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Many great efforts to find an answer on what are the most fundamental particles and
forces in our nature have shaped the very important and beautiful theory known as the
Standard Model (SM). The observables in the SM are consistent with their
experimental bounds with high accuracies. However, many particle physicists agree
that the SM is not an ultimate answer to our nature, since there are many observables
which can not be addressed by the SM such as mass of neutrinos, a few of well-known
anomalies in the SM, the puzzle of the CKM and PMNS mixing matrices, the Dark
Matter (DM) and the Dark Energy (DE), etc. In order to bring these interesting topics
to understanding of the human beings, it assumes that expansion of the SM is not
avoidable and we call this expanded theory “Beyond Standard Model (BSM)”. Many
possible BSM models have been suggested to connect with al least one of the listed
observables and this idea motivates us to search for physics beyond the SM.
Recapitulating the whole story, the SM itself is a great success, however it should be
expanded by any means to explain the observables whose mechanisms are not

confirmed.

We start from this consideration: how can we expand the SM without violating the
gauge symmetry and the current experimental bounds for the SM observables. It is
evident that the SM must be expanded for the observables which can not be addressed
by the SM as discussed above. A possible answer to the question is a minimal
extension to the SM and then to study the well-known anomalies and studying the
anomalies was a main target over my two works [89,148]. The other way is to study
the FCNC observables within a minimally extended SM, as they are very sensitive to
new physics and this approach is a main target of my third project. We made use of
the model-dependent approach since there are new operators, which can not be fully
replaced by the effective operators appearing in the model-independent approach. As
we take the model-dependent approach, it is necessary to extend at least one of the
following sectors: SM fermion, scalar and gauge symmetry. An important difference
between our first and second (as well as third) work is whether we considered the
hierarchical structure of the SM, as we regard the strong hierarchical structure of the

SM as a very clear hint at new physics at higher energy scales.

A main motivation of our first work is to explain the muon and electron anomalous
magnetic moment g — 2 simultaneously. In order to achieve this goal, we extend the
SM fermion sector by the fourth vector-like family and the scalar sector by a singlet
flavon and the SM gauge symmetry by the local U(1)" symmetry. Under an
assumption that our Z’ neutral gauge boson only couples to the SM charged leptons,
we defined the Z’ coupling constants by using the mixing formalism in the mass basis.
In order to make our analysis as simple as possible, we constrained the relevant mixing
angles between ith chiral SM family and 4th vector-like family to be 6121424 for the

charged leptons. In this analysis, the mixing angles 612 14,24 are free parameters and



they are constrained by experimental bounds of the anomalies, the branching ratio of
w — ey, and neutrino trident production. Using the mass insertion approximation, we
distinguished two mass sources, one of which is the chirality flip mass M, f whereas the
other is the vector-like mass M}*. What we found there is increasing the mixing angle
012 slightly gives an unacceptably high prediction for the branching ratio of the
charged lepton flavor violation (CLFV) u — ey decay, and this becomes a good
motivation to vanish the mixing angle through rest of the analysis. The dominant
contribution to each anomaly arises from the Z’ left-right interactions including an
enhancement factor M{' /m,,, and the chirality flip mass M{ can not increase as much
as the vector-like mass M} does, as it is governed by the SM Higgs vev. For this
reason, we constrained the chirality flip mass to be ranged from 0 to 200 GeV, and
then we found no any value between them can satisfy both anomalies, so leading to a
conclusion this BSM model can not explain them simultaneously.

Our second BSM model in our second work goes one step further from the first BSM
model by implementing the hierarchical structure of the SM in a kinematic way. In
order to achieve this goal, we need to assume the SM Lagrangian is the effective
Yukawa interactions arising as a result of broken U (1)’ symmetry and what this
implement is the general Yukawa interactions can not take place due to the U(1)’
charge. Under this consideration, our second model features that the SM fermions are
augmented by two vector-like families and the scalar sector are enlarged by one more
SM-like Higgs H; and a singlet flavon ¢ and lastly the SM gauge symmetry is extended
by the global U(1)" symmetry (Notice that this U(1)" is global). One vector-like family
can provide two effective seesaw operators, so this is why we introduce two vector-like
families, and then all SM generations can acquire their masses. A clear difference
between our first and second work is whether we built a mass matrix for each sector of
the SM and the construction was done in our second work, so the mixing angles
appearing in the second work become a ratio between the Yukawa and vector-like
masses. We defined all required mixings, while diagonalizing the mass matrix for the
charged lepton sector, and then discussed both anomalies mediated by the SM W
gauge boson and by the non-SM scalars at one-loop level. First of all, the W
contributions to both anomalies turn out to be too small to its experimental bound, so
we conclude another approach is required to explain both anomalies simultaneously and
come up with the non-SM scalar exchange at one-loop level and then finally confirm
both anomalies can be explained by the non-SM scalar exchange simultaneously.

A main motivation of our third work arises from studying the flavor changing neutral
currents (FCNCs) to constrain masses of the vector-like family, while keeping the
hierarchical structure of the SM implemented in the second work. What we considered
especially important is to diagonalize a mass matrix for each fermion sector without
any assumptions. For the correct diagonalization, we mainly focus on the second and
third generation of the SM at cost of having massless particles in the first SM

generation with only one vector-like family. In order to study the FCNC observables,
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we consider the SM Z gauge boson, however it is evident that the SM Z gauge boson
can not generate the flavor violating interactions. The SM Z gauge boson can cause
the renormalizable flavor violating interactions by extending the SM fermions by the
vector-like family and by operating SU(2) violating mixings, and then it can have
small non-zero off-diagonal Z coupling constants in the mass basis. Using the defined
Z coupling constants in the mass basis, we analyze the charged lepton sector first via
the CLFV 7 — pvy,7 — 3p and Z — ut decays, predicting the singlet or doublet
vector-like charged lepton masses. Our numerical predictions are not significantly
constrained by the experimental bounds for the CLFV decays, however it comes as the
CMS experimental bound for the vector-like doublet charged leptons might be able to
exclude our predictions to a significant extent. As for the quark sector, we use the rare
t — ¢Z decay and the CKM mixing matrix and the CKM mixing matrix appears as a
challenging observable to fit our predictions. After fitting our prediction to the CKM
mixing matrix as much as possible, we confirm that no any point of our predictions is
excluded by the experimental bound for the rare t — ¢Z decay, predicting mass range

of vector-like quarks as in the charged leptons.

Based on the minimal extension of the SM in my three works, it has confirmed that
physics beyond the SM can be explored in simple scenarios, leading to interesting
scientific predictions related to the hypothetical particles such as vector-like particles,
CP-even and -odd scalars, Z’, etc. and these findings can be verified or ruled out in

close future experiments.
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Chapter 1

Introduction

Many dedicated efforts to find an answer on what are the most fundamental particles
and forces consisting of our nature have shaped the awesome and beautiful theory
known as the Standard Model (SM). The discovery of the Higgs particle at CMS and
ATLAS in 2012 [1,2], especially, was one of the great successes in the history of
particle physics as it is the only scalar particle in the SM at the moment and
motivated us to search for physics beyond the Standard Model (SM). With the last
puzzle of the Higgs particle, the SM looks complete and it has actually explained many

observables with high accuracies and one of them is the correct measurement of the

CKM mixing matrix.
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What the stunning feature of Figure 1.1 tells is there exists a mixing between each
generation of the SM fermions and the mixing mechanism is a principal rule when we
extend the fermion sector of the SM. Interestingly, this mixing mechanism appears not
only in the fermion sector but also in the electroweak gauge symmetry

SU(2)r, x U(1)y sector.

1. The SU(2)y, eigenstates Wi 23 and the U(1)y eigenstate B

2. The mixing between the gauge particles in the flavor basis leads to the physical

gauge particles such as W=, Z and .

The mixing mechanism also tells that there must exist two eigenstates, one of which is
the mass eigenstate (or equally the physical eigenstate) and the other is the flavor
eigenstate (or equally the interaction eigenstate). The most sizeable mixing of the SM

appears in the neutrino sector, confirmed in the neutrino oscillation experiment [165]:
023 ~ 490, «912 ~ 330, 913 ~ 90 (11)

The large mixing angles of the neutrinos lead to the large off-diagonal elements in the
PMNS mixing matrix and the different mixing patterns appearing in the CKM and
PMNS mixing matrix are the well-known puzzle and will be discussed in detail in
chapter 2. Even though the SM is greatly successful, many particle physicists agree
that the observables such as masses of the SM neutrinos, a few of well-kwnon
anomalies, etc. point out the SM itself is not enough to cover all aspects of our
universe and the SM must be extended to the “Beyond Standard Model” (BSM) in
order to understand observables whose mechanisms are not confirmed. The way to new

physics arises from both the theoretical and experimental approaches.

As for the theoretical approach, we start from this consideration: how can we expand
the SM without violating the gauge symmetry and the current experimental bounds
for the observables. It is evident that the SM must be expanded due to the limitations
of the SM, which will be discussed in chapter 2. A possible answer to the question is a
minimal extension to the SM and then to study the well-known anomalies in the BSM
model. This approach was done over our two works [89, 148]. Another answer is to
study the FCNC observables in a minimally extended SM, as they are very sensitive to
new physics, and this approach was done in our third work. Therefore, the minimal
extension to the SM becomes quite important and this can be done by enlarging at
least one of the following sectors: the SM fermion, the scalar and lastly the gauge
symmetry. For the enlargement of the SM fermion sector, two hypothetical particles
has been widely considered, which are the vector-like (VL) and leptoquark (LQ)
particles. As we have made use of the vector-like particles over my three works, the

vector-like fermions would be a main target in this thesis and a detailed description of



the vector-like fermions will be studied in subsection 3.1 as a prerequisite. As in the
fermion sector, there have been many attempts to extend the SM scalar sector. The
discovery of the SM Higgs particle in 2012 has led to a lot of questions, one of which is
the small SM Higgs mass 125 GeV is a result of the extremely fine tuned parameter
following the QFT calculation. Based on this result, many particle physicists assume
that more possible scenarios for the extension to the SM scalar sector will be lied
ahead. With this motivation, we augmented the SM scalar sector by more scalar
particles. In our first work, a singlet flavon is added for the enlargement of the scalar
sector. For the second and third works, the SM scalar sector is extended by one more
SM-like Higgs and the singlet flavon, so the BSM models feature the well-known
2HDM. Featuring the 2HDM is also motivated by the strong hierarchical structure of
the SM fermions and this will be discussed in subsection 3.2 as another prerequisite.
Lastly, extension of the SM gauge symmetry has gotten intense attention for the need
of the unification. This is based on the feature of the running coupling constants for
the electromagnetic, weak and strong force and the feature tells they can be converged
at a point at GUT scale. However, attempts to connect directly from the SM to either
the GUT or ToE will be very likely to mislead our understanding to the known
phenomenology, since there are many intermediate breaking patterns as well as
hypothetical particles, and this connection is also opposite to the minimal extension.
For this reason, we consider the simplest possibility: U(1)" symmetry. This feature will

also be discussed in subsection 3.3 as the last prerequisite.

Now that we look at a few of aspects for the theoretical approach to arrive at the
BSM, it is also important to figure out how we can find out new physics from

experiments. There are three ways as follows:

e The energy frontier
e The luminosity (intensity) frontier

e The cosmic frontier

The energy frontier is simply to increase the CM collision energy in order to find a new
particle in person and the direct discovery of the SM Higgs particle at CERN in 2012
is a great success of the energy frontier. After that discovery, no any new particle has
been found by the experiments with 13 TeV so far and this implies not just the energy
frontier but also the luminosity frontier should be considered as of equal importance.
The luminosity frontier is simply to increase the number of events to find out some
anomaly within the events. This luminosity frontier is strongly preferred for the FCNC
observables, since they are very suppressed in the SM by the
Glashow-Iliopoulos-Maiani (GIM) mechanism. The FCNC observables, very sensitive

to new physics, are a main target in our third work. Lastly, the cosmic frontier is to
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study the ultra-relativistic cosmic particles and this is deeply related to the cosmology

and high energy neutrinos.

In this introduction, we simply look at how successful the SM is by discussing the
mixing formalism appearing in both the fermion sector and the gauge symmetry
sector. Even though the SM is quite successful in many fields, there are some
important limitations such as the masses of the SM neutrinos, a few of well-known
anomalies, dark matter, dark energy, etc. and these limitation tells the SM must be
expanded to the BSM. For the extension, at least one of the following sectors, the SM
fermion, scalar and gauge symmetry, must be extended and we discuss the theoretical
aspects of the BSM models and its implications through my two published

works [89,148] plus my third work [166].

This thesis is organized as follows. In chapter 2, we discuss main features of the SM
and its principal limitations. In chapter 3, the three common theoretical tools, which
are the vector-like fermions, 2HDM and U(1)" symmetry, appearing in my three works
are covered as prerequisites and the first BSM model as well as its mixing formalism in
my first work are discussed. In chapter 4, we try to explain both the muon and electron
anomalous magnetic moments in a Z’ model and discuss the experimental Z’ mass
bound and lastly conclude main features of our first work. In chapter 5, we introduce
our second BSM model and discuss how this model is different compared to our first
BSM model. Plus, it will be emphasized that this model is strongly motivated by the
hierarchical structure of the SM. In chapter 6, we discuss the first non-SM W gauge
boson contributions to both anomalies as an attempt to explain them simultaneously.
In chapter 7, we discuss the second non-SM scalar contributions to both anomalies,
while investigating the scalar potential, and then conclude main features of the second
work. In chapter 8, we discuss our third BSM model with one vector-like family and
the SM Z gauge coupling constants in the mass basis. In chapter 9, we discuss diverse
FCNC observables in both quark and lepton sectors as well as the CKM mixing matrix
without unitarity to constrain our BSM model predictions and conclude our third

paper. Finally, we conclude main features of this thesis in chapter 10.



Chapter 2

The Standard Model and its

limitations

After discovering the charm quark through J/¢) meson in 1974, the bottom quark in
1977, the top quark in 1995 and lastly the neutral component of Higgs particle in 2012,
the current form of the Standard Model (SM) was established. The SM has been
tested for many experiments and explained them with very high accuracies. The firmly
accepted SM becomes now the cornerstone of the particle physics to figure out how our
beautiful nature works in this universe. At the same time, however, the particle
physicists have understood that the SM is not an ultimate answer for our nature due
to lots of unspecified observables such as masses of the SM neutrinos, a few of
well-known anomalies, hierarchical structure of the SM, gravity, matter-anti matter
asymmetry and dark matter (DM) plus dark energy (DE), etc. A thing is certain,
though, that all unidentified observables must start from the SM at the electroweak
scale. This relation between the SM and the observables which can not be addressed

by the SM can be pictorialized in Figure 2.1.
anoma-

lies

hier- Standard
archy Model

etc.

DM

gravity
+ DE

FIGURE 2.1: The SM and the unspecified observables
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These interesting observables which can not be addressed by the SM require for the
SM to be expanded in anyway and the expanded SM is called, especially, “Beyond the
Standard Model (BSM)”. A lot of new BSM models have been suggested to explain
the observables and I will cover our three attempts to explain some of the observables
based on my papers across next chapters. Before we go into the details of the papers,
we need to look into some important properties of the SM as well as the limitations of

the SM in detail. The rest of this chapter is assigned for the explanations.

2.1 The Standard Model

The beautiful and awesome SM can be first represented by its gauge symmetry
SU@3)c x SU(2)r, x U(1)y, (2.1)

where SU means the special unitary and the subscript C', L, Y mean the color charge,
the left-handed chirality and the hypercharge, respectively. This gauge symmetry is
especially important since it determines which kind of interactions can take place and
there are two interactions, the Yukawa interactions and gauge interactions. The
fermions which appear in the SM consist of both quarks and leptons, charged under

the gauge symmetry. The SM particle spectrum is given in Figure 2.2.

Standard Model of Elementary Particles

three generations of matter interactions | force carriers
(fermions) (bosons)
| Il 1l
mass | =23 MeWic® =1 28 GeWic® =1731 GeVic™ L} =124 97 GeVic™
charge % ¥ kH (] 0
g M « « Wl s g » H
up charm top gluon higgs
| —
=47 MeWic= =06 Meie= =418 Gelie= L]
=¥ =¥ =¥ L]
« d « « b : @
down strange bottom photon
R
=0511 MeVie= =105 66 MeWic= =] 7768 Gelic= =01 18 GeWike=
-1 -1 -1 L]
g = « (G .
electron muon tau Z boson
S
<10 eVie® <017 MeVie= <182 Mewic® =0039Gevic®
L] L] 1] H
Ve . Vu i B w
electron muon tau
neuwrino neurino neuwrino W boson

FIGURE 2.2: The SM particle spectrum
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The SM particles can be categorized by some principle standards. The first principal
standard is whether they belong to either fermions or bosons. The fermions are the
spin half-integer particles obeying the Pauli’s exclusion principle, therefore they can
not occupy the same quantum numbers and follow the Fermi-Dirac statistics, whereas
the bosons are opposite to the fermions in a couple of senses that they do not respect
the exclusion principle and they are the spin integer particles, so it is possible for them
to take up the same quantum numbers and they follow the Bose-Einstein statistics.

From the SM particles, they are separated as follows.

e Fermion : u,c,t,d,s,b,Ve, vy, Vr, €, 11, T

e Boson : W0y, W+, 7, ¢

The SM particles again can be separated by mentioning their spins. In quantum field
theory (QFT), the particles corresponding to spin 0 are called scalars and there is only
an unique scalar of “Higgs” in the SM. The spin 1 particles are called the vector
particles and there are the photon v, the W bosons W and lastly the gluons g in the
SM. The scalar and vector particles are inclusively grouped as the boson particles in
that they have integer number of spin. All fermions of the SM have the spin 1/2 as

mentioned in the above context. These can be categorized as follows.

e spin 0 particle : A"
. . + Boson
e spin 1 particles : v, W=, 72 ¢

e spin 1/2 particles : u, ¢, t,d,s,b,ve,e,vy, u, vy, T - Fermion

The fermion particles can be separated again depending on whether or not they
experience the strong interaction SU(3) and the ones charged under the strong

interaction are called “quarks”, while the ones not charged are called “leptons”.

e spin 0 particle : h°

B
spin 1 particles : ~, W=, 2, g oson

spin 1/2 particles (quarks) : u,d, ¢, s,t,b

Fermion

spin 1/2 particles (leptons) : ve, e, vy, p, vy, T

One of the most important differences between quarks and leptons is the lepton
particles can be isolated, so it is possible to appear as an independent particle, whereas
the quark particles can not be isolated due to the confinement, therefore they are
observed as the shape of baryon or meson. The baryon is an composite particle

consisting of three quarks (or three anti-quarks) and the meson is a composite particle
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consisting of one quark and one anti-quark. This interesting feature can be understood
by the running coupling constant of each interaction and this will be detailed further
in the next subsection of unification. The fermion sector can be further divided by
generation and how to divide the fermions by generation is associated with how stable
the fermions are. For example, the u quark which belongs to the first generation of the
SM is most stable among the three generations, whereas the ¢t quark of third
generation is most unstable therefore it decays into b quark soon by the exchange of

the W gauge boson.

e spin 0 particle : A°
. . Boson
e spin 1 particles : v,W*,Z, g
e spin 1/2 particles (quarks) : u,d, ¢, s, t,
R N N

1st  2nd 3rd .
Fermion

e spin 1/2 particles (leptons) : ve,e, vy, pu,vr, T
M~ =~

1st 2nd 3rd

It is interesting that the generation is related to the flavor, which describes each
species of the SM fermions, thus there are six species in either quark or lepton sector.
Since the particles in each generation share the similar patterns about their stability,
relative lightness, etc., there have been many attempts to figure out quark and lepton
sector based on their relative similarities and these kind of studies have been known as
the flavor physics. My research fields are also deeply related to the flavor physics and I
am going to talk about my three works based on features of the flavor physics.

The SM is also known as the chiral theory, which means the left-handed (LH) particles
behave differently when compared to the right-handed (RH) particles. Taking the
different chirality of each quark and lepton into account, they can be written
symbolically in terms of the quantum numbers under the SM gauge symmetry
(i=1,2,3).

LH quark sector Q;1, = (uir, dir,) = (3,2, %)

RH up-type quark sector u;p = (3, 1, %)

e RH down-type quark sector d;p = (3, 1, —%)

LH lepton sector L;;, = (ViL,e,-L)T = (17 2, —%)

e RH down-type lepton sector e;r = (1,1, —1)

The bold numbers 3 or 1 in parentheses mean the fields behave as a triplet or singlet
under the color charge respectively, and the bold numbers 2 or 1 at the middle of the

parentheses mean they transformed as a doublet or singlet under the left-handed



2.1. The Standard Model 9

chirality and finally the fractions or integer numbers are the hypercharge of each
fermion field. The capital letters @, L are conventionally used to implement they are
the left-handed doublets, whereas the small letters stand for the right-handed singlets.
The SM Higgs field can be represented by the gauge symmetry notation.

e The Higgs field H = (h,1h%)" = (1,2,1)

The Yukawa interactions between two fermions and one scalar can arise by making the
interactions be the gauge singlet. In other words, the interaction which is not the
gauge singlet is not allowed to be written in the Lagrangian. Taking this property into
account, a few of the allowed Yukawa interactions can be written as follows
(i,j=1,2,3)

L= (ya)ij Qi Hujr + (¥a)ij Qi Hdjr + (y)ijLi Hejr + h.c., (2.2)

where 3., Y4, y; are the Yukawa coefficients which determine the strength of the
interactions for up, down quarks and charged leptons respectively and H is defied as
ic?H*. These terms are a few of the well-known Yukawa interactions in the SM and
are going to be discussed in detail when introducing the mass insertion process in the

next subsection.

The last aspect of the SM particles is whether they are either Dirac or Majorana
particles. The Dirac particles are the ones whose anti-particles is completely different
to those, so they are clearly distinguishable, whereas the Majorana particles are the
ones whose anti-particles are exactly same to the original particles. From this feature,
it is possible to derive the Dirac and Majorana mass. The Dirac mass consists of two
completely different particles, which means they behave differently under the SM
gauge group therefore it is impossible to write their mass by hand since it violates the
gauge conservation. As for the Majorana mass, it is possible to write their mass by
hand as long as they are the trivial gauge singlets under the SM (or equally sterile),
however there is no way to constrain the Majorana mass by experiments. Besides that,
the Majorana mass requires one more condition, which is that the particles consisting
of the Majorana mass must be neutral otherwise it violates the charge conservation
unlike to the Dirac mass. The only candidate to meet this condition could be the
neutrinos in the SM and all other fermions are Dirac particles. Even though the
neutrinos are assumed to be the Majorana particles in the SM, their Majorana mass
still violates the gauge singlet conservation since they are charged under the SM gauge
group as (17 2, —%) which is not the trivial gauge singlet. This problem is covered in

the section “first limitation of the SM - neutrinos” in detail.

Now that the particles consisting of the SM are introduced in some brief and compact

way, it is necessary to look into a couple of main mechanisms like the Yukawa
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interactions, spontaneous symmetry breaking (SSB), and the broken gauge symmetry,

step-by-step through in the next subsections.

2.1.1 The Yukawa interactions and the spontaneous symmetry
breaking

In order to grab a sense of how the mass term can be written in the Lagrangian,

consider the next term written by hand as just an example.
L = m%ee (2.3)

This term looks apparently right at first sight, however a problem starts to emerge
when it takes the polarized basis using the left- and right-handed projector Pr, g.
Expanding the term by inserting the projects, the result is

EszE(PL—FPR) (PL+PR)€ (2 4)
= mQEReL + €ererR. '

A clear problem of the result of Equation 2.4 is that each term is not the gauge singlet
under the SM gauge group, therefore these kind of mass terms are not allowed to be
written. Thus the mass terms for the Dirac fermions in any Lagrangian must arise
from the Yukawa interactions discussed in Equation 2.2, which respect the gauge
singlet condition. Consider the third term of Equation 2.2 for simplicity.
_ ht
L= (y)ijLirHejr = (y1)ij <E‘L éiL) Lo | SR
= (y)ij (Zirh " ejr — eiLh’ejR)

= (y)ijveirejr + - - = (Me)ij€ireir + -

If the field h° can develop its vacuum expectation value (vev) v as seen in Equation
2.5, the mass can be written by the form of the Yukawa constant y; multiplied by the
vev v in the Lagrangian. One thing to care about is whether the initial Yukawa and
final mass terms conserve the gauge singlet condition. The initial Yukawa interaction
(yl)ijfi rHejr definitely maintains the gauge singlet condition, whereas the mass term
(me)ijeirejr does not. What this means is all mass terms in the Lagrangian appear as
a result of broken symmetries. The symmetry breaking process takes place when the
Higgs field h® develop its vev v and this process is known as the spontaneous
symmetry breaking (ssb), which occurs in the Higgs field potential. The spontaneous
symmetry breaking process is especially important as it can allow masses for the SM
Dirac fermions, written by the Yukawa constants multiplied by the non-zero vev,
without violating the underlying gauge symmetry and this feature will be discussed in

detail in the next subsection.
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2.1.2 The Higgs potential and the spontaneous symmetry breaking

Consider first the Higgs potential which consists of a single real Higgs field h

1

1
V(h) = 2m2h2 + le’ (2.6)

2 is a positive mass parameter which has mass dimension of 2 and \ is a

where m
positive dimensionless quartic coupling constant. In the Higgs potential of Equation
2.6, no something special takes place; the minimum of the potential is appeared as the
Higgs field h approaches to 0 and the minimum is simply 0. To make this potential
more interesting, we rewrite the Higgs potential with the mass parameter m? replaced

by —u? where 42 is a positive mass parameter.
Logo, 10y

The rewritten Higgs potential of Equation 2.7 gives rise to nonzero minimum of the
Higgs potential V(h) at nonzero value of the Higgs field h. The comparison between
the potential of Equation 2.6 and Equation 2.7 can be seen clearly by the below graph
in Figure 2.3.

V(h)

—— original

rewritten

h

FI1GURE 2.3: The “original” means the Higgs potential of Equation 2.6 and the “rewrit-
ten” means that of Equation 2.7

A difference between the “original” and “rewritten” Higgs potential arises from the
energy (or equally temperature) difference. In other words, the “original” Higgs
potential takes place at high energy (or equally at high temperature) and the potential
turns into the “rewritten” Higgs potential as the high energy goes down to low energy
(or equally at low temperature). The low energy scale corresponds to the electroweak
scale whose mass order is about a hundreds of GeV scale and the interesting ssb
process can take place at this energy scale. Imagine a ball is put at the center of the

Higgs field in the “rewritten” Higgs potential. As time goes on, the ball is likely to fall
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down either to left or right direction in the potential since the center position is
unstable. Besides that, the direction which the ball will take can not be predicted and
this is the reason why this symmetry breaking process takes place spontaneously. After
the ball is put in the stable (or minimum) position, it can have nonzero value of the
Higgs potential at the nonzero value of the Higgs field h and the nonzero value of the
Higgs potential is reinterpreted as the vacuum expectation value v. This process can
also be understood mathematically by the Equation 2.7. Differentiating the Higgs
potential of Equation 2.7 with respect to the Higgs field h, the minimization condition
reads off (Suppose that the Higgs field h developed its vev v):

oh 6 6

62
— v =24/ —,0.
v )\ 5

Since I am only interested in the nonzero vev v, the value 0 will be excluded. It

oV (v) =—,u2v—i—év3:v(—,u2—i—év2) —0

confirms that the vev v is given from both the mass parameter ;2 and the quartic
coupling constant A and the experimentally known value of the vev is 246.22 GeV. The
order of this vev is 100 GeV and this corresponds to the electroweak scale. An
important feature of the Higgs potential is the Higgs field appearing in the SM is a
complex field, so the Higgs potential features 3-dimensional space as shown in

Figure 2.4.

FIGURE 2.4: The left is a complex Higgs potential at high temperature and the right
is the complex Higgs potential at low temperature.

2.1.3 The broken gauge symmetry of the SM and its interpretation

The ssb process covered in the previous subsection applies exactly to the general SM
Yukawa interactions with a couple of modifications. The first change is the single real
Higgs field h° must be changed to the complex field in order to implement the U (Do

electromagnetic symmetry. The second change is the single complex Higgs field h
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needs to be doublet in order to make the SM Yukawa interactions be the gauge

singlets, therefore one more charged Higgs h™ is required. The generally accepted form

of the SM Higgs field is given by
ht
H= o | (2.9)

After the neutral component of the Higgs field h° develops its vev v by the spontaneous
symmetry breaking process, the Higgs doublet takes the below shape in unitary gauge.

g (" 0 2.10
“\w )7 75 (v+h) (2.10)

The neutral Higgs field h after ssb is what the particle physicists found at CERN
experiment in 2012. The SM Higgs field H consists of one neutral Higgs and another
charged Higgs, however what we found is the only neutral Higgs field since the charged
Higgs is integrated out below the electroweak scale. If the energy scale goes up more
than the electroweak scale, then we might be able to observe the charged Higgs h™ in
person and many studies have been suggested to find out the charged Higgs and thus
to make the Higgs field H complete. Taking a look at the value of %v, it is about
174 GeV, which is quite close to the top quark mass (in other words, the top quark
Yukawa coupling is nearly 1) and this is the reason why the Higgs physics is sensitive
to the correct measurement of the top quark mass. After the currently accepted form
of the SM Higgs doublet field develops its vev, it confirms that how the SM gauge

symmetry is broken to the smaller symmetry.
SUB)c xSU2)L, xU(l)y - SU@B)c xU(1)g (After ssb) (2.11)

After the spontaneous symmetry breaking, the electroweak gauge symmetry

SU(2)r, x U(1)y is broken to the electromagnetic gauge symmetry U(1)q and three of
the massless SU(2) gauge bosons A?3 plus U(1) gauge boson B in the SM get
massive via the mixing mechanism after the Higgs develops its vev and one of the
mixed gauge bosons remains massless. The three massive gauge bosons W+, W~—, Z
and one massless gauge boson 7 appear as a linear combination of the four gauge

bosons A', A%, A3, B in the interaction basis as follows:

Wty 1 (1 =i\ [A! W
w-] Vel 4i) \a2) TET9
(2.12)

Z 1 g —g\ (A3 5 v
= —— , mz=+vVg* +g%=, ma=0,
<A> Vg?+g”? (9’ g B ZPTVETI .

where the coupling constant g and ¢’ are the ones in the covariant derivative of the
Higgs field h

1
D,h = <8u —igALT" — i2g’BM> h, (2.13)
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where 7% = % = T*“ and the index a runs from 1 to 3. The mixing matrix for the

massless fields A%, B can be rewritten in terms of the Weinberg angle or weak mixing

Z 0 —siné A3
_ C.OS w S Uy 7 (2.14)
A sinfy  cos Oy B
where cos Oy = g and sin Oy = — Then, the covariant derivative of h can

92+g/2 /92+g/2

be rewritten in terms of the mass eigenstates W+, Z, A.

angle Oy .

D,h = <au —igAL T —igA2T? — ig ST — zég/B#> h
= (Op — igA,T" —igAZT? — igAST?® —iYg'By,) h
= <aﬂ - ig\}i Wr+w, )T - ig\i@ W -w,)1°
—ig (cos Ow Z,, + sin Oy A,) T® — iV g’ (—sin Oy Z, + cos Oy A, > h

1 e . g . )
= (8“ — lgﬁ (I/VJTJr + W, T ) —i o (T3 — sin? HWQ) Zy — zeQAM>h
(2.15)

While deriving the final result of Equation 2.15, there are many important
implications; from the first equality I rewrite the factor % as the quantum number of
U(1)y; from the second equality the covariant term is rewritten in terms of the mass
eigenstates using the Equations 2.12 and 2.14; from the last equality I rearrange terms
with respect to Z,, and A, using T* =T' +47? and defined the charge quantum
number @ by 7% + Y and the electron charge e by gg’/ \/W . With the redefined
quantity @, I also rearrange the interaction terms with Z,,. Summarizing the redefined
quantities, they are given by:

/
e= _99 _ _ gsinby = ¢’ cosby, Q= T3+ Y, mw =myzcosby. (2.16)

/gZ + gl2
From the quantities of Equation 2.16, the mass of weak gauge bosons are connected to
each other by the weak mixing angle 8y and the electric charge e and quantum
number @ tells that the electromagnetic U(1)g symmetry appear as a result of broken

bigger gauge symmetry SU(2)z x U(1)y by the SM Higgs vev v.

2.1.4 The CKM mixing matrix

One of the great successes in the SM is the discovery of the mixing in the fermion
sector of the SM, as mentioned in the introduction, which is seen in person from the
CKM mixing matrix as well as the PMNS mixing matrix. The CKM mixing matrix is
appeared as a result of the mixing between the flavor and mass eigenstates of the

fermions in the SM and it can be seen manifestly by the charged current J{fVJr. For the
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task, it needs to define the two bases connected by the unitary transformation as

follows:
uly = Uiduf, L =U7d] (2.17)

where the indices 4, j run from 1 to 3 and U, 4 are the unitary mixing matrices for the
up- and down-quark sector in the SM. Then we are ready to write down the CKM

mixing matrix in terms of the mixing matrices in the charged current J{fVJr as follows:

1 . . 1 . ,
T = —uptdy = —=uiy” (UJUd) dj

—
\?/i o V2 v (2.18)
= EUL’Y Vijdg
where V;; is the unitary mixing matrix known as the Cabibbo-Kobayashi-Maskawa
(CKM) mixing matrix. This unitary mixing matrix is first predicted by Cabbibo with
two SM generations and is expanded by Kobayashi and Maskawa by assuming three
generations of the SM. Therefore, the mixing angle in the unitary matrix consisting of
only two generations is known as the Cabibbo mixing angle and its value is about 0.22.
The full CKM mixing matrix can be parameterized by two conventions; one of which is
the Wolfenstein parameterization which manifests the hierarchical structure of the
CKM mixing matrix in terms of the parameter A\, and the other is the FEuler rotation

which reveals the Cabibbo mixing angle well.

Vud Vus Vub
Voxm = VIWVE = | Vg Vee Vi
Vie Vis Vi
1 0 0 c13 0 813671’601} C12 si2 O
=10 co3 —s93 0 1 0 —s12 c12 0
0 5923 C23 _81361'601) 0 C13 0 0 1
, (2.19)
€12€13 512€13 s13e~0cp
= | —s12c03 — C12523513€°CF  C1aca3 — S12523513€0CF 523C13
$12893 — C12023513€0CP  —Ci9803 — S12023513€0CF  cozci3
1—)%/2 A AN3 (p —in)
= A 1-A2)/2 AN?
AN (1 —p—in) —AN? 1

where ¢;; = cos 0;;, s;; = sinb;;, ocp is the CP-violating phase angle. It is possible to
connect the mixing angles used in the Euler rotation and the parameters A, A, p, n used

in the Wolfenstein parameterization using the experimentally known hierarchical
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structure among the mixing angles 1 >> s19 > s23 > s13 as follows [3-5]:

S12 2 A = Vel
o |Vud|2 + |Vu3|27
65 2 AN2 = N Vb
Vaus (2.20)

s15€"9CP = Vi = AN (p+in)
AN (p+in) 11— AN
1= A2M(p+in) V1 - )2

where the new parameters p, 7 are introduced to keep unitarity of the CKM mixing

matrix in terms of A, A\, p, 77 to all orders in A and they are defined as follows:

p=p(L=A/2+--), (2.21)
17:77(1—)\2/2+---).

Using the parameters p and 77, the Wofenstein parameterization can be rewritten by:

1—2\2/2 A AN (p —in)
Vexkm = - 1—)2)/2 AN? : (2.22)
AN (1 —p—in) —AN? 1

and then it can easily be confirmed that any unitary mixing matrix follows the

well-known constraint.

S ViVii =k, forjk=1,2,3 (2.23)
i=1,2,3
From the constraint, we are able to write one unitary condition such as:
VudVay + VeaVy, + ViaViy = 0,
(2.24)

VadVip 4 ViV _
VeaVii VeaVij

)

and then to sketch the famous triangle in the complex plane in terms of the

parameters p, 7 using the relation defined in Equation 2.20
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(0,0) (1,0)
(A) The unitary triangle in terms of the parameters
p and 7

L= o s s B L L L

: excluded area has CL > 0.95 : \T‘-‘)‘\, :
1.0 — —
0.5 —

T g |

[ S S L I G ——

[ o \
-0.5 — :
-1.0 — § \ & ]

- : sol. /\oasz[ko -

- v : (ex;.(\at\pb 0.95) —
.1.5_IIII||IIII|IIIIIIII|l||||\-l\IJI_

-1.0 -0.5 0.0 0.5 1.0 1.5 2.0

p

(B) The unitary triangle experimentally observed

where the angles «, § and v are defined as follows:

VedVy,
Bzd)l:arg (_M)a

ViaVy,
a = ¢y = arg (— Vidvti’ ) ; (2.25)
Vud ub
o VuaVip
7—¢3—arg( VeVt )

The most fitted CKM mixing matrix with the unitarity of the SM is given in Particle
Data Group (PDG) as well as the Wolfenstein parameters
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(A =0.832+£0.009, A\ =0.22465 £ 0.00039, p = 0.139 £ 0.016, 7 = 0.346 £ 0.010):

0.97446 & 0.00010  0.22452 £ 0.00044  0.00365 + 0.00012
Vexku = | 0.22438 £0.00044  0.9735970001)  0.04214 £0.00076 | .  (2.26)
0.00896 000023 0.04133 4 0.00074  0.999105 + 0.000032

There is another interesting case, where the unitarity of the CKM mixing matrix is
relaxed, as shown in Equation 2.27 [150,151]

0.97370 £ 0.00014 0.22450 £ 0.00080 0.00382 £ 0.00024
|Kckwm| = | 0.22100 £ 0.00400 0.98700 + 0.01100 0.04100 + 0.00140 | . (2.27)
0.00800 + 0.00030 0.03880 +=0.00110 1.01300 £ 0.03000

A possible deviation can arise from the first row of the CKM mixing matrix without

unitarity and the deviation can be expressed by [150]
A=1- ’Vud‘Q - ‘Vus‘2 - ‘Vub’27 (2.28)
and its experimental value is known as [150]

VA ~0.04. (2.29)

This interesting case is discussed in my third work.

2.2 First limitation of the SM - neutrinos

The SM neutrinos ve ;- (or equally 1123 in the interaction basis, respectively) are the
most intuitive and instructive observables to hint at physics beyond the SM. It had
been believed that the SM neutrinos are massless for a long time, since no any
right-handed neutrinos had been observed, before the Super-Kamiokande experiment
revealed the tiny mass differences between the SM neutrinos confirmed by the neutrino
oscillation experiment. What the experiment revealed is there are tiny mass differences
among the three neutrinos and the mass differences at 1o can be confirmed by the
NuFIT 5.0 [165].

Ami, =m3 —m? = (7.42J_r8:§(1)) x 1075 eV?,
AmZ =m3 —m3 = (2.517&8'2%26) x 1073eV?  for normal ordering, (2.30)
Am3, = mj — m3 = —2.498T00%8 x 1072 eV?  for inverted ordering,

The neutrino mass splitting reported in Equation 2.30 tells that the neutrino sector of

the SM must be enlarged to cover the neutrino’s tiny mass, which makes predict the

right-handed neutrinos which has not yet been observed.
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2.2.1 The mass mechanism for neutrinos

Now that the particle physicists know that the SM neutrinos are massive, they have
considered the mass insertion mechanism for the neutrinos. In order to consider the
mass insertion mechanism for the neutrinos, the first thing to do is to confirm that
whether the neutrinos follow either the Dirac or Majorana nature. As mentioned in the
earlier context, the SM neutrinos are the only candidates which could be the Majorana
particles. Therefore, both the Dirac and Majorana mass insertion scenarios for the SM
neutrinos must be considered until future experiments reveal its nature further. First
of all, consider a case where the SM neutrinos are the Dirac particles. If the SM
neutrinos have the Dirac mass, it necessarily requires to assume the right-handed
neutrinos v;p (i = 1,2,3). Then, the Lagrangian for the Dirac SM neutrinos can be

written as follows (4,7 = 1,2,3):

L, = (yl’)ij fiLf‘jl/jR + h.c.,
0

- h
= (yl/)ij <ViLliL> (h_
= (yl/)z‘j <h0> ViLVjr +--- +h.c.,

= (mw);; Virvjr + - + h.c.,

vir +h.c., after ssb
(2.31)

The derived Dirac mass for the light SM neutrinos from Equation 2.31 looks correct
and no problem takes place as long as the right-handed neutrinos v;r are assumed.
However, there is one thing which should be considered. Taking that the vev (h) is
around order of hundreds GeV into account, the Yukawa constant for the neutrinos
must be suppressed by order of nearly 107!2, which looks quite “unnatural” when
compared to that of the other SM Dirac fermions. The extraordinarily suppressed
neutrino Yukawa constants do not cause any physical problems, however it is less
convincible to acknowledge the Dirac mass for the SM neutrinos due to the strong

hierarchical structure.

Next it is possible to come up with the Majorana mass for the SM neutrinos since they
can be the Majorana particles. The Majorana particle has its own anti-particle and

this property can be seen by the following definition.

=1 + g =+ Cop = p + 0¢, (2.32)

where C is the charge conjugation operator and is defined by C' = i724°. Operating
the charge conjugation operator C' to the v, the Majorana particle is exactly same as

its own anti-particle.

vC = (g +99)" = (B + v1) = ¥ (2.33)
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From Equation 2.32, it is clear that the right-handed component ¢ can be interpreted
as C’ET and the right-handed component written in terms of the left-handed field can

be applied to the Dirac mass in order to write down the Majorana mass.
_ 1 7
L=mvpvg — L= imuLC’yL (2.34)

The Majorana mass of Equation 2.34 implements that the mass term can be written
only in terms of the left-handed fields therefore it does not take a risk of assuming the
right-handed neutrinos. However, the Majorana mass term violates the gauge singlet
condition as well as the lepton number conservation which has not been observed yet.

Therefore, both approaches have its own one advantage and one disadvantage.

In order to solve the problems of either the Dirac or Majorana masses, the Seesaw
mechanism was suggested, which can explain the tiny mass of the light SM neutrinos
in a dynamical way. Consider a Lagrangian including the heavy right-handed

Majorana neutrino N after ssb (we only consider a neutrino species for simplicity).
,C,/,M = ypvvN + MNNN + h.c. (2.35)

Then the interactions can be written in the matrix basis as follows:

(0 MD), (2.36)
Mp My

where Mp is the Dirac mass defined by Mp = ypv and My is the Majorana mass
which can be as heavy as possible if the right-handed neutrino is trivial gauge singlet

under the SM gauge group. Diagonalizing the mass matrix of Equation 2.36, it gives

_Mp
o V) (2.37)
0 My

which tells that the light mass of the SM neutrinos can be accompanied by mass of the
heavy Majorana neutrinos. Taking a closer look at the light SM neutrino mass given
from the seesaw mechanism, we can also read off the effective operator for the SM
neutrinos. ]

Ly = 4 (LHLTHT) (2.38)
The Lagrangian of Equation 2.38 is known as the Weinberg’s five dimensional effective
operator (or equally Type 1 seesaw mechanism) for the neutrinos and the effective
operator predicts that the right-handed Majorana neutrinos are of order 10™ GeV as
long as the Dirac masses are of order 100 GeV. There are three well-known seesaw

models named type 1,2, 3 seesaw mechanism in Figure 2.6,
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FIGURE 2.6: Type 1,2, 3 seesaw mechanism from left to right, respectively

where the type 1,2, 3 seesaw mechanism exchanges right-handed singlet neutrinos Ng,
scalar triplets A and fermion triplets Y g, respectively. On top of the well-known type
1,2, 3 seesaw mechanisms, there are diverse variations from the standard seesaw
mechanisms such as type 1b seesaw mechanism and inverse seesaw mechanism for the
purpose of lowering mass order of the right-handed neutrinos and of taking moderate
Yukawa couplings. We will make use of the Weinberg-like operator known as type 1b
seesaw mechanism [82] from our second work (we call the Weinberg operator “type la
seesaw mechanism” for comparison). Our attempt to explain mass and mixing of the

SM neutrinos in our second work [148] are based on the following assumptions.

1. We assume the SM neutrinos are Majorana particles.

2. The SM neutrinos are extended by the vector-like neutrinos with the type 1b

seesaw mechanism.

2.2.2 mass ordering for the neutrinos and lepton flavor mixing

The SM neutrinos are strictly massless in the SM since there are no right-handed
neutrinos. What this feature implies is there is no mixing among the three SM
neutrinos, which is exactly opposite to the observed PMNS mixing matrix, taking into
account that the sizeable off-diagonal mixings of the PMNS mixing matrix come from
the neutrino sector and the sizeable neutrino mixings have been confirmed by the
neutrino oscillation experiment for the first time. Thus, the PMNS mixing matrix itself
is a great hint at new physics and it explicitly tells why the SM neutrino sector
requires physics beyond the SM. Since the neutrino oscillation experiments are only
sensitive to the SM neutrinos’ mass differences and their mixings, the absolute mass
scale of the SM neutrinos have been known yet, and this feature allows two possible
mass orderings, which are known as the normal and inverted hierarchy and they are
given in Figure 2.7. The neutrino oscillation experiments have revealed that the SM
neutrinos v, , r change their flavors while propagating some distance, and this

characteristic can be also identified in the Figure 2.7 in that the SM neutrinos v, , - in
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the mass basis consist of the flavor eigenstates of the neutrinos v 2 3.

Ve Ui Ue2 Ues 141 121
vl = U Upe U vy | = Upmns | 1o (2.39)
vr Unn U2 Urs) \v3 V3
Normal hierarchy Inverted hierarchy
n— (m)? (m)? I
Iﬂ'mzzl
(m)? " —
Am?,
Am?
- vt EN
L J
(M)
Iimzzl
) (M) (m )z A
1
1

FIGURE 2.7: The left is the normal hierarchy where m? is the lightest and the right is
the inverted hierarchy where m3 is the lightest.

The PMNS unitary mixing matrix of Equation 2.39 is especially important since it

provides some clues on why the quark mixing matrix (or equally the CKM matrix) is
quite different to the lepton mixing matrix (or equally the PMNS matrix).
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CKM PMNS

- | vm m

F1GURE 2.8: The left is the quark mixing matrix and the right is the lepton mixing
matrix.

Before going into the details of the CKM and PMNS mixing matrix, it is necessary to
understand how the mixing takes place at the interaction basis, thus consider an weak
current as an example.
1 . .
i = —=ulytd, (2.40)

V2

where each basis is defined as follows: ulL = (ui, u%, u3), ZL = (di, d?, d?i) The
defined bases u% and d} in the interaction basis can be transformed to the physical

basis u% = (ur,cp,ty) and d¥ = (dp,sp,br) via the unitary mixing matrices Und-
ubh = U9, dy =UYd) (2.41)

Substituting the Equation 2.41 back into the Equation 2.40, the weak current

generates an additional mixing.

T = \}iu]ﬁ (U yrUifdy = \}ﬁuﬁv“(UJUd)jkd'Z' = éufv“(UCKM)jkdlf (2.42)
The Equation 2.42 implements that the quark (lepton) mixing matrix arises as a result
of mixing between up-quark sector (neutrinos) and down-type quark sector (charged
leptons). Focussing on the magnitude of each component of the CKM and PMNS
mixing matrix, their behaviours are quite different; the diagonal components are more
dominant that the off-diagonal components in the CKM matrix, whereas most of the
off-diagonal components are compatible to the diagonal components in the PMNS

matrix. It is possible to parameterize the PMNS mixing matrix in terms of the lepton
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mixing angles 612, 013 and 623 and it is given by Equation 2.43

Uel UeQ UeS
Upvns = | U Uz Uz

U‘rl UT2 UT3
1 0 0 C13 0 813€—i50p ci2 s12 0

=0 c23 523 0 1 0 —s12 c12 0 (2.43)
0 —S823 (€23 —Slgei(scp 0 C13 0 0 1

C12€13 $12€13 s13etocp

= | —s12023 — c12523513€7°°F  c1aca3 — S12803813€70CF 523C13 ;

812823 — C12C23513€0CP  —Cia893 — S12C23513€0CP  cazcns

where ¢, s are the shortened notations for cos @, sin @, respectively; two Majorana

phases a, a’ are required for completeness in the PMNS mixing matrix, however I
consider them just 0 for simplicity. The experimentally fitted mixing angles from
NuFIT 5.0 [165] are given as follows:

sin? 1o = 0.30470012  sin? fy3 = 0.57310016 sin? 613 = 0.022197099962 " 5ep = 195° T30,
(2.44)

The current mixing angles 61323 exclude the possibility of the “tri-bimaximal” or

“bimaximal” mixing, which are assumed when 613 = 0 and #2353 = 45° some years ago.

However, the similar second and third rows in the PMNS mixing matrix might be able

to implement some hidden symmetry and many flavor models with some discrete or

continuous symmetry have been considered. In this section, we simply reviewed what

is the current position of the SM neutrinos and how it can connect from the SM to new

physics. The neutrinos are definitely one of the clear hints at physics beyond the SM

and are required to be searched carefully and passionately.

2.3 Second limitation of the SM - the muon and electron

anomalous magnetic moments g — 2

There are a few of well-known anomalies which can not be addressed by the SM. One
of the famous anomalies is known as the long-established muon anomalous magnetic
moment a, = (g — 2),, and the other is the less-established electron anomalous
magnetic moment a. = (g — 2),. It is important to understand the origin of this
anomalies before I go into the details of both anomalies. The magnetic dipole moment
at the classical level can arise from the circulating current of the charged particle with

the electric charge e and mass m in the natural units (h=1,¢c =1)

ur = gr X v = %L, (2.45)
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where the orbital angular momentum L is given by mr x v. At the quantum level, the
intrinsic quantity “spin” S corresponds to the classical orbital angular momentum L

and the magnetic moment can be rewritten in terms of the spin

e

=g —3=S, 2.46

Ky = gi 2my ( )

where [ = e, u, 7 and the magnitude of the spin S is 1/2. The g; was first suggested to
be 2 by Paul Dirac in 1928 and the experimentally observed values for the magnetic

moment revealed that it is slightly shifted from the value 2 and the difference is called
the “anomalous magnetic moment”. The anomalous magnetic moment is defined in

terms of the gyromagnetic ratio by

1
a=w/pp—1= 5 (g1 —2), (2.47)

where pup is the Bohr magneton up = i in natural units. The anomalous magnetic
moment a; has revealed that the higher order contributions take actually place and
those higher contributions to the magnetic moment is the main reason that the g; is
not exactly 2 but with some small deviation from the central value 2. Julian Schwinger
calculated the one-loop correction to the magnetic moment which consists of the SM

particles like electron and photon and he found the first loop effect yields a/27,

gl
=a/2r

5

FIGURE 2.9: The one-loop correction to the electron magnetic moment calculated by
Julian Schwinger and the value is o/27

where the « is the fine structure constant. The higher SM loop corrections to the
magnetic moment for the lepton [ were calculated up to five loops corrections and the
BNL experiment reported the muon anomalous magnetic moment with the 1o of error
bar in 2018.

Aay = a® —aS™M = (26.1 £8.0) x 107 (2.48)

The muon anomalous magnetic moment of Equation 2.48 implements 3.20 deviation

from its central value and the deviation clearly exceeds the SM prediction. The muon
anomaly deviation above slightly 30 has been established for a long time and regarded
as a signal for new physics. The electron anomalous magnetic moment a. is somewhat

less interesting since it is not fully established as compared to the muon anomaly. The
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fundamental reason causing the difference in the electron anomaly arises from the
correct measurement of the fine structure constant going on globally and this feature is

given in Figure 2.10 [80].

Washington 1987 -|  fr———m—] a_
Stanford 2002 - h/im(*%3Cs) | P |
B h/m(*Rb
LKB 2011 mERY) He | . o—
Harvard 2008 | a, |—g—i
RIKEN 2019 2. o .
h/m(1%3Cs) jmigyey
Berkeley 2018 - h/m(*5Cs)
h/m(Rb) e
This work 7 him("Rb) ¢ 89 90 91 92
T T T T T
8 9 10 11 12

(e — 137.035990) x 10°

FIGURE 2.10: Many experiments to improve the precision of the fine structure con-

stant. The red points are contributed from g. — 2 experiments and QED impacts. The

green points and blue points are given from caesium and rubidium recoil experiments,
respectively.

This precision measurement of the fine structure constant also affects my second work;
we made use of the fine structure constant of the Berkely 2018 experiment aperkeley at
the beginning of the work, which gives rise to

Aa, = aP*® — agM[aBerkeley] = (—8.843.6) x 10713 and —2.40, and then the new result

of the fine structure constant of the LKB 2020 experiment ag,xp2020 was released at the

last of the work, which gives rise to Aa, = alx® aSM[aLKBQOQO] = (4.8+3.0)x 10713

e
and +1.60, and the new result to the electron anomaly looks like it is under the
prediction of the SM. As nobody knew which experiment is exact at the moment, we
stuck to the result of the Berkeley 2018 experiment. The correct measurement of the
fine structure constant is quite important for all fields of the modern physics and it is
especially important to the particle physics in that the electron anomaly we have
regarded as a new physics signal is likely to be less interesting if the new result of the
LKB 2020 experiment is correct. The muon anomaly is also likely to get affected by
the change of the fine structure constant and the FNAL reports a long-awaited new

result for the muon anomalous magnetic g — 2 with 4.20 of SM deviation [152].

As an interesting case, there have been many attempts to explain the muon and
electron anomalous magnetic moments in a unified way, since they share the structural
similarity as a leading order contribution. If we consider the one-loop correction to

both anomalies as the dominant next leading order (NLO) contribution, explaining the
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different sign of the muon and electron anomalies under the results of BNL 2018 and
Berkeley 2018 experiment has been challenging and this was our good motivation
governed in both my first and second work. The motivation will be covered in detail in

my first and second works.

2.4 Third limitation of the SM - the hierarchy

The hierarchical structure of the SM might be able to look less convincible when

compared to other limitations. The main reason for this is that all particles under the
SM can be explained by the Yukawa interactions and spontaneous symmetry breaking
with the relative Yukawa constants. The hierarchical structure of the SM can be seen

in Figure 2.11.
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FIGURE 2.11: The left is the relative magnitude of each particle’s Yukawa constant
and the right is the Yukawa constant is expressed in logarithmic scale.

However, this kind of view has not come to an agreement for the mass insertion
mechanism of each particle, especially neutrino, by many particle physicists since it
looks “unnatural”. This hierarchical problem of the SM can be further clarified by
mentioning the order of the Yukawa constant for the SM neutrino, electron and lastly
top quark with the Higgs vev 246/v/2 ~ 174 GeV, respectively.

O(y,) ~ 10712, O(ye) ~ 1075, O(y) ~ 1 (2.49)
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The big gap between the order of SM neutrino and that of top quark has made many
particle physicists consider whether there is another more convincible and reasonable
mass insertion mechanism to cover the tiny mass of neutrinos more naturally and the
consideration has taken the shape of the seesaw mechanism. Starting from the
conventional seesaw mechanism covered in Equation 2.37, there have been many
variants for the seesaw mechanism like type 1b seesaw, inverse seesaw mechanism, etc.
for the purpose of lowering the mass scale of Majorana neutrinos assumed to exist at
high energy scale. Through these diverse seesaw mechanisms, it is possible to lower the
mass scale of the sterile neutrinos up to TeV scale which is an accessible energy scale

in close future experiments.

Considering the hierarchical structure of the SM seriously leads to the seesaw
mechanism to explain the very tiny mass of neutrinos in a more natural and dynamical
way and the seesaw mechanism might be able to reveal the sterile neutrinos which
resides in the TeV scale. As long as the hierarchy of the SM might be able to reveal

some new physics, I believe it should be considered as serious as other limitations.

2.5 Fourth limitation of the SM - unification

One of the greatest successes of the SM is the forces which had been regarded as the
separate forces actually could be united as a more fundamental force like the
electroweak interaction at the electroweak energy scale. A very beautiful aspect of this
unified interaction can be clarified by the gauge symmetry SU(2)r x U(1)y in a
mathematical way, however it requires to look into the interaction in detail to
determine whether the combined gauge interaction means really two separate forces
are united. This investigation can be done through the connection of the coupling
constants g and ¢’ which appear in the covariant derivative of the Higgs field of

Equation 2.13 as seen in the Equation 2.16.

/ /

e = L = QSin 9W = 9/ COs 9W7 g = tan HW (250)
g

Suppose that there is a larger gauge symmetry G involving the electroweak gauge

symmetry SU(2), x U(1)y which consists of two independent interactions.
GOSU2)LxU)y (2.51)

Then, all observables can be described by a new coupling constant gpew under the
larger gauge group G. Including the strong interaction SU(3), I can define the larger
gauge group at the scale of grand unified theory (GUT).

Ggur D SUBB)e x SU(2) xU(1)L (2.52)
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At the GUT scale, the observables can be described by the new coupling constant
gauT where each coupling constant ggps, g and gs meet simultaneously. Particularly,
the Callan-Symanzik equation revealed that the coupling constants ggn, gw and gg
have the dependence on the momentum scale and this property is shown by the

running coupling constants in Figure 2.12
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FIGURE 2.12: Running coupling constants of the SM interactions

In Figure 2.12, the weak and strong coupling constants tells an interesting feature
known as asymptotic behaviour, in which the coupling constant gy and gg get
stronger as the distance increases, whereas the characteristic is exactly opposite to the
electromagnetic coupling constant ggyi. The reason that the weak and strong
interactions behave differently arises from their self-interactions which cause negative

values of the beta function.

As shown in the unification for the electromagnetic, weak and strong force, the particle
physicists have dreamed of unifying the last known force “gravity” with the SM forces.
However, it has remained unsuccessful for a long time since the gravity can not be
quantized. The diverse efforts to find the quantized gravity has evolved as the string
theory which looks relatively successful rather than other theories, however this field
still has some critical issues like it is difficult to observe or experiment the results
derived from the string theory since the energy scale is too high to experiment with the
current machine power. Despite all these difficulties, unifying all known forces has

been very attractive since this unification itself is a great motivation for new physics.
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My BSM models [89,148,166] did not touch this unification in person since it requires
to investigate how the SM gauge symmetry can arise as a result of more fundamental
symmetries spontaneously broken and inevitably makes the investigation much more
challenging due to lots of breaking patterns and assumed particles (as well as lots of
assumptions). A research to investigate more fundamental symmetries is carried out
within an extension of the Pati-Salam model [167] and this research can suggest one
possible direction to constructing more fundamental symmetries despite many
difficulties such as lots of assumptions. This unification is definitely an important
subject, related to the origin of the universe, and this research will be carried out with

more fundamental symmetries in my future works.

2.6 Fifth limitation of the SM - Dark matter and Dark

energy

The all limitations of the SM treated so far are based on the known SM particles and
forces. However, I talk the rarely known objects Dark Matter (DM) and Dark Energy
(DE) in this section. The main motivation for the DM started from the rotation curve

of the spiral galaxy.
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FIGURE 2.13: Rotation curve of the spiral galaxy

As seen in Figure 2.13, many physicists expected the speed of the spiral galaxy would
be slower as the distance between the galaxy and the center of the galaxy increases.
However, the actual observation of the speed showed that it continues to increase as
the distance increases. In order to explain the observed result of the rotation curve of
the spiral galaxy, two theories known as the modified gravity and the Dark Matter have
been discussed. As time goes on, many evidences supporting the DM started to emerge

like the gravity lensing effect, the bullet clusters, etc. in Figure 2.14 and in Figure 2.15.
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galaxy

distorted light-rays

FIGURE 2.14: The left is the principle of the gravity lensing effect and the right is the
actual lensing effect observed.

The gravity lensing effect in Figure 2.14 explains how the unseen objects can be seen

by distorting the path of the light and is actually observed in the right of Figure 2.14.

FIGURE 2.15: The left is how the bullet clusters takes place and the right is the
visualized image for the bullet clusters.

When two clusters collide with each other, they just pass by one another as if no
collisions take place and the right of Figure 2.15 is the visualized image for the bullet
clusters. Except for these observations such as the gravity lensing effect and the bullet
clusters, there are many other observations supporting the DM theory, whereas the
modified gravity theory has some limitations to explain the observed effects.
Therefore, many particle physicists have leaned on the DM model and this field has
been one of the most open and interesting phenomenology in the particle physics.
Despite all these interesting and attractive properties, the actual difficulty for the
research of the DM arises from that few things have been known so far; the particle
physicists have believed its existence, however there is no any clue or hint about
whether they are either boson or fermion, their spin, the candidate particle for the

DM, etc. Assuming stability of the DM and it does not have the electromagnetic
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interaction with the charged particles, many sterile candidates which do not respect
the SM gauge symmetry like the weakly interacting massive particle (WIMP) have
been suggested, however these are remained as one of possibilities and it requires some
physical observables on it to confirm whether the candidate is really consistent with

the DM. Three search methods for the DM were suggested as seen in Figure 2.16.
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FIGURE 2.16: Three DM search methods

Each method has its own advantage and disadvantage and I will not address them here
since DM is not directly related to my researches I have done so far. In general, the
DM is deeply related to the cosmology, which studies the origin and evolution of the
universe. The cosmology has revealed the energy distribution in our universe in Figure
2.17.
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FIGURE 2.17: The energy distribution in our universe

Following the energy distribution of Figure 2.17, the universe consists of 5% of the SM
particles, 26% of the DM and 69% of the Dark Energy which is calculated in the
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Einstein’s field equation to explain the current accelerating universe. It is worth
mentioning that the vector-like fermions, frequently used to extend the SM fermion
sector in my works [89,148,166], does not belong to the 5% of matter particles. Based
on the features, the presence of DM and DE has been believed they must exist.
However, many particle physicists agree that their candidates are not in the SM; the
neutrinos had been considered as the only possible candidate for the DM in the SM,
however their too light mass had some issues with the stability of the DM so the
possibility was excluded. The DM and DE which have been firmly established
phenomenologically should be explained by some BSM models and these are one of the

clear reasons why the SM should be extended.

As in the unification covered in the subsection 2.5, I did not touch the DM in my
works [89,148,166] in person since we focused on more flavor observables such as a few
of anomalies as well as the FCNCs. However, my BSM models have big room for the
DM since the SM fermion and scalar sector all are extended by the vector-like fermions
and one more SM-like Higgs (as well as one singlet flavon), respectively. The
hypothetical vector-like fermions and non-SM scalars are generally assumed to be
much heavier than the top quark, thus they are suitable to be candidates for the DM
and there was an attempt [168] to explain DM by the vector-like neutrinos via the type
1b seesaw mechanism, used in our second work [148]. In my future researches, the DM

will be studied within an extension of the SM.
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Chapter 3

The first BSM model - the

fermiophobic Z' model

We saw that the SM itself is not enough to cover every detail of our universe via the
discussions of chapter 2, therefore we need to come up with how to extend the SM and
we start from this consideration: how can we extend the SM without violating the
gauge symmetry and experimental bounds for the SM observables. A possible answer
to the question is a minimal extension to the SM, which is a main principle over my
three works. As emphasized in the introduction, at least one of the following sectors,
the SM fermion, scalar and gauge symmetry, must be expanded for the minimal
extension. Before we go to the prerequisites to cover each hypothetical tool required

for our BSM models, it is good to look at main features in my three works.

e First work (Phys. Rev. D, 115016) [89]

— Main target : the muon and electron g — 2, the y — e~y decay and the

neutrino trident production, the Z’ gauge boson

— extension of the fermion sector : fourth vector-like family

— extension of the scalar sector : a singlet flavon

— extension of the SM gauge symmetry : U(1)" local symmetry (gauge
symmetry)

e Second work (Phys. Rev. D, 115024) [148]

— Main target : the muon and electron g — 2, the y — e~y decay and the
hierarchical structure of the SM, the SM W gauge bosons, the non-SM

scalars
— extension of the fermion sector : fourth and fifth vector-like families

— extension of the scalar sector : a more SM-like Higgs and the singlet flavon
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— extension of the SM gauge symmetry : U(1)" global symmetry (family

symmetry)
e Third work (In arXiv) [166]

— Main target : the diverse FCNC observables such as
T — wy,T = 3, Z — ut and the rare t — ¢Z decay and the CKM mixing
matrix and the hierarchical structure of the SM, the SM Z gauge boson

— extension of the fermion sector : fourth vector-like family
— extension of the scalar sector : the SM-like Higgs and the singlet flavon

— extension of the SM gauge symmetry : U(1)" global symmetry (family

symmetry)

The common features appearing in all three works are the vector-like family, the
SM-like Higgs plus the singlet flavon and lastly the U(1)" symmetry. Therefore, it is
quite important to understand them and they are discussed in the following

prerequisites.

3.1 Prerequisite : vector-like (VL) fermions

In order to extend the SM fermion sector, many hypothetical ingredients have been
studied and considered such as the vector-like (VL) fermion, leptoquark (LQ) and
long-lived particle (LLP). Each of those is based on the fundamental property of the
SM and we focus mainly on the vector-like fermions since the SM fermion sector of all

my works are extended by only the vector-like fermions.

The vector-like fermions are a well-known candidate as they have the exact same
quantum numbers as in the SM fermions and one vector-like family consists of two
partner particles which share the same quantum number, so they cancel out the
possible gauge anomalies in the SU(2) x U(1) interaction theory as given in Figure 3.1.
As the name “vector-like” tells, one vector-like family generally consists of its
left-handed (LH) and right-handed (RH) particles where both share the same quantum
numbers, so they can have two source of mass; one is the chirality flip mass and the
other is the vector-like mass. This interesting mass sources with the vector-like

particles can be seen clearly by referring to the particle content used in our first paper.
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FIGURE 3.1: Gauge anomalies which can take place at SU(2) x U(1) interaction theory
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TABLE 3.1: Particle content to explain two mass sources consisting of the vector-like
particles

As shown in Table 3.1, the subscript 4 means fourth vector-like family (It means fourth
after the three SM generations). For simplicity, we focus on the fourth vector-like
lepton doublets (Lyy,, 1~14 r)- The first interesting feature of them is they have the exact

same quantum numbers, so it allows for them to have the vector-like mass as follows:

Loinass = Mff4LE4R+h. C., (3.1)
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and the vector-like mass Mf is not constrained by any symmetry, so it can be as heavy
as possible and allows more freedom to our numerical scans. Along the vector-like
mass, the vector-like particles can have one more mass source called the chirality flip

mass as follows:
Loinass = $LZ4LI:’E4R+h. c. = MEE4LE4R—|—h. c., (3.2)

Unlike the vector-like mass M}, the chirality flip mass M f is governed by the vev of
the neutral component of the SM Higgs, therefore it can not be very heavy. Before
going into a further detailed analysis of the vector-like and chirality flip mass, it is

good to remind of their symbolic notation appearing in many Feynman diagrams.

FIGURE 3.2: A symbolic notation for either the vector-like or chirality flip mass

As Figure 3.2 tells, the symbolic notation “cross” means either the vector-like or
chirality flip mass, so it should be careful when we consider interactions involving either
the vector-like or chirality flip mass. This property of the vector-like and chirality flip
mass is reflected on our analysis of the muon and electron g — 2 in our first work, by
considering the masses separately in the one-loop diagrams. Strictly speaking, this is
not a very correct way of dealing with the masses in our analytic analysis, since we did
not carry out diagonalization of the mass matrix, however it is a good approximation
under the assumption M} > M 40 . As you are aware of from the diagonalization, it is
possible to build the mass matrix involving both the vector-like and chirality flip mass
and let me construct it as follows (I do not consider three generations of the SM at the

moment, but only focus on the fourth vector-like leptons for simplicity):

‘E4R Esr ‘E4R E4R
ME=| By | ME v | =| Ea | ME ME . (3.3)
Eu | 0 MF Eu | 0 ME

We can find the physical vector-like masses by diagonalizing the mass matrix given in
Equation 3.3. As mentioned previously, we did not carry out the diagonalization of our
whole mass matrix in our first work since we had not constructed the whole mass
matrix, however, it was a good approximation to the diagonalization under the
assumption M4L’E > MY

It is a common feature that the vector-like family was used over my three works,
however there is a big difference between the first and second plus third BSM model.
In the first model, the general SM Yukawa interactions are allowed as the SM Higgs H
is neutral under the U(1)" charge, whereas the general SM Yukawa interactions are not
allowed in both the second and third BSM model as the SM Higgs is charged under the
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U(1) symmetry in order to take the SM as an effective theory and then to bring the
hierarchical structure of the SM under our understanding in a kinematic way. On top
of that, we used the mass insertion approximation in the analysis of the muon and
electron g — 2 in our first work, which means both the chirality and vector-like masses
appear in the analytic form of the anomalies. In the second work, two vector-like
families were used in order to make all SM generations massive (One vector-like family
can provide two effective seesaw operators) and the mass matrices of second work were
diagonalized with an assumption all mixing angles appearing there are quite small. In
our third work, we made use of just one vector-like family for the purpose of
diagonalizing the mass matrices without any assumptions. The first SM generation can
not be massive as a result, however it is a good approximation taking into account the

first SM generation is quite light.

There is an important feature in my three works [89,148,166], that both the vector-like
doublet and singlet fermions were considered at the same time. Taking into account
that the most simplest extension of the SM fermion sector is to consider only the
vector-like singlet fermions, it looks like our BSM models are less minimal (as well as
less economical) and the vector-like doublet fermions are not necessary to extend the

SM fermions. However we prefer to consider both for two reasons.

1. The first reason is to have a realistic fermion mass spectrum. Referring to the
numerical plots for the charged lepton as well as quark sector in our third
work [166], the doublet vector-like fermion’s masses are relatively lighter
compared to their singlet vector-like masses, which means the doublet vector-like

fermions will be likely to be observed first if there exist the vector-like fermions.

2. As the BSM models under consideration in my three works were based on UV
completion theory, which means the BSM models must be effective theories to be
able to explain the SM without violating gauge symmetry and the current
experimental bounds if the energy scale goes down to the electroweak scale. In
this view point considering both provides many natural analytical explanations
for the observables. In our third work [166] we were able to find out how
deviation of the first row of the CKM mixing matrix can arise in an analytic way

by considering both the doublet and singlet vector-like fermions.

For these reasons, we firmly believe that considering a complete vector-like family is

much more realistic to extend the SM fermions.

Summarizing this subsection, the vector-like particles have been an important
ingredient to extend the SM fermion sector in that they can implement richer
phenomenology such as the vector-like or chirality flip mass and purely new

interactions at tree-level, so we can explore its new possibility to new physics. We will
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take a closer look at how the vector-like particles can contribute to new physics
throughout the rest of this thesis.

3.2 Prerequisite : 2 Higgs Doublet Model (2HDM)

The observed SM Higgs reports a quite light mass 125 GeV and this observation has
been a quite interesting open question: why is the SM Higgs so light? Following one of
the convincing explanations for the Higgs mass, the SM Higgs is an extremely fine
tuned parameter by subtracting from the SM Higgs’s bare mass to its loop correction

as follows:

2 2 2
mphys = Mpare ~ Mloop> (34)

where order of mpare loop 1S about 10", which is quite close to the Planck scale. This
extreme suppression between mpare and myqep might imply new possibilities and one of
which is there must be some other extra symmetry in the SM scalar sector if we
approximate the SM Higgs mass to be zero. Plus, the SM Higgs has vev of 246 GeV
and what this means is the SM can not predict a heavier mass like 1 TeV. However,
many particle physicists agree that there must be at least a new physics between the
electroweak scale to the Planck scale and this naturally leads to needs to extend the
SM scalar sector in order to explain the heavy particles assumed in new physics. As
long as we consider only the Yukawa interactions and the spontaneous symmetry
breaking to assign each fermion a mass, it is necessary to include more scalars, whose
vevs are generally assumed to be heavier than the SM Higgs vev, which plays a crucial
role in my three works. And the SM Higgs vev is known as 246 GeV and we can come
up with the possibility known as the 2 Higgs Doublet Model (2HDM) if we consider the
up- and down-type quark sectors (as well as the charged lepton sector) are governed by
the different Higgs vevs. This is a quite nice idea when we try to explain the strong
hierarchical structure of the SM and it has been one of our main motivations over my
second and third works. Our second and third BSM models feature the 2HDM, in
which the up-type Higgs H,, couples to the up-type quarks, whereas the down-type
Higgs H, interacts with the down-type quarks as well as the charged leptons (the SM
neutrinos need to be treated separately and this will be discussed when we explore our

second work). Therefore, the up- and down-type Higgs vevs hold for this relation:
v2 4 02 = (246 GeV)? (3.5)

Therefore, the SM Higgs is enlarged by the two SM-like Higgses H,, 4 and this has a
couple of advantages; one of which is the hierarchical structure of the SM can be
explained dynamically and the other is we can expect richer phenomenology of the
CP-even and -odd Higgses, which appear as a result of the mixing between H, and Hy,

and this feature is covered in our second work.
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Summarizing this subsection, the light SM Higgs mass 125 GeV can imply the other
extra symmetry in the SM scalar sector and its vev 246 GeV can not predict heavier
particles whose masses are order of 1 TeV or above than that. The assumed heavy
particles are frequently considered in some new physics model and this means some
other scalars, whose vevs are generally assumed to be heavier than that of the SM
Higgs, should be introduced. An extended 2HDM by the singlet flavon has become a
main BSM model for my second and third work in order to explain the hierarchical
structure of the SM and this feature will be discussed in detail when we explore the

second and third work.

3.3 Prerequisite : U(1)' gauge symmetry

As in the enlargement of the fermion and scalar sectors, extension of the SM gauge
symmetry has been considered important and all the extensions are based on the
unification covered in chapter 2. The generally accepted standard theory to explain the
origin of the universe is known as the Big Bang theory as given in Figure 3.3,
Dark Energy
Accelerated Expansion
Afterglow Light

Pattern Dark Ages Development of
375,000 yrs. Galaxies, Planets, etc.

Inflation

Quantu
Fluctuations

1st Stars
about 400 million yrs.

Big Bang Expansion
13.77 billion years

F1cUre 3.3: The Big Bang theory which has been accepted as a standard theory for
the origin of the universe

and it is believed there must be a most fundamental symmetry corresponding for the
start of the Big Bang theory. The four forces, which are electromagnetic, weak, strong

and gravity, have been known so far and it is proved that the electromagnetic and
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weak forces can be unified at the electroweak scale. These unifications can be seen in
Figure 3.4.

big bang
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electromagnetic force

weak force electro-

weak force

gravity

F1GURE 3.4: Unification of all the fundamental forces at higher energy scales

The unification between the electroweak and strong forces is known as the Grand
Unified Theory (GUT), whose energy scale is corresponding for 10!5 GeV and that
between the GUT and gravity is known as the Theory of Everything (ToE), whose
energy scale is corresponding for the Planck scale 10'® GeV. There have been many
attempts to explain the GUT or ToE by the larger symmetries such as Fg, Fg or
SO(10). However, a critical problem of direct connection from the SM gauge
symmetry to the higher energy scale is very likely to mislead our understanding to the
phenomenology of the particle physics and it is not possible to confirm the derived new
particles and intermediate symmetries experimentally, as their energy scale is too high.
For this reason, we focus on the minimal extension for the gauge symmetry and a
simplest possibility is U(1)" symmetry. The U(1)" symmetry can be further separated
depending on whether it is local or global. If the U(1)" symmetry is local, the neutral
Z' boson appears and the Z’ boson can lead to some new physics and this idea was
carried out in my first work. If the U(1)" symmetry is global, the Z’ boson does not
appear and a main role of the symmetry is to constrain some Yukawa interactions,

which was carried out in my second and third works.

Summarizing this subsection, the extension of the SM gauge symmetry is based on the
feature of the unification as well as the fermion and scalar sectors. Since the direct
connection from the SM gauge symmetry to either GUT or ToE is very likely to
mislead our understanding to the phenomenology, so we take a simplest possibility, the
U(1)" symmetry, in order to avoid the misleading. The U(1)" symmetry can be further
separated depending on whether it is a local or global. The local U(1)" symmetry
features the neutral Z’ gauge boson and this will be discussed in our first work. Our
second and third work features the U(1)" global symmetry and the U(1)" symmetry

plays a role of constraining some Yukawa interactions.
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We have discussed common features shared by my three works and we start to discuss

our first BSM model in our first work from the next section.

3.4 Introduction and motivation

The Standard Model (SM) provides an excellent explanation of all experimental data,
apart from neutrino mass and lepton mixing. Yet there are a few possible anomalies in
the flavour sector that may indicate new physics beyond the SM. For example,
recently, there have been hints of universality violation in the charged lepton sector
from B — K™+~ decays by the LHCb collaboration [6-8]. Specifically, the Ry [9]
and Ry~ [10] ratios of utu~ to ete™ final states in the B — K®)[*]~ decays are
observed to be about 70% of their expected values with a roughly 2.50 deviation from
the Standard Model (SM) in each channel. Following the recent measurement of

Ry~ [10], a number of phenomenological analyses have been presented [11-17] that

CNP

favour a new effective field theory (EFT) physics operator of the Cé\lap = —Ciop

form [18-20]. The most recent global fit of this operator combination yields
Co = (34.0TeV)~2 [20], though other well-motivated solutions are also possible [21].

In previous works [18], it has been suggested that such observations of charged lepton
universality violation (CLUV) must be accompanied by charged lepton flavour
violation (CLFV) such as y — ey in the same sector, however, such a link cannot be
established in a model-independent way because the low-energy effective operators for
each class of processes are different. Nevertheless, in concrete models the connection is
often manifest. This motivates studies of specific models. For example, studies of
CLFV in B-decays using generic Z’ models (published before the Ry« measurement
but compatible with it) are provided in Ref. [22]. A concise review of BSM scenarios
that aim to explain CLUV and possible connections to dark matter is provided in
Ref. [23]. Other theoretical explanations for universality violation in the lepton sector
are discussed in Refs. [18,22,24-45].

Independently of these anomalies, for some time now, it has been known that the
experimentally measured anomalous magnetic moments g-2 of both the muon and
electron each observe a discrepancy of a few standard deviations with respect to the
Standard Model predictions. The longstanding non-compliance of the muon g-2 with
the SM was first observed by the Brookhaven E821 experiment at BNL [46]. The
electron g-2 has more recently revealed a discrepancy with the SM, following an
accurate measurement of the fine structure constant [47]. However the different
magnitude and opposite signs of the electron and muon g-2 deviations makes it
difficult to explain both of these anomalies in any model, which also satisfies the
constraints of CLFV, with all existing simultaneous explanations involving new

scalars [48-56], or conformal extended technicolour [57]. We know of no study which
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discusses both anomalies in a Z’ model. One possible reason is that the CLFV process
1 — e7y, which would be concrete of BSM physics in the charged fermion sector, is very
constraining. Neutrino phenomena do give rise to CLFV but in the most minimal
extensions this would occur at a very low rate in the charged sector, making it
practically unobservable. Given the considerable resources committed to looking for
CLFV, it is crucial to study relevant, well-motivated BSM scenarios which allow for
CLFV at potentially observable rates. For example, such decays can be enhanced by
several orders of magnitude if one considers extensions of the SM with an extra U(1)’
gauge symmetry spontaneously broken at the TeV scale. To summarise, although such
extensions are able to successfully accommodate the experimental value of the muon
magnetic moment [32, 44, 58-60], we know of no study of a Z’ model which discusses

both the electron and muon magnetic moments, including the constraints from p — evy.

In this work, we ask the question: is it possible to explain the anomalous muon and
electron ¢ — 2 in a Z’ model? It is difficult to answer this question in general, since
there are many possible Z’ models. However it is possible to consider a model in which
the Z’ only has couplings to the electron and muon and their associated neutrinos,
arising from mixing with a vector-like fourth family of leptons, thereby eliminating the
quark couplings and allowing us to focus on the connection between CLUV, CLFV and
the electron and muon g-2 anomalies. Such a renormalisable and gauge invariant
model is possible within a U(1)" gauge extension of the SM augmented by a fourth,
vector-like family of fermions and right-handed neutrinos as proposed in [27]. In the
fermiophobic version of this model [27], only the fourth family carry U(1)" charges,
with the three chiral families not coupling to the Z’ in the absence of mixing. Then
one can switch on mixing between the first and second family of charged leptons and
the fourth family, allowing controlled couplings of the Z’ to only the electron and
muon (and fourth family leptons) of the kind we desire. Such a model allows charged
lepton universality violation (CLUV) at tree-level with CLFV and contributions to the
electron and muon magnetic moments at loop level. Within such a model we attempt
to explain the anomalous magnetic moments of both the muon and electron within the
relevant parameter space of the model, while satisfying the constraints of BR(u — e7)
and neutrino trident production. Using both analytic and numerical arguments, we
find that it is not possible to simultaneously explain the electron and muon g-2 results

consistent with these constraints.

The remainder of this article is organised as follows; in Section 3.5 we outline the
renormalisable and gauge invariant fermiophobic model in which the Z’ couples only to
a vector-like fourth family. In Section 4.1, we show how it is possible to switch on the
couplings of the Z’ to the electron and muon and their associated neutrinos, thereby
eliminating all unnecessary couplings and allowing us to focus on the connection
between CLUV, CLFV and the electron and muon g-2 anomalies. A simplified

analytical analysis of the CLFV and the electron and muon g-2 anomalies in the
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fermiophobic Z" Model is presented in Section 4.2. In Section 4.3 we analyse the
parameter space numerically, presenting detailed predictions for each of the examined
leptonic phenomena. In Section 4.4 we discuss the experimental and theoretical Z’

mass bound. Section 4.5 concludes the paper.

3.5 The Fermiophobic Z' Model

Consider an extension of the SM with a U(1)" gauge symmetry, where fermion content
is expanded by right-handed neutrinos and a fourth, vector-like family. The scalar
sector is augmented by gauge singlet fields with non-trivial charge assignments under
the new symmetry. The basic framework for such a theory was defined in [27].
Henceforth we consider the case where the SM fermions in our model are uncharged
under the additional symmetry, whereas the vector-like fermions are charged under
this symmetry, corresponding to so called “fermiophobic Z’” model considered in [27].
The field content and charge assignments are given in Table 5.1. Note that such a
theory is anomaly free; left- and right-handed fields of the vector-like fermion family

have identical charges under U(1)’, and hence chiral anomalies necessarily cancel.

Field Qi wr dir Lir er vi H Qi Qir Ui uwar dar dap Lar Lap Ear Eir var Var 95

sU@. 3 3 3 1 1 1 1 3 3 3 3 3 3 1 1 1 1 1 1 1
su@, 2 1 1 2 1 1 2 2 2 1 1 1 1 2 2 1 1 1 1 1
T S T e e S S T T e T S T !
vy o0 0 0 0 0 0 0 qg 901 Gu Qu Gds  Gds  GLs 9Ly Ges  Ges G Tu  —f

TABLE 3.2: Particle assignments under SU(3)c x SU(2), x U(l)y x U(1) gauge
symmetry. ¢ = 1,2,3. The SM singlet scalars ¢¢ (f = Q,u,d, L,e) have U(1)" charges
4y = 79Qa u4,da,La,es-

Although the Z’ couples only to the vector-like fourth family to start with, due to the
mixing between SM fermions and those of the fourth vector-like family (arising from
the Lagrangian below) the Z’ will get induced couplings to chiral SM fermions. After
mixing, the model can allow for a viable dark matter candidate and operators crucial
for explaining the Rx and Ry« flavour anomalies [32]. As we shall see, this setup can
also generate CLFV signatures such as y — ey and accommodate the experimental

value of the anomalous muon and electron magnetic dipole moments.
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With the particle content, symmetries and charge assignments in Table 5.1, the

following renormalisable Lagrangian terms are available:

3 3 3 3
Ly = Z Z yg)@mﬁum + Z Z yfj)@iLdeR

i=1 j=1 i=1 j=1
3 3 B 3 3 L

+2° 3w LuHen+ 3>y LinHvir
i=1 j=1 i=1 j=1

+ yiu)@u:ﬁ 4R + yz(ld)@4LH dsr + yz(;e)fzu;H Esr + yiy)ﬂlLﬁ VAR

3 3 3 _
+ Z xEQ)(l)Q@LiQM% + Z $EU)¢ua4LURz‘ + Z $Z(-d)¢dd4LdRi

i—1 i=1 i=1
3 3 _
Ly, v 3 = = = =
+> o ¢ LiiLlag + > 2\ $e Eapers + MY Q. Qan + MiTarusr
i=1 i=1

+ M334Ld43 + M4LZ4LI~/4R + MfE4LE4R + MZ§4LV4R + H.c.

where the requirement of U(1)’ invariance of the Yukawa interactions involving the
fourth family yields the following constraints on the U(1)" charges of fourth fermion

families:

4Q4 = Quy = qd, qdL, = ey = Quy (37)

It is clear from Equation (3.6) that fields in the 4th, vector-like family obtain masses
from two sources; firstly, Yukawa terms involving the SM Higgs field such as

y”
once the Higgs acquires a vev, and secondly from vector-like mass terms like

Lyr Heyp which get promoted to chirality flipping fourth family mass terms M 40

M 4LZ4LI~/4 r (these terms show up in lines 2 and 4 of Equation (3.6) respectively). For
the purposes of clarity, we shall treat M, 4C and MFLy 1Lsp as independent mass terms
in the analysis of the physical quantities of interest, rather than constructing the full
fourth family mass matrix and diagonalising it, since such quantities rely on a chirality
flip and are sensitive to M, 40 rather than the vector-like masses M, 4Lf4 LI~J4 R-
Spontaneous breaking of U(1)" by the scalars ¢; spontaneously acquiring vevs gives rise
to a massive Z’ boson featuring couplings with the chiral and vector-like fermion fields.

In the interaction basis such terms will be diagonal and of the following form:

LY = §' 71 (Qr DoV QL + urDuy'ur + drDin"'dg

- (3.8)
+ L Diy" Ly, +erDey'er + VrDY ' vR)

Here, ¢’ is the ‘pure’ gauge coupling of U(1)’ and each of the Ds are 4x4 matrices.
However, only the fourth family has non-vanishing U(1)" charges as per Table 5.1 and

hence these matrices are given by:

DQ = diag(07070>QQ4)7 Du = diag(070707 qu4)> Dd = diag(O,O,O,qd4),

(3.9)
DL = diag(070707QL4)7 De = diag(070707QG4)7 Dl/ = dlag(oa O>O7QV4)
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At this stage, the SM quarks and leptons do not couple to the Z’. However, the
Yukawa couplings detailed in Equation (3.6) have no requirement to be diagonal.
Before we can determine the full masses of the propagating vector-like states and SM
fermions, we need to transform the field content of the model such that the Yukawa
couplings become diagonal. Therefore, fermions in the mass basis (denoted by primed
fields) are related to particles in the interaction basis by the following unitary
transformations:

QL =V, Qr,  ug=Vyuzur, & = Vardr, (3.10)

L,L = VLLLLa elR = ‘/eReRa V}{ = VI/RVR

This mixing induces couplings of SM mass eigenstate fermions to the massive Z’ which
can be expressed as follows

Dy =Vg,DoVy,,  Diy=Vug DuV,

Dy, =Vi, DLV},  D,=VeDV]

eR’

D} = Vg, DaV} .

, T (3.11)
D, =V,,D, V]

Thus far all discussion of interactions and couplings has been general. In Sections 4.1
and 4.3, we will prohibit mixing in some sectors to simplify our phenomenological
analysis. In particular, we shall only consider induced Z’ couplings to the electron and

muon.
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Chapter 4

Is it possible to explain the muon

and electron g — 2 in a Z' model?

As an attempt to explain the connection between CLUV, CLFV and both anomalies
with the Z’ gauge boson, we set up the fermiophobic Z’ model covered in chapter 3. In
the model we showed the chiral SM particles have no interaction with the fourth
vector-like family in the interaction basis due to the diagonal charge matrix, however
the mixing arise in the physical basis since the diagonal charge matrix get to induce
the off-diagonal mixing through the unitary transformation. From this stage, I expand
our analysis for both anomalies as well as the two constraints, which are the CLFV

1 — ey decay and neutrino trident production.

4.1 Z' couplings to the electron and muon

In this paper we are particularly interested in the electron and muon g-2. We therefore
take a minimal scenario and consider mixing only between first and second families of
charged leptons, and ignore all quark and neutrino mixing, leading to a leptophillic Z’
model, in which the Z’ couples only to the electron, muon and their associated
neutrinos. Therefore, only V7, and V., will be non-diagonal, and LHC results will not
constrain the Z’' mass as there is no direct coupling between SM quarks and the new
vector boson, nor mixing between SM and vector-like quarks, because SM quarks are
uncharged under U(1)" as seen in Table 5.1. Among the CLFV processes, we will focus
on studying the u — ey decay, which put tighter constrains than the 7 — pvy and

T — ey decays. For this reason, to simplify the parameter space, we also forbid the

third family fermions from mixing with any other fermionic content. As such, all



50  Chapter 4. Is it possible to explain the muon and electron g — 2 in a Z' model?

mixing at low energies can be expressed as per Equation (4.1).

cos GlLQ’R sin Gle‘R 00 cos HlLiR 0 0 sin 01L4’R 1 0 0 0
Vi on = — sin 091LQ’R cos HlLQ‘R 0 0 0 10 0 0 cos 9;‘45{ 0 sin €2L4’R (4. 1)
o 0 0 10 0 01 0 0 0 1 0
0 0 0 1) \=sin65® 0 0 cost5") \0 —sin64" 0 costL”

The mixing angle 01424 can be expressed in terms of mass parameters written in the

Lagrangian of Equation 3.6 as follows.

tan 0%, = 2Ber)  tanth, = \/ — 25" (ﬁﬁ 2 (4.2)
(217 (o))" + (M)

Mf
The angles defined here take the theory from the interaction basis in Equation (3.6) to

the mass eigenbasis of primed fields introduced with Equation (3.10). They directly
parameterise the mixing between the 4th, vector-like family and the usual three chiral
families of SM fermions. Such mixing parameters will cause the D’ matrices from
Equation (3.11) to become off-diagonal. This incites couplings between the massive Z’
vector boson and the SM leptons, suppressed by the mixing angles. These mixing
angles can be expressed in terms of parameters from the Lagrangian (Equation (3.6)),
as per Equation (4.3) [27].

tan 01, = 7$§L)<¢L> tan 0%, = xéL)<¢L>
14 ) 24 \/($5L)<(Z)L>)2 + (M4L)2

M
With the restrictions defined in Equation (4.1) and above, all of the relevant couplings

(4.3)

between the massive Z’ and fermions in the mass basis of propagating fields can be

determined as the following:

LY = Z 11 r(91,R) YL R (4.4)
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where [,I' = e, u, E, the mass eigenstate leptons electron, muon and vector-like lepton

respectively with the following couplings to the massive Z’' boson:

2
(9L.R)pp = ALy e (COS 91L2,R sin 92L4R — cos HQLiR sin GILQ’R sin 91L4R) (4.5)

2

L,R . ,L.R
(9L,R)ec = g/qL4,64 (sm 912 sin 05, + cos 912 cos 024 sin 6 ) (4.6)
2 2
LR L,R

(9L.R)EE = 9 QLyes (cos 6013 ) (cos 054 ) (4.7)

L L
(9L.R)eE = 'Ly e 008914Rc08924R<Sm9 15 sinf 4R+c059 19 COSH od Rsing

(9L.R)uE = 9 Ly e cos 05 60894R<c05912 sin 021 — cos 051 sin 055 sin 017

i)
(4.8)
)
(4.9)

(9L.R)pe = G QLyes (sin@féR sin 027 + cos 015" cos 0%, sin 0 4R) (4.10)

X (COSH12 511194 008924 81n012 sin 0 4R>

It is important to note that only the first and second family of SM leptons e, u couple
to the massive Z’, with their non-universal and flavour changing couplings controlled
by the mixing angles G{ZR, 92L41R with the vector-like family. Throughout the remainder

of this work, we assume that ¢’qr4e4 = 1 for simplicity.

4.1.1 Muon decay to electron plus photon

In this subsection we study charged lepton flavor violating process p — ey in the
context of our BSM scenario. It is worth mentioning that a future observation of the
1 — ey decay will be indisputable evidence of physics beyond the SM . The SM does
predict non-zero branching ratios for the processes u — ey, 7 — py and 7 — ey, but
such predictions are several orders of magnitude below projected experimental
sensitivities [61,62]. The p — ey decay rate is enhanced with respect to the SM by
additional contributions due to virtual Z’ and charged exotic lepton exchange at the
one-loop level. General I; — [;y decay can be described by the following effective
operator [61]:

M E
o —— ;J Lio" i F,, + %ﬂmf’aw’ww (4.11)

where [, denotes the electromagnetic field strength tensor, ,uib;- and ,uf\]/-[ are the
transition electric and magnetic moments, respectively and 4, j = 1,2, 3 denote family
indices. Diagonal elements in the transition magnetic moment ,uf\J/-[ give rise to the
anomalous dipole moments Aa; = %(gz — 2) of leptons, whilst off-diagonal elements in

the transition moments contribute to the l; — ;v decay amplitude. Based on the
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effective Lagrangian in Equation (4.11), one has that the amplitude for a generic

lepton decay fi — fory has the form [63]:
A = eg,(q)v2(p2) [i0" q (0L PL + orPr)| u1(p1) (4.12)

where o;, and o are numerical quantities with dimension of inverse mass that can be
expressed in terms of loop integrals [63]. u; and ve are spinors, furthermore, we have

the following relations:

ot =S 0", Prr=50F%), q=Dp1—p2 (4.13)

In such a general case, the decay rate expression for the u — ey process is the
following [59,61,63,64]:
5

o My w2 | 1~ 2
L(p— ey) = 102€ZT4M75,(‘0—L| +[or[%) (4.14)

where o7, and o are given by:

5= S |0 ) + 2 )Gl

(IZE,}L,E r
2
~ My ms
OR = Z (gR)ea(gR)auF(xa) + 7<9R)ea(gL)auG<$a) 5 Lq = D)
my Mz,
a=e,n, B
(4.15)

F(z) and G(x) are loop functions related to the Feynman diagrams for y — ey as per
Figure 4.1, and have the functional form given in Equation (4.16). g1 g are couplings
in the fermion mass basis, as detailed in Equations (4.5) through (4.10). m, here
corresponds to the full propagating mass of the vector-like partners. In the
approximation where the vector like mass M} is always much greater than the
chirality-flipping mass M, 40 (M. 4L > M, 40 ) that we will adopt here, this full propagating
mass is almost equivalent to the vector-like mass. Therefore when a = F, we

approximate mg =~ M{. The loop functions are given by [59]:

52t — 1423 + 3922 — 382 — 1822 Inx + 8

F(z) = 12(1 - z)2 ’ 16
23+ 3z —6zlnx — 4 (4.16)
Gla) = 21— z)

Equation (4.14) has some generic features; the loop function F'(x) varies between 0.51
and 0.67 when z is varied in the range 10 3<e< 2, whilst in the same region, G(x)
varies between -1.98 and -0.84. Consequently, in the case of charged fermions running
in loops, contributions proportional to G(x) will likely dominate over those
proportional to F(z). The dominant contributions involve left-right and right-left Z’

couplings, whereas the subleading ones include either left-left or right-right couplings.
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FIGURE 4.1: Feynamn diagrams contributing to the u — ey decay. Note that these
diagrams all rely on a chirality flipping mass (LR). Where the chirality flip involves the
fourth family, the relevant mass is M.

Dividing Equation (4.14) by the known decay rate of the muon yields a prediction for
the u — ey branching fraction [59,61,63,64]:

a md

— [
BR(: = ) = {ooamt 2 T,

[)(QL)yu(gL)ueF(xu) + (9L)ue(9L)ee F(TE) + (91) pe (gL )ee F(2e)

m MC m 2
+ #(QL)ue(gR)MHG(xM) + m74(gL>eE(gR)uEG($E> + #(QL)ee(gR)ueG(xe)

I3 B iz

+ (gR)N'“‘(gR)ueF(xu) + (gR)uE(gR)eEF(xE) + (gR>ue(gR)eeF(xe)

m ME Me 2
+ J(QR)ue(gL)uuG(xu) + i(gR)eE(gL),uEG(-TE) + 7(9R)ee(gL),ueG(fEe) ]
my my my
(4.17)
2,5
where the total muon decay width is I'), = % =3 x 1071°GeV. The mass MY that

appears in the Feynman diagrams with a chirality flip on the 4th family fermions F4
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7' 7'
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FIGURE 4.2: Feyman diagrams contributing to the muon (g —2),

(Figure 4.1, 5th and 11th diagrams) is not the vector-like mass, but instead arises from
the Yukawa-like couplings from Equation (3.6), M. 40 = yii)v¢, where vy is the vacuum
expectation value of the SM Higgs field, which acquires a vev and spontaneously
breaks electroweak symmetry in the established manner. Under the assumption that
M f > my,, such terms proportional to the chirality flipping mass in Equation (4.17)
give by far the largest contributions to ¢ — e7y. The experimental limit on

BR(u — e7) is determined from non-observation at the MEG experiment at a 90%
confidence level [65,66]:

BR(u —ey) <4.2x 1071 (4.18)

4.1.2 Anomalous magnetic moment of the muon Aq,

In this subsection we study the muon anomalous magnetic moment in the context of
our BSM scenario. In a model such as this, the Feynman diagrams for y — ey are
easily modified to give contributions to the anomalous magnetic moment of the muon
as per Figure 4.2. The prediction for such an observable in our model therefore takes
the form [59]:

m2

8af =~ | (00l + Vo)l Pl + (o )usl? +1(9m) ) F )

+ (|(9L)ue|2 + ’(gR)ueF)F(l'e) + Re ((gL)uu(g;{)HH)G($H)

C

+Re ((g1)p5(g3) ) J‘Tﬁa(m) + e ((g1)egile)

Mme

G(z.)
(4.19)
Once more, the dominant terms will be those proportional to the enhancement factor

C
of Aﬁ%, corresponding to the final diagram in Figure 4.2, provided M, f > my,. Recent

experimental evidence has shown that the muon magnetic moment as measured by the
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FIGURE 4.3: Feynamn diagrams contributing to the electron g — 2

E821 experiment at BNL is at around a 3.5¢ deviation from the SM
prediction [46,67-72]:
(Aay)exp = (26.1 £8) x 10710 (4.20)

4.1.3 Anomalous magnetic moment of the electron Aa,

Analogously to the muon, there is also an amendment to the electron (g — 2), in this
scenario, from Feynman diagrams given in Figure 4.3. The analytic expression for Aa,
is the following [59]:

2

A%Z/ = _87:2”]\642 (‘(gL)eeF + ’(gR)eeP)F(xe) + (|(9L)eu‘2 + ‘(QR)euP)F(mu)
Z/

+ (Ig)esl? + [(9r)es?) F(xp) + Re (gL )ec (gh)ec) < G(xe) (4.21)

m Mec
+ Re ((gL)eu(gE)eu)#G(xp) +Re ((90)en(9R)er) —-G(zk)

€ €

As per the muon moment, if M, 40 > m,, the largest contribution to the electron
moment will be the final term in Equation (4.21), corresponding to the last diagram in
Figure 4.3. The most recent experimental result of the (g — 2)., obtained from
measurement of the fine structure constant of QED, shows a 2.50 deviation from the

SM, similarly to the muon magnetic moment [47]:
(Ade)exp = (—0.88 +0.36) x 1012 (4.22)

Notice especially that Equations (4.20) and (4.22) have deviations from the SM in
opposite directions, therefore explaining both phenomena simultaneously can be

difficult for a given model to achieve.
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N{—>»—» N

FIGURE 4.4: Feynamn diagram contributing to neutrino trident production, N denotes
a nucleus.

4.1.4 Neutrino trident production

So-called trident production of neutrinos by process v,v* — v, u* = through nuclear
scattering is also relevant. The Feynamn diagram contributing to neutrino trident
production in our model is shown in Figure 4.4. This process constrains the following
effective four lepton interaction, which in this scenario arises from leptonic Z’
interactions [73-75]:

(91) (B L) Pur YA vuL) — (9R)uIL )
oMz, pl AT 2M?2,

ALcry D — (FrY R) s vavur) (4.23)
Said coupling is constrained as in the SU(2), symmetric SM, left-handed muons and
left-handed muon neutrinos couple identically to the Z’ vector boson. Experimental
data on neutrino trident production v,v* — v,u"p~ yields the following constraint at
95% CL [76]:

1 (QL)fW + (90) up(9R) e 1

_ < < 4.24
(390GeV)2 ~ M2, ~ (370GeV)? (424)

This limit can be applied to the model’s parameter space in a similar manner to other

CLFV constraints discussed previously.

4.2 Analytic arguments for (¢ — 2),, (¢ —2). and
BR(p — e7)

In order to gain an analytic understanding of the interplay between (g —2),, (g — 2).
and BR(u — e7v), in this section we shall make some simplifying assumptions about
the parameters appearing in Equations (4.19), (4.21) and (4.17). If we assume large
fourth family chirality flipping masses M, f > my,, then the expressions for these
phenomena reduce to a minimal number of terms, all proportional to M, 40 .

Furthermore, we assume that left- and right- handed couplings are related by some



4.2.  Analytic arguments for (g — 2),, (g9 — 2). and BR(u — e7) 57

real, positive constants k; and ko defined thus:

(9L)uE = GuE, (9r)pE = k19uE, (4.25)

(9L)eE = YeEs (9R)eE = —k29eE

The final coupling in Equation (4.25) is defined with a sign convention such that,
seeing as it is known numerically that the G loop function is always negative, we
automatically recover the correct signs for all of our observables. We also define the

following prefactor constants to further simplify our expressions:

5 2 2

o m m m
Cy = £ Cy=—*~ C3 = - 4.26
YT 024w MAT, 0 TP T 8e2M2 T T sm2ME, (4.26)

Under such assumptions, Equations (4.19), (4.21) and (4.17) reduce to the following:

Mf 2 Mf 2
BR(p — ey) = C1 ’7klgeEguEG<$E)‘ + ‘7k2geEguEG($E)’ (4.27)
mu mu
, g
|Aa,| = Cok1g,p |G(zR)| (4.28)
My
o MY
|Aae| = Cskagip - |G(xp)] (4.29)

We can then invert Equations (4.28) and (4.29) to obtain expressions for the couplings

in terms of the observables as per Equation (4.30).

~ JAa,] 1 my,  [Aa] 1 me
IE =N\ Coky [Glag) MC P =\ Caky |Gan)| ML

(4.30)

Substituting into the flavour violating muon decay in Equation (4.27) and expanding

the constants defined earlier yields:

an? (k3 + k3) m

— = 2/ 1Aq,l||Aa.
16 ik | au” a|rume

BR(p — ey) = (4.31)
independently of Mz and MY which cancel. Rearranging Equation 4.31 and setting
the physical quantities |Aa,|, |Aae| equal to their desired central values, yields a

simple condition on 7 = k1 /ky in order to satisfy the bound on BR(u — e7v):
1 ~10
7+ =] < 5.57 x 10 (4.32)
r

Since the left hand side is minimised for » = 1, the bound on BR(x — ev) can never be
satisfied while accounting for (g —2),, (g9 — 2). (although clearly it is possible to satisfy
it with either (¢ —2), or (g — 2). but not both). However this conclusion is based on

the assumption that the physical quantities are dominated by the diagrams involving
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the chirality flipping fourth family masses M, 40 > my,. In order to relax this
assumption, a more complete analysis of the parameter space is required, one that
considers all relevant terms in our expressions for observables in a numerical

exploration of the parameter space. Such investigations are detailed in Section 4.3.

4.3 Numerical Analysis of the Fermiophobic Z' Model

Given the expressions for observables that we have outlined above, we use these
phenomena to constrain the parameter space of the model. As mentioned, a minimal
parameter space is considered here, limiting mixing to the lepton sector and omitting
the third chiral family from any mixing. From coupling expressions in Section 4.1, the
angular mixing parameters such as 6947, and particle masses form a minimal parameter
space for this model. We set direct mixing between the electron and muon (0127, r) to
be vanishing for all tests, as even small direct mixing can easily violate the strict MEG

constraint on BR(u — e7).

4.3.1 Anomalous muon magnetic moment

Initially, we focus on the longest-standing anomaly, that of (g —2),. We first utilise a
simple parameter space, as we require only mixing between the muon and vector-like
lepton fields. To keep the analysis in a region potentially testable by upcoming future
experiments, we take a vector-like fourth family lepton mass of M} = 1TeV and a
chirality-flipping fourth family mass of M{ = 200GeV (as discussed earlier we make a
distinction between these two sources of mass). The smaller value of MY is well
motivated by the need for perturbativity in Yukawa couplings, as the SM Higgs vev is
176GeV, since M, 40 is proportional to the Higgs vev. For this investigation, the

parameter space under test is detailed in Table 4.1.

Parameter Value/Scanned Region
My 50 — 1000 GeV

M 200 GeV

MF 1000 GeV

sin2 O120,R 0.0

sin? 0147, 0.0

sin® O14p 0.0

sin? 0241, R 0.0 — 1.0

TABLE 4.1: Explored parameter space for muon g — 2 test.
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Within the stated parameter space, expressions for the observables under test are
simplified considerably, and with fixed M, 40 and M} we constrain the space in terms of
the three variables sin® 041, sin® foup and M 7z, as shown in Figure 4.5. Note that, as
6121,k and 6141 g are set vanishing, contributions to (¢ — 2). and BR(p — ey) are
necessarily vanishing, as can be readily seen from Equations (4.21) and (4.17). The
dominant contribution to (¢ — 2), under these assumptions is shown in the final

Feynman diagram in Figure 4.2, that with the enhancement factor of M, 40 /my,.

® Aay, < Aa,®P(95%)
® Aay, > Aa,*P(95%)
® Aay, good (95%)

My =500GeV
M,€=200
M, =1Tev

Sil’12024 R= 1075
M, =200GeV
M, =1Tev

® Aay, < Aa,*P(95%)
0 Aay, > Aa,*P(95%)
® Aay, good (95%)

® vTri> vTri™*®(95%)

10
50 100 500 1000 107 0.001 0.010 0.100 1
M, [GeV) sin6y, |
(A) Trident exclusion and regions of (B) Aa, in angular parameter space
Aay,, with a fixed sin? f24g. with fixed Z’ mass

FIGURE 4.5: Constraints in the M/, sin® 6947, and sin? 04 parameter space,
mixing between the electron and vector-like lepton switched off. Note we will
discuss the Z’ experimental bound in a next subsection.

The legend in Figure 4.5 shows the constraint from neutrino trident production as
‘vTri’ for brevity. Using only mixing between the muon and the vector-like lepton, it is
not possible to predict a value for the electron g — 2 consistent with the observed value
as the electron-Z’ coupling does not exist. In order to recover this, we must consider

mixing of the vector-like lepton with the electron, detailed in the following subsection.

4.3.2 Anomalous electron magnetic moment

Here we concentrate on the (g — 2).. In order to test this observable alone, we
investigate only mixing between the electron and vector-like lepton, and ignore any
muon contributions. The region of parameter space under test is given in Table 4.2,
note also that mixing with the right-handed electron field is not required to obtain a

good prediction.
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Parameter Value/Scanned Region
My 50 — 1000 GeV

M 200 GeV

MF 1000 GeV

sin? 0121, 0.0

sin® 0147, 0.0+ 1.0

sin® O14p 0.0

sin? 041, R 0.0

TABLE 4.2: Explored parameter space for electron g — 2 test.

In Figure 4.6, we colour the electron g — 2 being greater than the observed value (i.e.

‘less negative’ than the experimental data) as the blue region, as such values are more

SM-like. Blue regions therefore ameliorate the SM’s tension with the experimental

data but do not fully resolve it.

1.0r
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>
D
N
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w
0.4F
- sin2024 (L, R)=O
M,¢=200GeV

M t=1TeV

0.2

B |Aay| < |Aa,"*|(95%)
) Aa, good (95%)

50 75 100 125 150 175 200

M5 [GeV]

FIGURE 4.6: Aa, impact on sin® 6,47,, M parameter space, mixing between
the muon and vector-like lepton switched off. Note we will discuss the Z’
experimental bound in a next subsection.
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Similarly to the preceeding section, because there are no couplings between the electron
and the muon (even at the loop level), there are no contributions to the CLFV decay

@ — e7y. Similarly, there are no amendments to the SM expressions for the muon g — 2
or neutrino trident decay. From this analysis one can conclude that only through using
mixing between both muons and electrons with the vector-like leptons is it possible to

simultaneously predict observed values of both the anomalous magnetic moments.

4.3.3 Attempt to explain both anomalous moments

In an attempt satisfy all constraints simultaneously, we set specific values for Mz, M, 40
and sin® 61, that inhabit allowed regions of parameter space in Figures 4.5a, 4.5b and
4.6, then scan through angular mixing parameters as before. The investigated region is
summarised in Table 4.3. The choice of Z’ mass here is motivated by studying the

regions of Figures 4.5 and 4.6 that admit muon and electron (g — 2)s respectively.

Parameter/Observable Value/Scanned Region
My 75 GeV

ME 200 GeV

M 1000 GeV

sin? 0121, R 0.0

sin® 014, 0.75

sin® O14p 0.0

sin? Ooar g 1077 — 1.0

BR(p — ev) 1073 — 1.0

TABLE 4.3: Parameter space and BR(u — e7v) in a parameter space where
the electron and muon both mix with the vector-like lepton. Initial attempt
to satisfy both anomalous moments.

This story concludes quite quickly with all points being excluded. The enchancement
factor of MY /m,, in Equation (4.19) is largely responsible for (g — 2),, in this scenario,
however such a term also gives an unacceptably large contribution to BR(u — e7) as
per Equation (4.17), resulting in a branching fraction far above the experimental limit;
the minimum BR(u — ev) for any parameter points in this scenario is around 1073, as
shown in Table 4.3. Such a situation persists even if sin? #f, is scanned through it’s
entire range, and furthermore is unchanged by the choice of M}, and is insensitive to
the Z’ mass in the case of large M 40 . We conclude therefore, that with a large
chirality-flipping mass circa 200 GeV, it is not possible to simultaneously satisfy

constraints and make predictions consistent with current data. This conclusion is
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consistent with the analytic arguments of the previous section, where the large
contributions coming from large chirality flipping fourth family masses M, 40 were
assumed to dominate. We now go beyond this approximation, considering henceforth

very small MY .

If one sets M 4C vanishing, terms proportional to the aforementioned enhancement
factor also vanish, eliminating the largest contribution to u — e~, as follows from
Equation (4.17). Motivated by this reduction in the most restrictive decay the above

analysis is repeated, but with the chirality-flipping mass removed.

4.3.3.1 Vanishing M40

If we choose to turn off the chirality-flipping mass of the vector-like leptons, their mass
becomes composed entirely of M}. Terms proportional to the enhancement factor

MY /m,, in Equation (4.19) are sacrificed, which makes achieving a muon g — 2 that is
consistent with the experimental result more challenging. Larger mixing between the
muon and vector-like leptons is required, but more freedom exists with respect to
BR(u — e7y). We investigated a region of parameter space defined as per Table 4.4, to
test its viability.

Parameter Value/Scanned Region
My 50 — 100 GeV

M§ 0 GeV

MF 1000 GeV

sin® O121,R 0.0

sin® 0147, 0.5— 1.0

sin? 0145 0.0

sin? Ooar g 0.0 —1.0

TABLE 4.4: Parameters for scan without chirality-flipping mass.

For the results of this scan we consider the impact of each constraint separately, then
check for overlap of allowed regions. Note that in Figure 4.7, angular parameters and
the heavy vector Z’ mass are varied simultaneously, hence here we randomly select
points and evaluate relevant phenomena, rather than excluding regions in the space.
This also explains the spread of parameter points as compared to the previous
exclusions. Note that the range of sin® #f, has been restricted in Tables 4.4 and 4.5 due
to the fact that no points that satisfy BR(u — ev) could be found with sin? 61, < 0.5,

omitting this region increases the efficiency of our parameter scan. We also limit the
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ranges of My in Tables 4.4 and 4.5 as Z’ masses much higher than this were found to

be incompatible with (g — 2),, and masses much below saturated the bound from
1w — ey.

1.0

A M,-50-100Gev
A sin®64,=0.5-1.0
A M, =0, M;"=1TeV

My, =50-100GeV
sin0y4 =0.5-1.0
0.8F |M,=0, My"=1Tev

0.6
= =
& &
s s
0.4
fe
o2k W vTri> vTri®®(95%) W vTri> vTri®®(95%)
® Aa, good(95%) ©® Aa, good(95%)
® BR(u->ey) good(90%) ® BR(u->ey) good(90%)
0.0 ' e
0.0 0.2 0.4 0.6 0.8 1.0 0.0 0.2 0.4 0.6 0.8 1.0
sin®6y, ;. sin®6y, ;.
(A) Parameter points that resolve Aa, (B) Parameter points that resolve Aa.
and separately, points allowed under the and separately, points allowed under
p — ey constraint. Fixed parameters 1 — e7y. Fixed parameters given in leg-
given in legend. Chirality-flipping mass end. Chirality-flipping mass is set van-
is set vanishing. All good Aa, points ishing. Some good Aa. points are al-
are excluded by trident and pu — ev. lowed by trident and p — ery.

FIGURE 4.7: Parameter scan results for M{ = 0. Note we will discuss the
7' experimental bound in a next subsection.

In Figure 4.7a, one can see that, as suspected, larger sin® 0241, r mixings are required to
obtain a muon (g — 2),, consistent with current data. However, there is no overlapped
region in Figure 4.7a, and (g — 2),, cannot be solved without violating the muon decay
constraint for a vanishing chirality-flipping mass, or the shown exclusion for neutrino
trident production. On the other hand, Figure 4.7b shows that there are points that
resolve the SM’s tension with (g — 2)., and are allowed by the strict BR(x — e) limit
and neutrino trident production. The lack of terms with the enhancement factor of

M /m,, in Equation (4.17) means that points have been found with an acceptable
branching fraction of y — ey that was not possible with a large M, 40 .

Note that in both panels of Figure 4.7 the most conservative neutrino trident limit is
shown, where we assume that My is fixed at 50GeV. We have also found that there is
also no obvious correlation between My and sin? 6147, for © — e, and points appear
to be randomly distributed in this space. Since we have seen that neither large nor
vanishing M, 40 are viable, in the next subsection we switch on a small but non-zero
Mf , to investigate if it may be possible to increase (g — 2), to an acceptable level,

without giving an overlarge contribution to the CLFV muon decay.
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4.3.3.2 Small M{ O(m,)

Here we perform analogous tests to those above but with a small chirality flipping
mass, motivated by (g — 2), with the requirement that BR(y — e7y) remains below the
experimental limit. Ranges of parameters scanned in this investiagtion are given in
Table 4.5.

Parameter Value/Scanned Region
My 50 — 100 GeV

Mf 5my,

sin® 0141, 0.5 1.0

sin® O14R 0.0

sin? 0241, R 0.0 = 1.0

sin? 0127, g 0.0

TABLE 4.5: Parameters for larger scan with a small chirality-flipping mass.

Figure 4.8 shows points allowed under each separate observable in an analogous
parameter space to Figure 4.7, but with M, 40 = 5my,. Once more neutrino trident
production excludes a large region of the parameter space in this scenario. From initial
study of the parameter space it seems that there is overlap between the allowed regions
of (9 —2)u, (9 —2). and BR(x — e), however, upon closer inspection of the parameter
points allowed by p — e, those points always yield negative (wrong sign) (g —2),

that is far away from the experimental value, and hence all points are excluded.
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® vTri> vTr*®(95%)
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(A) Parameter points that resolve Aa, and sep-
arately, points allowed under the yu — ey con-
straint. Fixed parameters given in legend, small
chirality flipping mass. Unfortunately none of the
points shown which have viable 4 — ey and sat-
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FIGURE 4.8: Parameter scan results for small M{ = 5m,. Note we will
discuss the Z’ experimental bound in a next subsection.

In Table 4.6, we examine more closely the points that are allowed under the most
stringent constraint of y — ey. As 4th family mixing with the muons exists in this
space, neutrino trident production is also a consideration, and the constraint of this
observable in our space is given in Figure 4.8. All points valid when considering

BR(p — ey) exist with a small sin? fo4z mixing angle, but can have a wide range of Z’

masses and sin® 047
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Parameter Observable
My /GeV  sin?614;  sin?6yy;  sin?fur  BR(p — ey) Aae Aay,
69.5 0.61 0.11 0.02 3.25 x 10713 —2.15x 10713 —1.80 x 10710
68.5 0.80 0.05 0.01 1.69 x 1071% —332x1071% —1.63x 10710
91.0 0.99 0.08 0.16 334 x 10713 —241x10713 —1.19x107°
63.0 0.99 0.02 0.13 1.38 x 1071 —5.390 x 10713 —2.03 x 1079
65.5 0.78 0.07 0.02 4.94x 107 —343x10718 —2.36 x 10710
64.8 0.78 0.09 0.02 3.61 x 10713 —3.46 x 10713 —3.19 x 10710
77.9 0.85 0.005 0.02 6.13x 10714 277 x 10713 —1.77 x 10710
91.4 0.81 0.14 0.04 580x107 —1.73x10713 —2.71x10710
97.2 0.86 0.08 0.03 1.07x 10718 —1.73x 1073  —2.71x 10710
76.0 0.63 0.03 0.004 1.72x1071% —201x1073 —3.97x 1071
56.8 0.96 0.04 0.05 3.77x 1071 —6.22x 10713 —8.36 x 10710
78.1 0.99 0.07 0.20 1.84 x 107  —332x1071 —2.04x107?
89.4 1.0 0.07 0.28 295 x 10713 —256x 10713 —2.25x 107

TABLE 4.6: Parameter points that are below the upper bound on BR(u — ey) for M{ = 5m,,.

The points in this table correspond to the 13 black points in Figure 4.8 that are also below the

grey neutrino trident exclusion. These points do not satisfy the experimental value of (Aa,)exp =
(26.1 £8) x 10719,

We see that for the points in Table 4.6, electron g — 2 prefers regions of the space with
small sin? 0o, similarly to the preferred points under the neutrino trident constraint,
given in the same plot as an excluded region derived in the same way as previous
results for M, 40 = 0. Many of these points are simultaneously consistent with the

 — ey limit, and also provide a (g — 2), consistent with experimental data (denoted
in green), whilst a subset of these points do not violate the neutrino trident production
limit. From these results, we can conclude that the best points lie in the region of
small sin? fa47 and sin? oy R, and that such points simultaneously comply with

BR(1 — €7), (9 — 2)e and neutrino trident. Such candidate points however do not
allow for resolution of Aa,, as they all have negative values for Aa,, as opposed to the

experimental value which is positive.

A number of other chirality flipping masses were examined in this work, in the region
omy, < M, 4C < 200GeV, including a parameter scan whereby M, f was randomly
selected between these limits, and these tests yielded similar results to those shown in
the last three sections, whereby it was not possible to obtain predictions that were

simultaneously consistent with (g — 2)., (9 — 2), and BR(p — e7).



4.4. The experimental and theoretical bound for the neutral Z' gauge boson 67

4.4 The experimental and theoretical bound for the

neutral 7' gauge boson

The neutral Z’ gauge boson can be constrained by both the effective four fermion
effective interactions and the theoretical oblique corrections S, T, U. However, the
unknown coupling constant and mass of Z’' gauge boson leave the predictions not fully

determined. Both will be explored in order.

4.4.1 Four fermion effective interactions

In order to make our analysis as simple as possible, we assumed the neutral Z’ gauge
boson are generated via the leptonic collision process ete™ — Z’ — eTe™ and the
experimental bound for the Z’ boson is given in PDG [153-158].

MEXY = 48 GeV (4.33)

However, a critical problem is the result of Equation 4.33 is too old to trust. Plus, it
looks like the fact that the CM energy of the eTe™ collision process of the LEP
experiment has reached up to 209 GeV makes our numerical prediction for the Z’
mass, 75 GeV, excluded completely. However, we came to two agreements on the fact

through our discussions as follows:

1. The experimental Z’ bound of Equation 4.33 is a somewhat weak bound.

2. The CM energy 209 GeV is not the ultimate experimental bound for the Z’

neutral gauge boson at the moment.

Based on the agreements, we find a suitable relation to constrain the Z’ mass and the

effective four fermion leptonic Lagrangian for the constraint is given by [44]:

2 3 ~ ~ ~ ~
Leg = — IX [xllele (llfyMPLll)(le'YMle) + xluxlm(llV“PLll)(ljR’YuljR)]

(4.34)

=27z 2w, (0 PRI (Girvdie) + ey, (0 Pri) (ird )]
Z' j=1

The resulting limit for the leptonic collision process ete™ — pu*u~ from Equation 4.34
has the form of [44,149]:

2Myz

gX\/xllL‘TlQL T LU pTlop T Tl g Ty, T Ty Tlog

> 4.6 TeV, (4.35)
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4.4.2 Oblique corrections 5,7 and U

It is well-known that any BSM model can be significantly constrained by the oblique
corrections S,T and U. The oblique corrections S, T and U were first suggested by
Peskin and Takeuchi in 1991 and one of the great success of the oblique corrections
was to find top quark’s mass. Therefore, we can expect that masses of the hypothetical
particles such as Z’ gauge boson and non-SM scalars can be constrained by the oblique
corrections. The oblique corrections S and T come from dimension six operators
whereas U comes from dimension eight operator, so the corrections S and T play a
more important role in constraining the hypothetical particles. The definition for the

corrections S and T are given by [169]

S _ 231n29w dH3O (q2)
apm (Mz)  dg* |, 7
=0 (4.36)
T - I3 (¢?) — 11 (¢?)
QOEM (Mz) MI%V q2:0 )

where IIs are the vacuum polarization amplitudes with external gauge bosons Wi o3

and B. The oblique corrections S and 1" consist of its SM part and new physics effect

S = Sgum + AS,

(4.37)
T =1Tsm + AT,
and the Sgy and Tgy are calculated by [170]
1 2 1 1 2
Ssv = ——In [ —2 ) + = [3—ZIn( =L )| ~0.106
127 miy, s 3 mj,
(4.38)

3 2 3m?2
Tou = m("%)+ i ~ 0.537

167 cos2 Oy m%,[, 32m2em (Myz)v?

where « (M%)_l = 128.944. The current best-fit results of oblique parameters S,T and
U are given by [151,171]

S=-0.01+0.10, T=0.03£0.12, U =0.02£0.11. (4.39)

The neutral Z’ gauge boson can appear in the vacuum polarized amplitudes via mixing

with the external gauge bosons W7 23 and B.
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FIGURE 4.9: Diagrams contributing to the gauge boson 2-point function

However, a main difficulty of determining the Z’ theoretical bound comes from its
unknown coupling constants and masses. Plus, I could not find any convincing papers
related to constraining the light Z’ gauge boson with the oblique parameters (There
are a few papers, however all of them depend on a specific scenario and their
constraints are of order TeV, which is quite difficult to generalize and apply to our
BSM model). In my fourth project, I will try to constrain the My, with the oblique
parameters after finding preferred order of Z’ coupling constants by diverse flavor

observables such as muon g — 2, FCNC observables, etc.

4.5 Concluding Remarks

In this paper, we have addressed the question: is it possible to explain the anomalous
muon and electron g — 2 in a Z’ model? Although it is difficult to answer this question
in general, since there are many possible Z’ models, we have seen that it is possible to
consider a simple renormalisable and gauge invariant model in which the Z’ only has
couplings to the electron and muon and their associated neutrinos, arising from mixing
with a vector-like fourth family of leptons. This is achieved by assuming that only the
vector-like leptons have non vanishing U(1)" charges and are assumed to only mix with
the first and second family of SM charged leptons. In this scenario, the heavy Z’ gauge
boson couples with the first and second family of SM charged leptons only through

mixing with the vector-like generation.

A feature of our analysis is to distinguish the two sources of mass for the 4th,
vector-like family: the chirality flipping fourth family mass terms M{ arising from the
Higgs Yukawa couplings and are proportional to the Higgs vev and the vector-like
masses M 4L which are not proportional to the Higgs vev. For the purposes of clarity we
have treated M, 40 and M} as independent mass terms in the analysis of the physical
quantities of interest, rather than constructing the full fourth family mass matrix and
diagonalising it, since such quantities rely on a chirality flip and are sensitive to M, 40
rather than M4L.
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We began by assuming large fourth family chirality flipping masses Mf > my,, and
showed that the expressions for (g —2),, (¢ — 2). and BR(u — ev) reduced to a
minimal number of terms, all proportional to M, 4C . We were then able to construct an
analytic argument which shows that it is not possible to explain the anomalous muon

and electron g — 2 in the Z’ model, while respecting the bound on BR(u — e).

We then performed a detailed numerical analysis of the parameter space of the above
model, beginning with large M, 40 = 200 GeV, where we showed that it is possible to
account for (g — 2), in a region of parameter space where the electron couplings were
zero. Similarly, for MS = 200 GeV, we showed that it is possible to account for

(g — 2)e in a region of parameter space where the muon couplings were zero. In both

cases BR(u — ev) was identically zero.

Keeping M 40 = 200 GeV, we then attempted to explain both anomalous magnetic
moments by switching on the couplings to the electron and muon simultaneously, but
saw that it was not possible to do this while satisfying BR(u — e7), as expected from

the analytic arguments.

We then went beyond the regime of the analytic arguments by considering very small
values of M{. With M{ = 0, we saw that it is not possible to account for (g — 2),,
without violating the bounds from BR(u — e7) and trident, however it is possible to
account for (g — 2). while respecting all constraints. With small but non-zero M we
reached similar conclusions, although the analysis was more complicated, and it was

necessary to examine specific benchmark points to reach this conclusion.

We stress that the fermiophobic Z’ model is a good candidate to explain either

(9 —2), or (g —2)e, consistently with BR( — e7) and trident, with the choice
determined by the specific mixing scenario. However to explain the (g — 2), always
requires a significant non-vanishing chirality flipping mass involving the 4th vector-like

family of leptons.

We would like to comment on the generality of our conclusion that, for the Z’
framework considered in this paper, we cannot simultaneously explain the electron and
muon g-2 results within the relevant parameter space of the model, while satisfying the
constraints of BR(y — e7y) and neutrino trident production. Does this conclusion
apply to all Z’ models? While it is impossible to answer this question absolutely, there
are reasons why our results here might be considered very general and indicative of a
large class of Z’ models. The main reason for this is that, in the considered framework,
the Z’ is only allowed to couple to the electron and muon and their associated
neutrinos, arising from mixing with a vector-like fourth family of leptons, thereby
eliminating the quark couplings and allowing us to focus on the connection between
CLUV, CLFV and the electron and muon g — 2 anomalies only, independently of other
constraints. Moreover, the allowed Z’ couplings are free parameters in our approach

and so may represent the couplings in a large class of Z’ models. Furthermore, we have
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presented a general analytic argument that provides some insight into our numerical
results. For example, we do not require the Z’ to couple identically to left- and
right-handed leptons, and the masses for intermediate particles in the one-loop
diagrams cancel in the final expression for BR(u — ev) in Equation 4.31, which lends
this result some generality. We also note that this paper represents the first paper to
attempt to explain both electron and muon g — 2 anomalies simultaneously within a Z’
model. Thus, although the problem of the CLFV constraint in preventing an
explanation of electron and muon g — 2 anomalies is well known in general, it had not
been studied within the framework of Z’ models before the present paper. Indeed this
is the first work we know of that attempts to explain the muon and electron anomalous
magnetic moments simultaneously using a simple Z’ model. On top of that, we also
discuss the Z’ mass limit. The current Z’ experimental bound is known as 48 GeV at
PDG, however we agree that this is a somewhat weak bound and need to determined
the correct Z’ mass bound, based on the fact that the LEP experimental has reached
up to 209 GeV for the CM energy of the leptonic collision process ee™ — eTe™~. Using
the experimental limit suggested by LEP experiment [44,149], we derived the
numerical mass bound for the Z’ gauge boson, which is My > 287.5 GeV. Since this
numerical result depends on lots of assumptions though, we conclude the correct Z’

mass bound is not yet completely determined.

Finally we comment that since there are models in the literature which account for all
these observables based on having scalars, it might be interesting to extend the scalar
sector of a Z' model. The lepton flavour violating processes could then be used to set
constraints on the masses for the CP even and CP odd heavy neutral scalars, as

in [44]. However, such a study is beyond the scope of the present paper.

In conclusion, within a model where the Z’ only has tunable couplings to the electron
and muon and their associated neutrinos, arising from mixing with a vector-like fourth
family of leptons, it is not possible to simultaneously satisfy the experimentally
observed values of (g —2), and (g — 2)., while respecting the BR(yx — e) and trident
constraints, within any of the exhaustively explored parameter space (only one or
other of (g —2), or (g — 2). can be explained). Since the model allows complete
freedom in the choice of couplings, and the diagrams involving fourth family lepton
exchange can be chosen to contribute or not, this model may be regarded as indicative

of any Z' model with gauge coupling and charges of order one.
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Chapter 5

The second BSM model - SM
fermion mass hierarchies from VL
families with an extended 2HDM

In this chapter, we start discussing our second BSM model with two vector-like
families, mainly motivated by the hierarchical structure of the SM, taking the SM as
an effective theory. In the BSM model, we discuss the hierarchical structure of the SM
with the mixing formalism and how the BSM model can give rise to the effective SM

interactions.

5.1 Introduction and motivation

The Standard Model (SM) has made many successful predictions for the
phenomenology of both quark and lepton sectors with very high accuracy. However
there are long-established anomalies which are not addressed by the SM such as muon
and electron anomalous magnetic moments ay, = (g9 — 2),, /2,ac = (9 — 2). /2. The
muon anomalous magnetic moment reported by the Brookhaven K821 experiment at
BNL [46] and the electron anomaly have confirmed +3.50 and —2.50 deviations from
the SM, respectively. Detailed data analysis of the Standard Model predictions for the
muon anomalous magnetic moment are provided in [67,69,77-79]. The experimentally

observed values for the muon and electron anomalies at 1o of experimental error bars,
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respectively, read ':

Aay = a,® —as™ = (26.1£8.0) x 10717

(5.1)
Aae = aPP — ¢SM = (-0.88 4 0.36) x 10712,

When trying to explain both anomalies to within 1o, a main difficulty arises from the
sign of each anomaly: the muon anomaly requires positive definite non-standard
contributions, whereas the electron anomaly requires such contributions to contribute
with a negative sign [80]. Without loss of generality, the Feynman diagrams
corresponding to the contributions for the muon and electron anomalies take the same
internal structure at one-loop except from the fact that the external particles are
different. The similar structure of the one-loop level contributions to the muon and
electron anomalous magnetic moments might be able to be explained by the same new
physics, but accounting for the relative negative sign is challenging. For example,
considering the one-loop exchange of W or Z’ gauge bosons results in theoretical

predictions for the muon and electron anomalies having the same sign.

In this paper we take the view that both anomalies should be explained to 1o using
the same internal structure at the one-loop level by some new physics which is capable
of accounting for the correct signs of the anomalies. To explain the muon and electron
anomalies, we focus on a well motivated model which is also capable of accounting for
origin of Yukawa couplings and hierarchies in the SM. The model we consider will
account for the Yukawa coupling constant for the top quark being nearly 1 while that
for the electron is around 107%, as well as all the other fermion hierarchies in between,
as well as the neutrino masses and mixing. In order to achieve this we shall introduce
vector-like particles, which are charged under a global U (1)’ symmetry. In a related
previous work [31], with a gauged U(1)" symmetry, the first family of quarks and
leptons remained massless when only one vector-like family is included. Here we shall
modify the model to include two vector-like families charged under a global U(1)" to
allow also the first family to be massive and avoid Z’ constraints. Then we shall apply
the resulting model to the problem of muon and electron anomalous magnetic
moments. The considered model is based on a 2 Higgs doublet model (2HDM)
extension of the SM, supplemented by a global U(1)" symmetry, where the particle
spectrum is enlarged by the inclusion of two vector-like fermion families, as well as one

singlet Higgs to break the U(1)" symmetry 2. The SM Yukawa interactions are

Tt is worth mentioning that the experimental value of the anomalous magnetic moment of the
electron is sensitive to the measurement of the fine-structure constant «. The experimental value of
AGe = Ge,exp — Ge(QBerkeley) used in this work and given in Equation 5.1 is obtained using aperketey from
caesium recoil measurements by the Berkeley 2018 experiment [47]. As this paper was being completed
a different experiment [80] reported a result that implies Aae = af*? — 2™ = (0.48 +0.30) x 10~*2
which differs from the SM by +1.60. The two experiments appear to be inconsistent with each other,
and our results here are based on the earlier result in Equation 5.1.

2An example of a multiHiggs doublet model that uses a flavor dependent global U (1)’ symmetry to
explain the SM charged fermion mass hierarchy by hierarchies of the vacuum expectation values of the
Higgs doublets is provided in [81]
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forbidden, but the Yukawa interactions with vector-like families charged under the
U(1)" symmetry are allowed. Once the flavon develops a vev and the heavy vector-like
fermions are integrated out, the effective SM Yukawa interactions are generated, as
indicated in Figure 8.1. Furthermore, this model also highlights the shape of the
2HDM model type II, since in our proposed model, one Higgs doublet (which in the
alignment limit corresponds to the SM Higgs doublet) couples with the up type quarks
whereas the other one features Yukawa interactions with down type quarks and SM
charged leptons. Regarding the neutrino sector, since we consider the SM neutrinos as
Majorana particles, we have that this sector requires another approach relying on the
inclusion of a new five dimensional Weinberg-like operator, which is allowed in this
model and which requires both SM Higgs doublets to be present, namely the so called
Type Ib seesaw model [82].

We shall show that the heavy vector-like leptons are useful and necessary to explain the
anomalous electron and muon magnetic moment deviations from the SM, of magnitude
and opposite signs given in Equation 5.1. A study of such g — 2 anomalies in terms of
New Physics and a possible UV complete explanation via vector-like leptons was
performed in [48], although the model presented here is quite different, since our model
is motivated by the requirement of accounting also for the fermion mass hierarchies.
Other theories with extended symmetries and particle spectrum have also been
proposed to find an explanation for the muon and electron anomalous magnetic
moments [32,44,48-60,83-114]. In the following we provide a brief comparison of our
model to other works, starting with the model proposed in [105] where vector-like
leptons are also present. The model of [105] corresponds to an extended type X lepton
specific 2HDM model of [105] having a Zs discrete symmetry under which one of the
scalar doublets and the leptonic fields are charged. In such model the vector-like
leptons induces a one-loop level contribution to the electron anomalous magnetic
moment whereas the muon anomalous magnetic moment is generated at two-loop via
the exchange of a light pseudoscalar. On the other hand, in our proposed model a
spontaneously broken global U(1)" symmetry is considered instead of the Zs symmetry
and the vector-like leptons generate one-loop level contributions to the muon and
electron anomalous magnetic moments and at the same type produce the SM charged
lepton masses, thus providing a connection of the charged lepton mass generation
mechanism and the g — 2 anomalies, which is not given in the model of [105]. It is also
worth emphasising that our model is very different from other models proposed in the
literature based on the Universal Seesaw mechanism [34,35,39,115-129]. Universal
Seesaw models are typically based on the left-right symmetric model with electroweak
singlet fermions only, while our vector-like fermions involves complete families,
including electroweak doublets which are typically the lightest ones. Some examples of
theories relying on the Universal Seesaw mechanism to explain the SM charged fermion
mass hierarchy are provided in [34,35,39,115-129].
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In the approach followed in this paper the large third family quark and lepton Yukawa
couplings are effectively generated via mixing with a vector-like fourth family of
electroweak doublet fermions, which are assumed to be relatively light, with masses
around the TeV scale. The smallness of the second family quark and lepton Yukawa
couplings is due to their coupling to heavier vector-like fourth family electroweak
singlet fermions. Similar considerations apply to the lightest first family quarks and
leptons which couple to heavy fifth family vector-like fermions. It may seem that the
problem of the hierarchies of SM fermions is not solved but simply reparameterised in
terms of unknown vector-like fermion masses. However, there are four advantages to
this approach. Firstly, the approach is dynamical, since the vector-like masses are new
physical quantities which could in principle be determined by a future theory.
Secondly, it has experimental consequences, since the new vector-like fermions can be
discovered either directly, or (as in this paper) indirectly via their loop contributions.
Thirdly, this approach can also account for small quark mixing angles [31], as well as
large lepton mixing angles via the type Ib seesaw mechanism [82]. Fourthly, the
effective Yukawa couplings are proportional to a product of two other dimensionless
couplings, so a small hierarchy in those couplings can give a quadratically larger
hierarchy in the effective couplings. For all these reasons, the approach we follow in

this paper is both well motivated and interesting.

Returning to our proposed model framework, we first consider the contribution of W
boson exchange with neutrinos to the electron and muon anomalous magnetic moments
at the one-loop level. Since this model involves the vector-like neutrinos, the sensitivity
of the branching ratio of © — ey decay can be enhanced with respect to the observable
level and the muon and electron anomalous magnetic moments are studied while
keeping the 1 — ey constraint. As a result, we find that the impact of our predictions
with W exchange at one-loop level is negligible when compared to their experimental
bound. We then consider the contributions from the 2HDM scalar exchange. To study
the implications of the one-loop level scalar exchange in the muon and electron
anomalous magnetic moments, we first construct a scalar potential and derive the mass
squared matrix for CP-even, CP-odd and charged Higgses assuming there is no mixing
between the SM Higgs h and two non-SM physical scalars H . A diagonal Yukawa
matrix for charged leptons implies the absence of mixing between charged leptons,
resulting in vanishing branching ratio for the y — e~y decay, which in turn leads to a
fulfillment of the charged lepton flavor violating constraints in this scenario. In such a
framework we show that both anomalies can successfully explain both anomalies,
including their opposite signs, at the 1o level. We present some benchmark points for
both the muon and the electron anomalies, together with some numerical scans around
these points, which indicate the mass regions of the Higgs scalars of the 2HDM in this

scenario. We also provide some analytic arguments to augment the numerical results.
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The layout of the remainder of the paper is as follows. In Section 5.2 we discuss the
origin of Yukawa couplings from a fourth and fifth vector-like family, within a mass
insertion formalism. In Section 5.3 we construct the effective Yukawa matrices using a
more detailed mixing formalism which goes beyond the mass insertion formalism. In
Section 6.1 we consider W exchange contributions to (g —2),,, (g — 2), and

BR (1 — ev) based on the type Ib seesaw mechanism within our model and show that
the contributions are too small. In Section 7.1 we turn to Higgs scalar exchange
contributions to (g —2),,, (g9 — 2), and BR (1 — ey), focussing on analytical formulae.
Then in Section 7.2 we give a full numerical analysis of such contributions, showing
that they can successfully explain the anomalies, presenting some benchmark points
for both the muon and the electron anomalies, together with some numerical scans
around these points, which indicate the mass regions of the Higgs scalars of the 2HDM
in this scenario. Section 7.3 discusses the experimental and theoretical non-SM scalars’
mass bound. Section 7.4 concludes the main body of the paper. Appendix B.1
provides a discussion of the quark mass matrices in two bases. Appendix B.2 includes

a brief discussion of heavy scalar production at a proton-proton collider.

5.2 The origin of Yukawa couplings from a fourth and
fifth vector-like family

We start by asking a question: what is the origin of the SM Yukawa couplings? In
addressing such question, we assume that the SM Yukawa Lagrangian is the low energy
limit of an extended theory with enlarged symmetry and particle spectrum, and arises
after the spontanous breaking of an U (1)’ global symmetry at an energy scale as low as
TeV. Therefore, understanding the origin of the Yukawa interaction naturally leads to
the presence of another Higgses whose masses are higher than the mass of the SM
Higgs. Furthermore, the SM Yukawa interactions are forbidden by the global U(1)’
symmetry, however the Yukawa interaction with the vector-like particles are allowed.
With these considerations in place, the possible diagrams generating the Yukawa

interactions can be drawn as indicated in Figure 8.1.

i ¢

)

"
My,
i, > * ' > Yir Yir,

Yir Y, ViR Yur,

MY

A\
Y

ViR

F1GURE 5.1: Diagrams in this model which lead to the effective Yukawa interactions,
where ¥, ¢’ = Q, u,d, L, e(neutrinos will be treated separately) 7,7 = 1,2,3, k,l = 4,5,
My, is vector-like mass and H = iooH*, H = H,, 4
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There are two key features in Figure 8.1, one of which is the presence of the assumed
flavon ¢ and the other one is the vector-like mass M. Once the flavon ¢ develops its
vev, the effective Yukawa interactions 1, Lﬁ 1jr are generated with a coupling constant
proportional to (¢) /M, assumed to be less than unity, which appears in front of the
usual Yukawa constant. The proportional factor (¢) /M plays a crucial role in
explaining why one Yukawa constant can be relatively smaller or bigger than the other
ones since the magnitude of each Yukawa constant is accompanied by the mass of the
vector-like particles. The effective Lagrangian in this diagram reads in the mass

insertion formalism:

L = b (Mo ), (0 Hjr + o, (9)(My iy HYjr +hoe. (5.2)

where 1,19’ = Q,u,d, L, e (neutrinos will be treated separately) and x is a Yukawa
constant in the interaction with ¢ and y is in the interaction with H as per Figure 8.1.
Throughout this work, we take a view that the Yukawa constant y can be ideally of
order unity while the x is small compared to the y. We shall also use a mixing

formalism rather than the mass insertion formalism.

5.2.1 The model with U(1) global symmetry

For an analysis of the phenomenology described above, we extend the SM fermion
sector by adding two vector-like fermions, the SM gauge symmetry by including the
global U(1)" symmetry and the scalar sector of the 2HDM model is enlarged by
considering a gauge scalar singlet, whose VEV triggers the spontaneous breaking of the
U(1)" symmetry. The scalar sector of the model is composed of by two SU(2) doublet
scalars H, 4 and one flavon ¢. Our extended 2HDM with enlarged particle spectrum
and symmetries has the interesting feature that the SM Yukawa interactions are
forbidden due to the global U(1)" symmetry whereas the Yukawa interactions of SM
fermions with vector-like families are allowed. Furthermore, such vector-like families
have mass terms which are allowed by the symmetry. Thus, the SM charged fermions
masses are generated from a Universal Seesaw mechanism mediated by heavy
vector-like fermions. Unlike the U(1)" model proposed in [27], we assume that the
U(1) symmetry is global instead of local. This allows us more flexibility in the allowed
range for the scale where the U(1)" symmetry is broken. On top of that, the up-type
quarks feature Yukawa interaction with the up-type Higgs whereas the down-type ones
interact with down-type Higgs. In this BSM model, the SM particles are neutral under
the U(1)" symmetry, while the vector-like particles and all other scalars are charged
under the symmetry. The particle content and symmetries of the model are shown in
Table 5.1.
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Field SU(3)c SU?2), U(l)y U(1)
Qir 3 2 % 0
Ui 3 1 2 0
dir 3 1 —1 0
Lig 1 2 —1 0
€iR 1 1 1 0
QrL 3 2 : 1
ULR 3 1 2 -1
dpp 3 1 —3 -1
Lip 1 2 —3 1
€LR 1 1 -1 —1
VkR 1 1 0 -1
Qkr 3 2 : 1
Upr, 3 1 2 —1
dy.r, 3 1 -
Lir 1 2 —1 1
CrL 1 1 -1 -1
Uk 1 1 0 -1
b 1 1 0 1
H, 1 2 : —1
Hy 1 2 —3 -1

TABLE 5.1: This model is an extended 2HDM by the global U(1)" symmetry with
two vector-like families plus one flavon and reflects the property that the SM Yukawa
interactions are forbidden. All SM particles v;(: = 1,2,3) are neutral under the U(1)’
symmetry and the right neutrinos v;i are not considered. Notice that this model in-
volves two right-handed vector-like neutrinos v g, Vgg. The SM particles are extended
by two vector-like families where k = 4,5 and two SM Higgses H, 4 are charged neg-
atively under U(1)’ to forbid the renormalizable SM Yukawa interactions. The flavon
field ¢ plays a role of braking the U(1)" symmetry at TeV scale.

The right-handed neutrinos v;r are absent in this model since we treat the left-handed
neutrinos in the lepton doublet as Majorana particles and they are only extended by
vector-like neutrinos. The vector-like particles and their partners have exact opposite
charge to each other under the extended gauge symmetry to cancel out chiral anomaly.
Lastly, the SM Higgses H,, 4 are negatively charged under the U(1)" symmetry to

forbid the renormalizable SM Yukawa interactions.
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5.2.2 mass insertion formalism

The renormalizable Yukawa interactions and mass terms for both up and down quark

sectors read:
LYukawa+Mass _up fNI u ] Q.A N u A f_j ]
q = Y Qir Huukr + T 0uruig + 5.0Q; 1 Qrr + Y Qrr Hullir
+ y5 Qi Hadkr + 2iddirdir + yiQpp Hadig (5.3)

+ METueg + Miydipder + MEQuQir + h. c.

where i, =1,2,3, k,l = 4,5 and H = ioyH*. The possible diagrams contributing to

the low energy quark Yukawa interaction are given in Figure 8.2:

UjR Qir > L L > UjR

Qir

A\
Y

Qir > L : > djr Qir -
dkr dir, Qrr QL

\
\

djr

FIGURE 5.2: Diagrams in this model which lead to the effective Yukawa interactions

for the up quark sector(two above diagrams) and the down quark sector(two below

diagrams) in mass insertion formalism, where i,7 = 1,2,3 and k,l = 4,5 and My is
vector-like mass.

The above two diagrams correspond to the up-type quark sector whereas the below
two diagrams correespond to the down-type quark sector. The model under

consideration is an extended 2HDM where the up-type Higgs H,, is relevant for the
up-type quark sector whereas thedown-type Higgs H, is suitable for the down-type
quark and charged lepton sectors. Like in the quark sector, the Yukawa interactions

and mass terms for charged leptons can be written in a similar way:

Yukawa+M - = L+ 7 -
LrrewatMass — o€ LirHaegxr + zi;0€kr€ir + i, ¢Lir Ler + Y L Haeir

= — = (5.4)
+ My eierr + M/ﬁLkLLlR +h.c.

Then, the possible diagrams giving rise to the charged lepton Yukawa interactions are
shown in Figure 8.3: As for the neutrinos, its behaviour is different as compared to the
quarks or charged leptons since there exists only Majorana neutrinos in this model so

initial and final neutrinos in mass insertion formalism diagrams must be same. The
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FI1GURE 5.3: Diagrams in this model which lead to the effective Yukawa interactions for
the charged lepton sector in mass insertion formalism, where 7,7 = 1,2,3 and k,l = 4,5
and M is vector-like mass.

Yukawa interactions and mass terms for the neutrino sector are given by:
El\/’ukawa—i-Mass = yinZiLHquR + xikaZ-LHd?kR + M%EZRVI@R + h.c. (55)

Here, one important feature in Equation 8.6 is the presence of the vector-like mass M.
From the two Yukawa interactions in Equation 8.6, it follows that both v and Ug have
a lepton number +1 and they are different particles. And then taking a look at the
vector-like mass term in Equation 8.6, it can be confirmed that the vector-like mass is
not a strict Majorana mass because vg and Vg are different particles but plays a role of
Majorana mass since the mass term violates the lepton number conservation. The
corresponding diagram for the neutrino sector in the mass insertion formalism is given
in Figure 8.4. However for our calculations we use a mixing formalism (see next

section). The operator fifjﬁu[-[d resulting from Figure 8.4 gives rise to the so called

H, Hq

M,

\
A

Lir LjL

VkR iR

FIGURE 5.4: Type Ib seesaw diagram [82] which leads to the effective Yukawa interac-
tions for the Majorana neutrinos in mass insertion formalism, where ¢,7 = 1,2,3 and
k,l =4,5 and M is vector-like mass.

type Ib seesaw mechanism [82] which differs from the usual type la seesaw mechanism
corresponding to the Weinberg operator fifjﬁuﬁu and will be discussed later in
detail.

5.3 Effective Yukawa matrices using a mixing formalism

As seen from Equation 8.3, we need to mix Higgses with the flavon to generate the

effective Yukawa Lagrangian required to produce the SM fermion mass hierarchy. Since
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there is no an extra symmetry or constraint to keep the mixing between Higgses and

flavon from taking place, it is natural to assume their mixing.

5.3.1 The 7 x 7 matrix

Consider the 7 x 7 mass matrix for Dirac fermions:

PR YoR V3R 1/145 1/155 Var Vs

@m 0 0 0 yﬁ(—i—’% yip5<{-’0> $11p4<¢> 9311p5<¢>

Vo | 0 0 0y (H®) yi(H") abi(e) wis(g)
0 0

T %) () afy(0) (o)
Par | U5 (H®) yip(H®) yia(H®) 0O o My My |
Us | Y (HY) S (HO) yia(H®) 0 0 My M
Ui | Th(0)  wh(e)  alle) ML M 0 0
Vs | wh(®)  wble)  ale) MY MY 0 0

(5.6)
with the coefficients y and = being Yukawa constants where the former is expected to
be of order unity whereas the latter is smaller than y. Furthermore, the 125 GeV SM
like Higgs boson H will corresponds to the lightest of the CP even neutral scalar states
arising from H,,, H; and ¢, whereas M is the vector-like mass. The column vector
located at the lower left block in Equation 5.6 consists of left-handed particles while
the row vector at the upper right block are made up of right-handed particles. The
zeros in the 3 x 3 upper block in Equation 5.6 mean that no SM Yukawa interactions
take place due to charge conservation as well as zeros in two 2 x 2 blocks. Since we are
interested in explaining the muon and electron anomalous magnetic moments in this
model, we first focus on the lepton sector in the next subsection and the method used
for obtaining the low energy SM Yukawa matrices in the lepton sector can be applied
to the quark sector in the same way with a slight change so that the quark sector will

be discussed in Appendix B.1.
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5.3.2 A convenient basis for charged leptons

From Equation 5.6, we can take a specified basis by rotating some fields as below:

etk ek esk  ean  esg Lur  Lsgm
Lip| 0 0 0 0 yiva 0 akuy
Lor | 0 0 0 wySva Yssva 0 adsug
ME — Lap | O 0 0 yiva Y5sva rhve whsug (5.7)
La| O 0  yfva O 0 ML Mg |’
Lsr | y51va  YSova  Ygzva O 0 0 M
g4L 0 .CUZQU¢ xjgvd) Mf4 0 0 0
&L | wGivp T TH3ve Mgy Mg 0 0

where vy = <Hg> and vy = (¢). We start by pointing out the reason why we take this
specific basis for the charged leptons. The reason is that the strong hierarchical
structure of the SM fermion Yukawa couplings can be implemented by the rotations
with a simple assumption in this model to be specified below. In order to arrive from
Equation 5.6 to Equation 5.7, we rotate the leptonic fields L4;, and L5z, to turn off ngl
and rotate eqr and esr to turn off Mf:. Then, we can rotate Li;, and L3z, to set wf4v¢
to zero and then rotate Lo, and L3y, to set x§4v¢ to zero. The same rotation can be
applied to e1r2r 3k to set yf; 4ovq to zero. Finally, we can further rotate L1y, and Loy,
to switch off y{,v4 and this rotation also goes for e1r2r to switch off z§,v4. The above
given mass matrix includes three distinct mass scales which are the vev vy of the
neutral component of the Higgs doublet Hy, the vev vy of the flavon ¢ and the
vector-like masses M, whose orders of magnitude can be in principle be different.
Therefore, the mass matrix will be diagonalized by the seesaw mechanism step-by-step
instead of diagonalising it at once. This mechanism is also known as Universal Seesaw,
and was proposed for the first time, in the context of a left-right symmetric model

in [115].

5.3.3 A basis for decoupling heavy fourth and fifth vector-like family

As mentioned in the previous section 5.3.2, the mass matrix in Equation 5.7 involves

three distinct mass scales vg, vy and M so it is possible to split this whole mass matrix



Chapter 5. The second BSM model - SM fermion mass hierarchies from VL families
with an extended 2HDM

84

by partial blocks to group mass terms with vev of Hy as in Equation 5.8

et e esk e esp | Lam  Lsg
Lip| 0 0 0 0 yiva| 0 ko,
Ly | 0 0 0 y5wa yssva| 0 b,
ME — §3L 0 0 0 yS4va YSsva | hyve w550 (5.8)
Lo | O 0  yjva O 0 | M ML |’
Lsp | y6iva Sova ySva O 0 | 0 Mk
ei | 0 afouy afyuy ME O 0 0
51 | TGV Thue Thve ME Mg 0 0

and then elements of the blocks involving ¢ can be rotated away to make those zeros

by unitary mixing matrices of Equation 5.10 as per Equation 5.9:

€1R €2R €3R €4R €5R z4R z5R
L. 0 0
Loy 0 0

we— | Lo Yagd o (5.9)

Tus My Mk
Lsp 0 Mk
aL 0 Mg O 0 0
.| 0 0 0 M M 0O 0

where the indices «, 8 run from 1 to 5, and tilde, primes repeated in the mass matrix

mean that the parameters are rotated. The unitary 5 x 5 matrices are defined to be

Vi = VEVEVEVEVL VIV,

Ve = ‘/2165 V3€5 V2€5 V1€5 V3€4 V2e4 V1e4 )

(5.10)

where each of the unitary matrices Vj4 5 are parameterized by a single angle 0,4 5

describing the mixing between the ith chiral family and the 4, 5th vector-like family.
The 5 x 5 Yukawa constant matrix in a mass basis (primed) can be diagonalized by the

unitary rotation matrices as below:

Yos = VLﬂlongeT (5.11)
From Equation 5.7, we can read off the 5 x 5 upper block and confirm that the
(3,4),(1,5),(2,5),(3,5) mixings in the L sector and (2,4), (3,4), (1,5),(2,5),(3,5)
mixings in the e sector are required to go to the decoupling basis. The unitary

matrices of Equation 5.10 and mixing angles appearing in the unitary matrices are
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parameterized by

Vi

= Va5 Vs Vis Vs
10 0 0 1 0 00 O k0
01 0 0 0 0 ck 0 0 sk 0 1

=100 c& o0 sk|]0O 0 10 0 0 0
00 0 1 0 0 0 01 0 0 0
00 —sk 0 ck/ \0o —sk 0 0 i) \-sk 0
10 0 0 0 1 0 0 0 sk
01 0 0 0 0 1 0 sk

x|10 0 &y sk o|l=]| 0 0 1 sk sk
00 —sf c& o 0 0 —sf 1 0
00 0 0 1 —sh —sk —sk 0 1

L _ 953%4 (9) L _ 33%5 (9)

534 = 5 5 S5 2 5

V(@ () + (M) V(aks () + (M)
L _ 235 (9) L _ 245 (9)

T Jeh o0 o)+ i)

a5 (9) = chyals (0) + sk Mjs, Mk = —sgags () + cky Mjs
Mf; = \/(3334 )2 + (Mfy)",

M5 =/ (el (0))” + (ME)”, M =\ (ahs () + (ML),
3l =/ (ath (6))” + (M22)

O O = O O

o = O O O

L
315

(5.12)
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Ve = V365 V265 V165 ngﬁ; V2€4

(2

10 0 0 0\/1 0 00 O s 0 0 0 s
01 0 0 O 0 c§5 0 0 s55 0 1 00 O
—loo ¢ 0 si[lo o 10 o 0 010 0
00 O 1 0 0 0 01 0 0 0 01 O
0 0 —s§ 0 cf5 0 —s5 0 0 c55 sfs 0 0 0 cf5
1 0 0 0 O 1 0 0 0 O 1 0 0 0 0%
01 0 0 0|0 ¢ 0 s5 0 0 1 0 65 6%
x|0 0 ¢ s oflo o 1 0 ofl=] o o 1 e e
0 0 —s§ 54 O 0 —s5, 0 54 O o -0 05 1 0
o0 0 o0 1/\o 0 0 0 1 05 —05 —05 0 1
g TR RO ) ahl) el
My M Mg Mz Mgg
w55 (9) = 425y (@) + s34 M5y, Mgy = —s34285 () + 54 Mgy,
53 (9) = 5425 (@) + s34 M55,  MgY = —s54a83 (¢) + 5, M,

M =\ (@5 (002 + (M5 M, = (s (6)) + (M52,
Mg = /(w5 (8))° + (Ms5)%, MEE =/ (s, (6))” + (ML5)?,

Mg, = \J (ot (o)) + (M2

(5.13)

Given the above unitary rotations, the 5 x 5 Yukawa matrices are computed in terms
of the mixing angles and the upper 3 x 3 block would be the effective SM Yukawa
matrix. Assuming all cosd to be 1 and neglecting order of 6 square or more than that,

we have a simple 3 x 3 Yukawa matrix of Equation 5.14.

L ,e e pe L ,e e pe L ,e e pe

S15Y51 + Yi50%5 $15Y52 + Y5055 $15Yss + Y5055
e __ L e e pe L e e pe e pe L ,e e pe e pe
Yij = | s25Y51 T ¥35015  S25Y52 + Y54654 + Y55055 $95Y53 + Y4054 + Y55055

sEsUEs + Uss0%s  sksUta + Y5405, + USs055  s5uuts + sksyss + y5a054 + v5s055
(5.14)
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5.3.4 A convenient basis for neutrinos

The relevant Yukawa and mass terms of the neutrino sector give rise to the following

neutrino mass matrix:

Ly  Lap  L3p | Varp  VUsr V4ar  VsR
Lqg, 0 0 0 Y{4Vu yﬁ;vu 55%42}11 x%’évd
Lo | O 0 0 | y5y0u Ysvu @Hyva 5va
MY - L3, 0 0 0 Ys4Vu  Y35Uy x§’4vd x%vd
V4R | Y14Vu  Y24Vu  Y540u 0 0 My, Mg,
UsR y11/57}u y55vu y§5vu 0 0 MZS Mé/S
ViR :E1L4Ud x§4vd x§4vd My, M 0 0
Usp ac1L5vd x§5vd :L'§5’Ud Mg, MY 0 0

(5.15)

Here, the zeros in the upper 3 x 3 block of Equation 5.15 mean that neutrinos remain

massless in the SM. Therefore, the SM neutrinos can be massive via the inclusion of

two vector-like families. In order to make this mass matrix as simple as possible, the

only choice left is to rotate v4r and vsr to turn off Mj; since rotations between

Ly 21 31 are already used in the charged lepton sector.
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Chapter 6

Non-standard contributions to
the muon and electron anomalous
magnetic moments : W gauge

boson exchange

In the second BSM model covered in chapter 5, we discuss the first non-SM
contributions to the muon and electron anomalous magnetic moments g — 2 with the

SM W gauge boson at one-loop level via the type 1b seesaw mechanism.

6.1 W boson exchange contributions to the
(9—2),,(9—2), and BR (1 — e7)

Within the framework of our proposed model, we start by investigating the muon and
electron anomalous magnetic moments with W boson exchange first. Given that such
W boson exchange contribution also involves virtual neutrinos in the internal lines of
the loop, we revisit the mass matrix for neutrinos. In this mass matrix, we remove fifth
vector-like neutrinos v5g and Usg since they are too heavy to contribute to the
phenomenology under study. As mentioned in the previous section, we stick to a
condition where the coefficient y is expected to be of order unity, whereas the coupling
x is expected to be smaller than y. Such condition can be easily seen by substituting
the coefficients y}; by y;’ and the coefficients x{jl by ey?’ where € is a suppression factor.

Putting all these considerations together, the mass matrix for neutrinos in Equation
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5.15 after electroweak symmetry breaking takes the form:

VL var, V31, | Var V4R
v | 0 0 0 | yfve eyi'vag
av o~ | V2 0 0 0 |ysvu eys'va | _ < 0 mp ) 6.1)
V3L, 0 0 0 Yo, ey¥lvg | mE My ’ '
VR | Y{Vu Y50 Y30y 0 My,
var | eyf'vg  eys'vg  ey§vg | My, 0

where v, (vq) is the vev of Hy,(Hy), v, runs from 246/v/2 GeV ~ 174 GeV to 246 GeV
and v2 + v3 = (246 GeV)?.

6.1.1 Type 1b seesaw mechanism

Now that we constructed the neutrino mass matrix for this task, the next step is to
read off the operator which gives rise to the neutrino mass from the mass matrix.
Generally, the well-known operator for neutrino mass is the Weinberg operator(type la
seesaw mechanism) %LiLjH H. A main feature of the Weinberg operator is the same
SM Higgs should be repeated in the operator, however that property is not present in
our model since the Higgs doublets H,, 4 are negatively charged under the U(1)’
symmetry, which implies the corresponding Weinberg operator having such fields will
not be invariant under the U(1)" unless an insertion of a quadratic power of the gauge
singlet scalar ¢ is considered. However we do not consider the operators
%(I_}iﬁ[u)(ﬁuLf)(W)z and %(I_}in)(Hdch)cbz in the neutrino sector, since they are
very subleading and thus will give a tiny contribution to the light active neutrino
masses. Instead of relying on a seven dimensional Weinberg to generate the tiny
masses for the light active neutrinos, we take another approach named type 1b seesaw
mechanism (we call the Weinberg operator “type la seesaw mechanism” to
differentiate with) where the mixing of different SU(2) Higgs doublets can appear
satisfying charge conservation. Diagrams for the operators are given in Figure 6.1 for
comparison: The diagrams in Figure 6.1 clearly tell the difference between Majorana
mass and vector-like mass. They share a common property that they violate the lepton
number conservation, whereas the particles appearing in a Majorana mass term are
same but those ones involved in vector-like mass terms are different. As the type 1b
seesaw mechanism only works in this model, we make use of this seesaw mechanism for
the analysis of neutrinos. With the operator, the renormalizable Lagrangian for

neutrinos can be written as:

Yukawa+Mass
L,

= ' Lir Huvgr + €y Lir Hivgr + MM Vrrvkr + h.c., (6.2)

where ¢ = 1,2,3 and k = 4. The renormalizable Lagrangian of Equation 6.2 above the

electroweak scale generates an effective Lagrangian after decoupling the heavy
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VLR VkR UkRr Ukr

FIGURE 6.1: Diagrams which lead to effective Weinberg operators for the Majorana

and vector-like mass in the mass insertion formalism, where 4,7 = 1,2,3 and k = 4,

respectively. The left is the Weinberg operator(or type la seesaw mechanism) in which

mass M is Majorana mass and the right is Weinberg-like operator(or type 1b seesaw
mechanism) in which mass M is vector-like mass.

vector-like neutrinos, which is suitable for study of low energy neutrino phenomenology.

The effective Lagrangian for neutrino at electroweak scale is given by [82]
£ — ot (LT ) (HELy) + (BT Ha) (AT L) ). (6.3)

where the coefficient cfj:5 is suppressed by a factor of the vector-like mass M. The

neutrino mass matrix of Equation 6.1 can be diagonalized by the unitary matrix U as

0 T diag
T MDY= (™ e | 5 (6.4)
mp MN 0 MN &

is a diagonal matrix for the light left-handed neutrinos v;;, and Mg,iag is

below:

di
where m,'?&

that for the heavy vector-like neutrinos v4g, v4g. Here, the unitary mixing matrix U is
defined by multiplication of two unitary matrices which we call Uy and Up,

respectively [130]:

U=Uy-Up
0 © )
Uy=c¢e ~ 2 at leading order in ©
ATEP (—@T 0) ( —of -8 & (6.5)
Upmns 0
Up =
b ( 0 I
The unitary matrix Upyng in Upg is the well-known
Pontecorvo-Maki-Nakagawa-Sakata matrix and is parameterized by [82,131]
1 0 0 cos 613 0 sin@getocp
UPMNS = 0 COS 923 sin 923 0 1 0
0 —sinfy3 cosbog — sin fy3etcP cos 613 (6.6)
cosfia sinfis 0 et/ /2 0 0 .
X | —sinf;2 cosbfiz 0 0 e7@/2 0|,

0 0 1 0 0 1
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where the Majorana phase ¢ is set to zero in this model. The mixing matrices Uy p
are unitary, however the 3 x 3 upper block of the unitary matrix U is not unitary due
to the factor (I - 00f/ 2) for the light neutrinos. An interesting feature of the unitary
matrix U is it is unitary globally, but non-unitary locally and this non-unitarity
contributes to explain muon and electron anomalous magnetic moments. Replacing the
unitary matrices in Equation 6.5 back to Equation 6.4, the result is simplified with the

assumption My > mp to the conventional seesaw mechanism:

—1
O ~ mEMN
U;’MNSmSiagU;MNS = —szDMKrlmD =-m (6.7)

d
MNlag >~ MN;
where m is the effective mass matrix resulted from Equation 6.1.

€V, Vg
mij = ——= (Y + yi'yY) (6.8)

Therefore, smallness of the light neutrino masses can be understood not only from
mass of vector-like mass Mj, but also from the suppression factor e and the presence of
€ allows more flexibility in the allowed mass values of the vector-like neutrinos.
Revisiting non-unitarity part for the light neutrinos from the unitary matrix

U [130,132], it reads:

00!
I-— 5 Upmns = (I — nij) Upmns (6.9)

The non-unitarity 7 is associated with the presence of the heavy vector-like neutrinos

and can be derived from a coefficient of the effective Lagrangian at dimension 6 [133]:
20 = o (i) i (HiLy) + (LiHa) i (1)) (6.10)

Once the SM Higgs doublets in Equation 6.10 develop its vev, the Lagrangian at
dimension 6 causes non-diagonal kinetic terms for the light neutrinos and it gives rise
to deviations of unitarity when it is diagonalized. The deviations of unitarity can be
expressed in terms of the coefficient at dimension 6 7;; = v2cfj:6 /2.
ot
i = @Z@j _ lm;)mD 1 2, Uk, V vk, vl U2
iy —

_ 2,,2 ~
> T3 AR Mg (vayd vy + €vgui™yy') ~ Qﬁﬁyi*y}’ (6.11)

From the fourth term in Equation 6.11, the term with €? can be safely ignored due to
both relative smallness of vy and the suppression factor €. Thus, the deviation of
unitarity 7 consists of the vector-like mass MJ; and the Yukawa couplings y; i As an
interesting example, it is possible that the Yukawa couplings y;; can be obtained from

the observables such as the PMNS mixing matrix and two mass squared splitting,
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Am?; and AmZ,,, in the neutrino oscillation experiments. Since the hierarchy

between the light neutrinos is not yet determined, there are two possible scenarios,
normal hierarchy(NH) and inverted hierarchy(IH), and the lightest neutrino remains
massless, whereas two other neutrinos get massive. The Yukawa couplings y; " for the
NH(m; = 0) are determined by

yi = % <\/ 1+ p(Upyng)iz + V1= P(UngNs)iQ)

(6.12)
v y/ * *
y' = NG (\/ L+ p(Upmns)iz — V1 — p(UPMNS)iQ) ;
where y and 3’ are real numbers and p = (1 — /r)/(1 + /) with
r= |Am§ al/ |Am(21tm| = Am%l/ Am?ﬂ, whereas the Yukawa couplings yf Y for the
IN(mg = 0) are

v = 75 (VI+ 0 Uhns)a + V1= (Uhans))
/
Yy = % (\/ 1+ p(Upnng)iz — V1 — p(UP*’MNS)il) ;

(6.13)

where p = (1 —v1+7)/(1+V1+7) with r = |[Am?,|/|AmZ,,,| = Am3,/Am3,.

6.1.2 The charged lepton flavour violation(CLFV) p — ey decay

Consider the three light neutrinos in the SM for the CLFV y — e~y decay first. In this
case, the unitary mixing matrix becomes just the PMNS mixing matrix and the GIM
mechanism which suppresses flavour-changing process works, therefore it leads quite
suppressed sensitivity for BR (¢ — ey) about 107 [62], which is impossible to observe
with the current sensitivity of 4 — ey decay. This impractical sensitivity can be
enhanced to the observable level by introducing the heavy vector-like neutrinos which
give rise to deviation of unitarity. With the presence of heavy vector-like neutrinos, the
GIM mechanism is gone and the factor suppressed by GIM mechanism can survive
with a factor of deviation of unitarity, which plays a crucial role to increase
significantly order of theoretical prediction for p — ey decay [134]. Therefore, the
strongest constraint for deviation of unitarity in the modified PMNS mixing matrix
comes from CLFV pu — ey decay. The possible one-loop diagrams for the CLFV

© — ey with all neutrinos in this model are given in Figure 6.2.

The amplitude from above diagrams in Figure 6.2 reads [62]:

M (i = ey) = Ueiouwq” (Fi + Fory®) uye™ 6.14)
= Uei0,,q" (ARPR + ALPrL) uy€e™, .

where u is Dirac spinor for the muon and electron, ¢ is four momentum of an outgoing

photon, F1 2 are form factors, Az g are left- and right-handed amplitude defined to be
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FIGURE 6.2: Diagrams for CLFV y — ey decay with all neutrinos. Here n = 1,2, 3,4, 5.

Ar.r = F1 £ F, and lastly Pp r are projection operators. From the amplitude, the
helicity flip between initial particle and final particle should arise and this makes the
helicity flip process takes place on one of external legs since the W gauge boson
couples only to left-handed fields. Comparing the left diagram with the right, the left
is proportional to the muon mass, while the right is proportional to the electron mass,
which means that impact of the right is ignorable. The unpolarized squared amplitude
|M|? takes the form:

M =m), (Ar + AL)* ~ m; (AR)® (6.15)

Then, the decay rate is given by

2 3
(n o) = o = S g

1
167m,, 167 (6 6)

where Ap is expressed by [62,135]*

2
ge my . 1 Iné 1 (Iné
R 1287r2M5Vn122:345U2 UlnFen) =367 T i1 \e o1 (6.17)

Taking the unitary gauge into account, £ — oo, the additional £-dependent terms in
Ap all are cancelled by contribution of Goldstone bosons so Ag is gauge invariant.
Substituting the gauge invariant Ar back into the decay rate of Equation 6.16 and
dividing the expanded decay rate by the total muon decay rate

I'(p— evv) = G%m2/1927r3, we have the prediction for y — ey decay [62,82]:

D(p—ey)  3a S0 U UL F(an)]?

BR = 7 - 6.18
=) = T S~ 32r (UUD), (U0, (6.18)
where z, = M2/M3, and the loop function F(x,) is
10 — 43z, 2 — (49 — 18log @y )z + 4ay)
Flan) = 0 — 43z, + 78z; — (49 — 18log xy,)x;, + T (6.19)

3(zn, —1)%

1Since the PMNS mixing matrix is multiplied by a factor of deviation of unitarity, it is not unitary
any more. Therefore, the first term of sum over neutrino eigenstates in Equation (28) of [62] does not
vanish and come in our prediction with a loop function F(x,).
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FI1GURE 6.3: Diagrams for muon anomalous magnetic moment with all neutrinos. Here
n=123,4,5.

Numerator in Equation 6.18 can be simplified by separating the light neutrinos and
heavy vector-like neutrinos as below(Contribution of the fifth neutrino v4p is safely

ignored both by the suppression factor € and by relative smallness of vy compared to

Uy):

\ 2

|ZU2n T F(2,)? ~ |UyUJ F(0) 4 UgUJ, F(24)

U2iUi1 = —Tjg — 21 = —2721

(6.20)
U24UL = 02407, = 2121
IZ UsnUy F(@n)|” = [dnen |* (F(2a) = F(0))?
The final form for the CLFV p — ey decay in this model reads:
BR (1 — ey) = 2 (F(x4) — F(0))%, (6.21)

where aep, is the fine structure constant. We find that our theoretical prediction for

the y — ey decay can be expressed in terms of the deviation of unitarity 7s1.

6.1.3 The anomalous muon magnetic moment g — 2

We derive our prediction for the muon anomalous magnetic moment in this section and
confirm the derived expression can be consistent with an expression of the theoretical
prediction for ;1 — ey in references [61,62]. Consider two possible diagrams for muon
anomalous magnetic moment at one-loop level in Figure 6.3. The amplitude for the

muon anomalous magnetic moment at one-loop level is:

M (Aay,) =Tyiomq" (F1 + Fg’y5) (T

(6.22)
= ﬂ“iduyqu (ARPR + ALPL) u#e*“

Unlike the CLFV p — ey decay, muon anomaly diagrams have the same structure for

helicity flip process. So we conclude Ap is equal to Ay, and can make use of other
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expression of this amplitude to derive our own expression for Aa,, [61].

V= ﬂuiaagqﬁemu (A% + 75AEN) uy €

. (6.23)
= Hﬂwagqﬁemu ((A% + AEM) Pr + (A% — AEN) PL) uy €
Comparing Equation 6.22 with Equation 6.23, we confirm that
— M E
Ag =emy (Auu + Auu) (6.24)

Ap =em,y, (A% — Afu)

Here, we can use the condition that Ar = Ay, identified in Figure 6.3 and can
rearrange Ar g in terms of A,%’E, which are essential to derive our theoretical muon
anomaly prediction. Then, we find our desirable form A%’E for the muon anomalous

magnetic moment.

1 21
A g

Al = A=
emy, 1281 MW

> UsnlUs, Flan)
n=1,2,3,4,5 (6.25)

E _
A, =0

Using the definition for both the muon anomalous magnetic moment and branching
ratio of y — ey decay in [61], we can check our analytic argument for the observable
and constraint are correct.

_AM 2
Aa, = Auumu

BR (1 — ey) = 3(422;32%m (1AM + |ALL1%) (620
F
One difference between A,%’E and Az R is thatA,%’E is only determined by the internal
structure of the loop in Figure 6.3, whereas Ay, g is the extended factor by multiplying
A,%’E by the helicity flip mass in one of the external legs. Therefore, it is natural to
think A%’E is the same as A%’E since their internal structure of loop are exactly
same?. The muon anomalous magnetic moment and the branching ratio of u — ey
take the form:

2

aw mu *
Ay = W T WU F (2
aﬂ 327 MI%V _122;) s U2 U2'rL (13 )
3 n=1,2,9,4, (6‘27)
aem *
BR(n —ey) = \ Z Uzn U3, F ()2
32m n=1,2,3,4,5

where the ap is the weak coupling constant. As for the branching ratio of 4 — ey in
Equation 6.27, we showed that substituting A,. back into the branching ratio in
Equation 6.26 is exactly consistent with the one in Equation 6.18. Expanding the

20One can concern the coefficient at the vertex with electron. However, this change is already reflected
on the loop integration Ar of Equation 6.17 by Ui,. For the muon anomaly, the coefficient is simply
replaced by Us,, therefore, modification of the coefficient at the vertex does not harm our argument.
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FIGURE 6.4: Diagrams for electron anomalous magnetic moment with all neutrinos.
Here n =1,2,3,4,5.

unitary mixing matrices in the muon anomaly prediction in Equation 6.27, yields the

following relation:

Ay = O (1 9V E(0) + 20 F (1)) (6.28)
a, = —2 — z4)) . .

LY - MVQV 722 122 4

Looking at Equation 6.28, it is clear that the SM part which is without n» and the BSM
having n are entangled together. We arrive at the right prediction for the muon

anomaly at one-loop by removing the SM part from Equation 6.28

2
aw mM

Agy, = W T
= 16m Mz,

(F(xs) - F(0)). (6.29)
Similarly to the branching ratio of © — ey decay, it can be confirmed that the

prediction for the muon anomaly also consists of the factor of deviation of unitarity 7.

6.1.4 The anomalous electron magnetic moment g — 2

As in the muon anomalous magnetic moment, the same diagrams with external
particles replaced by electrons can be generated in Figure 6.4. Using the complete
form of the muon anomaly prediction in Equation 6.29, we can derive the right
prediction for the electron anomalous magnetic moment with slight modifications

My — Me, N22 — N11-
ay m?

Ag, = 2W e
= Tor az,

(F(x4) — F(0)). (6.30)

6.1.5 Numerical analysis of W exchange contributions

The presence of heavy vector-like neutrinos leads to the deviation of unitarity and the

observables Aa,, . and constraint BR (1 — e7y) can be written in terms of the factor of
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FI1GURE 6.5: The left plot is an available parameter space for two free parameters: mass

of vector-like neutrino My, and SM up-type Higgs vev v,. Here, the free parameter y

is set to 1. The right plot is the case where vev of the up-type Higgs is constrained
from 246//2 ~ 174 to 246 GeV or from tan 8 = 1 to 50 in a same way

non-unitarity 7.

BR (11— ) = 220 2 (F(24) — F(0))

s
2
_ . My,
Aay = 7o— Mz (F(z4) — F(0)) (6.31)
2
aw m
Aae = —2 ¢y (Fzy) — F(0)).
e = T MVQle( (z4) — F(0))

6.1.5.1 The branching ratio of u — ey decay

We consider the branching ratio of ;1 — ey decay first. Since we assume that mass of
heavy vector-like neutrinos are heavier than 1 TeV, the value of F'(0) for the light
neutrinos converges to approximately 3.3, while that of F'(x4) for the heavy vector-like
neutrino converges to 1.3. Therefore, the branching ratio of y — ey decay can be
reduced to [82]

3Qem

30em
BR (4 — e7) = —— [m21|” (F(24) = F(0))% < ?|7I21|2- (6.32)

The non-unitarity 1 of Equation 6.11 consists of four free parameters: mass of heavy
vector-like neutrinos MY, a real number y, a CP violation phase ¢, and a Majorana
phase a. The experimental branching ratio of 4 — e~y decay constrains the minimal
parameter space in terms of M}, and y, while setting up two phases §, @ which
maximize or minimize the branching ratio of u — ey [82], and the minimal parameter
space is shown in Figure 6.5. The left plot in Figure 6.5 is an available parameter
space for mass of the vector-like neutrino versus the free parameter y times SM
up-type Higgs vev v,. The blue bold line corresponds to bound of the branching ratio
of © — ey decay at the normal hierarchy with CP violation phase § = 0 and Majorana
phase o = 0 and this line can be relaxed up to the blue dotted line where § = 0,

a = 27r. The green bold(dotted) line corresponds to the inverted hierarchy with

§ =m/2(0) and o = 97(0). Since we are especially interested in the range of SM
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up-type Higgs vev v, from 174 to 246 GeV, the right plot consistent with the interested
range is extracted from the left after replacing v, by tan 8 = v, /v, using the relation
v2 4 02 = (246 GeV)?.

As for the constraint of deviation of unitarity n with the CLFV p — ey decay at 1o, it
is given by [66, 136]
21| < 8.4 x 1079, (6.33)

6.1.5.2 The muon and electron anomalous magnetic moments Aa, .

As in the constraint for 72; in Equation 6.33, the other non-unitarities 711 22 for the

electron and muon anomalous mangetic moment are given by [82,136]

m1 < 4.2x 1071 (for NH) , < 4.8 x 107* (for IH)

(6.34)
Moo < 2.9 x 1077 (for NH) , < 2.4 x 107" (for TH)

With the constraints 711,22 in Equation 6.34, we can calculate impact of the muon and

electron anomalous magnetic moments at NH(IH) using Equation 6.31.

2

m S
Aay = W o (F(4) — F(0) ~ —6.6(—5.5) x 10716
16w M2,
(6.35)
Aq, = QW e (F(z4) — F(0)) ~ —2.2(—2.6) x 1017
¢~ 16n MI%VUH 4 = : .

There are two interesting features in the above prediction for the muon and electron
anomalous magnetic moments. One feature is sign of each prediction. As mentioned in
the introduction, this prediction with the W exchange can not flip the sign of each
anomaly. In order to explain both anomalies at 1o, the prediction for both anomalies
with W exchange requires additional contributions such as Z’ or scalar exchange.
Another feature is magnitude of each prediction. For the muon anomaly, the
experimental order of magnitude at 1o is about 10~?, however our prediction is much
smaller than that of the experimental bound as well as the electron anomaly, which
means the non-unitarity derived from the presence of heavy vector-like neutrino can
not bring the anomalies to the observable level. This inadequate prediction with W
exchange has been a good motivation to search for another possibility such as scalar

exchange.
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Chapter 7

Non-standard contributions to
the muon and electron anomalous
magnetic moments : non-SM

scalar exchange

In the second BSM model covered in chapter 5, we discuss the second non-SM
contributions to the muon and electron anomalous magnetic moments g — 2 with the
non-SM scalars at one-loop level via the scalar potential. We also discuss how the
non-SM physical scalars appear in the scalar potential and carry out numerical scans
to find relevant mass parameters for the vector-like charged leptons as well as the
non-SM scalars. And then we conclude the non-SM scalar exchange can actually

accommodate both anomalies at 1o error bar of the anomalies.

7.1 Higgs exchange to contributions to (¢ —2),,(9 — 2)

e

and BR (u — ey)

The relevant sector for the muon and electron anomalous magnetic moments with

scalar exchange is the charged lepton Yukawa matrix which can be expressed in the
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mass insertion formalism as,

€ [+ € e € [+
0 0 0 (@) Y15T51  Yi5T52 Y1553 (@)
€ __ e e e e e e e e e e
Yij = | 0 Y5425 Y5473 e T | Y5251 YosT5a  YosTss e
0 € xe € $e 44 € .Ie € ‘/L.(i € .Ie 55
Y3442 Y34%43 Y35T51  Y3s5Ts52 Y3553 (7.1)
e .L e ,.L e .L 00 0 ’
Ys51T15  Ys2®is  Ys3Tis (@) (@)
e .L e ..L e .L
T | Ys1235  Yso%35  Ys3To5 (0 0 0 L
e .L e ,.L e .L 55 L ,e 44
Y51T35 Ys2T35 Y5335 0 0 =3yys3

The effective Yukawa matrix of Equation 7.1 in the mass basis is diagonalized by the
universal seesaw mechanism due to involving a few of different mass scales. Therefore,
the only diagonal components should alive in the mass matrix. In order to make the
mass matrix diagonal, we assume that

Y54 = Ti3 = Yi595.35 = T51.52.53 = a:55 35 = Yig 53 = 0. Then, the mass matrix is reduced

to

Vo (000 @
vii = |0 w5l O] g7 T {0 0 0f 5
44 55
0 0 0 0 0 O
vty 0 0Y (000
+1 0o oo0o|l-X+lo0 o |-% (7.2)
M55 L e 44
0 0 0 0 0 =z34yis
2/5131L5 0 0
Yij = 0 Y54554 0 )
0 0 Y3534

where sk ~ 2l (¢) /ML, 55, ~ 25, (¢) /M§,, sk ~ 2&, (¢) /M, and the diagonal
elements from top-left to bottom-right should be responsible for electron, muon and
tau Yukawa constants, respectively. After removing all irrelevant terms to both

anomalies and applying the assumption, the 7 x 7 mass matrix in the interaction basis

is also reduced to as below:

€1R €2R €4R EBR
Li,| 0 0 0 zhv,
M€ = ZQL 0 0 y§4vd 0 (7.3)
Lsr | y&va 0 0 ML
?4[/ 0 :L’Z2’U¢ Mf4 0

The reduced charged lepton mass matrix of Equation 7.3 clearly tells that no mixing

between charged leptons arise so the branching ratio of u — e7 is naturally satisfied



7.1. Higgs exchange to contributions to (g —2),,,(g9 —2), and BR (1 — e7) 103

under this scenario. The scalar exchange for both anomalies can be realized by closing

the Higgs sectors in Figure 8.3 as per Figure 7.1.

FIGURE 7.1: Diagrams contributing to the muon anomaly (left) and the electron
anomaly (right) where Hj o are CP-even non-SM scalars and A; o are CP-odd scalars
in the physical basis

In Figure 7.1, the CP-even non-SM scalars H 2 and CP-odd scalars A; o appear as a

result of mixing between Higgses H,, Hy and ¢ in the interaction basis. The Higgs
sector in the interaction basis is defined by

H H
v vu—I—\% (ReH) +iImHY) |’

i, (Ud+ 75 (Re Hj +zImH0)> | (7.4)
Hy
o= \}ﬁ(v(ﬁ—i—Regb—FiIqu).

For consistency, we equate v,,vq and vg to v1,v2 and vs, respectively.

7.1.1 The 2HDM scalar potential

The scalar potential of the model under consideation takes the form:

V=t (FH) + i (HaH)) + 053 (007) + i, |07 + (67)°)

+ A (Ha ) + o (Hq H;)Z 2 (M) (Hatth) + A (HHY) (HaH) .
X5 (e L6 4+ e ) + X (69°)’
0 (607) (HHY) + s (607) (HaH})

where the \; (i =1,2,---,8) are dimensionless parameters whereas the p; (j =1,2,3)

are dimensionful parameters and pugp, is a dimensionfull soft-breaking parameter. We
consider the U(1)" symmetry as global in this model so our model does not feature Z’
boson and the scalar potential requires the inclusion of the soft-breaking mass term

—u2 [QZ)Q + (gf)*)ﬂ in order to prevent the appearance of a massless scalar state arising
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from the imaginary part of ¢. The minimization conditions of the scalar potential yield

the following relations:

1 A5 U902

2 2 2 2 5U203

= -2\ - A — =\

M1 107 Uy = 5 ATV + 901
1 5020

1 = —2Xavh — Aguf — SAgv} + “0 9, (7.6)
2 2v9

7.1.2 Mass matrix for CP-even, CP-odd neutral and charged scalars

The squared mass matrix for the CP-even scalars in the basis (Re HY Re Hg, Re QS)

takes the form:

2
4)\1’0% + )\521;21”3 —%/\51]32) + 230102 \/§U3 (—)\51)2 + )\7’1)1)
2
MEp.even = — X503 + 2X301 02 4Xpv3 + )\521;1:3 V2u3 (=501 + Agva)
\/51)3 (=502 + A7) ﬂvg (=501 + Agva) 2)\6U§

(7.7)
From the mass matrix given above, we find that the CP-even scalar spectrum is
composed of the 125 GeV SM-like Higgs h and two non-SM CP-even Higgses H .
Furthermore, we assume that no mixing between the SM physical Higgs h and the two
non-SM CP-even Higgses H 2 arise and this assumption constrains the (1,2), (1, 3),
(2,1) and (3,1) elements of CP-even mass matrix of Equation 7.7. The constraints are

given by the following decoupling limit scenario

4
As = 1;121’2 A3
3
7.8)
4 2 (
M= 2hs = 220,

and then the CP-even mass matrix of Equation 7.7 with the constraints is simplified to

4)\111% + 21)%)\3 0 0
4 2
MZp 0 = 0 Ahgvd + 202\3 o <_% s + Am)
2
0 \/§’L)3 (—41;17;]2)\3 + )\81}2) 2)\6U§
3

(7.9)
In the above given decoupling limit scenario, chosen in order to simplify our analysis,
the CP-even neutral scalar states contained in the SU(2) doublet H,, will not mix with
the CP-even neutral ones contained in Hy. In such limit, the neutral CP-even states of
H,, will not feature mixing with the gauge singlet scalar ¢. Thus, the lightest 125 GeV
CP-even scalar of our model will have couplings to the SM particles close to the SM
expectation, which is consistent with the current experimental data. Diagonalizing the

simplified CP-even mass matrix, it reveals masses of the physical SM Higgs h and
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non-SM CP-even scalars Hj o in the physical basis (h, Hy, H2)
REP—evenM%P-evenRCP-EVEH = diag (m,%, m%h ) m%{g) . (7.10)

The SM Higgs h is appeared as Re H{ itself and the non-SM CP-even scalars Hj o are
the states which Re Hg is mixed with Re ¢. Regarding the CP-odd scalar sector, we
find that the squared mass matrix for the CP-odd scalars in the basis

(Im H? Im Hg, Im gf)) is given by:

A5v2v3 1
20, 3 5)\51)% \/5)\5112123
2 — 1 A5v1032
MCP—odd - 5)\5'1)% 527123 \/i/\51}11]3 . (711)

V250003 V250103 4Asv1ve — 4p?

The squared CP-odd mass matrix is diagonalized in the same way as in the CP-even
mass matrix and the CP-odd physical basis is given by (Gz, A1, A2) where Gz is the
massless Goldstone bosons associated with the longitudinal components of the Z gauge

boson, whereas A; and As are massive non-SM CP-odd scalars
Rlp0qqaMep oaaRop-oaa = diag (0,m%,,m3,) . (7.12)

Furthermore, the squared mass matrix for the electrically charged scalars is given by:

2v1

EO ) (7.13)
A4U1Vg + §>\5U3 )\4211 +

AsU1 v%
2v2

Asv202
M2 o A4U% 4+ 527 A4U1V9 + %)\51}3
charged —

The charged scalar mass matrix can be diagonalized in the basis (H li, HQi) as in

CP-even or -odd mass matrix:
RihargeszhargedRCharged = diag (07 m?’—]i) . (714)

Then, the electrically charged scalar sector contains the massive scalars H* and the
massless electrically charged scalars Gﬁ/ which correspond to the Goldstone bosons
associated with the longitudinal components of the W gauge bosons. In the following
sections we will analyze the phenomenological implications of our model in the Higgs

diphoton decay as well as in the muon and electron anomalous magnetic moments.

7.1.3 The Higgs diphoton signal strength

The rate for the h — v decay is given by:

azmm?’ Ch +gFU
C(h = 77) = 526055 > anfNeQFFija(pys) + anww Fi(pw) + 2?;& Folpgz)|
f
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where p; are the mass ratios p; = % with M; = my, Myy; Qeny is the fine structure
constant; N¢ is the color factor (N¢ =1 for leptons and N¢ = 3 for quarks) and Qy is
the electric charge of the fermion in the loop. From the fermion-loop contributions we
only consider the dominant top quark term. Furthermore, Cj, g+ g+ is the trilinear
coupling between the SM-like Higgs and a pair of charged Higges, whereas aps; and
apww are the deviation factors from the SM Higgs-top quark coupling and the SM
Higgs-W gauge boson coupling, respectively (in the SM these factors are unity). Such

deviation factors are close to unity in our model and they are defined as below:

1 0 U]
Aptt = 17 Z (% (R,gP_even)ij (h7H17 HQ)]

ARWW = ~—F—2 77 = —
Vv? +v3 Oh oo Vui+ 03
(7.16)
Furthermore, Fj/5(2) and F(z) are the dimensionless loop factors for spin-1/2 and

spin-1 particles running in the internal lines of the loops. These loop factors take the

form:
Fija(z) =2(z+ (2 = 1) f(2))z 7,
Fi(z) = —2(22° + 32+ 3(22 — 1) f(2)) 22, (7.17)
Fo(z) = —(z = f(2))z 7%,
with
arcsin? v/2 for 2<1
f(z) = (7.18)
_i (111 (15% Vlz__zl_lm>2> for z>1

In order to study the implications of our model in the decay of the 125 GeV Higgs into
a photon pair, one introduces the Higgs diphoton signal strength R.., which is defined

as:
_ oo W=y o (A=)
" a(pp = B)sml(h = y)sm ED(h — v7)sm

That Higgs diphoton signal strength, normalizes the v~ signal predicted by our model

(7.19)

in relation to the one given by the SM. Here we have used the fact that in our model,
single Higgs production is also dominated by gluon fusion as in the Standard Model.
The ratio R, has been measured by CMS and ATLAS collaborations with the best fit
signals [?,?]:
CMS 0.17 ATLAS
R =1.18%01; and R3S =0.96 +0.14. (7.20)

As it will be shown in the next subsection, the constraints arising from the Higgs

diphoton decay rate will be considered in our numerical analysis.
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7.1.4 The muon and electron anomalous magnetic moments

The Yukawa interactions relevant for the computation of the muon anomalous

magnetic moment are:
LAa, = Ysalt (Re Hg — 7% Im Hg) €4+T59€s (Re ¢ — i7" Im (;5) ey+Mieqeq+h.c. (7.21)

where the Yukawa coupling constants y5,, x3, are assumed to be real, the scalar fieds
have been expanded by their real and imaginary parts and the properties of the
projection operators Pr, g acting on the charged leptonic fields have been used. By
expressing the scalar fields in the interaction basis in terms of the scalar fields in the
physical basis, the charged lepton Yukawa interactions relevant for the computation of

the g — 2 anomalies take the form:
Lia, = ysap (RD)22Hy + (R)a3 Hz — iv°(Ry ) 2241 — i7° (R} )2342) @4
+ x22€4 ((RZ)32H1 + (RZ)33H2 — 175(R3)32A1 — i’yS(ROT)gg,AQ) €9 (7.22)
+ Mj,eq€4 + h.c.
where we are using the unitary gauge where the contributions arising from unphysical
Goldstone bosons to the muon anomaly are excluded and we shorten the notations
Rcp by Re(o). Here Re and R, are the rotation matrices that diagonalize the squared
mass matrices for the CP even and CP odd scalars, respectively. Then, it follows that

the muon and electron anomalous magnetic moments in the scenario of diagonal SM

charged lepton mass matrix take the form:

2
m
Aay, = ygﬁizﬁ [ (ReT) 22 (ReT) 32 Iéu) (Mey, M) + (RZ) 23 (RZ)33 Ié‘u) (Mg, M)
- (ROT) 22 (ROT) 32 II(DN) (hey,ma,) — (R0T)23 (R0T)33 II(DM) (me4,m,42)]
2
Aae = y§1$%5;n762 [ (RZ)QQ (RZ)gg Ié'e) (mesa mHl) + (RZ)Q?, (RZ)SS Iée) (mesa mHz)

- (ROT) 22 (ROT) 32 11(36) (mes,mA,) — (Rg)z?) (RZ)33 II(’E) (1e5, M, ) ]’

(7.23)
where the loop integrals are given by [61,140-143]:
) 1 z? (1 —x+ L:ni‘*f)
Igpy (mE, 5, ms) = /0 ’ dz (7.24)

mZ w2+ (m%‘h5 — mgu) x+m%p (1 —x)
and S(P) means scalar (pseudoscalar) and Ey 5 stands for the vector-like family. It is
worth mentioning that F; and Es only contribute to the muon and electron anomalous

magnetic moments, respectively.
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7.2 Numerical analysis of the Higgs exchange

contributions

For the sake of simplicity, we consider the scenario of absence of mixing between SM
charged leptons, which automatically prevents charged lepton flavour violating decays.
In our numerical analysis we have found that the non-SM CP-even scalar mass can
reach values around 200 GeV. Despite the fact that the non SM CP-even scalar is
quite light and can have a sizeable decay mode into a bottom-anti bottom quark pair,
its single LHC production via gluon fusion mechanism is strongly suppressed since it is
dominated by the triangular bottom quark loop. Such non SM CP-even scalar H can
also be produced by vector boson fusion but such production is expected to have a low
total cross section due to small HWW and HZZ couplings, which are proportional to
vg. In this section we will discuss the implications of our model in the muon and

electron anomalous magnetic moments.

7.2.1 The fitting function y? and free parameter setup

For the first approach to both anomalies, we construct the fitting function x?

2 2 2
Th c Th Is Th C
9 (mh - mhen) (ahI/I}/W - ah%}w) (Rwy - Rﬁn)
X = 2 2 2
D D
(6mh ev) (5%{%1/) (5R"I?’$V)
2 2
(AaEhy — Aagen) (AaeThy — Aagen)

_|_
(5AaDe)? (5AaD)*

(7.25)

I

where the superscripts Thy, Cen and Dev mean theoretical prediction, central value of
experimental bound and deviation from the central value at one of 1,2, 30,
respectively. The parameters used in this fitting function are defined as below(the

integer number multiplied in delta terms means o):

mye™ =125.38GeV, dmP® =3 x 0.14GeV,

ae = 0.59, daPe =1 x 0.35,
1
Cen __ CMS ATLASY _ Dev _
Ryt =5 (R + Ry ™) = 107, ORZY =1 x 0.14, (7.26)

Aal™ =261 x 1071, §AaR® =1 x (8.0 x 10717)
Aaecen o 7088 X 10_127 6Aa’£)ev = 2 X (036 X 10_12)

For an initial scan, we set up the starting parameter region as below:
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Parameter Value/Scanned Region(GeV)

Uy = V1 \/% x 246
Vg = Vg \/ﬁ x 246
vy = U3 +[0.01,1.00] x 1000
tan 5 = vy, /vg 5, 50]
A (m3 - i) / (103)
A2 +[0.50, 12.00]
A3 +[0.50, 12.00]
A\ +[0.50, 12.00]
A5 4v1va)3/ (v3)?
A6 +[0.50, 12.00]
A7 V25 /U1
As +[0.50, 12.00]
Mg, [2 % 10%,2 x 10°]
ML [2 % 10%,2 x 10°]
Lish 1011 % [300, 500]
Ye V2me [va
Yu V2my, [vs
Y54 = Y2 +[1.0,3.5]
Y51 =y +[1.0,3.5]
Tho = T2 [yuMEa/ (Y54v3)]
331L5 =T |yeM5L5/ (Y51v3)|

TABLE 7.1: Initial parameter setup

1. For the Higgs vevs, we are interested in the range of tan 8 from 5 to 50 as in the

W boson exchange in Figure 6.5
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2. For A1, we fixed mass of the SM physical Higgs h to be 125 GeV to save time and
to make the calculation faster. For A5 7, the assumption that no mixing between
the SM Higgs h and non-SM Higgses Hj o arise is reflected on these parameters.
All quartic coupling constants A; ... g are set up not to go over 4 for

perturbativity.

3. For the vector-like masses M{, and M5L57 there is a constraint that the lightest
should be greater than 200 GeV [144].

4. In our numerical analysis we consider solutions where the non SM scalar masses
are larger than about 200 GeV as done in [145].

5. The soft-breaking mass term pgp, is a free parameter, which does not generate
any problem and appropiate values of this parameters yields masses for scalars

and vector-like fermions consistent with the experimental constraints.

6. The diagonal Yukawa constants appearing in Equation 7.2 should be the Yukawa
constant for electron, muon and tau, respectively. The Yukawa constants yo4 51
and w42 15 interacting with vector-like families are defined under this
consideration. For perturbativity, the Yukawa constants y24 51 are considered not
to go over VAT,

After saturating value of the y? function less than or nearly 2 which we believe it is
converged enough, we find a best peaked value for each free parameter. For the given
parameters, we rename them by adding an index “p” to the end of subscript of each
parameter like tan 8, and then the expansion factor x is multiplied to find a
correlation between the observables and the mass parameters. Then, the parameter
region is refreshed by both the specific value of each parameter and the expansion

factor x as per Table 7.2.
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Parameter Value/Scanned Region(GeV)

vy = V1 \/% X 246
Vg = V2 \/ﬁ x 246
Vg = V3 [(1—k), 1+ K)] X vsp
tan 5 = vy, /vg [(1—k), (14 K)] x tan 3,
A1 (m% - v22v§1>\5> / (407)
" (= ), (4 8)] x Ay
A3 [(1=£), A+ r)] X Az
A4 (1= 5), (L4 K)] X Agp
A5 4u1vaAs/ (v3)?
A6 [(1=r), (1+K)] X Agp
A7 V25 /U1
A8 [(1=5), (T4 K)] X Agp
M, [(1=r), (1 +K)] x Miy,
ML [(1—k),(1+ k)] x ngr)p
ish (1= &), (L4 #)] X pspp
Ye V2me [va
Yu ﬂmu/m
You = Y2 (1= £), (T+ K)] X iy
Y51 = 1 (1= k), A+ K)] X Y5y,
Ty = T2 YuMiy/ (Y34v3)
aly = 1 yeMis/ (y51v3)
K 0.1

TABLE 7.2: Next parameter setup after the initial scan result
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7.2.2 A scanned result on the free parameters as well as observables
across over the first and second scan

The best peaked value for each parameter is listed in Table 7.3 and energy scale is in
unit of GeV. Note that all cases are carried out independently and all points of plots

in each case are collected within 1o constraint of each anomaly.

Parameter case A case B case C case D case E
Uy = U1 245.925 | 245.936 | 245.951 | 245.917 | 245.948
Vg = U2 6.086 5.595 4.921 6.387 5.077
Uy = U3 —57.761 | —36.470 | —57.919 | —30.746 | —17.146

tan 8 = vy /vg 40.410 43.957 49.977 38.503 48.441

M 0.063 0.064 0.066 0.064 0.065
oS —-7.978 | 8414 | —2.000 | 2.948 | 10.382
A3 —6.344 | —2675 | 6.242 | —1.724 | —0.706
A4 1.859 2158 | —3.633 | 10.837 | —2.796
As —11.384 | —11.070 | 9.009 | —11.460 | —12.000
X6 2.888 1.228 0.866 1.351 1.324
M 0282 | —0.252 | 0.180 | —0.298 | —0.248
As —1.363 | —1.346 | —10.845 | —11.510 | 7.033
Mg, 1475.010 | 1355.470 | 1495.770 | 1134.340 | 1681.760
ME 279.386 | 211.263 | 204.706 | 323.292 | 331.462
Hisb 424.618i | 443.435i | 480.993 | 480.062i | 491.533
Ye [1074] 1.135 1.234 1.403 1.081 1.360
Y [1072] 2.391 2.600 2.956 2.278 2.865
Y5 =12 —3.161 | —3.101 | —2.942 | —1.548 | 1.662
Y4 = 2.315 2.164 2.050 1.352 3.377
Gy =73 0.193 0.312 0.260 0.543 1.691

eh =2 [1074] | 2371 | 3304 | 2419 | 8408 | 7.787

mu, 213.390 | 222.924 | 212.147 | 238.523 | 205.477
mi, 911.585 | 614.516 | 891.413 | 518.147 | 354.709
ma, 741.343 | 537.111 | 807.268 | 435.887 | 282.964
ma, 1003.790 | 939.553 | 1035.800 | 1006.240 | 1015.760
e 938.259 | 674.054 | 987.625 | 929.786 | 504.684

Aay, [1077] 2.734 2.688 2.935 2.891 2.393

Aa, [107%] | —5.073 | —8.310 | —5.543 | —6.365 | —9.232

anww 1.000 1.000 1.000 1.000 1.000
Ry 0.999 0.999 0.999 0.999 0.999
X 1.794 1.516 1.870 1.740 1.579

TABLE 7.3: A best peaked value for each parameter at each case. All energy scale is in

GeV units. Notice that in all cases vs is smaller than the vector like mass parameters

Mg, and MX%, which is consistent with the assumption made in section I, regarding the
fact that the corresponding expansion parameter vs/My is less than unity.
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Here, we put two constraints on the lightest vector-like mass and the lightest non-SM
scalar mass; the vector-like mass should be greater than 200 GeV as well as the
non-SM scalar mass [144,145]. After we carry out second parameter scan based on the

first scan result of Table 7.3, range of the parameters are given in Table 7.4.

7.2.3 The muon and electron anomalous magnetic moments

In order to confirm that our theoretical prediction for both anomalies can
accommodate their constraints at 1o and to analyze correlations between both
anomalies and mass parameters, we consider cases B and E in Table 7.3 since their
benchmark point have relative lower values of the y? function when compared to other
cases. The reason that the cases B and E have the lower values of the x? function
arises from the obtained value of the electron anomaly, which is very close to the
central experimental value. All cases reveal nearly central value of muon anomaly
constraint at 1o, whereas the other cases except B and E reveal nearly edge value of
electron anomaly constraint at 1o. Therefore, the reason why the cases B and E are
more converged is related to whether our theoretical prediction for both anomalies can
gain access to their central value of each anomaly constraint at 1o. More importantly,
the case E is only one satisfying vacuum stability conditions and a detailed
investigation for the vacuum stability of each case will be studied in a subsection. For
these reasons, we take the case E in Table 7.4 to study the correlations. The relevant
parameter spaces are listed in Figure 7.2 and 7.3. To begin with, we consider the
parameter spaces for the muon anomaly versus electron anomaly with a mass
parameter which attends both anomalies (Hj 2, A12) and does not (H*) in Figure 7.2.
Even thought the non-SM charged scalar does not attend both anomalies, the similar
pattern which the other scalars implement in Figure 7.2 is also appeared. We
confirmed that mass of Hy is nearly proportional to that of H*, which causes the
correlation identified in plots of the other non-SM scalars in Figure 7.2 is still
maintained for the non-SM charged scalar. Interestingly, the cases A, B and C in Table
7.4 reported mp, is nearly proportional to myg+ one-to-one ratio, whereas the cases D
and E revealed a fat proportion between them and still maintained the correlation.

As mentioned at the beginning of this section, we take the case E for the plots in
Figure 7.2 and 7.3 and a main distinction between the case E and others arises from
the value of electron anomaly. If we take other cases instead of the case E to
investigate the parameter spaces, the parameter region appeared in top-left plot of
Figure 7.2 will be shifted upward by locating at the value of —5 or —6 x 10! for the
electron anomaly. In other words, the whole colored region in Figure 7.2 is shifted
upwards to meet the scanned value of electron anomaly constraint at 1o, holding the
correlations. Therefore, the white region appeared in Figure 7.2 is not strictly excluded
region and affected by how well a benchmark point is converged and by a factor of k.

However, these plots still tells a correlation between both anomalies and a tendency
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Parameter case A case B case C case D case
vy = v [245.907 — 245.938] [245.921 — 245.947] [245.939 — 245.959) [245.898 — 245.931] [245.935 — 245.957]
mo Vg = Vg [5.533 — 6.761] [5.087 — 6.216] [4.474 — 5.468] [5.807 — 7.096] [4.616 — 5.641]
wm vy = V3 [—63.525 — —51.985] | [—40.117 — —32.823] | [~63.706 — —52.128] | [~33.820 — —27.671] | [~18.860 — —15.438]
ﬂw tan 8 = v, /vg | [36.371 — 44.451] [39.561 — 48.353] [44.980 — 54.975] [34.653 — 42.354] [43.597 — 53.284]
mu mm, [200.000 — 242.653] [201.520 — 246.046] [200.000 — 230.754] [215.523 — 261.920] [200.000 — 220.017]
Q
ms. mi, [752.061 — 1088.130] | [516.289 — 724.997] | [735.831 — 1059.900] | [441.371 — 604.981] [338.724 — 374.424]
m ma, (638.813 — 853.637] [442.527 — 640.705] [670.550 — 945.705] [357.697 — 516.760] [266.086 — 297.589)]
M ma, [892.847 — 1141.780] | [847.825 — 1032.140] | [927.768 — 1154.640] | [907.576 — 1105.770] | [918.667 — 1114.960]
g
mo M+ [783.823 — 1111.600] | [580.316 — 779.945] | [842.585 — 1143.880] | [856.237 — 1007.360] | [478.900 — 529.178]
Mg, [1327.510 — 1622.510] | [1219.930 — 1491.020] | [1346.190 — 1645.330] | [1029.900 — 1247.770] | [1513.590 — 1849.930]
Mk [251.447 — 307.323] [200.000 — 232.389) [200.000 — 225.176] [290.963 — 355.621] [298.317 — 364.604]
| ttsp | [382.158 — 467.079] [399.091 — 487.777] [432.895 — 529.091] [432.059 — 528.067] [442.381 — 540.679]
Aay, [1077] [1.811 — 3.410] [1.810 — 3.410] [1.810 — 3.410] [1.810 — 3.410] [1.810 — 3.410]
Aa, [10713] [—6.730 — —5.200] [—11.142 — —5.985] [~7.207 — —5.200] [—8.721 — —5.200] [~12.393 — —5.442]
anww [1.000 — 1.000] [1.000 — 1.000] [0.999 — 1.000] [1.000 — 1.000] [1.000 — 1.000]
- R, [0.999 — 0.999] [0.999 — 0.999] [0.999 — 1.000] [1.000 — 1.000] [0.999 — 1.000]
) X2 [1.604 — 2.750] [1.501 — 2.635] [1.580 — 2.761] [1.509 — 2.749] [1.501 — 2.720]

TABLE 7.4: A scanned range of each parameter at case A, B, C, D and E. H; > mean non SM CP-even scalars and A; 2 are non SM CP-odd scalars
and H* stand for non SM charged scalars in this model. All data of Aa,, . are collected within the 1o constraint of each anomaly.
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FIGURE 7.2: Available parameter spaces for the muon anomaly versus electron anomaly
with a mass parameter which attends the both anomalies(Hj 2, A; o) and does not(H*).
H; 5 are non-SM CP even scalars, A2 are non-SM CP odd scalars and H + are non-
SM charged scalars. All points in each plot are collected within 1o constraint of each

anomaly.
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FIGURE 7.3: Available parameter spaces for the muon anomaly(electron anomaly)

versus a relevant vector-like mass m., (m.,) with another anomaly(two left plots) in
bar where m,, (m.,) is simplified notation for Mg, (M%), while the two right plots for
the muon anomaly versus electron anomaly with a vector-like mass m., (m.;)

that the lighter mass of H; is located at edge region of the parameter space. Mass of
the lightest non-SM scalar H; implied in top-left plot of Figure 7.2 is ranged from 200
to 220 GeV [145] and the cross section for this light non-SM scalar will be compared to
that for SM Higgs in appendix. As for mass range of the other non-SM scalars
confirmed in rest of other plots in Figure 7.2, they all implied heavier mass than that

of Hi which can be flexible depending on how the parameters are converged as seen in
each case of Table 7.4.

We investigate a correlation for an anomaly versus a relevant mass parameter with
another anomaly in bar in Figure 7.3. Note that the fourth vector-like mass is relevant

only for the muon anomaly, whereas the fifth is only for the electron anomaly. Even
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though the fourth (fifth) is irrelevant to the electron (muon) anomaly, it is good to
express them together since we rearrange the mass parameters and the anomalies in
bar for comparison. The top-left plot in Figure 7.3 just fills in whole parameter region,
thus no any correlation between the fourth vector-like mass and the muon anomaly is
identified. After we rearranged the order of me, and Aa, . from the top-left plot, we
can confirm the similar correlation identified in Figure 7.2 from the top-right plot in
Figure 7.3. The bottom-left plot identifies some correlation between the fifth
vector-like mass and the electron anomaly contrary to the top-left plot. For the fifth
vector-like mass, we put the constraint that the lightest vector-like mass should be
greater than 200 GeV [144] and the mass region below 200 GeV is all excluded. After
rearranging the order of m., and Aaq, as in the above plot, we confirmed the similar
correlation appears in the bottom-right plot. Interestingly, the top-right and the

bottom-right plots check the similar correlation.

We confirmed that the muon and electron anomalous magnetic moments with
vector-like particles can be explained to within 1o constraint of each anomaly in a
unified way, which is based on two attributes; the first one is the extended scalar sector
and the second one is related with the contributions of the vector-like leptons. The
first one which is reflected in our prediction for both anomalies, consists of four
non-SM scalars and these contributions play a crucial role for determining the
magnitude of each anomaly. The second one is seen by two vertices of both anomaly
diagrams. The other Yukawa interactions can take place at each vertex since the
vector-like leptons come in the loop, which is differentiated by the case where the
normal SM particles enter in the loop. To be more specific, the helicity flip mass
caused by the vector-like fermions in the CP-even and CP-odd basis couples the initial
particle inside the loop to another particle of different chirality, thus allowing different
interactions at each vertex. This means that the different sign problem can be solved
by only considering multiplication of the Yukawa constants of each vertex and this

property will be covered in detail in next subsection.

7.2.3.1 Vacuum stability

An important feature of our extended 2HDM theory is that it predicts large values for
the Yukawa coupling constants y2 1,221 which can be ideally order of unity in our
model. If the Yukawa coupling constants are much lower than unity, which means
y2,1, 72,1 < 1, it will not cause any problem for stabilization of the scalar potential.
However, large values of the leptonic Yukawa couplings are required in our model to
successfully explain both g — 2 anomalies within the 1o experimentally allowed range
and since they are somehow related with the electroweak sector parameters, it might
be able to destabilize the Higgs potential. As previously mentioned, in our analysis of

the scalar sector and g — 2 anomalies we are restricting to the scenario of decoupling
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limit, which implies that the large values of the leptonic Yukawa couplings will have a
very small impact in the stability of up-type Higgs H, potential, whereas the conditons
for the stability of the down type Higgs H; potential need to be determined. To
discuss the stability of the scalar potential, one has to analyze its quartic terms
because they will dominate the behaviour of the scalar potential in the region of very
large values of the field components. To this end, the quartic terms of the scalar
potential are written in terms of the Hermitian bilinear combination of the scalar
fields. To simplify our analysis, we discuss the stability conditions of the resulting
2HDM scalar potential arising after the gauge singlet scalar field ¢ acquire vacuum
expectation value. Such stability conditions have been analyzed in detail in the
framework of 2HDM in [146,147]. In order to analyze the stability of the Hy potential,
what we need to check if the quartic scalar couplings in each case of Table 7.3 fullfill
the stability conditions to be determined below. Given that our Higgs potential
corresponds to the one of an extended 2HDM with the flavon field ¢, in order to apply
the stability conditions used in the reference [146] to our Higgs potential, we need to
reduce the number of scalar degrees of freedom by considering the resulting 2HDM
scalar potential arising after the gauge singlet scalar field ¢ is integrated out. From the
scalar potential it follows that the relevant quartic coupling constant Ag must be
positive, otherwise the vev v3 would fall into negative infinity when the field ¢ value
increases. For the same reason, the quartic coupling constants A1 2 must also be
positive. From the aforementioned stability conditions we conclude that the cases A
and C must be excluded since their corresponding quartic coupling constants Ay are
negative. Assuming the flavon field ¢ develops its vev v3, we can rewrite the Higgs

potential in terms of H, and H, fields as follows:
2 2 T 203 2 V3 2 )2
V=l (HUHD + (Hde> + i3+ 23,2 4+ M (Huﬂg) T (HdH d)
f t t t ;173 U3
X (o) (Hat}) + N (HH]) (Hal]) + X (e HUHG S + e (7.27)
4 2

e B () e (i
614—75 uu+8? i1y ) -

Dropping all numbers and combining same order terms, the Higgs potential becomes

much simpler as follows:
v? v2
V= (u% + A7;) (Hut]) + (ué + )\823) (Har})
2 2
+ A1 (Hqu> + Ao (Hdﬂl) (7.28)
2 o
+ A (HuHY) (Hal)) + 255 (s HLH] + o)

where it is worth mentioning that the A4 term can be safely removed in the Higgs
potential since it does not play a role in the CP-even, odd but charged mass matrix

(Now our focus is the neutral scalar sectors). Here, we can impose one extra condition
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for the stabilization check, which is that the redefined mass terms must be negative,

otherwise we get zero vev as a global minimum.

12+ )\7%3 = —2\107 — \302 + 2X303 = —2\ 107 + A\3v2 < 0
2 ) )2 (7.29)
3 + )\8?3 = —2X\v3 + \30% — 5)\8113 + )\8?3 = —2X\v3 + A30% < 0

We have used the decoupling limit of Equation 7.8 at the first equality of

Equation 7.29. From this equation, it is possible to determine the appropriate sign for
the quartic coupling constant A3. In our numerical analysis, the vev v; is much
dominant than the vev vy so it leads to a negative sign for the quartic coupling
constant Ag, otherwise the below equation of Equation 7.29 would become positive.
The sign of the quartic coupling constant A3 also determines the one of A5 7 in the
decoupling scenario, which means that A5 7 must also be negative. On top of that, the
large Yukawa coupling constants ¢,z can be understood in connection with the vev vs.
To this end, we consider the definition for the Yukawa coupling constants x; and xo,

which are given by:
YpuMag
Y2v3

YeMss
Y103

9 =

(7.30)

where in order to successfully explain both g — 2 anomalies within the 1o
experimentally allowed range, one has to rely on small values of v3, which are

O(10 GeV), and the small values of v3 do not significantly spoil the down-type Higgs
H,; potential as seen in Equation 7.29. In other words, the mass parameters ,LL%72 are
much larger than the parameters )\77811% /2, thus allowing more freedom in the sign of
Ag. Then, we are now ready to match our simplified Higgs potential with the one given
in the reference [146]. Taking into consideration that our Higgs alignment is different

than the one of [146], our mass parameters can be redefined as follows:

2 2

v2 v v
RO N RN R 1)
B =2\, B2=2X, B3=X3, B1=0, [B5= (7.32)
Then, following [146,147], it is found that the scalar potential is stable, when the
following relations are fullfilled:
g1 = 0, B2 > 0, B3+ B1B2 >0 (7.33)
B3 + Ba+/B1B2 > |B5] = Bs + /B1B2 > 0, (7.34)

The last stability condition can be rewritten as shown on the right side since the (45
are zero in our Higgs potential and the cases B and D must be excluded by this last

condition shown in Equation 7.34. The conditions given in Eqgs. (7.33) and (7.34) are
crucial to guarantee the stability of the electroweak vacuum. Furthermore, one has to

require that the squared masses for the physical scalars are positive. Besides that,
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according to [146], the minimum of the scalar potential is a global minumum when the

following condition is fulfilled:

m%Q (m%l — m%Q\/g> (tanﬁ - :/g) >0— m%Q <m%1 — m%Q\/g> >0 (7.35)

where the latter condition on the left hand side is always successfully fulfilled for all
cases, so we can simply drop off the condition as shown on the right side. Then, it is
enough to confirm whether each case satisfies the reduced global minimum condition

and the case E successfully fulfills that requirement as shown below:

mi, = —1763.9GeV?, m?2, = —7896.5GeV?, m3, = —43258.8 GeV?,

b = 0.0791994

B2 (7.36)

mi (m%l - m%Q\/E) ~ 7.886 x 10°GeV? > 0

Thus, we have numerically checked that the best fit point corresponding to the case E
obtained in the numerical analysis of the scalar potential and g — 2 muon and electron
anomalies is consistent with the above given stability conditions of the scalar potential
and at the same time ensure positive values for the squared masses of the physical
scalars, consistent with the current experimental data. Finally, to close this section, it
is worth mentioning that the large Yukawa coupling constants y, z involve the small
vev vz in our model and this ensures that not only the H, potential is stable in the
decoupling scenario but also the Hy potential successfully fullfill the requirements of
vacuum stability for both the small vev v3 and appropriate values of the quartic scalar

couplings.

7.2.3.2 How is the scalar exchange possible to accommodate both

anomalies at 1o constraint analytically?

In order to analyze how the scalar exchange is able to explain both anomalies within
the 1o range, we revisit the analytic expressions for both muon and electron

anomalous magnetic moments:

m2
Aa, = y2€435227/; (ReT)22 (ReT)32 Iéu) (Mmeysmm,) + (ReT)23 (ReT)33 IE@M) (e, mH,)
8w
— (R (BE) gy 1) (mesymay) = (RT) y (BD) 3 T8 (e )|

2
L Me

15872 [ (RZ)QQ (RZ)32 If@e) (Mey, mp,) + (RZ)Q?; (RZ)33 If?e) (Mes, M, )

o (Rz)m (ROT)SQ If(:’e) (M5, ma,) — (RZ)23 (ReT)gg IJ(DE) (Mey, may) ]v
(7.37)

[
Aae = y5x
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where

Me,pn

x2 (1 —r+ mE4’5>

1
1508 (mpy5oms) = / dx (7.38)
0

2 .2 2 .2 2 _
mg T +(mE475 meﬁu)m—i—mS,P(l x)

with S(P) corresponding to scalar (pseudoscalar) and Ej 5 standing for the vector-like
family. Furthermore, E4 and Ej5 only contribute to the muon and electron anomalous

magnetic moments, respectively.

First of all, we focus on the sign of each anomaly. The different signs of each anomaly
indicated by the 1o experimentally allowed range can be understood at the level of
Yukawa constants apart from the loop structures. As seen in Table 9.1, the Yukawa
coefficient y can be either positive or negative, while x only remains positive since we
take the absolute value to the . We also considered the case where the coefficients x,y
are purely positive, assuming v3 is positive, without taking absolute value and the
multiplication of the Yukawa coefficients x X y cannot change the sign of each anomaly
since the denominator of x includes y and they are cancel out. Then, the sign problem
depends on summing over loop functions and we found that the order of the muon
anomaly prediction is suitable, whereas the corresponding to the electron anomaly is
about 107'6 which is too small to be accommodated within the 1o experimentally
allowed range. Therefore, we found that taking an absolute value to one of the Yukawa
coefficients is an appropriate strategy for the sign and allows to reproduce the correct
order of magnitude of each anomaly allowed by the 1o experimentally allowed range,
for an appropiate choice of the model parameters. This feature is a crucial difference
compared with the W or Z’ gauge boson exchange [89]. The W gauge boson exchange
covered in the main body of this work keeps the same coupling constant at each
vertex, therefore it is completelly different from the scalar exchange with vector-like
leptons. For the Z’ exchange covered in [89], it has the common property that the
coupling constant of each vertex is different to each other, whereas the coupling
constants of the Z’' are more constrained by the mixing angle between ith chiral family
and fourth vector-like family, so it is impossible to explain both anomalies at the same
time. As a result, allowing different Yukawa constants with appropiate signs enables

both anomalies to be explained in a unified way.

Next we turn our attention to the order of magnitude of our predictions for both
anomalies. Considering that the sign problem is solved by having each Yukawa
constant y either positive or negative, it can be easily understood that inside the
structure in parentheses of Equation 7.37 should imply the same direction, which is is
determined by the contribution of all loop functions in parentheses. Since the mass
difference among non-SM scalars and vector-like particles is not so big, we have to
consider their masses in the computation of muon and electron anomalous magnetic

moments, as follows from Equation 7.37. For an easy analysis, we take the case E
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reported in Table 7.3 and suppose that

( Z) (RE) 32 = ¢ (ReT)23 (ReT)33 —°L

(RS ) gy (Bg)gy =2, (Rg) gy (RG) gy = —c2,

I (mey,mp,) = di,  I§ (mey, mp,) = da,

Ip (Meg,ma,) = —dz,  Ip (Mey,ma,) = —du, (7.39)
Ig (mes, mp,) = €1, 1§ (mes, mp,) = e,

Ip (Mes,ma,) = —e3,  Ip (Mey,ma,) = —ea,

d1>d3>d2>d4, €] > €e3 > €9 > ey

where ¢ o are arbitrary constant between 0 and 1 either positive or negative and mass
ordering among d(e);, (i = 1,2,3,4) can be easily understood by considering mass
difference between non-SM scalars and vector-like particles. The muon and electron

anomaly prediction can be rewritten in terms of these redefined constants:

2
m
Aay, = y29€2877:; [c1d1 — c1d2 + cad3 — cady]
2 2

my, my
= Y22 5 [c1 (d1 — d2) + c2 (d3 — da)] = yow2 5 [c1dr2 + cods4]
m2
Aa, = y1$1877:2 [cre1 — crea + cae3 — coey]
2 m2
= Z/136187:2 [c1 (e1 —e2) +ca(e3 —eq)] = y1m18—7:2 [cre12 + coes4]

where ya, x2,y1, 1 are simplified notation for y5,, z%,, y5;, 3:1L5, respectively, and

d(e)ij = d(e); — d(e); and d(e);; are positive. Since the inside structure in parentheses
depends on relative magnitude of both ¢; 2 and d(e)ij at this stage where no more
analytic simplication is possible, it is good to implement a specific value for them.

Referring the values used to derive the result of case E, they are

2 2

m
nyg—ucldl = —4.629 x 10_7, y1$1&61€1 = —8.532 X 10_12
82 872
2 2
m
oot erdy = 4.520 x 1077, — 121 2E ¢ren = 6.808 x 10712
87T2 8772 (7 41)
m2 m2 ’
y2$27“02d3 = 7.984 x 10_8, y11'17602€3 =1.323 x 10712
82 872
2 2
m
—y21‘27u62d4 = —6.659 X 10_8, — y1x1%0264 =-5217x 10713
82 82

and summing over all values in left or right column of Equation 7.41 yields the

prediction for muon and electron anomaly at 1o

m2
K c1dy — ci1ds 4 cods — 02d4] =2.393 x 107

s’ | (7.42)

Aau = Y222

Aae = y111 cre1 — creg + coez — caeq] = —9.232 X 10713,

me
82 |
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7.3 The experimental and theoretical bound for the

non-SM CP-even and -odd scalars

The scalar sector in this BSM model is an extended 2HDM with one singlet flavon. To
be more specific, it is a type II 2HDM, which reproduces the SM Yukawa structure in
the alignment limit (5 — a = 7/2). The case E of Table 7.4, regarded as valid in this
work, tells that vev of the singlet flavon ¢ is order of 10 GeV, which is quite small so it
does not significantly impact the parameter space considered in this work. Therefore,
we can safely claim that our BSM model is a well-approximated type II 2HDM and
mass interval of the non-SM scalars are investigated by the Gfitter Group [172]

130 GeV < My, M4 < 1000 GeV,
100 GeV < Mpy+ < 1000 GeV,
0<p—-—a<m, (7.43)
0.001 < tan 8 < 50,
—8 x 10° GeV? < M?, < 8 x 10° GeV?,

where MZ, can be found from Equation 7.36 and it is worth mentioning that since the
2HDM model under consideration has generally large freedom in the parameter space,
the given constraints 7.43 suggest weak exclusion limits on the parameter space. The
LEP experiments in search for the charged scalar in the type II 2HDM strengthen
mass bound for the charged scalar My« [173].

Mpy: > 150 GeV (7.44)

Comparing the case E and the given bounds, none of our predictions from the case E is
excluded by the given bounds except for m4,, some of which exceeds the 1000 GeV,
however it should notice that the m 4, depends on the free parameter pg, appearing in
the scalar potential to prevent additional Goldstone bosons appearing in this work.
Therefore, we can conclude our numerical predictions carried out in this work are well
consistent with the current experimental bounds. As our BSM model features an
extended 2HDM, it might cause dangerous scalar-mediated
flavor-changing-neutral-currents (FCNCs) and CP-violation. For the dangerous
scalar-mediated FCNCs, there are three safety devices in this BSM model, which are
the alignment limit, decoupling limit, and lastly proper diagonalization. The BSM
model under consideration can reproduce the SM Yukawa structure in the alignment
limit as mentioned earlier and keep mixing between up-type SM-like Higgs H,, and
down-type SM-like Higgs Hy arising by the decoupling limit. Plus, the proper
diagonalization suppresses off-diagonal elements of mass matrices within this BSM
model so that effects of the dangerous FCNCs become small enough to ignore. For the

CP-violation, we have only considered real Yukawa coupling constants for the scalar
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and fermion sectors, and this feature naturally leads to the CP-conserving scenario.
Therefore the BSM model under consideration are free from the dangerous FCNCs and

CP-violation.

7.4 Conclusion

We have proposed a model to account for the hierarchical structure of the SM Yukawa
couplings. In our approach the SM is an effective theory arising from a theory with
extended particle spectrum and symmetries. The considered model includes an
extension of the 2HDM where the particle spectrum is enlarged by the inclusion of two
vector-like fermion families, right handed Majorana neutrinos and a gauge singlet
scalar field, together with the inclusion of a global U(1)" symmetry spontaneously
broken at the TeV scale. Since the U(1) symmetry is global, this model does not
feature a Z’ boson and it is softly broken in the 2HDM potential to avoid a Goldstone
boson. Its main effect is to forbid SM Yukawa interactions due to the U(1)" charge
conservation. Besides that, this model has the property of the 2HDM type II where
one Higgs doublet couples with the up-type fermions whereas the remaining one has
Yukawa interactions with down-type fermions, where such couplings are allowed
between chiral fermions and vector-like fermions due to the choice of U(1)" charges
(chiral fermions having zero charges while vector-like fermions, Higgs and flavons have
charges +1). Below the mass scale of the vector-like fermions, such couplings result in
effective Yukawa couplings suppressed by a factor (¢) /M where the numerator is the
vev of the flavon and the denominator is the vector-like mass. This factor naturally
determines the magnitude of SM interactions and the mass scale for the vector-like
fermions under a suitable choice of the flavon vev. We have developed a mixing
formalism based on 7 X 7 mass matrices to describe the mixing of the three chiral

families with the two vector-like families.

Within the above proposed model, we have focused on accommodating the
long-established muon and less established electron anomalous magnetic moments at
one-loop level. A main difficulty arises from the sign of each anomalous deviation of
the experimental value from its SM prediction. Generally, the Feynman diagrams for
the muon and electron anomalous magnetic moments have the same structure except
from the fact that the external particles are different, which makes it difficult to flip
the sign of each contribution. Specifically we have required that both deviations in
Equation 5.1) at one-loop should be accommodated within the 1o experimentally

allowed range, which is a challenging requirement.

We first considered in detail the W boson exchange contributions to the muon and

electron anomalous magnetic moments at one-loop. The relevant sector for the W
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boson exchange is that of the neutrino and we analyzed a novel operator that
generates the masses of the light active neutrinos in this model. The well-known five
dimensional Weinberg operator which we refer as type la seesaw mechanism does not
work in this model since it is forbiden by the U(1) symmetry due to the fact that both
SU(2) scalar doublets are negatively charged under this symmetry. For this reason, we
made use of the Weinberg-like operator known as type Ib seesaw mechanism allowed in
this model. With the type Ib seesaw mechanism, we built the neutrino mass matrix
with two vector-like neutrinos and ignored fifth vector-like neutrinos since they are too
heavy to contribute to the phenomenology. The deviation of unitarity n derived from
the heavy vector-like neutrinos plays a crucial role for enhancing the sensitivity of the
CLFV pu — e7y decay to the observable level. Furthermore, the Yukawa constants of
Dirac neutrino mass matrix can be connected to the observables measured in neutrino
oscillation experiments. One of the neutrino Yukawa constants is defined with a
suppression factor €. Therefore, the effective 3 x 3 neutrino mass matrix tells that the
tiny masses of the light active neutrinos depend on the mass scale of vector-like
neutrinos as well as on the suppression factor e. This implies that mass scale of
vector-like neutrinos is not required to be of the order of 104 GeV, as in the
conventional type Ia seesaw mechanism. In our proposed model, the vector-like
neutrinos can have masses at the TeV scale, thus allowing to test our model at
colliders. Those vector-like neutrinos can be pair produced at the LHC via Drell-Yan
annihilation mediated by a virtual Z gauge boson. They can also be produced in
association with a SM charged lepton via Drell-Yan annihilation mediated by a W
gauge boson. These heavy vector like sterile neutrinos can decay into a SM charged
lepton and light active neutrinos. Thus, the heavy neutrino pair production at a
proton-proton collider will give rise to an opposite sign dilepton final state, which
implies that the observation of an excess of events in this final state over the SM
background can be a smoking gun signature of this model, whose observation will be
crucial to assess its viability. It is confirmed that the branching ratio of u — ey decay
can be expressed in terms of the deviation of unitarity n as shown in [62,82] and our
prediction for the muon and electron anomalous magnetic moments can also be written
in terms of non-unitarity. We derived the analytic expression for the anomalies and
found that the order of magnitude of these predictions is too small to accommodate
the experimental bound within the 1o range and the sign of each prediction also points
out in the same direction. Therefore, we concluded that the W boson exchange at
one-loop is not enough to explain both anomalies at 1o and this conclusion has been a
good motivation to search for another possibility such as scalar exchange, which is one

of the main purposes of this work.

We then turned our attention to the 2HDM contributions (inclusion also of the singlet
scalar ¢) to the muon and electron anomalous magnetic moments, assuming by a

choice of parameters a diagonal charged lepton mass matrix to suppress the branching
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ratio of u — evy. In our analysis we considered in detail the scalar sector of our model,
which is composed of two SU(2) scalar doublets H, and Hy and one electrically
neutral complex scalar ¢ by studying the corresponding scalar potential, deriving the
squared mass matrices for the CP-even, CP-odd neutral and electrically charged
scalars and determining the resulting scalar mass spectrum. We have restricted to the
scenario corresponding to the decoupling limit where no mixing between the physical
SM Higgs h and the physical non-SM scalars H 5 arise and within this scenario we
have imposed the restrictions arising from the Higgs diphoton decay rate, the AW W
coupling, the 125 GeV mass of the SM-like Higgs and the experimental lower bounds
on non SM scalar masses, to determine the allowed parameter space consistent with
the muon and electron anomalous magnetic moments. To this end, we have
constructed a x? fitting function, which measures the deviation of the values of the
physical observables obtained in the model, i.e., (¢ — 2),,, the 125 GeV SM-like Higgs
mass, the Higgs diphoton signal strength, the KWW coupling, with respect to their
experimental values. Its minimization allows to determine the values of the model
parameters consistent with the measured experimental values of these observables.
After saturating the x? value less than or nearly 2, we obtained five independent
benchmark points and carried out second scan with the benchmark points to find a
correlation between observables and mass parameters. For the plots, we took an
appropriate case which is more converged when compared to other ones and satisfying
the vacuum stability conditions. We found that our prediction for both anomalies can
be explained within the 1o constraint of each anomaly and a correlation proportional
for muon versus electron anomaly is appeared in Figure 7.2 and 7.3. Here, we put two
constraints on mass of the lightest non-SM scalar and of the lightest vector-like family;
mp, , Mes > 200 GeV based on references. The second scan result tells that the
available parameter space is not significantly constrained by current experimental
results on non-SM scalar mass and vector-like mass, while keeping perturbativity for
quartic couplings and Yukawa constants. An important feature of our BSM model is it
predicts the large Yukawa coupling constants y, x, which might be able to destabilize
the Higgs potential. The up-type Higgs H,, potential is not significantly affected by the
large Yukawa coupling constants in the decoupling scenario, whereas there is no safe
condition for the down-type Higgs H; potential which can be worsen by mixing with
the flavon field ¢. The large Yukawa coupling constants x introduces small values for
the vev v3 in the definition of x and the energy scale is confirmed by order of 10 GeV
in our numerical analysis. On top of that, we also identified the appropriate sign of
quartic coupling constants can make the Higgs potential stable. Therefore, the down
type Hy Higgs potential is stable by both the small vev v3 and the appropriate quartic
coupling constants in our BSM model. Lastly, we discussed how we were able to
explain both (g — 2)c,, anomalies at 1o constraint and impact of the light non-SM
scalar Hy. For the former, we first simplified the prediction for both anomalies and

used some numerical values at the stage where no more analytic simplication is
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possible. For the latter, we compared the cross section for the SM process pp — h and

BSM process pp — Hi and included this comparison in Appendix B.2.

We conclude that the proposed model of fermion mass hierarchies is able to
successfully accommodate both the muon and electron anomalous magnetic moments
within the 1o experimentally allowed ranges, with the dominant contributions arising
from one loop diagrams involving the 2HDM scalars and vector-like leptons. The
resulting model parameter space consistent with the (g — 2)., anomalies requires
masses of non-SM scalars and vector-like particles in the sub TeV and TeV ranges,

thus making these particles accessible at the LHC and future colliders.
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Chapter 8

The third BSM model - SM

fermion mass hierarchies from

one VL family with an extended
2HDM

In this chapter, we discuss our third BSM model, which is exactly same as the second
BSM model except that one vector-like family is used instead of two for the purpose of
diagonalizing the mass matrices without any assumptions. One vector-like family can
provide two seesaw operators, so the first SM generation can not be massive in this
model, however this is a good approximation taking into account the first SM
generation is very light in both quark and lepton sectors. In this BSM model, we
construct the SM Z gauge coupling constants in the mass basis after enlarging the SM

fermion sector by the fourth vector-like family.

8.1 Introduction

A great success of the energy frontier is the discovery of the Higgs particle by ATLAS
and CMS collaborations at the Large Hadron Collider (LHC) on 4th July 2012 [1,2].
After that discovery, no new particle has been found so far by the experiments at LHC
with 13 TeV proton-proton centre of mass energy. This highlights the fact that not just
the energy frontier but also the luminosity (intensity) frontier should be considered as
of equal importance in the search for physics beyond the Standard Model (SM). For
example, one may consider observables mediated by flavour-changing-neutral-currents
(FCNCs), which are quite sensitive to new physics, since such FCNC observables are

extremely suppressed in the Standard Model (SM) due to the well-known
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Glashow-Illiopoulos-Maiani (GIM) mechanism. Another example of a highly
suppressed process is provided by the branching ratio of u — ey decay mediated by

massive neutrinos at the one-loop level [62]:
BR (1 — ey) =~ 107, (8.1)
The experimentally known sensitivity for the branching ratio of u — ev is
BR (11 — e7)pxp = 4.2 x 10713, (8.2)

The large gap between the tiny rates of the flavour violating decays predicted by the
SM and their experimental upper limits has motivated the construction of many flavour
models with extended scalar, quark and leptonic spectrum aimed at enhancing those
rates by several orders of magnitude up to an observable level within the reach of the
sensitivity of the future experiments. A similar situation occurs for other rare FCNC
decays such as, for instance Z — ur and t — ¢Z, which are very suppressed in the SM,
but in extensions of the SM, can acquire sizeable values, within the reach of the future
experimental sensitivity. Although various models with a heavy Z’ boson have also
received a lot of attention by the particle physics community as a new source of
FCNCs, its properties, being not fully constrained, do not lead to definite predictions.

For this reason we shall restrict ourselves to the SM Z couplings in this paper.

In this paper we focus on the SM Z FCNC interactions induced by tree-level gauge
boson exchange in a model in which the fermion sector of the SM is enlarged with a
fourth vector-like family. An interesting feature of this approach is all coupling
constants of Z interactions in this work are fixed by the known values of the SM Z
gauge boson interactions, together with mixing parameters. Our main motivation for
adding a fourth vector-like family is to explain quark and lepton mass hierarchies. We
first forbid the SM Yukawa couplings with a global U(1)" symmetry, then allow them
to be generated effectively via mixing with the fourth vector-like family, a mechanism
somewhat analogous to the seesaw mechanism for neutrino masses. Consequently, the
SM charged fermion masses are inversely proportional to the masses of the heavy
vector-like leptons and directly proportional to the product of the couplings of Yukawa
interactions that mix SM charged fermions with vector-like fermions. This implies that
a small hierarchy in those couplings can yield a quadratically larger hierarchy in the
effective couplings. Combined with a moderate hierarchy in the vector-like masses, this
allows us to naturally explain the SM charged fermion mass hierarchy and to predict

the mass scale of vector-like fermions.

A similar model was discussed in our previous works [148], although with two
vector-like families, but the effect on the Z and W boson couplings was not studied. In
our previous work [148], whose purpose was to explain the muon and electron

anomalous magnetic moments simultaneously, the main focus was on the 2HDM scalar
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sector, and the FCNCs arising from the Z and W boson couplings were not considered,
since the full mass matrices were not accurately diagonalised, and hence such effects
were beyond the approximations used there. By contrast, the main goal of this work is
to study the SM Z and W contributions to the FCNC observables at leading order to
constrain the masses of vector-like fermions, and to explore other possible
phenomenological signatures. The SM W contributions to the CKM mixing matrix
with the extended quark sector are also studied for the first time in this work. In order
for these effects to be considered reliably, the mass matrices of each fermion sector are
accurately diagonalized, both numerically and analytically, unlike the previous work
where simple approximations were used which masked the effects we consider here. The
results in this work are sufficiently accurate to enable the contribution of the Z and W

boson couplings to physics beyond the SM to be reliably considered for the first time.

In order to make the results completely transparent, we shall study the Z and W
boson couplings in the presence of only one vector-like family so that mass matrices of
this work can be straightforwardly diagonalized using both analytical and numerical
methods. Since only one vector-like fermion family is used, the first generation of SM
charged fermions do not acquire masses, which nonetheless is a very good
approximation considering the SM fermions belonging to the first family are very light.
Consequently, we restrict our attention to the second and third generations of SM
fermions, as well as to several observables related to FCNC processes involving the
second and third SM families. In our approach, then, the SM is a low effective energy
theory arising after integrating out a single heavy fourth vector-like family. In order to
dynamically generate the hierarchical structure of SM fermion masses, the fermionic
mass matrices given in [148] as well as the ones obtained in this work must be
accurately and completely diagonalized, which, as mentioned above, has not been done
previously. The mass matrices for the charged lepton and up-quark sectors share the
same structure, whereas the one for the down-type quark sector involves an additional
non-zero element in a particular basis, although we later show that the results are
basis independent. This reasoning does not apply to the neutrino sector, since this
sector is treated independently. This different feature of the down-type mass matrix, in
the preferred basis, allows us to achieve all mixings among the three generations of SM
fermions even though the first one remains massless, and this leads to a prediction for
the Cabbibo-Kobayashi-Maskawa (CKM) mixing matrix. In addition, due to the
mixings between the SM quarks and the vector-like quarks, the CKM quark mixing
matrix originating from the W couplings is not unitary, thus implying the need of
relaxing the unitarity condition of the CKM mixing matrix, and we also study this

feature.

This paper is organized as follows. In Section 8.2 we introduce our model to explain
the origin of the SM fermion’s mass with a fourth vector-like family. In Section 8.3 the

mass matrices in both quark and lepton sectors are constructed and diagonalized using
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the mixing formalism. In Section 8.4 the Z gauge boson interactions with fermions are
determined from the mixing matrices used in the mass matrix diagonalization. Several
FCNC observables for both lepton and quark sectors are analyzed in detail in

Sections 9.1 and 9.2, respectively. We state our conclusions in Section 9.3. Several
technical details are relegated to the Appendices. The perturbative analytical
diagonalization of the mass matrices for the charged lepton, up type quark and down
type quark sectors are discussed in detail in Appendices C.1, C.2 and C.3, respectively.
The comparison between the numerical and approximate analytic diagonalization of
the mass matrices for charged leptons and quarks is made in Appendices C.4 and C.5,

respectively.

8.2 An extended model with a fourth vector-like family

The origin of the pattern of SM fermion masses is interesting open question, not
addressed by the SM. The mass parameters of the SM have been experimentally
determined with good precision, and these experimentally observed mass parameters
show a strong hierarchical structure of the SM fermion masses. The most extreme
hierarchy is exhibited between the SM neutrino Yukawa coupling of about 10712 and
the top quark Yukawa coupling of about 1. Regarding the tiny neutrino masses, many
particle physicists regard their masses as most likely explained by the see-saw
mechanism rather than by the Yukawa interactions, thus predicting the presence of the
heavy right-handed neutrinos. The reason why the see-saw mechanism has received a
large amount of attention by the particle physics community is that it provides a
dynamical explanation of the tiny active neutrino masses. For a similar reason, it is
interesting to speculate about the existence of a dynamical mechanism that produces
the masses of all SM fermions via the exchange of heavy fermionic degrees of freedom
thus implying that the SM is an effective low energy theory arising from some
spontaneous breaking at higher energy scales of a more complete underlying theory. In
order to specify a possible candidate of an underlying theory responsible for the
generation of the SM fermion mass hierarchy, we shall consider a minimal extension of
the SM consistent with the SM current experimental bounds. With this motivation in
mind, we enlarge the SM fermion and scalar sectors by including a fourth vector-like
family and an extra SU(2) scalar doublet as well as a scalar singlet, respectively.
Furthermore, we extend the SM gauge symmetry by adding a U(1)’ global symmetry.
The particle content of the proposed model is shown in Table 8.1.
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Field  Qir wir dir Lir eir Qrr ukr dkr Lir exr vkr Qkr Uk drr Lkr € Vkr ¢ Hu  Hg

SU(3)(; 3 3 3 1 1 3 3 3 1 1 1 3 3 3 1 1 1 1 1 1
SU(2)L 2 1 1 2 1 2 1 1 2 1 1 2 1 1 2 1 1 1 2 2
O S B S R e T T T T T S
U(l)' 0 0 0 0 0 1 -1 -1 1 -1 -1 1 -1 -1 1 -1 -1 1 -1 -1

TABLE 8.1: Particle assigments under the SU(3)¢ x SU(2)L xU(1)y xU(1)" symmetry

of the extended 2HDM theory with fourth vector-like family. The index i = 1,2,3

denotes the the ith SM fermion generation and k = 4 stands for the fourth vector-like
family.

Our proposed theory is a minimal extended 2 Higgs Doublet Model (2HDM) where the
SM fermion sector is enlarged by the inclusion of a fourth vector-like family and the
scalar sector is augmented by an extra SU(2) scalar doublet and a singlet flavon and
lastly the SM gauge symmetry is extended by the U(1)" global symmetry. As this
model features the global U(1)" symmetry, there is no a neutral Z’ gauge boson in the
particle spectrum. Furthermore, the up-type quarks feature Yukawa interactions with
the up-type SM Higgs H,, whereas the extra scalar doublet Hy couples with the SM
down-type quarks and charged leptons. Our proposed model is especially motivated by
the hierarchical structure of the SM and, in order to implement this hierarchy, we
forbid the SM-type Yukawa interactions by appropiate U(1)’ charge assignments of the
scalar and fermionic fields. Then, for the above specified particle content, the following

effective Yukawa interactions arise:
L =yt (M ), (@) Hijr + 2, (0) (M Yy Hbjr +hoc. (8.3)

where the indices 7,5 = 1,2,3 and k,l = 4 whereas ¢, = Q,u,d, L,e and M means
heavy vector-like mass. The masses of all SM fermions can be explained by this
effective Lagrangian of Equation 8.3, emphasizing their relative different masses are
explained by the factor (¢)/M < 1 ( apart from top quark ), except for the neutrinos
which requires an independent approach to their mass. Feynman diagrams

corresponding for the effective Lagrangian are shown in Figure 8.1:

A\
\4

ViR

A\
A\

Vir YL
Yir i Yir iy,

YiL

FiGUrE 8.1: Feynman diagrams leading to the effective Yukawa interactions, where
U, = Q,u,d, L, e (neutrinos will be treated separately), i,7 =1,2,3, k,1 =4, My is
vector-like mass and H = iooH*, H = H, 4
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The theory considered in this paper corresponds to the one given in one of our
previous works [148], however one vector-like family is used instead of two so that the
mass matrices for both quark and lepton sectors can be diagonalized much more
economically than in our previous model of [148] at cost of having massless the first
generation SM charged fermions (One of our main purposes is to diagonalize mass
matrices for the quark and lepton sectors without any assumptions) and this is
actually a good approximation taking into account that the first generation of SM

charged fermions are very light.

8.2.1 Effective Yukawa interactions for the SM fermions

The renormalizable interactions of the quark sector in this model are given by:

ﬁ;(ukawa+Mass = yz’ukéiLﬁqukR + xf Pk LuiR + xfid@m@m + yﬁi@kaquiR
+ y& Qs Hadyr + 2i0dirdin + v Qur Hadir (8.4)

+ Mty ug + M;szZLdkR + M,ﬁ@m@m +h.c.

where i,j = 1,2,3, k,l = 4 and H = iocoH*. After the U(1)’ symmetry is
spontaneously broken by the vacuum expectation value (vev) of the the singlet flavon
¢, and the heavy vector-like fermions are integrated out, the renormalizable Yukawa
terms at higher energy scale give rise to the effective Yukawa interactions which
explain the current SM fermion mass hierarchy. The Feynman diagrams corresponding

to the effective Yukawa interactions of the quark sector are shown in Figure 8.2:

Vi
M,
UjR Qir > L L > UjRr

UkR urr, Qkr Qir

Qir

\d
\d

Mg
Qir

djr QirL -
dikr dir, Qrr Qir,

A\
A\
Y
Y
&
By

FIGURE 8.2: Feynman diagrams contributing to the up and down type quark’s effective
Yukawa interactions in the mass insertion formalism. Here i,7 = 1,2,3 and k,l = 4
and M, is vector-like mass.
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The same approach can be applied to the SM charged lepton sector and the

renormalizable charged lepton Yukawa interactions are given by:

Yukawa+Mass __ , e T 77 = L .7. T 7 o7
LoHavaTies = yb Lip Haekr + i 0€kLeir + 0 Lir Lir + Y Lk Haeir ®.5)
= LT I~ :
+ Mpéeirexr + Mg Ly Lig + h.c.,
and its following effective Yukawa interactions read off in Figure 8.3.
Hy ] 4 I?d
3 M, 3 3 ME 3
Lir, > L L > €jR Lir > — L > €jR
erRr e Lir Lir

F1GURE 8.3: Feynman diagrams contributing to the charged lepton’s effective Yukawa
interactions in the mass insertion formalism. Here ¢,j = 1,2,3 and k,l = 4 and My is
vector-like mass.

It is possible to generate the masses of all SM charged fermions by the same method
relying on effective Yukawa interactions. However, this is not the case for the SM light
active neutrinos as they need to be independently treated since the simplest
mechanism responsible for generating their tiny masses requires the inclusion of
Majorana particles in the leptonic spectrum. In order to make the SM neutrinos
massive, we made use of two important assumptions, one of which is that the SM
neutrinos are Majorana particles and the other is they get masses via the type 1b
seesaw mechanism [82,148] mediated by the heavy vector-like neutrinos without
considering the right-handed neutrinos v;z. The renormalizable Yukawa interactions

for the neutrino sector are given by:
E}//ukawa—i-Mass = y;’kziLHquR + ${;gziLHd§kR + M%EZRVkR + h.c. (86)

It is worth mentioning that the nature of the vector-like mass appearing in

Equation 8.6 is that the vector-like mass is different than the Majorana mass since the
particles involved in vector-like mass terms are different, whereas the ones appearing in
a Majorana mass terms does not. However, they share the common feature that both
break the lepton number, which is confirmed by checking each lepton number of vig
and Vg in the two Yukawa interactions of Equation 8.6. We call this mechanism “type
1b seesaw mechanism” and it can allow a different Yukawa interaction at each vertex

as seen in Figure 8.4.
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v
M,
Lir, > L < Ljr
VKR ViR

FIGURE 8.4: Type Ib seesaw diagram [82,148] which leads to the effective Yukawa
interactions for the Majorana neutrinos in mass insertion formalism, where ¢,j = 1,2, 3
and k,l = 4 and M;;, is vector-like mass.

Allowing a different Yukawa interaction at each vertex of Figure 8.4 means that one of
the Yukawa interactions can have a very suppressed coupling constant, which can lower
the expected order of magnitude of the right-handed Majorana neutrinos masses of the
usual type I seesaw mechanism from 104 GeV up to the TeV scale. The most relevant

features of the model considered in this paper are:

1. It allows a dynamical and natural explanation of the origin of the observed SM

fermion mass hierarchy

2. The model under consideration is economical in the sense that it includes a
common mechanism for generating the masses of the SM charged fermions via
effective Yukawa interactions resulting after integrating out the heavy vector-like

fermions.

3. The expected right-handed neutrinos can have a much smaller mass compared to
the ones mediating the usual type I seesaw mechanism, thus allowing to test our

model at colliders as well as via charged lepton flavor violating processes.

Now that we have discussed how the SM fermions get massive via the effective Yukawa
interactions, the next task is to construct their mass matrices in the flavor basis and

then to diagonalize those and this will be discussed in the next section.
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8.3 Effective Yukawa matrices using a mixing formalism

The effective Yukawa interactions discussed in section 8.2 give rise to the following

mass matrix for fermions written in the flavor basis:

1R PaRr V3R YR Yar

Y 0 0 0 9%4 <ﬁ0> xﬁ (0)
o | 0 0 0 yh(H") x3,(¢)
MY =1 _ P " , (8.7)
P3p 0 0 0 y34<H0> x34<¢>
Dar, | y(H®) yh(H®) yi(H) 0 My,
bap | Th(e)  alle)  alyle) MY 0

where ¥, 1’ = Q,u,d, L, e and the zeros in the upper-left 3 x 3 block mean that the SM
fermions acquire masses only via their mixing with the fourth vector-like family. The
other zeros appearing in the diagonal positions are forbidden by the U(1)" charge
conservation. This mass matrix was obtained for the first time in [31] and it can reveal
the hierarchical structure of the SM since this mass matrix involves three different
mass scales (H°), (¢) and M. In order to dynamically reproduce the hierarchical
structure of the SM fermion masses, we need to maximally rotate this mass matrix and
the resulting maximally rotated mass matrix should be a starting point for our analysis
in this work. For the fully rotated mass matrix, the up-quark and charged lepton
sectors share the same structure, whereas the down-type quark mass matrix has an
additional element since one of the quark doublet rotations was already used in the up
quark sector, as it will be shown below. Regarding the diagonalization for each fermion
sector, we will employ two methods for comparison; one of which is the numerical SVD
diagonalization and the other is the analytical perturbative step-by-step
diagonalization. We will make use of the numerical SVD diagonalization for the exact
diagonalization as well as for our numerical scans in main body of this work, however
it is important to look at the analytical approximated step-by-step diagonalization
since it provides an analytical understanding on how the SM Z gauge boson can
induce the flavor violating interactions at tree-level and this analytic diagonalization
will be covered in Appendix C.1 to C.3. Lastly, we have found that the analytic
diagoanlization for each fermion sector is quite close to its numerical result with very

small differences and this feature will be discussed in detail in Appendix C.4 to C.5.

8.3.1 Diagonalizing the charged lepton mass matrix

After all scalars of our proposed model acquire their vevs (vg = (HY) and vy = ()

from Equation 8.7, we otain the following fully rotated mass matrix for the charged
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lepton sector

eir ek esr  er  Lur
Liz| 0 0 0 0 0
Ly, | 0 0 0 yyva O
Me = o 9 (88)
Lz | O 0 0 ySva xhyug
Ly | 0O 0  yHve 0 ML
e | 0 ahus wgve Mgy o 0

where we use this fully rotated basis as a starting point in order to easily explain the
observed SM fermion mass hierarchy. This rotated basis is exactly consistent with the
one given in [31] and we need to explain how the mass matrix of Equation 8.8 is fully
rotated. First of all, we rotate the left-handed leptonic fields L1;, and Lg;, to turn off
the entry z¥,v, and then rotate Loy, and L3y, to trun off the next z5,v, entry. Next,
we can rotate again the leptonic fields L7, and Loy, to turn off the y{,vq entry. These
rotations can be applied to the right-handed leptonic fields e 2 3z in order to make the
zeros appearing in the lower-left 2 x 3 block. This fully rotated mass matrix of
Equation 8.8 is our starting point to implement both the hierarchical structure of the
SM fermion masses and to analyze the flavor violating interactions mediated by the
SM Z gauge boson. Before diagonalizing the mass matrix of Equation 8.8, it is
convenient to rearrange the mass matrix by switching the Yukawa terms by mass
parameters and then by swapping the fourth and fifth column in order to make the

heavy vector-like masses locate in the diagonal positions as given in Equation 8.9.

€1R €2R €3R €4R Z4R €1R €2R €3R Z4R €4R
Liz| 0 0 0 0 0 Liz| 0 0 0 0 0
fg L 0 0 0 mog 0 ZQ L 0 0 0 0 mog
Me = . = .
L3L 0 0 0 m3q4 Ma3s L3L 0 0 0 m3s M3ag
f4 L 0 0 mays 0 M. 4L5 f4 L 0 0 mays M 4L5 0
§4L 0 mso  M53 M§4 0 §4L 0 mso  M53 0 M§4

(8.9)
We use two methods for diagonalizing the rotated mass matrix of Equation 8.9, one of
which corresponds to the numerical diagonalization carried out by the singular value
decomposition (SVD) and the other is an approximated analytical step-by-step
diagonalization. We make use of the numerical SVD diagonalization for the exact
diagonalization and perform numerical scans in main body of this work, however it is
worth discussing the analytic step-by-step diagonalization as it gives an analytical
understanding on how the SM Z gauge boson can induce the flavor violating
interactions at tree-level with the SU(2) violating mixings, which will be defined in the

analytic diagonalization covered in Appendix C.1. From the comparison between the
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analytic and numerical computations, we found that the former works quite well and
yields resuls close the ones obtained from the latter. The comparisons between the
analytic and numerical computations for both lepton and quark sectors will be
discussed in detail in Appendices C.4 and C.5, respectively. The charged lepton sector

can be diagonalized by performing the SVD diagonalization as follows:
M¢ = diag (O,mu, mr, Mg,, ME4) = VL]\Je(Ve)T7 (8.10)

where VL (V¢) is the mixing matrix for the left-handed (right-handed) leptonic fields,

defined as follows:

er €1L €R €1R
ML €2, MR €2R
TI, :VL €3], y TR :Ve e3r | » (8.11)
Eyg, e4r, E4R €4R
Eur e4r Esr €4R

and the numerical mixing matrices V% can be expressed by an analytic expression
consisting of a series of VZ]LE which describes mixing between ith and jth fermion
where 7,5 = 1,2,3,4,5 and this will be discussed in Appendix C.1.

8.3.2 Diagonalizing the up-type quark mass matrix

The initial mass matrix for the up-type quark sector in the flavor basis is given by:

uir  usk  usk  Wir QR uir Uk usr Qir  UaR
Q1 0 0 0 0 0 Q0 0 0 0 0
e Qar | O 0 0 y&v, 0 _ Q| 0 0 0 0 mYy
Qs | 0 0 0 Ygqvu @ 3Q4”¢ Qs | 0 0 0 mzs mg
Qu| O 0 Yi3Vu 0 Mﬁ Qur| O 0 mi Mﬁ 0
Ui | 0 afyvy alyve M 0 U | 0 miy om0 My

(8.12)
The mass matrix of Equation 8.12 in the flavor basis is exactly consistent with the one
corresponding to the charged lepton sector excepting for a few substitutions y¢ — y“,
Vg = vy, ¥ — 2@ and 2¢ — z*. The analytic mixing matrix for the up-quark sector is
exactly same as the one for the charged lepton sector, however unlike the charged
lepton sector, diagonalizing the mass matrix for the up-quark sector requires more
caution as some numerical off-diagonal elements of order unity. This feature is resulted
from the some off-diagonal elements arising as a result of mixing between the heavy
top quark mass and the other heavy exotic up-type quark masses are of order unitiry,

not small enough to obtain precise results in the perturbative diagonalization when
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compared to the charged lepton sector. We discuss this feature in Appendix C.5 by
comparing a numerical mixing matrix obtained from the SVD with the one resulting
from the analytic diagonalization. Then we can numerically diagonalize the up-type

mass matrix by using the SVD diagonalization as follows:

Uy, U1y, UR U1R
cr, UL, CR U2R
tr | =Ve | us |, tr | =Vg | usr (8.13)
Usr u4r Usr U4R
Usr Ugg, Usr U4R

where the symbol L means left-handed doublet and e denotes right-handed singlet in
the charged lepton sector, however it is worth mentioning that the above described
notation used in the lepton sector becomes complicated in the quark sector since the
mass matrices for the up- and down-type quark sectors have a different form, so we
change the mixing notation by VLU(
the up-quark sector will be discussed in Appendix C.2.

;l%) instead of V9. The analytic diagonalizations for

8.3.3 Diagonalizing the down-type quark mass matrix

A nice feature of the model under consideration is that it can predict the CKM mixing
matrix and this feature is mainly based on the mixings derived from the down-type
quark mass matrix as we will see soon. A quite encouraging feature is that all the
mixings among the three SM generations in the down-type quark sector can be
accessible even though the first generation of the down-type quark sector remains
massless and this feature is quite naturally attributed to this model with the

vector-like family. We start from two mass matrices, one of which is for the up-quark
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sector whereas the another one is for the down-quark sector.

g ugr  usp  uwsr  Qur
Q.| 0O 0 0 0 0
Qar | 0 0 0 yyvu 0
MY = o ,
Qs | O 0 0 Y54 Vu x%%
Qur | 0 0 yjzvu O Mg
i | 0 afhvs alyuy Mo 0
_ (8.14)
dir dor  d3rp  dsr  Qur
Q| 0 o 0 yva O
Q| 0 0 0 ydva O
Mi=1 _ ;
Qs | 0 0 0 y4va %?4%
Qur | 0 0 yhva 0O Mg
§4L 0 afyy afyuy M 0

This difference between the mass matrices for the up-type and down-type quark
sectors was noticed for the first time in [31]. The first property we need to focus on is
the fifth column of both mass matrices is exactly same. The zeros appearing in the
fifth column of both are the common elements shared by both up- and down-type
quark mass matrices since the quark doublets as well as the fourth vector-like quark
doublets contribute equally to both sectors. For the up-type quark sector, we were able
to rotate further between Q)17 and @2, to vanish yj,v,, however this rotation simply
remixes yﬂvd and yg4vd, so both the down-type Yukawa terms survive. For the
lower-left 2 x 3 block of the down-type quark mass matrix, the same zeros can appear
since the down-type quarks dq 2 3r have a different mixing angle against that for the
up-type quarks u123gr. The down-type mass matrix M 4 of Equation 8.14 can be

diagonalized by the numerical SVD diagonalization as follows:

dr, dir, dr dir
ST, dzL SR d2R
by | =V dsy |, br | = VA | dsr |- (8.15)
Dy, dar, Dyr J4R
Dur, dar, Dir dsr

The analytic diagonalization for the down-quark sector is discussed in Appendix C.3.
We will see that a numerical mixing matrix derived by the SVD is quite close to one by
the analytic diagonalization in Appendix C.5. In Appendix C.5 we confirm that even
though the numerical mixing matrix VLd can have all mixings among the three SM
generations, the Z coupling constants D%’ in the mass basis will have zeros in the first

column and row due to some internal cancellations. Therefore the whole structure of
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Dj‘-f’ is exactly same as the other Z coupling constants Dﬁ’ r and D% in the mass basis,
so we verify that the SM Z physics does not get affected by any specific basis we
choose. This feature will be discussed again in the next section as well as in
Appendix C.5.

8.4 The SM Z gauge boson interactions with the

vector-like family

One of our main motivations of this work is to study flavor violating processes
mediated by the Z gauge boson in order to constrain the mass range of the vector-like
fermions. It is worth reminding that the neutral Z’ gauge boson does not appear in the
particle spectrum of this model due to the global U(1)" symmetry of the theory under
consideration. It is worth mentioning that the tree-level flavor violating Z decays are
absent in the SM, indepently of the fermion mixings, as can be seen from

Equation 8.16 shown below:

L = 97Ty = CiZM > (TP - sin 0,Q) f (8.16)

f:€7u77—

Factoring out the prefactor g/cy, we can find matrices D p, which determine the
magnitude of the coupling constant for the Z interactions to either the left-handed or
right-handed SM fermions.

e1r €21 €3L
1 | (—3 +sin®6y) 0 0
D =1 _ 1 . 9
€sr, 0 (—2 + sin Ow) 0
esr, 0 0 (—% + sin? Hw)
(8.17)
€1R €2R €3R
e1Rr (sin2 Qw) 0 0
D = — -2
€2R 0 (sm Hw) 0
€3R 0 0 (sin® 6,,)

However, this SM Z gauge boson can cause the renormalizable flavor violating
interactions with the SM fermions by extending the SM fermion sector by the
vector-like fermions as well as by considering the SU(2) violating mixings defined in
Appendix C.1 together. This features will be discussed in detail in the following

subsections.
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8.4.1 FCNC mediated by the SM Z gauge boson in the charged
lepton sector with the fourth vector-like charged leptons

We can construct an extended the SM Z coupling constants in the charged lepton

sector with the vector-like charged leptons in the flavor basis.

eir ear esr ear €ar,
e | (—3 +sin®6y,) 0 0 0 0
Ds — 2% 0 (=3 +sin?6,,) 0 0 0
2% 0 0 (=3 +sin?6,) 0 0
2 0 0 0 (—3 +sin?6,) 0
€ar 0 0 0 0 (sin? 6., )
1R €2R €3R €4R €1R
e1r (sin2 Qw) 0 0 0 0
e €r 0 (sin? 0, 0 0 0
Tl ekl o 0 (sin?6,) 0 0
€4R 0 0 0 (=3 +sin®6,,) 0
2 0 0 0 0 (sin? 6,,)
(8.18)

where it is worth reminding that the order of the left-handed fermions is 12345,
whereas that of the right-handed fermions is 12354 (This ordering is stressed in
Appendix C.1). An important feature of this SM Z coupling constants of

Equation 8.18 is the couplings constants are naturally determined, based on the nature
of the vector-like charged leptons, without imposing neither any other symmetry nor
other constraints. Therefore, the SM Z coupling constants of Equation 8.18 are not
the identity matrix anymore unlike the case for the SM charged leptons. From these
considerations, it follows that there can exist non-zero off-diagonal elements in the
mass basis by operating the SU(2) violating mixings. Reminding the mixing matrices
for the left- or right-handed charged leptons of Equation C.20, the coupling constant in

the mass basis (DY ) can be written as follows:

De/ _ VLDE(VL)T
= VigVas Vas Vs Vai D (Vad) T (Vi) (Vig) (Vi) (Vig)T 5.19)
De/ _ VED%(VE)T

= V& Vs Vs VsV Vi D (Vi) T (Vi) T (Vi) T (Vs ) T (Vi) T (Vi) T
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It is possible to make the SM Z coupling constants of Equation 8.19 simpler by using

the SU(2) conserving mixing as it just remixes an identity matrix.

DY = ViV VeV DS (Vi) (Vi) T (Vi) T (ViE)T 520
D% = VE Vs Vs Vs D (Vi) T (Vi) T (Vi) T (V)T

However, the following mixing matrices after the SU(2) violating mixings V?ée must
be conserved since all of them contribute to the off-diagonal elements of the coupling
constants in the mass basis. It is insightful to look at the coupling constants Di’} R in

the mass basis (We substitute (—1/2 + sin?#6,,) by a and (sin?6,,) by b and assume
L,e

the mixing angles 935’25723745(54

) are small enough to approximate for simplicity).

a 0 0 0 0

0 a(l+05) + 0933 b0350%5 bO%5 01 (a —b)b3s
DY~ [0 b0%50%; a(l+05) + 005 bO30% (a —b)b35

0 6955955 b03L59£5 a-+ b@fg (a— b)9£5

0 (a— 5)92L5 (a— 5)9:’55 (a— b)9£5 b+ a(92L52 + 9?%52 + ‘9552)

b 0 0 0 0

0 b(1+053) + a3 ablgs 055 (b —a)fs; —af55054
DR~ |0 abl3s 055 b(1 + 053) + abs3 (b — a)b5; —abs505,

0 (b — a)b3; (b — a)bs; a+b(033 + 055 + 053)  (a — )05,

0 —af55054 —abs;05, (a — )05, b+ afg;

(8.21)

There are two important features we can read off from the SM Z coupling constants of
Equation 8.21; the first is the diagonal elements (a, a, a, a,b) and (b, b, b, a,b) get hardly
affected by the small mixing angles and the second is magnitude of the off-diagonal
elements are very weak as the mixing angles are defined by the ratio between the
Yukawa and the vector-like masses. Therefore, we can imply the flavor violating
mixing mediated by the SM Z gauge boson in the mass basis. Using the SM Z
coupling constants in the mass basis, we can draw the Feynman diagram for 7 — ppup

and Z — urt decay at tree-level and this will be discussed in the next section.

8.4.2 FCNC mediated by the SM Z gauge boson in the quark sector
with the fourth vector-like quarks

The quark sector have two different mass matrices for the up- and down-type quark

sector. We start from the up-type quark sector first. The SM Z coupling constants for
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the up-type quark sector are given by:

Ui UL, UL, uar, uar,
Uy | (3 — 3sin?6,,) 0 0 0 0
Uap, 0 (% — %sm2 Gw) 0 0
bi=1 &, 0 0 (L — Zsin26,) 0 0
Uar, 0 0 0 (3 — 2sin?6,) 0
Uy, 0 0 0 0 (—2%sin?6,,)
uiR uzR usR usR usR
Uik | (—2sin?6,,) 0 0 0 0
U2R 0 (—%sin?6,,) 0 0 0
2l 0 0 (—2sin26,,) 0 0
Usp 0 0 0 (3 — 2sin?0,) 0
Usp 0 0 0 0 (—Zsin?6,,)
(8.22)

The up-type quark mass matrix is exactly same as the one for the charged lepton, so
we can simply follow the mixing matrices given in Equation C.22. Then the SM Z

gauge coupling constants in the mass basis are defined by:
DY = VDV
= (VI)a5(Vi)23 (V)25 (Vi35 (V)34 D (VL (Vi 5s (Vi (Vi) s (Vi s
= (Vi)as (V)23 (Vi)25 (Vi3 DL (Vi s (Vi) 5 (V)5 (Vi) s
DY = VE DRV
= (V)sa(Vi)23(Vit)as (Vi) as (Vi )24 (ViE)sa D (V) L (Vi) B (VS (Vi) §s (Vi) s (Vi)
T
2

= (Vi)5a(Vi)23(Vi )25 (V)35 D (Vi) (Vi) s (Vi S, (Vi
(8.23)

The SM Z gauge coupling constants for the up-quark sector in the mass basis can be
seen by (We substitute (1/2 —2/3sin*#6,,) by ¢ and (—2/3sin?6,,) by d and assume
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the mixing angles 05 - ., 45(54)L,R A€ small enough to approximate for simplicity):

c 0 0 0 0

0 ¢ 03510551, dO551045 (¢ — )05y,
Dy~ [0 dig; 05, ¢ d0s51 0551, (¢ —d)055,,

0 diyspblis;,  d3510051 ¢ (c—d)bis,

0 (c—d)bys, (c—d)bs;; (c—d)oys; d

(8.24)

d 0 0 0 0

0 d byspbssp  (d—c)03sp —cOp05R
Dig~ |0 cbspbisp d (d—c)035r  —cbsspb5ur

0 (d=0)f35p (d— )55 c (¢ — )54k

0 —cO3spb5ir —Osspl5ur (¢ — d)bsug d

Next, we focus on the down-type quark mass matrix and the left-handed mixing
matrices for that is different when compared to other left-handed mixing matrices for
the up-type or charged lepton mass matrix in that it can reach to all mixings among
the three SM generations. Keeping that in mind, we start from the SM Z coupling

constants for the down-type quarks.

dir dar, dsr, dar, dar,
dip | (=5 + %sin’6,) 0 0 0 0
i _ dar, 0 (-3 + 3sin?6y) 0 0 0
L s 0 0 (=1 + Lsin20,) 0 0
dug, 0 0 0 (=3 + Lsin®6,) 0
34L 0 0 0 0 (% sin? Qw)
dir dar dsr din dir
dig | (3sin?6,) 0 0 0 0
i — ?QR 0 (3sin?0,) 0 0 0
dsr 0 0 (§sin?6y,) 0 0
din 0 0 0 (—1 + Lsin24,) 0
dir 0 0 0 0 (3sin?0,,)
(8.25)

After simplifying the whole left-handed (right-handed) mixing matrices of

Equation C.28, we obtain the following matrices of Z couplings with quarks

Df = Vi D{(VE)!
(8.26)
D = VgD (Vi)'
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The SM Z coupling constants for the right-handed down-type quarks in the mass basis
have the same form given in Equation 8.21, whereas those for the left-handed
down-type quarks involves 12 and 13 mixings more, so it is worthwhile to look at its
complete form (We again substitute (—1/2 + 1/3sin?6,,) by e and (1/3sin*#6,,) by f

and assume all relevant mixing angles are small enough to approximate for simplicity)

e 0 0 0 0
0 e 0o 03y + f055,0% —e055,05 + f035.0%, (e~ f)055,
D%/ [0 efy 0 + f055,055, € FO5500%51 (e — f)0%1,
0 —eby, 05 + f055.005, f04500%51 € (e = f)0sL
0 (e — f)egSL (e — f)egsL (e — f)efst f
f 0 0 0 0
0 f 055 p0sr  (f —€)035p —e035p08:5
Di~ |0 ebfspb%p f (f —e)0ssr —eO%r0%R | -
0 (f—e)fssp (f—e)f5sp e (e — )05k
0 —et3:p08ir —eO0%p05 (e — f)OR f

(8.27)

where it can confirm two relations hold for the zeros appearing in the first row and
column of D¥: 0%, ~ 0%, 0%, and 0%, ~ 0%, 0%, . Following the analytic mixings
given in Equation C.28, the left-handed down type quark sector can access to all
mixings among the three SM generations and this feature is also reflected on a
numerical mixing matrix Vg of Equation C.37. What this implies is the SM Z physics
does not get affected by any specific basis we choose and this will be verified again
numerically in Appendix C.5.
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Chapter 9

Phenomenology in both quark
and charged lepton sectors due to
SM Z guague boson FCNCs

In this chapter, we discuss how to constrain our vector-like fermion fields in the third
BSM model covered in chapter 8 using the diverse FCNC observables. As the first SM
generation remains massless, our main observables consist of the second and third
generation of the SM. In the charged lepton sector, the FCNC observables such as

T — wy, T — 3 and Z — u7 are discussed and none of them can significantly
constrain our predictions. In the quark sector, the main observables would be the rare
t — c¢Z decay and the CKM mixing matrix and we discuss the most challenging part
arises from fitting the CKM mixing matrix. Then, we conclude this paper, predicting

each range of vector-like quarks and charged leptons.

9.1 Phenomenology in the charged lepton sector of the
SM

Now that we have defined all required mixings and coupling constants in both quark
and charged lepton sectors, it is time to discuss the relevant phenomenology. As
mentioned in the introduction, one of our main goals is to study the FCNC observables
to constrain the possible mass range of the vector-like fermions. Given that the second
and third generations of SM charged leptons acquire masses through their mixings
with the fourth vector-like charged leptons, we will restrict our analysis to the
constraints imposed on the flavor violating decays involving the second and third

charged lepton generations such as 7 — py, 7 — pup and lastly Z — pr decay.
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9.1.1 Analytic expression for 7 — vy decay

The most important FCNC constraint corresponds to the charged lepton flavor
violating (CLFV) p — ey decay, however we can not make an appropriate prediction
for the constraint as the electron does not acquire a mass in the model under
consideration. This is due to the fact that the fermion sector of the model includes two
heavy fermionic seesaw mediators. As previously mentioned, adding a fifth vector-like
family to the fermion sector of the model will generate a nonvanishing electron.
However in order to keep our model as economical as possible and to simplify our
analysis corresponding to the FCNC constraints on vector-like masses, we restrict to
the case of a fourth vector-like family in the fermionic spectrum. Therefore, in view of
the aforementioned considerations, we first consider the CLF'V decay 7 — py in order
to determine how the model parameter space gets affected by the experimental
constraint arising from this decay. For the 7 — p~v decay, the leading order
contribution appears in the one-loop diagrams since there is no possible contribution at
tree-level. Then, all possible Feynman diagrams contributing to the 7 — py decay are

given in Figure 9.1,

ilL-TL|E4L-EdL ﬂ,_‘TL.Eu‘E'u HR:TR-Ed}?:E:IR ,!iR‘TR‘E4R‘E|4R

HL TL
gLL Z gLL 9RR z gRR

KR

iR TR, Bar, Esr fipTLy Ear, Ear pr,TL, Ear, Esr 1tr, TR, E1r, Ear

9RR Z gLL gLL Z 9RR

flngTR|E4R:E4R }iR|TR-E~1R|E4R ,IJL-TL-E4L-§4L ,!iL|TL‘E~1L|E4L

TR Hr

9RR z 9RR gLL z gLL

FIGURE 9.1: Diagrams contributing to the charged lepton flavor violation (CLFV)
T — w7y decay at one-loop level in the mass basis. The cross notation in each diagram
means the helicity flip process.
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where grr(rg) are the LH-LH (RH-RH) coupling constants defined in the mass basis
for the charged lepton sector. These one-loop contributions mediated by the Z’ boson
were studied in one of our previous works [89] and their corresponding analytic
prediction for the branching ratio of 7 — vy decay is given in

Equation 9.1 [59,61,63,64,89] shown below:

5
Qem M
BR (1 — py) = —em

(= 1) = {0427 32T,
x (IgfugﬁuF(xu) + 97795, F (0) + 975,95, F (0p,) + 905 98 F(og,)

My 1 L My 1 L My 1 L My L N
+ EgTuguuF(xu) + megTTng@T) + megTE49E4MF(33E4) + EQTE4gE4uF($E4)

Mp L R Mr L R Mg, 1 r Mg, L & 2
+EnggppG($M>+m7TgTTgT,uG(‘TH)+ m gTE4gE4uG(:CE4)+ m gTE4gE4pG(‘rE4)|

T T

+ |97 () + 9797, F(@r) + 97,908, F (wp) + 975 9F Flog,)

My R R My R R My R R My R R B
+ megwng(l‘u) + EgTTgT“F(xT) + megTEélngF(xEO + EQT§4QE4MF($E4)

My R L mr oL By R L Mg, r 1 2
+ mugr,ug,u,uG(‘rM) + ngTTgTuG($N) + 497E4QE4MG(ZUE4) + m 497_E4QE4“G(«TE4)| )7
T T T

' (9.1)

where aep, is the fine structure constant, I'; is the total decay width of the tau lepton

(T =5x (1) = vre V) =2.0x 107!2) and F and G are the loop functions defined
by:

_ bat — 142% 4 3927 — 38z — 18z% Inx + 8
B 12(1 — x)4

2?43z —6rlnz —4 _m1200p

Gla) = 2(1 — )3 U V7

where mjqqp is the propagating mass of the charged leptons in the loop. The most
dominant contributions to the 7 — 7y branching ratio correspond to the terms
proportional to M Ea(Fy) /m; because charged vector-like leptons are heavier than 200
GeV, thus implying that the enhancement factor M Ea(By) /m; makes those
contributions much larger than the ones not involving this factor. However, the
contributions to the 7 — p~y decay rate involving the terms having the aforementioned
proportionality factor do not keep increasing as the vector-like fermions get heavier
since their flavor violating coupling constants get more suppressed at the same time by
the small mixing angles, defined by the ratio between Yukawa and vector-like masses.
Therefore, these compensations provide some balanced relation between the vector-like
mass and the coupling of the Z gauge boson with a SM charged antilepton (lepton)
and heavy charged vector-like (antilepton) lepton. The experimental bound for the

branching ratio of 7 — py decay is given by:

BR (1 — pvy =44x1078 9.3
EXP
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9.1.2 Analytic expression for 7 — uupu decay

The other interesting flavor violating decay mode is the 7 — ppup decay mediated by
the SM Z gauge boson. As the model under consideration has Z mediated
renormalizable flavor violating interactions, we can draw the Feynman diagrams for

the 7 — ppp decay at tree-level as given in Figure 9.2.

Hr

Hr

Hr

Iy

Hp

FIGURE 9.2: Diagrams contributing to the charged lepton flavor violation (CLFV)
7 — 3u decay at tree-level. We refer to the top-left diagram as M and the top-right
as Mggr and similarly for the two below diagrams as Mg rr, respectively.

The contributions shown in Figure 9.2 are beyond Standard Model (BSM) effects, thus
they need to be computed to set constraints on the model parameter space. In order to
derive an analytic expression for the CLFV 7 — 3u decay rate mediated by the SM Z
gauge boson, we start by writting down its definition as follows:

1 dpp dPps dPpa

o 2 4 ¢4 . o o
T = ) = S GamyaE, (2n)P2E; (zmypaE, 1| (BT 0 (e =p2 = ps =)
(9.4)

Evaluating each polarized diagram in Figure 9.2, it yields the following result:

2 2

2 _ [ 9 S

Meel” =\ = | 256(1-p3) (p2-pa),  IMerl™ = | = 5 | 256 (p2-pa) (p1-p3)
Z Z

L R\?2 R L \?2
IMrg|* = g”g’;“ 256 (p1 - pa) (p2 - p3), |Mrol® = g’”g’;" 256 (p1 - p4) (P2 - p3)
4032 402
(9.5)
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We are now ready to determine the squared amplitude averaged and summed over the

initial and final spin states.

S IMPE =

spin

(IMLLl? + IMgrl* + [MLr|* + IMgL]?)

N =

8
= 1 (97 g + gt ait) (pr - ps) (b2 a) + (979 + G1er 91c) (01~ Pa) (02~ )]
Z

(9.6)

The momentum of the particles involved in the 7 — 3u are written in the rest frame as

follows:
P11 = (mT7 6)
p2 = (B2, P2
( ) L (9.7)
p3 = (m; — By — Ey4, —pa — Pia)
pa = (E4,P1)
Then, we can carry out the inner products of momenta taking into account the
momentum conservation (p; = ps + p3 + p4).
P1-P3 = mMmr (mT — By _E4)
1
p2-pi=5 (—mZ — mi +2m,(E2 + E4))
(9.8)
p1-pa=m-Ey
1
P2-p3 =3 (mi - mi —2m, Ey)

We can rewrite the squared amplitude in terms of the mass parameters after

simplifying the summing over the diverse coupling constants to g 2, respectively

(91 = g2k g2k + 2R g2 R gy = g2k g2 + g2Bg2h).

1
5 Z|M (917927 E27 E4)|2

spin

4
3 [gl (m2 — mo (B + E4)) (~m2 — m? + 2m.(Ez + Ey))
+ g2 (m,Ey) (mz — mi — 2mTE4) }
(9.9)
Now it is time to evaluate the three body phase space integral by turning it into an

effective two-body phase integral as follows (we simply drop out the prefactor 1/(27)°

for simplicity in this derivation while keeping the prefactor in the computation of the
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aforementioned partial decay width).

d3po dps d3pa4 54

d3p d3p
2E, 2F3 2E4 (p1—p2—p3—pa) = TEjd4p3@ (v3) 5 (1) 58" (b1 = P2 — p3 — p2)

2F,
d*py d®py
_ G P2dPag 0 0 0y N2
2E, 2F, (PY = P2 —P4) 6 ((p1 — p2 — pa)?)
Epadpay o o o 2 2 2
- 25 2F, (Pl — D2 _P4) 0 (p1 —2p1 - (p2 +pa) + (P53 +2p2 - pa +p4))
d*py d®py

= TEQTEQQ (p(1) -y —Pg) d (mi + Qmi —2m; (B2 + Ey) + 2(E2Ey — |pa||pa| cos 9))

3py dB 1 m2 +2m? — 2m,(Ey + Ey) + 2E2E
_dpzdm@(o_ 0 p) ( T p (B2 + Ey) 27 st

2E, 2E, 2|pa||pal 2|pa||pal
(9.10)
From the delta function, we can determine the integration range by assuming
Es =~ |pa|, By =~ |p4|. When cosf = 1, the obtained result is
mZ +2m’, — 2m.(Ey + E4) =0 (9.11)
From Equation 9.11, the integration range can be read off as follows:
2 2
m 1 1 m 1
L < Ey<omy, cmp4+—E —Ey < Ey< omy (9.12)
Mr 2 2 mr 2

It can be easily understood that once one mass parameter Fs is set up by %mT, the

2 2
energy of the other mass parameters Fy, E3 must be given by —* Pl 5m7 — %,

respectively. Then, it remains to simplify the effective two body phase space integral

as follows.

d*pad’py = Ax|po|*d|pa |27 |Pald|Fa|d cos 0, |ald|pa| = EadEa,  |pald|ps| = EsdEy
(9.13)
Putting all pieces together, the decay width for the CLFV 7 — 3u decay at tree-level

after carrying out the cos @ integration is given by:

1
I'(r—3 = M (g1, 92, Eo, E4)|? | dE4AE
(1 —3up) = 64mT /7712/mT /mT+ i 22! (91, 92, B2, E4)| 1d B

spin
(9.14)
The experimental bound for the 7 — 3u decay is given by:

BR (7 — 31)pxp = 2.1 x 1078 (9.15)
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9.1.3 Analytic expression for 7 — ur decay

The last FCNC constraint we discuss is the Z — u7 decay and diagrams contributing

to the Z — p7 decay are given in Figure 9.3.

Hp

FIGURE 9.3: Diagrams contributing to the charged lepton flavor violation (CLFV) Z7u
decay at tree-level

As in the CLFV 7 — 3pu decay mediated by the SM Z gauge boson, this CLFV

Z — ut decay is also a new effect and it requires to derive its appropriate prediction
from the ground. We can read off the invariant amplitude for each diagram given in
Figure 9.3. We refer to the left diagram as My, and the right as Mp. Then, the

amplitudes are written as follows:

iMr = i(gr)rueu(p1)u(p2)y" Pro(ps),
(9.16)

iMr = i(9R)ru€u(p1)U(p2)y" Pro(p3).

In order to have the squared amplitude averaged and summed, we square the

amplitude given in Equation 9.16 as follows:

1 1 , )
3 ML = 500 (= LB ) T [, 4 ) Pulp, — o)y
Z

spin

2

1 1 , 3}
3 Ml = (0, (g + PEE ) T (9, + 00" Pl — o PR)] 0)
Z
2
= g(gR)ﬂz'uM%

1 1
3 §:|/\/l|2 =3 Z (IMz]? + [Mg|?) =

spin spin

spin

((gL)?ru + (QR)EM) M%

wl N

Then, the decay rate equation is given by:

_ d*ps d*ps
~ 2My (27)32F, (27)32F;3

I'(Z - ur) = 7‘?‘ /]M|2d(2 (9.18)
Z

dT (Z = pr) IM*(2m)*6@ (p1 — p2 — ps)
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where p* ~ My /2. Then, we are ready to write our prediction for the branching ratio

of Zur decay at tree-level

I'(Z—pr) 1 Mg

BR (Z _ ~ - Mz
(2 = pr) T, 2.5 24

where 'z is the total decay width of the SM Z gauge boson (I'y ~ 2.5GeV). The
experimental bound of the CLFV Z — ur decay is known as:

BR(Z — pr)gxp = 1.2 x 107° (9.20)

9.1.4 Numerical analysis for each prediction in the charged lepton
sector

We have discussed some relevant CLFV decay modes such as the 7 — vy, 7 — 3u and
Z — pt from a theoretical point of view. By defining the renormalizable flavor
violating interactions we showed that it is possible for the new physics to arise in a
simple scenario thanks to the presence of vector-like charged leptons, which play a
crucial role for these CLF'V decay modes to happen. It is an encouraging feature that
the mass range of the vector-like charged leptons can be constrained by the
experimental bound of the CLFV decays and numerical scans for this feature will be

discussed in detail in the following subsection.

9.1.4.1 Free parameter setup

For the numerical scan for the charged lepton sector, we first proceed to set up a

possible mass range of the mass parameters of Equation 8.9.
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Mass parameter Scanned Region(GeV)

Y34Vd = M4 +(1,10]
Y5404 = Mi34 +[1, 10]
YiaUd = M43 +1, 10]
zvs = mas +[50, 200]
TioVy = M2 +[50, 200]
Ti3Vp = M3 +[50, 200]
Mk +[150, 2000]
Mg, +[150, 2000]

TABLE 9.1: Initial parameter setup for scanning the mass of the vector-like charged
leptons

There are a few of features to be noticed before we start the numerical scan.

1. We assumed a vev for the SM up-type Higgs H,, very close to 246 GeV, whereas
the one of the SM down-type Higgs H; is assumed to be very small compared to
the v, = (H,) and is ranged from 1 to 10 GeV. The two vevs hold the relation
v2 4 v2 = (246 GeV)?. We made that assumption since we are considering an
scenario close to the decoupling limit where the neutral CP even part of H, is
mostly identified with the 126 GeV SM like Higgs boson.

2. As the vev of the singlet flavon ¢ is a free parameter, we varied it in the range
[50,200] GeV whereas the mass parameters mgs 52 53 were varied in a range of
values consistent with the observed hierarchical structure of the charged lepton
masses. Furthermore, the vector-like masses are also other free parameters
assumed to be larger or equal than 150 GeV in order to successfully fulfill the

experimental bounds on exotic charged lepton masses.

3. What we need to constrain in this numerical scan is the predicted muon and tau
masses as well as the 23 mixing angle. For the muon and tau masses, we required
that the obtained values of the muon and tau masses to be in the range
[140.1] x m, ;. Considering that the sizeable off-diagonal elements of the PMNS
mixing matrix mainly arise from the neutrino sector, all mixing angles in the
charged lepton sector are required to be as small as possible and thus we limit
them to be lower than 0.2.
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9.1.4.2 Numerical scan result for the charged lepton sector

The scanned mass range of the vector-like charged leptons are shown in Figure 9.4.
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FIGURE 9.4: Scanned mass region of the vector-like charged leptons and contributions
of the flavor violating interactions with the SM Z gauge boson to the diverse CLFV
decays 7 — pvy, 7 — 3 and Z — pr. The used constraints are the predicted muon
and tau mass to be put between [1 £ 0.1] X m, , and the 23 mixing angle to be less
than 0.2. The darker blue region appearing in each diagram means either the singlet
or doublet vector-like masses M , M, are excluded up to 200 GeV by reference [144].
The brighter blue region means the doublet vector-like mass Mg, is excluded up to
790 GeV by the CMS [159,160]. The brighter red region appearing in above two plots
is the region excluded by the experimental bound for the BR (7 — uy)pxp = 4.4x1075.
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The first we need to discuss is the experimental bounds for the vector-like charged
leptons appearing in Figure 9.4. The darker blue region is the excluded region for the
vector-like charged leptons by 200 GeV [144]. The vector-like mass Mg, consists of the
doublet vector-like charged leptons Fjyy,, E4 R, Whereas the other vector-like mass M B
consists of the singlet vector-like charged leptons Ey4r, E4r. Therefore, Mg, is the
doublet vector-like mass, whereas M B is the singlet vector-like mass, and the doublet
vector-like mass is excluded by CMS up to 790 GeV [159,160], expressed by the
brighter blue region of Figure 9.4. The second is our predictions for the branching
ratio of 7 — py in Figure 9.4. The relevant experimental bound for each CLFV decay

is given by:
BR (T — 1Y) pxp = 4.4 x 1078

— Logo BR (T = py)pxp ~ —7.4

BR (T — 3u)pxp = 2.1 x 1078 021

— Logo BR (T = 3u)pxp ~ =77
BR(Z = pum)gxp = 1.2 x 107°

— Logg BR(Z — pur)pxp ~ —4.9

Our predictions for the CLFV 7 — 3u and Z — ur decays are not excluded by the
experimental bound, however those are not the case for the CLFV decay ™ — 7,
which exceed its upper experimental bound in some parts of the parameter space. This
is due to, in some parts of the parameter space, the dominant contributions to the

T — wy decay involving a charged exotic lepton as well as chirality flip in the internal
line and proportional to M /m, because of the sizeable large value of the charged
exotic lepton - SM charged lepton mass ratio. After removing all excluded points by

the experimental bound of the 7 — py decay, we obtain Figure 9.5.
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FIGURE 9.5: Reduced number of numerical predictions. The numerical predictions are
constrained by the experimental value of the branching ratio of 7 — uvy decay. None
of them are constrained by the branching ratio of 7 — 3 and Z — pr experimental
bounds.

Looking at our numerical predictions for the branching ratio of the 7 — py decay

shown in Figure 9.5, some of them are constrained by the experimental limit of this

branching ratio, however most of them survive, which implies that our numerical
predictions for the branching ratio of 7 — p7vy are not significantly constrained by its

experimental bound. Furthermore, none of the numerical predictions for the branching

ratios of the 7 — 3 and Z — u7 decays are constrained by its experimental bound.

However, our numerical predictions for the different CLFV decays can significantly be
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constrained by the future LHC upgrades having higher center of mass energy and
luminosity than the ones of the current LHC, which will allow to set tighest constraints
on charged exotic vector-like masses, thus leading to stronger constraints on the model
parameter space. Regarding the CLFV Z — ur decay, the FCC-ee experiment has
planned to generate 10'2 SM Z gauge bosons, which will allow to probe our model since
the branching ratio of the Z — ur decay can reach values of the order of 10719 in the
allowed region of the parameter space. Thus, the Z — u7 decay is within the reach of
the FCC-ee experiment, whose Z factory [161,162] will be crucial to verify or rule out
this model. Concluding this subsection, our numerical predictions are not significantly
constrained by any of the CLFV 7 — uvy,7 — 3p and Z — u7 decays and might be
able to be seen from the Z factory for the first time, predicting the doublet vector-like
charged lepton mass which is ranged from 790 to 1600 GeV whereas the singlet
vector-like charged lepton mass is ranged from 500 to 2000 GeV or above than that.

9.2 Quark sector phenomenology

We have discussed the up- and down-type quark mass matrices pointed out that they
have a different form, since the quark doublet rotation used in the up-type quark
sector can not remove the down-type Yukawa term. This difference between up- and

down-type quark mass matrices cause a distinct feature for each sector as follows:

e The up-type quark mass matrix can reach to the 23 left (right)-handed mixing.

e The down-type quark mass matrix can access to all left-handed mixings among
the three SM generations, whereas the right-handed mixing can only have the 23

mixing.

The interesting feature of the down-type quark mass matrix allows for flavor changing
Z interactions with down type quarks which yield neutral meson oscillations such as
K, B; and Bs. Furthermore, an important feature to be mentioned is that the first
generation of SM charged fermions do not acquire masses. Due to this property, our
predictions for the neutral meson oscillations including the d quark give a very
suppressed energy difference corresponding to 10740 GeV, which is impossible to reach
with the current experimental sensitivity. Then, the rest of the neutral meson
oscillation By is possible and an encouraging feature of the B; meson oscillation in our
proposed model is the Bs; meson oscillation mediated by the SM Z gauge boson can be

calculated at tree-level as given in Figure 9.6.
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FIGURE 9.6: Feynman diagrams contributing to the the B,— B, meson mixing involving
the tree-level exchange of the Z gauge boson in the polarized basis

From our numerical analysis we have found that the BSM contributions to the B,
meson oscillation arising from the tree-level exchange of the Z gauge boson yield the
meson mass splitting of the order of 107'® GeV or even less than that value, which is
quite negligible compared to its corresponding experimental bound of 10~'* GeV. The
very suppressed new physics effect for the B; meson oscillation can be explained by
considering the flavor violating coupling constants at each vertex of each diagram,
whose value is about 107%~7 and this values are determined by the ratio between
Yukawa and vector-like masses. For this reason, in the study of the phenomenological
implications of our model in the flavor changing neutral interactions in the quark
sector, we do not consider the neutral meson oscillations as well as the By — ptpu™
decay. It is worth mentioning that the B, — u*pu~ decay gives weaker effects than the
neutral meson oscillations. Considering these facts, we conclude that the rare t — cZ
decay and the CKM mixing matrix can constrain the quark sector of our model, and

thus we discuss these two phenomenological aspects in the following subsections.

9.2.1 Analytic expression for the ¢t — ¢Z decay

The t — ¢Z decay, which only appears at one-loop level in the SM, can take place at
tree-level in our proposed model, thanks to the Z mediated flavor changing neutral
current interactions in the quark sector. In our proposed model, the ¢ — ¢Z receives

tree-level contributions which are depicted in Figure 9.7.

Ccr, ) CR

Z Z

FIGURE 9.7: tree-level Feynman diagrams contributing to the rare ¢ — cZ decay
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Denoting the invariant amplitudes for the Feynman diagrams of the left and right

panels of Figure 9.7 as M, and Mp, respectively, we find that they can be written as:

iMy = i(g1)icct (p3)T(p2) 7" Pru(pr)

(9.22)
iMR = i(gR)tce;, (p3)u(p2)y" Pru(pr)

In order to have the squared amplitude averaged and summed, we square the

amplitudes given in Equation 9.22 and then sum over the different spin states, as

follows:
9 2
> Z!Mﬂ Jor | (p2 - p1) + W(ﬁ? “p3)(p1 - p3)
Spln Z
2
*ZIMRI et | (b2 p1) + 575 (02 - p3) (01 - p3)
spin Z
1 2 1 2 2 1 2 2 2
5 Z|M\ =5 Z (ML + M%) = 5 ((92)ct + (9R)ee) (P2 - p1) + @(pz -p3)(p1 - p3)
spin spin
(9.23)
Then, the decay rate equation is given by:
1 d? b2 3 P3 2 4¢(4
dr (t Z 27)45@ — e —
(t=e2) =50 (27)32E, (27)32 5 [MI7(2m)"0™ (pr = p2 = ps)
T (t— cZ) = 32“’2’ /\M|2dQ
1 1 (9.24)
2 2 2 2
— -M
87Tmt oy ——(mg 72)((9r)e + (9r)z)
m? +m?2 — M2 +l(m?—mg—M%)(m?—m§+M%)
2 M2 2 2

where p* ~ ﬁ (m? — M%) Then, we are ready to write down our prediction for the

branching ratio of the tree-level t — ¢Z decay:

['(t—c2)

BR(t = cZ) = ——
t

<BR(t = cZ)pxp =24 x107* (95%CL)  (9.25)

where I'; = 1.32 GeV.

9.2.2 Analytic expression for the CKM mixing matrix

In order to discuss the CKM mixing matrix, the first task we need to investigate is the
W current of the SM in order to see how the CKM mixing matrix can take place (we

only consider the three SM generations at the moment).
g - .
E — WJrW,qu (T d W/Hr
SM = 9Jp /2 ( Lu L)

g — U u
= E (UL(VLTVL)W(V/S[TVd)d ) Wt =

‘ ‘ (9.26)
(W vu(Vokm)dy) WHT

s
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where uiL’, d% are the up- and down-type quarks of the SM in the mass basis and Vekm
is the CKM mixing matrix defined as VL“VLdT. Now we extend the quark spectrum by

considering the vector-like quarks, thus implying that the W current takes the form:

1 0 0 0O dig,
01 0 0O dor,
ﬁW:\%(ﬂm Upr UL UsL Z4L> YW |0 0 1 0 0 |dg |WHF
2 00 010 dar,
000 0 0/ \di
1 0 0 0O dir,
01 0 00 doy,
:%(ﬂm Upp Usy s @L) VAVEy 10 0 1 0 o VAVE | dg | Wet
00010 dyr,
00000 dir
1 0 0 0O dr,
01 0 0O ST,
:%(@L ¢, i U 54L>7MVL” 0010 0|VA] b, |wet
00 010 Dyg,
00000 Dyr,
(9.27)
where the CKM mixing prediction in our model is given by
1 0 00O
01 0 0O
Vekm=V4 [0 0 1 0 0 VLdT, for the upper-left 3 x 3 block (9.28)
00 010
0 00 0O

where V' is the mixing matrix for the up-type quarks defined in Equation 8.13 and VLd
is the one corresponding to the down-type quarks given in Equation 8.15. The zero
appearing in the middle matrix between V' and VLd T arises from the left-handed
vector-like quark singlets l~f4L and 54 1, which do not interact with the W currents, so
our prediction for the CKM mixing matrix does not feature the unitarity requirement
and this leads to the need of relaxing the unitarity constraint of the CKM quark
mixing matrix. That deviation of unitarity of the CKM quark mixing matrix is due to
the presence of heavy vector-like quarks and this aspect was studied in [150] in the
context of theory with different particle spectrum and symmetry than ours. Few sigma
of SM deviations from the first row of the CKM mixing matrix without unitarity were
analyzed in [150]. The deviation from the Unitarity of the CKM will also be discussed

in our numerical result and the experimental CKM mixing matrix without unitarity is
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given by [150,151]:

0.97370 £ 0.00014 0.22450 £ 0.00080 0.00382 £ 0.00024
|Kckm| = | 0.22100 £ 0.00400 0.98700 + 0.01100  0.04100 = 0.00140 (9.29)

0.00800 = 0.00030 0.03880 +=0.00110 1.01300 £ 0.03000

9.2.3 Numerical analysis for each prediction in the quark sector

When compared to the charged lepton sector simulation, the quark sector becomes
much more complicated since we need to fit the masses of the ¢,t,s and b quarks
simultaneously as well as the CKM mixing matrix without imposing the unitarity
requirement. Therefore, we fit the masses of the four quarks first by using a fitting
function x2 . and then we start a second fitting procedure by using another fitting

function X2CKM and this will be discussed in detail in the following subsections.

9.2.3.1 The fitting function x? and free parameter setup

We set up our parameter region as follows:
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Mass parameter

Scanned Region(GeV)

Yoy Uy = Miy +[10, 50]
Y5a0u = My +[200, 400]
YizVu = M3 +(200, 400]
Thyvg = mly +[500, 700]
TYaVp = My +[50, 500]
M ﬁ M4Q5
M, +[1000, 3000]
Y1404 = My +1, 10]
YouUd = Moy +15,20]
Y340d = Mg, +[10, 30]
Ya3vd = My3 +[5,10]
THVs = M3s +[10, 100]
TlHUp = My +[10, 100]
T43v = mis +[10, 100]
M +[1000, 3000]
Mg, +[1000, 3000]

TABLE 9.2: Initial parameter setup for scanning mass of the vector-like quarks
There are a few things to be noticed as in the charged lepton case.

1. The relation v2 + v3 = (246 GeV)? still holds and the mass parameters mi 4 43
can not exceed the upper perturbative limit on the Yukawa constant v4r ~ 3.54
multiplied by the vev = 240 GeV, of the H, Higgs, thus yielding the bound of
850 GeV for these mass parameters. These restrictions have been taken into

account through the whole fitting process.
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2. The down-type Higgs H; has a very small vev, which is about order of 10 GeV,
based on our previous analysis [148], and the range of values of the mass

parameters m$, o, 54 43 are considered under this assumption.

3. Since we do not know the correct scale of v4, we considered m3Q5, Mgy 53 and
mg, -5 as free parameters. For the same reason, the vector-like masses M, f,) and

d .
M, are considered free parameters as well.

4. The mass parameters m3Q5 and M f,) appear in a common term shared by both up-
and down-type quark sector mass matrices and this feature has been discussed in

the paragraph below Equation 8.14.

The next thing to do is to set up the two fitting functions X2, and xZy as follows:

red
Caw= 3 = (my " — mxT)? Vi = 3 (V& — (VESD;)?
= 5 KM — ’
o F=cit,s,b (Gm X2 i,j=1,2,3 (OVeraii)?

(9.30)
where the superscript pred means our prediction to its experimental value and the
delta means error bar of the physical quantity at 1o. Our first goal is to fit the masses
of the four quarks simultaneously. For the charged lepton case, we require that our
obtained muon and tau masses to be in the range [1+0.1] x m,, » and this requirement
is also imposed for the ¢, s and b quarks excepting for the ¢ quark since the ¢t quark is
too heavy. Besides that, we require that the obtained top quark mass to be in the
range [1 £ 0.01] x my instead of [1 £ 0.1] x my. After the mass parameters have been
converged to be put between the arranged range of each quark mass, we use the other
fitting function X%KM to fit our prediction for the CKM mixing matrix. Using one of
the defined fitting functions, we need to vary the mass parameters of Table 9.2 by a
factor of [1 + x| where £ = 0.1 in order to find better mass parameters. We rename the
given parameters from the initial parameter setup by adding an subscript r to the

mass parameters. The varied mass parameters are given in Table 9.3.
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Mass parameter Scanned Region(GeV)

YouVu = My
Y34y = Mgy
YizVu = M3
T5vs = m3,

U — U
LyoVg = Mgy

[1 + K’] X mg4r

[1 £ K] x mY,,

[1 + K’] X mZZ&r
Q

M3y

[1 + K’] X mZQT'

ME [1+k] x ME,
Mg, [1+ k] x Mg,
K 0.1

TABLE 9.3: Next parameter setup after the initial parameter setup to find better mass
parameters

We vary the parameter space given in Table 9.3 by first using the fitting function x2 .
in order to find a suitable mass prediction for the four quarks t, b, c and b. Once the
obtained masses of these quarks are allocated in the ranges ([1 & 0.1] x m. s and

[1 4 0.01] x m;), we proceed to fit the CKM quark mixing matrix once more by using
the other fitting function X%KM and it is worth mentioning that fitting the CKM

mixing matrix is much more challenging due to the very small experimental errors of
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the CKM matrix elements. We display a benchmark point most converged for the
CKM mixing matrix at the next subsection to discuss the possible deviation from the

SM result arising from the first row of the CKM mixing matrix.

9.2.3.2 Numerical scan result for the quark sector

We start with the most converged benchmark point (yZyy; = 956.828) after repeating

the varying many times

0 0 0 0 0
0 0 0 0 14.474
M= |o 0 0 1206.340  277.563

0 0 273.503 —1775.200 0

0 550.990 434.462 0 —5624.050

0 0 0 0 —0.938

0 0 0 0 —4.041

Mi=10 0 0 1206.340  —27.427
0 0 —5.636 —1775.200 0
0 72915 —75.760 0 2623.620
(9.31)

0 0 0 0 0

0 1.255 0 0 0
Mi..=|0 0 171303 0 0

0 0 0 2155.890 0

0 0 0 0 5674.840

0 0 0 0 0

0 0094 0 0 0
Mf..=10 o 387 0 0 :

0 0 0  2146.190 0

0 0 0 0 2625.960

where the above two mass matrices of Equation 9.31 are the mass matrices for the up-
and down-type quarks in the flavor basis, whereas the below two mass matrices are
ones fully diagonalized, so revealing all propagating quark mass. From the mass

matrices of Equation 9.31, we have the mixing matrices V}* and VLd and arrive to our
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CKM prediction using the formula of Equation 9.28.

0.97409  0.22602  0.00799 —6.38471 x 1075 —0.00036

0.22615 —0.97372 —0.02697 3.80102 x 10~°  0.00147

ngfl‘\i/[ = | 0.00166  0.02815 —0.99880 —0.00766 0.00874 (9.32)
0.00003  0.00019 —0.00916 0.99919 —0.01773
—0.00057 0.00112  0.03812 0.03539 —0.00096

where a feature we should remember is the left-handed down-quark sector are able to
reach to all mixings among the three SM generations, whereas the only left-handed 23
mixing is allowed for the up-quark sector in this BSM model. The experimental CKM

mixing matrix without unitarity is given in Equation 9.33.

0.97370 £ 0.00014 0.22450 £ 0.00080 0.00382 + 0.00024
|Kcxm| = | 0.22100 + 0.00400  0.98700 + 0.01100 0.04100 =+ 0.00140 (9.33)

0.00800 + 0.00030 0.03880 +=0.00110 1.01300 £ 0.03000

Restricting our attention to the upper-left 3 x 3 block of Equation 9.32, it can be
compared to its experimental bound given in Equation 9.33. In order to confirm that
our prediction for the CKM mixing matrix is consistent with the experimental data, it
requires for the upper-left 3 x 3 block of Equation 9.32 to be inside the 3o

experimentally allowed range as follows:

|(Kexm)is|—3l(0K k)il < |(VED ] < |(Kexm)ig|+3|(0Kckm)ij, |, fori,j =1,2,3
(9.34)
and we confirm that the 13,23, 31, 32 elements in the CKM prediction of Equation 9.32
cannot be fitted within the 3o range with a small difference. From our numerical
analysis we find that in our model the CKM quark mixing matrix mainly arises from
the down type quark sector and has a subleading correction coming from the up type
quark sector. It is worth mentioning that the inclusion of an additional vector-like
family in our proposed model to provide masses for the first generation of SM charged
fermions will lead to an improvement of our predictions related to the CKM quark
mixing matrix. However, that approach of having a fifth vector-like fermion family goes
beyond the scope in this work and is deferred for a future publication. Furthermore, in
this section we also discuss the possible deviation of the first row of the CKM mixing
matrix without unitarity and this study is also covered in this reference [150] with an
isosinglet vector-like quark in a model different than the one considered in this paper.

According to [150], the deviation A of unitarity is defined as follows:

A=1- ’Vud‘Q - ‘Vus‘Q - ‘Vub’27 (9.35)



9.2. Quark sector phenomenology 171

and its experimental value is given by [164].
VA ~0.04 (9.36)

Calculating the deviation of unitarity A from the best fitted CKM prediction of
Equation 9.32, the result is

VA ~0.00035 (9.37)

Therefore, the deviation of unitarity derived from the model under consideration is too
small to be observed compared to its experimental bound given in Equation 9.36.
Lastly, we discuss the rare t — ¢Z decay and collect all benchmark points satisfying

X2CKM < 980 (notice that the most converged point reports X2CKM = 956.828).
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FIGURE 9.8: Scanned mass region of the vector-like quarks and contributions of the

flavor violating interactions with the SM Z gauge boson to the rare t — c¢Z decay.

The used constraints are the predicted ¢,s,b and ¢ quark mass to be put between
[1£0.1] x m¢sp and [1 £ 0.01] x m; and the CKM mixing matrix.

Figure 9.8 displays the allowed values of vector-like quark masses consistent with the
constraints arising from the rare ¢t — c¢Z decay. Our obtained values for the vector-like
quark masses are consistent with their lower experimental bound of 1000 GeV arising
from collider searches. In our numerical analysis the vector-like doublet up-type quark
mass My, is ranged from 1850 GeV up to about 2250 GeV and the vector-like singlet
up-type quark mass Ml74 is varied from 4750 GeV to 5800 GeV. Regarding the exotic
down type quark sector, we have varied the vector-like doublet down-type quark mass
Mp, from 1850 GeV up to 2250 GeV and the vector-like singlet down-type quark mass
Mg, from 2450 GeV up to 3000 GeV. As seen from Figure 9.8 the order of magnitude
of the obtained values for the branching ratio of the rare t — ¢Z decay range from
1076 up to 107, which is consistent with its current experimental bound, whose

logarithmic value is about —3.6 as indicated by Equation 9.25.
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9.3 Conclusion

In this work we have considered a model where the SM fermion sector is extended by
the inclusion of a fourth vector-like family and the scalar sector is augmented by the
incorporation of an extra scalar doublet and a gauge singlet scalar. In addition, we
have assumed a global U(1)" symmetry under which all particles are charged except
the SM chiral quark and lepton fields. The model explains the hierarchical structure of
the SM quark and lepton masses by assuming that the SM Yukawa interactions are
forbidden by the U(1)" symmetry and arise effectively after it is spontaneously broken,
due to induced mixing with the fourth vector-like family. This mixing also results in
non-standard couplings of the W and Z gauge bosons which have been studied here for
the first time.

This setup leads to sizeable branching fractions for the FCNC decays such as u — e,
Z — pt and t — c¢Z, within the reach of the future experimental sensitivity. These
FCNC decays are studied in detail in this work, in order to set constraints on the
model parameter space. A great advantage of the approach taken in this work with
respect to the ones considered in extensions of the SM having a Z’ gauge boson is that
it makes the study of the FCNC observables simpler than in the latter since in the
former we can avoid assuming specific values for the unknown U(1)’ coupling and Z’
gauge boson mass. This makes the present phenomenology based on W and Z gauge
boson couplings more predictive than if the U(1)" were a spontaneously broken gauge

symmetry, leading to a massive Z’.

Given that the hierarchical structure of the SM is implemented in our proposed model,
the extended mass matrices for the charged lepton and quark sectors need to be
completely and accurately diagonalised, as the starting point of our analytical and
numerical analysis. Since we only consider a fourth vector-like family, the model
cannot provide masses for the first generation of SM charged fermions, nevertheless this
is a good approximation given that the first generation of the SM fermions are very
light. For this reason, we mainly focus on the study of FCNC observables involving the

second and third generations of SM fermions in both quark and lepton sectors.

In the chosen convenient basis, the different shape of the down-type quark mass matrix
allows all left-handed mixings between the three SM generations, whereas the up type
quark sector can have only the 23 left-handed mixing, while all quarks and charged
lepton have the only 23 right-handed mixing, and we have checked that the results are
basis independent. This feature implies that we can obtain a prediction for the CKM
mixing matrix and this is one of main phenomenological aspects analyzed in this work.
In order to diagonalize the fermionic mass matrices, in an analytic approximation, we
have defined the SU(2) conserving and SU(2) violating mixings and we have shown
that the SU(2) violating mixing plays a crucial role for generating the Z mediated

flavor violating interactions. Furthermore, the extension of the SM fermion sector by
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the inclusion of a vector-like family makes the matrices of Z couplings with fermions
different than the identity matrix due to the appearance of non-zero off-diagonal
matrix elements of the Z coupling matrices which will give rise to flavor violating Z
decays. The non-zero off-diagonal SM Z gauge coupling constants are generally
proportional to two of the small mixing angles, which are defined by the ratio between
the SM fermion and vector-like masses, thus leading to small values.

Defining all the required Z gauge coupling constants with fermions in the mass basis,
as discussed above, we began by analyzing the FCNC processes of the charged lepton
sector. We have found that in the lepton sector, the following three FCNC decays are
allowed: 7 — py,7 — 3 and Z — ur. Regarding the 7 — py decay, we discussed its
leading contribution, which arises from the Feynman diagrams having a chirality flip in
the internal fermionic lines and being proportional to M /m.,, where M is the mass
scale of the heavy charged vector-like leptons. However, the dominant terms cannot be
as big as the vector-like masses get heavier since their coupling constants get
suppressed at the same time, thus providing a balanced relation between the
vector-like masses and their coupling constants. We have found that our predictions
for the vector-like charged lepton masses are not severely constrained by the 7 — uy
decay since most of the obtained values for the 7 — uvy decay are consistent with its
experimental upper bound. In the concerning to the 7 — 3 and Z — u7 decays, we
have derived an analytic expression for their corresponding rates at tree-level finding
that none of our predictions is constrained by the experimental bounds of these decays.
Considering the FCC-ee experiment which have planned to generate 10'? the Z gauge
bosons and our numerical prediction for the Z — p7 branching ratio is of the order of
10~ at most, thus implying that our model can be tested at the Z factory via the
Z — pt decay. However, the CMS provided that the doublet vector-like mass can be
constrained up to 790 GeV [144,148] and our numerical predictions for the vector-like
charged leptons are severely constrained by the CMS result. Therefore, we can expect
that the vector-like charged lepton doublet mass is ranged from 790 to nearly
1600 GeV, whereas the vector-like charged lepton singlet mass is ranged from 500 to
2000 GeV or above than that.

Turning to the quark sector phenomenology, we have analyzed the rare ¢t — c¢Z decay
as well as the CKM mixing to set constraints on the quark sector parameters. It is
worth mentioning that the neutral meson K, B;, Bs oscillations do not set constraints
on the quark sector parameters of our model since their new physics effects are quite
negligible compared to the SM expectation. We have derived analytic expressions for
the rare t — ¢Z decay as well as for the CKM mixing matrix. Due to the mixings
between SM fermions and vector-like fermions, the CKM quark mixing matrix is not
unitary, thus implying that the unitarity requirement has to be relaxed [150,151].
Using the most converged benchmark point, we showed how dominant the down-type
quark mixing matrix plays a crucial role in the CKM mixing matrix and we discussed

the deviation of unitarity arisen from the first row of the CKM mixing matrix, whose
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value is too small to be experimentally measured. Finally, we investigate the branching
ratio for the t — ¢Z decay and found that our numerical predictions are not excluded
by its experimental bound, for vector-like doublet up-type and down type quark
masses My, and Mp, in the window 1850GeV< My, Mp, < 2250GeV as well as
vector-like singlet up and down type quark masses Mﬁ4 and M B in the ranges
4750GeV< ML~,4 < 5800GeV, and 2450GeV < M54 < 3000GeV, respectively.

In conclusion, we have analysed a range of FCNCs arising from non-standard W and Z
gauge boson couplings in an extension of the SM with a fourth vector-like family,
which can also address the hierarchy of quark and lepton masses, leading to several

interesting rare decays which may be probed in future high luminosity experiments.
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Chapter 10

Conclusions

Many dedicated efforts to find an answer on what are the most fundamental particles
and forces have shaped the awesome and beautiful SM. The CKM mixing matrix
experimentally confirmed is one of the great successes of the SM and it reveals there
exist a mixing between each generation of the SM. This mixing mechanism is applied
not only to the SM fermion sector but also to the SM gauge particles. Even though,
the SM is quite successful in both quark and lepton sector, however the SM has also
some limitations such as masses of the SM neutrinos, a few of well-known anomalies,
DM, DE, gravity, etc. and the limitations have been a strong motivation for the SM to
be expanded. We start from this consideration: how can we expand the SM without
violating the gauge symmetry and the current SM experimental bounds. A possible
answer to the question is a minimal extension to the SM and to study the muon and
electron g — 2, which was a main target over my first and second works. The other
choice could be to study the FCNC observables in a minimally extended SM, which are

quite sensitive to new physics, which was discussed in my third project.

In chapter 1, we discussed how successful the SM is with the mixing formalism and an
approach to new physics in both theoretical and experimental aspects. In chapter 2, a
few of main features of the SM were discussed such as the Yukawa interactions, the

spontaneous symmetry breaking, the broken gauge symmetry and CKM mixing matrix

and a few of important limitations were also discussed.

In chapter 3, the common features appearing over my three works, which are the
vector-like family, 2HDM and lastly U(1)" symmetry, were discussed as prerequisites.
From the rest of chapter 3 to chapter 4, we covered our first work and our first BSM
model, the Fermiophobic Z’ model, in the first work was discussed in the rest of
chapter 3 as well as its mixing with the fourth vector-like family. In chapter 4, we
discuss main body of our first work. The Z’ coupling constants in the mass basis were

determined in terms of the mixing angles 6121, r, 0141, r and 6247, r and then the
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analytic form of the CLFV p — ev, the muon and electron g — 2 and the neutrino
trident production process were discussed with the corresponding Feynman diagrams.
Especially, we use the mass insertion approximation for the analytic form of the muon
and electron g — 2 and p — ey decay, and it has two mass sources; the chirality flip
Mf and vector-like mass M f, and both appear in the analytic form separately under
the assumption M} > M 40 . Through the interplay among the muon and electron g — 2
and u — ey decay, we showed it is not possible to explain both anomalies analytically
at the same time in the case of M{ > m,,, since the p — ey gives rise to a very tight
bound. It means we need to relax the condition M{ > m,,, and the case of either

M{ =0 or M{ = 5m,, was discussed in our numerical scan. We investigated the
parameter space for either the muon or electron g — 2 versus M/, separately and then
tried to explain both anomalies by considering some overlapped parameter regions and
what we found was it is not still possible to explain the anomalies simultaneously no
matter what the chirality flip mass between 0 to 200 GeV was considered. Next, we
discussed the Z’ mass bound, which is 48 GeV at most following PDG, however this
result is too old to trust. For this reason, we found a suitable experimental bound
implemented by an effective four fermion vertex interaction given by LEP experiment
and considered oblique corrections S and 7', however both can not be numerically
determined due to lots of unknown coupling constant of Z’' gauge boson, which implies

our numerically predicted Z’ mass 75 GeV should not be excluded at the moment.

From chapter 5 to chapter 7, my second work was discussed. In chapter 5, we
discussed a new BSM model, as we took the SM Lagrangian as an effective theory. An
important difference between our first and second BSM model is the first BSM model
allows general renormalizable Yukawa interactions, whereas the second BSM model
does not since the SM-like Higgses are charged under the U(1)’" global symmetry.
Therefore, the second BSM model gives rise to the 5 dimensional effective operator for
the SM operators and the proportional factor (¢)/M can explain the relative different
mass of each fermion, as discussed in the mass insertion formalism. Another difference
between my first and second BSM model is to start considering the hierarchical
structure of the SM and this requires our mass matrices for quarks and leptons to be
rotated maximally and this fully rotated mass matrices should be a starting point. We
diagonalized mixing matrices using the mixing formalism, defining all the required
mixing angles. In chapter 6, we investigated the non-SM W contributions to the muon
and electron g — 2. In order to make our analysis simple, we assumed the vector-like
neutrinos in the fifth vector-like family are too heavy to contribute, so they are not
considered. Then, we constructed the type 1b seesaw mechanism and then defined the
non-unitarity n, which plays a crucial role to the non-SM contributions to both
anomalies as well as 4 — ey decay. We derived the analytic form of both anomalies
and p — ey decay in terms of the non-unitarity  and showed that the muon and

electron g — 2 prediction with the W gauge boson are too small to its experimental
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bound, so we conclude the W contributions can not explain both anomalies
simultaneously. In chapter 7, we discussed non-SM scalar contributions to the
anomalies. For this task, the required sector is the charged lepton sector and we start
from the diagonalization of the charged lepton sector. Using the assumption

(Y54 = 293 = yf5725,35 = xgl,52’53 = x§5’35 = y§2753 = 0) for the diagonalization of the
charged leptons, we confirmed it is possible to derive one-loop diagrams for the
anomalies by closing the scalar sector of mass insertion diagrams. Next, we
constructed the 2HDM scalar potential, which is necessary to determine the physical
scalars, and worked under the decoupling limit in order to make our analysis simpler.
Then, we discussed the Higgs diphoton signal strength and the analytic form of the
anomalies with the non-SM scalars, relevant for the numerical study for the non-SM
scalar contributions to the anomalies. After building the fitting function, we fitted the
relevant parameters and then proved both anomalies can be explained by the non-SM
scalar contributions, predicting mass of the physical scalars and vector-like charged
leptons. Finally, we discussed the vacuum stability of the 2HDM scalar potential. The
up-type Higgs potential is stable due to the decoupling limit, however it needs to be
determined for the stability of the down-type Higgs potential as it features mixing with
the singlet flavon field. And then we proved that the down-type Higgs potential is
stable with the small vev of v3 (O(v3) = 10 GeV) and with the suitable sign of quartic

coupling constants in the Higgs potential.

In chapter 8, we introduced our third BSM model, mainly motivated by the
hierarchical structure of the SM, and discussed how this BSM model gives rise to the
effective SM Yukawa interactions. For the purpose of correct diagonalization without
any assumptions, we made use of only one vector-like family instead of two, and the
first SM generation remains massless in this BSM model as a result. Using the mixing
formalism, we showed that the mass matrices of quark and lepton sector in the flavor
basis are diagonalized. The mass matrix for the charged lepton sector is exactly same
as that for the up-type quark sector, however that for the down-type quark sector has
an additional element due to the rotation already used in the diagonalization of the
up-type quark sector and this leads to mixing with the first generation even though the
first generation is massless. What this implement is we can build a prediction for the
CKM mixing matrix and understand how dominant the down-type mixing angles are
when compared to the up-type mixing angles. One of main motivations in this work is
to study diverse FCNC observables to constrain vector-like fermions in both quark and
charged lepton sector and we use the SM Z gauge boson. With the SM fermions, we
can not induce the renormalizable flavor violating interactions mediated by the Z
gauge boson since the SM Z gauge coupling constants shape a identity matrix. If we
extend the SM fermions by the fourth vector-like family, the identity matrix of Z
coupling constants is not the identity matrix any more and this matrix can give rise to

the flavor violating interactions with the SU(2) violating mixings. Then, we
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constructed the SM Z coupling constants in the mass basis, having non-zero
off-diagonal elements, in both quark and charged lepton sector. In chapter 9, we start
investigating the charged lepton sector first and consider the FCNC observables such
as 7 — uy, T — 3u and Z — pt. After finding out the analytic form of the FCNC
observables, we carry out the numerical scan for the charged lepton sector and conclude
our numerical predictions are not significantly constrained by the experimental bound
for the FCNC observables, however the CMS experimental bound for the vector-like
doublet charged lepton mass can significantly constrain our predictions if it turns out
to be firmly established. In our numerical prediction, the vector-like doublet charged
lepton mass is ranged from 790 to 1600 GeV, whereas the vector-like singlet charged
lepton mass is ranged from 500 to 2000 GeV or above than that. For the quark sector,
we consider the rare t — ¢Z decay and the CKM mixing matrix and we find out that
our numerical prediction for the quark sector is mainly constrained by the CKM
mixing matrix, not by the experimental bound for the ¢ — ¢Z decay, predicting mass
of the vector-like doublet up-type quark mass is ranged from 1850 to 2250 GeV and the
vector-like singlet up-type quark mass is ranged from 4750 to 5800 GeV, whereas the
vector-like doublet down-type quark mass is ranged from 1850 to 2250 GeV and the
vector-like singlet down-type quark mass is ranged from 2450 to 3000 GeV.

We discussed how successful the SM is in many senses, and however it has some
important observables which can not be addressed by the SM at the same time, which
have been the strong motivations to search for physics beyond the SM. All these works
were worked, based on the principle of the minimal extension to the SM, and each
work has its own surprising insight to new physics. As time goes on, the flavor physics
and Higgs physics get more and more important, as they are likely to reveal new
physics, and we will keep studying many well-motivated BSM models to search for new

possibilities to physics beyond the SM.
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Appendix A

Is it possible to explain the muon

and electron g — 2 in a Z’ model?

It is important to understand how the observables BR(u — e7), muon g — 2, electron
g — 2 and neutrino trident can be written in terms of the mixing angles. The coupling
constants appearing in each observable consist of the mixing angles. The coupling

constants are defined from Equation (4.5) to (4.10) in Section 4.1.

A.1 The branching ratio of y — ey

The branching ratio of u — e~y is the following:

5
« m ~ 2 = 2
BR(: 1) = g g g (5 + 5l (A1)

The o7, g are given by:

a/L = Z [(QL)ea(gL)auF(xa) + :Za(gL)ea(gR)auG(xa)] 5

My H ) (A.2)
5R = Z [(QR)ea(gR)auF(fEa) + :?LZ(QR)ea(gL)aHG(:Ea)} ) Ta = ]T\Zgl

a=e,u,E
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Expanding the above o, g in terms of electron, muon and fourth family:

Mme

5L = | (98)ee (92)eu F (@) + T (91)ec (97)ey, C ()

ow
(92 ) ey (92),0 F () + Z (92)eps (9R) 0 G ()

C

(92)ers (92) 5 F (21) + 0 (91) 5 (9) g, © ()
. (A.3)
1 = | (9r)ee (9R)e P () + 1€ (9R)ec (92). G (02)

(9R) ey (9R) s F () + Z (9R) ey (912), G ()

C

(9R)es (08) 1, F (@5) + 11 (00). (01)5,C (o)

One important feature in Equation (A.3) is the chirality-flipping mass was used
instead of vector-like mass in the last line of Equation (A.3). It then is possible to turn

the coupling constants in each ¢ into the mixing angles by using the Equations



A.1. The branching ratio of u — ey 181

(4.5)-(4.10). It was assumed that ¢’qr4 in each coupling constant to be 1.
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A.2 Anomalous muon g — 2

The anomalous muon g — 2 is given by:

’ m2 Mg *
A =g ¥ (10? + 10)?) Pl + 22 Re [(01) 5] G|
a=e,u,
m2
Ty = M%,'
(A.5)

Expanding the above equation in terms of electron, muon and vector-like lepton

couplings as per BR (u — e7):

AaZ = —SfMZ [ (020 ,el? +1m) ) F ) + 7 Re [(01) . (67) | Gl
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m
(A.6)
The chirality-flipping mass is used in the last line of equation (A.6) similarly to
Equation (A.3). It then is possible to represent Aa, in terms of mixing angles.
: m?
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A.3 Anomalous electron g — 2

The anomalous electron g — 2 is given by:

’ mg Mg *
Aan = _8 2M2 Z |:(’<gL)ea’2 + ’(gR>ea‘2) F(.’Ba) + — Re [(gL)ea (gR)ea] G(.Z'a) )
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(A.8)

Expanding the above equation in terms of electron, muon and vector-like lepton as

previously, the form is

2
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(A.9)

The chirality-flipping mass is used in the last line of Equation (A.9) similarly to the

Equations (A.3) or (A.6). It then is possible to represent anomalous electron g — 2 in
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terms of mixing angles.
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A.4 Neutrino trident

The constraint from neutrino trident has a much simpler form compared to the other

observables, as it only depends on coupling of the heavy Z’ to two muons.
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Appendix B

Fermion mass hierarchies from
vector-like families with an
extended 2HDM and a possible
explanation for the electron and
muon anomalous magnetic

moments

We discuss the whole description of the diagonalization for the quark sector mass

matrices in two bases and heavy scalar production at a proton-proton collider.

B.1 Quark mass matrices in two bases

As the lepton mass matrix is constructed in main body of this work, the quark sector
can be built in a similar way. Like the lepton sector, we make use of two approaches to
an effective lepton mass matrix, one of which is a convenient basis and the other is a

decoupling basis.
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B.1.1 A convenient basis for quarks

Consider the 7 x 7 quark mass matrix rotated as in the lepton sector.

wr  up  usk  wip  usk Qur  Qsme
Q| 0 0 0 0 yhve 0 2%
Qo | 0 0 0 Yoo vhve 0 afvg
Q51 0 0 0 Y34Vu  Y350u $3Q4% x?%%
MU=| Q| O 0  yhve O 0 M2 M2
Qsp | Y810u YdaUu  Yavu 0 0 0 M5Q5
U4, 0 TyaVy Tyzvy MGy 0 0 0
sy, | at Vp T5pVy X530y Mgy Mgy 0 0
(B.1)
dig  dor  dzr  dir  dsr Qur  Qsr
Qi 0 0 0 yflﬂ’d yilfﬂ)d 0 I%%
Qo | 0 0 0 yhwe vhve 0 2Py
M= §3L 0 0 0 Y§4vd  Y3sva 1’?4% 1’3Q5”¢
Quw| 0 0 yhu O 0 ME  MZ
@5L Yivd  Y5pva YSzva O 0 0 ME%
dar 0 2dvs dqv, MY, 0 0 0
dsr wdivy afvy afyvs Mgy M 0 0

Notice that the same rotations operated in the lepton sector is applied to both up- and
down-type quark sector except for yﬁ since quark doublet rotation is already used in
the up-type quark sector. These two mass matrices clearly tells that this model is an
extended 2HDM in that the up-type SM Higgs H,, corresponds to up-type quark
sector, while the down-type SM Higgs H; corresponds for down-type quark sector.

B.1.2 A basis for decoupling heavy fourth and fifth vector-like family

In this section, we treat the decoupling basis with quarks holding an assumption
(¢)y ~ M ﬁ. As in the charged lepton mass matrix, we can obtain the Yukawa matrix

from the 5 x 5 upper blocks of Equation B.1,

0 0 0 0 y& 0 0 0 vy vl
0 0 0w uss 0 0 0 uf s
das=10 0 0 wy oyl vs=(0 0 0 ui vh (B.2)
0 0 g 0 0 0 0 wf 0 0
Ys1 Ysoa Yss O 0 ygll yg2 yg3 0 0
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where a and 3 run from 1 to 5. The Yukawa matrices @/Z; can be diagonalized by the

unitary rotations V'

Vo = VgV Vi VigVai Vad Vi

Vi = Vis Vg Vas Vis Vaa Vo Vi, (B.3)

Va = VISV Vi Vis Vi Vi Vi
where each of the unitary matrices Vj4 5 are parameterized by a single angle 0,4 5
featuring the mixing between the ith SM chiral quark and the 4, 5th vector-like quark.
In the rotated mass matrix, we need (3,4), (1,5),(2,5), (3,5) mixing in the @) sector
and (2,4),(3,4),(1,5),(2,5),(3,5) mixing in the u, d sectors to go to the decoupling

basis therefore the unitary mixing matrices V' are defined to be

Vo = ViV VisVd

10 0 0 0\/t 0 00 0 o000 sY
01 0 0 0]]0 & 00 & 0 100 0
=lo00 & o0 s&|lo o 10 0 010 0
00 0 1 0o]lo o 01 o0 0 001 0
00 —s& 0 &) \0 =2 00 &) \=s% 000 &
10 0 0 0 10 0 0 s
01 0 0 0 o 1 0 0 s
x 10 0 C3Q4 83Q40% 0 0 1 33433Q5,
00 —sg & 0 0 0 —s& 1 0
00 0 0 1 —s2 8 % 0 1
Q 25 (@) Q 2% (8) (B-4)
34 — D) 5’ 15 — 5 5’
J@%w»+(M@ waw0+(M@
0 _ 255 () o _ 7% (9)
2

U
SGME, Mg = s (0) + ¢ M
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Vi = VasVas VisVaa Vg
10 0 0 0\/1 0 00 0\ /ch 000 s
01 0 0 O 0 ¢y 0 0 shs 0 1 0 0 O
=loo & o0 si|l]lo o 10 o0 0 010 0
0 0 0 1 0 0 0 01 0 0 0O 01 0
0 O - S gS 0 ng) 0 - S 12L5 0 0 012L5 3 ’l1L5 0 0 0 C’llll5
1 0 0 0 O 1 0 0O 0 O 1 0 0 0 0
o1 0 0 oo e o0 sy o0 o 1 0 6y 0%
xloo ¢, st ofllo o 1 0 ofl~| o0 o 1 ey ou
0 0 —s§ cgy O 0 —sy 0 ¢y O o -05 05, 1 0
00 0 o0 1/\0o 0 0 0 1 g 0% 0% 0 1
g L ThO) L b)), o)
Mgy My Mg Mgy Mg
x55 (9) = 3428y (@) + 55, Mgy, Mgy = —shyx8s (¢) + iy Mg,
x5y (¢) = ci4ass (@) + s5 Mgy, MEY = —s§uxks (6) + 5y M,
M =\l @)+ (M3 AT = (et (007 + (M)
M3 =\ (aty (91)7 + ()%, M = \/(aly (9))7 + (MER)°,
M2 = (el (9))? + (ML),
(B.5)

With the defined unitary mixing matrices in place, the 5 x 5 Yukawa matrices in a

mass basis (primed) are transformed by

Tty = VouasVil, Uy = VQ?756VJ7

(B.6)

where tilde with prime means interaction basis whereas tilde alone corresponds to the

mass basis. The effective SM Yukawa couplings for the quarks then correspond to the

u

3 x 3 upper block of ! 5 ﬂgﬁ, namely

yzujHu@iLuij yzded@iLdea with Y

u_
ij =

gy = G =1,2,3).  (B7)

The 3 x 3 SM Yukawa matrices for up- and down-type quark sector read:

3?5%“1 + 5075

vl = | Syt + uss0ts st + y3i0%s + yss0%s
Sz%ygl + 35075 3:?53/752 + 5405, + y35055

Q. d dpd Q. d d pd d pd

ST5Y51 T Y5015 S15Y52 T Y14t + Yi5055

d _ Q. d d pd Q, d d pd d pnd
Yij = | Sos¥s1 T Y95015  So5¥52 T Y9ab54 + y55055

SSQE)?ng + yéi59f5

5?5?/752 + Y1055

53Qs?/g2 + Y5405, + 15505

sthyls + yls 0l
Syl + y3a0%, + y3s0%
53Q4923 + Sy%ygs + y34054 + y35055
sTyds + yia09 + yis0%
S5yt + Y9109, + y350%
sSuls + 55yt + yi0% + v 0%
(B.8)

i
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B.2 Heavy scalar production at a proton-proton collider

We have confirmed that the mass of the non-SM CP even scalar H; is ranged from 200
to 240 GeV in Table 7.4 and this light mass of H; has not been observed at CERN or
other experiments so far. In order to see how big an impact of H; is when compared to
that of SM Higgs h, we studied a total cross section for the SM process pp — h and for
BSM process pp — H1. The SM cross section for pp — h process is

a2m? m2\\2 1 [~lnymi/S
oM = 6:7rvg (L <g>> S/l PDF(0,z1(y), mp) PDF(0, z2(y), mp)dy

my \/mi/S
(B.9)
where L is a loop integral
L(a) = |[2a + (=4 + a) PolyLog (2,1/2 (—vV—=4 + av/a + a)) (B.10)

+ (=4 + a)PolyLog (2,1/2 (V-4 + av/a + a)) ]/a2|,

«g is the strong coupling constant, v is the conventional SM Higgs vev 246.22 GeV, my,
is the Higgs mass 125 GeV, m; is the top quark mass 173 GeV, S is the squared LHC
center of mass energy (14 TeV)z, PDF corresponds to the parton distribution function
where 0 means Oth parton - gluon, x is the momentum fraction of the proton carried
out by the gluon. Here the factorization scale has been taken to be equal to the SM

like Higgs boson mass my, and z12(y) are defined as follows:

m? /S m3 /S
r1(y) = Th exp(y), x2(y) = Th exp(—y). (B.11)

With these defined functions and values, the total cross section for pp — h is
osm =~ 18 pb. (B.12)

Next, the total cross section for pp — H; process is

2,2 2 In, /m? /S
o(pp — Hy) = 647r;2 <L ( )) /1 TE (B.13)
2 n,/m .

X PDF(()? xll (y)7 mHl) PDF(Ov :clg(y), mHl)dy

where mp, is mass of non-SM CP even scalar Hy, and 2} 5 are defined in a similar way:

) \/ Mm%, /S , \/ Mm%, /S

5 exp(y), xz(y)zTeXp(—y) (B.14)

One main distinction between Equation B.9 and Equation B.13 is the non-SM scalar
H; only interacts with down-type quark pair bb since it is a mixed state between hg

and ¢ while the SM Higgs h can interact with top-quark pair tf. According to the
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mass range of H; reported in Table 7.4, the total cross section for pp — Hj is given in

Figure B.1.

12},

10

a(pp-H4)[pb]

180 200 220 _ 240 _ 260 _ 280 300
My, [GeV]

FIGURE B.1: The total cross section for pp — H; at 14 TeV

The total cross section for pp — H; runs from nearly 8 pb at 200 GeV to smaller values
as mass of Hj increases. The order of magnitude of this cross section for pp — H; is
compatible to that of the SM process pp — h, however the BSM process is strongly
suppressed since its single LHC production via gluon fusion mechanism is dominated
by the triangular bottom quark loop as mentioned in Section 7.2. Therefore, our
prediction with the light non-SM scalar H; is possible to accommodate each anomaly

constraint at lo.
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Appendix C

Constraining Vector-like fermion
masses from 7 mediated FCNC

observables in an extended
2HDM

In this appendix, we discuss an analytic perturbative step-by-step diagonalization for
each sector from Appendix C.1 to C.3. And then the numerical mixing matrix for each
sector will be compared to its analytic result from Appendix C.4 to C.5, verifying the

SM Z physics is basis independent.

C.1 Analytic approximated step-by-step diagonalization

for the charged lepton sector

In order to diagonalize the mass matrix of Equation 8.8 in an analytic way, we employ
the method of mixing formalism and define intermediate mass basis. The flavor basis is
used when writing the initial mass matrix of Equation 8.8, whereas the true mass basis
corresponds to the fully diagonalized mass matrix, which reveals the masses of all
propagating charged leptons. The intermediate mass basis is a basis where the heavy
particles appearing in all terms generating the entries proportional to vy are integrated
out remaining other terms unrotated. This separation makes the difference between
SU(2) conserving and SU(2) violating mixings, which will be defined later, clear,
which will become important when we consider the flavor violating interactions
mediated by the SM Z gauge boson. Before we carry out the digonalization
step-by-step, it is convenient to rearrange the mass matrix of Equation 8.8 by

switching the Yukawa terms by mass parameters and by swapping the fourth and fifth
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column in order to make the heavy vector-like masses locate in the diagonal positions

as given in Equation C.1

etr ear esr esr  Lar etr ear esr Lir  ear
Lir| 0 0 0 0 0 Lir| 0 0 0 0 0
fg L 0 0 0 moq 0 fg L 0 0 0 0 moq
Me pr— . pr— .
Lz, | 0 0 0 m3s ma3s Lz, | 0 0 0 m35s m3s
f4 L 0 0 mas 0 M 4[5 f4 L 0 0 mas M 4[5 0
e, | 0 mse msz ME 0 e | 0 mse msz 0 Mg

(C.1)
where the indices running from 1 to 3 correspond to the three SM families, the index 4
labels the fourth vector-like particles and lastly the index 5 denotes the tilde particles,
which are a partner of the vector-like particles. Now we are ready to diagonalize the
mass matrix of Equation C.1 and the first step is to get the intermediate mass basis
and to integrate out the particles generating the entries proportional to vg (equally, all
mass terms involving index 5). For this task, we first consider 34 rotation in the

left-handed fields to turn off the mass term mss.

€1R €2R €3R z4R €4R
L | 0 0 0 0 0
. Lop | O 0 0 0 o
€ __
Ve = Ty | 0 0 —mems o medl | (€2
45 45
— M
L4L 0 0 m?\;&/% M4[:r)/ m;;\;g/?ss
ear | 0 mso ms53 0 Mg,
1 0 O 0 0
01 O 0 0
mss ML
MzLLE::\/MfE)2+m§57 8§4:W’ C§4:7M4L5” V3L4: 00 C§4 —5§4 0f,
45 45
00 sfy & 0
0 0 O 0 1
(C.3)

where the primed fields correspond to the rotated fields. Throughout this whole work,
the fields characterized by a capital letter are the ones belonging to a SU(2) doublet
under the SM gauge symmetry, whereas those ones denoted by a small letter are
SU(2) singlets. Then, the next rotation is 34 rotation in the right-handed leptonic
fields to turn off the mss entry. It is worth mentioning that the order used in the
rotation of the left-handed fields is 12345, whereas for the rotation of the right-handed
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fields the corresponding order is 12354 since for consistency reasons we assigned the

index 5 for the tilde particle,

Vi Me(Vi)T =

el __

54

! /
€1R  €2R €3R Lyr ehn
LIL 0 0 0 0 0
_ [ e
Lor | O 0 — Mm2emay 0 %
54 a
LE‘)L 0 0 —m34m53M%—m35m43M§4 0 —m35m43mgf+m34M4L5M§4
Mg Mgy M Mg,
L/ 0 0 —mgamasmsz+masMIME, ML masmss Ml +maamss Mg,
" Mg Mg, 45 MEME,
. /
esr, | 0 ms 0 0 Mg,
(C.4)
1 0 0 O 0
01 0 O 0
ms3 ME
e2 2 e _ e _ 54 e
Mgy +mys3, s34 = Ao 6T Qe VT 0 0 c§ 0 —s
54 54
00 0 1 0
€ (S
0 0 834 0 c5y
(C.5)

The last step to arrive at the intermediate mass basis is the 24 rotation in the
right-handed fields.

LareryreNtrizet —
Va M (V) (Vay)' = (C.6)
/ / T "
€1R €ar €3r Lar €4R
L | O 0 0 0 0
- mogmso ME - E maog Mg
5
ZI 0 ms2(masmazmss—maa M ME,) —maamss M i —masmas Mg, 0 —masmazmss+mas ML ME,
a1 MM M, NI
]
f/ 0 _m52(m431\ffgm53+m34m35M§4) —maamasms3+mas ML Mg, ML mazmsz M +maamas ME,
AL Mg Mg MY Mg Mg 45 Mg Mg
€ur, 0 0 0 0 Mgf{
(C.7)
1 0 0 0 0
0 ¢, 0 0 —s5,
/
mso M¢E
el __ el2 2 e __ e __ 54 e __
Mgy =/ Mgy® +msy,  s3 = Aert 4T qpen Vag=(0 0 1 0 O
54 54
0O 0 01 0
e e
0 s54 0 0 54
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The mass matrix given in Equation C.7 is the intermediate mass basis and this
diagonalization is exactly consistent with the one for the SM charged lepton sector in
one of our works [148]. When we diagonalized the charged lepton sector in [148], we
assumed all off-diagonal elements to be zero and this is actually a quite suitable
assumption since the differences between the Yukawa induced mass terms and the
vector-like masses are quite large. However, we consider all small mixings in order to
get the fully diagonalized mass matrix in this work rather than setting them to zero,
since we are interested in studying diverse FCNC constraints by scanning all possible
and allowed mass ranges of the vector-like fermions in both SM quark and lepton
sectors and the FCNC constraints are sensitive to the small mixings as it will be shown
below. One more feature to be mentioned in this diagonalization is that all the mixings
have been made between the same SU(2) multiplets. In other words, the SU(2)
doublet left-handed fields are mixed with the another SU(2) doublet left-handed fields,
whereas the SU(2) singlet right-handed fields are mixed with the another SU(2)
singlet right-handed fields, so we call this mixing “SU(2) conserving mixing”. This
SU(2) conserving mixing can not cause the flavor violating interactions with the SM Z
gauge boson since they involve an identity matrix resulting from the SM Z gauge
interactions. Therefore, the next diagonalization process becomes especially important
when we start exploring the FCNC constraints. Before we start the next
diagonalization, it is convenient to reparameterize all elements of Equation C.7 by a

simpler one as given in Equation C.9.

€1R €or €3R E4R €4R
0 0 0 0

m’22 m’23 0 Moy
M = VM (Vi) (V)T = (C.9)

/ / O m34

/ / L /
Mmyy Mgz Mg myy

~
w
h
o o o o o
3
w
Q2
3
w
@

L o 0 0 M

We carry out first the 35 rotation in the left-handed fields of mass matrix C.9 and this
is a start of “SU(2) violating mixing”. As already mentioned, since the difference

between the Yukawa mass and vector-like mass is significantly sizeable, it is possible to
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simplify the mixing matrices in terms of the relevant small mixing angle 03’}5.

elR €y €sr Z4R iR elr ep e3p Lar €l
Lip| O 0 0 0 0 Lip| 0 0 0 0 0
VLMe/ . Loy | 0 My M3 0 My N Lop | 0 mhy myy 0 miy
35 fgL 0 miy mig 0 mg47]V[§f(9§5 f;fL 0 mby, mhs O 0
—/ =
Ly, | 0 miy myy Mg miyy Lyp | 0 mly mly Mfg ml,
éj4L 0 mi0fs mhybis 0 Mg +mi, 0% aL 0 0 0 0 Mg
(C.10)
1 0 0 O 0
01 0 O 0
L m L
_ 34 _ L
O35 = e Vasg=10 0 1 0 -0 (C.11)
54
0O 0 0 1 0
006 0 1

The next step is the 25 rotation in the left-handed fields to turn off the mass term m,.

et €p  ¢p  Lir €ir ein ¢y €y Lin  €lp
Lin| 0 0 0 0 0 Lin| 0 0 0 0 0
— —
LrLxrel Ly | 0 mhy  mhy 0 mhy — MS{6% Lop | 0 mhy myy 00
‘/25‘/35M = f” 0 , , 0 0 ~ f// 0 , , 0 0
3L M3y m33 3L M3y Mg3
fiLL 0 Mo ms M4Ls/ miy ELL 0 mi mig M4Ls/ miyy
E?I4IL 0 mhybs mhys 0 Mg + mb,0% EJAZL 0 0 0 0 Mg
(C.12)
1 0 00 0
L
0O 1 0 0 —025
L mi, L
025 — W, ‘/25 — 0 0 1 O O (013)
54
0O 0 01 0
0 6 00 1
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The next is the 35 rotation in the right-handed fields to turn off the mass term m/;.

! 1!
€1R  €3Rp €3R

T
L 4R

€ir €lrR € €ig ZilR €ir
Lir| 0 0 0 0 0 Liz | 0 0 0 0 0
— —
VLVLMel(Ve )T: Lo | 0 myy Mg 3055 0 - Ly | 0 myy myz 0 0
2535 35 o m , ! ge 0 7 0 m "0 o
3L M3y Mgz3 m33U35 3L M3y M3z
Lip| 0 mhy mls— MEOS ME +mls05 m), Lyl 0 mhy 0 ME ml,
&Ll 0 0 0 0 Mg ol o o o o MY
(C.14)
1 0 0 0 0
01 O 0 0
/
m
e 43 e __
035 ik Vas=10 0 1 —65 0 (C.15)
45
e
006, 1 0
0 0 O 0 1

After performing the right-handed 25 rotation, we have a mass matrix, whose form is

block diagonal.

‘6L5‘/§L5M6/(V3%)T(V2%)T = (C~16)
€1R €5 €3 NZR €iR elR €yp  €3R NZR €iR
Li| O 0 0 0 0 Li,| O 0 0 0 0
— e -
Lor | O Mg Mg My 055 0 Lop | 0 myy my 0 0
11 ~ —!
L | 0O Mo m33 Migo055 0 Lyp | 0 m3zy mag 0 0
— —
Ly, | 0 mly— MfE055 0 Mf{ +mip055 mi, Ly, | O 0 0 Ml mly,
e | 0 0 0 0 MY .l 0 0 0 0 M
(C.17)
1 0 0 0 O
0 1 0 —65 0
Mo
Oos =470 V&= [0 0 1 0 0 (C.18)
45
0 65 0 1 0
0 0 0 O 1
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We arrive at the fully diagonalized mass matrix by diagonalizing the upper-left 3 x 3
block as well as the lower-right 2 x 2 block as shown below in Equation C.19.

VEVEVEVEM (Vi) (Vi) (V) (V) = diag (0, mir, Mg, M, )
VEVAVEVEVEM®(VE) (V) (Vi) (Vi) (Vi) (Vi) = diag (0, mr, My, M)
(C.19)

As mentioned in the introduction, the SM charged lepton belonging to the first family,
namely, the electron does not acquire a mass with one vector-like family as seen in
Equation C.19. This is due to the fact that the model under consideration has two
leptonic seesaw mediators, which provide tree-level masses to the muon and tau
leptons. It is worth mentioning that the number of seesaw mediators has to be larger
or equal than the number of SM fermion families in order to provide masses to the SM
fermions. A non vanishing electron mass can be generated by introducing one extra
vector-like family as done in the reference [148]. Then, we can easily confirm how the
SM charged leptons in the flavor basis are connected with those ones in the mass basis

via the following unitary mixing matrices.

er, e1r e1r €1L
mr 6/2 L €2r, €2r
| = el | =V | esr | = VIEVEVEVEVE | esr |
Ey, eﬁl I eqr, €41
) ol ~ ~
Eyr €ur €sr, esr, (C.20)
eR e1R e1Rr e1R
KR eop e2R 2R
TR | = |e5p | =V | esr | = VeaVasVasVasVauVaa | esr
Eir R €4R €4R
Esr €ln e4R e4R

The left-handed 34 mixing Vi and right-handed 24,34 mixings Vs, 3, are the SU(2)
conserving mixings, whereas the left-handed 25, 35 mixings ‘/2%735 and right-handed
25,35 mixings Vi 55 are the SU(2) violating mixings. We will see that these SU(2)
violating mixings play a crucial role in generating the renormalizable flavor violating
mixings mediated by the SM Z gauge boson in section 8.4. It is worth mentioning that
this step-by-step diagonalization is a quite good approximation to the corresponding
numerical diagonalization carried out by the singular value decomposition (SVD)
method since the former yields similar results to the ones obtained from the latter,
with very small differences due to the fact that all off-diagonal elements resulting from
the step-by-step diagonalization are quite negligible and thus they can be

approximated to zero, as discussed in detail in Appendix C.4.
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C.2 Analytic approximated step-by-step diagonalization

for the up-quark sector

The initial mass matrix for the up-type quark sector in the flavor basis is given by:

wir  usr  usp  uir  Qur wir usr Usr Qur
Q| 0 0 0 0 0 Q| 0 0 0 0
Qy | 0 0 0  yhou O Q| 0 0 0 0
Mu pr— _ pr— _
Qs | 0 0 0 yhou 250, Qs | 0 0 0 my
@41; 0 0 Y3V 0 Mﬁ @4L 0 0 mys Mﬁ
§4L 0 37%2 1)¢ $Z3U¢ ML 0 54L 0 mgz mg3 0

(C.21)
The mass matrix of Equation C.21 in the flavor basis is exactly consistent with the one
corresponding to the charged lepton sector excepting for a few substitutions y¢ — y*,
Vg = vy, ¥ — 2@ and 2 — z*. However, these substitutions do not change the whole
structure of the mass matrix, so we do not need to derive all the required mixings from
the initial mass matrix, instead the given mixings in the charged lepton sector can be
reused as follows (For the charged lepton sector, it is enough to notice the symbol L
means left-handed doublet and e means right-handed singlet. However, it becomes
complicated in the quark sector since the mass matrices in the up- and down-type

quark have a different form, so we change the mixing notation by VLU(’;[%) instead of V<.):

Uy, UL ULL uiL

cr ulhy uar, uar,

tr | = wi, | =V | use | = (VE)as(VE)2s(VE )25 (Vi )35 (Vi )sa | use |
Uar uy U4r, U4r

) uly; Uar, Uar,

(s UIR UIR UIR
CR UgR U2R U2R
tr | = |usp | = V& [usr | = (VR)5a(VR)23(VR)25(VR)35(VR)24(ViR )34 | usr
Usr Uy U4R U4R
Usr R U4R U4R

(C.22)

As mentioned in subsection 8.3.2, this approximated step-by-step diagonalization for
the up-quark sector requires more caution since some of the off-diagonal elements

being of order unity and appearing as a result of mixings can be sizeable due to the
heavy top quark mass and the heavy exotic up type quark masses thus requiring the

use of the numerical SVD technique for the correct diagonalization and the SVD
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diagonalization will be used in our numerical scans in the main body of this work. The
comparison between a numerical mixing matrix derived from the SVD method and the
one obtained from the analytic perturbative diagonalization will be discussed in
Appendix C.5.

C.3 Analytic approximated step-by-step diagonalization

for the down-quark sector

We start from the initial down-type mass matrix given in Equation 8.14 in the flavor

basis. _

dir dor  d3r  dsr  Qur

Qul 0 0 0 yhva O
) Q| 0 0 0 ydva O
mi=| ) o (C.23)

Qs | 0 0 0 ys4va w3304
Qur| O 0 yhva O Mg
di | 0 sty afwy Mg 0

As in the charged lepton case, it is convenient to rearrange the Yukawa mass terms by

mass parameters and to swap the fourth and fifth column.

dip deg dsg dir Qun dip dar dsg Qur dig
Q| 0 0 0 mf, 0 Q| 0 0 0 0 mf
A — Qo | O 0 0 mg 0 _ Qo | O 0 0 0 ms,
Qs | 0 0 0 mf, ms Qs | 0O 0 0 mfy mi,
Q| O 0 mfz O Mﬁ Qu| 0 0 m Mﬁ 0
§4L 0 mdy mfy M 0 z1L 0 m mfy 0 Mg
(C.24)

In order to proceed from the flavor basis to the intermediate mass basis, the first thing
to do is to carry out the SU(2) conserving mixings 0g4L and 934734}% and we display the
intermediate mass matrix for the down-type quarks without middle steps since the
process is exactly same as the charged lepton case (After calculating all mixings

required, we simplified the calculated mass parameters by m').

dir IZR st dar ZR

dip| 0 mfy mfs 0 mf

dor, | 0 m% m3 0 mg
MY =vid MivE  tvE = C.25
34L ( 34R) ( 24R) dgl/L 0 mgé mgé 0 mgﬁ; ( )

—/ /
dy, | 0 miy mgy Mﬁ) mg)
da| O 0 0 0 MY
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We should carry out the SU(2) violating mixings to turn off the mass parameters
m‘fﬁl724734742743 and the mixing angles are very suppressed by the ratio between Yukawa

and vector-like masses. Then the block diagonal form of this mass matrix appears as

follows:

d 1" 1" 1 1"
_ 1R 2R 3R 4R 4R
i | 0 m¥ o md 0 0
dyp | 0 mdh mdh 0 0

Md/l — Vd Vd Vd Md/ Vd T Vd T o
15L V251 V35L (Vasr)' (Vasg) dgL 0 mgé mgg 0 0

—/
34/% 0 0 0 MY m
dg| 0 0 0 0 MY

(C.26)
An important feature of the mass matrix of Equation C.26 is the mass parameters of
the first row is proportional to those of the second row by a factor (In other words,
mf, /m, = md, /md;. We follow the convention to diagonalize the upper-left 3 x 3
block [163] rather than simply rotating the upper-left block. As the mass matrix of
Equation C.26 consists of only real numbers, we can exclude the complex numbers in

the convention and the convention is given by:
V1d2LV1CéLV2(éLMd”(V2%R)T(VlcilSR)T(VldQR)T = diag <07 ms, My, Mp,, M]j4> (C.27)

and then we arrive to the fully diagonalized mass matrix, which reveals all propagating
mass for the down-type quarks. Then, the connection from the flavor to mass basis for
the down-type quarks can be seen via the unitary mixing matrices as follows (notice

that the right-handed down-type quark mixing matrices (Véi)12713 remain as an

identity matrix as the relevant mass matrix has the form of MMa and this form
mMp
generally induces only left-handed mixing matrices).
dr, 7 dir
ST, dglL d2L
b, | =|dy | =VE | dse | = (VEas(VE)12(V1s(VE) 23 (Vi) 15(VE) 25 (Vi) a5 (Vi) 34
pu | (||
Dy, T dar,
dr diRr dir dir
SR dyn dar dar
_ " _1/d _ d d d d d d
br | = |dip | =Va | dsr | = (VR)5a(VE)23(VE)25(VR)35(Vi)24(VR)34 | dsr
1343 i dsr dsr
Dyr R d4r d4r

(C.28)

dip
dar,
dsr,
dar,
dar,
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C.4 Numerical comparison for the charged lepton sector

We have previously stressed that the analytical charged lepton mixing matrix is quite
close to the numerical one and we will compare them in this Appendix. For this
comparison, we start from the charged lepton mass matrix in the flavor basis,

evaluated in one of the benchmark points used in our numerical scans:

0 0 0 0 0
0 0 0 0 —2.151
M= 1|0 0 0 161.657  3.955 (C.29)
0 0 4.600 536.050 0
0 51.135 97915 0 696.178

Firstly, we evaluate the mixing matrices V¢ using the analytic mixings of

Equation C.20. The analytic mixing matrices Vike are given by:

1 0. 0. 0. 0.

0 0.985598 0.161888  —0.0488209 0.00211728
vk =1 o. 0.169076 —0.943613  0.284567 0.00548067

0. 0.00002015 0.288689 0.957399  —0.00668649

0. —0.00301343 0.00675946 0.00494558 0.99996

(C.30)
1 0. 0. 0. 0.
0. 0986254  —0.157386  0.00134068  —0.050305
Ve = 0. 0.14846 0.97769 —0.00738828  —0.148413
0. —0.000610678 0.00669679  0.999958  —0.00627468
0 0.0725407 0.138946 0.00531106 0.987625

Notice that the mixing matrices V', and V}% have exactly the same structure than the
charged lepton mixing matrix since all off-diagonal elements in the first row and
column are zero, however the mixing matrix VLd is different as it can have mixings with

the down-type first generation as seen in Equation 8.15)
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The mixing matrices Vike derived by the numerical SVD are given by:

1 0. 0. 0. 0.
0 0.985598 0.161888  —0.0488206 0.00211728
vE =1 0. 0169076 —0.94362  0.284543  0.00548077
0. —0.0000241021 —0.288666 —0.957407 0.00668612
0. —0.00301342 0.00675933 0.00494538  0.99996
(C.31)
1 0. 0. 0. 0.
0. 0.986254  —0.157386  0.00134068 —0.0503047
Ven=| 0. 0.148461 0.977693  —0.00738841 —0.148398
0. 0.000610624 —0.00669703 —0.999958  0.00627442
0. 0.0725382  0.138932  0.00531088  0.987627

The difference between the mixing matrices can be easily seen by subtracting one from

another after taking absolute value.

0 0 0 0
0 0 —7.58945 x 10~8 251664 x 10~7  5.97371 x 10~10
VL | —VE =1 0 346904 x 10710 —7.19169 x 106  2.38502 x 105  —1.00783 x 10~7
0 —3.95207 x 1076 2.35474 x 1075 —7.10253 x 1076  3.68376 x 10~7
0 9.97344 x 1072 1.29353 x 107 2.03736 x 1077  —1.91205 x 10~
0 0 0 0 0
0 —2.39211 x 107  4.58026 x 10~%  9.72974 x 10710 3.25661 x 10~ 7
Vel = Vel =1 0 —1.06479 x 1076 —2.03783 x 1076  —1.29588 x 10~7  1.44968 x 10~
0 547244 x 1078 —2.43141 x 1077 0 2.58046 x 1077
0 250398 x 1076 1.42997 x 107°  1.84594 x 10~7  —2.19659 x 10~6
(C.32)

Therefore we have confirmed that the analytic mixing matrix for the charged lepton
sector is quite close to one obtained from the numerical SVD diagonalization. Using
the numerical mixing matrices derived by the SVD diagonalization, we confirm the

following Di” r matrices of Z couplings with leptons of Equation 8.21 as follows (we
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included here the pre-factor g/cy,):
—2.01645 x 101 0. 0. 0. 0.
0. —2.01643 x 1071 4.22223 x 1076 5.1508 x 1076 7.70341 x 104
DY = 0. 4.22223 x 107 —2.01634 x 107! 1.33333 x 107>  1.9941 x 1073
0. 5.1508 x 1076 1.33333 x 107°  —2.01629 x 1071 2.43264 x 103
0 7.70341 x 1074 1.9941 x 1073 2.43264 x 1073 1.62175 x 107!
1.62204 x 1071 0. 0. 0. 0.
0. 1.62203 x 1071 3.60409 x 1076  4.87783 x 10~*  —2.59066 x 106
Dg = 0. 3.60409 x 1076 1.62184 x 1071 —2.68815 x 1072  1.4277 x 10~°
0. 487783 x 1074  —2.68815 x 1073 —2.01614 x 1071  1.93227 x 103
0. —2.59066 x 1078 1.4277 x 10~° 1.93227 x 1073 1.62194 x 101

C.5 Numerical comparison for the quark sector

(C.33)

As we did in Appendix C.4, we carry out the same approach with the most converged

numerical point (xZyy

0 0 0 0

0 0 0 0
MY=|0 0 0 1206.340

0 0 273503 —1775.200

0 550.990 434.462 0

0 0 0 0

0 0 0 0
Mi=10 0 0 1206.340

0 0  —5636 —1775.200

0 72.915 —75.760 0

For the comparison, we find the analytic mixing matrices (

0
14.474
277.563
0
—5624.050

—0.938
—4.041
—27.427
0
2623.620

= 956.828) for the up- and down-type quark sectors.

(C.34)

v ’fé)ana and the numerical

mixing matrices (VL“ ’g)num and then subtract one from another after taking absolute
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value. The numerical differences are given by:

0 0 0 0 0

0 —9.63899 x 10719 —8.4547 x 1076  1.12194 x 10™°  5.10645 x 10~7
|(VE)anal = |(Vi)num| = | 0 860152 x 1077 —4.562 x 1073 6.12434 x 1073 —3.20031 x 10~*

0 —4.32016 x 107°  6.11329 x 1073 —4.57314 x 1073 3.70205 x 10~*

0 —6.95382 x 10™%  3.44869 x 107°  4.09197 x 107°  —2.39443 x 1076

0 0 0 0 0

0 —5.36541 x 1078  4.20284 x 108 3.73725 x 1078 4.77149 x 1077
|(VE)anal — |(VE)num| = | 0 —1.56456 x 10~* —4.71406 x 107> —7.74521 x 10~*  1.34741 x 1073

0 1.27331 x 107*  —7.96888 x 107*  6.8947 x 10™°  5.76999 x 10~°

0 1.86671 x 107*  1.32945 x 1073 2.03335 x 107°> —1.39892 x 10~*

0 0 0 0 0

7.62437 x 1079 3.28418 x 1078 —7.80564 x 10~7 —5.52416 x 10~7  9.20155 x 10~°
(VB anal = [(V)num| = | —2.16144 x 107 931034 x 107 —2.34437 x 106 3.16788 x 10~  —5.46568 x 10~%

—2.49349 x 1078 —1.07406 x 1077  3.14516 x 1076  —2.37145 x 10°%  9.52623 x 108

0 3.34474 x 10710 5.01567 x 1078 3.51026 x 1078  —1.24719 x 10~°

0 0 0 0 0

0 6.97453 x 107 —4.09035 x 10™° —7.75726 x 10~®  1.54578 x 1076
(VB anal = [V num| = | 0 —4.13664 x 1075 6.52624 x 10~ —1.24584 x 10~7  1.44401 x 10~°

0 6.55855 x 1078 —3.67395 x 1077 —3.73704 x 10719 6.10094 x 108

0 2.63961 x 107 1.5191 x 107 4.55174 x 1078 —5.58627 x 1077

(C.35)

Here we can see that the differences for the charged lepton or down-type quark sectors
are at most of the order of maximally order of 1075, whereas the maximal difference
for the up-quark sector goes up to the order of 1073 due to the sizeable off-diagonal

O(1) element but it is still a good approximation. Now we confirm that the numerical
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matrices of Z couplings with quarks Dz’% in the mass basis are given by:

2.55713 x 1071

0

0

0

0

0 2.55711 x 1071 —3.14988 x 10~° 3.18699 x 10™° —7.55591 x 10~*
DY = 0 —3.14988 x 1075 2.55083 x 10~1  6.37525 x 107% —1.51148 x 102
0 3.18699 x 107°  6.37525 x 10™%  2.55068 x 10~!  1.52929 x 102
0 —7.55591 x 107% —1.51148 x 1072 1.52929 x 1072 —1.06859 x 107!
—1.08136 x 107! 0 0 0 0
0 —1.07941 x 107! —7.52723 x 10~*  8.3786 x 1073 1.3608 x 1074
DY = 0 —7.52723 x 107*  —1.05225 x 1071 —3.24002 x 1072 —5.26224 x 1074
0 8.3786 x 1072 —3.24002 x 1072 252512 x 10~'  5.85742 x 1073
0 1.3608 x 107*  —5.26224 x 10~  5.85742 x 102  —1.08041 x 10!
—3.09781 x 107! 0 0 0 0
0 —3.0978 x 1071 4.35109 x 1076  8.49277 x 10~%  4.62349 x 104
D¥ = 0 4.35109 x 1076 —3.09749 x 1071 6.287 x 107°  3.42266 x 1073
0 849277 x 1076 6.287 x 107°  —3.09658 x 1071  6.68059 x 1073
0 4.62349 x 107 3.42266 x 1072 6.68059 x 1073 5.39124 x 1072
5.4068 x 1072 0 0 0 0
0 540678 x 1072 4.0453 x 1077 2.15284 x 107*  —3.09181 x 106
DY = 0 4.0453 x 1077 5.40667 x 1072 —6.8355 x 107*  9.81685 x 1076
0 2.15284 x 107*  —6.8355 x 107*  —3.09705 x 10~1  5.22435 x 1073
0 —3.09181 x 1076 9.81685 x 1076 5.22435 x 102 5.39929 x 102

(C.36)

where the pre-factor g/c,, was included in those matrices. The most interesting case of

Equation C.36 is DCL” since we know that the left-handed down-type quark sector can

access to all mixings among the three SM generations. The used numerical mixing

matrix VLd is given by:

9.74095 x 107!
2.26 x 1071
7.97153 x 1073

Vil

—6.67815 x 1076
—3.62201 x 10~*

—2.26141 x 1071
9.73488 x 107!
3.43371 x 1072
—2.87659 x 107°
—1.56017 x 1073

0

—2.81626 x 1072
7.98097 x 107!
6.01585 x 107!
—1.85253 x 1072

0
—2.12226 x 1072
6.01423 x 10~!
—7.98598 x 10!
9.03631 x 1073

0
1.27099 x 1073
9.40883 x 1073
1.83648 x 102
9.99786 x 107!
(C.37)

and we can confirm all elements of the first row and column of D%’ cancel each other, so

identifying the given result in Equation C.36. What we found in this Appendix verifies

the fact that the SM Z physics does not get affected by any specific choice of basis.

)
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