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ABSTRACT
Weconsider the computationof the critical constants cof ap-content
(1 − α)-confidence tolerance ellipse for bivariate and trivariate nor-
mal populations which are probably the most used multivariate
normal distributions in applications. There are only approximation
methods available in the statistical literature for computing c. With-
out knowing the accurate value of c, it is impossible to assess the
accuracy of the approximationmethods. In this paper, a newmethod
is given to compute c. Although themethod is also based onMonte-
Carlo simulation, it allows c to be computed as accurate as required
if the number of simulation replications is sufficiently large. The R
codes provided allow easy implementation of the method. Further-
more, the method allows the accuracy of the available approxima-
tion methods for bivariate and trivariate normal distributions to be
assessed.
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1. Introduction

Tolerance intervals/regions were introduced first byWilks [1]. Refs. [2–6] are excellent ref-
erences on tolerance intervals/regions. The R package tolerance of Young [7,8] allows
the computation of many tolerance intervals/regions. The focus of this paper is on the
tolerance regions for a multivariate normal population (cf. Ref. [5], Chapter 9).

Let X = {x1, . . . , xn} be a random sample from a population having a q-dimensional
multivariate normal distribution N(µ,�), where both µ and � are unknown. Denote the
sample mean x̄ = ∑n

i=1 xi/n and the sample variance–covariance matrix V = ∑n
i=1(xi −

x̄)(xi − x̄)′/(n − 1). It is well known (cf. Ref. [9]) that x̄ ∼ N(µ,�/n), (n − 1)V ∼
W(�, n − 1), and x̄ and V are independent; here W(�, n − 1) denotes the Wishart
distribution (cf. Ref. [[9], p. 255]).

Let y be a future sample observation, independent of the random sample X, from the
same population N(µ,�). The p-content (1 − α)-confidence ellipsoidal tolerance region
for the population is a subset in Rq of the form

Rc(X) = {
x ∈ Rq : (x − x̄)′V−1(x − x̄) ≤ c

}
, (1)
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where c is a critical constant chosen so that

Px̄,V
{
Py|x̄,V{y ∈ Rc(X)} ≥ p

} = 1 − α, (2)

where the probability Py|x̄,V{·} is calculated with respect to y ∼ N(µ,�) conditional on
(x̄,V), and Px̄,V{·} is calculated with respect to (x̄,V) whose distributions are specified in
the last paragraph; see Ref. [5], Section 9.2 for more details.

To the best of our knowledge, the only available p-content (1 − α)-confidence tolerance
region specifically for N(µ,�) with q ≥ 2 is of the ellipsoidal form in (1). The central
ellipsoidal tolerance region of Dong and Mathew [10] is conservative, i.e. the probability
on the left side of Equation (2) is strictly larger than 1 − α.

One key factor in the choice of the Rc(X) in (1) is that the probability expression on
the left side of Equation (2) does not depend on the unknown µ or �, which is clear
from (3). But even in this case, the computation of c is very challenging; see, for exam-
ple, Refs. [5,11–13]. All these methods involve approximation; more details are given in
Section 2. Without knowing the accurate value of c, it is impossible to assess the accuracy
of these approximation methods.

In this paper, a new method is given to compute accurately the critical constant c in (1)
for q = 2 or 3, i.e. for the bivariate or trivariate normal distributions. Bivariate normal
distribution is the gateway to a general multivariate normal distribution and probably the
most frequently used multivariate normal distribution in applications; see, e.g. Ref. [[14],
p. 251–309]. Due to the importance of bivariate and trivariate normal distributions and a
central role played by ellipsoidal tolerance regions for multivariate normal distributions,
the new method is an important contribution to the construction of ellipsoidal tolerance
regions for bivariate and trivariate normal distributions. The new method can easily be
used with the R codes provided. It also allows the accuracy of the approximation methods
for at least bivariate and trivariate normal distributions to be assessed.

The paper is organized as follows. Section 2 gives the new method for computing the
critical constant c. Section 3 studies the computational accuracy of the new method and
assesses the accuracy of two approximation methods. An illustrative example is given in
Section 4. Finally, the paper closes with a brief discussion in Section 5.

2. Computation of the critical constant c

First note that

(y − x̄)′V−1(y − x̄) = (n − 1)
(
u − z√

n

)′
�−1

(
u − z√

n

)
,

where u = �−(1/2)(y − µ) ∼ N(0, I), z = √
n�−(1/2)(x̄ − µ) ∼ N(0, I) and � =

�−(1/2)(n − 1)V�−(1/2) ∼ W(I, n − 1) are independent. It follows immediately that
Equation (2) can be written as

Pz,�
{
Pu|z,�

{(
u − z√

n

)′
�−1

(
u − z√

n

)
≤ c

n − 1

}
≥ p

}
= 1 − α, (3)

where the probability Pu|z,�{·} is calculated with respect to u ∼ N(0, I) conditional on
(z,�), and Pz,�{·} is calculated with respect to (z,�).
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We use the following Monte-Carlo simulation method to compute the c from
Equation (3).

• Step 1: simulate one (z,�) from the distributions given in the last paragraph: z ∼
N(0, I), � ∼ W(I, n − 1), and z and � are independent.

• Step 2: given the simulated (z,�), solve c from the equation

Pu|z,�
{(

u − z√
n

)′
�−1

(
u − z√

n

)
≤ c

n − 1

}
= p. (4)

• Step 3: repeat Steps 1 and 2 for a large number of L times, say L = 100, 000, to get the
corresponding c1, . . . , cL; order these values as c[1] ≤ · · · ≤ c[L] and use c[〈(1−α)L〉] as
the c that solves Equation (3). Here, 〈(1 − α)L〉 denotes the integer part of (1 − α)L.

The key idea of this method is to use the sample quantile c[〈(1−α)L〉] to approximate the
population quantile c, and it is well known (cf. Ref. [15]) that c[〈(1−α)L〉] converges almost
surely to c as L → ∞. Hence, c[〈(1−α)L〉] can be regarded as accurate so long as the number
of simulations L is large enough. The accuracy of c for a finite L can be assessed in different
ways; see, e.g. Ref. [[16], p. 243–245] and Section 3.

If one uses, in Step 2, an inner loop of Monte-Carlo simulation to compute an approxi-
mation ci to the c that solves Equation (4), which is used in Ref. [11], then the computation
is very time-consuming and the resultant critical constant has a large variance and so is
not accurate; see Ref. [[5], Section 9.4, p. 232–233]. Note from the expression (5) that the
probability in (4) is related to the cumulative distribution function of a linear combination
of independent non-central chi-square random variables. Krishnamoorthy and Mondal
[12] have proposed to compute an approximation ci to the value of c in Step 2 using the
analytical approximation of Imhof [17] to the cumulative distribution function of a linear
combination of independent non-central chi-square random variables. This method will
be denoted as KM hereafter. Various other analytical approximations have also been pro-
posed, but the KM method is recommended in the R package tolerance of Ref. [7].
Mbodj and Mathew [13] have proposed to compute another approximation ci to the value
of c in Step 2 using the analytical approximation of Liu et al.[18] instead of the analytical
approximation of Imhof [17]. This method will be denoted as MM henceforth. While the
computation times of both KM and MM are reduced substantially due to the analytical
approximations used, the resultant critical constant c is not guaranteed to converge to the
exact critical constant even when the number of simulations L → ∞. There is no method
to compute the exact critical value c for q ≥ 2 and so little is known about the accuracy of
the KM and MM methods even when q = 2 and L is very large, say L = 1, 000, 000. Our
new approach given below is to compute the c in Step 2 by solving Equation (4) numerically.

For Step 1, one can easily simulate one z ∼ N(0, I). To simulate one� fromW(I, n − 1),
we use the Bartlett decomposition (cf. Ref. [19] and the references therein) in the following
way. Step (1a): form a q × qmatrixGwith all its lower triangle elements gij = 0 (i>j), all its
upper triangle elements gij (i<j) being independent N(0, 1) random variables and its ith

diagonal element gii =
√

χ2
n−i (i = 1, . . . , q) where χ2

n−1, . . . ,χ
2
n−q are independent chi-

square random variables independent of the N(0, 1) random variables gij. Step (1b): set
� = G′G which has the required Wishart distributionW(I, n − 1).
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For Step 2, we need to compute the probability in (4) for a given c>0 and the simulated
(z,�). Let Q be an orthogonal matrix such that �−1 = Q′diag{λ1, . . . , λq}Q. Then the
probability in (4) can be written as

Pv
{
(v − w)′ diag{λ1, . . . , λq} (v − w) ≤ c

n − 1

}
, (5)

where v = Qu ∼ N(0, I) and w = Qz/
√
n = (w1, . . . ,wq)

′.
For q = 2, direct algebraicmanipulation shows that the probability in (5) can be written

as ∫ w1+
√

c/[(n−1)λ1]

w1−
√

c/[(n−1)λ1]
φ(v1)�

(
w2 ±

√[
c/(n − 1) − λ1(v1 − w1)2

]
/λ2

)
dv1, (6)

where φ(·) and �(·) denote, respectively, the pdf and cdf of N(0, 1), and �(a ± b) =
�(a + b) − �(a − b). For a given c, this probability can easily be computed from
expression (6) using one-dimensional numerical quadrature, for example, the R function
integrate is used in our R codes. Furthermore, note this probability is clearly mono-
tone increasing in c. Hence the unique solution c of Equation (4) can easily be computed
using a numerical searching algorithm, for example, the bi-section method is used in our
codes. From our experience, the computation of one c in Step 2 takes only a small fraction
of a second on an ordinary PC; see more details on computation times in the next section.

Similarly, for q = 3, the probability in (5) can be written as
∫ w1+

√
c/[(n−1)λ1]

w1−
√

c/[(n−1)λ1]
φ(v1)

∫ w2+
√

1
λ2

[c/(n−1)−λ1(v1−w1)2]

w2−
√

1
λ2

[c/(n−1)−λ1(v1−w1)2]
φ(v2)

�

(
w3 ±

√
1
λ3

[
c/(n − 1) − λ1(v1 − w1)2 − λ2(v2 − w2)2

])
dv2 dv1. (7)

For a given c, this probability can easily be computed from expression (7) using two-
dimensional numerical quadrature. Hence, the unique solution c of Equation (4) can be
computed in a similar way as for q = 2 above. From our experience, the computation of
one c in Step 2 still takes only a fraction of a second on the same PC, but about 5 times of the
computation time for q = 2 due to the two-dimensional numerical quadrature involved;
see more details in the next section.

For q = 4, it is clear that the probability in (5) can be expressed as a three-dimensional
integral. As we need to solve c from Equation (4) involving three-dimensional numerical
quadrature, for each of theL simulation replications, this takes too long time on an ordinary
PC. Hence, we focus on q = 2 and 3 in this paper.

3. Assessment of themethods

It is clear from (3) that the critical constant c depends only on 1 − α, p, n and q.

3.1. For bivariate normal distributionwith q = 2

For q = 2, the computation of one c based on L = 1, 000, 000 simulations takes about
3754 s (or 63 min) on an ordinary Window’s PC (Intel(R) Core(TM) i5-8265U CPU
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with 1.60GHz, 1.80GHz, RAM 8.0GB). The computation based on L = 100, 000 sim-
ulations takes about 375 s. This agrees with the intuition that the computation time of
one c is proportional to the number of simulations L. One can download the R code
CritConst2F.R from http://www.personal.soton.ac.uk/wl/Bi-Tri-Norm-Toler-Ellip/
for computing the c for given q = 2, 1 − α, p and n.

To assess theMonte-Carlo simulation accuracy of the c based on L simulations for given
(p, 1 − α, n), we have computed 20 values of c based on L = 1, 000, 000 simulations for
given (p, 1 − α, n) = (0.90, 0.95, 30) using 20 different random seeds, which are given by
7.43677, 7.43439, 7.42948, 7.43499, 7.43038, 7.43930, 7.43529, 7.43529, 7.43339, 7.43231,
7.43648, 7.42651, 7.43350, 7.43960, 7.43365, 7.43231, 7.43127, 7.43514, 7.43871, and
7.43231. These 20 values can be thought as a random sample from the population of possi-
ble c values based on L = 1, 000, 000 simulations for given (p, 1 − α, n) = (0.90, 0.95, 30).
The sample mean and standard deviation are given by 7.434 and 0.0033, respectively.
Hence, the possible value of c is most likely within the range 7.434 ± 3 × 0.0033 from the
three-sigma rule. This indicates that the c value computed using L = 1, 000, 000 in this
case is most likely to be accurate to ±0.0099 in different simulation runs.

Wehave also triedL = 100, 000 and the corresponding sample standard deviation based
on 20 c-values (using 20 different random seeds) is close to

√
10 × 0.0033 = 0.0104. This

agrees with the known result (cf. Ref. [15] or [20]) that the standard deviation of the sample
quantile is proportional to 1/

√
L as L → ∞.

It must be emphasized that the Monte-Carlo simulation accuracy can be improved by
increasing the value of L. When the value of L becomes large enough, then the c value of
our method approaches the exact critical constant required. In this sense, our method is
exact.

From the various other methods proposed in the statistical literature for computing
c, the KM method of Krishnamoorthy and Mondal [12] is the method that is recom-
mended by Krishnamoorthy and Mathew [[5], Chapter 9, Sections 9.3 and 9.4] and
Young’s R package tolerance. The c-values of the KMmethod are tabulated in Ref. [5],
Appendix B, Table B16, using L = 100, 000. The KMmethod is implemented in the func-
tion mvtol.region of Young’s R package tolerance which allows a user to set the
value of L. As pointed out in Section 2, the KM method computes an analytical approx-
imation, rather than an exact numerical solution as our method, to the value of c from
Equation (4).Mbodj andMathew [13] have observed that amethod that involves an analyt-
ical approximation such as the KMmethod is unlikely to work for all values of (p, 1 − α, n).
The MMmethod of Mbodj and Mathew [13] is similar to the KMmethod but using a dif-
ferent analytical approximation. Since our method is accurate for a sufficiently large L, we
can assess the accuracy of KM and MMmethods for q = 2.

To get some idea about the Monte-Carlo simulation accuracy of the c’s of KM and
MM methods based on L simulations, we have also computed 20 values of c using
KM and MM methods based on L = 1, 000, 000 simulations for given (p, 1 − α, n) =
(0.90, 0.95, 30) using 20 different random seeds. Based on these 20 values, we have the sam-
ple (mean, standard deviation) given by (7.485, 0.0033) and (7.483, 0.0033) for KM and
MMmethods, respectively. Hence, the simulation accuracies of the c’s of the new, KM and
MMmethods based on L = 1, 000, 000 simulations are approximately the same. It is also
noteworthy that the sample means of KM and MM are very close to each other, and only
slightly larger than that of the new method.

http://www.personal.soton.ac.uk/wl/Bi-Tri-Norm-Toler-Ellip/
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Table 1. The c of the new (top), KM (middle) and MM (bottom) methods for q = 2.

p = 0.90 p = 0.95 p = 0.99

1 − α 1 − α 1 − α

n 0.90 0.95 0.99 0.90 0.95 0.99 0.90 0.95 0.99

5 New 41.131 67.490 203.831 57.003 93.896 284.790 95.387 157.704 480.793
KM 41.195 67.333 204.042 56.991 93.620 284.921 95.320 157.610 481.706
MM 41.221 67.581 203.847 57.063 93.945 284.804 95.337 157.664 480.781

7 New 19.783 27.039 53.962 27.190 37.377 75.311 45.197 62.507 126.896
KM 19.856 27.171 54.162 27.227 37.510 75.470 45.107 62.599 127.121
MM 19.878 27.136 54.030 27.287 37.467 75.348 45.171 62.469 126.808

10 New 12.586 15.594 24.723 17.109 21.334 34.245 28.157 35.384 57.378
KM 12.701 15.711 24.845 17.249 21.469 34.343 28.207 35.420 57.467
MM 12.679 15.692 24.832 17.214 21.443 34.344 28.154 35.367 57.346

15 New 9.194 10.630 14.422 12.345 14.352 19.711 20.051 23.489 32.719
KM 9.274 10.746 14.582 12.463 14.512 19.899 20.101 23.579 32.843
MM 9.266 10.716 14.528 12.445 14.461 19.834 20.066 23.502 32.712

30 New 6.832 7.433 8.786 9.036 9.858 11.728 14.350 15.738 18.943
KM 6.872 7.482 8.861 9.100 9.937 11.849 14.378 15.776 18.991
MM 6.873 7.486 8.854 9.103 9.939 11.834 14.378 15.766 18.969

50 New 6.046 6.419 7.212 7.941 8.442 9.520 12.457 13.283 15.103
KM 6.068 6.446 7.246 7.981 8.491 9.580 12.479 13.312 15.109
MM 6.071 6.448 7.253 7.985 8.493 9.592 12.482 13.311 15.135

It must be pointed out that even if there is no Monte-Carlo simulation error (i.e. when
L → ∞), the c’s of KM and MM methods may not be equal to the exact critical constant
that solves Equation (3) due to the analytical approximations used. This is a fundamental
difference between the new method and KM and MMmethods.

Next, we compare the c-values of KM,MM and newmethods for various configurations
of (p, 1 − α, n) to assess to what extend they differ by using L = 1, 000, 000, so that the
simulation errors of all three methods are quite small and so negligible as observed above.
Table 1 provides the c-values for small andmoderate sample sizesn, the situations identified
by Mbodj andMathew [13] that KM andMMmay give less accurate critical constants due
to the approximations used.

It is clear from Table 1 ( we have also tried larger sample sizes, e.g. n = 150) that the
c-values of KM andMMmethods are very close to each other, and only slightly larger than
that of the newmethod. This shows that bothKMandMMmethods produce quite accurate
approximations to the exact critical constant c and there is little difference betweenKMand
MMmethods for the bivariate normal distribution.

3.2. For trivariate normal distributionwith q = 3

TheR codeCritConst3.R for computing the critical constant c for given 1 − α, p and n
(with q = 3) is available at http://www.personal.soton.ac.uk/wl/Bi-Tri-Norm-Toler-Ellip/.
The computation of one c based on L = 100, 000 simulations takes about 1750 s on the
same PC, which is about five times of the computation time for q = 2. This is because
double numerical quadrature is required for q = 3 while only single numerical quadrature
is used for q = 2.

To get some idea about the simulation accuracy of the c based on L simulations for
given (p, 1 − α, n), we have computed 20 values of c based on L = 100, 000 simulations
for (p, 1 − α, n) = (0.90, 0.95, 30) using 20 different random seeds, which have the sample

http://www.personal.soton.ac.uk/wl/Bi-Tri-Norm-Toler-Ellip/


JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION 7

mean and standard deviation given by 10.182 and 0.0125, respectively. Hence, the possi-
ble values of c are most likely within the range 10.182 ± 3 × 0.0125 from the three-sigma
rule. If L = 1, 000, 000 is used, then the sample standard deviation is expected to be about
0.0125/

√
10 = 0.0040.

For the simulation accuracy of the c’s of KM andMMmethods, we have also computed
20 values of c using KM and MMmethods based on L = 100, 000 simulations for (p, 1 −
α, n) = (0.90, 0.95, 30) using 20 different random seeds. Based on these 20 values, we have
the sample (mean, standard deviation) given by (10.280, 0.0157) and (10.282, 0.0118) for
KM andMMmethods, respectively. Hence, the simulation accuracies of the c’s of the new,
KM and MMmethods based on L = 100, 000 simulations are approximately the same.

These results also indicate that the c-values of KM and MM methods are very close to
each other and only slightly larger than the c value of the new method. This observation
is also borne out by the other configurations of (p, 1 − α, n) we have tried using L = 100,
000.

4. Examples

In this section, we first use the Lumber data, originally from Ref. [[21], Table 5.6] and used
also in Ref. [[5], Example 9.1, Table 9.2], to illustrate the tolerance ellipse. The data contain
a sample of 30 observations on stiffness (X1) and bending strength (X2), in units of pounds
per square inch, of a particular grade of lumber.

Some exploratory check of the bivariate normality assumption indicates that the nor-
mality assumption is tenable; see Ref. [[5], Example 9.1]. The summary statistics are

x̄ =
(

1860
8354

)
, V =

(
124049.8 361673.4
361673.4 3486334.0

)
.

For (p, 1 − α, n) = (0.90, 0.95, 30) and q = 2, the critical constant c computed by our R
code is 7.433 and so the tolerance ellipse is given by

Rc(X) = {
x = (x1, x2)′ : (x − x̄)′V−1(x − x̄) ≤ 7.433

}
. (8)

This tolerance ellipse is plotted in Figure 1, with the n = 30 sample observations repre-
sented by the crosses, and the centre of the ellipsemarked by a diamond and letter S. Hence,
with confidence level 1 − α = 0.95 about the randomness in the sample of 30 observations
used to construct this ellipse, at least 100p% = 90% of theN(µ,�) population is included
in this ellipse.

For Example 1 given in Ref. [[13], p.43] with (p, 1 − α, n) = (0.95, 0.95, 30) and q = 2,
the critical constant c is computed to be 9.858, 9.937 and 9.939 in Table 1 by the new, KM
and MM methods, respectively, based on L = 1, 000, 000 simulations. There seems to be
a typo with the c-value 8.94 given in that paper.

For Example 2 given inRef. [[13], p. 44]with (p, 1 − α, n) = (0.95, 0.95, 284) and q = 3,
the critical constant c is computed to be 8.657, 8.669 and 8.670 by the new, KM and MM
methods, respectively, based on L = 100, 000 simulations. There seems to be a typo with
the c-value 7.69 given in that paper.
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Figure 1. The tolerance ellipse and the observed sample data.

5. Discussion

Bivariate and trivariate normal distributions are probably the most frequently used mul-
tivariate distributions, and tolerance regions have wide applications (cf. Refs. [5,6]). Ellip-
soidal tolerance regions play a special role for multivariate normal distributions since
they do not depend on the unknown population mean or population covariance matrix.
But even for the tolerance ellipses of bivariate or trivariate normal populations, only
approximate methods are available in the literature for computing the critical constant c.
Furthermore, without knowing the accurate value of c, it is impossible to judge the accuracy
of the available approximation methods.

In this paper, a new method of computing c is proposed. This method is accurate in the
sense that the critical constant c can be computed as close to the exact value as one requires
if the number of simulations L is set to be sufficiently large. The availableR code allows easy
implementation of the new method.

This new method also allows one to assess the accuracy of the available approximation
methods for bivariate and trivariate normal distributions. The conclusion fromour numer-
ical investigation is that the c-values of KM andMMmethods are only slightly conservative
and there is little difference between the c-values of KM and MMmethods.

Computation of exact tolerance ellipses for multivariate normal distribution of dimen-
sion four or larger is more complicated but warrants further research.
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