model in the muon and

electron anomalous magnetic moments.

7.2.1 The fitting function χ2 and free parameter setup

For the first approach to both anomalies, we construct the fitting function χ2

χ2 =

(
mThy
h −mCen

h

)2

(
δmDev

h

)2 +

(
aThy
hWW − a

Cen
hWW

)2

(
δaDev
hWW

)2 +

(
RThy
γγ −RCen

γγ

)2

(
δRDev

γγ

)2
+

(
∆aThy

µ −∆aCen
µ

)2

(
δ∆aDev

µ

)2 +

(
∆aThy

e −∆aCen
e

)2

(δ∆aDev
e )2 ,

(7.25)

where the superscripts Thy, Cen and Dev mean theoretical prediction, central value of

experimental bound and deviation from the central value at one of 1, 2, 3σ,

respectively. The parameters used in this fitting function are defined as below(the

integer number multiplied in delta terms means σ):

mCen
h = 125.38 GeV, δmDev

h = 3× 0.14 GeV,

aCen
hWW = 0.59, δaDev

hWW = 1× 0.35,

RCen
γγ =

1

2

(
RCMS
γγ +RATLAS

γγ

)
= 1.07, δRDev

γγ = 1× 0.14,

∆aCen
µ = 26.1× 10−10, δ∆aDev

µ = 1×
(
8.0× 10−10

)
∆aCen

e = −0.88× 10−12, δ∆aDev
e = 2×

(
0.36× 10−12

)
(7.26)

For an initial scan, we set up the starting parameter region as below:
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Parameter Value/Scanned Region(GeV)

vu = v1
tanβ√

1+tanβ2
× 246

vd = v2
1√

1+tanβ2
× 246

vφ = v3 ±[0.01, 1.00]× 1000

tanβ = vu/vd [5, 50]

λ1

(
m2
h −

v2v23λ5
2v1

)
/
(
4v2

1

)
λ2 ± [0.50, 12.00]

λ3 ± [0.50, 12.00]

λ4 ± [0.50, 12.00]

λ5 4v1v2λ3/(v3)2

λ6 ± [0.50, 12.00]

λ7 v2λ5/v1

λ8 ± [0.50, 12.00]

M e
44

[
2× 102, 2× 103

]
ML

55

[
2× 102, 2× 103

]
µsb i[0,1] × [300, 500]

ye
√

2me/v2

yµ
√

2mµ/v2

ye24 = y2 ± [1.0, 3.5]

ye51 = y1 ± [1.0, 3.5]

xe42 = x2 |yµM e
44/ (ye24v3)|

xL15 = x1 |yeML
55/ (ye51v3)|

Table 7.1: Initial parameter setup

1. For the Higgs vevs, we are interested in the range of tanβ from 5 to 50 as in the

W boson exchange in Figure 6.5
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2. For λ1, we fixed mass of the SM physical Higgs h to be 125 GeV to save time and

to make the calculation faster. For λ5,7, the assumption that no mixing between

the SM Higgs h and non-SM Higgses H1,2 arise is reflected on these parameters.

All quartic coupling constants λ1,··· ,8 are set up not to go over 4π for

perturbativity.

3. For the vector-like masses M e
44 and ML

55, there is a constraint that the lightest

should be greater than 200 GeV [144].

4. In our numerical analysis we consider solutions where the non SM scalar masses

are larger than about 200 GeV as done in [145].

5. The soft-breaking mass term µsb is a free parameter, which does not generate

any problem and appropiate values of this parameters yields masses for scalars

and vector-like fermions consistent with the experimental constraints.

6. The diagonal Yukawa constants appearing in Equation 7.2 should be the Yukawa

constant for electron, muon and tau, respectively. The Yukawa constants y24,51

and x42,15 interacting with vector-like families are defined under this

consideration. For perturbativity, the Yukawa constants y24,51 are considered not

to go over
√

4π.

After saturating value of the χ2 function less than or nearly 2 which we believe it is

converged enough, we find a best peaked value for each free parameter. For the given

parameters, we rename them by adding an index “p” to the end of subscript of each

parameter like tanβp and then the expansion factor κ is multiplied to find a

correlation between the observables and the mass parameters. Then, the parameter

region is refreshed by both the specific value of each parameter and the expansion

factor κ as per Table 7.2.
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Parameter Value/Scanned Region(GeV)

vu = v1
tanβp√
1+tanβ2

p

× 246

vd = v2
1√

1+tanβ2
p

× 246

vφ = v3 [(1− κ), (1 + κ)]× v3p

tanβ = vu/vd [(1− κ), (1 + κ)]× tanβp

λ1

(
m2
h −

v2v23λ5
2v1

)
/
(
4v2

1

)
λ2 [(1− κ), (1 + κ)]× λ2p

λ3 [(1− κ), (1 + κ)]× λ3p

λ4 [(1− κ), (1 + κ)]× λ4p

λ5 4v1v2λ3/(v3)2

λ6 [(1− κ), (1 + κ)]× λ6p

λ7 v2λ5/v1

λ8 [(1− κ), (1 + κ)]× λ8p

M e
44 [(1− κ), (1 + κ)]×M e

44p

ML
55 [(1− κ), (1 + κ)]×ML

55p

µsb [(1− κ), (1 + κ)]× µsb p

ye
√

2me/v2

yµ
√

2mµ/v2

ye24 = y2 [(1− κ), (1 + κ)]× ye24p

ye51 = y1 [(1− κ), (1 + κ)]× ye51p

xe42 = x2 yµM
e
44/ (ye24v3)

xL15 = x1 yeM
L
55/ (ye51v3)

κ 0.1

Table 7.2: Next parameter setup after the initial scan result
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7.2.2 A scanned result on the free parameters as well as observables

across over the first and second scan

The best peaked value for each parameter is listed in Table 7.3 and energy scale is in

unit of GeV. Note that all cases are carried out independently and all points of plots

in each case are collected within 1σ constraint of each anomaly.

Parameter case A case B case C case D case E

vu = v1 245.925 245.936 245.951 245.917 245.948

vd = v2 6.086 5.595 4.921 6.387 5.077

vφ = v3 −57.761 −36.470 −57.919 −30.746 −17.146

tanβ = vu/vd 40.410 43.957 49.977 38.503 48.441

λ1 0.063 0.064 0.066 0.064 0.065

λ2 −7.978 8.414 −2.000 2.948 10.382

λ3 −6.344 −2.675 6.242 −1.724 −0.706

λ4 1.859 2.158 −3.633 10.837 −2.796

λ5 −11.384 −11.070 9.009 −11.460 −12.000

λ6 2.888 1.228 0.866 1.351 1.324

λ7 −0.282 −0.252 0.180 −0.298 −0.248

λ8 −1.363 −1.346 −10.845 −11.510 7.033

M e
44 1475.010 1355.470 1495.770 1134.340 1681.760

ML
55 279.386 211.263 204.706 323.292 331.462

µsb 424.618i 443.435i 480.993 480.062i 491.533

ye
[
10−4

]
1.135 1.234 1.403 1.081 1.360

yµ
[
10−2

]
2.391 2.600 2.956 2.278 2.865

ye24 = y2 −3.161 −3.101 −2.942 −1.548 1.662

ye51 = y1 2.315 2.164 2.050 1.352 3.377

xe42 = x2 0.193 0.312 0.260 0.543 1.691

xL15 = x1

[
10−4

]
2.371 3.304 2.419 8.408 7.787

mH1 213.390 222.924 212.147 238.523 205.477

mH2 911.585 614.516 891.413 518.147 354.709

mA1 741.343 537.111 807.268 435.887 282.964

mA2 1003.790 939.553 1035.800 1006.240 1015.760

mH± 938.259 674.054 987.625 929.786 504.684

∆aµ
[
10−9

]
2.734 2.688 2.935 2.891 2.393

∆ae
[
10−13

]
−5.073 −8.310 −5.543 −6.365 −9.232

ahWW 1.000 1.000 1.000 1.000 1.000

Rγγ 0.999 0.999 0.999 0.999 0.999

χ2 1.794 1.516 1.870 1.740 1.579

Table 7.3: A best peaked value for each parameter at each case. All energy scale is in
GeV units. Notice that in all cases v3 is smaller than the vector like mass parameters
Me

44 and ML
55, which is consistent with the assumption made in section I, regarding the

fact that the corresponding expansion parameter v3/Mψ is less than unity.
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Here, we put two constraints on the lightest vector-like mass and the lightest non-SM

scalar mass; the vector-like mass should be greater than 200 GeV as well as the

non-SM scalar mass [144,145]. After we carry out second parameter scan based on the

first scan result of Table 7.3, range of the parameters are given in Table 7.4.

7.2.3 The muon and electron anomalous magnetic moments

In order to confirm that our theoretical prediction for both anomalies can

accommodate their constraints at 1σ and to analyze correlations between both

anomalies and mass parameters, we consider cases B and E in Table 7.3 since their

benchmark point have relative lower values of the χ2 function when compared to other

cases. The reason that the cases B and E have the lower values of the χ2 function

arises from the obtained value of the electron anomaly, which is very close to the

central experimental value. All cases reveal nearly central value of muon anomaly

constraint at 1σ, whereas the other cases except B and E reveal nearly edge value of

electron anomaly constraint at 1σ. Therefore, the reason why the cases B and E are

more converged is related to whether our theoretical prediction for both anomalies can

gain access to their central value of each anomaly constraint at 1σ. More importantly,

the case E is only one satisfying vacuum stability conditions and a detailed

investigation for the vacuum stability of each case will be studied in a subsection. For

these reasons, we take the case E in Table 7.4 to study the correlations. The relevant

parameter spaces are listed in Figure 7.2 and 7.3. To begin with, we consider the

parameter spaces for the muon anomaly versus electron anomaly with a mass

parameter which attends both anomalies (H1,2, A1,2) and does not (H±) in Figure 7.2.

Even thought the non-SM charged scalar does not attend both anomalies, the similar

pattern which the other scalars implement in Figure 7.2 is also appeared. We

confirmed that mass of H2 is nearly proportional to that of H±, which causes the

correlation identified in plots of the other non-SM scalars in Figure 7.2 is still

maintained for the non-SM charged scalar. Interestingly, the cases A, B and C in Table

7.4 reported mH2 is nearly proportional to mH± one-to-one ratio, whereas the cases D

and E revealed a fat proportion between them and still maintained the correlation.

As mentioned at the beginning of this section, we take the case E for the plots in

Figure 7.2 and 7.3 and a main distinction between the case E and others arises from

the value of electron anomaly. If we take other cases instead of the case E to

investigate the parameter spaces, the parameter region appeared in top-left plot of

Figure 7.2 will be shifted upward by locating at the value of −5 or −6× 10−13 for the

electron anomaly. In other words, the whole colored region in Figure 7.2 is shifted

upwards to meet the scanned value of electron anomaly constraint at 1σ, holding the

correlations. Therefore, the white region appeared in Figure 7.2 is not strictly excluded

region and affected by how well a benchmark point is converged and by a factor of κ.

However, these plots still tells a correlation between both anomalies and a tendency
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Figure 7.2: Available parameter spaces for the muon anomaly versus electron anomaly
with a mass parameter which attends the both anomalies(H1,2, A1,2) and does not(H±).
H1,2 are non-SM CP even scalars, A1,2 are non-SM CP odd scalars and H± are non-
SM charged scalars. All points in each plot are collected within 1σ constraint of each

anomaly.
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Figure 7.3: Available parameter spaces for the muon anomaly(electron anomaly)
versus a relevant vector-like mass me4(me5) with another anomaly(two left plots) in
bar where me4(me5) is simplified notation for Me

44(ML
55), while the two right plots for

the muon anomaly versus electron anomaly with a vector-like mass me4(me5)

that the lighter mass of H1 is located at edge region of the parameter space. Mass of

the lightest non-SM scalar H1 implied in top-left plot of Figure 7.2 is ranged from 200

to 220 GeV [145] and the cross section for this light non-SM scalar will be compared to

that for SM Higgs in appendix. As for mass range of the other non-SM scalars

confirmed in rest of other plots in Figure 7.2, they all implied heavier mass than that

of H1 which can be flexible depending on how the parameters are converged as seen in

each case of Table 7.4.

We investigate a correlation for an anomaly versus a relevant mass parameter with

another anomaly in bar in Figure 7.3. Note that the fourth vector-like mass is relevant

only for the muon anomaly, whereas the fifth is only for the electron anomaly. Even
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though the fourth (fifth) is irrelevant to the electron (muon) anomaly, it is good to

express them together since we rearrange the mass parameters and the anomalies in

bar for comparison. The top-left plot in Figure 7.3 just fills in whole parameter region,

thus no any correlation between the fourth vector-like mass and the muon anomaly is

identified. After we rearranged the order of me4 and ∆aµ,e from the top-left plot, we

can confirm the similar correlation identified in Figure 7.2 from the top-right plot in

Figure 7.3. The bottom-left plot identifies some correlation between the fifth

vector-like mass and the electron anomaly contrary to the top-left plot. For the fifth

vector-like mass, we put the constraint that the lightest vector-like mass should be

greater than 200 GeV [144] and the mass region below 200 GeV is all excluded. After

rearranging the order of me5 and ∆aµ as in the above plot, we confirmed the similar

correlation appears in the bottom-right plot. Interestingly, the top-right and the

bottom-right plots check the similar correlation.

We confirmed that the muon and electron anomalous magnetic moments with

vector-like particles can be explained to within 1σ constraint of each anomaly in a

unified way, which is based on two attributes; the first one is the extended scalar sector

and the second one is related with the contributions of the vector-like leptons. The

first one which is reflected in our prediction for both anomalies, consists of four

non-SM scalars and these contributions play a crucial role for determining the

magnitude of each anomaly. The second one is seen by two vertices of both anomaly

diagrams. The other Yukawa interactions can take place at each vertex since the

vector-like leptons come in the loop, which is differentiated by the case where the

normal SM particles enter in the loop. To be more specific, the helicity flip mass

caused by the vector-like fermions in the CP-even and CP-odd basis couples the initial

particle inside the loop to another particle of different chirality, thus allowing different

interactions at each vertex. This means that the different sign problem can be solved

by only considering multiplication of the Yukawa constants of each vertex and this

property will be covered in detail in next subsection.

7.2.3.1 Vacuum stability

An important feature of our extended 2HDM theory is that it predicts large values for

the Yukawa coupling constants y2,1, x2,1 which can be ideally order of unity in our

model. If the Yukawa coupling constants are much lower than unity, which means

y2,1, x2,1 � 1, it will not cause any problem for stabilization of the scalar potential.

However, large values of the leptonic Yukawa couplings are required in our model to

successfully explain both g − 2 anomalies within the 1σ experimentally allowed range

and since they are somehow related with the electroweak sector parameters, it might

be able to destabilize the Higgs potential. As previously mentioned, in our analysis of

the scalar sector and g − 2 anomalies we are restricting to the scenario of decoupling
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limit, which implies that the large values of the leptonic Yukawa couplings will have a

very small impact in the stability of up-type Higgs Hu potential, whereas the conditons

for the stability of the down type Higgs Hd potential need to be determined. To

discuss the stability of the scalar potential, one has to analyze its quartic terms

because they will dominate the behaviour of the scalar potential in the region of very

large values of the field components. To this end, the quartic terms of the scalar

potential are written in terms of the Hermitian bilinear combination of the scalar

fields. To simplify our analysis, we discuss the stability conditions of the resulting

2HDM scalar potential arising after the gauge singlet scalar field φ acquire vacuum

expectation value. Such stability conditions have been analyzed in detail in the

framework of 2HDM in [146,147]. In order to analyze the stability of the Hd potential,

what we need to check if the quartic scalar couplings in each case of Table 7.3 fullfill

the stability conditions to be determined below. Given that our Higgs potential

corresponds to the one of an extended 2HDM with the flavon field φ, in order to apply

the stability conditions used in the reference [146] to our Higgs potential, we need to

reduce the number of scalar degrees of freedom by considering the resulting 2HDM

scalar potential arising after the gauge singlet scalar field φ is integrated out. From the

scalar potential it follows that the relevant quartic coupling constant λ6 must be

positive, otherwise the vev v3 would fall into negative infinity when the field φ value

increases. For the same reason, the quartic coupling constants λ1,2 must also be

positive. From the aforementioned stability conditions we conclude that the cases A

and C must be excluded since their corresponding quartic coupling constants λ2 are

negative. Assuming the flavon field φ develops its vev v3, we can rewrite the Higgs

potential in terms of Hu and Hd fields as follows:

V = µ2
1

(
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Dropping all numbers and combining same order terms, the Higgs potential becomes

much simpler as follows:
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2 + λ8
v2

3

2

)(
HdH

†
d

)
+ λ1

(
HuH

†
u

)2
+ λ2

(
HdH

†
d

)2

+ λ3

(
HuH

†
u

)(
HdH

†
d

)
+ λ5

v2
3

2

(
εijH

i
uH

j
d + h. c

) (7.28)

where it is worth mentioning that the λ4 term can be safely removed in the Higgs

potential since it does not play a role in the CP-even, odd but charged mass matrix

(Now our focus is the neutral scalar sectors). Here, we can impose one extra condition
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for the stabilization check, which is that the redefined mass terms must be negative,

otherwise we get zero vev as a global minimum.

µ2
1 + λ7

v2
3

2
= −2λ1v

2
1 − λ3v

2
2 + 2λ3v

2
2 = −2λ1v

2
1 + λ3v

2
2 < 0

µ2
2 + λ8

v2
3

2
= −2λ2v

2
2 + λ3v

2
1 −

1

2
λ8v

2
3 + λ8

v2
3

2
= −2λ2v

2
2 + λ3v

2
1 < 0

(7.29)

We have used the decoupling limit of Equation 7.8 at the first equality of

Equation 7.29. From this equation, it is possible to determine the appropriate sign for

the quartic coupling constant λ3. In our numerical analysis, the vev v1 is much

dominant than the vev v2 so it leads to a negative sign for the quartic coupling

constant λ3, otherwise the below equation of Equation 7.29 would become positive.

The sign of the quartic coupling constant λ3 also determines the one of λ5,7 in the

decoupling scenario, which means that λ5,7 must also be negative. On top of that, the

large Yukawa coupling constants y, x can be understood in connection with the vev v3.

To this end, we consider the definition for the Yukawa coupling constants x1 and x2,

which are given by:

x2 =

∣∣∣∣yµM44

y2v3

∣∣∣∣ , x1 =

∣∣∣∣yeM55

y1v3

∣∣∣∣ , (7.30)

where in order to successfully explain both g − 2 anomalies within the 1σ

experimentally allowed range, one has to rely on small values of v3, which are

O(10 GeV), and the small values of v3 do not significantly spoil the down-type Higgs

Hd potential as seen in Equation 7.29. In other words, the mass parameters µ2
1,2 are

much larger than the parameters λ7,8v
2
3/2, thus allowing more freedom in the sign of

λ8. Then, we are now ready to match our simplified Higgs potential with the one given

in the reference [146]. Taking into consideration that our Higgs alignment is different

than the one of [146], our mass parameters can be redefined as follows:

m2
11 = µ2

1 + λ7
v2

3

2
, m2

22 = µ2
2 + λ8

v2
3

2
, m2

12 = λ5
v2

3

2
(7.31)

β1 = 2λ1, β2 = 2λ2, β3 = λ3, β4 = 0, β5 = 0 (7.32)

Then, following [146,147], it is found that the scalar potential is stable, when the

following relations are fullfilled:

β1 ≥ 0, β2 ≥ 0, β3 +
√
β1β2 ≥ 0 (7.33)

β3 + β4 +
√
β1β2 > |β5| → β3 +

√
β1β2 > 0, (7.34)

The last stability condition can be rewritten as shown on the right side since the β4,5

are zero in our Higgs potential and the cases B and D must be excluded by this last

condition shown in Equation 7.34. The conditions given in Eqs. (7.33) and (7.34) are

crucial to guarantee the stability of the electroweak vacuum. Furthermore, one has to

require that the squared masses for the physical scalars are positive. Besides that,
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according to [146], the minimum of the scalar potential is a global minumum when the

following condition is fulfilled:

m2
12

(
m2

11 −m2
22

√
β1

β2

)(
tanβ − 4

√
β1

β2

)
> 0→ m2

12

(
m2

11 −m2
22

√
β1

β2

)
> 0 (7.35)

where the latter condition on the left hand side is always successfully fulfilled for all

cases, so we can simply drop off the condition as shown on the right side. Then, it is

enough to confirm whether each case satisfies the reduced global minimum condition

and the case E successfully fulfills that requirement as shown below:

m2
12 = −1763.9 GeV2, m2

11 = −7896.5 GeV2, m2
22 = −43258.8 GeV2,√

β1

β2
= 0.0791994

m2
12

(
m2

11 −m2
22

√
β1

β2

)
≈ 7.886× 106 GeV4 > 0

(7.36)

Thus, we have numerically checked that the best fit point corresponding to the case E

obtained in the numerical analysis of the scalar potential and g − 2 muon and electron

anomalies is consistent with the above given stability conditions of the scalar potential

and at the same time ensure positive values for the squared masses of the physical

scalars, consistent with the current experimental data. Finally, to close this section, it

is worth mentioning that the large Yukawa coupling constants y, x involve the small

vev v3 in our model and this ensures that not only the Hu potential is stable in the

decoupling scenario but also the Hd potential successfully fullfill the requirements of

vacuum stability for both the small vev v3 and appropriate values of the quartic scalar

couplings.

7.2.3.2 How is the scalar exchange possible to accommodate both

anomalies at 1σ constraint analytically?

In order to analyze how the scalar exchange is able to explain both anomalies within

the 1σ range, we revisit the analytic expressions for both muon and electron

anomalous magnetic moments:

∆aµ = ye24x
e
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−
(
RTo
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)

32
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(7.37)
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where

I
(e,µ)
S(P )

(
mE4,5 ,mS

)
=

∫ 1

0

x2
(

1− x±
mE4,5

me,µ

)
m2
e,µx

2 +
(
m2
E4,5
−m2

e,µ

)
x+m2

S,P (1− x)
dx (7.38)

with S(P ) corresponding to scalar (pseudoscalar) and E4,5 standing for the vector-like

family. Furthermore, E4 and E5 only contribute to the muon and electron anomalous

magnetic moments, respectively.

First of all, we focus on the sign of each anomaly. The different signs of each anomaly

indicated by the 1σ experimentally allowed range can be understood at the level of

Yukawa constants apart from the loop structures. As seen in Table 9.1, the Yukawa

coefficient y can be either positive or negative, while x only remains positive since we

take the absolute value to the x. We also considered the case where the coefficients x, y

are purely positive, assuming v3 is positive, without taking absolute value and the

multiplication of the Yukawa coefficients x× y cannot change the sign of each anomaly

since the denominator of x includes y and they are cancel out. Then, the sign problem

depends on summing over loop functions and we found that the order of the muon

anomaly prediction is suitable, whereas the corresponding to the electron anomaly is

about 10−16 which is too small to be accommodated within the 1σ experimentally

allowed range. Therefore, we found that taking an absolute value to one of the Yukawa

coefficients is an appropriate strategy for the sign and allows to reproduce the correct

order of magnitude of each anomaly allowed by the 1σ experimentally allowed range,

for an appropiate choice of the model parameters. This feature is a crucial difference

compared with the W or Z ′ gauge boson exchange [89]. The W gauge boson exchange

covered in the main body of this work keeps the same coupling constant at each

vertex, therefore it is completelly different from the scalar exchange with vector-like

leptons. For the Z ′ exchange covered in [89], it has the common property that the

coupling constant of each vertex is different to each other, whereas the coupling

constants of the Z ′ are more constrained by the mixing angle between ith chiral family

and fourth vector-like family, so it is impossible to explain both anomalies at the same

time. As a result, allowing different Yukawa constants with appropiate signs enables

both anomalies to be explained in a unified way.

Next we turn our attention to the order of magnitude of our predictions for both

anomalies. Considering that the sign problem is solved by having each Yukawa

constant y either positive or negative, it can be easily understood that inside the

structure in parentheses of Equation 7.37 should imply the same direction, which is is

determined by the contribution of all loop functions in parentheses. Since the mass

difference among non-SM scalars and vector-like particles is not so big, we have to

consider their masses in the computation of muon and electron anomalous magnetic

moments, as follows from Equation 7.37. For an easy analysis, we take the case E
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reported in Table 7.3 and suppose that(
RTe
)

22

(
RTe
)

32
= c1,

(
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)
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= −c1,(
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IµP (me4 ,mA1) = −d3, IµP (me4 ,mA2) = −d4,

IeS (me5 ,mH1) = e1, IeS (me5 ,mH2) = e2,

IeP (me5 ,mA1) = −e3, IeP (me5 ,mA2) = −e4,

d1 > d3 > d2 > d4, e1 > e3 > e2 > e4

(7.39)

where c1,2 are arbitrary constant between 0 and 1 either positive or negative and mass

ordering among d(e)i, (i = 1, 2, 3, 4) can be easily understood by considering mass

difference between non-SM scalars and vector-like particles. The muon and electron

anomaly prediction can be rewritten in terms of these redefined constants:

∆aµ = y2x2

m2
µ

8π2
[c1d1 − c1d2 + c2d3 − c2d4]

= y2x2
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e

8π2
[c1e12 + c2e34]

(7.40)

where y2, x2, y1, x1 are simplified notation for ye24, x
e
42, y

e
51, x

L
15, respectively, and

d(e)ij ≡ d(e)i − d(e)j and d(e)ij are positive. Since the inside structure in parentheses

depends on relative magnitude of both c1,2 and d(e)ij at this stage where no more

analytic simplication is possible, it is good to implement a specific value for them.

Referring the values used to derive the result of case E, they are

y2x2
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8π2
c1d1 = −4.629× 10−7, y1x1
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8π2
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(7.41)

and summing over all values in left or right column of Equation 7.41 yields the

prediction for muon and electron anomaly at 1σ

∆aµ = y2x2

m2
µ

8π2
[c1d1 − c1d2 + c2d3 − c2d4] = 2.393× 10−9

∆ae = y1x1
m2
e

8π2
[c1e1 − c1e2 + c2e3 − c2e4] = −9.232× 10−13.

(7.42)
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7.3 The experimental and theoretical bound for the

non-SM CP-even and -odd scalars

The scalar sector in this BSM model is an extended 2HDM with one singlet flavon. To

be more specific, it is a type II 2HDM, which reproduces the SM Yukawa structure in

the alignment limit (β − α = π/2). The case E of Table 7.4, regarded as valid in this

work, tells that vev of the singlet flavon φ is order of 10 GeV, which is quite small so it

does not significantly impact the parameter space considered in this work. Therefore,

we can safely claim that our BSM model is a well-approximated type II 2HDM and

mass interval of the non-SM scalars are investigated by the Gfitter Group [172]

130 GeV < MH ,MA < 1000 GeV,

100 GeV < MH± < 1000 GeV,

0 < β − α < π,

0.001 < tanβ < 50,

−8× 105 GeV2 < M2
12 < 8× 105 GeV2,

(7.43)

where M2
12 can be found from Equation 7.36 and it is worth mentioning that since the

2HDM model under consideration has generally large freedom in the parameter space,

the given constraints 7.43 suggest weak exclusion limits on the parameter space. The

LEP experiments in search for the charged scalar in the type II 2HDM strengthen

mass bound for the charged scalar MH± [173].

MH± & 150 GeV (7.44)

Comparing the case E and the given bounds, none of our predictions from the case E is

excluded by the given bounds except for mA2 , some of which exceeds the 1000 GeV,

however it should notice that the mA2 depends on the free parameter µsb appearing in

the scalar potential to prevent additional Goldstone bosons appearing in this work.

Therefore, we can conclude our numerical predictions carried out in this work are well

consistent with the current experimental bounds. As our BSM model features an

extended 2HDM, it might cause dangerous scalar-mediated

flavor-changing-neutral-currents (FCNCs) and CP-violation. For the dangerous

scalar-mediated FCNCs, there are three safety devices in this BSM model, which are

the alignment limit, decoupling limit, and lastly proper diagonalization. The BSM

model under consideration can reproduce the SM Yukawa structure in the alignment

limit as mentioned earlier and keep mixing between up-type SM-like Higgs Hu and

down-type SM-like Higgs Hd arising by the decoupling limit. Plus, the proper

diagonalization suppresses off-diagonal elements of mass matrices within this BSM

model so that effects of the dangerous FCNCs become small enough to ignore. For the

CP-violation, we have only considered real Yukawa coupling constants for the scalar
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and fermion sectors, and this feature naturally leads to the CP-conserving scenario.

Therefore the BSM model under consideration are free from the dangerous FCNCs and

CP-violation.

7.4 Conclusion

We have proposed a model to account for the hierarchical structure of the SM Yukawa

couplings. In our approach the SM is an effective theory arising from a theory with

extended particle spectrum and symmetries. The considered model includes an

extension of the 2HDM where the particle spectrum is enlarged by the inclusion of two

vector-like fermion families, right handed Majorana neutrinos and a gauge singlet

scalar field, together with the inclusion of a global U(1)′ symmetry spontaneously

broken at the TeV scale. Since the U(1)′ symmetry is global, this model does not

feature a Z ′ boson and it is softly broken in the 2HDM potential to avoid a Goldstone

boson. Its main effect is to forbid SM Yukawa interactions due to the U(1)′ charge

conservation. Besides that, this model has the property of the 2HDM type II where

one Higgs doublet couples with the up-type fermions whereas the remaining one has

Yukawa interactions with down-type fermions, where such couplings are allowed

between chiral fermions and vector-like fermions due to the choice of U(1)′ charges

(chiral fermions having zero charges while vector-like fermions, Higgs and flavons have

charges ±1). Below the mass scale of the vector-like fermions, such couplings result in

effective Yukawa couplings suppressed by a factor 〈φ〉 /M where the numerator is the

vev of the flavon and the denominator is the vector-like mass. This factor naturally

determines the magnitude of SM interactions and the mass scale for the vector-like

fermions under a suitable choice of the flavon vev. We have developed a mixing

formalism based on 7× 7 mass matrices to describe the mixing of the three chiral

families with the two vector-like families.

Within the above proposed model, we have focused on accommodating the

long-established muon and less established electron anomalous magnetic moments at

one-loop level. A main difficulty arises from the sign of each anomalous deviation of

the experimental value from its SM prediction. Generally, the Feynman diagrams for

the muon and electron anomalous magnetic moments have the same structure except

from the fact that the external particles are different, which makes it difficult to flip

the sign of each contribution. Specifically we have required that both deviations in

Equation 5.1) at one-loop should be accommodated within the 1σ experimentally

allowed range, which is a challenging requirement.

We first considered in detail the W boson exchange contributions to the muon and

electron anomalous magnetic moments at one-loop. The relevant sector for the W
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boson exchange is that of the neutrino and we analyzed a novel operator that

generates the masses of the light active neutrinos in this model. The well-known five

dimensional Weinberg operator which we refer as type Ia seesaw mechanism does not

work in this model since it is forbiden by the U(1) symmetry due to the fact that both

SU(2) scalar doublets are negatively charged under this symmetry. For this reason, we

made use of the Weinberg-like operator known as type Ib seesaw mechanism allowed in

this model. With the type Ib seesaw mechanism, we built the neutrino mass matrix

with two vector-like neutrinos and ignored fifth vector-like neutrinos since they are too

heavy to contribute to the phenomenology. The deviation of unitarity η derived from

the heavy vector-like neutrinos plays a crucial role for enhancing the sensitivity of the

CLFV µ→ eγ decay to the observable level. Furthermore, the Yukawa constants of

Dirac neutrino mass matrix can be connected to the observables measured in neutrino

oscillation experiments. One of the neutrino Yukawa constants is defined with a

suppression factor ε. Therefore, the effective 3× 3 neutrino mass matrix tells that the

tiny masses of the light active neutrinos depend on the mass scale of vector-like

neutrinos as well as on the suppression factor ε. This implies that mass scale of

vector-like neutrinos is not required to be of the order of 1014 GeV, as in the

conventional type Ia seesaw mechanism. In our proposed model, the vector-like

neutrinos can have masses at the TeV scale, thus allowing to test our model at

colliders. Those vector-like neutrinos can be pair produced at the LHC via Drell-Yan

annihilation mediated by a virtual Z gauge boson. They can also be produced in

association with a SM charged lepton via Drell-Yan annihilation mediated by a W

gauge boson. These heavy vector like sterile neutrinos can decay into a SM charged

lepton and light active neutrinos. Thus, the heavy neutrino pair production at a

proton-proton collider will give rise to an opposite sign dilepton final state, which

implies that the observation of an excess of events in this final state over the SM

background can be a smoking gun signature of this model, whose observation will be

crucial to assess its viability. It is confirmed that the branching ratio of µ→ eγ decay

can be expressed in terms of the deviation of unitarity η as shown in [62,82] and our

prediction for the muon and electron anomalous magnetic moments can also be written

in terms of non-unitarity. We derived the analytic expression for the anomalies and

found that the order of magnitude of these predictions is too small to accommodate

the experimental bound within the 1σ range and the sign of each prediction also points

out in the same direction. Therefore, we concluded that the W boson exchange at

one-loop is not enough to explain both anomalies at 1σ and this conclusion has been a

good motivation to search for another possibility such as scalar exchange, which is one

of the main purposes of this work.

We then turned our attention to the 2HDM contributions (inclusion also of the singlet

scalar φ) to the muon and electron anomalous magnetic moments, assuming by a

choice of parameters a diagonal charged lepton mass matrix to suppress the branching
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ratio of µ→ eγ. In our analysis we considered in detail the scalar sector of our model,

which is composed of two SU(2) scalar doublets Hu and Hd and one electrically

neutral complex scalar φ by studying the corresponding scalar potential, deriving the

squared mass matrices for the CP-even, CP-odd neutral and electrically charged

scalars and determining the resulting scalar mass spectrum. We have restricted to the

scenario corresponding to the decoupling limit where no mixing between the physical

SM Higgs h and the physical non-SM scalars H1,2 arise and within this scenario we

have imposed the restrictions arising from the Higgs diphoton decay rate, the hWW

coupling, the 125 GeV mass of the SM-like Higgs and the experimental lower bounds

on non SM scalar masses, to determine the allowed parameter space consistent with

the muon and electron anomalous magnetic moments. To this end, we have

constructed a χ2 fitting function, which measures the deviation of the values of the

physical observables obtained in the model, i.e., (g − 2)e,µ, the 125 GeV SM-like Higgs

mass, the Higgs diphoton signal strength, the hWW coupling, with respect to their

experimental values. Its minimization allows to determine the values of the model

parameters consistent with the measured experimental values of these observables.

After saturating the χ2 value less than or nearly 2, we obtained five independent

benchmark points and carried out second scan with the benchmark points to find a

correlation between observables and mass parameters. For the plots, we took an

appropriate case which is more converged when compared to other ones and satisfying

the vacuum stability conditions. We found that our prediction for both anomalies can

be explained within the 1σ constraint of each anomaly and a correlation proportional

for muon versus electron anomaly is appeared in Figure 7.2 and 7.3. Here, we put two

constraints on mass of the lightest non-SM scalar and of the lightest vector-like family;

mH1 ,me5 > 200 GeV based on references. The second scan result tells that the

available parameter space is not significantly constrained by current experimental

results on non-SM scalar mass and vector-like mass, while keeping perturbativity for

quartic couplings and Yukawa constants. An important feature of our BSM model is it

predicts the large Yukawa coupling constants y, x, which might be able to destabilize

the Higgs potential. The up-type Higgs Hu potential is not significantly affected by the

large Yukawa coupling constants in the decoupling scenario, whereas there is no safe

condition for the down-type Higgs Hd potential which can be worsen by mixing with

the flavon field φ. The large Yukawa coupling constants x introduces small values for

the vev v3 in the definition of x and the energy scale is confirmed by order of 10 GeV

in our numerical analysis. On top of that, we also identified the appropriate sign of

quartic coupling constants can make the Higgs potential stable. Therefore, the down

type Hd Higgs potential is stable by both the small vev v3 and the appropriate quartic

coupling constants in our BSM model. Lastly, we discussed how we were able to

explain both (g − 2)e,µ anomalies at 1σ constraint and impact of the light non-SM

scalar H1. For the former, we first simplified the prediction for both anomalies and

used some numerical values at the stage where no more analytic simplication is
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possible. For the latter, we compared the cross section for the SM process pp→ h and

BSM process pp→ H1 and included this comparison in Appendix B.2.

We conclude that the proposed model of fermion mass hierarchies is able to

successfully accommodate both the muon and electron anomalous magnetic moments

within the 1σ experimentally allowed ranges, with the dominant contributions arising

from one loop diagrams involving the 2HDM scalars and vector-like leptons. The

resulting model parameter space consistent with the (g − 2)e,µ anomalies requires

masses of non-SM scalars and vector-like particles in the sub TeV and TeV ranges,

thus making these particles accessible at the LHC and future colliders.
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Chapter 8

The third BSM model - SM

fermion mass hierarchies from

one VL family with an extended

2HDM

In this chapter, we discuss our third BSM model, which is exactly same as the second

BSM model except that one vector-like family is used instead of two for the purpose of

diagonalizing the mass matrices without any assumptions. One vector-like family can

provide two seesaw operators, so the first SM generation can not be massive in this

model, however this is a good approximation taking into account the first SM

generation is very light in both quark and lepton sectors. In this BSM model, we

construct the SM Z gauge coupling constants in the mass basis after enlarging the SM

fermion sector by the fourth vector-like family.

8.1 Introduction

A great success of the energy frontier is the discovery of the Higgs particle by ATLAS

and CMS collaborations at the Large Hadron Collider (LHC) on 4th July 2012 [1, 2].

After that discovery, no new particle has been found so far by the experiments at LHC

with 13 TeV proton-proton centre of mass energy. This highlights the fact that not just

the energy frontier but also the luminosity (intensity) frontier should be considered as

of equal importance in the search for physics beyond the Standard Model (SM). For

example, one may consider observables mediated by flavour-changing-neutral-currents

(FCNCs), which are quite sensitive to new physics, since such FCNC observables are

extremely suppressed in the Standard Model (SM) due to the well-known
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Glashow-Illiopoulos-Maiani (GIM) mechanism. Another example of a highly

suppressed process is provided by the branching ratio of µ→ eγ decay mediated by

massive neutrinos at the one-loop level [62]:

BR (µ→ eγ) ≈ 10−55. (8.1)

The experimentally known sensitivity for the branching ratio of µ→ eγ is

BR (µ→ eγ)EXP = 4.2× 10−13. (8.2)

The large gap between the tiny rates of the flavour violating decays predicted by the

SM and their experimental upper limits has motivated the construction of many flavour

models with extended scalar, quark and leptonic spectrum aimed at enhancing those

rates by several orders of magnitude up to an observable level within the reach of the

sensitivity of the future experiments. A similar situation occurs for other rare FCNC

decays such as, for instance Z → µτ and t→ cZ, which are very suppressed in the SM,

but in extensions of the SM, can acquire sizeable values, within the reach of the future

experimental sensitivity. Although various models with a heavy Z ′ boson have also

received a lot of attention by the particle physics community as a new source of

FCNCs, its properties, being not fully constrained, do not lead to definite predictions.

For this reason we shall restrict ourselves to the SM Z couplings in this paper.

In this paper we focus on the SM Z FCNC interactions induced by tree-level gauge

boson exchange in a model in which the fermion sector of the SM is enlarged with a

fourth vector-like family. An interesting feature of this approach is all coupling

constants of Z interactions in this work are fixed by the known values of the SM Z

gauge boson interactions, together with mixing parameters. Our main motivation for

adding a fourth vector-like family is to explain quark and lepton mass hierarchies. We

first forbid the SM Yukawa couplings with a global U(1)′ symmetry, then allow them

to be generated effectively via mixing with the fourth vector-like family, a mechanism

somewhat analogous to the seesaw mechanism for neutrino masses. Consequently, the

SM charged fermion masses are inversely proportional to the masses of the heavy

vector-like leptons and directly proportional to the product of the couplings of Yukawa

interactions that mix SM charged fermions with vector-like fermions. This implies that

a small hierarchy in those couplings can yield a quadratically larger hierarchy in the

effective couplings. Combined with a moderate hierarchy in the vector-like masses, this

allows us to naturally explain the SM charged fermion mass hierarchy and to predict

the mass scale of vector-like fermions.

A similar model was discussed in our previous works [148], although with two

vector-like families, but the effect on the Z and W boson couplings was not studied. In

our previous work [148], whose purpose was to explain the muon and electron

anomalous magnetic moments simultaneously, the main focus was on the 2HDM scalar
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sector, and the FCNCs arising from the Z and W boson couplings were not considered,

since the full mass matrices were not accurately diagonalised, and hence such effects

were beyond the approximations used there. By contrast, the main goal of this work is

to study the SM Z and W contributions to the FCNC observables at leading order to

constrain the masses of vector-like fermions, and to explore other possible

phenomenological signatures. The SM W contributions to the CKM mixing matrix

with the extended quark sector are also studied for the first time in this work. In order

for these effects to be considered reliably, the mass matrices of each fermion sector are

accurately diagonalized, both numerically and analytically, unlike the previous work

where simple approximations were used which masked the effects we consider here. The

results in this work are sufficiently accurate to enable the contribution of the Z and W

boson couplings to physics beyond the SM to be reliably considered for the first time.

In order to make the results completely transparent, we shall study the Z and W

boson couplings in the presence of only one vector-like family so that mass matrices of

this work can be straightforwardly diagonalized using both analytical and numerical

methods. Since only one vector-like fermion family is used, the first generation of SM

charged fermions do not acquire masses, which nonetheless is a very good

approximation considering the SM fermions belonging to the first family are very light.

Consequently, we restrict our attention to the second and third generations of SM

fermions, as well as to several observables related to FCNC processes involving the

second and third SM families. In our approach, then, the SM is a low effective energy

theory arising after integrating out a single heavy fourth vector-like family. In order to

dynamically generate the hierarchical structure of SM fermion masses, the fermionic

mass matrices given in [148] as well as the ones obtained in this work must be

accurately and completely diagonalized, which, as mentioned above, has not been done

previously. The mass matrices for the charged lepton and up-quark sectors share the

same structure, whereas the one for the down-type quark sector involves an additional

non-zero element in a particular basis, although we later show that the results are

basis independent. This reasoning does not apply to the neutrino sector, since this

sector is treated independently. This different feature of the down-type mass matrix, in

the preferred basis, allows us to achieve all mixings among the three generations of SM

fermions even though the first one remains massless, and this leads to a prediction for

the Cabbibo-Kobayashi-Maskawa (CKM) mixing matrix. In addition, due to the

mixings between the SM quarks and the vector-like quarks, the CKM quark mixing

matrix originating from the W couplings is not unitary, thus implying the need of

relaxing the unitarity condition of the CKM mixing matrix, and we also study this

feature.

This paper is organized as follows. In Section 8.2 we introduce our model to explain

the origin of the SM fermion’s mass with a fourth vector-like family. In Section 8.3 the

mass matrices in both quark and lepton sectors are constructed and diagonalized using
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the mixing formalism. In Section 8.4 the Z gauge boson interactions with fermions are

determined from the mixing matrices used in the mass matrix diagonalization. Several

FCNC observables for both lepton and quark sectors are analyzed in detail in

Sections 9.1 and 9.2, respectively. We state our conclusions in Section 9.3. Several

technical details are relegated to the Appendices. The perturbative analytical

diagonalization of the mass matrices for the charged lepton, up type quark and down

type quark sectors are discussed in detail in Appendices C.1, C.2 and C.3, respectively.

The comparison between the numerical and approximate analytic diagonalization of

the mass matrices for charged leptons and quarks is made in Appendices C.4 and C.5,

respectively.

8.2 An extended model with a fourth vector-like family

The origin of the pattern of SM fermion masses is interesting open question, not

addressed by the SM. The mass parameters of the SM have been experimentally

determined with good precision, and these experimentally observed mass parameters

show a strong hierarchical structure of the SM fermion masses. The most extreme

hierarchy is exhibited between the SM neutrino Yukawa coupling of about 10−12 and

the top quark Yukawa coupling of about 1. Regarding the tiny neutrino masses, many

particle physicists regard their masses as most likely explained by the see-saw

mechanism rather than by the Yukawa interactions, thus predicting the presence of the

heavy right-handed neutrinos. The reason why the see-saw mechanism has received a

large amount of attention by the particle physics community is that it provides a

dynamical explanation of the tiny active neutrino masses. For a similar reason, it is

interesting to speculate about the existence of a dynamical mechanism that produces

the masses of all SM fermions via the exchange of heavy fermionic degrees of freedom

thus implying that the SM is an effective low energy theory arising from some

spontaneous breaking at higher energy scales of a more complete underlying theory. In

order to specify a possible candidate of an underlying theory responsible for the

generation of the SM fermion mass hierarchy, we shall consider a minimal extension of

the SM consistent with the SM current experimental bounds. With this motivation in

mind, we enlarge the SM fermion and scalar sectors by including a fourth vector-like

family and an extra SU(2) scalar doublet as well as a scalar singlet, respectively.

Furthermore, we extend the SM gauge symmetry by adding a U(1)′ global symmetry.

The particle content of the proposed model is shown in Table 8.1.
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Field QiL uiR diR LiL eiR QkL ukR dkR LkL ekR νkR Q̃kR ũkL d̃kL L̃kR ẽkL ν̃kR φ Hu Hd

SU(3)C 3 3 3 1 1 3 3 3 1 1 1 3 3 3 1 1 1 1 1 1

SU(2)L 2 1 1 2 1 2 1 1 2 1 1 2 1 1 2 1 1 1 2 2

U(1)Y
1
6

2
3 −1

3 −1
2 1 1

6
2
3 −1

3 −1
2 −1 0 1

6
2
3 −1

3 −1
2 −1 0 0 1

2 −1
2

U(1)′ 0 0 0 0 0 1 −1 −1 1 −1 −1 1 −1 −1 1 −1 −1 1 −1 −1

Table 8.1: Particle assigments under the SU(3)C×SU(2)L×U(1)Y ×U(1)′ symmetry
of the extended 2HDM theory with fourth vector-like family. The index i = 1, 2, 3
denotes the the ith SM fermion generation and k = 4 stands for the fourth vector-like

family.

Our proposed theory is a minimal extended 2 Higgs Doublet Model (2HDM) where the

SM fermion sector is enlarged by the inclusion of a fourth vector-like family and the

scalar sector is augmented by an extra SU(2) scalar doublet and a singlet flavon and

lastly the SM gauge symmetry is extended by the U(1)′ global symmetry. As this

model features the global U(1)′ symmetry, there is no a neutral Z ′ gauge boson in the

particle spectrum. Furthermore, the up-type quarks feature Yukawa interactions with

the up-type SM Higgs Hu, whereas the extra scalar doublet Hd couples with the SM

down-type quarks and charged leptons. Our proposed model is especially motivated by

the hierarchical structure of the SM and, in order to implement this hierarchy, we

forbid the SM-type Yukawa interactions by appropiate U(1)′ charge assignments of the

scalar and fermionic fields. Then, for the above specified particle content, the following

effective Yukawa interactions arise:

LYukawa
eff = yψik(M

−1
ψ′ )klx

ψ′
lj 〈φ〉ψiLH̃ψjR + xψ

′
ik 〈φ〉(M

−1
ψ )kly

ψ
ljψiLH̃ψjR + h. c. (8.3)

where the indices i, j = 1, 2, 3 and k, l = 4 whereas ψ,ψ′ = Q, u, d, L, e and M means

heavy vector-like mass. The masses of all SM fermions can be explained by this

effective Lagrangian of Equation 8.3, emphasizing their relative different masses are

explained by the factor 〈φ〉/M � 1 ( apart from top quark ), except for the neutrinos

which requires an independent approach to their mass. Feynman diagrams

corresponding for the effective Lagrangian are shown in Figure 8.1:

ψiL ψjR

H̃ φ

ψkR ψ̃lL

Mψ′
lk

ψiL ψjR

φ H̃

ψ̃kR ψlL

Mψ
lk

Figure 8.1: Feynman diagrams leading to the effective Yukawa interactions, where
ψ,ψ′ = Q, u, d, L, e (neutrinos will be treated separately), i, j = 1, 2, 3, k, l = 4, Mlk is

vector-like mass and H̃ = iσ2H
∗, H = Hu,d
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The theory considered in this paper corresponds to the one given in one of our

previous works [148], however one vector-like family is used instead of two so that the

mass matrices for both quark and lepton sectors can be diagonalized much more

economically than in our previous model of [148] at cost of having massless the first

generation SM charged fermions (One of our main purposes is to diagonalize mass

matrices for the quark and lepton sectors without any assumptions) and this is

actually a good approximation taking into account that the first generation of SM

charged fermions are very light.

8.2.1 Effective Yukawa interactions for the SM fermions

The renormalizable interactions of the quark sector in this model are given by:

LYukawa+Mass
q = yuikQiLH̃uukR + xukiφũkLuiR + xQikφQiLQ̃kR + yukiQkLH̃uuiR

+ ydikQiLH̃ddkR + xdkiφd̃kLdiR + ydkiQkLH̃ddiR

+Mu
klũlLukR +Md

kld̃lLdkR +MQ
klQkLQ̃lR + h. c.

(8.4)

where i, j = 1, 2, 3, k, l = 4 and H̃ = iσ2H
∗. After the U(1)′ symmetry is

spontaneously broken by the vacuum expectation value (vev) of the the singlet flavon

φ, and the heavy vector-like fermions are integrated out, the renormalizable Yukawa

terms at higher energy scale give rise to the effective Yukawa interactions which

explain the current SM fermion mass hierarchy. The Feynman diagrams corresponding

to the effective Yukawa interactions of the quark sector are shown in Figure 8.2:

QiL ujR

H̃u φ

ukR ũlL

Mu
kl

QiL ujR

φ H̃u

Q̃kR QlL

MQ
lk

QiL djR

H̃d φ

dkR d̃lL

Md
kl

QiL djR

φ H̃d

Q̃kR QlL

MQ
lk

Figure 8.2: Feynman diagrams contributing to the up and down type quark’s effective
Yukawa interactions in the mass insertion formalism. Here i, j = 1, 2, 3 and k, l = 4

and Mlk is vector-like mass.
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The same approach can be applied to the SM charged lepton sector and the

renormalizable charged lepton Yukawa interactions are given by:

LYukawa+Mass
e = yeikLiLH̃dekR + xekiφẽkLeiR + xLikφLiLL̃kR + yekiLkLH̃deiR

+M e
klẽlLekR +ML

klLkLL̃lR + h. c.,
(8.5)

and its following effective Yukawa interactions read off in Figure 8.3.

LiL ejR

H̃d φ

ekR ẽlL

Me
kl

LiL ejR

φ H̃d

L̃kR LlL

ML
lk

Figure 8.3: Feynman diagrams contributing to the charged lepton’s effective Yukawa
interactions in the mass insertion formalism. Here i, j = 1, 2, 3 and k, l = 4 and Mlk is

vector-like mass.

It is possible to generate the masses of all SM charged fermions by the same method

relying on effective Yukawa interactions. However, this is not the case for the SM light

active neutrinos as they need to be independently treated since the simplest

mechanism responsible for generating their tiny masses requires the inclusion of

Majorana particles in the leptonic spectrum. In order to make the SM neutrinos

massive, we made use of two important assumptions, one of which is that the SM

neutrinos are Majorana particles and the other is they get masses via the type 1b

seesaw mechanism [82,148] mediated by the heavy vector-like neutrinos without

considering the right-handed neutrinos νiR. The renormalizable Yukawa interactions

for the neutrino sector are given by:

LYukawa+Mass
ν = yνikLiLH̃uνkR + xLikLiLHdν̃kR +MM

kl ν̃lRνkR + h. c. (8.6)

It is worth mentioning that the nature of the vector-like mass appearing in

Equation 8.6 is that the vector-like mass is different than the Majorana mass since the

particles involved in vector-like mass terms are different, whereas the ones appearing in

a Majorana mass terms does not. However, they share the common feature that both

break the lepton number, which is confirmed by checking each lepton number of νkR

and ν̃kR in the two Yukawa interactions of Equation 8.6. We call this mechanism “type

1b seesaw mechanism” and it can allow a different Yukawa interaction at each vertex

as seen in Figure 8.4.
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LiL LjL

H̃u Hd

νkR ν̃lR

Mν
lk

Figure 8.4: Type Ib seesaw diagram [82, 148] which leads to the effective Yukawa
interactions for the Majorana neutrinos in mass insertion formalism, where i, j = 1, 2, 3

and k, l = 4 and Mlk is vector-like mass.

Allowing a different Yukawa interaction at each vertex of Figure 8.4 means that one of

the Yukawa interactions can have a very suppressed coupling constant, which can lower

the expected order of magnitude of the right-handed Majorana neutrinos masses of the

usual type I seesaw mechanism from 1014 GeV up to the TeV scale. The most relevant

features of the model considered in this paper are:

1. It allows a dynamical and natural explanation of the origin of the observed SM

fermion mass hierarchy

2. The model under consideration is economical in the sense that it includes a

common mechanism for generating the masses of the SM charged fermions via

effective Yukawa interactions resulting after integrating out the heavy vector-like

fermions.

3. The expected right-handed neutrinos can have a much smaller mass compared to

the ones mediating the usual type I seesaw mechanism, thus allowing to test our

model at colliders as well as via charged lepton flavor violating processes.

Now that we have discussed how the SM fermions get massive via the effective Yukawa

interactions, the next task is to construct their mass matrices in the flavor basis and

then to diagonalize those and this will be discussed in the next section.
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8.3 Effective Yukawa matrices using a mixing formalism

The effective Yukawa interactions discussed in section 8.2 give rise to the following

mass matrix for fermions written in the flavor basis:

Mψ =



ψ1R ψ2R ψ3R ψ4R ψ̃4R

ψ1L 0 0 0 yψ14〈H̃0〉 xψ14〈φ〉

ψ2L 0 0 0 yψ24〈H̃0〉 xψ24〈φ〉

ψ3L 0 0 0 yψ34〈H̃0〉 xψ34〈φ〉

ψ4L yψ41〈H̃0〉 yψ42〈H̃0〉 yψ43〈H̃0〉 0 Mψ
44

ψ̃4L xψ
′

41〈φ〉 xψ
′

42〈φ〉 xψ
′

43〈φ〉 Mψ′
44 0


, (8.7)

where ψ,ψ′ = Q, u, d, L, e and the zeros in the upper-left 3× 3 block mean that the SM

fermions acquire masses only via their mixing with the fourth vector-like family. The

other zeros appearing in the diagonal positions are forbidden by the U(1)′ charge

conservation. This mass matrix was obtained for the first time in [31] and it can reveal

the hierarchical structure of the SM since this mass matrix involves three different

mass scales 〈H0〉, 〈φ〉 and M . In order to dynamically reproduce the hierarchical

structure of the SM fermion masses, we need to maximally rotate this mass matrix and

the resulting maximally rotated mass matrix should be a starting point for our analysis

in this work. For the fully rotated mass matrix, the up-quark and charged lepton

sectors share the same structure, whereas the down-type quark mass matrix has an

additional element since one of the quark doublet rotations was already used in the up

quark sector, as it will be shown below. Regarding the diagonalization for each fermion

sector, we will employ two methods for comparison; one of which is the numerical SVD

diagonalization and the other is the analytical perturbative step-by-step

diagonalization. We will make use of the numerical SVD diagonalization for the exact

diagonalization as well as for our numerical scans in main body of this work, however

it is important to look at the analytical approximated step-by-step diagonalization

since it provides an analytical understanding on how the SM Z gauge boson can

induce the flavor violating interactions at tree-level and this analytic diagonalization

will be covered in Appendix C.1 to C.3. Lastly, we have found that the analytic

diagoanlization for each fermion sector is quite close to its numerical result with very

small differences and this feature will be discussed in detail in Appendix C.4 to C.5.

8.3.1 Diagonalizing the charged lepton mass matrix

After all scalars of our proposed model acquire their vevs (vd = 〈H0
d〉 and vφ = 〈φ〉)

from Equation 8.7, we otain the following fully rotated mass matrix for the charged
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lepton sector

M e =



e1R e2R e3R e4R L̃4R

L1L 0 0 0 0 0

L2L 0 0 0 ye24vd 0

L3L 0 0 0 ye34vd xL34vφ

L4L 0 0 ye43vd 0 ML
44

ẽ4L 0 xe42vφ xe43vφ M e
44 0


, (8.8)

where we use this fully rotated basis as a starting point in order to easily explain the

observed SM fermion mass hierarchy. This rotated basis is exactly consistent with the

one given in [31] and we need to explain how the mass matrix of Equation 8.8 is fully

rotated. First of all, we rotate the left-handed leptonic fields L1L and L3L to turn off

the entry xL14vφ and then rotate L2L and L3L to trun off the next xL24vφ entry. Next,

we can rotate again the leptonic fields L1L and L2L to turn off the ye14vd entry. These

rotations can be applied to the right-handed leptonic fields e1,2,3R in order to make the

zeros appearing in the lower-left 2× 3 block. This fully rotated mass matrix of

Equation 8.8 is our starting point to implement both the hierarchical structure of the

SM fermion masses and to analyze the flavor violating interactions mediated by the

SM Z gauge boson. Before diagonalizing the mass matrix of Equation 8.8, it is

convenient to rearrange the mass matrix by switching the Yukawa terms by mass

parameters and then by swapping the fourth and fifth column in order to make the

heavy vector-like masses locate in the diagonal positions as given in Equation 8.9.

M e =



e1R e2R e3R e4R L̃4R

L1L 0 0 0 0 0

L2L 0 0 0 m24 0

L3L 0 0 0 m34 m35

L4L 0 0 m43 0 ML
45

ẽ4L 0 m52 m53 M e
54 0


=



e1R e2R e3R L̃4R e4R

L1L 0 0 0 0 0

L2L 0 0 0 0 m24

L3L 0 0 0 m35 m34

L4L 0 0 m43 ML
45 0

ẽ4L 0 m52 m53 0 M e
54


,

(8.9)

We use two methods for diagonalizing the rotated mass matrix of Equation 8.9, one of

which corresponds to the numerical diagonalization carried out by the singular value

decomposition (SVD) and the other is an approximated analytical step-by-step

diagonalization. We make use of the numerical SVD diagonalization for the exact

diagonalization and perform numerical scans in main body of this work, however it is

worth discussing the analytic step-by-step diagonalization as it gives an analytical

understanding on how the SM Z gauge boson can induce the flavor violating

interactions at tree-level with the SU(2) violating mixings, which will be defined in the

analytic diagonalization covered in Appendix C.1. From the comparison between the
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analytic and numerical computations, we found that the former works quite well and

yields resuls close the ones obtained from the latter. The comparisons between the

analytic and numerical computations for both lepton and quark sectors will be

discussed in detail in Appendices C.4 and C.5, respectively. The charged lepton sector

can be diagonalized by performing the SVD diagonalization as follows:

M e′ = diag
(

0,mµ,mτ ,ME4 ,MẼ4

)
= V LM e(V e)†, (8.10)

where V L(V e) is the mixing matrix for the left-handed (right-handed) leptonic fields,

defined as follows:

eL

µL

τL

E4L

Ẽ4L


= V L



e1L

e2L

e3L

e4L

ẽ4L


,



eR

µR

τR

Ẽ4R

E4R


= V e



e1R

e2R

e3R

ẽ4R

e4R


, (8.11)

and the numerical mixing matrices V L,e can be expressed by an analytic expression

consisting of a series of V L,e
ij which describes mixing between ith and jth fermion

where i, j = 1, 2, 3, 4, 5 and this will be discussed in Appendix C.1.

8.3.2 Diagonalizing the up-type quark mass matrix

The initial mass matrix for the up-type quark sector in the flavor basis is given by:

Mu =



u1R u2R u3R u4R Q̃4R

Q1L 0 0 0 0 0

Q2L 0 0 0 yu24vu 0

Q3L 0 0 0 yu34vu xQ34vφ

Q4L 0 0 yu43vu 0 MQ
44

ũ4L 0 xu42vφ xu43vφ Mu
44 0


=



u1R u2R u3R Q̃4R u4R

Q1L 0 0 0 0 0

Q2L 0 0 0 0 mu
24

Q3L 0 0 0 mu
35 mu

34

Q4L 0 0 mu
43 MQ

44 0

ũ4L 0 mu
52 mu

53 0 Mu
44


,

(8.12)

The mass matrix of Equation 8.12 in the flavor basis is exactly consistent with the one

corresponding to the charged lepton sector excepting for a few substitutions ye → yu,

vd → vu, xL → xQ and xe → xu. The analytic mixing matrix for the up-quark sector is

exactly same as the one for the charged lepton sector, however unlike the charged

lepton sector, diagonalizing the mass matrix for the up-quark sector requires more

caution as some numerical off-diagonal elements of order unity. This feature is resulted

from the some off-diagonal elements arising as a result of mixing between the heavy

top quark mass and the other heavy exotic up-type quark masses are of order unitiry,

not small enough to obtain precise results in the perturbative diagonalization when
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compared to the charged lepton sector. We discuss this feature in Appendix C.5 by

comparing a numerical mixing matrix obtained from the SVD with the one resulting

from the analytic diagonalization. Then we can numerically diagonalize the up-type

mass matrix by using the SVD diagonalization as follows:

uL

cL

tL

U4L

Ũ4L


= V u

L



u1L

u2L

u3L

u4L

ũ4L


,



uR

cR

tR

Ũ4R

U4R


= V u

R



u1R

u2R

u3R

ũ4R

u4R


(8.13)

where the symbol L means left-handed doublet and e denotes right-handed singlet in

the charged lepton sector, however it is worth mentioning that the above described

notation used in the lepton sector becomes complicated in the quark sector since the

mass matrices for the up- and down-type quark sectors have a different form, so we

change the mixing notation by V u,d
L(R) instead of V Q. The analytic diagonalizations for

the up-quark sector will be discussed in Appendix C.2.

8.3.3 Diagonalizing the down-type quark mass matrix

A nice feature of the model under consideration is that it can predict the CKM mixing

matrix and this feature is mainly based on the mixings derived from the down-type

quark mass matrix as we will see soon. A quite encouraging feature is that all the

mixings among the three SM generations in the down-type quark sector can be

accessible even though the first generation of the down-type quark sector remains

massless and this feature is quite naturally attributed to this model with the

vector-like family. We start from two mass matrices, one of which is for the up-quark
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sector whereas the another one is for the down-quark sector.

Mu =



u1R u2R u3R u4R Q̃4R

Q1L 0 0 0 0 0

Q2L 0 0 0 yu24vu 0

Q3L 0 0 0 yu34vu xQ34vφ

Q4L 0 0 yu43vu 0 MQ
44

ũ4L 0 xu42vφ xu43vφ Mu
44 0


,

Md =



d1R d2R d3R d4R Q̃4R

Q1L 0 0 0 yd14vd 0

Q2L 0 0 0 yd24vd 0

Q3L 0 0 0 yd34vd xQ34vφ

Q4L 0 0 yd43vd 0 MQ
44

d̃4L 0 xd42vφ xd43vφ Md
44 0


,

(8.14)

This difference between the mass matrices for the up-type and down-type quark

sectors was noticed for the first time in [31]. The first property we need to focus on is

the fifth column of both mass matrices is exactly same. The zeros appearing in the

fifth column of both are the common elements shared by both up- and down-type

quark mass matrices since the quark doublets as well as the fourth vector-like quark

doublets contribute equally to both sectors. For the up-type quark sector, we were able

to rotate further between Q1L and Q2L to vanish yu14vu, however this rotation simply

remixes yd14vd and yd24vd, so both the down-type Yukawa terms survive. For the

lower-left 2× 3 block of the down-type quark mass matrix, the same zeros can appear

since the down-type quarks d1,2,3R have a different mixing angle against that for the

up-type quarks u1,2,3R. The down-type mass matrix Md of Equation 8.14 can be

diagonalized by the numerical SVD diagonalization as follows:
dL

sL

bL

D4L

D̃4L

 = V d
L


d1L

d2L

d3L

d4L

d̃4L

 ,


dR

sR

bR

D4R

D̃4R

 = V d
R


d1R

d2R

d3R

d̃4R

d4R

 . (8.15)

The analytic diagonalization for the down-quark sector is discussed in Appendix C.3.

We will see that a numerical mixing matrix derived by the SVD is quite close to one by

the analytic diagonalization in Appendix C.5. In Appendix C.5 we confirm that even

though the numerical mixing matrix V d
L can have all mixings among the three SM

generations, the Z coupling constants Dd′
L in the mass basis will have zeros in the first

column and row due to some internal cancellations. Therefore the whole structure of
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Dd′
L is exactly same as the other Z coupling constants Du′

L,R and Dd′
R in the mass basis,

so we verify that the SM Z physics does not get affected by any specific basis we

choose. This feature will be discussed again in the next section as well as in

Appendix C.5.

8.4 The SM Z gauge boson interactions with the

vector-like family

One of our main motivations of this work is to study flavor violating processes

mediated by the Z gauge boson in order to constrain the mass range of the vector-like

fermions. It is worth reminding that the neutral Z ′ gauge boson does not appear in the

particle spectrum of this model due to the global U(1)′ symmetry of the theory under

consideration. It is worth mentioning that the tree-level flavor violating Z decays are

absent in the SM, indepently of the fermion mixings, as can be seen from

Equation 8.16 shown below:

LZSM = gZµJ
µ
Z =

g

cw
Zµ

∑
f=e,µ,τ

fγµ
(
T 3 − sin2 θwQ

)
f (8.16)

Factoring out the prefactor g/cw, we can find matrices De
L,R, which determine the

magnitude of the coupling constant for the Z interactions to either the left-handed or

right-handed SM fermions.

De
L =


e1L e2L e3L

e1L

(
−1

2 + sin2 θw
)

0 0

e2L 0
(
−1

2 + sin2 θw
)

0

e3L 0 0
(
−1

2 + sin2 θw
)



De
R =


e1R e2R e3R

e1R

(
sin2 θw

)
0 0

e2R 0
(
sin2 θw

)
0

e3R 0 0
(
sin2 θw

)



(8.17)

However, this SM Z gauge boson can cause the renormalizable flavor violating

interactions with the SM fermions by extending the SM fermion sector by the

vector-like fermions as well as by considering the SU(2) violating mixings defined in

Appendix C.1 together. This features will be discussed in detail in the following

subsections.
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8.4.1 FCNC mediated by the SM Z gauge boson in the charged

lepton sector with the fourth vector-like charged leptons

We can construct an extended the SM Z coupling constants in the charged lepton

sector with the vector-like charged leptons in the flavor basis.

De
L =



e1L e2L e3L e4L ẽ4L

e1L

(
−1

2 + sin2 θw
)

0 0 0 0

e2L 0
(
−1

2 + sin2 θw
)

0 0 0

e3L 0 0
(
−1

2 + sin2 θw
)

0 0

e4L 0 0 0
(
−1

2 + sin2 θw
)

0

ẽ4L 0 0 0 0
(
sin2 θw

)



De
R =



e1R e2R e3R ẽ4R e4R

e1R

(
sin2 θw

)
0 0 0 0

e2R 0
(
sin2 θw

)
0 0 0

e3R 0 0
(
sin2 θw

)
0 0

ẽ4R 0 0 0
(
−1

2 + sin2 θw
)

0

e4R 0 0 0 0
(
sin2 θw

)


(8.18)

where it is worth reminding that the order of the left-handed fermions is 12345,

whereas that of the right-handed fermions is 12354 (This ordering is stressed in

Appendix C.1). An important feature of this SM Z coupling constants of

Equation 8.18 is the couplings constants are naturally determined, based on the nature

of the vector-like charged leptons, without imposing neither any other symmetry nor

other constraints. Therefore, the SM Z coupling constants of Equation 8.18 are not

the identity matrix anymore unlike the case for the SM charged leptons. From these

considerations, it follows that there can exist non-zero off-diagonal elements in the

mass basis by operating the SU(2) violating mixings. Reminding the mixing matrices

for the left- or right-handed charged leptons of Equation C.20, the coupling constant in

the mass basis (De′
L,R) can be written as follows:

De′
L = V LDe

L(V L)†

= V L
45V

L
23V

L
25V

L
35V

L
34D

e
L(V L

34)†(V L
35)†(V L

25)†(V L
23)†(V L

45)†

De′
R = V eDe

R(V e)†

= V e
54V

e
23V

e
25V

e
35V

e
24V

e
34D

e
R(V e

34)†(V e
24)†(V e

35)†(V e
25)†(V e

23)†(V e
54)†

(8.19)
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It is possible to make the SM Z coupling constants of Equation 8.19 simpler by using

the SU(2) conserving mixing as it just remixes an identity matrix.

De′
L = V L

45V
L

23V
L

25V
L

35D
e
L(V L

35)†(V L
25)†(V L

23)†(V L
45)†

De′
R = V e

54V
e

23V
e

25V
e

35D
e
R(V e

35)†(V e
25)†(V e

23)†(V e
54)†

(8.20)

However, the following mixing matrices after the SU(2) violating mixings V L,e
35 must

be conserved since all of them contribute to the off-diagonal elements of the coupling

constants in the mass basis. It is insightful to look at the coupling constants De′
L,R in

the mass basis (We substitute
(
−1/2 + sin2 θw

)
by a and

(
sin2 θw

)
by b and assume

the mixing angles θL,e35,25,23,45(54) are small enough to approximate for simplicity).

De′
L ≈



a 0 0 0 0

0 a(1 + θL2
23 ) + bθL2

25 bθL25θ
L
35 bθL25θ

L
45 (a− b)θL25

0 bθL25θ
L
35 a(1 + θL2

23 ) + bθL2
35 bθL35θ

L
45 (a− b)θL35

0 bθL25θ
L
45 bθL35θ

L
45 a+ bθL2

45 (a− b)θL45

0 (a− b)θL25 (a− b)θL35 (a− b)θL45 b+ a(θL2
25 + θL2

35 + θL2
45 )



De′
R ≈



b 0 0 0 0

0 b(1 + θe223) + aθe225 aθe25θ
e
35 (b− a)θe25 −aθe25θ

e
54

0 aθe25θ
e
35 b(1 + θe223) + aθe235 (b− a)θe35 −aθe35θ

e
54

0 (b− a)θe25 (b− a)θe35 a+ b(θe225 + θe235 + θe254) (a− b)θe54

0 −aθe25θ
e
54 −aθe35θ

e
54 (a− b)θe54 b+ aθe254


(8.21)

There are two important features we can read off from the SM Z coupling constants of

Equation 8.21; the first is the diagonal elements (a, a, a, a, b) and (b, b, b, a, b) get hardly

affected by the small mixing angles and the second is magnitude of the off-diagonal

elements are very weak as the mixing angles are defined by the ratio between the

Yukawa and the vector-like masses. Therefore, we can imply the flavor violating

mixing mediated by the SM Z gauge boson in the mass basis. Using the SM Z

coupling constants in the mass basis, we can draw the Feynman diagram for τ → µµµ

and Z → µτ decay at tree-level and this will be discussed in the next section.

8.4.2 FCNC mediated by the SM Z gauge boson in the quark sector

with the fourth vector-like quarks

The quark sector have two different mass matrices for the up- and down-type quark

sector. We start from the up-type quark sector first. The SM Z coupling constants for



8.4. The SM Z gauge boson interactions with the vector-like family 145

the up-type quark sector are given by:

Du
L =



u1L u2L u3L u4L ũ4L

u1L

(
1
2 −

2
3 sin2 θw

)
0 0 0 0

u2L 0
(

1
2 −

2
3 sin2 θw

)
0 0 0

u3L 0 0
(

1
2 −

2
3 sin2 θw

)
0 0

u4L 0 0 0
(

1
2 −

2
3 sin2 θw

)
0

ũ4L 0 0 0 0
(
−2

3 sin2 θw
)



Du
R =



u1R u2R u3R ũ4R u4R

u1R

(
−2

3 sin2 θw
)

0 0 0 0

u2R 0
(
−2

3 sin2 θw
)

0 0 0

u3R 0 0
(
−2

3 sin2 θw
)

0 0

ũ4R 0 0 0
(

1
2 −

2
3 sin2 θw

)
0

u4R 0 0 0 0
(
−2

3 sin2 θw
)


(8.22)

The up-type quark mass matrix is exactly same as the one for the charged lepton, so

we can simply follow the mixing matrices given in Equation C.22. Then the SM Z

gauge coupling constants in the mass basis are defined by:

Du′
L = V u

LD
u
LV

u†
L

= (V u
L )45(V u

L )23(V u
L )25(V u

L )35(V u
L )34D

u
L(V u

L )†34(V u
L )†35(V u

L )†25(V u
L )†23(V u

L )†45

= (V u
L )45(V u

L )23(V u
L )25(V u

L )35D
u
L(V u

L )†35(V u
L )†25(V u

L )†23(V u
L )†45

Du′
R = V u

RD
u
RV

u†
R

= (V u
R )54(V u

R )23(V u
R )25(V u

R )35(V u
R )24(V u

R )34D
u
R(V u

R )†34(V u
R )†24(V u

R )†35(V u
R )†25(V u

R )†23(V u
R )†54

= (V u
R )54(V u

R )23(V u
R )25(V u

R )35D
u
R(V u

R )†35(V u
R )†25(V u

R )†23(V u
R )†54

(8.23)

The SM Z gauge coupling constants for the up-quark sector in the mass basis can be

seen by (We substitute
(
1/2− 2/3 sin2 θw

)
by c and

(
−2/3 sin2 θw

)
by d and assume
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the mixing angles θu35,25,23,45(54)L,R are small enough to approximate for simplicity):

Du′
L ≈



c 0 0 0 0

0 c dθu25Lθ
u
35L dθu25Lθ

u
45L (c− d)θu25L

0 dθu25Lθ
u
35L c dθu35Lθ

u
45L (c− d)θu35L

0 dθu25Lθ
u
45L dθu35Lθ

u
45L c (c− d)θu45L

0 (c− d)θu25L (c− d)θu35L (c− d)θu45L d



Du′
R ≈



d 0 0 0 0

0 d cθu25Rθ
u
35R (d− c)θu25R −cθu25Rθ

u
54R

0 cθu25Rθ
u
35R d (d− c)θu35R −cθu35Rθ

u
54R

0 (d− c)θu25R (d− c)θu35R c (c− d)θu54R

0 −cθu25Rθ
u
54R −cθu35Rθ

u
54R (c− d)θu54R d



(8.24)

Next, we focus on the down-type quark mass matrix and the left-handed mixing

matrices for that is different when compared to other left-handed mixing matrices for

the up-type or charged lepton mass matrix in that it can reach to all mixings among

the three SM generations. Keeping that in mind, we start from the SM Z coupling

constants for the down-type quarks.

Dd
L =



d1L d2L d3L d4L d̃4L

d1L

(
−1

2 + 1
3 sin2 θw

)
0 0 0 0

d2L 0
(
−1

2 + 1
3 sin2 θw

)
0 0 0

d3L 0 0
(
−1

2 + 1
3 sin2 θw

)
0 0

d4L 0 0 0
(
−1

2 + 1
3 sin2 θw

)
0

d̃4L 0 0 0 0
(

1
3 sin2 θw

)



Dd
R =



d1R d2R d3R d̃4R d4R

d1R

(
1
3 sin2 θw

)
0 0 0 0

d2R 0
(

1
3 sin2 θw

)
0 0 0

d3R 0 0
(

1
3 sin2 θw

)
0 0

d̃4R 0 0 0
(
−1

2 + 1
3 sin2 θw

)
0

d4R 0 0 0 0
(

1
3 sin2 θw

)


(8.25)

After simplifying the whole left-handed (right-handed) mixing matrices of

Equation C.28, we obtain the following matrices of Z couplings with quarks

Dd′
L = V d

LD
d
L(V d

L )†

Dd′
R = V d

RD
d
R(V d

R)†
(8.26)
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The SM Z coupling constants for the right-handed down-type quarks in the mass basis

have the same form given in Equation 8.21, whereas those for the left-handed

down-type quarks involves 12 and 13 mixings more, so it is worthwhile to look at its

complete form (We again substitute
(
−1/2 + 1/3 sin2 θw

)
by e and

(
1/3 sin2 θw

)
by f

and assume all relevant mixing angles are small enough to approximate for simplicity)

Dd′
L ≈



e 0 0 0 0

0 e eθd12Lθ
d
13L + fθd25Lθ

d
35L −eθd23Lθ

d
34L + fθd25Lθ

d
45L (e− f)θd25L

0 eθd12Lθ
d
13L + fθd25Lθ

d
35L e fθd35Lθ

d
45L (e− f)θd35L

0 −eθd23Lθ
d
34L + fθd25Lθ

d
45L fθd35Lθ

d
45L e (e− f)θd45L

0 (e− f)θd25L (e− f)θd35L (e− f)θd45L f



Dd′
R ≈



f 0 0 0 0

0 f eθd25Rθ
d
35R (f − e)θd25R −eθd25Rθ

d
54R

0 eθd25Rθ
d
35R f (f − e)θd35R −eθd35Rθ

d
54R

0 (f − e)θd25R (f − e)θd35R e (e− f)θd54R

0 −eθd25Rθ
d
54R −eθd35Rθ

d
54R (e− f)θd54R f


,

(8.27)

where it can confirm two relations hold for the zeros appearing in the first row and

column of Dd′
L : θd13L ' θd12Lθ

d
23L and θd15L ' θd12Lθ

d
25L. Following the analytic mixings

given in Equation C.28, the left-handed down type quark sector can access to all

mixings among the three SM generations and this feature is also reflected on a

numerical mixing matrix V d
L of Equation C.37. What this implies is the SM Z physics

does not get affected by any specific basis we choose and this will be verified again

numerically in Appendix C.5.





149

Chapter 9

Phenomenology in both quark

and charged lepton sectors due to

SM Z guague boson FCNCs

In this chapter, we discuss how to constrain our vector-like fermion fields in the third

BSM model covered in chapter 8 using the diverse FCNC observables. As the first SM

generation remains massless, our main observables consist of the second and third

generation of the SM. In the charged lepton sector, the FCNC observables such as

τ → µγ, τ → 3µ and Z → µτ are discussed and none of them can significantly

constrain our predictions. In the quark sector, the main observables would be the rare

t→ cZ decay and the CKM mixing matrix and we discuss the most challenging part

arises from fitting the CKM mixing matrix. Then, we conclude this paper, predicting

each range of vector-like quarks and charged leptons.

9.1 Phenomenology in the charged lepton sector of the

SM

Now that we have defined all required mixings and coupling constants in both quark

and charged lepton sectors, it is time to discuss the relevant phenomenology. As

mentioned in the introduction, one of our main goals is to study the FCNC observables

to constrain the possible mass range of the vector-like fermions. Given that the second

and third generations of SM charged leptons acquire masses through their mixings

with the fourth vector-like charged leptons, we will restrict our analysis to the

constraints imposed on the flavor violating decays involving the second and third

charged lepton generations such as τ → µγ, τ → µµµ and lastly Z → µτ decay.
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9.1.1 Analytic expression for τ → µγ decay

The most important FCNC constraint corresponds to the charged lepton flavor

violating (CLFV) µ→ eγ decay, however we can not make an appropriate prediction

for the constraint as the electron does not acquire a mass in the model under

consideration. This is due to the fact that the fermion sector of the model includes two

heavy fermionic seesaw mediators. As previously mentioned, adding a fifth vector-like

family to the fermion sector of the model will generate a nonvanishing electron.

However in order to keep our model as economical as possible and to simplify our

analysis corresponding to the FCNC constraints on vector-like masses, we restrict to

the case of a fourth vector-like family in the fermionic spectrum. Therefore, in view of

the aforementioned considerations, we first consider the CLFV decay τ → µγ in order

to determine how the model parameter space gets affected by the experimental

constraint arising from this decay. For the τ → µγ decay, the leading order

contribution appears in the one-loop diagrams since there is no possible contribution at

tree-level. Then, all possible Feynman diagrams contributing to the τ → µγ decay are

given in Figure 9.1,

Figure 9.1: Diagrams contributing to the charged lepton flavor violation (CLFV)
τ → µγ decay at one-loop level in the mass basis. The cross notation in each diagram

means the helicity flip process.
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where gLL(RR) are the LH-LH (RH-RH) coupling constants defined in the mass basis

for the charged lepton sector. These one-loop contributions mediated by the Z ′ boson

were studied in one of our previous works [89] and their corresponding analytic

prediction for the branching ratio of τ → µγ decay is given in

Equation 9.1 [59,61,63,64,89] shown below:

BR (τ → µγ) =
αem

1024π4

m5
τ

M4
ZΓτ

×
(
|gLτµgLµµF (xµ) + gLττg

L
τµF (xτ ) + gLτE4

gLE4µF (xE4) + gL
τẼ4

gL
Ẽ4µ

F (x
Ẽ4

)

+
mµ

mτ
gLτµg

L
µµF (xµ) +

mµ

mτ
gLττg

L
τµF (xτ ) +

mµ

mτ
gLτE4

gLE4µF (xE4) +
mµ

mτ
gL
τẼ4

gL
Ẽ4µ

F (x
Ẽ4

)

+
mµ

mτ
gLτµg

R
µµG(xµ) +

mτ

mτ
gLττg

R
τµG(xµ) +

ME4

mτ
gLτE4

gR
Ẽ4µ

G(xE4) +
M
Ẽ4

mτ
gL
τẼ4

gRE4µG(x
Ẽ4

)|2

+ |gRτµgRµµF (xµ) + gRττg
R
τµF (xτ ) + gRτE4

gRE4µF (xE4) + gR
τẼ4

gR
Ẽ4µ

F (x
Ẽ4

)

+
mµ

mτ
gRτµg

R
µµF (xµ) +

mµ

mτ
gRττg

R
τµF (xτ ) +

mµ

mτ
gRτE4

gRE4µF (xE4) +
mµ

mτ
gR
τẼ4

gR
Ẽ4µ

F (x
Ẽ4

)

+
mµ

mτ
gRτµg

L
µµG(xµ) +

mτ

mτ
gRττg

L
τµG(xµ) +

M
Ẽ4

mτ
gRτE4

gL
Ẽ4µ

G(x
Ẽ4

) +
ME4

mτ
gR
τẼ4

gLE4µG(xE4)|2
)
,

(9.1)

where αem is the fine structure constant, Γτ is the total decay width of the tau lepton

(Γτ = 5× Γ(τ−L → ντe
−
Lνe) = 2.0× 10−12) and F and G are the loop functions defined

by:

F (x) =
5x4 − 14x3 + 39x2 − 38x− 18x2 lnx+ 8

12(1− x)4

G(x) =
x3 + 3x− 6x lnx− 4

2(1− x)3
, x =

m2
loop

M2
Z

(9.2)

where mloop is the propagating mass of the charged leptons in the loop. The most

dominant contributions to the τ → µγ branching ratio correspond to the terms

proportional to M
E4(Ẽ4)

/mτ because charged vector-like leptons are heavier than 200

GeV, thus implying that the enhancement factor M
E4(Ẽ4)

/mτ makes those

contributions much larger than the ones not involving this factor. However, the

contributions to the τ → µγ decay rate involving the terms having the aforementioned

proportionality factor do not keep increasing as the vector-like fermions get heavier

since their flavor violating coupling constants get more suppressed at the same time by

the small mixing angles, defined by the ratio between Yukawa and vector-like masses.

Therefore, these compensations provide some balanced relation between the vector-like

mass and the coupling of the Z gauge boson with a SM charged antilepton (lepton)

and heavy charged vector-like (antilepton) lepton. The experimental bound for the

branching ratio of τ → µγ decay is given by:

BR (τ → µγ)EXP = 4.4× 10−8 (9.3)



152
Chapter 9. Phenomenology in both quark and charged lepton sectors due to SM Z

guague boson FCNCs

9.1.2 Analytic expression for τ → µµµ decay

The other interesting flavor violating decay mode is the τ → µµµ decay mediated by

the SM Z gauge boson. As the model under consideration has Z mediated

renormalizable flavor violating interactions, we can draw the Feynman diagrams for

the τ → µµµ decay at tree-level as given in Figure 9.2.

Figure 9.2: Diagrams contributing to the charged lepton flavor violation (CLFV)
τ → 3µ decay at tree-level. We refer to the top-left diagram asMLL and the top-right

as MRR and similarly for the two below diagrams as MLR,RL, respectively.

The contributions shown in Figure 9.2 are beyond Standard Model (BSM) effects, thus

they need to be computed to set constraints on the model parameter space. In order to

derive an analytic expression for the CLFV τ → 3µ decay rate mediated by the SM Z

gauge boson, we start by writting down its definition as follows:

dΓ (τ → 3µ) =
1

2mτ

d3p2

(2π)32E2

d3p3

(2π)32E3

d3p4

(2π)32E4
|M|2 (2π)4 δ4 (p1 − p2 − p3 − p4)

(9.4)

Evaluating each polarized diagram in Figure 9.2, it yields the following result:

|MLL|2 =

(
gLµτg

L
µµ

4M2
Z

)2

256 (p1 · p3) (p2 · p4) , |MRR|2 =

(
gRµτg

R
µµ

4M2
Z

)2

256 (p2 · p4) (p1 · p3)

|MLR|2 =

(
gLµτg

R
µµ

4M2
Z

)2

256 (p1 · p4) (p2 · p3) , |MRL|2 =

(
gRµτg

L
µµ

4M2
Z

)2

256 (p1 · p4) (p2 · p3)

(9.5)
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We are now ready to determine the squared amplitude averaged and summed over the

initial and final spin states.

1

2

∑
spin

|M|2 =
1

2

(
|MLL|2 + |MRR|2 + |MLR|2 + |MRL|2

)
=

8

M4
Z

[(
g2L
µτ g

2L
µµ + g2R

µτ g
2R
µµ

)
(p1 · p3) (p2 · p4) +

(
g2L
µτ g

2R
µµ + g2R

µτ g
2L
µµ

)
(p1 · p4) (p2 · p3)

]
(9.6)

The momentum of the particles involved in the τ → 3µ are written in the rest frame as

follows:

p1 = (mτ ,~0)

p2 = (E2, ~p2)

p3 = (mτ − E2 − E4,−~p2 − ~p4)

p4 = (E4, ~p4)

(9.7)

Then, we can carry out the inner products of momenta taking into account the

momentum conservation (p1 = p2 + p3 + p4).

p1 · p3 = mτ (mτ − E2 − E4)

p2 · p4 =
1

2

(
−m2

τ −m2
µ + 2mτ (E2 + E4)

)
p1 · p4 = mτE4

p2 · p3 =
1

2

(
m2
τ −m2

µ − 2mτE4

)
(9.8)

We can rewrite the squared amplitude in terms of the mass parameters after

simplifying the summing over the diverse coupling constants to g1,2, respectively

(g1 = g2L
µτ g

2L
µµ + g2R

µτ g
2R
µµ , g2 = g2L

µτ g
2R
µµ + g2R

µτ g
2L
µµ).

1

2

∑
spin

|M (g1, g2, E2, E4)|2 =
4

M4
Z

[
g1

(
m2
τ −mτ (E2 + E4)

) (
−m2

τ −m2
µ + 2mτ (E2 + E4)

)
+ g2 (mτE4)

(
m2
τ −m2

µ − 2mτE4

) ]
(9.9)

Now it is time to evaluate the three body phase space integral by turning it into an

effective two-body phase integral as follows (we simply drop out the prefactor 1/(2π)5

for simplicity in this derivation while keeping the prefactor in the computation of the
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aforementioned partial decay width).

d3p2

2E2

d3p3

2E3

d3p4

2E4
δ4 (p1 − p2 − p3 − p4) =

d3p2

2E2
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3

)
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3
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2E4
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=
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2E2
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2E4
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4
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δ
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2E2

d3p4

2E4
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4
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δ
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2 + 2p2 · p4 + p2

4)
)
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2E2
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2E4
Θ
(
p0

1 − p0
2 − p0

4

)
δ
(
m2
τ + 2m2

µ − 2mτ (E2 + E4) + 2(E2E4 − |~p2||~p4| cos θ)
)

=
d3p2

2E2

d3p4

2E4
Θ
(
p0

1 − p0
2 − p0

4

) 1

2|~p2||~p4|
δ

(
m2
τ + 2m2

µ − 2mτ (E2 + E4) + 2E2E4

2|~p2||~p4|
− cos θ

)
(9.10)

From the delta function, we can determine the integration range by assuming

E2 ≈ |~p2|, E4 ≈ |~p4|. When cos θ = 1, the obtained result is

m2
τ + 2m2

µ − 2mτ (E2 + E4) = 0 (9.11)

From Equation 9.11, the integration range can be read off as follows:

m2
µ

mτ
≤ E2 ≤

1

2
mτ ,

1

2
mτ +

m2
µ

mτ
− E2 ≤ E4 ≤

1

2
mτ (9.12)

It can be easily understood that once one mass parameter E2 is set up by 1
2mτ , the

energy of the other mass parameters E4, E3 must be given by
m2
µ

mτ
, 1

2mτ −
m2
µ

mτ
,

respectively. Then, it remains to simplify the effective two body phase space integral

as follows.

d3p2d
3p4 = 4π|~p2|2d|~p2|2π|~p4|d|~p4|d cos θ, |~p2|d|~p2| = E2dE2, |~p4|d|~p4| = E4dE4

(9.13)

Putting all pieces together, the decay width for the CLFV τ → 3µ decay at tree-level

after carrying out the cos θ integration is given by:

Γ (τ → 3µ) =
1

64mτπ3

∫ 1
2
mτ

m2
µ/mτ

∫ 1
2
mτ

1
2
mτ+

m2
µ

mτ
−E2

1

2

∑
spin

|M (g1, g2, E2, E4)|2
 dE4dE2

(9.14)

The experimental bound for the τ → 3µ decay is given by:

BR (τ → 3µ)EXP = 2.1× 10−8 (9.15)
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9.1.3 Analytic expression for Z → µτ decay

The last FCNC constraint we discuss is the Z → µτ decay and diagrams contributing

to the Z → µτ decay are given in Figure 9.3.

Figure 9.3: Diagrams contributing to the charged lepton flavor violation (CLFV) Zτµ
decay at tree-level

As in the CLFV τ → 3µ decay mediated by the SM Z gauge boson, this CLFV

Z → µτ decay is also a new effect and it requires to derive its appropriate prediction

from the ground. We can read off the invariant amplitude for each diagram given in

Figure 9.3. We refer to the left diagram as ML and the right as MR. Then, the

amplitudes are written as follows:

iML = i(gL)τµεµ(p1)u(p2)γµPLv(p3),

iMR = i(gR)τµεµ(p1)u(p2)γµPRv(p3).
(9.16)

In order to have the squared amplitude averaged and summed, we square the

amplitude given in Equation 9.16 as follows:
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=
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(9.17)

Then, the decay rate equation is given by:

dΓ (Z → µτ) =
1

2MZ

d3p2

(2π)32E2

d3p3

(2π)32E3
|M|2(2π)4δ(4) (p1 − p2 − p3)

Γ (Z → µτ) =
|p∗|

32π2M2
Z

∫
|M|2dΩ

=
MZ

24π

(
(gL)2

τµ + (gR)2
τµ

)
(9.18)
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where p∗ 'MZ/2. Then, we are ready to write our prediction for the branching ratio

of Zµτ decay at tree-level

BR (Z → µτ) =
Γ (Z → µτ)

ΓZ
' 1

2.5

MZ

24π

(
(gL)2

τµ + (gR)2
τµ

)
, (9.19)

where ΓZ is the total decay width of the SM Z gauge boson (ΓZ ' 2.5 GeV). The

experimental bound of the CLFV Z → µτ decay is known as:

BR (Z → µτ)EXP = 1.2× 10−5 (9.20)

9.1.4 Numerical analysis for each prediction in the charged lepton

sector

We have discussed some relevant CLFV decay modes such as the τ → µγ, τ → 3µ and

Z → µτ from a theoretical point of view. By defining the renormalizable flavor

violating interactions we showed that it is possible for the new physics to arise in a

simple scenario thanks to the presence of vector-like charged leptons, which play a

crucial role for these CLFV decay modes to happen. It is an encouraging feature that

the mass range of the vector-like charged leptons can be constrained by the

experimental bound of the CLFV decays and numerical scans for this feature will be

discussed in detail in the following subsection.

9.1.4.1 Free parameter setup

For the numerical scan for the charged lepton sector, we first proceed to set up a

possible mass range of the mass parameters of Equation 8.9.
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Mass parameter Scanned Region(GeV)

ye24vd = m24 ±[1, 10]

ye34vd = m34 ±[1, 10]

ye43vd = m43 ±[1, 10]

xL34vφ = m35 ±[50, 200]

xe42vφ = m52 ±[50, 200]

xe43vφ = m53 ±[50, 200]

ML
45 ±[150, 2000]

M e
54 ±[150, 2000]

Table 9.1: Initial parameter setup for scanning the mass of the vector-like charged
leptons

There are a few of features to be noticed before we start the numerical scan.

1. We assumed a vev for the SM up-type Higgs Hu very close to 246 GeV, whereas

the one of the SM down-type Higgs Hd is assumed to be very small compared to

the vu = 〈Hu〉 and is ranged from 1 to 10 GeV. The two vevs hold the relation

v2
u + v2

d = (246 GeV)2. We made that assumption since we are considering an

scenario close to the decoupling limit where the neutral CP even part of Hu is

mostly identified with the 126 GeV SM like Higgs boson.

2. As the vev of the singlet flavon φ is a free parameter, we varied it in the range

[50, 200] GeV whereas the mass parameters m35,52,53 were varied in a range of

values consistent with the observed hierarchical structure of the charged lepton

masses. Furthermore, the vector-like masses are also other free parameters

assumed to be larger or equal than 150 GeV in order to successfully fulfill the

experimental bounds on exotic charged lepton masses.

3. What we need to constrain in this numerical scan is the predicted muon and tau

masses as well as the 23 mixing angle. For the muon and tau masses, we required

that the obtained values of the muon and tau masses to be in the range

[1± 0.1]×mµ,τ . Considering that the sizeable off-diagonal elements of the PMNS

mixing matrix mainly arise from the neutrino sector, all mixing angles in the

charged lepton sector are required to be as small as possible and thus we limit

them to be lower than 0.2.
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9.1.4.2 Numerical scan result for the charged lepton sector

The scanned mass range of the vector-like charged leptons are shown in Figure 9.4.

Figure 9.4: Scanned mass region of the vector-like charged leptons and contributions
of the flavor violating interactions with the SM Z gauge boson to the diverse CLFV
decays τ → µγ, τ → 3µ and Z → µτ . The used constraints are the predicted muon
and tau mass to be put between [1 ± 0.1] ×mµ,τ and the 23 mixing angle to be less
than 0.2. The darker blue region appearing in each diagram means either the singlet
or doublet vector-like masses MẼ4

,ME4
are excluded up to 200 GeV by reference [144].

The brighter blue region means the doublet vector-like mass ME4
is excluded up to

790 GeV by the CMS [159, 160]. The brighter red region appearing in above two plots
is the region excluded by the experimental bound for the BR (τ → µγ)EXP = 4.4×10−8.
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The first we need to discuss is the experimental bounds for the vector-like charged

leptons appearing in Figure 9.4. The darker blue region is the excluded region for the

vector-like charged leptons by 200 GeV [144]. The vector-like mass ME4 consists of the

doublet vector-like charged leptons E4L, Ẽ4R, whereas the other vector-like mass M
Ẽ4

consists of the singlet vector-like charged leptons Ẽ4L, E4R. Therefore, ME4 is the

doublet vector-like mass, whereas M
Ẽ4

is the singlet vector-like mass, and the doublet

vector-like mass is excluded by CMS up to 790 GeV [159,160], expressed by the

brighter blue region of Figure 9.4. The second is our predictions for the branching

ratio of τ → µγ in Figure 9.4. The relevant experimental bound for each CLFV decay

is given by:

BR (τ → µγ)EXP = 4.4× 10−8

− Log10 BR (τ → µγ)EXP ' −7.4

BR (τ → 3µ)EXP = 2.1× 10−8

− Log10 BR (τ → 3µ)EXP ' −7.7

BR (Z → µτ)EXP = 1.2× 10−5

− Log10 BR (Z → µτ)EXP ' −4.9

(9.21)

Our predictions for the CLFV τ → 3µ and Z → µτ decays are not excluded by the

experimental bound, however those are not the case for the CLFV decay τ → µγ,

which exceed its upper experimental bound in some parts of the parameter space. This

is due to, in some parts of the parameter space, the dominant contributions to the

τ → µγ decay involving a charged exotic lepton as well as chirality flip in the internal

line and proportional to M/mτ because of the sizeable large value of the charged

exotic lepton - SM charged lepton mass ratio. After removing all excluded points by

the experimental bound of the τ → µγ decay, we obtain Figure 9.5.
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Figure 9.5: Reduced number of numerical predictions. The numerical predictions are
constrained by the experimental value of the branching ratio of τ → µγ decay. None
of them are constrained by the branching ratio of τ → 3µ and Z → µτ experimental

bounds.

Looking at our numerical predictions for the branching ratio of the τ → µγ decay

shown in Figure 9.5, some of them are constrained by the experimental limit of this

branching ratio, however most of them survive, which implies that our numerical

predictions for the branching ratio of τ → µγ are not significantly constrained by its

experimental bound. Furthermore, none of the numerical predictions for the branching

ratios of the τ → 3µ and Z → µτ decays are constrained by its experimental bound.

However, our numerical predictions for the different CLFV decays can significantly be
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constrained by the future LHC upgrades having higher center of mass energy and

luminosity than the ones of the current LHC, which will allow to set tighest constraints

on charged exotic vector-like masses, thus leading to stronger constraints on the model

parameter space. Regarding the CLFV Z → µτ decay, the FCC-ee experiment has

planned to generate 1012 SM Z gauge bosons, which will allow to probe our model since

the branching ratio of the Z → µτ decay can reach values of the order of 10−10 in the

allowed region of the parameter space. Thus, the Z → µτ decay is within the reach of

the FCC-ee experiment, whose Z factory [161,162] will be crucial to verify or rule out

this model. Concluding this subsection, our numerical predictions are not significantly

constrained by any of the CLFV τ → µγ, τ → 3µ and Z → µτ decays and might be

able to be seen from the Z factory for the first time, predicting the doublet vector-like

charged lepton mass which is ranged from 790 to 1600 GeV whereas the singlet

vector-like charged lepton mass is ranged from 500 to 2000 GeV or above than that.

9.2 Quark sector phenomenology

We have discussed the up- and down-type quark mass matrices pointed out that they

have a different form, since the quark doublet rotation used in the up-type quark

sector can not remove the down-type Yukawa term. This difference between up- and

down-type quark mass matrices cause a distinct feature for each sector as follows:

• The up-type quark mass matrix can reach to the 23 left (right)-handed mixing.

• The down-type quark mass matrix can access to all left-handed mixings among

the three SM generations, whereas the right-handed mixing can only have the 23

mixing.

The interesting feature of the down-type quark mass matrix allows for flavor changing

Z interactions with down type quarks which yield neutral meson oscillations such as

K,Bd and Bs. Furthermore, an important feature to be mentioned is that the first

generation of SM charged fermions do not acquire masses. Due to this property, our

predictions for the neutral meson oscillations including the d quark give a very

suppressed energy difference corresponding to 10−40 GeV, which is impossible to reach

with the current experimental sensitivity. Then, the rest of the neutral meson

oscillation Bs is possible and an encouraging feature of the Bs meson oscillation in our

proposed model is the Bs meson oscillation mediated by the SM Z gauge boson can be

calculated at tree-level as given in Figure 9.6.
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Figure 9.6: Feynman diagrams contributing to the the Bs−B̄s meson mixing involving
the tree-level exchange of the Z gauge boson in the polarized basis

From our numerical analysis we have found that the BSM contributions to the Bs

meson oscillation arising from the tree-level exchange of the Z gauge boson yield the

meson mass splitting of the order of 10−15 GeV or even less than that value, which is

quite negligible compared to its corresponding experimental bound of 10−11 GeV. The

very suppressed new physics effect for the Bs meson oscillation can be explained by

considering the flavor violating coupling constants at each vertex of each diagram,

whose value is about 10−6,−7 and this values are determined by the ratio between

Yukawa and vector-like masses. For this reason, in the study of the phenomenological

implications of our model in the flavor changing neutral interactions in the quark

sector, we do not consider the neutral meson oscillations as well as the Bs → µ+µ−

decay. It is worth mentioning that the Bs → µ+µ− decay gives weaker effects than the

neutral meson oscillations. Considering these facts, we conclude that the rare t→ cZ

decay and the CKM mixing matrix can constrain the quark sector of our model, and

thus we discuss these two phenomenological aspects in the following subsections.

9.2.1 Analytic expression for the t→ cZ decay

The t→ cZ decay, which only appears at one-loop level in the SM, can take place at

tree-level in our proposed model, thanks to the Z mediated flavor changing neutral

current interactions in the quark sector. In our proposed model, the t→ cZ receives

tree-level contributions which are depicted in Figure 9.7.

Figure 9.7: tree-level Feynman diagrams contributing to the rare t→ cZ decay
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Denoting the invariant amplitudes for the Feynman diagrams of the left and right

panels of Figure 9.7 as ML and MR, respectively, we find that they can be written as:

iML = i(gL)tcε
∗
µ(p3)u(p2)γµPLu(p1)

iMR = i(gR)tcε
∗
µ(p3)u(p2)γµPRu(p1)

(9.22)

In order to have the squared amplitude averaged and summed, we square the

amplitudes given in Equation 9.22 and then sum over the different spin states, as

follows:

1
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∑
spin
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2

M2
Z
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)
1

2

∑
spin
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2

M2
Z

(p2 · p3)(p1 · p3)

)
1

2
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spin

|M|2 =
1

2

∑
spin

(
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)
=

1

2

(
(gL)2

ct + (gR)2
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)(
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2

M2
Z

(p2 · p3)(p1 · p3)

)
(9.23)

Then, the decay rate equation is given by:

dΓ (t→ cZ) =
1

2mt

d3p2

(2π)32E2

d3p3

(2π)32E3
|M|2(2π)4δ(4) (p1 − p2 − p3)

Γ (t→ cZ) =
|p∗|

32π2m2
t

∫
|M|2dΩ

=
1

8πm2
t

1

2mt
(m2

t −M2
Z)((gL)2

ct + (gR)2
ct)

×
[
m2
t +m2

c −M2
Z

2
+

2

M2
Z

(
m2
t −m2

c −M2
Z

2
)(
m2
t −m2

c +M2
Z

2
)

]
(9.24)

where p∗ ' 1
2mt

(
m2
t −M2

Z

)
. Then, we are ready to write down our prediction for the

branching ratio of the tree-level t→ cZ decay:

BR (t→ cZ) =
Γ (t→ cZ)

Γt
< BR (t→ cZ)EXP = 2.4× 10−4 (95% CL) (9.25)

where Γt = 1.32 GeV.

9.2.2 Analytic expression for the CKM mixing matrix

In order to discuss the CKM mixing matrix, the first task we need to investigate is the

W current of the SM in order to see how the CKM mixing matrix can take place (we

only consider the three SM generations at the moment).

LWSM = gjW+
µ Wµ+ =

g√
2

(
uiLγµd

i
L

)
Wµ+

=
g√
2

(
uiL(V u†

L V u
L )γµ(V d†

L V d
L )diL

)
Wµ+ =

g√
2

(
ui′Lγµ(VCKM)di′L

)
Wµ+

(9.26)
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where ui′L, d
i′
L are the up- and down-type quarks of the SM in the mass basis and VCKM

is the CKM mixing matrix defined as V u
L V

d†
L . Now we extend the quark spectrum by

considering the vector-like quarks, thus implying that the W current takes the form:

LW =
g√
2

(
u1L u2L u3L u4L ũ4L

)
γµ


1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 0




d1L

d2L

d3L

d4L

d̃4L

Wµ+

=
g√
2

(
u1L u2L u3L u4L ũ4L

)
V u†
L V u

L γµ


1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 0

V d†
L V d

L


d1L

d2L

d3L

d4L

d̃4L

Wµ+

=
g√
2

(
uL cL tL U4L Ũ4L

)
γµV

u
L


1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 0

V d†
L


dL

sL

bL

D4L

D̃4L

Wµ+

(9.27)

where the CKM mixing prediction in our model is given by

VCKM = V u
L


1 0 0 0 0

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

0 0 0 0 0

V d†
L , for the upper-left 3× 3 block (9.28)

where V u
L is the mixing matrix for the up-type quarks defined in Equation 8.13 and V d

L

is the one corresponding to the down-type quarks given in Equation 8.15. The zero

appearing in the middle matrix between V u
L and V d†

L arises from the left-handed

vector-like quark singlets Ũ4L and D̃4L which do not interact with the W currents, so

our prediction for the CKM mixing matrix does not feature the unitarity requirement

and this leads to the need of relaxing the unitarity constraint of the CKM quark

mixing matrix. That deviation of unitarity of the CKM quark mixing matrix is due to

the presence of heavy vector-like quarks and this aspect was studied in [150] in the

context of theory with different particle spectrum and symmetry than ours. Few sigma

of SM deviations from the first row of the CKM mixing matrix without unitarity were

analyzed in [150]. The deviation from the Unitarity of the CKM will also be discussed

in our numerical result and the experimental CKM mixing matrix without unitarity is
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given by [150,151]:

|KCKM| =


0.97370± 0.00014 0.22450± 0.00080 0.00382± 0.00024

0.22100± 0.00400 0.98700± 0.01100 0.04100± 0.00140

0.00800± 0.00030 0.03880± 0.00110 1.01300± 0.03000

 (9.29)

9.2.3 Numerical analysis for each prediction in the quark sector

When compared to the charged lepton sector simulation, the quark sector becomes

much more complicated since we need to fit the masses of the c, t, s and b quarks

simultaneously as well as the CKM mixing matrix without imposing the unitarity

requirement. Therefore, we fit the masses of the four quarks first by using a fitting

function χ2
mass and then we start a second fitting procedure by using another fitting

function χ2
CKM and this will be discussed in detail in the following subsections.

9.2.3.1 The fitting function χ2 and free parameter setup

We set up our parameter region as follows:
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Mass parameter Scanned Region(GeV)

yu24vu = mu
24 ±[10, 50]

yu34vu = mu
34 ±[200, 400]

yu43vu = mu
43 ±[200, 400]

xQ34vφ = mQ
35 mQ

35

xu42vφ = mu
52 ±[500, 700]

xu43vφ = mu
53 ±[50, 500]

MQ
45 MQ

45

Mu
54 ±[1000, 3000]

yd14vd = md
14 ±[1, 10]

yd24vd = md
24 ±[5, 20]

yd34vd = md
34 ±[10, 30]

yd43vd = md
43 ±[5, 10]

xQ34vφ = mQ
35 ±[10, 100]

xd42vφ = md
52 ±[10, 100]

xd43vφ = md
53 ±[10, 100]

MQ
45 ±[1000, 3000]

Md
54 ±[1000, 3000]

Table 9.2: Initial parameter setup for scanning mass of the vector-like quarks

There are a few things to be noticed as in the charged lepton case.

1. The relation v2
u + v2

d = (246 GeV)2 still holds and the mass parameters mu
24,34,43

can not exceed the upper perturbative limit on the Yukawa constant
√

4π ' 3.54

multiplied by the vev ≈ 240 GeV, of the Hu Higgs, thus yielding the bound of

850 GeV for these mass parameters. These restrictions have been taken into

account through the whole fitting process.
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2. The down-type Higgs Hd has a very small vev, which is about order of 10 GeV,

based on our previous analysis [148], and the range of values of the mass

parameters md
14,24,34,43 are considered under this assumption.

3. Since we do not know the correct scale of vφ, we considered mQ
35,m

u
52,53 and

md
52,53 as free parameters. For the same reason, the vector-like masses MQ

45 and

Mu,d
54 are considered free parameters as well.

4. The mass parameters mQ
35 and MQ

45 appear in a common term shared by both up-

and down-type quark sector mass matrices and this feature has been discussed in

the paragraph below Equation 8.14.

The next thing to do is to set up the two fitting functions χ2
mass and χ2

CKM as follows:

χ2
mass =

∑
f=c,t,s,b

=
(mpred

f −mEXP
f )2

(δmEXP
f )2

, χ2
CKM =

∑
i,j=1,2,3

((V pred
CKM)ij − (V EXP

CKM)ij)
2

((δV EXP
CKM)ij)2

,

(9.30)

where the superscript pred means our prediction to its experimental value and the

delta means error bar of the physical quantity at 1σ. Our first goal is to fit the masses

of the four quarks simultaneously. For the charged lepton case, we require that our

obtained muon and tau masses to be in the range [1± 0.1]×mµ,τ and this requirement

is also imposed for the c, s and b quarks excepting for the t quark since the t quark is

too heavy. Besides that, we require that the obtained top quark mass to be in the

range [1± 0.01]×mt instead of [1± 0.1]×mt. After the mass parameters have been

converged to be put between the arranged range of each quark mass, we use the other

fitting function χ2
CKM to fit our prediction for the CKM mixing matrix. Using one of

the defined fitting functions, we need to vary the mass parameters of Table 9.2 by a

factor of [1± κ] where κ = 0.1 in order to find better mass parameters. We rename the

given parameters from the initial parameter setup by adding an subscript r to the

mass parameters. The varied mass parameters are given in Table 9.3.
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Mass parameter Scanned Region(GeV)

yu24vu = mu
24 [1± κ]×mu

24r

yu34vu = mu
34 [1± κ]×mu

34r

yu43vu = mu
43 [1± κ]×mu

43r

xQ34vφ = mQ
35 mQ

35

xu42vφ = mu
52 [1± κ]×mu

42r

xu43vφ = mu
53 [1± κ]×mu

43r

MQ
45 MQ

45

Mu
54 [1± κ]×Mu

54r

yd14vd = md
14 [1± κ]×md

14r

yd24vd = md
24 [1± κ]×md

24r

yd34vd = md
34 [1± κ]×md

34r

yd43vd = md
43 [1± κ]×md

43r

xQ34vφ = mQ
35 [1± κ]×mQ

35r

xd42vφ = md
52 [1± κ]×md

42r

xd43vφ = md
53 [1± κ]×md

43r

MQ
45 [1± κ]×MQ

45r

Md
54 [1± κ]×Md

54r

κ 0.1

Table 9.3: Next parameter setup after the initial parameter setup to find better mass
parameters

We vary the parameter space given in Table 9.3 by first using the fitting function χ2
mass

in order to find a suitable mass prediction for the four quarks t, b, c and b. Once the

obtained masses of these quarks are allocated in the ranges ([1± 0.1]×mc,s,b and

[1± 0.01]×mt), we proceed to fit the CKM quark mixing matrix once more by using

the other fitting function χ2
CKM and it is worth mentioning that fitting the CKM

mixing matrix is much more challenging due to the very small experimental errors of
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the CKM matrix elements. We display a benchmark point most converged for the

CKM mixing matrix at the next subsection to discuss the possible deviation from the

SM result arising from the first row of the CKM mixing matrix.

9.2.3.2 Numerical scan result for the quark sector

We start with the most converged benchmark point (χ2
CKM = 956.828) after repeating

the varying many times

Mu =



0 0 0 0 0

0 0 0 0 14.474

0 0 0 1206.340 277.563

0 0 273.503 −1775.200 0

0 550.990 434.462 0 −5624.050



Md =



0 0 0 0 −0.938

0 0 0 0 −4.041

0 0 0 1206.340 −27.427

0 0 −5.636 −1775.200 0

0 72.915 −75.760 0 2623.620



Mu
diag =



0 0 0 0 0

0 1.255 0 0 0

0 0 171.303 0 0

0 0 0 2155.890 0

0 0 0 0 5674.840



Md
diag =



0 0 0 0 0

0 0.094 0 0 0

0 0 3.875 0 0

0 0 0 2146.190 0

0 0 0 0 2625.960


,

(9.31)

where the above two mass matrices of Equation 9.31 are the mass matrices for the up-

and down-type quarks in the flavor basis, whereas the below two mass matrices are

ones fully diagonalized, so revealing all propagating quark mass. From the mass

matrices of Equation 9.31, we have the mixing matrices V u
L and V d

L and arrive to our
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CKM prediction using the formula of Equation 9.28.

V pred
CKM =



0.97409 0.22602 0.00799 −6.38471× 10−6 −0.00036

0.22615 −0.97372 −0.02697 3.80102× 10−5 0.00147

0.00166 0.02815 −0.99880 −0.00766 0.00874

0.00003 0.00019 −0.00916 0.99919 −0.01773

−0.00057 0.00112 0.03812 0.03539 −0.00096


(9.32)

where a feature we should remember is the left-handed down-quark sector are able to

reach to all mixings among the three SM generations, whereas the only left-handed 23

mixing is allowed for the up-quark sector in this BSM model. The experimental CKM

mixing matrix without unitarity is given in Equation 9.33.

|KCKM| =


0.97370± 0.00014 0.22450± 0.00080 0.00382± 0.00024

0.22100± 0.00400 0.98700± 0.01100 0.04100± 0.00140

0.00800± 0.00030 0.03880± 0.00110 1.01300± 0.03000

 (9.33)

Restricting our attention to the upper-left 3× 3 block of Equation 9.32, it can be

compared to its experimental bound given in Equation 9.33. In order to confirm that

our prediction for the CKM mixing matrix is consistent with the experimental data, it

requires for the upper-left 3× 3 block of Equation 9.32 to be inside the 3σ

experimentally allowed range as follows:

|(KCKM)ij |−3|(δKCKM)ij | < |(V pred
CKM)ij | < |(KCKM)ij |+3|(δKCKM)ij , |, for i, j = 1, 2, 3

(9.34)

and we confirm that the 13, 23, 31, 32 elements in the CKM prediction of Equation 9.32

cannot be fitted within the 3σ range with a small difference. From our numerical

analysis we find that in our model the CKM quark mixing matrix mainly arises from

the down type quark sector and has a subleading correction coming from the up type

quark sector. It is worth mentioning that the inclusion of an additional vector-like

family in our proposed model to provide masses for the first generation of SM charged

fermions will lead to an improvement of our predictions related to the CKM quark

mixing matrix. However, that approach of having a fifth vector-like fermion family goes

beyond the scope in this work and is deferred for a future publication. Furthermore, in

this section we also discuss the possible deviation of the first row of the CKM mixing

matrix without unitarity and this study is also covered in this reference [150] with an

isosinglet vector-like quark in a model different than the one considered in this paper.

According to [150], the deviation ∆ of unitarity is defined as follows:

∆ = 1− |Vud|2 − |Vus|2 − |Vub|2, (9.35)
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and its experimental value is given by [164].

√
∆ ∼ 0.04 (9.36)

Calculating the deviation of unitarity ∆ from the best fitted CKM prediction of

Equation 9.32, the result is

√
∆ ' 0.00035 (9.37)

Therefore, the deviation of unitarity derived from the model under consideration is too

small to be observed compared to its experimental bound given in Equation 9.36.

Lastly, we discuss the rare t→ cZ decay and collect all benchmark points satisfying

χ2
CKM < 980 (notice that the most converged point reports χ2

CKM = 956.828).

Figure 9.8: Scanned mass region of the vector-like quarks and contributions of the
flavor violating interactions with the SM Z gauge boson to the rare t → cZ decay.
The used constraints are the predicted c, s, b and t quark mass to be put between

[1± 0.1]×mc,s,b and [1± 0.01]×mt and the CKM mixing matrix.

Figure 9.8 displays the allowed values of vector-like quark masses consistent with the

constraints arising from the rare t→ cZ decay. Our obtained values for the vector-like

quark masses are consistent with their lower experimental bound of 1000 GeV arising

from collider searches. In our numerical analysis the vector-like doublet up-type quark

mass MU4 is ranged from 1850 GeV up to about 2250 GeV and the vector-like singlet

up-type quark mass M
Ũ4

is varied from 4750 GeV to 5800 GeV. Regarding the exotic

down type quark sector, we have varied the vector-like doublet down-type quark mass

MD4 from 1850 GeV up to 2250 GeV and the vector-like singlet down-type quark mass

M
D̃4

from 2450 GeV up to 3000 GeV. As seen from Figure 9.8 the order of magnitude

of the obtained values for the branching ratio of the rare t→ cZ decay range from

10−6 up to 10−5, which is consistent with its current experimental bound, whose

logarithmic value is about −3.6 as indicated by Equation 9.25.
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9.3 Conclusion

In this work we have considered a model where the SM fermion sector is extended by

the inclusion of a fourth vector-like family and the scalar sector is augmented by the

incorporation of an extra scalar doublet and a gauge singlet scalar. In addition, we

have assumed a global U(1)′ symmetry under which all particles are charged except

the SM chiral quark and lepton fields. The model explains the hierarchical structure of

the SM quark and lepton masses by assuming that the SM Yukawa interactions are

forbidden by the U(1)′ symmetry and arise effectively after it is spontaneously broken,

due to induced mixing with the fourth vector-like family. This mixing also results in

non-standard couplings of the W and Z gauge bosons which have been studied here for

the first time.

This setup leads to sizeable branching fractions for the FCNC decays such as µ→ eγ,

Z → µτ and t→ cZ, within the reach of the future experimental sensitivity. These

FCNC decays are studied in detail in this work, in order to set constraints on the

model parameter space. A great advantage of the approach taken in this work with

respect to the ones considered in extensions of the SM having a Z ′ gauge boson is that

it makes the study of the FCNC observables simpler than in the latter since in the

former we can avoid assuming specific values for the unknown U(1)′ coupling and Z ′

gauge boson mass. This makes the present phenomenology based on W and Z gauge

boson couplings more predictive than if the U(1)′ were a spontaneously broken gauge

symmetry, leading to a massive Z ′.

Given that the hierarchical structure of the SM is implemented in our proposed model,

the extended mass matrices for the charged lepton and quark sectors need to be

completely and accurately diagonalised, as the starting point of our analytical and

numerical analysis. Since we only consider a fourth vector-like family, the model

cannot provide masses for the first generation of SM charged fermions, nevertheless this

is a good approximation given that the first generation of the SM fermions are very

light. For this reason, we mainly focus on the study of FCNC observables involving the

second and third generations of SM fermions in both quark and lepton sectors.

In the chosen convenient basis, the different shape of the down-type quark mass matrix

allows all left-handed mixings between the three SM generations, whereas the up type

quark sector can have only the 23 left-handed mixing, while all quarks and charged

lepton have the only 23 right-handed mixing, and we have checked that the results are

basis independent. This feature implies that we can obtain a prediction for the CKM

mixing matrix and this is one of main phenomenological aspects analyzed in this work.

In order to diagonalize the fermionic mass matrices, in an analytic approximation, we

have defined the SU(2) conserving and SU(2) violating mixings and we have shown

that the SU(2) violating mixing plays a crucial role for generating the Z mediated

flavor violating interactions. Furthermore, the extension of the SM fermion sector by
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the inclusion of a vector-like family makes the matrices of Z couplings with fermions

different than the identity matrix due to the appearance of non-zero off-diagonal

matrix elements of the Z coupling matrices which will give rise to flavor violating Z

decays. The non-zero off-diagonal SM Z gauge coupling constants are generally

proportional to two of the small mixing angles, which are defined by the ratio between

the SM fermion and vector-like masses, thus leading to small values.

Defining all the required Z gauge coupling constants with fermions in the mass basis,

as discussed above, we began by analyzing the FCNC processes of the charged lepton

sector. We have found that in the lepton sector, the following three FCNC decays are

allowed: τ → µγ, τ → 3µ and Z → µτ . Regarding the τ → µγ decay, we discussed its

leading contribution, which arises from the Feynman diagrams having a chirality flip in

the internal fermionic lines and being proportional to M/mτ , where M is the mass

scale of the heavy charged vector-like leptons. However, the dominant terms cannot be

as big as the vector-like masses get heavier since their coupling constants get

suppressed at the same time, thus providing a balanced relation between the

vector-like masses and their coupling constants. We have found that our predictions

for the vector-like charged lepton masses are not severely constrained by the τ → µγ

decay since most of the obtained values for the τ → µγ decay are consistent with its

experimental upper bound. In the concerning to the τ → 3µ and Z → µτ decays, we

have derived an analytic expression for their corresponding rates at tree-level finding

that none of our predictions is constrained by the experimental bounds of these decays.

Considering the FCC-ee experiment which have planned to generate 1012 the Z gauge

bosons and our numerical prediction for the Z → µτ branching ratio is of the order of

10−9 at most, thus implying that our model can be tested at the Z factory via the

Z → µτ decay. However, the CMS provided that the doublet vector-like mass can be

constrained up to 790 GeV [144,148] and our numerical predictions for the vector-like

charged leptons are severely constrained by the CMS result. Therefore, we can expect

that the vector-like charged lepton doublet mass is ranged from 790 to nearly

1600 GeV, whereas the vector-like charged lepton singlet mass is ranged from 500 to

2000 GeV or above than that.

Turning to the quark sector phenomenology, we have analyzed the rare t→ cZ decay

as well as the CKM mixing to set constraints on the quark sector parameters. It is

worth mentioning that the neutral meson K,Bd, Bs oscillations do not set constraints

on the quark sector parameters of our model since their new physics effects are quite

negligible compared to the SM expectation. We have derived analytic expressions for

the rare t→ cZ decay as well as for the CKM mixing matrix. Due to the mixings

between SM fermions and vector-like fermions, the CKM quark mixing matrix is not

unitary, thus implying that the unitarity requirement has to be relaxed [150,151].

Using the most converged benchmark point, we showed how dominant the down-type

quark mixing matrix plays a crucial role in the CKM mixing matrix and we discussed

the deviation of unitarity arisen from the first row of the CKM mixing matrix, whose
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value is too small to be experimentally measured. Finally, we investigate the branching

ratio for the t→ cZ decay and found that our numerical predictions are not excluded

by its experimental bound, for vector-like doublet up-type and down type quark

masses MU4 and MD4 in the window 1850GeV6MU4 ,MD4 6 2250GeV as well as

vector-like singlet up and down type quark masses M
Ũ4

and M
D̃4

in the ranges

4750GeV6M
Ũ4

6 5800GeV, and 2450GeV6M
D̃4

6 3000GeV, respectively.

In conclusion, we have analysed a range of FCNCs arising from non-standard W and Z

gauge boson couplings in an extension of the SM with a fourth vector-like family,

which can also address the hierarchy of quark and lepton masses, leading to several

interesting rare decays which may be probed in future high luminosity experiments.
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Conclusions

Many dedicated efforts to find an answer on what are the most fundamental particles

and forces have shaped the awesome and beautiful SM. The CKM mixing matrix

experimentally confirmed is one of the great successes of the SM and it reveals there

exist a mixing between each generation of the SM. This mixing mechanism is applied

not only to the SM fermion sector but also to the SM gauge particles. Even though,

the SM is quite successful in both quark and lepton sector, however the SM has also

some limitations such as masses of the SM neutrinos, a few of well-known anomalies,

DM, DE, gravity, etc. and the limitations have been a strong motivation for the SM to

be expanded. We start from this consideration: how can we expand the SM without

violating the gauge symmetry and the current SM experimental bounds. A possible

answer to the question is a minimal extension to the SM and to study the muon and

electron g − 2, which was a main target over my first and second works. The other

choice could be to study the FCNC observables in a minimally extended SM, which are

quite sensitive to new physics, which was discussed in my third project.

In chapter 1, we discussed how successful the SM is with the mixing formalism and an

approach to new physics in both theoretical and experimental aspects. In chapter 2, a

few of main features of the SM were discussed such as the Yukawa interactions, the

spontaneous symmetry breaking, the broken gauge symmetry and CKM mixing matrix

and a few of important limitations were also discussed.

In chapter 3, the common features appearing over my three works, which are the

vector-like family, 2HDM and lastly U(1)′ symmetry, were discussed as prerequisites.

From the rest of chapter 3 to chapter 4, we covered our first work and our first BSM

model, the Fermiophobic Z ′ model, in the first work was discussed in the rest of

chapter 3 as well as its mixing with the fourth vector-like family. In chapter 4, we

discuss main body of our first work. The Z ′ coupling constants in the mass basis were

determined in terms of the mixing angles θ12L,R, θ14L,R and θ24L,R and then the
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analytic form of the CLFV µ→ eγ, the muon and electron g − 2 and the neutrino

trident production process were discussed with the corresponding Feynman diagrams.

Especially, we use the mass insertion approximation for the analytic form of the muon

and electron g − 2 and µ→ eγ decay, and it has two mass sources; the chirality flip

MC
4 and vector-like mass ML

4 , and both appear in the analytic form separately under

the assumption ML
4 �MC

4 . Through the interplay among the muon and electron g− 2

and µ→ eγ decay, we showed it is not possible to explain both anomalies analytically

at the same time in the case of MC
4 � mµ, since the µ→ eγ gives rise to a very tight

bound. It means we need to relax the condition MC
4 � mµ, and the case of either

MC
4 = 0 or MC

4 = 5mµ was discussed in our numerical scan. We investigated the

parameter space for either the muon or electron g − 2 versus M ′Z separately and then

tried to explain both anomalies by considering some overlapped parameter regions and

what we found was it is not still possible to explain the anomalies simultaneously no

matter what the chirality flip mass between 0 to 200 GeV was considered. Next, we

discussed the Z ′ mass bound, which is 48 GeV at most following PDG, however this

result is too old to trust. For this reason, we found a suitable experimental bound

implemented by an effective four fermion vertex interaction given by LEP experiment

and considered oblique corrections S and T , however both can not be numerically

determined due to lots of unknown coupling constant of Z ′ gauge boson, which implies

our numerically predicted Z ′ mass 75 GeV should not be excluded at the moment.

From chapter 5 to chapter 7, my second work was discussed. In chapter 5, we

discussed a new BSM model, as we took the SM Lagrangian as an effective theory. An

important difference between our first and second BSM model is the first BSM model

allows general renormalizable Yukawa interactions, whereas the second BSM model

does not since the SM-like Higgses are charged under the U(1)′ global symmetry.

Therefore, the second BSM model gives rise to the 5 dimensional effective operator for

the SM operators and the proportional factor 〈φ〉/M can explain the relative different

mass of each fermion, as discussed in the mass insertion formalism. Another difference

between my first and second BSM model is to start considering the hierarchical

structure of the SM and this requires our mass matrices for quarks and leptons to be

rotated maximally and this fully rotated mass matrices should be a starting point. We

diagonalized mixing matrices using the mixing formalism, defining all the required

mixing angles. In chapter 6, we investigated the non-SM W contributions to the muon

and electron g − 2. In order to make our analysis simple, we assumed the vector-like

neutrinos in the fifth vector-like family are too heavy to contribute, so they are not

considered. Then, we constructed the type 1b seesaw mechanism and then defined the

non-unitarity η, which plays a crucial role to the non-SM contributions to both

anomalies as well as µ→ eγ decay. We derived the analytic form of both anomalies

and µ→ eγ decay in terms of the non-unitarity η and showed that the muon and

electron g − 2 prediction with the W gauge boson are too small to its experimental
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bound, so we conclude the W contributions can not explain both anomalies

simultaneously. In chapter 7, we discussed non-SM scalar contributions to the

anomalies. For this task, the required sector is the charged lepton sector and we start

from the diagonalization of the charged lepton sector. Using the assumption

(ye34 = xe43 = ye15,25,35 = xe51,52,53 = xL25,35 = ye52,53 = 0) for the diagonalization of the

charged leptons, we confirmed it is possible to derive one-loop diagrams for the

anomalies by closing the scalar sector of mass insertion diagrams. Next, we

constructed the 2HDM scalar potential, which is necessary to determine the physical

scalars, and worked under the decoupling limit in order to make our analysis simpler.

Then, we discussed the Higgs diphoton signal strength and the analytic form of the

anomalies with the non-SM scalars, relevant for the numerical study for the non-SM

scalar contributions to the anomalies. After building the fitting function, we fitted the

relevant parameters and then proved both anomalies can be explained by the non-SM

scalar contributions, predicting mass of the physical scalars and vector-like charged

leptons. Finally, we discussed the vacuum stability of the 2HDM scalar potential. The

up-type Higgs potential is stable due to the decoupling limit, however it needs to be

determined for the stability of the down-type Higgs potential as it features mixing with

the singlet flavon field. And then we proved that the down-type Higgs potential is

stable with the small vev of v3 (O(v3) = 10 GeV) and with the suitable sign of quartic

coupling constants in the Higgs potential.

In chapter 8, we introduced our third BSM model, mainly motivated by the

hierarchical structure of the SM, and discussed how this BSM model gives rise to the

effective SM Yukawa interactions. For the purpose of correct diagonalization without

any assumptions, we made use of only one vector-like family instead of two, and the

first SM generation remains massless in this BSM model as a result. Using the mixing

formalism, we showed that the mass matrices of quark and lepton sector in the flavor

basis are diagonalized. The mass matrix for the charged lepton sector is exactly same

as that for the up-type quark sector, however that for the down-type quark sector has

an additional element due to the rotation already used in the diagonalization of the

up-type quark sector and this leads to mixing with the first generation even though the

first generation is massless. What this implement is we can build a prediction for the

CKM mixing matrix and understand how dominant the down-type mixing angles are

when compared to the up-type mixing angles. One of main motivations in this work is

to study diverse FCNC observables to constrain vector-like fermions in both quark and

charged lepton sector and we use the SM Z gauge boson. With the SM fermions, we

can not induce the renormalizable flavor violating interactions mediated by the Z

gauge boson since the SM Z gauge coupling constants shape a identity matrix. If we

extend the SM fermions by the fourth vector-like family, the identity matrix of Z

coupling constants is not the identity matrix any more and this matrix can give rise to

the flavor violating interactions with the SU(2) violating mixings. Then, we
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constructed the SM Z coupling constants in the mass basis, having non-zero

off-diagonal elements, in both quark and charged lepton sector. In chapter 9, we start

investigating the charged lepton sector first and consider the FCNC observables such

as τ → µγ, τ → 3µ and Z → µτ . After finding out the analytic form of the FCNC

observables, we carry out the numerical scan for the charged lepton sector and conclude

our numerical predictions are not significantly constrained by the experimental bound

for the FCNC observables, however the CMS experimental bound for the vector-like

doublet charged lepton mass can significantly constrain our predictions if it turns out

to be firmly established. In our numerical prediction, the vector-like doublet charged

lepton mass is ranged from 790 to 1600 GeV, whereas the vector-like singlet charged

lepton mass is ranged from 500 to 2000 GeV or above than that. For the quark sector,

we consider the rare t→ cZ decay and the CKM mixing matrix and we find out that

our numerical prediction for the quark sector is mainly constrained by the CKM

mixing matrix, not by the experimental bound for the t→ cZ decay, predicting mass

of the vector-like doublet up-type quark mass is ranged from 1850 to 2250 GeV and the

vector-like singlet up-type quark mass is ranged from 4750 to 5800 GeV, whereas the

vector-like doublet down-type quark mass is ranged from 1850 to 2250 GeV and the

vector-like singlet down-type quark mass is ranged from 2450 to 3000 GeV.

We discussed how successful the SM is in many senses, and however it has some

important observables which can not be addressed by the SM at the same time, which

have been the strong motivations to search for physics beyond the SM. All these works

were worked, based on the principle of the minimal extension to the SM, and each

work has its own surprising insight to new physics. As time goes on, the flavor physics

and Higgs physics get more and more important, as they are likely to reveal new

physics, and we will keep studying many well-motivated BSM models to search for new

possibilities to physics beyond the SM.
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Appendix A

Is it possible to explain the muon

and electron g − 2 in a Z ′ model?

It is important to understand how the observables BR(µ→ eγ), muon g − 2, electron

g − 2 and neutrino trident can be written in terms of the mixing angles. The coupling

constants appearing in each observable consist of the mixing angles. The coupling

constants are defined from Equation (4.5) to (4.10) in Section 4.1.

A.1 The branching ratio of µ→ eγ

The branching ratio of µ→ eγ is the following:

BR(µ→ eγ) =
α

1024π4

m5
µ

M4
Z′Γµ

(|σ̃L|2 + |σ̃R|2) (A.1)

The σ̃L,R are given by:

σ̃L =
∑

a=e,µ,E

[
(gL)ea(gL)aµF (xa) +

ma

mµ
(gL)ea(gR)aµG(xa)

]
,

σ̃R =
∑

a=e,µ,E

[
(gR)ea(gR)aµF (xa) +

ma

mµ
(gR)ea(gL)aµG(xa)

]
, xa =

m2
a

M2
Z′

(A.2)



180 Chapter A. Is it possible to explain the muon and electron g − 2 in a Z ′ model?

Expanding the above σ̃L,R in terms of electron, muon and fourth family:

σ̃L =
[

(gL)ee (gL)eµ F (xe) +
me

mµ
(gL)ee (gR)eµG (xe)

(gL)eµ (gL)µµ F (xµ) +
mµ

mµ
(gL)eµ (gR)µµG (xµ)

(gL)eE (gL)Eµ F (xE) +
MC

4

mµ
(gL)eE (gR)EµG (xE)

]
σ̃R =

[
(gR)ee (gR)eµ F (xe) +

me

mµ
(gR)ee (gL)eµG (xe)

(gR)eµ (gR)µµ F (xµ) +
mµ

mµ
(gR)eµ (gL)µµG (xµ)

(gR)eE (gR)Eµ F (xE) +
MC

4

mµ
(gR)eE (gL)EµG (xE)

]

(A.3)

One important feature in Equation (A.3) is the chirality-flipping mass was used

instead of vector-like mass in the last line of Equation (A.3). It then is possible to turn

the coupling constants in each σ̃ into the mixing angles by using the Equations
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(4.5)-(4.10). It was assumed that g′qL4 in each coupling constant to be 1.

σ̃L =
[(

sin θL12 sin θL24 + cos θL12 cos θL24 sin θL14

)2
×(

sin θL12 sin θL24 + cos θL12 cos θL24 sin θL14

)(
cos θL12 sin θL24 − cos θL24 sin θL12 sin θL14

)
F (x1)

+
m1

m2

(
sin θL12 sin θL24 + cos θL12 cos θL24 sin θL14

)2
×(

sin θR12 sin θR24 + cos θR12 cos θR24 sin θR14

)(
cos θR12 sin θR24 − cos θR24 sin θR12 sin θR14

)
G (x1)

+
(

sin θL12 sin θL24 + cos θL12 cos θL24 sin θL14

)(
cos θL12 sin θL24 − cos θL24 sin θL12 sin θL14

)
×(

cos θL12 sin θL24 − cos θL24 sin θL12 sin θL14

)2
F (x2)

+
m2

m2

(
sin θL12 sin θL24 + cos θL12 cos θL24 sin θL14

)(
cos θL12 sin θL24 − cos θL24 sin θL12 sin θL14

)
×(

cos θR12 sin θR24 − cos θR24 sin θR12 sin θR14

)2
G (x2)

+ cos θL14 cos θL24

(
sin θL12 sin θL24 + cos θL12 cos θL24 sin θL14

)
×

cos θL14 cos θL24

(
cos θL12 sin θL24 − cos θL24 sin θL12 sin θL14

)
F (x4)

+
MC

4

m2
cos θL14 cos θL24

(
sin θL12 sin θL24 + cos θL12 cos θL24 sin θL14

)
×

cos θR14 cos θR24

(
cos θR12 sin θR24 − cos θR24 sin θR12 sin θR14

)
G (x4)

]
σ̃R =

[(
sin θR12 sin θR24 + cos θR12 cos θR24 sin θR14

)2
×(

sin θR12 sin θR24 + cos θR12 cos θR24 sin θR14

)(
cos θR12 sin θR24 − cos θR24 sin θR12 sin θR14

)
F (x1)

+
m1

m2

(
sin θR12 sin θR24 + cos θR12 cos θR24 sin θR14

)2
×(

sin θL12 sin θL24 + cos θL12 cos θL24 sin θL14

)(
cos θL12 sin θL24 − cos θL24 sin θL12 sin θL14

)
G (x1)

+
(

sin θR12 sin θR24 + cos θR12 cos θR24 sin θR14

)(
cos θR12 sin θR24 − cos θR24 sin θR12 sin θR14

)
×(

cos θR12 sin θR24 − cos θR24 sin θR12 sin θR14

)2
F (x2)

+
m2

m2

(
sin θR12 sin θR24 + cos θR12 cos θR24 sin θR14

)(
cos θR12 sin θR24 − cos θR24 sin θR12 sin θR14

)
×(

cos θL12 sin θL24 − cos θL24 sin θL12 sin θL14

)2
G (x2)

+ cos θR14 cos θR24

(
sin θR12 sin θR24 + cos θR12 cos θR24 sin θR14

)
×

cos θR14 cos θR24

(
cos θR12 sin θR24 − cos θR24 sin θR12 sin θR14

)
F (x4)

+
MC

4

m2
cos θR14 cos θR24

(
sin θR12 sin θR24 + cos θR12 cos θR24 sin θR14

)
×

cos θL14 cos θL24

(
cos θL12 sin θL24 − cos θL24 sin θL12 sin θL14

)
G (x4)

]

(A.4)
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A.2 Anomalous muon g − 2

The anomalous muon g − 2 is given by:

∆aZ
′

µ = −
m2
µ

8π2M2
Z′

∑
a=e,µ,E

[(
|(gL)µa|

2 + |(gR)µa|
2
)
F (xa) +

ma

mµ
Re
[
(gL)µa (g∗R)µa

]
G(xa)

]
,

xa =
m2
a

M2
Z′
.

(A.5)

Expanding the above equation in terms of electron, muon and vector-like lepton

couplings as per BR (µ→ eγ):

∆aZ
′

µ = −
m2
µ

8π2M2
Z′

[(
|(gL)µe|

2 + |(gR)µe|
2
)
F (xe) +

me

mµ
Re
[
(gL)µe (g∗R)µe

]
G(xe)

+
(
|(gL)µµ|

2 + |(gR)µµ|
2
)
F (xµ) +

mµ

mµ
Re
[
(gL)µµ (g∗R)µµ

]
G(xµ)

+
(
|(gL)µE |

2 + |(gR)µE |
2
)
F (xE) +

MC
4

mµ
Re
[
(gL)µE (g∗R)µE

]
G(xE)

]
(A.6)

The chirality-flipping mass is used in the last line of equation (A.6) similarly to

Equation (A.3). It then is possible to represent ∆aµ in terms of mixing angles.

∆aZ
′

µ = −
m2
µ

8π2M2
Z′

[(
|
(

sin θL12 sin θL24 + cos θL12 cos θL24 sin θL14

)(
cos θL12 sin θL24 − cos θL24 sin θL12 sin θL14

)
|2

+ |
(

sin θR12 sin θR24 + cos θR12 cos θR24 sin θR14

)(
cos θR12 sin θR24 − cos θR24 sin θR12 sin θR14

)
|2
)
F (x1)

+
m1

m2

(
sin θL12 sin θL24 + cos θL12 cos θL24 sin θL14

)(
cos θL12 sin θL24 − cos θL24 sin θL12 sin θL14

)
×
(

sin θR12 sin θR24 + cos θR12 cos θR24 sin θR14

)(
cos θR12 sin θR24 − cos θR24 sin θR12 sin θR14

)
G(x1)

+

(
|
(

cos θL12 sin θL24 − cos θL24 sin θL12 sin θL14

)2
|2 + |

(
cos θR12 sin θR24 − cos θR24 sin θR12 sin θR14

)2
|2
)
F (x2)

+
m2

m2

(
cos θL12 sin θL24 − cos θL24 sin θL12 sin θL14

)2(
cos θR12 sin θR24 − cos θR24 sin θR12 sin θR14

)2
G(x2)

+

(
|cos θL14 cos θL24

(
cos θL12 sin θL24 − cos θL24 sin θL12 sin θL14

)
|2

+ |cos θR14 cos θR24

(
cos θR12 sin θR24 − cos θR24 sin θR12 sin θR14

)
|2
)
F (x4)

+
MC

4

m2
cos θL14 cos θL24

(
cos θL12 sin θL24 − cos θL24 sin θL12 sin θL14

)
× cos θR14 cos θR24

(
cos θR12 sin θR24 − cos θR24 sin θR12 sin θR14

)
G(x4)

(A.7)
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A.3 Anomalous electron g − 2

The anomalous electron g − 2 is given by:

∆aZ
′

e = − m2
e

8π2M2
Z′

∑
a=e,µ,E

[(
|(gL)ea|

2 + |(gR)ea|
2
)
F (xa) +

ma

me
Re [(gL)ea (g∗R)ea]G(xa)

]
,

xa =
m2
a

M2
Z′
.

(A.8)

Expanding the above equation in terms of electron, muon and vector-like lepton as

previously, the form is

∆aZ
′

e = − m2
e

8π2M2
Z′

[ (
|(gL)ee|

2 + |(gR)ee|
2
)
F (xe) +

me

me
Re [(gL)ee (g∗R)ee]G(xe)

+
(
|(gL)eµ|

2 + |(gR)eµ|
2
)
F (xµ) +

mµ

me
Re
[
(gL)eµ (g∗R)eµ

]
G(xµ)

+
(
|(gL)eE |

2 + |(gR)eE |
2
)
F (xE) +

MC
4

me
Re [(gL)eE (g∗R)eE ]G(xE)

]
(A.9)

The chirality-flipping mass is used in the last line of Equation (A.9) similarly to the

Equations (A.3) or (A.6). It then is possible to represent anomalous electron g − 2 in
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terms of mixing angles.

∆aZ
′

e = − m2
e

8π2M2
Z′

[(
|
(

sin θL12 sin θL24 + cos θL12 cos θL24 sin θL14

)2
|2

+ |
(

sin θR12 sin θR24 + cos θR12 cos θR24 sin θR14

)2
|2
)
F (x1)

+
m1

m1

(
sin θL12 sin θL24 + cos θL12 cos θL24 sin θL14

)2(
sin θR12 sin θR24 + cos θR12 cos θR24 sin θR14

)2
G(x1)

+

(
|
(

sin θL12 sin θL24 + cos θL12 cos θL24 sin θL14

)(
cos θL12 sin θL24 − cos θL24 sin θL12 sin θL14

)
|2

+ |
(

sin θR12 sin θR24 + cos θR12 cos θR24 sin θR14

)(
cos θR12 sin θR24 − cos θR24 sin θR12 sin θR14

)
|2
)
F (x2)

+
m2

m1

(
sin θL12 sin θL24 + cos θL12 cos θL24 sin θL14

)(
cos θL12 sin θL24 − cos θL24 sin θL12 sin θL14

)
×
(

sin θR12 sin θR24 + cos θR12 cos θR24 sin θR14

)(
cos θR12 sin θR24 − cos θR24 sin θR12 sin θR14

)
G(x2)

+

(
|cos θL14 cos θL24

(
sin θL12 sin θL24 + cos θL12 cos θL24 sin θL14

)
|2

+ |cos θR14 cos θR24

(
sin θR12 sin θR24 + cos θR12 cos θR24 sin θR14

)
|2
)
F (x4)

+
MC

4

m1
cos θL14 cos θL24

(
sin θL12 sin θL24 + cos θL12 cos θL24 sin θL14

)
× cos θR14 cos θR24

(
sin θR12 sin θR24 + cos θR12 cos θR24 sin θR14

)
G(x4)

(A.10)

A.4 Neutrino trident

The constraint from neutrino trident has a much simpler form compared to the other

observables, as it only depends on coupling of the heavy Z ′ to two muons.

(gL)2
µµ + (gL)µµ (gR)µµ

M2
Z′

=

(
cos θL12 sin θL24 − cos θL24 sin θL12 sin θL14

)4

M2
Z′

+

(
cos θL12 sin θL24 − cos θL24 sin θL12 sin θL14

)2(
cos θR12 sin θR24 − cos θR24 sin θR12 sin θR14

)2

M2
Z′

(A.11)
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Appendix B

Fermion mass hierarchies from

vector-like families with an

extended 2HDM and a possible

explanation for the electron and

muon anomalous magnetic

moments

We discuss the whole description of the diagonalization for the quark sector mass

matrices in two bases and heavy scalar production at a proton-proton collider.

B.1 Quark mass matrices in two bases

As the lepton mass matrix is constructed in main body of this work, the quark sector

can be built in a similar way. Like the lepton sector, we make use of two approaches to

an effective lepton mass matrix, one of which is a convenient basis and the other is a

decoupling basis.
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Chapter B. Fermion mass hierarchies from vector-like families with an extended
2HDM and a possible explanation for the electron and muon anomalous magnetic

moments

B.1.1 A convenient basis for quarks

Consider the 7× 7 quark mass matrix rotated as in the lepton sector.

Mu =



u1R u2R u3R u4R u5R Q̃4R Q̃5R

Q1L 0 0 0 0 yu15vu 0 xQ15vφ

Q2L 0 0 0 yu24vu yu25vu 0 xQ25vφ

Q3L 0 0 0 yu34vu yu35vu xQ34vφ xQ35vφ

Q4L 0 0 yu43vu 0 0 MQ
44 MQ

45

Q5L yu51vu yu52vu yu53vu 0 0 0 MQ
55

ũ4L 0 xu42vφ xu43vφ Mu
44 0 0 0

ũ5L xu51vφ xu52vφ xu53vφ Mu
54 Mu

55 0 0



Md =



d1R d2R d3R d4R d5R Q̃4R Q̃5R

Q1L 0 0 0 yd14vd yd15vd 0 xQ15vφ

Q2L 0 0 0 yd24vd yd25vd 0 xQ25vφ

Q3L 0 0 0 yd34vd yd35vd xQ34vφ xQ35vφ

Q4L 0 0 yd43vd 0 0 MQ
44 MQ

45

Q5L yd51vd yd52vd yd53vd 0 0 0 MQ
55

d̃4L 0 xd42vφ xd43vφ Md
44 0 0 0

d̃5L xd51vφ xd52vφ xd53vφ Md
54 Md

55 0 0



(B.1)

Notice that the same rotations operated in the lepton sector is applied to both up- and

down-type quark sector except for yd14 since quark doublet rotation is already used in

the up-type quark sector. These two mass matrices clearly tells that this model is an

extended 2HDM in that the up-type SM Higgs Hu corresponds to up-type quark

sector, while the down-type SM Higgs Hd corresponds for down-type quark sector.

B.1.2 A basis for decoupling heavy fourth and fifth vector-like family

In this section, we treat the decoupling basis with quarks holding an assumption

〈φ〉 ≈MQ
44. As in the charged lepton mass matrix, we can obtain the Yukawa matrix

from the 5× 5 upper blocks of Equation B.1,

ỹuαβ =


0 0 0 0 yu15

0 0 0 yu24 yu25

0 0 0 yu34 yu35

0 0 yu43 0 0

yu51 yu52 yu53 0 0

 , ỹdαβ =


0 0 0 yd14 yd15

0 0 0 yd24 yd25

0 0 0 yd34 yd35

0 0 yd43 0 0

yd51 yd52 yd53 0 0

 (B.2)
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where α and β run from 1 to 5. The Yukawa matrices ỹu,dαβ can be diagonalized by the

unitary rotations V

VQ = V Q
45V

Q
35V

Q
25V

Q
15V

Q
34V

Q
24V

Q
14 ,

Vu = V u
45V

u
35V

u
25V

u
15V

u
34V

u
24V

u
14,

Vd = V d
45V

d
35V

d
25V

d
15V

d
34V

d
24V

d
14

(B.3)

where each of the unitary matrices Vi4,5 are parameterized by a single angle θi4,5

featuring the mixing between the ith SM chiral quark and the 4, 5th vector-like quark.

In the rotated mass matrix, we need (3, 4), (1, 5), (2, 5), (3, 5) mixing in the Q sector

and (2, 4), (3, 4), (1, 5), (2, 5), (3, 5) mixing in the u, d sectors to go to the decoupling

basis therefore the unitary mixing matrices V are defined to be

VQ = V Q
35V

Q
25V

Q
15V

Q
34

=


1 0 0 0 0

0 1 0 0 0

0 0 cQ35 0 sQ35

0 0 0 1 0

0 0 −sQ35 0 cQ35




1 0 0 0 0

0 cQ25 0 0 sQ25

0 0 1 0 0

0 0 0 1 0

0 −sQ25 0 0 cQ25




cQ15 0 0 0 sQ15

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

−sQ15 0 0 0 cQ15



×


1 0 0 0 0

0 1 0 0 0

0 0 cQ34 sQ34 0

0 0 −sQ34 cQ34 0

0 0 0 0 1

 ≈


1 0 0 0 sQ15

0 1 0 0 sQ25

0 0 1 sQ34 sQ35

0 0 −sQ34 1 0

−sQ15 −sQ25 −sQ15 0 1

 ,

sQ34 =
xQ34 〈φ〉√(

xQ34 〈φ〉
)2

+
(
MQ

44

)2
, sQ15 =

xQ15 〈φ〉√(
xQ15 〈φ〉

)2
+
(
MQ

55

)2
,

sQ25 =
xQ25 〈φ〉√(

xQ25 〈φ〉
)2

+
(
M ′Q55

)2
, sQ35 =

x′Q35 〈φ〉√(
x′Q35 〈φ〉

)2
+
(
M ′′Q55

)2
,

x′Q35 〈φ〉 = cQ34x
Q
35 〈φ〉+ sQ34M

Q
45, M ′Q45 = −sQ34x

Q
35 〈φ〉+ cQ34M

Q
45

M̃Q
44 =

√(
xQ34 〈φ〉

)2
+
(
MQ

44

)2
,

M ′Q55 =

√(
xQ15 〈φ〉

)2
+
(
MQ

55

)2
, M ′′Q55 =

√(
xQ25 〈φ〉

)2
+
(
M ′Q55

)2
,

M̃Q
55 =

√(
x′Q35 〈φ〉

)2
+
(
M ′′Q55

)2

(B.4)
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Vu = V u

35V
u

25V
u

15V
u

34V
u

24

=


1 0 0 0 0

0 1 0 0 0

0 0 cu35 0 su35

0 0 0 1 0

0 0 −su35 0 cu35




1 0 0 0 0

0 cu25 0 0 su25

0 0 1 0 0

0 0 0 1 0

0 −su25 0 0 cu25




cu15 0 0 0 su15

0 1 0 0 0

0 0 1 0 0

0 0 0 1 0

−su15 0 0 0 cu15



×


1 0 0 0 0

0 1 0 0 0

0 0 cu34 su34 0

0 0 −su34 cu34 0

0 0 0 0 1




1 0 0 0 0

0 cu24 0 su24 0

0 0 1 0 0

0 −su24 0 cu24 0

0 0 0 0 1

 ≈


1 0 0 0 θu15

0 1 0 θu24 θu25

0 0 1 θu34 θu35

0 −θu24 −θu34 1 0

−θu15 −θu25 −θu35 0 1

 ,

su24 ≈
xu42 〈φ〉
Mu

44

, su34 ≈
xu43 〈φ〉
M ′u44

, su15 ≈
xu51 〈φ〉
Mu

55

, su25 ≈
x′u52 〈φ〉
M ′u55

, su35 ≈
xu53 〈φ〉
M ′′u55

,

x′u52 〈φ〉 = cu24x
u
52 〈φ〉+ su24M

u
54, M ′u54 = −su24x

u
52 〈φ〉+ cu24M

u
54,

x′u53 〈φ〉 = cu34x
u
53 〈φ〉+ su34M

′u
54, M ′′u54 = −su34x

u
53 〈φ〉+ cu34M

′u
54,

M ′u44 =

√
(xu42 〈φ〉)

2 + (Mu
44)2 , M̃u

44 =

√
(xu43 〈φ〉)

2 + (Mu
44)2,

M ′u55 =

√
(xu51 〈φ〉)

2 + (Mu
55)2, M ′′u55 =

√
(x′u52 〈φ〉)

2 + (M ′u55)2,

M̃u
55 =

√
(x′u53 〈φ〉)

2 + (M ′′u55 )2.

(B.5)

With the defined unitary mixing matrices in place, the 5× 5 Yukawa matrices in a

mass basis (primed) are transformed by

ỹ′uαβ = VQỹ
u
αβV

†
u , ỹ

′d
αβ = VQỹ

d
αβV

†
d , (B.6)

where tilde with prime means interaction basis whereas tilde alone corresponds to the

mass basis. The effective SM Yukawa couplings for the quarks then correspond to the

3× 3 upper block of ỹ′uαβ, ỹ
′d
αβ, namely

yuijH̃uQiLujR, y
d
ijH̃dQiLdjR, with yuij ≡ ỹ′uij , ydij ≡ ỹ′dij , (i, j = 1, 2, 3). (B.7)

The 3× 3 SM Yukawa matrices for up- and down-type quark sector read:

yuij =

s
Q
15y

u
51 + yu15θ

u
15 sQ15y

u
52 + yu15θ

u
25 sQ15y

u
53 + yu15θ

u
35

sQ25y
u
51 + yu25θ

u
15 sQ25y

u
52 + yu24θ

u
24 + yu25θ

u
25 sQ25y

u
53 + yu24θ

u
34 + yu25θ

u
35

sQ35y
u
51 + yu35θ

u
15 sQ35y

u
52 + yu34θ

u
24 + yu35θ

u
25 sQ34y

u
43 + sQ35y

u
53 + yu34θ

u
34 + yu35θ

u
35



ydij =

s
Q
15y

d
51 + yd15θ

d
15 sQ15y

d
52 + yd14θ

d
24 + yd15θ

d
25 sQ15y

d
53 + yd14θ

d
34 + yd15θ

d
35

sQ25y
d
51 + yd25θ

d
15 sQ25y

d
52 + yd24θ

d
24 + yd25θ

d
25 sQ25y

d
53 + yd24θ

d
34 + yd25θ

d
35

sQ35y
d
51 + yd35θ

d
15 sQ35y

d
52 + yd34θ

d
24 + yd35θ

d
25 sQ34y

d
43 + sQ35y

d
53 + yd34θ

d
34 + yd35θ

d
35


(B.8)
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B.2 Heavy scalar production at a proton-proton collider

We have confirmed that the mass of the non-SM CP even scalar H1 is ranged from 200

to 240 GeV in Table 7.4 and this light mass of H1 has not been observed at CERN or

other experiments so far. In order to see how big an impact of H1 is when compared to

that of SM Higgs h, we studied a total cross section for the SM process pp→ h and for

BSM process pp→ H1. The SM cross section for pp→ h process is

σSM =
α2
Sm

2
h

64πv2

(
L

(
m2
h

m2
t

))2
1

S

∫ − ln
√
m2
h/S

ln
√
m2
h/S

PDF(0, x1(y),mh) PDF(0, x2(y),mh)dy

(B.9)

where L is a loop integral

L(a) = |
[
2a+ (−4 + a) PolyLog

(
2, 1/2

(
−
√
−4 + a

√
a+ a

))
+ (−4 + a) PolyLog

(
2, 1/2

(√
−4 + a

√
a+ a

)) ]
/a2|,

(B.10)

αS is the strong coupling constant, v is the conventional SM Higgs vev 246.22 GeV, mh

is the Higgs mass 125 GeV, mt is the top quark mass 173 GeV, S is the squared LHC

center of mass energy (14 TeV)2, PDF corresponds to the parton distribution function

where 0 means 0th parton - gluon, x is the momentum fraction of the proton carried

out by the gluon. Here the factorization scale has been taken to be equal to the SM

like Higgs boson mass mh and x1,2(y) are defined as follows:

x1(y) =

√
m2
h/S

S
exp(y), x2(y) =

√
m2
h/S

S
exp(−y). (B.11)

With these defined functions and values, the total cross section for pp→ h is

σSM ' 18 pb . (B.12)

Next, the total cross section for pp→ H1 process is

σ (pp→ H1) =
α2
Sm

2
H1
a2
hbb

64πv2
2

(
L

(
m2
H1

m2
b

))2
1

S

∫ − ln
√
m2
H1
/S

ln
√
m2
H1
/S

× PDF(0, x′1(y),mH1) PDF(0, x′2(y),mH1)dy

(B.13)

where mH1 is mass of non-SM CP even scalar H1, and x′1,2 are defined in a similar way:

x′1(y) =

√
m2
H1
/S

S
exp(y), x′2(y) =

√
m2
H1
/S

S
exp(−y) (B.14)

One main distinction between Equation B.9 and Equation B.13 is the non-SM scalar

H1 only interacts with down-type quark pair bb̄ since it is a mixed state between h0
d

and φ while the SM Higgs h can interact with top-quark pair tt̄. According to the
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mass range of H1 reported in Table 7.4, the total cross section for pp→ H1 is given in

Figure B.1.

Figure B.1: The total cross section for pp→ H1 at 14 TeV

The total cross section for pp→ H1 runs from nearly 8 pb at 200 GeV to smaller values

as mass of H1 increases. The order of magnitude of this cross section for pp→ H1 is

compatible to that of the SM process pp→ h, however the BSM process is strongly

suppressed since its single LHC production via gluon fusion mechanism is dominated

by the triangular bottom quark loop as mentioned in Section 7.2. Therefore, our

prediction with the light non-SM scalar H1 is possible to accommodate each anomaly

constraint at 1σ.
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Appendix C

Constraining Vector-like fermion

masses from Z mediated FCNC

observables in an extended

2HDM

In this appendix, we discuss an analytic perturbative step-by-step diagonalization for

each sector from Appendix C.1 to C.3. And then the numerical mixing matrix for each

sector will be compared to its analytic result from Appendix C.4 to C.5, verifying the

SM Z physics is basis independent.

C.1 Analytic approximated step-by-step diagonalization

for the charged lepton sector

In order to diagonalize the mass matrix of Equation 8.8 in an analytic way, we employ

the method of mixing formalism and define intermediate mass basis. The flavor basis is

used when writing the initial mass matrix of Equation 8.8, whereas the true mass basis

corresponds to the fully diagonalized mass matrix, which reveals the masses of all

propagating charged leptons. The intermediate mass basis is a basis where the heavy

particles appearing in all terms generating the entries proportional to vφ are integrated

out remaining other terms unrotated. This separation makes the difference between

SU(2) conserving and SU(2) violating mixings, which will be defined later, clear,

which will become important when we consider the flavor violating interactions

mediated by the SM Z gauge boson. Before we carry out the digonalization

step-by-step, it is convenient to rearrange the mass matrix of Equation 8.8 by

switching the Yukawa terms by mass parameters and by swapping the fourth and fifth
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column in order to make the heavy vector-like masses locate in the diagonal positions

as given in Equation C.1

M e =



e1R e2R e3R e4R L̃4R

L1L 0 0 0 0 0

L2L 0 0 0 m24 0

L3L 0 0 0 m34 m35

L4L 0 0 m43 0 ML
45

ẽ4L 0 m52 m53 M e
54 0


=



e1R e2R e3R L̃4R e4R

L1L 0 0 0 0 0

L2L 0 0 0 0 m24

L3L 0 0 0 m35 m34

L4L 0 0 m43 ML
45 0

ẽ4L 0 m52 m53 0 M e
54


,

(C.1)

where the indices running from 1 to 3 correspond to the three SM families, the index 4

labels the fourth vector-like particles and lastly the index 5 denotes the tilde particles,

which are a partner of the vector-like particles. Now we are ready to diagonalize the

mass matrix of Equation C.1 and the first step is to get the intermediate mass basis

and to integrate out the particles generating the entries proportional to vφ (equally, all

mass terms involving index 5). For this task, we first consider 34 rotation in the

left-handed fields to turn off the mass term m35.

V L
34M

e =



e1R e2R e3R L̃4R e4R

L1L 0 0 0 0 0

L2L 0 0 0 0 m24

L
′
3L 0 0 −m35m43

ML′
45

0
m34ML

45

ML′
45

L
′
4L 0 0

m43ML
45

ML′
45

ML′
45

m34mL35
ML′

45

ẽ4L 0 m52 m53 0 M e
54


, (C.2)

ML′
45 =

√
ML2

45 +m2
35, sL34 =

m35

ML′
45

, cL34 =
ML

45

ML′
45

, V L
34 =



1 0 0 0 0

0 1 0 0 0

0 0 cL34 −sL34 0

0 0 sL34 cL34 0

0 0 0 0 1


,

(C.3)

where the primed fields correspond to the rotated fields. Throughout this whole work,

the fields characterized by a capital letter are the ones belonging to a SU(2) doublet

under the SM gauge symmetry, whereas those ones denoted by a small letter are

SU(2) singlets. Then, the next rotation is 34 rotation in the right-handed leptonic

fields to turn off the m53 entry. It is worth mentioning that the order used in the

rotation of the left-handed fields is 12345, whereas for the rotation of the right-handed
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fields the corresponding order is 12354 since for consistency reasons we assigned the

index 5 for the tilde particle,

V L
34M

e(V e
34)† =



e1R e2R e′3R L̃4R e′4R

L1L 0 0 0 0 0

L2L 0 0 −m24m53
Me′

54
0

m24Me
54

Me′
54

L
′
3L 0 0

−m34m53ML
45−m35m43Me

54

ML′
45M

e′
54

0
−m35m43m53+m34ML

45M
e
54

ML′
45M

e′
54

L
′
4L 0 0

−m34m35m53+m43ML
45M

e
54

ML′
45M

e′
54

ML′
45

m43m53ML
45+m34m35Me

54

ML′
45M

e′
54

ẽ4L 0 m52 0 0 M e′
54


,

(C.4)

M e′
54 =

√
M e2

54 +m2
53, se34 =

m53

M e′
54

, ce34 =
M e

54

M e′
54

, V e
34 =



1 0 0 0 0

0 1 0 0 0

0 0 ce34 0 −se34

0 0 0 1 0

0 0 se34 0 ce34


.

(C.5)

The last step to arrive at the intermediate mass basis is the 24 rotation in the

right-handed fields.

V L
34M

e(V e
34)†(V e

24)† = (C.6)



e1R e′2R e′3R L̃4R e′′4R

L1L 0 0 0 0 0

L2L 0 −m24m52Me
54

Me′
54M

e′′
54

−m24m53
Me′

54
0

m24Me
54

Me′′
54

L
′
3L 0

m52(m35m43m53−m34ML
45M

e
54)

ML′
45M

e′
54M

e′′
54

−m34m53ML
45−m35m43Me

54

ML′
45M

e′
54

0
−m35m43m53+m34ML

45M
e
54

ML′
45M

e′′
54

L
′
4L 0 −m52(m43ML

45m53+m34m35Me
54)

ML′
45M

e′
54M

e′′
54

−m34m35m53+m43ML
45M

e
54

ML′
45M

e′
54

ML′
45

m43m53ML
45+m34m35Me

54

ML′
45M

e′′
54

ẽ4L 0 0 0 0 M e′′
54


,

(C.7)

M e′′
54 =

√
M e′2

54 +m2
52, se24 =

m52

M e′′
54

, ce24 =
M e′

54

M e′′
54

, V e
34 =



1 0 0 0 0

0 ce24 0 0 −se24

0 0 1 0 0

0 0 0 1 0

0 se24 0 0 ce24


.

(C.8)
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The mass matrix given in Equation C.7 is the intermediate mass basis and this

diagonalization is exactly consistent with the one for the SM charged lepton sector in

one of our works [148]. When we diagonalized the charged lepton sector in [148], we

assumed all off-diagonal elements to be zero and this is actually a quite suitable

assumption since the differences between the Yukawa induced mass terms and the

vector-like masses are quite large. However, we consider all small mixings in order to

get the fully diagonalized mass matrix in this work rather than setting them to zero,

since we are interested in studying diverse FCNC constraints by scanning all possible

and allowed mass ranges of the vector-like fermions in both SM quark and lepton

sectors and the FCNC constraints are sensitive to the small mixings as it will be shown

below. One more feature to be mentioned in this diagonalization is that all the mixings

have been made between the same SU(2) multiplets. In other words, the SU(2)

doublet left-handed fields are mixed with the another SU(2) doublet left-handed fields,

whereas the SU(2) singlet right-handed fields are mixed with the another SU(2)

singlet right-handed fields, so we call this mixing “SU(2) conserving mixing”. This

SU(2) conserving mixing can not cause the flavor violating interactions with the SM Z

gauge boson since they involve an identity matrix resulting from the SM Z gauge

interactions. Therefore, the next diagonalization process becomes especially important

when we start exploring the FCNC constraints. Before we start the next

diagonalization, it is convenient to reparameterize all elements of Equation C.7 by a

simpler one as given in Equation C.9.

M e′ = V L
34M

e(V e
34)†(V e

24)† =



e1R e′2R e′3R L̃4R e′′4R

L1L 0 0 0 0 0

L2L 0 m′22 m′23 0 m′24

L
′
3L 0 m′32 m′33 0 m′34

L
′
4L 0 m′42 m′43 ML′

45 m′44

ẽ4L 0 0 0 0 M e′′
54


(C.9)

We carry out first the 35 rotation in the left-handed fields of mass matrix C.9 and this

is a start of “SU(2) violating mixing”. As already mentioned, since the difference

between the Yukawa mass and vector-like mass is significantly sizeable, it is possible to
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simplify the mixing matrices in terms of the relevant small mixing angle θL35.

V L
35M

e′ =



e1R e′2R e′3R L̃4R e′′4R

L1L 0 0 0 0 0

L2L 0 m′22 m′23 0 m′24

L
′′
3L 0 m′32 m′33 0 m′34 −M e′′

54 θ
L
35

L
′
4L 0 m′42 m′43 ML′

45 m′44

ẽ
′
4L 0 m′32θ

L
35 m′33θ

L
35 0 M e′′

54 +m′34θ
L
35


≈



e1R e′2R e′3R L̃4R e′′4R

L1L 0 0 0 0 0

L2L 0 m′22 m′23 0 m′24

L
′′
3L 0 m′32 m′33 0 0

L
′
4L 0 m′42 m′43 ML′

45 m′44

ẽ
′
4L 0 0 0 0 M e′′

54


(C.10)

θL35 =
m′34

M e′′
54

, V L
35 =



1 0 0 0 0

0 1 0 0 0

0 0 1 0 −θL35

0 0 0 1 0

0 0 θL35 0 1


(C.11)

The next step is the 25 rotation in the left-handed fields to turn off the mass term m′24.

V L
25V

L
35M

e′ =



e1R e′2R e′3R L̃4R e′′4R

L1L 0 0 0 0 0

L
′
2L 0 m′22 m′23 0 m′24 −M e′′

54 θ
L
25

L
′′
3L 0 m′32 m′33 0 0

L
′
4L 0 m′42 m′43 ML′

45 m′44

ẽ
′′
4L 0 m′22θ

L
25 m′23θ

L
25 0 M e′′

54 +m′24θ
L
25


≈



e1R e′2R e′3R L̃4R e′′4R

L1L 0 0 0 0 0

L
′
2L 0 m′22 m′23 0 0

L
′′
3L 0 m′32 m′33 0 0

L
′
4L 0 m′42 m′43 ML′

45 m′44

ẽ
′′
4L 0 0 0 0 M e′′

54


(C.12)

θL25 =
m′24

M e′′
54

, V L
25 =



1 0 0 0 0

0 1 0 0 −θL25

0 0 1 0 0

0 0 0 1 0

0 θL25 0 0 1


(C.13)
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The next is the 35 rotation in the right-handed fields to turn off the mass term m′42.

V L
25V

L
35M

e′(V e
35)† =



e1R e′2R e′′3R L̃′4R e′′4R

L1L 0 0 0 0 0

L
′
2L 0 m′22 m′23 m′23θ

e
35 0

L
′′
3L 0 m′32 m′33 m′33θ

e
35 0

L
′
4L 0 m′42 m′43 −ML′

45θ
e
35 ML′

45 +m′43θ
e
35 m′44

ẽ
′′
4L 0 0 0 0 M e′′

54


≈



e1R e′2R e′′3R L̃′4R e′′4R

L1L 0 0 0 0 0

L
′
2L 0 m′22 m′23 0 0

L
′′
3L 0 m′32 m′33 0 0

L
′
4L 0 m′42 0 ML′

45 m′44

ẽ
′′
4L 0 0 0 0 M e′′

54


(C.14)

θe35 =
m′43

ML′
45

, V e
35 =



1 0 0 0 0

0 1 0 0 0

0 0 1 −θe35 0

0 0 θe35 1 0

0 0 0 0 1


(C.15)

After performing the right-handed 25 rotation, we have a mass matrix, whose form is

block diagonal.

V L
25V

L
35M

e′(V e
35)†(V e

25)† = (C.16)

e1R e′′2R e′′3R L̃′′4R e′′4R

L1L 0 0 0 0 0

L
′
2L 0 m′22 m′23 m′22θ

e
25 0

L
′′
3L 0 m′32 m′33 m′32θ

e
25 0

L
′
4L 0 m′42 −ML′

45θ
e
25 0 ML′

45 +m′42θ
e
25 m′44

ẽ
′′
4L 0 0 0 0 M e′′

54


≈



e1R e′′2R e′′3R L̃′′4R e′′4R

L1L 0 0 0 0 0

L
′
2L 0 m′22 m′23 0 0

L
′′
3L 0 m′32 m′33 0 0

L
′
4L 0 0 0 ML′

45 m′44

ẽ
′′
4L 0 0 0 0 M e′′

54


(C.17)

θe25 =
m′42

ML′
45

, V e
25 =



1 0 0 0 0

0 1 0 −θe25 0

0 0 1 0 0

0 θe25 0 1 0

0 0 0 0 1


(C.18)
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We arrive at the fully diagonalized mass matrix by diagonalizing the upper-left 3× 3

block as well as the lower-right 2× 2 block as shown below in Equation C.19.

V L
45V

L
23V

L
35V

L
25M

e′(V e
35)†(V e

25)†(V e
23)†(V e

54)† = diag
(

0,mµ,mτ ,ME4 ,MẼ4

)
V L

45V
L

23V
L

35V
L

25V
L

34M
e(V e

34)†(V e
24)†(V e

35)†(V e
25)†(V e

23)†(V e
54)† = diag

(
0,mµ,mτ ,ME4 ,MẼ4

)
(C.19)

As mentioned in the introduction, the SM charged lepton belonging to the first family,

namely, the electron does not acquire a mass with one vector-like family as seen in

Equation C.19. This is due to the fact that the model under consideration has two

leptonic seesaw mediators, which provide tree-level masses to the muon and tau

leptons. It is worth mentioning that the number of seesaw mediators has to be larger

or equal than the number of SM fermion families in order to provide masses to the SM

fermions. A non vanishing electron mass can be generated by introducing one extra

vector-like family as done in the reference [148]. Then, we can easily confirm how the

SM charged leptons in the flavor basis are connected with those ones in the mass basis

via the following unitary mixing matrices.

eL

µL

τL

E4L

Ẽ4L


=



e1L

e′2L

e′′3L

e′4L

ẽ′′4L


= V L



e1L

e2L

e3L

e4L

ẽ4L


= V L

45V
L

23V
L

25V
L

35V
L

34



e1L

e2L

e3L

e4L

ẽ4L


,



eR

µR

τR

Ẽ4R

E4R


=



e1R

e′′2R

e′′3R

ẽ′′4R

e′′4R


= V e



e1R

e2R

e3R

ẽ4R

e4R


= V e

54V
e

23V
e

25V
e

35V
e

24V
e

34



e1R

e2R

e3R

ẽ4R

e4R


.

(C.20)

The left-handed 34 mixing V L
34 and right-handed 24, 34 mixings V e

24,34 are the SU(2)

conserving mixings, whereas the left-handed 25, 35 mixings V L
25,35 and right-handed

25, 35 mixings V e
25,35 are the SU(2) violating mixings. We will see that these SU(2)

violating mixings play a crucial role in generating the renormalizable flavor violating

mixings mediated by the SM Z gauge boson in section 8.4. It is worth mentioning that

this step-by-step diagonalization is a quite good approximation to the corresponding

numerical diagonalization carried out by the singular value decomposition (SVD)

method since the former yields similar results to the ones obtained from the latter,

with very small differences due to the fact that all off-diagonal elements resulting from

the step-by-step diagonalization are quite negligible and thus they can be

approximated to zero, as discussed in detail in Appendix C.4.
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C.2 Analytic approximated step-by-step diagonalization

for the up-quark sector

The initial mass matrix for the up-type quark sector in the flavor basis is given by:

Mu =



u1R u2R u3R u4R Q̃4R

Q1L 0 0 0 0 0

Q2L 0 0 0 yu24vu 0

Q3L 0 0 0 yu34vu xQ34vφ

Q4L 0 0 yu43vu 0 MQ
44

ũ4L 0 xu42vφ xu43vφ Mu
44 0


=



u1R u2R u3R Q̃4R u4R

Q1L 0 0 0 0 0

Q2L 0 0 0 0 mu
24

Q3L 0 0 0 mu
35 mu

34

Q4L 0 0 mu
43 MQ

44 0

ũ4L 0 mu
52 mu

53 0 Mu
44


,

(C.21)

The mass matrix of Equation C.21 in the flavor basis is exactly consistent with the one

corresponding to the charged lepton sector excepting for a few substitutions ye → yu,

vd → vu, xL → xQ and xe → xu. However, these substitutions do not change the whole

structure of the mass matrix, so we do not need to derive all the required mixings from

the initial mass matrix, instead the given mixings in the charged lepton sector can be

reused as follows (For the charged lepton sector, it is enough to notice the symbol L

means left-handed doublet and e means right-handed singlet. However, it becomes

complicated in the quark sector since the mass matrices in the up- and down-type

quark have a different form, so we change the mixing notation by V u,d
L(R) instead of V Q.):



uL

cL

tL

U4L

Ũ4L


=



u1L

u′2L

u′′3L

u′4L

ũ′′4L


= V u

L



u1L

u2L

u3L

u4L

ũ4L


= (V u

L )45(V u
L )23(V u

L )25(V u
L )35(V u

L )34



u1L

u2L

u3L

u4L

ũ4L


,



uR

cR

tR

Ũ4R

U4R


=



u1R

u′′2R

u′′3R

ũ′′4R

u′′4R


= V u

R



u1R

u2R

u3R

ũ4R

u4R


= (V u

R )54(V u
R )23(V u

R )25(V u
R )35(V u

R )24(V u
R )34



u1R

u2R

u3R

ũ4R

u4R


.

(C.22)

As mentioned in subsection 8.3.2, this approximated step-by-step diagonalization for

the up-quark sector requires more caution since some of the off-diagonal elements

being of order unity and appearing as a result of mixings can be sizeable due to the

heavy top quark mass and the heavy exotic up type quark masses thus requiring the

use of the numerical SVD technique for the correct diagonalization and the SVD
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diagonalization will be used in our numerical scans in the main body of this work. The

comparison between a numerical mixing matrix derived from the SVD method and the

one obtained from the analytic perturbative diagonalization will be discussed in

Appendix C.5.

C.3 Analytic approximated step-by-step diagonalization

for the down-quark sector

We start from the initial down-type mass matrix given in Equation 8.14 in the flavor

basis.

Md =



d1R d2R d3R d4R Q̃4R

Q1L 0 0 0 yd14vd 0

Q2L 0 0 0 yd24vd 0

Q3L 0 0 0 yd34vd xQ34vφ

Q4L 0 0 yd43vd 0 MQ
44

d̃4L 0 xd42vφ xd43vφ Md
44 0


(C.23)

As in the charged lepton case, it is convenient to rearrange the Yukawa mass terms by

mass parameters and to swap the fourth and fifth column.

Md =



d1R d2R d3R d4R Q̃4R

Q1L 0 0 0 md
14 0

Q2L 0 0 0 md
24 0

Q3L 0 0 0 md
34 md

35

Q4L 0 0 md
43 0 MQ

44

d̃4L 0 md
52 md

53 Md
44 0


=



d1R d2R d3R Q̃4R d4R

Q1L 0 0 0 0 md
14

Q2L 0 0 0 0 md
24

Q3L 0 0 0 md
35 md

34

Q4L 0 0 md
43 MQ

44 0

d̃4L 0 md
52 md

53 0 Md
44


(C.24)

In order to proceed from the flavor basis to the intermediate mass basis, the first thing

to do is to carry out the SU(2) conserving mixings θd34L and θd24,34R and we display the

intermediate mass matrix for the down-type quarks without middle steps since the

process is exactly same as the charged lepton case (After calculating all mixings

required, we simplified the calculated mass parameters by m′).

Md′ = V d
34LM

d(V d
34R)†(V d

24R)† =



d1R d′2R d′3R d̃4R d′′4R
d1L 0 md′

12 md′
13 0 md′

14

d2L 0 md′
22 md′

23 0 md′
24

d
d′
3L 0 md′

32 md′
33 0 md′

34

d
′
4L 0 md′

42 md′
43 MQ′

45 md′
44

d̃4L 0 0 0 0 Md′′
54


(C.25)
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We should carry out the SU(2) violating mixings to turn off the mass parameters

md′
14,24,34,42,43 and the mixing angles are very suppressed by the ratio between Yukawa

and vector-like masses. Then the block diagonal form of this mass matrix appears as

follows:

Md′′ = V d
15LV

d
25LV

d
35LM

d′(V d
35R)†(V d

25R)† =



d1R d′′2R d′′3R d̃′′4R d′′4R
d
′
1L 0 md′

12 md′
13 0 0

d
′
2L 0 md′

22 md′
23 0 0

d
′′
3L 0 md′

32 md′
33 0 0

d
′
4L 0 0 0 MQ′

45 md′
44

d̃
′′′
4L 0 0 0 0 Md′′

54


(C.26)

An important feature of the mass matrix of Equation C.26 is the mass parameters of

the first row is proportional to those of the second row by a factor (In other words,

md′
12/m

d′
22 = md′

13/m
d′
23. We follow the convention to diagonalize the upper-left 3× 3

block [163] rather than simply rotating the upper-left block. As the mass matrix of

Equation C.26 consists of only real numbers, we can exclude the complex numbers in

the convention and the convention is given by:

V d
12LV

d
13LV

d
23LM

d′′(V d
23R)†(V d

13R)†(V d
12R)† = diag

(
0,ms,mb,MD4 ,MD̃4

)
(C.27)

and then we arrive to the fully diagonalized mass matrix, which reveals all propagating

mass for the down-type quarks. Then, the connection from the flavor to mass basis for

the down-type quarks can be seen via the unitary mixing matrices as follows (notice

that the right-handed down-type quark mixing matrices (V d
R)12,13 remain as an

identity matrix as the relevant mass matrix has the form of

(
0 ma

0 mb

)
and this form

generally induces only left-handed mixing matrices).
dL

sL

bL

D4L

D̃4L

 =


d′′′1L
d′′′2L
d′′′′3L

d′′4L
d̃′′′′4L

 = V d
L


d1L

d2L

d3L

d4L

d̃4L

 = (V d
L )45(V d

L )12(V d
L )13(V d

L )23(V d
L )15(V d

L )25(V d
L )35(V d

L )34


d1L

d2L

d3L

d4L

d̃4L



dR

sR

bR

D4R

D̃4R

 =


d1R

d′′′2R
d′′′3R
d̃′′′4R
d′′′4R

 = V d
R


d1R

d2R

d3R

d̃4R

d4R

 = (V d
R)54(V d

R)23(V d
R)25(V d

R)35(V d
R)24(V d

R)34


d1R

d2R

d3R

d̃4R

d4R


(C.28)
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C.4 Numerical comparison for the charged lepton sector

We have previously stressed that the analytical charged lepton mixing matrix is quite

close to the numerical one and we will compare them in this Appendix. For this

comparison, we start from the charged lepton mass matrix in the flavor basis,

evaluated in one of the benchmark points used in our numerical scans:

M e =


0 0 0 0 0

0 0 0 0 −2.151

0 0 0 161.657 3.955

0 0 4.600 536.050 0

0 51.135 97.915 0 696.178

 (C.29)

Firstly, we evaluate the mixing matrices V L,e using the analytic mixings of

Equation C.20. The analytic mixing matrices V L,e
ana are given by:

V L
ana =


1. 0. 0. 0. 0.

0. 0.985598 0.161888 −0.0488209 0.00211728

0. 0.169076 −0.943613 0.284567 0.00548067

0. 0.00002015 0.288689 0.957399 −0.00668649

0. −0.00301343 0.00675946 0.00494558 0.99996



V e
ana =


1. 0. 0. 0. 0.

0. 0.986254 −0.157386 0.00134068 −0.050305

0. 0.14846 0.97769 −0.00738828 −0.148413

0. −0.000610678 0.00669679 0.999958 −0.00627468

0. 0.0725407 0.138946 0.00531106 0.987625



(C.30)

Notice that the mixing matrices V u
L,R and V d

R have exactly the same structure than the

charged lepton mixing matrix since all off-diagonal elements in the first row and

column are zero, however the mixing matrix V d
L is different as it can have mixings with

the down-type first generation as seen in Equation 8.15)
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The mixing matrices V L,e
num derived by the numerical SVD are given by:

V L
num =


1. 0. 0. 0. 0.

0. 0.985598 0.161888 −0.0488206 0.00211728

0. 0.169076 −0.94362 0.284543 0.00548077

0. −0.0000241021 −0.288666 −0.957407 0.00668612

0. −0.00301342 0.00675933 0.00494538 0.99996



V e
num =


1. 0. 0. 0. 0.

0. 0.986254 −0.157386 0.00134068 −0.0503047

0. 0.148461 0.977693 −0.00738841 −0.148398

0. 0.000610624 −0.00669703 −0.999958 0.00627442

0. 0.0725382 0.138932 0.00531088 0.987627



(C.31)

The difference between the mixing matrices can be easily seen by subtracting one from

another after taking absolute value.

|V L
ana| − |V L

num| =


0 0 0 0 0

0 0 −7.58945× 10−8 2.51664× 10−7 5.97371× 10−10

0 3.46904× 10−10 −7.19169× 10−6 2.38502× 10−5 −1.00783× 10−7

0 −3.95207× 10−6 2.35474× 10−5 −7.10253× 10−6 3.68376× 10−7

0 9.97344× 10−9 1.29353× 10−7 2.03736× 10−7 −1.91205× 10−9



|V e
ana| − |V e

num| =


0 0 0 0 0

0 −2.39211× 10−8 4.58026× 10−8 9.72974× 10−10 3.25661× 10−7

0 −1.06479× 10−6 −2.03783× 10−6 −1.29588× 10−7 1.44968× 10−5

0 5.47244× 10−8 −2.43141× 10−7 0 2.58046× 10−7

0 2.50398× 10−6 1.42997× 10−5 1.84594× 10−7 −2.19659× 10−6


(C.32)

Therefore we have confirmed that the analytic mixing matrix for the charged lepton

sector is quite close to one obtained from the numerical SVD diagonalization. Using

the numerical mixing matrices derived by the SVD diagonalization, we confirm the

following De′
L,R matrices of Z couplings with leptons of Equation 8.21 as follows (we
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included here the pre-factor g/cw):

De′
L =


−2.01645× 10−1 0. 0. 0. 0.

0. −2.01643× 10−1 4.22223× 10−6 5.1508× 10−6 7.70341× 10−4

0. 4.22223× 10−6 −2.01634× 10−1 1.33333× 10−5 1.9941× 10−3

0. 5.1508× 10−6 1.33333× 10−5 −2.01629× 10−1 2.43264× 10−3

0. 7.70341× 10−4 1.9941× 10−3 2.43264× 10−3 1.62175× 10−1



De′
R =


1.62204× 10−1 0. 0. 0. 0.

0. 1.62203× 10−1 3.60409× 10−6 4.87783× 10−4 −2.59066× 10−6

0. 3.60409× 10−6 1.62184× 10−1 −2.68815× 10−3 1.4277× 10−5

0. 4.87783× 10−4 −2.68815× 10−3 −2.01614× 10−1 1.93227× 10−3

0. −2.59066× 10−6 1.4277× 10−5 1.93227× 10−3 1.62194× 10−1


(C.33)

C.5 Numerical comparison for the quark sector

As we did in Appendix C.4, we carry out the same approach with the most converged

numerical point (χ2
CKM = 956.828) for the up- and down-type quark sectors.

Mu =



0 0 0 0 0

0 0 0 0 14.474

0 0 0 1206.340 277.563

0 0 273.503 −1775.200 0

0 550.990 434.462 0 −5624.050



Md =



0 0 0 0 −0.938

0 0 0 0 −4.041

0 0 0 1206.340 −27.427

0 0 −5.636 −1775.200 0

0 72.915 −75.760 0 2623.620



(C.34)

For the comparison, we find the analytic mixing matrices (V u,d
L,R)ana and the numerical

mixing matrices (V u,d
L,R)num and then subtract one from another after taking absolute
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value. The numerical differences are given by:

|(V u
L )ana| − |(V u

L )num| =


0 0 0 0 0

0 −9.63899× 10−10 −8.4547× 10−6 1.12194× 10−5 5.10645× 10−7

0 8.60152× 10−7 −4.562× 10−3 6.12434× 10−3 −3.20031× 10−4

0 −4.32016× 10−5 6.11329× 10−3 −4.57314× 10−3 3.70205× 10−4

0 −6.95382× 10−8 3.44869× 10−5 4.09197× 10−5 −2.39443× 10−6



|(V u
R )ana| − |(V u

R )num| =


0 0 0 0 0

0 −5.36541× 10−8 4.20284× 10−8 3.73725× 10−8 4.77149× 10−7

0 −1.56456× 10−4 −4.71406× 10−5 −7.74521× 10−4 1.34741× 10−3

0 1.27331× 10−4 −7.96888× 10−4 6.8947× 10−5 5.76999× 10−5

0 1.86671× 10−4 1.32945× 10−3 2.03335× 10−5 −1.39892× 10−4



|(V d
L )ana| − |(V d

L )num| =


0 0 0 0 0

7.62437× 10−9 3.28418× 10−8 −7.80564× 10−7 −5.52416× 10−7 9.20155× 10−9

−2.16144× 10−7 −9.31034× 10−7 −2.34437× 10−6 3.16788× 10−6 −5.46568× 10−8

−2.49349× 10−8 −1.07406× 10−7 3.14516× 10−6 −2.37145× 10−6 9.52623× 10−8

0 3.34474× 10−10 5.01567× 10−8 3.51026× 10−8 −1.24719× 10−9



|(V d
R)ana| − |(V d

R)num| =


0 0 0 0 0

0 6.97453× 10−6 −4.09035× 10−5 −7.75726× 10−8 1.54578× 10−6

0 −4.13664× 10−5 6.52624× 10−6 −1.24584× 10−7 1.44401× 10−5

0 6.55855× 10−8 −3.67395× 10−7 −3.73704× 10−10 6.10094× 10−8

0 2.63961× 10−6 1.5191× 10−5 4.55174× 10−8 −5.58627× 10−7


(C.35)

Here we can see that the differences for the charged lepton or down-type quark sectors

are at most of the order of maximally order of 10−5, whereas the maximal difference

for the up-quark sector goes up to the order of 10−3 due to the sizeable off-diagonal

O(1) element but it is still a good approximation. Now we confirm that the numerical
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matrices of Z couplings with quarks Du,d′
L,R in the mass basis are given by:

Du′
L =


2.55713× 10−1 0 0 0 0

0 2.55711× 10−1 −3.14988× 10−5 3.18699× 10−5 −7.55591× 10−4

0 −3.14988× 10−5 2.55083× 10−1 6.37525× 10−4 −1.51148× 10−2

0 3.18699× 10−5 6.37525× 10−4 2.55068× 10−1 1.52929× 10−2

0 −7.55591× 10−4 −1.51148× 10−2 1.52929× 10−2 −1.06859× 10−1



Du′
R =


−1.08136× 10−1 0 0 0 0

0 −1.07941× 10−1 −7.52723× 10−4 8.3786× 10−3 1.3608× 10−4

0 −7.52723× 10−4 −1.05225× 10−1 −3.24002× 10−2 −5.26224× 10−4

0 8.3786× 10−3 −3.24002× 10−2 2.52512× 10−1 5.85742× 10−3

0 1.3608× 10−4 −5.26224× 10−4 5.85742× 10−3 −1.08041× 10−1



Dd′
L =


−3.09781× 10−1 0 0 0 0

0 −3.0978× 10−1 4.35109× 10−6 8.49277× 10−6 4.62349× 10−4

0 4.35109× 10−6 −3.09749× 10−1 6.287× 10−5 3.42266× 10−3

0 8.49277× 10−6 6.287× 10−5 −3.09658× 10−1 6.68059× 10−3

0 4.62349× 10−4 3.42266× 10−3 6.68059× 10−3 5.39124× 10−2



Dd′
R =


5.4068× 10−2 0 0 0 0

0 5.40678× 10−2 4.0453× 10−7 2.15284× 10−4 −3.09181× 10−6

0 4.0453× 10−7 5.40667× 10−2 −6.8355× 10−4 9.81685× 10−6

0 2.15284× 10−4 −6.8355× 10−4 −3.09705× 10−1 5.22435× 10−3

0 −3.09181× 10−6 9.81685× 10−6 5.22435× 10−3 5.39929× 10−2


(C.36)

where the pre-factor g/cw was included in those matrices. The most interesting case of

Equation C.36 is Dd′
L since we know that the left-handed down-type quark sector can

access to all mixings among the three SM generations. The used numerical mixing

matrix V d
L is given by:

V d
L =


9.74095× 10−1 −2.26141× 10−1 0 0 0

2.26× 10−1 9.73488× 10−1 −2.81626× 10−2 −2.12226× 10−2 1.27099× 10−3

7.97153× 10−3 3.43371× 10−2 7.98097× 10−1 6.01423× 10−1 9.40883× 10−3

−6.67815× 10−6 −2.87659× 10−5 6.01585× 10−1 −7.98598× 10−1 1.83648× 10−2

−3.62201× 10−4 −1.56017× 10−3 −1.85253× 10−2 9.03631× 10−3 9.99786× 10−1

,
(C.37)

and we can confirm all elements of the first row and column of Dd′
L cancel each other, so

identifying the given result in Equation C.36. What we found in this Appendix verifies

the fact that the SM Z physics does not get affected by any specific choice of basis.
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