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This thesis deals with a variety of topics that are relevant for the theory of ultracold
atoms, with a focus on the many interaction regimes that can be obtained in these
systems. The topics are presented in increasing order of complexity with regards to
these interaction regimes. In the first chapter we are prompted by an experiment on a
realization of an interacting Aubry-André Hamiltonian driven by a periodic
modulation, where a localisation-delocalisation transition is observed. We will model
an analogue non interacting system and show that it reproduces an equivalent phase
diagram. Moreover we are able to provide a physical explanation for the critical
amplitude and the critical frequency for the delocalisation transition. Next, we will
consider a model of N atoms which are non interacting with the addition of a single
light impurity that interacts with them. We will propose a simplified model based on
the Born-Oppenheimer approximation and a polaron-like picture through which we
are able to estimate the energy of the system and to address the question of the
existence of stable clusters bound by an impurity in the large N limit. In the rest of the
thesis the pivot will be on the Andreev-Bashkin effect which describes the drag that
each component of a mixture of two superfluids exerts on the other, as a result of their
mutual interactions. We will first propose a microscopic theory based on linear
response theory that describes the drag, and derive its implications on the nature of
the excited states in a superfluid mixture. Then we will compute the effect of the drag
on the spin speed of sound and the spin dipole mode which can in principle observed
in experiments. Analytical results for the case of a weakly interacting mixture are
presented as a benchmark for our methods. Finally we will focus on the
Andreev-Bashkin effect in a Bose-Hubbard Hamiltonian in a one dimensional ring
lattice. We will show that the effect is enhanced for attractive intraspecies interactions,
more so close to the transition to paired superfluidity. A discussion on the correction
brought by the drag in the low energy Luttinger theory for the model is also
presented.
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All men are ready to invest their money

But most expect dividends.

I say to you: Make perfect your will.

I say: take no thought of the harvest,

But only of proper sowing.

– T. S. Eliot, Choruses from ”The Rock”
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1

Introduction

Ultracold atoms provide a privileged platform to experimentally realize a variety of
quantum systems. Indeed, when atoms are trapped and cooled, for example via laser
cooling or evaporative cooling, to very low temperatures the quantum mechanical
nature of the system takes over. In essence, the quantumness in such systems is reached

when the thermal de Broglie wavelength λT =
√

2πh̄2/mkBT is comparable or greater
than the average interparticle distance. In this regime, called the degenerate regime,
the average de Broglie wavelength of the atoms is big enough that the wavefunctions
of the atoms are overlapping and their collective behaviour cannot be accounted for
by classical physics. The degenerate regime is thus reached at very low temperatures,
as in ultracold atoms experiments, or at very high densities, as for example in neutron
stars.

Once the degenerate regime is reached ultracold atoms can be manipulated in many
different ways. We can think of a cold atom experiment as a quantum toy that has
many knobs. Some knobs can be used to control the geometry of the system, for
example restricting its dynamics to occur on a plane or on a single line, or breaking
translational invariance by trapping atoms on a lattice. Some other knobs can be used
instead to decide which species of atoms (e.g., different elements or different isotopes
of the same element) take part in the physics of the system. When a gas of ultracold
atoms consists of more than one species it is said to be a quantum mixture.

Another possibility, which is unique to ultracold atoms, is to tune the strength of the
interaction between atoms by means of Feshbach resonances. This feature allows to go
from regimes where the atoms are not interacting at all to regimes where the
interactions reach their maximum value. The manifold experimental situations that
are offered by ultracold atoms corresponds to a variety of techniques that must be
adopted when approaching their description theoretically. While a system of particles
that are not interacting can be essentially treated as an ensemble of single particles, a
quantum gas where interactions are strong requires to take into account the collective
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properties of the many-body system. Between these two extremes, weakly interacting
gases have interactions that can be treated as a small perturbation on top of a non
interacting gas. Adding to the variety is the possibility in a quantum mixture to switch
off the interactions among different species (interspecies) while keeping interactions
among atoms of the same species (intraspecies), or vice versa.

In this thesis I explore some of the variety I listed above, the topics being presented in
an order that, broadly speaking, reflects the increasing complexity brought by
interactions. I start from an ensemble of non interacting atoms in the first chapter, then
in successive chapters I will consider a quantum mixture where only interspecies
interactions are present, then a mixture where both intra- and interspecies interactions
are present and finally I will study a strongly interacting mixture.

1.1 Outline of the thesis

The chapter 2 of this thesis will describe the work that begun during the writing of my
master thesis Romito (2017) and was continued and completed in Southampton. This
work was prompted by an experiment reported in Bordia et al. (2017) that studies the
localisation-delocalisation transition of atoms in a quasiperiodic lattice, described by
the Aubry-André many body Hamiltonian, under a time-periodic driving. A brief
appendix is included to illustrate the procedure of the original experiment. Our goal is
to model the non interacting counterpart of this experiment in order to gain insight on
the relationship between the observed localisation phase diagrams and the features of
the single particle model. I will show that the non interacting model we consider is
able to capture the essential features of the many body experiment. This work lead to
the publication of the paper Romito et al. (2018).

Chapter 3 is the study of a mass-imbalanced Fermi system consisting of N fermions
and a single particle, or impurity, with mass much smaller than the mass of the
majority fermions. The heavy atoms do not interact among themselves but they
interact with the single particle. The question that sets out the problem is whether
there is a limit to the number of particles that can be bound by the impurity. This
question is motivated by theoretical results for few-body systems where it has been
shown that a single light particle can bind together up to five fermions.

Last, in chapters 4 and 5, we will be concerned with the study of the Andreev-Bashkin
effect or collisionless drag Andreev and Bashkin (1975). The Andreev-Bashkin effect
takes place in a binary superfluid mixture and describes the entrainment between the
currents of the two superfluids. Since this effect has proven to be quite elusive and has
yet to be clearly observed in a controlled experiment, our work is devoted to expand
its theoretical understanding in order to make the effect observable in an ultracold
atoms setting.
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Chapter 4 focuses on the theoretical study of the effect by means of a linear response
theory formalism which generalizes other approaches used up to now to make
predictions on the effect (see Fil and Shevchenko (2005) for example). This formalism
has the advantage of having a clear physical interpretation and a strong connection
with experiments, especially for its connection with sum rules (Pitaevskii and
Stringari (2016), Nozieres and Pines (1999)). I will propose three different ways to
measure the effect in experiments. I will also discuss the limitations of weakly
interacting systems in producing a sizeable drag. This work lead to the publication of
the paper Romito et al. (2021).

In chapter 5 I will report on the study of the Andreev-Bashkin effect in a one
dimensional ring lattice, which is a promising system where to observe the drag. In
particular, I will focus on the effect for attractive intraspecies interactions, where we
should expect that the drag is enhanced. This work lead to the publication of the
paper Contessi et al. (2021).

In appendix A I give a brief overview of scattering theory for typical ultracold atoms
experiment, based on well known literature. In appendix B I illustrate the experiment
that prompted the work in chapter 2. Appendix C generalizes some result of chapter 4
to the case of a lattice Hamiltonian. The expression of the drag as a derivative of the
energy was used in chapter 5 to numerically compute its value. In appendix D I derive
some thermodynamics quantities for homogeneous and trapped Bose-Bose mixtures
that are necessary for computing the spin speed of sound and spin dipole frequency in
chapter 4.
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2

Localisation Transition in the
Aubry-André model under periodic
driving

The work contained in this chapter lead to the publication of the paper Romito et al.
(2018).

2.1 Introduction: localisation and non-ergodicity in isolated
quantum systems

Statistical mechanics (or, better, equilibrium statistical mechanics) is based on the
assumption that systems tend to thermal equilibrium. Most physical systems reach
thermal equilibrium by the interaction with their environment, which acts as a bath,
draining or pumping energy to the system in an irreversible manner. When this is the
case, the system will thermalize and in the process lose memory of all the initial
conditions. Then the dynamics of the system is said to be ergodic, meaning that its
parts will uniformly visit all the available phase space.

A natural question to ask is whether this holds true for isolated systems. It is tempting
to think that in absence of an external bath the system would have no way to
thermalize. However, in a generic quantum system only local observables are
accessible, i.e. observables that probe a finite portion of it. What happens in most
cases is that the system as a whole acts as a reservoir for any of its subpart that is
sufficiently small, and the information on the initial state is erased from any local
observable Deutsch (1991).
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It is then interesting to find systems which avoid thermalization and retain the
information on the initial state. Such systems are said to be localised. It is clear that
localised systems must necessarily be isolated. Moreover, a natural way to break
ergodicity is to insulating phases, as otherwise transport and exchange of energy will
eventually lead to thermalization. Philip W. Anderson has shown in 1958 that these
conditions can be met by introducing randomness in a system Anderson (1958). The
model proposed by Anderson, in presence of a sufficiently strong randomness, displays
a suppression of transport as a consequence of its egeinstates being localised. The
Anderson localisation transition has been observed in an experiment with cold atoms
in an optical lattice and reported in Roati et al. (2008).

Of course, the necessity of an isolated system is in itself a technological challenge. One
can at best realize an experiment with an almost isolated system, meaning that it can
be assumed to be isolated up to a certain time scale. Practically, if some parameter
describing the coupling between the system and the environment Γ is small enough,
we can consider the system to be isolated when its dynamics occurs with a typical
timescale τ such that τ � Γ−1. Ultracold atoms provide a platform where isolated
quantum systems have been realized and their parameters were tuned to reach
regimes where localisation occurs Schreiber et al. (2015).

Another point of interest is what happens when an initally localised system is acted
upon by a periodic modulation. It is natural to expect that a periodic modulation will
favor a delocalised phase, as it will eventually pump enough energy into the system to
thermalize it. This can happen provided the parameters of the driving, such as its
frequency, are chosen in a way that it can efficiently couple with the dynamics of the
system. In this chapter, prompted by an experiment reported in Bordia et al. (2017),
we study the physics of such a system: an initially localised system that is driven by a
time periodic perturbation. In the original experiment in Bordia et al. (2017) the
localised system is a gas of interacting fermions in an optical lattice that has a
quasirandom on-site energies. We will focus the non interacting counterpart of this
problem in order to see if reproduces the qualitative features of the interacting system.

2.1.1 Outline

An experiment by P. Bordia et al. at LMU in Munich Bordia et al. (2017) has
demonstrated that periodically modulating the potential of a localised many-body
quantum system described by the Aubry-André Hamiltonian with on-site interactions
can lead to a many-body localisation-delocalisation transition. It is emphasized in
Bordia et al. (2017) that the amplitude of the modulation is required to exceed a certain
threshold in order to drive the system to a delocalised phase. Moreover, while
generally a modulation with small frequency is more efficient in bringing the system
to a delocalised phase, some non-trivial dependences on the frequency are observed in
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the experiment. Our goal is to consider the non interacting counterpart of the many
body Aubry-André model in order to explore its phase diagram as a function of the
strength of the disordered potential, the driving frequency and its amplitude. The aim
is to understand if the results of the experiment can be explained already at the single
particle level and if we can give a physical explanation for the observed threshold in
the amplitude and for the frequency dependence of the phase diagram. We will first of
all mimic the experimental procedure of Bordia et al. (2017) and use the even-odd sites
Imbalance as a parameter in order to discern between different phases. Then we
compute the Floquet eigenstates and relate the localisation-delocalisation transition to
their Inverse Participation Ratio.

The chapter is divided into two main parts. In the first two sections, secs. 2.2 and 2.3
the two main ingredients of the work on periodically driven quasicrystal are
introduced. Sec. 2.2 is devoted to explain what is meant by a quasiperiodic crystal and
how the Anderson localisation transition occurs in these type of systems. In sec. 2.3
we focus instead on the theory of time periodic systems. Finally in sec. 2.4 we will
show the main results of the work on the driven Aubry-André model and how they
compare with the experiment in Bordia et al. (2017).

2.2 Quasicrystals and Anderson localisation

2.2.1 What are quasicrystals?

Solid matter have been for a long time divided in a dichotomistic way in two
categories: ordered (or crystalline) and disordered (or amophous) matter. In this sense
ordered matter is identified with spatially periodic arrangements of atoms and
amorphous matter with a random distribution of its constituents. In this frame
quasicrystals were regarded as a somewhat intermediate structure between an
ordered and a disordered system Shechtman et al. (1984). This notion however was
later challenged in light of the fact that the so-called quasicrystals exhibit long range
order, orientational symmetries and a discrete diffraction patterns Levine and
Steinhardt (1984), all properties that are shared with ordered matter. This suggests
that quasicrystals should be interpreted as an extension of the notion of crystals.

The modern view on this matter is to introduce a hierarchy of order, instead of the
strict dychotomy between ordered and disordered matter. The new definition of terms
reflects the modern stance that spatial periodicity is not a necessary condition for
cristallinity, and this role should be taken by long range order. While the latter implies
the former, the converse is not true, as the mere existence of quasicrystals proves.

Following Maciá (2014), we illustrate the concept by defining a function f (x) which
describes the spatial distribution of atoms in a lattice. This function can be expressed
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in terms of its Fourier coefficients, namely:

f (x) = ∑
k

akeik·x , (2.1)

where k are the reciprocal lattice vectors Ashcroft et al. (1976).

The aforementioned hierarchy of order, with increasing order, is then expressed in terms
of the number of lattice vectors k that are required to generate the spatial arrangement
of atoms, namely:

1. An almost periodic crystal is a crystal whose atomic distribution can be
described by an aperiodic function, i.e. a function whose Fourier transform
contains a countable infinity of incommensurate lattice vectors.

2. A quasiperiodic crystal is an almost periodic crystal whose lattice vectors can be
generated from a finite dimensional basis.

3. A periodic crystal is a quasiperiodic crystal whose lattice vectors can be
generated from a basis whose dimensionality equals that of the real space
considered.

A non periodic arrangement of atoms, such as in a liquid or in a gas requires instead
an uncountable number of Fourier basis vectors, i.e. a Fourier transform.

The simplest example of a quasiperiodic structure in one dimension is represented by
the function:

f (x) = A cos(x) + B cos(αx) (2.2)

where α is an irrational number. This corresponds to the superposition of two lattices
whose length are incommensurate, i.e. such that their ratio is an irrational number. It’s
interesting to mention that the distribution function in (2.2) can be viewed as the
projection on a one dimensional space of a function which is periodic in two
dimensions:

f (x, y) = A cos(x) + B cos(y) (2.3)

The one dimensional quasiperiodic function is obtained by restricting y = αx. This
simple intuition is at the basis of the so-called cut and project method, which in its
essentials consists in applying the notions of classical cristallography to quasicrystals
by considering an appropriate hyperspace.

2.2.2 Anderson localisation

This section will describe two different localisation transitions: one is the textbook
example of Anderson Localisation in a truly disordered Hamiltonian, the other is
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localisation in the Aubry-André model, which is the most simple example of a
quasiperiodic Hamiltonian, and the focus of our work.

2.2.2.1 Truly disordered Hamiltonian

It is known after the seminal paper by Anderson Anderson (1958) that disorder (or
randomness) can produce localised dynamics for a quantum particle. For a given
disorder strength the eigenstates of a disordered Hamiltonian are either localised or
delocalised. The model Anderson proposed in Anderson (1958) describes a single
particle subject to the tight binding Hamiltonian in one dimension:

Ĥ = J ∑
i
(|i〉 〈i + 1|+ |i + 1〉 〈i|) + λ ∑

i
εi |i〉 〈i| , (2.4)

where |i〉 is the Wannier state localised at site i in Dirac notation and J is the tunneling
coefficient, which represents the probability amplitude to tunnel from a site to a
neighbouring one. Randomness is introduced by means of the on site energies λεi

which are drawn from a chosen probability distribution, the standard choice being a
uniform distribution with support

[
−1/2, 1/2

]
. Thus the coefficient λ (which has

units of energy) quantifies the amount of randomness of the lattice and is called
disorder strength.

The Anderson model undergoes a phase transition: namely for λ > λc the eigenstates
of the Hamiltonian become exponentially localised, with a localisation length ξ,
namely, for any eigeinstate ψ:

|ψ(r)|2 ∝ exp
(
−|r− r0|/ξ

)
(2.5)

In his paper Anderson proved that for a one or two dimensional system an arbitrarily
small disorder strength is sufficient to localise the eigenstates, i.e. λc = 0. For finite
disorder strength all the eigenstates of the Anderson Hamiltonian are localised. The
localisation length of the wavefunctions depends on the disorder strength, and it
increases monotonically with decreasing disorder strength, approaching the limit
ξ → ∞ for vanishing disorder strength. Thus, in a system with finite size the
localisation length can be larger than the system’s size, so the actual localised phase is
defined only in the thermodynamic limit.

For the Anderson model in three dimensions the picture is similar, but the transition
occurs for a finite value of the disorder strength, i.e. λc 6= 0. Moreover the localisation
transition in three dimensions doesn’t occur for all the eigenstates at once: below the
critical strength the eigenstates at the center of the energy band are extended, while
eigenstates above a certain energy Ec (and below −Ec), called mobility edge, are
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localised. For a complete review on the main results regarding single-particle
Anderson localisation see Evers and Mirlin (2008).

2.2.2.2 The Aubry-André model and its localisation transition

The model we will consider in the remainder of the chapter is the most simple
description of a one dimensional quasicrystal which is the Aubry-André Model,
whose Hamiltonian in the tight binding approximation reads:

Ĥ = J ∑
i
(|i〉 〈i + 1|+ |i + 1〉 〈i|) + λ ∑

i
cos (2πβi + φ) |i〉 〈i| (2.6)

Where β is an irrational number and φ ∈ [0, 2π] is a phase. The Hamiltonian in
Eq. (2.6) describes a particle moving with tunneling rate J in a one dimensional lattice
realized by superimposing two lattice lengths L1 and L2 which are incommensurate,
and β = L1/L2. The form of this Hamiltonian is very similar to the Anderson
Hamiltonian, the only difference being that the on site energies are not drawn from a
random distribution but rather are generated by the quasiperiodic potential
cos (2πβi + φ).

The model has gained in the years increasing interest both in physics and in
mathematics. In relation to the latter, the spectrum was conjectured to be a Cantor set
for any λ 6= 0, namely a closed, nowhere dense set with no isolated points. This
conjecture was called “Ten Martini Problem” and was proved in Avila and
Jitomirskaya (2009). In Fig. (2.1) we show the energy spectrum of the Aubry-André
model as a function of the potential depth λ/J, for N = 50. The spectrum of the
Aubry-André model has Lebesgue measure |4− 2λ|, which means that at the
transition its measure is 0.

In 1980 Aubry and André predicted that the namesake model undergoes a metal to
insulator transition for a critical strength of the quasiperiodic potential λ = λc Aubry
and André (1980), as the Anderson model in more than two dimensions. This analogy
is one of the reasons behind the interest for this model: it displays a phase transition
(analogously to the Anderson model in more than two dimensions) while already in
one-dimension, making it easier to study. However for the Aubry-André model, much
like in the one dimensional Anderson model, there are no mobility edges, which means
that for λ < λc all the states are extended, while for λ > λc all the states are localised.
At the critical point the nature of the eigenstates of the Hamiltonian is self-similar, or
fractal. The wavefunction amplitude ψn displays a main maximum with decaying tails
which however cannot be fitted by an exponential. Then, further away from the main
maximum there are subsidiary smaller peaks which reproduce the main maximum,
and so on.
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FIGURE 2.1: Spectrum of the Aubry-André model as a function of λ for N = 50 lattice
sites.

The rigorous proof of the occurence of the Metal to Insulator Transition for the
Aubry-André model was given in Jitomirskaya (1999), after the conjecture made by
Aubry and André based on numerical simulations. We mention that at the transition
the spectrum of the Aubry-André model for different values of β has a fractal
structure and takes the name of Hofstadter Butterfly Hofstadter (1976).

2.3 Time periodic systems

The study of time periodic systems has gained rising interest in the last years in the
context of closed quantum systems. The most important tool to study their properties
is the Floquet theorem, which allows to write the evolution over multiples of the
driving period in terms of a time independent effective Hamiltonian Shirley (1965),
Sambe (1973). The existence of such an effective Hamiltonian can open the way to the
so called Floquet engineering, that is, the possibility to realise non trivial time
independent models by periodically modulating a quantum system with a suitable
protocol. This concept has been employed very successfully in various experiments
with ultracold atoms in driven optical lattices. This includes dynamic localisation
(Dunlap and Kenkre (1986), Holthaus (1992), Grifoni and Hänggi (1998), Lignier et al.
(2007)), “photon”-assisted tunneling (Zak (1993), Eckardt and Holthaus (2007)),
control of the bosonic superfluid-to-Mott-insulator transition (Eckardt et al. (2005),
Zenesini et al. (2009)) and the realisation of artificial magnetic fields (Jotzu et al. (2014),
Aidelsburger et al. (2011), Struck et al. (2012), Goldman and Dalibard (2014)). The
interplay between localisation and a time periodic driving is also of great interest and
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raises the question of whether and when a modulating force pumping energy into the
system can bring it to an ergodic phase (see e.g. Abanin et al. (2016), Gopalakrishnan
et al. (2016), Rehn et al. (2016)). In this chapter we briefly overview the main ideas that
are useful to study time-periodic quantum systems and that we will use in order to
investigate this interplay.

2.3.1 Floquet theorem: elementary concepts

Consider a model whose Hamiltonian is periodic in time, with period T = 2π/ω,
namely:

Ĥ(t + T) = Ĥ(t) . (2.7)

Under this condition the Schrödinger equation falls under the hypothesis of Floquet
theorem Shirley (1965). According to the Floquet theorem the solutions of the
corresponding time-dependent Schrödinger equation can be written in the form:

ψn(x, t) = e−iεnt/h̄un(x, t) , (2.8)

where un(x, t) = un(x, t + T) is a periodic function and is referred to as Floquet mode or
Floquet eigenmode. The state ψn(x, t) is called Floquet state or Floquet eigenstate. We will
drop in what follows the dependence on x.

The εn are the so-called quasienergies and can be readily found noting that the Floquet
modes are solutions of the eigenfunction equation:

Q̂ |un(t)〉 = εn |un(t)〉 (2.9)

where we defined the quasienergy operator Q̂ as:

Q̂ = Ĥ − ih̄
d
dt

, (2.10)

If we define εnm = εn + mh̄ω and

unm(t) = eimωtun(t) , (2.11)

unm is still periodic and the solution ψn(t) can be written in the form:

ψn(t) = e−iεnt/h̄un(t) = e−iεnt/h̄e−imωtunm(t) = e−iεnm .t/h̄unm(t) (2.12)

That is, we have the same physical solution, but the corresponding Floquet mode is a
solution of the quasienergy eigenvalue problem with eigenvalue εnm = εn + mh̄ω.

This means that quasienergies are defined modulo h̄ω, thus explaining the prefix
quasi-, in analogy with Bloch theorem, where solutions are labelled by quasimomenta
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defined up to a reciprocal lattice vector. Fixing each quasienergy within this choice
fixes the Floquet modes. In particular one can choose the quasienergies to lie in an
interval of width h̄ω. It comes as no surprise that this interval is called Brillouin zone or
Floquet Brilloun zone.

2.3.2 Time evolution

Consider the standard time evolution operator in quantum mechanics:

U(t, t′) ≡ T exp
(
−

i
h̄

∫ t

t′
H(τ)dτ

)
. (2.13)

It can be easily proven from their factorization that the Floquet states are eigenstates of
the time evolution operator over one period T, namely:

Û(t0 + T, t0) |ψn(t0)〉 = exp
(
−i

εnT
h̄
)
|ψn(t0)〉 (2.14)

This allows us to compute the Floquet states from the propagator over one period.

The time evolution operator for arbitrary times admits a spectral representation in
terms of Floquet eigenmodes, we start from:

U(t, t0) |ψ(t0)〉 = |ψ(t)〉 . (2.15)

Multiplying for |ψ(t)〉 on both sides and using the expression of the Floquet states in
terms of the Floquet modes one finds that:

U(t, t0) = ∑
n

e−iεn(t−t0)/h̄ |un(t)〉 〈un(t0)| (2.16)

Thus one can in general express the evolution of an arbitrary state as

|ψ(t)〉 = ∑
n

cne−iεn(t−t0)/h̄ |un(t)〉 (2.17)

with cn = 〈un(t0)|ψ(t0)〉. This expression allows us to identify two distinct
contributions to the time evolution of a generic initial state.

• The first is a periodic contribution given by the periodic evolution of the Floquet
modes |un(t)〉, called micromotion.

• The second contribution is given by the “interference” of the different phases
εnt/h̄, which is present if the initial state is not a Floquet mode with definite
quasienergy.



14 Chapter 2. Localisation of a quasicrystal under periodic driving

We stress the important fact that cn is independent of time. Thanks to this, if we ignore
the micromotion and are interested only in the evolution at times which are integer
multiples of the period we can view the quasienergy as if they were the energies of a
time independent system. Such dynamics which takes into account only integer
multiples of the period is often referred to in literature as stroboscopic evolution.
From this intuition stem the concepts of Floquet Hamiltonian and Effective
Hamiltonian that give the possibility to study a periodically driven quantum systems
using intuitions, theorems and concepts which are used for time independent systems.

If one is interested only in the stroboscopic evolution, the picture is not dissimilar
from the case of a time independent Hamiltonian. Here the Floquet states take the role
of the usual eigenstates of the Hamiltonian. In the following section we will make use
of this intuition and Eq. (2.17) will be relevant for characterizing the long time
dynamics of the system by looking at the properties of the Floquet states, which will
be computed using Eq. (2.14).

2.4 Periodically driven Quasicrystal

2.4.1 The model

We consider the Aubry-André Hamiltonian H0, with periodically modulated potential
V(t):

H(t) = H0 + V(t) (2.18)

where H0 is the Hamiltonian of the time independent model with tunneling coefficient
J and disorder strength λ:

H0 = J
N

∑
i
(|i〉 〈i + 1|+ |i + 1〉 〈i|) + λ ∑

i
cos(2πβi + φ) |i〉 〈i| (2.19)

and V(t) = V(t + T) is a time periodic potential with period T = 2π/ω which
modulates the onsite energies:

V(t) = A cos(ωt)∑
i

cos(2πβi + φ) |i〉 〈i| (2.20)

As in the time independent case, β is an irrational number, |i〉 is the Wannier state
localised at site i in Dirac notation, J is the tunneling coefficient and λ is the disorder
strength. We choose periodic boundary conditions for the lattice.

The qualitative features of the undriven system in the many-body and the single
particle (non interacting) cases are quite similar Schreiber et al. (2015). We illustrated
the properties of the non interacting model in the previous sections. In the many-body
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case the transition is controlled by the parameters J, λ and the additional parameter
U, which is the intensity of the repulsive on-site interactions. There is a critical
disorder strength which depends on J and U above which the system becomes
localised Schreiber et al. (2015). More precisely, until Uc ≈ 2λ the interaction decreases
the degree of localisation, while for large |U|, increasing U helps to make the system
more localised. This is understood as a consequence of the formation of repulsive
stable bound atom pairs in optical lattices described by a Hubbard Hamiltonian
(Mattis (1986)) (for the first realization of this effect with cold atoms see Winkler et al.
(2006)). These pairs have a reduced effective tunneling rate of Je f f ≈ J2/|U| which
thus increases the degree of localisation . Both above and below Uc for each value of U
there is a definite value of λ for which the transition occurs. It is interesting to see
whether the analogies between the non interacting and the interacting model are
retained in presence of the time periodic modulation.

2.4.2 Setup

2.4.2.1 Imbalance

As a first step to explore the phase diagram of the model we mimic as closely as
possible the procedure described in Bordia et al. (2017) but in a single particle context.
The initial state there is chosen as a density-wave pattern in which fermions occupy
the even sites of the lattice. The parameter which discerns between a localised and a
non-localised phase is the asymptotic Imbalance:

I = lim
t→∞

1
t

∫ t

0
dt′

Ne(t′)− No(t′)
Ne(t′) + No(t′)

(2.21)

where Ne and No are the number of particles in the even and odd sites respectively. A
persistent Imbalance indicates a localised phase, while it obviously drops to 0 in
absence of localisation, indicating that the system is ergodic as it does not retain the
memory of its initial conditions.

To properly imitate the experiment we consider different realisations of the system
each initially localised on a single even site and let them evolve separately under the
Hamiltonian H(t). The initial state in the Wannier states basis for each realisation
m = 1, ..., N/2 reads:

ψ(2m)(i, t = 0) = 〈i|ψ(2m)(t = 0)〉 = δi,2m (2.22)
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FIGURE 2.2: Imbalance in the time independent case as a function of the disorder
strength λ, for lattice size N = 50, with periodic boundary conditions. We see a clear
critical value at λc = 2J indicating the localisation transition. The time of integration

is τ = 1000h̄/J, at which the Imbalance has reached its asymptotic value

After a long evolution time we sum the modulus squared amplitudes of all the
realisations to obtain the final density, namely:

n(i, t) = ∑
m=1,...N/2

|ψ(2m)(i, t)|2 (2.23)

The above definition is justified by the fact that the one-body density of a non
interacting many-body system is the sum of the densities of the occupied single
particle states Maruhn et al. (2010). The analogues to the occupation numbers Ne and
No are then calculated by simply using this density function as a weight in the
following sum:

Ne(t) =
N/2

∑
i=1

n(2i, t) (2.24)

and similarly

No(t) =
N/2−1

∑
i=0

n(2i + 1, t) (2.25)

With these definitions we can calculate the Imbalance as defined in Eq. (2.21).

Before moving to the results for the driven lattice we show how the Imbalance
behaves around the phase transition for the time independent model. Fig. (2.2) was
obtained considering a lattice made of N = 50 sites and calculating the asymptotic
Imbalance for different values of the disorder strength λ. It shows how the transition
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is marked by a nonzero value of the Imbalance as a function of λ (all energies are in
units of J), at the critical value λc = 2J.

The Imbalance is thus able to signal in a clear way the transition from the localised to
the delocalised phase.

2.4.2.2 Inverse Participation Ratio

In this subsection we link the localisation properties of the model to the localisation of
its Floquet states. The time periodicity of the full Hamiltonian H(t) allows us to make
use of the Floquet theorem, which states that we can write the time evolution of an
arbitrary initial state as in Eq. (2.16) Shirley (1965), Sambe (1973):

|ψ(t)〉 = ∑
n

cne−iεn(t)/h̄ |un(t)〉 (2.26)

with cn = 〈un(0)|ψ(0)〉 and εn are the quasienergies. We emphasize the fact that these
coefficients do not depend on time.

We expand the Floquet states at t = 0 in the Wannier state basis yielding:

|ψn(0)〉 = ∑
i

b(n)i |i〉 . (2.27)

We define the averaged Inverse Participation Ratio (IPR) as the average of the IPRs of
all the Floquet eigenmodes on the Wannier states, namely:

IPR =
1
N ∑

i,n
|b(n)i |4 (2.28)

where N represents the number of Floquet states which coincides with the number of
sites of the lattice.

If each one of the Floquet states is localised on a single Wannier state then for any n
there exists an i such that |b(n)i | ≈ 1 and the sum approaches 1. If instead the
eigenstates are distributed among many Wannier states then |b(n)i | ≈ 1/

√
N for all n,

and i and the averaged IPR goes to 0 as 1/N.

Thanks to the form of Eq. (2.26) we can expect a localised dynamics when very few
Floquet states participate in the time evolution of an initial Wannier state. This would
be the analogue, in the context of time-periodic systems, to the phenomenon of
Anderson localisation for time independent Hamiltonians. Indeed, in a system that
undergoes Anderson localisation, it is the localisation of the eigenstates of the
Hamiltonian that implies non-ergodic dynamics Anderson (1958).
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However at least in principle, one could have a localised dynamic without any
localisation of the Floquet eigenstates, as it can occur as a consequence of the
degeneracy of energy levels e.g. when the time average of the hopping parameter J
becomes very small due to the driving. One is then left with an effective Hamiltonian,
describing the time evolution over one period of the driving, where the hopping is
completely suppressed. This particular mechanism is often referred to as dynamic
localisation or band collapse (Drese and Holthaus (1997), Eckardt et al. (2009)). In Drese
and Holthaus (1997), in particular, the authors propose to observe a dynamic
localisation effect in a realization of the Aubry-André Hamiltonian by tuning the
amplitude and frequency to a value for which the renormalized hopping would
vanish. The periodic modulation that we are considering here is however different
from theirs and doesn’t allow to tune the time averaged hopping to zero. Comparing
the Inverse Participation Ratio with the Imbalance allows us to verify that the
localisation phase diagram of the model is not due to band collapse but to a
time-periodic analogue of the Anderson localisation transition.

2.4.3 Results

In what follows we will indicate the disorder strength, λ, and the amplitude of the
modulation, A, in units of J and times in units of 1/J. The calculations below were
done considering a lattice made of N = 50 sites, averaging over 20 different
realisations of the disorder, which are obtained by varying the value of the phase φ in
Eq. (2.19). In choosing β we decided to follow as close as possible the choice of the
experiment in reference Bordia et al. (2017), so we chose β = 532/738.2. The
simulations were made using the standard Matlab toolbox, solving the time evolution
with the ode45 function in order to compute the Imbalance and exactly diagonalizing
the propagator over one period to find the Floquet modes.

As a first step to outline the behaviour of this model we calculated the Imbalance for
strong driving, i.e. A = λ, for a broad range of frequencies, keeping the disorder
strength at a fixed value λ = 5J. The results are shown in Fig. (2.3), which highlights a
delocalised regime for low frequencies while for high frequencies the Imbalance
approaches that of the model in absence of driving. The similarity in the main features
between this figure and the ones in Bordia et al. (2017) is already quite apparent. In
particular the dip appearing after the Imbalance has started to rise, around h̄ω = λ, is
present also in the many-body experiment, although less pronounced. We will give an
heuristic explanation for the dip in Sec. (2.4.3.1), attributing the frequency dependence
of the phase diagram to the spectrum of the time-independent model.

In order to better understand the phase diagram outlined by the Imbalance we have to
consider the response of the model to various values of frequency and disorder. To
this purpose we computed the time averaged Imbalance for different values of the
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FIGURE 2.3: Imbalance as a function of frequency for A = λ, normalized to its value
in the absence of driving. While for low frequencies the Imbalance is vanishing, it
approaches its undriven value (A = 0) for high frequencies. The plot on the right is

taken from Bordia et al. (2017) to allow comparison.
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FIGURE 2.4: Imbalance as a function of frequency and disorder strength. On the verti-
cal axis λ

h̄ω is displayed in logarithmic scale to allow comparison with the experiment
in Bordia et al. (2017), the results of which are displayed on the right of the figure. The
dashed line is for h̄ωc = 2λ, which is the approximate critical value for the frequency.
The plots on the right are taken from Bordia et al. (2017) to allow comparison. The
upper panel shows the experimental results, while the lower one shows results from
numerical computations. The transition line for the model at h̄ωc = 2λ and the inter-
mediate peak at h̄ω = λ are present both in our single-particle model and in the many

body one.

disorder strength λ and the angular frequency ω, setting the amplitude of the
modulation in the strong driving regime i.e. A = λ. The evolution time is chosen to be
100 times the period of the modulation. In Fig. (2.4) and Fig. (2.5) the vertical axis
shows λ/h̄ω to allow comparison with the experiment in Bordia et al. (2017). In
Fig. (2.6) the Inverse Participation Ratio is displayed as a function of λ and h̄ω to more
clearly show the relation between the frequency response and the spectrum.

Fig. (2.4) confirms that for very low frequencies the system is brought to a delocalised
phase (marked by a vanishing Imbalance), while for high frequency the driving is not
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FIGURE 2.5: Inverse Participation Ratio as a function of frequency and disorder
strength. On the vertical axis λ

h̄ω is displayed in logarithmic scale to allow compar-
ison with the experiment in Bordia et al. (2017). The dashed line is for h̄ωc = 2λ,

which is the approximate critical value for the frequency.

FIGURE 2.6: Inverse Participation Ratio as a function of frequency and disorder
strength, for A = λ. The white dashed line is for h̄ωc = 2λ, dividing the localised

phase (yellow) from the delocalised one (blue).
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able to bring the system to delocalisation anymore. Moreover it displays distinct
analogy with the corresponding phase diagram in Bordia et al. (2017). The transition
to a delocalised phase occurs for h̄ω ≈ 2λ both in the interacting and in the
noninteracting case. The peak at h̄ω = λ is also present in both cases, although it is
more pronounced in the noninteracting case (see Fig. 2.3 for a better visual
comparison).

As anticipated in the previous section we computed the Inverse Participation Ratio for
various values of ω and λ. Figures (2.5) and (2.6) distinctly show the separation
between the two phases. This also shows that the localisation properties of the Floquet
eigenstates at initial time allow us to discern in a broad sense the different localisation
properties of the system. This happens despite the fact that the initial Floquet states
carry no information on the structure of the quasienergy spectrum which can contain
accidental crossings of energy levels, causing the system to be partially localised.

The relatively small size of the system implies that the Inverse Participation Ratio will
display finite size effects in the delocalised phase, where it vanishes as 1/N. We run a
simulation which computes the IPR as a function of frequency for different system
sizes, going from N = 50 to N = 500. For each system size the IPR goes to 0 with the
correct scaling with respect to N, while in the localised phase its behaviour is largely
unchanged.

2.4.3.1 Critical frequency

In the results presented above there is a transition line (white dashed line in Fig. (2.4),
Fig. (2.5) and Fig. (2.6) above which the system remains localised. This line appears for
h̄ωc = 2λ which can be understood from the spectral properties of the Hamiltonian H0

of Eq. (2.19). To better understand this, we refer to Fig. (2.1) showing the spectrum of
the Aubry-André model as a function of the disorder strength for N = 50 lattice sites.

The bandwidth of the Aubry-André Model is ≈ 2λ for any disorder strength above
the transition point λc = 2J. Thus the transition line in the time periodic case appears
when the quanta of energy that the driving pumps into the system are too big for the
system to absorb. Above the transition line the system’s behaviour becomes that of the
time independent model. This is because the period of the driving T = 2π/ω is now
smaller than the fastest time scale present in the Aubry-André Hamiltonian, making
the system unable to respond to the driving.

Below the transition line there are other smaller revivals of the localised phase. We
attribute this intricate structure again to the spectrum of the Aubry-André model
which is divided into smaller subbands divided by spectral gaps. In the intermediate
range of frequencies where h̄ω is comparable to the energy gaps present in the
spectrum, the presence of a localised phase has a non monotonic dependence on the
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frequency of the modulation. The most pronounced peak in the imbalance, that is
apparent e.g. in Fig. (2.3), occurs around h̄ω = λ, compatibly with the energy
difference between the two upper and lower bands and the central band in Fig. (2.1).

We mention that during the writing of this thesis we became aware of a paper Sinha
et al. (2019) that complements our analysis. There, in an Aubry-Andrè model
perturbed by multiple linear ramps of the disorder strength, the relation between the
delocalisation transition and the spectrum of the undriven model is analysed in detal,
and an argument in terms of the Kibble Zurek mechanism for the survival of some
localised states is given.

All these results are consistent with what obtained in Bordia et al. (2017) and are well
understood in terms of the single particle spectrum. This suggests that in this context
the time averaged Imbalance, while providing a precise characterization of the phase
diagram of the model, doesn’t seem able to highlight the differences between an
Anderson localised and a many body localised system.

2.4.3.2 Critical amplitude

Since for very low frequencies the system is brought to delocalisation we can define
the following parameter:

λ(t) ≡ λ + A cos(ωt) (2.29)

If the frequency is low the global parameter λ(t) is changed adiabatically and sweeps
through the transition point λc = 2J, bringing the system to delocalisation.

This intuitive picture helps us understand the role of the amplitude of the driving A:
even for arbitrarily low frequencies the system does not delocalise if the amplitude is
not big enough to make λ(t) sweep through the critical point λc = 2J. Following this
reasoning we define the critical value for A to be such that mint

{
λ(t)

}
= λc = 2J,

namely:
Ac = λ− λc = λ− 2J (2.30)

This picture is clearly confirmed by the contourplots of the Imbalance and the Inverse
Participation Ratio as functions of the disorder strength and the amplitude, which are
shown on Figures (2.7) and (2.8). For these plots we considered a frequency
ν = ω/2π = 0.005(1/J). The same value for the critical amplitude was found in Ray
et al. (2018).

We stress that the very existence of a critical value of A as determined here is valid
only in the case of a modulation of the form considered in this work, which
corresponds to a modulation of the disorder strength. It is often stated in the literature
(see Abanin et al. (2016), Gopalakrishnan et al. (2016), Rehn et al. (2016)) that a
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FIGURE 2.7: Imbalance as a function of amplitude and disorder strength, for ν =
0.005(1/J). There’s a clear line for A = λ− 2 separating the localised phase (yellow)

to the delocalised one (blue).

FIGURE 2.8: Inverse Participation Ratio of the Floquet eigenstates as a function of
amplitude and disorder strength, for ν = 0.005(1/J). The result is consistent with the
one in Fig. (2.7), confirming that the localisation properties of the model are due to the

localisation of the Floquet eigenstates
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modulation of arbitrarily small amplitude will always delocalise a many-body
localised quantum system provided that the driving frequency is small enough. This
statement however is not in contrast with our result as it refers to a driving of the form
A cos(ωt)∑i i c†

i ci.

2.4.3.3 Role of the interactions

Last, we want to briefly comment on the role of the interaction. In presence of the
interaction U, we expect to retain most of the qualitative results displayed, as
comparison with the many-body experiment seems to suggest. In particular, regarding
the frequency response of the system we expect the description in terms of the
spectrum to be still relevant, with the critical value ωc to be shifted to be equal to the
badwidth of the interacting model. According to Mastropietro (2016) the many-body
interaction will change the size of the infinite number of spectral gaps of the non
interacting spectrum, without closing any of them. This makes the interacting model
very similar to the non interacting one, except for the intermediate frequency regime
where the effect of the interaction in coupling the energy levels is crucial, possibly
explaining the less sharp peaks displayed in the experiment in Bordia et al. (2017).

2.5 Conclusions

Our work shows that the driven non interacting Aubry-André model qualitatively
reproduces many of the localisation phenomena which are found in the experiment
Bordia et al. (2017) such as the presence of a delocalised phase for low frequency, the
persistence of localisation for a high frequency driving, and the existence of a critical
value of driving amplitude for the onset of the localisation transition.

We were able to determine the critical values for the frequency and the amplitude of
the driving, and provide a physical explanation for their values. Further, we related
the phases of the model to the localisation of its Floquet eigenstates. This shows that
the localisation transition brought by the periodic driving is a time periodic analogue
of the well known Anderson localisation transition. Future theoretical studies should
focus on the role of interactions and the new qualitative aspects they bring.
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3

Effective interactions among heavy
fermions in presence of a light
impurity - the N+1 bound problem

3.1 Introduction: the N+1 bound problem

How many atoms N of a species A can be bound by a single atom of a different
species B?

In asking this question, we are assuming that the A atoms do not interact with each
other since then the physics would be dominated by the intraspecies (A-A)
interactions. We will rather consider that only the interspecies (A-B) interaction exists
which makes this question rather nontrivial.

Theoretical works on few-body systems have shown that a single atom can bind
together up to five noninteracting atoms of a different species Bazak and Petrov
(2017), thus realizing a pentamer or 4 + 1 bound cluster. While it is to a certain extent
expected that there should be a limit to the number of atoms that can be bound this
way, there is to our knowledge no simple argument that predicts its existence, even
within the constraints of a sufficiently idealised model. In this chapter we attempt at
tackling the question within such model. Similarly to the few body calculations that
predict the 2 + 1, 3 + 1 and 4 + 1 bound cluster we will assume zero-range interactions
that can be described by a scattering length a (see appendix A). However we will
approach the problem assuming a large number of atoms N. The result that we can
obtain in this way are limited by our assumptions but provide a way to explore the
problem within a simplified framework, avoiding the computational challenge of
solving the exact few-body problem for increasing N.
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Before we continue, we need to explain what it means for N type-A atoms to be bound
by 1 type-B atom – forming an N + 1 bound state. For a bound state of N + 1 atoms to
exist, its lowest energy state must obey

EN+1 < 0 (3.1)

But this is only one first condition. We also need it to be energetically stable against
fissioning into smaller parts. The requirement for that is that, for any way of
partitioning the bound state, the total energy of the parts must be larger than the
cluster’s energy. For example, if we consider the possibility of fissioning into two
parts N1 and N2 with N1 + N2 = N + 1 we must have :

EN+1 < EN1 + EN2 (3.2)

and so on also for all partitions into three and more subclusters.

For correctly calculated ground state energies it is always true that EN+1 ≤ EN1 + EN2

since the N Hilbert space contains the smaller N1 and N2 spaces. What is relevant here
is that we are restricting the search to states where all the atoms are located in the
bound state, i.e. do not go off to infinity. Within this constraint, it is no longer
necessarily true that EN+1 ≤ EN1 + EN2 . If in fact we find that EN+1 > EN1 + EN2 it
means physically that the N + 1 cluster can fission into N1 and N2 clusters. Of course
we are assuming here that the ground state energies are reliably calculated with our
scheme.

However in our case there is a great simplification: because we are taking the A atoms
to be non-interacting, the energy of the subcluster which does not contain the B atom
can be taken to be zero. This is because its energy is only kinetic in origin since there
are no A-A interactions and therefore, is non-negative. So in our case the criterion for
stability reduces to the following:

EN+1 < EN′+1, ∀N′ < N. (3.3)

In other words, the energy must be a monotonic decreasing function of N. We remark
however that this criterion is a sufficient condition to have a bound cluster and not a
necessary one.

3.1.1 Outline

In this chapter we employ the Born-Oppenheimer approximation and the zero range
approximation to analyse the N + 1 bound problem. We will make a number of
approximations in order to simplify the model. While this will limit the validity of our
results, it will help us to gain physical insight into the problem and obtain results
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within a simplified model. The strategy we will follow is to derive the energy of the
impurity in presence of the N heavy fermions and check whether the energy of the
N + 1 system satisfies the stability criterion of Eq. (3.3). In order to estimate the energy
of the impurity we will assume that it can be described as a polaron inside a
background of noninteracting atoms.

Before moving to the actual problem we will first introduce a result in bosonic systems
which shows that, for a model square well interaction potential, a single particle can
bind an infinite amount of Bosons. Then we will mention the main result for Fermions
which act as the starting point for this work.

The chapter is structured as follows. Secs. 3.2 and 3.3 introduce what we already know
about the problem in the bosonic and in the fermionic case respectively. In sec. 3.4 we
compute the binding energy and the kinetic energy of the impurity in the N + 1
problem via the Born Oppenheimer approximation. In sec. 3.5 we compute the energy
of the whole N + 1 system and tackle the question that motivates this chapter.

3.2 The bosonic case

It is clear that the statistics of the A atoms plays a crucial role: if they are Bosons we
can expect it is easier to bind them than if they are Fermions due to the Pauli repulsion.

Indeed, within a simple model of N type-A Bosons interacting with a single B atom
through a finite-range attractive square well potential, we can show rigorously that
the B atom can bind an arbitrarily large number of Bosons.

Suppose the A atoms do not interact among themselves and interact with the B atom
with a potential V(r) of depth V0 and range r0:

V(r) =

−V0 r ≤ r0

0 r > r0

Consider now a many-body wavefunction ψ defined as the product of single-particle
wavefunctions of the A atoms ψ(ri) and the wavefunction of the B atom, χ(rB):

Ψ (r1, ...rN , rB) = χ (rB)
N

∏
i=1

ψ (ri) , (3.4)

where ri is the position of the i-th A particle and rB is the position of the B atom. Let us
further suppose that the wavefunctions vanish outside a sphere of radius R < 2r0.
This implies that all the A atoms will feel the attractive potential −V0. Under this
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conditions the kinetic energy of the system is

Ek = KB + NKA , (3.5)

where KA is the kinetic energy of each A atom and KB is the kinetic energy of the B
atom. Crucially, both KA and KB do not depend on the depth of the potential V0. The
potential energy of the system is instead given by

Ub = −NV0 . (3.6)

The total energy of the system is thus negative when

V0 > KA +
KB

N
(3.7)

Fixing the depth V0 to satisfy Eq. (3.7) for N = 1 (i.e. V0 > KA + KB) we get that the
energy of the system is negative for any value of N and moreover it is a monotonically
decreasing function of N. This fact, thanks to the criterion in Eq. (3.3) is enough to
establish that a single atom B can bind an arbitrarily large number of Bosons, for a
given attractive potential V(r). Importantly, we can choose a value for V0 that does
not depend on N.

Experimentally, the question of the maximum bosonic cluster size is difficult to
investigate with real ultracold bosonic atoms due to the large number of bound states
in interatomic potentials, which can lead to rapid two-body loss when the interparticle
scattering length is larger than the average distance between A-A atoms.

3.3 The fermionic case

The situation is considerably more interesting in the case of fermions where the A-B
attractive interaction must compete with the Pauli repulsion. The simple trial
wavefunction chosen in the previous subsection does not satisfy the stability criterion
of Eq. (3.3) as the kinetic energy of the noninteracting A atoms scales as N5/3.
However, the N + 1 bound problem is motivated in this case by results in few-body
physics for mass imbalanced Fermionic systems. This is the kind of systems that we
will investigate in the remainder of the chapter.

In the context of few-body Fermions a system that has drawn theoretical interest is
that of two heavy fermions (of mass M) interacting with a light one (of mass m) with a
short range, nearly resonant potential. Kartavtsev and Malykh have shown that when
the ratio between the masses r = M/m satisfies the condition 8.172 < r < 13.607 there
exist a bound trimer, i.e. a cluster formed by two A particles of mass M and one B
particle of mass m Kartavtsev and Malykh (2007). In this case the competition between
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FIGURE 3.1: Schematic representation of the current results on few-body clusters.
From small to higher mass ratios r the 2+1, 3+1, 4+1 bound universal clusters and

the 4+1, 3+1, 2+1 Efimov states. Axis not to scale.

the interaction induced by the light B particle and the centrifugal barrier produce an
effective potential with a local minimum which admits bound states that are stable
against fissioning into subclusters. Other works have extended this result to bigger
clusters. For 9.5 . r < 13.384 a tetramer was found numerically by Doerte Blume in
Blume (2012), which is the 4-body analogue of the trimers found in Kartavtsev and
Malykh (2007). Bazak and Petrov Bazak and Petrov (2017) have recently proven the
existence of a pentamer when the critical mass ratio satisfies 9.672 < r < 13.279
respectively. These clusters are called in the literature universal clusters Naidon and
Endo (2017) as they are completely described by a zero-range model of the
interactions, thus their binding energy depends only on the scattering length and not
on other details of the underlying potential.

For mass ratios bigger than the upper limits mentioned above, called critical mass ratios
(13.28, 13.38 and 13.279) the zero-range model would predict an unphysical collapse of
the few-body clusters (the fall to the center problem, see e.g. Landau and Lifshitz (1958))
and an infinitely negative energy at vanishing distances. The unphysical fall to the
center is cured by taking into account an effective three-body interaction, which
supports an infinity number of bound states, called Efimov states. Thus, the upper
limits on the mass ratios for the existence of the universal clusters signal the presence
of Efimov states. The situation is schematically summarized in Fig. (3.1).

The goal of this chapter is thus to consider what is a generalization of the few body
problem, where a system of N heavy fermions of mass M interacts with a single light
fermion of mass m, and see if we can provide an argument for the presence (or
absence) of a N + 1-body cluster. This question is justified in the first place by the
results obtained in the few-body cases mentioned in the previous paragraphs, which
are exact but limited to a small number of atoms. We are instead interested in the case
of a large number of atoms where exact (numerical or analytical) computations are
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unfeasible. We will disregard for the purpose of our analysis the existence of Efimov
states, by considering mass ratios higher than the critical ones. This is because we are
interested in testing the validity of our model in describing the basic physics behind
the existence or absence of stable clusters. We stress that approaching the problem
from the large N limit cannot provide a quantitatively accurate limit on the number of
particles that can be bound but it allows to tackle the question of whether this limit
exists.

3.4 Chemical potential and kinetic energy of the impurity in
the Born-Oppenheimer approximation

We want to obtain an estimate of the binding and kinetic energies of a light impurity
interacting with N heavy fermions. In order to do so we employ the Born
Oppenheimer approximation which consists in finding the binding energy of the light
impurity treating the positions of the heavy fermions as fixed. The latter appear thus
as parameters in the Schrödinger equation of the impurity, representing fixed
scatterers with which the impurity interacts. This procedure is justified by the large
difference in mass between the two species, which allows us to think of the state of the
light fermions as adiabatically adjusting to the (small) variation in positions of the
heavy fermions.

We mention that through the Born-Oppenheimer approximation one can provide very
good estimates of the critical mass ratio for the Efimov trimer and for the Universal
trimers, as can be seen in Petrov (2013). Both phenomena are understood as a
competition between the centrifugal repulsion and the exchange attraction induced by
the impurity. Namely the universal trimer is formed when the total
Born-Oppenheimer potential is repulsive both at short distances and long distances
but has a minimum in between, while the Efimov effect occurs for nearly resonant
interactions and larger mass ratios, when the attractive interaction (∝ 1

r2 ) completely
overcomes the centrifugal barrier, leading to the fall to the center problem.

We consider the scattering of the light atom with the heavy ones in the zero range
approximation, which is detailed in the appendix A. Here we quickly mention its most
basic formulas in the case of the scattering of N = 1 (one heavy particle plus the
impurity) in order to build an analogy for the general N + 1 case.

The Bethe-Peierls boundary conditions for a particle interacting with a potential
described by a scattering length a read (see appendix A, Eq.(A.9)):

lim
r→0

ψ(r) ∝
1
r
− 1

a
, (3.8)
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where r is the relative position of the two scattering particles. We remind that this
boundary condition replaces the interaction potential in the Schrödinger equation of
the relative wavefunction. In the Born-Oppenheimer approximation the heavy atoms
act as fixed scatterers, so the relative wavefunction ψ(r) is just the wavefunction of the
light atom.

The Schrödinger equation for the light impurity reads:

∇2
r ψR(r) = −

h̄2κ2 (R)

2m
ψR(r) , (3.9)

with R the position of the heavy atom and the wavefunction ψR(r) satisfying the
Bethe Peierls boundary condition, Eq. (3.8). The solution to the above Schrödinger
equation is given by:

ψR(r) = C
exp (−κ(R)|r− R|)

|r− R| , (3.10)

with κ(R) that must be chosen to satisfy Eq. (3.8) and C is a normalization constant.
Analogously, in presence of N fixed scatterers (the heavy atoms) positioned at Ri we
can write the wavefunction of the impurity as:

ψ{Ri}(r) =
N

∑
i=1

Ci
exp (−κ(Ri)|r− Ri|)

|r− Ri|
. (3.11)

We will drop in what follows the subscript {Ri}. We can now impose the boundary
conditions forced upon this wavefunction by the Bethe-Peierls boundary condition,
namely that, for r→ Rj,

ψ(r) ∝
1

|r− Rj|
− 1

a
(3.12)

Expanding in powers of r− Rj the wavefunction in Eq. (3.11) we obtain the following
matrix equation:

Cj(κ −
1
a
) =

N

∑
i 6=j

Ci
exp (−κ|Ri − Rj|)
|Ri − Rj|

(3.13)

Equation (3.13) is quite general and relies only on the assumptions underlying the
Born-Oppenheimer approximation (namely that M� m) and the existence of a well
defined zero-range approximation that allows, at low energies, to describe the short
range interaction potential between the particles by means of the s-wave scattering
length a.

In the case of N sufficiently big we take the continuum approximation of Eq. (3.13). In
order to do so, we first of all define the density for the heavy fermions as:

ρ(r) = ∑
i

δ(r− Ri) (3.14)
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Inserting this into Eq. (3.13) we obtain the following integral equation:

C(r)(κ − 1
a
) =

∫
d3r′C(r′)

exp(−κ|r− r′|)
|r− r′| ρ(r′) (3.15)

The natural way to take the continuum approximation consists in considering ρ(r) as
a smooth function of the coordinate r and not as a sum of Dirac deltas centered at each
fermions’ position Rj.

We can recast the integral equation obtained in Eq. (3.15) into a differential equation
by applying the operator L̂ = ∇2 − k2 on both sides, yielding:

(∇2 − κ2)C(r) = 4π
C(r)ρ(r)

1
a
− κ

(3.16)

Where we used the fact that:

L̂
(

exp (−κ|r|)
|r|

)
= (∇2 − κ2)

(
exp (−κ|r|)
|r|

)
= −4πδ(r) (3.17)

We can now find the groundstate energy in the case where ρ does not depend on
position. We further assume that the wavefunction C(r) and ρ(r) are constant in the
ground state and we are led to the equation

κ2(κ − 1/a) = 4πρ. (3.18)

Solving this equation for κ we can find the chemical potential of the impurity, which is
defined as:

µimp ≡ −
h̄2κ2

2m
. (3.19)

From Eq. (3.18) we get the following equation for η = |µimp|/EF

1
kFa

=

√
η

r
− 2

3π

r
η

, (3.20)

where r = M/m is the ratio between the masses of the heavy fermions and the light
atoms. This equation is the same as Eq. (9) from Combescot et al. (2007) in the limit of
large M/m, i.e. the energy of a Fermi polaron. The binding energy or chemical
potential of the impurity can be regarded, in the spirit of the Born-Oppenheimer
approximation, as an effective interaction between the heavy atoms.

In order to find the effective mass of the impurity we imagine to impart a small
momentum q to it, which amounts to choosing in Eq. (3.16) a plane wave solution for
C(r), namely:

C′(r) = C e−iq·r , (3.21)
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where q must satisfy q2 � κ2. The energy upon this small boost is then shifted from
µimp to some µ′imp depending on q, which satisfies:

µ′imp(q) = µimp +
h̄2q2

2m∗
, (3.22)

where m∗ is the effective mass. Then the effective mass reads:

m∗ = m lim
q→0

[(
κ2(q = 0)− κ2(q)

)−1
q2
]

(3.23)

which yields:

m∗ =
3
2

m

1−
( 4π

9

)1/3 1
kFa

1−
( 3π

2

)1/3 1
kFa

 . (3.24)

In Fig. (3.2) we plot the inverse of the effective mass as a function of 1/k f a. The
effective mass becomes negative for 1/kFa = (2/3π)1/3 which indicates an instability.
This is due to the formation of a dimer composed of the light impurity and one of the
heavy atoms.
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FIGURE 3.2: Inverse effective mass m/m∗ as a function of 1/kFa. At 1/kFa =

(2/3π)1/3 ≈ 0.6 the effective mass becomes negative, indicating an instability cor-
responding to the polaron-dimer threshold.
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3.5 Energetic analysis of the N+1 bound problem

3.5.1 Local density approach

To investigate the problem of whether there exists a bound state for arbitrarily large
N, we would need to exactly solve the many-body problem in the large N limit.
However, as we have mentioned in section 3.3, the computations of the exact energies
are already challengin for few-body atoms, and have been obtained so far only up to
N = 5. To overcome this we will make some assumptions about the energy functional
in the large N limit and we will then work out their consequences in this chapter.
These assumptions are based on a key idea, which we are putting to test: in the case of
large N bound states, the impurity behaves as a polaron inside the cluster, in the sense that its
energy is given by a similar formula as in the usual extended gas case. Moreover, rather than
obtaining a quantitatively accurate estimate of the energy of the cluster, we are
interested in deriving its scaling behaviour with respect to the parameters of the
system, i.e. the interparticle distance (or equivalently the Fermi wavevector kF) and
the number of particles.

So we assume that the energy of the N + 1 system can be written in the following form:

E =
3
5

N
h̄2k2

F
2M

+
∫

V
dr3

(
h̄2

2m∗
|∇Ψ|2 + µimp|Ψ(r)|2

)
, (3.25)

where the integration is carried out over the volume V of the purported cluster, which
we assume to be a cubic box with linear size L, while kF is the wavevector of the heavy
Fermi atoms kF = (6π2N/V)1/3. The first term is the energy of the noninteracting
Fermions which are assumed to be homogeneously distributed inside the box, Ψ(r) is
the wave function of the impurity and µimp is its chemical potential. In the usual case
the wavefunction of a polaron is a plane wave. Here it is a localised wave packet
centred around the cluster of N particles.

The scaling of the momentum of the impurity pΨ = −ih̄∇Ψ with respect to the linear
size L can be estimated from the Heisenberg uncertainty principle to be:

p2 =
3h̄2

4L2 = 3h̄2
( π

6N

)2/3
(

kF

2π

)2

, (3.26)

where we expressed the result in terms of the Fermi wavevector, proportional to the
inverse of the interparticle distance ≈ (V/N)1/3.

Carrying out the integration in Eq. (3.25) we obtain:

E =
3
5

N
h̄2k2

F
2M

+
3h̄2

2m∗
( π

6N

)2/3
(

kF

2π

)2

+ µimp . (3.27)
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The chemical potential of the impurity in Eq. (3.27) is the solution to Eq. (3.20) and the
effective mass is given by Eq. (3.24). It is important to notice that both the chemical
potential and the effective mass do not depend on the mass ratio r and the number of
particles N.

Eq. (3.27) is based on three assumptions: that the N fermions are heavy compared to
the single impurity, i.e. M/m� 1; that we are dealing with a system of many
particles, i.e. N � 1 and that the polaron description valid for homogeneous systems
can be used to describe the bound cluster.

Before looking for possible bound states it is worthwhile to comment on how the
terms in Eq. (3.27) contribute to the energy of the system. A bound state can be formed
when the effective attraction coming from the chemical potential of the impurity
overcomes both the kinetic energy of the heavy fermions and of the impurity at long
distances. Conversely, the kinetic energies must overcome the chemical potential to
provide a barrier at short distances, in order to prevent an infinitely negative energy.
From Eq. (3.27) it is clear that increasing the mass ratio will favour the negative
contribution from the chemical potential, while increasing the number of particles
at fixed density (ρ ∝ k1/3

F ) will favour the positive contribution from the kinetic
energies.

In the particular limit a→ ∞, when the scattering length is bigger than any other
length scale in the system, Eq. (3.27) contains only terms that are quadratic in kF. In
this case there are only two possible outcomes, the total energy is either:

• always positive, when the number of particles makes the kinetic energy of the
fermions bigger than the binding energy, causing the cluster to be unbound.

• negative and unbounded from below for vanishing interparticle distance, when
a big mass ratio makes the kinetic energy of the fermions smaller than the
binding energy. A negative infinite energy signals a fall to the center problem
and possibly the presence of Efimov states.

For the stability of the system against fission into smaller clusters (see Eq. (3.3)) the
dependence on the number of particles N is the crucial point. The number of particles
appears in two terms: the kinetic energy of the heavy fermions and the kinetic energy
of the impurity. For fixed mass ratio r = M/m and density the kinetic energy of the
heavy fermions increases linearly in N, as each of the non-interacting fermions has a
kinetic energy which does not depend on N. On the contrary, the kinetic energy of the
impurity is a decreasing function of N, as increasing N at fixed density will increase
the available volume for the impurity, lowering its kinetic energy.

All the considerations made above qualitatively agree with the results on few-body
clusters that we outlined in section 3.3. We will now divide our search into two
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directions which is the positive scattering length and the negative scattering length
case.

3.5.2 Positive scattering length near unitarity
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FIGURE 3.3: Energy (thick line) of the N+1 system as a function of 1/kFa, for mass
ratio r = 23 and N = 15, in the unitary limit. The dashed line is the contribution from
the kinetic energy of the heavy fermions, the dash-dotted line is the kinetic energy of

the light fermion and the dotted line is the chemical potential of the light fermion.

The presence of the instability due to the polaron-dimer treshold illustrated in Fig.
(3.2) constrains our search to the range 1/kFa < 0.6. For this reason, it is worthwhile to
consider here the case where the scattering length is positive and the interactions are
close to the unitary limit, i.e. 1/kFa� 1.

To first order in the small parameter 1/kFa, the chemical potential reads:

µimp

EF
≈ −

((
2

3π

)2/3

+
2
3

(
2

3π

)1/3 1
kFa

)
r , (3.28)

where EF = (6π2ρ)2/3h̄2/2M is the Fermi energy of the medium and r = M/m is the
ratio between the masses. Note that in the equal mass case, µimp ' −0.6EF. This does
not invalidate Eq. (3.28) since that equation is derived for large mass rations r.

The effective mass near unitarity reads:

m∗ =
3
2

m
(

1 +
( π

18

)1/3 1
kFa

+ ...
)
' 3

2
m
(

1 +
0.559
kFa

)
. (3.29)
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Plugging this results into Eq. (3.25) we obtain the expression for the energy of the
system near unitarity, to first order in 1/kFa:

E =
3
5

N
h̄2k2

F
2M

+
h̄2

m

( π

6N

)2/3
(

1− d
kFa

)(
kF

2π

)2

−
(

b +
c

kFa

)
h̄2k2

F
2m

, (3.30)

where b = 0.356, c = 0.398 and d = 0.559. This expression, compared with Eq. (3.27)
requires the additional assumption that 1/kFa� 1

We will look for minima with respect to kF by imposing that:

∂E
∂kF

= 0 (3.31)

∂2E
∂k2

F
> 0 (3.32)

Moreover we have to make sure that the condition for stability against fissioning,
Eq. (3.3), is satisfied at the minimum in kF. The condition in Eq. (3.32) is verified when
the following condition is met:

3
5

Nr−1 +
1

2π2

( π

6N

)2/3
> b (3.33)

We differentiate with respect to kF and find that the minimum is given by:

1
kFa

=
2
(

3
5 Nr−1 + 2

(2π)2 (
π

6N )2/3 − b
)

(
2d

(2π)2 (
π

6N )2/3 + c
) (3.34)

where r = M/m.

The energy at the minimum reads:

Emin = −
d

2π2

( π

6N

)2/3
+ c

4
(

3N
5r

+
( π

6N

)2/3 1
2π2 − b

) . (3.35)

The energy at the minimum is displayed in Fig. (3.4). The plot in Fig. (3.4) shows that
for N > 6 the energy of the cluster is an increasing function of N, suggesting that any
N + 1 cluster beyond N = 6 is unstable and will fission into smaller parts. Thus, our
model predicts that there is a limit to the number of atoms that can be bound.

For N < 6 our model produces an unphysical infinitely negative energy, which is in
general an artifact of the zero-range approximation. Moreover, the region for small N
is outside the range of validity of our model. A more detailed study which takes into
account a proper model potential could reproduce the results that are available from
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FIGURE 3.4: Energy at the minimum for positive scattering length a as a function of
the number of particles N, with mass ratio r = 10. In the region before the dashed line

the energy has no minimum and goes to negative infinity.

few-body calculations, predicting the existence of stable clusters up to N = 5 Bazak
and Petrov (2017).
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3.5.3 Negative scattering length

An interaction potential with negative scattering length cannot accommodate any
bound dimer in 3 dimension. Moreover, while for Bosons it has been shown that there
exist N-body bound states up to N = 6 for negative scattering lenght Naidon and
Endo (2017), for fermions no such result has been found. Indeed, applying the
Born-Oppenheimer approximation to the case of N = 2 (two heavy fermions and one
light atom) one can show that there is no three body bound state for negative
scattering length. Nevertheless, there is not to our knowledge any particular physical
argument to rule out the existence of bound states for N > 3. Petrov (2021).

We show the energy of the N + 1 system as a function of 1/kFa for r = 10 and N = 12
to N = 15 in Fig. (3.5). Note that the minima occur for interparticle distances
l = (6π2)1/3/kF that are approximately one order of magnitude greater than the
scattering length and energies that are two order of magnitude smaller than the
energy of a dimer Edimer ≈ h̄2/2ma2. This means that the hypothetical clusters would
be very large clouds of atoms held together by a weak interaction.

As displayed in Fig. (3.5) the minimum in energy becomes more shallow for higher
number of particles. This is true down until N ≈ 1 where the energy of the bound
state reaches its minimum. We show this in Fig. (3.6), where we plot the minimum
value of the energy as a function of the number of particles for r = 10. This result
would indicate that there is a stable cluster at some value of N ≈ 1 and that any other
cluster with higher number of particles would be unstable. However, our
approximation can be reliable only for a large number of particles.
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FIGURE 3.5: Energy of the N+1 system for negative scattering length as a function of
1/kF|a|, for r = 10. The number of particles for each curve is N = 20 (dashed), N = 21

(dashed dotted), N = 22 (dotted) and N = 23 (thick).
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FIGURE 3.6: Energy at the minimum for negative scattering length a as a function of
the number of particles N, for r = 10.

3.6 Conclusions

In this chapter we addressed a general question, that is whether the exchange of a
light atom can bind together a large system of N heavy atoms. We exploited the
difference in mass between the two species by making use of the Born-Oppenheimer
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approximation and obtained the scaling of the binding energy in various regimes of
scattering length.

The model we obtained, although based on a set of simplifying assumptions, predicts
an interplay between the number of particles, the mass ratio and the scattering length
that is compatible with currently known theoretical results obtained from more
sophisticated few-body calculations.

Our results seem to indicate that there is no stable cluster for big N, as the N − 1
cluster has systematically a lower energy than the former. This would imply that at
some value of N a bound cluster, if existing at all, would have qualitatively different
features from the ones that were found up to now.
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4

Linear response study of the
collisionless drag

The work contained in this chapter lead to the publication of the paper Romito et al.
(2021).

4.1 Introduction

The superfluid drag was predicted by Andreev and Bashkin Andreev and Bashkin
(1975) in 1975 for a two component superfluid mixture, correcting previous works by
Khalatnikov Khalatnikov (1957). The effect predicts that, when two superfluid species
in a mixture are interacting, superflow in one component will induce a superfluid
current in the other one. In other words the superfluid currents of each component in
a mixture depend on both superfluid velocities Andreev and Bashkin (1975). The
intuitive idea behind the Andreev-Bashkin effect is that whenever a species A in the
superfluid mixture is imparted a superfluid velocity the intraspecies interactions
generate s quasiparticles which transport both the mass of the first species A and part
of the mass of the species B. This effectively induces a mass current of the second
species.

The Andreev-Bashkin drag should not be thought of in analogy with the drag between
two classical fluids, which typically would be caused by microscopic collisions among
individual particles. Indeed, in a superfluid the description in terms of individual
particles loses all meaning and the Andreev-Bashkin effect requires no collisions to
take place. Rather, it is a distinctly quantum mechanical effect where excited states
have a mixed nature to which both species in the superfluid mixture contribute.

Although the Andreev-Bashkin effect was first predicted in the context of 3He-4He
mixtures, a mixture of these two components where both are in the superfluid state



44 Chapter 4. Linear response study of the collisionless drag

cannot be achieved experimentally, due to their low miscibility. The Andreev-Bashkin
effect has also been discussed in the hydrodynamics of neutron star cores (see
Lattimer and Prakash (2004) for a review), which are believed to be made of a mixture
of superfluid neutrons and protons. Cold atomic mixtures have also been proposed as
a promising environment Fil and Shevchenko (2005); Linder and Sudbø (2009);
Nespolo et al. (2017); Parisi et al. (2018); Karle et al. (2019); Sellin and Babaev (2018)
where the effect could be observed, as they provide a more accessible platform
compared to neutron stars. Nevertheless, an experimental observation of the drag is
still missing, as the typical ultracold atoms mixtures are weakly interacting, which
limits the size of the drag.

The main aim of this chapter is to describe how the drag effect arises from the general
microscopic many-body theory of two interacting quantum fluids as well as its effect
on their dynamics.

4.1.1 Outline

We will relate the superfluid drag density to the current-current response functions
and distinguish between their transverse and longitudinal long wavelength limits. It
is important to notice that this approach is not limited to weakly interacting gases but
is applicable to any quantum mixture. The linear response formalism requires only
that the motion that is induced on the fluid is small enough to be treated as a
perturbation. Therefore the formalism presented in this chapter can be employed to
predict the magnitude of the drag effect in a variety of systems such as Bose-Bose
superfluid mixtures on a lattice, Bose-Fermi superfluid mixtures and Fermi-Fermi
superfluid mixtures.

We also connect the linear response result with the formalism of sum rules, which is
an established tool to study the elementary and collective excitations of (trapped)
quantum gases (see Pitaevskii and Stringari (2016)). We show how the presence of the
drag results in a correction to the energy weighted sum rule.

Then, we specialize to the case of a weakly interacting Bose mixture with Z2

symmetry. The weakly interacting Bose mixture serves as a testing ground for the
formalism of the previous sections and we will derive the beyond mean field
frequency shifts of elementary spin excitations, namely the spin speed of sound and
the spin dipole mode in a trapped gas.

Finally we study the linear response at short times to a perturbation that is quickly
switched on, showing that it can be used to measure the drag effect in experiments.
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While we will mostly focus on homogeneous systems, our formalism applies to
discrete space Hamiltonians alike, with just some small modifications as explained in
Appendix C.

The structure of the chapter is as follows. In sec. 4.3 we provide the microscopic
definition of the drag within linear response theory and rigorously derive its
correction to the energy weighted sum rule. The results in these two sections are
generic to superfluid mixtures and can in principle by applied for any interaction.

In sec. 4.4 we specialize to a Z2 symmetric Bose-Bose mixture in the weakly interacting
limit. We recover the known value Fil and Shevchenko (2005) of the superfluid drag in
sec. 4.4.1 and calculate its effect on the spin speed of sound and on the spin dipole
frequency in subsecs. 4.5.1 and 4.5.2, respectively. In sec. 4.6 we devise an efficient
way to measure the drag by studying the short-time response to a quick perturbation.

Appendix D includes results for thermodynamic quantities such as the susceptibility
and the chemical potential for a weakly interacting mixture. These results are used in
subsecs. 4.5.1 and 4.5.2. Appendix C is devoted to generalizing the results for
Bose-Hubbard Hamiltonians, which will be of great use in chapter 5.

Throughout the rest of this thesis we will use the more generic term “collisionless
drag” interchangeably with “Andreev-Bashkin drag”.

4.2 The Andreev-Bashkin effect: three fluid hydrodynamics

In 1957 Khalatnikov Khalatnikov (1957), inspired by the Landau two fluid model
Landau (1941) used in single component superfluidity, described a mixture of two
components in terms of a three fluid model, i.e. the normal fluid and the two
superfluids. The resulting equation predict that the superfluid currents of the two
species are uncoupled from each other. Later, in 1975, Andreev and Bashkin Andreev
and Bashkin (1975) pointed out that the two superfluid motions must be coupled, and
introduced such coupling in the three-fluid model. The intuition of Andreev and
Bashkin is based on the example of a single 3He atom surrounded by 4He, not
necessarily in the superfluid state. In this case the 3He atom becomes a quasiparticle (a
polaron) whose mass is renormalized to account for the transport of a portion of the
mass of the surrounding 4He Bardeen et al. (1967). In their paper, they prove that this
picture is unchanged at the onset of superfluidity and should be valid when the
number of 3He atoms is comparable with that of 4He. The Andreev-Bashkin drag is
thus collisionless: it results from the mixed nature of quasiparticles of one component,
which are renormalized by the interaction with the other component. Thus the flows
of the two speices are coupled without any dissipation of energy. This peculiarity is
what makes the drag non vanishing even at zero temperature.
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For the case of a homogeneous system in the hydrodynamic limit, to describe the
relation between the mass current densities mαjα of each component α = A, B and the
velocities, they introduced the matrix of the superfluid densities ραβ defined such that:

mAjA = ρnAvn+ ρAAv(s)
A + ρABv(s)

B ,

mBjB = ρnBvn+ ρBBv(s)
B + ρBAv(s)

A . (4.1)

In Eq. (4.1) mα are the bare masses of the constituent atoms of component α, nα the
number densities and v(s)

α are the superfluid velocities defined as v(s)
α = h̄/mα∇ϕ(r, t),

with ϕ(r, t) the condensate phase. In the hydrodynamic regime, it is assumed that
both the A and B normal components are in local thermal equilibrium due to their
mutual collisions, implying that there is only one normal component ρn = ρnA + ρnB

moving with velocity vn. Eq. (4.1) describes the fact that the superflow of one
component takes part in the mass current density of the other. The off-diagonal terms
of the matrix represent the drag that one component forces upon the other. The matrix
ραβ is symmetric Andreev and Bashkin (1975) – as will be also clear from the linear
response formalism, so that ρAB = ρBA. Moreover, the superfluid densities satisfy the
inequality:

ρ2
AB < ρAA ρBB . (4.2)

Eq. (4.2) comes from the requirement that the matrix of superfluid densities is positive
definite, hence its determinant is strictly positive.

It is worthwhile to comment on the physical meaning of the upper bound on the drag
given by Eq. (4.2), i.e. ρ2

AB = ρAA ρBB. In order to make the discussion more clear we
will focus on the case of a symmetric mixture, where ρAA = ρAB, but the following
considerations generally apply to any superfluid mixture. For a symmetric mixture
the upper bound reduces to ρAB = ±ρAA, where the plus and minus sign correspond
to two distinct phases of the superfluid mixture (see e.g. Kuklov and Svistunov (2003);
Kuklov et al. (2004); Sellin and Babaev (2018)). One phase, for ρAA = ρAB corresponds
to paired superfluidity, where the two species undergo a pairing transition and
consequently the flow in one component induces an equal flow in the other
component. We will investigate this phase in relation to the drag coefficient in chapter
5, particularly in Sec. (5.2.4). The other phase, for ρAA = −ρAB, is the counterflow
superfluid one, where the superflows are equal in value but they have opposite
directions. In both cases the Andreev-Bashkin drag loses its meaning as the system
becomes a superfluid of pairs, rather than a mixture of two coupled superfluids.

For a homogeneous system, galilean invariance Andreev and Bashkin (1975) requires
that:

ρnα = mαnα − ραα − ρAB . (4.3)
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So that at zero temperature where the normal component vanishes Leggett (1998), the
sum of all the superfluid densities is the total mass density of the system ρ, namely:

ρ ≡ mAnA + mBnB = ρAA + ρBB + 2ρAB . (4.4)

This relation is modified in presence of a lattice which breaks translational invariance,
as shown in Appendix C.

4.3 Microscopic description of the collisionless drag from
linear response theory

In this section the three-fluid hydrodynamics of Eq. (4.1) is connected to the
microscopic theory by means of linear response. Linear response theory allows to
relate the superfluid and normal densities of the Landau two-fluid model with
current-current response functions, as it is well described in the case of a single
component (see, e.g., Baym (1968); Nozieres and Pines (1999); Pitaevskii and Stringari
(2016)). In sec. 4.3.1 we generalize this concept to the case of a two component
superfluid mixture, without referring to any specific microscopic model. We shall
closely follow the formalism of Refs. Baym (1968); Nozieres and Pines (1999);
Pitaevskii and Stringari (2016)). The basic idea is to start with the fluid in equilibrium
and then to subject it to a weak transverse field whose intensity increases adiabatically
from zero. We then can identify the current density that is imparted by the field,
proportionally to the relevant superfluid density. We will show that this is formally
the same as calculating the current density average with a perturbed Hamiltonian
where the perturbation depends on the field. This can then be expressed in terms of a
current-current response function. Finally, using Eq. (4.1), we express the current
density in terms of the ραβ and ρn, thereby relating the latter to the transverse current
response function in the long wave length limit. Although we will derive the general
linear response expressions for the densities of the three-fluid model, we will mostly
restrict to the zero temperature case to make the distinction with the single component
case more apparent.

Aside from giving an intuitive account of the effect and making a clear connection to
the existing literature on superfluidity, this approach could prove useful to make
predictions on the value of the collisionless drag in various systems, thus identifying
those which are the best candidates to display it in a significant way. Another strength
of this formalism is that response functions can be generally computed making use of
diagrammatic theory and numerical techniques.

In the second part of this section – sec. 4.3.2 – we will predict the effect of the drag on
sum rules of the structure factor. Sum rules provide an established method to compute
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the frequencies of collective oscillations for various physical systems (Pitaevskii and
Stringari (2016) and references therein). We will show that the Andreev-Bashkin drag
is proportional to the multiparticle contribution to the first moment spin structure
factor. This results in a correction to the frequency of collective oscillations that could
be measured in experiments to detect the drag.

4.3.1 Superfluid densities as current-current response functions

We take the approach described in Baym (1968) and generalize it to a two component
superfluid mixture. The system considered here is described by an Hamiltonian in the
form Ĥ = K̂ + Û where the kinetic term is

K̂ = ∑
α=A,B

∫ ( h̄2

2mα
∇Ψ̂†

α∇Ψ̂α

)
dr (4.5)

and the interaction reads

Ûαβ =
1
2∑

α,β

∫
dr dr′Ψ̂†

α(r)Ψ̂
†
β(r
′)Uαβ(r− r′)Ψ̂β(r′)Ψ̂α(r) , (4.6)

with Uαβ the two-body intra- and interspecies potential and Ψ̂α(r) and Ψ̂†
α(r) quantum

annihilation and creation fields of each species at position r. In order to define the
superfluid densities microscopically, we will express the currents of Eq. (4.1) as
averages of the corresponding quantum operator:

ĵα(r) =
h̄

2mαi

(
Ψ̂†

α(r)∇Ψ̂α(r)− H.c.
)

, (4.7)

namely we will ensure that
〈
ĵα(r)

〉
= jα.

To study the linear response of the system we consider the situation in which the
superfluid is subject to a static transverse probe, described by a magnetic vector
potential A(r). In the case of neutral cold atoms the magnetic vector potential probe
can be generated by an artificial gauge field, which can be obtained in various ways,
such as rotating the mixture or coupling the energy states of the atoms with a laser
Dalibard et al. (2011). We study the problem in the London gauge London (1948)
where the magnetic potential satisfies the condition:

q ·A(q) = 0 , (4.8)

where A(q) is the Fourier transform of A(r). In presence of this field the superfluid
velocities v(s)

α read:

v(s)
α (r) =

1
2mα

(∇ϕα − 2eαA(r)) . (4.9)
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In the case of a charged superconductor eα is the electrical charge, while for a neutral
superfluid it can be simply thought of as a constant that quantifies the coupling of the
artificial gauge field with the species α. In the ground state the condensate phase is a
constant, thus ∇ϕα = 0.

The hydrodynamic equations in Eq. (4.1) for the current densities of the two species
read:

mαjα(r) = −
(

ραα
eα

mα
+ ραβ

eβ

mβ

)
A(r) . (4.10)

Eq. (4.10) is the London equation for a two component superfluid London (1948).

We will now compare this equation with the current response to a probe A(r) in order
to identify the superfluid densities. In presence of a transverse probe the current
density operators transform in the following way:

ĵα(r)→ ĵα(r)−
eα

mα
n̂α(r)A(r) , (4.11)

where n̂α(r) = Ψ̂†
α(r)Ψ̂α(r) is the density operator at position r. The Hamiltonian gets

transformed to:

Ĥ → Ĥ − ∑
α=A,B

eα

mα

∫
dr ĵα(r) ·A(r)

+ ∑
α=A,B

e2
α

2mα

∫
dr n̂α(r)A2(r) .

(4.12)

Let us suppose, without loss of generality, that the vector potential A is along the x
direction. We obtain the average of the current density operator to first order in the
perturbation A(r):

〈
ĵx,α(r)

〉
= −nα(r)

eα

mα
A(r)

+ ∑
β=A,B

eβ

∫
dr′χjx,α,jx,β(r, r′)A(r) ,

(4.13)

where χjx,α,jx,β(r, r′) are the static current-current response functions.

For a homogeneous system of volume V and number of atoms N we have that
nα(r) = nα = N/V and we can recast (4.13) in terms of the Fourier transform of the
current-current response function at T = 0 Pitaevskii and Stringari (2016):

χjx,α,jx,β(q) =
1
V ∑

n 6=0

(
〈n|j†

x,α(q)|0〉 〈0|jx,β(q)|n〉
En − E0

−
〈n|jx,α(q)|0〉 〈0|j†

x,β(q)|n〉
E0 − En

)
, (4.14)

where |n〉 and En are respectively the eigenstates and eigenergies in absence of the
velocity perturbation, and n = 0 corresponds to the ground state. The operator ĵα(q)
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is the Fourier transform of the current density operator of Eq. (4.7):

ĵα(q) =
h̄

2mα
∑
k
(2k + q) â†

k,α âk+q,α , (4.15)

with âk,α = V−1/2
∫

dr eik·rΨ̂α(r). We point out that the current response function
defined in Eq. (4.14) is intensive.

Because of Eq. (4.8) the Fourier transform of Eq. (4.13) will give the transverse response
function Nozieres and Pines (1999). For an arbitrary direction of ĵα(q) we have the
following definitions for the transverse and longitudinal response functions:

χjα,jβ
(qT, qL = 0) ≡ χT

jα,jβ
(q) ,

χjα,jβ
(qT = 0, qL) ≡ χL

jα,jβ
(q) ,

(4.16)

where qT and qL are the components of q perpendicular and parallel to j respectively.
The linear response result for the current carried by each component reads:

〈
ĵα

〉
= −nα

eα

mα
A + ∑

β=A,B
eβχT

jα,jβ(q = 0)A , (4.17)

with A ≡ A(q = 0).

We can now match this result of linear response theory with the hydrodynamics
predicted by Eq. (4.10). Comparing Eq. (4.10) and Eq. (4.17) we get the desired results
for the superfluid densities in terms of linear response functions:

−mAmB lim
q→0

χT
jA,jB

(q) = ρAB , (4.18)

mαnα −m2
α lim

q→0
χT

jα,jα
(q) = ραα , (4.19)

∑
α,β=A,B

mαmβ lim
q→0

χT
jα,jβ

(q) = ρn . (4.20)

Where the last equation can be obtained from the other two by using the
normalization condition of Eq. (4.4). For a translational invariant system at zero
temperature ρn = 0, as the system is completely superfluid Leggett (1998).

Note that in a single component superfluid, the zero temperature transverse response
is zero, since the superfluid fraction is equal to the total mass density of the system.
Here, we can also consider the relative response of the current of B-atoms ĵB(r) to a
probe coupling with A-atoms ĵA(r) ·A(r) i.e. χT

jA,jB
which is nonzero even in the

groundstate as we see from (4.18). This effect has no analogy with the single
component case and results from the impossibility of uncoupling the motion of two
interacting components of a superfluid. In this sense the drag behaves as a sort of
normal component at zero temperature decreasing the value of the diagonal
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superfluid densities ραα and taking part in the transverse response. Nevertheless, as in
the case of a single species, the total response to a transverse field coupling to both
currents, χT

jA,jA
+ χT

jB,jB
+ 2χT

jA,jB
is zero.

The formalisation of Eqs. (4.18), (4.19), (4.20) is an important result of this chapter.
They provide the full microscopic expressions of the hydrodynamic coefficients to
linear order in the superfluid velocities. The only assumption required for their
validity is to deal with a homogeneous superfluid mixture with nonvanishing
interspecies interactions. In particular, Eq. (4.18) describes the drag as a mutual
correlation between currents in the two species.

In the case of a lattice described by a single-band Hubbard Hamiltonian Eqs. (4.18),
(4.19), (4.20) are slightly modified due to the lack of continuous translational
invariance. As we show in Appendix C, the number density n̂α has simply to be
replaced by the kinetic energy density K̂α.

4.3.2 Current response and sum rules

In a system where a single species is present the longitudinal current response
function in the static limit is proportional to the first moment of the structure factor
(see, e.g., Pitaevskii and Stringari (2016)), which in turn is proportional to the density
of particles. In what follows we will extend this notion to the case of a two component
system and relate it to the drag coefficient.

The structure factor at zero temperature for an operator F̂ is defined as:

SF(ω) = ∑
n
| 〈n|F̂|0〉 |2 δ(h̄ω− h̄ωn0) , (4.21)

where h̄ωn0 = En − E0. We will be concerned here with the cases in which the operator
F̂ is the density operator (with corresponding structure factor Sd)

ρ̂q = ∑
k

(
â†

k+q,A âk,A + â†
k+q,B âk,B

)
, (4.22)

or the spin operator (respectively Ss)

ŝq = ∑
k

(
â†

k+q,A âk,A − â†
k+q,B âk,B

)
. (4.23)

Excited states created by the density operator are said to belong to the density channel
and those created by the spin operator are said to belong to the spin channel. Fig. 4.1
shows a representation of the single particle excitations created by the density and
spin operator, where only one (spin or density) quasiparticle is excited. In general, the
density operator can create multiple quasiparticles or quasiholes in both species
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FIGURE 4.1: (Adapted from Shin et al. (2006)). Representation of the elementary, single
particle excitations created by the density and spin operator respectively, displayed as
“bumps” in the density of the two species. On the left, a density quasihole (composed
of a quasihole of species A and a species B). On the right a spin quasiparticle (com-
posed of a quasiparticle of species A and a quasihole of species B). The spin and den-
sity single particle excitations will propagate as phonons with corresponding speed of

sound.

(which correspond to density channel excitations), while the spin operator creates
multiple instances of a quasiparticles in one species and a quasiholes in the other one
(which correspond to spin channel excitations). We will see in this section the
distinction between single quasiparticle excitations and multiple quasiparticle
excitations is a crucial one.

Let us specialize here to the case where the two components have equal masses
mA = mB = m and densities nA = nB = n, the generalization being quite
straightforward. The density structure factor satisfies the f-sum rule (see, e.g.,
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Nozieres and Pines (1999), Vol. I, Chapter 4):

M1,d(q) =
1
V

∫ ∞

0
ωSd(q, ω) dω =

=
1

2Vh̄2 〈
[
ρ̂†

q,
[
Ĥ, ρ̂q

]]
〉 = n

m
q2 ,

(4.24)

where we defined M1,d(q) the first moment of the density structure factor. An
analogous result, the spin f-sum rule, is valid for the spin structure factor, namely:

M1,s(q) =
1
V

∫ ∞

0
ωSs(q, ω) dω =

=
1

2Vh̄2 〈
[
ŝ†

q,
[
Ĥ, ŝq

]]
〉 = n

m
q2 ,

(4.25)

where M1,s(q) is the first moment of the spin structure factor. The f-sum rule can be
interpreted as a constraint on the total “strength” of the response of a system to a
probe. It consists of a sum of all the transition probabilities from the ground state to
the excited states that can be coupled by the relevant operators (ŝ†

q, and ŝ†
q in this case)

weighted by the respective transition energies.

The first moment of the density (respectively spin) structure factor are related to
longitudinal density (respectively spin) current response functions Nozieres and Pines
(1999). Consider in fact the density (respectively spin) current jd(s)(q) = jA(q)± jB(q)
and its longitudinal response function:

χL
jd(s)jd(s)

(q) ≡ χL
jA,jA

(q) + χL
jB,jB

(q)± 2χL
jA,jB

(q) . (4.26)

Using the definition of the structure factor, Eq. (4.21), and the continuity equation we
obtain:

χL
jd(s)jd(s)

(q) =
2

Vq2 ∑
n

| 〈0|q · jd(s)(q)|n〉 |2
En − E0

=

=
2

Vq2

∫ ∞

0
ωSd(s)(q, ω)dω =

2
q2 M1,d(s)(q) .

(4.27)

In order to find an expression for the drag in terms of the first moment of the structure
factor we need now to relate the longitudinal response to the transverse response as it
is the latter which is proportional to ρAB by Eq. (4.18). To do so, it is necessary to
separate the contributions of single (quasi)particle and multi(quasi)particle excitations to
the response functions, as they allow to discriminate between the longitudinal and
transverse response.

At zero temperature the excited states that will contribute to the matrix elements of
the response functions in Eqs. (4.24), (4.25) and (4.27) should be divided in two
categories: single particle and multiparticle excitations Nozieres and Pines (1999). The
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former are obtained from the ground state by adding a single quasiparticle of
momentum q to the ground state, which will then propagate as a sound wave (a
phonon) of momentum q and energy ω = cq2, where c is the speed of sound. The latter
consist instead of several excited quasiparticles with total momentum q.

If we focus on the long wavelength limit, i.e. q→ 0, in a single component superfluid,
conservation of total current allows us to conclude that multiparticle excitations give
a negligible contribution to the first moment of the structure factor. In other words,
when computing the integral of the structure factor in Eq. (4.24), one needs to
compute only matrix elements with excited states that differ from the ground state for
a single excited quasiparticle, with well defined momentum q. All other contributions
will disappear when taking the limit q→ 0 Nozieres and Pines (1999). The single
particle excitations are then said to exhaust the sum rule, meaning that they are the
only excited states to take into account in order to reproduce it.

In two component superfluids the situation is different. While the same
considerations as in single species superfluids apply to the density channel of a two
species one, with density phonons exhausting the corresponding sum rule,
multiparticle states in the spin channel are not negligible even at long wavelengths.
This is a consequence of the fact that, unlike the total current jd(q), the spin current
js(q) is not conserved Leggett (1965).

Indeed, conservation laws define the long wavelength behaviour of the matrix
elements that appear in the f-sum rule (we refer here to the approach contained in
Nozieres and Pines (1999)). For the density current we have that

lim
q→0
〈0|jd(q)|n〉 = 0 , (4.28)

when |n〉 is a multiparticle excited state, since the total current is a good quantum
number. Using the continuity equation we obtain:

(ωn −ω0) 〈0|ρq(q)|n〉 = − 〈0|q · jd(q)|n〉 . (4.29)

Since the frequency ωn −ω0 will be constant at long wavelengths for multiparticle
excitations this allows to conclude that the matrix element 〈0|ρq|n〉 will tend to 0 at
least as fast as q2. A similar argument is not valid for the spin operator as the
corresponding spin current is not conserved, so Eq. (4.28) does not hold.

Further analysis of conservation laws allows us to completely identify the low q limit
of the contributions to M1,s coming from 〈0|ŝq|n〉 and (ωn −ω0) for long wavelengths.
These results are summarized in table 4.1 with the corresponding results for the
density operator.
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Single Particle Multiparticle
| 〈0|ρ̂q|n〉 |2 q q4

| 〈0|ŝq|n〉 |2 q q2

(ωn −ω0) q const.
M1,d q2 q4

M1,s q2 q2

TABLE 4.1: Contributions to the sum rule in the low q limit.

The table shows how, in the f-sum rule for the spin moment M1,s, single particle and
multiparticle excitations contribute at the same order in q. For the density moment
M1,d, as argued from the conservation of the density current, single particle excitations
are dominant and so they exhaust the sum rule in the long wavelength (q→ 0) limit.

Since the longitudinal current response is connected to the first moment by Eq. (4.27),
the result summarized in table 4.1 implies that longitudinal current response is
determined by single particle and multiparticle excitations in the spin channel, and by
single particle excitations only in the density channel. We will see in what follows that
the situation is different for the transverse response function.

The correlation functions χT
jα,jβ

(q) are determined in the low q limit by matrix
elements which connect multiparticle excited states only. Single particle excitations
cannot contribute to the transverse response because they have a defined axial
symmetry determined by their momentum q (see Nozieres and Pines (1999), Vol. II,
Chapter 4), and a transverse current cannot excite them. On the other hand,
multiparticle excitations do not possess any symmetry around the q axis and can
contribute to the transverse response χT

jα,jβ
(q). Thus, we can write:

lim
q→0

χT
jα,jβ

(q) = lim
q→0

χT
jα,jβ

(q)(m.p.) . (4.30)

With the superscript “m.p.” we indicate that the only contributions are matrix
elements connecting the ground state to multiparticle excited states.

A nonzero response of the superfluid to a transverse probe is thus strictly connected
with the presence of multiparticle excitations in the multicomponent system, while in
the case of a single component single particle excitations are the only low lying excited
states at zero temperature and cannot be excited by such a probe. This important
result will also be used in calculating the drag for a weakly interacting Bose mixture in
sec. 4.4.1. There, only matrix elements which connect excited states made of a density
and a spin phonon will appear in the transverse response.

The same reasoning does not apply to the longitudinal response where single particle
excitations have the same axial symmetry as the probe. Nevertheless we should
expect that the contribution of multiparticle excitations to the transverse and the
longitudinal response is the same as they do not have any axial symmetry that can
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discriminate between the two. We can write that:

lim
q→0

χT
jα,jβ

(q)(m.p.) = lim
q→0

χL
jα,jβ

(q)(m.p.) . (4.31)

Using Eqs. (4.31) and (4.18) we can now write ρAB in terms of the longitudinal
response:

ρAB

m2 = − lim
q→0

χT
jα,jβ

(q)(m.p.) = − lim
q→0

χL
jA,jB

(q)(m.p.). (4.32)

This equation allows the drag to be expressed directly from the multiparticle
contributions to the sum rule M1,s. Using Eqs. (4.26), (4.27) and (4.32) one has:

ρAB

m2 = 4
(

χL
jdjd

(q)(m.p.) − χL
jsjs

(q)(m.p.)
)

= lim
q→0

1
2q2 M(m.p.)

1,s (q) ,
(4.33)

where we used the fact that the density sum rule is exhausted by single particle
excitations in the low q limit, namely:

lim
q→0

2
q2 M(m.p.)

1,d (q) = 0 . (4.34)

Finally making use of the last equality in Eq. (4.25):

M(s.p.)
1,s =

nq2

m

(
1− 2ρAB

mn

)
. (4.35)

The superscript (s.p.) indicates the fact that we are accounting for contributions to
M1,s coming only from single particle excitations.

Eq. (4.35) expresses a crucial result for a two species superfluid: in the low q limit the
single particle contribution to M1,s is reduced from the value predicted by the f-sum
rule by a factor proportional to the drag ρAB, which accounts for multiparticle
excitations. In a single component superfluid this contribution is absent and the
response of the system in the static, long wavelength limit is accounted for by single
particle excitations only.

By computing the single particle contribution to the first moment of the spin operator,
using Eq. (4.35), we are able to estimate the frequency of collective spin excitations, as
we will do in subsecs. 4.5.1 and 4.5.2, and show how the drag influences them. While
we will work out the consequences of Eq. (4.35) in the following sections, we can
already infer its fundamental implications, at least in an intuitive sense. In fact, if we
interpret the f-sum rule as a normalization condition that sets the scale for the
response of a system to a probe, Eq. (4.35) implies a diminished strength of the
single particle spin excitations, as part of the normalization constraint is fulfilled by
the multiparticle excited states.
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The presence of a finite drag ρAB has also an implication on the low energy, long
wavelength quantum hydrodynamic Hamiltonian for two superfluids contains
off-diagonal superfluid densities (see, e.g., Nespolo et al. (2017)):

He f f = ∑
α,β=A,B

∫
dr

(
h̄2ραβ

2m2 ∇φ̂α · ∇φ̂β +
gαβ

2
Π̂αΠ̂β

)
. (4.36)

In the previous expression h̄∇φ̂α/mα is the superfluid velocity fluctuation of
component α, Π̂α the density fluctuation and gαβ = ∂2ε/∂nα∂nβ with ε the ground
state energy is the compressibility matrix. The operators φ̂α and Π̂α satisfy the
commutation relations:

[
φ̂α(r), Π̂β(r′)

]
= ih̄δαβδ(r− r′). Using the effective

Hamiltonian the first moment of an operator F̂ can be also calculated Pitaevskii and
Stringari (2016) via the commutator:

Me f f
1,F =

1
2Vh̄2 〈

[
F̂†,
[
Ĥe f f , F̂

]]
〉 . (4.37)

In particular for a spin density perturbation where F̂ = Π̂A,q − Π̂B,q and indeed
Eq. (4.37) coincides with the single particle excitation result, Eq. (4.35). The theory
presented in this section thus represents a microscopic justification for the effective
Hamiltonian in Eq. (4.36).

4.4 Weakly interacting Bose-Bose mixture: drag and
excitations

A strength of the linear response formalism we developed in sec. 4.3.1 is that it
provides a method to compute easily the superfluid density matrix. To provide a
benchmark for it we now compute the relevant response functions in the Bogoliubov
approximation for a weakly interacting Bose-Bose mixture at zero temperature. With
the computations in this subsection we reproduce in a easy way the results in Ref. Fil
and Shevchenko (2005). For completeness, in Appendix C we also show how to easily
recover the result for the Hubbard model obtained in Linder and Sudbø (2009). We
mention that the linear response formalism we developed was recently used in Ota
and Giorgini (2020) to compute the Andreev-Bashkin drag in a weakly interacting
Bose mixture at finite temperature, within beyond mean field Popov theory.

We will compute the current response in one component to a probe current in the
other component along the x direction. Since the system is isotropic, the response will
also be along the x direction. For simplicity we will assume a Z2 symmetric mixture,
meaning that the densities, the masses and the intraspecies contact interactions of the
two components are equal, namely nA = nB = n, mA = mB = m and gAA = gBB = g.
Additionally, at zero temperature, Eq. (4.20) for the Z2 symmetry implies the
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following useful equality:

χT
jx,A,jx,A

(q, ω) = χT
jx,B,jx,B

(q, ω) = −χT
jx,A,jx,B

(q, ω). (4.38)

4.4.1 Drag in a uniform mixture

We consider the case of a homogeneous weakly interacting Bose-Bose mixture with
volume V. The mixture is stable in the mean field approximation when g > 0 and
|gAB| < g, where gAB is the interspecies coupling. Since linear response requires the
ground state to be stable we will only consider the case |gAB| < g. The Hamiltonian
describing the system, written in the momentum space basis, is:

Ĥ = ∑
α=A,B

∑
k

εk â†
k,α âk,α

+
g

2V ∑
α=A,B

∑
k1,k2,p

â†
k1+,α â†

k2−p,α âk1,α âk2,α

+
gAB

2V ∑
k1,k2,p

â†
k1+p,A â†

k2−p,B âk1,A âk2,B ,

(4.39)

where âk,α and â†
k,α respectively annihilate and create a particle of species α and

momentum k and εk = h̄2k2/2m.

The intraspecies and interspecies couplings are related to the scattering lengths by
g = 4πh̄2a/m and gAB = 4πh̄2aAB/m respectively. In the weakly interacting limit,
when na3 � 1, quantum fluctuations are small and the Hamiltonian in Eq. (4.39) can
be reduced to a quadratic form by means of the Bogoliubov approximation. We retain
only terms which are quadratic in the operators ap,α and a†

p,α for p 6= 0 and replace
ap=0,α and a†

p=0,α with
√

N0, where N0 is the number of particles in the condensate.
The quadratic Hamiltonian can be diagonalized by a canonical transformation to the
basis of Bogoliubov quasiparticles b̂†

d,k and b̂†
s,k in a balanced two component mixture

Tommasini et al. (2003):

âk,A =
1√
2
(ud,kb̂d,k + vd,kb̂†

d,−k + us,kb̂s,k + vs,kb̂†
s,−k) ,

âk,B =
1√
2
(ud,kb̂d,k + vd,kb̂†

d,−k − us,kb̂s,k − vs,kb̂†
s,−k) .

(4.40)
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The labels d and s indicate density and spin quasiparticles and the coefficients ud(s),k

and vd(s),k are:

ud(s),k =
1
2

√ εk

Ωd(s),k
+

√
Ωd(s),k

εk

 ,

vd(s),k =
1
2

√ εk

Ωd(s),k
−
√

Ωd(s),k

εk

 ,

(4.41)

where Ωd,k and Ωs,k are the excitation energies of the density and spin excitations
respectively, namely:

Ωd(s),k =

√√√√ h̄2k2

2m

(
h̄2k2

2m
+ 2gn± 2gABn

)
. (4.42)

The diagonalized Hamiltonian takes the form:

Ĥ ≈ E0 + ∑
γ=d,s

∑
k 6=0

Ωγ,kb̂†
γ,kb̂γ,k , (4.43)

where E0 is the ground state energy. We substitute the above expressions into
Eqs. (4.18), (4.19) and (4.20) and use Eqs. (4.15) and (4.38) to find the expression of the
drag in terms of the excitation spectra Ωd(s),k:

ρAB = −m2 lim
q→0

χT
jx,A,jx,B

(q)

=
h̄2

2V ∑
k

(ud,kvs,k − us,kvd,k)
2

Ωd,k + Ωs,k
k2

x

=
h̄2

8V ∑
k

(Ωd,k −Ωs,k)
2

(Ωd,k + Ωs,k)Ωs,kΩd,k
k2

x .

(4.44)

This coincides with the result obtained in Fil and Shevchenko (2005) where also the
finite temperature result was derived. The expression of Eq. (4.44) is rather suggestive.
The second line of the equation displays a result that we anticipated in sec. 4.3.2 and
that holds in general: only matrix elements between multiparticle excited states
(∼ b†b†|0〉) contribute to the transverse response, as expected from the previous
discussion on sum rules. In the present case of a Z2 symmetric mixture the
multiparticle excitations are composed of spin and density phonons.

The numerator on the third line of Eq. (4.44) implies that the collisionless drag strictly
depends on the difference in the bare excitation energies in the spin and density
channel. The result of Eq. (4.44) is an even function of the interspecies interaction gAB,
as a result of the Bogoliubov approximation, while the inclusion of higher order terms
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should eliminate this symmetry. In particular one can expect the drag to be stronger in
the attractive regime where density-density fluctuations are enhanced.

The sum in Eq. (4.44) can be turned into an integral which can be solved analytically,
giving:

ρAB = mn
√

na3η2F(η) , (4.45)

where η = |gAB|
g and:

F(η) =
256

45
√

2π

2 + 3
√
(1 + η)(1− η)

(
√

2(1− η) +
√

2(1 + η))3
. (4.46)
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FIGURE 4.2: Superfluid drag as a function of the interspecies interaction strength
η = |gAB|/g. The drag is seen to increase monotonically with η to a maximum of
mn
√

na364/45
√

2π. Note also that ρAB is an even function of gAB and so it has the
same behaviour for attractive and repulsive interactions.

We see from Eq. (4.45) that the drag coefficient is directly proportional to the gas
parameter

√
na3, making the effect very small for weakly interacting mixtures.

A couple of remarks are worth. In presence of a superfluid phase we would expect the
response functions χjx,A,jx,A(q) and χjx,B,jx,B(q) to converge to the transverse
(longitudinal) response when qx goes to zero before (after) qy and qz (Eq. (4.16)).
However within the Bogoliubov approximation all the long wavelength limits
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commute, implying incorrectly that there is no distinction between the transverse and
longitudinal response. While the prediction for the transverse response is valid, the
Bogoliubov approximation gives an incorrect value for the longitudinal response
functions. This is a known shortcoming of the Bogoliubov approximation, present also
in the single component case, that can be cured by taking into account vertex
corrections (see Schrieffer (1999) for a detailed treatment).

4.5 Effect of the drag on the excitations of a two component
BEC

A fundamental task in order to make the Andreev-Bashkin effect measurable is to
predict its effect on physical observables that are accessible to experiments. Here we
address this point by computing the beyond mean field correction to the spin speed of
sound in sec. 4.5.1 and the spin dipole mode frequency in sec. 4.5.2. Importantly for
the ongoing experiments on spin superfluidity (see, e.g., Fava et al. (2018); Kim et al.
(2020)) we show that for a weakly interacting repulsive Bose-Bose mixture the beyond
mean field corrections to the spin speed of sound are dominated by the change in the
susceptibility, while the collisionless drag gives a minor contribution. In the following
sec. (4.5.2) we show instead that the two contributions are roughly of the same order
for the spin dipole mode frequency for a trapped mixtures.

In order to estimate the excitation energies we use sum rules for which we provided a
number of results in the previous sections. Within linear response, the energy of the
lowest state excited by an operator F̂ satisfies the inequality Pitaevskii and Stringari
(2016):

h̄ωs(q) ≤
√

M1,F

M−1,F
, (4.47)

with M1,F the first moment of the structure factor for the operator F and M1,s the so
called inverse energy weighted sum rule for

M−1,F =
∫ ∞

0

SF(q, ω)

ω
dω (4.48)

Eq. (4.47) represents an upper bound on the energy of the lowest lying excitations. In
the long wavelength limit (q→ 0) the lowest lying excited states are the single particle
excitations, as their energy vanishes with q2. Moreover, Eq. (4.47) becomes an equality
when only single particle excited states are accounted for in calculating M1,F and
M−1,F Pitaevskii and Stringari (2016). Namely we may write:

h̄ωs(q) =

√√√√M(s.p.)
1,F

M(s.p.)
−1,F

, (4.49)
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where as in sec. 4.3.2 by the superscript (s.p.) we indicate the fact that we are
considering matrix elements where only single particle excited states appear.

From Eq. (4.49) the strategy of the next two subsections is made apparent. We will
compute the relevant moments of the structure factors, including the correction
coming from the drag, when the operator F̂ is the spin operator (in sec. 4.5.1) or the
dipole operator (in sec. 4.5.2). This will provide us with an expression for the energy
of the low lying excited states created by these operators and the effect that the drag
has on their magnitude.

4.5.1 Beyond mean field correction to the spin speed of sound in a
homogeneous gas

For a homogeneous Z2 symmetric superfluid mixture the single particle excitations
consist in sound waves that propagate through the gas. There are two sounds a two
species superfluid mixture, the density sound and the spin sound, excited by the
respective operators. They correspond to in phase and out of phase local fluctuations
in the density of the two species, as depicted in fig. 4.1, and propagate through the gas
with speed cd and cs respectively. While the density speed of sound is not affected by
the drag, the spin speed of sound receives a correction at first order in the gas
parameter

√
na3.

By choosing as exciting operator the spin density operator (Eq. (4.23)) in Eq. (4.49) we
can estimate the spin dispersion relation. We use for the the energy weighted sum
rules the general expression Eq. (4.35) with the drag given by the weakly interacting
result, Eq. (4.45):

M(s.p.)
1,s =

nq2

m

(
1−
√

na3 2η2F(η)
)

. (4.50)

The inverse energy weighted moment, M−1,s, is exhausted by single particle
excitations as evident from table 4.1 and it is given by:

M−1,s = M(s.p.)
−1,s =

χs

2
, (4.51)

where χs is the spin susceptibility, defined as χ−1
s = ∂2(E/V)

∂(nA−nB)2 , and E is the energy of
the superfluid in its ground state. The latter has to be determined to the same order of
M1,s and therefore one must use the equation of state for the Bose-Bose mixtures
including the Lee-Huang-Yang correction Larsen (1963). Eventually we find (see
Appendix D for the derivation):

1
M−1,s

= (g− gAB)
(

1 +
√

na3C(η)
)

, (4.52)
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where the function C(η) is defined in Eq. (D.6). So we have that

M(s.p.)
1,s

M−1,s
≡ c2

s q2 = c2
s,MF[1 +

√
na3(C(η)− 2η2F(η))]q2 , (4.53)

where cs,MF =
√

n(g− gAB)/m is the mean field spin speed of sound. In Fig. (4.3) we
report the quantity:

δcs =
cs − cs,MF

cs,MF
(4.54)

which quantifies the deviation of the spin speed of sound from its mean field value.
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FIGURE 4.3: Beyond mean field correction to the spin speed of sound (full line) as
a function of the interspecies interactions η = |gAB|/g. We limited the analysis to
values of η smaller than 1 to avoid the regimes of phase separation and collapse. The
correction coming from the drag (dashed) is at least one order of magnitude smaller

than that coming from Lee-Huang-Yang terms in the susceptibility (dotted).

From Fig. (4.3) it is clear that the beyond mean field correction to the spin speed of
sound is dominated by the susceptibility contribution. The overall correction for
typical values of the gas parameter

√
na3 ≈ 10−3 is of order 10−3 − 10−2 but the

contribution from the drag is at least one order of magnitude smaller. We mention that
a recent experiment Kim et al. (2020) has been able to measure the two (density and
spin) sounds of a symmetric superfluid mixture, although with the current precision it
is not possible to observe beyond mean field effects on the spin speed of sound.
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4.5.2 Spin dipole modes in a trap

We can apply a similar reasoning to the determination of the frequency of dipole
modes for the two species in the mixture trapped by spherically symmetric harmonic
potentials:

Vα(r) =
m
2

ω2
0(r− r0,α)

2 , (4.55)

where ω0 is the trapping frequency and r0,α is the center of the trap for each species α.
Initially the two species dependent traps are such that r0,A = r0,B ≡ 0. The so called
spin dipole mode can be excited by separating by a small amount δx the center of the
two traps, as illustrated in Fig. 4.4, inducing a spin dipole moment in the cloud,
represented by the operator:

D̂s =
∫

d3r x (n̂A(r)− n̂B(r)) . (4.56)

After the displacement the density of the two species (and thus the spin dipole
moment) will start to oscillate out of phase with a certain frequency ωDs which we set
out to compute in this section. Before moving to the actual computations we shall
briefly compare with the case of a single component superfluid. There the only dipole
mode that exists corresponds to oscillations of the center of mass of the whole system
and characterized by the frequency ωD = ω0 Stringari (1996), independently of the
interactions. In the superfluid mixture the oscillation of the center of mass corresponds
to in phase oscillations of the two species, i.e. the density dipole mode. While for the
density dipole mode one recovers the same result as for the single component Bose
gas, the spin dipole mode should be modified by beyond mean field corrections, as in
the analogous case of Fermi-Liquid theory Recati and Stringari (2011).

We apply the formalism of sum rules to the spin dipole operator, i.e. we choose
F̂ = D̂s in Eq. (4.49). The spin dipole frequency can be computed as:

h̄ωDs =

√√√√ M(s.p.)
1,Ds

M(s.p.)
−1,Ds

. (4.57)

Similarly to the case of the spin operator in the previous subsection, the single particle
contribution to M(s.p.)

1,Ds
is modified by the presence of the collisionless drag as is

evident from evaluating the commutator (Eq. (4.37)):

M(s.p.)
1,Ds

=
1

2V
〈
[
D̂s,
[
Ĥe f f , D̂s

]]
〉

=
1
V

∫
d3r

n(r)
m

(
1− 2ρAB(r)

mn(r)

)
.

(4.58)

where the Hamiltonian Ĥe f f is the effective hydrodynamic Hamiltonian of Eq. (4.36)
with the addition of the harmonic trapping potential. The local drag coefficient ρAB(r)
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FIGURE 4.4: Representation of the excitation of a spin dipole mode. Initially (left
panel) the two species are trapped in the same position. Then (right panel) the center
of the two traps is displaced by a small amount δx = r0,A− r0,B, inducing a spin dipole
moment Ds. The two species composing the mixture will start to oscillate inside the

shaded region.

is a function of the coordinates r only through n(r), i.e. the local density
approximation of Eq. (4.45). The inverse energy weighted moment, M−1,Ds , is
determined by the spin susceptibility via the expression Sartori et al. (2015):

M−1,Ds =
1

2V

∫
d3r x2χs(n(r)) . (4.59)

Consistently the density profile is determined within the local density approximation
of the Lee-Huang-Yang equation of state in presence of the harmonic potential (see
Appendix D for the derivation)1.

1The use of the local density approximation for ρAB and χs is valid as long as the spin healing length
ξs =

√
8πn (a− aAB) is much smaller than the size of the Bose-Bose mixture cloud, which we can identify

with the Thomas-Fermi radius RTF (see Eq. (4.61)).
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Eventually we are able to write the sum rules as:

M(s.p.)
1,Ds

=
n
m

(
1− 15π

32

√
n(0)a3η2F(η)

)
,

1
M−1,Ds

=
5(g− gAB)

R2
TF

(
1 +

5π

32

√
n(0)a3(C(η)− B(η))

)
,

(4.60)

where RTF is the so-called mean-field Thomas-Fermi radius Pitaevskii and Stringari
(2016) of the trapped mixture:

RTF =

(
15N (g + gAB)

8πmω2
0

)1/5

. (4.61)

The expression for the functions C(η) and B(η) can be found in Appendix D,
Eqs. (D.6) and (D.4) respectively.

As for the homogeneous case we report in Fig. (4.5) the variation

δω =
ωDS −ωMF

ωMF
, (4.62)

which quantifies the deviation of the spin dipole frequency from its mean field value
ωMF = ω0

√
(g− gAB)/(g + gAB) and is always positive. Also in the trapped cases the

correction to the spin dipole frequency due to the drag is extremely small: for typical
values of the gas parameter

√
n(0)a3 ≈ 10−3 the relative correction given by the drag

is of order 10−3 − 10−4. However, differently from the case of the speed of sound the
correction from the drag can become comparable to the susceptibility one, owing to
the non monotonic behaviour of the latter. The correction coming from the
susceptibility is not a monotonic function of η (contrarily to the homogeneous case) as
a result of the competition between the functions C(η) and B(η). The former comes
from the beyond mean field correction to the spin susceptibility (Eq. (D.5)), the latter
comes from the beyond mean field correction to the size of the cloud (Eq. (D.10)).
Finally notice that for η = 0 the two clouds oscillate independently and we get indeed
ωDs = ω0 as for the in phase oscillations.

The calculations of this section can be easily extended to an elongated trap. For an
ellipsoidal trap with frequencies ωx, ωy and ωz along the x, y and z direction Eq. (4.58)
is unchanged while Eq. (4.59) has to be multiplied by a factor ωx/ω̄0 where
ω̄0 = 3

√
ωxωyωz. The relative size of the correction from the susceptibility and the

drag is unchanged.

The major drawback of weakly interacting gases is apparent from our results. The
Andreev-Bashkin effect is made elusive by the fact that, being due to beyond mean
field quantum fluctuations, it is typically very small in cold gases settings. While
increasing the strength of interactions would increase the magnitude of the drag, it
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FIGURE 4.5: Beyond mean field correction to the spin dipole frequency (full line) as a
function of the interspecies interactions η = |gAB|/g. We limited the analysis to values
of η smaller than 1 to avoid the regimes of phase separation and collapse. Although
the overall correction is smaller than in the case of the spin speed of sound, here the

effect of the drag (dashed) is comparable with that of the susceptibility (dotted).

would also amplify three body losses Stenger et al. (1999). We also expect that
attractive interspecies interactions (gAB < 0) would enhance the effect as they
increases density fluctuations, a feature that is not captured by the Bogoliubov
approximation (see Eq. (4.45)).

4.6 Measuring the drag via a quick perturbation

Collective excitations induced by a static perturbation (where ω = 0) are governed
both by the drag, through the moment M1,s or M1,Ds , and the susceptibility of the
system, through the moment M−1,s or M−1,Ds . As we showed in Fig. (4.3) and Fig. (4.5)
the two effects are of comparable magnitude, so it is convenient to devise an
experiment where only the drag effect plays a role. In addition, while it would be
desirable to study the effect in strongly interacting mixtures, three body losses will
significantly abbreviate the stability of such systems.
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In order to overcome both these limitations we consider the linear response of a
trapped gas to a perturbation that is suddenly turned on.

We start by considering the the frequency response χDA,DB(ω) of the operator
D̂B =

∫
d3r x n̂B(r) to a perturbation D̂A =

∫
d3r x n̂A(r), which is given by:

χDA,DB(ω) =

2
V ∑

n 6=0

〈n|D̂A|0〉 〈0|D̂B|n〉
ω2 + (E0 − En)2 (E0 − En) .

(4.63)

The response function satisfies the following expansion at high frequencies Pitaevskii
and Stringari (2016):

χDA,DB(ω) = − 1
ω2V

〈
[
D̂B,

[
Ĥe f f , D̂A

]]
〉+ O

(
1

ω3

)
=

= − 1
ω2V

∫
d3r

ρAB(r)
m2 + O

(
1

ω3

)
,

(4.64)

where in the last equality we made use of Eq. (4.58). We thus see that the response
function at high frequencies is directly proportional to the drag. This describes a
situation where the probe D̂A is quickly turned on and the observable D̂B is measured
shortly after, as we will clarify in what follows.

Consider a time dependent perturbation of the form:

V̂(t) = λD̂A θ(t) , (4.65)

where θ(t) is the Heaviside step function and λ is a small parameter. The variation of
the average of DB to first order in λ at time t is given by:

〈δDB〉 (t) = λV
∫ ∞

−∞
dt′χDA,DB(t− t′)θ(t′) . (4.66)

Using the Fourier transform of the theta function θ̃(ω) = 1
iω + πδ(ω) and after some

manipulation we arrive at

〈δDB〉 (t) = −
λV
2π

∫
dω

e−iωt − 1
iω

χDA,DB(ω) , (4.67)

where we made use of the useful identities πχDA,DB(0) = i
∫

dω χDA,DB(ω)/ω and∫
dω χDA,DB(ω) = 0. While this integral is in principle over all frequencies ω, the

response function χDA,DB(ω) will have a cutoff in frequency ω above which it
vanishes. We thus expand this expression for short times, i.e. times t such that
t� 1/ω:

〈δDB〉 (t) = −i
λV
4π

∫ ∞

−∞
dω ωt2χDA,DB(ω) . (4.68)
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Since the real part of the response function is an even function of ω we can express the
response in terms of the imaginary part of the response function χ′′DA,DB

(ω) which at
zero temperature satisfies the sum rule Pitaevskii and Stringari (2016):∫ ∞

−∞
dω ω χ′′DA,DB

(ω) =
π

V
〈
[
D̂A,

[
Ĥe f f , D̂B

]]
〉 . (4.69)

Using this equality in Eq. (4.68) and making use of Eq. (4.58) we finally obtain the
desired equation in terms of the double commutator:

〈δDB〉 (t) =
λ

4
t2 〈
[
D̂A,

[
Ĥe f f , D̂B

]]
〉 =

=
λt2

4

∫
d3r

ρAB(r)
m2 .

(4.70)

This calculation outlines a useful experimental procedure to measure the drag
coefficient. A superfluid mixture subject to a dipole moment D̂A that is suddenly
turned on will have the other component increase ballistically its dipole moment D̂B

for short times, with a coefficient proportional to the drag coefficient ρAB. This
experimental procedure would allow to measure the drag directly, without the need to
independently measure the susceptibility of the system (as in secs. 4.5.1 and 4.5.2).
Importantly, the short time scales involved significantly reduce the amount of three
body losses. This makes the procedure applicable to strongly interacting systems
where the effect is more sizeable.

4.7 Conclusions

In this chapter we analysed the Andreev-Bashkin effect in a two species superfluid
within linear response theory. In analogy with the single component case the
superfluid densities can be expressed in terms of transverse current-current response
functions. A striking result that has no analogy with the single component case is that,
while the overall response of the superfluid to a transverse vector field vanishes at
zero temperature, such a field will give rise nonzero response even at vanishing
temperature when acting only on one component. In this sense, the drag behaves as a
sort of normal component, inducing a current response in reaction to a transverse
probe.

The presence of a finite drag density arises from multiparticle excited states, which are
shown to give an additional contribution to the first moment of the spin structure
factor Ss(q, ω). This result is also in contrast with the case of single component
superfluids, where single particle excitations are the only low-lying excited states at
zero temperature. Since the moments of Ss(q, ω) are constrained by a sum rule, the
fact that the drag is nonzero means that the single quasiparticle contribution is
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changed (see e.g. Eq. (4.35)). Using current-current response functions we evaluate the
collisionless drag in a two component weakly interacting Bose gas within the
Bogoliubov approximation. This allows us to easily recover the results obtained via
energy vacuum calculations Fil and Shevchenko (2005) and give a more direct
interpretation of the drag as spin-density phonon mixing. We show how typical
measurable quantities as the spin speed of sound and the spin dipole mode frequency
are affected by the presence of the drag. While the beyond mean field change in the
susceptibility dominates the correction to the spin speed of sound, in the case of the
spin dipole frequency the correction due to the presence of the drag can be of the same
order of magnitude as that coming from the susceptibility.

We show that the drag can be directly measured in an experiment where a dipole
moment is quickly induced on one component. This induces at short times an
increasing dipole moment in the other component which is proportional to the drag
density.

Our analysis can be replicated to compute the drag and its effect on observables in
strongly interacting systems. This is particularly relevant for new cold atoms systems
as Bose-Bose mixtures on optical lattices Catani et al. (2008); Gadway et al. (2010);
Fukuhara et al. (2013), superfluid Bose-Fermi mixtures Ferrier-Barbut et al. (2014) and
in the foreseeable future superfluid Fermi-Fermi mixtures and the short-lived strongly
interacting Bose mixtures (as an extension of the recently realized strongly interacting
Bose gas Eigen et al. (2017); Eismann et al. (2016)).

A clear conclusion of our study is that weakly interacting Bose gases are not the ideal
system in order to measure a sizeable effect. In fact, the drag coefficient in this regime
is much smaller than the superfluid density and its effect on observables quantities
such as the spin speed of sound or the spin dipole mode frequency is negligible. Thus,
provided that the experimental procedure we outlined are not in principle limited to
weakly interacting gases, it is natural to ask in which systems should the drag be
more sizeable and measurable?
In the next chapter we address this question by reporting the study on a superfluid
mixture in one dimensional Hubbard lattice.
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5

Collisionless drag in a 1D ring
lattice

The work contained in this chapter lead to the publication of the paper in Contessi
et al. (2021). The numerical analysis were done by Daniele Contessi. I worked on the
direction of the study, the analytical calculations, and the interpretations of the results
alongside the other authors.

5.1 Introduction: why a 1D ring lattice?

As shown in the previous chapter the drag coefficient is much smaller than the total
density in weakly interacting Bose mixtures and, as such, not easily observable in
these systems. The magnitude of the drag can be enhanced in principle by increasing
the size of quantum fluctuations beyond the mean field equation of state by, for
example, increasing the strength of the interactions. This route is made only partially
viable by three body losses which are enhanced by strong interactions Stenger et al.
(1999), reducing very much the life time of the gas.

A different option comes from systems with low dimensionality which have been
recently proposed (Nespolo et al. (2017); Parisi et al. (2018)) as candidates to observe
the effect. One striking advantage of low dimensional systems is that the rate of
3-body collisions should be smaller compared to three dimensional systems, thus
allowing to reach strongly interacting regimes where the effect should be more
sizeable. In particular, in Nespolo et al. (2017) it has been shown that approaching the
molecular phase in a double-layer dipolar gas system the drag can become
increasingly large. In Parisi et al. (2018), one dimensional mixtures close to the
Tonks-Girardeau regime have been shown to exhibit a large drag when approaching
the phase separation transition.
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Another option is to consider Hubbard-like models where the cold-atoms are
constrained in optical lattices. Aside from reducing three-body losses, introducing a
discrete lattice enriches the phase diagram of the system of making it possible to study
the drag in phases which are not generally accessible for continuous, low dimensional
systems Kuklov et al. (2004). Of particular interest for the fate of a sizeable drag is the
paired superfluid phase where the two species undergo Bose-Einstein condensation in
pairs, much like in the case of Fermions in the BCS superfluid state Kagan and
Efremov (2002). An analysis of the AB effect in a two-component single-band
two-dimensional Bose-Hubbard model can be found in Sellin and Babaev (2018),
where the effect of the proximity to the Mott insulating phase is discussed in detail.

In the present work we focus on the AB drag in a two-component Bose-Hubbard
model on a one dimensional ring. Aside from all the advantages outlined above, the
presence of the lattice allows us to have a finite range of parameters with attractive
interspecies interaction where the two-superfluid state is stable and the drag can be
strongly enhanced Nespolo et al. (2017); Parisi et al. (2018). The ring geometry is
particularly well suited for studying supercurrents, both theoretically and
experimentally.

5.1.1 Outline

We study the Andreev-Bashkin collisionless drag for a two-component one
dimensional Bose-Hubbard model on a ring at zero temperature. Using Tensor
Network numerical simulations, we compute the superfluid densities (and in
particular the drag density) for a variety of regimes depending on the lattice filling
and the interactions, both intraspecies and interspecies. We will then focus on the
regimes with attractive interactions, where pairing correlations are expected to
produce a more sizeable effect. In particular, we will focus on the range of parameters
which approaches the transition to pair superfluidity. We will discuss the importance
of the drag in the Luttinger liquid theory, particularly its effect on the Luttinger
parameter KS, as a consequence of the sum rule analysis of chapter 4. The Luttinger
paramater can also be computed from the long range behaviour of the correlation
functions, , independently from any assumption on the drag. This will serve to test the
consistency of our results.

The chapter is structured as follows. Sec. 5.2 describes the Bose-Hubbard Hamiltonian
for the two component mixtures and the basic formulas that we use to compute the
drag. Sec. 5.2.3 shows the computation of the drag for half filling of the lattice, in
order to compare it with existing prediction, especially in the attractive intraspecies
interaction regime, which will set up the following section. In sec. 5.2.4 we focus on
the transition to pair superfluidity and compute the drag in this promising regime.
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Finally, in sec. 5.3 we discuss the importance of the drag in determining the Luttinger
liquid parameter KS.

FIGURE 5.1: Sketch of the 2-component Bose-Hubbard ring with hopping parameters
t̃α = tαe−i2πφα/L, intra-species interactions Uα and inter-species interactions UAB. The

two fluxes φα pierce the ring and give rise to the superfluid currents jα.

5.2 Model and setup

5.2.1 Model: Bose-Hubbard Hamiltonian on a ring

We consider the model for a gas of N = NA + NB atoms of two different species in a
ring lattice of L sites. The model is described by the Bose-Hubbard Hamiltonian,
Ĥ = HA + HB + HAB:

Hα =
L

∑
j=1

[
−
(

t̃αb†
j+1,αbj,α + h.c.

)
+

Uα

2
nj,α(nj,α − 1)

]
,

HAB = UAB

L

∑
j=1

nj,Anj,B , (5.1)

where b†
j,α and (bj,α) are the bosonic creation annihilation operator respectively and

nj,α = b†
j,αbj,α is the number operator at site j for the species α = A, B. The single

species Hamiltonian Hα accounts for the hopping between neighboring sites, with
t̃α = tαe−i2πφα/L, and for the on-site repulsion characterised by the parameter Uα > 0.
The fluxes φα piercing the ring are introduced in order to compute the superfluid
currents and densities (see Appendix, sec. C.2).

We limit ourselves to a zero temperature, Z2 symmetric mixture tα = t, Uα = U and
filling να ≡ Nα/L = ν/2, in terms of the number of atoms Nα. The phase diagram of
the 1D model is very rich and has not yet been determined with the same accuracy as
in higher dimensions Kuklov and Svistunov (2003); Kuklov et al. (2004): to our
knowledge the most complete analysis can be found in Hu et al. (2009).
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For the purpose of the present study we are interested in only two of the possible
phases: the two-superfluid phase and the pair-superfluid phase. The two-superfluid
phase is characterised by each components A and B being superfluid, as in the
previous chapter 4. The low energy spectrum consists of two gapless linear modes
corresponding to a density (in-phase) and a spin (out-of-phase) mode. In the PSF
phase, the two components are paired, similarly to the case of Cooper pairing in the
Bardeen-Cooper-Schrieffer theory for fermionic systems Kagan and Efremov (2002).
As a consequence of this pairing the spin-channel acquires a gap which corresponds to
the pairing energy of the two bosons. One of our goals here is to determine the
superfluid densities in the two superfluid phase while approaching the pair
superfluid phase, where the collisionless drag should saturate to its maximum
value Sellin and Babaev (2018).

We resort to a Matrix Product States (MPS) ansatz to deal with the full many-body
problem. The model (5.1) is not exactly solvable and our numerical treatment is an
almost unbiased approach to it.

5.2.2 Setup: computing the superfluid densities
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FIGURE 5.2: The superfluid currents jA and jB in presence of φA only for a L = 32
system. The four sets of curves (from dark to light color) correspond to UAB/U =

0.0, 0.25, 0.5, 0.75, with U/t = 2 at half-filling. The drag density n(s)
AB is proportional to

the slope of jB in the limit of φA → 0. The inset demonstrates the global momentum
conservation because of the constant value of the total current for all values of UAB.

As shown in the appendix C, Sec. C.2, the superfluid densities can be computed as
derivatives of the energy with respect to the magnetic fluxes piercing the ring. Using
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Eq. (C.17) it follows for the superfluid number densities n(s)
αβ = ραβ/m∗ as:

n(s)
αβ = lim

φα,φβ→0

Lm∗

2πh̄
∂jα
∂φβ

= lim
φα,φβ→0

Lm∗

(2πh̄)2
∂2E

∂φα∂φβ
. (5.2)

In Fig. (5.2) we illustrate the effect of the AB drag on the currents: in presence of φA

only, the current jB is constantly zero in absence of inter-species interaction, UAB = 0,
while it increases monotonically as UAB increases. The drag density n(s)

AB is
proportional to the slope of the jB curve in the limit of φA → 0. The plot highlights the
smallness of the drag effect at a generic point in parameter space – here the filling is
ν = 0.5 with U/t = 2 and L = 32. For completeness in the inset of Fig. (5.2) we report
the total (or density) current in order to show that the result jA + jB = 2πνφA/L is
independent from the interaction.

5.2.3 Superfluid drag at half-filling

As disclosed in the introduction to this chapter approaching the superfluid phase we
expect a strong enhancement of the drag. However, even in regimes quite distant from
the paired superfluid phase we expect that the pairing correlations for attractive
interspecies interactions (UAB < 0) will be enhanced compared to the case of repulsive
interactions (UAB > 0), which should result in a more sizeable drag. Intuitively, if we
interpret the Andreev-Bashkin effect as the result of a cloud of species B dressing the
excitations of species A an attractive interspecies interaction will induce stronger
fluctuations in the density of the species B, thus increasing the dressing effect. The
density fluctuations that are responsible for this enhancement will diverge at a critical
point, causing the so-called collapse transition, which results in the superfluid
shrinking and then expelling atoms, and eventually destroying superfluidity Roberts
et al. (2001).

In order to test this idea we report in Fig. (5.3) the drag density n(s)
AB = n(s)

BA as a
function of the inter-species interaction UAB/U for half total filling ν = 0.5 and
U/t = 2. In this regime, as expected from previous analysis Hu et al. (2009), the
mixture is always in the two superfluid phase, until it undergoes either phase
separation (for UAB > 0) or collapse (for UAB < 0). In our case, the collapse occurs
beyond the black dashed line in the shaded region.

For comparison the Bogoliubov prediction for the entrainment is also reported. Using
the method developed in the Appendix C, Sec. C.2, the Bogoliubov approach leads to
the simple expression for the drag:

n(s)
AB '

t
4L ∑

k

(Ωd,k −Ωs,k)
2

(Ωd,k + Ωs,k)Ωs,kΩd,k
sin2(k)2, (5.3)
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with Ωd(s),k =
√

ε(k)(ε(k) + Uν±UABν) the excitation energies of the density (spin)
channel and ε(k) = 4t sin2(k/2) the single particle dispersion relation. The sum in
(5.3) is done on the wave vectors in the 1st Brillouin Zone k = 2π/L · n with
n = 0, ..., (L− 1).

The Bogoliubov approach turns out to be valid only for very small interspecies
interaction. 1. More importantly while Eq. (5.3) predicts a symmetric behaviour for
UAB → −UAB, the data display an evident asymmetry between the two regimes. In
particular, the attractive mixture experiences a much steeper growth of the drag with
increasing |UAB| compared to the repulsive mixture. This substantial difference can be
ascribed to pairing correlations which are not captured by the Bogoliubov approach.
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FIGURE 5.3: Superfluid drag in terms of the total density (main panel) and of the total
superfluid density (inset), for for half total filling ν = 0.5 and U/t = 2. The red dashed
line is the analytic prediction via Bogoliubov approximation, Eq. (5.3). The pairing
correlations in the attractive regime are responsible for the asymmetry between the

attractive regime (UAB < 0) and the repulsive regime (UAB > 0).

5.2.4 Superfluid drag approaching the paired superfluid phase

We can now move to a regime where the system approaches the transition from the
two superfluid to the paired superfluid phase, where the drag will reach its

1The same occurs in a continuous one dimensional Bose mixture with repulsive interactions Parisi
et al. (2018), where the Monte-Carlo results are compared with the continuous version of Eq. (5.3), i.e., by
replacing in Eq. 5.3: t→ h̄2/2m and sin(k)/k→ 1.
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maximum. Indeed, in this case the current of one component will necessarily result in
an equal amount of current of the other component, which implies the following
condition at the transition:

n(s)
AB = n(s)

AA . (5.4)

The drag n(s)
AB at the transition becomes a quarter of the total superfluid density

n(s) = n(s)
AA + n(s)

BB + 2n(s)
AB, hence saturating to its maximum possible value. At this

point, however, it cannot be interpreted as a drag coefficient anymore, since we are
dealing with a single superfluid of pairs and not with two superfluids dragging each
other. Before the saturation, the magnitude of the drag rapidly increases making the
approaching to the pair superfluid phase transition a very suitable region for its
measurement. This has already been proven to be the case for Quantum Monte-Carlo
simulations in the 2D case Sellin and Babaev (2018).

The results for different system’s sizes are reported in Fig. (5.4), where U/t = 10 and
unit filling ν = 1 are chosen such that the system can undergo the transition (see Hu
et al. (2009)). In the inset we report the behaviour of the normalized drag as a function
of L−1 for different values of the interaction, in order to study the thermodynamic
limit. We estimate that the two superfluid to paired superfluid transition should occur
in the thermodynamic limit for UAB/U ∈ [−0.25,−0.2] (shaded region in the main
panel). In such a limit – since the transition belongs to the
Berezinskii-Kosterlitz-Thouless universality class Hu et al. (2009) – the saturation
should happen as a sudden jump of the spin-superfluid density, n(s)

AA − n(s)
AB, from a

finite value to zero. We stress, however, that mesoscopic samples like the ones
accessible in cold-atomic setups will display no jump, but rather a sizeable value of
n(s)

AB, thus making the AB collisionless drag finally observable.
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FIGURE 5.4: Drag (normalized with respect to the total superfluid density) for differ-
ent system’s sizes, as a function of UAB for a system with U = 10t and ν = 1. From
bottom to top (from light to dark shades) L = 8, 16, 32, 64, 96. Points are data, lines
are artistic guide-to-the-eyes. The thermodynamic limit should exhibit a saturation to
(n(s)

AB)/(n
(s)
AA + n(s)

AB) = 0.5 in the paired superfluid region. In the inset, the same points
of the main plot are represented as a function of the inverse of the system’s size L−1

for different values of −0.30 ≤ UAB/U ≤ −0.15 from top to bottom.

5.3 Collisionless Drag and Luttinger liquid parameters

In the superfluid phase, the elementary excitations of the Bose-Hubbard Hamiltonian
for a single component can be described by the so-called Luttinger liquid theory
Giamarchi (2004). This description consists in recasting the Bose-Hubbard
Hamiltonian in terms of the canonically conjugated operators φ̂ and θ̂ representing
respectively the phase and the density of the superfluid. These operators are related to
the creation operators b̂†

j by the following equation:

b̂†
j =

√
θ̂eiφ̂ . (5.5)

The Hamiltonian at low energies can be shown to take the form:

Ĥ =
1

2π

∫ [
cK(∂xφ̂)2 +

c
K
(∂x θ̂)2

]
dx, (5.6)

where c and K are the so-called Luttinger parameter which will depend on the
interactions. The Luttinger parameter c has the meaning of the speed of sound as it is



5.3. Collisionless Drag and Luttinger liquid parameters 79

10−5

10−4

10−3

10−2

10−1

100

1 10

〈(a
† )
0
(a
) x
〉

d(x/L)

Algebraic fit
Exponential fit

UAB/t = −1 (2SF)

U
A
B /t = −

5 (PSF)

(A)

10−2

10−1

100

1 10

〈(a
† b
† )
0
(a
b)

x
〉

d(x/L)

Algebraic fit
Algebraic fit

U
AB/t = −1 (2SF)

UAB/t = −5 (PSF)

(B)

10−10

10−8

10−6

10−4

10−2

100

1 10

〈(a
† b
) 0
(a
b†
) x
〉

d(x/L)

Algebraic fit
Exponential fit

UAB/t = −1 (2SF)

U
AB /t = −

5 (PSF)

(C)

FIGURE 5.5: The correlation functions of Eq. (5.11) (the (a) panel is Gα, (b) is RD and
(c) is RS) as function of the distance for a unitary total filling system ν = 1, t = 1 and
U = 10. The orange points are taken for the system in the paired superfluidity phase
while the blue ones concern the two superfluid phase and we represent with a color
gradient from dark to light different system’s sizes from L = 8 to L = 64. The dashed
lines are exponential and algebraic fits depending on the expected behaviour of the

functions for UAB/U = −0.1 and the solid one for UAB/U = −0.5.

the proportionality coefficient in the linear dispersion relation of the elementary
excitations. The Luttinger parameter K is uniquely determined by the speed of sound
and the compressibility.

In the case of a two component mixture, the result is similar. By applying the
Luttinger description to each of the two species one obtains, in the two superfluid
phase, the Hamiltonian of two coupled Luttinger liquids Giamarchi (2004). We call θA

(θB) and φA (φB) the density and phase of species A (B).

The coupled Luttinger Hamiltonian can be diagonalised by introducing the density
(D) and spin/polarisation (S) channels:

Hµ =
1

2π

∫ [
cµKµ(∂xφµ)

2 +
cµ

Kµ
(∂xθµ)

2
]

dx, (5.7)
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where φD(S) = (φA ± φB)/
√

2 and θD(S) = (θA ± θB)/
√

2 are the bosonic fields related
to the fluctuations of the phase and the amplitude of the total density (spin) of the two
coupled superfluids. We dropped the “hat” symbol on the operators for simplicity.
The speeds of sound cD(S), and KD(S) are the Luttinger parameters. There’s an
additional non-linear coupling between the densities of the two Luttinger liquids
which can be perturbatively accounted for by a term proportional to UAB cos(2

√
2θS).

This term is irrelevant in the two superfluid phase and relevant in the paired
superfluid phase. Similarly to the one component case, the Luttinger parameters KS

and KD are uniquely determined by the speed of the spin and density sound and the
respective susceptibilities, namely, for the paramater KS Giamarchi (2004):

KS = πh̄χcs/2, (5.8)

where χ =
[
∂2e/∂(νA − νB)

2]−1 is the spin susceptibility with e = E/L the energy
density. The same goes for the density channel with the compressibility
χD =

[
∂2e/∂(νA + νB)

2]−1 rather than the susceptibility.

On the other hand as we showed in chapter 4 the relation between the spin speed of
sound and the superfluid density depends on the drag, as a result of the modification
in the energy weighted sum rule for the spin channel. The sum rule formalism implies
the following relation between the spin-speed of sound and the superfluid densities

c2
S = 2

n(s)
AA − n(s)

AB
m∗χ

. (5.9)

By direct comparison of Eqs. (5.8) and (5.9), the following also holds:

KS =

√√√√π2h̄2
(

n(s)
AA − n(s)

AB

)
χ

2m∗
. (5.10)

The drag thus appears in the constitutive relations of the Luttinger parameters. This
important fact, is often overlooked in literature Hu et al. (2009); Mathey et al. (2009);
Orignac et al. (2017); Citro et al. (2018); Kleine et al. (2008a,b); Citro et al. (2018) where
only the diagonal superfluid density n(s)

AA appears. Its inclusion is crucial in obtaining
consistent results in the perturbative approach of Luttinger liquids. In particular, the
msot dramatic effect is at the pair superfluidity transition where comparison with Eq.
(5.4) implies that KS must vanish.

In order to test the consistency of Eq. (5.10) we compare the prediction on KS obtained
by computing the speed of sound cS and the susceptibility χ and the prediction that
we can obtain independently from the correlation functions of the model. Indeed, as
long as the Hamiltonian Eq. (5.7) holds, an algebraic decay governed by the Luttinger
parameters characterises the correlation functions (also known as quasi-long-range
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order) Giamarchi (2004):

Gα(x) = 〈b†
i+x,αbi,α〉 ∝ |d|−

1
4KD
− 1

4KS ,

RD(x) = 〈b†
i+x,Ab†

i+x,Bbi,Bbi,A〉 ∝ |d|−
1

KD ,

RS(x) = 〈b†
i+x,Abi+x,Bb†

i,Bbi,A〉 ∝ |d|−
1

KS .

(5.11)

Here we expressed the algebraic decay in terms of the natural measure of the distances
between sites on a ring geometry, i.e., the chord function Cazalilla et al. (2011):

d(x/L) =
L
π

sin
(πx

L

)
, (5.12)

where L is the number of sites and x ∈N the linear distance between the sites. For
very large rings the expression further simplifies according to the substitution d→ x.
The relations in (5.11) can be easily checked by using the leading term in the
long-wavelength field representation bj,α ∝ exp (iφα) Haldane (1981).

The single-body correlations, Gα, have a mixed density/spin character, consistently
with the fact that the imaginary part of their nearest-neighbor value gives back the
species current jα. The correlation functions RD and RS correspond instead to
two-body correlations: RD concerns the superfluid character of pairs of A− B
particles and therefore the density channel, while RS relates to anticorrelated pairs and
therefore the spin channel Hu et al. (2009); Sellin and Babaev (2018).

Away from commensurate filling ν, which could possibly lead to a Mott insulator
phase, the density channel is always superfluid, i.e., RD scales algebraically. A change
in RS and Gα from algebraic to exponential decay – or equivalently a drop of KS to 0 –
happens instead when entering the paired superfluid phase, due to the opening of a
gap in the spin channel. The intuitive idea is that in the pair superfluid phase the
density channel stays superfluid as its excitations correspond to excitations of the
system as a whole. On the contrary, the spin channel loses it superfluid character as
out-of-phase spin excitations are suppressed by the pairing. This is illustrated in
Fig. (5.5), where the correlations measured for different system sizes
(L = 8, 16, 32, 64, 96) are reported for two sample parameter values deep in the two
superfluid (blue) and paired superfluid (orange) phases. The region where the
correlation functions RS and Gα show exponential decay is in agreement with the
region predicted from the drag saturation (Fig. (5.4)).

Thanks to the Luttinger parameter KS appearing as an exponent in the algebraic decay
of the correlation functions we can compare the prediction given by the Luttinger
liquid theory and the drag effect (Eq. (5.10)) and the long-range behaviour of the
correlation functions (Eq. (5.11)). We do so in Fig. (5.6), where we show that the two
estimates give consistent results.
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FIGURE 5.6: In (a) Luttinger parameter KS for the spin channel, as obtained from the
hydrodynamic relation in Eq. (5.10) (solid line with error shadow) and from the corre-
lation functions, Eq. (5.11) (points with error bars). Points are reported until the alge-
braic fit makes sense: the shaded region indicates where deviations become sizeable.
In the paired superfluid the parameter KS must go to zero. (b) displays the behaviour
of the susceptibility as function of the interaction, as estimated from various system

sizes (color code as in Fig. (5.4) except for L = 8 that is omitted).

For the sake of comparison with mesoscopic experiments accessible with ultra-cold
gases in optical lattices, we report in Fig. (5.6) (b) also the estimated spin susceptibility
for different system’s sizes.

5.4 Conclusions

In conclusion, we provide a numerical estimation of the AB superfluid drag via a
Tensor Network approach for a 1D Bose mixture on a ring lattice. The regime for
attractive interspecies interaction seems to be the most promising to increase the value
of the drag, thanks to the pairing correlations. In particular, the most dramatical
enhancement of the effect occurs when approaching the transition to the pair
superfluid phase, where the drag becomes comparable in magnitude with the total
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superfluid density. Dealing with a mesoscopic system avoids the inconvenience of a
sudden jump of the drag at the transition and would allow for a range of parameters
where the effect is observables.

State of the art experiments in ultracold atoms are able to measure the spin speed of
sound Shin et al. (2006) and the spin susceptibility Fava et al. (2018) with great
accuracy for weakly interacting Bose gases. A measurement of these quantities in a
one dimensional mixture of cold atoms in an optical lattice would allow to finally
observe the effect. Hyperfine states mixtures of (39)41K atoms, or 41K-87Rb mixtures
(see for example Semeghini et al. (2018); Tanzi et al. (2018); Cabrera et al. (2018);
D’Errico et al. (2019)), whose inter-species interaction can be tuned by exploiting
Feshbach resonances, could be promising platform to carry the experiment. The
typical number of atoms in these setups is comparable to the ones used in our
simulation, thus overcoming the issue of the jump of the drag at the transition.

A second important result of this chapter regards the fundamental implications that
the presence of the drag has on the Luttinger liquid approach to the two species
Bose-Hubbard Hamiltonian. In particular we show that the inclusion of the
Andreev-Bashkin effect in the Luttinger liquid description provides a reliable
expression for the Luttinger parameters of the spin-channel.
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6

Conclusions

In this thesis I have presented our results on ultracold atoms theory. We explored the
behaviour of ultracold systems in various regimes: from a noninteracting gas to a
strongly correlated mixture, in the homogeneous case and in the case of an optical
lattice. Results were obtained both via analytical methods and numerical simulations.

In chapter 2 the localisation-delocalisation transition of periodically driven non
interacting Aubry-André model is studied. It is showed that within this model one
can reproduce a phase diagram that has the same features as the corresponding
interacting model. We find that the critical frequency and amplitude of the periodic
driving for delocalisation can be predicted from an intuitive physical picture, which
interprets them as the values for which the driving sweeps adiabatically through the
critical disorder strength of the undriven model. Moreover, we show that the
transition is analogue to the Anderson localisation of the undriven model, in the sense
that the phase diagram is determined by the Inverse Participation Ratio of the Floquet
eigenstates. Our results raise the question on whether the inclusion of interactions can
conduce to phase diagrams of isolated systems that are qualitatively different from the
single particle ones, and what physical observables can reveal such differences.

In chapter 3 I have presented our work on a light impurity interacting with N heavy,
non interacting fermions. We approach the question of the existence of arbitrarily
large clusters through a simplified model based on the zero-range approximation and
the Born-Oppenheimer. We assume that the impurity in the hypothetical N + 1 cluster
behaves as a Fermi polaron. Our results seem to indicate that there is no stable cluster
for large N, as it will fission into smaller and smaller subclusters. Although our model
is simplified it seems to reasonably account for the physics of the problem. Moreover,
it begs the question of whether modeling the impurity as polaron in the cluster can
lead to sufficiently acccurate predictions. Future works could focus on improving the
model, for example discarding the zero-range approximation and using a model
potential.
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In chapters 4 and 5 we obtained a number of results for the Andreev-Bashkin effect in
superfluid mixture. In particular, in chapter 4 we develop a microscopic theory of the
drag based on linear response theory which predicts the drag to be proportional to the
transverse current-current response function. From this definition we are able to
further identify the drag as the multiparticle excitations contribution to the spin sum
rule. We find that this implies a reduced frequency of the spin phonon and spin dipole
excitations. However we show that in a weakly interacting Bose mixture the
contribution of the drag to these frequencies is typically much smaller than the
correction coming from the beyond mean field susceptibility. We propose then an
experimental procedure where a quickly initiated dipole moment produces at short
times a ballistic motion of the mixture that is entirely governed by the drag,
independently from the susceptibility. Moreover, it is applicable to strongly interacting
systems where the limitations of weakly interacting gases could be overcome.

In chapter 5 we focus on such strongly correlated system, by considering a one
dimensional Bose-Hubbard model for a mixture of superfluids. By means of Tensor
Network analysis we compute the magnitude of the drag in avariety of regimes of the
intra- and interparticle interactions. When the latter is attractive we find a strong
enhancement of the drag coefficient, particularly when approaching the transition
from the two superfluids to the paired superfluidity phase. Lastly, we compute the
Luttinger parameters for the Luttinger liquid theory of the model, showing that the
drag modifies the constitutive relations between the spin Luttinger parameter KS and
the spin susceptibility, as a result of its effect on the spin speed of sound. We compute
the correlation functions of the model both to study their behaviour at the transition to
paired superfluidity and to compute the Luttinger spin parameter indipendently,
testing the consistency of our equations.
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Appendix A

Scattering length and zero range
approximation

We give here a quick overview of the scattering theory that is mostly relevant for
ultracold atomic systems. The analysis will be narrowed down to explain the meaning
of the scattering length in a typical cold atoms setting and the approximations that
lead to it. The presentation given here is mostly based on the books Leggett et al.
(2006) and Pethick and Smith (2008).

A.1 The dilute limit and the low energy limit for short range
interactions

Cold atoms interact with a potential V(r) that is in general a complicated function of
the separation r between the two atoms. However, in order to describe the scattering
processes that take place in a cold quantum gas, the long-distance (r→ ∞) behaviour
of such potential is sufficient Leggett (1998). The potential at long distances is well
described by the van der Waals interaction, which is a central potential of the
form −C6/r6. The parameter C6 defines a natural length scale that sets the range of the
interaction:

r0 =
(

2µC6/h̄2
)1/4

, (A.1)

where µ is the reduced mass of the two interacting atoms. The length scale r0 is called
the range of the potential. Beyond the length scale r0 the relative motion of two atoms
interacting is essentially free. We mention that the interatomic potential need not to be
of the van der Waals type in order for it to have a well defined range r0. The actual
requirement is that it is short ranged, i.e. that it decays faster than 1/r3.
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It turns out that in most cold atoms experiments the range of the potential is much
smaller than the typical interparticle distance. In fact, while the typical range of the
potential is of the order 50− 100Å the interparticle distance is usually bigger than
1000Å. This defines the regime in which we are interested, called the dilute limit,
where the density n of the atoms satisfies:

nr3
0 � 1 , (A.2)

In words, the average interparticle distance is much bigger than the range of the
potential.

Another condition that defines the dilute limit is a consequence of cold atoms
experiments being performed in the degenerate regime. In this regime the thermal de

Broglie wavelength λT =
√

2πh̄2/mkBT is also much bigger than the tipical
interparticle distance. Since kBT represents the typical energy of the states that have
an appreciable probability of being occupied, this implies that all such states will have
a wavevector satisfying:

kr0 � 1 (A.3)

Eq. (A.3) goes in the literature under the name of low energy limit.

We shall assume in what follows, as is customary, that both these limits are realised.

A.2 Low energy scattering and effective range expansion

In the region of space outside the range of the spherical potential, i.e. when the relative
distance between two atoms r is much bigger than the range of the potential r0, the
wavefunction describing the relative motion of the two particles is essentially that of a
free particles. The wavefunction at long distances from the range of the potential can
be separated into an incoming plane wave and an outgoing spherical wave:

ψ(r) = eik·r + f (θ)
eikr

r
(A.4)

where k is the relative momentum of the scattering particles and r is their relative
distance, while θ is the polar angle at which the incoming particle is deflected.

The function f (θ) can be expanded in partial waves, where each partial wave
corresponds to an outgoing wave of momentum l:

f (θ) =
∞

∑
l=0

(2l + 1) Pl(cos(θ)) fl (A.5)
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The partial wave expansion is extremely valuable to describe scattering at low
energies (i.e. kr0 � 1), where only the s-wave (l = 0) scattering amplitude needs to be
considered as higher partial waves are suppressed by powers of k2. The coefficients fl

can be expressed in terms of phase shifts δl which represent by how much each partial
wave is phase shifted by the interaction:

fl = (k cot(δl)− ik)−1 . (A.6)

In absence of interactions, the phase shifts are all δl = 0 and so is the scattering
amplitude. In the opposite case, the strongest dephasing happens for δl = π/2 when
the modulus of the scattering amplitude takes its maximum value and the interaction
is said to be resonant in that partial wave. This limit is called the unitary limit, as its
the maximum for the modulus of the scattering amplitude that is allowed by the
unitarity of time evolution.

The s-wave scattering amplitude satisfies in the dilute, low energy regime, the
so-called effective range expansion which allows to describe scattering at low energies
by means of few parameters:

fl=0(k)−1 + ik = −1
a
+ (reff/2)2k + ... (A.7)

where a and reff are called scattering length and effective range respectively. For most
interactions the parameters are of the same order of magnitude of the range of the
interactions r0, and the first term in the effective range expansion is sufficient at low
energies.

The unitary limit (or resonant interactions) is reached when a→ ∞, while for a = 0
the system is noninteracting and the interaction potential will produce no phase shift.

The effective range expansion is a crucial result for low energy scattering: combined
with Eqs. (A.4) and (A.5) it implies that the asymptotic wavefunction describing the
relative motion of two scattering particles is determined by few parameters regardless
of the details of the interaction potential. In the limit where only the first term in Eq.
(A.7) is retained, the wavefunction in Eq. (A.4) in the range r0 � r � k−1 takes the
very simple form:

ψ(r) ∝
(

1
a
− 1

r

)
. (A.8)

Thus the scattering length is the position outside the range of the potential at which
the wavefunction has a node, and as such it quantifies the “strength” of the scattering
process. When a > 0 the potential can be said to have pushed away the wavefunction
with respect to the non interacting case, while when a < 0 the wavefunction has been
pulled in. This is why it is often customary to call a potential with positive scattering
length repulsive and a potential with negative scattering length attractive. However,
one must keep in mind that this refers only to an effective description valid at low
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energies and not to the underlying potential. Indeed while a purely repulsive
potential can only have a positive scattering length, an attractive potential can have
both a positive and a negative scattering length.

The scattering length can be tuned in ultracold atoms experiments by means of a
magnetic field, exploiting an effect that goes under the name of Feshbach resonance
Feshbach (1962) (see e.g. Chin et al. (2010) for a review on the topic). The system can
then be controlled and interactions can be set to be in the weakly interacting limit, i.e.
when na3 � 1, or in the strongly interacting one, i.e. na3 � 1.

A.2.1 The zero range approximation

The effective range expansion shows that the scattering of particles at low energies
behaves the same regardless of the underlying potential, and is instead determined
only by the scattering length. Therefore we may choose scattering potentials that
make our analysis as simple as possible. An exemplary choice could be a square well
potential with range r0 with the boundary condition that the wave function and its
derivative are continuous at r = r0.

However, we might also take this approach to the extreme and consider a zero range
potential. This is called the zero range approximation and it consists in taking the
solution we obtain outside the range of the potential and extrapolating it inside it, but
forcing it to satisfy Eq. (A.8) as boundary condition at vanishing separation r. This
procedure thus effectively replaces the potential with a boundary condition which
depends on its scattering length Petrov (2013).

All in all, the Schrodinger equation for the relative motion of two particles interacting
with a potential V(r) is mapped into the Schrodinger equation of two free particles,
with their wavefunction satsifying the boundary condition:

(rψ(r))′

rψ(r)

∣∣∣
r=0

= −1
a

(A.9)

This boundary condition is called Bethe-Peierls boundary condition. It is used in
chapter 3 to solve the Schrodinger equation of the impurity interacting with the heavy
fermions.
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Appendix B

Experimental realization of the
periodically modulated quasicrystal

In this appendix we will briefly illustrate how the many-body experiment for the
periodically driven Aubry-André model was realized in Bordia et al. (2017).

The first section will explain how the optical lattice is generated. The second section
will illustrate the steps that were taken in order to realize the experiment.

The first section is a summary of what contained in Pitaevskii and Stringari (2016),
while the experimental procedure is taken from Bordia et al. (2017). They are
presented here for the convenience of the reader.

B.1 Realization of the optical lattice

In order to generate the lattice structure for the experiment, the interaction of atoms
with the electric field of a laser is exploited. This interaction can be treated in the
dipole approximation, as long as the wavelength of the laser is chosen to be much
larger than the typical atomic size. In this approximation the interaction energy
V(r, t)can be written:

V(r, t) = −d · E(r, t) , (B.1)

where d is the electric dipole operator for a single atom and E(r, t) is the plane wave
electric potential produced by the laser, namely:

E(r, t) = E(r)e−iωt + c.c (B.2)

This interaction induces an oscillating dipole polarization in the atoms, proportional
to the electric field:

〈d〉 = α(ω)
(
E(r)e−iωt + c.c

)
(B.3)
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The coefficient α(ω) is called dynamic polarizability, as it quantifies the susceptibility
of the dipole moment to a time dependent electric field that is polarising it.

The polarization causes a change in energy of the system (called Stark Shift) which can
be calculated from second-order perturbation theory. This change in energy can be
regarded as an effective potential which is felt by each atom and reads:

U(r) = −1
2

α(ω)〈E2(r, t)〉t (B.4)

where by 〈·〉t we indicate a time average.

The potential of Eq. (B.4) is valid under three assumptions: that perturbation theory is
applicable, that the time variations of the laser field are much faster than the typical
frequencies of atomic motion (justifying the time averaging) and that α(ω) is real. The
latter is valid if ω is not too close to resonances between atomic energy levels.

The trapping of atoms in an optical lattice can obtained thanks to this effect by
superimposing two counter propagating laser beams in a certain direction (say x),
producing a standing wave of the form:

E(r, t) = E cos(kx)e−iωt + c.c. (B.5)

and the effective potential becomes:

U(r) = −α(ω)E2 cos2(kx) (B.6)

Which corresponds to a periodic potential with spatial periodicity λ = 4π/k.

The sign of the polarizability is determined by the sign of the detuning δ = ω−ωR,
where ωR is the frequency of the atomic resonance closest to ω. This allows to decide
the sign of the potential, which will discriminate wether the atoms will be forced to
move towards region of high or low field.

In particular the potential will be attractive when ω is smaller than the frequency of
the closer resonance, and repulsive in the opposite case.

Optical traps are an useful alternative to magnetic traps. For example they are not
limited to specific magnetic states and so allow for the investigation of coexisting
multi-spin components. Moreover they allow to independently add a magnetic field
whose purpose is to tune the scattering length to a given value, by means of a
Feschbach resonance (see Pitaevskii and Stringari (2016)).



B.2. Experimental Sequence 93

B.2 Experimental Sequence

The experiment in Bordia et al. (2017) is realized with a Fermi gas of 40K(Potassium
40).

The 40K is sympathetically cooled (see Pitaevskii and Stringari (2016)) with the
bosonic 87Rb (Rubidium 87). Then the trapping potential is lowered to allow the
gravitational force to remove the bosonic gas, leaving only the Potassium 40. The
Fermi gas of 40K consists of an equal mixture of its two spin states, the lowest total
angular momentum states |F, mF〉 = |9/2,−9/2〉 and |F, mF〉 = |9/2,−7/2〉. After the
sympathetic cooling the gas is cooled further by evaporation to the temperature
T = 0.15TF, where TF is the Fermi temperature.

The gas is then loaded into a three dimensional optical lattice whose lattice potential is
extremely deep. More precisely, the depth of the confining potentials is set at 40E(i)

r for
all the directions, where E(i)

r = h2/(2mλ2
i ) is the recoil energy of the lattice with

wavelength λi. This allows to have a negligible tunneling while setting up the
experiment. The wavelength in the x direction is set at λ

(l)
x = 1064nm and

λy,z = 738.2nm in the other two directions. In order to avoid double occupancies of
single sites the interaction is made strong (U ≈ 140a0) and repulsive by means of a
Feschbach resonance.

Over the long lattice with wavelength λ
(l)
x a shorter superlattice of wavelength

λ
(s)
x = 532nm = λ

(l)
x /2 is superimposed. The result is the density wave pattern along

the x direction, described in chapter 2. The short lattice sets the lattice spacing, while
the long lattice imprints the density wave pattern. The interaction strength U is now
set at the desired value with a Feschbach resonance.

At this point the “long” lattice with wavelength λ
(l)
x is suppressed and the disordered

potential is generated by superimposing along the x direction a laser of wavelength
λd = 738nm. Then the ”short” lattice along the x direction is lowered to an intensity
8E(s)

r so that tunneling is restored and the dynamics is initiated, while the disorder
lattice is modulated by modulating its amplitude. The lattice depth along the y and z
directions is kept at 40Ey,z

r in order to make the system effectively one-dimensional.

As a last step the system is frozen by ramping up the depth of the long and the short
lattice to 20E(s)

r and 20E(l)
r respectively, so that the tunelling is suppressed.

Simultaneously the disordered potential (and its modulation) are switched off.

The number of atoms in the even and odd sites (and so the imbalance) are calculated
by a bandmapping procedure in time-of-flight imaging (Schreiber et al. (2015)).

A brief diagram of the full experiment is showed in B.1.
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FIGURE B.1: Experimental sequence for the measurement of the imbalance in the
driven Aubry-Andrè model, taken from Bordia et al. (2017). The horizontal axis is

not to scale.
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Appendix C

2-component Bose-Hubbard model

In this appendix we derive the drag in a 2-component Bose-Hubbard model following
two routes. One is the linear response formalism of chapter 4, the other allows to
compute the superfluid densities as derivatives of the energy.

C.1 Linear response on a lattice

In particular we derive the equations for the superfluid and normal stiffnesses in a
system lacking Galilean invariance, where one loses the normalization condition of
Eq. (4.4). The drag in the weakly interacting case is not enhanced in the Bose-Hubbard
model compared to the continuum case Linder and Sudbø (2009). The introduction of
the lattice can be interesting to reach regimes where the correlations are strong but the
condensate is still stable with respect to three-body losses Fukuhara et al. (2013).

We consider a weakly interacting Bose-Bose mixture of N bosons in a cubic lattice of
volume L3 with periodic boundary conditions, in the thermodynamic limit. We call l
the lattice spacing and I the total the number of sites. The tunneling coefficient t is the
same for both species. We recall the form of the Bose-Hubbard Hamiltonian
describing the system:

Ĥ = ĤA + ĤB + ĤAB , (C.1)

with

Hα =
L

∑
j=1

[
−
(

t̃αb†
j+1,αbj,α + h.c.

)
+

Uα

2
nj,α(nj,α − 1)

]
,

HAB = UAB

L

∑
j=1

nj,Anj,B , (C.2)
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where b†
j,α and bj,α are the bosonic creation annihilation operator respectively and

nj,α = b†
j,αbj,α is the number operator at site j for the species α = A, B.

From the tunneling coefficient t we can define the usual effective mass as
m∗ ≡ h̄2/(2tl2). The current density operator at a given site r on the cubic lattice is
defined as:

ĵα(r) = −i
t l

h̄L3 ∑
u
(b̂†

r,αb̂r+u,α − h.c.)u , (C.3)

where u is a lattice vector of unit length. The linear response treatment of the
three-fluid hydrodynamics in the case of a lattice is very similar to that of subsec. 4.3.1.
The difference is in the transformation law of the current operator and of the
Hamiltonian in presence of a vector potential A(r). The transformation for the
current, corresponding to Eq. (4.11) in the continuous model:

ĵα(r)→ ĵα(r)−∑
u

eα

mα

K̂u,α(r)
2t

Au(r) u , (C.4)

where K̂u,α(r) is the kinetic energy density operator for a species α along u directed
links, namely

K̂u,α(r) = −
t

L3 (b̂
†
r,αb̂r+u,α + h.c.) . (C.5)

For a system with discrete translational invariance we have that
〈
K̂u,α(r)

〉
= Ku,α. The

Hamiltonian gets transformed to (compare with Eq. (4.12)):

Ĥ → Ĥ − ∑
α=A,B

∑
r

eα

mα
ĵα(r) ·A(r)+

+ ∑
α=A,B

∑
r,u

e2
α

2mα

K̂u,α(r)
2t

A2(r) .
(C.6)

Applying linear response theory as in subsec. 4.3.1 we obtain:

−m∗2 lim
q→0

χT
jA,jB

(q) = ρAB , (C.7)

m∗
(
− 1

2t
〈K̂u,α〉 −m∗ lim

q→0
χT

jα,jα
(q)
)
= ραα , (C.8)

m∗2 ∑
α,β=A,B

lim
q→0

χT
jα,jβ

(q) = ρn . (C.9)

Eqs. (C.7), (C.8) and (C.9) are the discrete space analogous to Eqs. (4.18), (4.19) and
(4.20) of Sec. 4.3. The only difference is the operator K̂α/2t in place of the density of
particles, as a result of the different transformation rule of the current ĵ(r) and the
Hamiltonian Ĥ under a vector potential in presence of a lattice, Eqs. (C.4) and (C.6).
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We can compute the drag in the Bogoliubov approximation as we did in the
translational invariant system to obtain Eq. (4.44):

ρAB =
h̄2

8L3 ∑
k

(Ωd,k −Ωs,k)
2k2

x
(Ωd,k + Ωs,k)Ωs,kΩd,k

(
sin(kxl)

kxl

)2

, (C.10)

where Ωd,k and Ωs,k are the excitation energies of the density and spin degrees of
freedom respectively, namely:

Ωd(s),k =
√

ε(k)(ε(k) + U f ±UAB f ) , (C.11)

with ε(k) = 4t ∑i=x,y,z sin2(kil/2) and ν = N/I is the total filling fraction. In the limit
l → 0, Eq. (C.10) coincides with the result for the homogeneous system, Eq. (4.44). The
sum runs on the wavevectors of the first Brillouin zone- This result was already
obtained in Linder and Sudbø (2009) through a different method that is analogous in
lattice systems to the one used in Fil and Shevchenko (2005).

In chapter 5 the Bogoliubov result for the drag has been compared with a microscopic
calculation for a one-dimensional system. Interestingly Eq. (C.10) turns out to give a
reasonable estimate of the drag even in this case provided UAB > 0.

C.2 Alternative derivation: drag coefficient as a derivative of
the energy

FIGURE C.1: Sketch of the 2-component Bose-Hubbard ring with hopping parameters
t̃α = tαe−i2πφα/L, intra-species interactions Uα and inter-species interactions UAB. The

two fluxes φα pierce the ring and give rise to the superfluid currents jα.

For simplicity we will consider a 1-dimensional ring geometry as we will use this
derivation in chapter 5. Moreover, we take the lattice spacing l to be 1 in this case, as
we’re not interested in taking the continuum limit.



98 Chapter C. 2-component Bose-Hubbard model

We subject the 1 dimensional ring to a vector potential Aα(r) = Aα θ̂, where θ is the
radial unit vector. This corresponds to a magnetic flux φα piercing perpendicularly the
plane of the ring:

φα =
e

2πh̄

∮
Aα(r) · dl =

e
2πh̄

LAα (C.12)

This magnetic flux modifies the hopping parameter t by a phase factor, according to
the Peierls substitution:

t→ t̃α = t e−i2πφα/L (C.13)

We can now calculate the total superfluid currents in the ring induced by the vector
potential using the continuity equation:

∂ 〈nα〉
∂t

=
1
ih̄
〈[nα, H]〉 = 2t̃α

h̄

(
Im 〈b̂†

i+1,αb̂i,α〉 − Im 〈b̂†
i,αb̂i−1,α〉

)
, (C.14)

which yields:

Jα =
2t̃α

h̄
Im 〈b̂†

i+1,αb̂i,α〉 =
1

2πh̄
〈 ∂H

∂φα
〉 = 1

2πh̄
∂E
∂φα

, (C.15)

where in the last line we made use of the Hellmann-Feynman theorem.

The superfluid velocities of each species α read, according to Eq. 4.9:

v(s)α =
eAα

m∗
=

h̄
m∗

2πφα

L
. (C.16)

Using now the Andreev-Bashkin equation we can derive the expression for the
superfluid densities ραβ:

ραβ = lim
φα,φβ→0

Lm∗2

2πh̄
∂jα
∂φβ

= lim
φα,φβ→0

Lm∗2

(2πh̄)2

∂2E
∂φα∂φβ

. (C.17)

The relation between this expression and the linear response one is made apparent by
considering the magnetic fluxes φα as small perturbations and expanding the
Hamiltonian up to second order in the fluxes:

H → H + ∑
α

(
2πφα

L
Ĵα −

1
2

(
2πφα

L

)2

K̂α

)
(C.18)

Thus, applying second order perturbation theory, the energy variation
∆Eφα = Eφα − E0 gets two contributions:

∆E1 = −
(

2πφα

L

)2 (
−1

2
〈ψ0|K̂α|ψ0〉

)
(C.19)



C.2. Alternative derivation: drag coefficient as a derivative of the energy 99

and

∆E2 = −
(

2π

L

)2

φαφβ

(
−〈ψν| Ĵα|ψ0〉 〈ψ0| Ĵβ|ψν〉

Eν − E0
+ c.c.

)
(C.20)

And taking the derivatives with respect to the fluxes we get back Eqs. (C.7), (C.8) and
(C.9).
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Appendix D

Thermodynamic quantities for the
weakly interacting Bose-Bose
mixture

In this appendix we will derive quantities which were used in 4, sec 4.3.2. We consider
the case of a homogeneous weakly interacting Bose-Bose mixture. The energy of a
Bose-Bose mixture in the mean field approximation is just given by:

EMF

V
=

1
2

gAAn2
A +

1
2

gBBn2
B + gABnAnB . (D.1)

The lowest order beyond mean field correction to this energy, known as the
Lee-Huang-Yang term, can be found in Petrov (2013) and reads for equal masses
mA = mB = m and intraspecies coupling gAA = gBB = g:

ELHY/V =
8

15π2 m3/2 (gnA)
5/2 f

(
1,

g2
AB
g2 ,

nB

nA

)
(D.2)

with f (1, x, y) = ∑±
(

1 + y±
√
(1− y)2 + 4xy

)5/2
/4
√

2, a dimensionless function.

From equation (D.2) we can obtain the chemical potential µα = ∂E
∂Nα

of each species α.
In the Z2 symmetric case where µA = µB = µ we get:

µ = (g + gAB) n
(

1 +
2
3

√
na3B(η))

)
(D.3)

where η = |gAB|
g and:

B(η) =
8√

π(1 + η)

(
(1 + η)5/2 + (1− η)5/2

)
. (D.4)
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We can also derive the magnetic susceptibility χs =
∂2(E/V)

∂(nA−nB)2 , which reads:

χ−1
s = g

1− η

2

[
1 +
√

na3C(η)
]

(D.5)

where we defined the function

C(η) =
16

3
√

π

1 + η

η

(
(1 + η)3/2 − (1− η)3/2)

)
. (D.6)

These formulas have been used for the calculation of the beyond mean field correction
to the spin speed of sound in section 4.5.1.

For the case of the spin dipole oscillations we need instead to consider the trapped
case. In presence of harmonic trapping the chemical potential µ and the susceptibility
become position-dependent through the equilibrium density profile n(r). At mean
field level the latter reads:

n(r) =
2µTF

(g + gAB)

(
1− r2

R2
TF

)
(D.7)

where RTF =
√

2µTF
mω2

0
is the Thomas-Fermi radius and µTF the Thomas-Fermi chemical

potential. Imposing that the integrated density gives the total number of particles we
find:

RTF =

(
15N (g + gAB)

8πmω2
0

)1/5

, (D.8)

from which we can derive the chemical potential as a function of the total number of
particles, the trapping potential and the interactions.

The inclusion of beyond mean fields effects results in a correction in the value of µTF

and of the Thomas-Fermi radius RTF. The chemical potential at first order in the gas
parameter

√
n(0)a3 reads:

µ1
TF = µTF

(
1 +

π

16

√
n(0)a3B(η)

)
(D.9)

and as a consequence:

R1
TF = RTF

(
1 +

π

32

√
n(0)a3B(η)

)
. (D.10)



103

References

Dmitry A Abanin, Wojciech De Roeck, and François Huveneers. Theory of many-body
localization in periodically driven systems. Annals of Physics, 372:1–11, 2016.

Monika Aidelsburger, Marcos Atala, Sylvain Nascimbène, Stefan Trotzky, Y-A Chen,
and Immanuel Bloch. Experimental realization of strong effective magnetic fields in
an optical lattice. Physical review letters, 107(25):255301, 2011.

P. W. Anderson. Absence of diffusion in certain random lattices. Phys. Rev., 109:
1492–1505, Mar 1958. . URL
http://link.aps.org/doi/10.1103/PhysRev.109.1492.

A.F. Andreev and E.P. Bashkin. Three-velocity hydrodynamics of superfluid solutions.
Sov. Phys.-JETP, 42:164–167, Sep 1975. URL
http://jetp.ac.ru/cgi-bin/e/index/e/42/1/p164?a=list.

Neil W Ashcroft, N David Mermin, et al. Solid state physics, 1976.
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J. Struck, C. Ölschläger, M. Weinberg, P. Hauke, J. Simonet, A. Eckardt, M. Lewenstein,
K. Sengstock, and P. Windpassinger. Tunable gauge potential for neutral and

https://science.sciencemag.org/content/349/6250/842
https://books.google.it/books?id=let7wRir74MC
https://link.aps.org/doi/10.1103/PhysRevB.97.094517
https://link.aps.org/doi/10.1103/PhysRevLett.120.235301
https://link.aps.org/doi/10.1103/PhysRevLett.97.030401
https://link.aps.org/doi/10.1103/PhysRev.138.B979
https://link.aps.org/doi/10.1103/PhysRevB.99.094203
https://link.aps.org/doi/10.1103/PhysRevLett.82.2422
https://link.aps.org/doi/10.1103/PhysRevLett.77.2360


112 REFERENCES

spinless particles in driven optical lattices. Phys. Rev. Lett., 108:225304, May 2012. .
URL http://link.aps.org/doi/10.1103/PhysRevLett.108.225304.

L. Tanzi, C. R. Cabrera, J. Sanz, P. Cheiney, M. Tomza, and L. Tarruell. Feshbach
resonances in potassium bose-bose mixtures. Phys. Rev. A, 98:062712, Dec 2018. .
URL https://link.aps.org/doi/10.1103/PhysRevA.98.062712.

Paolo Tommasini, E. J. V. de Passos, A. F. R. de Toledo Piza, M. S. Hussein, and
E. Timmermans. Bogoliubov theory for mutually coherent condensates. Phys. Rev.
A, 67:023606, Feb 2003. . URL
https://link.aps.org/doi/10.1103/PhysRevA.67.023606.

K Winkler, G Thalhammer, F Lang, R Grimm, J Hecker Denschlag, AJ Daley,
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