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Understanding the micromechanics of the cochlea

by Riccardo Marrocchio

The function of the cochlea is to convert the sound waves that reach our ears into neural
signals that can be interpreted by the brain. Its mechanics can be modelled as two fluid
chambers separated by the basilar membrane (BM), on which the Organ of Corti (OoC)
sits. The OoC is the cochlear sensory organ composed of different cells and tissues,
including the reticular lamina, the tectorial membrane (TM), the outer and inner hair
cells and other supporting cells. The process of transduction is achieved through two
mechanisms: a passive and an active one. The passive mechanism is responsible for the
tonotopic map of the cochlea, while the active mechanism determines the high sensitivity
and frequency selectivity of our hearing.

This thesis contributes to the understanding of the passive and the active mecha-
nism of the cochlea. First an analytical solution to the equations governing the cochlear
mechanics is derived, in the case of a passive, locally reacting BM, including fluid com-
pressibility and viscosity. The solution is expressed in terms of only a few nondimensional
parameters and it is shown that one of these, a phase-shift parameter, has the greatest
influence on the cochlear response, as it determines the form of coupling between the
fluid and the BM.

In terms of the active mechanism, an existing elemental model is extended (e.g.
Elliott and Ni 2018) to include the micromechanical structure of the OoC, as described in
a detailed Finite Element Model (FEM) of the cochlea developed by Grosh’s laboratory
(e.g. Sasmal and Grosh 2019). The use of an elemental method, instead of a detailed
FEM, provides insight into the study of the active mechanism by dividing it into two
terms; one due to the dynamics of the BM, including longitudinal coupling within the
OoC, and one due to various types of fluid coupling. The effects of the various type
of longitudinal coupling are discussed and it is shown that the most important one in
determining the amplification and stability of the cochlea is the longitudinal coupling in
the TM. To better understand the effect of longitudinal coupling, a method is developed
to derive, from the elemental model, the wavenumber distribution associated with the
different types of waves that can propagate in the cochlea. In particular, it is shown that,
for a model with TM longitudinal coupling only, the wavenumber distribution associated
with the main travelling wave is characterized by an imaginary part which is positive in
a small region just before the frequency at which the BM peaks, indicating a distributed
amplification of the response in this region.
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Chapter 1

Introduction

1.1 Active mechanism of the cochlea

The overall aim of this research project is to contribute to the understanding of the
active mechanism of the cochlea, the sensitive organ of hearing. In the last fifty years,
numerous experiments and modelling studies have investigated the functioning of the
hearing organ, that is how it converts sound into induced vibrations within the cochlea
and hence into electrical signals that can be interpreted by the brain. To understand the
complete function of the cochlea, its micromechanics must be taken into consideration;
that is how the components of a specific element of the cochlea, the Organ of Corti
(OoC), move relative to each other. The Organ of Corti is the sensory epithelium
lining the inner surface of the basilar membrane and contains: the tectorial membrane,
the reticular lamina and the inner and outer hair cells. Studies demonstrate that the
remarkable sensitivity and frequency selectivity of the mammalian hearing cannot be
explained by passive gradient properties alone (Cooper and Rhode, 1992; Khanna and
Leonard, 1982; Rhode, 1971) but these must rely on an active mechanism, the cochlear
amplifier (Davis, 1983), which generates forces from within the Organ of Corti that
amplify and sharpen the cochlear response.

Numerous theoretical models have been proposed to explain how the different com-
ponents of the Organ of Corti contribute to the hearing sensations (Allen, 1980; Neely,
1985; Neely and Kim, 1986; Neely, 1993), but until recently they could not be properly
validated by experimental evidence because there was no measurement method able to
adequately distinguish the movements of each part of the Organ. Optical coherence
tomography has recently been applied to the study of the cochlea, however, which al-
lows data to be obtained on the differential motion of the components of the Organ of
Corti in vivo, without the need to open the cochlea. This is especially important since
the functioning of the cochlear amplifier has been showed to be highly sensitive to the
mechanical properties and the normal metabolism of the cochlea. Furthermore, with
optical coherence tomography, the axial resolution is not limited by small physical aper-
ture that can be obtained within the cochlear bone but is imposed, at around 10µm, by
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the short coherence length of the laser. Therefore, optical coherence tomography is able
to distinguish the motions between the different parts of the Organ of Corti.

The conclusions that can be drawn from this recent experimental data are not con-
clusive. In particular, (Chen et al., 2011) suggested that a local feedback mechanism is
sufficient to explain the active mechanism of the cochlea, as measured in their data. On
the other hand, (He et al., 2018) proposed a global hydro-mechanical model, to explain
their data, in which they emphasize the importance of longitudinal coupling. To better
understand the experimental discrepancies and the implications of the proposed theo-
ries, (Sasmal and Grosh, 2019) developed a detailed finite element model of the cochlea
and simulated the basilar membrane response. The predicted amplitude and phase re-
sponse of the BM at basal locations are in agreement with data obtained by (He et al.,
2018) in gerbils and by (Ren et al., 2016b) in mice, while the predictions of the same
variables at apical locations agree with data obtained by (Recio-Spinoso and Oghalai,
2017) in guinea pigs. A research collaboration has been established with Karl Grosh’s
laboratory, with the aim to gain further insight from this model by recasting the Finite
Element Model into an elemental formulation. This led to the study of the contribution
to the BM admittance from the various type of longitudinal coupling and a method of
calculating the wavenumber distribution in the case of a model with a longitudinally
coupled Organ of Corti.

1.2 Wavenumber distribution in a longitudinal coupled Or-
gan of Corti

Many properties of the cochlea can be understood in terms of the propagation of a
single type of wave. This wave is generated by the interaction between the inertia of
the fluid in the chambers and the dynamics of the basilar membrane (de Boer, 1996).
The properties of the wave can be characterised by a complex wavenumber, whose real
part, called propagation function, determines the wave speed and wavelength while the
imaginary part, called gain function, determines the regions in which power is dissipated
or gained by the Organ of Corti. The wavenumber distribution can be calculated from
a model or estimated by using an inverse method from measurements (Shera, 2007).

In the case of a model of the passive cochlea which includes a locally reacting BM
with 1D fluid coupling, only one type of wave is present (de Boer, 1996). This is
characterised by a wavenumber distribution whose real part starts out with a small
value at low frequencies and then increases up to the frequency ωn, giving a pass band
in this frequency range. ωn is the characteristic frequency, that is the frequency at which
the response peaks at a specific point along the cochlea. The imaginary part, on the
other hand, is for the most part very small. The rising value of the real part of the
wavenumber with an increasing slope is also correlated to a decrease of the phase and
group velocity, given respectively by cph = w/k and cgr = dw

dx , leading to the wave being
slowed so that its amplitude is concentrated near the characteristic frequency. The gain
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function is very small over most of the pass band and starts to increase in magnitude
only at frequencies slightly before the peak of the real part, leading to a stop band, where
the wavenumber remains high in absolute terms and the wave is greatly attenuated.

When 2D or 3D fluid coupling is included, the models predict an infinite number
of wavenumber distributions, corresponding to multiple wave types (Steele and Taber,
1979b; Taber and Steele, 1981). As notice by Steele and Taber, only one wavenumber
distribution corresponds to a travelling wave, while the others describe non propaga-
tion modes, which generally do not have a significant effect on the coupled response.
To verify that only one wave type is sufficient to describe the cochlear response, the
Wentzel-Kramers-Brillouin (WKB) method, which provides an analytical approxima-
tion to differential equations (Mathews, 1964, p.23), can be used to derive the response
of the BM from the wavenumber distribution. Then this can be compared to either
the full numerical solutions or to experimental results. Using this method, (Steele and
Taber, 1979b) have shown that there is a difference between the WKB approximation
and the full numerical solution, just above the peak response. (Watts, 2000) showed
that by using a linear superposition of the travelling wave mode and a second cut off
mode is possible to obtain a solution that is in better agreement with the full numerical
predictions at frequencies above the peak response. This was also confirmed by (Elliott
et al., 2013), who used the wave finite element (WFE) method to show that, for a passive
cochlear model with 3D fluid coupling, the response beyond the peak involves multiple
waves, which are identified as higher-order acoustic waves in the fluid coupling. The re-
sults by (Watts, 2000) and (Elliott et al., 2013) were confirmed by (Parthasarathi, 2000)
and (Cheng, 2007) in their PhD thesis for a passive model which includes longitudinal
coupling by the BM. Also in this case, the main travelling wave dominates the response
up to the peak, while additional non-propagating modes are necessary to obtain a better
agreement with experimental results for higher frequencies.

In the active cochlea, the propagation and gain functions are similar in shape to
those of the travelling wave in the passive case, apart from two main differences (Shera,
2007). The propagation function has a higher peak, indicating a smaller wavelength
and the gain function is positive just before the peak of the real part. This is shown in
Fig. 1.1, were the real and imaginary part of the wavenumber are obtained by Shera from
experimental measurements of the cochlea, by using an inverse method. The propagation
and gain function in Fig. 1.1 are plotted as a function of a local scaling variable, v,
defined as f/CF (x), where CF (x) is the characteristic frequency at location x, as given
by the cochlear position-frequency map. Shera also noted that a positive value of the
imaginary part indicates that the wave is amplified, as a positive sign of the imaginary
part of the wavenumber near the response peak corresponds to a power transfer to
the travelling wave and to an amplification of the response around the characteristic
frequency. This is in agreement with (Dewey et al., 2019) in which it shown, from
experimental measurements, that the amplification of the cochlear wave occurs before
the characteristic frequency. At the highest frequency, the real part of the wavenumber
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Figure 1.1: (Upper) real and (lower) imaginary part of the wavenumber as a function of the
generalised local scaling variable v, derived using the inverse method. f is the frequency while
CF (x) is the characteristic frequency at the location x. Gray lines show individual distributions,
black lines trends obtained by a fitting procedure. Reprinted with permission from (Shera, 2007).

Copyright 2007, Acoustic Society of America.

in Fig. 1.1 becomes negative but, as noted by Shera, these results are not reliable as the
inverse method, in this frequency region, is characterised by a great relative error. This
can be seen in Fig. 1.1 in the great variability of the individual wavenumber distributions,
represented as grey lines, in the high frequency region.

In this thesis, after obtaining an equivalent elemental formulation of the finite el-
ement model developed by (Sasmal and Grosh, 2019), we present a method to derive
the wavenumber distribution of the various wave types, when longitudinal coupling is
present.

1.3 Outline of the thesis

In Chapter 2 we review the anatomy and physiology of the ear, focusing in particular
on the cochlea and on its active system. In Chapter 3 the Wentzel–Kramers–Brillouin
(WKB) method is used to derive an approximation to the solution of the cochlear wave
equation, including both fluid viscosity and compressibility. The solution is expressed in
terms of a few nondimensional parameters and their physical effects on the wavenumber
distribution and on the BM response are discussed. In Chapter 4 we review the exper-
imental techniques that have been used to record the movements within the cochlea,
underling the contribution of each approach to the understanding of the main features
of the Organ of Corti: passive and active mechanics, non-linearity, high frequency se-
lectivity. Then we show how recent experiments have demonstrated the importance of
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fluid longitudinal coupling and mechanical and electrical longitudinal coupling, within
the Organ of Corti, in the understanding of the active mechanism of the cochlea. In
Chapter 5 we develop an elemental formulation of the finite element model by (Sasmal
and Grosh, 2019) in the simplified case of a locally reacting basilar membrane. The
elemental formulation is extended in Chapter 6 to include the longitudinal coupling by
the TM, the BM and the electrical cables and the effects of these forms of longitudi-
nal coupling on the overall response are studied. Finally, in Chapter 7, a method is
developed to derive the wavenumber distribution for a propagation in a longitudinally
coupled Organ of Corti.

1.4 Contributions

The novel contributions of the work consists of:

• An explicit formulation of the WKB solution to the wave equation for the passive
cochlea, with fluid compressibility and viscosity, and a parametric study of the
response and of the wavenumber distribution in terms of nondimensional param-
eters;

• Interpretation of the discrepancies in recent experimental results regarding the
differential motion between the reticular lamina and the basilar membrane;

• Improved insight into the results of a previous finite element model of the active
cochlea, using an elemental formulation;

• An overall model of different forms of longitudinal coupling in terms of a non-
locally reacting BM admittance;

• A method of deriving the wavenumber distribution for a longitudinally coupled
Organ of Corti.

1.5 Publications

Parts of the work presented in this thesis have been published, including one journal
article and two articles in conference proceedings:

• R. Marrocchio and S.J. Elliott. Including fluid compressibility and viscosity in
the WKB solution to the wave equation of the cochlea. Mechanics of Hearing
Workshop 2020, 5-10 July 2020 - Postponed to 13-18 June 2022;

• R. Marrocchio, A. Karlos and S.J. Elliott. WKB solutions to the wave equation
for the cochlea and for acoustic rainbow sensors. American Physical Society March
Meeting 2021, 15-19 March 2021;

• R. Marrocchio, A. Karlos and S.J.Elliott. Waves in the cochlea and in acoustic
rainbow sensors. Wave Motion, 106:102808, November, 2021.
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Chapter 2

Anatomy and Physiology of the
cochlea

2.1 Introduction

In this chapter we review the anatomy and physiology of the ear, focusing in particular
on the cochlea, in order to understand the basics of its function as a transducer of
sound waves. There are several standard textbooks that address this topic. This review
chapter is based on (Pickles, 2012; Berne et al., 2008; Martini and Nath, 2009).

The human ear is subdivided into three main parts: the external, the middle and
the inner ear. The external and middle ear collect and convey the sound stimuli to
the inner ear, where sound waves are transduced into signals that are analysed by the
brain. Besides its auditory part, the inner ear also contains the vestibular apparatus,
a collection of specialised sensors which informs the central nervous system about the
position and the movements of the head.

2.2 Transmission of sounds in the external and middle ear

The external ear is formed by the auricle or pinna and the external auditory meatus
(Fig. 2.1). The pinna collects sound waves which are then conveyed to the tympanic
membrane through the meatus. At the end of the acoustic meatus, sound waves are gath-
ered on the tympanic membrane which vibrates accordingly and transmits its vibration
to the ossicular chain, formed by the malleus, the incus and the stapes.

The middle ear is an irregular cavity in the temporal bone filled by air. It is separated
from the meatus by the tympanic membrane and it contains the ossicular chain, the
tensor tympani and the stapedius muscles, through which it interacts with the inner ear.
The middle ear works as an impedance adapter between the tympanic membrane and the
cochlea. The middle ear amplifies the intensity of the sound so that low stimuli can be
efficiently transmitted to the liquid inside the ear. The timpanic-ossicular chain amplifies
the intensity of the sound stimuli through two mechanism. First, the ossicular chain is
a system of levels that increase the amplitude of vibrations. Secondly, the surface of the
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Figure 2.1: Anatomy of the human ear and its three main parts: the external, the middle and
the inner ear. Republished with permission of Cengage Learning, from (Davis, 1970); permission

conveyed through Copyright Clearance Center, Inc.

tympanic membrane is about twenty times larger than that of the footplate. Because
the pressure is equal to the ratio between force and surface it follow that, given the
same force, the pressure exerted by a stimulus on the footplate will be greater than that
on the tympanic membrane. This mechanism is provided with a regulatory mechanism,
called the stapedial reflex, constituted by two muscles: the tensor tympani and the
stapedius. The tensor tympani is innervated by short fibres of the trigeminal nerve
and is connected to the head of the malleus. Its contraction shifts laterally the head of
the hammer increasing the tension of the tympanic membrane. The stapedius muscle
is innervated by the facial nerve and is connected to the neck of the stapes. When
it is contracted it applies a traction on the stapes decreasing their penetration in the
oval window. The contraction of both muscles increases the rigidity of the tympanic-
ossicular chain decreasing the conduction of sound waves, especially at low frequencies.
Furthermore, this mechanism protects the inner ear from sound waves with excessive
intensities. At the end of the stapes there is the footplate, which moves like a piston
inside a hole on the lateral face of the temporal bone, called the oval window and
transmits its vibration to the liquids inside the ear.

2.3 Transduction mechanism of the inner ear

The inner ear is composed of the osseous labyrinth, a series of interlinked cavities within
the petrous temporal bone and the contained membranous labyrinth, a set of intercon-
nected ducts. The osseous labyrinth has three cavities: the vestibule, the semicircular
canals and the cochlea.
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2.3.1 Anatomy of the cochlea

The cochlea is a spiral channel located in the anterior region of the bone labyrinth. In
human it turns two and a half times on a length of 35 mm. Inside the cochlea there is
a membranous labyrinth which forms three fluid chambers, or scale, that run parallel
to each other. The scala vestibuli starts at the oval window and ends at the apex of
the cochlea where, through a hole called helicotrema, it communicates with the scala
tympani. The scala tympani ends at the base of the cochlea on the oval window, a
hole in the temporal bone enclosed by an elastic membrane. Between these two scale
there is the scala media. It has a triangular section with the apex directed towards the
modiolus, the central bone axis of the cochlea, and it is formed by three membranes: the
basilar membrane, which separates it from the scala tympani, the Reissner’s membrane,
which divide it from the scala vestibuli and the stria vascularis, which keep it apart
from the external surface of the cochlea. The basilar membrane changes continuously
in its width from the base, where is broad, to the apex, where is narrow while the
scala media tapers in the opposite direction. The resulting space is filled by the spiral
lamina. The scale tympani and vestibuli contains the perylimph, a fluid with a ionic
composition similar to that of other extracellular fluid that is low in potassium and high
in sodium and calcium, while the scala media contains the endolypmh, a fluid with a
ionic composition like that of cytosol, high in potassium ions and low in sodium and
calcium. Inside the scala media there is the Organ of Corti, the structure devoted to the

Figure 2.2: Structure of a cross section of the cochlea, with the main cells and tissues. Repub-
lished with permission of Cengage Learning, from (Davis, 1970); permission conveyed through

Copyright Clearance Center, Inc.
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transduction of sounds waves. It is composed of a sophisticated mechanism of sensors
able to transduce, in less than a few microseconds, the sound stimuli into nerve impulses
faithfully reproducing their intensity and frequencies. Furthermore, it is equipped with
a powerful active amplification mechanism which further increases the performance of
the ear in terms of its sensitivity and frequency selectivity.

The Organ of Corti contains support cells and acoustical receptors called hair cells.
In the mammalian cochlea there are two types of hair cells: the outer and the inner
hair cells, according to their position with respect to the modiolus. The apical portion
of a receptor cell is composed of a complex transduction structure, the hair bundle of
stereocilia, which is inside the scala media (Fig. 2.2). The free ends of the OHCs and
the apical processes of the phalangeal cells form the reticular lamina, which acts as a
chemical barrier between the ions in the scala media and the scala tympani. Above the
hair bundles there is the tectorial membrane, which moves with the longest stereocilia of
the outer hair cells. The transmission of the vibrations to the endocochlear fluid liquids
is possible thanks to the round window whose movement is out of phase with those of
the footplate, since the fluid in the chambers is almost incompressible. In this way the
vibrations propagate through the perylimph of the scala vestibuli and tympani and is
transmitted to the scala media.

2.3.2 Hair cells

Hair cells are epithelial structures specialised in the mechanoelectrical sensory transduc-
tion and are based in the organ of Corti. In mammals there are about 3500 inner hair
cells arranged in a single row over the entire length of the basilar membrane while there
are about 12000 outer hair cells arranged in three parallel rows. They are cylindrical in
shape. The basal portion of the cell rests on support elements which have specialised
structures for the synaptic transmission through the peripheral extensions of the neurons
in the spiral ganglion or, in the case of the outer hair cells, through the efferent axon
terminal from the central nervous system. The apical part is inside the scala media and
it contains the hair bundles. The luminal surface which covers the scala media separates
the two portion of the cells which are exposed to different external conditions. The
apical part is immersed in the endolymph while the basal portion is surrounded by the
perylimph.

These are the common characteristics of the outer and hair cells. They differ in other
important details of their structure and innervations which reflects their distinct func-
tional role. The hair cells have different afferent innervations through which they send
signals to the central nervous system (CNS) and efferent innervations coming from the
CNS through which their function is regulated. The inner hair cells transmit the sensory
information to the peripheral extensions of type I neurons in the spiral ganglion. Type I
neurons are about 30000 and represent 95% of the neuronal population of the ganglion.
Every inner cell have about ten synaptic contact with an equal number of sensory neu-
rons so that every neuron receives information from a single receptor. Furthermore, the
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number of the peripheral extensions in contact with a single receptor cell is greater in
the central part of the cochlea and decreases towards the apex. This suggests that the
innervations is organised so that the transmission of particular frequencies important for
the species is enhanced. The efferent innervations contact the post-synaptic elements of
the peripheral extensions of the neurons of the spiral ganglion.

On the other hand, the outer hair cells are in contact with the peripheral extensions
of afferent neurons which are just about 5% of the neurons in the spiral ganglion. Every
peripheral extensions has then various branches that contact different receptors. The
efferent connections of the OHCs contact directly the basal portion of the cells. The
differences in innervation suggest that the inner hair cells play the role of receptor with
high capacity of discrimination and analysis of the sensory stimulus. On the other hand,
the innervations of the outer hair cells suggest that they play a different role acting as
actuators that require a central control.

Mechanoelectrical transduction in the hair cells An important property of
the outer hair cells is that they are based on the interface between the endolymph of
the scala media and the perylmph, into which is inserted the basolateral portion of
the receptor. The ionic composition of the endolymph is rich in potassium ions and
low in sodium ions, maintained by sodium-potassium pumps in the membrane of the
cells on the stria vascularis, which actively pumps potassium ions into the endolymph
exchanging them with sodium ions. For this reason the potential difference between
the endolymph and the extracellular liquid is about +80 mV. Furthermore, because the
resting potential of the hair cells is about −60 mV there is a potential difference of about
−140 mV between the interior of the receptors and the scala media (Purves et al., 2001).
This potential difference is essential to the function of the inner ear because it provides
the driving force for the mechanotransduction. The transduction is operated by the hair
bundles: the mechanical stimulation produced by the sound wave deflects the bundle,
which induce a variation of the ionic permeability of the membrane, which in turn
changes the membrane potential of the receptor. Every bundle is formed by about ten
stereocilia, rigid cytoplasmatic extroflexions, with a cylindrical shape and full of actin
filaments which protrudes in the scala media. The stereocilia of a bundle have different
lengths and they are arranged in parallel lines according to their length. The tip of every
stereocilia is connected with the adjacent stereocilia of the next row through a proteic
filament called tip-link. At its extremity the tip-link is connected with a channel protein
called the transduction channel, which is based in the membrane of the stereocilia. The
tip-link is a chain of cadherin-23 which form a filament with low extensibility, connected
to the extremity of a ankyrin molecule, which is elastic. On the whole, the apparatus can
be represented as a spring (Fettiplace, 2017): if it is contracted, the channel is opened
and the ions flow through the pore; if it is relaxed the channel is closed. Because the
stereocilia are arranged according to their length, when the bundle bends toward the
row of longer stereocilia, the distance between the tip of the stereocilia of the next rows
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increases, the tip-link is stretched and the channels are opened. On the other hand, a
movement in the opposite direction results in a decrease of distance between the tips
of the stereocilia, reducing the tension of the filament and in turn in the closure of the
channel of transudction. Because the stereocilia are strictly connected through the tip-
links, the bundles act as a unitary structure in which all the channels of transduction
open and close at the same time. In this way small deflections of the bundle results
in significant modifications of the membrane potential, so that the receptor can detect
even the most fine temporal characteristics of the stimulus. When the bundle is at rest,
the tip-links are not completely relaxed and the transduction channels are in part open.
For this reason the receptor cell can detect deflections of the bundle in both directions.
Deflections toward higher stereocilia results in a depolarization of the receptor while
deflections in the opposite direction results in a hyperpolarizations. In this way the
membrane potential of the receptor varies according to the movement of the stereocilia,
reproducing the contracting and relaxing phases of the sound wave up to frequencies of
tens of kHz. In the contraction phase the stimulus bends the bundles toward the rows of
higher stereocilia so that the transduction channels are opened. The potential difference
of −140 mV between the interior of the outer hair cell and the endolymph produce a flux
of potassium ions towards the interior of the receptor. The cell depolarises giving rise
to the so called receptor potential. The variation of potential induces the opening of
voltage-gated calcium channels that are in the basolateral membrane of the cell. This ion
input increases further the depolarization triggering the release of the neurotransmitter
at the synaptic level of the connections with the peripheral extension of the neurons of
the spiral ganglion. Then, the mechanical stimulus bends the bundle towards the row of
lower stereocilia closing the transduction channels and stopping the flows of potassium
ions. The Ca2+ ions flown toward the interior of the hair cells inducing the opening of
the potassium permeable channels on the basolateral membrane of the receptor. In this
zone the hair cell is immersed in the extracellular liquid and the electrochemical gradient
directs potassium ions towards the exterior of the cell. At the same time, Ca2+ ions
are actively extruded by ionic pumps on the receptor membrane. In this way a flux of
positive charge is directed toward the exterior hyperpolarizing the receptor membrane
and stopping the synaptic transmission. The resting potential is restored at the end of
the period of the sound wave when the stereocilia go back to the rest position and a new
cycle began.

The variations of the membrane potential, the quantity of released neurotransmitter
and the resulting activity of the neurons in the spiral ganglion are proportional to the
deflections of the hair bundles which in turn are proportional to the stimulus. In this
way the receptor measures the intensity of the mechanical stimulus and transduces it in a
precise bioelectrical signal. It is important to note the high sensitivity of this mechanism
which is able to respond to movements of the stereocilia up to few nanometers. For
example, the tallest stereocilia movement produced by a stimulus at the threshold of
hearing is about 0.3 nm (Purves et al., 2001).
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2.3.3 Passive and active mechanisms of the cochlea

Since the first studies of the physiology of the hearing system it has been recognised
that the fundamental sensory function of the cochlea is the spectral analysis of the
frequencies that compose the sound stimulus. Herman von Helmotz suggested (von
Helmoltz, 1874) that the basilar membrane was constituted by a series of elements, driven
by the fluid pressure, able to resonate selectively at the different frequencies of the audible
spectrum. Georg von Bekesy demonstrated (Békésy, 1960) that the sound stimulus
induces a travelling wave that propagates along the basilar membrane. Because of the
mechanical properties of the BM, rigid and narrow at the base of the cochlea and wider
and more flexible as one goes toward the apex, a large change in stiffness exists along the
BM so that the sound waves of different frequencies propagates for different distances. In
particular, they reach a peak of maximum amplitude in precise locations, characteristic
of each frequency. Accordingly, the frequencies of the audible spectrum are represented
continuously along the basilar membrane: the high frequencies on the basal part, the
low frequencies on the apical region. According to this model, the ability of a receptor
to respond selectively to a particular frequency depends only on its position along the
basilar membrane. However, the properties of the travelling waves, measured by Bekesy
in the cochlea of human cadavers, cannot explain the high sensitivity and the exceptional
discrimination abilities of the living hearing organ. For these reasons, the existence of an
active mechanism that amplifies the mechanical stimulus and modifies the travelling wave
to increase the sensitivity and the frequency selectivity of the receptors, was proposed by
T. Gold (Gold, 1948). The basic hypothesis to explain the active amplification concerns
the properties of the outer hair cells. In these cells the mechanoelectrical transduction,
mediated by the hair bundle, is followed by an electromechanical transduction in which
the variation of the membrane potential is transformed in vibrations of the length of the
cells which then exert a force on the basilar membrane. In this way the OoC acts as a
local feedback loop providing positive feedback to amplify the motion. However, it is
not yet fully understood how the outer hair cells interact with each other and with the
other parts of the Organ of Corti in order to provide a relatively stable system with a
high performance in terms of sensitivity and frequency selectivity.

In the next Chapter we are going to study the passive mechanism of the cochlea,
by deriving an analytical solution to the cochlear wave equation, when fluid viscosity
and compressibility are included. Then, in Chapter 4 we will discuss experimental
methods that have been used to characterize wave motion inside the cochlea, together
with recent work measuring the relative motion of the various parts within the Organ of
Corti, which emphasizes the importance of longitudinal coupling in understanding the
active mechanism of the cochlea, as studied in the later chapters.
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Chapter 3

Solution to the wave equation for
the passive cochlea

3.1 Introduction

In this chapter we derive the Wentzel-Kramers-Brillouin (WKB) approximation to the
cochlear wave equation, which results from the interaction between the passive dynam-
ics of the basilar membrane and the 1D fluid coupling in the scale, including both fluid
viscosity and compressibility. The solution is expressed only in terms of nondimensional
parameters, the effect of which on the basilar membrane response and on the wavenumber
distribution are then discussed. A nondimensional damping parameter and a nondimen-
sional phase-shift parameter are shown to have the greatest influence on the response
under normal conditions in the cochlea, with the fluid viscosity and compressibility only
playing a minor role.

3.2 Wavenumber distribution in the passive cochlea in-
cluding fluid compressibility and viscosity

The passive behaviour of the cochlea can be understood in terms of the interaction be-
tween the inertia of the fluid and the dynamics of the Organ of Corti which separates
them. This can be modelled as a one-dimensional box model, represented in Fig. 3.1,
which is based on some simplified assumptions with respect to the real geometry and
cell’s structure of the cochlea. First, it is assumed that the cochlea extends only along
one dimension, the longitudinal coordinate x. Secondly, the Reissner’s membrane is
neglected because it is acoustically transparent, so that there are only two fluid cham-
bers, denoted as scala vestibuli (SV) and scala tympani (ST). The boundaries of these
chambers are considered to be rigid and to communicate with the external environment
only through the membranes at the round and oval windows, at the base of the cochlea.
Finally, the dynamic of the complex tissue and cell structure of the cochlear partition
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Figure 3.1: Schematic diagram of the box model of the uncoiled cochlea, showing two fluid
chambers, divided by the BM, represented as N locally reacting single degree-of-freedom ele-
ments, consisting of a local mass, stiffness and damping, whose values vary with position along
the cochlea. The upper chamber is driven by the middle ear via the oval window, OW, and the
lower chamber is terminated at the basal end, x = 0, by the flexible round window, RW, which
provides pressure release. The complex pressure difference p = p1−p2 drives the locally reacting
BM so that its velocity is vBM , which produces equal and opposite longitudinal flow velocity u

in the two fluid chambers, which are connected at the apical end, x = L, at the helicotrema.

is simplified as a single, elastic structure, the basilar membrane (BM), which moves in
response to the difference in pressure between the two fluid chambers.

The dynamics of the system is described by a linear wave equation that is obtained
using the conservation of mass and of momentum applied to an elemental volume of the
fluid. Assuming a time dependence of the form eiωt, the continuity equations are given
by:

∂u(x)
∂x

+ iω

2ρc2
0
p(x) = vBM (x)

h
, (3.1)

where u(x) is the longitudinal fluid velocity averaged across the cross-sectional area,
A, of the chamber; p(x) is the pressure difference between the two scalae, averaged
across the width, W , of the chamber; ρc2

0 is the bulk modulus of the fluid, where ρ is
its density and c0 the velocity of sound in the fluid; vBM is the transverse velocity of
the BM, averaged across the width of the cochlea and h is the effective height of the
chamber, given by h = π2A/(8B) (Elliott and Ni, 2018), where B is the width of the
basilar membrane. It is assumed that A, W and hence h are constant with x, giving a
uniform cross section, as shown in Fig. 3.1.

The momentum equation is given by:

∂p(x)
∂x

= −2iωρu(x)− 4ν
h2 u(x), (3.2)

where ν is the dynamic viscosity of the fluid. The prefactor 4 is used to be consistent
with the analysis in (Deepu, 2019), in which this term is derived by comparison with
the solution of plane Poiseuille flow. Combining Eqs. (3.1) and (3.2) we obtain:

∂2p(x)
∂x2 + ω2

c2
0

(
1− 2iν

h2ωρ

)
p(x) = −2iωρ

h

(
1− 2iν

h2ωρ

)
vBM , (3.3)
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which describes the relation between the movements of the BM and the pressure distri-
bution of the fluid. As the BM is assumed to be locally reacting, the velocity of a point
on the BM is equal to the negative value of the admittance, Y (x), times the pressure
difference p(x), due to the sign convention:

vBM = −Y (x, ω)p(x), (3.4)

so that Eq. (3.3) becomes:

∂2p(x)
∂x2 + k2(x, ω)p(x) = 0, (3.5)

which is the wave equation of the cochlear model and k, the complex wavenumber, is
given by:

k(x, ω) = ±
√(
−2iωρ

h
Y + ω2

c2
0

)(
1− 2iν

h2ωρ

)
. (3.6)

A single degree-of-freedom model is used to model the dynamics of the passive BM,
whose admittance, Y (x), is given by:

Y (x) = iω

iωR(x) + S(x)− ω2M(x) . (3.7)

where R(x, ω), S(x, ω) and M(x) are, respectively, the stiffness, mass and resistance per
unit area of the BM. The term M(x) includes a contribution from the entrained mass
of the fluid (Neely, 1981). The longitudinal variation of the remaining variables is given
by:

R(x) = m0wn(x)
Q

, (3.8a)

S(x) = ω2
n(x)m0, (3.8b)

where Q is the quality factor of the BM local resonance, also assumed to be constant
in x, and ωn is its natural angular frequency at position x, and is assumed to vary
exponentially along the cochlea as (de Boer, 1996):

ωn = ωbe
−x/l, (3.9)

where ωb is the natural angular frequency at the base of the cochlea and l the charac-
teristic length. The expression of the wavenumber in Eq. (3.6) then becomes:

k = ±

√√√√√
 2ρω2

hm0ω2
n

1(
1− w2

w2
n

+ iω
ωnQ

) + w2

c2
0

(1− 2iν
h2ωρ

)
. (3.10)
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This can be rewritten as:

k = kfc

√√√√G2ω2
n + iωωn

Q − ω2

ω2
n + iωωn

Q − ω2 , (3.11)

where kfc is the complex wavenumber in the fluid domain, which takes into account the
effect of viscosity, and is given by:

kfc = ω

c0

√
1− 2iV 2, (3.12)

and G is the bandgap ratio:

G =
√

1 + 16N2

C2
n

, (3.13)

which is the ratio of the limiting frequencies of the corresponding stop band shown in
Fig. 3.2a. In Eqs. (3.12) and (3.13) we have introduced the following nondimensional
variables:

C = ωl

c0
, (3.14a)

V = δ

h
, (3.14b)

N = l

4h√µ, (3.14c)

µ = m0
2ρh, (3.14d)

where C is the nondimensional compressibility; since C depends on the excitation fre-
quency the parameter Cn, which is equal to ωnl/c0, is also used and is called nondi-
mensional compressibility at resonance; V is the nondimensional viscosity, which is the
ratio of the viscous boundary layer thickness, δ, given by

√
ν/ωρ, to the effective height

of the fluid chambers, h; N is a constant introduced in (Zweig et al., 1976), called the
phase-shift parameter and µ is the ratio of the mass per unit area of the BM and of the
fluid in the chambers. The geometrical and physical values assumed for the cochlear
model are listed in Table 3.1 and the corresponding nominal values of the nondimen-
sional parameters (Q0,N0,C0 and V0), for an excitation frequency of 1 kHz, are listed in
Table 3.2.

The real and imaginary parts of the wavenumber are plotted in Fig. 3.2 for differ-
ent values of the nondimensional parameters, to show their effect on the wavenumber
distribution. In Fig. 3.2a, it is shown that, for a nominal value of Cn, equal to C0,
a pass band is seen up to the natural frequency, for which ω/ωn = 1. In this region
the real part of the wavenumber is rising and also its slope is increasing, so that the
phase and group velocities, given respectively by cph = ω/k and cgr = ∂w

∂k , decrease
along this band, leading to the wave being slowed so that its amplitude is concentrated
near the natural frequency. The imaginary part of the wavenumber is for the most part
very small, corresponding to little energy loss. The imaginary part starts to increase in
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magnitude at a frequency slightly before the peak of the real part. This leads to a stop
band, where the imaginary part of the wavenumber remains high in absolute terms and
the wave is greatly attenuated. For values of Cn much larger than the nominal one, a
second pass band occurs, in which the wave again begins to propagate.

In Fig. 3.2b the real and imaginary parts of the wavenumber are plotted for different
values of the nondimensional viscosity parameter V . Only for values of V that are
very much larger than the nominal value do the real and the imaginary part of the
wavenumber change significantly. In particular, the imaginary part increases and is non-
zero even at the lowest frequencies, indicating a greater attenuation as V is increased.

In Fig. 3.2c the real and imaginary parts of the wavenumber are plotted for different
values of the quality factor Q. The main effect is near the peaks of the real and imaginary
parts, around the natural frequency. In particular, the peaks become sharper and shift
slightly to higher frequencies for higher values of Q. The increase of the real part just
before ω/ωn = 1 corresponds to a decrease of the phase velocity cph, whereas the increase
slope of the real part corresponds to a decrease of the group velocity cgr. The imaginary
part increases beyond ω/ωn = 1, indicating a more abrupt dissipation of the response.

In Fig. 3.2d the real and imaginary parts of the wavenumber are plotted for different
values of the nondimensional phase-shift parameter N . As this parameter increases, the
magnitude of the real part increases, and thus the phase speed at a given frequency de-
creases, up to ω/ωn = 1. The magnitude of the imaginary part and thus the attenuation
of the wave, also increases beyond ω/ωn = 1.

Table 3.1: Assumed geometrical and physical values of the one-dimensional cochlear box model
(Elliott and Ni, 2018).

Parameter Symbol Value
Length of the cochlea L 3.5× 10−2 m
Characteristic length l 7.0× 10−3 m
Base natural frequency ωb/2π 2.0× 104 Hz
Effective height of a fluid chamber h 4.1× 10−3 m
Density of the fluid ρ 1× 103 kg/m3

Mass per unit area of the BM m0 3× 10−1 kg/m2

Coefficient of viscosity ν 8.9× 10−6 Pas
Speed of sound c0 1.5× 103 m/s

Table 3.2: Nominal values of nondimensional parameters in the cochlear model corresponding
to an excitation frequency of 1 kHz.

Parameter Symbol Value
Quality factor Q0 5
Nondimensional viscosity V0 2.9× 10−3

Nondimensional compressibility C0 2.1× 10−2

Phase-shift parameter N0 2.23
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Figure 3.2: Variation of (upper) the real part and (lower) the imaginary part of the wavenumber
as a function of normalised frequency, for (a) different values of the nondimensional compress-
ibility parameter at resonance Cn, (b) the normalised viscosity V , (c) the quality factor Q and

(d) the normalised phase-shift parameter N .

3.3 Analytic WKB solutions including compressibility and
viscosity

We now derive an approximation to the exact solution of the wave equation Eq. (3.5)
using the WKB method. The WKB method has been previously used to obtain closed-
form solutions for 1D (Zweig et al., 1976), 2D (Steele and Miller, 1980) and 3D (Taber
and Steele, 1981; Steele and Taber, 1979a) models. These solutions have been obtained
in the case of an incompressible and inviscid fluid, by assuming light damping in the
BM. In (Deepu, 2019) a semi-analytic solution is derived for the 1D case, including fluid
compressibility and viscosity and with no approximation to the BM’s damping. In this
section we derive an analytical WKB solution in terms of the nondimensional parameters
introduced in the previous section and then discuss their contribution to the amplitude
and phase response of the BM.
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The condition of validity for the WKB approximation is that:

|k′(x)|
|k2(x)| � 1, (3.15)

where k(x)′ is the derivative of k with respect to x. It has been shown that the ap-
proximate WKB solution differs from numerical solutions, given by the finite difference
method (Neely, 1981), only for angular frequencies of excitation ω much lower than the
value of the frequency at the base, ωb, and for frequencies just above the natural fre-
quency, where the WKB response drops off more quickly than the exact solution (de Boer
and Viergever, 1982; Steele and Taber, 1979a; Steele and Miller, 1980). Although an
assumption made in the WKB method is that only a single wave is propagating, the
effects just above the natural frequency may be due to low amplitudes of an additional
evanescent fluid wave (Elliott et al., 2013; Watts, 2000). Apart from these small differ-
ences, the WKB solution and the finite difference solutions are very similar around the
characteristic frequency, which is the main region of interest in the study. The form of
this response, with an increasing magnitude and falling phase up to the characteristic
frequency, after which there is a rapid drop in amplitude with little additional phase
shift, is consistent with that measured in the mammalian cochlea using laser methods,
for example in (Robles and Ruggero, 2001) and recent optical coherence tomography
techniques, as in (Ren et al., 2016b).

The general WKB solution to Eq. (3.5), with the boundary condition p(x = L) = 0,
is given by:

p(x) = p(0)
√
k(0)√

k(x)
exp[−i

∫ x
0 k(x′)dx′] + exp[−2i

∫ l
0 k(x′)dx′ + i

∫ x
0 k(x′)dx′]

1− exp[−2i
∫ l

0 k(x′)dx′]
, (3.16)

where p(0) is the value of the pressure at the base. The first term of the numerator
represents a travelling wave that propagates towards the apex, while the second term
describes a wave that originates by reflection of the first wave at the helicotrema (x = L)
and then propagates toward the base. This last term is significant only for frequencies so
low that the pressure p(x) at the apex retains an appreciable value. It has been shown,
by numerical integration of the WKB solution (Deepu, 2019), that this reflected wave is
much smaller than the forward-travelling wave and that it is important only in a region
very near the apex. We can thus simplify the approximate solution in Eq. (3.16) as:

p(x) = p(0)
√
k(0)√

k(x)
exp(φ). (3.17)

where
φ = −i

∫ x

0
k(x′) dx′. (3.18)

The integral above can be solved as outlined in Appendix A. A simplified expression
can then be obtained by making the approximation ω � ωb, since we are interested in
the form of the solution for excitation frequencies that are much lower than the natural
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frequency at the base. In this case φ can be written as:

φ = iC
√

1− 2iV
[

1
Q
√
−1 + 16N2

C2

F

− arcsin(i/Q+ ωn/ω), 1√
1− 16N2

C2


+4ω2

Q

√
−1 + 16N2

C2 Π

−Q2;− arcsin(i/Q+ ωn/ω), 1√
1− 16N2

C2


+ arctanh

( √
(i/Q+ ωn/ω)2 − 1√

16N2/C2 − 1 + (i/Q+ ωn/ω)2

)

+

√
−1 + 16N2

C2 arctan
(√

16N2/C2 − 1
√

(i/Q+ ωn/ω)2 − 1√
16N2/C2 − 1 + (i/Q+ ωn/ω)2

)]
, (3.19)

where F and Π are, respectively, an elliptic integral of the first and third kind. It is in-
teresting to note that although the wavenumber in Eq. (3.11) depends on Cn = ωnl/c0,
via the term G in Eq. (3.13), the phase term φ only depends on the nondimensional com-
pressibility term C = ωl/c0 defined in Eq. (3.14a) where ω is the excitation frequency,
since the term ωn cancels out in the integration in Eq. (A.3).

From the pressure distribution, given by Eq. (3.17), we can derive the velocity of a
point of the BM using Eq. (3.4) and, from this, the corresponding displacement ∆ by
dividing by iω, obtaining:

∆(x, ω) = −

4

√√√√1 + 16N2

C2

(
ω2

b
ω2 + iωb

Q0ω
−1
)

m0ω2
(

iωn
Q0ω

+ ω2
n
ω2 − 1

)
4

√
1 + 16N2

C2
(

iωn
Q0ω

+ ω2
n

ω2 −1
) p(0) exp(φ). (3.20)

It is customary to normalize the displacement of the BM with respect to the displacement
of the stapes, ∆s, which can be derived from the fluid volume velocity u at x = 0, given
by Eq. (3.2), as:

∆s = −u|x=0
iω = −

√√√√1 + 16N2

C2

(
iωb

Q0ω
+

ω2
b

ω2−1
)

2iωρc0
√

1− 2iV
p(0), (3.21)

so that, using 2ρc0/ωm0 = 4N/C√µ, we obtain the BM displacement ratio D = ∆/∆s,
as a function of only the nondimensional parameters defined above:

D = 4N i
√

1− 2iV exp(φ)
C
√
µ
(

iωn
Qω + ω2

n
ω2 − 1

)
4

√√√√1 + 16N2

C2

(
ω2

b
ω2 + iωb

Qω
−1
)

4

√
1 + 16N2

C2
(

iωn
Qω

+ ω2
n

ω2 −1
) . (3.22)
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3.4 Parametric variation of the coupled response with nondi-
mensional parameters

We now show how the amplitude and the phase of the normalised BM motion, D, as cal-
culated in the previous section, depends on the nondimensional parameters introduced in
Section 3.2 (Q,N ,C and V ), so that we can clarify their physical significance. In Fig. 3.3
the amplitude and the phase of D are plotted, as a function of the normalised angular
frequency ω/ωn, for different values of the nondimensional compressibility parameter,
C, calculated at ω/ωn = 1, at which frequency C is equal to Cn.

Figure 3.3: Variation of the amplitude (top) and of the phase (bottom) of the normalised BM
displacement, for different values of the nondimensional compressibility parameter C, calculated

at ω/ωn = 1, as a function of normalised excitation frequency.

For C less than C0 there is no effect on the amplitude and phase of the response,
so that fluid compressibility can be neglected in a physiological model of the cochlea.
As C is increased above the nominal value C0, but less than 30C0, the amplitude of
the displacement ratio increases in the lower pass band. For values of C greater than
100C0, the value of D decreases at the characteristic frequency. In the stop band, the
response decays rapidly, due to the high losses attributed to the imaginary part of the
wavenumber there, as seen in Fig. 3.2a. For larger values of C, a second peak appears
in the second pass band, as the wave again starts to propagate. In the phase plot of
Fig. 3.3, it can be seen that the phase decreases gradually up to the peak frequency. In
the stop band the phase shift is lower. In the second pass band, the phase again decreases
due to forward wave propagation. In Fig. 3.4, the amplitude and the phase of D are
plotted for different values of the nondimensional viscosity parameter, V , calculated at
ω/ωn = 1. The nondimensional viscosity term has an appreciable effect only for very
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high values (V > 103V0), for which the magnitude of D is reduced, resulting in a lower
peak around ω/ωn. This is related to the increase of the real and imaginary part of the

Figure 3.4: Variation of the amplitude (top) and of the phase (bottom) of the normalised
BM displacement, for different values of the nondimensional viscosity parameter V , calculated

at ω/ωn = 1, as a function of normalised excitation frequency.

wavenumber, for high values of V , as seen in Fig. 3.2b. In particular, the high value
of the imaginary part at lower frequencies greatly attenuates the wave, thus decreasing
the value of D and flattening the curve. This supports a previous study by (Sasmal and
Grosh, 2019), in which it is shown that the effect of viscosity is important only at the
apex of the cochlea, where the viscous boundary layer thickness becomes comparable to
the height of the cochlea. It is also in agreement with experimental results in which it
has been shown that an increase in fluid viscosity led to a decrease in the BM amplitude
(Tonndorf, 1957) and in the flattening of the response curve (Gan et al., 2007). For
values of V less than the nominal value, there is no change in the coupled response thus,
apart from its effect at the apex of the cochlea, fluid viscosity can be neglected in the
model.

In Fig. 3.5 the amplitude and the phase of D are plotted for different values of
the quality factor, Q. The amplitude response becomes sharper around the natural
frequency and shifts to higher frequencies with increasing Q. For ω/ωn > 1 the response
decay becomes steeper as Q is increased, while for ω/ωn � 1 the amplitude is relatively
unaffected. The phase response becomes steeper around the characteristic frequency
with increasing Q. This corresponds to the increase of the real part of the wavenumber
around ω/ωn = 1.

In Fig. 3.6 the amplitude and the phase of D are plotted for different values of the
nondimensional phase-shift parameter N . For low values of N , the response of the BM
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Figure 3.5: Variation of the amplitude (top) and of the phase (bottom) of the normalised
BM displacement, for different values of the nondimensional quality factor Q, as a function of

normalised excitation frequency.

is almost symmetric on a log frequency axis, indicating weak fluid coupling and a phase
shift of about half a cycle only occurs close to the characteristic frequency, implying a
local resonance and no wave propagation. With increasing values of N , the phase change
is larger and the amplitude response becomes asymmetrical, with a characteristic peak
at sightly less than ω/ωn = 1, with a steep decrease after this, indicating strong fluid
coupling. This is related to the dependence of the wavenumber on N , as shown in
Fig. 3.2d. For small values of N , the real part of the wavenumber is small so that the
wave speed is high and the pressure becomes almost uniform along the cochlea, driving
the BM as a resonant second order system. The phase shift of D is then only π/2
at the BM resonance, as associated with an isolated resonator. These results are in
accordance with (Rapson et al., 2014), where the relationship between the BM mass
and the coupled response is discussed. The more complete analysis here illustrates the
dependence of the form of the coupled response not just on the BM mass via µ, but on
the more complicated nondimensional parameter, N .

In all the cases discussed above, the phase shift of the BM displacement ratio, given
by Section 3.3, increases somewhat for frequencies much higher than the characteristic
frequency. This is in contrast to what has been observed experimentally, as in (Rhode
and Geisler, 1970). However, this phase increase only occurs when the normalised mag-
nitude response is lower than -60 dB, so that it does not affect the overall response in
practice.
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Figure 3.6: Variation of the amplitude (top) and of the phase (bottom) of the normalised BM
displacement, for different values of the nondimensional parameter N , as a function of normalised

excitation frequency.

3.4.1 Incompressible and inviscid case

The contributions of compressibility and viscosity of the fluid to the displacement ratio
can be neglected if V and C are much smaller than unity. This is valid for nominal phys-
iological values of these parameters, as seen in Table 3.2. In this case, the wavenumber
in Eq. (3.11) simplifies so that:

kl = 4N
√

ω2

ω2
n + iωnω/Q− ω2 (3.23)

i.e. the wavenumber is directly proportional to N as seen in Fig. 3.2d. Section 3.3 for
the displacement ratio then reduces to:

D = 4N i exp{−i4N(arcsin (ω/ωn − i/(2Q))− arcsin (ω/ωb − i/(2Q))}
C
√
µ
(

iωn
Qω + ω2

n
ω2 − 1

)
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C 4

√√√√ 1(
ω2
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ω2 + iωb

Qω
−1
)

4

√
1(

ω2
n

ω2 + iωn
Qω
−1
) , (3.24)

which becomes, taking into account the relation N = l/(4h√µ) and making the approx-
imation ω � ωb:

Dincomp = iω√ωb exp{−i4N(arcsin (ω/ωn − i/(2Q))}
√
µ
(
ω2
n − ω2 + iωωn

Q

)3/4 . (3.25)
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Apart from an additional factor of h and the absence of a factor of ω3/2
n , which give the

correct nondimensionality, this expression is equivalent to that derived in (Zweig et al.,
1976) for the case of an incompressible and inviscid fluid.

The only direct effect of the mass ratio, µ, on D is to scale the overall response,
whose shape is determined by N and Q. Although the nondimensional parameter N is
seen to be a function of µ in the definition in Eq. (3.14c), its additional dependence on
l and h means that in numerical simulations it can be varied while keeping µ constant,
as in Fig. 4.13 of (Karlos, 2020).

3.5 Conclusions

An analytic WKB solution for the wave equation in the passive cochlea has been derived,
including the effects of both viscosity and compressibility in the cochlear fluids, which
reduces to an earlier result (Zweig et al., 1976), if the effects of viscosity or compressibil-
ity are ignored. This allows the response of the cochlea to be expressed in terms of four
nondimensional parameters, two dependent on the viscosity and compressibility of the
fluid, one dependent on the damping of the basilar membrane, and finally a previously
derived nondimensional phase-shift parameter (Zweig et al., 1976). For the parameters
found in the normal cochlea, however, the effect of the fluid viscosity and compressibility
is very small. A physical interpretation can then be put on the behaviour of the wave by
considering the parametric variation of the cochlear response with each of these parame-
ters. It is found that the nondimensional phase-shift parameter determines not only the
high frequency phase shift (Zweig et al., 1976) but also the nature of the interaction be-
tween the structural dynamics of the BM and the fluid inertia. If this parameter is large,
the fluid-structural coupling is strong and a propagating wave is generated for frequen-
cies up to about the natural frequency, with strong attenuation above this, giving a very
asymmetrical frequency response. If this parameter is small, the fluid-structural cou-
pling is weak, and the elements of the basilar membrane respond independently, driven
by the constant pressure in the fluid, generating an almost symmetrical frequency re-
sponse function when plotted on a log scale. Although the phase-shift parameter that
determines the shape of the response is proportional to the square root of the ratio of
the mass per unit length of the fluid in the chambers to the mass per unit length of
the BM (Rapson et al., 2014), it also depends on the ratio of the characteristic length
of the exponential decay in frequency along the cochlea to the effective height of the
fluid chambers. Therefore, the mass ratio by itself only changes the amplitude and not
the form of the response if the phase-shift parameter is kept constant, by varying the
characteristic length of the cochlea.

In the passive, one dimensional case described in this chapter, only one type of wave
dominates the coupled response of the system. When longitudinal coupling due to other
forms of fluid coupling or other components of the Organ of Corti is included, an infinite
number of wavenumber distribution, associated with various types of waves, are possible.
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In Chapter 7 we will present a method to derive the wavenumber distribution associated
with different types of waves for active model of the cochlea which includes different
types of longitudinal coupling. This model is derived as an extension of the elemental
model (Elliott and Ni, 2018) to include the micromechanical structure of the Organ of
Corti, based on a detailed Finite Element Model of the cochlea developed by (Sasmal
and Grosh, 2019), as described in Chapters 5 and 6. Before we do that, in the next
Chapter we review the experimental methods used to measure the passive and active
response of the cochlea and, in particular, recent experiments that showed the important
contribution of longitudinal coupling to the active response of the cochlea.
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Chapter 4

Review of experimental
measurements within the active
cochlea

4.1 Introduction

As discussed in Chapter 2 , in order to explain the high sensitivity and frequency discrim-
ination of the cochlea, it is necessary to hypothesize the existence of an active feedback
system within the Organ of Corti. To understand how this system works, the differential
movements of the cells and tissues that compose the Organ need to be measured and dis-
tinguished. Until recently, this has not been possible because the resolution limit of the
various experimental techniques used to probe the cochlea were greater than the height
of the Organ of Corti (∼ 100µm vs ∼ 50µm). Furthermore, in order to obtain a good
signal to noise ratio, it was necessary to open the cochlea and to place reflective beads
on its surfaces. This has three main consequences. First, once the cochlea is opened,
its physiological and mechanical properties, responsible for the good functioning of the
cochlear amplifier, degrades over time. Secondly, the reflective components may alter
the mechanical properties of the OoC, even if they are designed to be as small and light
as possible. Furthermore, because of the spiral structure of the cochlea, the basal region
is difficult to access, so that the majority of the experiments have measured the response
in the apical region of the cochlea.

However, in 2007, (Chen et al., 2007) introduced the use of the low-coherence in-
terferometer to study the movements within the OoC in a living cochlea. With this
technique it is possible to achieve an axial resolution of ∼ 10µm so that the movements
of the major components of the OoC (RL, BM, OHC, Hensen’s cells, TM) can be dis-
tinguished. As explained in the previous chapter, it is believed that the cells responsible
for the active feedback process are the outer hair cells so it makes sense to use the new
technique to measure their motion with respect to the BM, whose motion has been mea-
sured in the last 50 years, so that the new data can be connected to the older BM data.
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However, a consensus on which cells’ or tissues’ movements should be measured has not
yet been reached. So far, the motion of the RL, the OHCs, the Hensens’ cells and the
TM have been recorded with respect to the BM. Thanks to these new data it is now
possible to test old and develop new models of the cochlea to explain the functioning
of the active amplifier. The aim of this chapter is to present the main techniques that
have been used to record the movements within the cochlea, underling the contribu-
tion of each approach to the understanding of particular features of the Organ of Corti
(e.g. passive and mechanics, non-linearity, high frequency selectivity). Furthermore, the
advantages and limitations of each technique will be described.

4.2 Stroboscopy

Stroboscopy was first used by Bekesy to study the movements of the basilar membrane in
human and animal cadavers (Békésy, 1960). The temporal bone was dissected soon after
death and immersed in a saline solution. The round and oval windows were removed and
substituted by rubber windows and a mechanical vibrator was attached to one of them
(Fig. 4.1). Then the cochlear bone was opened under water and a light microscope,
with a magnification of 140x, was used to observe, under a flashing light source, the
movements of a specific point of the basilar membrane when it was excited by acoustic
stimuli. A reflective material could also be placed on the basilar membrane in order to
enhance the signal to noise ratio. The results were reported in two ways: by measuring

Figure 4.1: A diagram showing the stroboscopy technique used to look at the movements of
the basilar membrane. The source is a stroboscopy light, followed by a heat absorbing glass to
reduce the heat transmitted by the source. The microscopic condenser lens concentrate the light
so that, in the plane of the stroboscope disk, an image of 100µm is formed. Republished with
permission of McGraw Hill LLC, from (Békésy, 1960, p. 441); permission conveyed through

Copyright Clearance Center, Inc.



4.2. Stroboscopy 31

Figure 4.2: Patterns of vibration of the cochlear partition for various frequencies. Republished
with permission of McGraw Hill LLC, from (Békésy, 1960, p. 448); permission conveyed through

Copyright Clearance Center, Inc.

the vibrations at a fixed point as the frequency was varied, Fig. 4.2 or by plotting the
movements along the basilar membrane for a particular frequency, Fig. 4.3. Both type
of approaches showed that vibrations of the stapes induce a travelling wave along the
basilar membrane which grows in amplitude as it travels towards the apex, decreasing in
speed and then decaying after a specific point, which occurs in the basal region for high-
frequency tones and in the apical region for low-frequency tones. The axial resolution
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Figure 4.3: Frequency responses for six different positions along the cochlear partition. Repub-
lished with permission of McGraw Hill LLC, from (Békésy, 1960, p. 454); permission conveyed

through Copyright Clearance Center, Inc.

of this method is about 100µm (Békésy, 1960) so that only the movement of the basilar
membrane can be distinguished. The frequency selectivity of the basilar membrane was
observed to be not very sharp (Q 1 < 1.6), with a sallow slope for frequencies below the
CF and a steep slope on the high-frequency side. Bekesy explained his data as a result
the interaction between the inertia of the fluid in the chambers and the stiffness of the
partition that separates them, which induce a travelling wave on the basilar membrane
which peaks at particular positions according to the frequency of excitation.

4.3 Capacitive probes

Bekesy also pioneered the use of capacitive probes, as an alternative technique to stro-
boscopy, to measure the vibration of the basilar membrane (Békésy, 1960, p. 54-57).
In this method, a metal plate is positioned in the vicinity of the basilar membrane, so
that together they form a capacitor, whose capacitance varies as the distance between
the two objects varies (Fig. 4.4). A circuit is built to obtain a voltage signal that is
proportional to the capacitance so that the vibrations of the basilar membrane can be
recorded. But Bekesy’s probes were not small enough to obtain the required spatial
resolution to distinguish the BM movements. (Wilson and Johnstone, 1972), used a
mini-probe with a tip of 0.2 mm in diameter and was able to measure the vibrations of
the BM down to 0.1 mm.

The main advantage of this technique, respect to the stroboscopic experiments, is
that there are no reflective objects that interfere with the movements of the BM. The
main disadvantage is that the calibration is not simple because the output depends on
the dielectric constant of the tissue facing the probe, which is not known, and on the
average distance between the probe and the vibrating surface, so that it is not always
possible to obtain absolute measurements. Furthermore, it is necessary to remove the
perilymph from the scala tympani, altering the mechanical and physiological properties
of the cochlea.

1defined as the resonant frequency divided by the half-power band width.
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Figure 4.4: The principle of the capacitive probe. The probe capacitance, C, is measured in
terms of the alternating voltages across the resistance R , when a current of 100 kHz is passed
through R and the condenser C from a source G. When the impedance of C is much grater
than that of R, the voltage across R is essentially a measure of the impedance C, if the generator
voltage is kept constant. Republished with permission of McGraw Hill LLC, from (Békésy, 1960,

p. 54); permission conveyed through Copyright Clearance Center, Inc.

4.4 The Mössbauer technique

Bekesy’s measurements were restricted to frequencies below 2 kHz, to amplitude of vibra-
tions in the visible range, to high sound pressure levels (∼ 140 dB) and were performed
on excised cochleas. For these reasons, the extrapolation from these data to predict
the displacement of the basilar membrane in living cochleas under normal stimuli was
not straightforward. In this context, the experiments conducted with the Mössbauer
technique by (Johnstone and Boyle, 1967) and Rhode (Rhode, 1971) were revealing.
Using this technique it has been possible to measure the velocity of the basilar mem-
brane extending the range of measurements in both frequency and pressure excitation
(Johnstone and Boyle, 1967; Rhode, 1971; Sellick et al., 1982; Robles et al., 1986).

In the Mössbauer technique a radioactive element, typically Cobalt-57, is deposed
on the basilar membrane.Cobalt-57 decays mainly by electron capture (99.80% of the
time), to the excited level (136.47 keV) of Iron-57, with a half-life of 271.81 days. The
Iron-57 excited state decays in turn to the stable state of Fe-57 emitting gamma rays,
with a half-life of 98.0 ns. A nucleus in the vicinity of the iron nuclei can absorb the
emitted gamma radiation if it has an equivalent nuclear level, a phenomenon called
nuclear resonance. If this happens, a detector of gamma rays will show a decrease in the
counting rate, indicating that resonance has taken place and that the surface of interest
is moving. Furthermore, if the absorber and the emitter nuclei are moving one respect
to the other, the Doppler effect changes the frequency of the gamma rays, so that the
direction of motion can be distinguished.

The first experiments conducted using the Mossbauer technique were performed by
Johnstone and Boyle in 1967 (Johnstone and Boyle, 1967) who measured the displace-
ment ratios of the BM to the stapes in living guinea pigs and by Rhode in 1971 (Rhode,
1971) , who measured the ratio of displacement between the BM and the malleus in
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Figure 4.5: Tuning curves from Bekesy’s and Johnstone experiments, enhancing the difference
in the sharpness of the peaks, measured by the Q-value, and the range of frequency measure-
ments. Reprinted with permission from (Johnstone et al., 1970). Copyright 1968, Acoustic

Society of America.

squirrel monkeys. They extended the frequency range of measurements to the basal
region (3 − 25 kHz), measured absolute velocities, and used a wider range of stimuli
(60− 120 dB) than Bekesy. In both works the frequency response curves were found to
be sharper than those obtained by Bekesy: with a positive slope (∼ 10 dB/octave) for
frequencies below the CF and a steep negative slope (∼ −100 dB/octave) for frequen-
cies above the CF and a greater Q value (Q ∼ 2.5 compared to Q < 1.6 obtained by
Bekesy) (Figure Fig. 4.5). Rhode also measured the phase response, showing that it is
constant for very low frequencies (< 0.3 kHz), linear for intermediate frequencies (up to
5.5 kHz) and attains a constant value for greater frequencies Fig. 4.6. The phase results
are coherent with the travelling wave theory because in the basal region the wave travels
rapidly so that the phase increase is small; near the peak it changes more rapidly with
distance because it slows down, and then, beyond the CF, the phase becomes flat as
the wave decays. These experiments also showed that the cochlea vibrates non-linearly,
that is, as the sound stimulus is increased the amplitude response does not grow lin-
early, especially around the characteristic frequency. Then the responses obtained by
Bekesy at high stimulus intensities cannot be used to extrapolate the response at lower
stimulus intensity. Subsequently, (Sellick et al., 1982) confirmed the nonlinear response
and the sharp tuning of the BM in the guinea pig showing, for the first time, that the
response of the basilar membrane depends on the good physiological conditions of the
cochlea because the nonlinear response tends to deteriorate and becomes linear as time
passes after the cochlea is opened (Fig. 4.7). Furthermore Robles, (Robles et al., 1986)
measured the mechanical response at the base of the BM of the chinchilla confirming the
nonlinear response, the sharp tuning and that the nonlinearity disappears after death.

The resolution of this technique is around 10 nm. It can measure velocities as small
as 0.2 mm/sec (Rhode, 1971). The disadvantages of this technique, however, are its non-
linearity, its low signal to noise ratio and the load on the basilar membrane that could
alter the properties of the Organ of Corti because of the radioactivity. Furthermore,
because of the probabilistic nature of the decay, the measurements require a certain
amount of time in order to accumulate sufficient counts for an acceptable statistical
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Figure 4.6: Response of the basilar membrane respect to the malleus displacements in ampli-
tude (up) and phase (down). Reprinted with permission from (Rhode, 1971). Copyright 1968,

Acoustic Society of America.

error. But because the cochlea is opened, a greater time for measurements results in the
degradation of the mechanical properties of the Organ.

4.5 Long-coherence laser Interferometry

The Mössbauer technique lead to the discovery of the nonlinearity and the sharply
frequency-tuned response of the basilar membrane but, because of the nonlinear trans-
duction mechanism, the relatively long data-sampling times required by the probabilistic
nature of gamma radiation and the possibility of radioactive damage, it was not an ideal
technique. Laser interferometry, on the other hand, is faster, linear, not ionizing, with
a greater sensitivity (∼ pm), with a wide dynamic range, it is frequency independent,
it retains the waveform information and has a simple calibration procedure.

It is a velocity-sensing method, in which the velocity of the BM is derived from
the Doppler shift of the frequency of photons reflected from the moving target. There
are two main optical arrangements that are used to measure cochlear vibrations: the
homodyne and the heterodyne laser interferometer.
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Figure 4.7: Basilar membrane velocity input-output functions for the same animal (guinea
pig) at the beginning of the experiment, just after the cochlea was opened (A), after some
time when the conditions of the cochlea deteriorated (B) and post mortem (C). The numbers
on the curve represents the gross cochlear action potential (CAP) evoked by pure-tone bursts,
used as an indication of neural threshold. The shifting from a nonlinear to a linear response is
evident. Reprinted with permission from (Sellick et al., 1982). Copyright 1982, Acoustic Society

of America.
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Figure 4.8: Schematic representation of the homodyne interferometer. The light source is a
He-Ne laser which is focused on a mirror, M2, fixed on the basilar membrane. A half reflective
mirror, M1, is positioned in front of the mirror M2 to obtain two beams and it can be moved by a
capacitor in order to modify the distance between the two mirrors and regulate the interference.
A photo-multiplier is used to measure the combined intensity of the light reflected from M1 and
M2. Reprinted with permission from (Khanna et al., 1968). Copyright 1968, Acoustic Society

of America.

4.5.1 Homodyne Interferometer

The homodyne interferometer was developed by Deferrari (Deferrari et al., 1967) and
then Khanna for more than 20 years dedicated his experimental work to the adaptation
of this technique to the measurement of the vibrations of the inner ear, in which case
the narrow confinement of space, the limited access and the low rigidity of the skull,
presented special problems that are not encountered when measuring vibrations of inan-
imate objects. Khanna made some innovations to facilitate the measurements in living
animals and to achieve the high sensitivity necessary to measure displacements of the
order of 3 pm within the cochlea. The system developed by Khanna is represented in
Fig. 4.8. A mirror, M2, is attached to the basilar membrane. Light from a helium-neon
laser is focused on mirror M2. The light falling on it is reflected back on the face of a
photo-multiplier. A focusing lens is used to direct the light onto a selected spot of the
photo-multiplier. A partially silvered reference mirror, M1, is mounted in the path of
the laser beam in front of mirror M2. The position of mirror M1 is carefully aligned with
that of mirror M2 so that their reflections coincide at the face of the photo-multiplier
tube. As the structure to which mirror M2 is attached vibrates, a time-varying interfer-
ence is produced between the two beams. This, in turn, results in a time-varying output
of the photo-multiplier. When the average distance between the vibrating mirror and
the fixed mirror is suitably adjusted, the output waveform of the photo-multiplier is an
exact replica of the amplitude of vibration of the object, as (Appendix A):

Iω = ±B(4π/λ)cosωt. (4.1)

which is valid for vibration amplitudes below 10−6 cm. The relationship is linear from
3 pm to 10 pm while is nonlinear from 10 pm to 100 pm. Because of the high sensitivity,
the response of the BM can be measured in the frequency range of 20 − 20000 Hz. In
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Eq. (4.1) there is still an ambiguity of sign. To eliminate this, the reference mirror, M1, is
vibrated sinusoidally by an electrical reference signal of low amplitude and low frequency
(100Hz). The 100Hz output of the interferometer is observed through a separate filter
tuned to 100Hz. Its phase is displayed on an oscilloscope. As the distance between
mirrors M1 and M2 is adjusted to obtain maximal output, the phase of the 100Hz
output flips through 180 deg. However, since the reference mirror is always vibrating
with the same known phase, it is easy to select the output with respect to the main
signal, which gives the correct phase. This is the so called quadrature condition which
eliminates the phase ambiguity.

Despite these advantages, the structures of the OoC are nearly transparent so that
it is still necessary to open the cochlea to place on the BM a reflective object to enhance
its reflectivity. This was done by (Khanna, 1986), who described the use of tiny gold
particles as reflective spots to be placed on the BM. Then he measured the vibrations
of the BM (Khanna and Leonard, 1982) in responses to pure tones in the cat cochlea,
showing how the sharp tuning of the BM is progressively lost as time passes and the
mechanical properties of the opened cochlea deteriorates.

4.5.2 Heterodyne interferometer

All the techniques that we have described so far require opening the cochlea. In the
Mössbauer method the cochlear opening is needed in order to place a radioactive source
on the BM; in the capacitive probe technique the cochlea is opened to place the probe
close to the BM and in the homodyne interferometer the cochlea is opened to deposit
reflective beads on the BM.

Then in 1987 Khanna developed a heterodyne interferometer, through which it is
possible to obtain a sensitivity of 10 pm without opening the cochlea (Khanna et al.,
1987). The system is shown in Fig. 4.9. By means of two acousto-optical modulators
a frequency shift ∆ω between the optical frequencies ω1 and ω2, of the two interfering
beams, is introduced. Due to this frequency difference, the interference between the
reference beam (RB) and the object beam (OB) has an intensity modulation at the
beat frequency ∆ω. This intensity modulation is detected by a photo-detector (DET in
Fig. 4.9). Displacement of the surface of interest changes the optical path length and
therefore the phase of the object beam. This is converted directly into a change of phase
of the beat frequency. The photo-current at the detector is given by:

i(t) = a+ bcos[∆ωt+ Φ(t)], (4.2)

where a is the direct and b the alternating amplitude of the photo-current and Φ(t) is
the phase difference between the two interfering beams. When the object moves, the
phase Φ(t) is a period function of the form

Φ(t) = βucos(Ωt+ ψ) + Φc (4.3)
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Figure 4.9: Schematic representation of the heterodyne interferometer. The light source is a
He-Ne laser, which is splitted in a object (OB) and reference (RB) beam by two beam splitters.
The RB is direct to the detector while the OB is directed to the vibrating object and then trough
a beam splitter which combines the OB and the RB on a photo-detector (DEC). The current
output is proportional to the intensity of the combined beams. Both beams are modulated in

frequency by acousto-optical modulators (AO-MOD). From (Khanna et al., 1987).

where u, Ω and ψ are, respectively, the amplitude, the frequency and the phase of the
vibration, Φc is a constant phase and β a geometrical factor. If 2α is the mutual angle
between the illumination and observation directions (as shown in Fig. 4.9) and λ is the
wavelength of the laser, then β is given by

β = 4π
λ
cosα. (4.4)

Combination of Eq. (4.3) and Eq. (4.4) shows that the detector output is a phase or
a frequency-modulated signal with carrier frequency ∆ω and modulation frequency Ω.
The corresponding spectrum of such a signal is a discrete Bessel spectrum, centred at
∆ω. For small vibration amplitudes, this spectrum consists of three lines: the carrier
and the first upper and lower side-bands. Small vibrations amplitudes are found from
the power ratio of the carrier (P0) and the first side-band (P1) as√

P0
P1

= J0(βu) ∼ 2
βu
, (4.5)

where J0 and J1 are Bessel functions of integer order. The power P0 and P1 can be
measured with a spectrum analyser.

The advantage of the heterodyne interferometer when compared to the homodyne
interferometer are:

• the linearity of the heterodyne, which is not limited to small vibration amplitudes
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because optical phase variations are not converted to intensity variations (accord-
ing to a sine function) but to phase variations of an electrical AC signal at the
beat frequency;

• the quadrature condition which has to be maintained for homodyne techniques is
not necessary with heterodying, because sensitivity is independent of the phase
difference between the two interfering beams;

• the interference phase, which is completely separated from the interference ampli-
tude and from the other terms resulting from the superposition of the two beams.
This means that drifts taking the interferometer away from the quadrature con-
dition does not cause signal fading as in the homodyne interferometer. Thus,
problems with the position control of the reference mirror are avoided, and the
reference beam path can also be outside the system under study;

• heterodyne interferometry does not need a vibrating reference mirror for calibra-
tion because the interference phase, which is proportional to the displacement to
be measured depends only on the geometry of the illumination and reflection.

Using a heterodyne interferometer, in 1997 Ruggero (Ruggero et al., 1997) confirmed
and extended the results he obtained in 1986 (Robles et al., 1986) with the Mössbauer
technique. He measured responses to pure tones at the basal end of the chinchilla
cochlea and showed the nonlinearity of responses to CF tones respect to the variation
of the stimulus intensity. These results are shown in Figs. 4.11 and 4.12. More recently,
Rhode (Rhode and Recio, 2000) showed the non-linearity of the response of the basilar
membrane at the most basal region of the opened cochlea of the chinchilla. The increase
in amplitude around the CF due to the nonlinearity was measured to be 45 dB. Ren
(Ren et al., 2011) measured the response of the BM in the basal region of the guinea pig
cochlea. He obtained a peak response amplified up to 50 dB. Nilsen and Russel (Nilsen
and Russell, 2000) measured the vibrations of the BM without using reflective particles
in the basal turn of the guinea pig cochlea.

Some common points can be inferred from all these studies. If the response is mea-
sured at a specific frequency at various locations, at low-intensity tones the basilar
membrane is characterised by a high frequency selectivity; only a small region of the
basilar membrane peaks for a particular tone frequency; as the intensity of the tones
increases, the frequency selectivity decreases and the membrane is excited over a broader
region. If the displacement is measured at a fixed point varying the frequency, at low
intensities the basilar membrane acts as a band-pass filter while for high intensities as
a low pass filter, as shown in Fig. 4.10. To summarize, the results obtained with these
techniques showed that the frequency selectivity of the cochlea depends on its physio-
logical conditions and it is absent post-mortem. Then a sharply tuned component is
added to a broadly tuned one in the living cochlea. This component is the result of the
action of a feedback process, called cochlear amplification, that increase the amplitude
of the response and its frequency selectivity.
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Figure 4.10: Displacement of the basilar membrane, with respect to the stapes, for different
sound intensities. As the sound level increases, the peak magnitude decreases, broadens and shifts
at lower frequencies. From (Ren et al., 2011), which is published in open access under a Creative
Commons Attribution 4.0 International License, https://creativecommons.org/licenses/by/4.0/.

Figure 4.11: Gain of the displacement of the basilar membrane for different sound intensities.
Reprinted with permission from (Ruggero et al., 1997). Copyright 1997, Acoustic Society of

America.
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Figure 4.12: Phase of the displacement of the basilar membrane for different sound intensities.
Reprinted with permission from (Ruggero et al., 1997). Copyright 1997, Acoustic Society of

America.

4.6 Low-coherence interferometry

Even though the heterodyne interferometer can be used without reflective particles,
the narrow bandwidth of the source (typically a He-Ne laser) imposes a long coherence
length, so that it is not possible to distinguish the reflective signals of the different
components of the Organ of Corti and the measurements are then limited to the BM. If
a low-coherence light source is used, such as a light-emitting diode, however, the signals
from the various components of the OoC (BM, RL, TM, Hensen’s cells, OHCs) can
be distinguished, because the coherence length sets the axial resolution to tens of µm.
Furthermore, the ∼ 10µm coherence length acts as a time gate of order of ∼ 10 fs that
rejects scattered photons that arrive either before or after the time gate of collection,
thus reducing the background noise due to multiply scattered photons. The system
can also be used to acquire images of the organ of Corti using the Optical Coherence
Tomography (OCT) method, assisting in the adjustment of scanning mirrors to localize
the vibrating points to be measured within the OoC. Such a system can be operated
both in the homodyne (Choudhury et al., 2006; Chen et al., 2011) and heterodyne (He
et al., 2018) configuration.

(Chen et al., 2007) demonstrated the use of a custom-built homodyne interferometer
to obtain in vivo measurements of the vibrations of the BM, RL and TM. The optical
system is shown in Fig. 4.13. When scanned as an OCT system, an image of the organ
of Corti is obtained from the photons reflected from the tissues. As the pathlength of
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Figure 4.13: Schematic representation of a low-coherence interferometer. The source is a su-
perluminiscent light diode (SLD). The light is transmitted through optical fibres (f) and splitted
by a bridge coupler (bc) in a reference and a sample arm. The reference arm is equipped with
a galvo-mirror, a mirror (m) and a diffraction grating (dg) to scan the cochlea along the axial
direction. In the sample arm there is a galvo-mirror which can be rotated to select the position
along the z-axis. Reprinted from (Choudhury et al., 2006). Copyright 2006, with permission

from Elsevier.

the reference arm is modulated by a z-axis galvo mirror, the coherence gate of 10µm is
moved axially within the sample. A second galvo-mirror scans laterally along the x-axis.
The acquired image presented the reflected intensity, R(x, z), in an x-z plane as shown
in Fig. 4.14 (left). While the axial (z) resolution is set by the coherence gate to 10µm,
the lateral (x) resolution is due to the numerical aperture of the optical apparatus and is
usually around 20µm. Figure 4.14 (right) shows the axial scan at one position x, R(z).
In this plot, the signals from the BM, the RL, the TM and the RM can be distinguished
from each other and from the background as peaks with a signal-to-noise ratio that
ranges from 10 to 1000, depending on the structure. From these plots, a location in the
image corresponding to the position of the surface of interest can be selected so that the
system, controlled by the galvo-mirrors, moves the coherence gate to the selected x− z
position and stop the scanning. Then the system operates as a a classical homodyne
interferometer that can report the movements of the selected membranes, as the beams
from the sample and reference arm are combined on the detector.

4.6.1 Recent experiments

Using an OCT-heterodyne system, He and Ren recently measured (He et al., 2018)
the differential motion between the reticular lamina and the basilar membrane in vivo
in the mouse cochlea. They found that, when excited by sound-induced stimuli, the
reticular lamina vibrates with an amplitude that is at least two times greater than
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Figure 4.14: On the left, an image of the Organ of Corti, is plotted as a grey scale along
the z xis. This is obtained from the values of the reflected intensity R(x, z) as a function of
x and z axis. On the right, an axial scan across the z axis is shown, for a specific position x,
showing peaks in the reflectance that corresponds to the various structures within the OoC. From
(Chen et al., 2007), which is published in open access under a Creative Commons Attribution

4.0 International License, https://creativecommons.org/licenses/by/4.0/.

that of the basilar membrane in all the range of frequencies examined (5 − 30 kHz)
as shown in Fig. 4.15 A, B, G. Furthermore, the two membranes vibrate in opposite
directions at the base of the cochlea and in phase at the location of the characteristic
frequency (Fig. 4.15 H). These data are consistent with previous experiments of the
same group in mice (Ren et al., 2016a) and in gerbils (Ren et al., 2016b). They disagree
with some earlier data from Chen’s group (Chen et al., 2011) in guinea pigs, however,
who also measured the differential motions of the RL and BM using a OCT-homodyne
interferometer. While Chen et al. agree that the vibrations of the reticular lamina
are two/three times greater than those of the basilar membrane at the characteristic
frequency, at lower frequencies the ratio of the movements of the RL and BM are almost
the same (Fig. 4.16). Furthermore, the reticular lamina leads the movements of the
basilar membrane up to the characteristic frequencies, where a phase difference of 90 deg
was measured (Fig. 4.17).

Because the active mechanism in the cochlea of the mouse and the gerbil are assumed
to be substantially the same as that in the guinea pig, since they are mammals that
belong to the same order, these differences are not expected. Our conclusion is that the
discrepancy in the results between He and Ren and Chen could be due to differences
in the methods used. The two groups used a different configuration of the optical
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Figure 4.15: Reticular lamina (RL) and basilar membrane (BM) displacement (A,B); dis-
placement ratios respect to the stapes (C,D); phase response (E,F); magnitude ratio (G)
and phase difference (H) measured in the mouse. From (He et al., 2018), which is pub-
lished in open access under a Creative Commons Attribution 4.0 International License,

https://creativecommons.org/licenses/by/4.0/.

coherence tomography system: Ren and He used a heterodyne interferometer while Chen
et al. a homodyne interferometer. As we explained in Section 4.5 these two systems
differ in how they deal with the quadrature problem. In particular, in heterodyne
interferometry the interference phase is separated from the interference amplitude while
in homodyne interferometry the phase variations are converted to intensity variations,
so that the homodyne interferometer is susceptible to noise that drifts the system from
the quadrature condition, while the heterodyne system is not.

Another possible explanation that we think could account for the discrepancies in
the results is related to the direction of the laser beam respect to the basilar membrane.
In all the experiments conducted by Ren and He the laser was directed perpendicular
to the BM while in Chen the angle between the beam and the BM can be inferred to
be around 30◦. These difference in the incident angle can in part explain the phase lag
of the RL vibration, considering that the distance between the BM and RL is around
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Figure 4.16: Basilar membrane (left) and reticular lamina (right) vibration amplitudes as a
function of frequency for different stimulus frequency measured in the guinea pig. From (Chen
et al., 2011), which is published in open access under a Creative Commons Attribution 4.0

International License, https://creativecommons.org/licenses/by/4.0/.

Figure 4.17: Phase difference between the RL and the BM as a function of the fre-
quency for various sound pressure levels. From (Chen et al., 2011), which is pub-
lished in open access under a Creative Commons Attribution 4.0 International License,

https://creativecommons.org/licenses/by/4.0/.

(20−40)µm in the cochleae of the mouse (MacDonald and Rubel, 2008) and the guinea
pig (Iyer et al., 2016), while the shortest wavelength of the BM’s travelling wave at the
characteristic position is around 200µm Ren (2002). This explanation is strengthened
by the recent OCT results obtained by the Oghalai group (Lee et al., 2016) who showed
that there is a difference in the differential motion between the BM and RL if the angle
between the BM and the laser beam is taken into account.

Another possible explanation of the different results could be traced to the identi-
fication of the points on the BM and RL from which the vibrations are measured. As
explained in subsection Section 4.6, this can be done unambiguously by looking at the
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Figure 4.18: Diagrams of time waveforms of the (upper) RL and (lower) BM. From (He et al.,
2018), which is published in open access under a Creative Commons Attribution 4.0 International

License, https://creativecommons.org/licenses/by/4.0/.

intensity profile of the reflectance in a given longitudinal position. While in (Lee et al.,
2016) and Ren (He et al., 2018) this method is used to choose the points to be measured
on the BM and RL, in (Chen et al., 2011) the points are identified by looking directly
at the images of the Organ obtained from the OCT scan.

Because of the different results, the two groups have suggested different explanations
in terms of a possible micromechanical model of the active mechanism in the cochlea.
(Chen et al., 2011) suggested that their measurements could help refine a local feedback
mechanism model in which outer hair cells are thought to apply an active force directly to
the membrane at its generation location. In this case, the phase leading of the reticular
lamina over the basilar membrane is thought to ensure the right timing of the outer
hair cells for cochlear amplification. On the other hand, (He et al., 2018) proposed a
“global hydro-mechanical” model in which the outer hair cells drive the reticular lamina
vibrations over a wide longitudinal range which interacts with the travelling wave of the
basilar membrane through the cochlear fluid. In particular, when the basilar membrane
moves upward toward the scala vestibuli near the cochlear base, (Fig. 4.18), OHCs
depolarize and induce a large downward RL displacement. This movement creates a
positive fluid pressure between the RL and the BM at the cochlear base. At the same
time, the RL at more apical locations moves upward, resulting in a negative fluid pressure
inside the cochlea partition. The resulting pressure gradient pumps fluids longitudinally
along the OoC, enhancing the travelling wave on the BM as it propagates apically. In
phase vibrations at the CF results in constructive interference which further amplify the
RL vibrations. A recent experiment by the Oghalai group (Dewey et al., 2019) tested
the global hydro-mechanical model proposed by He and Ren mapping the regions of the
BM and RL where the amplification of the response forces accumulates. They studied
the response of the apical region of the living cochlea of adult mice using a custom-
built low-coherence interferometer. The points of interest on the BM and the RL were
selected looking at the peaks in the reflectivity versus depth obtained from OCT images.
The angle between the laser and the BM was between 60− 75 deg. The axial resolution
was 9.8 µm and the lateral resolution 11.4 µm. The measurements from the RL then
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Figure 4.19: Displacement of the BM (A) and RL (B) normalised to the evoking stimulus
pressure in Pa, as a function of the frequency, before and after death. BM and RL phase response
(C). Phase difference between the RL and the BM before and after death (D). Adapted from
(Dewey et al., 2019), which is published in open access under a Creative Commons Attribution

4.0 International License, https://creativecommons.org/licenses/by/4.0/.

actually are a combined motion of the RL and the upper half of the OHC, over the width
of one or two OHCs, considering that the OHCs in the apical part of the mouse cochlea
are 5 − 7µm in diameter and are spaced 8µm apart. First Oghalai et al studied the
response of the BM and RL to single tones, reporting the amplitude and phase versus
the frequency of excitation (Fig. 4.19). RL responses are generally larger and grew more
compressively than the BM responses, particularly at low frequencies (Fig. 4.19 A,B), in
accordance to the results of He and Ren but in disagreement with Chen results on the
gerbil cochlea, where the responses of RL and BM tends to converge at lower frequencies.
About the phase responses, the BM and RL moves in phase at low frequencies; then
RL progressively lags BM as the stimulus is increased, up to 120 deg (Figure 4.19 C,D),
which is opposite to the phase response observed by He and Ren. After death, the
response of the BM and RL becomes linear and the low frequency response of the RL
is greatly attenuated; the phase difference also disappears after death. As before, the
difference in the phase response between various groups could be attributed to different
measurement location and differences in measurement angles.
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Dewey et al. then used a second tone to suppress the BM and RL response to
the primary tone. Suppression occurs when the response to one tone saturates OHCs
mechanotranductor currents, limiting OHC force generation. Varying the suppressor
tone frequency, they mapped the regions of the BM and RL where accumulation occurs.
It was already believed that the BM travelling-wave is amplified near the CF region.
On the other hand, the behaviour of the RL was not clear, especially after He and Ren
experiments. Oghalai found out that:

• if the frequency of the suppressor tone is more than an octave above the CF,
the suppression is low (< 1dB) for both the BM or RL. This means that the
amplification of the travelling wave peak does not depend on forces generated by
OHCs from far basal regions;

• If the frequency of the suppressor tone is slightly above the first tone, then the
response is reduce (up to 30 dB for frequencies with a difference of only 0.1 kHz
from the CF), in accordance to the theory that the built up of the amplification
occurs just basal to the CF site;

These results shows that even if OHCs forces amplify the motion of the RL along the
length of the travelling wave, the amplification accumulates only near the peak of the
wave, in the same region where the BM motion is amplified. These results thus contradict
the global hydro-dynamical model proposed by He and Ren.

The conclusions drawn by Dewey et al. are in agreement with a previous experiment
by (Dong and Olson, 2013). They simultaneously measured the amplitude and the phase
of the voltage and the pressure close to the BM at the same position, when the cochlea
is excited by pure tones. From the pressure measurements it is possible to derive the
BM motion, XBM , while the voltage can be related directly to that of the OHCs, VOHC .
Dong et al found that the amplitudes of XBM and VOHC are tuned at about 24 kHz and
are nonlinear with increasing SPL. The corresponding phases vary rapidly around the
best frequency with a similar phase accumulation. However, the voltage phase exhibits
a phase shift just before the CF. Then, at lower frequencies, the voltage is in phase
with the displacement, in agreement with a model by (Davis, 1965), in which upward
displacement of the BM pivots the hair bundles of the OHCs towards taller stereocilia,
leading to channel opening, to OHC depolarization and thus to a positive voltage in the
scala timpani. At about 0.7× CF and up to the characteristic frequency, the voltage
leads the BM displacement by about a quarter of a cycle, thus being in phase with BM
velocity. In this case, the voltage drop across the OHC leads to the contraction of the
OHC and to the production of a somatic force. Because this force is in phase with the
BM velocity, power is transferred to the travelling wave and the motion is amplified.
Thus, as in (Dewey et al., 2019), there is a frequency region just before the peak in
which, because of the phase relationship between the OHC voltage and the BM velocity,
power is supplied to the travelling wave, resulting in the amplification of the response
of the BM in the CF region.
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Figure 4.20: Underlying anatomical structure (A) and map of longitudinal vibration mag-
nitudes (B), in the x − y plane, evoked by a 22.6 kHz component of a multi-tone stimulus at
40 dBSPL. Magnitudes are expressed in decibels relative to the 3unitmm maximum observed
at the location marked with an asterisk. It is evident that the largest vibrations occur in a
well-delimited area that extends from the base of the OHCs to the apexes of the Deiters’ cells
and, width-wise, from the outer pillar cells to the outer tunnel of Corti. This is the area called
hotspot region. From (Cooper et al., 2018), which is published in open access under a Creative
Commons Attribution 4.0 International License, https://creativecommons.org/licenses/by/4.0/.

Finally, another recent experiment conducted by Cooper et al. (Cooper et al., 2018)
reported simultaneous measurements of the whole Organ of Corti, through the round
window of the basal region of the living gerbil cochlea, using an OCT-low-coherence
interferometer. Their results agree with those obtained by He and Ren and Oghalai in
that the reticular lamina responses are greater, more broadly tuned and non-linear in a
wider frequency region than those of the BM. However, Cooper et al. showed that this
characteristics are not confined to the reticular lamina but the longitudinal vibration
of the whole region between the BM and RL has a greater magnitude and a different
phase to the BM. In particular, the largest vibrations occur between the interface of the
Deiter’s and outer hair cells, which they called the “hotspot” region (Fig. 4.20). These
vibrations are less sharply tuned than that of the basilar membrane but more non-linear
and exhibit a compression which is greater than that observed in the RL near the CF.
Because the BM motion has been observed to be smaller than that of the hotspot and
there is also a large phase difference, with the RL leading the BM by about 0.25 cycles,
these authors disagree with the local-feedback loop hypothesis. They suggested that,
because of the geometrical structure of the OHCs and the Deiters cells, which are inclined
with respect to the BM and RL, and because these cells are suspended between the BM
and RL, (Fig. 4.21 ), a large contribution to the amplification of the BM involves a
longitudinal motion of the OH-Deiter’s cells structure. In order to better understand
this idea, it would be necessary to build a model that studies the contribution of the
longitudinal coupling to the amplification of the vibrations of the BM and RL in the
transverse direction.
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Figure 4.21: Schematised anatomical relationship between the BM, RL, OHC (in blue) and
Deiter’s cells (in yellow) (A). Proposed longitudinal motion of the Deiter’s and outer hair cells (B)
to explain the measured vibration amplitude along the transverse direction (B). From (Cooper
et al., 2018), which is published in open access under a Creative Commons Attribution 4.0

International License, https://creativecommons.org/licenses/by/4.0/.

4.7 Conclusions

In summary, even though low-coherence interferometry is a powerful method to study
the movements within the Organ of Corti with high spatial and temporal resolution,
the data obtained from different authors has led them to different conclusions. This
is probably due to the fact that even if the data are precise, they are not simple to
interpret. We suggest that the discrepancies in the results could be explained in three
ways. First, He and Ren and Chen used two different configurations of the optical
coherence tomography systems and we showed that the system used by Chen is more
susceptible to noise. Secondly, the direction of the laser beam with respect to the
basilar membrane is different in various experiments and thus, because of the geometrical
structure of the Organ of Corti, this could lead to a difference in the measured phase up
to 30 deg. Finally, different groups used different methods to identify the locations of the
BM and the RL, which could also contribute to the discrepancy in the phase response.

Nonetheless, all these experiments underlie the importance to understand what ex-
actly is the contribution of the various components of the OoC to the amplification of
the BM’s motion, both in the transverse and longitudinal direction.

To gain further insight in the active mechanism of the cochlea, an elemental formu-
lation of a detailed Finite Element Model by (Sasmal and Grosh, 2019) is developed
in the next two chapters. This is initially carried out for a locally reacting model, to
develop the formulation, and is then extended to include different forms of longitudinal
coupling in the OoC.
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Chapter 5

Elemental formulation of a finite
element model of the active
cochlea

5.1 Introduction

This chapter develops the formulation of an elemental model for cochlear micromechan-
ics, with a locally reacting basilar membrane, to include an active organ of Corti. One
of the aims of developing such a model is to understand the importance of longitudi-
nal coupling and so help to resolve the differences between the explanations that have
been put forward for various experimental observations. The details of the longitudinal
coupling are postponed until Chapter 6, and this chapter will focus on the case with a
locally reacting Organ of Corti.

In Chapter 4 we reviewed recent experimental results, regarding the relative motion
of the various tissues and membranes within the Organ of Corti. The data has suggested
two possible mechanisms as an explanation of the active amplification of the response
observed in the living cochlea. One possibility, put forward by (Chen et al., 2011), is that
the outer hair cells act as a local feedback system that applies an active force directly to
the basilar membrane at its generation location, while the phase of the reticular lamina
ensures the right timing of the OHCs to correctly enhance the BM motion around the
characteristic frequency. An alternative mechanism has been proposed by (He et al.,
2018), whose experimental results underline the importance of the longitudinal coupling.
Furthermore, an experiment by (Cooper et al., 2018), demonstrate that the longitudinal
vibrations in the whole region between the RL and the BM, including the OHCs and
Deiter’s cells, are involved in the amplification of the BM response.

To test these hypotheses, we extend the elemental method of the cochlea, as reviewed
in (Elliott and Ni, 2018), to include a micromechanical model of the Organ of Corti as
described in the Finite Element model developed by (Sasmal and Grosh, 2019). This
Finite Element Model includes mechanical longitudinal coupling in the TM and the BM,
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and a cable model for the mechano-eletrical transduction of the OHCs that includes
electrical longitudinal coupling along the scalae. By developing an equivalent elemental
model of the finite element model by Sasmal and Grosh, we aim to obtain a more
transparent model that has a lower computational cost and also to gain further insight
in the active mechanism, by studying the variation of the BM admittance and the
wavenumber for various types of longitudinal coupling in the Organ of Corti.

In this chapter, we briefly review the elemental and the finite element model. Then
we show how it is possible to include a locally reacting model of the Organ of Corti
in the elemental model. In Chapter 6 the elemental model is extended to include the
effects of the longitudinal coupling by the TM, the BM and the electrical cables.

5.2 Elemental model

In the elemental analysis, described by (Elliott and Ni, 2018) for example, the cochlea
is divided into a finite number of elements, N , and the individual physical processes
involved in the motion of the fluid and the dynamics of the Organ of Corti are individu-
ally characterised and then combined to give a coupled model of the system. Although
a Finite Element Model of the cochlea could be characterised as being “elemental”, in
the sense that the continuous-domain physical processes are made spatially discrete, the
number of state variables in such a model is large, typically 4000, and it is difficult to
understand the interaction between the components. By combining all the mechanics of
the organ of Corti into a single response, there is only a single interaction between this
and the fluid dynamics, allowing those two components of the coupled response to be
considered individually. This provides a greater degree of intuition about the behaviour
of these two components and hence the overall response. The model of the organ of
Corti is assumed to be linear, or at least quasi-linear (Kanis and de Boer, 1993), so that
superposition holds and linear algebra can be used.

The cochlea is modelled as an uncoiled system with two fluid-chambers, divided by
the BM, as shown in Fig. 5.1. The boundaries of these chambers are considered to
be rigid and to communicate to the external environment only through the membranes
at the round and oval windows, at the base of the cochlea. Furthermore, the two
fluid-chambers communicate at the apex through the helicotrema, where the pressure
difference between the two fluids is assumed to be zero. The BM motion in the radial
direction is represented by a single transverse mode, ψ(y). This is justified by the
fact that the fluid coupling is relatively insensitive to the exact form of the radial BM
velocity distribution (Ni and Elliott, 2013). Then, the complex velocity of the BM in the
longitudinal and transverse direction, v(x, y), at a given frequency, can be represented
by a single longitudinal variable, v(x), and is given by

v(x) = 1
W

∫ W

0
ψ(y)v(x, y) dy, (5.1)
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where the mode shape ψ(y) is normalised to 1 with respect to the width, W , of the BM.
In a similar way, the longitudinal distribution of the complex pressure difference at this
frequency, acting on the BM is defined as

p(x) = 1
W

∫ W

0
[p1(x, y, 0)− p2(x, y, 0)] dy, (5.2)

where p1(x, y, z) and p2(x, y, z) are the three-dimensional pressure distributions in the
upper and lower fluid chambers. By dividing the cochlea into N sections, the continuous
distributions of BM velocity v(x) and pressure p(x) can be represented by two vectors:

p = [p(1), p(2), ..., p(N)]T , (5.3a)

v = [v(1), v(2), ..., v(N)]T , (5.3b)

which are coupled because of the fluid in the chambers and because of the micromechan-
ical response of the BM. The first and last element are used to represent, respectively,
the boundary conditions at the stapes and at the helicotrema. The number of elements
N should be such that their length is at least six times greater than the shortest wave-
length (Elliott and Ni, 2018). The fluid coupling in the chambers is then described by
the matrix equation:

p = Zfcv, (5.4)

where Zfc is the fluid coupling matrix. The micromechanical response of the BM is given
by

v = vs −Ybmp, (5.5)

where vs is the excitation vector due to the stapes, whose motion drives the system
and Ybm is the BM admittance matrix. The first element of vs is equal to the stapes
velocity, while the remaining elements could represent external velocity excitations of
the elements along the BM, but these are considered to be zero here. By combining
Eqs. (5.4) and (5.5), and assuming that the matrix [I + YbmZfc] is not singular, an

Figure 5.1: Elemental model of the cochlea, with two fluid chambers and the basilar membrane,
BM. The oval window driven by the stapes of the middle ear is denoted by OW and the round
window as RW, which acts as a pressure release boundary condition. x, y and z are, respectively,
the longitudinal, radial and transverse coordinates, with their origin on the BM, at the base of
the cochlea. From (Elliott and Ni, 2018), which is published in open access under a Creative
Commons Attribution 4.0 International License, https://creativecommons.org/licenses/by/4.0/.
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explicit expression for the vector of complex velocities of the BM as a function of the
BM admittance matrix, the fluid coupling impedance matrix and the excitation vector
is obtained:

v = [I + YbmZfc]−1vs. (5.6)

Substituting Eq. (5.6) into Eq. (5.4) we also obtain an expression for the vector of
pressures along the cochlea:

p = [Z−1
fc + Ybm]−1vs. (5.7)

These two last equations can be written in matrix form as:[
Z−1
fc 1
1 Y−1

bm

] [
p
v

]
=
[
−vs

0

]
, (5.8)

which can be solved to give the pressure and velocity distributions for a given excitation,
vs, of the system.

All of the physical processes involved in the motion of the fluid in the two chambers
are thus reduced to a single fluid matrix, Zfc, and all the physical processes within the
Organ of Corti and at the BM are reduced to a single admittance matrix, YBM, where
both matrices have complex elements which depend on the excitation frequency.

5.2.1 Fluid dynamics

The elemental model can be formulated to describe 1D or 3D fluid coupling problems,
for fluid-chambers with either constant and non-constant cross-sectional area (Elliott
et al., 2011; Ni and Elliott, 2015) . The 1D model is valid under the condition that the
shortest wavelength of the slow wave in the cochlea is greater than the cross-sectional
dimensions of the fluid chamber. This condition is satisfied for a passive model of the
cochlea; however, when the cochlea is active, the shortest wavelength becomes smaller,
especially around the characteristic place, where the wavelength of the BM motion
becomes comparable with the chamber height. In this case a 3D formulation of the fluid
coupling is necessary.

5.2.1.1 1D fluid coupling

In the 1D fluid coupling model, the pressure in each fluid chamber is assumed to be
uniform over each cross-section. Then the wave equation for the pressure depends only
on the longitudinal coordinate x. This is obtained by combining the laws of conservation
of mass and of momentum to an elemental volume of the fluid, as reviewed in Chapter 3
which, in the incompressible and inviscid case gives:

∂2p

∂x2 = −2iωρv(x)
h

, (5.9)
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which relates the complex pressure difference across the BM, p(x), to the complex BM
velocity distribution, v(x). Both of these variables are assumed to have a time depen-
dence described by exp(iωt), under the hypothesis of an excitation of the cochlea at a
single frequency. The cross-sectional area of each chamber is initially assumed to be
constant along x, with an effective height, h, given by πA/(8B) (Elliott et al., 2011),
where A is the area of each chamber and B is the width of the BM; ρ is the density of
the fluid.

Assuming that the wavelength of the slow wave is small compared with the length of
the elements, the second partial derivative of Eq. (5.9) can be approximated using the
finite difference approach as:

∂2p

∂x2 ∼
pn−1 − 2pn + pn+1

∆2 (5.10)

where pn denotes the elemental pressure at position x and pn±1 denotes that at x±∆,
where ∆ is the length of an element in Fig. 5.1, equal to L/N . A matrix equation for
all the elements can then be constructed using Eq. (5.9) as:

iω



vs

v2

.

.

.

vN−1

vN


= h

−2ρ∆2



−∆
h +∆

h

1 −2 1
0 1 −2 1

.

.

.

1 −2 1
0 0 ∆2

h2





p1

p2

.

.

.

pN−1

pN


. (5.11)

where v1 = vs which is the velocity due to the motion of the stapes. The first row of the
matrix on the right hand side takes into account the boundary condition at the base of
the cochlea:

− 2iωρvs = ∂p

∂x
|x=0 ∼

p2 − p1
∆ . (5.12)

The last row of the matrix represents the boundary condition at the helicotrema, where
the pressure difference across the BM is assumed to be zero:

pN = 0. (5.13)

Equation (5.11) can be written in compact form as

iω(v) = Fp (5.14)

where v and p are the vectors defined in Eq. (5.3) and F is the matrix of finite difference
terms in Eq. (5.11). Assuming that this matrix is not singular, it can be inverted to
obtain:

p = iωF−1(v). (5.15)
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By comparison with Eq. (5.4) it can be seen that the fluid coupling matrix for the 1D
case is given by:

Z1D
fc = iωF−1. (5.16)

5.2.1.2 3D fluid dynamics

To understand how the fluid-coupling matrix in Equation (5.4) can be represented in
the case of 3D fluid coupling, it is important to notice the physical significance of the
columns of the matrix Zfc: they give the pressure distribution along the cochlea due
to the vibration of a single element of the BM, with all the other elements being fixed.
In 1D fluid coupling, Zfc is given by Eq. (5.16). When 3D fluid coupling is considered,
there are significant variations of the pressure close to the BM both along the length of
the cochlea and along the cross-section of the fluid chambers. The resulting additional
contribution to the pressure is called the near-field component. While the 1D fluid
coupling component determines the propagation of the main travelling wave along the
cochlea, the near-field component is associated with the evanescent, higher order, modes
in the fluid chambers (Elliott et al., 2011). The near-field component does not generally
extend to the boundaries of the fluid-chambers so that it does not depend significantly
on the cross-sectional shape of the fluid-chambers (Ni and Elliott, 2015). On the other
hand, the near-field component depends on the width and the position of the BM across
the cochlear partition (Elliott et al., 2011). The longitudinal distribution of the near-
field pressure due to the vibration of a single element can be approximated by a decaying
exponential function (Ni and Elliott, 2015),

pNF (x) = iωρv0∆8(a− b)B
π2
√
bW

e|x−x0|/(
√
bW ), (5.17)

where x0 is the position of the vibrating element; a and b are fitting coefficients; B and
W are the width of the BM and the fluid chambers, respectively; and ∆ is the length of
a single element. The fluid coupling impedance in the case of 3D fluid coupling, Zfc

3D,
can be calculated by adding the discrete form of Eq. (5.17) to the columns of the fluid
coupling matrix calculated assuming 1D fluid coupling, Zfc

1D, given by Eq.(5.16), so
that:

Z3D
fc = Z1D

fc + ZNFfc , (5.18)

where the nth column of ZNFfc is given by

ZNFfc (n) = iωρ∆8(a− b)B
π2
√

(b)W
e|n−n0|∆/(

√
bW ). (5.19)

5.2.1.3 Spatial representation of the fluid coupling

The simple formulation for 1D fluid coupling in Eq. (5.14), and for the additional near-
field fluid coupling in Eq. (5.17), allows the easy calculation of the pressure distribution
due to the motion of one element in the cochlea, with all the other elements remaining
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Figure 5.2: Pressure distribution along the length of the uniform cochlea, due to the motion of
a single element at x = 15 mm with a velocity of 10 mms−1 at a frequency of 1 kHz, showing the
far-field pressure distribution due to (a) 1D fluid coupling, (b) the near-field pressure distribution
due to 3D fluid coupling and (c) the total pressure distribution due to 3D fluid coupling, which

is the sum of (a) and (b).

rigid. This pressure distribution is plotted in Fig. 5.2 for a single moving element at
x = 15 mm for (a) the 1D fluid coupling model, (b) the 3D near-field component and
(c) the total pressure due to 3D fluid coupling. In this example, W and H are assumed
to be 1 mm, B to be 0.3 mm and the fitting parameters a and b in Eq. (5.17) to be 1
and 0.0140 (Ni and Elliott, 2015). Pressure distributions like this make up the columns
of the matrix Z3D

fc .
In contrast, fluid coupling in the Finite Element Model, as described by (Ramamoor-

thy et al., 2007) for example, is modelled as the sum of a certain number of radial acoustic
modes. The coupled response with a different number of these acoustic modes is plotted
in Fig.18 of (Ramamoorthy et al., 2007). This shows that the peak BM displacement is
significantly higher if 5 acoustic modes are used, instead of the 3 modes assumed in the
calculation for the other plots in this paper, suggesting incomplete convergence of the
series of acoustic modes used to calculate the pressure.
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The elemental formulation provides some insight into the coupled response of the
cochlea by allowing the physical nature of the fluid coupling, discussed here, and the
BM dynamics, discussed in the next section, to be analysed separately. This is in contrast
to the Finite Element Model, in which the two components are embedded in the code.

5.2.2 BM dynamics

If the BM is supposed to be locally reacting, the velocity of an element of the BM
depends only on the pressure difference at that point, according to the relation:

vn = −YBM (n)pn, (5.20)

where YBM is the mechanical admittance of the BM and the negative sign is due to the
fact that in the coordinate system described in Fig. 5.1, a positive pressure difference
drives the BM in a downward direction, while the elements of v are defined to be positive
in the upward z direction. In a single degree of freedom model of the passive BM, as
showed in Chapter 3 for example, its admittance is given by:

YBM (n) = iω

iωrn − ω2mn + sn
, (5.21)

where mn, sn, and rn are, respectively, the mass, stiffness and damping, per unit area,
of the nth element of the BM. In this case the BM is assumed to be locally reacting, thus
the YBM matrix in Eq. (5.5) is diagonal. In active models of the cochlea, the dynamics
of the Organ of Corti, that is situated on the BM, also needs to be accounted for. It
is also possible to take into account the mechanism of mechanical longitudinal coupling
which derives from the interaction of the structures of the Organ of Corti. The elemental
model can be extended to include these cases by assuming that adjacent elements are
coupled by a longitudinal stiffness kl and damping cl, as for example is done for the BM
longitudinal coupling in (Elliott and Ni, 2018). The expression for these latter elements
can be derived by writing down the pressure difference on the nth element as a function of
the velocities of the nth, (n−1)th and (n+1)th elements of the BM and then rearranging
the terms to obtain a tri-diagonal matrix of BM impedance ZBM such that

p = −ZBMv. (5.22)

From this equation, the BM admittance matrix YBM required in the elemental model
can be derived from the inversion of ZBM , while the response of the system is still given
by Eq. (5.8). With other forms of longitudinal coupling the matrix ZBM, and hence
YBM, become increasingly non-diagonal, but the form of Eq. (5.5) remains valid.
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5.3 Locally reacting organ of Corti model

In this chapter the BM admittance that arises from the equivalent locally reacting,
active model, will be discussed, and this will be extended to the longitudinally coupled
model in the following chapter. In the full finite element model developed by (Sasmal
and Grosh, 2019), the two fluid chambers are modelled as a tapered prismatic box,
with a constant width and varying and different height for the SV and the ST. The
BM is modelled as an orthotropic plate with variable width and is assumed to vibrate
with the mode shape corresponding to the first transverse vibrational mode. The fluid
is assumed to be viscous and compressible and its pressure is decomposed in a sum of
modes in the radial direction. The TM is modelled as a mass with two degrees of freedom
with motion in the radial, y and transverse, z, direction and is longitudinally coupled
through elastic stiffness and shear viscosity. Finally, the current flow in the scalae and
the mechanoelectrical properties of the OHCs are modelled using cable theory.

To extend the elemental model to include the micromechanical structure of the organ
of Corti, however, we do not need to refer to the full finite element model, but it is
sufficient to review the differential equations that describe the dynamics of the Organ.
Initially, we consider a locally reacting version of the model, which corresponds to the one
developed by (Ramamoorthy et al., 2007), but without electrical longitudinal coupling.
In this simplified case, the BM is modelled as a set of parallel simply supported beams
and the TM as a rigid bar, so that mechanical longitudinal coupling is not included.
Furthermore, the chambers are considered to be rectangular and of equal and constant
area and the fluid is supposed to be non viscous and incompressible. Finally, to develop
the BM admittance part of the the elemental model, we are only interested in the
kinematics and dynamics of the Organ of Corti, which is reviewed in the next section.

5.3.1 Micro electro-mechanical model of the Organ of Corti

The micromechanical model of the Organ of Corti (Ramamoorthy et al., 2007), situated
on the BM, is shown in Fig. 5.3. The Deiter’s cells are assumed to be rigid connections
between the OHCs and the BM. The OHCs are modelled as massless electro-motile
elastic bars, attached at their apical end to the RL by pin-joint and at the base to the
BM. The RL is modelled as a massless rigid bar attached to the pillar cells, PC, by a
rotational spring. The hair bundles, HBs, are represented as rigid links, attached by
a pin-joint to the TM and by a rotational spring to the RL. The TM is modelled as a
rigid bar attached to a rotational spring for bending and a translational spring for shear.
The three degrees of freedom of the systems are the displacement of the BM, ubm and
the shear utms and bending utmb mode of the TM. The equations of motion are derived
from the variation of the Lagrangian, L, of the system with respect to the mechanical
variables.
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Figure 5.3: Micromechanical model of the Organ of Corti structures. BM: basilar membrane;
TM: tectorial membrane; OHC: Outer hair cell; RL: Reticular lamina. Lro is the distance
between RL pivot point on the arch of Corti and the middle OHC; L1 is the radial distance
between OHCs along the RL; θ1 is the acute angle between the inner pillar cell and the BM,
θ2 is the acute angle between the inner and outer pillar cell; Lpc is the distance along the BM
between the left edge of the BM and the contact point of the outer PC with the BM; Lo is the
distance along the BM between the left edge of the BM and the contact point of the middle
OHC with the BM, and Ltm is the length of the TM from its pivot to the attachment point of
the middle row HBs with the TM. Reprinted with permission from Ramamoorthy et al. (2007).

Copyright 2007, Acoustic Society of America.

The Lagrangian is defined as the difference between the total kinetic and potential
energy L = K − V , given respectively by

K = b

4Mbmu̇
2
bm + 1

2Mtmbu̇
2
tmb + 1

2Mtmsu̇
2
tms, (5.23)

and

V = b

4Kbmu
2
bm + 1

2Ktmsu
2
tms + 1

2Ktmbu
2
tmb + 1

2

(
(uhb,1 + url,1

Lhb
LRo − L1)2 + (uhb,2

+ url,2
Lhb
LRo

)2 + (uhb,3 + url,3
Lhb

LRo + L1)2
)

+ 1
2Krl(url,2 + uap

LRo
Lpo

)2,

(5.24)
where b is the width of the BM, and varies along x; Ktms and Mtms represent the stiffness
and mass of the TM shear mode; Ktmb and Mtmb are the corresponding quantities for the
TM bending mode; Kbm and Mbm refers to the BM; url,i is the RL displacement in the z
direction away from the i−th row of OHCs; uhb,i is the shear motion between the top and
bottom end of the i− th row of HBs in the negative y direction; uap is the displacement
of the apical end of the arch of Corti and the geometrical factors Lhb, LRo,L1 and Lpo

are defined in Fig. 5.3. The generalised work done by external forces, including the
electromotile forces from the OHCs, the acoustic pressure and nonconservative viscous
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damping, is defined as:

Qµmech =−
3∑
i=1

F aohc,iδu
a
ohc,i −

3∑
i=1

F bohc,iδu
b
ohc,i − p(x, z)δubmµ1 − (Cbmu̇bm)δubm

− (Ctmsu̇tms)δutms − Ctmbu̇tmb)δutmb

(5.25)

where F aohc,i and F bohc,i are the forces exerted, respectively, by the basal and apical part
of the OHCs and Cbm, Ctms and Ctmb represents viscous damping coefficients for BM,
TM bending and TM shear modes, respectively. The equations of motion for the Organ
of Corti are derived from the variation of the Lagrangian with respect to the three
mechanical variables:

∂

∂t

∂L
∂ ˙ubm

− ∂L
∂ubm

= ∂Q

∂δubm
∂

∂t

∂L
∂ ˙utms

− ∂L
∂utms

= ∂Q

∂δutms
∂

∂t

∂L
∂ ˙utmb

− ∂L
∂utmb

= ∂Q

∂δutmb

(5.26)

This leads to a set of equations that can be written, in the frequency domain, as:([
Ks Kse

Kes Ke

]
+ iω

[
Cs Cse

Ces Ce

]
− ω2

[
Ms 0
0 0

])[
uOoc

φ

]
=
[
−µpOoc

0

]
, (5.27)

where uOoc is the 3N × 1 vector of the structural displacements DOFs:

uOoc = [ubm,1, utms,1, utmb,1..., ubm,N−1, utms,N−1, utmb,1, ubm,N , utms,N , utmb,N ]T ,
(5.28)

where i = 1, ..., N is the index of the element in the model. φ is the 4N × 1 vector of
electrical DOFs:

φ = [φsv,1, φsm,1, φohc,1, φst,1, ..., φsv,N , φsm,N , φohc,N , φst,N ]T , (5.29)

where φsv,i is the potential in the scala vestibuli, φsm,i is the potential in the scala media,
φohc,i is the intracellular potential of the i-th OHC and φst,i is the potential in the scala
tympani. pOoc is the vector of pressures of the fluid acting on the BM,

pOoc = −µ[pbm,1, 0, 0, pbm,2, 0, 0, ..., pbm,N , 0, 0]T ; (5.30)

µ is the coupling coefficient resulting from the integration of the lateral modes for the
pressure and the BM displacement. The form of the matrices Ks, Cs and Ms, as derived
from Ramamoorthy et al. (2007) are detailed in the MATLAB program listed in D.2.
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Figure 5.4: Electrical model of the OHCs, the HBs and the spread of current trough the scalae.
Rvm is the resistance seen by the current flowing from the SV to the SM; Rvl is the resistance
between SV and the ground; Rtl is the resistance between ST and the ground; Ra0 and Ca are
the apical resistance and capacitance of the OHCs, while Rm and Cm are the corresponding
variables of the basolateral part. φ represent the electrical potential in each zone; IOHC is the
current due to the OHC electromotility and IHB the current to the variable HB conductance.
Modified from (Sasmal and Grosh, 2019), which is published in open access under a Creative
Commons Attribution 4.0 International License, https://creativecommons.org/licenses/by/4.0/.

5.3.1.1 Electrical domain and coupling between mechanical and electrical
degrees of freedom

The coupling between the mechanical and the electrical domain is due to the piezoelectric
action of the OHCs and the displacement dependent conductance of the HBs. The
coupling matrices for the electrical-structure interactions in Eq. (5.27) and the expression
for the active force generated by the OHCs in Eq. (5.25) are derived from an electrical
model of the OHCs and of the spread of current through the scalae, as shown in Fig. 5.4.
Using Kirchhoff’s laws, we obtain the model equations (Ramamoorthy et al., 2007):

−iω(Ya + Ym)φSM + (YaCr2 + Ym)φohc + Ihb + Iohc = 0

Ymφsm − (Ym + 1/Rvl)φohc + Iohc = 0,
(5.31)

where Ya and Ym are the admittances at the apical and basal surface of the OHC,
respectively, given by:

Ya = 1
ra

+ iωCa; (5.32a)
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Ym = 1
rm

+ iωCm; (5.32b)

where ra and Ca are the apical resistance and capacitance of the OHC, while rm and
Cm are the corresponding quantities of the basal part of the OHC. Iohc is the current
due to the electromotility of the OHCs and is given by:

Iohc =
3∑
j=1

ε3u̇
comp
ohc,j , (5.33)

where ucompohc,j is the total inward compression of the jth OHC, and ε3 is the electrome-
chanical coupling coefficient. The force transduced by the jth OHC is given by:

Fohc,j = Kohc,ju
comp
ohc,j + ε(φohc − φST ) (5.34)

where Kohc,j is the axial stiffness associated with the jth OHC. Ihb is the current passing
trough the mechano-electrical transduction (MET) channels in the HBs and is given by:

Ihb = (φSM − φohc)GMET , (5.35)

whereGMET is the HB conductance, which is initially assumed to be a nonlinear function
of the HB deflection as:

GMET = G0P = G0

1 + e−(uHB−u0
HB)/δHB

, (5.36)

where G0 is the maximum MET conductance, P is the open probability of a channel,
uhb is the HB deflection, u0

HB is the resting displacement of the HB and δhb is the MET
channel width. To obtain a linear model, the transduction current IHB is linearised with
respect to small variations of HB deflections uhb, as:

Ihb = (G0
MET + iωCa)(φsm − φohc) + (Vsm − Vohc)

3∑
j=1

G1
MET,juhb,j , (5.37)

where G0
MET,j = 1/ra is the conductance at the resting state of the HB; Vsm and Vohc

are the voltages at resting state in the SM and of the OHC, respectively; G1
MET is the

slop of the change of conductance with respect to the HB deflection, which is supposed
to be a function of x. These equations are used to derive the form of the matrices Ke,
Kes, Ces in Eq. (5.27), as detailed in the MATLAB program in D.2.

5.4 Extension of the elemental model to condense out the
electrical degrees of freedom.

The elemental model, reviewed in Section 5.2, can be extended to include the locally
reacting micromechanical model of the Organ of Corti, described in Section 5.3, by
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deriving an equivalent BM admittance matrix, YBM. Then this is used within the
framework of the elemental model, to derive the response of the system in the case of
3D fluid coupling, using Eq. (5.8). First, we notice that the vector of BM velocities
given by Eq. (5.3b) is equal to:

v = iωTu, (5.38)

where T is a N × 7N matrix given by:

T =



1 0 0 0 0 ...

0 0 0 1 0 ...

.

.

.

.


, (5.39)

and:

u =[ubm,1, utms,1, utmb,1, ..., ubm,N , utms,N , utmb,N , ..., φsv,1, φsm,1, φohc,1, φst,1, ...,

φsv,N , φsm,N , φohc,N , φst,N ]T .
(5.40)

Furthermore:
p̃ = Sp (5.41)

where:

p̃ = [pbm,1, 0, 0, 0, 0, 0, 0, pbm,2, 0, 0, 0, 0, 0, 0, ..., pbm,N , 0, 0, 0, 0, 0, 0]T , (5.42)

S is a 7N ×N matrix, given by:

S =



1 0 0 0 ...

0 0 0 0 ...

0 0 0 0 ...

0 1 0 0 ...

0 0 0 0 ...

0 0 0 0 ...

0 0 1 0 ...

.

.

.



, (5.43)

and p is the vector of elemental pressures in Eq. (5.3a). Then, if we define:

Kglobal =
([

Ks Kse

Kes Ke

]
+ iω

[
Cs Cse

Ces Ce

]
− ω2

[
Ms 0
0 0

])
, (5.44)
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from Eq. (5.27) we can write:

v = −iωTK−1
globalSp (5.45)

By comparing this equation to the one used in the elemental model:

v = −Ybmp, (5.46)

we obtain the expression of the equivalent BM admittance as:

Ybm = TK−1
globalS. (5.47)

This admittance can then be used in the elemental model, to obtain the response of
the cochlea using Eq. (5.8). The electrical degrees of freedom in Eq. (5.27) contained in
φ have thus been condensed out of the formulation in this process. This considerably
simplifies the interpretation of the BM dynamics, by incorporating the forces due to the
OHCs into the elemental mechanical model.

5.4.1 Results

In this section we present the predictions of the BM response in the passive and active
case for the elemental model with a locally reacting Organ of Corti, based on the guinea
pig parameters used in (Ramamoorthy et al., 2007). The data from the finite element
model was kindly made available by Karl Grosh as part of a collaboration with the Uni-
versity of Michigan, as part of this PhD. The results are derived for various positions
along the cochlea and for each of them we report the characteristic frequency, the am-
plification and Q10 dB, which measures the sharpness of tuning, defined as f0/∆f , where
f0 is the frequency where the response peaks and ∆f is the full width of the amplitude
curve 10 dB down from the maximum response. In all cases 3D fluid coupling is included
and the chamber areas are assumed to be uniform.

5.4.1.1 Passive case

Figure 5.5 shows the predicted BM response, relative to the stapes, as a function of
the frequency, in the passive case, at different longitudinal locations. The dashed lines
are from the finite element model (Ramamoorthy et al., 2007) while the solid lines are
from the elemental formulation. There are minor differences between the two models,
including the lack of longitudinal electrical coupling in the elemental model and the way
the fluid coupling is modelled, as discussed above. With respect to the finite element
model, the characteristic frequencies of the elemental model at the various locations are
slightly shifted. Furthermore, there is a difference in the slope of the response at the
lowest frequencies. The overall form of the passive response is, however, similar for the
two models.
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Figure 5.5: Prediction of the locally reacting BM response, relative to the stapes, as a function
of the frequency ,in the passive case at different locations along the cochlea. The amplitude
response from the elemental model (solid lines) is compared to the response from the elemental

model (Ramamoorthy et al., 2007).

5.4.1.2 Active case

Figure 5.6 shows the predicted BM response, in the active locally reacting case. In these
simulations, the OHC electromechanical coupling coefficient, was increased until the
frequency response began to demonstrate discontinuities, indicating instabilities, and
was then reduced by 95%. For comparison, the passive case derived in the previous
section is also reported. As we can see, in the active case there is an increase in the
amplitude and sharpness of the response and also a shift of the peak to higher frequencies.
In this instance we do not have data to make a direct comparison with the finite element
model, but these result have a similar form to those of Fig.5 in (Ramamoorthy et al.,
2007). If we look at the phases, we can see that, with respect to the passive case, there
is a greater phase accumulation, as expected. Table 5.1 shows, for every position, the
characteristic frequency, CF, the amplification with respect to the passive case and the
value of Q10 dB for this active model. The values of the amplification are somewhat lower
than those measured for the guinea pig by (Zheng et al., 2007), but this is expected as
in (Ramamoorthy et al., 2007) it is shown that, without electrical longitudinal coupling,
the amplification of the response is reduced by about 10 dB.
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Figure 5.6: Prediction of the BM response relative to the stapes as a function of the frequency
in the active, locally reacting case, at different longitudinal locations. The dashdotted lines are

from the passive case (Fig. 5.5) while the solid lines are the active case.

Table 5.1: Q10dB , amplification and characteristic frequency at various position in the locally
reacting case represented in Fig. 5.6. In square bracket, the experimental values from (Zheng

et al., 2007).

Position (cm) CF (kHz) Amplification (dB) Q10 dB

0.40 16.9 [16.5] 27.0 [35] 8.4 [6.5]

0.50 14.1 20.6 6.4

0.60 11.6 15.8 4.3

0.70 9.7 12.1 3.4
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5.4.2 BM admittance

One of the advantages of the elemental model is that the BM admittances that have
contributed to the coupled response in Section 5.4.1.1 and 5.4.1.2 can be explicitly cal-
culated. In this active, locally reacting case, this BM admittance includes the electrical
and electromechanical behaviour of the OHCs, as discussed in Section 5.4, but not the
contribution due to the near-field component of the pressure. Fig. 5.7 shows the BM
admittance at the position x = 4 mm for the passive and the active model. The BM
admittance in the passive case is similar to that expected for the single degree of freedom
micromechanics, as described by Eq. (5.21), apart from an increase of the value of the
real part at the highest frequencies. The BM admittance in the active case shows a
sharper peak before the CF and is negative in a small region before the CF, suggesting
that this is the region where the travelling wave is amplified. (Dewey et al., 2019) used
an elegant suppression technique to show that amplification of the cochlear wave occurs
close to the characteristic frequency, over a region that is about 18% of the cochlear
length. This suggests that while this locally reacting model produces realistic coupled
responses, the physical description of the cochlear amplifier is incomplete, perhaps due
to the lack of longitudinal coupling.

Another advantage of condensing out the electrical degrees of freedom in the elemen-
tal formulation is that an equivalent 3DOF mechanical system can be derived, which
includes the cochlear amplifier. This is described in Appendix B.
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Figure 5.7: Passive and active BM admittance, as a function of the frequency, at the position
x = 4 mm.



72 Chapter 5. Elemental formulation of a finite element model of the active cochlea

5.5 Conclusions

In this chapter, the formulation of the elemental model of the cochlea is reviewed, de-
scribing the case with 1D and 3D fluid coupling. The Finite Element Model of the Organ
of Corti in the locally reacting case, that is, with no mechanical or electrical longitudinal
coupling, as modelled by (Ramamoorthy et al., 2007), is also described. We then showed
how the elemental model can be extended to include the micromechanical model of the
Organ of Corti and, in particular, how the BM admittance is modified. Finally, we
derived the predictions of the BM response for the passive and active case. It is worth
noting the relative computational efficiency of the elemental model with respect to the
finite element model. By using the same software, MATLAB, and similar hardware,
the time required to run the algorithms associated with the finite element model is of 6
hours while the elemental model requires only 15 minutes.

In the next chapter, we show how to include the mechanical and electrical longitudinal
coupling in the elemental model and how the responses are modified. The results are
compared to the locally reacting case by looking at the amplification of the peak of the
response and its sharpness, as measured by Q10 dB.
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Chapter 6

Longitudinal coupling

In the previous chapter the elemental model, reviewed in (Elliott and Ni, 2018), was
extended to include the finite element model of the Organ of Corti by (Sasmal and Grosh,
2019), in the simplified case of no mechanical and electrical longitudinal coupling. In this
chapter we show how the equivalent BM admittance is modified after the introduction of
the mechanical longitudinal coupling of the tectorial membrane, the basilar membrane
and the electrical longitudinal coupling along the scalae. Then we compare the effect
of the various types of the longitudinal coupling on the active response of the BM, in
terms of the amplification of the response and its sharpness, measured by Q10 dB.

6.1 Longitudinal coupling in the tectorial membrane

When the longitudinal viscoelastic coupling of the TM is included, the governing equa-
tion for the shear motion of the TM, utms, is modified as (Meaud and Grosh, 2010):

Fhb/tms(x) = Ktmsutms + Cfsubu̇s +Mtmsütms −
∂

∂x

(
Aefftm Gxy

∂utms
∂x

+Aefftm ηxy
∂u̇tms
∂x

)
(6.1)

where Fhb/tms is the force per unit length applied to the TM by the HBs of the OHCs
in the shear direction; Cfsub is the damping coefficient due to the viscosity of the fluid
in the subtectorial space; us is the relative shear displacement between the TM and the
RL; Aefftm is an effective cross-sectional area of the TM; Gxy is the shear modulus and
ηxy is the shear viscosity.

To incorporate these extra terms in the matrix formulation given by Eq. (5.27), first
we expand out the derivations:

Fhb/tms(x) =Ktmsutms + Cfsubu̇s +Mtmsütms −
(
Aeff

′

tm Gxy +AtmG
′
xy

) ∂utms
∂x

−
(
Aeff

′

tm ηxy +Aefftm η′xy

) ∂u̇tms
∂x

−Aefftm Gxy
∂2utms
∂x2 −Aefftm ηxy

∂2u̇tms
∂x2 ,

(6.2)
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then we discretise the first and second derivative of utms so that Eq. (6.2) becomes:

Fhb/tms(x) =Ktms(x)utms(x) + Cfsub(x)u̇s(x) +Mtmsütms(x)− kl1(x+ 1)utms(x+ 1)

+ kl1(x)utms(x)− cl1(x+ 1)u̇tms(x+ 1) + cl1(x)u̇tms(x)

− kl2(x− 1)utms(x− 1) + 2kl2(x)utms(x)− kl2(x+ 1)utms(x+ 1)

− cl2(x− 1)u̇tms(x− 1) + 2cl2(x)u̇tms(x)− cl2(x+ 1)u̇tms(x+ 1),
(6.3)

where

kl1(x) =
Aeff

′

tm Gxy(x) +Aefftm G′xy(x)
∆ , (6.4)

cl1(x) =
Aeff

′

tm (x)ηxy(x) +Aefftm (x)η′xy(x)
∆ , (6.5)

kl2(x) = Aefftm (x)Gxy(x)
∆2 , (6.6)

cl2(x) = Aefftm (x)ηxy(x)
∆2 . (6.7)

Finally, we include these terms, proportional to the first and second derivative of utms,
into the matrix formulation in Eq. (5.27) as extra diagonal and non-diagonal terms into
the structural matrices Ks and Cs. In particular, Ks becomes:

Ks =



K(1) 0 0 0 0 ... 0

Kl2 K(2) Kl1 0 0 ... 0

0 Kl2 K(3) Kl1 0 ... 0

.

.

0 ... 0 K(N)



(6.8)

where for i = 2, 3, ..., N − 1

K(i) =


k11(i) k12(i) k13(i)

k21(i) k22(i) + kl1(i) + 2kl2(i) k23(i)

k31(i) k32(i) k33(i)

 (6.9)

while for i = 1, N :

K(N) =


k11(i) k12(i) k13(i)

k21(i) k22(i) k23(i)

k31(i) k32(i) k33(i)

 (6.10)
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and

Kl2(i) =


0 0 0

0 −kl2(i− 1) 0

0 0 0

 (6.11)

and

Kl1(i) =


0 0 0

0 −kl1(i+ 1)− kl2(i+ 1) 0

0 0 0

 (6.12)

A similar expression is obtained for the matrix Cs.

6.2 Longitudinal coupling in the basilar membrane

When the elastic longitudinal coupling of the BM is included, the governing equation
for the BM motion becomes (Meaud and Grosh, 2010):

Pbm(x, y) =2
b
Cbmu̇bm +Mbmübm −

∂2

∂x2

(
Dxx

∂2ubm
∂x2 +Dxy

∂2

∂y2

)
− 2 ∂2

∂x∂y

(
Ds

∂2ubm
∂x∂y

)
− ∂2

∂y2

(
Dyy

∂2ubm
∂y2 +Dxy

∂2ubm
∂x2

)
,

(6.13)
where Pbm is the pressure applied by the fluid and the OHC on the BM, Cbm is the BM
viscous damping per unit area, Mbm is the mass of the BM per unit area and b is the
width of the BM. Dxx, Dyy, Dxy, and Ds are the orthotropic plate bending stiffness of
the BM. ubm(x, y) is the BM displacement and is given by:

ubm(x, y) = ubm(x)sin(π(y + b/2)/b), (6.14)

where−b/2 ≤ y ≤ b/2. If we integrate out the radial dependence of the BM displacement
and neglect the longitudinal variation of b, then Eq. (6.13) becomes:

Fbm(x) =Cbmu̇bm(x) + b

2Mbmübm(x)− b

2

[
Dxx

∂4ubm
∂x4 − 2(Dxy +Ds)

(
π

b

)2∂2ubm
∂x2

+Dyy

(
π

b

)4
ubm

]
,

(6.15)
where Fbm is the force per unit length applied on the BM. Then, to incorporate these
terms into the matrix formulation given by Eq. (5.27), we discretise the derivatives of
ubm and include the resulting terms into the matrix Ks, in a similar way in which we
have done in the previous section.
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6.3 Electrical longitudinal coupling

When the electrical longitudinal coupling is included, the cross-sectional model of the
circuit in Figure 5.4 is modified as in Fig. 6.1 (Sasmal and Grosh, 2019) to include
the resistances per unit length along the SV, SM and ST. These create two additional
potentials in the models, one in the SV and one in the ST, which corresponds to two
additional electrical DOFs. The governing equations for the electrical DOFs are modified
as (Sasmal and Grosh, 2019):

1
rsv

∂2φsv

∂x2 −
(

1
Rvl

+ 1
Rvm

)
φsv + 1

Rvm
φsm = 0,

1
Rvm

φsv + 1
rsm

∂2φsm

∂x2 −
(

1
Rvm

+ 3Ya
)
φsm + 3Yaφohc − Is1 = 0,

3Yaφsm − 3(Ya + Ym)φohc + 3Ymφst + Is1 − Is2 = 0,

3Ymφohc + 1
rst

∂2φst

∂x2 −
(

1
Rtl

+ 3Ym
)
φst + Is2 = 0,

(6.16)

where Ya = 1/Ra0 + iωCa and Ym = 1/Rm+ iωCm. Is1 is the current due to the variable
HB conductance and is given by:

Is1 = (Vsm − Vohc)G1
a

3∑
j=1

uhb,j , (6.17)

Figure 6.1: Electrical model of the OHCs and of the spread of current trough the scalae.
With respect to the locally reacting case, there are additional resistances, rsv, rsm and
rst along, respectively, the SV, SM and ST. From (Sasmal and Grosh, 2019), which is
published in open access under a Creative Commons Attribution 4.0 International License,

https://creativecommons.org/licenses/by/4.0/.
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while Is2 is the current due to the OHC electromotility:

(6.18)

Then the matrix Ce in Eq. (5.27) has diagonal blocks of dimension 4× 4:

Ce(i) =



0 0 0 0

0 −3Ca 3Ca 0

0 3Ca −3Ca − 3Cm 3Cm

0 0 3Cm −3Cm


, (6.19)

Ke can be written as:

Ke =



Ke(1) 0 0 0 0 ... 0

Ke,l2 Ke(2) Ke,l1 0 0 ... 0

0 Ke,l2 Ke(3) Ke,l1 0 ... 0

.

.

0 ... 0 Ke(N)



, (6.20)

where for i = 2, 3, ..., N − 1:

Ke(i) =



−1
Rvl
− 1

Rvm
+ 2

rsv∆2
1

Rvm
0 0

1
Rvm

−1
Rvm
− 3

Ra0
+ 2

rsm∆2 − 3
Ra0

0

0 3
Ra0

− 3
Ra0
− 3

Rm

3
Rm

0 0 3
Rm

− 1
Rtl
− 3

Rm
+ 2

rst∆2


(6.21)

while for i = 1, N :

Ke(i) =



−1
Rvl
− 1

Rvm

1
Rvm

0 0

1
Rvm

−1
Rvm
− 3

Ra0
− 3
Ra0

0

0 3
Ra0

− 3
Ra0
− 3

Rm

3
Rm

0 0 3
Rm

− 1
Rtl
− 3

Rm


(6.22)
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and:

Ke,l1(i) =



− 1
rsv∆2 0 0 0

0 − 1
rsm∆2 0 0

0 0 0 0

0 0 0 − 1
rst∆2


(6.23)

and Ke,l2(i) = Ke,l1(i) because rsv, rsm and rst do not depend on the longitudinal
coordinate x. The matrix Ces has diagonal block of dimension 4× 3:

Ces(i) = −ε



0 0 0

0 0 0

−C1 − E1 −C3 −C4

C1 + E1 C3 C4


, (6.24)

where:
C1 = −3ψ1,Lpc

sin(θ1 + θ2)
sin(θ2)

(
cos(θ1 − α)− cos(θ1 − β)

cos(α− β)

)
, (6.25a)

C3 = −3 tan(α− β), (6.25b)

C4 = −3, (6.25c)

E1 = (ψ1,L01 + ψ1,L0 + ψ1,L10) cos(α). (6.25d)

which are the coefficients that define uohc,j in Eq. (5.33). The matrix Kes has diagonal
blocks of 4× 3:

Kes(i) = 3iq



0 0 0

A1 A3 A4

−A1 −A3 −A4

0 0 0


, (6.26)

where:
iq = (Vsm − Vohc)G1

a, (6.27)

and:

A1 = −ψ1,Lpc
sin(θ1 + θ2)

sin(θ2)
sin(θ1 − α)
cos(α− β) −

Lst
Lro

ψ1,Lpc sin(θ1 + θ2) cos(θ1 − β)
sin(θ2) cos(α− β) ,

(6.28a)
A3 = 1

cos(α− β) + Lst
Lro

tan(α− β), (6.28b)

A4 = Lst
Lro

. (6.28c)
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which are the coefficients that define uhb,j in Eq. (5.37). The matrix Kse = CT
es while

Cse = 0 because the MET is not a reciprocal function.

6.4 Results

In this section we present the predictions in the active case from the elemental model
with a longitudinal coupled Organ of Corti. In the passive case there is found to be a
negligible difference between the various cases of longitudinal coupling and the locally
reacting case, and so the results are not included. The results are derived for various
positions along the cochlea, using parameters based on (Meaud and Grosh, 2010) and
listed in the MATLAB program in Appendix D. For each case we report the characteristic
frequency, the amplification and Q10 dB.

6.4.1 Active case with BM longitudinal coupling only

Figure 6.2 shows the prediction of the BM response, in the active case, including BM
longitudinal coupling. For comparison, the active locally reacting case, derived in Sec-
tion 5.4.1.2, is also reported. When the BM longitudinal coupling is included, a greater
value of the electromechanical coupling coefficient, ε3, corresponding to an increase of
about 6%, compared with the locally reacting case, can be used without incurring in
instability in the response. The latter was inferred from discontinuities in the frequency
dependence of the amplitude or the phase of the coupled response.

The resulting amplitude of the BM is characterised by a greater amplification, a
greater value of Q10 dB, and the peak of the response is shifted to higher frequencies.
This is illustrated in Table 6.1 for this case, which can be compared with Table 5.1 in
Chapter 5 for the passive case.
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Figure 6.2: Prediction of the BM response relative to the stapes as a function of the frequency
in the active case, with BM longitudinal coupling only, at different longitudinal locations. The
dashdotted lines are from the active locally reacting case (LR) (Fig. 5.6) while the solid lines are

the active case with BM longitudinal coupling only (BM LC).

Table 6.1: Characteristic frequency, amplification and Q10dB at various position in the case
with BM longitudinal coupling only, represented in Fig. 6.3.

Position (cm) CF (kHz) Amplification (dB) Q10 dB

0.40 17.09 32.02 8.9

0.50 14.23 23.82 6.7

0.60 11.85 18.62 6.4

0.70 9.87 15.54 6.1
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6.4.2 Active case with TM longitudinal coupling only

Figure 6.3 shows the prediction of the BM response, in the active case, including only
TM longitudinal coupling. For comparison, the active locally reacting case, derived
in Section 5.4.1.2, is again reported. When the TM longitudinal coupling is included,
a greater value of the electromechanical coupling coefficient, ε3, can be used without
incurring in instabilities in the response. In particular, in this case, the value of ε3 has
been increased by about 40% and, as reported in Table 6.2, the resulting amplitude
is characterised by a greater amplification, a greater value of Q10 dB, compared to the
locally reacting case in Table 5.1, and the peak of the response is shifted to lower
frequencies.

Figure 6.3: Prediction of the BM response relative to the stapes as a function of the frequency
in the active case, with TM longitudinal coupling only, at different longitudinal locations. The
dashdotted lines are from the active locally reacting case (LR) (Fig. 5.6) while the solid lines are

the active case with TM longitudinal coupling only(TM LC).
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Table 6.2: Characteristic frequency, amplification and Q10dB at various position in the case
with TM longitudinal coupling only, represented in Fig. 6.3.

Position (cm) CF (kHz) Amplification (dB) Q10 dB

0.40 16.08 31.76 6.00

0.50 13.39 29.44 5.99

0.60 11.02 25.61 5.79

0.70 9.17 18.85 4.75

6.4.3 Active case with both TM and electrical longitudinal coupling

Figure 6.4 shows the prediction of the BM response, in the active case, with both TM
and electrical longitudinal coupling. For comparison, the active case with only TM
longitudinal coupling, in Table 6.2, derived in the previous section, is also included. As
reported in Table 6.3, with respect to the case with only TM longitudinal coupling, we
have an increase in both the amplitude and in Q10 dB and the peak of the response is
shifted to the right. Furthermore, the discontinuity in the amplitude response at about
4 kHz is not present in this case.

Table 6.3: Characteristic frequency, amplification and Q10dB at various position in the case
with both TM and electrical longitudinal coupling, represented in Fig. 6.4.

Position (cm) CF (kHz) Amplification (dB) Q10 dB

0.40 17.3 35.98 5.49

0.50 14.24 34.73 6.17

0.60 11.71 29.41 6.26

0.70 9.75 22.6 6.25
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Figure 6.4: Prediction of the BM response relative to the stapes as a function of the frequency
in the active case, with TM, BM and electrical longitudinal coupling, at different longitudinal
locations. The dashdotted lines are from the active case with TM longitudinal coupling (TM
LC) (Fig. 6.3) while the solid lines are the active case with both TM and electrical longitudinal

coupling (TM + E LC).
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6.4.4 Active case with both TM and BM longitudinal coupling.

Figure 6.5 shows the prediction of the BM response, in the active case, with TM and
BM longitudinal coupling. For comparison, the active case with only TM longitudinal
coupling, derived in the Section 6.4.2, is also included. The same value of ε3 is used. As
reported in Table 6.3, with respect to the case with only TM longitudinal coupling, we
have a slightly increase in both the amplitude and in Q10 dB and the peak of the response
is shifted to the right. However, these increases are less than those observed with
electrical longitudinal coupling. As seen in the case of TM and electrical longitudinal
coupling, the discontinuity in the amplitude response at about 4 kHz is not present.

Figure 6.5: Prediction of the BM response relative to the stapes as a function of the frequency
in the active case, with TM and BM longitudinal coupling, at different longitudinal locations.
The dashdotted lines are from the active case with both TM longitudinal coupling (TM LC)
(Fig. 6.3) while the solid lines are the active case with TM and BM longitudinal coupling (TM

+ BM LC).
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Table 6.4: Characteristic frequency, amplification and Q10dB at various position in the case
with both TM and BM longitudinal coupling, represented in Fig. 6.5.

Position (cm) CF (kHz) Amplification (dB) Q10 dB

0.40 16.03 33.82 6.92

0.50 13.39 32.71 6.52

0.60 11.15 28.29 5.67

0.70 9.29 21.89 5.11
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6.4.5 Active case with TM, electrical and BM longitudinal coupling.

Figure 6.6 shows the prediction of the BM response, in the active case, with TM, elec-
trical and BM longitudinal coupling. For comparison, the active case with TM and
electrical longitudinal coupling, derived in the previous section, is also reported. The
corresponding results from the finite element model (Meaud and Grosh, 2010) are also
plotted in Fig. 6.6 as dashed lines 1. If we compare the amplitude response of the el-
emental formulation to that from the finite element model, we can see that, as in the
passive case in Section 2.5.1, the peak of the response is shifted slightly to the right and
the slope at the lowest frequencies is slightly different, again possibly due to the different
way in which the fluid coupling is calculated in the two models. As we can see, when
the BM longitudinal coupling is introduced in this case, there is only a slight difference
in the amplitude response. Indeed, all the values of the CF, the amplification and the
Q10 dB are the same as those reported in Table 6.3.

Figure 6.6: Prediction of the BM response relative to the stapes as a function of the frequency
in the active case, with BM, TM and electrical longitudinal coupling, at different longitudinal
locations. The dashdotted lines are from the active case with TM, BM and electrical longitudinal
coupling (TM + BM + E LC) (Fig. 6.4) while the solid lines are the active case with TM and
electrical longitudinal coupling (TM + E LC). The dashed lines are those from the corresponding

finite element model with TM, BM and electrical longitudinal coupling.

1The data for the Finite Element model were kindly provided by Apoorva Khadilkar, from Karl
Grosh’s laboratory.
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6.5 BM response with 1D fluid coupling

In the previous sections and in the locally reacting case discussed in Chapter 5, we
have determined the BM response for an elemental model with 3D fluid coupling. To
understand the effect of different types of fluid coupling, in this section we derive the
response of the BM with 1D fluid coupling. This can be done by using the fluid matrix
Z1D

fc in Eq. (5.8) instead of the full 3D fluid matrix. Furthermore, in this case, the mass
of the BM is increased, to account for the fluid loading (Ni and Elliott, 2015). The value
of ε3 has been chosen, as before, as the maximum before which discontinuities appear
in the amplitude and phase response. With respect to the corresponding cases with 3D
fluid coupling, ε3 is decreased by 10% in all the cases.

Figures 6.7 and 6.8 show the predictions of the BM response at x = 4 mm for the
locally reacting case and with different types of longitudinal coupling with 1D fluid
coupling, compared to the case with 3D fluid coupling derived in the previous sections
and in Chapter 5. In the locally reacting case in Fig. 6.7, the amplitude of the peak
and the Q ratio are grater in the 1D case with respect to the 3D case. Furthermore,
the phase variation around the characteristic frequency is lower. In the cases with
longitudinal coupling in Figs. 6.7 and 6.8 some common features can be noticed: with
respect to the 3D case, in the 1D case the amplitude and the position of the peak of the
response are similar, while the Q ratio is greater. Furthermore, the phase variation is
lower around the characteristic frequency. It can also be noticed that the amplitude has
a notch before the peak response and that the phase does not decrease monotonically
but increases in the leading phase direction before the characteristic frequency. These
two last characteristics have also been notice by (Neely and Kim, 1986), in which an
active model of the cochlea with 1D fluid coupling is also used.

As we discussed in Section 5.2.1, the model with 1D fluid coupling is suitable to
describe a passive model of the cochlea, because it is valid under the condition that the
shortest wavelength of the slow wave is greater than the cross-sectional dimension of the
fluid chamber (de Boer, 1996). On the other hand, in the active case, around the CF,
the wavelength of the BM motion becomes comparable with the chamber height and a
3D description of the fluid dynamics is necessary.
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Figure 6.7: Comparison between the BM response, as a function of the frequency,(solid blue)
with 1D and (dash-dot) with 3D fluid coupling, in the (left) locally reacting case and (right)

with BM longitudinal coupling.
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Figure 6.8: Comparison between the BM response, as a function of the frequency,(solid blue)
with 1D and (dash-dot) with 3D fluid coupling, (left) with TM longitudinal coupling and (right)

with TM, BM and electrical longitudinal coupling.
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6.6 Conclusions

The effects of the various type of longitudinal coupling can be seen by comparing the
various cases at the position x = 4 mm, in Fig. 6.9. The mechanical longitudinal coupling
by the TM is the most important, both in stabilizing the system and in obtaining an
amplification that is similar to that observed in experimental data. Indeed, in this case,
we are able to increase the electromechanical coupling coefficient ε3 by 40% and obtain
a response that is more similar in amplitude and in sharpness, as measured by Q10 dB, to
that obtained in the data, for example in (Zheng et al., 2007). The electrical longitudinal
coupling, on the other hand, shifts the peak frequency of the BM response. The BM
longitudinal coupling also helps in stabilizing both the amplitude and phase response,
but its effect is not as significant as that due to the electrical and TM longitudinal
coupling.

In this chapter the stability of the response was inferred from discontinuities in the
frequency dependence of the amplitude or the phase of the coupled response. A more
formal method of assessing stability would be to examine the poles of a state space
model. (Bowling et al., 2019) for example, using a state space formulation (Meaud and
Lemons, 2015) of a finite element model of the gerbil cochlea, studied how the stability
of the cochlea depends on the viscoelastic properties of the TM. Their model is based on
that by (Meaud and Grosh, 2010), which includes longitudinal coupling by the BM and
TM. However, in (Bowling et al., 2019) longitudinal coupling is added also to the TM
bending mode. They showed that by reducing either viscous or elastic coupling of the
TM, the model exhibits various unstable modes, resulting in a BM frequency response
which is not smooth but characterised by many spectral peaks. Furthermore, if cochlear
roughness is introduced into the model, in the form of random perturbations to the
electromechanical coupling coefficient ε3, the reduction of the viscoelastic coupling by
the TM corresponds to an increase in the generation of spontaneous otoacustic emission.

The results presented in this chapter, as summarised in Fig. 6.9 are broadly similar
to those from the longitudinal coupling study of (Meaud and Grosh, 2010), who used a
finite element model. These authors adjusted the OHC coupling coefficient, ε3, for each
of the models to give the same gain the BM response at the characteristic frequency,
which was about 25 dB in their case. In the present study the OHC coupling coefficient
was increased by about 40% once the TM coupling was introduced, but was otherwise
kept constant.

The change of the BM admittance with longitudinal coupling is more difficult to
represent than in the locally reacting case, since the BM velocity not only depends
on the excitation position along the cochlea, but also on the distance away from the
excitation position, since the YBM matrix is no longer diagonal. This is discussed for
the case of TM longitudinal coupling in the following chapter, which also describes a
method of calculating the wavenumber distribution from the spatial distribution of the
BM admittance, and so links the model back to the wave description for the passive
cochlea in Chapter 3 .
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Figure 6.9: Comparison of the BM amplitude (top) and phase (bottom) response at x =
4 mm for the locally reacting case (LR), the case with BM longitudinal coupling (BM LC), TM
longitudinal coupling (TM), and BM, TM and electrical longitudinal coupling (BM + TM + E

LC).
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Chapter 7

Wavenumber for propagation
with a longitudinally coupled
OoC

7.1 Introduction

In this chapter, we present a method to derive the wavenumber distribution in the case
of a cochlear model with longitudinal coupling, following on from the discussion of the
wavenumber for the locally reacting passive cochlea in Chapter 3 . The method is
used to derive the wavenumber distribution of the main travelling wave for the model
with TM longitudinal coupling in Section 6.1, but is more general and the wavenumber
distribution corresponding to other wave types can be derived.

7.2 Wavenumber derivation

In the wavenumber domain, the modal pressure, P (k), the modal BM velocity, V (k),
and the fluid coupling impedance, Zfc(k), are related according to the equation (Steele
and Taber, 1981; Elliott et al., 2011):

P (k) = Zfc(k)V (k), (7.1)

where k is the complex wavenumber. Similarly the BM response can be written in the
wavenumber domain as:

V (k) = −YBM (k)P (k), (7.2)

where YBM (k) is the BM admittance transformed into the wavenumber domain, as dis-
cussed below for a longitudinally coupled cochlea. Eqs. (7.1) and (7.2) are simultaneously
satisfied if a value of k exists for which:

Zfc(k) = − 1
YBM (k) . (7.3)
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In the case of 1D fluid coupling, the fluid coupling impedance can be written as (Ni and
Elliott, 2015):

Zfc(k) = Z1D(k) = 2iωρ
k2h

, (7.4)

and if the BM admittance is only locally reacting then YBM (k) is independent of k and
can be written as YBM . So Eq. (7.3) is satisfied if:

k = ±
√
−2iωρ
h

YBM , (7.5)

which is equivalent to Eq. (3.6) in Chapter 3 if the fluid is inviscid and incompressible.
More generally, however, Eq. (7.3) is true for 3D fluid coupling and a longitudinally

coupled OoC. The fluid coupling impedance in this case can be written as (Elliott et al.,
2011):

Zfc(k) = Z1D(k) + Znf (k), (7.6)

where Z1D(k) has the simple analytic form of Eq. (7.4), and Znf (k) is the near fluid
component. Substituting this into Eq. (7.3), we obtain:

Z1D(k) = −
( 1
YBM (k) + Znf (k)

)
:= − 1

Y ′BM
, (7.7)

where Y ′BM is a modified BM impedance that takes into account both the longitudinal
coupling within the OoC and the longitudinal coupling due to the near fluid coupling of
the pressure, as discussed in Section 5.2.1.3 and can be written as:

Y ′BM =
( 1
YBM (k) + Znf (k)

)−1
. (7.8)

Since the near-field pressure is local to the BM it seems more natural to associate this
with the BM dynamics than the fluid coupling. Indeed, if the near-field component
of the pressure in Section 5.2.1.3 is approximated by a spatial delta function, rather
than an exponential distribution, then Znf (k) is no longer a function of k. If the BM
is also locally reacting, so that YBM (k) is independent of k, then Y ′BM in Eq. (7.8)
is independent of k and Znf can be interpreted as an added mass on the BM due to
near-fluid motion (Neely, 1985). This added mass is generally larger than the physical
mass of the BM and (Elliott et al., 2011) estimated it to be 0.24 kgm−2 compared to the
physical mass of the BM, which is about 0.05 kgm−2.

Using Eq. (7.4) for Z1D(k) in Eq. (7.7), the latter can be written as:

1 + 2iωρ
k2h

Y ′BM (k) = 0. (7.9)

By solving this equation for a set of values of ω, we can, in principle, determine the
wavenumber as a function of the frequency. The equation can be solved geometrically
by determining the intersecting points of the curves given by the real and imaginary
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part of this equation: <{
Y ′BM (k)
k2 } = 0

1− 2iωρ
h ={

Y ′BM (k)
k2 } = 0.

(7.10)

To solve this system of equations, we need to determine the modified BM admittance
as a function of the wavenumber, Y ′BM (k), from the admittance as a function of ω and
x, obtained from the elemental model. This can be done by the following steps:

1. calculate the admittances corresponding to excitation from a pressure difference
at the position x0 and the BM velocity measured at various positions around x0,
i.e. x = x0 + x′ where, in the elemental model, x′ = n∆, with n = 1, 2, ..., N :

YBM (ω, x0, n∆) = v(x0 + n∆x)
p(x0) ; (7.11)

2. from YBM (ω, x0, n∆) derive, for a particular frequency ωi, the impedance as a
function of the relative position x′ = x− x0, YBM (ωi, x0, x

′);

3. take the Fourier transform of YBM (ωi, x0, x
′) to obtain the admittance as a function

of the wavenumber for x0 and ωi, Y (ωi, x0, k); this is valid when the imaginary
part of the wavenumber, γ, is zero.

4. to obtain the Fourier transform for a non-zero value of γ, multiply YBM (ωi, x0, x
′)

by e2πγx′ and then again take the Fourier transform. By repeating this procedure
for a range of values of γ, Y (k) for complex values of k is obtained and the curves
given by Eq. (7.10) that satisfy Eq. (7.8) can be plotted. Their crossing points gives
the real and imaginary part of the wavenumber, k, for the particular frequency
chosen, ωi.

5. steps (2)-(4) are repeated for the whole frequency range of interest.

In general, for a particular frequency, there is more than one solution to Eq. (7.10),
corresponding to different type of waves. In the next sections, we will discuss how to
choose between these solutions to determine the wavenumber distribution for a particular
wave type.

7.3 Passive, locally reacting case, with 1D fluid coupling

To illustrate the procedure to derive the wavenumber, we consider the passive, locally
reacting case, which was solved analytically in Chapter 3. We will derive the wavenumber
distribution using the procedure outlined in the previous section and then compare it
to that derived in Chapter 3 analytically.

In this case the BM admittance is given by Eq. (3.7) and does not depend on the
wavenumber, so that Eq. (7.9) becomes:

1 + 2iωρ
k2h

YBM (ω) = 0. (7.12)
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At the position x = 20 mm and at the angular frequency of ω = 2π× 135 Hz, the curves
corresponding to the two parts of Eq. (7.10) are shown in Fig. 7.1. Their crossing points
corresponds to the solutions of the wavenumber equation for this particular frequency
and position. The solution with a positive real part of the wavenumber corresponds to
the wave propagating in the positive direction, while the solution with a negative real
part of the wavenumber refers to the wave propagating in the opposite direction. As
we are interested in the wavenumber distribution of the travelling wave, we choose the
solution with a positive value of κ. At the characteristic frequency for this position,
which is 1.15 kHz, the two curves of Eq. (7.10), in this case, are shown in Fig. 7.2. At
20 kHz, the corresponding curves are shown in Fig. 7.3.

By repeating this procedure for a set of frequencies, we obtain a set of complex val-
ues of k, given by the crossing points of the two curves. These are shown in Fig. 7.4
as blue asterisks, together with the wavenumber distribution obtained analytically from
Eq. (7.5). If we solve Eq. (7.10) for all the other frequencies of interest, we can re-
construct the whole wavenumber distribution, and this is identical to the one obtained
analytically.

Although this simple example illustrates the method of finding the complex wavenum-
ber for a given position on the cochlea, it also demonstrates the complexity and compu-
tational effort involved in this more general method.

Figure 7.1: Values of the wavenumber for which the real and imaginary part of Eq. (7.12)
are zero at a frequency of 135 Hz. The crossing point indicated in the box is the wavenumber

solution corresponding to a forward-travelling wave.
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Figure 7.2: Values of the wavenumber for which the real and imaginary part of Eq. (7.12) are
zero at the characteristic frequency, 1.15 kHz. The crossing point indicated in the box is the

wavenumber solution corresponding to a forward-travelling wave.
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Figure 7.3: Values of the wavenumber for which the real and imaginary part of Eq. (7.12)
are zero at a frequency of 20 kHz. The crossing point indicated in the box is the wavenumber

solution corresponding to a forward-travelling wave.
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Figure 7.4: The complex wavenumber corresponding to the intersections of the real and imagi-
nary part of Eq. (7.10), shown as blue stars. The analytical solution to the wavenumber, obtained

from Eq. (7.5), is plotted as the solid curve over a wider range of frequencies.



100 Chapter 7. Wavenumber for propagation with a longitudinally coupled OoC

7.4 Case with TM longitudinal coupling

In the case of a locally reacting model, the BM admittance matrix, YBM in Eq. (5.5), is
diagonal. When longitudinal coupling is introduced, this matrix becomes non-diagonal,
thus the BM velocity not only depends on the pressure acting on the excitation position
x0, but also on the pressure some distance away. This is shown in Fig. 7.5, where the
absolute value and the phase of Y ′BM (ω, x0, n∆) are plotted as a function of the frequency
for different values of ∆. As defined in Eq. (7.11), Y ′BM (ω, x0, n∆) corresponds to the
ratio of the BM velocity measured at the position x′ = x0 + n∆ and the pressure
difference at the position x0. It can be seen from Fig. 7.5, calculated for the case with
TM longitudinal coupling only, that this admittance has a significant value up to about
x′ = x0±25∆, that is 1 mm, one side or the other compared with the excitation position.

Figure 7.5: Absolute value (upper) and phase (lower) of Y ′BM (ω, x0,±n∆), as a function of the
frequency. ∆ = 46µm and x0 = 4 mm.

From Y ′BM (ω, x0, n∆), following the procedure outlined in Section 7.2, we derive
the impedance as a function of the relative position, x′, for a particular frequency ωi,
YBM (ωi, x0, x

′). This is shown in Fig. 7.6 for ωi equal to the characteristic frequency
ω0, shown as a vertical line in Fig. 7.5. In the locally reacting case, Y ′BM (ω, x0, x

′) is
non-zero only for x′ = 0. On the other hand, when longitudinal coupling by the TM is
introduced, the BM admittance has a significant value up to 1 mm either side of x0. It
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is also worth noticing that YBM (ωi, x0, x
′) is symmetric with respect to x0 in this case,

as expected since the longitudinal coupling by the TM is also symmetric.

Figure 7.6: Absolute value (upper) and phase (lower) of the BM admittance at the CF, as a
function of the relative position x′, measured for an excitation position of x = 4 mm along the

cochlea.

From YBM (ω0, x0, x
′) we can derive the admittance as a function of the real part of

the wavenumber, Y (k), by taking the discrete Fourier transform:

YBM (ω0, x0, κ) =
N−1∑
l=0

YBM (ω0, x0, x
′(l))e−2πiκl/N , (7.13)

which is performed using the Fast Fourier transform algorithm (FFT) in MATLAB. The
result is shown in Fig. 7.7. This is valid when the imaginary part of the wavenumber, γ,
is zero. To obtain the Fourier transform for other values of γ, we multiply YBM (ω0, x

′)
by e2πγx′ and then again take the Fourier transform, using the FFT. If we repeat this for
a range of values of γ, we obtain a set of curves in the κ− γ plane, which represents the
admittance as a function of the complex wavenumber, Y (k). This is shown in Figs. 7.8
and 7.9 for a range of values of κ and γ.

The points for which the real and imaginary parts of 1 + 2iωY ′BM/(k2h) are equal to
zero, i.e. satisfy Eq. (7.10), give a set of curves, and their crossing points gives the real
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and imaginary part of the wavenumber for the frequency chosen. In general, there are
multiple crossing points, corresponding to different types of wave that could exist in the
longitudinally-coupled cochlea. As Y (k) is symmetric with respect to κ and γ, for every
complex solution with a positive real part, corresponding to a forward travelling wave,
there is a corresponding solution with a negative real part, corresponding to a backward
travelling wave. This is, as stated before, a consequence of the symmetric nature of the
longitudinal coupling.

Figure 7.7: Real (upper) and imaginary (bottom) part of Y(ω0, k) for γ = 0.
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Figure 7.8: Real part of Y(ω0, k) for different values of κ and γ.

Figure 7.9: Imaginary part of Y(ω0, k) for different values of κ and γ.
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Figure 7.10: Values of the wavenumber for which the real and imaginary part of Eq. (7.12) are
zero at a frequency of ω = 2π × 13.55 kHz.

To obtain the wavenumber distribution corresponding to the main “slow” travelling
wave, we start by deriving the solution of Eq. (7.10) at a low frequency, ω = 2π×554 Hz,
by choosing the crossing point with the lowest value of the imaginary part, γ. Then,
we follow the solution by solving Eq. (7.10) for the other values of the frequency. In
Fig. 7.10, for example, the solution of Eq. (7.10) is shown at a frequency below the CF,
i.e. ω = 2π × 13.55 kHz. The main “slow” travelling wave corresponds to the crossing
point with a positive value of κ and γ at this frequency, where the wave is amplified,
while the other crossing points with a positive value of κ have negative values of γ,
corresponds to decaying waves.

The wavenumber thus obtained is shown in Fig. 7.11. The real part has a distribution
which is similar to the one obtained in the locally reacting case, while the imaginary part
is positive in a region before the characteristic frequency. This is in accordance with re-
sults previously obtained by Shera (2007), shown in Fig. 1.1 in which the inverse method
was used to obtain the wavenumber distribution from experimental measurements of the
cochlea. As noted by Shera, a positive value of γ below the characteristic frequency cor-
responds to a power transfer to the Organ of Corti, thus to the amplification of the
travelling wave. This can be verified in our case by calculating the time-averaged power
transferred from the BM to the fluid per unit area as:

P (x0, f) = −1
2<{p(x0, f)v(x0, f)}, (7.14)
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where p(x0, f) and v(x0, f) are, respectively, the pressure and velocity distributions
calculated for the coupled system in this case. The power distribution is shown in
Fig. 7.12 and compared to the distribution of the imaginary part of the wavenumber.
As expected, the frequency region in which the power is negative is similar to the one in
which γ is positive, indicating that the travelling wave is amplified. On the other hand,
the region in which the power is positive corresponds to a great negative value of γ, thus
to a dissipation of the response.

Figure 7.11: (Upper) real and (lower) imaginary part of the wavenumber distribution in the
case with TM longitudinal coupling.
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Figure 7.12: Comparison between (blue) power transfer from the BM to the fluid and (red)
calculated imaginary part of the wavenumber.
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7.5 Conclusions

In this chapter, we presented a method to derive the wavenumber distribution in the
case of a cochlear model with longitudinal coupling.

Other methods to derive the wavenumber distribution for a longitudinally coupled
organ of Corti have been presented by (Shera, 2007), (Steele and Taber, 1979b) and in the
PhD thesis of (Parthasarathi, 2000) and (Cheng, 2007). Shera used an inverse method
to derive the wavenumber distribution from experimental measurements of the motion
of the basilar membrane. However, this method can be used to derive only the main
travelling wave and not other more heavily damped waves. Steele used a Lagrangian
approach to derive the eikonal equation, i.e. a relation between the wavenumber and the
stiffness of the cochlear partition. His model includes 3D fluid coupling and longitudinal
coupling by the partition, which is modelled as a plate. In this case the eikonal equation
is a transcendental equation in which the stiffness depends both on the wavenumber
and the longitudinal coordinate along the cochlea. By solving this equation, Steele
obtained a spectrum of roots for the wavenumber and noticed that only one of these
corresponds to the main travelling wave while the others correspond to non-propagating
modes. Parthasarathi and Cheng also used the Lagrangian approach to derive the
eikonal equation. In their models, they included the longitudinal coupling by the BM
and used a Newton-Raphson method to solve the transcendental equation, which requires
an initial estimate of the solution. While Steele, Parthasarathi and Cheng focused on
the contribution of the nonpropagating modes on the BM response, they did not discuss
the wavenumber distribution of the main travelling wave.

In the method presented in this chapter, the eikonal equation depends only on the
wavenumber and the frequency of excitation, as the BM admittance is calculated nu-
merically. We derived the wavenumber distribution corresponding to the travelling wave
in the case of a model with TM longitudinal coupling. We showed that the real part
of the wavenumber has a distribution which is similar to the one for the passive locally
reacting case while the imaginary part is characterised by a region with a positive value
just before the characteristic frequency. These results, when combined with the deriva-
tion of the power transferred from the BM to the fluid, shows that in the region in which
the imaginary part is positive the travelling wave is amplified.

The method presented in this chapter can be used to derive the wavenumber distribu-
tion associated with different types of waves. To do this however, a more efficient method
should be developed to find all the crossing points of the curves given by Eq. (7.10), at
all the frequencies. Then, by plotting the set of these points in the complex plane κ−γ,
we can follow the wavenumber trajectories associated with different types of waves, as
described in (Watts, 2000). The effect of each wave type on the coupled response of the
BM can then be determined. This is left as future work.
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Chapter 8

Conclusions and suggestions for
future work

In this thesis, an existing elemental model has been extended to include the longitudinal
coupling by the TM, the BM and the electrical cables, based on the Finite Element Model
developed by Grosh’s laboratory. The effects of these forms of longitudinal coupling on
the BM response have been studied and a method to derive the wavenumber distribution
for a cochlear model with a longitudinal coupled OoC has been developed. A summary
of conclusions are given in Section 8.1 and suggestions for future work are presented in
Section 8.2.

8.1 Summary of conclusions

In Chapter 3 we derived an analytical solution to the cochlear wave equation, in the case
of a passive, locally reacting basilar membrane (BM), with fluid compressibility and vis-
cosity. We showed that this solution can be expressed in terms of a few nondimensional
parameters: the nondimensional compressibility, C, the nondimensional viscosity, V ,
the phase-shift constant, N , and the quality factor of the BM, Q. Within the range of
nominal values for these parameters, only Q and N have an appreciable effect on the
wavenumber distribution and on the response of the BM.

The peak of the real and the imaginary part of the wavenumber becomes sharper as
Q is increased. Accordingly, the BM response becomes sharper around the characteristic
frequency with increasing values of Q. The real and imaginary parts of the wavenumber
are proportional to N . It is shown that the phase-shift parameter determines the nature
of the interaction between the structural dynamics of the BM and the fluid inertia.
If this parameter is large, the fluid-structural coupling is strong and a travelling wave
is generated for frequencies up to about the natural frequency, with strong attenuation
above this, giving a very asymmetrical frequency response. If this parameter is small, the
fluid-structural coupling is weak, and the elements of the BM responds independently,
driven by the constant pressure of the fluid, generating an almost symmetrical frequency
response function when plotted on a log scale.
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In Chapter 4 we reviewed the experimental measurements that unveiled the main
features of the cochlear response to sound stimuli: passive and active mechanics, non-
linearity, high sensitivity and frequency selectivity. In particular, we focused on a series
of recent experiments, in which the differential movements of various parts of the Organ
of Corti have been measured, to help in the understanding of the contribution of longi-
tudinal coupling to the active mechanism of the cochlea. Even if these experiments use
an optical technique with high spatial and temporal resolution, the data are difficult to
interpret and lead to different conclusions. In particular, (Chen et al., 2011) suggested
that a local feedback mechanism is sufficient to explain the active mechanism of the
cochlea. On the other hand, (He et al., 2018; Ren et al., 2016a; Lee et al., 2016; Dewey
et al., 2019; Cooper et al., 2018) showed that longitudinal coupling plays an important
role in the amplification of the BM response.

To better understand the contribution of various types of longitudinal coupling to
the active mechanism, we extended the elemental model, as described for example in
(Elliott and Ni, 2018), to include the Finite Element Model of the dynamics of the Organ
of Corti, developed by (Sasmal and Grosh, 2019). The study of the active mechanism
is thus simplified by combining all the mechanics of the OoC into an equivalent BM
admittance, and its interaction with the fluid dynamics, so that these two components
of the coupled response can be considered individually. The elemental formulation of
the Finite Element Model in the locally reacting case is developed in Chapter 5, while
the cases with longitudinal coupling by the TM, the BM and the longitudinal cables
are discussed in Chapter 6. It is shown that the most important factor in stabilizing
the system is the longitudinal coupling by the TM. On the other hand, the electrical
longitudinal coupling shifts the BM response to obtain the right map of frequencies
along the cochlea. The BM longitudinal coupling is not significant in determining the
response expected from experimental measurements.

A method to derive the distribution of the associated with different types of waves is
developed Chapter 7. The wavenumber distribution corresponding to the main travelling
wave is derived in the case of the model with TM longitudinal coupling. It is shown that
while the real part of the wavenumber is similar to the case of a locally reacting model,
the imaginary part differs as it is positive just before the characteristic frequency. This
results, combined with the derivation of the power transferred to the BM, shows that
in the region in which the imaginary part of the wavenumber is positive, the travelling
wave is amplified.

8.2 Suggestions for future work

Longitudinal coupling by the reticular lamina

The elemental method can be extended to include the longitudinal coupling by the
reticular lamina (RL). The RL can be modelled as an infinite plate, simply supported
on one side and free on the other. If we assume that the plate is uniform, the equation
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of motion is (Rao, 2006, p.78):

D

(
∂4w

∂x4 + 2 ∂4w

∂x2∂y2 + ∂4w

∂y4

)
+ ρht

∂2w

∂t2
= −P (x, y, t), (8.1)

where y is the direction of rotation, x the longitudinal coordinate, w is the transverse
displacement, P (x, y, t) is the external pressure per unit length, ρ is the density and ht

the thickness of the plate and D is the flexural rigidity of the plate, give by:

D = Eh3
b

12(1− ν) , (8.2)

where E is Young’s modulus, hb is the thickness associated with bending and ν is
Poisson’s ratio. Equation (8.1) can be discretised and included in the matrix formulation
of the elemental model in a similar way in which we did for the TM, BM, and electrical
longitudinal coupling in Sections 6.1 to 6.3, respectively.

If we assume a transverse displacement of the form:

w(x, y) = ŵ
y

L
exp(−ikx), (8.3)

where L is the length of the RL in the y direction and the dependence on time is assumed
to be exp(iωt), then Eq. (8.1) becomes:(

Dk4 − ω2ρht
)
ŵ
y

L
exp(−ikx) = −P (x, y, t). (8.4)

From this equation we can derive an estimate of the wavelength associated with the wave
propagating on the RL. Using E = 3×108 Pa, ν = 0.45 (Ni et al., 2016), ω = 2π×17 kHz
(Sasmal and Grosh, 2019) and assuming an RL thickness of hb = 2µm, a value of
ht = 20µm, which includes cells underneath, and a density ρ = 103 kg/m3, we obtain
k ∼ 3× 104 m−1 so that:

λ = 2π
k
∼ 200µm. (8.5)

Study of the power transfer

One important factor in understanding the active mechanism of the cochlea is the power
amplification of the travelling wave. In a previous modelling study by (Wang et al., 2016)
the power generation by the outer hair cells was for the first time calculated separately
from the total power transferred between the BM and the fluid. In this study, a box
model of a mouse cochlea with feedforward/feedbackward mechanism has been used. An
ideal extension of this work would be the calculation of the power transfer between the
OHCs, the BM and the fluid, when different types of longitudinal coupling are included
in the Organ of Corti. This can be done with the existing elemental formulation by
deriving the response of utms and utmb, as the power generated by the OHCs can be
expressed in terms of these variables and the motion of the BM, ubm.
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Nonlinearity

The nonlinearity of the cochlear amplifier is generally considered to be dominated by
the the nonlinear mechanism of the mechano-electrical transduction (MET) in the OHCs
(Dallos, 1992; Santos-Sacchi, 1993), in which the HB conductance is a sigmoid function
of the HB displacement. For low-level inputs, the values of the HB displacement are
such that the HB conductance can be approximated by a linear function. For high-level
inputs, the OHCs trans-membrane conductance saturates and the passive mechanism
dominate. For intermediate inputs, however, the MET process is nonlinear. In this case,
the elemental frequency-domain model can still be used by recurring to the quasi-linear
approach developed by (Kanis and de Boer, 1993). This is an iterative method consisting
of the following steps:

1. the cochlear model is solved in the frequency domain in the linear case, obtaining
the solution VBM (x, ω);

2. by taking the Fourier transform of VBM (x, ω), the corresponding solution in the
time domain is obtained, VBM (x, t);

3. the assumed functional form of nonlinearity is applied to the time-domain solution;

4. the output of the previous step is approximated by the first Fourier transform in
the frequency domain;

5. the admittance of the model is modified according to the output of the previous
step;

6. step (1)-(5) are repeated until the relative difference between the outputs is below
a chosen tolerance.

Derivation of the wavenumber distribution corresponding to other types
of waves

The method presented in Chapter 6 can be used to derive the wavenumber distribution
associated to all the wave types within the cochlea. However, as noted in Chapter 6,
a more efficient algorithm to derive all the crossing points in a wide frequency range is
needed to distinguish the wavenumber trajectories in the complex plane of κ− γ. Then,
these wavenumber distributions can be used to determine the effect of the corresponding
waves on the coupled response of the BM.
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Appendix A

Derivation of the phase integral

The integral in Eq. (3.18) can be written, using Eq. (3.10) and Eq. (3.9), as:

φ = −ibw
c0

∫ x

0

√
ac2

0
(ωb exp(−x′/l) + iω/Q)2 − ω2 + 1 dx′, (A.1)

where we defined:
a = 2ρ

hm0
, (A.2a)

b =
√

1− 2iν
h2ωρ

, (A.2b)

and at the denominator under the square root of the integrand in Eq. (A.1) we completed
the square and assume that 1/Q2 is small compared with 1, as in (Zweig et al., 1976).
We now change variable by using ωn = ωb exp(−x′/l) and obtain:

φ = i lbω
c0

∫ wn

wb

1
ωn

√
ac2

0
(ωn + iω/Q)2 − ω2 + 1 dωn. (A.3)

By defining the new variable t =
(
ωn + iω

Q

)
we have:

φ = i lbω
c0

∫ (iω/Q+ωn)

(iω/Q+ωb)

1
(t− iω/Q)

√
ac2

0 + t2 − ω2
√
t2 − ω2

dt. (A.4)

Taking into account that:

1
t− iω/Q = iω

Q(t2 + ω2/Q2) + t

t2 + ω2/Q2 , (A.5)

the integral becomes:

φ = i lbω
c0

[ ∫ (iω/Q+ωn)

(iω/Q+ωb)

iω
√
ac2

0 + t2 − ω2

Q(t2 + ω2/Q2)
√
t2 − ω2

dt

+
∫ (iω/Q+ωn)

(iω/Q+ωb)

t

t2 + ω2/Q2

√
ac2

0 + t2 − ω2
√
t2 − ω2

dt
]
. (A.6)
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Now we consider each integral in the square bracket in turn. We call them respectively
I1 and I2. Starting from the last one, if we change variable using the substitution s = t2

we obtain:

I2 =
∫ (iω/Q+ωn)2

(iω/Q+ωb)2

1
2s+ 2ω2/Q2

√
ac2

0 + s− ω2
√
s− ω2

ds. (A.7)

The integrand can be decomposed as:

I2 = 1/2
∫ (iω/Q+ωn)2

(iω/Q+ωb)2

1
√
s− ω2

√
ac2

0 + s− w2
ds

+1/2
∫ (iω/Q+ωn)2

(iω/Q+ωb)2

4ac2
0 − (4 + 4/Q2)ω2

√
s− ω2

√
ac2

0 + s− w2(4s+ 4ω2/Q2)
ds, (A.8)

which we call, respectively, I2A and I2B. If we define q =
√
s− ω2 then:

I2A =
∫ √(iω/Q+ωn)2−ω2

√
(iω/Q+ωb)2−ω2

1√
ac2

0 + q2
dq, (A.9)

and by using r = q/
√
ac2

0 + q2:

I2A =
∫ √(iω/Q+ωn)2−ω2/

√
ac2

0−ω2+(iω/Q+ωn)2

√
(iω/Q+ωb)2−ω2/

√
ac2

0−ω2+(iω/Q+ωb)2

1
1− r2 dr, (A.10)

so that:

I2A = arctanh

 √
(iω/Q+ ωn)2 − ω2√

ac2
0 − ω2 + (iω/Q+ ωn)2


− arctanh

 √
(iω/Q+ ωb)2 − ω2√

ac2
0 − ω2 + (iω/Q+ ωb)2

 . (A.11)

Now we go back to the integral I2B in Appendix A for which we use the substitution
m =

√
s− ω2/

√
ac2

0 + s− ω2 so that:

I2B =
∫ β

α

4ac2
0 − (4 + 4/Q2)ω2

4ω2 + 4/Q2ω2 −m2(4/Q2ω2 − 4(ac2
0 − ω2)) ddm (A.12)

where α =
√

(iω/Q+ ωb)2 − ω2/
√
ac2

0 − ω2 + (iω/Q+ ωb)2 and

β =
√

(iω/Q+ ωb)2 − ω2/
√
ac2

0 − ω2 + (iω/Q+ ωb)2. The result of this integral is:

I2B =

√
4ac2

0 − (4 + 4/Q2)ω2

ω
√

4 + 4/Q2

[
arctanh


√

4ac2
0 − (4 + 4/Q2)ω2

ω
√

4 + 4/Q2 α


− arctanh


√

4ac2
0 − (4 + 4/Q2)ω2

ω
√

4 + 4/Q2 β

]. (A.13)
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Now going back to I1 in Appendix A, we can rewrite this as:

I1 = Q

4ω
√
ac2

0 − ω2

[ ∫ (iω/Q+ωn)

(iω/Q+ωb)

4ω2
√
−ac2

0 + ω2

Q2
√
−t2 + ω2

√
−ac2

0 − t2 + ω2
dt

+
∫ (iω/Q+ωn)

(iω/Q+ωb)

4ω2
√
−ac2

0 + ω2(4ac2
0 − (4 + 4/Q2)ω2)

Q2
√
−t2 + ω2

√
−ac2

0 − t2 + ω2(4t2 + 4ω2/Q2)
dt
]
.

(A.14)

We call the integrals within the square brackets I1A and I1B respectively. Starting from
the first one, if we define θ = − arcsin(t/ω), then we obtain:

I1A = 4ω2

Q2

∫ − arcsin(i/Q+ωn/ω)

− arcsin(i/Q+ωn/ω)

dθ√
1− ω2

ω2−ac2
0

sin2(θ)
, (A.15)

which is the difference of two elliptic integrals of the first kind, indicated as:

I1A = 4ω2

Q2

[
F
(
− arcsin(i/Q+ ωn/ω), ω2

ω2 − ac2
0

)
(A.16)

−F
(
− arcsin(i/Q+ ωb/ω), ω2

ω2 − ac2
0

)]
. (A.17)

By using the same change of variable, the integral I1B becomes:

I1B = 4(ac2
0−(1+Q−2)ω2)

∫ − arcsin( i
Q

+ ωn
ω

)

− arcsin( i
Q

+ ωb
ω

)

dθ

(1 +Q2 sin2(θ))
√

1− ω2

ω2−ac2
0

sin2(θ)
, (A.18)

which is the difference of two elliptic integrals of the third kind:

I1B = (4(ac2
0 − (1 +Q−2)ω2)

[
Π
(
−Q2;− arcsin(i/Q+ ωn/ω), ω2

ω2 − ac2
0

)

−Π
(
−Q2;− arcsin(i/Q+ ωb/ω), ω2

ω2 − ac2
0

)]
. (A.19)
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Then, by putting together all the results above, the integral φ becomes:

φ = ilbω
c0

[ 1
Q
√
−1 + 16N2

C2

F
(
− arcsin(i/Q+ ωn/ω), ω2

ω2 − ac2
0

)

+Π
(
−Q2;− arcsin(i/Q+ ωn/ω), ω2

ω2 − ac2
0

)

+ arctanh

 √
(iω/Q+ ωn)2 − ω2√

ac2
0 − ω2 + (iω/Q+ ωn)2


+

√
4ac2

0 − (4 + 4/Q2)ω2

ω
√

4 + 4/Q2

[
arctan

(√4ac2
0 − (4 + 4/Q2)ω2

ω
√

4 + 4/Q2

×
√

(iω/Q+ ωn)2 − ω2√
ac2

0 − ω2 + (iω/Q+ ωn)2

)]
+O

(
ω

ωb

)
, (A.20)

where O(ω/ωb) include the terms from the lower limit of integration. If we know use the
definitions of the nondimensional variables introduced in Eq. (3.14), φ can be written
as:

φ = iC
√

1− 2iV
[

1
Q
√
−1 + 16N2

C2

F

− arcsin(i/Q+ ωn/ω), 1√
1− 16N2

C2


+4ω2

Q

√
−1 + 16N2

C2 Π

−Q2;− arcsin(i/Q+ ωn/ω), 1√
1− 16N2

C2


+ arctanh

( √
(i/Q+ ωn/ω)2 − 1√

16N2/C2 − 1 + (i/Q+ ωn/ω)2

)

+

√
−1 + 16N2

C2 arctan
(√

16N2/C2 − 1
√

(i/Q+ ωn/ω)2 − 1√
16N2/C2 − 1 + (i/Q+ ωn/ω)2

)]

+O
(
ω

ωb

)
, (A.21)

where again we assume that 1 − 1/Q2 is small compared with 1. Finally, as we are
interested in the form of the solution for excitation frequencies such that ω � ωb, we can
neglect the term of order O(ω/ωb) and we obtain the solution presented in Section 3.3.
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Appendix B

Equivalent uni-axial 3DOF
system of the locally reacting
model

The equivalent 3DOF mechanical system of the locally reacting model is be derived as
a special case of that described in Section 5.4. The stiffness and damping parameters

Figure B.1: Equivalent uni-axial 3 DOF system
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are given by:

k1 =Kbm1 + Kohc

L2
ro

[
(Lro cos(β)ψ1,L10 + 2L1 cos(θ2)ψ1,Lpc cos(β − θ2))2 + (Lro cos(β)ψ1,L01

−2L1 cos(θ2)ψ1,Lpc cos(β − θ2))2 − Lro cos(β) ((L1 + Lro)ψ1,L10 + (Lro − L1)ψ1,L01

+Lroψ1,L0) + L2
ro cos2(β)ψ2

1,L0 − 4L2
1 cos(θ2)ψ1,Lpc cos(β − θ2)

]
+ Krl

L2
pc

[
2 cos(θ2)

× ψ1,Lpc(Lro − Lpc cos(β − θ2)) (2 cos(θ2)ψ1,Lpc(Lro − Lpc cos(β − θ2)) + Lpc)
]

+ Kst

L2
ro

[
6 cos(θ2)ψ1,Lpc(Lro sin(β − θ2) + Lst cos(β − θ2)) (2Lro cos(θ2)ψ1,Lpc sin(β − θ2)

+2Lst cos(θ2)ψ1,Lpc cos(β − θ2)− Lro − Lst)
]

(B.1)

k2 = −Kst
3Lst
Lro

(B.2)

k3 = Kst
6 cos(θ2)ψ1,Lpc(Lro sin(β − θ2) + Lst cos(β − θ2))

Lro
(B.3)

k4 =Ktmb −
Kohc

L2
ro

[
Lro cos(β) ((L1 + Lro)ψ1,L10 + (Lro − L1)ψ1,L01 + Lroψ1,L0) + 4

× L2
1 cos(θ2)ψ1,Lpc cos(β − θ2)− 2L2

1 − 3L2
ro

]
+Krl

[ 1
Lpc

cos(θ2)ψ1,Lpc(Lpc cos(β − θ2)

− Lro) + 1
)
− 3Kst

L2
ro

Lst

[
2Lro cos(θ2)ψ1,Lpc sin(β − θ2) + 2Lst cos(θ2)ψ1,Lpc cos(β − θ2)

− Lro − Lst
]

(B.4)

k5 =Ktms +Kst

[
− 6Lst cos(θ2)ψ1,Lpc cos(β − θ2)

Lro
− 6 cos(θ2)ψ1,Lpc sin(β − θ2) + 2L2

1
L2
tm

+

3Lst
Lro

+ 3
]

(B.5)

k6 =Kohc

L2
ro

[
Lro cos(β) ((L1 + Lro)ψ1,L10 + (Lro − L1)ψ1,L01 + Lroψ1,L0) + 4L2

1 cos(θ2)ψ1,Lpc

× cos(β − θ2)
]

+ 2Krl

Lpc

[
cos(θ2)ψ1,Lpc(Lpc cos(β − θ2)− Lro)

]
+ 6Kst

L2
ro

[
Lst cos(θ2)ψ1,Lpc

× (Lro sin(β − θ2) + Lst cos(β − θ2))
]

(B.6)
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c1 = cBM + 2csub cos(θ2)ψ1,Lpc sin(β − θ2) (2 cos(θ2)ψ1,Lpc sin(β − θ2)− 1) (B.7)

c3 = 2csub cos(θ2)ψ1,Lpc sin(β − θ2) (B.8)

c4 = ctmb (B.9)

c5 = ctms + csub(1− 2 cos(θ2)ψ1,Lpc sin(β − θ2)) (B.10)

As shown in Fig. B.1, in the active case besides Pd, which is the pressure from the fluid
on the BM, there is an additional pressure acting on the BM, Pa, resulting from the
mechanoeletrical transduction of the OHCs and is given by:

Pa = ε3
b∆xRtot(Is1Ra0 + Is2(Ra0(−1− iCaωRtot)−Rext)) (B.11)

where ε3 is the electromechanical coupling coefficient; Rext = Rvl +Rtl +Rvm and Rtot

is given by:

Rtot =Rm/
[
(Ra0(−CaRmω(CmωRext − i) + iCaωRtot + iCmRmω + 1 + iCmRmωRext

+Rm +Rext

]
;

(B.12)
the resistances and capacitances are those defined in Section 5.3.1.1; Is1 is the current
passing trough the MET channels in the HBs and is given by:

Is1 = (Vsm − Vohc)G1
a

3∑
j=1

(uhb,j + url,j
Lst

Lro
) (B.13)

and Is2 is the current due to the piezoelectric action of the OHCs and is given by:

Is2 = −iωε3
3∑
j=1

ucompohc (B.14)

where ucompohc is the compression of the outer hair cells. The active pressure can be written
in terms of two component, one proportional to Is1, given by the MET:

PIs1 = ε3
b∆xRtotIs1Ra0; (B.15)

and another one proportional to Is2, due to the piezoelectric action:

PIs2 = ε3
b∆xRtotIs2(−Ra0(1 + iCaωRtot)). (B.16)
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A comparison of the frequency response of Pa, PIs1 and PIs2 with the region in which
the BM response is nonlinear could help in the understanding of the amplification of the
response. This is left as a suggestion for future work.
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Appendix C

Derivation of the relationship
between the output of the
photo-multiplier and the
movements of an object in the
homodyne interferometer

In this section we review the derivation of the equation that describes the relationship
between the output of the photo-multiplier and the movements of an object (M2) in the
homodyne interferometer represented in Fig. 4.8 (Khanna et al., 1968), which we also
report here for simplicity . We define the path difference θ between the beams reflected

Figure C.1: Schematic representation of the homodyne interferometer. The light source is a
He-Ne laser which is focused on a mirror, M2, fixed on the basilar membrane. A half reflective
mirror, M1, is positioned in front of the mirror M2 to obtain two beams and it can be moved by a
capacitor in order to modify the distance between the two mirrors and regulate the interference.
A photo-multiplier is used to measure the combined intensity of the light reflected from M1 and
M2. Reprinted with permission from (Khanna et al., 1968). Copyright 1968, Acoustic Society

of America.



122
Chapter C. Derivation of the relationship between the output of the photo-multiplier

and the movements of an object in the homodyne interferometer

from mirrors M1 and M2 as
θ = 4πd0/λ, (C.1)

where d0 is the distance between mirrors M1 and M2, λ is the wavelength of the laser
and θ is measured in radians. If the intensity of the beam reflected from mirror M1 is
I1 and that of the beam from mirror M2 is I2, then the net intensity I is given by

I = I1 + I2 + 2I1/2
1 I

1/2
2 cosθ, (C.2)

and the resultant photo-multiplier current Im is

Im = K[I1 + I2 + 2(I1I2)1/2cosθ], (C.3)

where K is a constant that can be derived from the calibration. The phot-multiplier
current has two components, one fixed, A, and one variable, Bcosθ, so that Eq. (C.3)
can be written as

Im = A+Bcosθ. (C.4)

If mirror M2 vibrates with an amplitude A(t), then

θ = (4π/λ)[d0 +A(t)], (C.5)

and
Im = A+Bcos[4πd0/λ+ (4π/λ)A(t)], (C.6)

that is

Im = A+B[cos(4πd0/λ)cos(4π/λ)A(t)− sin(4πd0/λ)sin(4π/λ)A(t)] (C.7)

If the distance d0 is adjusted so that

d0 = (2n+ 1)λ/8 (C.8)

where n = 1, 2, 3, ... then Eq. (C.7) reduces to

Im = A±Bsin[(4π/λA(t)]. (C.9)

For small angles, sinα ∼ α (up to α = 0.24 the error is < 1%). Because the wavelength
of a helium-neon laser is λ = 6.328 ∗ 10−5 cm, the small angle condition α < 0.24
corresponds to a displacement amplitude less than 1.2 ∗ 10−6 cm. In this case Eq. (C.9)
reduces to

Im = A±B(4π/λ)A(t). (C.10)

This equation shows that the output of the interferometer is linearly proportional to the
displacement amplitude of M2 so that the amplitude A(t) is recovered undistorted.
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In summary, in order to correctly measure A(t), the separation between mirrors M1

and M2 must be precisely adjusted so that Eq. (C.8) is satisfied; the absolute value of
the amplitude must be known and it must be maintained below 10−6 cm and, finally,
the ambiguity of the sign in Eq. (C.10) must be resolved. We will now show how these
conditions can be satisfied if mirror M2 moves with a sinusoidal movements. In this case
the amplitude can be written as:

A(t) = δcos(ωt), (C.11)

where δ is the peak displacement amplitude of M2 and ω = 2πf , then Eq. (C.7) can be
rewritten as:

Im = A+Bcos
4πd0
λ

cos(4πδ
λ
cosωt)− sin4πd0

λ
sin(4πδ

λ
sinωt). (C.12)

If we let 4πδ/λ = P , since

cos(Pcosωt) = J0(P )− 2J2(P )cos2ωt+ ..., (C.13)

and
sin(Pcosωt) = 2J1(P )cosωt− 2J3(P )cos3ωt+ ..., (C.14)

where Jn(P ) is the Bessel function of the first kind and nth order whose argument is P ,
then Eq. (C.12) becomes:

Im = A+Bcos(4πd0/λ)[J0(P )− 2J2(P )cos2ωt+ ...]+

− sin(4πd0/λ)[2J1(P )cosωt− 2J3(P )cos3ωt+ ...].
(C.15)

The distance between the plates should be adjusted so that

sin4πd0/λ = ±1 or cos4πd0/λ = 0 i.e. d0 = (2n+ 1)λ/8. (C.16)

This adjustment can be made by observing the output of the photo-multiplier through
a filter. If the filter is tuned to the fundamental frequency, the distance between mirrors
M1 and M2 is adjusted for maximal output at the fundamental. If the filter is tuned to
the second harmonic frequency, the distance between the mirrors is adjusted for minimal
output at the second harmonic. Then if a filter is used to observe the output of the photo-
multiplier at the fundamental frequency of vibration, and the mirror separation is set
for maximal output, the output of the filter Iω is related to the amplitude of vibration
by the equation

Iω = ±B2J1(P )cosωt = ±B2J1(4πδ/λ)cosωt. (C.17)

The amplitude of the fundamental is then related to δ, the amplitude of vibration of
mirror M2. In particular, as the amplitude is slowly increased, Iω increases and then
reaches a maximum; if the amplitude is further increased, Iω drops sharply. Since the
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and the movements of an object in the homodyne interferometer

Figure C.2: Output of the interferometer plotted as a function of the vibration of the object
mirror as given by Eq. (C.18). Reprinted with permission from (Khanna et al., 1968). Copyright

1968, Acoustic Society of America.

value of J1(P ) is known precisely for all points of maximal and minimal values, the
relationship between the photo-multiplier current and the absolute value of vibration it
is straightforward. At the first maximum, P = 1.84 rad and δ = 0.92 ∗ 10−5 cm. At the
first minimum, P = 3.82 rad and δ = 1.92 ∗ 10−5 cm. The amplitude of vibration at any
value of the photo-multiplier current is given by the relation

Iω
Iωmax

= J1(4πδ/λ)
J1(1.84) = J1(4πδ/λ)

0.582 , (C.18)

where Iωmax is the photo-multiplier current at the first maximum. The relationship
between the peak displacement and 20log(I/Imax) is shown in Fig. C.2. Since

J1(P ) = P/2− P 3/16 + P 5/384− ... (C.19)

for values of P < 0.2 which corresponds to δ < 10−6 cm, J1(P ) ∼ P/2 with an accuracy
of 0.5%. Under this restriction, Eq. (C.17) reduces to

Iω = ±B(4π/λ)cosωt. (C.20)

Then, for vibration amplitudes below 10−6 cm, a linear relationship exists between the
vibration of the object mirror M2 and the photo-multiplier output. The dynamic is
linear from 3 pm to 10 pm but it can actually be extended to 100 nm because in this last
region the non-linearity is precisely characterised by Eq. (C.17). Furthermore, because
of the high sensitivity, the response of the BM can be measured in the frequency range
of 20− 20000 Hz.
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Appendix D

Programs in MATLAB

D.1 Main code for the models without electrical longitu-
dinal coupling

1 clear
2

3 %% cochlear parameters
4

5 NX =400; %[#] - number of elements
6 Lc = 1.85; %[cm] - length of the cochlea
7 Deltab = Lc/(NX-1); %[cm] - length of a single element
8 Xpos = 0:Deltab:Lc; %[cm] - position along the cochlea
9 W=0.1; %[cm] width of the chambers

10 h = 0.1; %[cm] - effective chamber eight
11 rho = 1; %[g/cmˆ3] - density of the fluids in each chamber
12

13 l5 = 0.38; %[m] - characteristic length
14 f_b5 = 43.7395e3; %[Hz] - frequency at the base of the cochlea
15 CF5 = f_b5*exp(-Xpos/l5); %[Hz] - distribution of natural frequencies
16 w_cf = 2*pi*CF5; %[Hz] - distribution of angular frequencies
17

18 %% initialization of fluid matrix and of stapes’ velocity vector
19

20 I=eye(NX,NX);
21 v1=ones(NX-1,1);
22 Iinf=diag(v1,-1);
23 Isup=diag(v1,1);
24 F = -2*I+Iinf+Isup;
25 F(1,:)=0;
26 F(NX,:)=0;
27 F(1,1)=-Deltab/h;
28 F(1,2)=+Deltab/h;
29 F(NX,NX)=Deltabˆ2/h;
30 F = h/Deltabˆ2 .* F;
31

32 vs(NX,1)=0;
33 vs(1,1)=10;
34

35 %% derivation of matrices to be used in the condensation process
36

37 modeltype=3; % 1 for 1D fluid coupling, 3 for 3D fluid coupling
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38 epsLevel=1; % maximum value of epsilon_3
39 AL=0.4; %activity level
40

41 for kk=1:1:NX
42 x_gauss=Xpos(kk); %position along the cochlea
43 param_without_el_cables; %code with parameters from the Finite Element Method
44

45 Mglobal(1+3*(kk-1),1+3*(kk-1))=Ms(1,1); %mass matrix
46 Mglobal(1+3*(kk-1),2+3*(kk-1))=Ms(1,2);
47 Mglobal(1+3*(kk-1),3+3*(kk-1))=Ms(1,3);
48 Mglobal(2+3*(kk-1),1+3*(kk-1))=Ms(2,1);
49 Mglobal(2+3*(kk-1),2+3*(kk-1))=Ms(2,2);
50 Mglobal(2+3*(kk-1),3+3*(kk-1))=Ms(2,3);
51 Mglobal(3+3*(kk-1),1+3*(kk-1))=Ms(3,1);
52 Mglobal(3+3*(kk-1),2+3*(kk-1))=Ms(3,2);
53 Mglobal(3+3*(kk-1),3+3*(kk-1))=Ms(3,3);
54

55 Ksglobal(1+3*(kk-1),1+3*(kk-1))=Ks(1,1); %structural stiffness matrix
56 Ksglobal(1+3*(kk-1),2+3*(kk-1))=Ks(1,2);
57 Ksglobal(1+3*(kk-1),3+3*(kk-1))=Ks(1,3);
58 Ksglobal(2+3*(kk-1),1+3*(kk-1))=Ks(2,1);
59 Ksglobal(2+3*(kk-1),2+3*(kk-1))=Ks(2,2);
60 Ksglobal(2+3*(kk-1),3+3*(kk-1))=Ks(2,3);
61 Ksglobal(3+3*(kk-1),1+3*(kk-1))=Ks(3,1);
62 Ksglobal(3+3*(kk-1),2+3*(kk-1))=Ks(3,2);
63 Ksglobal(3+3*(kk-1),3+3*(kk-1))=Ks(3,3);
64

65 Csglobal(1+3*(kk-1),1+3*(kk-1))=Cs(1,1); %structural damping matrix
66 Csglobal(1+3*(kk-1),2+3*(kk-1))=Cs(1,2);
67 Csglobal(1+3*(kk-1),3+3*(kk-1))=Cs(1,3);
68 Csglobal(2+3*(kk-1),1+3*(kk-1))=Cs(2,1);
69 Csglobal(2+3*(kk-1),2+3*(kk-1))=Cs(2,2);
70 Csglobal(2+3*(kk-1),3+3*(kk-1))=Cs(2,3);
71 Csglobal(3+3*(kk-1),1+3*(kk-1))=Cs(3,1);
72 Csglobal(3+3*(kk-1),2+3*(kk-1))=Cs(3,2);
73 Csglobal(3+3*(kk-1),3+3*(kk-1))=Cs(3,3);
74

75 Ceglobal(1+2*(kk-1),1+2*(kk-1))=Ce(1,1); %electrial damping matrix
76 Ceglobal(1+2*(kk-1),2+2*(kk-1))=Ce(1,2);
77 Ceglobal(2+2*(kk-1),1+2*(kk-1))=Ce(2,1);
78 Ceglobal(2+2*(kk-1),2+2*(kk-1))=Ce(2,2);
79

80 Keglobal(1+2*(kk-1),1+2*(kk-1))=Ke(1,1); %electrical stiffness matrix
81 Keglobal(1+2*(kk-1),2+2*(kk-1))=Ke(1,2);
82 Keglobal(2+2*(kk-1),1+2*(kk-1))=Ke(2,1);
83 Keglobal(2+2*(kk-1),2+2*(kk-1))=Ke(2,2);
84

85 Cesglobal(1+2*(kk-1),1+3*(kk-1))=Ces(1,1);%electric-structural damping coupling matrix
86 Cesglobal(1+2*(kk-1),2+3*(kk-1))=Ces(1,2);
87 Cesglobal(1+2*(kk-1),3+3*(kk-1))=Ces(1,3);
88 Cesglobal(2+2*(kk-1),1+3*(kk-1))=Ces(2,1);
89 Cesglobal(2+2*(kk-1),2+3*(kk-1))=Ces(2,2);
90 Cesglobal(2+2*(kk-1),3+3*(kk-1))=Ces(2,3);
91

92 Kesglobal(1+2*(kk-1),1+3*(kk-1))=Kes(1,1);%electric-structural stiffness coupling
93 Kesglobal(1+2*(kk-1),2+3*(kk-1))=Kes(1,2);
94 Kesglobal(1+2*(kk-1),3+3*(kk-1))=Kes(1,3);
95 Kesglobal(2+2*(kk-1),1+3*(kk-1))=Kes(2,1);
96 Kesglobal(2+2*(kk-1),2+3*(kk-1))=Kes(2,2);
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97 Kesglobal(2+2*(kk-1),3+3*(kk-1))=Kes(2,3);
98

99 Cseglobal(1+3*(kk-1),1+2*(kk-1))=Cse(1,1); %structure-electrical damping coupling matrix
100 Cseglobal(1+3*(kk-1),2+2*(kk-1))=Cse(1,2);
101 Cseglobal(2+3*(kk-1),1+2*(kk-1))=Cse(2,1);
102 Cseglobal(2+3*(kk-1),2+2*(kk-1))=Cse(2,2);
103 Cseglobal(3+3*(kk-1),1+2*(kk-1))=Cse(3,1);
104 Cseglobal(3+3*(kk-1),2+2*(kk-1))=Cse(3,2);
105

106 Kseglobal(1+3*(kk-1),1+2*(kk-1))=Kse(1,1); %structure-electrical stiffness coupling matrix
107 Kseglobal(1+3*(kk-1),2+2*(kk-1))=Kse(1,2);
108 Kseglobal(2+3*(kk-1),1+2*(kk-1))=Kse(2,1);
109 Kseglobal(2+3*(kk-1),2+2*(kk-1))=Kse(2,2);
110 Kseglobal(3+3*(kk-1),1+2*(kk-1))=Kse(3,1);
111 Kseglobal(3+3*(kk-1),2+2*(kk-1))=Kse(3,2);
112

113 %contribution to the stiffness and damping matrices by TM longitudinal coupling
114

115 if kk<NX
116 Ksglobal(2+3*(kk-1),2+3*(kk-1))=Ap*G/Deltab+A*Gp/Deltab+Ksglobal(2+3*(kk-1),2+3*(kk-1));
117

118

119 Ksglobal(2+3*(kk-1),2+3+3*(kk-1))=-Applus*Gplus/Deltab-Aplus*Gpplus/Deltab;
120

121

122 end
123

124 if kk<NX && kk>1
125

126 Ksglobal(2+3*(kk-1),2-3+3*(kk-1))=-Am*Gm/Deltabˆ2;
127

128 Ksglobal(2+3*(kk-1),2+3*(kk-1))=2*A*G/Deltabˆ2+Ksglobal(2+3*(kk-1),2+3*(kk-1));
129

130 Ksglobal(2+3*(kk-1),2+3+3*(kk-1))=-Aplus*Gplus/Deltabˆ2+Ksglobal(2+3*(kk-1),2+3+3*(kk-1));
131

132 end
133

134 if kk<NX
135 Csglobal(2+3*(kk-1),2+3*(kk-1))=Ap*eta/Deltab+A*etap/Deltab+Csglobal(2+3*(kk-1),2+3*(kk-1)

);
136

137

138 Csglobal(2+3*(kk-1),2+3+3*(kk-1))=-Applus*etaplus/Deltab-Aplus*etapplus/Deltab;
139

140 end
141

142 if kk<NX && kk>1
143

144 Csglobal(2+3*(kk-1),2-3+3*(kk-1))=-Am*etam/Deltabˆ2;
145

146 Csglobal(2+3*(kk-1),2+3*(kk-1))=2*A*eta/Deltabˆ2+Csglobal(2+3*(kk-1),2+3*(kk-1));
147

148 Csglobal(2+3*(kk-1),2+3+3*(kk-1))=-Aplus*etaplus/Deltabˆ2+Csglobal(2+3*(kk-1),2+3+3*(kk-1)
);

149

150 end
151

152

153 %contribution to the stiffness matrix by BM longitudinal coupling
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154

155 if kk<NX && kk>1
156

157 Ksglobal(1+3*(kk-1),1-3+3*(kk-1))=+2*(Dxy+Ds)*bmpar2/Deltabˆ2;
158

159 Ksglobal(1+3*(kk-1),1+3*(kk-1))=-2*2*(Dxy+Ds)*bmpar2/Deltabˆ2+Ksglobal(1+3*(kk-1),1+3*(kk
-1));

160

161 Ksglobal(1+3*(kk-1),1+3+3*(kk-1))=+2*(Dxy+Ds)*bmpar2/Deltabˆ2+Ksglobal(1+3*(kk-1),1+3+3*(
kk-1));

162

163 end
164

165 if kk<NX-1 && kk>1+1
166

167 Ksglobal(1+3*(kk-1),1-6+3*(kk-1))=-Dxx/Deltabˆ4;
168

169 Ksglobal(1+3*(kk-1),1-3+3*(kk-1))=Dxx*(4/Deltabˆ4)+Ksglobal(1+3*(kk-1),1-3+3*(kk-1));
170

171 Ksglobal(1+3*(kk-1),1+3*(kk-1))=-Dxx*(6/Deltabˆ4)+Ksglobal(1+3*(kk-1),1+3*(kk-1));
172

173 Ksglobal(1+3*(kk-1),1+3+3*(kk-1))=Dxx*(4/Deltabˆ4)+Ksglobal(1+3*(kk-1),1+3+3*(kk-1));
174

175 Ksglobal(1+3*(kk-1),1+6+3*(kk-1))=-Dxx/Deltabˆ4;
176

177 end
178

179 Ksglobal(1+3*(kk-1),1+3*(kk-1))=Dyy+Ksglobal(1+3*(kk-1),1+3*(kk-1));
180

181 b22(kk)=b; %[cm] width of the BM
182 end
183

184 %% initialization of matrices and vectors to calculate the response
185 tic
186 clear S
187 clear T
188

189 T(NX,3*NX)=0;
190 for i=1:1:NX
191 T(i,1+3*(i-1))=1;
192 end
193

194 S(3*NX,NX)=0;
195 for i=1:1:NX
196 S(1+3*(i-1),1+1*(i-1))=1;
197 end
198

199 Yppkk(NX,NX)=0;
200 p_s(NX,NX)=0;
201 p_L(NX,NX)=0;
202 VBM3d(NX,NX)=0;
203 Z_nf(NX,NX)=0;
204

205 %% calculation of the response at each frequency
206 for pp=1:length(w_cf)
207 w_my=w_cf(pp);
208

209 %calculation of the equivalent BM admittance matrix
210
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211 Ks1global=-w_myˆ2*Mglobal+Ksglobal+1i*w_my*Csglobal;
212 Kaglobal=(Kseglobal+1i*w_my*Cseglobal)*inv(Keglobal+1i*w_my*Ceglobal)*(1i*w_my*Cesglobal+

Kesglobal);
213 Ksaglobal=(Ks1global-Kaglobal)/(1i*w_my);
214 Y=inv(Ksaglobal);
215 Yabm=T*Y*S.*b22*(1/(2*pi));
216

217 %calculation of fluid coupling matrix
218

219 Z_nf(1:NX,1:NX)=0;
220

221 for ll=1:1:NX
222 for jj=1:1:NX
223 Z_nf(ll,jj) = 1.3958*1i*w_my*rho*Deltab*exp(-abs(jj-ll)*Deltab/(0.0854*W));
224 end
225 end
226

227 %calculation of the response by the elemental method
228

229 Yabm(1,1)=0;
230 Yabm(NX,NX)=0;
231

232 Zfc=-2*1i*w_my*rho.*inv(F)+Z_nf;
233 p_s(:,pp)=Zfc*vs;
234 p_L(:,pp)=(I+Zfc*Yabm)\p_s(:,pp);
235 VBM3d(:,pp)=-(Yabm*p_L(:,pp));
236

237 end
238 toc
239

240 %% plot of the velocity response
241

242 fr=CF5;
243 fr=fr/1000;
244 posit5=88; %x_0
245

246 prt = 2; % #1 for printing
247 doc_type = 1; % #0 quick print, no document
248 % #1 for papers, reports, theses
249 % #2 presentationsz
250 % #3 posters
251 if epsLevel>0 && AL>=0.00002
252 col = {’--’,’--k’,’--g’, ’--b’,’--m’,’--m’};
253 elseif epsLevel==1 && AL==0
254 col = {’-.’,’-.k’,’-.g’, ’-.b’,’-.m’,’--m’};
255 elseif epsLevel==0
256 col = {’-’,’-k’,’-g’, ’-b’,’-m’,’--m’};
257 end
258 fig_name = {’plot_1’};
259 Ft_size = 12;
260 Ft_name = ’Times New Roman’;
261 set(0,’defaulttextinterpreter’,’tex’)
262 set(0,’DefaultTextFontSize’, Ft_size)
263 set(0,’DefaultTextFontName’, Ft_name)
264 set(0,’DefaultAxesFontSize’, Ft_size)
265 set(0,’DefaultAxesFontName’, Ft_name)
266

267 figure(13)
268 hold on



130 Chapter D. Programs in MATLAB

269 subplot(2,2,1)
270 semilogx(fr,20*log10(abs(VBM3d(posit5,:))),col{1},’Linewidth’,1,’DisplayName’,’Active’, ’

Handlevisibility’,’on’)
271 hold on
272 grid on
273 xlabel(’Frequency [kHz] ’,’interpreter’,’tex’)
274 ylabel(’|V| [db re stapes]’,’interpreter’,’tex’)
275 set(gca,’FontSize’,Ft_size)
276 ylim([0 65])
277 xlim([2 40])
278 xticks([2:10,20,30,40])
279

280 angle_Va=unwrap(angle(VBM3d(posit5,:)))/(2*pi);
281 subplot(2,2,3)
282 semilogx(fr,angle_Va-angle_Va(end),col{1},’Linewidth’,1,’DisplayName’,’Active’, ’Handlevisibility’

,’on’)
283 hold on
284 grid on
285 xlabel(’Frequency [kHz] ’,’interpreter’,’tex’)
286 ylabel(’\angle V [cycles]’,’interpreter’,’tex’)
287 set(gca,’FontSize’,Ft_size)
288 xlim([2 40])
289 xticks([2:10,20,30,40])
290

291 %

D.2 Parameters for code without electrical longitudinal
coupling

1 %%param_without_el_cables.m
2

3 %geometrical parameters----------------------------------------------
4

5 hbm = 0.0007+(0.00017-0.0007)*x_gauss/Lc; %[cm] - thickness of the BM
6 b = 0.008 +(0.018-0.008)*x_gauss/Lc; %[cm] - width of the BM
7 Ltm = 0.006+(0.018-0.006)*x_gauss/Lc; %[cm] - length of TM
8

9 alpha = 0.4363 + (0.7856-0.4363)*x_gauss/Lc; %[radians] - RL tilt angle
10 beta = alpha; %[radians] - HB angle
11 t1 = 60*pi/180; %[radians] - IPC-BM angle
12 t2 = 60*pi/180; %[radians] - IPC-OPC angle
13 L0 = b/2; %[cm] - distance to midle OHC
14 L1 = 0.0013; %[cm] distance between OHC2-3
15 Lpc = b/3.0; %[cm]
16 Lst = 0.0001 +(0.0006-0.0001)*x_gauss/Lc; %[cm] - length of HB
17 Lro = 0.004; %[cm]
18 %-------------------------------------------------------------------------
19

20 % mechanical parameters
21 % stiffnesses------------------
22 Kbm1 = 0*1.8e6*exp(-3.6*x_gauss);%[dyn/cm] - stiffness of BM 1st mode
23 Kst = 5.8e5*exp(-3.3*x_gauss); %[dyn/cm] - stiffness of stereocilia
24 Ktms = 1.4e5*exp(-3*x_gauss); %[dyn/cm] - spring at TM for shear mode
25 Ktmb = 1.4e5*exp(-3*x_gauss); %[dyn/cm] - spring at TM for bending mode
26 Krl = 7.6e4*exp(-3.25*x_gauss); %[dyn/cm] - spring at the RL-PC attachment
27 Kohc = 7.6e4*exp(-3.25*x_gauss); %[dyn/cm] - spring for OHC
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28 %masses ---------------------------
29 Mbm1 = hbm*1.0*b/2;%[gr/cm] BM mass
30 Mtm = 0.9*1.2*2600d-8*exp(0.5*x_gauss); %[gr/cm] TM mass for shear mode
31 Mtmb = 0.77*1.2*2600d-8*exp(0.5*x_gauss);%[gr/m] TM mass for bending mdoe
32

33 if modeltype==1
34 Mfluid =Mbm1*4.6; %[gr/cm] added fluid mass for 1D fluid coupling
35 else
36 Mfluid=0;
37 end
38

39 %damping coefficient
40 csub = 0.01*Ltm/Lst;%[dyn*s/cmˆ2] subtectorial space damping
41 cTMS = 0;%[dyn*s/cmˆ2] damping for TM shear mode
42 cBM = 0.85;%[dyn*s/cmˆ2] damping for BM
43 cTMB = 0.5; %[dyn*s/cmˆ2] damping for TM bending mode
44 %--------------------------------------------------------------------------
45 %mechanical/electrical coupling parameters
46 %MET channel
47 iq=AL*648*0.001/Lst*exp(-2.15*x_gauss)*(150-10*x_gauss);%[S/cmˆ2*mV] - HB conductance
48 eps3=epsLevel*(-0.0104*(1+.1*x_gauss));%[sA/mˆ2] - electromechanical coupling coefficient
49

50 %-------------------------------------------------------------------------
51 %electrical parameters
52 Rtl = 4d2; %[Ohm*cm]
53 Rvm = 2.5d3 ; %[Ohm*cm]
54 Rvl = 1d3 ; %[Ohm*cm]
55 Ra0 =1d6/3;%[Ohm*cm]
56 Rm = 1*(10ˆ6)/(3*(51-(51-3.6)*x_gauss/Lc))/3; %[Ohm*cm]
57 Ca =0.5d-9*3; %[F/cm]
58 Cm =3d-9*(18 + (42-18)*x_gauss/Lc)*3; %[F/cm]
59 rsv = 3d4 ; %[Ohm*cm]
60 rsm = 5d4 ; %[Ohm*cm]
61 rst = 1.5d6 ;%[Ohm*cm]
62

63 %--------------------------
64 psi1Lpc = sin(pi*Lpc/b);
65 psi2Lpc = sin(2*pi*Lpc/b);
66 psi1L01 = sin(pi*(L0-L1/cos(alpha))/b);
67 psi2L01 = sin(2*pi*(L0-L1)/b);
68 psi1L0 = sin(pi*(L0)/b);
69 psi2L0 = sin(2*pi*(L0)/b);
70 psi1L10 = sin(pi*(L0+L1/cos(alpha))/b);
71 psi2L10 = sin(2*pi*(L0+L1/cos(alpha))/b);
72

73 %uhb1 coeffs
74 A11 = psi1Lpc*sin(t1+t2)/sin(t2)*(sin(t1-beta) -(1-L1/Lro)*sin(alpha-beta)*cos(t1-beta)/cos(alpha-

beta));
75 A13 = cos(alpha-beta)*(1-L1/Ltm) + (1-L1/Lro)*sin(alpha-beta)*sin(alpha-beta)/cos(alpha-beta);
76 A14 = -sin(alpha-beta)*(1-L1/Ltm)+ (1-L1/Lro)*sin(alpha-beta);
77

78 %uhb2 coeffs
79 A21 = psi1Lpc*sin(t1+t2)/sin(t2)*sin(t1-alpha)/cos(alpha-beta);
80 A23 = 1.0/cos(alpha-beta);
81 A24 = 0;
82

83 %uhb3 coeffs
84 A31 = psi1Lpc*sin(t1+t2)/sin(t2)*(sin(t1-beta) - (1+L1/Lro)*sin(alpha-beta)*cos(t1-beta)/cos(

alpha-beta));
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85 A33 = cos(alpha-beta)*(1+L1/Ltm) + (1+L1/Lro)*sin(alpha-beta)*sin(alpha-beta)/cos(alpha-beta);
86 A34 = -sin(alpha-beta)*(1+L1/Ltm) + (1+L1/Lro)*sin(alpha-beta);
87

88 %url1 coeffs
89 B11 = -(1-L1/Lro)*psi1Lpc*sin(t1+t2)*cos(t1-beta)/(sin(t2)*cos(alpha-beta));
90 B13 = (1-L1/Lro)*tan(alpha-beta);
91 B14 = (1-L1/Lro);
92

93 %url2 coeffs
94 B21 = -psi1Lpc*sin(t1+t2)*cos(t1-beta)/(sin(t2)*cos(alpha-beta));
95 B23 = tan(alpha-beta);
96 B24 = 1;
97

98 %url2 coeffs
99 B31 = -(1+L1/Lro)*psi1Lpc*sin(t1+t2)*cos(t1-beta)/(sin(t2)*cos(alpha-beta));

100 B33 = (1+L1/Lro)*tan(alpha-beta);
101 B34 = (1+L1/Lro);
102

103 %ohc1a coefficients
104 C11 = -psi1Lpc*sin(t1+t2)/sin(t2)*(cos(t1-alpha) -(1-L1/Lro)*cos(t1-beta)/cos(alpha-beta));
105 C13 = -(1-L1/Lro)*tan(alpha-beta);
106 C14 = -(1-L1/Lro);
107

108 %ohc2a coefficients
109 C21 = -psi1Lpc*sin(t1+t2)/sin(t2)*(cos(t1-alpha) -cos(t1-beta)/cos(alpha-beta));
110 C23 = -tan(alpha-beta);
111 C24 = -1;
112

113 %ohc3a coefficients
114 C31 = -psi1Lpc*sin(t1+t2)/sin(t2)*(cos(t1-alpha) -(1+L1/Lro)*cos(t1-beta)/cos(alpha-beta));
115 C33 = -(1+L1/Lro)*tan(alpha-beta);
116 C34 = -(1+L1/Lro);
117

118 %ap coefficients (top of the pillar cells)
119 D1 = psi1Lpc*sin(t1+t2)/sin(t2);
120 D3 = 0;
121 D4 = 0;
122

123 %ohc2a coefficients
124 E11 = psi1L01*cos(alpha);
125 E12 = psi2L01*cos(alpha);
126

127 %ohc2b coefficients
128 E21 = psi1L0*cos(alpha);
129 E22 = psi2L0*cos(alpha);
130

131 %ohc2c coefficients
132 E31 = psi1L10*cos(alpha);
133 E32 = psi2L10*cos(alpha);
134

135 %ohc3a coefficients
136 C1 = -3*psi1Lpc*sin(t1+t2)/sin(t2)*(cos(t1-alpha)-cos(t1-beta)/cos(alpha-beta));
137 C3 = -3*tan(alpha-beta);
138 C4 = -3;
139

140 %ohc3b coeffs
141 E1 = (psi1L01+psi1L0+psi1L10)*cos(alpha);
142 E2 = 0;
143
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144 %ohc3b coeffs
145 A1 = A21+B21*Lst/(Lro);
146 A3 = A23+B23*Lst/Lro;
147 A4 = A24+B24*Lst/(Lro);
148 %--------------------------------------------------------------------------
149 %stiffnessess corresponding to the difference dof (and coupling terms) [dyn/cm]
150

151 k11 = Kbm1+Kst*((A11+B11*Lst/(Lro-L1))ˆ2+(A21+B21*Lst/Lro)ˆ2+(A31+B31*Lst/(Lro+L1))ˆ2) + Krl*(B21+
D1*Lro/Lpc)ˆ2+Kohc*((C11+E11)ˆ2+(C21+E21)ˆ2+(C31+E31)ˆ2);

152

153 k13 = Kohc*(C13*(E11+C11)+C23*(E21+C21)+C33*(E31+C31))+ Kst*((A13+B13*Lst/(Lro-L1))*(A11+B11*Lst/(
Lro-L1))+(A23+B23*Lst/Lro)*(A21+B21*Lst/Lro) ...

154 +(A33+B33*Lst/(Lro+L1))*(A31+B31*Lst/(Lro+L1)))+Krl*B23*(B21+D1*Lro/Lpc);
155

156 k14 = Kohc*(C14*(E11+C11)+C24*(C21+E21)+C34*(C31+E31))+Kst*((A14+B14*Lst/(Lro-L1))*(A11+B11*Lst/(
Lro-L1))...

157 +(A24+B24*Lst/Lro)*(A21+B21*Lst/Lro)+(A34+B34*Lst/(Lro+L1))*(A31+B31*Lst/(Lro+L1)))+Krl*B24*(
B21+D1*Lro/Lpc);

158

159 k33 = Ktms + Kohc*(C13ˆ2+C23ˆ2+C33ˆ2)+Kst*((A13+B13*Lst/(Lro-L1))ˆ2+(A23+B23*Lst/Lro)ˆ2+(A33+B33*
Lst/(Lro+L1))ˆ2) + Krl*B23ˆ2;

160

161 k34 = Kohc*(C14*C13+C24*C23+C34*C33) + Kst*((A14+B14*Lst/(Lro-L1))*(A13+B13*Lst/(Lro-L1))+(A24+B24
*Lst/Lro)*(A23+B23*Lst/Lro)...

162 +(A34+B34*Lst/(Lro+L1))*(A33+B33*Lst/(Lro+L1))) + Krl*B24*B23;
163

164 k44 = Ktmb + Kst*((A14+B14*Lst/(Lro-L1))ˆ2+(A24+B24*Lst/Lro)ˆ2 +(A34+B34*Lst/(Lro+L1))ˆ2) + Krl*
B24ˆ2+ Kohc*(C14ˆ2+C34ˆ2+C24ˆ2);

165

166 %damping terms in corresponding matrix -----------------------------------------------------
167 c13 = csub*A21*A23;
168 c14 = 0;
169 c34 = 0;
170 c11 = cBM+csub*A21ˆ2;
171 c33 = csub*A23ˆ2+cTMS;
172 c44 = cTMB;
173 %--------------------------------------------------------------------------
174 %mass terms
175 Mbm = Mbm1+Mfluid ;
176 Mtms = Mtm;
177 Ms = [Mbm 0 0 ;0 Mtms 0;0 0 Mtmb];%Structural Mass
178 Ks = [k11 k13 k14; k13 k33 k34; k14 k34 k44] ;% Structural Stiffness
179 Cs = [c11 c13 c14; c13 c33 c34; c14 c34 c44] ;% Structural Deltabmping
180

181 %-------------------------------------
182 % Electrical equations with **no longitudinal cables**
183 Cr1 = (1/Rvm)/(1/Rvl+1/Rvm);
184 Cr2 = (1/Rtl)/((Cr1-1)/Rvm);
185 Ce = [-Ca-Cm Ca*Cr2+Cm ; Cm -Cm];
186 Ke = [-1/Ra0-1/Rm Cr2/Ra0+1/Rm ; 1/Rm -1/Rtl-1/Rm];
187

188 % coupling matrices
189 Cse = zeros(3,2);
190 Kse=[(C1+E1)*eps3 -(C1+E1)*eps3; C3*eps3 -C3*eps3; C4*eps3 -C4*eps3]; %somatic force generation
191 Ces = [eps3*(C1+E1) eps3*C3 eps3*C4; -eps3*(C1+E1) -eps3*C3 -C4*eps3];
192 Kes = 3*iq*[A1 A3 A4 ; 0 0 0];
193

194 Mse = zeros(3,2);
195 Mes = zeros(2,3);
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196 Me = zeros(2,2);
197

198 % longitudinal parameters for TM
199

200 eta=0.5; % [g/(cm*s)]
201 G=7d4*exp(-3*x_gauss); %[g/(cm*sˆ2)]
202 A=2600d-8*exp(0.5*x_gauss); %[cmˆ2]
203

204 %parameters derived
205 Ap=A*0.5;
206 Gp=G*(-3);
207 etap=0;
208

209 %paramters at position x+Deltab
210 xminus=x_gauss-Deltab;
211 Gm=7d4*exp(-3*xminus);
212 Am=2600d-8*exp(0.5*xminus);
213 Apm=Am*0.5;
214 Gpm=Gm*(-3);
215 etam=0.5;
216

217 %paramters at position x-Deltab
218 xplus=x_gauss+Deltab;
219 Gplus=7d4*exp(-3*xplus);
220 Aplus=2600d-8*exp(0.5*xplus);
221 Applus=Aplus*0.5;
222 Gpplus=Gplus*(-3);
223 etaplus=eta;
224 etapplus=0;
225

226 % longitudinal parameters for BM
227 Dxx=-b/2*6.5*1e-4;%[dyne/cm]
228 Dxy=-b/2*3.1*1e-4;%[dyne/cm]
229 Ds=-b/2*4.3*1e-4;%[dyne/cm]
230 Dyy=1.8e6*exp(-3.6*x_gauss);%[dyne/cm]
231 %

D.3 Main code for the models with electrical longitudinal
coupling

1 clear
2

3 %% cochlear parameters
4

5 NX =400; %[#] - number of elements
6 Lc = 1.85; %[cm] - length of the cochlea
7 Deltab = Lc/(NX-1); %[cm] - length of a single element
8 Xpos = 0:Deltab:Lc; %[cm] - position along the cochlea
9 W=0.1; %[cm] width of the chambers

10 h = 0.1; %[cm] - effective chamber eight
11 rho = 1; %[g/cmˆ3] - density of the fluids in each chamber
12

13 l5 = 0.38; %[m] - characteristic length
14 f_b5 = 43.7395e3; %[Hz] - frequency at the base of the cochlea
15 CF5 = f_b5*exp(-Xpos/l5); %[Hz] - distribution of natural frequencies
16 w_cf = 2*pi*CF5; %[Hz] - distribution of angular frequencies
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17

18 %% initialization of fluid matrix and of stapes’ velocity vector
19

20 I=eye(NX,NX);
21 v1=ones(NX-1,1);
22 Iinf=diag(v1,-1);
23 Isup=diag(v1,1);
24 F = -2*I+Iinf+Isup;
25 F(1,:)=0;
26 F(NX,:)=0;
27 F(1,1)=-Deltab/h;
28 F(1,2)=+Deltab/h;
29 F(NX,NX)=Deltabˆ2/h;
30 F = h/Deltabˆ2 .* F;
31

32 vs(NX,1)=0;
33 vs(1,1)=10;
34

35 %% derivation of matrices to be used in the condensation process
36

37 modeltype=3; %1 for 1D fluid coupling, 3 for 3D fluid coupling
38 epsLevel=0.9; %maximum value of epsilon_3
39 AL=0.3; %activity level
40

41 for kk=1:1:NX %576 %66 or 88
42 x_gauss=Xpos(kk);
43 param_with_el_cables;
44

45 Mglobal(1+3*(kk-1),1+3*(kk-1))=Ms(1,1); %mass matrix
46 Mglobal(1+3*(kk-1),2+3*(kk-1))=Ms(1,2);
47 Mglobal(1+3*(kk-1),3+3*(kk-1))=Ms(1,3);
48 Mglobal(2+3*(kk-1),1+3*(kk-1))=Ms(2,1);
49 Mglobal(2+3*(kk-1),2+3*(kk-1))=Ms(2,2);
50 Mglobal(2+3*(kk-1),3+3*(kk-1))=Ms(2,3);
51 Mglobal(3+3*(kk-1),1+3*(kk-1))=Ms(3,1);
52 Mglobal(3+3*(kk-1),2+3*(kk-1))=Ms(3,2);
53 Mglobal(3+3*(kk-1),3+3*(kk-1))=Ms(3,3);
54

55 Ksglobal(1+3*(kk-1),1+3*(kk-1))=Ks(1,1); %structural stiffness matrix
56 Ksglobal(1+3*(kk-1),2+3*(kk-1))=Ks(1,2);
57 Ksglobal(1+3*(kk-1),3+3*(kk-1))=Ks(1,3);
58 Ksglobal(2+3*(kk-1),1+3*(kk-1))=Ks(2,1);
59 Ksglobal(2+3*(kk-1),2+3*(kk-1))=Ks(2,2);
60 Ksglobal(2+3*(kk-1),3+3*(kk-1))=Ks(2,3);
61 Ksglobal(3+3*(kk-1),1+3*(kk-1))=Ks(3,1);
62 Ksglobal(3+3*(kk-1),2+3*(kk-1))=Ks(3,2);
63 Ksglobal(3+3*(kk-1),3+3*(kk-1))=Ks(3,3);
64

65 Csglobal(1+3*(kk-1),1+3*(kk-1))=Cs(1,1); %structural damping matrix
66 Csglobal(1+3*(kk-1),2+3*(kk-1))=Cs(1,2);
67 Csglobal(1+3*(kk-1),3+3*(kk-1))=Cs(1,3);
68 Csglobal(2+3*(kk-1),1+3*(kk-1))=Cs(2,1);
69 Csglobal(2+3*(kk-1),2+3*(kk-1))=Cs(2,2);
70 Csglobal(2+3*(kk-1),3+3*(kk-1))=Cs(2,3);
71 Csglobal(3+3*(kk-1),1+3*(kk-1))=Cs(3,1);
72 Csglobal(3+3*(kk-1),2+3*(kk-1))=Cs(3,2);
73 Csglobal(3+3*(kk-1),3+3*(kk-1))=Cs(3,3);
74

75 % contribution by TM longitudinal coupling
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76 if kk<NX
77 Csglobal(2+3*(kk-1),2+3*(kk-1))=Ap*eta/Deltab+A*etap/Deltab+Csglobal(2+3*(kk-1),2+3*(kk-1)

);
78

79

80 Csglobal(2+3*(kk-1),2+3+3*(kk-1))=-Applus*etaplus/Deltab-Aplus*etapplus/Deltab;
81

82 end
83

84 if kk<NX && kk>1
85

86 Csglobal(2+3*(kk-1),2-3+3*(kk-1))=-Am*etam/Deltabˆ2;
87

88 Csglobal(2+3*(kk-1),2+3*(kk-1))=2*A*eta/Deltabˆ2+Csglobal(2+3*(kk-1),2+3*(kk-1));
89

90 Csglobal(2+3*(kk-1),2+3+3*(kk-1))=-Aplus*etaplus/Deltabˆ2+Csglobal(2+3*(kk-1),2+3+3*(kk-1)
);

91

92 end
93

94 if kk<NX
95 Ksglobal(2+3*(kk-1),2+3*(kk-1))=Ap*G/Deltab+A*Gp/Deltab+Ksglobal(2+3*(kk-1),2+3*(kk-1));
96

97

98 Ksglobal(2+3*(kk-1),2+3+3*(kk-1))=-Applus*Gplus/Deltab-Aplus*Gpplus/Deltab;
99

100

101 end
102

103 if kk<NX && kk>1
104

105 Ksglobal(2+3*(kk-1),2-3+3*(kk-1))=-Am*Gm/Deltabˆ2;
106

107 Ksglobal(2+3*(kk-1),2+3*(kk-1))=2*A*G/Deltabˆ2+Ksglobal(2+3*(kk-1),2+3*(kk-1));
108

109 Ksglobal(2+3*(kk-1),2+3+3*(kk-1))=-Aplus*Gplus/Deltabˆ2+Ksglobal(2+3*(kk-1),2+3+3*(kk-1));
110

111 end
112

113

114 % contirbution by BM longitudinal coupling
115 if kk<NX && kk>1
116

117 Ksglobal(1+3*(kk-1),1-3+3*(kk-1))=+2*(Dxy+Ds)*bmpar2/Deltabˆ2;
118

119 Ksglobal(1+3*(kk-1),1+3*(kk-1))=-2*2*(Dxy+Ds)*bmpar2/Deltabˆ2+Ksglobal(1+3*(kk-1),1+3*(kk
-1));

120

121 Ksglobal(1+3*(kk-1),1+3+3*(kk-1))=+2*(Dxy+Ds)*bmpar2/Deltabˆ2+Ksglobal(1+3*(kk-1),1+3+3*(
kk-1));

122

123 end
124

125 if kk<NX-1 && kk>1+1
126

127 Ksglobal(1+3*(kk-1),1-6+3*(kk-1))=-Dxx/Deltabˆ4;
128

129 Ksglobal(1+3*(kk-1),1-3+3*(kk-1))=Dxx*(4/Deltabˆ4)+Ksglobal(1+3*(kk-1),1-3+3*(kk-1));
130
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131 Ksglobal(1+3*(kk-1),1+3*(kk-1))=-Dxx*(6/Deltabˆ4)+Ksglobal(1+3*(kk-1),1+3*(kk-1));
132

133 Ksglobal(1+3*(kk-1),1+3+3*(kk-1))=Dxx*(4/Deltabˆ4)+Ksglobal(1+3*(kk-1),1+3+3*(kk-1));
134

135 Ksglobal(1+3*(kk-1),1+6+3*(kk-1))=-Dxx/Deltabˆ4;
136

137 end
138

139 Ksglobal(1+3*(kk-1),1+3*(kk-1))=Dyy+Ksglobal(1+3*(kk-1),1+3*(kk-1)); %0th derivative-Dyy*piˆ4/
bˆ4

140

141 %electrical damping and stiffness matrices with longitudinal coupling by cables
142

143 Ceglobal(1+4*(kk-1),1+4*(kk-1))=0;
144 Ceglobal(1+4*(kk-1),2+4*(kk-1))=0;
145 Ceglobal(1+4*(kk-1),3+4*(kk-1))=0;
146 Ceglobal(1+4*(kk-1),4+4*(kk-1))=0;
147

148 Ceglobal(2+4*(kk-1),1+4*(kk-1))=0;
149 Ceglobal(2+4*(kk-1),2+4*(kk-1))=-3*Ca;
150 Ceglobal(2+4*(kk-1),3+4*(kk-1))=3*Ca;
151 Ceglobal(2+4*(kk-1),4+4*(kk-1))=0;
152

153 Ceglobal(3+4*(kk-1),1+4*(kk-1))=0;
154 Ceglobal(3+4*(kk-1),2+4*(kk-1))=3*Ca;
155 Ceglobal(3+4*(kk-1),3+4*(kk-1))=-3*Ca-3*Cm;
156 Ceglobal(3+4*(kk-1),4+4*(kk-1))=3*Cm;
157

158 Ceglobal(4+4*(kk-1),1+4*(kk-1))=0;
159 Ceglobal(4+4*(kk-1),2+4*(kk-1))=0;
160 Ceglobal(4+4*(kk-1),3+4*(kk-1))=3*Cm;
161 Ceglobal(4+4*(kk-1),4+4*(kk-1))=-3*Cm;
162

163 Keglobal(1+4*(kk-1),1+4*(kk-1))=-1/Rvl-1/Rvm;
164 Keglobal(1+4*(kk-1),2+4*(kk-1))=1/Rvm;
165 Keglobal(1+4*(kk-1),3+4*(kk-1))=0;
166 Keglobal(1+4*(kk-1),4+4*(kk-1))=0;
167

168 Keglobal(2+4*(kk-1),1+4*(kk-1))=1/Rvm;
169 Keglobal(2+4*(kk-1),2+4*(kk-1))=-1/Rvm-3/Ra0;
170 Keglobal(2+4*(kk-1),3+4*(kk-1))=3/Ra0;
171 Keglobal(2+4*(kk-1),4+4*(kk-1))=0;
172

173 Keglobal(3+4*(kk-1),1+4*(kk-1))=0;
174 Keglobal(3+4*(kk-1),2+4*(kk-1))=3/Ra0;
175 Keglobal(3+4*(kk-1),3+4*(kk-1))=-3/Ra0-3/Rm;
176 Keglobal(3+4*(kk-1),4+4*(kk-1))=3/Rm;
177

178 Keglobal(4+4*(kk-1),1+4*(kk-1))=0;
179 Keglobal(4+4*(kk-1),2+4*(kk-1))=0;
180 Keglobal(4+4*(kk-1),3+4*(kk-1))=3/Rm;
181 Keglobal(4+4*(kk-1),4+4*(kk-1))=-1/Rtl-3/Rm;
182

183

184 if kk<NX && kk>1
185

186 Keglobal(1+4*(kk-1),1-4+4*(kk-1))=1/(rsv*Deltabˆ2);
187 Keglobal(2+4*(kk-1),2-4+4*(kk-1))=1/(rsm*Deltabˆ2);
188 Keglobal(4+4*(kk-1),4-4+4*(kk-1))=1/(rst*Deltabˆ2);
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189

190 Keglobal(1+4*(kk-1),1+4*(kk-1))=-2/(rsv*Deltabˆ2)+Keglobal(1+4*(kk-1),1+4*(kk-1));
191 Keglobal(2+4*(kk-1),2+4*(kk-1))=-2/(rsm*Deltabˆ2)+Keglobal(2+4*(kk-1),2+4*(kk-1));
192 Keglobal(4+4*(kk-1),4+4*(kk-1))=-2/(rst*Deltabˆ2)+Keglobal(4+4*(kk-1),4+4*(kk-1));
193

194 Keglobal(1+4*(kk-1),1+4+4*(kk-1))=1/(rsv*Deltabˆ2);
195 Keglobal(2+4*(kk-1),2+4+4*(kk-1))=1/(rsm*Deltabˆ2);
196 Keglobal(4+4*(kk-1),4+4+4*(kk-1))=1/(rst*Deltabˆ2);
197

198 end
199

200 %electric-structural matrices with longitudinal coupling by cables
201

202 Cesglobal(1+4*(kk-1),1+3*(kk-1))=0;
203 Cesglobal(1+4*(kk-1),2+3*(kk-1))=0;
204 Cesglobal(1+4*(kk-1),3+3*(kk-1))=0;
205 Cesglobal(2+4*(kk-1),1+3*(kk-1))=0;
206 Cesglobal(2+4*(kk-1),2+3*(kk-1))=0;
207 Cesglobal(2+4*(kk-1),3+3*(kk-1))=0;
208 Cesglobal(3+4*(kk-1),1+3*(kk-1))=-eps3*(C1+E1);
209 Cesglobal(3+4*(kk-1),2+3*(kk-1))=-eps3*C3;
210 Cesglobal(3+4*(kk-1),3+3*(kk-1))=-eps3*C4;
211 Cesglobal(4+4*(kk-1),1+3*(kk-1))=eps3*(C1+E1);
212 Cesglobal(4+4*(kk-1),2+3*(kk-1))=eps3*C3;
213 Cesglobal(4+4*(kk-1),3+3*(kk-1))=eps3*C4;
214

215 Kesglobal(1+4*(kk-1),1+3*(kk-1))=0;
216 Kesglobal(1+4*(kk-1),2+3*(kk-1))=0;
217 Kesglobal(1+4*(kk-1),3+3*(kk-1))=0;
218 Kesglobal(2+4*(kk-1),1+3*(kk-1))=+3*iq*A1;
219 Kesglobal(2+4*(kk-1),2+3*(kk-1))=+3*iq*A3;
220 Kesglobal(2+4*(kk-1),3+3*(kk-1))=+3*iq*A4;
221 Kesglobal(3+4*(kk-1),1+3*(kk-1))=-3*iq*A1;
222 Kesglobal(3+4*(kk-1),2+3*(kk-1))=-3*iq*A3;
223 Kesglobal(3+4*(kk-1),3+3*(kk-1))=-3*iq*A4;
224 Kesglobal(4+4*(kk-1),1+3*(kk-1))=0;
225 Kesglobal(4+4*(kk-1),2+3*(kk-1))=0;
226 Kesglobal(4+4*(kk-1),3+3*(kk-1))=0;
227

228 %structure-electrical matrices with longitudinal coupling by cables
229 %zeros as MET is not reciprocal
230

231 Cseglobal(1+3*(kk-1),1+4*(kk-1))=0;
232 Cseglobal(1+3*(kk-1),2+4*(kk-1))=0;
233 Cseglobal(1+3*(kk-1),3+4*(kk-1))=0;
234 Cseglobal(1+3*(kk-1),4+4*(kk-1))=0;
235 Cseglobal(2+3*(kk-1),1+4*(kk-1))=0;
236 Cseglobal(2+3*(kk-1),2+4*(kk-1))=0;
237 Cseglobal(2+3*(kk-1),3+4*(kk-1))=0;
238 Cseglobal(2+3*(kk-1),4+4*(kk-1))=0;
239 Cseglobal(3+3*(kk-1),1+4*(kk-1))=0;
240 Cseglobal(3+3*(kk-1),2+4*(kk-1))=0;
241 Cseglobal(3+3*(kk-1),3+4*(kk-1))=0;
242 Cseglobal(3+3*(kk-1),4+4*(kk-1))=0;
243

244 b22(kk)=b; %[cm] width of the BM
245 end
246

247 Kseglobal=transpose(Cesglobal);
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248

249 %% initialization of matrices and vectors to calculate the response
250 tic
251 clear S
252 clear T
253

254 T(NX,7*NX)=0;
255 for i=1:1:NX
256 T(i,1+3*(i-1))=1;
257 end
258

259 S(7*NX,NX)=0;
260 for i=1:1:NX
261 S(1+3*(i-1),1+1*(i-1))=1;
262 end
263

264 Yppkk(NX,NX)=0;
265 p_s(NX,NX)=0;
266 p_L(NX,NX)=0;
267 VBM3d(NX,NX)=0;
268 Z_nf(NX,NX)=0;
269

270 %% calculation of the response at each frequency
271 for pp=1:length(w_cf)
272 w_my=w_cf(pp);
273

274 %calculation of the equivalent BM admittance matrix
275

276 Ks1global=-w_myˆ2*Mglobal+Ksglobal+1i*w_my*Csglobal;
277 Kse1=Kseglobal+1i*w_my*Cseglobal;
278 Kes1=1i*w_my*Cesglobal+Kesglobal;
279 Ke1=Keglobal+1i*w_my*Ceglobal;
280 Ksaglobal=[Ks1global Kse1; Kes1 Ke1];
281 Y=inv(Ksaglobal/(1i*w_my));
282 Yabm=T*Y*S.*b22*(1/(2*pi));
283

284 %calculation of fluid coupling matrix
285 Z_nf(1:NX,1:NX)=0;
286

287 for ll=1:1:NX
288 for jj=1:1:NX
289 Z_nf(ll,jj) = 1.3958*1i*w_my*rho*Deltab*exp(-abs(jj-ll)*Deltab/(0.0854*W));
290 end
291 end
292

293 %calculation of the response by the elemental method
294

295 Yabm(1,1)=0;
296 Yabm(NX,NX)=0;
297 Zfc=-2*1i*w_my*rho.*inv(F)+Z_nf;
298 p_s(:,pp)=Zfc*vs;
299 p_L(:,pp)=(I+Zfc*Yabm)\p_s(:,pp);
300 VBM3d(:,pp)=-(Yabm*p_L(:,pp));
301

302 end
303 toc
304

305 %% plot of the velocity response
306
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307 fr=CF5;
308 fr=fr/1000;
309 posit5=88; %x_0
310

311 prt = 2; % #1 for printing
312 doc_type = 1; % #0 quick print, no document
313 % #1 for papers, reports, theses
314 % #2 presentationsz
315 % #3 posters
316 if epsLevel>0 && AL>=0.00002
317 col = {’--’,’--k’,’--g’, ’--b’,’--m’,’--m’};
318 elseif epsLevel==1 && AL==0
319 col = {’-.’,’-.k’,’-.g’, ’-.b’,’-.m’,’--m’};
320 elseif epsLevel==0
321 col = {’-’,’-k’,’-g’, ’-b’,’-m’,’--m’};
322 end
323 fig_name = {’plot_1’};
324 Ft_size = 12;
325 Ft_name = ’Times New Roman’;
326 set(0,’defaulttextinterpreter’,’tex’)
327 set(0,’DefaultTextFontSize’, Ft_size)
328 set(0,’DefaultTextFontName’, Ft_name)
329 set(0,’DefaultAxesFontSize’, Ft_size)
330 set(0,’DefaultAxesFontName’, Ft_name)
331

332 figure(13)
333 hold on
334 subplot(2,2,1)
335 semilogx(fr,20*log10(abs(VBM3d(posit5,:))),col{1},’Linewidth’,1,’DisplayName’,’Active’, ’

Handlevisibility’,’on’)
336 hold on
337 grid on
338 xlabel(’Frequency [kHz] ’,’interpreter’,’tex’)
339 ylabel(’|V| [db re stapes]’,’interpreter’,’tex’)
340 set(gca,’FontSize’,Ft_size)
341 ylim([0 65])
342 xlim([2 40])
343 xticks([2:10,20,30,40])
344

345 angle_Va=unwrap(angle(VBM3d(posit5,:)))/(2*pi);
346 subplot(2,2,3)
347 semilogx(fr,angle_Va-angle_Va(end),col{1},’Linewidth’,1,’DisplayName’,’Active’, ’Handlevisibility’

,’on’)
348 hold on
349 grid on
350 xlabel(’Frequency [kHz] ’,’interpreter’,’tex’)
351 ylabel(’\angle V [cycles]’,’interpreter’,’tex’)
352 set(gca,’FontSize’,Ft_size)
353 xlim([2 40])
354 xticks([2:10,20,30,40])
355 %
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D.4 Parameters for code with electrical longitudinal cou-
pling

In this case, the code is the same as that reported in Appendix D.2, apart from lines 55
to 58, which are modified as:

1 %%param_with_el_cables.m
2

3 Ra0 =1d6;%[Ohm*cm]
4 Rm = 1*(10ˆ6)/(3*(51-(51-3.6)*x_gauss/Lc)); %[Ohm*cm]
5 Ca =0.5d-9; %[F/cm]
6 Cm =3d-9*(18 + (42-18)*x_gauss/Lc); %[F/cm]
7

8 %
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