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Abstract

We consider the computation of the critical constants c of a p-content (1 − α)-
confidence tolerance ellipse for bivariate and trivariate normal populations which are
probably the most used multivariate normal distributions in applications. There are
only approximation methods available in the statistical literature for computing c.
Without knowing the accurate value of c, it is impossible to assess the accuracy of
the approximation methods. In this paper, a new method is given to compute c. Al-
though the method is also based on Monte-Carlo simulation, it allows c to be computed
as accurate as required if the number of simulation replications is sufficiently large. The
R codes provided allow easy implementation of the method. Furthermore, the method
allows the accuracy of the available approximation methods for bivariate and trivariate
normal distributions to be assessed.

Keywords: Multivariate normal distribution; Monte-Carlo simulation; Tolerance regions.

1



1 Introduction

Tolerance intervals/regions were introduced first by Wilks (1941). Guttman (1970, 2006),
Hahn and Meeker (1991), Krishnamoorthy and Mathew (2009) and Meeker et al. (2017)
are excellent references on tolerance intervals/regions. The R package tolerance of Young
(2010, 2016) allows the computation of many tolerance intervals/regions. The focus of this
paper is on the tolerance regions for a multivariate normal population (cf. Krishnamoorthy
and Mathew, 2009, Chapter 9).

Let X = {x1, . . . ,xn} be a random sample from a population having a q-dimensional multi-
variate normal distribution N(µ,Σ), where both µ and Σ are unknown. Denote the sample
mean x̄ =

∑n
i=1 xi/n and the sample variance-covariance matrix V =

∑n
i=1(xi − x̄)(xi −

x̄)′/(n − 1). It is well known (cf. Anderson, 2003) that x̄ ∼ N(µ,Σ/n), (n − 1)V ∼
W (Σ, n− 1), and x̄ and V are independent; here W (Σ, n− 1) denotes the Wishart distribu-
tion (cf. Anderson, 2003, pp.255).

Let y be a future sample observation, independent of the random sample X, from the same
population N(µ,Σ). The p-content and (1 − α)-confidence ellipsoidal tolerance region for
the population is a subset in Rq of the form

Rc(X) =
{
x ∈ Rq : (x− x̄)′V −1(x− x̄) ≤ c

}
(1)

where c is a critical constant chosen so that

Px̄,V

{
Py|x̄,V{y ∈ Rc(X)} ≥ p

}
= 1− α , (2)

where the probability Py|x̄,V{·} is calculated with respect to y ∼ N(µ,Σ) conditional on
(x̄,V), and Px̄,V{·} is calculated with respect to (x̄,V) whose distributions are specified in
the last paragraph; see Krishnamoorthy and Mathew (2009, Section 9.2) for more details.

To the best of our knowledge, the only available p-content and (1− α)-confidence tolerance
region specifically for N(µ,Σ) with q ≥ 2 is of the ellipsoidal form in (1). The central
ellipsoidal tolerance region of Dong and Mathew (2015) is conservative, i.e. the probability
on the left side of the equation in (2) is strictly larger than 1− α.

One key factor in the choice of the Rc(X) in (1) is that the probability expression on the
left-side of the equation in (2) does not depend on the unknown µ or Σ, which is clear from
(3) below. But even in this case the computation of c is very challenging; see, for example,
Krishnamoorthy and Mathew (1999, 2009), Krishnamoorthy and Mondal (2006), and Mbodj
and Mathew (2015). All these methods involve approximation, on which more details are
given in Section 2 below. Without knowing the accurate value of c, it is impossible to assess
the accuracy of these approximation methods.

In this paper, a new method is given to computer accurately the critical constant c in (1) for
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q = 2 or 3, i.e. for the bivariate or trivariate normal distributions. Bivariate normal distri-
bution is the gateway to a general multivariate normal distribution and probably the most
frequently used multivariate normal distribution in applications; see e.g. Kotz, Balakrishnan
and Johnson (2000, pp. 251-309). Due to the importance of bivariate and trivariate normal
distributions and a central role played by ellipsoidal tolerance regions for multivariate normal
distributions, the new method is an important contribution to the construction of ellipsoidal
tolerance regions for bivariate and trivariate normal distributions. The new method can
easily be used with the R codes provided. It also allows the accuracy of the approximation
methods for at least bivariate and trivariate normal distributions to be assessed.

The paper is organized as follows. Section 2 gives the new method for computing the critical
constant c. Section 3 studies the computational accuracy of the new method and assesses
the accuracy of two approximation methods. An illustrative example is given in Section 4.
Finally the paper closes with a brief discussion in Section 5.

2 Computation of the critical constant c

First note that

(y − x̄)′V −1(y − x̄) = (n− 1)

(
u− z√

n

)′
Λ−1

(
u− z√

n

)

where u = Σ−
1
2 (y−µ) ∼ N(0, I), z =

√
nΣ−

1
2 (x̄−µ) ∼ N(0, I) and Λ = Σ−

1
2 (n−1)VΣ−

1
2 ∼

W (I, n− 1) are independent. It follows immediately that the equation in (2) can be written
as

Pz,Λ

{
Pu|z,Λ

{(
u− z√

n

)′
Λ−1

(
u− z√

n

)
≤ c

n− 1

}
≥ p

}
= 1− α , (3)

where the probability Pu|z,Λ{·} is calculated with respect to u ∼ N(0, I) conditional on
(z,Λ), and Pz,Λ{·} is calculated with respect to (z,Λ).

We use the following Monte-Carlo simulation method to compute the c from the equation in
(3).

• Step 1: simulate one (z,Λ) from the distributions given in the last paragraph: z ∼
N(0, I), Λ ∼ W (I, n− 1), and z and Λ are independent.

• Step 2: given the simulated (z,Λ), solve c from the equation

Pu|z,Λ

{(
u− z√

n

)′
Λ−1

(
u− z√

n

)
≤ c

n− 1

}
= p (4)
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• Step 3: repeat Steps 1 and 2 for a large number of L times, L = 100, 000 say, to get
the corresponding c1, . . . , cL; order these values as c[1] ≤ · · · ≤ c[L] and use c[〈(1−α)L〉]
as the c that solves the equation in (3). Here 〈(1 − α)L〉 denotes the integer part of
(1− α)L.

The key idea of this method is to use the sample quantile c[〈(1−α)L〉] to approximate the
population quantile c, and it is well known (cf. Serfling, 1980) that c[〈(1−α)L〉] converges
almost surely to c as L → ∞. Hence c[〈(1−α)L〉] can be regarded as accurate so long as the
number of simulations L is large enough. The accuracy of c for a finite L can be assessed in
different ways; see e.g. Liu (2010, pp. 243-245) and Section 3 below.

If one uses, in Step 2, an inner loop of Monte-Carlo simulation to compute an approximation
ci to the c that solves the equation in (4), which is used in Krishnamoorthy and Mathew
(1999), then the computation is very time-consuming and the resultant critical constant has
a large variance and so is not accurate; see Krishnamoorthy and Mathew (2009, Section 9.4,
pp.232-233). Note from the expression (5) below that the probability in (4) is related to
the cumulative distribution function of a linear combination of independent non-central chi-
square random variables. Krishnamoorthy and Mondal (2006) have proposed to compute an
approximation ci to the value of c in Step 2 by using the analytical approximation of Imhof
(1961) to the cumulative distribution function of a linear combination of independent non-
central chi-square random variables. This method will be denoted as KM hereafter. Various
other analytical approximations have also been proposed, but KM method is recommended
in the R package tolerance of Young (2010). Mbodj and Mathew (2015) have proposed
to compute another approximation ci to the value of c in Step 2 by using the analytical
approximation of Liu et al. (2009) instead of the analytical approximation of Imhof (1961).
This method will be denoted as MM henceforth. While the computation times of both KM
and MM are reduced substantially due to the analytical approximations used, the resultant
critical constant c is not guaranteed to converge to the exact critical constant even when the
number of simulations L→∞. There is no method to compute the exact critical value c for
q ≥ 2 and so little is known about accuracy of the KM and MM methods even when q = 2
and L is very large, say, L = 1, 000, 000. Our new approach given below is to compute the c
in Step 2 by solving the equation in (4) numerically.

For Step 1, one can easily simulate one z ∼ N(0, I). To simulate one Λ from W (I, n − 1),
we use the Bartlett decomposition (cf. Smith and Hocking, 1972, and the references therein)
in the following way. Step (1a): form a q × q matrix G with all its lower triangle elements
gij = 0 (i > j), all its upper triangle elements gij (i < j) being independent N(0, 1) random

variables, and its i-th diagonal element gii =
√
χ2
n−i (i = 1, . . . , q) where χ2

n−1, . . . , χ
2
n−q are

independent chi-square random variables independent of the N(0, 1) random variables gij.
Step (1b): set Λ = G′G which has the required Wishart distribution W (I, n− 1).

For Step 2, we need to compute the probability in (4) for a given c > 0 and the simulated
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(z,Λ). Let Q be an orthogonal matrix such that Λ−1 = Q′diag{λ1, . . . , λq}Q. Then the
probability in (4) can be written as

Pv

{
(v −w)′ diag{λ1, . . . , λq} (v −w) ≤ c

n− 1

}
(5)

where v = Qu ∼ N(0, I) and w = Qz/
√
n = (w1, . . . , wq)

′.

For q = 2, direct algebraic manipulation shows the probability in (5) can be written as

∫ w1+
√
c/[(n−1)λ1]

w1−
√
c/[(n−1)λ1]

φ(v1)Φ
(
w2 ±

√
[c/(n− 1)− λ1(v1 − w1)2] /λ2

)
dv1 (6)

where φ(·) and Φ(·) denote respectively the pdf and cdf of N(0, 1), and Φ(a± b) = Φ(a+ b)−
Φ(a− b). For a given c, this probability can easily be computed from expression (6) by using
one-dimensional numerical quadrature, for example, the R function integrate is used in our
R codes. Furthermore, note this probability is clearly monotone increasing in c. Hence the
unique solution c of the equation in (4) can easily be computed by using a numerical searching
algorithm, for example, the bi-section method is used in our codes. From our experience, the
computation of one c in Step 2 takes only a small fraction of a second on an ordinary PC;
see more details on computation times in the next section.

Similarly, for q = 3, the probability in (5) can be written as

∫ w1+
√
c/[(n−1)λ1]

w1−
√
c/[(n−1)λ1]

φ(v1)
∫ w2+

√
1
λ2

[c/(n−1)−λ1(v1−w1)2]

w2−
√

1
λ2

[c/(n−1)−λ1(v1−w1)2]
φ(v2) ·

Φ

(
w3 ±

√
1

λ3

[c/(n− 1)− λ1(v1 − w1)2 − λ2(v2 − w2)2]

)
dv2dv1 (7)

For a given c, this probability can easily be computed from expression (7) by using two-
dimensional numerical quadrature. Hence the unique solution c of the equation in (4) can
be computed in a similar way as for q = 2 above. From our experience, the computation of
one c in Step 2 still takes only a fraction of a second on the same PC, but about 5 times of
the computation time for q = 2 due to the two-dimensional numerical quadrature involved;
see more details in the next section.

For q = 4, it is clear that the probability in (5) can be expressed as a three-dimensional
integral. As we need to solve c from the equation in (4), involving three-dimensional numerical
quadrature, for each of the L simulation replications, this takes too long time on an ordinary
PC. Hence we focus on q = 2 and 3 in this paper.
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3 Assessment of the methods

It is clear from (3) that the critical constant c depends only on 1− α, p, n and q.

3.1 For bivariate normal distribution with q = 2

For q = 2, the computation of one c based on L = 1, 000, 000 simulations takes about 3754
seconds (or 63 minutes) on an ordinary Window’s PC (Intel(R) Core(TM) i5-8265U CPU
1.60GHz 1.80GHz, RAM 8.0 GB). The computation based on L = 100, 000 simulations takes
about 375 seconds. This agrees with the intuition that the computation time of one c is
proportional to the number of simulations L. One can download the R code CritConst2F.R

from http://www.personal.soton.ac.uk/wl/Bi-Tri-Norm-Toler-Ellip/ for computing
the c for given q = 2, 1− α, p and n.

To assess the Monte-Carlo simulation accuracy of the c based on L simulations for given
(p, 1 − α, n), we have computed 20 values of c based on L = 1, 000, 000 simulations for
given (p, 1 − α, n) = (0.90, 0.95, 30) using 20 different random seeds, which are given by
7.43677, 7.43439, 7.42948, 7.43499, 7.43038, 7.43930, 7.43529, 7.43529, 7.43339, 7.43231,
7.43648, 7.42651, 7.43350, 7.43960, 7.43365, 7.43231, 7.43127, 7.43514, 7.43871, 7.43231.
These twenty values can be thought as a random sample from the population of possible c
values based on L = 1, 000, 000 simulations for given (p, 1 − α, n) = (0.90, 0.95, 30). The
sample mean and standard deviation are given by 7.434 and 0.0033 respectively. Hence the
possible value of c is most likely within the range 7.434± 3× 0.0033 from the 3-sigma rule.
This indicates that the c value computed using L = 1, 000, 000 in this case is most likely to
be accurate to ±0.0099 in different simulation runs.

We have also tried L = 100, 000 and the corresponding sample standard deviation based on
20 c-values (using 20 different random seeds) is close to

√
10× 0.0033 = 0.0104. This agrees

with the known result (cf. Serfling, 1980, or Liu et al., 2005) that the standard deviation of
the sample quantile is proportional to 1/

√
L as L→∞.

It must be emphasized that the Monte-Carlo simulation accuracy can be improved by in-
creases the value of L. When the value of L becomes large enough then the c value of our
method approaches the exact critical constant required. In this sense, our method is exact.

From the various other methods proposed in the statistical literature for computing c, the
KM method of Krishnamoorthy and Mondal (2006) is the method that is recommended by
Krishnamoorthy and Mathew (2009, Chapter 9, Sections 9.3 and 9.4) and Young’s R package
tolerance. The c-values of KM method are tabulated in Krishnamoorthy and Mathew (2009,
Appendix B, Table B16), using L = 100, 000. KM method is implemented in the function
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mvtol.region of Young’s R package tolerance which allows a user to set the value of L. As
pointed out in Section 2, KM method computes an analytical approximation, rather than an
exact numerical solution as our method, to the value of c from the equation in (4). Mbodj
and Mathew (2015) have observed that a method that involves an analytical approximation
such as KM method is unlikely to work for all values of (p, 1− α, n). MM method of Mbodj
and Mathew (2015) is similar to KM method but using a different analytical approximation.
Since our method is accurate for a sufficiently large L, we can assess the accuracy of KM and
MM methods for q = 2.

Table 1: The c of the new (top), KM (middle) and MM (bottom) methods for q = 2.

p = 0.90 p = 0.95 p = 0.99
1− α 1− α 1− α

n 0.90 0.95 0.99 0.90 0.95 0.99 0.90 0.95 0.99
5 New 41.131 67.490 203.831 57.003 93.896 284.790 95.387 157.704 480.793

KM 41.195 67.333 204.042 56.991 93.620 284.921 95.320 157.610 481.706
MM 41.221 67.581 203.847 57.063 93.945 284.804 95.337 157.664 480.781

7 New 19.783 27.039 53.962 27.190 37.377 75.311 45.197 62.507 126.896
KM 19.856 27.171 54.162 27.227 37.510 75.470 45.107 62.599 127.121
MM 19.878 27.136 54.030 27.287 37.467 75.348 45.171 62.469 126.808

10 New 12.586 15.594 24.723 17.109 21.334 34.245 28.157 35.384 57.378
KM 12.701 15.711 24.845 17.249 21.469 34.343 28.207 35.420 57.467
MM 12.679 15.692 24.832 17.214 21.443 34.344 28.154 35.367 57.346

15 New 9.194 10.630 14.422 12.345 14.352 19.711 20.051 23.489 32.719
KM 9.274 10.746 14.582 12.463 14.512 19.899 20.101 23.579 32.843
MM 9.266 10.716 14.528 12.445 14.461 19.834 20.066 23.502 32.712

30 New 6.832 7.433 8.786 9.036 9.858 11.728 14.350 15.738 18.943
KM 6.872 7.482 8.861 9.100 9.937 11.849 14.378 15.776 18.991
MM 6.873 7.486 8.854 9.103 9.939 11.834 14.378 15.766 18.969

50 New 6.046 6.419 7.212 7.941 8.442 9.520 12.457 13.283 15.103
KM 6.068 6.446 7.246 7.981 8.491 9.580 12.479 13.312 15.109
MM 6.071 6.448 7.253 7.985 8.493 9.592 12.482 13.311 15.135

To get some idea about the Monte-Carlo simulation accuracy of the c’s of KM and MM meth-
ods based on L simulations, we have also computed 20 values of c using KM and MM methods
based on L = 1, 000, 000 simulations for given (p, 1− α, n) = (0.90, 0.95, 30) using 20 differ-
ent random seeds. Based on these 20 values, we have the sample (mean, standard deviation)
given by (7.485, 0.0033) and (7.483, 0.0033) for KM and MM methods respectively. Hence the
simulation accuracies of the c’s of the new, KM and MM methods based on L = 1, 000, 000
simulations are approximately the same. It is also noteworthy that the sample means of KM
and MM are very close to each other, and only slightly larger than that of the new method.
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It must be pointed out that even if there is no Monte-Carlo simulation error (i.e., when
L→∞), the c’s of KM and MM methods may not be equal to the exact critical constant that
solves the equation in (3) due to the analytical approximations used. This is a fundamental
difference between the new method and KM and MM methods.

Next we compare the c-values of KM, MM and new methods for various configurations
of (p, 1 − α, n) to assess to what extend they differ by using L = 1, 000, 000 so that the
simulation errors of all three methods are quite small and so negligible as observed above.
Table 1 provides the c-values for small and moderate sample sizes n, the situations identified
by Mbodj and Mathew (2015) that KM and MM may give less accurate critical constants
due to the approximations used.

It is clear from Table 1 (and larger sample sizes we have also tried, e.g. n = 150) that the
c-values of KM and MM methods are very close to each other, and only slightly larger than
that of the new method. This shows that both KM and MM methods produce quite accurate
approximations to the exact critical constant c and there is little difference between KM and
MM methods for the bivariate normal distribution.

3.2 For trivariate normal distribution with q = 3

The R code CritConst3.R for computing the critical constant c for given 1−α, p and n (with
q = 3) is available at http://www.personal.soton.ac.uk/wl/Bi-Tri-Norm-Toler-Ellip/.
The computation of one c based on L = 100, 000 simulations takes about 1750 seconds on
the same PC, which is about five times of the computation time for q = 2. This is because
double numerical quadrature is required for q = 3 while only single numerical quadrature is
used for q = 2.

To get some idea about the simulation accuracy of the c based on L simulations for given
(p, 1− α, n), we have computed 20 values of c based on L = 100, 000 simulations for (p, 1−
α, n) = (0.90, 0.95, 30) using 20 different random seeds, which have the sample mean and
standard deviation given by 10.182 and 0.0125 respectively. Hence the possible values of c
are most likely within the range 10.182± 3× 0.0125 from the 3-sigma rule. If L = 1, 000, 000
is used then the sample standard deviation is expected to be about 0.0125/

√
10 = 0.0040.

For the simulation accuracy of the c’s of KM and MM methods, we have also computed 20
values of c using KM and MM methods based on L = 100, 000 simulations for (p, 1−α, n) =
(0.90, 0.95, 30) using 20 different random seeds. Based on these 20 values, we have the sample
(mean, standard deviation) given by (10.280, 0.0157) and (10.282, 0.0118) for KM and MM
methods respectively. Hence the simulation accuracies of the c’s of the new, KM and MM
methods based on L = 100, 000 simulations are approximately the same.
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These results also indicate that the c-values of KM and MM methods are very close to each
other and only slightly larger than the c value of the new method. This observation is also
borne out by the other configurations of (p, 1− α, n) we have tried using L = 100, 000.

4 Examples

In this section, we first use the Lumber data, originally from Johnson and Wichern (1992,
Table 5.6) and used also in Krishnamoorthy and Mathew (2009, Example 9.1, Table 9.2),
to illustrate the tolerance ellipse. The data contain a sample of 30 observations on stiffness
(X1) and bending strength (X2), in units of pounds per square inch, of a particular grade of
lumber.

Some exploratory check of the bivariate normality assumption indicates that the normality
assumption is tenable; see Krishnamoorthy and Mathew (2009, Example 9.1). The summary
statistics are

x̄ =

(
1860.
8354.

)
, V =

(
124049.8 361673.4
361673.4 3486334.0

)
.

For (p, 1− α, n) = (0.90, 0.95, 30) and q = 2, the critical constant c computed by our R code
is 7.433 and so the tolerance ellipse is given by

Rc(X) =
{
x = (x1, x2)′ : (x− x̄)′V −1(x− x̄) ≤ 7.433

}
. (8)

This tolerance ellipse is plotted in Figure 1, with the n = 30 sample observations represented
by the crosses, and the centre of the ellipse marked by a diamond and letter S. Hence, with
confidence level 1 − α = 0.95 about the randomness in the sample of 30 observations used
to construct this ellipse, at least 100p% = 90% of the N(µ,Σ) population is included in this
ellipse.

For Example 1 given in Mbodj and Mathew (2015, pp.43) with (p, 1−α, n) = (0.95, 0.95, 30)
and q = 2, the critical constant c is computed to be 9.858, 9.937 and 9.939 in Table 1 by the
new, KM and MM methods respectively based on L = 1, 000, 000 simulations. There seems
to be a typo with the c-value 8.94 given in that paper.

For Example 2 given in Mbodj and Mathew (2015, pp.44) with (p, 1−α, n) = (0.95, 0.95, 284)
and q = 3, the critical constant c is computed to be 8.657, 8.669 and 8.670 by the new, KM
and MM methods respectively based on L = 100, 000 simulations. There seems to be a typo
with the c-value 7.69 given in that paper.
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Figure 1: The tolerance ellipse and the observed sample data.
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5 Discussion

Bivariate and trivariate normal distributions are probably the most frequently used multi-
variate distributions, and tolerance regions have wide applications (cf. Meeker et al., 2017,
and Krishnamoorthy and Mathew, 2009). Ellipsoidal tolerance regions play a special role
for multivariate normal distributions since they do not depend on the unknown population
mean or population covariance matrix. But even for the tolerance ellipses of bivariate or
trivariate normal populations, only approximate methods are available in the literature for
computing the critical constant c. Furthermore, without knowing the accurate value of c, it
is impossible to judge the accuracy of the available approximation methods.

In this paper a new method of computing c is proposed. This method is accurate in the sense
that the critical constant c can be computed as close to the exact value as one requires if
the number of simulations L is set to be sufficiently large. The available R code allows easy
implementation of the new method.

This new method also allows one to assess the accuracy of the available approximation
methods for bivariate and trivariate normal distributions. The conclusion from our numerical
investigation is that the c-values of KM and MM methods are only slightly conservative and
there is little difference between the c-values of KM and MM methods.

Computation of exact tolerance ellipses for multivariate normal distribution of dimension
four or larger is more complicated but warrants further research.

Acknowledgements: We thank the two anonymous referees for very helpful comments and
suggestions.
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