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Understanding the complex interactions between the transcriptome and
proteome is essential in uncovering cellular mechanisms both in health and
disease contexts. The underwhelming correlation between corresponding
transcript and protein abundance suggests that regulatory processes tightly
govern information flow surrounding transcription, translation and post-
translation; particularly in higher order organisms. Inherent difficulties asso-
ciated with global proteome measurement make modelling protein abundance
via proxies desirable, given the pivotal role that intra-cellular proteins play
in cell regulation and function. In this thesis, a protein abundance predic-
tor is developed across the human cell cycle using mRNA and translation
abundance, determining that mRNA level alone insufficiently explains the
transcriptome-proteome relationship. To expand the feature space, some
30 sequence-derived features (SDFs) were engineered that impact proteins
before translation, and we demonstrated in our published works that over-
estimated outliers to fitted models (r2 = 0.67) are associated with post-
translational regulation and degradation. It made sense then to expand on
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the concept of using sequence-engineered features as generalized predictors
to expression; a large dataset was curated covering the entire human tran-
scriptome to derive over 180 new features, spanning from genome to esti-
mated post-translational modifications. SDFs were designed with scale and
generality in mind; allowing for their application in a variety of ’omic stud-
ies. This newly generated resource was validated by systematically analysing
intra-feature correlations and unsupervised learning techniques to mitigate
inevitable multicollinearity. Finally, global protein abundance prediction us-
ing SDFs was attempted, finding that sequence information alone leads to
model scores of r2 = 0.45, with mRNA abundance included adding 5% to ex-
plaining model variance. Unpacking fitted SDF models using gene ontology
analysis revealed a close relationship between SDFs and translation; helping
to explain their improved model performance over mRNA level. This data-
driven approach helps to isolate proteins of interest by outlier detection, with
SDF use biased towards predicting steady-state protein abundance.
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Notation

I have attempted to maintain a minimum level of necessary understanding
with regards to mathematical notation within this thesis, however many of
the concepts regarding statistical and machine learning theory require prereq-
uisite knowledge in calculus, linear algebra and probability theory. Vectors
are denoted by lower case bold Roman letters such as x, and all vectors
are assumed to be column-vectors. The superscript T denotes the trans-
pose of a vector or matrix, such that xT is a row-vector. The notation
(w1, . . . , wM) denotes a row vector wT with M elements, whereas the corre-
sponding column-vector is written as (w1, . . . , wM)T. Uppercase bold Roman
letters, such as M, denote matrices. The identity matrix I refers to a ma-
trix where elements Iij = 1 where i = j and zero where i 6= j. It will
be common practice to refer to the number of samples/rows/data points as
N , and the number of features/parameters/dimensions as P . If we have N
values (x1, . . . ,xN) of a P -dimensional vector x = (x1, . . . , xP )T then these
observations are combined into data matrix X in which the nth row of X
corresponds to the row vector xT

N . When referring to the covariance between
vectors cov(x,x) ≡ cov(x) ≡ var(x). All latent parameters are denoted with
Greek letters and observed parameters with Roman letters, but this may not
be entirely consistent throughout the thesis.
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Chapter 1

Introduction

1.1 Motivation

As we assume the majority of cellular behaviour is determined by the ag-
glomeration of proteins at different concentrations, aberrant behaviour in
the proteome is indicative of cell failure, such as by cancer, viral infection
and/or disease. Further to this, a large number of proteins and modifica-
tions are used as candidates for biomarkers of known diseases. Systematic
methods of predicting protein abundances could aid in identifying biomark-
ers within individuals when it comes to personalised/stratified treatments.
There are many pitfalls associated with peptide-based mass spectrometry
(MS) method used to quantify the proteome, such as the lack of unique
sequence tags to identify specific proteins [2], the complex pipeline and its
expensive cost. Hence indirect methods of estimating protein concentration
via the transcriptome and other cheaper methods have grown in interest over
recent years. This serves not only to overcome the shortfalls with proteomic
experimentation, but also to reduce the experimental workspace by compu-
tationally modelling parts of the discovery workflow.

We build from previous work by Gunawardana [3] which introduces the
hypothesis of finding post-translationally regulated proteins using a protein
abundance predictor with features that inform before or during translation.
This leads us to assume that predicted outlier proteins which do not cor-
relate strongly with their actual (measured) concentration are more associ-
ated with regulation to their expression post-translation through proteolytic
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2 CHAPTER 1. INTRODUCTION

degradation, modifications of translation factors and co-factor activity. Sub-
sequently iterating this process whilst using new features will help to isolate
relevant outliers through novelty detection to qualify protein function. One
of the main interests in this domain from a computational standpoint is
the unfathomable amounts of genetic data now publicly available in multi-
ple forms, and how to compress this into useful information. Multi-’omics
datasets quickly become intractable when combined in terms of computa-
tional resources, hence why so few studies (if any) have explored more than
two ’omics sources in tandem.

1.2 Contributions

The following are the believed novel contributions within this Thesis:

1. Combining outlier detection for PTR proteins with measured
translation. In Chapter 3 combined are the theoretical concepts
by Gunawardana [3] with the measured translation data provided by
Aviner [4, 5] to develop ML models with significant post-translationally
regulated proteins as outliers. Gunawardana did not have access to
measured translation abundance, and Aviner did not consider outlier
detection analysis.

2. Machine learning modelling considering with more than two
measured ’omics in tandem. In Chapter 3 predictors of protein
abundance are developed utilising both mRNA and translation rates as
inputs. Gunawardana [3] performed ML modelling with utilised mRNA
vs. protein (2 ’omics), and Aviner [5] utilised mRNA, translation and
protein (3) but did not perform ML modelling.

3. Generalized global human Sequence-Derived Feature dataset.
In Chapter 4 over 200 features are engineered to encompass the entire
sequence transcriptome (N >17k). Comparable equivalents such as
Vogel’s [6] feature set provides around N ∼ 500 samples with smaller
P and insufficient coverage over the transcriptome. Other studies have
studied sequence-based features in non-human species or performed
mathematical modelling, usually with significantly fewer features [7, 8].
The developments of this dataset are considered a novelty and resource.
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1.3 Report organization

This report is organised as follows. Chapter 2 presents a literature review
which includes the Central Dogma of Molecular Biology, an introduction to
features engineered from the sequence and the Cell Cycle. It also contains a
review of Sequence Technologies and a large amount of statistical and ma-
chine learning (ML) theory. Finally, the literature review finishes with an
overview and historical progression of transcriptome-proteome understand-
ing, firstly by correlation and secondly by modelling. Chapter 3 develops
linear and non-linear predictors across the HeLa cell cycle and provides evi-
dence of post-translation regulators within outliers to such models. Chapter 4
develops a novel large sequence-derived feature corpus and compares its per-
formance to previously considered sequence information. Chapter 5 utilises
said corpus with protein-protein interaction networks to develop advanced
protein abundance predictors, discovering the link between sequences and
translation inference. Finally conclusions and future work are presented in
Chapter 6.

1.4 Publications

* Paper - Parkes, G.M., Niranjan, M and Ewing, R. (2021). The Influences
of Sequence-Derived Features across the Human Proteome. Nucleic Acids
Research. Under review.

* Paper - Parkes, G.M. and Niranjan, M. (2019). Uncovering Extensive
Post-Translation Regulation During Human Cell Cycle Progression By Inte-
grative Multi-’omics Analysis. BMC Bioinformatics.

* Poster/Presentation - Parkes, G and Niranjan, M. (2018). Uncovering
Extensive Post-Translation Regulation During Human Cell Cycle Progres-
sion By Integrative Multi-’omics Analysis. CompBioMed Conference 2019,
Kings College London, UK, 23-26th September 2019.

* Poster - Parkes, G and Niranjan, M. (2018). Uncovering Extensive
Post-Translation Regulation During Human Cell Cycle Progression By In-
tegrative Multi-’omics Analysis. Workshop on Quantitative Systems Biology
2018, Kings College London, UK, 9th November 2018. Submitted.
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Chapter 2

Literature Review

This chapter aims to provide a comprehensive introduction and review to the
many interdisciplinary concepts touched upon in this research thus far. This
material is divided into a number of key sections:

1. Central Dogma of Molecular Biology

2. Sequencing Technologies

3. Machine Learning and Statistical Theory

4. Transcriptome-Proteome Analysis

We begin with an introduction to the key compounds which govern genet-
ics and the information of life, with cellular processes describing the flow of
information from DNA to protein. Next, the interactions in the normal cell
cycle process are explored, alongside technological developments that have
enabled the genetic revolution over the last two decades. Then a number of
the machine learning (ML) and statistical methods are covered and deployed
in high-throughput analysis and their application to multi-’omics analysis.
Finally the relationship between transcriptome-proteome as the precursor of
this original research is considered and frames the genesis of this thesis.

2.1 Central Dogma of Molecular Biology

The central dogma of molecular biology describes the flow of genetic in-
formation encoding all of life to generate proteins from DNA to RNA to

5



6 CHAPTER 2. LITERATURE REVIEW

protein. Francis Crick, whom with James Watson first proposed the double-
helix structure of deoxyribonucleic acid (DNA) in 1953 (and republished by
Nature in 1969) [9, 10], first coined the term and describes a protein synthe-
sis pipeline containing three major classes of biopolymers; DNA, RNA and
protein.

2.1.1 Basic Building Blocks

All of known biological life consists of information contained within a series
of chemical molecules which transform, copy and delete themselves at appro-
priate moments within their lifecycle. In this section groundwork on these
molecules before detailing the biological processes which influence upon them
is covered.

DNA and RNA Deoxyribonucleic acid (DNA) is a variable-length stable
polymer of nucleotides which contain the genetic information of an individual
organism within the nucleus necessary for the development and activity of the
cell. A single nucleotide consists of a pentose deoxyribose sugar, phosphate
group and one of four possible bases; Guanine (G), Cytosine (C), Adenine (A)
or Thymine (T). These bases are complementary, where adenine only pairs
with thymine, and guanine only pairs with cytosine, via hydrogen bonding.
[11, 12]. These base letters constitute the primary DNA sequence and hence-
forth the information is to be understood downstream by a collection of RNA
and protein components. DNA as a structural compound is highly stable,
and has possible future use cases as an efficient long storage mechanism for
large datasets [13]. Ribonucleic acid (RNA) is similar to DNA, except T is re-
placed with uracil (U) [9, 10], and contains higher versatility and diversity of
roles. A major subgroup of RNA is messenger RNA (mRNA), which carries
transcribed information (genes) from the DNA to extra-nucleolar ribosomes
for translation. See Table 2.1 for an overview of RNA types.

rRNA Ribosomal RNA (rRNA) is part of the non-coding RNA group,
which makes up 80% of cellular RNA and constitutes roughly 60% of the
ribosomal mass which play an essential role in translation of all mRNA [14],
as it binds to ribosomal proteins to form small and large ribosome subunits.
Production of rRNA is the rate-limiting step in the synthesis of a ribosome,
which lends them a crucial role in protein production and indeed cellular
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Type Abbr. Function References
Messenger RNA mRNA Encodes amino acids [9, 10]
Ribosomal RNA rRNA Translation [14]
Transfer RNA tRNA Translation [15]

Small nuclear RNA snRNA Splicing [16]
Small nucleolar

snoRNA
Nucleotide modification

[16]
RNA of RNAs

MicroRNA miRNA Gene/protein regulation [16]

Long non-coding RNA lncRNA
Regulation of epigenetic,

[16]
transcriptional

Small interfering RNA siRNA Gene regulation [16]

Table 2.1: Overiew: Different types of RNA.

activity. rRNA is synthesized in the nucleolus by RNA polymerase I using the
specialty genes that encode for them. In humans, these are RNR, RNA18S,
RNA28S and RNA5S families, as well as MT-RNR1, MT-RNR2, and MT-TV
which are mitochondrial genes. rDNA sequences are heavily duplicated across
eukaryotic genomes as tandem repeats, with humans having approximately
300-400 repeats which present in clusters on chromosomes 13, 14, 15, 21
and 22 [17]. rRNA sequences undergo substantial modification within the
nucleolus before ribosomal integration, including methylation, folding and
nucleolytic cleavage via snoRNA/protein complexes [18]. The process of
rRNA synthesis is tightly regulated (particularly in eukaryotes) to maintain
homeostasis; below are included a few of the interactions:

• Kinase AKT promotes rRNA synthesis as it regulates RNA polymerase
I [19].

• Accumulation of angiogenic ribonucleases in the nucleolus can lead to
increased rRNA transcription [20].

• Formation of heterochromatin in rDNA regions helps to silence tran-
scription [21].

rRNA is ubiquitous across all living organisms, and the gene regions are
heavily conserved across evolution. rRNA sequences can vary across a num-
ber of organisms, and hence can form unique configurations; these variants,
such as the 16S and 18S, are widely used to discover evolutionary relation-
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ships among organisms, and play a significant role in metataxanomics, as
this provides a method for identifying bacterial species within a sample of
unknown composition. This has seen a resurgence in interest following the
research developments within the growing field of microbiomics [22].

miRNA microRNAs (miRNA) are single-stranded small non-coding RNAs
(21-22nt) [23] that do not translate into proteins and primarily regulate
mRNA expression by binding to the 3’-untranslated region (UTR). Two miR-
NAs were first discovered to regulate the timing of larval development in C.
elegans, known as lin-4 [24] and let-7 [25], subsequently named as miRNAs
when it became clear they were a large family of endogenous RNAs [26].
miRNAs are produced by transcription and by splicing of long non-coding
RNAs (lncRNA), into an inactive pre-cursor form. This script is then exten-
sively processed into an RNA-induced silencing complex (RISC) which com-
plements target mRNAs to induce translational repression or degradation via
deadenylation [27]. The regulation of miRNA genes occurs in similar fashion
to protein-coding genes, such as auto-regulatory feedback loops or the regu-
lation of miRNA maturation machinery, such as Drosha and Dicer enzymes
[27]. miRNA molecules are highly stable as molecules, having half-lives in
hours or days which is significantly longer than most other RNA types [28].
miRNA dysregulation is associated with tumorigenesis, whereby miRNAs
can act as tumour suppressors such as in chronic lymphocytic leukaemia [29]
or proto-oncogenes by upregulating Thiamine levels in cancer cell lines [30].
Further to this, many miRNAs play roles in a number of non-tumour disor-
ders, such as neurological disorders and Down’s syndrome [31]. Increasingly,
miRNAs are utilised as biomarkers; due to their high stability, versatility,
protection from RNase activity, long half-life and low cost in terms of as-
say development. Despite this, a significant drawback is the low sensitivity
and specificity that miRNAs exhibit; meta-analyses demonstrate that certain
miRNAs can be unreliable as biomarkers [32].

Protein Proteins are variable-length amino-acid polymers that perform a
vast number of functions within living organisms. Each amino acid is an or-
ganic compound containing an amine (-NH2) and carboxylic acid (-COOH)
group at each terminus, with a central chiral carbon joined to an R group.
There are 20 known variants of R group which cumulatively provides unique
and variant functionality within proteins. These amino acids join together to
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form polypeptide chains which dictates the resulting secondary and unique
tertiary structure of the protein once it is folded; this determines the func-
tional activity of the protein. The order and selection of amino acids is
determined by the corresponding gene sequence, as encoded by the ‘genetic
code’; a codon-triplet system whereby three DNA bases encode for each of the
20 possible amino acids. Folded proteins usually undergo post-translational
modification (PTM), whereby chemical groups are attached to a number of
amino acid residues. These PTMs can significantly alter the activity and
function of the protein, for example increasing stability or altering the active
site of an enzyme. Proteins fulfill many roles including catalysts (enzymes),
DNA replication, stimuli response, molecular transportation, and cell sig-
nalling [33].

Most proteins are capable of folding into interesting and unique tertiary
3D structures, for many proteins this fold occurs naturally, but others require
molecular chaperones to assist folding. The main types of structure are:

• Primary structure: The amino acid sequence.

• Secondary structure: Local structures within the amino acid se-
quence formed by hydrogen bonds. The most popular examples are
α-helix, β-pleated sheets and coils. Many regions of secondary struc-
ture can exist on the same protein molecule.

• Tertiary structure: The overall 3D shape and structure of a sin-
gle protein molecule. In addition to hydrogen bonds, disulfide bonds,
PTMs and salt bridges, many proteins also contain a hydrophobic core
(i.e resistant to water).

• Quaternary structure: A structure formed by several protein molecules
bonding together to form a protein complex. A classic example of this is
the tetrahedral Haemoglobin protein complex, formed from two Heme
‘α’ and ‘β’ groups.

Many proteins contain several protein domains, which are protein seg-
ments that fold into distinct structural arrangements. These domains have
specific functionality, such as kinase activities or binding modules [34]. One
of the primary advantages for this behaviour is that each domain can fold
independently, reducing the complexity of residue interactions for particu-
larly large polypeptide chains. Furthermore, these domains appear as motifs
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which help to mediate protein-protein interaction. Short Linear Motifs (or
SLiMs) are 3 to 11 contiguous amino acids that exist often in intrinsically
disordered regions of a polypeptide, that upon interaction with a secondary
partner induce secondary structure formation [35, 36]. Many of these motifs
are recorded in the Eukaryotic Linear Motif (ELM) database [37].

2.1.2 Information Processing

Now that the basic building blocks of biological life are covered, the processes
that bring about processing within the cell will also be detailed.

Transcription Transcription is the primary step, whereby a gene located
on one or more of the chromosomes is transcribed/copied into an anti-parallel
mRNA strand, also known as the primary transcript. Transcription proceeds
as follows:

1. Prelude: Histone modification: The 3-D structure of the chro-
mosome must enable physical access to the replicating enzyme, RNA
polymerase. This is managed by histone proteins.

2. Binding and Elongation: The RNA Polymerase enzyme, alongside
several transcription factors, forms a complex that binds to the pro-
moter region on the gene of interest [44]. The bonds joining both com-
plementary DNA bases are broken, and a complementary RNA-strand
copy of the template strand is made [44]. Transcription rates vary
by eukaryote, but can manage roughly 10-100 nucleotides per second,
depending on the chromatin structure or the amount of methylation
etc.

3. Termination: RNA polymerase moves along the template strand until
it reaches the termination region, whereby the new RNA strand is
released. The RNA is then preprocessed with polyadenylation, whereby
a series of Adenines (A) are concatenated to the primary transcript 3’
end [45].

If the gene is part of coding region, the resulting RNA is mRNA, which
in turn serves as a template during translation to produce a protein. How-
ever the gene may also be non-coding, such as miRNA, rRNA or transfer
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RNA (tRNA). In this case, the RNA produced will go on to separate post-
transcriptional processing, or fold into a 3-dimensional RNA structure to
perform separate functions in a cell.

Post-transcription Post-transcriptional activities involve all of the key
events that occur between transcription and translation; and primarily con-
cern the newly produced mRNA strand. They are broadly broken down into
two focuses:

1. Post-transcriptional modification: Processing of precursor to ma-
ture RNA, 5’ cap, 3’ tail, splicing.

2. Post-transcriptional regulation: Regulation of transcripts, alterna-
tive splicing, nuclear degradation, processing, nuclear export.

In terms of mRNA processing, the primary transcript receives an added 7-
methylguanosine (m7G) to the 5’ end, known as 5’ capping. This is essential
in helping the ribosome bind during translation, and helps to protect ti from
exonuclease degradation. Notable exemptions from this process include mito-
chondrial mRNA [46] and plant chloroplastic mRNA [47]. In addition to this,
around 250 adenine residues are added to the 3’ end to form a poly(A) tail
[45] protecting it from ribonuclease digestion. For protein-coding mRNAs,
introns (non-coding sections) are spliced out and exons (coding-sections)
are connected to produce the matured mRNA. The splicing reactions are
conducted by a large complex called the spliceosome [48] which consists of
snRNAs and proteins that recognise specific splice sites in the pre-mRNA,
much like endonuclease enzymatic activity. Many pre-mRNAs have differ-
ential splicing options to produce different mature mRNAs from the same
pre-mRNA sequence. This is known as alternative splicing [49] and is highly
prevalent in the product of antibody proteins among other functional protein
groups. This leads to a considerably greater variation in the proteome than
in the transcriptome.

Post-transcriptional regulation is known to contribute substantially the
control of gene expression both at the RNA and protein level. There are
known mechanisms of feedback whereby mature RNA can interact directly
with the genome (either self-feedback or another gene) or via complexes to
regulate the expression of future RNAs [50]. They can also regulate other
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RNA or protein located in any organelle as miRNAs by binding to the 3’-
UTR region of other mRNAs [27].

Translation Translation is primarily concerned with protein synthesis via
ribosome activity, and occurs either in the cytosol or in the rough endoplasmic
reticulum (RER). Translation as a process is broadly split into three phases:
initiation, elongation and termination. Translation initiation is complex and
involves at least 10 proteins (see Figure 2.1 for illustration). Both ribosomal
subunits must assemble around the mRNA start codon, which is downstream
from the 5’-UTR. In eukaryotes this is nearly always AUG which encodes for
the amino acid methionine (M) [15]. tRNAs which are associated to one of
the 20 amino acids then attempt to bind with the mRNA-ribosome complex
on the next codon triplet in the sequence, with only a tRNA with the correct
anti-sense codon being successful. The tRNA transfers its amino acid to the
tRNA corresponding to the next codon, shortly before the ribosome translo-
cates to the next codon and so on, forming a primary amino acid sequence
(or chain). This process repeats until a STOP codon is reached (UAG, UAA
or UGA), whereby the ribosome releases a new nascent polypeptide chain
[15]. Like the 5’-to-3’ direction of DNA/RNA, polypeptide chains are di-
rected N-terminus to C-terminus, whereby the first amino acid is near the
amino-group (N for NH2), and the final amino acid is near the carboyl group
(C for COOH).

The rate of translation varies substantially by organism; in general it is
considerably higher in prokaryotes (up to 17-21 amino acid/s) than eukary-
otes (6-9 amino acid/s) [51, 52]. Further to this, the rate can be affected by
many factors, such as the prominence of AUGs [53], temperature, pH, ATP
abundance and others. The ATP required via translation for locomotion is
significant, once one factors in the movement of mRNA, tRNA binding and
peptide bond formation.

Post-translation Nascent polypeptide chains produced post-translation
require extensive post-translational modification (PTM) into the mature pro-
tein product. These modifications often involve appending chemical groups
to certain amino-acid side chains, expanding the repertoire of normal R
groups and modifying existing chemical groups. Common functional modi-
fications include glycosylation, phosphorylation, acetylation and lipidation,
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Figure 2.1: Translation initiation of a mRNA molecule.
Ribosome is represented in cyan. mRNA strand in orange,
tRNA molecules in yellow. Image is taken with permission from
the book: ‘The Cell: A Molecular Approach. 2nd edition., Fig-
ure 7.10’
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which serve a host of functions such as improving stability, cell signalling and
adhesion [54]. Other forms of PTM consist of proteolysis, such as cleaving
peptide bonds to remove the initiator methionine (M) residue. Prevalent
modifications are covered in detail within Table 2.2 below:

PTM Description

Phosphorylation

As the most frequent modification (1/3 of the
human proteome)[55], this process involves the addition of

phosphate groups to serine, threonine and tyrosine [56].
Functionalities include multi-level regulation, protein

degradation, enzyme regulation and
modulation of CDKs [56].

Acetylation

The second-most common modification, disproportionately
found among chromatin/metabolic enzyme proteins.

Acetylation affects gene expression and metabolic rates,
in addition to protein stability/localization [56].

Glycosylation

Linked to improved protein folding, stabilization, cell-to-cell
adhesion and immunology. Glycoproteins have high

heterogeneity with their proteins having highly diverse
roles in the proteome [57].

Ubiquitination

Named after ubiquitin, due to its presence ubiquitously,
its mark is commonly known to signal protein degradation

via the 26S proteasome, relocalise
proteins or inhibit PPIs [58].

Table 2.2: Descriptions of the most common PTMs.

2.1.3 Codon Bias

Analysis of DNA sequence material has been a significant field of interest
since its discovery, and accelerated beyond the Human Genome Project.
Given the rich textual-based format of sequence information, there has been
significant progress in deriving properties about genes and their downstream
proteins. These have a very wide scope and include:

1. The comparison of sequences: To find similarity between DNA or other
sequences across species is very common for evolutionary discovery.
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2. Identifying intrinsic features of the sequence, such as active sites, post-
translational modification sites, introns, exons and regulatory compo-
nents.

3. Estimating the 2-D and 3-D structure.

One of the most interesting sequence-derived features has been the differ-
ences in base frequency of occurrence across different species, also known as
codon usage bias. Codon bias is factoring in differences in frequency between
synonymous codons in the coding sequence [59]. This is because natural se-
lection will balance between mutational bias and translational optimization,
in addition to reflecting the available tRNA pool to the cell. In addition
to these; GC content, raw base frequencies, biophysical properties of amino
acids, and text-mined features all contribute to the global picture of static
features. In this section, more intricate SDFs will also be covered.

GC content This simply reports the fraction of G and C bases that fall
within a given sequence si, as scaled by the sequence length ni.

Codon Adaptation Index In the literature, there is a strong assumption
that gene products are likely to correspond to biased amino acid composition
that might minimize the biosynthesis energy costs of translation and its rate
[53]. Firstly define a reference table of relative synonymouse codon usage
values from highly expressed genes:

RSCUij =
Xij

1
n

∑ni

j=1 Xij

(2.1)

where Xij is the number of occurrences of the jth codon for the ith amino
acid, n is the number of alternative codons for amino acid i [60]. The relative
adaptability of a codon wij is then:

wij =
RSCUij
RSCUimax

− Xij

Ximax

(2.2)

where RSCUimax and Ximax are the most frequently used codon for ith
amino acid over j. CAI is then calculated as the geometric mean over the
weights:
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CAI =

(
L∏
k=1

wk

)1/L

(2.3)

Relative Codon Bias Proposed by Roymondal (2009) [61], by attempting
to eliminate the many artefacts of previous metrics, such as varying sequence
length. Let f(x, y, z) be the normalized codon frequency for the codon triplet
(x, y, z) of a gene, the RCB of a codon triplet is then defined as:

dxyz =
f(x, y, z)− f1(x)f2(y)f3(z)

f1(x)f2(y)f3(z)
(2.4)

where f1(x) is the normalized frequency of base x at codon position 1,
f2(y) is the normalized frequency of base y at position 2, etc. Normalization
of frequency occurs over the gene length in codons. The total RCB of a gene
is then the geometric mean of all codon biases:

RCB =

(
L∏
i=1

[
1 + dixyz

])1/L

− 1 (2.5)

where L is the number of codons in the gene, dixyz is the codon usage
difference of codon i [61]. RCB values close to 0 indicate a lack of bias for
the codons, higher values indicate more bias.

tRNA Adaptation Index This metric is a measure of translational ef-
ficiency which takes into account the intracellular concentration of tRNA
molecules and the efficiencies of each codon-anticodon pairing [62]. The es-
timated translational efficiency of the ith codon (out of 61) is given thus:

Wi =

ni∑
j=1

(1− sij) tGCNij (2.6)

where ni is the number of tRNA types/anticodons that pair with codon
i, tGCNij is the tRNA gene copy number (retrieved from the genomic tRNA
database) [63], sij weights represent wobble interactions between codon i and
j. Normalized weights wi are then obtained from Wi by scaling them with
respect to the maximum value among all codons.
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2.1.4 The Cell Cycle

All known living eukaryote and prokaryote cells survive by growing and then
dividing into two daughter cells. This process is rigorously controlled at all
levels, as the cell environment must be maintained near constancy to ensure
survival. See Figure 2.2 for illustration.

2.1.4.1 Cell cycle phases

G1 phase corresponds to the first growth phase, replicating organelles and
obtaining nutrients. This then leads into S phase, where each of the chro-
mosomes is semi-conservatively replicated. Once this is complete, the cell
enters a second growth phase (G2), and mitosis (M); where the cell divides
into two daughter cells. There are notable exceptions, such as during embry-
onic development, where the cells only undergo S and M phase, and do not
have any growth phases within their cell cycle.

G1 phase Primary focuses in this phase involve cell growth in size, with
synthesis of mRNAs and histones required for the next stage; DNA synthesis.
Further to this, biosynthesis is greatly increased, and duplicates organelles
such as mitochondria and ribosomes. The duration during this phase varies
considerably depending on the type of cell in question. For a typical rapidly
proliferating 24-hour human cell, G1 could be expected to take around 11
hours, constituting roughly 45% of the entire cycle [64]. Environmental fac-
tors such as nutrient supply and temperature can limit growth, with cell
senescence (G0) if it is unable to meet the prerequisites. G1 is tightly reg-
ulated as most of the CDK inhibitors are highly expressed, with a peak in
Cyclin E1 (CCNE1) towards the end of G1 [65, 66]. The tumour suppressor
protein pRB binds to E2F family transcription factors to down-regulate S
phase cyclins via Ubiquitin E3 ligases [58].

S phase Once a cell passes the G1/S checkpoint, it undergoes intensive
DNA replication, whereby every chromosome and centrosome is duplicated
to form two sister chromatids. Rates of RNA transcription and protein syn-
thesis fall by orders of magnitude, with an exception to histone production,
which is mostly high during S phase. The concentration of DNA gradually
doubles throughout the time in this phase, which has been observed [64]. The
pathways that govern this replication are highly conserved, as to minimize
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Figure 2.2: The Cell Cycle. Diagram assumes human cell
cycle, given there are 46 chromosomes duplicated at S phase.
Each area section is not to timescale. I acknowledge the Uni-
versity of Leicester in producing this image.
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single nucleotide polymorphisms (SNP) or errors that may accrue through
aberrant copying [66].

G2 phase Once DNA replication is complete, the cell undergoes a sec-
ond growth/gap phase known as G2. This phase is shorter than that of the
previous gap phase, and aids to prepare the cell for mitosis by synthesising
necessary proteins and, in particular, cytoskeletal infrastructure like micro-
tubules [64]. Another major checkpoint (G2/M) at the end of this phase must
be passed before the cell undergoes mitosis , requiring a threshold activation
of cyclin B1/CDK1 (MPF) [65].

M phase Mitosis is by far the most complicated phase within the cell cycle,
and begins with nuclear membrane dissolution. Mitosis and cytokinesis take
roughly 1 hour, and hence represent only 5% of the time spent in one cycle
[64]. Mitosis occurs (Table 2.3) as follows:

Step Short Description

Prophase
Chromatin condense and become visible,

nucleolus dissolves, formation of spindles [64]

Metaphase
Spindles associate with kinetochores on centromeres,

Centromeres align to equatorial plate with microtubules,
key checkpoint of chromosome alignment [64]

Anaphase
Anaphase-promoting complex (APC) cascades to separate

sister chromatids, which are pulled to pole-ends of the cell [64, 65]

Telophase
Nuclear envelope reforms to produce two cells,

spindle fibres degradated, chromatin decondensation begins [64]

Cytokinesis
Cytoplasm divides into two daughter cells,

cytoskeletal backbone rearranged

Table 2.3: Steps within M phase.

Once a cell finishes cytokinesis, it is considered to have returned to
interphase/G1.

G0 phase Traditionally thought of as a resting phase, G0 describes cellular
senescense whereby the cell still undergoes metabolic activity but does not
progress in the cell cycle (i.e does not duplicate). Cells in G0 that can return
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to G1 are quiescent from extrinsic signal pathways, characterized by low
RNA concentration and turnover. Senescence is irreversible and caused by
DNA damage or degradation, which could be from a number of internal or
external factors [67]. Most fully differentiated cells are in G0, particularly
mature erythrocytes and neurons.

2.1.4.2 Cell cycle checkpoints

The cell cycle has various ‘checkpoint’ mechanisms which halt progression
until it can ensure an earlier process has been completed. Most commonly
this is due to DNA damage response (DDR), which comprises of proteins
that signal DNA damage to downstream effectors that arrest the cell cycle
and promote DNA repair [68].

Checkpoint Description

G1-to-S
ATM kinase activated by dsDNA breaks, cell cycle arrested

by Chk2. ATM induces p53 by lowering Mdm2 affinity,
Stable p53 promotes DNA repair and apoptosis [65, 68]

S
If significant DNA damage detected during DNA replication,
replication is halted. ATR activates Chk1 inducing Cdc25A

degradation, preventing M phase progression [68]

G2-to-M
Entry requires high Cdk1, which is inhibited by

T14 phosphorylation induced by Wee1/Myt1 kinases [69, 68]

Spindle assembly
Correct partitioning of chromatids in anaphase

is protected, where APC/C is inhibited, cycB/securin is
delayed until spindles associate to all chromosomes [68]

Table 2.4: The most important cell cycle checkpoints.

There are many mathematical models of the eukaryotic cell cycle, and
particularly the checkpoint/progression milestones. Much of the early work
was done using ordinary differential equations (ODEs) by Tyson [70, 71]
using P. polycephalum and X. embryos. Other models such as stochastic,
boolean and hybrid models have also been attempted [72], including recently
in mammalian somatic cells [73]. One of the key challenges with this approach
is providing strong levels of data-driven modelling to accompany and validate
stimulations.



2.2. SEQUENCING TECHNOLOGIES 21

2.2 Sequencing Technologies

As mentioned previously, since the discovery of DNA and its helical struc-
ture [9, 10], great advances in the complexity, diversity and intelligibility of
genomes have been reached, many of which beginning with the completion
of the Human Genome Project [74, 75, 76]. The field of DNA sequencing
has thereafter moved extraordinarily quickly, in terms of cost reduction per
megabase, throughput and diversity of species for which the full genome
has been sequenced. Here a number of the key technologies are covered,
that have developed into what is now known as Next-Generation Sequencing
(NGS) and even beyond. Dozens of next-generation sequencing companies
and technologies have formed, resulting in the emergence of bioinformatics
as a major scientific sub-discipline [77]. Significant global consortiums since
the advent of NGS include the 1000 Genomes Project [78], the Exome Se-
quencing Project [79], and the UK’s 100,000 Genomes Project which are the
beginnings of attempts for population-scale sequencing efforts. Whilst initial
efforts have mainly been focused on human genome sequencing, a number of
projects now aim to sequence other species also, such as the 100K Pathogen
Genome Project based in the University of California, Davis.

NGS technologies broadly fall into two categories: Short-read approaches
aim to sequence a small DNA region which is lower cost and higher accuracy,
whereas long-read approaches enable de novo genome assembly by provid-
ing longer sequence read lengths. In this section we begin with microarray
technologies and then move on to cover NGS technologies.

2.2.1 DNA microarrays

Microarray technology is one of the oldest forms of sequencing technolo-
gies and have been used extensively in research since the mid-to-late 1980s
[86]. This involves immobilizing different single-stranded DNAs (ssDNA) on
a substrate in distinct and separate wells [87]. Target DNA is labelled with
a fluorescent probe and hybridized on to the array. The intensity value of
the light signal produced (if the target DNA binds to a particular ssDNA)
can be converted using Beer-Lambert law to estimate the number of bound
molecules. Microarrays have a vast number of applications, such as identi-
fying single-nucleotide polymorphisms (SNPs); which are variations in the
DNA that may be indicative of disease, and genome-wide association study
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(GWAS) analysis [88]. DNA microarrays can easily be adapted to measure
expression levels by measuring the amount of gene-specific cDNA, which is
the corresponding mRNA strand that has been transcribed back to DNA
by the viral enzyme reverse transcriptase. One of the major benefits of mi-
croarrays are their very low cost in comparison to NGS technologies, however
technical complications can arise in relation to normalization and hybridiza-
tion of certain probes.

2.2.2 Short-read NGS

Short-read sequencing technologies broadly fall under two main categories:
Sequencing By Ligation (SBL) and Sequencing By Synthesis (SBS) [85]. In
both approaches, DNA is clonally amplified on a solid surface, where thou-
sands of identical copies of DNA fragments are produced in parallel, each
with their own reaction centre, thus allowing the sequencing of many mil-
lions of DNA molecules at the same time. In this subsection a number of
the key techniques are explored, alongside principles and companies which
inhabit the NGS biosphere.

Generation of Clonal Template Populations Generating the clonal
template population as a prerequisite to SBL/SBS elicits a number of strate-
gies; such as a) bead-based, b) solid-state or c) DNA nanoball generation
methods. As a precursor to the subsequent methods, the sample DNA is
fragmented, followed by ligation to a common adaptor set for clonal ampli-
fication and sequencing.

• Bead-based - An adaptor is used that is complementary to an oligonu-
cleotide fragment immobilized on a bead. Emulsion PCR (emPCR) is
then used to amplify the DNA template to create millions of clonal
DNA fragments. These beads can then be distributed/arrayed onto a
large surface.

• Solid-state - Instead of using emPCR (as with bead-based), ampli-
fication occurs directly on a slide, using forward and reverse primers
which initiate replication.

• DNA nanoball - One set of adapters are ligated to either end of a
DNA template, forming a template ring. The circular DNA templates
are then cleaved downstream of the adapter sequence and iteratively
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ligated to integrate different adapters. These templates are then am-
plified to generate DNA nanoballs, which are then hybridized onto a
patterned flow cell.

Sequencing by Ligation SBL approaches involve the hybridization and
ligation of labelled probe and anchor sequences to a DNA strand. The la-
belled probe encodes one or two known bases (as an encoding mechanism)
and a series of degenerate/universal bases, which complementarily bind be-
tween the probe and template [89]. The anchor fragment encodes a known
complementary sequence to an adapter sequence and provides an initiation
site for ligation.

The SOLiD platform (by ThermoFisher) utilizes two-base-encoded probes,
whereby each fluorometric signal represents a dinucleotide. Because there are
16 combinations of each dinucleotide leading to issues with spectral resolu-
tion, only 4 fluorescent signals are used, where each represents a DNA base.
Thus the combination of these colours leads to a colour-space result, which re-
quires post-experimental deconvolution using data analysis techniques. Fol-
lowing cluster generation/bead deposition onto a slide, fragments are se-
quenced by ligation and added to the DNA library. The two-base probe is
ligated onto an anchor that is complementary to an adapter, and the slide is
imaged to identify the first two bases in each fragment. Unextended strands
are capped by unlabelled probes to maintain cycle synchronization. Finally,
terminal degenerate bases and the fluorophore are cleaved off the probe, leav-
ing a five base pair extended fragment. This process is repeated ten times
until two out of every five bases are identified. [85]

The other main SBL approach is using Complete Genomics (BGI); whereby
DNA is sequenced using a combinatorial probe-anchor ligation (cPAL) ap-
proach. Post-DNA nanoball deposition, a complementary anchor to one of
four adapter sequences and a fluorophore-labelled probe are bound to each
nanoball. The probe is degenerate at all but the first position. Anchor and
probe are then ligated into position and imaged to identify the first base on
either the 3’ or 5’ side of the anchor. The probe-anchor complex is then
removed and the process is repeated with the same anchor but a different
probe with known base at n + i positions, where i < 5 is the number of
iterations.
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Sequencing by Synthesis SBS approaches describe a large array of DNA-
polymerase-dependent methods, but we will focus on two approaches in par-
ticular; Cyclic Reversible Termination (CRT) and Single-Nucleotide Addition
(SNA) methods.

CRT approaches, such as those adopted by Illumina and Qiagen, use
terminator molecules similar to those used in Sanger sequencing, whereby the
ribose 3’-OH group is blocked to prevent elongation [90]. A DNA template
is primed by a complementary basr sequence to an adapter region, which
initiates DNA polymerase binding to the dsDNA region. During each cycle,
all four labelled and 3’-blocked dNTPs are added, and incorporated into
each elongating complementary strand. Imaging technology (total internal
reflection flourescence microscopy) relies on the flourescence of each dNTP
to determine sequence for each cycle.

SNA approaches (such as Ion Torrent), also known as Pyrosequencing,
on the other hand rely on a single signal to mark dNTP incorporation into an
elongating strand. Subsequently, each of the four nucleotides must be added
sequentially to ensure only one dNTP is responsible for the signal. This
requires no blocking as the absence of the next nucleotide in the sequence
will prevent automatic elongation [85].

2.2.3 Long-read NGS

Genomes are highly complex with regions that can contain many repetitive
elements, copy number alterations and structural variants [91]. As a con-
sequence to this complexity, short-read technologies are often insufficient to
resolve them, as read-lengths rarely exceed one kilobase. Long-read sequenc-
ing on the other hand delivers reads in excess of several kilobases, allowing for
the resolution of large structural features. Long-read sequencing also plays
a key role in transcriptome research, as a long-read can cover entire mRNA
transcripts, which can uncover novelties regarding exon-intron interactions
and gene isoforms. The two main categories of long-read sequencing cur-
rently used are single-molecule real-time (SMRT) sequencing, and synthetic
strategies which adapt from short-read technologies to construct longer-reads
in silico [85]. These technologies are mentioned for the readers interest but
they are not utilized within this research, nor are measurements derived from
these particular technologies.
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Figure 2.3: The Illumina Sequencing Platform pipeline.
This image is taken with permission from Mardis, 2013 [76].
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2.2.4 Proteomic Techniques

Proteomics is the study of characterizing and measuring proteins within a
cell or organism. The goals of such analysis are in the quantitative and/or
qualitative properties that proteins possess, such as their profile, interac-
tion network, concentrations and more. Understanding the assumptions and
techniques behind measuring protein abundance, predicting structural and
functional properties of proteins is crucial in bridging the gap between tran-
scriptomics and proteomics, and forms a bedrock to the targets of prediction
within the work of this thesis. Whilst the sum of techniques developed is
vast and is a research thesis in an of itself, only techniques that can measure
protein expression level will be mentioned, as this is the primary target for
machine learning algorithms as conducted within this thesis.

Analysis and separation of proteins and other compounds is well known,
with early techniques expanding from Gel electrophoresis in 1D (as is com-
mon in DNA analysis) to using 2D Gel electrophoresis (2D-E) and 2D Flourescense
Differential Gel electrophoresis (DIGE). The separated proteins are then
stained with compounds such as silver, which binds to cysteine-groups in
the proteins. Silver quantity can be determined by the relative darkness in a
gel area under UV light, which relates to the quantity of protein in a given gel
area. Isotope-Coded Affinity Tag (ICAT) uses isotopic labelling in vitro, and
Isobaric Tag for Relative and Absolute Quantification (iTRAQ) uses isobaric
labelling; in conjunction with chromatography and Mass Spectrometry (MS)
for quantitative proteomics [92].

Here a table summary is provided of some of these proteomics techniques,
and we will focus on MS in more detail as this is the technique that the
majority of our proteomic data is collected by.

2.2.4.1 Mass Spectrometry

Used for mass analysis of protein characterization, MS is one of the most
versatile and comprehensive tools available for large-scale proteomics. Due
to some inherent limitations of biological MS [94], the MS setup pipeline
(including sample preparation, front-end preparation, ionization, data acqui-
sition and analysis) differs depending on sample complexity and goals of said
analysis [95, 96]. Mass spectrometers consist of an ion source and optics,
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Technology Applications Strengths Weaknesses

2D-E
Separate proteins;
Profiling quant.
expressions

Relative quant.
expression

Some proteins poor
separation;
low abundance

DIGE
Separate proteins;
Profiling quant.
expressions

Relative quant.
expression;
High sensitivity;
Variability reduction

Requires unique
visualization;
Expensive;
Proteins require
lysine

ICAT
Chemical isotope
labelling for
quant. proteomics

High sensitivity;
High reproducibility;
Can detect low
expression levels

Acidic proteins not
detectable

iTRAQ
Isobaric tagging of
peptides

Relative quant.
expression;
High through-put;
Parallelizable

Requires fractionation
of peptides;
Increased sample
complexity

MS

Protein
identification;
Protein
characterization

High sensitivity;
Very high through-put;
High specificity;
Relative qual. and
quant. expression

Protein fragments
must be ionizable;
Variable sensitivity;
Expensive;

Table 2.5: An overview of proteomic techniques, as discussed
by Chandramouli and Qian (2009) [92, 93].
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the mass analyzer, and electronics to perform data processing. Peptides are
converted to a gaseous form and projected through the spectrometer until
they reach the detector, which measures the mass-to-charge (m/z) ratio of
the particle. Liquid or gas chromatography (GC/LC) can often be deployed
pre-MS as this helps to separate peptide fragments by mass. Here the key
components of the mass spectrometer will be covered in more detail and cover
the advantages/disadvantages with differences in methodology.

One of the major technological developments that have enabled MS anal-
ysis is the soft ionization techniques, as proteins are polar, nonvolatile and
thermally unstable. Ionization transfers an analyte to the protein within the
gas phase without extensive degradation to the peptides. Two of the main
technologies for achieving this are:

• MALDI - Short for ‘matrix-assisted laser desorption ionization’, this
technique deploys rapid laser heating to the MALDI matrix, causing
desorption of matrix [M+H]+ ion analytes into the MS gas phase [97].

• ESI - Short for ‘electrospray ionization’, analyte ions are provided from
an electrified, high-voltage solution. The spray is released between the
inlet and emitter of the mass spectrometer [98].

Mass analysers are an integral aspect of each mass spectrometer since
they can store ions and separate based on mass-to-charge ratios. A number
of technologies exist to do this, including Ion Trap, Orbitrap and Ion Cy-
clotron resonance (ICR) analyzers, which can separate ions based on their
m/z resonance frequency, m/z stability and time-of-flight (TOF) analysis to
determine the time of flight of each analyte. Often mass spectrometers can
have hybrid functionality combining these analysers such that different needs
can be met during analysis. The detail of these different instruments is be-
yond the scope of this work, but highlight the depth of the field of proteomics
analysis via this family of techniques [96].

Proteins are identified by m/z of their peptides and fragments, which
means that biological samples require separation before performing MS to
allow for unambiguous identification. This plays a significant role as the
accuracy and sensitivity of the experiment rely on sufficient separation. His-
toric techniques include various gel-based methods such as 2D-E as described
previously [92], however current technologies include:
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Figure 2.4: Schematic of the LTQ-Orbitrap hybrid in-
strument by Thermo Scientific. (a) Overall diagram of
the LTQ-Orbitrap. (b) Cross section of the Orbitrap analyzer.
Taken from Yates et al. 2009 with permission.
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• HPLC - High pressure liquid chromatography directly couples to in-
struments with an ESI source, which allows for a continuous separation
pipeline directly fed into a mass spectrometer. This is the most com-
mon technique, and there are many variants of LC/MS dependent on
application [99].

• RPLC - Reverse phase liquid chromatography is different as it sepa-
rates compounds based on their hydrophobicity, and subsequent buffers
are compatible with ESI [100].

Often pipelines require adjustment for the identification and quantifi-
cation of phosphorylated proteins, or other post-translational modifications
associated with peptides. For example, in Phosphoproteomics, a selective
enrichment technique using immobilised Fe3+ ions is used to selectively bind
to phosphorylation sites.

2.3 Machine Learning and Statistical Theory

In this thesis an array of machine learning (ML) algorithms are considered
and applied to different bioinformatics problems, ranging from protein abun-
dance prediction and covariance analysis on sequence-derived features. Here
we will cover the basics of regression and tree-based models in addition to go-
ing into more detail for the algorithms that give current state-of-the-art with
the notable exception of deep learning. Note that classification techniques
are largely ignored in this Thesis as nearly all of the response variables we
analyse are continuous.

2.3.1 Linear Regression Models

The aim of any multivariate linear regression model is to predict the value of
one or more continuous target variables y given the value of a P -dimensional
vector x of input variables. These models are always linear with respect to
the parameters, however the input variables can undergo non-linear transfor-
mations via basis functions φ(·). Given a training set D = {(xn, yn)}Nn=1 with
N samples, a hypothesis function h(X) attempts to predict y given some un-
known parameters w = (w1, . . . , wP )T. Mathematically this is formulated
as:
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ŷn ≡ h(xn) = w0 +
P∑
p=1

wpφp(xnp), ∀n (2.7)

where φ = (φ1, . . . , φP )T are the optional non-linear basis functions (e.g
Gaussian). The parameter w0 is the bias parameter or fixed offset. It is
common to introduce a dummy basis function φ0(x0) = ~1N such that the
term w0 vanishes from (2.7), leading to the design matrix Φ and matrix-
vector product h(Φ) = Φw. Throughout this chapter we will now on use
Φ and X to refer to the design matrix interchangeably. The unknown or
un-modelled effects of the linear model are accounted by an error term ε:

yn = wTφ(xn) + εn, ∀n (2.8)

where ε = (ε1, . . . , εN) is distributed εi ∼ N (0, λ−1) using scalar preci-
sion λ, and refers to the residual which quantifies the remaining difference
between the predicted and actual target value. Note that the Gaussian dis-
tribution assumption plays an important role in model interpretation, but
can be relaxed in Generalized Linear Models (GLM) to any distribution be-
longing to the exponential family. See Figure (2.5) for an illustration using
the sum-of-squares error function (6.1). Now we can write the likelihood
(probability of observed data given parameters) as:

p(y|w, λ) =
N∏
n=1

N (yn|h(xn), λ−1) (2.9)

This likelihood can be maximised with respect to each of the parame-
ters w, λ to obtain point estimates (maximum likelihood), via solving of the
partial derivatives.

Generalized Linear Models (GLM) Another linear model extension
where the residuals ε do not need to be normally distributed, but can belong
to any exponential distribution family member. In practice, this means trans-
forming the response variable with an activation function g(·) such that it
can vary linearly with respect to the predictors. The mean of the distribution
chosen then corresponds to the prediction of that target variable:

E[yn|φ(xn)] = µn = g(wTφ(xn)) (2.10)
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x
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(x0, y0)

0

y0(x0, w)

Figure 2.5: The error function (eq 6.1) corresponds to the
summation over all residuals εn with respect to each data point
(xn, yn). Blue crosses/line represent predictions, green circles
are (input, target) pairs, red lines indicate residuals.

here µn does not represent the mean of xn, but rather the predicted value
for yn. Logistic regression is a special case GLM which essentially performs
a classification task.

Multivariate Adaptive Regression Splines (MARS) A natural ex-
tension to linear models is MARS [102, 103], a non-parametric regression
technique that can model non-linearities and variable interactions automat-
ically. If y is approximated using an expansion of basis functions φ:

f̂(x) = w0 +
P∑
p=1

wp

Kp∏
k=1

[
skp · (xv(k,p) − tkp)

]
+

(2.11)



2.3. MACHINE LEARNING AND STATISTICAL THEORY 33

which is very similar to equation 2.7, where skp = ±1, tkp is the split
point for parameter p on polynomial k. The entire region within the square
brackets is known as a two-sided truncated power spline function in the form:

b±q (x− t) = [±(x− t)]q+ (2.12)

where t is the knot location and q is the order of the spline. Hence
the basis functions φ

(q)
p (x) =

∏P
p=1 b

±
q (xv(k,p) − tkp). Algorithmically, the

approximation is learnt in two stages:

1. Forward stepwise: Adds basis functions as pairs in an additive fash-
ion to the model by minimizing RSS, to find optimal hinge points t.
The process of searching over all variables to add basis functions occurs
until ∆ RSS is small or maximum number of terms is reached.

2. Backwards stepwise: Forward pass has a tendency to cause sig-
nificant overfitting. Backward stepwise prunes the model by deleting
unnecessary basis functions via generalized cross-validation (GCV) of
the form:

GCV (P ) =
N∑
n=1

[
f̂P (xn)− yn

]2 1

[N − C(P )]2
(2.13)

where C(P ) is a complexity cost function as determined by the number
of basis functions.

2.3.2 Linear Model Estimation

To estimate the parameters of a linear regression model, several techniques
have been developed which vary in computational complexity, assumptions
made or re-imagined and/or robustness. Various regularization techniques
are also considered in order to constraint the parameters from overfitting.
The following estimation techniques described below provide a beginner plat-
form for complex modelling of biological regulation. The assumption of lin-
earity mostly holds for the data we are working with, assuming appropriate
and well-defined reversible transformations such as log, and in combination
with stronger interpretability, we use them particularly in feature selection,
to find features of interest and for a base-level accuracy to improve upon.
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Ordinary least squares (OLS) Assuming a linear model with unknown
coefficients w = {w0, w1, w2, . . . , wP} and design matrix Φ we minimize the
loss/residual sum of squares between the observed responses y and the pre-
dicted responses by linear approximation [104]. Mathematically we can re-
arrange equation (2.8) to formulate the sum-of-squares error function (6.1):

Ey|Φ = E(w) =
1

2

N∑
n=1

(
wTφ(xn)− yn

)2
(2.14)

Including one-half is traditionally done as this simplifies differentiation
but is not necessary. This function is also known as the residual sum of
squares (RSS) or the sum of squared errors. This minimization is a convex
error function and has a unique solution, provided that the P -columns of the
design matrix Φ are linearly independent:

ŵOLS = Φ†y (2.15)

=
(
ΦTΦ

)−1
ΦTy (2.16)

where Φ† is the Moore-Penrose pseudoinverse (see Supplementary 6.2 for
more details). If features are correlated and columns have linear dependence,

the design matrix becomes singular and
(
ΦTΦ

)−1
cannot be inverted [101].

The negative gradient of E(w) leads to an analytical solution of w in the
specified conditions. Alternatively, the optimal weights can be estimated it-
eratively via gradient descent or via the singular value decomposition (SVD).
In this case let the decomposition Φ = USVT . Then we have:

ŵOLS = VS†UTy

where S is a diagonal matrix of singular values, U and V are orthogonal
matrices (UTU = UUT = I and VTV = VVT = I). We could assume
that there is a linear relationship between the concentrations of [mRNA] and
[protein]. In this case OLS would seem to be a reasonable starting choice
given its simplicity and interpretability.

Ridge In complex models with many parameters, or where P � N , models
can very easily overfit. This can be overcome by imposing a penalty term
on the coefficient magnitude. The most popular ways of doing this is by
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using the `1 and/or `2-norms. For example, using Ridge [106] regression our
objective function becomes:

ER(w) = E(w) +
α

2
wTw, α ≥ 0 (2.17)

where wTw corresponds to the `2-norm, and α is a regularization param-
eter that controls the amount of shrinkage. The larger α is, the greater the
amount of shrinkage and thus features become more robust to collinearity.
In this case ||w||22 takes the `2-norm which has the effect of smoothing the
weights. Ridge preserves the convex optimization problem leading to a global
minimum and unique solution as with OLS:

ŵR = (ΦTΦ + αI)−1ΦTy (2.18)

where IP is the identity matrix with P dimensions. We illustrate the
impact of Ridge regularization on the sinusoidal dataset (see Fig 2.6), where
increasing values of α on the weights generated by the polynomial eliminate
overfitting of the predictions.
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Figure 2.6: Effects of Ridge regularization with varying
parameters of α. Data vector x ∼ U(0, 2π) and y = sinx.
P = 9 polynomial terms are generated to construct X followed
by z-score transformation. From left to right: No regularization,
lnα = −7 and α = 1. As α → ∞, w → 0. Fitted values in
orange, data points in red, true values in blue. Middle graph
visually gives the best fit.
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Lasso Short for least absolute shrinkage and selection operator, here an
`1-norm cost is applied on the loss function [107]:

EL(w) = E(w) + α ||w||1 (2.19)

where α ≥ 0 and ||w||1 is the `1-norm. The use of this norm has the
effect of inducing sparsity in w, causing certain features to not be considered
in linear model calculations. This leads to Lasso also being used for feature
selection as well as for prediction. However, if certain features xi and xj
happen to correlate strongly, the feature dropped is usually dependent on the
random initialization of the weights (wi, wj) at runtime and this can lead to
training inconsistencies. This can exacerbate if multiple features XK , K > 2
all co-correlate, as only one out of K features is selected. From a Bayesian
perspective, the coefficients can be considered to be drawn from a Laplace
prior distribution, which peaks sharply at zero.

Elastic Net A very popular recent addition, which combines Ridge and
Lasso is known as Elastic Net developed by Zou and Hastie [108], where it
attempts to capture the benefits of both techniques into a single model:

EE(w) = E(w) + α1 ||w||1 + α2 ||w||22 (2.20)

where α1 ≥ 0, α2 ≥ 0 are parameters controlling the `1 and `2-norms,
respectively. This helps to overcome problems with Lasso, which has a
tendency to random select one variable from a group of highly correlated
variables, but also induces sparsity which is desirable when P � N , where
Ridge does not. It is common practice from a computational perspective to
re-arrange the regularizers such that:

α = α1 + α2 (2.21)

γ =
α1

α1 + α2

(2.22)

and so re-organize the objective function to be:

EE(w) = E(w) + αγ ||w||1 + α(1− γ) ||w||22 (2.23)

thus γ ∈ [0, 1] acts as a ratio between Ridge and Lasso regularization; as
γ → 0, the Lasso term increases and Ridge decreases, and the opposite holds
as γ → 1.
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Bayesian Linear Regression A frequentist approach assumes data is gen-
erated from the model as described in (equation 2.8), instead a Bayesian per-
spective assumes the responses yn are sampled from a probability distribution
such as a Gaussian distribution:

y ∼ N (Φw, λ−1) (2.24)

where Φw represents the maximum likelihood estimate for µ. further to
this, the parameters in addition to the responses are assumed to be sampled
from an appropriate distribution; thus the objective is to determine the pos-
terior distribution using Bayes theorem for the model parameters w given
the likelihood in combination with some prior information:

p(w|D) =
p(D|w) p(w)

p(D)
(2.25)

Using domain knowledge regarding protein expression for instance, it is
possible to include this within the prior, but we can also use non-informative
priors (i.e distributions with large variance). Common choices for prior dis-
tributions are:

w ∼ N (µw, σ
2
w), σ2

w > 0 (2.26)

σ ∼ HalfCauchy(γσ), γσ ≥ 0 (2.27)

One of the key advantages with a Bayesian approach is the possibility
of modelling the uncertainty surrounding the parameters as well as the re-
sponse variables themselves. This is straightforward if the conjugate prior
of the given distribution is known, else sampling methods such as Markov
Chain Monte Carlo (MCMC) deploy finite sampling of the desired posterior.

2.3.3 Regression Trees

Tree-based methods partition the feature space into a set of rectangles (or
equivalent higher P -dimensional shape) and fits a simple model in each do-
main. This is known as the Classification and Regression Tree (CART)
methodology [109]. Gradient-boosted trees are considered current state-of-
the-art for classical machine learning (excluding deep neural networks) in
performance. We make extensive use of GBRT models in this work, for
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constructing protein abundance predictors utilising expression data and for
SDFs alone.

Let y = {yn} be a vector of N continuous responses and X = {xn} be a
N × P matrix of inputs, where each xp is a column vector. We now create
a set of M partitions to split the input space domain R until some stopping
rule is applied. For a binary tree example see Figure 2.7 where we partition
R into 5 domains, where we first split x1 = θ1, then the region x1 ≤ θ1 is
split at x2 = θ2 and x1 > θ1 is split at x1 = θ3. Finally x1 > θ3 is split at
x2 = θ4. Mathematically we could represent the regression model as:

1 4
x1

2

3

x 2

A

B

C D

E x1 > 1

x2 2

x1 4

x2 > 3

A B C D E

Figure 2.7: Decision Tree splits over a domain. Left: Il-
lustration of a two-dimensional input space (x1, x2) that is par-
titioned by 4 parameters θ1, . . . , θ4. Right: Binary tree corre-
sponding to the partitioning of input space shown in [left]. Note
that a parameter is required for each non-leaf node.

f(X) =
M∑
m=1

cmI{X ∈ Rm} (2.28)

where cm represents the constant for each region, where our criterion is
the mean-squared-error function (MSE), cm is the average over yn ∈ Rm.

Decision Tree Finding the best binary partition in terms of MSE is com-
putationally infeasible, hence it is common to take a greedy algorithm ap-
proach to solving. Considering the splitting variable j and split point s, we
define a pair of half-planes:



2.3. MACHINE LEARNING AND STATISTICAL THEORY 39

R1(j, s) = {X|Xj ≤ s} (2.29)

R2(j, s) = {X|Xj > s} (2.30)

Then we seek j and s that solve:

min
j,s

min
c1

∑
xn∈R1(j,s)

(yn − c1)2 + min
c2

∑
xn∈R2(j,s)

(yn − c2)2

 (2.31)

where best estimates are found as:

ĉm =
1

N

N∑
n=1

[yn|xn ∈ Rm(j, s)] (2.32)

This process is repeated in a recursive fashion onto all resulting regions.
The appropriate depth of the tree is a tuning parameter whereby large trees
tend to overfit, but small trees may not capture the important structures of
the underlying data. A common strategy is to grow a large tree T0, cease
splitting when some minimum node size is reached, and then pruning some
of the tree branches.

Decision trees are very simple to interpret, scale well to large datasets
and also capable of handling categorical input data, but can be prone to
overfitting and non-robust, whereby small changes in the input can produce
huge changes in tree structure which is inherent within the hierarchical nature
of the process; therefore bagging and/or boosting can help to overcome these
shortcomings [109, 110].

Boosting To overcome the known problems with base learner decision
trees, boosting combines the outputs of many ”weak” learners to produce
a more powerful committee-based model. Conceptually, this bears a resem-
blance to bootstrap-aggregating or bagging but in the case of boosting, learn-
ers are fitted in an additive fashion using elementary basis functions. The
most popular algorithm that achieves this is called AdaBoost by Friedman
et al. [111]:
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f(X) =
M∑
m=1

βmφ(X|γm) (2.33)

where βm are the expansion coefficients, and φ(X|γm) are the basis func-
tions. γm for tree models denotes the split variables and split points for
internal nodes at node m. Now we will discuss the concept assuming the
weak learners are decision tree models, an individual tree can be formally
expressed (ignoring basis function transformation) as:

T (X,θ) =
J∑
j=1

γjI(X ∈ Rj) (2.34)

where we package the parameters θj = {Rj, γj}. Here we consider J as a
hyperparameter. Thus the parameters are found by minimizing the empirical
risk:

θ̂ = arg min
J∑
j=1

∑
xn∈Rj

L(yn, γj) (2.35)

Note that this is an intensive optimization problem, and as such an ap-
propriate approximation can be found by the following steps:

• Finding γj. Given Rj, estimating γj is trivial as for regression prob-
lems γ̂j ≈ (ȳ ∈ Rj), the mean number of observed points falling in
region Rj.

• Finding Rj. This is more challenging, requiring a greedy top-down
recursive partitioning algorithm.

Then the boosted tree model is merely the sum of such weaker trees:

fM(X) =
M∑
m=1

T (X,θm) (2.36)

induced in a forward stage-wise manner, whereby at each step we solve:

θ̂m = arg min
N∑
n=1

L(yn, fm−1(φ(xn)) + T (φ(xn),θm)) (2.37)



2.3. MACHINE LEARNING AND STATISTICAL THEORY 41

Gradient-boosting The additive models as described previously can be
subject to numerical optimization via Gradient boosting (GBRT) [112]. This
assumes the loss criterion is differentiable. Our goal is to minimize L(f) with
respect to f , where f(X) is constrained to be a sum of trees T (X,θ). By
using steepest descent, we define the problem as:

fm = −ρm ∇L(f)|f=fm−1
(2.38)

where ρm is the step length. The components of the gradient are:

∇L(fn)|f=fm−1
=

[
∂L(yn, f(φ(xn)))

∂f(φ(xn))

]
f(φ(xn))=fm−1(φ(xn))

(2.39)

This can be viewed as a very greedy strategy, with the negative gradient
being the local direction for which L(f) is most rapidly decreasing. Below
an implementation of the algorithm 1.

The additive nature of gradient-boosting leaves it prone to overfitting,
so introducing a regularization parameter by shrinkage [114] on the learning
rate helps to reduce this:

fm(X) = fm−1(X) + ν T (X, θjm) (2.40)

where 0 < ν < 1 scales the contribution of each tree. Shrinkage has been
demonstrated to improve generalization, at the cost of increasing computa-
tional time due to requiring more iterations. It is common to trade-off ν
against the number of weak learners M .

2.3.4 Covariance and Correlation

Here we will cover a number of the key methods we use for analysing biological
features and the relationships between them. Correlation analysis is prevalent
in this research, to analyse how useful each feature is, since a lot of work
has gone into feature engineering and selection to find biological features.
Particularly as a number of the biological features display multicollinearity
(such as length, base pair counts), partial correlations are needed to eliminate
that dependency wherever possible.
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Algorithm 1: Gradient-Tree Boosting Algorithm [112, 113]

Result: Output f̂(X) = fM(X).
Initialize f0(X) = arg minγ

∑N
n L(yn, γ) ;

for m = 1, . . . ,M do

1. For n = 1, . . . , N compute

rnm = − ∇L(fn)|f=fm−1

2. Fit a regression tree to the targets rnm giving terminal regions Rjm,
j = 1, . . . , Jm.

3. For j = 1, . . . , Jm compute

γjm = arg min
γ

∑
xn∈Rjm

L(yn, fm−1(xn) + γ)

4. Update fm(X) = fm−1(X) + T (X, θjm)

;

end
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Covariance Covariance is a measure of joint variability between two vari-
ables. Formally, between two distributed real-valued variables x and y it
exists as the expected product of their deviations from the expected value
[115]:

cov(x,y) = E [(x− µx)(y − µy)] (2.41)

= E [xy]− E [x]E [y] (2.42)

where µx and µy refers to the means of x and y respectively. For a given
design matrix X, the column vectors {x1,x2, . . . ,xp}T are assumed to be
random variables with finite variance and expected value. The covariance
matrix Σ [116] is the matrix whose (i, j) entries correspond to covariance
between features i and j:

Σ =


var(x1) cov(x1,x2) . . . cov(x1,xp)

cov(x2,x1) var(x2) . . . cov(X2,xp)
...

...
. . .

...
cov(xp,x1) cov(xp,x2) . . . var(xp)

 (2.43)

where var(xi) is a function to estimate the variance of a vector. It follows
from definition that the covariance matrix has the following properties [115],
such as positive-semidefinite and symmetry. The inverse of Σ−1 = Λ is
known as the precision matrix. The covariance can be estimated directly via
Maximum Likelihood (ML) as:

Σ̂ =
1

N − 1

N∑
n=1

(xn − µML)(xn − µML)T (2.44)

where µML is the maximum likelihood for the expected value. Note that
this is an unbiased estimator of covariance using N − 1 instead of N .

Correlation Describing the statistical dependence between bivariate data,
normalized covariance or correlation is one of the most frequently used sta-
tistical metrics. The most common metric is Pearson product-moment cor-
relation coefficient [118]. When applied to a population of random variables
x ∈ RN and y ∈ RN , Pearson’s coefficient is represented traditionally as ρ,
and is mathematically formulated as:
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ρ(x,y) =
E [(x− µx) (y − µy)]

σxσy

(2.45)

where µx and µy are the mean expectation values for the respective vec-
tors. When applied to samples, which we denote r(x,y), the coefficient can
be calculated by estimating the covariance and variance of the samples, given
paired data {(x1, y1), . . . , (xN , yN)} consisting of N pairs, the estimated cor-
relation is given [118] as:

r(x,y) =

∑n
i=1 (xi − x̄) (yi − ȳ)

(N − 1)sxsy

(2.46)

=
N
∑

i xiyi −
∑

i xi
∑

i yi√
N
∑

i x
2
i − (

∑
i xi)

2
√
N
∑

i y
2
i − (

∑
i yi)

2
(2.47)

where x̄ is the sample mean and sx is the sample standard deviation.
Spearman-rank correlation performs this correlation, but on the rank vari-
ables, not the raw scores. Closely resembling the covariance matrix Σ, the
correlation matrix, or the Pearson product-moment correlation coefficients R
between each random variable in vectors xi is normalized as:

corr(X) = R = Σ−
1
2 .Σ.Σ−

1
2 (2.48)

where the diagonal matrix is given as

Σ−
1
2 = diag

(
1√
Σ11

, . . . ,
1√
Σpp

)
(2.49)

The diagonal elements Ri=j = 1, with each off-diagonal element in the
range −1 ≤ Ri 6=j ≤ 1. Unlike covariance, the scale of difference between
features is normalized for correlation allowing unbiased comparisons [116].
The coefficient of determination, r2 is simply the power of this coefficient, and
in addition an adjustment is commonly added given the metrics propensity
to increase in multi-dimensional situations:

r2
adj = 1− (1− r2)

N − 1

N − P − 1
(2.50)

We make use of correlation matrices extensively in this work to analyse
the inter-relationships between similar and distant biological features.
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Point-biserial Correlation Closely related to the two-sample unpaired
Student’s T hypothesis test, this metric is used to calculate the correlation
between one continuous random variable x ∈ RN and one dichotomous vari-
able y ∈ ZN where values of yn ∈ [0, 1]. We partition observed samples
D = {x,y}Nn=1 into groups

x =

(
x0|y = 0
x1|y = 1

)
(2.51)

where x̄ is the sample mean. Let N0 is the number of samples in x0, with
N1 for x1, then the sample correlation coefficient becomes:

rpb(x,y) =
x̄1 − x̄0

sx

√
N1N0

N(N − 1)
(2.52)

where sx is the sample (unbiased) standard deviation over x.

Partial Correlation The degree of association between two variables can
be further analysed by eliminatingM set of controlling variables Z = {z1, . . . , zM},
written as ρ(x,y|Z) [119]. Like the correlation, it takes values in the range
[−1, 1], and from a probabilistic standpoint can be viewed as a conditional
correlation between two jointly distributed random variables. There are two
main ways of deriving the partial correlation:

1. Using linear regression: To find r(x,y|Z) where vectors x ∈ RN ,
y ∈ RN and matrix Z ∈ RN×M , compose two linear regression models
Ex|Z and Ey|Z (see notation in ordinary least squares 2.3.2) yielding
residual vectors εx and εy and thus we compute the sample Pearson
correlation r(εx, εy) with respect to the residuals.

2. Using matrix inversion: Estimate the precision matrix Λ = Σ−1 via
the covariance S = cov(X) using MLE, and/or shrinkage techniques,
then normalize using:

r(xi,xj|Zi 6=j) = − Λij√
ΛiiΛjj

∀i, j, i 6= j (2.53)

where i, j = 1, . . . , P , xi and xj are column-vectors and Zi 6=j refers to
all remaining columns not selected by either i or j. We can think of
this as the normalized precision matrix.
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There are a number of techniques to compute the precision matrix if the
covariance matrix is ill-conditioned, these methods are beyond the scope of
this Thesis. The primary advantages of using partial correlation is that the
additional variables can help to control the confounding variable of interest.
We utilize this approach when analysing the dependencies between our ex-
tracted SDFs, to help eliminate multicollinearity effects within our modelling.

2.3.5 Dimensionality Reduction

In practice, it is rare that the number of dimensions of a given dataset accu-
rately corresponds to the true degrees of freedom (DOF) of variability. For
example, within molecular biology it is unlikely that all of our sequence-
extracted features will affect protein abundance or function. Furthermore,
correlations between these features can produce an ill-conditioned matrix
that is not full rank. Thus we want to deploy a technique which reduces
P → K substantially whilst preserving the variability and condensing it into
a subspace K. Thus our reasons to reduce the dimensions are as follows:

• Solve the P � N problem with respect to matrix ill-conditioning

• Reduce impact of curse of dimensionality with respect to algorithms
that scale O(P 2) or higher

• Find true subspace of DOF variability where significant redundancy
exists

• Reduce computation time

In this work we will consider the most classical approach using Principle
component analysis (PCA), and variants such as Probabilistic PCA (PPCA)
and Factor Analysis. These methodologies mainly come into play within
section 4 of the results section when we apply unsupervised learning to our
SDF set, with a thorough analysis therein.

Principle component analysis (PCA) Also known as Karhunen-Loève
transform, PCA is widely used for dimensionality reduction, lossy compres-
sion, feature extraction and data visualization [120]. Conceptually, PCA
provides an orthogonal projection of the input data onto a lower dimensional
linear space, known as the principle subspace, such that variance of the pro-
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jected data is maximized [121].

Let D|X = {xn}Nn=1 be a set of training examples with dimensionality P .
Our goal is to project this onto a space having dimensionality K < P while
maximizing the variance of the projected data. The value K in classical PCA
is a hyperparameter that is defined by the user, for data visualization K = 2
is usually chosen, but K can vary for machine learning purposes. Here we
will consider the example of where we project onto a 1-dimensional space
K = 1, but the concept extends up to K = P . We define the direction of
the subspace using a vector u1 ∈ RP which is also a unit vector such that
uT

1 u1 = 1, thereby disregarding vector magnitude. Each data point is then
projected onto a scalar value uT

1 xn, where the variance of the projected data
is given as:

max
1

N

N∑
n=1

(
uT

1 xn − uT
1 x̄
)2

= uT
1 Su1 s.t. uT

1 u1 = 1 (2.54)

where x̄ is the sample mean and S is the sample covariance matrix. To
enforce the normalization constraint, we introduce a Lagrange multiplier λ1

(not to be confused with precision), then our maximization becomes:

uT
1 Su1 + λ1(1− uT

1 u1) (2.55)

If we solve the derivative of 2.55 with respect to u1 equal to zero, the
solution is:

Su1 = λ1u1 (2.56)

where λ1 is an eigenvalue, and u1 must be an eigenvector with respect
to S. By multiplying uT

1 and using the normalization constraint, we can see
that the eigenvalue represents the maximum variance of the direction:

λ1 = uT
1 Su1 (2.57)

u1 corresponds to the first principle component. Additional principle
components can be defined in incremental fashion by repeating the above
process, generating u1, . . . ,uM eigenvectors with corresponding λ1, . . . , λM
eigenvalues. See Figures 2.8 and 2.9 for illustrations of how PCA achieves
this on synthetic and real-world datasets.
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Figure 2.8: PCA illustrations. Left: Illustration of xn →
x̃n mapping given toy 2D input space mapped to 1D. Middle:
PCA on 2D multivariate Gaussian distribution N (µ,Σ), input
points are blue, with optimal projections λ1u1 and λ2u2 shown
as arrows (inc. magnitude). Eigenvectors are orthogonal (as
shown by 90 degree angle). Red point indicates data mean.
Right: Eigenvalues λi against i = 1, . . . ,M indicating the fall-
off in variance preserved as M increases, used on the MNIST
dataset. We only show the first M = 200 as values of λM → 0
which distorts the figure.
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Figure 2.9: PCA illustrations on the MNIST dataset.

Top row: The original, the mean vector x̄ along with the first 4
eigenvectors u1, . . . ,u4 for a digit three from the MNIST dataset.
Corresponding eigenvalues described as title. Red corresponds
to positive values, blue corresponds to negative values. Bot-
tom row: The original, followed with X̃ reconstructions for
M = 1, 20, 100, 250, 500. As M increases the accuracy of the
reconstruction improves. MSE of reconstructions is displayed
underneath.
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PCA can often be used as a preprocessing step to subsequent modelling
via classification or regression, because the transformation can standardize
certain properties of the input matrix. To achieve this, we generalize equation
2.56 to get:

SU = ΛU (2.58)

where Λ is a P × P diagonal matrix with elements λi. Then we define a
transformation for each data point xn as:

yn = Λ−1/2 UT(xn − x̄) (2.59)

the set {yn} thus has zero mean and the covariance is equivalent to the
identity matrix. This process is known as whitening or normalization.

Probabilistic PCA In this approach, PCA can be modelled as a maxi-
mum likelihood solution of a probabilistic latent variable model rather than
merely a linear projection of data points onto a subspace [123, 122]. in
PPCA all of the marginal and conditional distributions are Gaussian, thus
we introduce the latent variable z corresponding to the principle component
subspace, and the prior distribution p(z) over the latent variable, with p(x|z)
acting as the Gaussian conditional distribution for the observed data. Then
we can write the prior and likelihood distributions as:

p(z) = N (z|0, I) (2.60)

p(x|z) = N (x|Wz + µ, σ2I) (2.61)

where p(z) is governed by a zero-mean unit-covariance Gaussian, and
p(x|z) is dependent on loading matrix W ∈ RP×K and µ (which can be
removed via centering). The columns in W span a linear subspace within
the data space which corresponds to the principle subspace. Maximum like-
lihood with respect to W and σ2 are relatively straightforward and require
an eigendecomposition of the sample covariance matrix:

Ŵ = U(L− σ2I)1/2R (2.62)

σ̂2 =
1

P −K

P∑
i=K+1

λi (2.63)
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where U ∈ RP×M is an eigenvector matrix whose columns are eigenvectors
of S, Λ is the diagonal matrix (see eq 2.58) whose values are λi, and R is an
orthogonal rotation matrix. These matrices can be determined using singular
value decomposition (SVD) and there are efficient computational tools to do
so. These estimates can be inserted into the posterior distribution p(z|x) to
generate a distribution over our latent variables.

Factor Analysis As described with regards to mixture models, they only
use a single latent variable to generate the observations, i,e there is a one-to-
one mapping between latent variable and observed variable. An alternative
is to use a vector of real-valued latent variables zn ∈ RL, where we can use
a Gaussian prior and likelihood function [122, 162] as:

p(z) = N (z|µ0,Σ0) (2.64)

p(x|z) = N (x|Wz + µ,Ψ) (2.65)

where W ∈ RP×L is the factor loading matrix and Ψ is a P ×P diagonal
covariance matrix. Notice that the likelihood function is very similar to
PPCA, the only major difference being the presence of a non-unit covariance
matrix. Hence the special case Ψ = σ2I is equivalent to PPCA.

2.3.6 Graphical Models

Thus far the models previously described assume the training set D is i.i.d
(independent and identically distributed), whereas often there can exist ob-
served and latent interactions between inputs [122]. Let v be the set of N
unique vertices within a directed graphical model, and E ∈ RN×N be the ob-
served adjacency matrix of directed edge interactions between vertices such
that Eij ∈ [0, 1] is the strength of interaction going from vertex vi → vj to
vertex, with Eij = 0 indicating no edge connection. Note that in a directional
graph Eij 6= Eji, hence E is not symmetric. A graph with no interactions
is simply diagonal Eij = 0, ∀i 6= j, whereas non-zero diagonal elements are
loops. The degree of a given vertex [179] is given as the sum of non-zero
directional edges emanating from it:

D(vn) =
N∑
i=1

I [Eni > 0] (2.66)
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Another important metric is derived from the concept of centrality, which
estimates the importance of a given vertex vn within the wider graph. A
simple approach to centrality is by normalising the degree by all other degrees
in the network:

CD(vn) =
D(vn)∑N
i=1D(vi)

, i 6= n (2.67)

A more complicated but realistic metric of centrality can be derived via
eigendecomposition of E [179], which we will not go into detail here. A
degree-based centrality can over-prioritise vertices with a large number of
connections without accounting for the strength of interactions. The idea
is to utilise the eigenvalues and eigenvectors derived from E directly as an
indicator of vertex importance.

In this Thesis we construct a directed graphical model of protein-protein
interactions (PPI) for the purposes of computing additional metrics to insert
into our sequence-derived feature set in Chapter 5, including degree and
centrality as mentioned above.

2.4 Transcriptome-Proteome Analysis

We now turn to the integrated analysis of transcriptome and proteome mea-
surements.

2.4.1 Correlation of the Transcriptome-Proteome

Many previous authors have looked into the relationship between mRNA and
protein abundance [126, 127, 128, 129], particularly within prokaryotic organ-
isms such as yeast. In particular, the early focus lay on using the relationship
to explain related cellular functionalities. We will not cover every possible pa-
per produced on this topic, but instead focus on key narrative moments in the
understanding of transcriptome-proteome dynamics. Greenhaum et al (2002)
[127] compiled together several mRNA expression datasets and found several
particular amino acids enriched, along with functional terms such as ’protein
synthesis’ and ’energy production’. There was also early recognition in the
part that translation (or the ’translatome’) had to play within their analysis.
It has also previously been a common assumption to use mRNA expression
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as a proxy for protein abundance [129], given the theoretical assumptions un-
derpinned by the Central Dogma. Beyer et al. (2004) [129] uses S. cerevisiae
microarray and protein assay data to uncover post-transcriptional regulation
pathways by looking at the transcriptome-proteome relationship, and infer-
ring translation as a combination of Ribosome density and occupancy. They
also confirm that mRNA-protein correlations on a genomic scale either are
statistically insignificant or are weak. This paradox holds for all species stud-
ied, and exacerbates for higher-order organisms such as H. sapiens. They also
introduce a Protein Half-Life Descriptor: a first-order differential equation
in the form:

d[Pi]

dt
= kp · ktrans · [mRNAi]− kd,i · [Pi] (2.68)

where [mRNAi] and [Pi] are the mRNA and protein abundances of the
ith ORF, respectively, with kp being the elongation speed, ktrans as the ribo-
some occupancy and kd,i being the ORF destruction rate. This attempts to
model the protein half-life, another interesting aspect of proteomics which
is heavily associated with post-translational processing and protein stability.
Correlation values vary according to study, with Beyer et al (2004) reporting
a Spearman-rank correlation (rs = 0.58), Futcher et al (1999) [126] report a
very high correlation (r2 = 0.76) after transforming data into normal distri-
butions, with Greenbaum et al (2003) [128] review paper reporting a modest
(r = 0.66, N = 2044) correlation in addition to analysing various functional
subsets. The differences within statistical techniques used to analyse the
data was largely responsible for differing conclusions with respect to the dif-
ferent papers. Greenbaum [127, 128] also began to explore the impact of
codon bias through the Codon Adaptation Index (CAI) feature with mRNA
and protein abundance, but found there was significant correlation between
genes with high CAI and mRNA/protein abundance. Wu et al (2008) [130]
further extended this analysis on S. cerevisiae cells by incorporating direct
mRNA and protein half-life information using the following multiple linear
regression model (eq 2.8):

yi = α + [mRNA]i β +
m∑
j=1

βjxij (2.69)

where α is the intercept, β is the weighting of mRNA abundance, and
βjxij corresponds to the i-th predicted value and the j-th sequence covariate.
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Organism (Species) rp rs N
S. cerevisiae (1) 0.36 NA 73
S. cerevisiae (2) 0.76 0.74 148
M. musculus 0.59 NA 425
S. cerevisiae (3) NA 0.45 678
D. vulgaris 0.5 NA 703
E. coli 0.57 0.5 1103
S. pombe 0.58 0.61 1367
S. cerevisiae (4) 0.66 NA 2044
S. cerevisiae (5) NA 0.57 5251

Table 2.6: Overview of mRNA-protein correlation

studies within different organisms. rp represents Pear-
son’s correlation, rs is Spearman-rank correlation. Table taken
from Maier et al. [131].

Wu (2008) places explanatory emphasis on the capacity of protein half-life
and translation elongation, rather than translation initiation or mRNA half-
life in explaining mRNA-protein correlation. Note however that they did not
attempt to predict the protein abundance; merely to model the correlation.
See Table 2.6 for a comparison by Maier et al [131] regarding mRNA-protein
abundance correlation estimates across multiple studies for different species
up to 2009.

One of the first attempts to compare RNA sequence and microarray data
with label-free protein data is by Ning et al (2012) [132] (see Figure 2.10
for examples). They also made use of DAVID [133] GO enrichment analysis
to determine biological functionalities for given RNA subsets. They found
that the correlation between mRNA and protein for genes associated with
ribosomal activities were not strong, due to post-translational activities such
as phosphorylation, acetylation and methylation. Such PTMs modify the
protein degradation rate which impact on the correlation towards mRNA
abundance. The authors also posit a robust computational framework for
gene-protein data interactions for future studies.
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Figure 2.10: Scatterplots of log mRNA abundance
against protein intensity. mRNA is normalized using
RPKM, A) represents protein-intensity values, B) represents
NSAF normalization. Figure taken from Abstract of Ning et
al (2012) [132].
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2.4.2 Modelling of the Transcriptome-Proteome

So far in the transcriptome-proteome interface, we have mostly focused on
correlation between mRNA and protein, and inferring causal properties by
subsequent GO analysis on interesting highly-correlated subgroups, or by
subsequent experimental validation methods that look for biological mecha-
nisms. Now we’re going to look at more recent data-driven approaches to ex-
ploring the transcriptome-proteome interface. As noted by Vogel (2010) [6],
the protein-mRNA relationship is non-linear but can be approximated well
by a piece-wise linear function, and where concentrations are log-normally
distributed, indicating that they can be modelled using multiplicative inde-
pendent random variables [134].

Classification Approach Pancaldi and Bähler (2011) [135] used Support
Vector Machines (SVM) and Random Forests (RF) to classify RNA-binding
proteins (RBPs) and mRNA abundance interactions within S. cerevisiae.
They used a significant number of input features (P > 100) including pro-
tein localization, GO and genetic interaction properties (from BioGRID) aid
in correlation analysis. They achieved 70% accuracy score with 2-fold CV
using RF and 68% with a radial-basis SVM classifier. They however faces
challenges by the limited amount of experimental data, which is characteris-
tic of attempting to combine together large amounts of input from multiple
sources. We will spend some time attempting to overcome similar problems
within this thesis.

Bayesian Approach Another way of modelling the relationship is using
a Bayesian probabilistic approach, as adopted by Kannan et al (2007) [136],
where microarray and MS measurements of M. musculus are provided as
evidence to a probabilistic model, whereby for each gene g = 1, . . . , G, pep-
tide counts y

(g)
i are estimated using mRNA expression m

(g)
i and an ’average’

protein expression x
(g)
i . Since peptide counts are integers, they used the

independent Poisson distribution to model as:

p(y|x) =
T∏
i=1

e−xixyii
yi!

(2.70)

where T is the number of tissues. Here the average protein expression is
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Figure 2.11: Bayesian network modelling of peptide
counts using mRNA and protein expression levels. This
network is taken from Kannan et al (2007) [136], inner rectangle
represents a single gene g and shares s,w and τ variables.

used as a rate parameter for the Poisson model. Following that the Gamma
distribution is the conjugate prior of the Poisson rate parameter, we get:

p(x) =
T∏
i=1

βα

Γ(α)
xα−1
i e−xiβ (2.71)

where α and β are hyperpriors of the Gamma distribution, and Γ(α) is
the Gamma function (not equivalent to the distribution). From these the
posterior distribution of peptide counts can be computed, with uncertainty
measurements regarding mRNA and average protein expression. See Figure
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2.11 for the Bayesian graph representation of the models fitted. This tech-
nique diverges from previous approaches in that the data noise is assumed to
be drawn from a non-Gaussian distribution (represented by τ), over 6 main
tissue types (brain, heart, kidney, liver, lung and placenta). s represents a
Bernoulli switch variable, where s = 1 then the noise is modelled as a lin-
ear function of average peptide counts, as a Gaussian N (0, τ). The joint
distribution over the variables modelled is:

p(x,y,m, θ, s) = p(x)p(y|x)p(m|x, s, θ)p(θ)P (s) (2.72)

where θ = (w, τ). The authors do not aim to maximize the property
p(m,y) as the model would also try to account for tissue specificity and gene
function. Hence the aim is to maximize the conditional distribution p(m|y)
by integrating out the hidden variables:

p({m(g),y(g)}) =

∫
θ

G∏
g=1

∑
s

P (s(g))

∫
x

p(y(g))p(x(g)|y(g))p(m(g)|x(g), s(g), θ)p(θ)

(2.73)
where p(x(g)|y(g)) is the Gamma posterior distribution of average protein

expression. For a given gene, the relationship strength between mRNA and
protein abundance is given by P (s|m,y). This can be computed using Bayes’
rule:

P (s|m,y) =

∫
x
p(m|s,x)p(x|y)P (s)∑

s

∫
x
p(m|s,x)p(x|y)P (s)

(2.74)

hence the linear relationship between the measurements is given as P (s =
1|m,y). Subsequent analysis of GO annotations on various group partitions
found that outliers were highly linked to their respective tissue functions.

Regression Approach Instead of a classification approach, one can pre-
dict the protein abundance directly using a regression-based approach. Tuller
et al (2007) [137] developed a linear regression model incorporating mRNA
expression in conjunction with sequence-derived features (SDFs) such as
tRNA adaptation inde (tAI) and evolutionary rate (ER), in S. cerevisiae.
The full feature set explored by Tuller include:

• Protein Molecular weight, Length, GRAVY and aromaticity
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Figure 2.12: Performances of the Linear Predictor on
log Protein abundance. Left and middle: Accuracies of
various linear predictors using Spearman rank correlation rs,
with inclusion of features using greedy forward feature selec-
tion. Right: Correlations of predicted (mRNA) vs. actual pro-
tein abundance binned at various levels of actual protein abun-
dance. Graph recreated with small adaptations from Tuller et
al (2007) [137].

• Frequency of every amino acid (ACDEFGHIKLMNPQRSTVWY).

• Protein half-life

• Translation efficiency (TE), ER, tAI, CAI and codon bias

In order to discover which features were the most important, they used
Greedy Forward Feature Selection (GFFS) which additively builds more com-
plex models by selecting the model whose feature improves the correlation
score between the predicted and target values [137] (see Figure 2.12 for de-
tails). They found that tAI and ER were the next 2 best features to be
added to a linear predictor, following log mRNA expression levels. However
this method is prone to statistical bias, as Spearman-rank correlation and
r2 → 1 as P → ∞, leading to a problem with overfitting if not careful.
This can be overcome by using an adjusted r2 metric as we mention pre-
viously (2.3.4). Interestingly they found that non-linear predictors such as
radial-basis SVM did not significantly improve prediction, and hence linear
predictors do seem to capture a significant portion of explanatory power.
Tuller achieved a correlation of rs = 0.76 for averaged data, but did not
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extend this concept to look for model failures (i.e outliers) and their signifi-
cance. Tuller goes on to focus on translational efficiency and its relationship
to codon bias and folding energy in subsequent research [53].

The relationship between sequence-derived features and protein abun-
dance is more thoroughly established by the work of Vogel et al (2010) [6].
They analyze Daoy medulloblastoma cell cultures from H. sapiens, using
a >1000 gene dataset to measure steady-state mRNA and protein expres-
sion levels, with ∼ 200 sequence features. They found that mRNA-protein
correlation was rs = 0.46, significantly lower than correlations found in S.
cerevisiae. Further to this, they performed individual partial correlations
between each SDF and the protein abundance, controlling for mRNA abun-
dance, whereby sequence length (-0.53) and mRNA decay rate (-0.37) corre-
lated most strongly with protein abundance. In conjunction, they use nonlin-
ear Multivariate Adaptive Regression Spline (MARS) [103] modelling to fit
the data and for feature selection(2.3.1). Overall, they found that two-thirds
of the variance of the model could be explained using their input features to
explain protein abundance, a rather significant portion and a breakthrough
discovery. Of this, 31% of the variance came from the coding sequence, 27%
from mRNA level, 8% from 3’UTR, and only 1% from 5’UTR. Many of the
SDFs considered in this study are also applied in this thesis, and this work is
considered a benchmark for comparison within this thesis as they developed
their own expansive SDF dataset.

Outlier Novelty Detection Developing intricate and powerful regression
models are of some benefit, but require coupling with post-regression anal-
yses and identification of weak areas. Outlier detection methods attempt
to identify residual ’outliers’ εn and select this subgroup to gain biological
insight as to why these proteins are not predicted well. This is one of the
main purposes of the work done by Gunawardana et al (2013) [3, 93] and in
their thesis.

For the authors thesis, Gunawardana used Lasso for sparse regression and
feature selection, incorporating all of the features used by Tuller et al (2007)
[137]:

EL(w) = min
w,b
{y − 〈w,x〉+ b}2 + λ||w||1 (2.75)
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they selected weights {wp} outside the range [-0.2, 0.2] as lower and up-
per thresholds, respectively, selecting the 5 features that actively contribute
to protein abundance prediction (see Figure 2.13, Left), which include tAI,
ribosome occupancy and codon bias. Overall the lasso model produced an
r2 = 0.86 using the 5 best features, up from r2 = 0.8 when using all 37
features. Subsequently they found that training a neural network by SGD
did not improve r2, and that performance substantially dropped when all 37
features were used. Outliers were then determined as belonging in the 2.5%
percentile with respect to the squared error ε2n of EL(w) (see Figure 2.13,
Right). Specifically, post-translationally regulated proteins were expected as
outliers, given that the model inputs accounted for sequence features that
would help to account for translation rate, such as ribosome occupancy and
density. 50 proteins were selected by this percentile, of which 48 were ’over-
estimated’ by the model, which then lead to two subsequent analyses:

• Coarse-level PTM: 42 out of 48 contained PTM terms including
phosphorylation and glycosylation, which are associated with protein
stability.

• Fine-level PTM: Combination of coarse-level with PEST-motif se-
quence identification. This is followed up by GO enrichment analysis,
which identified nearly half of the proteins as ribosomal proteins.

Gunawardana also formulates Outlier Rejecting Regression (ORR), which
obtains a portion of the data points as robust outliers using truncation and
clipping techniques. This makes the regression problem non-convex, requir-
ing a difference of convex approximation algorithm to solve. The clipped loss
function is defined mathematically as:

EU(w) = min{U, E(w)} (2.76)

where E(w) is the error function for OLS. In her Thesis Gunawardana
uses L2-norm penalty ER(w), with intercept b being rolled into w. Here x and
y are not included for notational brevity. ORR introduces a new parameter
µ (not the mean) which reformulates the problem as:
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Algorithm 2: Outlier-Rejecting Regression (ORR) [3, 93]

Initialize w0, hyperparameter µ ∈ [0, 1], k ← 0 ;
repeat

1. Obtain ηk from equation 2.79 by sorting E(wk).

2. Compute the gradient using ηk:

gw =
1

µN

N∑
n=1

(1− ηnk)∇wE(wk)

3. Update wk+1 as:

min
w

1

(1− µ)N

[
N∑
n=1

E(w)− µN〈gw,w〉

]

4. k ← k + 1.

until convergence;
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min
w,η

1

(1− µ)N

N∑
n=1

ηnE(w), (2.77)

s.t.
N∑
n=1

(1− ηn) ≤ µN, , 0 ≤ ηn ≤ 1, ∀n (2.78)

where µ ∈ [0, 1] is a hyperparameter that defines the number of outlier
samples needed as a ratio of the total data samples. Estimates of η can be
obtained iteratively using a Difference of Convex Functions algorithm:

ηk ∈ arg max
η

N∑
n=1

(1− ηn)E(w) s.t. (eq 2.78) (2.79)

where k is the iteration number. The full algorithm is given in (2). Using
ORR and comparing to Quantile Regression, Gunawardana found interest-
ing biological insights on the subsequent outlier groups that were isolated,
including over half being involved in translation (GO:0006412) and part of
cellular-component ribosome (GO:0005840).

2.5 Summary

High-throughput sequencing data has been revolutionary in uncovering break-
throughs with respect to RNA and protein concentration, function, inter-
action and structure. A large corpus of literature has been covered, in-
cluding the central dogma of molecular biology, technologies that have led
the revolution in genetic research, some underlying statistical and machine
learning theory and key concepts surrounding the transcriptome-proteome
interface. Many previous authors simply model the correlation between pro-
teome and transcriptome, leaving open space for more sophisticated mod-
elling. Further to this, a lot more research with respect to sequence-derived
features have been conducted on S. cerevisiae with its comparatively smaller
genome with fewer protein-protein interactions (PPI). We have covered Clas-
sification, Bayesian, Regression and Outlier-Detection based approaches to
transcriptome-proteome modelling, we take inspiration from all these sources
to expand in this domain, leading to novel biological insights and novel meth-
ods using ensemble and stratified-based modelling.
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Figure 2.13: Feature selection and outlier detection for
Gunawardana et al (2013) [3]. Top: Greedy forward fea-
ture selection for top 5 features in protein abundance predic-
tion. Bottom: outlier selection on predicted vs. actual protein
abundance scatterplot using 2.5% quantile cut-off.



Chapter 3

Developing a protein
abundance predictor across the
cell cycle

In this chapter, we begin with the work achieved by Gunawardana [3, 93],
developing a protein abundance predictor in yeast, in combination with a cell
cycle study by Aviner [5], apply data-driven modelling across three expression
level types, across three time points in the human cell cycle, with additional
SDFs.

3.1 Data Preparation

We begin by describing the processes conducted to obtain mRNA, translation
and protein abundance measurements as described by Aviner et al (2015),
and a breakdown of their sufficient statistics (see Table 3.1).

Expression Levels HeLa S3 cells were grown in Invitrogen supplemented
with 10% fetal calf serum, 2mM L-glutamine and antibiotics. HeLa cells
were synchronized using 2mM double-thymidine block for 19h, released from
G1/S block in fresh DMEM for 9h, treated again with 2mM thymidine for
18h, released again, and harvested at 2h, 8h (mRNA)/8.5h(translation, pro-
tein) and 12h (mRNA)/14h (translation, protein) [5, 138]. mRNA comes
from microarray dataset (GSE26922) using Affymetrix Human Gene 1.0 ST
Array, from the Gene Expression Omnibus (GEO), with robust-multi array

65
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Expression Technology Cycle µML
Repl.
σ2 Intra σ2 Repl.

ρ
N

G1 10.58 6.0e-05 2.55
S 10.56 6.2e-05 2.53mRNA

Microarray
(RMA)

G2/M 10.62 1.7e-04 2.53
0.99 6785

G1 19.23 4.9e-03 5.77 0.96
S 19.08 2.4e-02 5.75 0.95

5055
Translation

PUNCH-P [4]
/MS

G2/M 19.39 1.9e-01 5.58 0.94 5110
G1 24.18 2.5e-02 10.00 0.97 5783
S 21.72 8.1e-01 9.88 0.97 5763Protein

MS
(iBAQ)

G2/M 24.38 3.3e-02 9.59 0.98 5822

Table 3.1: Sufficient statistics from Cell Cycle expres-
sion set. Data taken from Aviner et al (2015) [5]. µ represents
log MLE of expression across replicates and samples. Replicate
σ2 is the variance between replicates, Intra σ2 is the variance
across samples. Replicate ρ is the correlation between replicates
in that subgroup. N is sample size.
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(RMA)-normalized expression values for the given timepoints. Proteomics
data (PXD002802) from PRIDE, along with translation (generated via novel
method PUNCH-P [4]) are normalized using iBAQ algorithm [139]. Ex-
pression levels are normalized by analyzing the same quantity of biological
material at each phase to allow for comparisons across the gene product hi-
erarchy. The dataset is combined by first joining translation and protein
expressions by Uniprot/Swissprot Accession IDs, then joining to Microarray
HuGene 1.0 st c1 probeset IDs using Biomart.

Sequence-Derived Features mRNA transcript variants were extracted
from NCBI Entrez Direct [140, 141] via Biopython v1.7 [142] package (Python
3.6). Unique gene names (HGNC) [143] were mapped to curated Refseq ac-
cession numbers, obtaining GenBank files for all H. sapiens mRNA tran-
scripts. Exon data and elements from feature table were extracted and
counted. We filtered for mRNA transcripts whose Refseq ID began with
”NM ”. Each amino acid sequence was extracted from the ”cds” feature in
the corresponding mRNA transcript. The mRNA sequence is subsequently
split into coding sequence (CDS), 5’UTR and 3’UTR, whereby a number of
features are counted such as exons, sequence-tagged sites (STS) and more.
We list the features in Appendix S1. GC content and base/amino acid fre-
quencies are calculated directly from the corresponding sequence. We ex-
tracted CAI and ’the effective number of codons’ (Nc) using CAIcal [144]
server using CDS sequence as input in conjunction with the Human Codon
Usage table as frequencies per thousand from the Ensembl database (release
57). We used ExPASy’s ProtParam [145] module in Biopython to predict
pI, Aromaticity, Instability Index, GRAVY and protein secondary structure.
tAI values are calculated using stAIcalc by Sabi et al [62], using the offline
version with human tRNA gene copy numbers taken from GtRNAdb [63] for
hg19 (NCBI build 37.1 Feb 2009). Codon Usage Bias is calculated following
the method from Roymondal et al [61], requiring no reference codon usage
table. Changes in Gibbs Free folding energy ∆G for 5’UTR is predicted using
RNAstructure EnsembleEnergy algorithm [146].

Combined Expression-Sequence Dataset Due to multiple mature mR-
NA/amino acid transcripts encoding for a single protein, we select the longest
mRNA transcript for each protein ignoring inter-transcript variability. SDF
count features are scaled by relevant sequence length, for instance mRNA



68 CHAPTER 3. CELL CYCLE ABUNDANCE PREDICTOR

base counts are normalized by mRNA transcript length. SDF features are
then merged into the cell cycle dataset leading to a dataset of 6592 proteins;
with N = 3500 with no missing values.

Notation Given that our data is drawn from a pseudo-time-series dataset,
we will refer to the current cell cycle phase as t, with references to the next
’timestep’ as t+1 and so on. mRNA expressions are described as m

(t)
n , where

n = 1, . . . , N mRNA abundances; translation rates r
(t)
n and protein abun-

dances p
(t)
n . Furthermore, G1 corresponds to 2h, S as 8h for mRNA, 8.5h for

translation/protein and G2/M as 12h mRNA or 14h translation/protein. As-

sume, if not explicitly declared, that mn = m
(t)
n refers to the same timepoint

across all ’omics.

3.2 Results

The majority of the research in this chapter is published by Parkes & Ni-
ranjan (2019) [1], with additional supplementary material and tangents. To
begin with, we briefly explore the main cell cycle markers and whether they
share a common pattern of mRNA, translation and protein expression (see
Figure 3.1). UNG is known to peak prior to the G1/S checkpoint, PCNA
and CCNA2 peak in S-phase, CCNB1 peaks in G2/M and AURKA peaks
in mitosis. For each of these genes, we plot the proportion of abundances
where the peak level is defined at 100%. Interestingly both UNG and PCNA
demonstrate lag protein expression whereby high levels of mRNA and trans-
lation within G1 phase (but not in S phase) lead to a high protein level in S
phase where they operate.

3.2.1 Translation Level Significantly Improves Predic-
tion Over mRNA Level

Since multiple copies of a protein are often produced from a single mRNA
strand, we expect translation/protein abundance and variance to be greater
than mRNA levels. Indeed, we see translation and protein levels to be sev-
eral orders of magnitude larger than mRNA (Figure 3.2A), with a larger span
indicative of higher variance. Hierarchical clustering of Spearman-rank cor-
relations between triplicative measurements of gene products (Figure 3.2B)
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Figure 3.1: Expression patterns of prominent cell cy-
cle markers. Line plots representing the mean mRNA (green),
translation (purple) and protein (red) abundance. Expressions
are normalized using ’minmax’, scaled by the maximum value
to 100% expression. Error regions are modelled using RBF(1)
Gaussian Process, with replicate error modelled as α = σ2R.
Adapted from Aviner et al. [5]

shows high intra-correlations across the ’omic scale, with translation cluster-
ing closer to protein than mRNA. This demonstrates the apparent invari-
ance across the three cell cycle phases in preference to differences between
gene products, with mild correlation between transcript and protein levels
(rs = 0.47-0.49) across all phases, as demonstrated in the original work and
by other authors for mammalian cells [147, 5, 148]. Correlations of translation
against protein are significantly higher (rs = 0.66-0.67) at all time points,
which is not due to the technical similarity in measurement technique. This
is likely due to translation level accounting for robust post-transcriptional
mechanisms applied across the transcriptome, such as alternative splicing
and mRNA degradation [149]. Visualisation of correlation (Figure 3.2C,D)
shows an consistent left skew in mRNA versus protein plots, contributing to
a reduction in positive correlation compared to translation. To see whether
this artefact is due to the reduction in sample size N alone (5500 to 4000),
we separated mRNA measurements by whether they had missing translation
level data or not, and calculated rs for each sub sample (Figure S8A). We do
see a drop in correlation (rs = 0.23-0.24) in samples with missing translation
data versus samples with data (maintained at stated level), this may be due
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to experimental issues with measuring low levels of translation in these genes,
and since protein stability can be inferred from translation level (as shown
previously [5]), these proteins may not be sufficiently steady-state. Alterna-
tively, due to the low resolution of only having three time points (G1, S and
G2/M), these labile proteins may be below the detection threshold at the
time of measurement. To further check whether the presence or absence of
translation measurements had an impact on corresponding model weights w,
we developed a simple linear mixed model (LMM) in the form:

p
(t)
j = m

(t)
j w + Zjuj + εj (3.1)

where j = 1, . . . , J represents the subgroup of containing-translation or
not-containing-translation measurements, Zu represents the random effects
over J groups. In this case Zj is of size nj and u is of size J = 2. This
has the effect of adding a random intercept to each group. With u in the
range of 0.05 across all t, we conclude that the separation between these
gene groups does not have a significant effect on the coefficients, however
one of the main LMM assumptions is that values within each subgroup are
independent, which is not the case in this example.

Combined Linear Predictor Next, we developed simple linear models
that mapped mRNA and/or translation abundance to the corresponding pro-
tein abundance at that cell cycle phase (see Table 3.2), with a naive protein
abundance predictor with a bias term using just mRNA and translation levels
X

(t)
n = {m(t)

n , r
(t)
n } in the form (Figure S8B, Figure S10):

p(t)
n = w0 + w1X

(t)
0n + w2X

(t)
1n + εn (3.2)

where p
(t)
n is the target protein abundance at cell cycle phase t, with w0 as

bias and εn as residual error. This illustrates that once translation is known,
mRNA levels become mostly redundant in protein abundance prediction as
there is a negligible increase in r2 (compared to Figure 3.2C and D). This is
supported by a negligible decrease in Akaike’s Information Criterion (AIC)
between rn and mn + rn across all t. The values of {w1, w2} also show a shift
in weight from mRNA to translation. Parameter uncertainty is additionally
quantified using Bayesian Linear Regression as:

p(t) ∼ N (p(t)|w0 + w1m
(t) + w2r

(t), σ2) (3.3)
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Figure 3.2: Distributions and Correlations in transcript,
translation and protein levels. Published data from [5],
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Input p ∼X Phase r2
adj N AIC w0 w1 w2

G1 0.23 5783 2.82e+04 13.4
0.99
± 0.04

S 0.25 5763 2.79e+04 10.7
1.01
± 0.03

mRNA
G2/M 0.22 5822 2.82e+04 13.9

0.95
± 0.04

G1 0.47 4229 1.91e+04 6.4
0.93
± 0.03

S 0.47 4214 1.9e+04 4.3
0.91
± 0.02

Translation
G2/M 0.47 4267 1.91e+04 6.8

0.91
± 0.02

NA

G1 0.49 4229 1.9e+04 5.0
0.31
± 0.06

0.82
± 0.03

S 0.49 4124 1.9e+04 2.5
0.41
± 0.06

0.78
± 0.03mRNA+

Translation
G2/M 0.49 4267 1.9e+04 5.4

0.31
± 0.05

0.81
± 0.03

Table 3.2: Linear model parameters and results against
protein abundance. Comparison of 9 linear models of the
form p

(t)
n ∼ m

(t)
n , p

(t)
n ∼ r

(t)
n and p

(t)
n ∼ m

(t)
n + r

(t)
n , respectively.

Inputs undergo no standardization.
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using priors:

σ ∼ HalfCauchy(β) (3.4)

w ∼ N (0, σ2
w) (3.5)

using uninformative hyperpriors β = 10, σ2
w = 10. Further details to

the Bayesian treatment are considered In Appendix 6.2. Additional model
scenarios we explore are:

• Interaction terms: By considering the interaction of mRNA with
translation level w1m

(t)
n r

(t)
n , it may possibly explain more in the rela-

tionship with respect to protein (see Figure 3.3A). However r2 is only
increased by 0.01, no significant change in AIC, with very low weighting
to the interaction term. Problems also arise with matrix conditioning,
with regards to multicollinearity.

• Polynomial terms: For mRNA-protein relationships, a second-order
term w2m

2
nt does significantly improve r2 by 5%, where a curved line of

best fit better models lower-expressed mRNA abundances (see Figures
3.3B-C). However this is not to say that log mRNA-protein relation-
ships are quadratically related, previous studies have also modelled this
as a piecewise-linear [6] which makes more intuitive sense; separating
lower and higher-expressed mRNAs using a hinge function. Additional
polynomial terms K > 2 yielded no significant change in r2 or AIC.

• Lagging terms: Given the time-series nature of the data, we can
compose models in the form:

p(t)
n = w0 + w1m

(t)
n + w2m

(t−1)
n + εn (3.6)

relying on a lag-effect between mRNA and protein production. In gen-
eral we find a 1% increase in r2, which isn’t surprising as we would
not expect this lag-effect to be present nor significant in a majority of
proteins.

• Piecewise-linear: Following from Vogel [6], we deployed Friedman’s
MARS model [102] to model the mRNA-protein relationship (see Fig-
ure 3.3D). MARS identifies two non-pruned hinge-points at log2 mRNA
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abundance values of 9.15 and 11.72, which separates the abundance do-
main roughly into ’low-expressed mRNA’, ’medium-expressed mRNA’
and ’highly-expressed mRNA’ with corresponding slopes. MARS also
gives one of the best r2 at 0.28; albeit relatively unimpressive compared
to S cerevisiae model correlations.

Aviner’s [5] subsequent analysis focused on the fold-change differences
across mRNA, translation and protein:

∆p(t)
n = Z(p(t+1)

n − p(t)
n ) ∀n (3.7)

where Z is z-score transformation, or standardization and t represents
the current time-step or cell cycle phase, being G1, S or G2/M. This pro-
cess occurs for mRNA mn and translation rn in addition to protein levels
pn (see Appendix S9). As expected, most genes do not change significantly
with respect to abundance across the cell cycle, with the vast majority of
fold changes being no more than 2-fold. There is a notable increase in corre-
lation between changes in mRNA and translation; that is to say that when
mRNA levels change, translation levels are more likely to correspondingly
change in similar fashion (rs ∼ 0.25), compared to no significant correlation
between mRNA-protein or translation-protein (rs ∼ 0.03). Whilst the mean
fold change is normalized, there is a 2-fold global increase from S phase to
G2/M phase, and a corresponding 2-fold global decrease from G2/M to G1;
indicating that the vast majority of abundances double in quantity in the
run-up to cell division.

At this point, the limit of what could be understood from a statistical
point of view had been reached, hence to continue on this path, we needed
to extract additional information about each gene and protein, as inspired
by Gunawardana [3, 93], Tuller [137, 53] and others [6]. This information
we describe as sequence-derived features (SDFs), and we will expand on the
detail, assumptions and limitations of SDFs in the next chapter. However for
now we will continue to develop a more sophisticated model by incorporating
an additional 30 or so features into our subsequent analysis.
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3.2.2 Sequence-based Features Cumulatively Improve
Prediction, But Individually Correlate Weakly

We mined for features primarily from curated RefSeq mRNA transcripts
and associated amino-acid sequences (beginning with NM or NP ) from the
NCBI Entrez database [140] using HGNC gene names [143]. A number of
SDFs were extracted from the underlying mRNA or coding sequence (CDS),
in addition to frequency-based features that are identified in the Genbank
feature table, and are described here (see Appendix S1). Next, we explore
pairwise correlations between all the features, as well as their correlations
to the target protein concentrations as a clustered intensity plot (Fig 3.4),
with translation, mRNA levels, sequence-length/protein molecular weight
(PMw) and CUB with the largest absolute Spearman-rank correlations to
protein level (rs = 0.66, 0.47, −0.4, 0.37 respectively). Interestingly the
negative correlation between Length/PMw to protein level would suggest
that larger proteins are more likely to have lower abundance across all phases.
Indeed we would expect enzymatic proteins, known to be smaller; to be higher
in abundance than larger proteins which predominantly involve structural
interactions.

Further to this, the comparatively small correlation of tAI and CAI with
respect to protein with regards to previous authors [3, 53, 6] may be due to
differences in gene regulation complexity between humans/yeast. However,
the correlation matrix does not inform on how features will cumulatively in-
teract with each other in any subsequent models, therefore making it difficult
to identify redundant features. To examine this effect, we performed Princi-
ple Component Analysis (PCA) on the input matrix (i.e all the features minus
protein) to see how much explained variance can be in the largest eigenval-
ues (see Figure S11). Whilst there is noticeable dominance within the first
six principle components, there is not a clear exponential decay in feature
importance, indicating that there are small, cumulative factors at play in
these features that may contribute independently useful information. In ad-
dition, the assumption of linearity required for PCA transformation use may
not hold true in the biological system due to complex interactions between
mRNA and protein in vivo. Further to this, we examined the scatterplots
from t-distributed stochastic neighbor embedding (t-SNE) and observed uni-
form scattering/little structure in reduced dimensions. Due to these reasons,
we used feature selection instead of PCA in downstream analyses.
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Analysis of Feature Selection Approaches To examine the potential of
different computational methods on this dataset, we performed 10-fold cross
validation on different regressors across all phases (see Figure S12), with
gradient-boosted regression trees (GBRT) consistently providing marginally
higher accuracy on out-of-sample data (r2=0.64 ± 0.06) than other meth-
ods, and performing significantly better than using just mRNA and trans-
lation as inputs (r2=0.49 ± 0.02). We note that GBRT is non-linear in its
approach, and fairly robust to overfitting due to averaging over base tree
estimators. It is interesting to observe the surprisingly good performance of
simpler algorithms like OLS still achieving reasonable out-of-sample accura-
cies (r2 =0.61±0.06), confirming the robustness of the dataset and highlight-
ing its case for continued use in future studies in protein prediction. Indeed,
both Gunawardana [3] and Tuller [137] found non-linear models (such as
neural networks) brought little benefit and even reduced correlations. In
addition, both Gunawardana and Tuller got larger correlations from linear
models (r2 = 0.86, 0.76 respectively) but both developed models for steady-
state yeast, not dynamic human cells. We do however observe marginal
non-linearity in scatterplots (Fig 3.2C,D) at extrema thus supporting the
use of a pseudo-linear method. However in the interests of reducing overesti-
mation from correlations within related features, we deployed three different
methods of feature selection as no method is known to be optimum:

1. Recursive Feature Elimination (RFE)

2. `1 sparsity-inducing regularization (LASSO)

3. Selecting k-Best (ANOVA)

For step-by-step details of the feature selection parameters used, see Sup-
plementary Section 6.2 for more details. For inducing an appropriate amount
of sparsity into the input matrix using `1 regularization, selecting the regu-
larizing term α is crucial. We observe a dramatic increase in mean-squared
error (MSE) rate with α > 0.1 (Fig 3.5A) across all cell cycle phases, while
the number of features remaining p falls linearly as α increases (Fig 3.5B),
showing strong redundancy with at least half (14) of all features. Using the
optimized α, we created a GBRT model (with 10-fold cross validation (CV))
using the regularized feature matrix generated from CV Lasso models, and
describe the model coefficients as feature importances (Fig 3.5C). Unsurpris-
ingly, translation level dominates as the most important feature across all
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D

Figure 3.5: Impact of `1-regularization on reduced fea-
ture sets. (A-B) Line-plots representing parameter tuning of
regularizing term α against the mean-squared error (A, MSE)
and the number of features remaining (B, p), across all cell cycle
phases, where α ∈ [10−3, 1]. Error bars indicate ±SD with 10-
fold CV. (C) Bar plot representation of model coefficients (as
importance) for each feature from the Gradient-boosted regres-
sion tree (GBRT), using optimized α, for each cell cycle phase.
Error bars indicate ±SD with 10-fold CV. (D) Table of number
of selected features per method, per cell cycle phase.
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phases, but the remaining features mostly appear to have similar importance
(5-8%), with amino-acid derived features such as PMw and pI, on average,
performing better than traditionally used mRNA-based metrics like tAI or
CAI. All 3 of the feature selectors reduced the most number of features from
G2/M phase compared to G1 (Fig 3.5D), which may suggest G1 and S pro-
teins may be affected by post-translational regulations.

Here we see divergence from work done on other model organisms (such
as yeast and E. coli), which have shown strong correlation contributions
from codon bias metrics like tAI and CAI [3, 137]. We suspect this is
due to the increased presence of post-translational modifications (PTMs)
within higher-order organisms like H. sapiens, causing fluctuations on pro-
tein abundance that act as noise to the correlation with these mRNA-based
metrics. It is also a possible factor that tAI/CAI information value is simply
absorbed into translation/PUNCH-P measurements rendering their contri-
butions somewhat smaller when combined with translation. We note the
increased skew of feature importances within S phase (significantly larger
translation, PMw, pI), possibly indicating that these features are more ac-
tive in predicting DNA replication/repair mechanisms associated with this
phase. In the original work, Aviner et al. [5] also explored S phase regulation
in more detail in their further analysis in relation to fold changes, therefore
complexities in S phase may indicate more frequent post-translational mod-
ifications. However exploring the importance of each feature only begins
to provide biological interpretation into the complex interplay between fea-
tures - our primary interest is novelty detection in outliers with respect to a
predictive model.

3.2.3 Overestimation In Majority Of Protein Outliers
Indicates Post Translational Modification Or Degra-
dation

Next, we incorporated reduced input from `1 regularizer sets into GBRT
models for G1, S and G2/M cell cycle phases (see Figure 3.6, Table S1), us-
ing Leave-One-Out Cross Validation (LOOCV) for each predicted gene (Fig-
ure 3.7A), with significantly stronger Pearson product correlations (rp=0.82,
r2=0.67) across all cell cycle phases than a naive predictor with just mRNA
and translation inputs, therefore explaining two-thirds of protein variation.
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Figure 3.6: Model for mRNA, translation and SDF
against protein abundance. Flowchart diagram describing
the model construction for a mRNA-translation-SDF predictor.
Read supplementary 6.2 for model and feature selection.

Vogel et al. [6] found similar findings, with features that focused on indi-
vidual amino-acid frequencies, additional experimental data (such as mRNA
decay rate) and codon-related features. They too found polyadenylation,
GC content and codon bias index to be insignificant features, with strong
negative correlations in coding sequence and 3’-UTR sequence length (refer
back to Fig 7). Previous work has demonstrated that short mRNAs tend to
be more stable than long mRNAs [150] and are more efficiently translated;
with the addition that resulting short amino-acid chains may fold into their
tertiary structure faster than their longer counterparts. Other arguments
stem from decreased translation initiation in long sequences [15], due to an
increase in mRNA secondary structures found in longer 5’-UTR regions.

With perfect prediction as y = x, outliers signify difficult-to-predict pro-
teins that according to our hypothesis are involved in post-translational mod-
ifications/processes, which we characterise using different percentiles with
respect to the squared-error (ε2, red). Indeed across all phases and feature
selectors, we notice at least a 2:1 ratio of outliers lying above the regression
line to below, indicating that the global model trained on all proteins tends
to overestimate the abundance of some proteins when in fact they should
be lower. This ratio is lower than Gunawardana [3] where the ratio was
23:1 above/below conducted using steady-state yeast models, therefore for
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this pattern to follow in a dynamic experiment is supportive of using novelty
detection as a powerful theoretical principle. This would strongly suggest
that post-translational modifications or degradation is taking place in these
proteins which are not accounted for in our model input parameters. For
proteins underestimated in abundance, this may be due to lack of resolution
in only having three timesteps (six hours apart), detecting proteins without
steady-state abundance, or time-lag concentration effects. Outlier overlap
between feature selectors is reasonable see (Figure 3.7B), with roughly two-
thirds of proteins identified as 90th percentile outliers across RFE, `1 and K-
Best feature selectors, to improve robust identification of outlier proteins. In
addition to this, there is surprising overlap between cell cycle phases (Figure
3.7C), with roughly one-quarter of proteins found to act as outliers across all
3 phases, with roughly double S-G2/M outliers compared to G1-S or G2/M-
G1 outliers, across multiple percentiles. To see the full set of intersections
between methods and phases, see Figure S13.

Across 90th percentile outlier proteins, ZNF687 and CTNNB1 (both
above prediction line) occur in the top 5 outliers with highest ε across all
3 phases, with many proteins not fluctuating much in terms of ε across the
cell cycle.

3.2.4 Evidence Of Post-Translational Modification/Degra-
dation In Outliers Reveals New Insights

To contrast our hypothesis of post-translational modification (PTM) in out-
lier proteins, we generated structural site predictions of Acetylation, Methyla-
tion, Palmitoylation, Phosphorylation and Sumoylation for each amino-acid
sequence. We then calculated the total number of PTMs for each protein
and compared the outlier mean total PTM to 10000 mean total PTMs from
randomly sub-sampled protein sets of the same size (see Figure S14). In all
upper 90th percentile sets we examined, we found the vast majority of outlier
sets to have a mean PTM score greater than the distribution µ, with S phase
consistently lying furthest from the mean; thus indicating that outliers found
in our regressors are more likely to have significantly more post-translational
modification sites.
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Figure 3.7: Biological interpretability in outliers be-
tween actual and predicted protein abundances. A)
Scatterplots of measured protein abundance (y) against `1-
regularized predicted (ŷ), using GBRT with LOOCV for G1,
S and G2/M cell cycle phases. 90th percentile outliers with re-
spect to ε2 highlighted in red. no refers to the number of outliers.
B-C) Venn diagrams of outlier (red) overlap between RFE, `1
and K-Best feature selectors per cell cycle phase (B), and be-
tween G1, S and G2/M cell cycle phases per feature selector
(C).
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value FDR with B&H correction (p < 0.01), in 90th percentile
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To consider deeper functional roles than just exploring the counts of
PTM sites (considered our ’coarse level analysis’), we perform Gene On-
tology Biological Process (GOBP) enrichment analysis on 90th percentile
outliers for each cell cycle phase and clustered them in terms of their term
significance/occurrence (Figure 3.8). We filtered for GOBP terms that had
an FDR value < 0.01 across at least 2 cell stages. G2/M phase contained the
largest number of significant terms identified, with strong evidence for post-
translation degradation pathways found in protein catabolic process/ubiquitin-
dependent catabolic process terms (bottom of cluster), across all 3 cell cycle
stages. Alongside this, we also found strong significance in (negative reg-
ulation of) chromosome organization across all phases, suggesting a strong
relationship between chromatin modelling and post-translational modifica-
tions/degradation with associated proteins. Indeed, we found strong pre-
sense of helicases (HEL-), ATAD2 and E2F4/5 in all outlier sets, known to
have roles in DNA repair/chromatin-modifying proteins [151]. Further to
this, the presense of many (regulation of) cell-cycle related terms between
G2/M-to-G1 stages indicates that post-translational modification/degrada-
tion contributes significantly in robust control of cell cycle factors; perhaps
more than previously expected. The gene regulation network within the
yeast cell cycle have already been explored in detail [152], and highlights the
fact that although over 800 yeast genes are involved in the overall process, a
significantly smaller portion are responsible for regulating the core cell cycle
itself.

We performed split enrichment analysis on outliers found above and below
the regression line, wherein with above outliers; protein catabolic/proteoly-
sis terms to exist only in M-G1 stages, with cell cycle/division/chromosome
segregation across all 3 stages, with DNA repair/response to DNA damage
found shared between G1-S. Contrasted to below outliers; we found domi-
nance of post-transcriptional regulation terms and translational frameshifting
across all 3 stages, with RNA/mRNA stability found in S-G2/M groups, and
RNA processing/regulation of RNA splicing found in G1-S. Thus the key
takeaway messages are: overestimated proteins tend to either be involved
in the cell cycle, protein degradation or chromosome modification. Under-
estimated proteins tend to play a role in RNA regulation or the translation
mechanism. We also looked at different percentile cut-off points; namely
95% and 99% percentiles in the ’above’ group, and find particular emphasis
on proteolysis and protein catabolic terms and their derivatives (see Figure
S15) within G2/M, chromosome organization within S phase and cell cycle
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processes within G1 and G2/M. However the 99% group only contained N =
35 genes, and so any statistical conclusions to be drawn should be taken with
caution.

3.3 Discussion

Analysis of Time-Series Concentration With Sequence-
Derived Features

In this chapter we have collated time-series concentrations of mRNA, trans-
lation and protein from Aviner [5] and sequence-derived features from other
sources [140, 153]. Consistent with previous authors, our data shows that
mRNA and translation go some way in explaining protein variation (r2=0.23
and 0.45).This diverges from previous similar work by Schwanhäusser et al
[139], where protein translation is calculated using a mathematical model
of mRNA and protein rates, rather than measured directly; and where se-
quence derived features are not factored in their analysis. Our data estab-
lishes the redundancy of using mRNA level as a proxy to protein level with
the introduction of translation measurements via PUNCH-P [4], likely due to
factoring in post-transcriptional controls as translation occurs after mRNA
processing. The remaining discordance in correlation between translation
and protein is therefore mostly associated with post-translational regulation
of protein abundance once synthesised.

To improve predictive power, we extracted features about physical prop-
erties associated with the underlying mRNA/amino acid sequence such as
CAI, tAI and gene length. Clustered inter-correlation analysis between fea-
tures showed groupings of features usually by function (i.e strong correlation
between mRNA and amino-acid length). Negative correlations between se-
quence length and protein level have been similarly reported in studies of
other organisms [6], and is theoretically supported. However codon bias cor-
relations (CAI, tAI) to protein are noticeably smaller than in previous studies
[3, 61], which may be due to further robustness of the gene regulatory frame-
work in H. sapiens compared to S. cerevisiae, or due to recording dynamic
time-series nature of the data rather than a steady snapshot. Feature se-
lection techniques were explored (see Supplementary 6.2) to find the most
appropriate extracted features, of which several were identified as important
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across different techniques; including instability index, protein weight and
CUB.

To simplify the model (and prevent overfitting), we considered unsuper-
vised learning techniques, particularly PCA and t-SNE which underper-
formed, due to the complex interactions occurring between the features.
Whilst other applications for dimensionality reduction often have signifi-
cantly higher dimensions p, such as image or natural language processing;
we found many features contributing a small but significantly cumulative re-
duction in model error. This highlights the diverse low-impact optimizations
that exist in the cellular framework for self-modulation, whether by sequence
length, codon bias, translational efficiency or other pre-translational methods
in each associated mRNA.

Predicted Outliers Indicate Post-Translational Regula-
tion

Supervised learning on the input features enabled a linear comparison be-
tween actual and predicted protein concentrations, where we inferred that
proteins furthest from the linear model are involved in biological processes
which are primarily regulated post-translation. Choosing the most appropri-
ate percentile to identify outliers is not clear; Gunawardana et al. [3] chose
a 2.5% cutoff, but had a small number of outliers (<= 50). We chose a 10%
(90th) cutoff in order to improve the significance of subsequent GO analyses,
at the cost of possibly including proteins that may not be deemed as outliers.
Modest overlap (25-40%) between outlier proteins across the cell cycle shows
a core group of proteins that the model fails to predict consistently, which
is enriched for catabolic processes. In relation to effects from time-delayed
mRNA expression, we found that it partially affects 10-12% of proteins we’ve
sampled by bootstrapping, but due to low time-resolution with only three
steps in the cell cycle, this conclusion is drawn with caution as a 6-hour time
delay window is more than sufficient for mRNA expression levels to change
aberrantly.

Expanded Future Role for Sequence-Derived Features

One surprising takeaway from this initial research phase was the power of
SDFs in model prediction, despite the fact that we would assume there would
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be little useful information within the DNA sequence to actively predict
something as complex as dynamic protein abundance. Following this line of
thinking, we returned to the database sources and extracted new sequence-
based and frequency-based features known before protein synthesis to use as
inputs for a machine learning predictor model. We believed that this might
have the effect of exaggerating interesting outliers even further. Our down-
stream analysis develops this to expand the original dataset considerably to
discover new insights across the cell cycle, and indeed in other H. sapiens
cell lines.



Chapter 4

Multi-context sequence-derived
features for general application

When working with data from the cell cycle, it quickly became apparent
that expression data alone would be insufficient to properly expand our un-
derstanding of the cell cycle. Thus, based on previous studies [137, 3], we
initially expanded our dataset with around 30 additional features based on
sequence-derived features (SDFs) engineered from the RNA/amino acid se-
quence. This work was published in BMC Bioinformatics [1]. In this chapter,
we’re going to conduct a full-fledged analysis of SDFs, how they depend on
each other with linear and non-linear dependency metrics, with techniques
for dimensionality reduction whilst retaining the maximum interpretability.
Parts of the research in this chapter is under review with Nucleic Acids Re-
search (NAR), with additional supplementary material and tangents.

4.1 Data Preparation

Here we describe the processes of generating the enlarged SDF dataset of
over 200 features. Some of this will be reminiscent of Chapter 1, but there
are noticeable differences.

SDF Extraction mRNA transcript variants were extracted from NCBI
Entrez Direct [140, 141] via Biopython v1.7 [142] package (Python 3.6).
Unique gene names (HGNC) [143] were mapped to curated Refseq acces-
sion numbers, obtaining GenBank files for all H. sapiens mRNA transcripts.

89
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Exon data and elements from feature table were extracted and counted. We
filtered for mRNA transcripts whose Refseq ID began with ”NM ”. H. sapi-
ens amino acid (AA) sequences were taken directly from Uniprot/Swissprot,
selecting Proteome UP000005640. The mRNA sequence is subsequently split
into coding sequence (CDS), 5’UTR and 3’UTR, whereby a number of fea-
tures are counted such as exons, sequence-tagged sites (STS) and more.
Numbers of exons, sequence-tagged sites (STS), misc features, regulatory
regions and poly-adenylated tails in the mRNA transcript are counted. Pro-
tein sites, regions, molecular weight (PMw) and more in the AA sequence
are counted. We also count mono and di- nucleotide frequency for mRNA,
CDS, 5’UTR and 3’UTR transcripts. Amino acid frequencies are calculated
for the corresponding amino acid transcripts. We extracted CAI and ’the ef-
fective number of codons’ (Nc) using CAIcal [144] server using CDS sequence
as input in conjunction with the Human Codon Usage table as frequencies
per thousand from the Ensembl database (release 57). We used ExPASy’s
ProtParam [145] module in Biopython to predict pI, Aromaticity, Instability
Index, GRAVY and protein secondary structure. tAI values are calculated
using stAIcalc by Sabi et al [62], using the offline version with human tRNA
gene copy numbers taken from GtRNAdb [63] for hg19 (NCBI build 37.1 Feb
2009). Codon Usage Bias is calculated following the method from Roymondal
et al [61], requiring no reference codon usage table. Changes in Gibbs Free
folding energy ∆G for 5’UTR, a proxy mRNA secondary structure, is pre-
dicted using RNAstructure EnsembleEnergy algorithm [146], using window
sizes of {L,10,20,30,40,60,100}. PEST regions for amino acid transcripts are
calculated using the Emboss suite of the European Bioinformatics Institute
(EBI) using a window size of 10. Post-translational modification (PTM) fea-
tures were taken from experimental studies as collated by PhosphoSitePlus
[154] and counted. Gene Ontology terms were taken from the Gene Ontol-
ogy Consortium [155], where labels to other related gene information were
obtained via the Biomart portal [156]. See Appendix 6.2 for full text details
of each text-mined SDF from Refseq and Uniprot/Swissprot.

Notation In this chapter, we will refer to a generic sequence-derived fea-
ture vector as xp, where p = (1, . . . , P ). Each xp belongs to a gene region
Rp ∈ R, which can be the mRNA, CDS, amino acid sequence and so on. Fur-
thermore, each xp also has a data group Dp ∈ G, which represents whether
the feature is a mononucleotide frequency, codon bias, text-mined feature
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and so on. To illustrate different normalization techniques to preprocess
X, we will use the notation X(0) to illustrate unscaled, X(1) for normaliza-
tion 1, and so on. Where correlations contain an asterisk r∗, this indicates
that different ways to calculate coefficients may be grouped together, such
as Pearson, Spearman and/or Biserial coefficient depending on the pairwise
combination and the data type therein. η is used as an arbitrary threshold or
tolerance parameter. K within section 3 of this chapter refers to the reduced
dimensionality of XP .

SDF Preprocessing As a precursor step, for each feature xp we eliminated
certain features by the following liberal criteria in order:

1. Greater than 50% missing values.

2. Very low variance and noninformative, i.e σ2(xp) < 10−7

Secondly, given that many of the features are dependent on the length of
the gene, mRNA transcript or amino acid sequence, depending on the source,
our first approach was to normalize by length, or by other intuitive factors
given various inputs. For details as to which normalization applies to which
feature group, see Table 4.1 for details. For normalization 1, let xp be the
vector of counts for feature p, then the count frequency is given simply as:

x̂(1)
p =

xp
LR

, ∀p (4.1)

where LR is the vector gene lengths, with R ∈ R referring to the data
region, whether that be mRNA, CDS or AA etc. An alternative approach
would be to view frequencies of bases with respect to some expected fre-
quency, for instance since there are 4 DNA bases, we could assume uniform
distribution between all four DNA bases, and hence the expected value for
all bases j is the expected reciprocal Ej[1/T ], where T is the total number of
unique bases (4) or di-bases (16), depending on the sequence type. Note that
for dinucleotide expected values, it is EDN[1/2T ]. Then the relative frequency
for feature p becomes:

x̂(2)
p =

xp
LR E[1/TR]

− 1, ∀p (4.2)

Note that in the amino acid case, this is a little more complicated as
each amino acid is encoded by trinucleotide patterns within the mRNA. To
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Feature
(Group)

Normalization
1

Normalization
2

Mononucleotide
count (mRNA)

See equation 4.1 See equation 4.2

Dinucleotide
count (mRNA)

See equation 4.1 See equation 4.2

Amino acid
count

See equation 4.1 See equation 4.2

Isoelectric point x− 7
Instability Index x− 40
Kozak
sequence

LCDS

Text-mined
features (mRNA)

LmRNA

PTM LAA

Gene length log(x+ 1)

Table 4.1: Summary of normalization strategies for each
SDF feature group G. Base counts undergo differing strate-
gies for comparison, L refers to gene length of respective source.
Where a length is specified, it is scaled by as xp/Lp.

account for this, EAA 6= 1/20, but rather the number of synonymous codons
for amino acid j, normalized by the total number of trinucleotides, which is
64. What this means is that values E[x̂

(2)
np ] = 0 meet the expected frequency,

where divergent values indicating a departure from this frequency. In the next
section, we always use the ’Normalization 2’ methods unless otherwise stated
since it nearly always centers the distribution around zero whilst maintaining
a keen interpretability.

Dataset Summary Over 200 sequence-derived features have been ex-
tracted, of which 112 are derived from the NCBI Refseq repository [140]
of 50007 human mRNA curated transcripts, with the remaining 78 from
20395 Uniprot/Swissprot human AA curated transcripts, with associated
PTM data from PhosphoSitePlus [154], deriving estimate PTMs from AA
sequences.
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Figure 4.1: The Breakdown of Sequence-Derived Fea-
tures and their sources. A pie chart detailing the number
and proportion of features by database source (inner ring) and
broad Data-Grouping G (outer ring). mRNA/Ensembl/Refseq-
like features (54%) are denoted in shades of green, amino-
acid/Uniprot/Swissprot-like features (33%) are denoted in
shades of red. Post-Translational Modification (4%) features
are extracted separately (in purple). HGNC labels (7%) are not
included in the machine-learning algorithms but are shown here
for completeness (in blue).
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4.2 Results

The majority of engineered features are a form of count feature measuring a
biological phenomenon, whereby a majority are derived from the frequency
of mono-, di- or tri-nucleotide occurrence. A breakdown of sequence-derived
features by broad affiliation and database source (Figure 4.1) shows a major-
ity of features derived from mRNA (55.3%), a third from amino acid (33.4%)
and the remaining PTMs constituting 4% of the features. HGNC features
[143] consist of identifiers only and is therefore not used in downstream anal-
yses. Note here that we do not include expression or halflife data that we
will use later on for further abundance regression analysis. The imbalance
between mRNA/amino acid features is partly due to the richer GenBank for-
mat which stores larger amounts of meta information regarding the mRNA
transcripts.

The high prevalence of nucleotide frequency features in mRNA (71.9%)
and minority amino acid frequency in proteins (29.9%) lead to a heavy length-
based dependency, which we correct for by scaling by the appropriate length,
or as a ratio to the expected frequency. The frequency of bases, and in-
deed the off-frequency of particular codons, otherwise known as codon bias,
is known to correlate with post-transcriptional regulation, mRNA decay and
influences translation [6, 53, 157, 158]. Continuous feature groups include
estimations of the Minimum Free Energy (MFE) of the 5’UTR region (us-
ing various window sizes) and amino acid biophysical properties, such as
Isoelectric point [159] and GRAVY [160].

4.2.1 Sub-Analysis of Sequence-Derived Features and
Derivation

In this section we’re going to begin by analysing the breakdown of derived
features into their interesting sub-regions and groups. These groups are de-
fined in Table 4.2 in association with their gene region, database source and
number of features P . As mentioned previously, a significant fraction of the
features are base (80) and amino-acid frequencies (20), similar to Vogel et al
[6], with a large corpus of amino-acid text-features (42) representing amino-
acid interactions.
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Data
Group G

Data
Region R Source P

Special
Frequency

mRNA Refseq 1

Mononucleotide
Frequency

not protein Refseq 16

Dinucleotide
Frequency

not protein Refseq 64

Sequence
Length

All Both 5

Gene profile All Refseq 5
Sequence
Entropy

All Refseq 5

Proportional
Length

sub mRNA Refseq 3

Translation
Frequency

CDS/5’UTR Refseq 2

Minimum
Free Energy

5’UTR Refseq 7

RNA misc. mRNA Refseq 9
Codon Bias CDS/5’UTR Refseq 5
Amino acid
Frequency

protein Uniprot 20

Amino acid
Biophysical

protein Uniprot 4

Amino acid
text-feature

protein Uniprot 42

PTM PTM source PhosphoSitePlus 8

Table 4.2: Breakdown of SDFs by data group, region
and database source. P represents the number of features
in each data group. sub-mRNA in this case means any of the
sub-parts of an mRNA strand, meaning the 5’UTR, 3’UTR and
CDS regions.
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Genome base profiles and entropy We begin with a genome-wide anal-
ysis of base sequence profiles to discover interesting characteristics with re-
spect to mononucleotide and dinucleotide frequency. If every gene has an
mRNA sequence sn of length Ln, then let the count of base i at position
j = 1, . . . , Ln be bij. To obtain a proportion/probability we marginalize over
the bases to give:

b̂ij =
bij∑
i bij

(4.3)

note that the marginalization takes account of the gene length and hence
we require no division in subsequent steps. Then if we assume a uniform
expected distribution of bases across Ln, the observed/expected (O/E) ratio
is χij = (b̂ij/T

−1) = T b̂ij, where T is the number of unique bases and values
χij = 1 represent the expected frequency.

Figure 4.2 shows O/E across the CDS, 5’UTR and 3’UTR mRNA nu-
cleotide (nt) positions for all protein-coding mRNAs. Here we plot the first
raw 10 nt positions (A,D,G) along with the 5th to 200th nt position using
a rolling average (window=10, [B,E,H]) and 200th to 5000th nt using the
same rolling average (C,F,I). As expected we find ATG as the starting codon
(Appendix 4.2A) for nearly all CDS sequences, with a 2:1 over-representation
of G at position 3 (0-start index), +50% C at position 4 and so on. As a
general trend, Thymine (T) is under-represented across the entire CDS (-
10%, Appendix 4.2B), with cytosine and guanine over-represented at +10%
and +15%, respectively. In regards to the 5’UTR region, C/G are over-
represented at +20/30% with A/T globally under-represented, with the re-
verse being true for the 3’UTR region. This may be accounted by the high
density of CG-rich islands that pre-dominate in the 5’UTR, known to be
associated with DNA methylation. In particular, the highest C/G regions
for 5’UTR are at the start of the sequence, and gradually deteriorates until
reaching the CDS, whereas the A/T region climbs in strength the further
away from the CDS it gets (Appendices 4.2D+). The dominance of A/C
in the positions immediately preceding the TSS (see Figure 4.3B) are well
known in the literature, and associated with translation initiation by aiding
or hindering the ribosome subunits from binding.

From these profiles we derive two interesting features for each region R,
these are:
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Figure 4.2: Mononucleotide observed/expected ratios
by position. Line plots of observed-over-expected mononu-
cleotide frequencies across the human transcriptome for coding-
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- first 10 nucleotide positions, Column 2 - 5-200 nt position with
rolling mean (window=10) and rolling std, Column 3 - 200-5000
nt position with rolling mean (window=10) and rolling std.
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• Normalized hamming distances: We can create the most ’likely’
or probable sequence by selecting the maximum probability at each
position:

ŝj = arg max
i
b̂ij (4.4)

over domain R. We can then compute the normalized Hamming dis-
tance between sn and ŝ, where we only select up to L characters in sn
to ensure equal length. See Figure 4.3C for distribution over CDS.

• Sequence entropy: Using probabilities b̂ij and sequences sn, we can

create a proportion vector profile vnj = b̂ij where i = arg snj is the
selected character from the sequence. See Figure 4.3D for an example
profile. We can think of the ’entropy’ of this profile as the product of
the probabilities over each position:

H[v]n = −
∑
j

log vnj (4.5)

where we compute the log-sum to avoid floating-point precision er-
rors. See Figure 4.3E for sequence entropy distribution over CDS. We
can trivially transform this to a normal distribution by taking the log-
transform when needed. We can think of this metric as a measurement
of how much each gene’s sequence conforms to the most frequent se-
quence, which may aid in identifying outlier proteins.

Biophysical properties A number of significant amino acid chain prop-
erties have been studied over the years, usually derived by a combination of
certain amino acids. For example, the Isoelectric point (pI) defines the pH;
whether an amino acid chain has a net electrical charge. Given that certain
amino acids are known to be positively/negatively charged [161], estimates
of pI can be obtained assuming an immobile pH gradient. Simpler biophys-
ical properties are metrics such as Aromaticity, which are counts of amino
acids containing aromatic rings such as Cysteine and Phenylalanine, GRAVY
(Grand Average of Hydropathicity) [160]; a weighted summation of hydro-
pathic amino acids, and PEST regions which are rich in Proline, Glutamic
Acid (E), Serine and T)hreonine, and whose sub-sequences are associated
with protein degradation.
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Codon bias Following from previous studies which found expression-codon
bias relationships of interest, using the techniques discussed in section 2.1.3,
we calculated various Codon bias metrics across the entire human tran-
scriptome (see Appendix S16). Unlike the relationship between CAI-tAI
within S. cerevisiae, codon bias inter-correlations appear significantly lower
in H.sapiens and in some cases non-linear (see w.r.t uORF 5’UTR). How-
ever we cannot discount the possibility that increased codon bias correlations
may be related to the unintentional selection sampling that occurs in smaller
datasets; highly expressed proteins are much more likely to be measured in
an experimental study than otherwise, and the codon-bias expression rela-
tionship becomes stronger in these samples.

Minimum Free Energy Calculations The 5’UTR mRNA secondary
structure has been increasingly shown to play an important role in mod-
ulating translation initiation and elongation, amongst other roles. Methods
to quantify this structure can be achieved by calculating the change in Gibbs-
free folding energy, known as ∆G. More negative values indicate an increase
in in silico stability, whereas values → 0 may indicate structural instability.
Given that ∆G is calculated on a base-pair basis, scaling by mRNA length
is essential for multi-mRNA comparisons, see Appendix S17 for ∆G distri-
butions. Initially we just calculated ∆G over the 5’UTR domain, but then
we recognised that regions closer to the TSS would likely have more impact
on translation regulation. Hence we re-calculated ∆Gw for differing window
sizes w, where w is the distance from TSS. The distributions follow the Cen-
tral Limit Theorem and converge to a Gaussian distribution as w increases.
Note that for normalization by sequence length we take −∆G/w as displayed
in Appendix S17. We could’ve spent more time making more rich use of the
predicted mRNA secondary structure, and this may be an appropriate use
of time for future research projects, however we limited ourselves to energy
calculations for this thesis.

Post-translational modifications Our PTMs are calculated from Phos-
phoSitePlus, an online library for mammalian PTMs [154] with over 95%
of PTM sites are verified using MS experiments, with site assignments that
score with a p-value greater than 0.05 are automatically filtered. The vast
majority of sites discovered are Phosphorylation sites, with smaller but not
insignificant amounts of Ubiquitination, Acetylation and Methylation.
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4.2.2 SDF Intercorrelations Exhibit Widespread Mul-
ticollinearity

To begin understanding the possible impact of these derived features and
their relative value, we compute the pairwise correlations r∗(x,y) between
each SDF, however due to the heterogeneity of data type, we generalize the
correlation metric to where:

• Both vectors are real x,y ∈ RN×1: use Spearman-rank rs since we
cannot assume linearity.

• One real vector x ∈ RN×1, one dichotomous vector y ∈ DN×1: use
Biserial correlation (rbs, see Section 2.3.4).

• Both vectors are binary/dichotomous x,y ∈ DN×1: use Spearman-rank
rs.

where not stated, p-values < 1e−16, where sample sizes N > 1000, and
often much higher. As many of these SDFs are not entirely independent of
each other, we would expect large levels of inter-correlation between features
of the same type and source (see Figure 4.4); particularly prevalent are the
strong positive correlations between CG-containing mRNA base ratios, and
likewise for AT-containing ratios. The strongest correlations are between
mono/di-nucleotide ratios by mRNA, 3’UTR and CDS regions for each gene,
as well as the MFE calculations in the 5’UTR region (as the window size is
all that changes). Due to the need to eliminate length bias for count-based
features, normalizing by length introduces intra-correlation between features
as a common factor. Furthermore, the majority of large spurious off-diagonal
correlations relate to cross-talk between the mRNA/Uniprot datasets having
count features with the same description: for example the ’signal peptide
count’ (rbs = 0.69), ’peptide’ (rbs = 0.5) and ’transit-peptide’ (rbs = 0.63)
count features had an equivalently named-feature in Uniprot. Future subsec-
tions within this chapter will attempt to tackle this induced multicollinearity
using feature selection and/or dimensionality reduction methods. In gen-
eral, the relationship between CDS and amino-acid derived features was very
strong, this is largely because of the linear 3:1 mapping between codons and
amino acids as determined by the genetic code; biophysical properties also
correlated well with amino-acid/CDS frequency ratios. These findings are
consistent to previous work done by Vogel et al. [6], albeit with a slightly
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more varied feature set; feature correlation overall tends to cluster by gene
region with the exception of base frequencies and favours features that are
biologically closer to it, as we successfully demonstrate (see Figure S18).
However, Vogel’s group did not consider features derived from text-based
information or make use of meta information provided in these databases, as
many of them were still under development at the time of research.

The magnitude of each feature to correlate with all of the others is cal-
culated as the `1-norm of each correlation matrix row j ∈ P :

||r(p)
∗ ||1 =

J∑
j=1

|rpj| (4.6)

where large ||r||1 indicates redundancy, but low ||r||1 may be non-linearly
related, irrelevant or relevant to expression but not to other SDF features (see
Figure S19). Generally, mRNA, CDS and 3’UTR dinucleotide features have
high intra-correlation, particularly base frequencies that consist of GC/AT-
only bases. Of codon biases, which historically have been used extensively in
previous studies as effective mRNA proxies, Codon Adaptation Index (CAI)
scores highly, but other metrics do not.

Non-linear relationships between SDFs The most popular measures of
correlation include Pearson and Spearman-rank correlation, but both of these
methods depict either linear or monotonic relationships respectively, and
struggle to model non-linear relationships. Therefore to capture any potential
nonlinear relationships, we computed the continuous Mutual Information
(MI) metric between all SDFs, treating each vector pair as random i.i.d
variables X and Y :

I(X;Y ) = KL [p(X, Y ) || p(X)p(Y )] (4.7)

where KL is the Kullback-Leibler (KL) divergence, also known as rela-
tive entropy. KL divergence can be computed via estimates of the Shannon
entropy H(·) as:

I(X;Y ) = H[X] +H[Y ]−H[X, Y ] (4.8)

whereH[X] is the marginal entropy forX andH[X, Y ] is the joint entropy
over X, Y . Estimates of entropy in practice requires discretizing continuous
random variables X and Y into bins k and evaluating the density of each
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Figure 4.4: Large-scale interdependencies between
SDFs reveal source dependency. Spearman-rank
(rs)/Biserial correlation (rbs)-mixed correlation matrix between
sequence-derived features (SDFs). See Methods for details on
correlation method. Both axes indicate the direction of molecu-
lar biology (from DNA to post-protein). mRNA/RNA features
are denoted in green shades, amino-acid features are denoted in
red shades, PTM features are denoted in purple. Off-diagonal
elements indicate a correlation (rs—rbs) between two features
(red: positive, blue: negative).
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bin (here we use k = 20). Using this metric, plot the pairwise ’mutual
information matrix’ between each continuous SDF feature (see Figure S20),
but similar to wholesale correlation matrices with large P , it is difficult to
ascertain interesting relationships beyond the general clustering of mRNA-
base count-like features. To account for feature pairs that may contain a
non-linear component not picked up by correlation metrics, we developed
a quadratic model (r2 = 0.91) between mutual information and correlation
EI(X;Y )|r∗ for all X 6= Y :

1.0 0.5 0.0 0.5 1.0
rs|rbs

0.0

0.5

1.0

1.5

2.0

2.5

3.0

I(X
;Y
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OLS 95% CI

RLM (HuberT)
Outliers

Figure 4.5: Quadratic modelling of linear/non-linear de-
pendence between SDF pairs. Scatterplots of Spearman-
rank (rs)/Biserial (rbs)-to-Mutual Information (I(X;Y )) pairs.
Ordinary least squares (OLS) modelling as eqn. 4.9 in red with
95% confidence intervals (CI), against Robust Linear Model
(RLM) using robust norm (Huber-T) in blue. Selected outliers
(top 10 large plus 2 smallest) marked in red crosses and labelled.
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I(X;Y ) ≈ w0 + w1r∗(X, Y ) + w2r
2
∗(X, Y ) + ε (4.9)

hence pairs that have εn → 0 are equally well explained by linear metrics
as non-linear metrics, with points with large εn as outlier correlations of
interest (see Figure 4.5). The vast majority of outliers are cases where r∗
is underestimated in value. In particular, length-to-length features such as
amino acid length and CDS length appear to strongly correlate both in linear
and non-linear metrics; a surprise was discovering kozak sequences appearing
more strongly as non-linear association to length which was not picked up
by correlation metrics (rs ≈ -0.2). We also sampled two outliers that were
slightly overestimated by r∗: one case of methionine frequency to uORFs
in 5’UTR region, and signal peptide to mature peptide. In both cases the
strong dependency is obvious as both contextual domains heavily overlap.
We further check to see if features divide by gene region R (mRNA, 5’UTR
etc.) across the {r∗, I(X;Y )} domain. We can compare groups by taking
the kernel-density estimate (KDE) of each regions’ Gaussian PDF in the
form r∗(xp,xq) ∈ Rpq (see Figure S21). The density of SDF pairs from the
same region Rp = Rq tend to have a significantly flatter KDE estimate,
indicating significantly higher positive/negative correlations among features
from a similar region. Most protein KDEs exhibit the lowest correlation
PDFs, which may be a reflection of the large body of dichotomous text-mined
features from the amino acid sequence which tend not to correlate with many
other features (see correlation matrix in Figure 4.4), and the relative distance
these features have to mRNA and sub-mRNA feature regions.

Comparison to Vogels’ feature set To validate the derived features
and to benchmark as a comparison, we extracted the mRNA sequences and
SDFs as provided by Vogel’s work [6], see Supplementary 6.2 for details on
the methodology. In the next section we’ll also extend this comparison when
exploring the impact on expression levels. To achieve this, we used two major
forms of analysis for feature comparison:

1. Sequence alignment: To check whether we were actually using the
same sequences to derive information from, we performed pairwise lo-
cal sequence alignment using Biopython [142] across CDS, 5’UTR and
3’UTR sequences; we then sort mean pairwise alignment scores An
across the data percentiles (see Figure 4.6A). We approximated the
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area-under-curve integral (AUC) using the composite trapezoidal rule
with K samples/percentiles and fixed step size ∆A = 1 as:

∫ 1

0

f(A)dA ≈
K∑
k=1

f(Ak−1) + f(Ak)

2
(4.10)

where f(·) can be any necessary transforming function and K = 100.
The CDS and 3’UTR regions have a 96% area-under-curve (AUC),
but 5’UTR only has 67% AUC. We found using global alignment that
around 10% of 3’UTR sequences contained a sub-alignment where one
sequence had a large addition that would lead to significant negative
scores (around -0.5/8). Hence we decided to use local alignment to
ignore these issues and focus on checking whether any alignment was
possible. There were very few significant mismatches in the CDS sam-
ple - with the lowest 20% percentile containing at least an 80% match;
this could be attributed to modifications within the database between
the periods of our research and the research conducted by Vogel [6].
Somewhat more surprising was the increased lack of agreement in the
5’UTR sequences; in most cases there is a large disparity in sequence
length between databases; and indeed in the majority of discrepancies,
our sequence lengths are larger than Vogel’s (see Appendix S23). There
are a number of possible explanations for this including 1) unknown se-
lection or reduction procedures applied to the sequences within Vogel’s
research, 2) discrepancies between Refseq and Ensembl databases, 3)
changes to the underlying sequence database across time, 4) errors in
our calculation with regards gene region boundaries, or 5) an mean-
ingless artefact of working with a substantial subset of the whole tran-
scriptome (50k). It is likely that many or all of these explanations
contribute some small part to the discrepancy in sequence.

2. Derived-feature correlations: To compare SDFs, we computed the
pairwise Spearman-rank rs correlation between each Parkes-Vogel fea-
ture where the feature was deemed the same (see Figure 4.6B, p = 84).
Similarly to the results from sequence alignment, the amino acid-based
features have very high correlations, but mono and dinucleotide fre-
quencies are somewhat poorer, with CDS correlations performing the
best owing to having the most similar sequences. To overcome the
possibility of having various non-linear transformations to one of the
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features skewing the correlation metric, we used three different trans-
formation techniques (see Supplementary 6.2) and then selected max rs
over the transformation types. Once again, with a relatively small sam-
ple n = 453, it is unclear whether these correlations would be repre-
sentative of the wider mRNA population.

We also performed some systematic analysis of pairwise SDFs in the form
of Canonical Correlation Analysis (CCA) between the two datasets (see Fig-
ure S22). We discovered there was very limited overlap in the feature space,
which we suspect is due to the time difference between the studies, and thus
the evolution in the underlying genetic databases which form the basis on
which SDFs are extracted. This remains true when we filter for just the
subset of genes chosen in Vogel’s sequence feature set. It is wholly possible
however that, as a number of features break inter-independency assumptions,
that statistical insight from this check may be questionable. We have in this
previous study a relatively small but useful benchmark to compare our fea-
tures against; the value of which won’t be particularly clear until they are
used for predicting useful biological properties such as expression level, gene
function, interaction and so on. Our subsequent analysis is to tackle the
problems arising from multicollinearity using an array of feature selection
and unsupervised learning techniques, and the trade-offs therein.

4.2.3 Systematic Unsupervised Learning Approaches
Trade-Off SDF Performance Against Interpretabil-
ity

Many approaches to modelling biological and other problem domains involves
creating a simple model and slowly adding relevant features until some sat-
uration point is reached, which we can think of as a bottom-up approach.
Our methodology is to create and design as many features as possible, build
a complex model and then prune back the feature set to prevent overfitting
and multicollinearity, which is a top-down approach. To address the con-
cerns regarding feature viability, multicollinearity and overfitting, we devise
a systematic pipeline to transform feature inputs XP → XK into a smaller
subspace that is suitable to ML modelling. See Supplementary Table S2 for
an overview of a large body of feature selection and dimensionality reduction
techniques. For subsequent analysis we assume we are working with X(2), i.e
the normalization 2 input matrix, unless specified.
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Value Filters The simplest method to drop unhelpful features is simply
to apply some criterion, such as the number of missing values, variance σ2 or
correlation r∗ and filter columns by this metric. Unlike most large datasets
of this kind, our SDFs have significantly low numbers of missing values and
only tAI has more than 5% missing values among a feature set of P = 194.
One could use imputation to fill the remaining values, but we leave as-is
to allow flexibility for future application. In terms of variance σ2 < η, a
number of feature counts associated with mRNA have very low variance
< 1e−6, mainly due to normalization by gene length often giving very low
values, eliminating around 6 features. We briefly explore correlation filtering,
but since there is heavy overlap between the principles in this filter and
more advanced dimensionality reduction techniques, we do not consider them
in detail. Similarly, we do not cover ANOVA as the F-value is a simple
conversion from a correlation between each input xp and a target y; ANOVA
also requires strong linearity assumptions and Gaussian-distributed features.

Feature Selection Rather than drop unhelpful features using various cri-
teria, we can take a more active approach by iteratively developing more
complex models which we then evaluate to minimize the loss. This approach
has the significant drawback of requiring a target variable y, i.e a supervised
approach, and hence must be performed on a per-application basis. The key
advantages are the substantial reduction in P → K, flexibility and inter-
pretability of results. In the following examples, we use as an example the
target protein expression p from Vogel et al [6]. For instance, we could use the
feature selection inherent within `1-norm based models such as LASSO to se-
lect for non-zero feature coefficients (see Appendix S24A-B). In these models
we firstly select an appropriate regularizing hyperparameter α̂ by minimizing
equation 2.19 to find a local minima, and verified this using cross-validation
over an appropriate parameter space. In this case, we found 41 non-zero coef-
ficients out of a possible 194 features. As previously mentioned, not only does
this require a target, but the feature selection can be rather inconsistent -
this is especially true if the data is slightly perturbed. One common method
around this is to undergo bootstrap sampling using different data subsets
and estimate feature inclusion frequency. Furthermore, if multiple variables
are highly correlated as is the case with our dataset, LASSO tends to se-
lect only one of them arbitrarily. We considered using a Group Lasso model
which imposes hierarchical structure on the features, but it is not clear what
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is the most appropriate way to group our sequence-based features. Other
techniques that are more intensive are Recursive Feature Elimination (RFE)
algorithms that recursively prunes the worst features with each model fitting
(see Appendix S24C). Here we compare against OLS, Ridge and LASSO
models, where α̂ is determined by minimizing the respective objective func-
tions (eqs 2.17, 2.19) respectively. The general consensus across all three
models is in the range P = [28, 32]. We also considered the Greedy For-
ward Feature Selection (GFFS) approach as done by Gunawardana et al [3],
which additively adds features based on the cross-validated RMSE at each
iteration; this yields similar results to RFE.

PCA Here we describe PCA within a probabilistic framework by describing
the latent variables z as conditioning the centered inputs x in the following
likelihood function:

p(xn|zn) = N (xn|Wzn, σ
2I) (4.11)

where we define the prior of z to be p(z) = N (z|0, I), with noise mod-
elled as a single parameter σ2I; see section 2.3.5 for more details. As first
instance we compute W using the whole dataset X(2), and then compute
the explained variance ratios (EVR), which are simply normalized singular
values λi as computed by SVD. Here we plot the cumulative EVR across K
(see Figure 4.7A). One striking aspect is the relatively slow pace of variance
compression within the dataset; contrasted to for instance image processing
where variance is preserved in significantly fewer dimensions. We only reach
80% total variance at 46 (principle) components and 95% variance with 93
components, with an AUC as estimated by the composite trapezoidal rule
(eqn 4.10) of 87%. Based on the performance, we highlight the 80-99% re-
gion (blue box) as reasonable candidates to select optimal K, the trade-off
of which we will consider in later chapters. PCA does not handle categori-
cal/binary features very well, as shown in Figure 4.7B; all outliers belong to
the amino-acid meta information category across the first two components,
and this trend holds across most eigenvectors (Figure 4.7D). To model the
outlier eigenvectors, we used a t-distribution to estimate E[Wk] for all k ∈ K
(green lines), along with 1% and 99% percentiles (see example eigenvector
W1 in Figure 4.7C). As we see a normal distribution is inappropriate due
to the undue influence of outliers in most Wk. One of the main reasons for
model failure in this instance is the assumption that the noise variance σ2
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Figure 4.7: PCA analysis on whole SDF dataset. A) K
components against cumulative explained variance ratio (EVR),
representing normalized singular values λi. Box selection indi-
cates likely region to select optimal K. B) First two principle
components W and coloured based on magnitude from origin.
C) Histogram of W0 with fitted Gaussian and Student-t distri-
butions. D) First 20 principle components in pseudo-box plot
form, with bars representing 99.5% percentiles of all data. Out-
liers w.r.t percentiles are drawn as scatter points.
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is the same for every feature; this is not true among continuous features, let
alone the categorical ones. Furthermore, the removal of interpretability in
components makes wholesale PCA a poor option in terms of gleaning mean-
ingful insights into SDF feature value. However one important lesson stands
out from this: the compression of biological SDFs is a non-standard problem,
indicative of the nonlinear, interactive components that describe the cellular
environment which we seek to encapsulate. We can solve one of these prob-
lems by considering Factor Analysis (FA) by allowing for heteroscedastic
noise.

Factor Analysis (FA) Recall that for FA we model the centered SDF
matrix X̂ as containing a hidden optimal subspace using latent variables
zn ∈ RL with added Gaussian noise, giving the following likelihood function
[162]:

p(xn|zn) = N (xn|Wzn,Ψ) (4.12)

We can think of FA as a low-rank parameterisation of a Multivariate
Gaussian, requiring that all features correspond to a normal distribution;
this means that FA can only be applied to our continuous features. We can
compare how each feature xp → N (µp, σ

2
p) maps to a normal distribution by

computing the normal theoretical quantiles, also known as Quantile-Quantile
(QQ) plot. Graphically sampled theoretical quantiles will lie on the y = x
plane, leading naturally to use Pearson’s correlation coefficient rp as a mea-
sure of similarity. We choose rp > 0.95 to select 110 features which are
deemed as normally distributed out of 150 continuous features.

The first latent factor corresponds to the divergence between CG-rich
(positive) and AT-rich (negative) SDFs (see Figure 4.8A), which form strongly
co-correlated clusters that require elimination. The second latent factor pri-
marily contains strong negative weighting to length and entropy-based fea-
tures, with the third focusing on proportion length features, fourth for amino
acid frequency and biophysical properties and fifth MFE energy calculations
(see Figure 4.8B). Factors in Wk are grouped by their data group G, and we
compute the scaled `1-norm ||WG

k ||1, where we use the absolute to ignore fac-
tor direction to prevent negative and positive factors within the same group
averaging to zero and obscuring the magnitude. For Figure 4.8C we use the
same schema for data regions r = 1, . . . , R ∈ R. Apart from in Factor 1
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where mRNA-based features are more selected for, we do not see many dif-
ferences in terms of how each data region is treated by FA. Although one
has to treat interpretation of W with caution, as the rotation matrix R ap-
plied to W to induce factor identifiability can be arbitrary (in this case we
use varimax ). Similarly, the features Ψ with most noise as determined by
FA are mostly protein-related features, such as PTMs (0.59) and AA fre-
quency (0.37), with mRNA misc. features (0.57) also scoring highly. Whilst
the multivariate normal (MVN) assumptions required for FA significantly
reduce K, the representation of noise variance for each feature in Ψ allows
for heteroscedastic noise modelling, which leads to significant reductions in
K while preserving maximal variance.

As described by Bishop and Tipping [122], we can calculate the negative
log-likelihood for samples by drawing from the posterior distribution of the
latent variables zn to get:

NLL = −
N∑
n=1

logE[zn] (4.13)

Comparing FA against PPCA, we see that the negative log-likelihood
(NLL) across samples is substantially higher for FA than PPCA (see Figure
4.9A), with optimal K reached significantly faster than PPCA. By com-
parison, we also compute NLL for covariance matrices with shrinkage by
Ledoit-Wolf (L-W) [117]. Furthermore, the linear increase in NLL for PCA
compared to non-linear increases with FA further emphasises the importance
of heteroscedastic noise modelling as a means for effective dimensionality re-
duction.

Stratified PCA (sPCA) Instead of performing PCA on X, we stratify
features P into G groups according to data groups G or regions R. We can
then perform normal PCA on each subgroup and combine the results to-
gether. For each PCA we use maximum likelihood using Minka’s estimate
[125] for automatic selection of K, or manual selection via an appropriate
variance threshold η over the explained variance ratio (EVR) (see Figure
4.9B), where in general for low thresholds, one feature for each group is pre-
served, leading to the offset in K and the increased conservative nature of
sPCA. If we break down EVR by data groups G, there is a variety in the
ability of PCA to obtain near to 100% variance in less than the maximum di-
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mensionality (see Figure 4.9C-D). In most of these cases we do see whole PCA
do better than sPCA in performance, but we are trading off performance for a
significant boost in interpretability, as log-likelihood samples, AUC and EVR
can all be applied on a per-group basis rather than on abstract principle com-
ponents. Groups such as mono- and dinucleotide frequency have the highest
AUC scores when computed on cumulative EVR, illustrating a successful
compression of these feature groups into a more compact domain. However
certain groups such as amino acid biophysical properties and codon bias con-
tain multiple different types of features within the same group, leading to a
significant drop in compression. It is also the case that manual selection of
groups G may mean that highly correlated features are not always grouped
together, leading to some residual inter-group collinearity.

Multiple correspondence analysis MCA can be thought of as cate-
gorical PCA; and hence for working with large-scale categorical datasets
[163]. Here we deploy MCA use for non-continuous variables by constructing
dummy variables using one-hot encoding on each categorical feature prior to
fitting.

Other We also perform exploratory analysis on manifold techniques such
as t-distributed stochastic neighbour embedding (t-SNE) and Isomap. Ev-
idence from the literature indicates that these methods are primarily used
for visualization within two dimensions, and their complexity and non-linear
mapping make them undesirable for preserving interpretability in subsequent
analyses. Hence we do not consider their role any further within this research.

Overview Here from the above methods we construct the following num-
bered examples of reduced subsets, as XP → XK , and following from previ-
ous notation, we will describe the transformed matrix Φ(m) of size K where
m denotes the following:

1. Whole PCA with P = 194 using a variance threshold η of 95%.

2. FA with P = 111 selecting normally distributed (MVN) features, using
varimax rotation.

3. sPCA using data groups G, with each PCA using η = 95%.

4. sPCA using data regions R, with each PCA using η = 95%.
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5. PCA using Pc = 151 continuous features with η = 95%, coupled with
MCA Pd = 43 discrete features.

6. FA model from (2) using MCA model from (5).

7. sPCA model from (3) using MCA model from (5).

Each of these models preserves just over 15k samples, with varying degrees
of K (see Appendix S25). We will refer to these examples in the next chapter.

4.3 Discussion

Sequence-Derived Feature Extraction and Formation

In this chapter we have devoted a significant amount of resources, attention
and focus of this thesis to the discovery, curation and collation of sequence-
derived features from mRNA and amino-acid transcripts into a more friendly
tabular format [1]. We consider these features in this form a contribution
to the body of knowledge given the complete coverage of the human genome
and their versatility in application to a number of potential problems. Since
the use of these features are not equivalent to deploying pre-trained models,
many of the false assumptions that would lead to concern using pre-trained
models can be disregarded in this instance, allowing for future research to be
carried out with increased certainty. The disadvantage of this approach is the
increased complexity required when performing the modifications necessary
to align the dataset to a custom application. The extraction of these features
from various databases and formats was non-trivial, with assumptions made
particularly when it came to integrating across the mRNA-protein domain.
A particular challenge when performing multiple intersection set operations
across various database labels (Uniprot IDs, Refseq IDs, HGNC labels) is
the preservation of large N ; essential to maintaining significant coverage over
the ’omic domains and retaining statistical significance. This proved difficult
due to inconsistent naming conventions and version numbers attached to the
names, though alias names are sometimes provided. These assumptions are
documented within the relevant Jupyter notebooks for future readers. Fur-
thermore, can lead to further problems from a future research perspective,
as highly-cited proteins and mRNAs tend to have more consistent naming
conventions and integrate better into multi-’omic datasets; leading towards
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a bias that skews towards less novel/interesting protein analysis.

Another major assumption when extracting SDFs from various databases
within a multi-’omics context is the handling of sequence variants. For ex-
ample, a particular gene may have one or more mRNA transcript variants
where a couple of base pairs are altered. These changes may lead to negligible
differences statistically, but in practice small changes in the coding region or
5’ untranslated region can have a dramatic impact on gene expressivity. Our
approach was to always take the longest curated transcript wherever multiple
of such transcripts existed, as many other authors have done, but theoreti-
cally there may be valuable information lost when making this assumption.
Practically however, the potential explosion in data size particularly when
attempting to integrate with amino acid sequences and protein expressions
leaves little room to adopt a more variant-friendly approach; however future
research potential with more computational resources are available could con-
sider a more complete systems-wide approach that did not remove alternative
variants.

Top-Down and Bottom-Up Modelling Perspectives

Simulation is often described as the third pillar of science (after observation
and experimentation), coming with its own philosophical underpinnings and
assumptions that we must consider to fully utilise a sequence-derived feature
modelling approach. Whilst this field is rather vast, here we will focus be-
tween the two diametrical modelling approaches; bottom-up and top-down
modelling.

Bottom-up In this approach, models are sequentially built upwards from
simpler to more complex ones. This approach is common with researchers
from a strong mathematical or engineering background. due to the problems
associated with curse of dimensionality as the parameter/variable space ex-
pands. Practically, a classic example would be a greedy forward feature selec-
tion algorithm which greedily adds the best performing feature at each time
step t to a linear regression model. Another example would be constructing
bottom-up a probabilistic Bayesian model around some data D, due to the
cost of integrating out all other variables to compute each marginal proba-
bility. This approach provides advantages in aligning with the Occam’s razor
principle, better interpretability and mathematical robustness. Some of the
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drawbacks are usually lower model performance compared to top-down in
practical applications, poor selection in features and the assumption that
just a few features are powerful in predicting a suitable target variable.

Top-down Alternatively, complex models can be initially constructed from
many features and then pruned significantly down to a simpler model. This
is one of our key a priori assumptions; that a suitably complex feature set
can be fitted and efficiently pruned down to a generalizable model that can
predict protein abundance or function. The main advantages to this is better
model performance and better feature space coverage, with the drawbacks
being more difficulty in model interpretation and risks of overfitting. In this
section we reduce overfitting risks using an adjusted scoring metric for r2,
using dimensionality reduction and hold-out sets. We reduce the interpreta-
tion risk by considering different dimensionality approaches and trading off
accuracy versus verbosity. Some of the models we use (such as MARS [103])
deploy both bottom-up and top-down strategies to iteratively build up and
prune away excess within the coefficient space.

Unsupervised Learning on Sequence Information And
Considered Trade-Offs

The tradeoffs between computational performance/dataset size and inter-
pretability with respect to dimensionality reduction are well documented,
and biological sequence-based features are no exception. Unlike embarrass-
ingly large dimensionality domains such as image processing with huge re-
dundancy, we see no such pattern within DNA sequence information - in fact
complex models such as gradient-boosting regression trees actively prefer
raw sequence data as opposed to a preprocessed matrix that has underwent
dimensionality reduction. We argue within this Thesis and first published
paper [1] that the small, cumulative impact of many features is required for
decent model score performance; given the regulatory complexity that affects
a given proteins’ abundance.
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Chapter 5

Multilevel modelling of protein
abundance by sequence-derived
features

In application to the problem of protein prediction via mRNA proxy, an in-
teresting question now arises as to whether information derived from static
sources (i.e the DNA sequence) can bare any relationship to experimental
expression datasets, with the attributable noise that comes from space-time
measurements. In this chapter, we focus once again on protein abundance
prediction, except this time we perform full-pipeline model and feature selec-
tion, and determining the most important features within the SDF dataset.
We consider biological explanations via Gene Ontology analysis as to which
sequence-based features are important; and in particular explore the inter-
esting relationship between sequence information and translation. Finally,
we expand the sphere of knowledge to include protein-protein interactions
and steady-state half-life of mRNA and protein expression as useful feature
inputs to consider in conjunction with SDFs. Parts of the research in this
chapter is under review with Nucleic Acids Research (NAR), with additional
supplementary material and tangents.

5.1 Data Preparation

Here we describe the collection of mRNA-protein expression datasets used in
this analysis alongside those previously used by Aviner [5]. Here we do not

121
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Cell Line Tissue Source
U2OS Bone Osteosarcoma Epithelial Lundberg et al. [164]
U251MG Glioblastoma Lundberg et al. [164]
A431 Epidermoid Carcinoma Lundberg et al. [164]
HeLa Cervical Carcinoma Aviner et al. [4, 5]
Daoy Primary Medulloblastoma Vogel et al. [6]

Table 5.1: Cell Lines and associated tissues.

describe extraction/preprocessing steps with respect to SDF features, as this
is detailed in the previous chapter, and within Supplementary Material.

Expression Datasets Human HeLa cell cycle data was taken from Aviner
et al. [5] with triplicative expression measurements for mRNA, translation
and protein. Microarray data is taken from the Gene Expression Omnibus
(GSE26922), parsed using the GEOparse package. Protein levels for HeLa are
pre-normalized using intensity-based absolute quantification (iBAQ) [139].
U2OS, A431 and U251MG cell line expression data for mRNA and protein
expression is taken from Lundberg et al. [164], whose RNA expression is
estimated using RNA-seq, whereby RPKM values [165] were calculated for
each RNA (see NCBI short-read archive with accession number SRA012517).
Daoy cell line expression data and sequence-derived features are taken from
Vogel et al. [6], whose cell line is cultured, collected and described previ-
ously [166]. Gene expression values are estimated using Robust Multi-Array
(RMA) analysis [167]. Protein expression for all cell lines is estimated us-
ing MS/MS (Aviner, Lundberg) or LC-MS/MS (Vogel). We also make use
of the PAXDB protein database [168] which provides among other things
a consensus global protein abundance across the H.sapiens proteome which
averages over many cell lines. PAXDB processes protein abundance in parts-
per-million (PPM) to allow for inter-species comparison. See Table 5.1 for a
summary of the cell lines used in this study.

Halflife Data To examine the impact of mRNA and protein degradation,
we take HeLa cell mRNA half-life data from Tani et al. [169], removing
missing values and any values >24h. We also split mRNAs into protein-
coding and non-coding subsets. HeLa cell Protein halflives and kdeg decay
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constants are taken from Cambridge et al. [170] and minimally preprocessed.

Protein-Protein Interactions Information on protein-protein interac-
tions (PPI) was obtained from STRING database [171], where we down-
loaded all 11.7 million H. sapiens interactions using the full links option.
We also access protein information such as display names and descriptions.
We used the NetworkX package [172] to build a node-edges graph and cal-
culate metrics such as degree and centrality. Note that we do not model the
interaction network directly, only to extract tabular metrics for each protein.

Notation Recall that for an unnormalized design matrix X we used the
notation X1 to signify normalization 1 from the previous chapter. Now using
dimensionality technique m we reduce X→ Φ, where Φ(m) refers to reduced
SDF matrix using method m as listed at the end of section 4.2.3. Cell line
datasets containing mRNA r

(c)
n and protein abundance p

(c)
n belong to cell line

datasets c ∈ C. We use X and Φ interchangeably if the reduction is irrelevant
to the narrative. We may also use r2 and r2

adj interchangeably, assume the
latter is always being used. In certain subsections and supplementary we
use root-mean-squared-error (RMSE) as the scoring metric rather than r2,
these can be viewed in a similar light, except RMSE is minimized instead of
maximized.

5.2 Results

In this section we will consider the impact of steady-state and dynamic pro-
tein abundance datasets as a useful target for SDF prediction. We will be-
gin with model selection, considering the previous dimensionality reduction
datasets we generated in the previous chapter.

5.2.1 Model Selection of SDFs Against Expression Level
Emphasises Feature Adaptability

In this subsection we will cover the detailed analysis in selecting appropriate
models for determining protein abundance across a number of selected cell
lines. These cell line studies as introduced in section 5.1 were selected based
on the following three factors:
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1. Study in question contained both mRNA and protein abundances.

2. Sufficiently large sample size N > 103 for statistical power.

3. Both steady-state (Lundberg et al., Vogel et al.) and time-dynamic
(Aviner et al.) experimental set-ups for expression data.

Firstly, we analyse which regression technique performed best across most
of the cell lines, secondly we compare by cell line and unsupervised learning
preprocesing technique to generate Φ. Finally, we choose best Φ(m) and re-fit
using the best regression model to determine coefficient importance.

Fitting by regression model Given normalized or reduced SDF data
matrix Φ(m), we first associate the target data y using shared labels pro-
vided by Biomart/HGNC, using the set intersection operation. Then follow-
ing basic filtering of low variance and missing values, we split the data into
training/testing and validation subsets in a 4-to-1 ratio. We then designed a
parameter grid space of varying linear and non-linear regression models, such
as MARS (Earth) [103], Random Forest, Gradient-boosted regression in the
form of XGBoost [112], SVM, ElasticNet [108] and others. We also consider
an ensemble approach in the form of a Voting regression model; composed
of Ridge `2, ElasticNet and SVM with uniform weighting. This is performed
across each H. sapiens cell line, using the training subset. The aforemen-
tioned transformations such as z-score mean that differences in standards
between the various mRNA/protein technologies can be mostly ignored. For
details on the exact process that went into model selection, see Figure 5.1
and section 6.2. Selecting the best parameters for the best model allows to
predict samples using the validation subset, yielding a validation error on
data never seen by the model in any previous training step. For each regres-
sion model we select the one which maximises the adjusted r2 (accounting
for P � N), and develop models that a) target protein abundance, b) target
mRNA abundance and c) target protein abundance, including mRNA level
in X input (see Figure 5.2). Gradient-boosting with histogram-binning per-
formed best on average (r2 = 0.5) against protein and protein with mRNA
models. SVM, XGBoost (Gradient-boosting) and Elastic Net [114] all fol-
lowing closely within the margin of error. Most algorithms fall within the
r2 =[0.45, 5] range.
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Figure 5.1: Flow diagram of model selection. Flowchart
describing the process of converting SDF inputs and expres-
sion data into outputs in the form of predictions and model
scores. For clarification, the ‘validation set’ and ‘test set’ are
interchanged terms within the literature. Here we refer to the
‘validation set’ is the out-of-sample set.
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Figure 5.2: SDF Model Selection in aggregate using
maximum score hyperparameters. Calculated adjusted r2

(eqn 2.50) against different regression models, with SDF using
mRNA as target y (green), protein (orange) or protein with
mRNA included in X (brown). Errors are across different Φ(m),
5-fold cross validation, and cell lines C. For the avoidance of
doubt, these are not out-of-sample scores.



5.2. RESULTS 127

Fitting by unsupervised learning technique and cell line What is
most striking is the broad similarity in the performance of most models with
the exception of Decision trees, which are too simplistic to cope with this
many features. However, the errors with regards to OLS and MARS indicate
that different transformations of Φ(m) play a more important role with train-
ing these particular models; Elastic Net and SVM on the other hand have
significantly lower variance across these domains. Whilst these scores may
seem rather unimpressive, we are not selecting the best matrix input Φ, cell
line and so on; merely plotting the average distribution over these variables.
To filter out such noise, we also compare against differing reductions of X
as explored in the previous chapter and against the differing cell lines C (see
Figure 5.3). For choices of input model m, a stratified approach (sPCA)
performs best across the various target variables, with FA in this case being
too selective and reducing K too much. The non-reduced data also per-
forms very well on protein prediction, but not so for mRNA prediction. It
is clear that dimensionality reduction does not improve model performance,
as is common in other use cases such as image processing; with most meth-
ods slightly reducing r2

adj. With regards to cell line C, we consistently see
SDF-based models outperform mRNA-protein models (red diamonds) across
all cell lines that we explored during the model selection process. SDF-
alone models that predict global protein abundance typically score around
r2 ∼ 0.44; roughly twice the score of global mRNA-protein relationships.
Note that this score is substantially lower than many previous studies which
have either focused on specific subsets of genes that have high mRNA-protein
correlation (ribosomes) or in more primitive species. The addition of mRNA
into the input model increases r2 by around 5%. A slightly confusing aspect
is the fact that HeLa-based cell line models outperform non-HeLa despite
the non-steady-state nature of the study and its subsequent proteins.

Feature Importance via refitting Given the success of many potential
models in terms of r2 score, we opted to choose a model that also trained in
a relatively quick time; we turned to the XGBoost package [112] which has
great performance and GPU utilisation. For training, we chose the reduced
subset Φ using stratified PCA for continuous and MCA for discrete amino
acid meta features (sPCA—MCA), using protein abundance as the target
variable. To explore which of the features are most important, we took the
best models by cell line and looked at the relative importance as weighted
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bottom) cell lines C. Red diamonds indicate OLS models of rc
mRNA against pc protein abundance for each cell line dataset.
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by the tree-models (see Figure 5.4). The top 2 axes describe the top 10
performing feature importances as determined by data groups. Aggregated
PTM features contribute over 30% of feature importance, for models without
corresponding mRNA abundance (left) and with mRNA (right). The mRNA
addition to score is just under 10% when included as an input vector to Φ.

It is important to recognise that many data groups have at least one
principle component within the top 10 of important features, recognising the
diverse contribution of many data sources. To see how each data group G
performs collectively, we sum importances by data group (see bottom two
axes), which reveals that apart from dinucleotide frequency (an artefact of
having 64 features), the most important features in both w/out and and
w/ mRNA abundance contain PTM, amino acid frequency and AA-text fea-
tures that cumulatively represent nearly 50% of feature importance. When
mRNA abundance is included as input, it becomes the 5th most important
feature at 5-12%, cell line C dependent. We provide further breakdowns
within Supplementary Figures (see Appendix S28B), whereby a dominance
of post-translational modification (PTM) features and length associated with
the amino acid sequence appear dominant for all but the Daoy cell line. Both
Acetylation and Ubiquitination are associated with protein stability, where
Acetylation also deals with protein localization and synthesis, whereas Ubiq-
uitination is also associated with cell cycle division and immune response
reaction. Sequence length is consistent with previous studies [165] but re-
lationships between expression and PTMs have seen less interest in the lit-
erature. The importance of PTM features is also reflected within partial
correlative analysis r(Xp,pc|mc) of each SDF feature to protein abundance,
fixing for mRNA abundance or length (see section 6.2).

Synthetically-generated SDF benchmark Here we explore synthetic
generation of a data matrix to compare to mRNA and protein expression
data. we generate these synthetic datasets as follows:

• Sample mRNA or protein abundance from a fitted normal distribution
yc ∼ N (µy, σ

2
y), where µy and σ2

y are determined by the sufficient

statistics of r
(c)
n or p

(c)
n .

• Sample SDF data matrix using singular value decomposition (SVD) in
the form M = UΛVT where M is a P × P matrix, then computing
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Figure 5.4: Feature importances from XGBoost model
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X = AUT +σ2A where A is a N×P matrix, and finally incorporating
a homoscedastic noise parameter in the form σ2A. Here A and M
are both sampled from standard normal distributions N (0, 1) with the
same seed. By default σ2 = 1.

• Use the same grid search and compute RMSE using 5-fold cross vali-
dation for each c cell line.

Using this formulation, we analyse the impact of changes in N , P and
σ2 on modelling distributions of y using Gaussian noise (see Figure 5.5).
This is useful because it provides a baseline error by which RMSE values
less than this baseline indicate improvement over random chance. As we
can see, synthetic models when trained to distributions of c converge to an
RMSE around 3.2 without z-score transformation and 1 (convergence with
σ2) with z-score. We note that mRNA-protein models only have RMSE
around 0.91 0.93, emphasising the weak contribution that mRNA level pro-
vides in protein prediction. Similar results were observed by perturbation
of training examples Φ, holding y fixed and following the model selection
pipeline as described previously.

5.2.2 Sequence-Derived Features Aid Prediction By Cap-
turing Information Regarding The Translation
Process

Whilst we have begun to show that SDFs as a whole work across the hu-
man proteome, it remained unclear which functions and biological processes
were benefiting the most from these features as input, and which processes
were not being covered by this approach. Thus, using the same models (with
hyper-parameters fitted), instead of using the entire expression dataset, we
re-trained models whereby the out-of-sample test set consisted of all of the
genes which shared a particular Gene Ontology (GO) term, and the training
set consisted of every other gene not in this group. We filtered for GO terms
which had at least N ≥ 50 proteins associated with the term, to allow for
statistical robustness. This process was repeated for models with different
design matrices; containing just mRNA level, just SDF features, or both as
input (see Figure 5.6A). Next, we selected the 10 GO term models which
have the lowest (5.6B), highest (5.6C) and the most-improved (5.6D) aver-
age RMSE score across all cell lines. The lowest RMSE models, similarly
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to the global proteome model, reflect a 25-30% improvement in abundance
prediction compared to the worst term models. In the vast majority of cases,
significant improvement in prediction is achieved with the introduction of
static SDFs into the input design matrix. Noticeably, the lowest and most-
improved term sets have a good coverage of translation-situated terms, such
as translation elongation and initiation, as would be expected by heavy usage
of codon bias and frequency-based features, and such relationships have been
observed in previous studies [6, 3, 93].

Similarly, the selection of ribosome-oriented terms is expected, given
the high correlation between mRNA and protein levels between ribosome-
associated genes, which impacts on model performance. More surprising is
the selection of protein localization (such as SRP-dependent co-translational
protein targeting to ER), and mRNA/protein decay by translational termi-
nation and mRNA catabolic process terms. We did not include mRNA or
protein half-life features by direct measurement as a part of the input fea-
tures, so it is interesting that there are aspects of the SDFs that can predict
these functions. Genes that under-perform are associated with labile proteins
that perform functions such as development (heart development, cell mor-
phogenesis) and/or complex signalling pathways such as response to hypoxia
or cell-line specific functionalities not covered in the cell lines we modelled
on, such as heart or muscle tissue (e.g muscle contraction).

5.2.3 Protein Interaction Networks Complement SDF
Coverage In Predicting Abundance

At this stage the feasible limits of SDF benefit had been reached, and hence
the idea of incorporating protein-protein interaction (PPI) network informa-
tion seemed intuitive and appealing. Given each protein pn, n = 1, . . . , N , we
assume protein pn has a set of Jn neighbours (p1, . . . , pJn). Let pi and pj be
two potentially interacting proteins. Determining whether proteins pi and pj
interact is given by an interaction confidence score sij ∈ [0, 1] as defined by
STRING. Given that sij is a combination of sub-scores (evidence collected
by data-mining, experimentation, homology etc), we can define PPI feature
matrix on a per-protein basis as M ∈ RN×K , where K is the number of
sub-scores. Each feature mj is the mean sub-score across all interactions for
each n. Using these features, we compute the intra-correlation of M with the
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HeLa expression dataset [5] and plot this using a Hinton diagram (see Ap-
pendix S27). Protein node degree, eigenvector centrality and co-expression
sub-scores provide the largest positive correlation rp to mean mRNA and
protein levels; this is intuitive as we may reasonably expect abundance levels
to correlate with more associations to proteins. Another interesting aspect of
this feature set are the transferred features, which represent the evolutionary
impact of related species with a similar protein interaction, not accounted
for in our original SDFs. We do not however see significant correlations to
expression level within these features.

Next, we incorporate the PPI feature matrix into our modelling strat-
egy and compare its performance to our SDFs, in conjunction with mRNA
abundance and mRNA and protein half-life data taken from Tani et al.[169]
and Cambridge et al.[170] respectively. Here we compare the following cross-
section of inputs:

• mRNA expression, mRNA with half-life (HL), mRNA with SDF.

• Protein-protein interaction (PPI): PPI with mRNA, PPI with HL

• SDFs: SDF with HL, SDF with PPI, SDF with mRNA and PPI, SDF
with HL and PPI

The results of this process are shown in Figure 5.7, whereby we will break
down the subsequent analysis by input type, excluding mRNA abundance as
we have already exhaustively covered this in the first chapter (see Supple-
mentary 6.2 for further details).

PPI Protein-protein interaction feature matrix M was derived (P = 15)
as previous described, where features provide an average adjusted r2 =
0.24 ± 0.01 for Lundberg et al. [164] features, whereas HeLa data from
Aviner performs better at r2 = 0.33 ± 0.01. This was somewhat surprising
as we expected an average interaction metric to conform with steady-state
cell line datasets better than the dynamic cell line. PPI alone performs best
with Daoy data from Vogel’s group [6], but due to the comparatively small
sample size N = 103, this may be due to selection bias. This is particularly
prevalent within SDF modelling of this line as further database integrations
with SDF-PPI and SDF-mRNA significantly reduce sample size, generating
large standard deviations across 5-fold cross-validation scores. To combat
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this, we performed repeated k-fold cross validation (that is cross validation
with r repeats) to mitigate splitting biases.

Half-life Steady state half-life measurements (both mRNA and protein)
perform similarly to mRNA expression (r2 ∼ 0.2), once again performing
best with Paxdb-processed datasets. When combined together, performance
noticeably increases by 10% across most cell lines. The most interesting
result was half-life in combination with protein interaction features - this
lead to a marked improvement in r2, and in many cases achieved a mean
score better than SDF-input models (albeit usually within the margin of
error). The only exceptions to this are in the HeLa cell line and PAXDB
conglomerate; where SDF-based models of all stripes score better across the
board than PPI-based models. HL plus SDF tended to actually lower the
score on average compared to just SDF (due to adjusted r2 punishing a
larger dimensionality); indicating redundancy in HL inclusion. It would be
reasonable to assume therefore that steady-state HL measurements are being
nearly fully factored within our SDF feature set.

SDF Here we use the sPCA—MCA preprocessed feature set (P ≥ 135),
whereby SDFs alone perform fairly well (4th place on average), and inclusion
of HL negatively impacts adjusted r2 performance (see half-life paragraph).
The best models tend to include PPI and/or measured mRNA abundance,
as these features are likely to include information not obtainable within the
fixed sequence data. Indeed the Paxdb dataset performs best with most
SDF-based models scoring near to r2 = 0.6 or explaining 60% of model
variance. This is likely due to the averaging effect of taking abundances
from multiple human cell lines into the combined metric provided by the
database; as we have previously suggested, SDFs tend to perform better on
steady-state protein abundance prediction. From our first paper Parkes et
al. [1], we deployed translation rate abundance from HeLa cells as an input
feature in conjunction with mRNA and a basic SDF feature set; this yielded
r2 = 0.66, indicating that at least another 6% variance can be provided for by
concentrations surrounding the translation process. Hence from all models
deployed, there remains approximately one-thirds of the error unexplained by
the features; a few percentage points of which can be reasonably attributed to
experimental noise (in triplicative measurements, for instance) and averaging
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strategies.

5.3 Discussion

SDF Model Selection Gains New Insights on Protein
Abundance Impact

We demonstrate that a rich SDF set easily outperforms mRNA abundance
alone in predictive power, with mRNA input improving accuracy by around
10% on average. To compare whether these fitted models were an improve-
ment on previous research, we re-used the SDFs extracted by Vogel et al. [6];
fitting them against the same expression levels (see Appendix S28A, includ-
ing 5-fold cross validation). In all cases these updated models outperform
previous work and/or substantially reduce the error variance. Notably, there
is a high degree of similarity between the cell line data sources (Aviner et
al. [5], for HeLa, etc). This could be for a number of reasons including
1) technique of mRNA/protein measurement, 2) normalization methods, 3)
steady-state vs. dynamic nature of expression or any combination of these.
The lack of root-mean squared error (RMSE) reduction in the HeLa lines
may be due to the dynamic nature of cell cycle activities, whereby SDF fea-
tures struggle to predict non-steady state protein expression levels. Further
to this, our SDF features have been calculated across the entire transcrip-
tome, and are able to capture a much higher percentage of the proteome than
previous feature sets (see Appendix S28B); with the exception of the rela-
tively small Daoy expression set, and assuming the hypothesis of ‘one gene to
one protein’, we cover roughly 20-25% of the human proteome (around 4-5k
proteins) in these example datasets. Increased coverage could be achieved at
the transcript variant level by avoiding the averaging effects and significantly
increasing the data size at the cost of computational resources.

Analysis of Input Sources for Global Protein Abundance

In this chapter we have expanded to use a vast array of biological database
sources, including PAXDB [168], protein-protein interactions (STRING) [171]
and protein half-life [170]. Protein interaction networks intuitively provided
data not available at the sequence level, however exploiting this within a
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machine learning context proved to be somewhat difficult, due to the lack
of connectivity (around 0.3% of total possible connections). This therefore
meant that the vast majority of proteins have only one connection to another
protein, and particularly once integration between label sets was achieved.
This lead to significant falloff in sample size N as the number of neighbours
K →∞ increased. For each trained model that includes mRNA abundance,
we always use the values derived from that cell line, but there remains inter-
est as to the cross-talk by using expression values from different cell lines, as
one would expect congruent expression across the majority of mRNAs. This
may have aided in improving predicted scores, particularly in cell lines such
as Daoy where limited data was present. We also did not utilize non-coding
RNAs within this Thesis, as one of the early steps involved selecting for
coding RNAs with at least one variant with a coding sequence. This could
have played a role in reducing the utility of protein interaction network data
within our downstream analysis.
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Chapter 6

Conclusions and Future Work

Here we will discuss the primary conclusions drawn from the work performed
during this dissertation, and discuss future directions that may be taken in
response to conclusions.

6.1 Conclusions

This thesis is based fundamentally upon data-driven modelling applied to
the analysis of high-throughput measurements of protein abundance. We
focus on the relationship between transcriptome and proteome, whereby
mRNA abundance has historically been taken as proxy for protein abun-
dance. Many previous authors have looked for correlations (section 2.4.1)
between transcriptome-proteome [126, 127, 128, 129, 3] both locally and glob-
ally. It is noted that this correlation is unexpectedly weak; particularly for
higher-order organisms such as H. sapiens. Tuller [137, 53] and later Gu-
nawardana [3, 93] moved beyond correlations to modelling abundance using
a constructed predictor in S. cerevisiae, via regression. We also focus on the
development of a rich sequence-derived feature (SDF) dataset, as inspired by
Vogel [6] who found that such features could explain two-thirds of protein
variance within the Daoy cell line.

In Chapter 3 we demonstrate the ability to predict protein abundance
levels within the human HeLa cell line using a variety of linear and non-
linear modelling techniques. This goes further than Gunawardana’s [3] work
who works with yeast cells, and Aviner’s [5] work who does not develop
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a protein predictor and instead looks at fold-change differences across the
cell cycle. The novel introduction of translation rate measurements via the
PUNCH-P technique [4], allowed for improved linear predictors of protein
abundance (rs = 0.67), and we found that translation largely superseded
mRNA abundance as an important predictor. Model comparison using fre-
quentist (AIC) and Bayesian approaches (section 3.2.1) demonstrated that
having both mRNA and translation lead to negligible improvements in model
performance, against just using translation. We then used some 30 sequence-
derived features such as codon bias, tRNA adaptation index and other met-
rics as inspired by Gunawardana [93] and Vogel [6] to improve the accuracy
of our linear predictors. We show that such features can improve perfor-
mance, but only in an ensemble approach. Our attempts to reduce dimen-
sionality to the most important features were met with no tangible bene-
fits in model performance, leading to the conclusion that a large number
of features contributed a small but significant step in modelling the protein
abundance domain (section 3.2.3). This somewhat diverges from Gunawar-
dana, whose yeast-based models yielded very high r2 = 0.86 with less than
10 features. Following from Gunawardana’s thesis, we hypothesized over-
estimated outliers to our fitted models (which included mRNA and trans-
lation) to be closely associated with post-translational regulation pathways
(sections 3.2.3,3.2.4), specifically favouring the utilisation of ubiquitin-like
degradation, which we confirmed by coarse-grain bootstrapping PTM sam-
ples and with gene ontology analysis.

In Chapter 4 we expanded on the concept of using sequence-based infor-
mation as predictors, specifically as a possible replacement proxy for mRNA
abundance in studies where translation is not measured. Firstly, we per-
formed feature engineering across the entire human transcriptome for a va-
riety of feature types, such as genome base profiling, biophysical properties,
free folding energy and more (section 4.2.1). We then undergo extensive
analysis to ascertain the usefulness of each engineered feature group via
inter-correlation analysis; as a critical assumption of statistical modelling
assumes independence between predictors. We compared both linear and
non-linear methodologies of dependency to take into account idiosyncrasies
with regards to data transformation and/or scaling. We utilised Vogel’s work
[6] as a benchmark comparison to our own expanded SDF set, by compar-
ing the raw sequence data via sequence alignment and derived-features via
correlation. To overcome inevitable problems with multicollinearity, we ex-
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plored an array of feature selection options (section 4.2.3) including PCA and
manifold techniques. Recognising the need to balance performance and in-
terpretability, we adopted a compromise solution of stratified PCA (sPCA)
which sacrifices some interpretability by using PCA, but retaining decent
compression (K = 135) and the groups from which SDFs were engineered.

In Chapter 5 we utilised the developed SDF feature matrix as developed
in Chapter 4 back to the problem of global protein abundance prediction,
across a variety of steady-state and dynamic human cell lines. Firstly, we
performed extensive model selection over several PCA-reduced variants and
machine learning models, which illustrated that SDF-input trained models
consistently provide double r2 compared to mRNA-input trained models even
adjusting for higher dimensionality (section 5.2.1). We found that including
mRNA as an input contributed around 5% of the explainable variance, with
PTMs providing the bulk of feature importance (over 30%) for fitted models.
Refitted models based on gene subsets as determined by Gene Ontology indi-
cated that SDF models tended to represent information regarding the trans-
lation process (section 5.2.2), as was evident from terms which provided the
highest model accuracies. Likewise, GO terms that yielded the lowest scores
tended to be associated with tissue-specific functionality (i.e heart develop-
ment) and various cell signalling pathways which are inherently uncertain.
Finally, we extracted protein interaction data and half-life measurements to
perform a system-wide analysis of varying genetic data input sources (section
5.2.3). We found that PPI features contribute an additional 10% to explain-
ing model variance, whereas half-life measurements lead to no increase in
model performance; often negatively impactful due to the integration cost
of reduced samples. With best models performing around r2 = 0.6, and
r2 = 0.67 in HeLa with translation included, we have a remaining deficit
of one-thirds model variance unexplained by the features we have sampled;
we estimate that a significant portion of this is the true noise, in conjunc-
tion with a myriad of small factors, such as experimental noise, accumulated
averaging errors, computational errors and lack of spatio-temporal data.

6.2 Future Work

In this thesis we delve deep into transcriptome-proteome analysis, and protein
prediction via static sequence information. Here we explore a number of
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potential avenues for future work to progress towards. At the outset, we will
mention the utilisation of single-cell transcriptomics and proteomics that
have only recently become popular and will factor to some extent within all
of the below arguments for future work.

Completing the cell cycle A major limiting factor to proteomics is the
lack of resolution that is currently provided by expression data, and in par-
ticular bulk sequencing. A more complete understanding of protein concen-
tration can also only be undertaken within a spatio-temporal context. Much
of the work in this Thesis focuses on the cell cycle dataset provided by Aviner
et al. [5], which only provides 3 time-steps (at 2, 8 and 12/14 hours, with
δt =6h), representing a small snapshot of the transcriptome, translatome
and proteome for each cell cycle phase. A large-scale study should be com-
missioned along these lines, but increase the time granularity significantly
such that δt is closer to 10 or 15 minutes, across at least one complete cycle.
Bulk or single-cell sequencing could be deployed in parallel, with the cell
population synchronized using a double thymidine block to early S phase.
Replicative measurements could then be taken for mRNA abundance by
single-cell RNA-Seq, and translation/protein abundance through single-cell
LC/GS-MS proteomics. Measuring replicates will be especially important to
minimize single-cell and instrumental noise, and to aid with minor cellular
de-synchronizations that will occur throughout experimentation. Conduct-
ing such a study would be incredibly time-consuming and expensive, but
would yield a global map of expression within a cell line across time. As the
cell cycle is the core process that initiates most regulatory pathways (exclud-
ing external signalling), this could help to a) reveal more labile regulatory
proteins/RNA, b) provide proof-of-concept to mathematical models of cell
cycle expression and c) enable accurate predictions of most proteins involved
in internal-signalling pathways.

Identifying biomarkers for disease The SDF set can be applied to a
number of specific biological problems, including the identification of new
candidates for various cancers and diseases. A natural follow up would be
the association of this global sequence-derived data with custom single-cell
transcriptomics/proteomics data and other database sources applied to the
given cell line(s) of interest. A number of modelling techniques could then be
deployed to either directly classify potential biomarkers, or indirectly via out-
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lier detection. These models could then filter through thousands of biomarker
candidates to highlight the most likely to be sent for experimental validation.
Sensible choices for feature selection and/or dimensionality reduction will re-
move irrelevant features and naturally fit to the associated expression data,
providing a custom SDF-reduced set for the particular problem.

Sequence Information Utility Our SDF set is designed such that it
could be incorporated into a number of future analyses at multiple levels of
the gene hierarchy, such as transcriptomics, proteomics and/or metabolomics.
There are a number of ways we could have expanded the remit of sequence
information which we engineered, such as:

• Breadth-wise: Whilst our input feature space (P > 200) is relatively
large, we could expand it by considering miRNA and other non-coding
RNA information at the transcriptomic level, particularly if studies
did not require any proteomic analysis. Indeed Vogel [6] and others
included various miRNA features in their SDFs, but found most of
them correlated very weakly rp < 0.05 with protein abundance.

• Depth-wise: Instead of engineering features on a per-protein basis, we
could have instead worked on a per-transcript variant basis, in order
to encapsulate sequence variations that many genes have. This would
have provided benefits in an increased sample size N , which could have
possibly lead to requiring deep neural network-like applications, leading
to higher accuracy. This was however practically infeasible due to the
computational cost involved in performance and memory, and provides
little in consistent interpretability needed to discover the underpinning
mechanisms surrounding the proteome and its regulatory pathways.

Unrelated to the sequence, but still potential applicants as suitable pre-
dictors are various measured quantities such as estimates of ribosome binding
(Ribo-seq), average global DNA methylation profiles and chromatin accessi-
bility.

Recent work on protein abundance prediction by Deepmind [178] yielded
model accuracies of r2 = 0.86 using a complex deep learning (DL) archi-
tecture over a 100 kilobase range for each gene, with r2 = 0.93 being the
maximum r2 obtainable given current experimental standards of measuring
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relative abundance. In light of this, whilst there remains a space for feature
engineering in research and conceptualising the problem domain, gains in
model accuracy provided by DL will likely overshadow our approach, as it
has done in other fields with historically dominant use of engineered features
such as computer vision and natural language processing.

Alternative Modelling Strategies We exclusively limit our analysis to
global protein abundance and modelling through a continuous target variable
(regression), but discrete target variables could also be utilised for prediction;
such as protein function or interaction. We also primarily used the identi-
fication of post-translational regulation/degradation as a research field of
interest, via outlier analysis; but the general principles of finding interesting
outliers through input selection are applicable to many research questions.
In particular, we did not fully utilize the information provided by a pro-
tein interaction network (we primarily adopted a tabular-based approach to
analysis); future approaches could move towards graph-based analysis, using
SDF information to characterise weight edges between interacting proteins,
for instance. Other approaches with merit are probabilistic and/or generative
modelling; able to more easily handle missing values and accurately estimate
noise. A full Bayesian treatment with parameter uncertainty quantified could
be considered for a variety of future approaches, such as predicting whether
two proteins interact, whether protein A has function f(A) and so on. Fi-
nally, a significantly larger input domain could warrant a deep learning/RL
approach, as those adopted by others [178]. Our systemic global proteome
approach could also serve as a benchmark for a myriad of specific future
projects that look at interesting subsets of proteins, whether to discover new
theory, interactions, biomarkers or therapeutic interventions.
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Derivation of Ordinary Least Squares

Given the description of a Linear Regression Model (2.7), we begin with the
problem using the sum-of-squares error function defined as:

E(w) =
1

2

N∑
n=1

(
wTφ(xn)− yn

)2
(6.1)

Using this error function, we incorporate this into the log-likelihood func-
tion which is an adaptation from (2.9):

ln p(y|w, λ) =
N∑
n=1

N
(
yn|wTφ(xn), λ−1

)
(6.2)

=
N

2
lnλ− N

2
ln(2π)− λE(w) (6.3)

where λ is the precision, or inverse variance. Note that we drop x from the
conditional distribution parameters as this is assumed to reduce notational
clutter. To solve we maximise the log-likelihood (which is equivalent to
minimizing the sum-of-squares error) by computing the gradient of the log-
likelihood:

∇ ln p(y|w, λ) = λ
N∑
n=1

(
yn −wTφ(xn)

)
φ(xn)T (6.4)

And thus setting the gradient to zero gives:

N∑
n=1

ynφ(xn)T −wT

(
N∑
n=1

φ(xn)φ(xn)T

)
= 0 (6.5)
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Solving for w we have [173]:

w = (ΦTΦ)−1ΦTy (6.6)

where Φ is the design matrix where elements are given as Φnp = φp(xn).
The quantity:

Φ† ≡ (ΦTΦ)−1ΦT (6.7)

is known as the Moore-Penrose pseudo-inverse of the matrix [174]. The
projection matrix P which corresponds to an orthogonal projection of y onto
the column-space of Φ is given as:

P = ΦΦ† (6.8)

and is also known as the hat matrix (since it puts a hat on y). Predictions
are then given as ŷ = Py. Note that computing the maximum likelihood
over the entire training set in one go can be highly costly where N is large.
Instead a Sequential or online algorithm can be deployed whereby data points
are considered one at a time. Sequential algorithms also find home in real-
time applications whereby data observations arrive in a continuous stream,
or predictions must be made before all of the data points can be observed.
One of the main algorithms that achieves this is Stochastic Gradient Descent
(SGD), where parameters are updated as:

w(t+1) = w(t) − η∇wE(w) (6.9)

where t denotes the iteration count, and η determines the step size of
the gradient, or learning rate. w is initialised to some starting vector w(0)

when the algorithm begins. Another iterative method is the Newton-Raphson
update, which takes the form:

w(t+1) = w(t) −H−1∇wE(w) (6.10)

where H is the Hessian matrix whose elements comprise the second
derivatives of E(w) with respect to w. Here the first and second deriva-
tives of the sum-of-squares error function are:

∇E(w) = 2ΦT (Φw − y) (6.11)

H ≡ ∇2E(w) = ΦTΦ (6.12)
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note that these values mean that for the least-squares solution, this for-
mula gives the exact solution in one step.

Bayesian Analysis of Cell Cycle Protein levels

Pertaining to section 3.2.1, here we go into further details regarding prelim-
inary Bayesian Linear Regression of cell cycle protein. Here we only cover
G1 (t) phase as we assume the results correspond in similar fashion across
all phases. The prior distributions for all subsequent models were drawn as:

σ ∼ HalfCauchy(β0) (6.13)

w ∼ N (µ0|0, σ2
w) (6.14)

using fixed hyperpriors β0 = 10, σ2
w = 10. There is an analytical so-

lution to this problem, however we used MAP estimates for initialization,
with NUTS sampler from PyMC3 Python package to perform Markov-Chain-
Monte-Carlo sampling (k = 103 samples) of the posterior and posterior pre-
dictive.

mRNA to protein Firstly, we model the parameter uncertainty with re-
gards to mRNA-to-protein expression level using the likelihood:

p(t) ∼ N (w0 + w1m
(t), σ2) (6.15)

We do not see any significant divergence in uncertainty from the σ2
ML

estimate, with w1 = 0.99±0.024. To ensure that outliers do not play a
disproportionate effect on these estimates, we also sample the posterior using
a Student T distribution (ν ∼ U(0, 20)), where we see no significant difference
in parameterization.

Translation to protein Now our likelihood function becomes:

p(t) ∼ N (w0 + w1r
(t), σ2) (6.16)

Once again we see a slightly lower slope at w1 = 0.931±0.016, slightly
better reflecting the impact of degradation on protein level. The same results
hold for T-distributed predictors as before. For visualizations see Figure S1.
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mRNA with translation to protein Here we include both terms into
the likelihood as:

p(t) ∼ N (w0 + w1m
(t) + w2r

(t), σ2) (6.17)

Our weights w1 = 0.317±0.03 and w2 = 0.823±0.018

4 6 8 10 12 14
mRNA level

15

20

25

30

35

Pr
ot

ei
n 

le
ve

l

A Normal
w: 0.992±0.024
Mean outcome 94% HPD
Outcome 94% HPD

4 6 8 10 12 14
mRNA level

15

20

25

30

35

Pr
ot

ei
n 

le
ve

l

B T-distributed
w: 1.018±0.024
Mean outcome 94% HPD
Outcome 94% HPD

14 16 18 20 22 24 26 28
Translation level

15

20

25

30

35

Pr
ot

ei
n 

le
ve

l

C Normal
w: 0.931±0.016
Mean outcome 94% HPD
Outcome 94% HPD

14 16 18 20 22 24 26 28
Translation level

15

20

25

30

35

Pr
ot

ei
n 

le
ve

l

D T-distributed
w: 0.946±0.016
Mean outcome 94% HPD
Outcome 94% HPD

Figure S1: Scatterplots of (A-B) mRNA vs protein and (C-D)
translation vs protein with Bayesian HDI intervals.
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Feature Selection Approaches

Pertaining to section 3.2.2, we cover here in further detail the process of
feature selection across 30 or SDFs by building models that map to pro-
tein abundance within the HeLa cell cycle dataset. Our methods of feature
selection we will cover are:

1. Recursive Feature Elimination (RFE)

2. L1 sparsity-inducing regularization (LASSO)

3. Selecting k-Best (ANOVA)

For all of our models using gradient-boosted regression trees (GBRT),
these are our tuned parameters from model selection:

1. G1; learning rate = 0.02, max depth = 3, min samples leaf = 10,
‘n base estimators‘ = 1000

2. S; learning rate = 0.01, max depth = 3, min samples leaf = 10, n base estimators
= 1000

3. G2/M; learning rate = 0.02, max depth = 3, min samples leaf = 5,
n base estimators = 1000

Feature matrix X is always standardised using Z-score, y is not stan-
dardized. G2 and M are inter-changeable as labels for the final cell cycle
phase.

RFE Firstly, we combine recursive feature elimination method from Scikit-
Learn (python) [177] with 10-fold CV to automatically filter features of inter-
est, employing a greedy-backward algorithm for iteratively removing unin-
teresting features. We use a GBRT as the estimator, with 1000 base decision
tree estimators, using MSE as a normalized RSS function (see 2.14). The
results of this only drop around 2 features per cell cycle phase, indicating
that MSE does not seem to improve when features are dropped (Fig S2).

We see a clear a clear threshold area around 7-8 features where -MSE
appears to flatten out and not increase, therefore we formulate a method
where we choose the number of features to select based on the change in MSE
with respect to each subset, which is approximated using Euler method:

dMSE

dF
≈ (MSEn+1 −MSEn) < η (6.18)
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Figure S2: RFECV fails to select a suitable feature sub-
set.

where we choose η as a small constant tolerance, where the number of fea-
tures is where the change begins to slow down in terms of -MSE increase.
Here we choose η = 0.005. Lines are drawn on the graph as to n features
selected (p̂) per cell cycle phase, colour-respective.

Using p̂, we generate new models of GBRT without CV, indicating the
number of features we want the recursion to stop at. This yields a ranking for
each of the features, per cell cycle phase, in addition to feature importances
for the features that remain (Fig S3).

These selected features are stored and used later on in LOOCV analysis
to reduce the feature matrix.

`1 Regularization Firstly, to find an optimal α for the regularization
term, we use LASSO without GBRT, using a brute-force grid search method,
across 10-fold cross validation, with α ∈ [10−3, 101], using the negative mean
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Figure S3: Feature importances generated from RFE-
GBRT.

squared error as before as the scoring function (6.1).

We begin to see a drop in accuracy around α ≈ 0.1, again with no real
increase in -MSE at any particular stage within the range.

We then repeat the run by not predicting using the LASSO regressor,
but using the sparsity-inducing coefficients to induce sparsity in a reduced X
matrix, which is then used as input to a GBRT model. The results of these
are shown in Fig 3 in the main paper. For Fig S4, like the RFE example
we choose a threshold η which signifies where the change in MSE should not
exceed by, the inverse of described in equation 6.18. We chose η = 0.02 in
LASSO case. We then generated 10-fold CV test scores (r2) across a grid
of 30 α points, as α ∈ [10−3, 1], for each cell cycle phase. This generated
optimal α = [0.05, 0.07] range. Using these regularisers, we generated final
GBRT models using single alpha per cell cycle phase, using 10-fold cross
validation and extracting the feature importances from each estimator, and
plotting the mean (±SD as error bars) in Fig S4.

Select K Best In this feature selector, we optimise to find the most suit-
able k using Analysis of Variance (ANOVA). This entails, for a given k,
calculating the F-value for each feature calculated as the covariance between
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Figure S4: LASSO only parameter tuning of α versus
negative MSE. Error bars ±SD 10-fold CV.

features, and selecting features with the largest F-value. We create a grid of
k ∈ [1, P ], where P is the total number of features initially, then we use a
Pipeline object in Scikit-Learn to reduce X ∈ RN×P with selecting the k ∈ P
best features as described above, then using a GBRT model for prediction.
Again we use the negative mean-squared error as a scoring function (6.1),
with 10-fold CV.

We see that unlike the first 2 feature selectors, there is not an exponential
curve but rather linear decreases in MSE beyond k = 3, 4. Therefore there
was no clear threshold to choose to find an optimal k̂, so we followed the de-
fault settings in scikit-learn [177], which by default selects k̂ = P/2 to be half
of the original number of features. In this case, k̂ = 14 for all cell cycle phases.

Using optimal k̂ we created a GBRT model with 10-fold cross validation,
as with the previous 2 feature selection procedures (Figure S6). Interestingly
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ANOVA chooses very different features in order compared to the 2 previous
selectors, ranking mRNA level quite high with some mRNA-derived features.
This is likely due to the Gaussian nature of mRNA abundance, compared to
a number of the SDFs which often do not follow a Gaussian distribution.

Text Feature Table Descriptions

Pertaining to section 4.2.1, we cover here the full description pertaining to
each mRNA and amino-acid derived text feature.

Amino acid (from SwissProt) Here we describe the text-mined features
from Uniprot/Swissprot and how these features are classified according to
their database:

Molecular processing features
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Figure S6: Feature importances generated from KBest-
GBRT. Error bars ±SD 10-fold CV.

• Initiator methionine: Cleavage of the initiator methionine

• Signal peptide: Sequence targeting proteins to the secretory pathway
or periplasmic space

• Transit peptide: Extent of a transit peptide for organelle targeting

• Propeptide: Part of a protein that is cleaved during maturation or
activation

• Chain: Extent of a polypeptide chain in the mature protein

• Peptide: Extent of an active peptide in the mature protein

Amino Acid Regions

• Topological domain: Location of non-membrane regions of membrane-
spanning proteins

• Transmembrane: Extent of a membrane-spanning region

• Intramembrane: Extent of a region located in a membrane without
crossing it

• Domain: Position and type of each modular protein domain

• Repeat: Positions of repeated sequence motifs or repeated domains
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• Calcium binding: Position(s) of calcium binding region(s) within the
protein

• Zinc finger: Position(s) and type(s) of zinc fingers within the protein

• DNA binding: Position and type of a DNA-binding domain

• Nucleotide binding: Nucleotide phosphate binding region

• Region: Region of interest in the sequence

• Coiled coil: Positions of regions of coiled coil within the protein

• Motif: Short (up to 20 amino acids) sequence motif of biological interest

• Compositional bias: Region of compositional bias in the protein

Amino acid sites

• Active site: Amino acid(s) directly involved in the activity of an enzyme

• Metal binding: Binding site for a metal ion

• Binding site: Binding site for any chemical group (co-enzyme, pros-
thetic group, etc.)

• Site: Any interesting single amino acid site on the sequence

Amino acid modifications

• non-standard residue: Occurence of non-standard amino acids (seleno-
cysteine and pyrrolysine) in the protein sequence

• modified residue: Modified residues excluding lipids, glycans and pro-
tein cross-links

• Lipidation: Covalently attached lipid group(s)

• Glycosylation: Covalently attached glycan group(s)

• Disulfide bond: Cysteine residues participating in disulfide bonds

• Cross-link: Residues participating in covalent linkage(s) between pro-
teins

Natural variations

• Alternative sequence: Amino acid change(s) producing alternate pro-
tein isoforms
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• Natural variant: Description of a natural variant of the protein

Secondary structure

• Helix: Helical regions within the experimentally determined protein
structure

• Turn: Turns within the experimentally determined protein structure

• Beta strand: Beta strand regions within the experimentally determined
protein structure

Methodology of Vogel/Parkes sequence and SDF

analysis

Pertaining to section 4.2.2, here we cover the experimentation and method-
ology details when performing co-correlate analysis to the Vogel [6] dataset.

Data Preparation Firstly, we loaded in Vogel’s sequence data (n = 1051)
and SDF (n = 476, p = 135) data separately, in conjunction with our se-
quences derived from NCBI (n = 51837) and SDFs (n = 17440, p = 211).
Since our SDFs are labelled with a Refseq primary key, and Vogel used En-
semblIDs, we firstly downloaded the Biomart Ensembl-Refseq ID dataset
(n = 48628) and performed an intersection operation between Biomart-
Parkes (n = 47957), merging on Refseq ID, and then between Parkes-Vogel
(n = 933), merging on EnsemblGeneId key.

Pairwise Sequence Alignment We used the Biopython Align [142] pack-
age to calculate both pairwise global and local alignments, using arguments
match=1, mismatch=-1, open=-1 and extend=-1. We then take the score
of each resulting alignment and normalize by gene length, then take the µ
average across alignment results. Note that due to the underlying matrix
being O(L2) on memory, where L = max(L1, L2) is the largest gene length
between the pair, a dynamic programming approach is relatively fast but we
do not perform alignment on sequences over 14k in length due to memory
consumption.
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Feature Correlations In this case we load our SDF which has undergone
three transformations, see the SDF Preprocessing subsection of Data Prepa-
ration within Chapter 4 for details as to how we transform the features. The
reason just one transformation is not chosen is that we are not always certain
how Vogel has preprocessed some their features, with documentation within
the Supplementary material paper not always clear. We use the unscaled
features, normalization 1 and 2 inputs. We then select the features that
pair across Parkes-Vogel datasets, leading to 84 features which are labelled
similarly. We then compute Spearman-rank rs correlations between each
Parkes-Vogel pair for our 3-SDF transformations, and select the maximum
rs across transformations. This way we are more likely to capture the true
transformation.

Partial correlations between sequence-derived

features and protein abundance, factoring mRNA

and length

In this section we explore the partial correlations between sequence-derived
features (SDFs) and protein abundance, fixing for various factors such as
mRNA expression and length. Recall that from section 2.3.4 we define par-
tial correlation as ρ(x,y|Z) [119]. This section pertains to section 3 of the
second paper produced by Parkes et al. but was viewed as significantly di-
vergent from the main thrust of this thesis. We briefly mention this work
within the second chapter, second section of this thesis.

The relationship between log-normalized protein and mRNA concentra-
tions is non-linear, but can be estimated using piece-wise linear functions [6]
and is observed in many studies [147, 3, 137, 5, 1]. However, a significant por-
tion of SDFs are not normally distributed or cannot be easily transformed to
be distributed as such; this presents a challenge in emulating the kind of in-
formation contained in the mRNA expression to be represented by SDFs. We
calculate the monotonic relationship between each SDF and the correspond-
ing mRNA, protein (left) and partial protein (right) expression for 5 different
H. sapiens cell lines (Daoy [6], A431, U2OS, U251MG [164], HeLa [5]), corre-
sponding to three different studies, to explore the capacity of SDFs as proxies
(see Figure S7). We define ‘partial protein‘ as the correlation between SDF-
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to-protein, controlling for mRNA level. Whereby ‘y=x‘ represents features
that correlate just as much with mRNA as protein abundance (meaning the
feature is agnostic), in all cell lines we notice that post-translational modifi-
cations (PTM) correlate strongest with both mRNA and protein abundance;
particularly Ubiquitination (r = 0.4, 0.6) which is associated with protein
degradation. mRNA/protein length features are strongly negative with re-
spect to protein level, particularly in HeLa/Daoy cell lines (r = −0.4,−0.6).
The majority of changes in correlation when mRNA is controlled for is not
substantial; most features are corrected for by ∆r < 0.2 (see S5-6 Figure.),
and nearly always converging the correlation towards zero, rather than in-
creasing it. Similar observations are made when the sequence length (mR-
NA/amino acid) is controlled for instead of mRNA level (see Supplementary
Material 5.), particularly codon bias features are appropriately reduced in
correlative power.

One clear trend is the ‘flattening’ of the relationship for partial-correlations
as the fixing of mRNA level has the tendency to drive partial-protein cor-
relations to 0, and this is particularly noticeable in the Doay and HeLa cell
lines. The variance of correlated features is substantially higher in Aviner’s
dataset than Lundberg; we suspect this is because HeLa is drawn from a cell
cycle study where dynamic time-effects are not removed in the preprocess-
ing pipeline, whereas Lundberg [164] measurements are aggregated and more
likely to conform to steady-state protein levels. This loss of information could
therefore lead to small correlation coefficients in these sets. Alternatively,
differences in RNA sequencing technology (Aviner et al. [4, 5]; microarray,
Lundberg et al. [164]; RNA-Seq) are known to vary in variance and this
may be reflected in the variance of correlation coefficients. These results are
checked against the estimated mutual dependency (MI) conditioned against
mRNA level or gene length, where we find similar loss in the relationship
between SDFs and protein; in particular we see that the mutual information
reflects the same relationship either against mRNA or protein level, or both.
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Figure S7: Variations in a priori experimental dataset
assumptions considerably alter SDF impactfulness.
Scatterplots of Spearman-rank (rs)/Biserial correlation (rbs)-
mixed correlation between sequence-derived features (SDFs) and
mRNA (x-axis), protein (y-axis, left) and partial protein fix-
ing mRNA (y-axis, right). From top; (A) Daoy (Vogel et
al.), (B) U2OS;A431;U251MG (Lundberg et al.), and (C) HeLa
G1;S;G2/M (Aviner et al.) from different mRNA-protein ex-
pression datasets. Each point represents a correlation between
an SDF and an expression dataset. See Methods for details on
correlation method. mRNA/RNA features are denoted in green
shades, amino-acid features are denoted in red shades, PTM fea-
tures are denoted in purple.
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Detailed Model Selection of Sequence-Derived

Features

Pertaining to section 5.2.1, here we explore the exact processes that went into
generating the main results of model selection with respect to SDF vs. mRNA
and protein abundance across multiple cell lines. For regression models with
hyperparameters we selected:

• OLS: No hyperparameters

• Ridge: α ∈ [10−4, 101.5], 50 samples.

• Elastic Net: α ∈ [10−4, 101.5], 50 samples. γ ∈ [0, 1], 3 samples. See
equation 2.23 for mathematic formulation.

• SVM: C ∈ [10−3, 101.5], 50 samples. C acts as a regularizing coefficient.
See scikit-learn documentation.

• Decision tree: Max depth: [2, 3, 4], Max features: [‘auto’, ‘sqrt’].

• Random Forest: Number of sub-trees/estimators T : [10, 200], 6
samples.

• Histogram GBRT: `2 regularization: 10−2. learning rate η = [10−2, 0.25],
4 samples. Max iterations: [100, 250].

• XGBoost: Learning rate η = [10−4, 101/2], α = [0.001, 0.1], using
HalvingGridSearch.

• MARS (Earth): Default parameters.

• Ensemble (Voting): Combination of Ridge, ElasticNet and Linear
SVM models in equal weighting with aforementioned hyperparameter
ranges for each model as above.

We also consider a ensemble regression model which is a voted aggre-
gate of several regression models with optimal hyperparameters. We then
define 5 cell line within 7 datasets as U2OS, A431, U251MG, Daoy, HeLa
(G1, S, G2/M). We compute estimates of RMSE and adjusted r2 using 5-
fold cross validation across the product of all dimensionality-reduced subsets
Φ(m), along with cell lines C. This is achieved for each subset, cell line pair
in the following order:
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1. Merge together dataset Φ(m)∩yC with expression set using HGNC/Biomart
labels.

2. Preprocess numeric columns with low-variance filtering (σ2 < 1e − 6)
and missing value (proportion of N < 0.3) filters.

3. Select appropriate subset of columns, dropping label columns and non-
numeric. Recognised categorical or binary data is transformed using
one-hot encoding.

4. Split merged dataset into random training (80%) and validation (20%)
sets X̃train, X̃test and ỹtrain, ỹtest, dropping to conform to the number of
y data points.

5. Generate grid search and compute 5-fold cross validation training and
testing errors fitting each model to X̃train and ỹtrain. XGBoost, Ran-
domForest and Ensemble/Voting models are fitted using HalvingGrid-
Search, rather than exhaustive grid search, which manipulates sub-
sample sizes prior to fitting to achieve a performance boost at the risk
of more inaccurate hyperparameter estimates. For XGBoost/Random-
Forest we use the n estimators parameter for halving instead of N , i.e
the number of weak learner trees T .

6. (Post-model selection) Re-fit on best models using the parameter runs
with the largest mean adjusted r2 test scores.

7. (Optional) Compute validation r2 scores using ỹtest and predicted val-
ues ŷtest.

Model Selection of Protein Abundance using

SDF, PPI, HL and mRNA

Pertaining to section 5.2.3, we define the key steps prior to and during model
fitting.. All models are fitted with either OLS, Ridge regression with `2

regularization, or XGBoost (Gradient-boosted regression trees)[112]. The
choice of model is indicated in Figure 5.7 by colour. All models includ-
ing SDFs as input use the sPCA—MCA unsupervised learning preprocessor
Φ(m) ∈ RN×P , with N = 15269, P = 137. Protein-protein interaction fea-
ture matrix M ∈ RN×K is computed from network analysis derived from the
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STRING database [171]. mRNA and protein half-life information (for HeLa)
is taken from Tani et al. [169] and Cambridge et al. [170] respectively. Paxdb
database information [168] is extracted and abundances are log-2 plus 1 nor-
malized. Given that corresponding mRNA abundance is not provided with
this data, any analyses involving measured mRNA abundance are excluded
from the figures. Firstly, we convert half-life t

1
2 in hours into decay constants

kdeg using the equation:

kdeg
n =

ln 2

t
1
2
n

(6.19)

where decay constants assume constant logarithmic decay. The decay con-
stants are normally distributed across the protein population, which makes
them fit nicely within statistical modelling. Now we will overview the mod-
elling pipelines for each regression model:

• OLS and Ridge: Split data into training and testing sets, perform
model fitting with OLS with 5-fold cross validation. Refit the model
on the training data and score on the testing data. For Ridge, regular-
ization parameter α = 1 is left to default.

• XGBoost: Split data into training and testing sets, compute an ad-
justed r2 metric based on N and P , perform hyperparameter search to
find best η, α, λ. Refit XGBoost with best parameters on whole N , and
score on the testing data. Learning rate η ∈ [10−4, 0.2], α ∈ [10−4, 10−1]
and λ ∈ [10−4, 10−1]. We draw g = 100 guesses for each parameter on
40% of the training data, from log-uniform distributions within the
aforementioned ranges.

For non-trivial regressions, i.e including more than one source of database
input, an intersection merge operation occurs between Φ and p just prior
to train-test-splitting. This process usually leads in a modest reduction in
N , particularly if multiple datasets are integrated. Several of the analyses
involving the Daoy cell line were dropped due to insufficient sample size N .
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Feature name Mol type Abbr. Description

mRNA length RNA LRNA
The length in base pairs
of the mRNA sequence

Instability Index protein **
A measure of protein stability
in a test tube

Protein molecular
protein PMw

The estimated weight of
weight all the amino acids

Isoelectric-point protein pI
The pH at which a molecule
carries no net electric charge (neutral)

Grand Average
protein GRAVY

The mean of hydropathy
of Hydropathy values for each amino acid
Aromaticity protein ** The mean of aromatic amino acids

GC content RNA GC
The proportion of G and C bases
in the sequence

Effective number
RNA Nc

Quantifies how far codon usage of
of codons a gene departs from equal usage
Codon length RNA LCDS The number of codons in the sequence
Secondary structure

RNA CoilSS
The estimated proportion of

coil CDS in a coiled-secondary structure
Secondary structure

RNA HelixSS
The estimated proportion of

helix CDS in a helix-secondary structure
Secondary structure

RNA
∆G The estimated free energy release

free energy 5UTR from secondary-structure bonds forming

Codon usage bias RNA CUB
The bias usage among synonymous
codons for CDS

Codon
RNA CAI

A similar metric to CUB, uses
Adaptation estimates for the population
Index to normalize against
tRNA Adaptation

RNA tAI
The bias usage among tRNA molecules

Index during translation
Number of

RNA Exonsf
The number of exons

exons scaled by gene length
Number of

RNA PolyAf

The number of polyadenylated regions
PolyA tails identified in mRNA sequence

Number of STSs RNA STSf
The number of sequence-tagged
sites in the sequence

Table S1: Engineered SDF features used in Parkes & Niranjan
(2019) [1].
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Method Technique Description Pros Cons Target?

Missing Value
Filter

Filter
Drops columns that have
missing values above
threshold percentage

Simple
Arbitrary selection
of drop threshold

No

Low Variance
Filter

Filter
Drops columns that have
variance below some
threshold

Intuitive with ML
May have no impact
on predictability

No

High Correlation
Filter

Filter
Drops columns with
low correlations to each
other/target

Reduces multicollinearity,
improves model stability

Only works with
linear or monotonic
relationships

Yes/
No

Random Forest
Feature
Selection

Uses tree-based models
which contain in-built
feature selection

Handles nonlinear
relationships, fast

Models can be too
complex, do not
generalize

Yes

Recursive
Feature
Elimination
(RFE)

Feature
Selection

Iteratively trains a model
and drops a feature at
each step until model
change is less than tol

Informative on each
features’ impact

Assumes underlying
model fits well,
Computationally
expensive

Yes

Forward Feature
Selection
(ANOVA)

Feature
Selection

Trains an additive model
using F-score 1 feature
at a time

Simple, established
technique within biology

Only works with
linear relationships

Yes

Factor Analysis
Dimensionality
Reduction

Variables are grouped
by correlations, known as
‘factors’

Factors theoretically
relate to real-world
phenomena

Number of factors
must be known
beforehand, factors
difficult to observe

No

PCA
Dimensionality
Reduction

Extracts a subset of
uncorrelated principle
components using SVD

Computationally cheap,
provides explained
variance, nice
mathematical properties

Only produces
linear combinations,
selection of K not
always intuitive

No

ICA
Dimensionality
Reduction

Reduces parameter space
using information theory
by maximising kurtosis
of projected values

Intuitively similar to
PCA, highly theoretical

Assumes variables
are linear mixtures,
latent variables are
mutually independent

No

Manifold
Isomap

Dimensionality
Reduction

Finds manifolds by
projecting points onto
lower dimensional space

Handles nonlinear
relationships

Assumes continuous
manifold, very
computationally
expensive

No

t-SNE
Dimensionality
Reduction

Uses nearest-neighbor
techniques to provide
low-dimensional
representation

Retains local and global
data stucture, good
visualizations, handles
nonlinear relationships

Computationally
expensive, large loss
of information

No

NMF
Dimensionality
Reduction

Factorizes the data
matrix into factor and
loading matrices

Improved interpretability
over PCA, automatic
regularization

Requires all
non-negative
elements

No

Table S2: Overview of feature selection and dimensionality
reduction techniques.
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Figure S8: Effects of translation data on model param-
eters. (A): Contour densities between log2 mRNA and protein
with (blue, rs = 0.23-0.24) and without (red, rs = 0.46-0.48) as-
sociated translation measurements. Linear model (black) with
mean centre of cluster (shape refers to group). (B): Scatterplots
of measured (y) versus predicted (ŷ) protein across G1, S and
G2/M cell cycle phases, using mRNA-translation predictor (see
Figure S10).
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Figure S9: Changes in mRNA, translation and pro-
tein across the HeLa cell line. Scatterplots across G1-S, S-
G2/M and G2/M-G1 of z-score transformed (A-C, orange) mean
log2 mRNA level against mean log2 protein level, (D-F, purple)
mean log2 translation level against mean log2 protein level, (G-
I, green) mean log2 mRNA level against mean log2 translation
level. Spearman-rank correlations (rs) with 95% confidence in-
tervals and sample size N in legends.
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MODEL

(Linear Regression,
Decision Tree,

Lasso,
Elastic Net...)

mRNA level

Translation (PUNCH-P)

bias

Predicted protein (p)

Actual protein (p)

COMPARE Error, correlation

Figure S10: Model for mRNA and translation against
protein abundance. Flowchart diagram describing the model
construction for a mRNA-translation predictor. Figure S8B
shows the lack of improvement incorporating both mRNA and
translation.
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(GBRT) performed best across all phases. ±SD indicate cross-
validation scores.
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Figure S14: Distributions of random-subsampled PTM
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Figure S16: Scatterplots of codon bias features. Scat-
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Figure S21: Kernel density estimations (KDE) of
pairwise SDF correlations by gene region. Gaus-
sian non-parametric KDE estimates of pairwise Spearman-
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mRNA/CDS/5’-UTR/3’-UTR or Protein/Amino acid. Dupli-
cate KDEs do exist across the plots, with each figure sorted if
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a ‘mrna;mrna’ pair would contain two features derived from the
mRNA sequence, and so on.
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gel et al [6] as target. B) Coefficients from subsequent fit model
using best α. C) Recursive feature elimination (RFE) scores
using 3 different models as N increases.
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Figure S28: Substantial improvement in SDF infer-
ence capacity with respect to protein concentration to
mRNA (A) Whole genome RMSE test-error (± 5-fold CV)
from XGBoost models across different cell lines for whole in-
put sources, (B) Sample sizes for each resultant cell line ML
model by input source, (C) Feature weights as a relative impor-
tance by the 6 most important features by cell line, (D) RMSE
test-error (± 5-fold CV) by cell line depending on input features
(using mRNA expression, SDFs, or both). See Supplementary
6.2 for model and feature preprocessing/selection.



Abbreviations

Broken down in this paper into biological and computational abbreviations
as follows:

Biological

SDF Sequence-derived feature

DDR DNA Damage Response

dNTP Dye-labelled normal de-
oxynucleotides

cDNA Complementary DNA

RISC RNA-induced silencing com-
plex

SNP Single-nucleotide polymor-
phism

PCR Polymerase Chain Reaction

qPCR Quantitative PCR

emPCR Emulsion PCR

GWAS Genome-wide Association
Study

CNV Copy number variants

DNA Deoxyribonucleic acid

HGP Human Genome Project

RNA Ribonucleic acid

rRNA Ribosomal RNA

NGS Next-generation sequencing

ATAC-seq Assay for transposase-
accessible chromatin using se-
quencing

PUNCH-P PUromycin-associated
Nascent CHain Proteomics

tAI tRNA Adaptation Index

CAI Codon Adaptation Index

ER Evolutionary Rate

RCB Relative Codon Bias

GRAVY Grand Average of Hy-
dropathy

PTM Post-translational modifica-
tion

PTR Post-translationally regulated
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2D-E 2D Gel Electrophoresis

DIGE Flourescence 2D Differential
Gel Electrophoresis

ICTA Isotope-Coded Affinity Tag

iTRAQ Isobaric Tag for Relative
and Absolute Quantification

SILAC Stable Isotope labelling with
Amino Acids in Cell Culture

MS Mass Spectrometry

SLiM Short Linear Motif

ELM Eukaryotic Linear Motif

AA Amino Acid

Computational

ML Machine Learning/Maximum
Likelihood

EM Expectation-Maximization

LM Linear Model

DT Decision Tree

LRM Linear Regression Model

GLM Generalized Linear Model

LMM Linear Mixed Model

OLS Ordinary Least Squares

GBRT Gradient-boosted regression
tree

GFFS Greedy forward feature selec-
tion

CART Classification and regression
tree

RFE Recursive Feature Elimination

DOF Degrees of Freedom

MSE Mean-squared error

RMSE Root mean squared error

RSS Residual Sum of squares

EVR Explained variance ratio

SD Standard deviation

Var Variance

MLE Maximum Likelihood Esti-
mate/Estimation

MVN Multivariate Normal

MCA Multiple correspondence
analysis

i.i.d Independent and identically dis-
tributed

SGD Stochastic Gradient Descent

MCMC Markov Chain Monte Carlo

NLL (Negative) Log-Likelihood

NN Neural Network

MLP Multilayer perceptron

PCA Principle component analysis
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PPCA Probabilistic principle com-
ponent analysis

sPCA Stratified PCA

SVM Support Vector Machine

RF Random Forest

DL Deep Learning
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détermination des orbites des comètes. The Royal
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