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Abstract

Slow light is the phenomenon whereby a large reduction in group velocity is observed
close to a resonance. Devices which exhibit this behaviour are of great general interest
and have numerous applications. The primary focus for such devices is in the creation
of optical storage and quantum memories. They also have additional applications in
optical switching and enhancing optical nonlinearities. The field of slow light gener-
ated a great deal of interest when it was demonstrated that exceptionally low group
velocities down to the speed of a cyclist were achieved using electromagnetically in-
duced transparency. Since that time there has been significant activity in developing
new slow light devices. Along with electromagnetically induced transparency, devices
have been developed using fibres and photonic crystals. However, all such devices are
limited by the delay-bandwidth product. The greater the reduction in the group veloc-
ity, the more delay the device can generate. Unfortunately, this is also accompanied by
a decrease in the available bandwidth which limits the device storage capacity.

In this work a slow device based on a dynamic moiré grating is explored. A moiré
grating produces a double resonant structure with a slow light transmission band. The
amount that the group velocity is reduced in a moiré grating is dependent on the size
of the transmission band. A smaller transmission band leads to lower group veloci-
ties and so the device is bounded by the delay-bandwidth product. Here I show that
by dynamically varying the coupling strength of a moiré grating, the limits imposed
by the delay-bandwidth product can be potentially broken by many orders of magni-
tude. This result relies on symmetric switching of the coupling strength. I also show
that asymmetric switching can generate bandwidth modulation. A potential realisa-
tion of such a device is presented using an electro-optic grating in a periodically poled
medium. Applying an external quasi-static field allows for the dynamic control of the

grating coupling strength.

Another feature of moiré gratings is that the generated slow light is accompanied by
pulse compression and field enhancement. I explore in this work as means of enhanc-
ing second-harmonic generation. I then show that the slow light transmission band
creates forward and backward second-harmonic modes with greater efficiency than a
standard device. By including a second grating at the front of the device, the back-
ward second-harmonic mode can be suppressed producing unidirectional output. The
additional grating creates a resonance within the device which further enhances the
second-harmonic generation. I show that by tuning the device parameters it is possible
to achieve near complete conversion efficiency in regimes where conversion efficiency

would ordinarily be negligible.
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Chapter 1

Introduction

The purpose of the research is to explore the application of slow light in creating an
optical storage device and enhancing nonlinear processes. Optical and photonic stor-
age devices are key components in developing future quantum technologies such as
quantum repeaters [1, 2] and photonic quantum computers [3]. They are capable of
storing an optical pulse or single photon which can subsequently be retrieved at a later
time. Slow light is the phenomenon whereby the group velocity of a pulse envelope is
slowed by a resonance. It has long been a goal to use a slow light resonance to trap and
release pulses thereby making an optical storage device. However, the performance of
slow light devices is constrained by a trade-off between the available bandwidth and
the amount of the delay the device can produce. This constraint is therefore known
as the delay-bandwidth product and is a limiting factor in producing slow light stor-
age devices. Another consequence of slow light is that the reduced group velocity of
a pulse results in an enhancement of its intensity. It has therefore been proposed as a

means of enhancing nonlinear intensity dependent processes.

Before discussing these features of slow light in more detail, it is first useful to intro-
duce the definitions which characterise the different velocities associated with wave
phenomena. A monochromatic wave is one which is composed of a single angular fre-
quency w and associated wavenumber k. The connection between w and k is commonly

referred to as the dispersion relationship and is given by

w = ck. (1.1)

The conversion factor ¢ between the two quantities is known as the phase velocity. It
is the speed at which the wavefronts of a wave propagate. For an electromatic wave in
vacuum, the phase velocity is equal to the speed of light which is 299792458 m/s. The
passage of light within a medium is impeded such that its phase velocity is reduced.
The amount that a medium can impede the passage of light can often be characterised



by a single number n which is known as the refractive index. Each medium has a

different refractive index which modifies the dispersion relationship such that

w = v,P, (1.2)

where the phase velocity is given by v, = ¢/n and B = nk is the propagation constant.
The factor of 7 in v, and B cancel so that the two expressions (1.1) and (1.2) are equiv-
alent. Equation (1.2) is known as a linear dispersion relationship and is a simplified
model which approximately holds over small bandwidths. In general, a medium will
respond differently to different applied frequencies and the phase velocity and propa-

gation constant will be functions of the frequency

w = vp(w)B(w), (1.3)

A common way to express the frequency dependent propagation constant is using a

Taylor expansion around a carrier frequency wy

B(w) :[30+[31(w—w0)+%[52(w—w0)2+..., (1.4)

where the coefficients are given by

.Bn = . (1.5)

When the coefficients for the index n > 1 are zero, the dispersion relationship is linear
by (1.2); it is also common to refer this situation as dispersionless. When the higher or-
der dispersion terms are non-zero, different frequencies will travel with different phase

velocities which has implications for pulse propagation.

A pulse is constructed from a super position of different frequency waves which can in

general be written as

p(t,z) = L:o dw f(w)el Pt (1.6)

The function f(w) is the Fourier transform of the pulse which is peaked around a car-
rier frequency wp. The pulse is then characterised by a carrier signal modulated by
an envelope function which moves at a group velocity v,. The definition of the group
velocity is given by the inverse of the first order coefficient B; evaluated at the carrier

frequency



_ ow

=%, (1.7)

Ug

The group velocity is only well defined when the pulse envelope is well defined. For
a dispersionless medium the group velocity is simply equal to the phase velocity of
the carrier frequency. In general, the frequency dependent phase velocity will will
mean that the pulse will broaden due to the underlying superposition of waves (1.6)
travelling at different speeds. This behaviour is characterised by the group velocity
dispersion (GVD) which is given by the second coefficient 8,

9B (w)
= . 1.8
GVD = —; ~ (1.8)
An alternative definition of the group velocity dispersion is to define it by the derivative
of inverse group velocity with respect to wavelength

o1

Dy = ——
AT vy’

(1.9)

which is more commonly used in optical fibre communications. There are two differ-
ent types of dispersion which are termed normal and anomalous. Normal dispersion
occurs when the group velocity decreases with frequency, and conversely anomalous
dispersion when it increases with frequency. Within a medium there are certain wave-
lengths where dispersion is zero, creating what is known as a zero dispersion wave-
length. It is typically beneficial to centre the carrier frequency of a pulse at a zero
dispersion wavelength in order to minimise broadening effects.

The higher order dispersion effects have so far been considered in the context of mate-
rial dispersion. However, if a narrow enough pulse bandwidth is considered and the
carrier frequency is far from any material resonance, then the linear dispersion rela-
tionship (1.2) provides a good approximation. Dispersion effects can also be induced
structurally. By carefully engineering the material properties it is possible to tailor the
dispersion relationship to fit a particular need.

With this brief overview of the basic properties of wave propagation, we can now re-
turn to topic of slow light. Quite simply, slow light refers to a dramatic decrease in the
group velocity relative to the phase velocity. This is achieved when there is a flattening
of the dispersion curve between the frequency and propagation constant. There are
principally two ways of achieving this. The first is to use a material resonance and the
second is to employ a structural resonance. In either case, a dramatic decrease in the
group velocity can be observed close to a resonance. There are a number of review arti-
cle which provide a thorough background into the field of slow light [4, 5, 6,7, 8, 9, 10]
as well as book devoted to the subject [11].



The principal metric for comparing the performance of different slow light devices is
the delay-bandwidth product [12, 13, 14]. For any given slow light device, the product
of the available slow light bandwidth and the induced delay is approximately constant.
This means if the parameters of a particular device are altered such that the delay pro-
duced is increased, this will come at the expense of a decrease in the available band-
width. The trade off between the two is such that their product remains unchanged. An
ideal slow light device would produce very low group velocity with a large available
bandwidth. Therefore the delay-bandwidth product is a useful metric for comparing

devices, where devices with a larger product have better performance.

Calculating the product first requires the group delay. If a slow device has a group ve-
locity vy and length L, then the group delay 7, that a pulse experiences in propagating

from one end of the device to the other is given by

Tg = — (1.10)

A common alternative way to express the group delay is using the group index which
is defined as

ng=—, (1.11)

which is also known as the slow down factor [13]. It is defined in a similar way to
the refractive index, being the ratio of the vacuum speed of light to the group velocity
rather than the phase velocity. The group index is also another common figure of merit
for slow light devices. The group delay can therefore also then be written as

(1.12)

Then if a slow light device has a resonance bandwidth of Af, then its delay-bandwidth
product is given by

L
DBP = %Af (1.13)

The factor of L means that increasing the length of the device increases the size of the

delay-bandwidth product.

While research into slow light has been going on for some time [15, 16, 17] albeit not
necessary under the name slow light, it was not until the work of Hau et al [18] that the
tield garnered significant attention. In their ground breaking paper they showed that

light could be slowed to 17 m/s using electromagnetically induced transparency (EIT)



in a gas of sodium atoms cooled close to absolute zero. EIT is an example of generating
slow light by a material resonance. It works by using two driving fields to make an
opaque medium transparent over a frequency band through which a probe field can
propagate. Applying a driving force to a medium will cause electrons to oscillate at
the frequency of the applied field. Transparency is achieved by the two driving fields
having equal magnitude but opposite sign so that the driving force of one field acting
on the electrons is cancelled by the other. With the driving fields suppressing electron
oscillations the probe field is able to propagate through the medium [19].

After the work of Hau et al, it was later experimentally demonstrated that light could be
stopped completely using EIT [20, 21]. This was achieved by switching off the driving
tields whilst the probe pulse was still inside the medium. This closed the transmission
window trapping the pulse inside the vapour cloud. Subsequently turning the driving
field back on reopened the transmission window and allowed the pulse to escape.

EIT has demonstrated impressive results but it requires an atomic medium supercooled
to temperatures close to absolute absolute. Circumventing this requirement led re-
searchers to develop a new approach to producing slow light using spectral holes due
to coherent population oscillations (CPO) [22, 23]. This approach was first demon-
strated in a room temperature ruby crystal where a group velocity of 57.5m/s was ob-
served [24]. Although it has been demonstrated that both EIT and CPO could achieve
extraordinarily low group velocities, the size of their slow light resonances are in the
range of 10s of Hertz. Therefore the available pulse bandwidth is similarly restricted.

The second approach to generating slow light is to use a structured or engineered reso-
nance. Typically this involves manipulating the material properties of a photonic crys-
tal to create an artificial resonance that can be exploited for slow light. One such ap-
proach is to use coupled resonators [25, 26, 27] which offer similar properties to EIT
[28]. Another approach has been to use Brillouin scattering which induces a slow light
resonance using acoustic phonons [29, 30]. In this work we are principally interested in
slow light generated by Bragg grating structures. A Bragg grating is a periodic modu-
lation of the refractive index. It has the property that for a grating period Aj there is a
resonance centred on the wavelength Ap over which incoming light is reflected by the
grating. The linewidth of the resonance is known as the band gap or rejection band.
At the edges of the band gap the incoming light is rapidly coupled into forward and
backward propagating modes which can lead to a substantial decrease in the group

velocity of a propagating pulse generating slow light.

One of the mostly widely used mediums for fabricating Bragg gratings is in optical
fibres. They were first developed in 1978 [31] when it was observed that UV light

launched into an optical fibre was after a few minutes back-reflected. This process is



caused by an effect called photosensitivity. Using two interfering UV beams, photosen-
sitivity allows for a periodic index modulation to be written into the core of an optical
fibre [32].

The first significant demonstration of slow light in fibres was using optical solitons
propagating through the grating band gap [33]. A group index of 1, ~ 5 was measured
with a group delay of 7, ~ 1.7 ns. Recent research exploiting the edges of the band gap
have produced group indices as high as 1010 [34]. This corresponds to a group velocity
of approximately 300 km/s. The authors reported that the available linewidth was 50
fm centred at 1549.72 nm which equates approximately to a bandwidth of 6 MHz.

One of the main issues with grating induced slow light is that the lower and upper band
edges produce normal and anomalous dispersion respectively. The amount of second
order dispersion at the band edges increases with the reduction in the group velocity.
Therefore, slower group velocities result in stronger pulse broadening. One way to re-
solve this issue is to use a dual resonance grating known as a moiré grating [28, 35, 36].
A moiré grating consists of two super imposed grating periods which creates a dual
band gap structure. Provided the linewidth between the grating periods is sufficiently
small, a slow light transmission band opens between the the two band gaps. The nor-
mal and anomalous dispersion generated from the lower and upper edges of the two
band gaps cancel creating a zero dispersion wavelength at the centre of the transmis-
sion band. Pulse broadening can then be minimised by setting the carrier wavelength
to the centre of the transmission band. However, third order dispersion effects are still

present.

The background theory for Bragg gratings is presented in Chapter 2. The standard ap-
proach to describing a Bragg grating is to develop a set of coupled mode equations by
applying approximations to Maxwell’s equations. A set of solutions is then found from
which the group velocity and group delay dispersion can be calculated. It is shown that
a significant reduction in group velocity occurs at the band gap edges produce by the
grating along with strong second order dispersion. The theory describing Moiré grat-
ings is then introduced and it is demonstrated how they cancel second order dispersion

within a slow light transmission band.

In Chapter 3 an alternative approach to developing coupled mode equations is intro-
duced using the Lagrangian formalism. The formalism is extended to nonlinear ma-
terials and it is shown how each coupled mode equation corresponds to varying the
action with respect to each mode.

The fundamental limit on all slow light gratings is the delay-bandwidth product. Chap-
ter 4 explores how this limit can be overcome by introducing a dynamic moiré grat-
ing. This is done by dynamically varying the grating strength of the underlying Bragg



grating. This has the effect of altering the size of the transmission band. The delay-
bandwidth product can then be enhanced by the change in group velocity induced by
dynamically varying the slow light resonance.

In Chapter 6 an approach to creating delay lines using Bragg gratings and cross phase
modulation is examined. It is shown that to create gratings with lengths that can be
fabricated with current technology, it is necessary to use the slow light band edge of the
grating. The grating lengths can be decreased further by using switchable bandwidth

using the transmission band of a moiré grating.

Next, the potential for enhancing non linear processes using a 7r-phase shifted grating is
explored in Chapter 6. A rt-phase shifted grating is closely related to a moiré grating. It
is shown that when combined with a Bragg grating, significant enhancement to second-

harmonic generation can be achieved in a quasi-phased matched medium.

Finally Chapter 7 provides conclusions and potential future research that could follow
from the work contained in this thesis.






Chapter 2

Background

2.1 Electromagnetism

Electromagnetism is one of the four known fundamental forces of nature along with
gravity, the strong nuclear force and weak nuclear force. Although electric and mag-
netic phenomena where documented by ancient civilisations, electromagnetism only
really began to develop over the course of the 19th century. One of the most signif-
icant contributions to its development was by experimentalist Michael Faraday who
introduced the concept of a field. Faraday became convinced after extensive experi-
mentation of the existence of electric and magnetic fields that extended and filled all of
space. This was a key insight but Faraday lacked the necessary mathematical training
to quantitatively express his ideas. The problem was taken up by the mathematical
physicist James Clerk Maxwell who in his 1865 work "A dynamical theory of the elec-
tromagnetic field” [37] introduced a set of equations describing Faraday’s electric and
magnetic fields. His equations were revolutionary. They predicted the existence of elec-
tromagnetic waves which propagated at a speed approximately equal to what was the
known speed of light at the time, thus establishing that light was an electromagnetic
wave and unifying electromagnetism and optics. Today his equations are known in his

honour as Maxwell’s equations.

2.1.1 Maxwell’s equations

In this thesis the version of Maxwell’s equations that are of principle interest are the

sourceless matter equations which are given by

V-B=0 2.1)



V-D=0 (2.3)
. . aD
VxH_5? (2.4)

The E and B fields are the macroscopic electric and magnetic fields respectively and D
and H fields are the auxiliary electric and magnetic fields respectively. The auxiliary
fields often go by a number of different names. The D field is commonly referred to
as the electric displacement or electric induction and the H field is commonly known
as the magnetic field strength or magnetic intensity. We follow here the convention of
calling them simply auxiliary fields.

Equations (2.1-2.4) are written in the vector calculus formalism where V is known as

the vector derivative which in Cartesian coordinates is given by

@=@£+@%+@i. (2.5)
The four equations are known as Gauss’s law for magnetism (2.3), the Maxwell-Faraday
equation (2.2), Gauss’s law (2.3) and Ampere’s law (2.4). In the absence of any sources,
Gauss’s laws say that the macroscopic magnetic and auxiliary electric fields are diver-
genceless. The Maxwell-Faraday equation and Ampere’s law describe how rotating
electric and magnetic fields produce time varying magnetic and electric fields respec-

tively.

The macroscopic and the auxiliary fields are related to each other through two further
fields, the polarisation P and the magnetisation M by

D =ekE+P (2.6)

I

H=—B-M 2.7)
Ho

where €p and pg are the vacuum permittivity and permeability respectively. The polari-
sation and magnetisation contain all the information pertaining to a particular medium
and characterise how that medium affects the fields and subsequent dynamics. In vac-
uum the polarisation and magnetisation are zero and Maxwell’s equations reduce to

the vacuum Maxwell equations
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V-B=0 (2.8)
L oB
VxE=-2 (2.9)
V-E=0 (2.10)
- - 10EF

== 2.11
V x B 23 ( )

where ¢ = 1/, /€ppg is the speed of light in vacuum. Notice that Gauss’s law for mag-
netism and the Maxwell-Faraday equation are the same in both the matter and vac-
uum equations and can be thought of as forming one set of Maxwell’s equations; with

Gauss’s law and Ampere’s law forming a second set.

There is an important subtly between the matter and vacuum equations. While the E
and B fields in matter equations are the macroscopic fields, in the vacuum equations
they are the vacuum fields. The macroscopic fields are averages of the vacuum fields
over the atomic structure of a medium and therefore the sets of fields are only equiv-
alent in the case where the polarisation and magnetisation are zero. In general the
macroscopic fields do not satisfy the second set of the vacuum equations despite shar-
ing the same notation. It should therefore always be clear from context whether the E

and B refer to the macroscopic or vacuum fields.

Perhaps the most striking feature of Maxwell’s equations is that they give rise to elec-
tromagnetic wave equations. By setting the magnetisation equal to zero, M = 0, then
the Faraday (2.2) and Ampere (2.4) laws can be combined to give the wave equation

—

0°D

—»2—»_ o
VE—]ioatz.

(2.12)

It is more common to express this relationship using the polarisation given by (2.6) so
that

9’E 02P
2 p—

o 1
2f 205 08
VEE— 5o = Hoap (2.13)

In the vacuum case where P = 0, the Faraday (2.2) and Ampere (2.4) laws give rise the

vacuum wave equations for the electric and magnetic fields



.~ 10°B
V2B — Faz =0 (2.15)

2.1.2 Index notation

The previous section expressed Maxwell’s equations in terms of three vector notation.
Another useful notation is index notation which facilitates expressing Maxwell’s equa-
tion in terms of tensors. Converting a general vector A into index notation is straight
forward, it is simply given by A; = ¢; - A where the dot product picks out the i com-
ponent of the vector. The dot and cross products can be written in index notation by
A;B; = A-Band €ijkAjBx = A x B where B is another general vector. A common
convention with index notation is to sum over repeated indices without including an
explicit summation symbol. This convention is known as Einstein summation. The
cross product in index notation uses the epsilon tensor €;j also known as the totally
anti-symmetric tensor. It is defined such that €123 = 1, then any odd permutation of
the indices picks up a minus sign. For example €13 = —1, €312 = 1 and so on. Any
repeated indices give zero such as €120 = 0. Maxwell’s equations (2.1-2.4) can then be
expressed in index notation as

9;D; =0 (2.16)
€ijk0;Ex = —9;B; (2.17)
9;B; =0 (2.18)
€ijk9;Hy = 9¢D; (2.19)
where
9; = aaxl (2.20)
o = 3. (2.21)
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2.1.3 Potentials and gauge invariance

Instead of expressing electromagnetism in terms of the electric and magnetic fields, an
alternative approach is to use the vector potential A; and the scalar potential ¢. The

potentials are related to the electric and magnetic fields through the relations

Ei = —,A; — i (2.22)
B; = €;jx0; Ay. (2.23)

The fields and potentials give physically equivalent descriptions, however, there are
certain circumstances where it necessary to use the potentials, such as with the La-
grangian formalism which is described in chapter 3. The potentials also allow electro-
magnetism to be expressed in a manifestly Lorentz invariant way by combining the
potentials into a four potential by

A;l = ((PI Ai)' (2.24)

The index p runs from 0 to 3, where the 0 index of A, corresponds to the scalar poten-
tial. Another feature of electromagnetism that becomes evident when using the poten-
tials is gauge invariance. This property allows the potentials to be transformed by an
arbitrary gauge field f through the transformations

Ai — A +0if (2.25)

¢ — ¢ — O f. (2.26)

Substituting the transformed potentials into the field definitions (2.22) and (2.23) leads
to cancellation between all terms containing the gauge field. Therefore, making any
arbitrary gauge transformation using (2.25) and (2.26) gives rise to the same electric
and magnetic fields. This means that each gauge is physically equivalent. However,
when analysing a given system, one gauge may provide greater simplification over
another.



2.1.4 Incorporating matter

In a linear medium the polarisation and magnetisation are related to the E and B fields
through matter susceptibilities. The susceptibilities are in general tensors and so it is

convenient to express the relationships using index notation

P, = eoxff 'E; (2.27)
_ 1 m
M; = %XZ] B]'. (2.28)

(©) (m)
) )
ties. They characterise the interaction of each of component of the macroscopic fields

The tensors x;’ and x;. ' are the dimensionless electric and magnetic susceptibili-
with the medium. It is often possible to approximate a medium as homogeneous and
isotropic. In such a case the susceptibilities tensors can be expressed using the scalar

susceptibilities x' and x (" by the expressions

X =xs; (2.29)
(m)
(m) _ X )
Xij =7 +X(m)5l]- (2.30)

The auxiliary fields are then related to the macroscopic fields through the scalar sus-

ceptibilities by

D; = eo(1+ x"*)E; (2.31)
B; = po(1+ x'"™)H;. (2.32)

It is common practice to define the electric and magnetic indices #, and n,, which are
related to scalar susceptibilities through

e = 1/1+ x(© (2.33)
i =/ 1+ x(m). (2.34)

One further abstraction is to introduce the refractive index which is defined by
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n = NeNy. (2.35)

Most mediums of interest in optics are non-magnetic so that n,, ~ 1, in which case
the refractive index is determined solely by the electric index. In this case the auxiliary
fields reduce to

D; = eon’E; (2.36)
B = woH;, (2.37)

and the wave equation (2.12) becomes

VE- -~ =0. (2.38)

2.2 Gratings

In this work the principle interest in gratings is their ability to generate slow light. In
section both the properties of Bragg gratings and moiré gratings are introduced.

2.2.1 Bragg gratings
2.2.1.1 Coupled mode equations from Maxwell’s equations

To understand how a Bragg grating produces slow light, it is first necessary to find
solutions for wave propagation through them using Maxwell’s equations. One of the
key approaches to extracting analytical solution is to use coupled mode theory [38].
A detailed derivation of Bragg grating solutions in 3 + 1 dimensions can be found in
[39] and [40]. Here we only require a single mode treatment in 1 4+ 1 dimensions. It
is useful to provide a brief derivation of the coupled mode equations as it illustrates
where many of the important quantities come from and what underlying assumptions
and approximations have been made. To start we have the refractive index profile for

a Bragg grating which is given by

n(z) =+ déncos <27rz>, (2.39)
Ap



where 7 is the effective refractive index, én is the grating strength and Ap is the Bragg
period. It is common to refer to 7 and én as the DC an AC components respectively. To
develop the coupled mode equations, the following electric field ansatz is proposed

E(t,z) = U(z)e! P~ 4y (z)e i (BzFet), (2.40)

The ansatz is monochromatic with angular frequency w and propagation constant § =
ik where the wavenumber k is related to the angular frequency through the dispersion
relation (1.1). The field is composed into forward and backward modes where U(z) and
V(z) are the forward and backward mode envelopes respectively. The envelopes are
position dependent only so that they correspond to steady state solutions. Substituting
the ansatz (2.40) into the wave equation (2.38) and evaluating the time derivatives only,

reduces the wave equation to the Helmholtz equation

82 212
(azz Tk >E(z) o, 241)

and the ansatz becomes

E(z) = U(z)eF* + V(z)e F-. (2.42)

There are a number of approximation that go into deriving the coupled mode equa-
tions. The first is a slowly varying envelope approximation. This approximation as-
sumes that the pulse envelope varies slowly compared to the underlying wavelength.
As a consequence the magnitude of the second derivatives become small so that for the
ansatz (2.42)

oU(z) 0?U(z)
'k e (2.43)
oV(z) 0%V (z)
'k = 2. (2.44)

Only the first derivatives of the envelope function are then required to capture the be-
haviour of the system. Then substituting the ansatz (2.42) into the Helmholtz equation
(2.41) and making a slowly varying envelope approximation gives the following ex-

pression

(25, B+ ) - e (2ipgl + R V) =0 (245)
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The next step is to multiply equation (2.45) by e~'f* and rearrange to give

au(z) .k . —2ipz - iﬁzav(z)
T <n2 n2) <U(z)—|—e 2 V(z)> e p (2.46)

and then do same again but this time multiply (2.45) by e~ to give

wviz) _ —i% <n2 - ﬁz) <e2"ﬁzu(z) + V(z)) + ewzagiz)- (2.47)

Equations (2.46) and (2.46) provide the basis for the coupled mode equations. The
equations contain the square of the refractive index, which by the Bragg grating index
profile (2.39) is given by

‘ ‘ 2, ‘ 2
n? = ii® + idn (elKBZ + e”KBZ) + 5% (elKBZ + e*lKBZ) , (2.48)

where the Bragg grating wavenumber is given by

_ 2nz

Kg = —.
B= A,

(2.49)

As the grating strength is small, a neglecting small terms approximation can be made

giving
n® ~ i + fidn (eiKBZ + e”'KBZ). (2.50)

Then substituting (2.50) into equations (2.46) and (2.47) yields

a\giz) — ik (ei(KB+2ﬁ)Z _ ezim) U(z) — ix (eiKBz _ e—ing) V(z) + eziﬁzalgiz), (2.52)

where the detuning A and the coupling constant x are defined by

g (2.53)



K= ——. (2.54)

To reduce equations (2.51) and (2.52) down to their final forms, a rotating wave approx-
imation needs to made [41]. This approximation works on the basis that as the rate of
oscillation of a wave increases, its mean value tends to zero. Therefore, when a wave is
fast oscillating relative to another, it is contribution can be neglected. Looking again at
equations (2.51) and (2.52), as the detuning becomes small so that =247 ~ ¢2i8% x 1, all
the other wave terms become fast oscillating and rotating wave approximations can be

made, giving the final form of the coupled mode equations

du(z)

_ —2iAz
= ikV(z)e (2.55)
d‘;iz) = —ixl(z)e¥0. (2.56)

When the detuning is zero, the Bragg period is related to the Bragg wavelength by
Ap = 2ii/\p. (2.57)

2.2.1.2 Solutions for semi-infinite Bragg gratings

The coupled mode equations (2.55) and (2.56) can be solved using standard methods

and have general solutions given by

U(z) = crei(B-mw)z 4 coeilAtan): (2.58)

V(Z) - <DCB K_ A) ei(A+0¢B)Z —c <0‘B :— A>ei(AlXB)Z, (259)

and where

ag = VA% —x2. (2.60)

and ¢y and c; are arbitrary constants. Without applying boundary conditions and fixing
the values for c¢; and cp, the solutions (2.55) and (2.56) correspond to a semi-infinite
grating extending from 0 to Z-oco. It is useful to split the electric field ansatz into two
terms so that E(z) = E1(z) + Ex(z), where



19

Ei(z) = c1 |eP+* + ("‘BK_A>e—iﬁ—Z (2.61)
Ex(z) = cp |7 + ("‘B;A>e—iﬁ+z (2.62)

As the goal here is to understand how Bragg gratings generate slow light, writing the
electric field in this form shows how the propagation constant has been modified by
the inclusion of the grating. The grating has produced two modified versions of the

propagation constant which are given by

7T
Br = A, + ap. (2.63)

Both of the propagation constants become complex when

K2 > A? (2.64)

due to the quantity ap becoming imaginary. Consequently this leads to exponentially
decreasing solutions which creates a band gap for wavelengths satisfying equation
(2.64). The edges of the band gap can be found by solving the equation ag = 0, which

results in the quadratic equation

A2 A, [én\?
- 7l PR — 2.
i Ay +<2> 0. (265
and which has solutions
Ay = Ap(2i £ 6n). (2.66)

The wavelengths A and A_ correspond to the top and bottom of the band gap respec-
tively. The centre of the band gap is then given by

AL A

AB 5

= 2Ari (2.67)
which corresponds to the Bragg wavelength. The rejection bandwidth is given by

Ay — A

5 = 2As0n, (2.68)



showing that the size of the band gap is proportional to the AC modulation of the re-
fractive index. The definition of the group velocity is given by equation (1.7) and is the
inverse derivative of the propagation constant with respect to the angular frequency.

Using the modified propagation constants (2.63), the group velocity evaluates to

o oxp - o 2 g
Ugi =+ (aa]) = Zl:Up <2]71A — 51/”() (2.69)

Similarly the group delay dispersion (1.9) can be calculated from the second derivative

of the modified propagation constants with respect to the angular frequency, giving

3612

D=+ 20"
* 20A2A203,

(2.70)

The group velocity given by equation (2.69) tends as expected to the phase velocity v,
as the coupling x tends to zero, which is effectively switching the grating off. The re-
duction in group velocity which leads to slow light comes from the factor ap tending
to zero. As we saw before ap = 0 corresponds to the band edges and so the group ve-
locity tends to zero as the wavelength approach one of the band edges. The expression
for the group velocity also has a singularity which occurs when 27A — énx — 0. This
corresponds to the wavelength

Ao = 5 = Ap <1 — > 2.71)

If we consider a forward propagating pulse with a positive group velocity, then when
A < Ao, the propagation constants ;. and —p_ provide physically meaningful solu-
tions. Similarly, when A > A, the propagation constants —f and p_ provide phys-
ically meaningful solution. This corresponds to a semi-invite grating starting at zero
and extending out to infinity. The group velocity can then be defined by

v A< Ao
vg =4 " (2.72)
Vg A > A,

and the group delay dispersion by

Dy A< As
D= (2.73)
D A> Ay

Figure 2.1a shows a plot of both the group velocities (2.72). As the wavelength ap-
proaches either side of the rejection band, the group velocity decreases rapidly to zero



21

producing slow light. Figure 2.1b shows the accompanying group delay dispersion.
Again at the band edges, the group delay dispersion is very strong and diverges rapidly.
This means that slow light induced by a Bragg grating will also result in significant
pulse broadening.

1.0, 1016-
0.8- 10%0-
€ 10+
0.6 %
Q
> c 0
s 3
0.4- =  _104-
a 10
0.2- —1010-
—_10%6-
0.0- . . . ) . . . . . )
1.548 1.549 1550 1.551 1.552 1.548 1.549 1.550 1.551 1.552
Wavelength (um) Wavelength (um)

(@ (b)

FIGURE 2.1: (a) The group velocity vy and (b) group delay dispersion D for a semi-
infinite Bragg grating with parameters Az = 1550nm, i = 1.445, 6n = 1073 and
A =27n //\B.

As has been demonstrated, the band gap leads to exponentially decaying solutions
which couple the incoming power into the backwards propagating mode. The amount
of incoming power reflected by the grating by coupling into the backwards mode can
by quantified by the reflectance which is defined by

(2.74)

As before, careful attention has to be paid in order to extract a physically meaningful
solution for a forward propagating pulse. By carefully inspecting the electric fields
(2.61) and (2.62), the reflectance can be defined either side of the singular wavelength
(2.71) by

2 (2.75)

Figure 2.2 shows a plot of the reflectance (2.75). Within the band gap the grating is
strongly reflecting so that all the incoming light is coupled into the backward modes.
Outside the band gap the reflectance decreases rapidly. As the grating is semi-infinite,
there are no finite length interference effects causing side lobing which will be looked
at in section 2.2.2.
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FIGURE 2.2: Plot of the reflectance for a semi-infinite Bragg grating with
parameters 7 = 1.445, 6n = 1073, Ag =1550 nm.

2.2.1.3 Solutions for finite Bragg gratings

The previous section looked at Bragg grating solutions without applying boundary
conditions which corresponded to semi-inifite gratings. Here we look at solutions
where realistic boundary conditions are imposed, which correspond to finite length
gratings. If the initial amplitude of the field entering the grating is A, then this imposes
the boundary condition U(0) = A. If the grating has a length L, then to ensure no light
is coupled into the end of the grating the boundary condition V(L) = 0 is required.
These boundary conditions fix the constants in solutions (2.58) and (2.59) which are

then given by
c1 = l“eZi"‘?L—H (2.76)
Cr = m (2.77)
where
- zi - i (2.78)

Consider the solutions (2.58) and (2.59) with these boundary conditions at the Bragg
wavelength Ap. In this case A = 0, ap = ix and I' = 0 so that the constants become

A

=T 2.79)

C1



23

Ae—ZKL

2

The solutions (2.58) and (2.59) at the start of the grating at the Bragg wavelength reduce

to

UO)=c1+c=A (2.81)

V(0) =i(c; — c2) = iAtanhkL (2.82)

By equation (2.74), the reflectance is then given by

R = tanh?(xL) (2.83)

which corresponds to the maximum reflectance of the grating. The reflectance can be
increased by either increasing the length of grating L or the coupling strength «.

2.2.2 Grating apodisation

The reflectance for a semi-inifite grating shown in figure 2.2 does not exhibit any side-
lobing. This is in contract to a grating of finite length, where the reflectance as shown

in figure 2.3a has characteristic oscillations.
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FIGURE 2.3: Bragg grating reflectance with (a) no apodisation applied and (b) a Gaus-
sian apodisation with a4 = 16. Additional parameters Ap = 1550nm, i = 1.445,
én=10"%and L =5mm.

This behaviour can be understood by considering a grating profile of the form



n(z) =i+ on f(z)cos(2mz/Ap) (2.84)

where f(z) is an apodisation function. For a finite Bragg grating considered in the
previous section, the apodisation function can be taken to be a square wave with f(z) =
1 along the length of the grating. The Fourier transform of a square wave is a sinc
function which has the form sinc(a) = sin(a) /a. This leads to oscillations as a function

of the wavenumber which manifests in reflectance as the sidelobing.

As the sidelobing is due to the profile of the apodisation, an appropriate profile can be
choosen to suppress it. A commonly used profile is a Gaussian of the form

f(z) = emtalz=2/ 12 (2.85)

where & 4 is the apodisation strength. The Fourier transform of a Gaussian is a Gaussian
and so the apodisation smooths out the sidelobing. With a4 = 0 the profile reduces to a
square wave so that no sidelobing suppression is applied. As a4 increases the amount
of sidelobing suppression also increases. Increasing a4 also results in decreasing the
average coupling strength of the grating. From equation (2.83) this results in reduction
in the overall reflectance of the grating. Therefore, applying an apodisation is a trade
off between sidelobe suppression and the overall reflectance of the grating. To increase
the reflectance of an apodised grating it is necessary to make it longer, which again can
be seen from equation (2.83).

2.2.3 Moiré and superstructure gratings

We have seen that a Bragg grating induces slow light at wavelengths approaching the
band gap and that this is accompanied by strong group delay dispersion causing pulse
broadening. At wavelengths approaching the start of the band gap, the second order
dispersion is anomalous and at wavelengths approaching the end of the band gap the
dispersion is normal. This suggests that by superimposing two grating periods, a dual
band gap structure can be created with a transmission band that cancels second order
dispersion with a zero dispersion wavelength at its centre. If the transmission band
is sufficiently small, then the dispersion generated from the band edges will generate
slow light within the transmission band. Such a grating is called a moiré grating [35, 36]
and is given by the grating index profile

n=ri+ (5711 f(z) [cos <2A7le> + cos <2A7T22>] , (2.86)
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where A and A, are the two grating periods. A moiré grating is an example of a
superstructure grating and can be written in the form

n(z) = i1+ éna(z) cos <2m>, (2.87)
Ap

where a(z) is a superstructure envelope. The general property of a superstructure en-
velope is that it is periodic with a superstructure period Ag

a(z+ Ag) = a(z). (2.88)

In the case of the moiré grating, the superstructure envelope is given by

a(z) = cos <As>' (2.89)

so that the grating periods A and A; are related to grating periods Ag and Ag by

ASPAY
ANg= ———"— 2.90
ST A, A (2.90)
VANPAV)
_ Aifa 2.91
B AT A (2971)

where A, > Aj. The grating period Ap is as before the Bragg period. Therefore a
moiré grating can also be thought of as a Bragg grating composed with a sinusoidal
envelope. Developing coupled mode equations to describe the moiré grating is then
quite straight forward. Provided that the moiré envelope (2.89) is slowly varying with
respect to the underlying Bragg grating, then following the same analysis as was given
in section 2.2.1.2, the coupled mode equations are given by

vl ixf(z)a(z) Ve 28 (2.92)
W — —ixf(z)a(2) U (299)

The effect of the moiré envelope in the equations leads to a transmission band opening
within the rejection band centred on the Bragg wavelength Ap. Figure 2.4 shows the
reflectance for a typical apodised moiré grating.
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FIGURE 2.4: Reflectance for a Gaussian apodised moiré grating with param-
eters 71 = 1.445, 6n = 1073, Az = 1550 nm, Ag =2.68mm,a, =16and L =
10 cm.

Applying an apodisation is particularly important with a moiré grating, otherwise side-

lobing will occur within the transmission band.

The two different ways to express the moiré grating profile (2.87) and (2.89), give two
different ways to think about the grating. Either as two separated Bragg gratings or
as a single Bragg grating with a transmission window. The validity of these two view

points is discussed in more detail in Chapter 4.

If looked at as two separate Bragg gratings, the size of the transmission band separat-
ing the two rejection bands gets smaller as the difference between the grating period
A1 and A; is reduced. By equation (2.90), this corresponds to a larger moiré period.
Therefore, a narrower transmission band results from a slower oscillating moiré en-
velope. As the transmission band narrows the group velocity within the transmission
band reduces. Figure 2.5a shows the group velocity produced by a moiré grating calcu-
lated using equation (3.78) which is discussed in more detail in chapter 3. Just as with
a Bragg grating, at the band edges the group velocity tends to zero. Within the trans-
mission band the group velocity is reduced but in contrast to a Bragg grating there is
a cancellation of second order dispersion which can be seen in figure 2.5b. This means
that the moiré grating produces not a only a slow light resonance but also can compen-

sate second order pulse broadening effects.
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FIGURE 2.5: (a) Group velocity and (b) group delay dispersion for a Gaussian
apodised moiré grating with parameters the same as in figure 2.4

2.3 Nonlinear optics

In section 2.1.4 matter was introduced into Maxwell’s equations that responded lin-
early to the applied fields. In general, however, matter can respond to an applied field
nonlinearly. If an applied electric is not too large then the nonlinear response can be

expressed as a Taylor series of the polarisation giving

2 3
P, = eox|j Ej + X\ EiEx + Xy EiEKEL + - (2.94)

szk) and )(1(]3]31 quantify the strength of the interac-

tion between the medium and the square and the cubic of the applied field respectively.

The nonlinear susceptibility tensors x

In general, as the order of interaction increases, the strength decreases by many orders
of magnitude. Therefore, much of nonlinear optics is concerned with second and third
order processes. In this work we are interested in second-harmonic generation through
a second order interaction and the Kerr effect through a third order interaction.

2.3.1 Second-harmonic generation and periodic poling

Second-harmonic generation (SHG) is a second order nonlinear interaction which con-
verts a fundamental mode of frequency w to the second-harmonic with frequency 2w
[42, 43]. The strength of a second order interaction is characterised by the nonlinear
x?) susceptibility tensor. x(? is very weak in comparison to the linear x(!) susceptibil-
ity and as a consequence either long device lengths or high intensities are required to
achieve efficient SHG. A set of coupled mode equation can be derived which describes



the transfer of power of the fundamental mode U; to a second-harmonic mode U;. The
equations are given by [44]

au1 ZX(2)CU‘1 iA

= - * /SZ 2
= - U Use (2.95)
aUZ IX(Z)CU‘I 2 _iA

= — ﬁz_ 2
e = Uie (2.96)

An important factor affecting conversion efficiency is phase matching between the two
modes which is given by

where 81 and ; are the propagation constants for the fundamental and second-harmonic
modes respectively. If Ag is large, then the exponential terms will oscillate rapidly
with respect to the modes reducing the coupling between them. Therefore, in order
to achieve efficient second-harmonic conversion, Ag must be close to zero. Unfortu-
nately bulk material dispersion prevents this from happening. There are a number of
different techniques that can be used to achieve phase matching, two commonly used
approaches are to use either a birefringent nonlinear crystal or to employ quasi-phase-
matching (QPM) [45]. This last technique works by periodically modulating the sign of
the x(?) susceptibility with a period A so that

x?(z) = xPsgn[sin(27z/A)] (2.98)

which introduces an extra wavevector component 27t/ A. The phase matching condi-
tion is then modified to Ag = B — 21 — 271/ A. Therefore, by setting the poling period
to

27
A= A—ﬁ, (2.99)
the phase matching condition is satisfied allowing efficient coupling between the modes.
To incorporate the poling into the coupled mode equations (2.95) and (2.96), the poling
function (2.98) can be expanded as a Fourier series giving

sin (271(2m — 1)z/ A)

T (2.100)

sgn[sin(271z/A)] = % i
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The first order term in the series is the dominant term and so the poling function can

be approximated by

i@ [ .
xP(z) = ZZXT <e—ZAﬁZ — elAﬁZ> (2.101)

Then substituting equation (2.101) into the coupled mode equations (2.95) and (2.96)
and making a rotating wave approximation gives the quasi-phase matched coupled

mode equations

ouy  4x@®_
szl — A’fﬁl 2u, (2.102)

duy _ 4 5
dz A17in I

(2.103)

2.3.2 Kerr effect

The Kerr effect is a third order x(®) nonlinear process which describes the change in the
linear refractive index as a result of an externally applied field. The Kerr effect can occur
due to an applied optical pump field which is known as the optical Kerr effect, or by an
external applied quasi-static electric field known as the electro-optic Kerr effect. These

processes are also commonly referred to as the AC and DC Kerr effects respectively. In

this work we are concerned only with the optical Kerr effect.

To understand how an applied optical field alters the linear refractive index, consider

a nonlinear polarisation of the form

P =eoxWE + x®E. (2.104)

If the applied optical field has an electrical field E of the form

E = Acos(Bz — wt), (2.105)

the polarisation terms of interest for the Kerr effect are given by

3
P=e¢ <x(” + Ex(f‘) |A[2> E. (2.106)

By equation (2.33), this modifies the refractive index such that



3x(3)
81

n~in-+

|A|2. (2.107)

It is more common to express the change in the refractive index using the nonlinear

refractive index 1, and the field intensity I so that

n=1+nol (2.108)
where
3)((3)
= 2.109
4eqcii? ( )
[= C‘“?T‘)”m\2 (2.110)

This analysis is an example of self phase modulation (SPM), where the refractive index
has been varied at the wavelength of the applied field. It causes the applied field to pick
up an additional phase shift which causes spectral broadening as the wave propagates.
Another Kerr interaction is cross phase modulation (XPM). This is where the refractive
index variation at one wavelength of light is induced by another. Typically this involves
a strong pump field at a carrier wavelength A; inducing a refractive index change for a
weak signal field at a carrier wavelength A,. The XPM interaction creates a refractive
change which is a factor of two larger than SPM.
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Chapter 3

Lagrangian approach to coupled
mode theory

In this chapter we apply the methods of the calculus of variations and in particular the
Lagrangian formalism to generate coupled mode equations for optical systems. This
differs from the usual approach in the field which is to start directly from the wave
equation arising from Maxwell’s equations as shown in section 2.2.1. Although the
Lagrangian approach does not offer any additional physical information as both for-
malisms describe the same physics, it does offer a systematic way of generating cou-
pled mode equations which can be readily extended to include nonlinear materials.
This thesis makes substantial use of coupled mode theory and all further derivation

will be made using variational methods.

3.1 Background review of the Lagrangian formalism

As the calculus of variations and the Lagrangian formalism [46, 47, 48] are not standard
background material within the field of photonics, this section serves to provide a brief

overview of the subject.

3.1.1 Lagrangian mechanics

Lagrangian mechanics is a reformulation of Newtonian mechanics. It was developed
by a number of leading figures of 17th and 18th mathematics and physics culminating
in the work by Italian-French mathematician Joseph-Louis Lagrange in his two volume
treatise Mécanique analytique [49, 50]. It has its origins in optics going back to the work
of Fermat and his principle of least time. Fermat observed that a light ray travelling be-

tween two points will always take the path that minimises the amount of time taken to



travel between the points. Another related problem that led to the development of the
Lagrangian formalism was the brachistochrone problem introduced Johann Bernoulli.
Bernoulli made an open challenge to find the curve that minimises the time for an object
to travel between two points whilst under the influence of gravity. The challenge was
taken up and solved independently by both Leibniz and Newton. It is a well known
piece of historical trivia that Newton published his solution anonymously, however,

Bernoulli was able to decipher the solver by recognising “the lion by its claw”.

What these and other similar systems seemed to have in common was that nature was
optimising something. That something is known as the action which was named by the
great mathematical physicist William Hamilton and is denoted by the letter S. Every
physical system has an action and its dynamical evolution will always extremise the
action. This is known as the principle of stationary action and leads to an alternative
approach for finding equations of motion using the Euler-Lagrange equations rather

than Newton’s second law of motion.

To obtain some intuition for the action, consider a space with generalised coordinates
g; and an object travelling through the space on a path g;(t) between the points A and
B. If g(t) represents the true path taken by nature, then any other path can written in
the form g;(t) + Ag;(t) where Ag;(t) represents the deviation of a path from the true
path. If the true path has an action S, then a deviating path will have an action S + AS.
Figure 3.1 shows a schematic of the true path and deviations from it. Finding the true
path then becomes the problem of finding the path that makes AS = 0

To make progress in finding the stationary action, a functional L called the Lagrangian
is introduced. It takes as its arguments the positions g; and velocities 4; such that a
value can be assigned to each point in time along a path’s trajectory. The action can
then be expressed as an integral over the Lagrangian

t

S :/ at L(q(1),4(1))- (3.1)
to

The problem of finding the stationary action then amounts to finding the extremum of

the following expression

t

5s= [t sL(9(t),4(1)). (3.2)
to

This can be done by making an infinitesimal change to the position Jg, and an in-

finitesimal change to the velocity 4. Substituting the infinitesimal changes into the

Lagrangian and Taylor expanding gives

. oL oL
L(q+06q,4+64) = L(q9,9) + 6745‘11' + a—qéqi, (3.3)
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FIGURE 3.1: A schematic of a paths between points A and B. The path indicated by the
black line corresponds to the true path taken by nature and blue lines indicate paths
that are deviations from the true path

making the change in the Lagrangian

oL oL

5 5d;. (3.4)

By using the following application of the chain rule

d (oL d (dL oL _.
dt(@q’iéql) = 6ﬁ<al7i>5qi+al7i5ql, (3.5)
the change in the action can be written as
h oL d [dL d (oL
65— [t (50— (5 ) ot 5 (500 ) 3.6
: (a% dt<a¢>> ot g (apon) (3

In equation (3.6) we have the boundary term

t

t
1ﬂd(%wﬁzﬂwi 67)

to dt \ 9g; 94;

to

Looking again at figure 3.1, we have by definition that the change in the position dg; is
zero at the start and end the path which occur at times ¢y and #; respectively. We can



conclude therefore the boundary term (3.7) is zero and that the change in the action
reduced to

hno (3L d /oL
55_14¢ﬁ<a%—1ﬁ<&%>)ﬁ¢ (3.8)

Imposing the principle of stationary action requires that the integrand be zero giving

oL d /oL
oala) =0 )

which is known as the Euler-Lagrange equation. This equation contains all the dynam-
ical information about the system and is equivalent to Newton’s second law of motion.

We can make this equivalence explicit by looking at a general Lagrangian of the form

L=T()—-V() (3.10)

where the function T gives the kinetic energy and the function V gives the potential

energy. Substituting the Lagrangian (3.10) into Euler-Lagrange equation (3.9) gives

d /0T A%
i(55) =5 G4

Then defining the kinetic energy by T = m4? /2 and the force by F; = —9V /dg; recovers
Newtons second law of motion

Fi = qu (312)
The comparison with Newtons equations shows that the quantity

oL

=3 (3.13)

T

is playing the role of the momentum and is consequently known as the conjugate mo-
mentum and is traditionally denoted by 7r;.

3.1.2 Lagrangian field theory

So far we have introduced the variational formalisms for mechanical systems, however,

electromagnetism is a field theory and therefore in order to describe it using variational
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principles the ideas from the previous section need to be generalised for fields [47, 48].
Fortunately only a small amount of additional work is required to do this. Firstly we
need to place time and space on an equal footing. This can be done by expressing the
Lagrangian in terms of the Lagrangian density £ with the relationship

L= / dx L, (3.14)

The Lagrangian has units of energy and therefore £ has units of [energy][length] 3. It
is common practice in field theory to refer to the Lagrangian density as the Lagrangian
and therefore it is for the reader to determine what is meant from the context and I shall

continue with that convention going forward. The field action can then be written as

S— / dix L. (3.15)

where the integral measure is short hand notation for

/ dx = / / / / dtdgidgrdys, (3.16)

so that the field is integrated over all of space and time. Expressions in field theory
can be become long and cumbersome and so simplifying notation is common. One
important convention is Greek and Roman indices. Greek indices y, v etc run from 0 to
3 with the 0 index being time and the 1, 2, 3 indices being the positions. Roman indices
i, j, k etc run from 1 to 3 so run only over positions. It is common practice as well to
suppress indices whenever context makes the situation clear and so a set of coordinates

x# will often be written simply as x.

Finding the Euler-Lagrange equation follows just as before, by making the variation of
the field action (3.15) stationary. To do this, the generalised coordinates g; used for me-
chanical systems become parameters in a set of generalise fields 1,(t,q;). The same is
done for velocities g; by generalising them to partial derivatives of the fields 0,,9,(t, g;).
With short hand these can be written as 1, (x) and 9,,9,(x). The derivative has been ex-
pressed using relativistic notation so that d, = (%at, ;). While it is convenient to work
with relativistic notation, it turns out that the subsequent results hold equally well for
non-relativistic field theories.

The Lagrangian is now a function of the fields and 4-derivatives £ (1,(x), 0,9a(x)).
Deriving the Euler-Lagrange equations follows from making infinitesimal transforma-
tions of the fields to 1,(x) + 09, (x) and 9,9p(x) + 60,9 (x). Then requiring that the
action is stationary leads to the following Euler-Lagrange equations



oL oL
s o)~ o

The factors of c in the partial derivatives cancel and so equation (3.17) can be equally

written in its non-relativistic form by

oL oL oL
(o) o) o 19

The conjugate field momentum is defined by

oL

Tlq

which is of course an important quantity in the Hamiltonian formulation and in canon-
ical quantisation. Solving the Euler-Lagrange field equations gives the equations of
motion for the fields. The analysis so far has only been applied to a scalar field ¥ (x),
but the formalism can be equally applied to a 3-vector field, a 4-vector field, a spinor
tield or any other exotic field type. The only restriction is that Lagrangian must be di-
mensionally consistent and a scalar so that all of the field components must be properly
contracted.

When considering the mechanical Lagrangian given by (3.10), the Lagrangian is the
difference between kinetic and potential energy. In field theory this idea is generalised
so that the Lagrangian is given by

L= /:'free + Lints (3.20)

which is the sum of the free and interacting parts of the Lagrangian.

3.1.3 Stress-energy tensor

The conservation of energy and momentum can be generalised to fields by the stress-

energy tensor which in a general form is given by

oL
TH = 2= 3"y, — ¢" L. (3.21)
2@ V"8

where g/ is the metric. The field energy density corresponds to the zero zero compo-

nent of the stress-energy tensor
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H=TY (3.22)

and the field momentum density corresponds to

P =T0. (3.23)

For the the stress-energy tensor to conserve angular momentum, it is a necessary con-
dition that it be symmetric [47]. Therefore the field momentum density should also be
equal to the TO! components. In general, however, the stress-energy tensor (3.21) will
not be symmetric. Electromagnetism is one such example where this is the case. There
is a level of ambiguity to the way the stress-energy tensor is defined and it is possible to
add an additional term to the stress-energy tensor to make it symmetric [48]. However,
it is not of particular importance to us here so the above definitions of the energy and

momentum densities are sufficient.
The stress-energy tensor obeys a set of 4 continuity equations given by
3, TH = 0. (3.24)

The one of principle interest in electromagnetism come from setting v = 0

1
9,TH = Eat’H +0;D;, (3.25)

then defining the Poynting vector by

Sl' = CPZ‘ (326)
the continuity equations leads to Poynting’s theorem

H - =
5 =-V-S. (3.27)

3.1.4 The electromagnetic Lagrangian

Electromagnetism is a Lorentz invariant theory and therefore its Lagrangian should be
constructed out of Lorentz invariant scalar quantities. This ensures that the resulting
equations of motion are the same in every reference frame. There are two fundamental

electromagnetic Lorentz invariants:



1
GOEiEi — fBl'Bi (328)
Ho
and

€O F.B; (3.29)
o

which both have units of energy per unit volume so are viable candidates for a La-
grangian density. It turns out that the first invariant (3.28) as a Lagrangian gives Gauss’s
law and Ampere’s law and the second invariant gives Gauss’s law for magnetism and
Faraday’s law. However, only the first invariant is typically used to construct the La-
grangian. The standard electromagnetic Lagrangian written in non-relativistic notation

is then given by

€ 1
L= ?OEl-Ei — 27031-31- (3.30)

It is more common to see it written in relativistic notation by

1
= —— uv
c 7o F. F", (3.31)

where F, is the electromagnetic field tensor defined by

0 —Ey/c —Ey/c —E;/c

E,/c B, 0 —By '
Ez/c _By Bx 0

The electromagnetic Lagrangian is Lorentz invariant so that transforming the electric
and magnetic fields by any arbitrary Lorentz transformation will result in the same
Lagrangian. The relativist form given by equation (3.31) is also called the covariant
formulation. This is because the fully contracted upstairs and downstairs 4 indices
explicitly imply Lorentz invariance.

The Lagrangians (3.30) and (3.31) describe electromagnetism in vacuum, with no inter-
actions so that the Lagrangians constitute only L,... Matter can be incorporated into
(3.30) by adding the linear matter susceptibilities as follows

€ @ypr Lo (m\pp
L= 36+ x;; ) EiE; 2y0(5’f X" )BiB;. (3.33)
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Adding matter incorporates interactions into the Lagrangian so that

EJT”)BiBi. (3.34)

Lint = Xl(;)EiEj +x
However, adding matter to electromagnetism breaks Lorentz invariance, which is a
well known feature of Maxwell’s matter equations. The general explanation for this is
that adding matter picks out the reference frame in which the matter is at rest. There-
fore the matter Lagrangian (3.33) cannot be faithfully written in a covariant form like
equation (3.31). This is not a problem for the purposes of this work, as previously dis-

cussed the Euler-Lagrange field equations work equally well for non-relativistic fields.

Both Lagrangians (3.30) and (3.33) as they are written do not contain dynamical terms
and so the Euler-Lagrange field equations cannot be directly applied to them. In or-
der to make them dynamical the electric and magnetic fields must be substituted for
the scalar and vector potentials given in equations (2.22) and (2.23). The equations of
motion then follow from varying the Lagrangian with respect to the potentials.

It is convenient to assume that the matter susceptibilities in the Lagrangian (3.33) are
dispersionless. As the Lagrangian is written in the time domain, the dispersion could
be taken into account by making the susceptibilities time dependent. However, when
applying the Euler-Lagrange equations this would lead to time derivatives of the sus-
ceptibilities. Therefore, the susceptibilities in the Lagrangian and in Maxwell’s equa-
tions would be related through differential equations. As the rest of the work in this
thesis focuses on small spectral widths where structural dispersion is dominant, it is
convenient to approximate the Lagrangian matter susceptibility as being dispersion-
less.

3.2 Lagrangian methods in a nonlinear medium

This section looks to extended the electromagnetic matter Lagrangian to non-linear ma-
terials and show that the resulting equations of motion give the well known Maxwell
equations for non-linear materials. While nonlinear Lagrangian field theories form the
foundation of the standard model of particle physics [51], I have been unable to locate
in the literature their application for nonlinear optics in the form given subsequently in
this section. Therefore, to the best of my knowledge the following section represents a
novel contribution.



3.21 The nonlinear electromagnetic Lagrangian

The linear matter Lagrangian given by equation (3.33) can be extended to include non-
linear materials by incorporating the nonlinear matter susceptibilities. The Lagrangian
must be a scalar, so all of the susceptibility indices must be fully contracted and each
term must have units of energy density. The process of deducing a Lagrangian is to
effectively work backwards from known equations of motion and find the Lagrangian
which when varied gives back the equations of motion. For the nonlinear Maxwell
equations the appropriate form of the Lagrangian incorporating 2nd and 3rd order

nonlinearities is given by

€
ZOXS]()IEI'E]'EkEl/ (335)

€0 (1) 1 €0 _(2)
L= =i+ xi ) EEj — 27031'31' + 3 Xijw EiEjEx +

where the interacting part of the Lagrangian is now given by

€0

€
Lo = X EiEj + " BBy + X EE e+

®)
ij 3 Xl‘jklEiEjEkEl' (336)

In order to incorporate dynamic terms, just as before the electric and magnetic fields
need to expressed in terms of the scalar and vector potentials given by equations (2.22)

and (2.23). The Lagrangian then becomes

1
L= %(517 + XE]‘l))(ai(P + 01 A;)(0j¢p + 9t Aj) — 27031'1‘1]‘(31'1‘\]' — 9jA;)

€
- ?OXIS'Z) (9ip + 9:Ai) (9j¢p + 91 Aj) (9 + 91 Ag) (3.37)

€
+ X (300 + A (3 + 1A} (3 + 0y AY) (i + D1 Ar).

In order to recover the equations of motion, the Euler-Lagrange equation must be ap-
plied to both the scalar and vector potentials which are given by

N o <a(at¢>)> 9 (8(84})) (3.38)
2 a*<a<a¢m> +aj<a(a]Ai)>' (339)

Looking first at the scalar potential ¢, the Lagrangian (3.37) only contains spatial deriva-

tives of ¢ and so
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%= 0 (3.40)
oL
0] 0. (3.41)

The spatial derivative with respect to ¢ is a somewhat more involved calculation the
final result of which is

oL
= €00;j (9 + 91 Aj) + (Xl(]) + X]z )( i+ 9t 4))

(%)
= D (63 + a2 @i+ 014 (kg + B14)
€
T 40 (Xz(]i)l + X](zk)l + Xl(qz)l + Xlel) (9j¢p + 01 A;j) (I + 01 Ak) (91 + 01 Ay).

(3.42)

Taking the derivative which respect to each of the ¢ fields results in permutations of the
susceptibility indices. Therefore if the susceptibilities possess the following symmetry
properties

Xy =xp (3.43)

Xn = = xi (3.44)
3

Xz(]k)l X](zk)l Xl(qz)l Xl(jk)i/ (3.45)

then the spacial derivative of ¢ can be expressed in terms of the electric field by

oL (1)

— —ep(6; + !
o) I

=_-D,, (3.47)

)E] + €0X§]~2;<)EjEk - EOXS;)]E]'EkEl (3.46)

and so we find that the spacial derivative of ¢ is proportional to the auxiliary electric

field. Then the Euler-Lagrange equation recovers Gauss’s law

3:D; = 0. (3.48)



The set of symmetries given in equations (3.43-3.45) are known as the Kleinman sym-
metries [44]. They are valid in an approximately lossless medium when the input fre-
quency is far from any material resonance. Next we turn to varying (3.37) with respect
to vector potential. The Lagrangian only contains terms with time and spatial deriva-
tives of the vector potential and so

Y
9A,

—0. (3.49)

Calculating the time derivative gives the conjugate momentum, which can be done by
noticing that it is equivalent to taking the spacial derivative with respect to ¢ and so

— D, (3.50)

oL 1

= Eijka]'Bk. (352)
Combined with the time derivative of the vector potential (3.50) lead to Amperes law

€ijkajBk = 8tDi. (353)

Therefore, equation (3.35) provides the correct Lagrangian for the nonlinear Maxwell

equations provided that the susceptibility tensors satisfy the Kleinman symmetries.

3.2.2 The nonlinear electromagnetic stress-energy tensor

To calculate the stress-energy tensor working with a Lagrangian written in 3-vector
notation like equation (3.35) presents a problem. As the Lagrangian does not contain
time derivatives of the scalar potential, the conjugate momentum of the scalar potential
is zero. Consequently calculating the Hamiltonian directly using equation (3.21) leads
to the wrong expression. This problem can be mitigated by working with the covariant
formalism but as discussed, this cannot be done when matter is included. Fortunately,
there is another solution which is to work in the Weyl gauge. This gauge effectively
sets the scalar potential to zero. This is achieved by choosing a gauge field f such that
its time derivative is equal the scalar potential ¢ = 9J;f. Then when making a gauge
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transformation the scalar potential is identically zero leaving only the vector potential.
After applying a Weyl gauge transformation, the nonlinear electromagnetic Lagrangian
reduces to

€ 1
€ € '
— goxfﬁ()atAzatA]atAk + Zoxf]i)latAiatAjatAkafAl.
The Hamiltonian in the Weyl gauge takes the form
oL
— A — .
H B(BtAi)at i— L, (3.55)
and after some calculation is given by the expression
H o= L85+ X ADA; + A DA — A,
_?(1J+Xij)tzt]+27yo1](1]_]z) (356)
2 3 '
_ geoxl(]?k)atAiatAjatAk + Zeoxg]i)latAiatAjatAkatAl.

The Hamiltonian can then be written in a more familiar form by expressing it in terms

of the electric and magnetic fields

_ €0 (1) 1
H = (6 +x; )EE; + 27031‘31‘

(3.57)

2 3 3
+ geoxl(fk)ElE]Ek + Eeoxz(]k)lElE]EkEl

3.3 Coupled mode equations

This section uses Lagrangian methods to derive the coupled mode equations that are
used in the subsequent chapters.

3.3.1 Gauge choice and vector potential ansatz

The main difficulty in developing coupled mode equations from a Lagrangian is de-
termining the form of the scalar and vector potentials. One approach to solve this is
to work again in the Weyl gauge so that the scalar potential ¢ is zero. Consider a 1d



model where z denotes the propagation direction, then the vector potential for a gen-
eral problem can be written as a sum over the modes by

A=Y ai,(tz)e ) 4 cc. (3.58)
n

For the linear gratings previously discussed in sections (2.2.1) and (2.2.3), the vector
potential ansatz takes the following form

A, = —éu(t,z)ei(ﬁz_“’t) - év(t,z)e‘i(ﬁ”‘“” +ee, (3.59)

where u and v are forward and backward modes respectively. The angular frequency is
denoted by w and B is the propagation constant which is dependent on the underlying
effective refractive index. The associated electric field is found by taking the negative
time derivative of the vector potential which gives

E, = [u(t,z) + éatu(t,z)}ei(ﬁz_“’” + [U(t,Z) + éatv(t,z)}e_i(ﬁ”wt) +cc.  (3.60)

Comparing this to the electric field ansatz (2.42), the modes are related by

U(t,z) = u(tz) + éatu(t,z) (3.61)

V(tz) = o(t2) + éafv(t,z). (3.62)

In section 2.2.1, the modes U and V were taken to be in a steady state and therefore
independent of time. In this case, the time derivatives of the u(t,z) and v(t, z) are zero
and there is an equivalence between the two sets of mode U(z) = u(z) and V(z) =
v(z). In the time dependent case, the time derivatives are proportional to 1/w. As
w is typically very large, the time derivative terms will be small for a slowly varying
envelope and so the two sets of modes are approximately equivalent U(t,z) ~ u(t,z)
and V(t,z) ~ v(t,z). The electric field can then be written as

Ey = u(t,z)e! P79t 4 p(t,z) 71w oo, (3.63)

so that the vector potential ansatz (3.59) and the electric field ansatz (2.42) give effec-
tively equivalent descriptions. The magnetic field can be found by taking the spatial
derivative of the vector potential, which gives
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B, = [gv(t,z) + éazu(t,z)} el(fz=wh) _ [gv(t,z) + éazv(t,z)} e Bl | e el (3.64)

By the same analysis as applied to the electric field, the magnetic field can be approxi-
mated by

1 ; 1 ;
By ~ —u(t,z)e! P« — —p(t,z)e P 4 e, (3.65)
Up Op

where v, is the phase velocity of the mode given by w/B.

3.3.2 Coupled mode equations for linear superstructure gratings

Chapter 4 is based on superstructure gratings with time dependent forward and back-
ward propagating modes. In this section the corresponding coupled mode equations
are derived using a Lagrangian approach. The Lagrangian for a linear isotropic medium
with an x-polarised vector potential propagating in the z-direction is given by

€ 1

Coupled mode equations can be developed from the Lagrangian by substituting the
vector potential ansatz (3.59) for linear forward and backward propagating modes and
the superstructure grating profile (2.87). The subsequent expression is fairly long and
complex, however, applying rotating wave and slowly varying envelope approxima-

tions the important dynamics can be extracted and the Lagrangian reduces to

i€077l2 N . . .
Liin = w (u" O — udsu™ + 09w — vd;v*)
=2
ZeOczﬁ (u*azu — uazu* + U*aZ’U . Uazv*) (367)
w

+ eofidn (v*u €A + uFp e HA%),

The explicit time and spatial dependence of the modes has been dropped for simplicity.
To find the coupled mode equations for u and v, the Lagrangian has to be varied with
respect to modes u* and v*. Similarly, the coupled mode equations for u* and v* are
found by varying the Lagrangian with respect to u and v. However, as these are simply

complex conjugates of each other the dynamics of the modes are fully determined by



one set of the coupled mode equations. First applying the Euler-Lagrange equation to
the mode u gives

oL  iegit? ieoc?B

T o + 2 0,1 + €giidn ve 2iA? (3.68)
o 2L o tas (3.69)
o))~  w ‘
oL ieoc?B
aZ(a(azu*)> =P (3.70)

where terms proportional to 1/ w have been neglected as a small. Then combining the

equations (3.68-3.70) gives the coupled mode equation

1 ; —2iAz

;atu + 0.u = ixf(z)a(z)ve . (3.71)
14

Varying the action with respect to v* and applying the same approximation yields the
second coupled mode equation

viatv — 9,0 = ikf(2)a(z)ue*®*. (3.72)
4

where in both equations the coupling is given by

onp
= —. 3.73
= on (373)
In the steady state case where d;u = 0 and d;v = 0, these equations are equivalent to
the coupled mode equations in section 2.2.3.

3.3.3 Energy and group velocity

Using the expression for the electric and magnetic fields (3.63) and (3.65) it is possible
to calculate the group velocity. It is a general result that in a lossless medium the group
velocity is equal to the energy velocity v, = vg [52]; where the energy velocity is equal
to ratio of the Poynting vector and the Hamiltonian [53]

S
—. 74
- (374)

VEi =
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For a linear non-magnetic medium this leads to

2C€"kE'Bk
Vg = i . (3.75)
(8tm + Xy )E1Em + cB; By

Using this expression, the energy velocity for a superstructure grating can be calcu-
(1)
ij

equation (2.87). Then taking the expressions for the electric and magnetic fields given

lated. First the electric susceptibility is set to x;;’ = n?(z)d;;, where n(z) is given by

by equations (3.63) and (3.65) respectively, and substituting them into the energy veloc-
ity (3.75) yields

|ul? — Jof®
tz) =Vp——1 3.76
vg(t, 2) vp‘u|2+ P (3.76)

after making slowly varying envelope and neglecting small term approximations. With
this expression the group velocity is both dependent on position and time. It is useful
to consider an effective group velocity over the the entire length of a device which can
be calculated by taking the spatially averaged Hamiltonian and Poynting vector

% = o (377)

Then the group velocity is given by

L
_ o Jodz |ufP —Jof?
=0

P ~L :
Jo dz [ul? + |of?

vg(t) (3.78)

In the case where the modes are taken to be in a steady state, equation (3.78) is equiva-
lent to the expression for the group velocity found by Janner et al [36]. However, they
arrived at the expression using the Hellman-Feynman theorem of quantum mechanics,

whereas using the energy velocity allows for the expression to be arrived at classically.

3.4 Summary

This chapter has introduced an alternative approach to developing coupled mode equa-
tions for optical devices by using the Lagrangian method rather than Maxwell’s equa-
tions. A brief overview of the techniques and methods used in the Lagrangian for-
malism have been given along with how they can be applied to coupled mode theory.
While both the Lagrangian formalism and Maxwell’s equations give physically equiv-

alent descriptions, the Lagrangian formalism provides a systematic way of generating



coupled mode equations. This was demonstrated by deriving the couple mode equa-
tions for a time-dependent superstructure grating. The methods introduced in this
chapter will be used throughout the rest of this work to develop the necessary coupled
mode equations.






49

Chapter 4
Dynamic moiré gratings

This chapter is based on the journal publication [54] and looks at the effect of dynam-
ically varying the grating strength or AC component of a grating and its applications
for optical storage. It was established in section 2.2.1 that the rejection bandwidth of
a Bragg grating is dependent on the size of the grating strength. This relationship is
given by equation (2.68). Making the grating strength larger increases the size of the
band gap and conversely making it smaller reduces the size the band gap. Therefore, by
dynamically varying the grating strength it is possible to create variable transmission
bands by increasing and decreasing the rejection bands. Bragg gratings with dynamic
grating strengths of this type have been looked in the context of Brillouin scattering
[55].

In this chapter we focus not on varying the grating strength of Bragg gratings but of
a moiré gratings. Moiré gratings were introduced in section 2.2.3 and their properties
will be discussed in more detail in this chapter. The moiré grating is created by taking
a Bragg grating and applying a spatially periodic modulation to the grating strength.
The effect this has is to open a transmission band in the centre of the rejection band.
The reflectance of the grating can then be thought of as two rejection bands separated
by a transmission band. Increasing the grating strength of a moiré grating has the same
effect as a Bragg grating except both rejection bands increase in size, which in turn

reduces the size of the transmission band.

With this in mind, a device analogous to EIT can be created for optical storage. An EIT
device works by taking a gas which in its unperturbed state is opaque. A strong laser
in then used to induce a transparency window allowing a pulse to propagate through
the gas. By switching the laser off, the transparency window closes and the pulse be-
comes trapped inside. Switching the laser back on reopens the transmission window
and the pulse can escape. It was demonstated by Hau et al. [18, 20, 21] that EIT could be

used to bring a pulse to an almost complete stand-still. A dynamic moiré grating can



create a similar storage device by effectively behaving in the opposite way to EIT. Ini-
tially the grating has a transmission with a large enough bandwidth to a accommodate
a probe pulse. Then by dynamically increasing the grating strength, the transmission
band closes, thereby trapping the pulse. By decreasing the grating strength, the trans-
mission returns to its original bandwidth allowing the pulse to be released. Such a
device has the potential to realise the longstanding goal of replicating the astonishing
results observed in EIT using a solid-state photonic crystal device [5].

Using an EIT device, when the pump laser is switched off, the transmission band is
completely closed, trapping the pulse. With the moiré grating, increasing the grating
strength cannot completely close the transmission band, only narrow it. A property of
moiré gratings is that the group velocity in the transmission band decreases with the
width of the transmission band[8, 35]. So as the grating strength is increased, the group
velocity decreases. If the group velocity is decreased sufficiently then the pulse be-
comes trapped. Of course, trapping the pulse is time limited. The pulse is still moving
through the grating albeit at a reduced group velocity, and will eventually emerge out.
If, however, the required storage time is less than time taken for the pulse to propagate
the length of the grating, then the device can be used as an effective optical storage de-
vice. Moreover, over the time scale that the pulse is trapped within the device, the pulse
can be released on demand by decreasing the grating strength. This is a long sought af-
ter goal in optical storage devices, and a problem with optical delay lines where release
times are limited to integer multiples of the time taken for the pulse to propagate the
length of the device. In the moiré grating, the release time is limited to the time taken
to switch the grating strength.

Another benefit of this device is that it is able to overcome the delay-bandwidth prod-
uct limit. Typically, any slow light device will induce a delay At due to the decreased
group velocity over the bandwidth of the slow light resonance Af. The product AtAf
is approximately constant for any given slow light device when varying the size of
the resonance. The delay-bandwidth product limits the performance of any slow de-
vice and there are a number of papers which discuss the limitation of various devices
[12, 13, 14]. The dynamic moiré grating is not bound by the delay-bandwidth prod-
uct as the product does not remain constant as the size of the transmission band is
dynamically varied. The slow light resonance bandwidth is equal to the bandwidth
of the transmission band before the grating strength is varied. However, the induced
group delay is dependent on the change in the grating strength. Increasing the grating
strength increases the group delay and therefore the delay-bandwidth product can be
made arbitrary large by squeezing the pulse spectrum; allowing the dynamic moiré
grating to break the constraint.

The idea of enhancing the delay-bandwidth product by using a time-varying struc-
ture has been looked at before [56]. All such structures work by same the principle,
dynamically varying the bandwidth of the resonance. A device with an initially larger
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bandwidth and group velocity is dynamically altered such that the device has a smaller
bandwidth and group velocity. The delay-bandwidth product is then given by the
product of the initially larger bandwidth and the increased delay due to the lower
group velocity after the time variation. This leads to an overall enhancement of the
delay-bandwidth product. This behaviour has been demonstrated theoretically using
a slow light device with coupled resonators [57, 58] replicating the results of EIT [59].
There have been more general theoretical studies of such devices [60, 61] and stud-
ies applied to specific devices such as a quasi-phase-matched waveguide using back-
ward frequency conversion [62], a p-i-n integrated photonic crystal nanocavity [63], a
waveguide with moving index fronts [64] and in a grating coupled metal-dielectric-
metal waveguide [65].

This chapter is split into four main sections. The first section explores moiré gratings
in more depth than was presented in chapter 2 and highlights the important features
for optical storage. The second section looks abstractly at dynamic moiré gratings and
presents simulations for storing optical pulses. The third section looks at another ap-
plication of dynamic moiré gratings, pulse bandwidth modulation. Optical storage
relies on symmetrically switching the grating strength to trap and release the pulse. By
asymmetrical switching the grating strength the pulse bandwidth can be stretched and
compressed. The final section looks a possible realisation of dynamic moiré gratings by
using an electro-optic grating.

4.1 Properties of moiré gratings

The moiré grating is a superstructure grating that was introduced in chapter 2. It is
created by superimposing two Bragg gratings which is what gives the grating its name.
As discussed in section 2.2.3 it has the interesting feature that it creates a slow light
transmission band between two rejection bands. The dual band gap structure offers
an additional benefit. The band edges either side of the transmission band produce
opposite normal and anomalous dispersion. This results in cancellation of second order
dispersion at the centre of the transmission band and reduces pulse broadening. This
is in contrast to the slow light band edges of a Bragg grating where dispersion causes
pulse broadening.

The superimposed Bragg gratings that make up a moiré grating can be reformulated
into a single Bragg grating multiplied by a superstructure envelope given by equa-
tion (2.87). The superstructure envelope is periodic with period Ag which is in gen-
eral called the superstructure period, but when discussing moiré grating is termed the
moiré period.



4.1.1 Relationship between moiré and v phase shifted gratings

The moiré grating is very closely related to another superstructure grating, the 7t phase
shifted grating. To see this, note that as the moiré envelope oscillates it is changing sign
which creates 7t phase shifts in the Bragg envelope. Therefore the moiré grating can be

rewritten in the form

n(z) = it + 6n(z)|cos(Ksz)| cos (KBZ + o (— cos(Ksz))), (4.1)
where the superstructure wavenumber is given by

_ 2nz

Kg = —.
S As

(4.2)
Expressed this way;, it is the modulus of the moiré envelope that multiplies the Bragg
envelope and therefore remains non-negative. This effectively applies a cosine apodi-
sation over the length of each half moiré period. The sign changes are implemented

directly into the phase of the Bragg envelope with the Heaviside 6 function which is
defined by

0 <0
0(x) = (4.3)
1 x>0.
This means that when the moiré envelope cos(Ksz) is negative, the Heaviside function
evaluates to one, and a 7t phase shift is inserted into the Bragg phase. When the moiré
envelope is positive the Heaviside function evaluates to zero and the 7t phase shift is
removed. Therefore, equation (4.1) makes the essential features of the moiré envelope
clear, it inserts 7t phase shifts into the Bragg envelope and applies a cosine apodiation

over the length of each half moiré period.

A 7 phase-shift grating is a commonly used grating where a single 7 phase shift is
added into the Bragg envelope at the centre of the grating. A well-known feature of this
grating is that it opens a small transmission band at the centre of the Bragg resonance
[66]. By setting As = L and neglecting the local apodisation term |cos(Ksz)|, the profile

for the 7t phase-shift grating can be written as

n(z) = i+ én(z) cos (KBZ + o ( — cos(Ksz))). (4.4)

By making Ag smaller multiple phase shifts can be introduced. This has the effect of

broadening the transmission band. Equation (4.4) then also defines the 7t phase-shifted
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grating which contrasts with the 77 phase-shift grating by having multiple phase shifts
instead of a single phase shift. Although equations (4.4) makes clear the insertion of 7

phase shifts, it is more convenient to express the grating in the equivalent form

n(z) = i+ 6n(z) sgn( cos(Ksz + ¢s)) cos(Kpz), (4.5)

where sgn is the sign function defined by

-1 x<0

sgn(x) = (4.6)
1 x > 0.

Equation (4.5) makes clear the connection between the moiré grating and the 7t phase

shifted grating, where the latter can be generated by the former by replacing the moiré

with a square wave of the same periodicity.

4.1.2 Analytical solutions

The steady-state coupled mode equations for the moiré grating given by equations
(3.71) and (3.72) have in general no analytical solutions and have to be solved numer-
ically. However, they do permit an analytical solution when no apodisation is applied
and when the wavelength is taken to be the Bragg wavelength. In this case the detun-

ing given by equation (2.53) is zero and therefore the oscillating terms ¢*2? and e~%4%
evaluate to one. In this case the equations have the general solutions
u(z) = cq cosh (F(z)) + icy sinh (F(z)) (4.7)
v(z) = cp cosh (F(z)) —icy sinh (F(z)), (4.8)
with arbitrary constants c; and c,. The hyperbolic phase term is given by
z /! !
F(z) = K/ dz cos(Ksz + ¢s)f(2'), (4.9)
0

where f(z) is an apodisation function and ¢ is an arbitrary initial phase. The particular
solution for a realistic grating is given by imposing the boundary conditions #(0) = A
and v(L) = 0. This ensures that the backwards mode is zero at the end of the grating
and gives the input forward mode an initial amplitude A. The boundary conditions

impose the following constraints on the constants



a=A (4.10)

¢y = icy tanh (F(z)) (4.11)
and results in the following expression for the reflectance

2

21 = tanh® (F(L)). (4.12)

C1

R =

If we compare equation (4.12) with the reflectance for a Bragg grating given by equa-
tion (2.83), a Bragg grating has F(L) = xL. As the length of a Bragg grating is increased,
so is its reflectance. For a moire grating, the oscillating moiré envelope in equation (4.9)
causes the reflectance to oscillated with the length of the grating. Figure 4.1a shows
a plot of F(L) against the moiré period. The gratings all have length of L = 10 cm, a
grating strength of 6n = 1073 and Bragg wavelength of Ag = 1550 nm. A Gaussian
apodisation of the form given by equation (2.85) has been used. The figure shows how
the oscillations in F(L) vary by the Gaussian apodisation parameter a4, where a4 = 0
corresponds to no apodisation and x4 = 16 is the strongest apodisation in the figure.
The apodisation has the effect of suppressing F(L), with a stronger apodisation caus-
ing greater suppression. The corresponding reflectance is shown in figure 4.1b. With
no apodisation applied, the grating oscillates between strong reflectance and transmis-
sion. Increasing the apodisation suppresses the high reflectance regions so that good
transmission can be achieved for all moiré periods.
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FIGURE 4.1: (a) shows the hyperbolic phase terms (4.9) for analytical solutions of the
moiré grating when varying the strength of a Gaussian apodisation and moiré period.
4.1b shows the corresponding reflectance

With no apodisation applied and ¢s = 0, the hyperbolic phase term has the solution
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F(L) = K% sin(KsL). (4.13)

The moiré periods giving maximum transmission correspond to minimising F(L) and
are given by

ANg = —, 4.14
5= (4.14)

where m is a positive integer. Conversely the moiré periods corresponding to maxi-

mum reflectance correspond to maximising F(L), which gives

oL
C2m+1

Asg (4.15)
Figure 4.2 shows the group velocity calculated using equation 3.78 for the associated
modes for the gratings given in figures 4.1a and 4.1b. As with the reflectance, when no
apodisation is applied the group velocity oscillates between maximum and minimum
values. In contrast to the reflectance, the maximum group velocity values occurs when
the moiré period minimises F(L), and the minimum group velocity occurs when the
moiré period maximises F(L). Therefore, moiré periods that give higher reflectance
also produce lower group velocity. The effect of increasing the apodisation is to again
smooth out the group velocity so that it approaches a monotonically decreasing func-

tion with respect to the moiré period.
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FIGURE 4.2: Figure showing the group velocity of a moiré grating by moiré
period for varying Gaussian apodisation strengths



4.1.3 The transmission band

The feature of the moiré grating which is of principal interest is the transmission band.
Unfortunately, just like the coupled mode equations, there is no analytical solution for
the band edges of the transmission band. In the case where the moiré period is small, so
that there are a large number of 7t phase shifts, then moiré grating is well approximated
by two distinct Bragg gratings. The band edges for a Bragg resonance were derived in
section 2.2.1. If we take one Bragg grating with a Bragg period A; and second Bragg
grating with Bragg period A, then the wavelength corresponding to the upper band
edge of the first grating is Ay(7i 4+ 6n/2), and the wavelength corresponding to the
lower band edge of the second grating is Ay (71 — dn/2). Using these wavelengths and
relationship between the Bragg periods and moiré period given by equations (2.91) and

(2.90), the transmission bandwidth is given by

c/ 1 on
Af:ﬁ(/\s_)ug>' (4.16)

From this expression the two parameters that chiefly determine the size of the trans-
mission band are the moiré period and the grating strength. If the size of either of these
quantities is increased, the size of the transmission band is reduced. Conversely, de-
creasing the size of the quantities increases the size of the transmission band. As the
group velocity within the transmission band is dependent on the size of the transmis-
sion bandwidth, lower group velocities correspond to larger values of the moiré period
and the grating strength.
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FIGURE 4.3: (a) Reflectance for a moiré grating when varying én with Ag = 1 mm and
L = 10mm and (b) Reflectance for a moiré grating when varying Ag with én = 1073
and L = 5mm.

Figure 4.3(a) shows a plot of the reflectance of a moiré grating by grating strength. As
the grating strength is increased, the band gaps broaden which reduces the size of the
available transmission band. Figure 4.3(b) shows a plot of the reflectance as the moiré
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period is increased. In this case, the band gaps maintain their size but move closer
together which decreases the transmission band. The point where the approximation
(4.16) begins to break down can be determined by considering the bandwidth for a
Bragg band gap which is given by

AfB = v,,én/)xg. (4.17)

Taking the expression for the transmission band given by equation (4.16) and setting it
equal to the Bragg band gap bandwidth given by equation (4.17) gives the moiré period

As = 2Ap /36n. (4.18)

For moiré periods less than this value, equation (4.16) gives a good approximation to
the moiré transmission band. For larger moiré period equation 4.16 starts to breakdown
and an alternative numerical approach needs to be used. One way of doing this is to

use the position-averaged energy density which is given by

o 2601712

L
dz |ul® + |v]? (4.19)
0

As the wavelength approaches the band edge of the transmission band, the group ve-
locity tends to zero which can be seen in figure 2.5a in section 2.2.3. At these wave-
lengths, there is strong coupling between the medium and modes which causes an
increase in the energy density. The transmission band edges can then be numerically
detected by finding the maxima in (U). Figure 4.4(a) shows a plot of the (U) for a
moiré grating with the vertical lines indicating the maxima. Figure 4.4(b) shows the
corresponding reflectance spectrum where the vertical lines are again maxima in (U)

and clearly show that they correspond to the band edges of the transmission band.

Figure 4.5(a) shows a comparison of the two methods of calculating the transmission
bandwidth. The blue line shows the transmission band calculated from equation (4.16)
using Bragg theory and the dotted red line shows the transmission band calculated by
numerically detecting the band edges using U. The vertical line corresponds to the
moiré period given by equation (4.18), where the Bragg theory approach to calculat-
ing the transmission band starts to fail. From the figure the two approaches agree well
before this moiré period and start to diverge afterwards. Figure 4.5(b) shows the cor-
responding group velocity. For moiré periods after the vertical line, the group velocity
begins to decrease more rapidly and the transmission band becomes a slow light reso-

nance.



1.0

0.84

0.6

Reflectance

0.4+

(U) (arb. units)

0.24

0.0~ - - - - 0.0~ - - -
1.54990 1.54995 1.55000 1.55005 1.55010 1.54990 1.54995 1.55000 1.55005 1.55010
Wavelength (um) Wavelength (um)

(@) (b)

FIGURE 4.4: (a) the position-averaged energy density and (b) the transmission band of
a moiré grating. The maxima of the the position-averaged energy density is indicated
with vertical lines which correspond to the band edges of the transmission band.
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FIGURE 4.5: (a) Moiré transmission bandwidth calculated from Bragg theory and

a numerical calculation, and (b) group velocity of a moireé grating versus moireé

period Ag. The grating has a Gaussian apodization with parameters L = 20 cm,

Ap = 1.55um, i = 1.445, on = 1073, The vertical green line indicates the moireé

period beyond which the approximation of the moireé grating by two Bragg gratings
begins to break down.

4.2 Dynamic moiré gratings and optical storage

421 Coupled mode equations with dynamic coupling

In this section we look at dynamically varying the grating strength of a moiré grating
and the effect that this has on a pulse propagating through the grating. Increasing the
grating strength decreases the size of the transmission band which was demonstrated
in figure 4.3(a). As the group velocity within the transmission band is dependent on
the size of the transmission band, increasing the grating strength decreases the group
velocity. If the bandwidth of the pulse falls spectrally within the transmission band,



59

then it is natural to suppose that as the grating strength is increased, the pulse will
slow due to the reduction in the group velocity. And if the grating strength is increased
sufficiently, then it should be possible to bring the pulse to a practical stand still.

To model the behaviour, the grating strength needs to become time dependent dn(t).
This is analogous to a spatial apodisation. A spatial apodisation varies the grating
strength in space, the purpose of which is suppress the grating sidelobing. Throughout
this work an arbitrary grating function has been denoted by f(z). To avoid confusion
the temporal variation of the grating strength shall be denoted by the function g(t) and
referred to as the windowing function. Just as with the apodisation it varies between
zero and one. The set of coupled mode equations which describe the behaviour were
derived in section 3.3.2 and given by equations (3.71) and (3.72). In this case the grating
strength was constant in time. Fortunately, including the time dependence is fairly
straight forward. It is a simple case of replacing the grating strength with its time

dependent version so that the coupled mode equations become

1ou ou 2iAgz
3, TR ix(t,z)ve (4.20)
1 dv dv . 2iApz
— = 4.21
5,0t oz ix(t,z)ue (4.21)
and then the coupling constant is given by
K(tz) = SMb2)a2)B (4.22)

2

As the coupling constant is proportional to the grating strength, talking of a time vary-
ing grating strength is equivalent to talking of a time varying coupling strength and
both will be referred to either depending on the context.

The justification for equations (4.20) and (4.21) can be seen by looking by looking at
the Lagrangian given by equation (3.67) and taking only the terms which contain the
grating strength which are

2iAz + uto e—ZiAZ) . (423)

Lsy = eofidn(v*ue
The terms proportional to the grating strength do not contain time derivatives of the
u and v modes. This means that when the Euler-Lagrange equation (3.18) is applied
to give the equations of motion for the modes, there will be no time derivatives of the
grating strength. Therefore, the coupling strength is simply proportional to the time-
dependent grating strength and not its derivatives.



4.2.2 Grating strength and temporal windowing

Some choice needs to be made about how to define the time dependent grating strength.
Ideally it should generalise an apodised grating such that in a limiting case it is equiv-

alent to a time independent grating. An appropriate choice is then

on(t,z) = onf(z)(1+ ug(t)) (4.24)

The parameter for the windowing strength u has been introduced to set the magnitude
of the variation of the grating strength. It is constrained such that # > 0. The limit-
ing case comes when p = 0, then the grating strength reduces to a time independent
grating. As the windowing function varies between zero and one, the grating will have
double its originally value when y = 1, triple its value at # = 2 and so on.

We are principally interested in the change in group velocity as ultimately the purpose
of the device is storing an optical pulse. To this end, figure 4.6a and 4.6b show the
group velocity change by varying the strength u for a given moiré period Ag for a
moiré grating and a 7t phase shifted grating respectively.
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FIGURE 4.6: Group velocity of (a) a moiré grating and (b) a 7t phase-shifted grating
versus Ag and p. The grating has a raised cosine apodization with 70% flat top with
parameters L = 20cm, Ag = 1.55um, 7 = 1.445, on = 1073.

The figures are generated by solving the steady state version of equations (4.20) and
(4.20) at the Bragg wavelength which is taken to be 1550 nm. The gratings are 20 cm
long and have an initial grating strength of 6n = 10~3. The windowing function is set
to one and the windowing strength y is increased from zero to two, which as discussed
corresponds to tripling the initial grating strength. The effect this has on the group
velocity is stark. For a small moiré period where the transmission band is large, the in-
crease in y has little influence. As the length of the moiré period is increased, meaning
a smaller initial transmission band, the squeezing of the transmission band by increas-
ing p has a greater effect on the group velocity reduction. For a moiré grating in figure
4.6(a) with period 4 mm, the decrease in group velocity is roughly two orders magni-

tude. For a 7t phase shifted grating with the same period, the group velocity reduction
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is even greater, roughly three orders of magnitude as can be seen in figure 4.6(b). This
can be contributed to the overall higher average grating strength of a 7r phase shifted
grating that comes from neglecting the local sine apodisation of the moiré grating.

It was discussed in the introduction to this chapter that dynamically changing the size
of the transmission band alters the delay-bandwidth product AfAt, which is a general
figure of merit for slow light device. The delay time for the dynamic grating in its
initial state is given At = L/v, and its delay time with the full windowing strength
applied is At = L/ U/g where v, is the initial group velocity and vlg is altered group
velocity. In both cases the acceptance bandwidth is Af. Therefore, the enhancement in
the delay-bandwidth product is given At/ At, which is equal to vg/ vlg.

Figures 4.6(a) and 4.6(b) show that the group velocity can be decreased by many orders
of magnitude, which correspondingly means the delay-bandwidth product can be en-
hanced by many orders of magnitude. Ultimately the change in the group velocity is
dependent on the change in the grating strength with is proportional to udén. Therefore,
maximising the delay-bandwidth product corresponds to maximising pdn.

4.2.3 Coupled mode pulse simulation

To perform a simulation of a pulse propagating through a moiré grating with a time
dependent grating strength, we first take the expression for the grating strength given
by (4.24) and substitute it into the coupled mode equations (4.20) and (4.21). Figures
4.7(a) and 4.7(b) show the corresponding simulations for a pulse with a bandwidth of
320MHz at FWHM.
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FIGURE 4.7: Intensity distribution in space and time of a pulse propagating through

(a) a static moiré grating and (b) a dynamic moiré grating with y = 2. The grating has

a raised cosine apodization with 65% flat top with parameters L = 1m, Ag = 4mm,

Ap = 1.55um, i = 1.445, én = 1073, The pulse has FWHM spectral bandwidth of
320MHz with carrier wavelength Ap.



In both simulations the grating is 1 meter long with a raised cosine apodisation which
has a 70% flat top. The horizontal lines show the start and end of the grating and in-
dicate the flat top region where the apodisation has a constant value of 1. Figure 4.7(a)
shows the pulse entering and propagating through the grating without varying the
grating strength so that 4 = 0 for the duration of the simulation. Figure 4.7(b) shows
the same simulation but with grating strength modulated in time. The windowing
function at time t = 14 ns is smoothly increases over a period of 5 ns from 0 to 1 with
a windowing strength of 1 = 2. The effect is to reduce the group velocity by a further
two orders of magnitude. At time t = 24 ns, the windowing smoothly decreases over a
period of 5 ns from 1 to 0, restoring the pulse to its original group velocity. The vertical
lines in the figure show where the windowing function increases and decreases, and
where it is held constant at a maximum value of 1. Comparing the two figures, it is
clear that when the change in grating strength is applied, the pulse is slowed apprecia-
ble compared to when grating strength is static. This demonstrates that dynamically
varying the coupling strength with a pulse localised within the grating can dramati-

cally decrease the group velocity of the pulse.
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FIGURE 4.8: Plot showing the pulse group velocity in a dynamic grating as

the windowing strength is y is increased from zero to one. The horizontal

lines show the corresponding steady state calculations for the group velocity
when yu equals zero and one

In the previous section the change in group velocity was calculated using steady-state
gratings. Figure 4.8 shows the change in group velocity calculated using equations
(3.78) for the pulse simulated in figure 4.7(b). The horizontal lines shows the steady-
state group velocity calculations for the grating when y = 0 and y = 2. As can be seen
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in the figure, the group velocity of the pulse smoothly varies between the steady-state
values. Therefore, the steady-state calculations do provide a good approximation for
the full dynamical system. The steady-state analysis from the previous section showed
that the enhancement in the delay-bandwidth product is determined by the change in
the group velocity v,/ U:g. The simulated group velocity change in figure 4.7(b) is two
orders of magnitude. As figure 4.8 demonstrates the steady-state analysis is valid, it
follows that the delay-bandwidth product in figure 4.7(b) has been enhanced by two
orders of magnitude.

4.2.4 Coupled mode pulse simulation importance of apodisation

In this section we look at the effect of the apodisation profile. In the previous section,
the simulations were carried out with a raised cosine apodisation profile. The reason
for this is that the raised cosine has a flat top region where the apodisation is held con-
stant. This means that when the grating strength is modulated in time, the entire pulse
experiences the same change in grating strength and therefore change in group veloc-
ity. If we consider figures 4.6a and 4.6b, the change in the group velocity is dependent
not only on the change of the grating strength but also its initial value. For a raised
cosine apodisation profile, the group velocity change will be uniform along its flat top
region as the initial grating strength is constant. In contrast to this, the grating strength
with a Gaussian apodisation is constantly varying along the length of the grating. Con-
sequently, the group velocity is also varying along the length of the grating. Therefore,
in such a grating, when the grating strength is dynamically varied, the change in group
velocity varies along the length of the pulse. Figure 4.9 demonstrates this behaviour.
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FIGURE 4.9: Figure showing the same simulation as figure 4.7(b) but with a
Gaussian apodisation profile.

The figure shows the same simulation as figure 4.7(b) but with a Gaussian apodisation.
In this case the varying grating strength and group velocity causes pulse dispersion.
This can be seen in the figure as the pulse that exits the grating is been distorted by
the modulation of the grating strength. Therefore, in order for the pulse to return to its
original state after the time variation is applied, a flat top apodisation profile is required
so that the group velocity change is uniform along the length of the pulse.

4.2.5 Model verification with finite difference simulations

One consequence of the approximations that went into developing the coupled mode
equations for a time dependent coupling strength, is that the dynamics are captured
by the grating strength alone and that its derivatives make a negligible contribution.
This approximation is now verified by solving Maxwell’s curl equations directly using

a finite difference method. The starting point is to express the equations as follows

o _
ot

ER VN (4.25)
Ho

oD

o X H (4.26)

<
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D

E=—7— 4.27
eon(t,z)? 4.27)

The order in which Maxwell’s equations appear above, are the order in which the finite
difference update equations will be calculated. First, the H field is updated from the E,
then the D is updated from the E and then finally the E is updated from the D field.
This way, the refractive index only enters into final stage of field update which avoids

having to take account explicitly of any derivative terms.

Greater numerical efficiency is achieved by normalising the auxiliary fields as follows

A=,/mq (4.28)
€0

D = ¢,D, (4.29)

which transforms the field equations into the more convenient form

oH

- = —¢VxE (4.30)
oD -  ~

- =cVxH (4.31)
E-_D (4.32)

For the simulation we are interesting in linearly polarised light, and therefore choose
y-polarisation which reduces the field equations to a form that can be readily written

in terms of finite differences

D. H
ﬁy
E, = . (4.35)



The finite difference equations are then generated using the procedure devised by Yee
[67]. In this scheme, the electric and magnetic fields are staggered on a Yee grid which
ensures that fields are divergence free and automatically satisfy boundary conditions.
Applying Yee’s approach, the finite difference update equations corresponding to field
equations (4.33-4.35) are

~ g4z ~ 2482 At
AILG = AT + 5 (B - EF) (4.36)
~ ~ cAt [~ 7y b2 — 4z
Dliyar =Dl + 1 (Hm —Hl; s ) (437)
5 z
Eff= |- (4.38)
t

Performing a finite difference simulation is much more computational intensive than
using coupled mode equations. Therefore, to perform the simulation the grating length
is reduced to 4 mm with a raised cosine apodisation with a 65% flat top. The Bragg
wavelength is given by Ap = 1550 ym with a moiré period of As = 24 ym and a
grating strength of 6n = 10~!. While a grating strength this large is not practically real-
isable, it becomes computationally infeasible to preform a finite difference simulation
with a smaller grating strength. Therefore, for the purpose of validating the behaviour
observed using the coupled mode equations (4.20) and (4.21), it is appropriate to use
the larger grating strength.
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FIGURE 4.10: Finite difference simulation of (a) a pulse prograting through a static
moiré grating and (b) a pulse propagating through a dynamic moiré grating

Figure 4.10(a) shows simulations of equations (4.36-4.38) for a Gaussian pulse with a
bandwidth of 390 GHz at FWHM. In this simulation the grating is static with no time
variation. The pulse enters the grating, experiences a reduction in group velocity and
then exits the grating. Figure 4.10(b) shows the same simulation setup but with a time

varying grating strength. Once again, the pulse enters the grating and undergoes a
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reduction in its group velocity. Then at time t = 18 ps, p is increased to a value of 4
over a period of 5 ps. y is then held at this value for 10 ps before being decreased back
to zero over a period of 5 ps.

Figure 4.10b shows that simulating the time-dependent grating strength with finite dif-
ferences exhibits the same behaviour as the model using coupled mode theory. This
justifies the approximations that went into developing the coupled mode equations.
Moreover the finite difference simulation was performed with a grating strength two
orders of magnitude greater than was demonstrated with coupled mode theory. There-
fore, the behaviour is not limited to only small initial grating strengths.

4.3 Bandwidth modulation

4.3.1 Group velocity induced bandwidth modulation

In the previous section the, the grating strength was varied symmetrically to store and
release a pulse. When the pulse was fully localised within the device, the grating
strength was increased, and with the pulse fully localised within grating, the grating
strength was returned to its original value. In this section we look at varying the grating
strength asymmetrically. There are of course two ways to do this. Start with a smaller
grating strength and increase it, or start with larger grating strength and decrease it. In
either case the asymmetric switching means the grating strength is not returned back to
its original value. By using asymmetric switching it is possible to stretch or compress
the bandwidth of a pulse as will be discussed in the following.

To understand this behaviour, it is first instructive to consider what happens to a pulse
propagating through a static moiré grating. If the pulse has a spectral bandwidth that
sits within the transmission band, then as the pulse enters the grating, its leading edge
will experience a slower group velocity than the part of the pulse outside the grating.
Therefore, the pulse outside the grating will travel faster than the part of the pulse
inside the grating. This causes the pulse to compress. This can be made more explicit
by considering a pulse with a FWHM spatial length of Az. Then if the group velocity
inside the grating is v, and the group velocity outside is v, then Az will be compressed
by a factor of vg/vg. The situation is reversed when the pulse exits the grating. The
leading edge exits the grating, travelling faster than the rest of the pulse still inside
the grating. As a consequence, the pulse is stretched by a factor vg/v,. The effect of
applying the compression factor and the subsequently the stretching factor means that
the net effect is to leave the spatial length Az unchanged. As the grating considered is
static, the pulse compression and stretching is due to grating dispersion and as such
the pulse bandwidth is unaltered. This, however, is not the case in a dynamic grating.



Consider now a pulse that is fully localised within a moiré grating. If the grating
strength is changed uniformly along the length of the pulse so that its group veloc-
ity is altered from v, to 7, the spatial length of the pulse Az will not change. This
is because, unlike in the previous case considered, the change in group velocity is ex-
perienced uniformly along the pulse length, and so there is no spatial compression or
stretching as different parts of the pulse experience different group velocities. Now if
the variation of the grating strength is asymmetric, so that the grating strength is not
returned to its original value, then when the pulse exits the grating, the stretching fac-
tor will not be vy /v,, but vg/ 7, as the group velocity has been altered by the change
in the grating strength. This means that the compression and stretching of the pulse as
it enters and exits the grating does not cancel like it did in the case of a static grating.

Instead, the spatial length of the pulse is altered by a factor of vy /7, giving

0
Az = 2Nz (4.39)

Og
where Az is the modified pulse length. As the spatial length of the pulse exiting the
grating is different from that which entered it, varying the grating strength must change
the bandwidth of the pulse. For a pulse with a FWHM bandwidth of Af, its bandwidth
is related to its spatial length Az through a Fourier a transform by Af = 4cIn(2)/(mAz).
Then by using equation (4.39), the modified bandwidth is related to the original pulse
bandwidth by

Af = ZEA f (4.40)

where Af is the modified bandwidth of the pulse exiting the grating. Notice that the
04/ v scaling for the bandwidth is the factor by which the delay-bandwidth product
was enhanced. Therefore, the delay-bandwidth product transforms by AtAf — AtAf.

From equation (4.40), if the group velocity is increased by asymmetrically increasing
the grating strength, then the pulse bandwidth will decrease. Conversely, if the group
velocity is decreased, the result is to stretch the bandwidth. A point to note is that the
product of the pulse length and bandwidth remains constant

AZAf = AzAf. (4.41)

4.3.2 Simulation of compression and streching

This behaviour can be demonstrated by performing simulations similar to those done

in section 4.2.3. However, in this case the windowing function is chosen so that it either



69

only switches on or off the variation in the grating strength, but not both.

First, consider the case of increasing the grating strength when a pulse is localised in-
side a moiré grating and remains at the increased value. Figure 4.11(a) shows a simula-
tion of a pulse with an initial bandwidth of Az = 700 Mhz and spatial length of Az = 38
cm. The grating has a length of 1m, an initial grating strength of én = 103 and moiré
period of As = 4 mm. The grating has a raised cosine apodisation profile, with the flat
top portion of the grating comprising 70% of the total grating length. The grating has
a Bragg wavelength of Ap = 1550 nm which is also the carrier wavelength of the pulse
which ensures that the pulse bandwidth is centred on the grating transmission band.
In the simulation the pulse propagates into the moiré grating and at time ¢t = 12 ns
the windowing function activates. The activation time for the windowing to go from
0 to 1 is 5 ns and the windowing strength has a value y = 0.33. As can be seen in the
figure, the increase in the grating strength causes the pulse to slow. Without the grat-
ing strength reduced back to its original value, the reduced group velocity causes the
spatial length of the pulse to stretch by a factor of 2 as it exits the grating.
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FIGURE 4.11: Intensity profile of a pulse propagating through (a) a dynamic spectrum-

compressing moiré grating and (b) a dynamic spectrum-broadening moiré grating. (c)

Comparison of the input and output pulse spectra from (a) and (b). Parameters as in
Fig. 4.7. The time variation magnitude has value p = 0.33 in both (a) and (b).

Figure 4.11(b) shows a simulation of the opposite behaviour. The set up of the simu-
lation is exactly the same as that in figure 4.11(a), but the time windowing is initially
set to one and is switched off once the pulse is within the grating. This has the effect
of reducing the overall grating strength from its initial value. The simulation starts the
same as the previous simulation, and as the pulse enters the grating the initial group
velocity is lower compared with figure 4.11(a) which due to the increased initial grat-
ing strength. Then at time t = 12 ns the windowing is turned off over a period of 5 ns.
The pulse then begins to speed up as the grating strength is reduced. When the pulse
emerges out of the grating, the increased group velocity causes the spatial length of the
pulse to compress by a factor 2.

In both simulations the scaling factor for the spatial length is 2. By equation (4.41), the
product of the spatial length and pulse bandwidth must remain constant before and



after the grating. Therefore, in figure 4.11(a) where the spatial length is stretched by
a factor of 2, it must be the case that the bandwidth is compressed by the same factor.
Similarly, in figure 4.11(b) where the spatial length is compressed by a factor of 2, the
bandwidth must also be stretched by a factor of 2. To verify that the analysis leading
to equation (4.41) is correct, a Fourier transforms can be taken of the simulations in
tigures 4.11(a) and 4.11(b). Then the pulse spectrum can be compared before and after
the grating which is shown in figure 4.12.
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FIGURE 4.12: Comparison of the input and output pulse spectra from fig-
ures 4.11(a) and 4.11(b)

The blue line in figure 4.12 shows the initial pulse spectrum in both figures 4.11(a) and
4.11(b) before the pulse enters the gratings. The dotted green and orange dotted lines
show the pulse spectrum after exiting the gratings in figures 4.11(a) and 4.11(b) respec-
tively. It is clear form figure 4.12 that the stretching and compression of the bandwidth

also scales with a factor of 2 as expected.

Figure 4.13 shows how the spectrum compression factor varies with respect to Ag and
u. Comparing figure 4.13 to figures 4.13 and 4.6a, extreme spectrum compression corre-
sponds to ultra-slow group velocities. This is not surprising as the compression factor is
dependent on the change in the group velocity. In the case of increasing y which leads
to lower group velocities, the overall change in the group velocity is larger and so, too,
is the compression factor. The spectrum stretching factor can be read from figure 4.13

by taking the reciprocal of the compression factor.

By dynamically increasing the grating strength by factors of two or three, it is possible
to stretch or compress the pulse by several orders of magnitude. One benefit of this

method which can be seen from figure 4.12, is that the spectrum maintains a Gaussian
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FIGURE 4.13: Bandwidth compression factor depending on Ag and y in a dynamic
moiré grating with parameters L = 20cm, Ap = 1.55um, 71 = 1.445, n = 1073,

shape. This is due to the refractive index changing uniformly across the pulse, some-
thing that does not hold true in other spectral broadening methods such as self-phase

modulation in a Kerr medium [68].

4.4 Device realisation in an electro-optic x(? medium

The analysis so far has been kept general so that the underlying features of dynamic
moiré gratings can be explored. The task of realising a dynamic grating is not easy.
A number of approaches have been looked at previously including using Brillouin
scattering [55], an eribium-doped fibre [69] and excited free carriers [70]. This sec-
tion proposes a new approach using electro-optic gratings based on a x® nonlinear
medium. A common phase-matching method for second order x(?) processes is to use
quasi-phase matching which involves periodically modulating the sign of the x(?) and
was discussed in section 2.3.1. Although this produces a grating in the second order
material susceptibility, applying an external quasi-static electric field induces a linear
grating [71]. To see why this is the case, first consider a standard poling profile for
quasi-phase matching given by (2.98). Typically, the poling profile is a square wave so
that the change in sign of x(? is discrete. The standard poling profile has only a single
grating term and so an additional grating term needs to be added to produce a moiré

style grating which can be done as follows

x?(z) = xPsgn[sin(Ksz)]sgn[sin(Kpz)]. (4.42)

There are now two grating envelop terms sin(Ksz) and sin(Kpz) which are fulfilling
the roles of the moiré and Bragg terms respectively. Written in the form given by (4.42),



the square wave applied to each of the envelop terms means that the profile actually
describes a 7t phase shifted grating. Comparing equations (2.98) and (4.42), the Bragg
envelope is now determined by the poling period so that Ky = 27/A. If the moiré
period Ag is taken to be integer multiples of the poling period, then after every moiré
period there will be a single double-length poling period which has the effect of in-
serting a 7t phase shift into the phase of the Bragg envelope. An illustration of this is
shown in figure 4.14. Superstructure poling profiles have been previously studied for
multi-wavelength conversion in quasi-phase matched nonlinear crystals [72, 73].

+1 +1  +1 | 0 +1

As A

FIGURE 4.14: An example x(2) moireé grating with a moireé period that is three times
the length of the poling period. The effect of the moireé period is to create a single
double-length poling period after each moireé period.

The square wave of the Bragg term sgn|sin(Kpz)| in equation (4.42) can be expressed

as Fourier series by

() ® gj —
" sgn [ sin(Ksz)] Z e (KZSZTl 1)2). (4.43)
m=1

@) () —
X' (z) -

In developing coupled mode equations, making a SVEA means that only oscillations
which are slowly varying with respect to the Bragg wavelength survive. Therefore,
the only mode in equation (4.43) that contributes is m = 1; all other oscillation can be

neglected and so the poling profile reduces to

4_)((2)

xP(z) = - sgn| sin(Ksz)] sin (Kpz). (4.44)

To developed the couple modes equations, the quasi-static electric field has to be added
to the overall electric field can can be done with the following expression

E(t,Z) = ED(t, Z) — BtAt,Z. (445)
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where A;, is the vector potential ansatz given by equation (3.59). From the general
nonlinear Lagrangian given by equation (3.35), the terms for second order processes
are given by

€0 (2
L= gxfjk) EiE;Ex. (4.46)
By substituting the poling profile (4.44) and the expression for the electric field (4.45)
into the second order Lagrangian term (3.35), the Lagrangian term reduces to

iv(2)
Lotin = deoix 77{ED(t'Z)sgn[sin(Ksz)] (v*ue

2iAz

+ uty e %) (4.47)

after making the usual approximations. Combining this with the linear terms gives the
full Lagrangian for the system

-}
r - ot (w0 — udpu™ + v*9yv — v9;v*)
+ e (u0;u — uou* + v*9.v — v9,v") (4.48)
4epix P Ep (¢, . .
+ €01 X D( Z) sgn[sin(ng)] (v*u P20z + u*vef2zAz).

7T

The equations of motion are derived in the usual way by varying the Lagrangian with
respect to the forward and backward modes u* and v* giving

viatu +3,u = —xPsgn [ sin(Ksz)] ve 2%, (4.49)
p

vlatv — 9,0 = —k@sgn|sin(Ksz)] ue¥. (4.50)
p

Comparing with equations (3.71) and (3.72), this set of equations provide coupling
between the forward and backward modes through the nonlinear coupling term x(?)
which is given by

2,3)((2)15,3 (f, Z)
) _ZPA =P\ )
K\ (t,2) — . (4.51)

They have a superstructure envelope given by a(z) = sgn|sin(Ksz)], which as previ-
ously stated gives a 7t phase shifted grating. By comparing the couplings (4.51) and
(4.22), the induced grating strength by the applied quasi-static field is



4X(2)ED(t/ Z)

62 (t,z) = —

(4.52)
This equation demonstrates the intended goal. As the change in the grating strength
is determined by the applied quasi-static field, and the applied quasi-static field can
be varied in time, then so too can the grating strength. A grating can be created by
switching the field on and removed by switching it off. Varying the strength of the
applied field will serve to broaden and narrow the transmission band; which in turn
allows for the dynamic control of the group velocity. The key resource of interest is
the change in the grating strength. If an electro-optic grating was used exclusively,
some of that resource would need to be used to generate the initial grating. Therefore
it would be beneficial to combine an electro-optic grating with a linear grating so that
the coupling becomes

k(t,z) = xsin(Ksz) + x?(t,z)sgn [ sin(Ksz)]. (4.53)

Then the linear grating provides the initial grating and the applied quasi static field
can be used entirely to vary group velocity through the electro-optic grating. The two
gratings need to have the same underlying Bragg and moireé periods. The combined

maximum coupling strength is then given by x + x(2).

A natural choice of medium for a realisable device would be a thin film lithium niobate
waveguide [74]. Firstly, lithium niobate thin films can have submicron thicknesses.
This means that the electric field density within the waveguide can be large without
needing to apply a large electric field. This makes the coercive field strength the lim-
iting factor for the maximum field that can be applied; above which the poling is de-
stroyed. The approximate reported coercive field strength for a lithium niobate thin
film is 21 V/um [75]. Another limiting factor affecting fabrication is the poling period.
The current technological limits allow poling periods down to approximately 750 nm
[76, 77] in lithium niobate thin films. This would correspond to a Bragg wavelength
of around 3 ym which sits within the transparency window for lithium niobate. The
induced grating strength with an applied quasi-static field of half the coercive strength
and at a Bragg wavelength of 3 um, would be on the order of 10~* which is an order of

magnitude small than in the analysis carried out in this chapter.

4.5 Summary

This chapter has explored using dynamic moiré gratings to create an optical storage
device. The general properties of moiré gratings and their close connection to 7t phase-

shifted grating were discussed. While there are no analytical solutions for the moiré
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grating, it was shown how general solutions could be constructed at the Bragg wave-
length and the important role apodisation plays. Next the properties of the slow light
transmission band and its dependence of the grating strength and moiré period were
discussed. To model pulse propagation through a dynamic moiré grating, coupled
mode equations with a time dependent grating strength were introduced. It was then
demonstrated through simulations of the coupled mode equations, that increasing the
grating strength in time while a pulse was propagating though the grating could result
in a significant reduction in the group velocity of the pulse. By subsequently decreas-
ing the grating strength the pulse could be returned to its original state. Therefore by
dynamically controlling the grating strength a pulse could be stored and released on de-
mand. To verify the assumptions that went into deriving the couple mode equations a
finite difference model applied directly to Maxwell’s equations was introduced. It was
then demonstrated that simulations using the finite difference model exhibit the same
behaviour as the simulations using coupled mode theory, validating the coupled mode
model. Next it was shown that asymmetrically varying the grating strength could be
used to modulated the frequency spectrum of a pulse causing pulse compression or
stretching. Finally a method of realising a dynamic moiré grating was suggested by us-
ing an electro-optic grating. By applying a strong quasi-static electric field, an electro-
optic grating induces a linear coupling. Varying the strength of the applied electric field
results in varying the grating strength, thus producing a dynamic moiré grating.
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Chapter 5
Grating Delay Lines

Optical silica fibres have very low losses of around 0.14 dB/km at 1550nm [78, 79]
which has been the culmination of many decades of research and development. There-
fore, they represent an ideal candidate for optical storage and quantum memory de-
vices. By creating a loop of fibre, a pulse can circulate around the loop until it needs
to be retrieved. The length of the loop places a limitation on the retrieval times of the
pulse to integer multiples of the time taken for the pulse to travel the length of the loop.

This chapter looks at investigations into creating a fibre delay line by using dynamic
gratings that create adjustable rejection bands using the nonlinear optical Kerr effect.
The theoretical analysis will where possible be kept general so that it is applicable to
other methods of varying the refractive index, but specific examples will be given using
the optical Kerr effect.

The proposed device looks to create analogous behaviour to a fibre delay line by writ-
ing two gratings at each end of a length of fibre. A probe pulse inside the fibre that is
resonant with the gratings will then be trapped between them. The difficulty is then
getting the probe pulse in and out of device. This can be done by dynamically control-
ling the Bragg wavelength by inducing a small change in the refractive index 7. If the
Bragg resonance is shifted sufficiently such that a signal pulse originally resonant with
the grating can propagate through it, then varying the refractive index can allow the

pulse to enter and exit the device.

Using the optical Kerr effect to induce the refractive index change has the potential
of producing switching times on the order of picoseconds. However, due to the very
small strength of x(®) in silica, the corresponding change in the refractive index is also
very small, on the order of An ~ 10~° — 10~ which is constrained by optical damage
threshold of silica [80]. Typically when using the optical Kerr effect, x(%) is characterised
in terms of the nonlinear refractive n,. Throughout this chapter, the nonlinear refractive
is taken to be 1o = 2.74 x 10716 cm?/W [81] at a carrier wavelength of 1053 nm.



There are two choices for how to construct the device. The first is to make the gratings
with a grating strength roughly the same size as the change that can be induced by
the optical Kerr effect. Then the entirety of the grating band gaps can be dynamically
shifted allowing a pulse to pass through. Gratings with such a weak grating strength
will have to be of a considerable length in order to have high enough reflectance to
effectively trap a pulse. There have been recent developments in constructing very
long silica fibre gratings with lengths up to 1m [82]. Long gratings present additional
switching difficulties using the optical-Kerr effect as the required pump pulse needs to
be spatially large enough to shift the Bragg resonance along the length of the grating.

The second option is to use shorter gratings with a larger grating strength. In this case
the refractive index change only shifts the band gap partially and therefore the resulting
passband is very close to the edge of the band gap. As shown in section 2.2.1.2, the band
gap generated by strong grating strengths generates significant amounts of second or-
der dispersion which causes pulse broadening. One way to mitigate this problem is to

use a dispersion cancelling moiré grating [35] which was discussed in section 2.2.3.

In either case, the size of the band gap shift is dependent on the change in the refractive
index. Therefore, using the optical Kerr effect places a substantial limitation on the
available bandwidth. The price paid for faster switching times is reduced bandwidth.
This makes such a device, if it could be realised, of little practical use for telecoms
applications where pulses typically have gigahertz bandwidths. It could potentially be

used with narrow bandwidth single photons.

5.1 Coupled mode equations forlinear gratings in a x(*) medium

This section develops the coupled mode equations for a device with two linear gratings
in a x(®) medium using the variational methods developed in chapter 3.1. The grating

profile for the device is given by equation 2.84, where the apodisation function used is

given by
0 z < z1
2
exp(—tx (W)) 21 <z< 2
f(z) =40 zp <z < z3 (5.1)
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The length of the gratings is denoted by L, and the starting point of the first grating is
denoted by z;. The end point of the first grating is then given by z, = z1 + L,. Similarly
the starting location of the second grating is denoted by z3 and the end by z4 = z3 + L.
In this way, the positions and extents of the two gratings can be handled entirely within
the apodisation function.

A signal pulse resonant with the linear gratings will be coupled into forward and back-
ward modes u(t,z) and v(t,z) respectively. An appropriate ansatz for the vector po-
tential is then given by

As = ——u(t, z)eBrz—at) — Lgy(p z)eilBrzrant) 4 oo (5.2)
w1 w1
A high intensity pump field that is used to alter the Bragg condition of the linear grat-
ings is chosen such that it is spectrally distinct from the grating resonances and is there-
fore composed of a forward mode p(t,z) only. An appropriate vector potential ansatz
is then

A, = (t,z)ei(ﬁzz’“’zt) +c.c. (5.3)

i
Wy P
The total vector potential ansatz is given by the sum of the signal and pump vector
potentials,

A=A+ A, (5.4)

The frequency and propagation constant of the signal modes are given by w; and 4
respectively and for the pump mode they are denoted by w> and B, respectively. The
carrier wavelength of the signal is chosen as A1 = 1550nm to coincide with low loss
in silica. The pump wavelength is set to A, = 1053 nm which is far removed from the
grating resonance linewidths and as previously discussed has a non linear refractive of
1y = 2.74 x 10716 cm?.

The coupled mode equations can be derived by substituting the grating profile (2.84)
and the vector potential (5.4) into the following Lagrangian

_ € 2 21
L= n (atA) 2],{0

: (8:4) + Tx (214)", (5.5)

and then making rotating wave, slowly vary envelope and neglecting small term ap-
proximations. The Lagrangian (5.5) follows from equation (3.54) by taking an x-polarised

vector potential, neglecting the x? non linearity and taking x(®) = ch)xx- The linear



part of the Lagrangian, £;;,, for the forward and backward signal modes is the same as
in equation (3.67). The linear part of the Lagrangian for the pump field is given by

iegn? , . iegc? . N
Lplin = 072 (p*orp — porp™) + 0 Zﬁ (p*ozp — po=p*). (5.6)

The signal modes are taken to be at low intensity so that the resulting cross phase
and self phase modulations terms are negligible. Then, the only terms relevant in the

nonlinear Lagrangian are

Lpniin = x (p"p) (69" p + 241" u 4 240°0). (5.7)

The total Lagrangian is then the sum of the Lagrangian terms

L= L+ ‘Cplin + ﬁpnlin- (5.8)

The coupled mode equations are then derived by varying the Lagrangian with respect

to the modes u*, v* and p*, which gives

| 811 (3)
iE)tu + 9,u = ixve 2% 4 31’336 (p*p)u, (5.9)
Up m
. 1By (3)
L o0 — o0 = ixueitz 1+ P X (pp)o, (5.10)
Ur; 7’11
Lop+ap— 3iﬁ2x(3)( “p) (5.11)
vp tp P = 27_1% pp)p. :

5.2 Steady state requirements for shifting the band gap

5.2.1 Steady state refractive index change

The Kerr effect as described in section 2.3.2, is a X(3) nonlinear process which induces
a change in the refractive index with the application of a strong pump field. There
are two separate interactions. The first is SPM, where the pump induces a refractive
index change at its own carrier wavelength. The second is XPM which is an induced
refractive index change at a different wavelength to the pump. In equations (5.9) and
(5.10), the XPM terms alter the underlying Bragg condition. Therefore, a grating can
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be detuned and a signal pulse that would ordinarily be resonant with the gratings can
pass through unhindered.

The nonlinear XPM interaction between the pump and probe fields will in general be
complicated. It is therefore useful to first look at a simplified case where the fundamen-
tal modes are taken to be in a steady state. Along with this an undepleted pump ap-
proximation is assumed so that the power transfer from the pump to the signal modes
is considered negligible. The pump field can then be taken to be constant and the sys-
tem of coupled mode equations reduces to

9.1 = ikve 207 4 Z"%Anu (5.12)

2ibz _ Z“gAnv. (5.13)

n

d,0 = —iKue

In equations (5.12) and (5.13), An is the change in the refractive index induced by XPM
from the pump and is given by

35 3)
An = XTW. (5.14)
It is in general more useful to express the refractive index change (5.14) in terms of the
nonlinear refractive index (2.109) and the pump intensity I defined by equation (2.110)

giving

8ii,n
= 2

An = (5.15)

il
Figure 5.1 shows the change in the refractive index versus intensity. The maximum in-
tensity in the figure goes up to the optical damage threshold for a silica fibre which is
approximately 3 GW/cm? [80]. This limits the maximum refractive change to approxi-
mately 6 x 10~° which places significant limitations on the shiftable bandwidth.
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FIGURE 5.1: Refractive index change induced by XPM from a strong pump pulse. The
refractive index calculated at 1550 nm, with pump carrier wavelength at 1053 nm

The wavelengths corresponding to the ends of the Bragg band gap were derived in

section 2.2.1.2. The band edge wavelengths with a refractive index change An become

Ay = Ap (2(ﬁ +An) + 5n), (5.16)

which shifts the Bragg wavelength to

A = 2A5(7 + An). (5.17)

Therefore applying a refractive index change An increases the Bragg wavelength. The
shiftable bandwidth can then be calculated from the change in the Bragg wavelength
which is given by

cAn
Af = 2ApiA(7+ An)’ (-18)
Figure 5.2 shows a plot of equation (5.18) for increasing pump intensity. The optical
damage threshold puts the maximum bandwidth using the optical Kerr effect at close
to 900 MHz.
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FIGURE 5.2: Shifted band gap bandwidth in a silica fibre Bragg grating induced by
XPM from a strong pump pulse. Bragg wavelength is at 1550 nm, with pump carrier
wavelength at 1053 nm

If the change in the refractive index is such that the lower wavelength of the shifted
band gap is equal to the upper wavelength of the original band gap

!/

A=A, (5.19)

then the original band gap will have been fully shifted by the refractive index change.
Evaluating equation (5.19) shows that in order to shift the entire band gap, the change
in the refractive index must be equal to grating strength

on = An. (5.20)

Under this circumstance, if the bandwidth of a probe pulse falls completely inside the
original band gap, then when the band gap is shifted the probe pulse will no longer
be resonant with the grating. It will then be able to propagate unimpeded through the
grating. In accordance with equation (5.20), if the refractive index is induced through
XPM, then the grating strength will have to be on the order of 10~ by figure 5.1. Hav-
ing such a small grating strength means that the grating length will have to be of con-
siderable size in order to have high enough reflectance to effectively be able to reflect
and subsequently trap the probe pulse. Figure 5.3 shows a plot of the grating length
against the maximum grating reflectance as given by equation (2.83).
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FIGURE 5.3: Reflectance versus grating length for grating strengths from én = 107 to
6n =5 x 107°. The gratings have a Bragg wavelength given by Ay =1550 nm.

A grating strength of 1 = 2 x 10° needs a grating length of approximately 1 metre in
order to have strong reflectance. This corresponds to a pump intensity of 1.16 GW /cm?
to fully shift the band gap which is well within the damage threshold.

As an example, take a pump pulse with intensity 1.5 GW/cm?. From figure 5.1 this
corresponds to a refractive index change of 3.3 x 107. If a grating has a fully shiftable
band gap by this refractive index change, then its grating strength will also have to be
3.3 x 107°. Using figure 5.2, the grating will have a band gap of approximately 350 MHz
and by figure 5.3 will need a length of 75cm in order to have strong reflectance. Figure
5.4 shows a plot of the reflectance of this grating. The blue line shows its reflectance
when it is in an unmodified state and the orange line shows the reflectance when the

pump field is applied.
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FIGURE 5.4: A plot comparing the reflection spectrums for an unapodised Bragg grat-

ing with and without an XPM shifted Bragg wavelength. The blue line shows the

unmodified reflection spectum and the orange line the reflection spectrum with XPM

applied. The grating has parameters L = 0.75 m, Ag = 1550nm, n = 3.3 x 107 and
pump intensity of 1.5 GW/cm?.

The first issue to notice is that the bandwidth is not totally shifted. There is some over-
lap between the original and shifted band gap. This is because the band edge wave-
length calculations were done using a semi-infinite grating. In practice, the band edges
of a grating of finite size are not perfectly sharp. This leaves some overlap between the
original and shifted band gap. The second issue is that without apodisation, the shifted
bandwidth is now occupied by side lobing. This will cause reflections and pulse distor-
tion meaning that the probe pulse cannot cleanly pass through the grating. To resolve
this issue it is necessary to apply an apodisation to surpress the sidelobing. Figure 5.5a.
A Gaussian apodiation of the form given by equation (2.85) has been applied with an
apodisation strength of x 4 = 16. This suppresses the side lobbing, but the overall grat-
ing strength has been reduced as a result and consequently so has the reflectance. In
order to increase the reflectance, the length of the grating needs to be extended. Figure
5.5b shows the same grating but with the grating length increased to two metres so
that the grating has strong reflectance. A grating of this length is beyond the current
fabrication limits of ultra-long gratings which is at present about one metre [82].
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FIGURE 5.5: Plots comparing the reflection specta for a Gaussian apodised Bragg grat-
ings with and without an XPM shifted Bragg wavelength. The blue line shows the
unmodified reflection spectum and the orange line the reflection spectrum with XPM
applied. The gratings have parameters Ay = 1550nm, én = 3.3 x 10~° and pump in-
tensity of 1.5 GW/cm?. Figure (a) has length L = 0.75 m and (b) has length L = 2 m.

5.2.2 Shifting the band gap edge

One way to reduce the grating length is to relax the requirement that the total band
gap be shifted, but instead only shift the edge of the band gap sufficiently to allow a
pulse to pass through. In this case, the grating strength can by much stronger. With
a stronger grating strength, strong reflectance can be achieved with a shorter grating.
Figure 5.6a shows a plot of a grating with a length of 1cm and a grating strength of
dn = 1073. The blue line shows the unmodified reflection spectrum and the orange
line shows the shifted spectrum by a 2.5 x 10° W/cm? intensity pump corresponding
to a refractive index change of An = 4.3 x 107°.

As can be seen in the figure there is a small shift at the band gap edge. However, as
before without an apodisation there is significant sidelobing and so an apodisation is
needed. Figure 5.6b shows the same grating but with a Gaussian apodisation with
apodisation strength a4 = 16. An unfortunate consequence of applying the apodi-
sation is that the decrease in the overall grating strength dramatically decreases the
sharpness of the band gap edge over the linewidth of interest. The result is that no
transmission band opens up, which can be clearly seen in the figure. The resolution to
sharpen the band edge is to again to make the grating longer. To get a clean transmis-
sion band from the grating given in figure 5.6b, the grating length has to be increased
significantly. Figure 5.7 shows the band edge reflectance for the same grating but with

the length increased from 1cm to 75 cm.
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FIGURE 5.6: Plots comparing the reflection spectrums for Bragg gratings with and
without an XPM shifted Bragg wavelength. The blue shows the unmodified reflection
spectum and the orange line the reflection spectrum with XPM applied. The gratings
have parameters Ag = 1550nm, L = 1 cm, én = 103 and pump intensity of 1.5
GW/cm?. Figure (a) has no apodisation and figure (b) has a Gaussian apodisation.
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FIGURE 5.7: Figure showing the reflection spectrum for a Bragg grating with a length
of 75cm, a Bragg wavelength of A = 1550 nm, a grating strength of én = 1072 and a
Gaussian apodisation profile. The blue line shows the unmodified reflection spectrum.
The red line shows the reflection spectrum modified by a 2.5 x 10° W/cm? intensity

pump.

With the increased grating length, the band edge has become considerably sharper.
There is a distinct transmission window that a probe pulse can propagate through.
Increasing the grating length from 1cm to 75cm is a considerable increase. It is the
unfortunate trade off between suppressing the sidelobing and keeping the band edge
sharp. Asboth are needed, a long length grating is required. However, the length is less
than what is required to shift the entire band gap as discussed in the previous section.



It is also within the current maximum fabrication length of ultra-long gratings. One
drawback to shifting the band edge rather than the full band gap is the increased GVD
which was discussed in section 2.2.1. With such a long grating, a probe pulse propagat-
ing close to the band edge will cause pulse broadening. This problem increases with
the size of the grating strength.

5.2.3 Shifting the moiré transmission band

An alternative to using a Bragg grating is to instead use a moiré grating which was
discussed in section 2.2.3 and has grating profile given by (2.87). It differs from a Bragg
grating by having a sinusoidal coupling which modifies the steady state coupled mode

equations to

0,u = icos(27mz/ Ag)kve 307 4 l"%Anu (5.21)
0,0 = —icos(2mz/ Ag)kue*s? — l"%Anv. (5.22)

The sinusoidal coupling creates a grating with a transmission band between two re-
jection bands. The centre of the transmission band is located at the Bragg length.
Therefore, shifting the Bragg wavelength amounts to shifting the transmission band.
If a probe pulse spectrally falls within the transmission band, then if the Bragg wave-
length is shifted sufficiently the transmission band can become a rejection band. Then
a probe pulse that would initially transmit through the grating would subsequently be
reflected. So rather than shifting a band gap to make a transmission band as was the
case when using a Bragg grating, the opposite behaviour can be achieved with a moiré
grating.

One of the advantages of using the moiré grating is that a stronger grating strength
can be used. This is because the transmission band is in general small compared to the
rejection bands and so only a small change in the refractive index is necessary to shift
it; analogous to shifting the edge of the Bragg band gap. A benefit of using a moiré
grating over shifting the Bragg grating band edge is that the transmission band cancel
second order dispersion [35] which minimises pulse broadening as discussed in section
2.2.3.

The sinusoidal coupling of a moiré grating is controlled by the moiré period Ag. The
moiré period has the effect of inserting 7t phase shifts into the phase of the Bragg grat-

ing which opens a transmission window which was discussed in detail in section 4.1.
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The shorter the moiré period, the more phase shifts and the wider the resulting trans-
mission band. The other main factor in determining the size of the transmission win-
dow is the grating strength. A larger grating strength leads to broadening of the rejec-
tion bands and consequently a narrowing of the transmission band. The approximate
relationship between the bandwidth of the transmission window and the moiré period

and grating strength is given by equation (4.16).

Figure 5.8 shows the transmission band for two moiré gratings with identical param-
eters except for the grating strength. The blue line shows the transmission band for a
grating with 6n = 1073 and the orange line the transmission band for a grating with
grating strength dn = 9 x 107*. The figure shows clearly that the stronger grating

strength gives a narrower transmission band.

1.0
0.8

0.6

Reflectance

0.4

0.2

0.0

1.549993 1.549996 1.549999 1.550002 1.550005 1.550008
Wavelengh (um)

FIGURE 5.8: Figure showing the transmission bandwidth for Moiré grating for differ-

ent grating strengths. The blue line is for a grating with dn = 1072 and the orange line

for on = 9 x 10~*. Gratings both have parameters Az = 1550 nm, L = 10 cm and a
Gaussian apodisation profile

As was seen in the previous section, shorter device lengths are desirable which in turn
means using a larger grating strength. Therefore, creating a moiré grating with a trans-
mission bandwidth equal to the shiftable bandwidth given by equation (5.18), should
be done by using the highest available grating strength and then adjusting the moiré
period to give the desired transmission bandwidth. This will ensure the shortest possi-

ble device length.

Figures 5.9a and 5.9b show the shifted transmission band for a moiré grating without
and with a Gaussian apodisation respectively and an applied pump intensity of 2.5
GW/cm?. The device has a length of 10 cm and a moiré period of 8 mm which inserts
25 7t phase shifts into the Bragg grating. The transmission bandwidth is approximately
400 MHz and is fully shifted by the pump intensity.
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FIGURE 5.9: Transmission bands for XPM shifted Moiré gratings with (a) no apodisa-

tion and (b) a Gaussian apodisation. The blue line shows the unmodified transmission

band and the orange line shows the transmission band modified by a 2.5 x 10° W/cm?

intensity pump. Gratings have a Bragg wavelength Ap = 1550 nm, a grating strength
of 6n = 1073 and a length of L = 10 cm.

Another benefit of using a moiré grating over a Bragg grating is that applying an apodi-
sation does not lead to the same broadening of the band edge. Applying an apodisation
to a moiré grating has little effect of the sharpness of transmission edges which can be
seen when comparing figures 5.9a and 5.9b. This provides a distinct advantage over
shifting the band edge of a Bragg grating where from the example in the previous sec-
tion applying an apodisation to suppress the sidelobing required an ultra-long grating
to retain a sharp band edge. Therefore, the length of the moiré grating can be kept
significantly shorter. The limiting factor in reducing the size of the grating length is
the moiré period. A sufficient number of moiré periods are needed to create a clean

transmission window and this sets the minimum total length of the grating.

5.3 Simulating pulse propagation

The previous section looked at the steady state requirements for shifting either a Bragg
grating band gap or a moiré grating transmission band. This section looks at making
the modes time dependent and exploring the behaviour of a probe pulse propagating
through bandwidth shifted Bragg and moiré gratings whilst still maintaining an unde-

pleted pump approximation.
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5.3.1 Pulse propagation with shifted Bragg gratings
5.3.1.1 Single Bragg gratings
For a single Bragg grating with time dependent modes and where the Bragg wave-

length is taken to be the carrier wavelength of the signal so that the detuning is zero,
the coupled mode equations become

iatu +0.u = ixf(z)v+ @Anu (5.23)
Uy il
iatv — 0,0 = ikf(z)u + @Anv. (5.24)
vp il

The apodisation function is then given by

0 z < zq
2
f(z) = < exp (— XA (W) ) 21 <x <12 (5.25)
0 zZ> 2z

With an undepleted pump approximation applied, An is taken to be constant. To
demonstrate the band gap shifting, a time-domain simulation is performed using pa-
rameters found from the steady state calculations given in figure 5.5b. This gives a two
metre Gaussian apodised grating with a band gap bandwidth of approximately 350
MHz. A probe pulse with a FWHM of 135 MHz will spectrally sit inside the band gap
bandwidth. The spatial FWHM of the pulse is approximately 2 m.

Figures 5.10a and 5.10b show time-domain simulations for this grating and probe pulse
with An = 0. In this case the grating is behaving as a standard Bragg grating and the
probe pulse reflects off of the grating as expected.
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FIGURE 5.10: Time domain simulation of a Gaussian pulse with a FWHM bandwidth
of 135 MHz reflecting from an ultra long Bragg grating with the same parameters as
figure 5.5b. Figures (a) and (b) show the forward and backward modes respectively.
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To fully shift the band gap, a pump intensity of 1.5x GW/cm? is used, which gives

a change in the refractive index of An = 2.6 x 107, Figures 5.11a and 5.11b show a

simulation of the same grating and probe pulse as in the previous simulation, but with

the change of refractive index applied. In this case the probe pulse is able to propagate

through the grating with minimal coupling into the backwards mode. This demon-

strates that steady-state calculations give a good approximation to the time-dependent

behaviour.
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FIGURE 5.11: Figure showing the same time domain simulation as figure 5.10 but with
an XPM induced refractive index change from a 1.5x GW/cm? pump field. Figures
(a) and (b) show the forward and backward modes respectively.

5.3.1.2 Two Bragg gratings pulse trap

Intensity (W/cm?)

With the steady-state calculations established as valid for time-domain simulations,

two dynamically controlled gratings can be used to create an optical storage device.

To do this, the coupled mode equations can be modified to include a time windowing

function g(t) to control the refractive index change.
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viatu +0.u =ixf(z)v+ l“%g(t)Anu (5.26)
p

1 , ip1

U—Btv — 0,0 = ikf(z)u+ ?g(t)Anv. (5.27)
p

The windowing function is given by

1 x <t
gt) =40 t;<t<t, (5.28)
1 >t

and varies between 0 and 1, which switches the refractive index change An off and
on. Therefore, the windowing function dynamically controls the shifting of the band
gap. The windowing function is initially set to 1 so that the probe pulse can propa-
gate through the first grating and subsequently set to 0 between times t; and t, to trap
the pulse between the two gratings. When the time is greater than t, the windowing

function is again set to 1 to allow the pulse to be released.

To perform the simulation, the parameters from figure 5.5b are again used with a probe
pulse with a bandwidth of FWHM of 135 MHz. Figures 5.12a and 5.12b show the sim-
ulation for the forward and backward modes of the probe pulse. With the windowing
function initially set to one, the probe pulse can propagate through the first grating.
Then as the windowing function switches to zero at time ¢; = 50 ns, the probe becomes
resonant with both gratings reflecting off of them. This traps the pulse between the two
gratings. When the windowing function is again switched on at time ¢, = 435ns, the

probe pulse can escape through the second grating.

Length (m)
Intensity (W/cm?)
Length (m)

Intensity (W/cm?)

200 300
Time (ns) Time (ns)

(@) (b)

200 300

FIGURE 5.12: Time domain simulation of double Bragg gratings with XPM shifted

band gaps used to store a probe pulse. The grating and pulse parameters are the same

as those in figures 5.5b and 5.10 respectively. Figures (a) and (b) show the forward and
backward modes respectively.



The successive reflections off of the grating cause the pulse to distort. This is due to
the length of the grating and the apodisation. The apodisation means that the grating
strength increases toward the centre of the grating. Therefore, the pulse is able to pene-
trate further into the grating than if there was no apodisation. For a short length grating
this ordinarily would not be a problem, but due to the long length of the grating in the
simulation, the pulse penetration into the grating causes dispersion and broadening
effects. This can be seen in figures 5.12a and 5.12b as the intensity of the pulse reduces
after each reflection. To show this more explicitly, figures 5.13a and 5.13b show the
pulse before and after entering the device respectively. Figure 5.13b clearly shows the
broadening of the pulse. As the problem is due to the length of the grating, a shorter
grating would resolve the issue. However, as previously discussed, shorter gratings
require stronger grating strengths which in turn mean only the band gap edge can be
shifted. This introduces its own dispersion and so in either case the device will generate

pulse broadening.
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0.8-
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FIGURE 5.13: Figures (a) and (b) showing the before and after pulse profiles respec-
tively for the time domain simulation from figure 5.12.

5.3.2 Pulse propagation with shifted moiré gratings

This section looks at time domain pulse propagation through a moiré grating. First, a

single grating is considered and then two gratings to create a pulse trap.

5.3.2.1 Single moiré grating

To include the moiré grating in the time domain simulation the moiré envelope needs

to be added to the coupled mode equations which gives

1 ,
v—atu + 0.u =icos(2mz/Ag)xf(z)v + Z‘%Anu (5.29)
P
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viatv — 0,0 =icos(2mz/Ng)xf(z)u + Z%Anv. (5.30)
2

The position of the grating can be controlled in the same way as was done with a sin-
gle Bragg grating using the apodisation function (5.25). However, the change in the
refractive index has the opposite effect to what it had with a Bragg grating. With no
change in the refractive index the probe pulse is able to propagate through the moiré
transmission band and with a refractive index change applied, the transmission band
is shifted and the pulse is reflected from the grating.

The moiré grating in figure 5.9b is a 10 cm grating with a with a transmission band-
width of approximately 500 MHz. A probe pulse that has a FWHM bandwidth of this
size will have spatial length that is long compared to the length of the grating. The large
difference in sizes is problematic from a simulation perspective as the grid resolution
needs to be small enough to resolve the moiré period. Resolving the pulse length at
such a small resolution become computationally expensive. Two different mesh sizes
could be used inside and outside the grating, but the small comparative size of the grat-
ing also means that it is more difficult to see the features of the grating. Therefore, for
demonstration purposes, we take a grating with the same parameters as those in figure
5.9b, but decrease the moiré period to 5 mm. This increases the size of the transmission
band and therefore the available bandwidth for the probe pulse. This in turn means a
spatially shorter probe pulse which is more amenable for using in a simulation. The
increased size of the transmission band means a larger change in the refractive index is
required to fully shift the refractive index. For this particular grating, the required re-
fractive index change is An = 4.4 x 10~°, which would correspond to a pump pulse of
25 GW/cm? which is beyond the damage threshold for a silica fibre. The transmission
band for this grating is large enough to fit a probe pulse with a FWHM bandwidth of 3
GHz.

400

300
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Length (mm)

0.0 0.5 1.0 1.5 2.0 25 0.0 0.5 1.0 1.5 2.0 2.5
Time (ns) Time (ns)

(@) (b)

FIGURE 5.14: Time domain simulation of a probe pulse reflecting from a moiré grating

with a refractive index change of An = 4.4 x 10~°. The grating has parameters Ap =

1550nm, Ag = 5mm, én = 102 and a grating length of L = 10cm. The probe pulse
is a Gaussian pulse with a FHWM bandwidth of 3 GHz



Figures 5.14a and 5.14b show the forward and backward modes for the probe pulse
propagating through the moiré grating with the change in refractive index applied.
This causes the transmission band to shift so that the probe pulse falls within a rejection
band and so is reflected by the grating. From the figure it can be seen that the pulse is
able to penetrate relatively deeply into the grating before being reflected.
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FIGURE 5.15: Figure showing the time domain simulation of a probe pulse transmit-
ting though a moiré grating. Grating and pulse have the same parameters as in figure
5.14

Figures 5.15a and 5.15b show the forward and backward modes for the probe pulse
propagating through the moiré grating without the change in refractive index applied.
The probe is then resonant with the transmission band and is able to pass through the
grating. The slow light nature of the grating is clear as the pulse is propagating slower
through the grating then outside which is in contrast to the behaviour seen in the Bragg
grating in figure 5.11 where the group velocity of the pulse remains roughly constant.
The increase in intensity of the probe pulse due to slow slight is also clearly visible.
And so, just as we saw with the Bragg grating, the moiré grating can be used as a gate
to reflect or allow a probe pulse through by inducing a change in the Bragg wavelength.

5.3.2.2 Two moiré grating trap

Now we look at using the moiré grating to create an optical storage device by having
two separated moiré gratings and dynamically shifting the transmission bands. Again,
the coupled mode equations have to be modified to include a time windowing function
g(t) which is given by equation (5.28). The coupled mode equations then become

Uiatu +0u =icos(2mz/Ag)xf(z)v + Z%g(t‘)Anu (5.31)
p

1 , iB1

;atv — 0,0 =icos(2mz/Ng)xf(z)u + ?g(t)Anv. (5.32)
P
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The storage device is simulated using the same moiré grating as in the previous sec-
tion, which had a 10 cm length, a 5 mm moiré period and Gaussian apodisation profile.
The probe pulse is a Guassian pulse with a FWHM bandwidth of 3 GHz and a spa-
tial FWHM of approximately 85 mm. Figures 5.16a and 5.16b show the forward and
backwards modes of the simulation.

10 10t
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FIGURE 5.16: Time domain simulation of double moiré gratings with XPM shifted

tranmission bands used to store a probe pulse. The grating and pulse parameters are

the same as those in figure 5.14. Figures (a) and (b) show the forward and backward
modes respectively.

The simulation starts at t{y = 0, from which the probe pulse propagates towards the
first grating. The windowing function g(t) is initially set to 0, so that the pulse can
propagate though the transmission band. Then at time t; = 3ns, g(#) is set to 1 which
shifts the Bragg wavelength of the gratings closing the transmission bands for the probe
pulse. The pulse is then trapped between the two gratings. At time t, = 18ns, g(t) is set
to 0, opening the transmission bands again. The pulse is then able to escape out of the
second grating. While again this demonstrates that moiré gratings can be used to create
an effective optical storage device, the successive reflections lead to pulse distortions
just as in the case where Bragg gratings were used.
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FIGURE 5.17: Figures (a) and (b) showing the before and after pulse profiles respec-
tively for the time domain simulation from figure 5.16.



Figures 5.17a and 5.17b show the probe pulse before and after the device. As the pulse
is able to penetrate some way into the grating, it experiences uneven dispersion along
its length which causes pulse broadening. However, in comparison with the before and
after pulse profiles using Bragg gratings given in figures 5.13a and 5.13b, the broaden-
ing due to the moiré grating is more significant. This may be somewhat of a surprise, as
in the case of the Bragg grating, the broadening was due to the long grating length and
the apodisation. As the moiré grating is shorter, it might be expected that this problem
would be reduced. However, even though over the full length of the grating the re-
flectance is high, the oscillating moiré term allows the probe field to penetrate deeper

into the grating than the Bragg grating causing worse pulse distortion.

5.3.3 Including self phase modulation

Throughout this chapter, the change in refractive index has been taken to be due to XPM
from a strong pump pulse. The motivation for this was that using all-optical switching
would allow for switching times down in the range of nanoseconds. Combined with
a low loss silica fibre this would enable a quick and efficient optical storage device.
However, the discussion has been kept general so that the results can also be applied

to other methods for inducing a refractive index change.

In order for the pump to work effectively at changing the refractive index and shift-
ing the Bragg wavelength, it must change the refractive uniformly across the entirety
of the grating. Furthermore, it must also do this for the duration of the probe pulse
propagating through the grating. This is problematic, as the grating lengths must be
substantial in order to have high enough reflectance to effectively trap a pulse. In the
case of the Bragg grating, ultra-long gratings at the edge of current technological lim-
its are required. The situation is somewhat better when a moiré grating is used and a
grating length in region of 10 cm is sufficient. However, in both cases, the bandwidth
available for the probe pulse is on the order of hundreds of MHz and therefore the spa-
tial profile of the probe is meters long. The pump pulse will therefore at a minimum
have to have a spatial length as long as the probe pulse in order to uniformly change
the refractive index.
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FIGURE 5.18: a Time domain simulation of Gaussian pulse propagation and b pulse
spectrum showing effects of SPM. With parameters FWHM = 3 GHz and a pump in-
tensity of 1.5GW/ cm?.

Figure 5.18 shows a simulation of equation (5.11) for a Gaussian pump pulse with in-
tensity 1.5 GW /cm?. The FWHM bandwidth of the pump is 3 GHz which is the same
bandwidth used for the probe pulse in figure 5.17. Figure 5.18b shows the effect of
the self-phase modulation on the pulse spectrum. As the figure clearly shows, the self-
phase modulation causes spectral broadening which in a dispersive medium would
cause a change in the spatial shape of the pulse. A potential way to mitigate this prob-

lem is to use a super-Gaussian pulse of the form

p(x) = Aexp (— ((Z;(?)zy) (5.33)

Raising the content of the exponent to a power of m has the effect of flattening the
Gaussian creating a so called flat-top pulse. Here the super-Gaussian serves a dual
purpose. Firstly, with a flat-top profile the maximum intensity of the pulse covers a
larger spatial width, which can be seen in figure 5.19a which shows the propagation of
a super-Gaussian pulse. The refractive index needs to be uniformly changed along the
length of the grating, a flat-top profile with a spatially broader maximum intensity is
better suited to this task.
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FIGURE 5.19: a Time domain simulation of super-Gaussian pulse propagation and b
pulse spectrum showing effects of SPM. With parameters Guassian FWHM = 3 GHz,
super-Gaussian exponent m = 5 and a pump intensity of 1.5GW /cm?.

The second benefit is that the induced SPM of a super-Guassian pulse is reduced com-
pared to a Gaussian. This can be seen by comparing the figures 5.18b and 5.19b which
show the spectrum of a propagating Gaussian pulse and a super-Gaussian pulse re-
spectively. The benefit of this is that there will be less distortion to the spatial pulse
shape.

54 Summary

In this chapter we have looked at creating an optical storage device using Bragg and
moiré gratings. The principal idea behind the device is to induce a change in the DC
refractive index component of the grating. This has the effect of altering the Bragg
wavelength, creating a tuneable rejection or transmission band. By using two grat-
ings and dynamically controlling the Bragg wavelength, a probe pulse can be trapped
between the gratings and subsequently released. Two grating types were looked at
for the device. A standard Bragg grating, where shifting the Bragg wavelength shifts
the rejection band, and a moiré grating where shifting the Bragg wavelength shifts the
transmission band. First the gratings were looked at under steady-state conditions and
then subsequently were looked at dynamically.

The motivation for a device of this type is to create a delay line which would have
switching times on the order of nanoseconds with low loss. This would be achieved by
fabricating the device in a silica fibre and inducing a refractive index change using a

strong pump pulse and XPM.

This chapter has shown that there are two fundamental problems with this approach.
Firstly, the small refractive index change that can be induced using XPM limits the
available bandwidth of the pulse which means that long grating lengths are required.
In the case the of Bragg gratings, ultra-long gratings are needed. Shorter grating lengths
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can be used with a moiré grating but in both cases the probe pulse can penetrate deeply
enough into the gratings to produce pulse distortions. Therefore, each successive re-
flection within the device leads to greater pulse distortions.
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Chapter 6

Slow light enhanced

second-harmonic generation

This chapter is based on my paper published in physical review A [83]. It looks at the
application of slow light gratings for the enhancement of second-harmonic generation.
It was shown in section 4.3 that a pulse entering a slow light grating experiences pulse
compression due to the difference in group velocity inside and outside the grating. As
a consequence, conservation of energy requires that pulse compression is accompanied
by field enhancement. This is another useful property of slow light gratings that can
be exploited to enhance nonlinear processes. For any given medium, the nonlinear
susceptibilities are many orders of magnitude weaker than the linear susceptibility.
As a consequence, in order to achieve efficient nonlinear processes, high intensities
are necessary to compensate for the relative weakness of the nonlinear susceptibilities.
Therefore, using a slow light grating for intensity enhancement offers the possibility of

enhancing nonlinear processes [35, 84].

Second-harmonic generation was introduced in section 2.3. Along with being an inten-
sity dependent process, second-harmonic generation also requires phase matching be-
tween the fundamental and second-harmonic. Typically, material dispersion causes de-
phasing between the two modes and it is necessary to deploy a phase matching scheme.
The method of principle interest in this chapter is quasi-phase matching via periodic

poling [45].

The idea of using field enhancement to improve conversion efficiency in second-harmonic
generation has been looked at before. Perhaps the simplest approach is to enclose a
nonlinear crystal within a Fabry—Perot cavity which is resonant with either the funda-
mental or second-harmonic mode [85]. This method was shown to give an enhance-
ment of 13% [86]. The cavity causes the resonant mode to circulate increasing its inten-

sity and enhancing the second-harmonic generation. Similar ideas have been proposed



using periodic polling by phase matching counter propagating modes [87, 88] which
exhibits the same recirculation and enhancement behaviour.

To achieve slow light grating enhancement of second-harmonic generation in a period-
ically poled medium, it is necessary to have not only the x!?) poled grating, but also
a linear grating. There have been some theoretical studies on the inclusion of a linear
grating in a x(?) medium and its effect on harmonic generation [89, 90]. However, it
has been problematic to write linear gratings in bulk x(?) media with any appreciable
index contrast [91, 92]. In recent years there has been progress in producing high in-
dex contrast linear gratings in thin-film lithium niobate [93]. This research has been
extended to also include demonstrations of 7t phase shift gratings in thin-film lithium
niobate [94, 95]. Therefore, in the near future it may be possible to fabricate devices that
incorporate both periodic poling and slow light gratings for enhancing x? processes.

This chapter examines the continuous wave enhancement of second-harmonic genera-
tion by incorporating a slow light 7t phase shifted grating in a periodically poled x?)
medium. The coupling between the fundamental forward and backward modes in a
slow light grating causes generation of corresponding forward and backward second-
harmonic modes. To suppress the backward second-harmonic, a short Bragg grating
is also incorporated into the front of the device to ensure unidirectional forward prop-
agating output of the second-harmonic. It is then shown that by optimising the free
parameters of the device, it is possible to achieve significant enhancement in second-

harmonic generation when compared to a device with only periodic poling.

6.1 Theoretical Model

6.1.1 Grating profiles

The theoretical device under consideration in this chapter is a periodically poled x(?)
nonlinear crystal with two linear gratings. It will be shown that carefully engineer-
ing the properties of the two linear gratings can lead to a significant enhancement in
second-harmonic generation. The starting point for the device is a linear grating profile
which has the following form

n(x) =i+ 6on ( Fi(x)a (x)as(x) + fz(x)az(x)). (6.1)

The effective index is given by 7 and the grating strength by ,. Then the terms
f1(x)ay(x)as(x) correspond to a superstructure slow light grating and the f,(x)az(x) to
a short reflection grating at the start of the device. It is common notation for crystallo-

graphers to refer to the propagation direction as x rather than z and so that convention
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is adopted for this chapter. Figure 6.1 provides a schematic illustrating the two linear

Slow
light
grating \/ A, \/

Bragg
filter
grating

gratings.

A;

FIGURE 6.1: Schematic of the two linear gratings: a slow light 7t phase shifted grating
with Bragg period A; and superstructure period Ag, and a reflection Bragg grating
with period A; at the input end of the device.

The slow light grating is composed of three terms, an apodisation function fi(x), a
Bragg envelope a1 (x) and a superstructure envelope a5(x). In the subsequent analysis,
the apodisation function is chosen to have a Gaussian profile given by equation 2.85
with an apodisation strength a4 = 16. The Bragg and superstructure envelopes take

the forms

a1(x) = cos (2Anlx + 4>1>, (6.2)
as(x) = sgn [cos (n(ch\—L) + 7;)] , (6.3)
s

The Bragg envelope has an arbitrary phase constant ¢; and a Bragg period given by
A1 = A1/ (271). This provides a Bragg resonance at A1 which is the wavelength of the
fundamental mode and where 7i; is the corresponding effective refractive index. The
superstructure envelope produces a 7 phase shifted grating opening a transmission
band at the centre of the Bragg resonance. A constant phase ¢s = 7(1/2 — L/Ag)
has been added to the superstructure envelope which ensures for a device of length L,
there is a 7t phase shift at the centre of the device. The purpose of the superstructure
grating is to turn the fundamental mode into a slow light wave. The reduction in group
velocity will be accompanied by an increase in field enhancement which will improve

the conversion efficiency to the second-harmonic.

As previously discussed in section 2.2.3, the superstructure grating will generate both
forward and backward second-harmonic modes, and so a short reflection grating is

placed at the start of the device to suppress the backwards mode. The reflection grating



is composed of two terms, an apodisation function f,(x) and a Bragg envelop a,(x).
The latter is given by

27X

ay(x) = cos < A, + gbz), (6.4)

where ¢, is a constant phase term. The Bragg period Ay = A,/(271y) creates a Bragg
resonance at the second-harmonic wavelength A, with a corresponding effective refrac-
tive index 7i,. The apodisation functions are constrained such that fi(x) + fo(x) < 1.
As the apodisation functions effectively scale the grating strength, the constraint en-
sures that the overall magnitude of grating modulation does not exceed the maximum
on that can be fabricated. Therefore, the reflection grating apodisation is defined by

flx) = 1—fi(x) if 0<x<Lg 65)

0 if x> Lg

where Ly is the length of the reflection grating. For lengths less than L the reflection
apodisation is simply the magnitude of dn remaining from the superstructure apodis-
ation. For lengths greater than Lg, the apodisation is set to zero so that the reflection
grating only occupies the start for the device. Figure 6.2 gives an example of the apodi-
sation profiles for the slow light and reflection gratings.
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FIGURE 6.2: Slow light grating apodization f; and reflection grating profile f, with
parameters L = 10 mm, a4 = 16 and Lg = 1 mm.

The recent developments in fabricating linear gratings in thin-film lithium niobate
[93, 94, 95] make it the natural choice for a potential device. Therefore, throughout
this chapter the device medium is taken to be thin-film lithium niobate doped with
magnesium oxide (MgO:LiNbOs), which has an increased optical damage threshold
[96] compared to lithium niobate. X(Z) will then refer to the highest nonlinear tensor
component for MgO:LiNbOj3; which is d33 = 25pm/V at a wavelength of 1064 nm. The
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FIGURE 6.3: Schematic of a periodically poled x(?) medium showing the poling period
A.

d33 component is accessed by waves polarized vertically along the z-axis. Figure 6.3
shows a schematic of periodically poled z-cut crystal which takes advantage of the ds3

component.

6.1.2 Coupled mode equations in a x(?) medium

In this section the coupled mode equations are derived for the device described in the
previous section using the variational techniques introduced in chapter 3.1. The start-
ing point is to define the following vector potential ansatz

A= —iu1(t,x)ei(ﬁ1x_“’1t) — L'v1(1},x)e_i(/sl’““"lt)
w1 . w1 ‘ (66)
(b x)elBrr@at) Ly () pyemilBaxtent) 4 oo
w» Wy

where #; and v; are the fundamental forward and backward modes with frequency
and propagation constant w; and pB; respectively. The second-harmonic forward and
backward modes are denoted by u> and v, with frequency and propagation constant w»
and B, respectively. To develop the coupled mode equations, the ansatz (6.6) and the
refractive index profile (6.1) need to be substituted into the nonlinear electromagnetic
Lagrangian

1

_ €0 2 2 _
L= n (atA) 2‘140

. (0:4)2 = Tx? (%) (2:4)” 67)
which is written in the Weyl gauge and where x(?) has been made position dependent
to take into account the periodic poling. After making rotating wave, slowly varying

envelope and neglecting small term approximations the Lagrangian splits into three



terms L1, Liino and L,;;,. The first term L;,; contains all the linear terms for the

fundamental modes

-
1601’11 * * * *
Elinl = (ulatul — ulatul + Ulaﬂ)l — 018tvl)
i€OC2ﬁ1 *a a * *a a * (68)
+= (47011 — u10,uj + v70:v1 — V1907 )
1
+ €0ty f1as0n (v ug €12 M1% - yfv e P1em 2 M),

Similarly, the second term L, contains all the linear terms for the second-harmonic

modes

P~ 252
leony o * * *
(uzatuz — uzatMQ + UzatUQ — Uzaﬂ)Z)

Elinz =
(6.9)

iegc? B2, . . . .
wZ (uZazuZ - UZBZUZ + 0282’02 — ’()zazyz)

2
+ eofa fo01 (V3 €'726782% + yfp e~ 920 2i02%)

The third term L,;, contains the coupling terms between the fundamental and the

second-harmonic modes
Lotin = —eox(z)(x) (uz(uf)zemﬁx + uiu%e’mﬁx + vz(vi‘)ze’mﬁx + viv%emﬁx) (6.10)

To incorporate the poling into equations (6.10), the poling function given by equation

(2.101) can be substituted for x®(x) which gives

(6.11)

2i€OX(2) * * * *
Lyjin = (MZ(“1)2 + 020% - “2”% - Z’2(7’1)2)-

The total Lagrangian is then given by the sum of its linear and nonlinear parts

L = Liim + Liina + ﬁnlinp- (6.12)

Then the coupled mode equations follow in the usual way from varying the Lagrangian

with respect to modes u3, v1, u2 and vy,

%5 (6.13)

au1 . g
— = iePxy (x)v1 + —ufun
dx i1
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2 .
az;l — —ie ey (x)u + %ﬁvz (6.14)
u, . ; K3
o i1y (x) vy — ﬁ—zu% (6.15)
avz . K3
= - e D210 (x ) ug — %U% (6.16)

where the coupling coefficients are given by

K (x) = 7;51” Fu(x)as(x) 6.17)

() = 2 () (6.18)
@

K3 = 47)‘” . (6.19)

6.1.3 Numerical methods

Solving the coupled mode equations (6.13-6.16) presents a challenge. The equations
form a boundary value problem with only partially known boundary conditions. In
total there are 8 complex (16 real) boundary conditions. There are two known bound-
ary conditions at both the start and the end of the device, which leaves another 4 un-
determined. The known boundary conditions at the start of the device are the input
amplitudes for the two forward modes. The fundamental forward mode has an initial
arbitrary amplitude A and so provides the boundary condition 11 (0) = A. The forward
second-harmonic mode is initially zero and so u3(0) = 0. At the end of the device the
backward modes must satisfy the boundary conditions v (L) = 0and vy(L) = 0, which
ensures no light is coupled into the device from the end. That leaves the boundary con-
ditions for the two backwards at the start of the device, and the two forward modes
and end of the device unknown.

There are standard integration libraries which provide boundary solvers such as numpy’s
solve_bvp [97] which can solve such boundary value problems. However, the nonlin-
ear nature of equations (6.13-6.16) means that finding solutions is strongly dependent
on the choice of initial conditions. This becomes increasing true as the input intensity
of the forward fundamental mode is increased, at which point standard solving pack-
ages fail to find physically meaningful solutions. It is therefore necessary to develop



a boundary solver from first principles that incrementally adjusts the initial boundary
condition to produce correct solutions. A general shooting method for this purpose is
described in detail by Ja [98]. The first step is to express as vectors the modes

y(z) = [u1(z), u2(z),v1(z), v2(x)], (6.20)

and unknown boundary conditions

p(x) = [01(0),02(0), u1 (L), ua(L)]. (6.21)

Next, an initial guess needs to be made for the unknown boundary conditions p. This
also make the modes y(z, p) a function of p. With the initial guess, equations (6.13-6.16)
are integrated forward from the start of the device giving the solution y¢(x, p). Then
similarly the equations are integrated backwards from the end of the device to give the
solution y;(z, p). Then for some arbitrary point x = m, the correct initial conditions

satisfy

g(p) =ys(m,p) —ys(m,p) =0. (6.22)

It is usually beneficial to choose m so that it either corresponds to the start of the device
m = 0, or the end of the device m = L. Then only a forward or backward integra-
tion is necessary. Finding the correct initial conditions then reduces to the problem
of minimising yr(m, p) — y,(m, p). While there exist numerous approaches to solving
equation (6.22), the approach used in the subsequent analysis is to define the quantity

L= lgi(p)l (6.23)

which produces a positive real number which can the be minimised to zero using the
Nelder-Mead method [99]. The benefit of this method is that it does not require calcu-
lating the Jacobian of g(p) and therefore its derivatives with respect to p.

The process of finding the initial boundary conditions p at a high input intensity, is to
tirst find the boundary conditions for the same device starting with a negligible input
intensity. If the input intensity is sufficiently small than equations (6.13-6.16) effec-
tively become a 7t phase shifted grating to which the exact boundary conditions can be
found. Then, to find the solution at a higher input intensity, the initial intensity can be
increased incrementally by using the boundary conditions found at the previous incre-
ment. This is repeated recursively until the solution for the desired input intensity is a
found.
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6.2 Group velocity and field enhancement

If the grating strength Jn is kept constant, then the key parameter affecting the slow
light produced by the superstructure grating is the superstructure period Ag. Larger
values A produce lower group velocities and conversely, smaller values of Ag produce
higher group velocities. As was discussed in section 4.3, a pulse entering a slow light
grating will be compressed by a factor v, /vy where v, and vy are the group velocities
inside and outside the grating respectively. Consequently, the amplitude of the electric
field will increase by the inverse factor vy /v,. Figure 6.4 shows how the group velocity
induced field enhancement calculated using equation (3.78) varies with Ag.
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FIGURE 6.4: Group velocity of a Gaussian apodized r-phase shifted grating vs super-
structure period A;. With parameters a5 = 16, Ay = 1064nm, 7 = 2.147, on = 103
and L =4cm.

As the second-harmonic field increases quadratically with the fundamental field, for
a fundamental field enhancement of vy/v, the enhancement of second-harmonic gen-
eration will be of the order (vy/vg)?. However, this does not take into account pump
depletion. For longer devices with high initial intensities, the conversion enhancement
will decrease as the conversion rate in a standard periodically poled device increases.
Therefore, the greatest enhancements will be achieved for shorter length devices with

lower pump intensities.

6.3 Device parameters and second-harmonic enhancement

This section looks at how varying the device parameters affects second-harmonic gen-
eration and how they can be optimised.



6.3.1 Varying the moiré period

The principle parameter of interest is the moiré period. Increasing the moiré period
reduces the size of the transmission band, inducing slow light and enhancing the field
intensity. The expectation is that second-harmonic generation will increase with the
moiré period. Figure 6.5 shows a simulation calculated using the numerical methods
laid out in subsection 6.1.3 of the output powers for the four propagating fields as the
superstructure period Ag is varied. For the forward propagating modes u; and u», the
output is taken at x = L, for the backward propagating modes the output is taken at
x = 0. The device has a length of L = 4 cm, a reflection grating length of Lg = 1mm, a
grating strength given by dn = 1073, and grating phases set to ¢; = ¢, = 0. The moiré
period is varied from 1 mm to 7 mm with an input intensity of I = 10> W/cm?.
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FIGURE 6.5: Output powers for fundamental and second-harmonic fields versus
superstructure period Ag, where powers are normalised to the input fundamental
power. With parameters A; = 1064nm, L = 4cm, Lf = 1mm, a5 = 16, on = 1073,

iy = 2.147, 1y = 2.223, x® = 25pm/V, I = 10° W/cm?, ¢, = 0 and ¢, = 0.

As expected, increasing Ag causes a corresponding increase in second-harmonic gen-
eration. However, the increase does not continue indefinitely but reaches a maximum
value at Ag = 5.3 mm, corresponding to a slow down factor of 16.6. This gives a conver-
sion efficiency of 67% and an enhancement a factor of 65.5 compared to a periodically

poled crystal without linear gratings which will be discussed later in figure 6.9.

Once Ags passes its maximum value, the power begins to transfer from the second-
harmonic into the backward fundamental mode. This behaviour can be understood by
looking at the coupled mode equations (6.13-6.16). There are two different channels for
the input power to transfer into the backwards fundamental mode. The first channel
is simply via the coupling of the superstructure grating x;. The second channel is to
couple first into u, via x3, then into v, via x2 and then finally into v; again via x3. For
values of Ag above the maximum conversion efficiency, this second channel starts to

become dominant and power in u; transfers to v.
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6.3.2 Optimising the grating phases

The maximum second-harmonic conversion efficiency and the corresponding moiré
period are dependent on the Bragg phases ¢ and ¢,. Figure 6.6 shows a simulation
of the normalised output power of the forward second-harmonic when ¢; and ¢, are
varied through 271. As the phases are varied, there is an interaction between the two
linear gratings which can create a resonance or antiresonance. This behaviour is only
seen when both the superstructure grating and reflection grating are present. Varying
the phase of the superstructure phase ¢; with the reflection grating removed has no

effect on the second-harmonic generation.
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FIGURE 6.6: Normalised output power of the forward second-harmonic field versus
Bragg phases ¢; and ¢. Ag = 5.3 mm, other parameters as in Fig. 6.5.

Figure 6.7 shows one dimensional slices of figure 6.6 where one of the phases is kept
constant at zero. It is possible to deduce that the maximum conversion efficiency occurs

when the phases are related by the following constraint

@—%z% (6.24)

Similarly, the phase which provides the minimum conversion is given by

p-2=" (6.25)
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FIGURE 6.7: 1-dimensional cuts through Fig. 6.6 at ¢y = 0 and ¢, = 0.

Setting the phases to ¢ = 71/4 and ¢, = 0 satisfies the constraint (6.24) giving maxi-
mum conversion efficiency. Figure 6.8 shows again the field output powers versus Ag
but with the phases optimised. The effect is to increase the second-harmonic conver-
sion efficiency to 99% at As = 5.8 mm which corresponds to a slow down factor of
26.2.
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FIGURE 6.8: Phase optimised output powers for fundamental and second-harmonic
fields versus superstructure period with ¢; = 71/4 and other parameters as in Fig. 6.5.

Figure 6.9 shows the enhancement factor of the forward second-harmonic compared to
a standard device when the phases are set to zero, and when they have been optimised.

With the optimised phase the enhancement factor has increased from 65.5 to 96.7.
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FIGURE 6.9: Enhancement of SHG conversion efficiency compared to a periodically
poled crystal without linear gratings with ¢y = 71/4 and other parameters as in
Fig. 6.5.

When looking at the field distribution of the forward second-harmonic along the length
of the device, the maximum and minimum phase constraints given by equations (6.24)
and (6.25) give quite different behaviour. Figure 6.10 shows the forward second-harmonic
along the device length for the different phase constraints. When the phases satisfy
the minimum constraint, there is strong coupling into the backward second-harmonic
mode, which is subsequently coupled into the forward second-harmonic mode by the
reflection grating. The orange line in figure 6.10 shows this behaviour, where there is
a large increase in the forward second-harmonic at the end of the reflection grating.
The power is then converted back into the forward fundamental wave, with notable
depletion of the second-harmonic at the location of the 7t phase shifts in the slow light
grating. This is in contrast to when the phases satisfy the maximum constraint (6.24),
and the forward second-harmonic increases continuously over the length of the de-
vice. The grating phases, therefore, have a strong affect on the overall efficiency of the

second-harmonic generation.
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FIGURE 6.10: Comparison of power flow normalised to input power across the device

length for the forward second-harmonic mode, with ¢; set to produce maximum and

minimum conversion to the second-harmonic, respectively. Here Ag = 5.78 mm, other
parameters as in Fig. 6.5



6.3.3 Varying the device lengths

In a standard QPM device, the longer the length of the device, the longer the interac-
tion length and therefore the higher the conversion efficiency. Figure 6.11 shows how
the conversion efficiency is affected by the device length when the linear gratings are
included. The parameters are the same as used previously with the optimised moiré
period Ag = 5.8 mm and grating phases ¢; = 71/4 and ¢, = 0 for a 4cm long device.
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FIGURE 6.11: Normalised output powers for fundamental and second-harmonic
modes versus device length L with Ag = 5.78 mm, ¢; = 71/4 and other parameters as
in Fig. 6.5

The figure shows that the conversion efficiency remains close to 100% down to a de-
vice length of around 2.5cm after which the efficiency starts to reduce. At a device
length of 10 mm the efficiency reduces down 32% with power being transferred into

the backward fundamental mode.
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FIGURE 6.12: Enhancement of SHG efficiency compared to a QPM device without
linear gratings by device length with Ag = 5.78 mm, ¢; = /4 and other parameters
as in Fig. 6.5

Figure 6.12 shows the enhancement factor for the forward second-harmonic in figure
6.11 compared to a QPM device without linear gratings. At a device length of 10 mm
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the enhancement factor is 492 which is significantly higher than at a device length of
4 cm for which the parameters are optimised. This is because as the interaction length
is increased, the amount of second-harmonic in a standard device is also increased and
therefore the overall enhancement is decreased. A general feature of the inclusion of
the linear gratings is that shorter devices generate higher enhancement factors, whereas

longer devices have higher conversion efficiency.
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FIGURE 6.13: Output powers versus length of the reflection grating Lr with Ag =
5.78 mm, ¢; = 7v/4 and other parameters as in Fig. 6.5

The other key length associated with the device is the length of the reflection grating
Lg. Figure 6.13 shows how varying the reflection grating length from 0 to 1 mm affects
the second-harmonic generation. The purpose of the reflection grating is to couple
the backwards second-harmonic to the forward second-harmonic so that the second-
harmonic exiting the device is unidirectional. When Ly is set to zero, the figure shows
that the harmonic generation is split almost evenly between the forward and backward
modes. As the length of the reflection grating is increased, the power in the backward
mode couples into the forward mode. Once the grating has reached a sufficient length,
ie., for Lg > 1/x; = 0.17 mm, the backward mode becomes almost completely sup-
pressed. As the previous section on optimising the phases showed, there is an interac-
tion between the reflection and slow light grating, one might expect that the length of
the reflection grating might affect this relationship. However, once the reflection grat-
ing is long enough to suppress the backwards harmonic mode, any further increase

does not lead to a further increase in the forwards mode.

6.3.4 Varying the input intensity

The input intensity has so far been fixed to 10> W/cm? which in a standard 4 cm long
QPM device produces low conversion efficiency. As second-harmonic generation scales

quadratically with the input intensity, it is instructive to investigate the performance



of the device over a range of input intensities. Figure 6.14 shows how the second-

harmonic generation efficiency is affected when the input intensity is varied from 10 W /cm?

to 10° W/cm?.
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FIGURE 6.14: Output powers for fundamental and second-harmonic modes versus
input intensity with Ag = 5.78 mm, ¢y = 71/4 and other parameters as in Fig. 6.5.

The device parameters used are the ones previously found to optimise the second-

2. The figure shows that a

harmonic generation for an input intensity of 10> W/cm
conversion efficiency close to 100% is achieved over roughly three orders of magni-
tude from 10° W/cm? to 10° W/cm?. Below 10> W/cm? the efficiency starts decreasing

reaching 25% efficiency at 10 W/cm?.
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FIGURE 6.15: SHG enhancement over a standard QPM device versus input intensity
with Ag = 5.78 mm, ¢; = 7/4 and other parameters as in Fig. 6.5.

Figure 6.15 shows the corresponding enhancement factor compared to a standard QPM
device. Analogous to varying the device length, lower intensities have greater enhance-
ment factors and higher intensities have greater conversion efficiency. For an input in-
tensity of 10W/cm? the second-harmonic generation is enhanced by a factor of 2555

compared to a factor of 1.6 for an input intensity of 10° W/cm?.
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6.3.5 Varying the grating strength

The slow light field enhancement is dependent not only on the moiré period, but also
on the grating strength dn. Larger values of én decrease the group velocity produc-
ing larger field enhancement; consequently setting 6n = 0 recovers a standard QPM
device. Figure 6.16 shows how the second-harmonic generation varies with the grat-
ing strength with device parameters as in figure 6.5 with optimised phases ¢; = /4
and ¢» = 0, and moiré period As = 5.78 mm. Figure 6.17 shows the corresponding

enhancement factor.
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FIGURE 6.16: Output powers for fundamental and second-harmonic modes versus
grating strength én with Ag = 5.78 mm, ¢; = 71/4 and other parameters as in Fig. 6.5

Just as was seen with the moiré period, increasing the grating strength leads to an
increase in the second-harmonic up to a limit, at which point the power couples into the
backward fundamental mode. Decreasing the grating strength decreases the second-
harmonic generation. At én = 10~* the slow down factor is reduced to 1.01 resulting

in almost zero second-harmonic generation.
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FIGURE 6.17: SHG enhancement over a standard QPM device versus grating strength
on with Ag = 5.78 mm, ¢; = 71/4 and other parameters as in Fig. 6.5



6.4 Summary

This chapter has investigated using a 7r-phase shifted superstructure grating with a
slow light transmission band to enhance second-harmonic generation in a quasi-phase
matched device. By tuning the grating so that the centre of the transmission band
corresponds to the fundamental mode, the induced slow light increases the rate of
second-harmonic generation. The superstructure grating couples forward and back-
ward fundamental modes, which in turn generates forward and backward harmonic
modes. Therefore, a second linear Bragg grating is introduced at the start of the de-
vice to suppress the backward second-harmonic ensuring that the second-harmonic is

unidirectional.

The conversion efficiency increases with the moiré period until it reaches a maximum
value after which the second-harmonic couples back into the fundamental mode; sim-
ilar behaviour was observed for both the grating strength and the input intensity. The
device can be further optimised by setting the relative phases of the grating to take
advantage of a resonator effect formed between the linear gratings. In the parameter
regime investigated it was found that the device exhibits near-unity conversion effi-

ciency for intensities spanning three order of magnitude.
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Chapter 7

Conclusions and future work

7.1 Conclusion

In this thesis I presented a new approach to storing and releasing optical pulses based
on slow light dynamic moiré gratings. By dynamically varying the grating strength it
is possible to compress the pulse spectrum and dramatically decrease group velocity
inside the grating. The dynamic compressing of the pulse bandwidth allows the device
to beat the delay-bandwidth product of a static moiré grating. Further, I showed that a
slow light 7r-phase shifted grating is capable of producing enhanced second-harmonic
generation. Combined with a back reflecting grating, the two gratings form a resonance

which is capable of producing near unity conversion efficiency at low intensities.

All the devices investigated in this thesis have been modelled using coupled mode the-
ory. Chapter 3 introduced a new method of producing couple mode equations based
on the Lagrangian formalism. The usual approach to developing coupled mode equa-
tions relies on having to take multiple versions of the electromagnetic wave equation
and applying different approximations on each other them in order to produce a set of
coupled of equations. The benefit of using the Lagrangian formalism is that the equa-
tions can be derived from a single expression, namely the Lagrangian. With only one
expression needed only a single set of approximations need to be made. The equations
of motion result from varying the Lagrangian with respect to the modes, which gives a
set of coupled mode equations. As the Lagrangian is closely related to the Hamiltonian,

the resulting equations conserve energy.

Chapter 4 investigated dynamic moiré grating. The main difficulty with slow light de-
vices is the delay-bandwidth product. Slow light devices tend to either have a narrow
resonance and longer length, or a broader resonance and a shorter length. Therefore, it
is hard for a slow light device to compete with an optical fibre. They have a wide ac-
ceptance bandwidth and even though their group velocity is significantly higher than



a slow light device, they can be made arbitrarily long which increases the delay time.
However, increasing the fibre length means longer retrieval times limiting their use.
Therefore, it would be of great practical benefit to make a slow device that could both
store and release a pulse on demand. A way around the delay-bandwidth product con-
straint in slow light devices is to use an adiabatically tuned resonance. This allows a
larger initial bandwidth with a subsequently lower group velocity through adiabatic
tuning. The problem with such a device is localisation. A pulse must be fully localised
within the device before the tuning takes place. Therefore, the device must be long
enough to accommodate the pulse. A dynamic moiré grating is a good candidate to
create such a device as they can be written into waveguides and as such can be made
to lengths sufficient to accommodate a signal pulse. By dynamically varying the size
of the moiré transmission bandwidth a pulse localised in the device has its spectrum
compressed and experiences a reduction in its group velocity. My simulations showed
that the group velocity could be reduced by many orders of magnitude with the delay-
bandwidth product increasing inversely with decreasing group velocity. In section 4.4
a possible realisation of dynamic moiré grating was proposed using an electro-optic
grating.

In chapter 5 creating delay lines with fast switching times using Bragg and moiré grat-
ing was investigated. By using a strong pump pulse, XPM could be used to alter the
Bragg condition of a grating shifting the rejection bandwidth. Therefore, by using XPM
a grating can be used as a gate to allow a single pulse to pass. By having two such
gratings, a storage device could be created using XPM to store and release pulses. The
change in the refractive index using XPM is on the order of 107® — 10~ and shifting
the entire band gap would require a grating strength of the same order magnitude as
the refractive index change. To create gratings with high reflectance with such a small
grating strength would require gratings roughly 2 m in length which is beyond the fab-
rication limits of current ultra-long gratings. This situation can be improved by not
requiring that the entire rejection band gap be shifted, but instead use the shifted band-
width at the rejection band edge so that a larger grating strength can be used. While
this reduces the required grating length considerable, an apodisation is necessary to
suppress sidelobing. This increases the grating size but to a length within fabrication
limits. The downside of using the band edge is that strong second order dispersion will
mean significant pulse broadening. Another approach looked at in the chapter was to
shift the transmission band of a moiré grating. This approached showed that signif-
icantly smaller gratings could be used even with an apodisation applied. Whether a
Bragg of moiré grating was used, successive reflections off of the gratings introduced
pulse distortions which limits the practical use of the device.

The affects of slow light on enhancing second-harmonic generation were investigated
in chapter 6. I demonstrated that a closely related grating to the moiré grating, the 7-
phase shifted grating could be used in conjunction with a quasi-phase matching scheme
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to enhance the efficiency of second-harmonic generation. It was found that there was a
optimum superstructure period beyond which power was transferred from the second-
harmonic into the backward fundamental mode. Similarly the 7-phase shifted grating
creates both forward and backward modes, so a second reflection grating was added to
start of the grating to suppress the backward second-harmonic. It was found that the
inclusion of this second grating created a resonance with the 7r-phase shifted grating
which further enhanced the second-harmonic generation. For all parameter regimes
invested the inclusion of the slow light grating device provided significant enhance-
ment over a standard quasi-phase matched device. The greatest enhancement came
from shorter devices with lower pump intensities, therefore the device could be useful

for small chip-scale devices and quantum applications.

7.2 Future work

Typically, electromagnetism is expressed in a covariant form when using Lagrangian
formalism but only the vacuum expressions are of interest. When matter is included,
the covariant formalism can not be used. The reason for this is that Maxwell’s equation
in matter break Lorentz invariance. Therefore, expressing the equations in a covariant
form would be an abuse of notation. However, there are a number of problems with
this. The largest perhaps is the correct definition of the electromagnetic momentum
which has been an unsettled problem for a hundred years. This problem stems from
the correct definition of the stress energy tensor and in section 3.2.1 it was shown that
some licence needs to be taken in order to derive it. In my own work in this area, I
found that incorporating matter into the electromagnetism alters the underlying metric
structure. In turn this breaks Lorentz invariance and subsequently alters the form of
the stress energy tensor. However, while I did not develop these ideas sufficiently to
include them in this thesis, I do believe they form a good basis for further research.
Therefore further work in this area can look at developing a covariant formalisation of

Maxwell equations in matter.

Further work in the area of dynamic gratings would be to try to fabricate such a de-
vice to demonstrate the theory in this thesis is valid. Current limits on the refractive
index change of an electro-optic grating using lithium niobate is in the order of 104
therefore only small bandwidth changes could be made. Nonetheless small changes
in the group velocity could be observed. It may be possible to induce larger refractive
index changes using an alternative medium or using a different method to realise the
device. In developing delay lines, additional work in this area could focus on finding
grating and apodisation profiles that minimise pulse distortions. Also while SPM was
discussed, further work could also include a full simulation including material disper-
sion to see the affect SPM has on the profile of the pump pulse. Finally, the chapter

exploring the enhancement of second-harmonic generation using slow light gratings



developed a theoretical model that showed promising results. Further work could fo-
cus on the fabrication of these devices to test the modelled behaviour. There have been
groups developing the technology [94, 95] necessary for experimental verification and

so it could be possible to realise a device in the near future.
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Appendix A

Research Project Output

A.1 Journal Articles

T. E. Maybour, D. H. Smith, and P. Horak, “Slow and stopped light in dynamic moire
gratings,” Phys. Rev. A, vol. 104, p. 013503, (2021)

T. E. Maybour, D. H. Smith, and P. Horak, “Grating-induced slow-light enhancement
of second harmonic generation in periodically poled crystals,” Phys. Rev. A, vol. 105,
p- 013517, (2022)

A.2 Conference Proceedings and Presentation

(Conference Proceedings & Poster Presentation) T.E Maybour, D. Smith and P.Horak
(2021) Slow-Light Enhanced Second-Harmonic Generation Using a 7r-Phase Shifted
Moiré Grating in a Quasi-Phased-Matched Medium. CLEO/Europe-EQEC 2021, 21
- 25 June 2021, Munich, Germany.

(Conference Proceedings & Poster Presentation) T.E Maybour and P.Horak (2019)
Slow and stopped light in a time-dependent Moiré grating. CLEO/Europe-EQEC 2019,
23 - 27 June 2019, Munich, Germany.

(Conference Proceedings & Oral Presentation) T.E Maybour, D. Smith and P.Horak
(2018) Slow light propagation through a Moire grating at the zero dispersion wave-
length. At Photon 2018, 3 - 6 Sep 2018, Birmingham, United Kingdom. IoP.
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